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In this thesis, the exact solutions of the characteristic singular integral equation

of Cauchy type
∫ 1

−1

'(t)

t− x
dt = f(x), −1 < x < 1, (0.1)

are described, where f(x) is a given real valued function belonging to the Hölder

class and '(t) is to be determined.

We also described the exact solutions of Cauchy type singular integral equations

of the form

∫ 1

−1

'(t)

t− x
dt+

∫ 1

−1

K(x, t)'(t) dt = f(x), −1 < x < 1, (0.2)

where K(x, t) and f(x) are given real valued functions, belonging to the Hölder

class, by applying the exact solutions of characteristic integral equation (0.1) and

the theory of Fredholm integral equations.

This thesis considers the characteristic singular integral equation (0.1) and

Cauchy type singular integral equation (0.2) for the following four cases:
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Case I. '(x) is unbounded at both end-points x = ±1,

Case II. '(x) is bounded at both end-points x = ±1,

Case III. '(x) is bounded at x = −1 and unbounded at x = 1,

Case IV. '(x) is bounded at x = 1 and unbounded at x = −1.

The complete numerical solutions of (0.1) and (0.2) are obtained using polyno-

mial approximations with Chebyshev polynomials of the first kind Tn(x), second

kind Un(x), third kind Vn(x) and fourth kind Wn(x) corresponding to the weight

functions !1(x) = (1− x2)
− 1

2 , !2(x) = (1− x2)
1

2 , !3(x) = (1 + x)
1

2 (1− x)−
1

2 and

!4(x) = (1 + x)−
1

2 (1− x)
1

2 , respectively.

The exactness of the numerical solutions of equation (0.1), when the force func-

tion f(x) is a polynomial of degree n, is proved for all cases.

The exactness of the numerical solutions of equation (0.2), for some given exam-

ple functions K(x, t) and f(x) are shown.

The estimation of errors for the numerical solutions of equations (0.1) and (0.2),

for the above four cases are investigated in the classes of functions L2, !i
, i =

1, 2, 3, 4, which are defined as

L2, !i
=

{
'(x)∣

∫ 1

−1

!i(x) ∣'(x)∣2 dx <∞
}
,

with the corresponding norms

∥'∥22, !i
=

∫ 1

−1

!i(x) ∣'(x)∣2 dx.

The linearity and boundedness of singular operators Ai : L2, !i
→ L2, 1

!i

, and
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non-singular operators Bi : L2, !i
→ L2, 1

!i

, i = 1, 2, 3, 4, where

(Ai ')(x) =

∫ 1

−1

!i(t)
'(t)

t− x
dt, −1 < x < 1, (0.3)

and

(Bi ')(x) =

∫ 1

−1

!i(t)K(x, t)'(t) dt, −1 < x < 1, (0.4)

are discussed.

The rate of convergence of the numerical solutions of equations (0.1) and (0.2),

for the above four cases are shown.

FORTRAN codes are developed to obtain all the numerical results for different

functions K(x, t) and f(x). Numerical experiments assert the theoretical results.
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PENYELESAIAN BERANGKA PERSAMAAN KAMIRAN
SINGULAR JENIS CAUCHY JENIS PERTAMA MENGUNAKAN

PENGHAMPIRAN POLINOMIAL

Oleh

MOHAMMAD ABDULKAWI MAHIUB

January 2010

Pengerusi: Zainidin Eshkuvatov, PhD

Fakulti : Sains

Dalam tesis ini, penyelesaian tepat bagi persamaan kamiran singular cirian jenis

Cauchy
∫ 1

−1

'(t)

t− x
dt = f(x), −1 < x < 1, (0.5)

digambarkan, dengan f(x) ialah fungsi bernilai nyata yang telah diberikan be-

rada dalam kelas Hölder dan '(t) akan ditentukan.

Kami juga menggambarkan penyelesaian tepat bagi persamaan kamiran singular

jenis Cauchy berbentuk

∫ 1

−1

'(t)

t− x
dt+

∫ 1

−1

K(x, t)'(t) dt = f(x), −1 < x < 1, (0.6)

dengan K(x, t) dan f(x) adalah fungsi nilai nyata diberi, yang tergolong dalam

kelas Hölder, dengan menggunakan penyelesaian tepat bagi persamaan kamiran

cirian (0.5) dan teori persamaan kamiran Fredholm.

