

UNIVERSITI PUTRA MALAYSIA

THE EFFECT OF IMMUNE ENHANCER ON THE NON-SPECIFIC DEFENSE MECHANISM OF RED TILAPIA HYBRID (OREOCHROMIS NILOTICUS X OREOCHROMIS MOSSAMBICUS) CHALLENGED WITH AEROMONAS HYDROPHILLA

JOSELITO R. SOMGA

FPSS 1995 5

THE EFFECT OF IMMUNE ENHANCER ON THE NON-SPECIFIC DEFENSE MECHANISM OF RED TILAPIA HYBRID (OREOCHROMIS NILOTICUS X OREOCHROMIS MOSSAMBICUS) CHALLENGED WITH AEROMONAS HYDROPHILA

BY

JOSELITO R. SOMGA

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in the Faculty of Fisheries and Marine Science Universiti Pertanian Malaysia

December 1995

ACKNOWLEDGEMENTS

I am grateful to my chairman Prof. Mohammed Shariff Din, for his valuable advice, support, guidance and motivation. My gratitude is extended to my committee members, Dr. Hassan Hj. Mohd Daud and Dr. Abdul Manan Mat Jais for their kind assistance and wise counsel throughout this study.

My appreciation goes to the International Development Research Center (IDRC) Canada for providing the fellowship and research fund for my study.

I express my appreciation and thanks to Dr. Lim of GHF PTE Technologies Ltd. for providing the immune enhancer used in this study. Special thanks is due to P.A.H.L. Jayawardena and Wang Yin Geng for their generous help during the collection of samples. Thanks are also due to the Faculty of Fisheries and Marine Science staff particularly Abdul Gani, Zainan, Rosdi, Zairina Raden Zainal, Mahamud Yusoh and those who have helped me in many ways to accomplish this study.

ii

I am also thankful to Mr. Paul Manalo and family for their kindness and concern during my stay in Malaysia. I also cherish the companionship of John, Ging, Bhebot, Aiza, Ate Da and Ate Dina. Also, I appreciate the moral support extended by my colleague in BFAR. The camaraderie with fellow students at UPM is memorable.

This study is dedicated to my wife Sonia, who patiently assisted me throughout my study, and my family, for their love and support. Above all, to ALMIGHTY GOD for all HIS blessings.

TABLE OF CONTENTS

																							1	age
ACKNO	DWLE	EDGE	ME	NTS	5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
LIST	OF	TAB	LE	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
LIST	OF	FIG	UR	ES	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	xi
LIST	OF	PLA	TE	S	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		xii
LIST	OF	FIS	H	SPI	ECI	EES	3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xiv
LIST	OF	ABE	RE	VI	AT]	[0]	NS	•			•	•	•		•	•	•	•				•	•	xvi
ABSTI	RAC	г.			•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•		xvii
ABSTI	RAK			•	•	•	•	•		•							•					•		xix

CHAPTER

I	GENERAL INTRODUCTION	1
II	LITERATURE REVIEW	7
	The Defense Mechanism	7
	Non-Specific Defense in Fish	8
	Protective Barriers	8
	Humoral Factors	9
	Cellular Factors	14
	Assessment of the Non-Specific Response	15
	Immune Enhancers and Effects on Defense Mechanisms	19

Page

III	THE NON-SPECIFIC RESPONSE OF RED TILAPIA HYBRID FED WITH ENCAP AND CHALLENGED WITH AEROMONAS HYDROPHILA	24
	AEROMONAS HIDROPHILA	24
	Introduction	24
	Materials and Methods	27
	Maintenance of Stock Fish	27
	Experimental Fish	27
	Culture and Maintenance of Aeromonas hydrophila	28
	Preparation of the Standard Curve of Aeromonas hydrophila	29
	Determination of Median Lethal Dose (LD ₅₀) of <i>A. hydrophila</i> in Red Tilapia Hybrid	29
	Preparation of Formalin Killed Aeromonas hydrophila	30
	Incorporation of Immune Enhancer to the Feed	30
	Experiment Proper	30
	Determination of the Non-Specific Response	32
	Hematocrit	32
	Total White Blood Cell (WBC) Counts .	32
	Nitroblue Tetrazolium (NBT) Assay - Potential Killing Activity of Neutrophils, Monocytes and	
	Macrophages	33
	Lysozyme Assay	34
	Total Plasma Protein	34
	Statistical Analysis	35
	Results	35

