

UNIVERSITI PUTRA MALAYSIA

FISH COMMUNITIES IN PAYA BUNGOR, WITH NOTES ON ITS DEVELOPMENT, MANAGEMENT AND RECREATIONAL USE

MOHD. AZMI BIN AMBAK

FPSS 1984 2

It is hereby certified that we have read this thesis entitled "Fish Communities of Paya Bungor, with notes on its development, management and recreational use" by Mohd. Azmi bin Ambak, and in our opinion it is satisfactory in terms of scope, quality and presentation as partial fulfilment of the requirements for the degree of Doctor of Philosophy.

ALANG P. ZAINUDDIN, Ph. D. Assoc. Professor/Dean of Graduate Studies Universiti Pertanian Malaysia (Chairman Board of Examiners)

uado

JOSE IRENEU DOS REMEDIOS FURTADO, Ph. D. Science Advisor Commonwealth Secretariat LONDON (External Examiner)

LINDSAY GLÉNN ROSS, Ph. D. Lecturer and Course Director Aquaculture and Fishery Management Institute of Aquaculture University of Stirling UNITED KINGDOM (External Examiner)

 $\mathcal{N}(.$

ANG KOK JEE, Ph.D. Associate Professor Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia (Internal Examinar)

ABU KHAIR MOHAMMAD Associate Professor, Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia. (Internal Examiner and Supervisor)

FISH COMMUNITIES IN PAYA BUNGOR, WITH NOTES ON ITS DEVELOPMENT, MANAGEMENT AND RECREATIONAL USE

> by Mohd. Azmi bin Ambak

A thesis submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy in the Faculty of Fisheries and Marine Science, Universiti Pertanian Malaysia.

December 1984

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to Dr. Abu Khair Mohammad Mohsin who has devoted much of his time and energy in supervising my work and making sure that it goes without a hitch. Without his constant encouragement this thesis will never be written.

I am also grateful to Dr. S. B. Saila who acted as my consultant supervisor, for his advice and suggestions on research methodologies.

A vote of thanks are also due to Professor Dr. Nayan Ariffin, the Vice-Chancellor and Universiti Pertanian Malaysia who provide research fundings and facilities for carrying out the investigations. I also appreciate the help given by Dr. Nelson Marshall of University of Rhode Island and Dr. John Munro of ICLARM for securing necessary funds from U.S. Sea Grant and FAO respectively, for my course work at URI and subsequent data analysis at ICLARM. For my thesis writing at University of Stirling, I had the privilege of getting British Council's CICHE fellowship for which I am thankful.

While at ICLARM, Manila, I was greatly indebted to Dr. Daniel Pauly and Miss Deng Palomares who helped and advised me in running computer programmes for analysing my data. I am also obligated to Dr. R. J. Roberts and Dr. L.C. Ross who made my stay at University of Stirling worthwhile and meaningful.

The support from the staff of the Faculty are also acknowledged especially Encik Saad Mat and Encik Fazli Shah Abd. Rahman who contributed much during field investigations.

Finally, praises are due to God, the Almighty, for giving me life without which this work will never be carried out.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF TABLES	xii
LIST OF FIGURES	xvi
LIST OF PLATES	xxi
ABSTRACT	xxii
ABSTRAK	XXV
CHAPTER 1 INTRODUCTION	1
Need for Recreation	1
Outdoor Recreation	2
Recreational Fishing	4
Objectives and Definitions	4
Role and status of Recreational Fishing	
in Developed Countries	5
Economic Value of Recreational Fishing	8
National Economic Impact	8
Local Economic Impact	10
Trends in Recreational Fishing	11
Recreational Fisheries in Malaysia 🛛	12
Present Status	12
Potentials for Development	15
Human Resource	15

Natural Resources	17
Water Resources	17
Fishery Resources	18
Management Expertise	21
The Scope of the Problem	22
Paya Bungor Development Plan	25
Objectives of Study	28
CHAPTER 2 DESCRIPTION OF THE STUDY AREA	30
General Description and Physiography	30
Sampling Stations	38
Station A (white water system)	38
Station B (brown water system)	49
Station C (in between Stations A and B)	55
Discussions on the Ecological Properties	
of Paya Bungor	60
Physico-chemical characteristics	60
Benthic macroinvertebrates	68
Microinvertebrates	70
Phytoplanktons and Primary Production	80
Vegetation	83
CHAPTER 3 ANALYSIS OF THE FISH POPULATION IN	
PAYA BUNGOR	87
Introduction	87

