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This project deals with the processing of MgB2 bulk samples and the effect of 

addition of SiB4. The correlation between fabrication parameters and 

superconducting properties was studied. MgB2 bulks were prepared by a pellet-in-

closed-tube (PICT) and solid-state reaction route methods. MgB2 bulk samples were 

prepared at different annealing temperatures of 650°C, 700°C, 750°C and 800°C. AC 

susceptibility measurements showed a sharp superconducting transition in all the 

samples. However, MgB2, samples annealed at 650°C showed slightly low volume 

susceptibility compared to other samples. The critical current density (Jc) was 

measured using ac magnetic susceptibility measurement method. The highest critical 

density in magnetic field, Jc(T,H) from the magnetization measurements was 

recorded at 3.0×10
4
A/cm

2 
(5K, 6T) and 7.0×10

3 
A/cm

2
 (20K, 4T) for the 650°C 

annealed MgB2. X-ray diffraction (XRD) analysis showed small quantities of MgO 

and unreacted Mg phases as impurities in the samples. The second part of the work 

concentrates on Mg non-stoichiometry in MgxB2 (x = 0.8, 1.0 and 1.2) samples. The 

critical temperature (Tc), was significantly reduced in sample x = 0.8 and x = 1.2 as 
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compared to sample with x=1.0. The Mg0.8B2 sample shows the highest Jc at 5K and 

20K, followed by Mg1.2B2 and MgB2 samples, respectively. MgB2 shows the lowest 

Jc for all temperatures. The XRD results show that in the samples annealed at 650°C 

there is totally no unreacted Mg in the Mg-deficient sample, but some unreacted Mg 

exist in the nominal and Mg-excess samples. Unreacted Mg decreased with 

increasing annealing temperature. At 800°C, no unreacted Mg was observed in all 

samples. Mg-deficient cause lattice distortion on MgB2 and create it own pinning 

centre base on structure defect and this will lead to enhance Jc. The final part of the 

work is mainly focused on SiB4 addition on MgB2 bulk. MgB2 added with 0, 1, 2, 5 

and 10 wt% of SiB4 showed a sharp superconducting transition in all the samples, 

without significant change in critical temperature (Tc). The critical current density in 

applied field Jc(H) of SiB4 added samples improved significantly. Jc(H) (both at 5K 

and 20K, T > 5T) improvement in high fields is the highest for 1.0 wt% (annealed at 

650°C) and 0.5 wt% (annealed at 800°C). The value of magnetic Jc reached as high 

as 9.2×10
3
A/cm

2
 (6T, 5K). The improvement in Jc(H) of the SiB4 added samples is 

due to the enhanced flux pinning. X-ray diffraction (XRD) analysis showed small 

quantities of MgO, Mg and MgSi as impurities in the MgB2 matrix. XRD analysis 

indicates that a small amount of SiB4 was decomposed into MgSi and unreacted Mg 

impurity phase remained in MgB2 matrix, and SiB4 addition act as effective pinning 

centres. This work suggests that addition of SiB4 significantly enhance Jc(H) in MgB2 

superconductor. 
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Abstrak thesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi 

memenuhi keperluan Ijazah Master Sains 

 

SINTESIS, MORFOLOGI DAN PENCIRIAN SIFAT SUPERKONDUKTOR 

MgxB2 DAN MgB2 DENGAN PENAMBAHAN SiB4. 

 

Oleh 

MOHD FAISAL BIN MOHD ARIS 

Oktober 2009 

Pengerusi : Professor Abdul Halim Bin Shaari, PhD 

Fakulti: Sains 

Projek ini berkaitan dengan  pemprosesan sampel pukal MgB2 dan kesan 

penambahan SiB4. Pertalian di antara parameter fabrikasi dan sifat-sifat 

superkonduktor dikaji  terperinci.  MgB2 pukal disediakan dengan teknik serbuk 

dalam tiub tertutup (PICT) dan kaedah tindak balas keadaan pepejal. Sampel pukal 

MgB2 disediakan pada suhu 650°C, 700°C, 750°C dan 800°C. Pengukuran 

kerentanan arus ulang alik menunjukkan suhu genting (Tc) yang jelas untuk semua 

sampel, kecuali sampel yang dirawat pada 650°C menunjukkan Tc berkurang jika 

dibandingkan dengan sampel yang lain. Ketumpatan arus genting (Jc) telah diukur 

menggunakan kaedah kerentetan magnetik ulang alik. Pengukuran pemagnetan 

menunjukkan MgB2 dengan rawatan haba 650°C mencapai ketumpatan arus genting 

angkutan dalam medan Jc(H) setinggi 3.0×10
4
A/cm

2 
(5K, 6T) dan 7.0×10

3 
A/cm

2
 

(20K, 4T). Analisis XRD menunjukkan kuantiti kecil MgO dan fasa Mg yang tidak 

bertindak balas sebagai bendasing di dalam sampel. Dalam bahagian kedua kajian 

adalah tertumpu kepada Mg bukan stoikiometri dalam sampel MgxB2 (x=0.8, 1.0 and 

1.2). Tc telah berkurang dengan nyata dalam sampel x=0.8 and x=1.2 jika dibanding 