	Discussion	43
IV	SURVIVABILITY OF RED TILAPIA HYBRID FED WITH ENCAP AND CHALLENGED WITH AEROMONAS	
	HYDROPHILA	50
	Introduction	50
	Materials and Methods	51
	Statistical Analysis	52
	Results	52
	Discussion	54
v	HISTOPATHOLOGY OF RED TILAPIA HYBRID FED WITH ENCAP AND CHALLENGED WITH	
	AEROMONAS HYDROPHILA	58
	Introduction	58
	Materials and Methods	60
	Results	60
	Discussion	70
VI	GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY	74
REFERENCE	s	79
APPENDIX		92
BIOGRAPHI	CAL SKETCH	105

LIST OF TABLES

Table		Pa	ge
1	Hematocrit Values, White Blood Cell Counts and NBT/Potential Killing Activity in Tilapia Hybrid Fed with Different Concentrations of ENCAP and Challenged with A. hydrophila		92
2	Lysozyme Activity and Total Plasma Protein in Tilapia Hybrid Fed with Different Concentrations of ENCAP and Challenged with A. hydrophila		93
3	Summary of Water Quality Parameters Taken in the Duration of the Experiment	•	94
4	LD ₅₀ of Aeromonas hydrophila to Red Tilapia Hybrid		94
5	Median Lethal Concentration (LD ₅₀) of A. hydrophila in Red Tilapia Hybrid Analyzed Using Spearman-Karber	•	95
6	ANOVA for Hematocrit Values Between Treatment Groups in Red Tilapia Hybrid Before Injection of A. hydrophila	•	96
7	ANOVA for Hematocrit Values Between Treatment Groups in Red Tilapia Hybrid at Day One Post Injection of A. hydrophila		96
8	ANOVA for Hematocrit Values Between Treatment Groups in Red Tilapia Hybrid at Day Two Post Injection of A. hydrophila		96
9	ANOVA for Hematocrit Values Between Treatments in Red Tilapia Hybrid at Day Four Post Injection of A. hydrophila	•	97

10	ANOVA for Hematocrit Values Between Treatment Groups in Red Tilapia Hybrid at Day Seven Post Injection of A. hydrophila9	7
11	ANOVA for WBC Counts Between Treatment Groups of Red Tilapia Hybrid Before Injection of A. hydrophila 9)7
12	ANOVA for WBC Counts Between Treatment Groups in Red Tilapia Hybrid At Day One Post Injection of A. hydrophila 9	98
13	ANOVA for WBC Counts Between Treatment Groups in Red Tilapia Hybrid at Day Two Post Injection of A. hydrophila	98
14	ANOVA for WBC Counts Between Treatment Groups in Red Tilapia Hybrid at Day Four Post Injection of A. hydrophila 9	98
15	ANOVA for WBC Counts Between Treatment Groups in Red Tilapia Hybrid at Day Seven Post injection of A. hydrophila	99
16	ANOVA for NBT/Potential Killing Activity Between Treatment Groups in Red Tilapia Hybrid Before Injection of A. hydrophila.	99
17	ANOVA for NBT/Potential Killing Activity Between Treatment Groups in Red Tilapia Hybrid at Day One Post Injection of A. hydrophila	99
18	ANOVA for NBT/Potential Killing Activity Between Treatment Groups in Red Tilapia Hybrid at Day Two Post Injection of A. hydrophila 1	00
19	ANOVA for NBT/Potential Killing Activity Between Treatment Groups in Red Tilapia Hybrid at Day Four Post Injection of A. hydrophila 1	00
20	ANOVA for NBT/Potential Killing Activity Between Treatment Groups in Red Tilapia Hybrid at Day Seven Post Injection of A. hydrophila 1	00

