

UNIVERSITI PUTRA MALAYSIA

THE BINDING OF BIFIDOBACTERIUM PSEUDOCATENULATUM G4 TOMUTAGENIC/CARCINOGENIC HETEROCYCLIC AROMATIC AMINESIN AN IN VITRO STUDY

FARNAZ FARIDNIA FSTM 2010 1

THE BINDING OF *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 TO MUTAGENIC/CARCINOGENIC HETEROCYCLIC AROMATIC AMINES IN AN *IN VITRO* STUDY

By

FARNAZ FARIDNIA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2010

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

THE BINDING OF *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 TO MUTAGENIC/CARCINOGENIC HETEROCYCLIC AROMATIC AMINES IN AN *IN VITRO* STUDY

By

FARNAZ FARIDNIA

January 2010

Chairman : Professor Mohd Yazid Abdul Manap, PhD

Faculty : Food Science and Technology

Consumption of probiotic microorganisms has been associated with decreased risk of colon cancer and reported to have antimutagenic/anticarcinogenic properties. Lactic acid bacteria (LAB) existing in the colon may exert an anticarcinogenic action, but the mechanism is still poorly understood. One possible mechanism for this effect involves physical binding of the mutagenic compounds, such as heterocyclic amines, to the bacteria. Therefore, the purpose of this study was to study the binding assay of mutagenic/carcinogenic heterocyclic aromatic amines (HCAs) to *Bifidobacterium pseudocatenulatum* G4, a species which has not been explored yet as a commercial probiotic, *in vitro*. The effect of two gram positive bacteria: *Bifidobacterium pseudocatenulatum* G4 and *Bifidobacterium longum* BB536 (a commercial probiotic used as a reference strain), and a gram negative bacterium: human intestinal strain *Escherichia coli* ATCC 25922 at the colon

environmental pH and temperature were studied. In vitro binding of five common mutagens namely; IQ, MeIQx, PhIP, Trp-p-2 and 7, 8-DiMeIQx to the bacterial strains, in two media of different pH levels was analyzed using HPLC. Moreover, the tolerance of *B. pseudocatenulatum* G4 to simulated colonic pH and the survival of this strain in the presence of carcinogens were evaluated. The results showed that HCAs were able to bind all bacterial strains tested in vitro. A significant decrease (P < 0.05) in the sum of polar and apolar HCAs compared to untreated samples was observed. B. pseudocatenulatum G4 showed the highest decrease in the total HCAs content, followed by B. longum, and E. coli. The binding of freezedried cells to HCAs was pH dependant; the highest binding occured in the descending region pH of the colon and rectum at pH 6.8. In this study, the binding capacities of gram-positive and gram-negative bacteria to pyrolyzates were compared, the gram positive strains were found consistently more effective than gram negative strain. Although we observed a significant decrease in the amount of HCAs in the presence of three different cell concentrations $(10^6, 10^8 \text{ and } 10^{10} \text{ cfu/g})$ of B. pseudocatenulatum G4, the highest decrease was detected at the concentration of 10^{10} cfu/g. The average binding (%) of IO, MeIOx, 7.8DiMeIOx, Trp-p-2, and PhIP were 86.77, 92.58, 80.45, 85.68, 79.32, respectively, and differed significantly (P < 0.05) depending on the mutagen. The resistance of G4 to simulated colonic pH showed a high survival rate with little or no decrease in cell count. Also, the survival of B. pseudocatenulatum G4 in the presence of selected carcinogens showed no reduction in the number of living bacterial cells as compared with the control. These results revealed that B. pseudocatenulatum G4 potentially can reduce the concentration of mutagenic/carcinogenic HCAs markedly in human intestinal tracts and colons.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PERLEKATAN *BIFIDOBACTERIUM PSEUDOCATENULATUM* G4 TERHADAP MUTAGENIK/KARSINOGENIK HETEROSIKLIK AROMATIK AMINA DI DALAM KAJIAN *IN VITRO*