Thesis ini mempertimbangkan persamaan kamiran singular cirian (0.5) dan per-

samaan kamiran singular jenis Cauchy (0.6) bagi empat kes berikut:
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Kes I. '(x) adalah tak terbatas di kedua-dua titik hujung x = ±1,

Kes II. '(x) adalah terbatas di kedua-dua titik hujung x = ±1,

Kes III. '(x) adalah terbatas di x = −1 dan tak terbatas di x = 1,

Kes IV. '(x) adalah terbatas di x = 1 dan tak terbatas di x = −1.

Penyelesaian berangka lengkap bagi (0.5) and (0.6) bagi empat kes diatas

telah diperolehi dengan penggunaan penghampiran polinomial dengan polinomial

Chebyshev jenis pertama Tn(x), kedua Un(x), ketiga Vn(x) dan keempat Wn(x)

bersesuaian dengan fungsi pemberat !1(x) = (1− x2)
− 1

2 , !2(x) = (1− x2)
1

2 ,

!3(x) = (1 + x)
1

2 (1− x)−
1

2 dan !4(x) = (1 + x)−
1

2 (1− x)
1

2 , masing-masingnya.

Ketepatan penyelesaian berangka bagi persamaan (0.5), apabila fungsi daya f(x)

ialah suatu polinomial berdarjah n, dibuktikan bagi semua kes.

Ketepatan penyelesaian berangka bagi persamaan (0.6), untuk beberapa fungsi

contoh K(x, t) dan f(x) yang diberi ditunjukkan.

Anggaran ralat untuk penyelesaian berangka persamaan (0.5) dan (0.6) untuk

keempat-empat kes di atas dikaji dalam kelas fungsi L2, !i
, i = 1, 2, 3, 4, di-

takrifkan sebagai

L2, !i
=

{
'(x)∣

∫ 1

−1

!i(x) ∣'(x)∣2 dx <∞
}
,

dengan norma

∥'∥22, !i
=

∫ 1

−1

!i(x) ∣'(x)∣2 dx.

Kelinearan dan keterbatasan operator singular Ai : L2, !i
→ L2, 1

!i

, dan operator
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tak-singular Bi : L2, !i
→ L2, 1

!i

, i = 1, 2, 3, 4, dengan

(Ai ')(x) =

∫ 1

−1

!i(t)
'(t)

t− x
dt, −1 < x < 1, (0.7)

dan

(Bi ')(x) =

∫ 1

−1

!i(t)K(x, t)'(t) dt, −1 < x < 1, (0.8)

dibincangkan.

Kadar penumpuan bagi penyelesaian berangka persamaan (0.5) dan (0.6) dalam

keempat-empat kes di atas ditunjukkan.

Kod FORTRAN dibangunkan bagi memperolehi semua keputusan berangka un-

tuk fungsi berbeza K(x, t) dan f(x). Eksperimen berangka mengukuhkan kepu-

tusan yang diperolehi secara teori.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary

The theory of integral equations have a close contacts with broad areas of math-

ematics. Foremost among these are differential equations and operator theory.

Many problems in the fields of ordinary and partial differential equations can be

reduced to integral equations. Existence and uniqueness of the solution then can

be derived from the corresponding integral equations. Many problems of science

and engineering can be stated in the form of integral equations. It is sufficient

to say that there is almost no area of applied mathematics and mathematical

physics where integral equations do not play a role (Hochstadt, 1973).

Integral equation containing integrals, in the sense of Cauchy principle value, with

integrands having a singularity in the domain of integration is called Cauchy sin-

gular integral equations (Kanwal, 1997).

In this research we will consider one-dimensional singular integral equations

(SIEs) that occurs in varieties of mixed boundary value problems of mathematical

physics and engineering such as, isotropic elastic bodies involving cracks, aero-

dynamic, hydrodynamic, elasticity and other related areas. The investigations

of these SIEs with Cauchy Kernels (CSIEs) by Gakhov, Muskhelishvili, Vekua,

and others give a great impact on the further development of the general theory

of SIEs. For a comprehensive study of CSIEs we refer to Muskhelishvili (1953),

Gakhov (1963) and Ladopoulos (2000).