dengan x=1.0. Mg0.8B2 menunjukkan Jc tertinggi pada 5K dan 20K, diikuti oleh 

Mg1.2B2 dan MgB2, disebabkan bendasing yang bertindak sebagai teras pengepin itu 
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meningkatkan nilai Jc. Corak XRD sampel yang dirawat pada 650°C tiada Mg yang 

bertindak balas dalam sampel Mg-defisien, tetapi Mg yang tidak bertindak balas 

wujud dalam nominal dan Mg-lebihan. Mg yang tidak bertindak balas menjadi 

berkurang dengan penambahan suhu rawatan haba. Pada 800°C, semua Mg didapati 

bertindak balas sepenuhnya. Mg-defisien menyebabkan kekisi pada MgB2 terganggu 

dan menghasilkan pusat pengepinannya sendiri hasil dari kecacatan struktur dan ini 

meningkatkan Jc. Bahagian akhir tertumpu kepada kesan penambahan SiB4 ke atas 

MgB2 pukal. MgB2 ditambah dengan 0, 1, 2, 5 dan 10 wt% SiB4 menunjukkan 

peralihan yang jelas dalam semua sampel, tanpa perubahan yang besar dalam suhu 

genting (Tc).  Ketumpatan arus genting angkutan dalam medan Jc(H) dalam sampel 

penambahan SiB4 menunjukkan pertambahan yang ketara. Jc(H) (pada 5K dan 20K, 

T > 5T) pertambahan tertinggi dalam medan tinggi ini ialah untuk 1.0 wt% (rawatan 

haba pada 650°C) dan 0.5 wt% (rawatan haba pada 800°C) penambahan SiB4. Nilai 

ketumpatan arus genting angkutan dalam medan Jc(H) mecapai setinggi 

9.2×10
3
A/cm

2
 (6T, 5K). Peningkatan Jc(H) dalam sampel yang ditambah SiB4 

disebabkan oleh peningkatan pengepinan fluks akibat daripada penambahan SiB4.  

Analisis XRD menunjukkan sedikit bendasing MgO, Mg dan MgSi dalam matrik 

MgB2. Analisis XRD juga menunjukkan sebahagian kecil SiB4 terurai menjadi MgSi 

dan fasa bendasing Mg yang tidak bertindak balas kekal dalam matrik MgB2, SiB4 

bertindak sebagai pusat pengepinan yang efektif. Kajian ini menunjukkan 

penambahan SiB4 menyebabkan penambahan ketara  Jc (H) dalam superkonduktor 

MgB2. 
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter is about the history and basic properties of superconductivity such as 

zero dc resistance, perfect diamagnetism and flux pinning. The main research 

objective is discussed at the end of the chapter.   

 

1.1 Brief history about superconductivity. 

 

In 1911, H. Kamerlingh Onnes, who was the first to liquefy helium in 1908, began to 

investigate the electrical properties of metal at extremely low temperature. He found 

that resistivity of mercury dropped from 0.03 Ω to 3 × 10
-6

 Ω within 0.01 K 

temperature range after cooled below 4.2K. (Onnes, 1911).  

 

Figure 1.1: Electrical resistance of Hg at low temperature (as reported by Onnes 

in 1911) which showed a transition temperature at 4.2K  
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More elements were discovered as superconductors later such as tin, lead, indium, 

aluminium, niobium and several alloys which superconduct at very low temperatures 

and known as conventional superconductors. Among conventional superconductors, 

MgB2 has the highest transition temperature (39K). Onnes also noticed that 

superconductivity was influenced by external magnetic field which can drive a 

superconductor back to normal state.  

 

 

Figure 1.2: The evolution of Tc according to the year of discovery (Zhou, 2004) 
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1.2 Basic properties of superconductor 

 

Superconductivity is characterized by two important properties which are zero dc 

resistivity and perfect diamagnetism. 

 

1.2.1 Zero dc resistivity 

 

The zero dc resistivity occurred in superconductor because at low temperature the the 

charge carriers known as Cooper pairs are able to move freely without any resistance. 

The temperature at which the superconductor losses resistance is called 

superconducting transition temperature or critical temperature (Tc) where resistivity 

sharply drops to zero for direct current (dc) and nearly all resistance to the flow of 

alternating current. The microscopic mechanism of superconductivity in metal and 

alloys can be explained by the Bardeen-Cooper-Schrieffer (BCS) theory.  

 

1.2.2 Perfect diamagnetism 

 

Twenty two years after the discovery of zero resistivity by Onnes in 1911, Walther 

Meissner and Robert Ochsenfeld found that when a superconductor is cooled below 

its critical temperature, perfect diamagnetism occurred when magnetic field is 

applied. This is later known as the Meissner effect. Perfect diamagnetism occurs 

when surface current induced by a superconductor expels the externally applied field. 

The limit of external magnetic field strength at which a superconductor can exclude 

the field is known as the critical field, (Hc). Figure 1.33 shows the effect of magnetic 

field on a (a) perfect diamagnet (b) normal diamagnet and (c) paramagnetic 
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Figure 1.3: Flux density in a (a) perfect diamagnet such as superconductor, (b) 

normal diamagnet and (c) paramagnet (Abd-Shukor, 2004) 

 

 

 

 

 