Oleh

FARNAZ FARIDNIA

Januari 2010

Pengerusi : Profesor Mohd Yazid Abdul Manap, PhD

Fakulti : Sains dan Teknologi Makanan

Penggunaan mikroorganisma probiotik seringkali dikaitkan dengan pengurangan risiko kanser kolon dan juga telah dilaporkan mempunyai ciri-ciri antimutagenik/antikarsinogenik. Kehadiran laktik asid bakteria pada kolon manusia mungkin mempengaruhi tindakan antikarsinogenik tetapi mekanismanya masih kurang difahami. Salah satu mekanisme yang munasabah untuk tindakan ini ialah penglibatan pelekatan fizikal sebatian mutagenik seperti heterosiklik amina kepada bakteria. Oleh itu, tujuan penyelidikan ini adalah untuk mengkaji pencerakinan ikatan mutagenik/karsinogenik daripada heterosiklik aromatik amina terhadap B.pseudocatenulatum G4, iaitu satu spesis yang tidak pernah diteliti lagi sebagai probiotik komersial, secara in vitro. Kesan dua bakteria Gram Positif: B.pseudocatenulatum G4 dan B. longum BB536 (sejenis probiotik komersial yang digunakan sebagai strain rujukan) dan satu bakteria Gram Negatif: strain dari usus manusia E. coli ATCC 25922 pada pH dan suhu persekitaran kolon telah dikaji.

Perlekatan in vitro lima jenis mutagen iaitu; IQ, MeIQx, PhIP, Trp-p-2 dan 7,8-DiMeIQx terhadap strain-strain bakteria, pada dua jenis medium yang mempunyai pH yang berbeza telah dianalisis menggunakan Kromatografi Cecair Berkeupayaan Tinggi. Tambahan lagi, ketahanan B. pseudocatenulatum G4 terhadap simulasi pH kolon dan kemandirian strain ini terhadap kehadiran bahan karsinogenik juga telah dinilai. Keputusan kajian menunjukkan bahawa HCA berkebolehan untuk melekat dengan kesemua strain bakteria secara *in vitro*. Pengurangan nyata (P < 0.05) dalam jumlah polar dan apolar HCA dalam perbandingan dengan sampel yang tidak dirawat telah diperhatikan. B. pseudocatenulatum G4 telah menunjukkan pengurangan paling tinggi dalam jumlah keseluruhan kandungan HCA, diikuti oleh B.longum dan E. coli. Keputusan menunjukkan bahawa perlekatan sel-sel bakteria sejuk beku-kering terhadap HCA adalah pH tanggungan; perlekatan paling tinggi telah dicapai di kawasan pH kolon yang menurun dan rektum pada pH 6.8. Dalam kajian ini juga, kapasiti perlekatan bakteria Gram-positif dan Gram-negatif dengan pyrolizat telah dibandingkan. Strain Gram-positif didapati lebih berkesan secara konsisten berbanding strain Gram-negatif.Walaupun pemerhatian kajian mendapati terdapat pengurangan yang nyata pada kuantiti HCA terhadap tiga kepekatan sel B. *pseudocatenulatum* G4 yang berbeza iaitu 10^6 , 10^8 , dan 10^{10} cfu g⁻¹, tetapi penurunan yang paling tinggi dikesan adalah pada kepekatan 10¹⁰ cfu g⁻¹. Nilai peratus purata perlekatan IQ, MeIQx, 7,8- DiMeIQx, Trp-p-2 dan PhIP masingmasing adalah 86.77, 92.58, 80.45, 85.68 dan 79.32 serta berbeza secara nyata (P <0.05) bergantung kepada mutagen. Daya tahan rintangan G4 terhadap simulasi pH kolon menunjukkan kadar kemandirian yang tinggi dengan sedikit atau tiada penurunan dalam kiraan bilangan sel. Juga, kadar kemandirian *B*. pseudocatenulatum G4 dalam kehadiran karsinogen terpilih menunjukkan tiada

penurunan di dalam bilangan sel bakteria hidup jika dibandingkan dengan kawalan. Keputusan ini memperlihatkan bahawa *B. pseudocatenulatum* G4 berpotensi untuk megurangkan kadar kepekatan mutagenik/karsinogenik HCA dengan ketara pada saluran usus dan kolon manusia.

ACKNOWLEDGEMENTS

I would first like to thank God for his mercy and guidance that helped me in conducting this study and in the preparation of this thesis. I wish to express my appreciation, sincere thankfulness and gratitude to my supportive chairman Professor Dr. Mohd Yazid Abdul Manap for giving me this chance to work on this interesting project and complete the study under his great knowledge and guidance. During this study, he showed a great deal of encouragement, trust and friendship.

I would like to thank Professor Dr. Nazamid Saari, Professor Madya Dr. Loong Yik Yee and Prof. madya Dr. Shuhaimi Mustafa, being my co-supervisors for their understanding, guidance, and suggestion throughout this project. I would also like to acknowledge them for their kindness in reviewing my thesis, contributions and their priceless support. All their valuable help are greatly appreciated. Next, my sincere appreciation also goes to Dr. Hamed Mirhosseini for his valuable advice in statistical analysis and SAS interpretation.