Monitoring Population Parameters for	
Fisheries Management	88
Patterns of species Abundance and	
Diversity	91
Species Richness	93
Heterogeneity	94
Equitability	94
Measures of species abundance and diversity	95
Species Richness Indices	95
Heterogeneity Indices	100
Equitability Indices	102
Dynamics of Fish Populations	104
Basis of the theoritical models	104
Mathematical Representation and	
Estimation of the Parameters	106
Growth	106
Tag-Recapture Studies	112
Length-Frequency Analysis	114
Mortality	117
Parameter Estimations from Length Data	120
Materials and Methods	123
Preliminary Investigations and Findings	123
Sampling Procedure	125
Sampling Sites and Sampling Program	125

	0
Description of Sampling Gears	127
Gill Nets	127
Trammel Nets	128
Discussion of Gear Used	129
Species Composition and Seasonal Abundance	130
Patterns of Distribution	131
Spartial and Temporal Distribution	131
Specific Distribution	132
Community Diversity	136
Feeding and Food Habits	138
Length-weight Relationships and Condition Index .	139
Estimation of Growth Parameters from	
Length-Frequency Data	143
Estimation of Mortality from Length	
Frequency Data	145
Total, Natural and Fishing Mortality	145
Selection Patterns	147
Patterns of Recruitment	148
Results and Discussions	149
Species Composition	149
Relative and Seasonal Abundance	15 7
Patterns of Distribution	169
Spatial and Temporal Distribution Patterns	169
Specific Distribution Patterns	1 7 5

Community Diversity	183
Trophic Status of the Fish Fauna	199
Length-weight relationship and Condition Index	203
Length-weight relationships for the	
three major species	204
Length-weight relationship of	
Amblyrhynchichthys truncatus	204
Length-weight relationship of	
Thynnichthys thynnoides	209
Length-weight relationship of	
Puntius schranenfeldii	211
Condition Index of Amblyrhynchichthys	
truncatus, Thynnichthys thynnoides and	
Puntius schwanenfeldii	216
Condition Factor	216
Amblyrhynchichthys truncatus	216
Thynnichthys thynnoides	220
Puntius schwanenfeldii	220
Relative Condition	221
Amblyrhynchichthys truncatus	221
Thynnichthys thynnoides \ldots \ldots \ldots	221
Puntius schwanenfeldii	222
Growth	225
Amblyrhynchichthys truncatus	225

Thynnichthys thynnoides	226
Puntius schwanenfeldii	227
Mortality Parameters and Selection Patterns $\ .$.	241
Amblyrhynchichthys truncatus 🜼	241
Thynnichthys thynnoides	244
Puntius schwanenfeldii	250
Patterns of Recruitment for	
Amblyrhynchichthys truncatus, Thynnichthys	
thynnoides and Puntius schwanenfeldin	252
Amblyrhynchichthys truncatus	252
Thynnichthys thynnoides	253
Puntius schwanenfeldii	255
Summary	256
CHAPTER 4 MANAGEMENT OF FISH POPULATIONS IN	
PAYA BUNGOR	270
General Considerations	270
Fish Production in Natural and Man-made lakes	271
Past Experience in the Management of	
Natural and Man-made lake Fisheries	276
Characteristics of the fish populations in	
Paya Bungor	278
Consequences of the proposed Paya Bungor	
development plan of fish populations	281
Management Option for Paya Bungor	285

Improvement of the proposed Paya Bungor	
development plan	285
Recreational Fishery Management	289
Identification of suitable sport species	291
Induced breeding and subsequent larval	
rearing of sebarau, Hampala macrolepidota	
van Hasselt for stocking purposes	294
Induced breeding and larva ¹	
production	294
Larval rearing	297
Other Considerations	300
CHAPTER 5 CONCLUSION	303
PLATES	306
LITERATURE CITED	309
APPENDICES	333