21	ANOVA for Lysozyme Activity Between Treatment Groups in Red Tilapia Hybrid Before Injection of A. hydrophila 101
22	ANOVA for Lysozyme Activity Between Treatment Groups in Red Tilapia Hybrid at Day One Post Injection of A. hydrophila
23	ANOVA for Lysozyme Activity Between Treatment Groups in Red Tilapia Hybrid at Day Two Post Injection of A. hydrophila
24	ANOVA for Lysozyme Activity Between Treatment Groups in Red Tilapia Hybrid at Day Four Post Injection of A. hydrophila
25	ANOVA for Lysozyme Activity Between Treatment Groups in Red Tilapia Hybrid at Day Seven Post Injection of A. hydrophila
26	ANOVA for Total Plasma Protein Between Treatment Groups in Red Tilapia Hybrid Before Injection of A. hydrophila 102
27	ANOVA for Total Plasma Protein Between Treatment Groups in Red Tilapia Hybrid at Day One Post Injection of A. hydrophila
28	ANOVA for Total Plasma Protein Between Treatment Groups in Red Tilapia Hybrid at Day Two Post Injection of A. hydrophila
29	ANOVA for Total Plasma Protein Between Treatment Groups in Red Tilapia Hybrid at Day Four Post Injection of A. hydrophila
30	ANOVA for Total Plasma Protein Between Treatment Groups in Red Tilapia Hybrid at Day Seven Post Injection of A. hydrophila

	Multiple Range Test of Survivability for 21 Days Post Bacterial Challenged Between Treatment Groups of Red Tilapia
	Hybrid
32	ANOVA for The Survivability Between Treatment Groups Post Bacterial Challenged

LIST OF FIGURES

Figure		Pag	je
1	Hematocrit Value in Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila		36
2	Total WBC Count in Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila		37
3	NBT/ Potential Killing Activities of Neutrophils and Other Phagocytic Cells in Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila		39
4	Lysozyme Activity in Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila		41
5	Total Plasma Protein in Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila	•	42
6	Percent Survivability of Red Tilapia Hybrid Fed with ENCAP and Challenged with A. hydrophila		53

LIST OF PLATES

Plate		Page
1	Red Tilapia Hybrid Before Challenge of A. hydrophila	. 61
2	Red Tilapia Hybrid with Exposed Epidermal Surface and Necrotic Fins After 2-3 Days Post Bacterial Challenged (PBC)	. 61
3	Tissue Section Showing the Sloughed Epidermal Layer After 7 Days PBC	. 62
4	Congestion of RBC's in Blood Vessels and Surrounding Muscle Tissue After 7 Days PBC	. 62
5	Tissue Section of the Liver Showing Vacoulation After 2 Days PBC	. 64
6	Bacteria in the Liver Section Undergoing Necrosis After 7 Days PBC	. 64
7	Liver Section Showing Severe Necrosis After 7 Days PBC. The Structural Integrity was Lost	. 65
8	Intrahepatic Pancreatic Tissue Undergoing Disintegration of the Acinar Cells and Marked Proliferation of Mononuclear Cells After 2 Days PBC	. 65
9	Congestion of the Portal Vessel After 2 Days PBC. Pancreatic Tissue Undergoing Necrosis	• 66
10	Tissue Section of the Spleen Showing Vacuolated Areas, Enlarged Melanomacrophages Centers (MMC) and Scattered Melanin Pigments After 2	
	Days PBC	. 66

11	Tissue Section of the Spleen Showing Marked Reduction of RBC's and Vacuolated Areas After 7 Days PBC	67
12	Tissue Section of the Kidney Showing Massive Infiltration of RBC's and other Inflammatory Cells in the Intertubular Spaces After 7 Days PBC. Melanomacrophage Centers (MMC)	68
13	Kidney Section Showing Extensive Tubular and Glomerular Necrosis After 7 Days PBC	69
14	Higher Magnification Showing Mononuclear and Polymorphonuclear Cells in the Intertubular Spaces	69