Last but not least, my deepest thanks go to my both beloved parents and family for their love, endless support, continuing encouragement, understanding, and reassurance during all these years. I especially wish to extend my heartfelt gratitude to my precious husband who constantly helped me in all parts of my life and for accompanying me through countless nights in the lab. This thesis is dedicated to all of them.

Finally, I am sincerely grateful to all of faculty staff, my labmates and great friends Amir, Barka, Mohsen, Farrah, Anas, Maryam, Safzan, Nassim, Yamin and Taiwo who helped me with their support and care throughout my entire graduate study. Without the help of these valuable people, it would not be possible for me to accomplish my goal.

I certify that an Examination Committee has met on to conduct the final examination of Farnaz Faridnia on her Master thesis entitled "The Binding of *Bifidobacterium Pseudocatenulatum* G4 to Mutagenic/ Carcinogenic Heterocyclic Aromatic Amines in an *in vitro* Study" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the (Name of relevant degree).

Members of the Examination Committee were as follows:

Name of Chairperson, PhD

Title (Professor/ Associate Professor/ Ir) Name of Faculty Universiti Putra Malaysia (Chairman)

Name of Examiner 1, PhD

Title Name of Faculty Universiti Putra Malaysia (Internal Examiner)

Name of Examiner 2, PhD

Title Name of Faculty Universiti Putra Malaysia (Internal Examiner)

Name of External Examiner, PhD

Title Name of Department and/ or Faculty Name of Organisation (University/ Institute) Country (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Yazid Abdul Manap, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazamid Saari, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Shuhaimi Bin Mustafa, PhD

Associate Professor Faculty of Biotechnology and Molecular Science Universiti Putra Malaysia (Member)

Loong Yik Yee, MD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 8 April 2010

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

FARNAZ FARIDNIA

Date: 1.03.2010

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	XX

CHAPTER

INTE	RODUC	TION	1
LITE	RATUI	RE REVIEW	7
2.1	Epiden	niology	7
	2.1.1	History of Heterocyclic Amines discovery	9
	2.1.2	Human Exposure and Cancer Risks	13
	2.1.3	Classification of Heterocyclic Amines	14
	2.1.4	Carcinogenesis	15
2.2	Hetero	ocyclic Amines and DNA Adduct Formation	18
	2.2.1	Mutagenic activity and Ames test	20
2.3	Forma	tion of dietary Heterocyclic Amines	23
	2.3.1	Factors Affecting the Formation of	
		Heterocyclic Amines	25
	2.3.2	Metabolism of HCAs in Experimental	
		Laboratory Animals and Humans	26
	2.3.3	Reduction or Inhibition of Heterocyclic Amines	30
	2.3.4	Binding and Degrading Potential Carcinogens/	
		Mutagens	30
2.4	Gastro	bintestinal Physiology and Functions	33
	2.4.1	Gut Microflora	36
	2.4.2	Modulation of the Intestinal Microflora and Its	
		Metabolism	37
	2.4.3	Role of the Gut Microflora in Cancer	38
2.5	Etiolo	gy of Colon Cancer	38
2.6	Food I	Born Genotoxic Substances and Cancer	40
2.7	Functi	onal Foods	40
2.8	Probic	otics	41
	2.8.1	Proposed Mechanism of Action and Properties	
		of Probiotic	42
	2.8.2	Pathogen Prohibition Activity of Probiotics	44