For the purpose of investigation of CSIEs, we first need to introduce the singular

integral and Cauchy principle value.

1.2 Cauchy Singular Integral

Definition 1.1. Let x be a point on contour L outside its nodes. Consider a circle

with center x and small radius � > 0 that intersects L at two points t′ and t′′ .

Denote by ℓ the arc t′t′′ ⊂ L. If the integral (Belotserkovskii and Lifanov, 1993)

∫

L/ℓ

f(t)

t− x
dt,

has a finite limit F (x) as �→ 0, this limit is called the Cauchy principal value of

the singular integral,

F (x) = lim
�→ 0

∫

L/ℓ

f(t)

t− x
dt, x ∈ L (1.1)

and it is denoted by (Kanwal, 1997)

∫ ∗

L

f(t)

t− x
dt. or P

∫

L

f(t)

t− x
dt

or by (Kytℎe andScℎaferkotter, 2005)

−
∫

L

f(t)

t− x
dt. (1.2)

Definition 1.2. A function f(x) defined on a set D is said to satisfy the Hölder

condition with exponent � if for any x1, x2 ∈ D, the inequality

∣f(x1)− f(x2)∣ ≤ K∣x1 − x2∣�

holds with constants K > 0 and 0 < � ≤ 1. These constants are respectively

called the coefficient and the exponent in the Hölder condition (Kanwal, 1997).

We simply say that the function f(x) satisfies the H-condition or belongs to the

class H on the set D. Such a function f(x) is also said to be Hölder continuous.

We usually write f(x) ∈ H(�) or f(x) ∈ H�(K,D).

2



Definition 1.3. A function '(t) belongs to the class H∗ on a piecewise smooth

curve L, if

'(t) =
'∗(t)

P �
L(t)

, P �
L(t) = Πp

k=1∣t− ck∣�k ,

where '∗(t) ∈ Ho on L, i.e., it belongs to the class H on every smooth piece of the

curve L; 0 ≤ �k < 1; and ck, k = 1, . . . , p, are the nodes of the curve L. Without

loss of generality, we can assume that '∗(t) ∈ H on L (Lifanov et al., 2004).

Now, we need to investigate the existence of the singular integral

∫

L

f(t)

t− x
dt,

where L is the single arc ab. Then, formula (1.1) reads

−
∫ b

a

f(t)

t− x
dt = lim

"→ 0

{∫ x−"

a

f(t)

t− x
dt+

∫ b

x+"

f(t)

t− x
dt

}
, a < x < b. (1.3)

The limit in (1.3) may not exist when the density function f(x) is only integrable

or even continuous. On the other hand, the existence of the limit in (1.3) is

ensured when the function f(x) satisfies the Hölder condition in a certain neigh-

borhood of an internal point t on the arc L, i.e., when it satisfies the following

inequality

∣f(t)− f(�)∣ < C∣t− � ∣� (0 < � ≤ 1), (1.4)

where � is an arbitrary point of the arc L in a given neighborhood of the point t

and C is a positive constant coefficient. Denote by ℓ� the part of the arc L cut

out by the circle with center at t whose radius � > 0 and take the integral over

the remaining arc L/ℓ� outside the circle

∫

L/ℓ�

f(t)

� − t
d� =

∫

L/ℓ�

f(�)− f(t)

� − t
d� + f(t)

∫

L/ℓ�

d�

� − t
. (1.5)
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On the basis of the condition (1.4), the function f(t) in the first integral of the

right-hand side of Eq. (1.5) satisfies the inequality

∣∣∣∣
f(�)− f(t)

� − t

∣∣∣∣ <
C

∣� − t∣1−�
,

and it thus has a weak singularity for � → t. Therefore, we are assured of the

existence of the improper integral

∫

L/ℓ�

f(�)− f(t)

� − t
d�.