LIST OF FISH SPECIES

African catfish Clarias gariepinus
American eel Anguilla rostrata
Atlantic salmon
Ayu Plecoglossus altevelis
Brook trout Salvelinus fontinalis
Channel catfish
Chinook salmon Onchorynchus tshawystscha
Coho salmon Onchorynchus kisutch
Common carp Cyprinus carpio
Dabs Limanda limanda
Eel Anguilla japonica
European eel Anguilla anguilla
Fathead minnow Pimephales promelas
Flatfish Paralicthys olivaceus
Goldfish Carassius auratus
Largemouth bass Micropterus salmoides
Plaice Pleuronectes platessa
Porgy Pagrus major
Rainbow trout Onchorynchus mykiss
Rainbow trout Salmo gairdneri
Red seabream Pagrus major
Sea bass Dicentrarchus labrax
Steelhead trout Salmo gairdneri

Tilapia	•••	• •	• •		Tilapia nilotica
Turbot	•••	• •	• •		Scophthalmus maximus
Walleye	• •		•		Stizostedion vitreum vitreum
Winter flounde	er.		•	• •	Psedopleuronectes americanus
Yellowtail .			•		Seriola quinqueradiata

LIST OF ABBREVIATIONS

CFU	Colony Forming Unit
СР	Crude Protein
DMSO	Dimethyl sulfoxide
EDTA	Ethylene Diamine Tetraacetic Acid
EUS	Epizootic Ulcerative Syndrome
LD ₅₀	Median Lethal Dose
MMC	Melanomacrophages Center
MS-222	Tricane Methanesulfonate
NBT	Nitroblue Tetrazolium
PBC	Post Bacterial Challenge
PBS	Physiological Buffered Saline
RBC	Red Blood Cells
RS	Reimlers Schott
SD	Standard Deviation
TSA	Trypticase Soy Agar
WBC	White Blood Cells

Abstract of the thesis submitted to the Senate of the Universiti Pertanian Malaysia in partial fulfillment of the requirement for the degree of Master of Science

THE EFFECT OF IMMUNE ENHANCER ON THE NON-SPECIFIC DEFENSE MECHANISM OF RED TILAPIA HYBRID (OREOCHROMIS NILOTICUS X OREOCHROMIS MOSSAMBICUS) CHALLENGED WITH AEROMONAS HYDROPHILA

by

Joselito R. Somga

December 1995

Chairman: Prof. Mohd. Shariff Mohd. Din, Ph.D Faculty : Fisheries and Marine Science

Immunomodulation of ENCAP in red tilapia hybrid against Aeromonas hydrophila was studied. Different concentrations of ENCAP (0, 500, 750 and 1000 mg/kg of feed) were fed to different groups of fish and later challenged by intraperitoneal injection of 8 x 10⁸ CFU/ml A. hydrophila. The non-specific immune response was determined after one, two, four and seven days post bacterial challenge using haematological and serological assays such as haematocrit, WBC counts, potential killing activity of neutrophils and other phagocytic cells by NBT, lysozyme activity and total plasma protein. Different concentrations of ENCAP showed different levels of immunopotentiation.

Hematocrit levels and WBC counts decreased in all the groups due to migration of erythrocytes and leukocytes to the infected areas. Probably, toxins released by the bacteria also contributed to these lowered levels. Neutrophils and other phagocytic cells demonstrated an increase in the potential killing activity. Lysozyme activity also increased in fish fed with ENCAP, while total plasma protein decreased brought about by the abnormal function of the liver to synthesize protein. Based on these cellular and humoral factors, fish fed with 750 mg/kg ENCAP had a consistently higher immune response. Fish fed with 500 mg/kg and 1000 mg/kg showed a lower immune response which suggests slight immunopotentiation and mild immunosuppression, respectively.