		2.8.3	Mechanisms of Anti-mutagenicity and Anti-	
			carcinogenicity of Probiotics	44
		2.8.4	Mechanisms by which Probiotic Bacteria may	
			Inhibit Colon Cancer	46
		2.8.5	The Anti-Genotoxic Activity of Probiotics	47
	2.9	Bifid	lobacteria and their Beneficial Effects	48
		2.9.1	Bifidobacterium Pseudocatenulatum G4	50
		2.9.2	Bifidobacterium longum BB536	51
		2.9.3	The Safety of Probiotics	52
2	ЛЛАГ	FEDIAL	S AND METHODS	E 2
3	1VIA. 2.1	I ENIAL Bootor	s AND METHODS	53
	3.1	Crowt	that Strains and Growth Conditions	55
	3.2	Growi	In Phases of Diffuodaciental strains	33
	5.5		val of Bacterial Strains to Sinulated Colonic	56
			Proposition of Solutions to simulate all of	30
		3.3.1	Preparation of Solutions to simulate pH of	50
		222	Human Colon	30
		3.3.2	Survival of <i>B. pseudocatenulatum</i> G4 at Different	50
		2 2 2	pH Conditions	56
	2.4	3.3.3	Microbiological Analysis	57
	3.4	Surviv	al of <i>B. pseudocatenulatum</i> G4 in the Presence	50
		of HC	As an	58
		3.4.1	Maintenance of Viable Cells	58
		3.4.2	Preparation of Methanolic Solutions of HCAs	58
		3.4.3	Growth of Bifidobacteria in the Presence of HCAs	58
		3.4.4	Statistical Analysis	59
	3.5	Bindir	ng of Mutagenic Heterocyclic Amines by Bacterial	
		Cells		59
		3.5.1	Preparation of bacterial cells	59
		3.5.2	Sample preparation	60
		3.5.3	Preparation of Lyophilized Cells	61
		3.5.4	Mutagenic Chemicals used in the study	62
		3.5.5	In vitro Binding assay	63
		3.5.6	Chromatography System and Operating Conditions	64
		3.5.7	Statistical Analysis	66
4	DEC		ND DIGCUCCION	(7
4	KES 4 1	OULIS A	IND DISCUSSION	0/
	4.1	Mission	Solution Using Gram Staining and	(7
	4.2	WIICTOS(Disease of Difidal astanial Staring	0/
	4.2	Growth	Phases of Bifidobacterial Strains	/0
	4.3	Surviva	al of Bacterial Strains to Simulated Colonic	70
		pH Env	vironment	73
	4.4	In vitro	Binding of HCAs to bacterial cells	79
	4.5	Effects	of pH on binding of heterocyclic amines to	
		the bact	terial cells	89
	4.6	Effect c	of Cell Concentration on the Binding of HCAs	
		to freez	e-dried Cells	99

	4.7 Survival of <i>B. pseudocatenulatum</i> G4 in the presence of Heterocyclic Amines	102
5	GENERAL CONCLUSION	105
REFERI APPENI	ENCES DICES	108 126
BIODA	TA OF STUDENT	139
LIST O	F PUBLICATIONS	139

LIST OF TABLES

Table		Page
2.1	Chemical names, abbreviations and years of discovery of the different heterocyclic amines	12
2.2	Abbreviations of HCAs and their mutagenicities in <i>S. typhimurium</i> TA98	23
2.3	Antigenotoxicity of Probiotics and Prebiotics in vitro and in vivo	35
3.1	List of Bacterial Strains used in the present study	54
3.2	Identification and analytical information of HCAs	62
4.1	Definition of terms used for the description of bifidobacteria	67
4.2	Effect of simulated colonic pH (5.6, 6.6, and 6.8) on cell viability	74
4.3	Viability of bacterial strains according to their resistance to colonic pH	75
4.4	Summary of probiotic screening studies done on <i>B</i> . <i>pseudocatenulatum</i> G4 obtained from previous researchers.	78
4.5	Percentage of <i>in vitro</i> binding of mutagens by cells of <i>B. pseudocatenulatum</i> G4, <i>B. longum</i> BB536 and <i>E. coli</i> (10^8 cfu/ml)	81
4.6	Significance probability (<i>P</i> -value and <i>F</i> -value), R^2 of the independent variables effects in the full factorial design with bound HCAs with <i>B. pseudocatenulatum</i> G4 (10 ¹⁰ cfu/ml) as the response	93

4.7	Mean values of bound HCAs with <i>B. pseudocatenulatum</i> G4 $(10^{10}$ cfu/ml) in two different pH medium.	93
A.1	Regression Equation for HCAs	127
A.2	HCAs retention times according to HPLC chromatogram	131
A.3	Significance probability of the independent variables effects in the full factorial design with bound HCAs as the response	132
A.4	Interaction between pH, HCAs and bacterial cells (10 ⁸ cfu/ml)	133
A.5	Mean values of bound mutagen in two pH mediums obtained from the interaction between pH and HCAs	133
A.6	TPY medium composition	136
A.7	Carcinogenicity of Heterocyclic Amines in Rats and Mice	138