LIST OF TABLES

~

I.	Average seasonal ranges of air	
	temperature, rainfall and relative	
	humidity in Paya Bungor	33
II.	List of microinvertebrates from	
	Station A	48
III.	List of microinvertebrates from	
	Station B	54
IV.	List of microinvertebrates from	
	Station C	61
V.	Summary of the Effect of pH values on Fish $\ .$.	64
VI.	Concentrations of ammonia $(NH_3^+ NH_4^+)$	
	which contains an un-ionised amonia (NH ₃)	
	concentration of 0.0025 mg per litre	67
VII.	Seasonal abundance of zooplanktons in	
	Paya Bungor	75
VIII.	Checklist of Phytoplankton in Paya	
	Bungor	81
IX.	List of vegetation in Paya Bungor	85
Χ.	List of Fish Species in Paya Bungor	153
XI.	Occurrence of Fishes at various	
	Stations in Paya Bungor	156

XII.	Percentage Composition of Ichthyofauna	
	using several Fishing Methods	159
XIII.	List of Fish Species Abundance in	
	Paya Bungor, January 1982 to December	
	1982	160
XIV.	Working sheet for the Construction and	
	Estimation of Parameters of the log	
	normal distribution curve for Paya	
	Bungor's ichthyofauna	180
XV.	Working sheet for the Construction and	
	Estimation of parameters of the log	
	normal distribution curve fro stations	
	A, B and C	184
XVI.	Indices of Species Diversity in Paya	
	Bungor and at various stations	196
XVI1.	Seasonal variations of species Diversity	
	in Paya Bungor and at various	
	stations	197
XVIII.	Feeding and Food Habits of Fishes in	
	Paya Bungor	202
XIX.	Seasonal variations in length-weight	
	relationships of Amblyrhynchichthys	
	truncatus in Paya Bungor	208

XX.	Seasonal variations in length-weight	
	relationships Thynnichthys thynnoides in	
	Paya Bungor	214
XXI.	Seasonal variations in length-weight	
	relationships of Puntius schwanenfeldii	
	in Paya Bungor • • • • • • • • • • • • • • • • • • •	219
XXII.	Seasonal variations of relative condition	
	for the three major species in Paya	
	Bungor	223
XXIII	Length frequency of Amblyrhynchichthys	
	truncatus	228
XXIV.	ELEFAN 1 runs of Amblyrhynchichthys	
	truncatus	231
XXV.	Length-frequency of Thynnichthys	
	thynnoides	232
XXVI.	ELEFAN l runs for Thynnichthys	
	thynnoides . ,	235
XXVI1.	Length-frequency of Puntius	
	schwanenfeldii	236
XXVII.	ELEFAN 1 runs for <i>Puntius</i>	
	schwanenfeldii	239
XXIX.	ELEFAN 1 output derived from length-	
	frequency data of P. schwanenfeldii,	
	A. truncatus and T. thynnoides	240

XXX.	Comparative values of growth parameters	
	in some tropical Freshwater species	242
XXXI.	Comparative values of natural mortality	
	and M/K index of selected tropical	
	freshwater species	254
XXXII.	Recruitment Pattern for Amblyrhynchichthys	
	truncatus in Paya Bungor	257
XXXIII.	Recruitment Pattern for Thynnichthys	
	thynnoides in Paya Bungor	259
XXXIV.	Recruitment Pattern for Puntius	
	schwanenfeldii	261
XXXV.	Major Reservoirs in Peninsular	
	Malaysia	273

LIST OF FIGURES

1.	Map of proposed Development Plans for	
	Paya Bungor	27
2.	Map of Paya Bungor showing three sampling	
	stations, A, B and C	35
3.	Bathymetric map of Paya Bungor	36
4.	Monthly fluctuations of water levels in	
	Paya Bungor	37
5.	Monthly fluctuations of Temperature dissolved	
	oxygen and pH in Paya Bungor	42
6.	Monthly variations of total alkalinity,	
	conductivity and sulphate in Paya Bungor	43
7.	Monthly variations of chloride, phosphate,	
	nitrate-nitrogen and ammonia-nitrogen	
	concentrations in Paya Bungor	44
8 "	Seasonal abundance of macroinvertebrates in	
	stations A, B and C in 1982	47
9.	Seasonal abundance of macroinvertebrates in	
	Paya Bungor	71
10.	Seasonal fluctuations of benthic invertebrates	
	(per m ²) at Paya Bungor Lake from March 1982	
	to December 1982 • • • • • • • • • • • • • • • •	72
11.	Seasonal variations of Mollusc and Dipterids	
	in Paya Bungor	73