Histopathology showed that both the control and fish fed with different concentrations of ENCAP exhibited varying lesions in the spleen, liver, pancreatic tissue and kidney. However fish fed with ENCAP showed a significantly higher survivability. Results of this study indicated that ENCAP caused immunomodulation. The enhanced non-specific response contributed to the increased survivability.

xviii

Abstrak tesis dikemukakan kepada Senat Universiti Pertanian Malaysia sebagai memenuhi sebahagian syarat untuk mendapat Ijazah Master Sains

KESAN PERANGSANG IMMUN KE ATAS MEKANISME PERTAHANAN TIDAK SPECIFIK DALAM HIBRID TILAPIA MERAH (OREOCHROMIS NILOTICUS X OREOCHROMIS MOSSAMBICUS) YANG DICABAR DENGAN AEROMONAS HYDROPHILA

oleh

Joselito R. Somga

Disember 1995

Pengerusi: Prof. Mohd. Shariff Mohd. Din, Ph.D

Faculti : Perikanan dan Sains Samudera

Immunomodulasi oleh ENCAP pada hibrid tilapia merah terhadap Aeromonas hydrophila telah dikaji. Kepekatan ENCAP yang berbeza (0, 500, 750 dan 1000 mg/kg makanan) telah diberi kepada beberapa kumpulan ikan dan kemudian dicabar suntikan intraperitoneal 8 x 10⁸ dengan CFU/ml Α. hydrophila. Tindakbalas tidak specifik imun telah ditentukan pada hari pertama, kedua, keempat dan ketujuh selepas suntikan bakteria dengan menggunakan hematologikal dan serologikal asei seperti hematokrit, pengiraan sel darah putih, potensi aktiviti membunuh neutrofil dan selsel fagositik lain secara NBT, aktiviti lisozim dan jumlah protein plasma. Kepekatan ENCAP yang berbeza menunjukkan tahap immunopotensasi yang berbeza.

Paras hematokrit dan jumlah WBC berkurangan dalam semua kumpulan disebabkan oleh migrasi eritosit dan leukosit ke kawasan yang dijangkiti. Mungkin, toksin yang dilepaskan oleh bakteria menyumbang kepada tahap yang rendah tersebut. Neutrofil dan sel-sel fagositik lain menunjukkan peningkatan potensi aktiviti membunuh. Aktiviti lisozim telah juga ditingkatkan pada ikan yang diberi makan ENCAP. Sementara jumlah protein plasma berkurangan akibat mengsintesiskan dari fungsi abnormal hati protein. Berdasarkan faktor-faktor sellular dan humoral, ikan yang diberi makan 750 mg/kg ENCAP mempunyai tindakbalas immunisasi tinggi yang berpanjangan. Ikan yang diberi makan 500 mg/kg menunjukkan tindakbalas immunisasi rendah yang mencadangkan sedikit immunopotensasi dan manakala pada 1000 mg/kg menunjukkan immunosupresi.

Histopatologi menunjukkan kedua-dua kawalan dan ikan yang diberi makan dengan kepekatan ENCAP yang berlainan mempamirkan lesi yang berbeza dalam limpa, hati, tisu pankreatik dan ginjal. Walaubagaimanapun, ikan yang diberi makan dengan ENCAP menunjukkan kemandirian yang jelas tinggi. Keputusan kajian ini menunjukkan bahawa ENCAP menyebabkan immunomodulasi. Tindakbalas tidak specifik yang diransang menyumbang kepada peningkatan kemandirian.

CHAPTER I

GENERAL INTRODUCTION

Aquaculture plays a vital role in the production of fish and other fishery products. Aquaculture has expanded around the world due to the increasing demand of protein from the growing human population and the decline of available natural aquatic resources. However, the rapid expansion and intensification of fish farming lead to the occurrence of various economically important diseases. Consideration on the intimate relationship between the fish, pathogen and environment seems to be neglected. The unwise increase of stocking density together with the deterioration of the aquatic environment can cause stress to the cultured fish. Stress lowers the resistance of the fish thereby giving chance to opportunistic pathogens to invasive. become Thus fish in this scenario, will inevitably succumb to diseases cause by either viruses, bacteria, parasites and fungi.