LIST OF FIGURES

Figure		Page
2.1	Structures of heterocyclic amines	11
2.2	Chemical structures of precursors for IQ type HCAs	25
2.3	Species differences in regioselective of CYP1A2 oxidation (bioactivation and detoxication) of 8-MeIQx and PhIP	27
2.4	Major pathways of metabolism of PhIP in experimental animals and humans	28
2.5	Schematic representation of the interactions between intestinal bacteria and HCAs	29
2.6	Electron Micrograph of <i>B. pseudocatenulatum</i> G4	51
4.1	Compound light microscope image of <i>B. pseudocatenulatum</i> G4 after gram staining	68
4.2	Microscopic Image of <i>B. pseudocatenulatum</i> G4 Grown on Trypticase Phytone Yeast (TPY) Broth Medium after Gram Staining	69
4.3	Compound light microscope image of <i>B. longum</i> BB536 after Gram staining	69
4.4	Log, Stationary, and Death Phases for <i>B. pseudocatenulatum</i> G4	71
4 5	Log Stationary and Death Phases for <i>B longum</i> BB536	71

4.6	pH Curve during <i>B. pseudocatenulatum</i> G4 and <i>B. longum</i> BB536 Growth in Broth Culture Media for 24 h	72
4.7	Interaction between HCAs and <i>B. pseudocatenulatum</i> G4, <i>B. longum</i> BB536 and <i>E. coli</i> (10^8 cfu/ml) at pH: (A) pH= 5.6; and (B) pH= 6.8 after incubation. Means with the same superscript letters were not significantly different (Duncan's Multiple Range Test; <i>P</i> < 0.05)	82
4.8	Different pH in human small and large intestine	90
4.9	Effects of pH on <i>in vitro</i> HCAs Binding to freeze-dried cells of <i>B. pseudocatenulatum</i> G4 at 10^{10} cfu/ml in two different pH medium	92
4.10	In vitro binding of potent mutagenic pyrolysates to cells of <i>B</i> . <i>pseudocatenulatum</i> G4 at 10^{10} cfu/ml in two different pH medium	95
4.11	Interaction between HCAs and <i>B. pseudocatenulatum</i> G4 different concentrations (cfu/ml). Means with the same superscript letter are not significantly different at $P < 0.05$	100
4.12	Growth of <i>B. pseudocatenulatum</i> G4 at 10^6 cfu/ ml in the presence of HCAs	103
4.13	Growth of <i>B. pseudocatenulatum</i> G4 at 10^8 cfu/ ml in the presence of HCAs	103
4.14	Growth of <i>B. pseudocatenulatum</i> G4 at 10^{10} cfu/ ml in the presence of HCAs	104
A.1	HPLC chromatograms ($\lambda = 265$ nm) of heterocyclic aromatic amines: Standard mixture	127
A.2	Standard curve for IQ obtained by UV detection	128

A.3	Standard curve for MeIQx obtained by UV detection	128
A.4	Standard curve for 7,8 DiMeIQx obtained by UV detection	129
A.5	Standard curve for Trp-p-2 obtained by UV detection	129
A.6	Standard curve for PhIP obtained by UV detection	130
A.7	Anatomy, physiology, and microbiology of the GIT	134
A.8	Shimadzu LC-20AT HPLC with Shimadzu SPD-M20A Detector	137
A.9	Anaerobic jars containing Anaerocult A	137

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
ATCC	American Type Culture Collection
A ₆₂₀	Absorbency under 620 nm
BHI	Brain Heart Infusion Medium
cfu	Colony forming units
conc.	Concentration
CO_2	Carbon dioxide
CRC	Colorectal Cancer
d	Day
7, 8DiMeIQx	3, 7, 8-trimethyl-3H-imidazo [4, 5-f] quinoxalin-2-amine
DNA	Deoxyribonucleic acid
DNMRT	Duncan's New Multiple Range Test
g	unit for measuring centrifugation force
GI	Gastrointestinal
GIT	Gastrointestinal tract
Glu	glucose
GRAS	Generally regarded as safe
H^{+}	Hydrogen ion
НСА	Heterocyclic Aromatic Amine
HCl	Hydrochloric acid
HPLC	High performance liquid chromatography

i.e.	<i>id est</i> (that is)
IQ	2-amino-3-methyl-3H-imidazo [4, 5-F] quinoline
kg	Kilogram
L	Liter
LAB	Lactic acid-producing bacteria
Log_{10}	Logarithm to the base 10
М	Molar
MeIQx	2-amino-3, 8-dimethylimidazo [4, 5-f] quinoxaline
mg	Milligram
min	Minute
mL	Milliliter
MRS	de Man Rogosa Sharpe Medium
Ν	Nitrogen
Ν	Normality
NDMA	N-nitrosodimethylamine
NaOH	Sodium hydroxide
Р	Probability
PBS	Phosphate buffered Saline (Buffer Solution)
PhIP	2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine
ppm	Parts per million
RCBD	Randomized Complete Block Design
RNA	Ribonucleic acid
rDNA	Ribosomal deoxyribonucleic acid
rRNA	Ribosomal ribonucleic acid