The second integral on the right-hand side of Eq. (1.5) can be expressed as follows

∫

L/ℓ�

d�

� − t
= [ln (� − t)]t

′

a + [ln (� − t)]bt′′

= ln (b− t)− ln (a− t)− [ln (t′′ − t)− ln (t′ − t)], (1.6)

where ln (� − t) on each of the arcs at and tb is a branch which changes con-

tinuously on this arc. For definiteness, these branches will be connected by the

following condition: the value ln (t′′ − t) is obtained from the value ln (t′ − t) by

means of a continuous change of ln (� − t), while t varies on the arc of an in-

finitesimal circle, with center at t, so that it passes the point t on the left, with

respect to L, (Muskhelishvili, 1953).

Rewriting (1.6) as
∫

L/ℓ�

d�

� − t
= ln

b− t

a− t
+ ln

t′ − t

t′′ − t
. (1.7)

It is obvious that

ln
t′ − t

t′′ − t
= ln

∣∣∣∣
t′ − t

t′′ − t

∣∣∣∣+ i[arg(t′ − t)− arg(t′′ − t)]. (1.8)

By the condition

∣t′ − t∣ = ∣t′′ − t∣ = �,

one has

lim
�→0

[arg (t′ − t)− arg (t′′ − t)] = �. (1.9)

4



Due to (1.8) and (1.9) we have

lim
�→0

[
ln
t′ − t

t′′ − t

]
= i�,

and consequently

−
∫

L

d�

� − t
= ln

b− t

a− t
+ i�. (1.10)

The integral in (1.10) can also be represented in the form

−
∫

L

d�

� − t
= ln

b− t

t− a
.

Taking the limit on both sides of (1.5) yields

−
∫

L

f(t)

� − t
d� = −

∫

L

f(�)− f(t)

� − t
d� + f(t) ln

b− t

t− a
.

If L is closed, then

−
∫

L

d�

� − t
= i�,

and so

−
∫

L

f(t)

� − t
d� = −

∫

L

f(�)− f(t)

� − t
d� + �if(t).

Therefore, as the conclusion, we can say that the singular integral (1.2) exists

if the function f satisfies the Hölder condition (1.4) (Polyanin and Manzhirov,

1998; Davis and Rabinowitz, 1984; Pogorzelski, 1966).

1.3 Exact solutions of Cauchy type singular integral equations of the
first kind on a finite interval

First, we will present the exact solutions of the characteristic singular integral

equation of Cauchy type on a segment [a, b] (Kanwal, 1997)

−
∫ b

a

'(t)

t− x
dt = f(x).

For this purpose, let us consider the singular integral equation

−
∫ 1

0

'(t)

t− x
dt = f(x), 0 < x < 1. (1.11)
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In solving Eq. (1.11), we multiply it by x yield

∫ 1

0

t '(t)

t− x
dt = xf (x) + c, (1.12)

where

c =

∫ 1

0

'(t) dt.

Next, we multiply both sides of Eq. (1.12) by
dx√

x(u− x)
and integrate with

respect to x from 0 to u, which gives

∫ u

0

1√
x(u− x)

∫ 1

0

t '(t)

t− x
dt dx =

∫ u

0

√
xf(x)√
u− x

dx+ c

∫ u

0

dx√
x(u− x)

. (1.13)

It is known that (Andrews et al., 1999; Gradshteyn and Ryzhik, 1965)

B(x, y) =

∫ 1

0

tx−1 (1− t)y−1 dt =
Γ(x) Γ(y)

Γ(x+ y)
(1.14)

and

Γ

(
1

2

)
=

√
�, Γ(1) = 1, (1.15)

where B(x, y) and Γ(x) are the beta and gamma functions, respectively.

From (1.14)−(1.15) we obtain

∫ u

0

dx√
x(u− x)

= �. (1.16)

Changing the order of integration in (1.13) and using (1.16), Eq. (1.13) becomes

∫ 1

0

t '(t) dt

∫ u

0

dx√
x(u− x)(t− x)

=

∫ u

0

√
xf(x)√
u− x

dx+ c�. (1.17)

It is not difficult to verify that

∫ u

0

dx√
x(u− x)(x− t)

=  (t, u), (1.18)
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