To overcome such problems, fish culturists became more dependent on the use of chemotherapeutic agents. But with the limitation of approved chemotherapeutic products, overused or misused of antibiotics generate the risk of

bacterial resistant pathogens and the problems of drug residues in the environment and fish products (Ellis, 1988; Ghittino et al., 1984; Anderson, 1992; Baticados and Paclibare, 1992; Nikl et al., 1993). Rijkers et al. (1981) reported that prolonged used of oxytetracycline cause depression of the humoral and cellular immunity in common carp. Some chemicals such as malachite green, a known parasiticide and pyridylmercuric acetate, an effective fungicide cause cancer and mercury accumulation in tissues respectively (Anderson et al., 1984).

The use of vaccine to stimulate the production of antibody against specific pathogen has been studied. The first experimental vaccination in fish was reported by Duff 1942 against furunculosis using killed Aeromonas in salmonicida given orally. But since then only few vaccines have been proven to be effective on commercial scale. Other vaccinations that have successfully been done experimentally were not reliably reproduced even using other techniques of administration and antigen preparation (Ellis, 1988). Although vaccination is a valuable approach for disease prevention (Alderman and Michel, 1991) its usefulness is limited by their specificity, lack of availability and high cost to produce commercially (Ellis, 1988; Yoshida et al., 1993).

The constraints on the use of chemotherapeutic agents and vaccines in fish farming further the development of more effective ways and means to protect the fish from various disease causing organisms. The use and application of immunostimulants for protecting the fish against diseases has been attempted. Immunostimulant elevates the non-specific defense mechanism or the specific immune response (Anderson, 1992). This may be administered alone or in combination with vaccine to activate the non-specific defense mechanism as well as heightening the specific immune response.

The non-specific defense mechanism is the first line of defense which constitutes the protective barriers such as skin and scales, humoral factors in mucus and sera such lysozymes, C-reactive protein, transferrin as and interferon, and the cellular factors such as phagocytic cells, neutrophils and macrophages (Fletcher, 1986; Roberts, 1989; Robertsen et al., 1990; Kaige et al., 1990; Anderson, 1992). On the otherhand, the specific defense mechanism is responsible for initiating and mediating the humoral, cell mediated immunity (CMI) and the memory. The humoral immunity refers to the production of soluble antibody, whereas the CMI refers to responses which are mediated by lymphocytes and macrophages and the memory constitutes an adaptive change in the lymphoid cells causing an enhanced magnitude with subsequent challenge by the same antigen (Roberts, 1989).

The use of immunostimulants is being intensified in the areas of cancer and AIDS (Acquired immunodeficiency syndrome) research (Fudenberg and Whitten, 1984; Azuma and Jolles, 1987; WHO, 1990 as cited by Anderson, 1992). It activates macrophages, T- and B-lymphocytes, and natural killer cells that increase the body's ability to destroy tumour cells (Raa *et al.*, 1992). Immunostimulants were also used for activating early protection against diseases in domestic animals (Kehrli *et al.*, 1990).

Immunostimulants can be obtained from a very diverse natural sources and a large number have been made by chemical synthesis with natural products as structural models (Raa *et al.*, 1992). Different substances have been tested to stimulate immune response in fish. Glucans, a long-chain polysaccharides extracted from yeast given parenterally or orally were evaluated in fish for their ability to enhance protection against different bacterial pathogens (Yano *et al.*, 1989; Robertsen *et al.*, 1990; Raa *et al.*, 1992; Chen and Ainsworth, 1992; Nikl *et al.*, 1993; Jeney and Anderson, 1993).

Some drugs such as levamisole, quaternary ammonium compound (QAC) and short chain polypeptide (ISK) affect the non-specific defense mechanism activities (Jeney and Anderson, 1993). Immunoactive peptide FK 565 (Kitao and