RNA	Ribonucleic acid
rpm	Revolution per minute
SCFA	Short Chain Fatty Acids
S.D.	Standard Deviation
SE	Standard Error
SEM	Standard Error of the Mean
Sp.	Specie
spp.	Species
TPY	Trypticase -Phytone-Yeast Extract
Trp-p-2	3-amino-1-methyl-5H-pyrido [4, 3-b] indole
UV	Ultra Violet ray
v/v	Volume per volume
w/v	Weight per volume
WHO	World Health Organization
α	alpha
β	beta

CHAPTER 1

INTRODUCTION

Colorectal cancer (CRC) is the second major cause of death from cancer in Europe and in the USA. It has been estimated that about one third of human cancers are related to diet (Yun, 2004). Dietary factors and colonic microbiota seem to play a crucial role in colorectal carcinogenesis (Gooderham *et al.*, 2007; Capurso *et al.*, 2006). The molecular genetic mechanisms of CRC are well established, but environmental factors such as diet also have a major role in development of sporadic colon cancer. Regular consumption of dietary fat and red meat, especially processed meat, has been associated with high risk of colon cancer. In contrast, a high intake of fruits and vegetables, whole grain cereals, fish, and calcium have been associated with reduced risk (Bingham, 1999; Rafter and Glinghammar, 1998).

A group of carcinogens of dietary origin are the heterocyclic aromatic amines, formed in protein-rich muscle foods during high temperature of cooking or grilling (Melo *et al.*, 2008; Cheng *et al.*, 2006). Heterocyclic aromatic amines (HCAs) were first discovered in cooked foods by Sugimura and his collaborators more than 25 years ago (Sugimura *et al.*, 2004). More than 20 HCAs have since been isolated and identified in cooked foods. Among these amines, Trp-p-1 (3-amino-1, 4-dimethyl-5-H-pyrido [4, 3-b] indole); Trp-p-2 (3-amino-1-methyl-5-H-pyrido [4, 3-b] indole); IQ (2-amino-3-methylimidazo[4,5,-f]quinoline); MeIQx (2-amino-3,8-imethylimidazo [4,5-f]quinoxaline), and PhIP (2-amino-methyl-6-phenylimidazo[4,5-b]pyridine) are carcinogenic in rats and mice, and IQ was also

found to be carcinogenic in monkeys (Ohgaki *et al.*,1991; Sugimura, 1997). Their formation is dependent upon the type of meat, cooking method, temperature and cooking time. Several HCAs have been classified as possible/probable carcinogens by the International Agency for Research on Cancer (IARC) (Melo *et al.*, 2008). They have been tested for their mutagenic activity in assays *in vitro* and *in vivo* with positive results of toxicity for most of them (Schut and Snyderwine, 1999). The most abundant of these heterocyclic amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) has been shown to specifically induce tumors of the colon, breast, and prostate in rats which, co-incidentally are the three commonest sites of diet-associated cancer in Western society (Gooderham *et al.*, 2007; Zhu *et al.*, 2006). Recently a correlation between pancreatic cancer and meat intake, especially those cooked at high temperatures, suggests the involvement of HCAs consumption (Smith *et al.*, 2008). Therefore, reducing human exposure to these compounds is highly recommended.

However, intestinal bacteria could also play a part in initiation of colon cancer through production of carcinogens, co-carcinogens, or pro-carcinogens. Some intestinal microorganisms strongly increase damage to DNA in colon cells induced by heterocyclic amines, whereas other intestinal bacteria can take up and detoxify such compounds (Wollowski *et al.*, 2001). Bacteria of the *Bacteroides* and *Clostridium* genera increase the incidence and growth rate of colonic tumors induced in animals, whereas other genera such as *Lactobacillus* and *Bifidobacteria* prevent tumorigenesis (O'Mahony *et al.*, 2001; Onoue *et al.*, 1997). The harmful bacteria possess several enzymes (e.g. β -glucuronidase, nitroreductase) responsible for conversion of procarcinogens into carcinogenic substances, such as