12.	Seasonal abundance of microinvertebrates in	
	Paya Bungor	77
13.	Seasonal abundance of Protozoa and Rotifers	
	at various stations in Paya Bungor	78
14.	Seasonal occurrence of Cladocerans and	
	Copepods at various stations in Paya Bungor	79
15.	Showing Preston's log normal distribution curve .	99
16.	Abundance of Fish species in Paya Bungor	
	January 1982 to December 1982	161
17.	Abundance of Fishes in Station A,	
	January 1982 to December 1982	162
18.	Abundance of Fishes in Station B,	
	January 1982 to December 1982	163
19.	Abundance of Fishes in Station C,	
	January 1982 to December 1982	164
20.	Relative abundance of Fish Family	
	in Paya Bungor ••••••••••••••••••••••••••••••••••••	165
21.	Seasonal abundance of Fishes in Paya Bungor	169
22.	Seasonal abundance of Fishes in Station A	170
23.	Seasonal abundance of Fishes in Station B	171
24.	Seasonal abundance of Fishes in Station C	172
25.	Diurnal Distribution of Fishes in	
	Paya Bungor	176
26.	Diversity Indices at various times of Day	177

)

27.	Log-normal Distribution of Fishes in Paya	
	Bungor (with abcissae in logarithm to	
	the base 2)	181
28.	Log-normal Distribution of Fishes in Paya	
	Bungor (with abcissae in natural logarithm)	182
29.	Log-normal distribution of Fishes in	
	Stations A and B	185
30.	Log-normal distribution of Fishes in	
	Station C	186
31.	Canonical log-normal distribution of Fishes	
	in Paya Bungor (using logarithm to the base	
	of 2)	187
32.	Canonical log-normal distribution of Fishes	
	in Station A (using logarithm to the base	
	of 2)	188
33.	Canonical log-normal distribution of Fishes	
	in Station B (using logarithm to the base	
	of 2)	189
34.	Canonical log-normal distribution of Fishes	
	in Station C (using logarithm to the base	
	of 2)	190
35.	Canonical log-normal distribution of Fishes	
	in Paya Bungor (using natural logarithm)	191

36.	Canonical log-normal distribution of Fishes	
	in Station A (using natural logarithm)	192
37.	Canonical log-normal distribution of Fishes	
	in Station B (using natural logarithm)	193
38.	Canonical log-normal distribution of Fishes	
	in Station C (using natural logarithm)	194
39.	Seasonal patterns of species diversity at	
	various locations in Paya Bungor	198
40.	Length-weight relationship of Amblyrhynchichthys	
	truncatus (Insert - log transformation)	206
41.	Length-weight relationship of males and	
	females of Amblyrhynchichthys truncatus	207
42.	Length-weight relationship of Thynnichthys	
	thynnoides	212
43.	Length-weight relationship of male and female	
	Thynnichthys thynnoides	213
44.	Length-weight relationship of	
	Puntius schwanenfeldii	217
45.	Length-weight relationship of males and	
	females of <i>Puntius schwanenfeldii</i>	218
46.	Seasonal variations in relative condition for	
	the three major species in Paya Bungor	224
47.	Length-frequency of Amblyrhychichthys	
	truncatus showing growth curves	229

48.	Restructured length-frequency for Amblyrhynchichthys	
	truncatus showing growth curves	230
49.	Length frequency of Thynnichthys thynnoides	
	showing growth curves	233
50.	Restructured length-frequency for Thynnichthys	
	thynnoides showing growth curves	234
51.	Length-frequency of Puntius schwanenfeldii	
	showing growth curves	237
52.	Restructured length-frequency for Puntius	
	schwanenfeldii showing growth curves	238
53.	Length growth curves for the three species	
	in Paya Bungor	243
54.	Catch curve for Amblyrhynchichthys truncatus	245
55.	Selection patterns of Amblyrhynchichthys truncatus	246
56.	Catch curve for Thynnichthys thynnoides	247
57.	Selection patterns of Thynnichthys thynnoides	248
58.	Length converted catch curve for Puntius	
	schwanenfeldii	249
59.	Selection patterns of <i>Puntius schwanenfeldii</i>	246
60.	Recruitment patterns for Amblyrhynchichthys	
	Truncatus	258
61.	Recruitment patterns for <i>Thynnichthys thynnoides</i>	260
62.	Recruitment patterns for Puntius schwanenfeldii	262
63.	Showing Paya Bungor with new proposed plan	290

LIST OF PLATES

PLATE		Page
lA	Kelesa, Saleropages formosus	306
1B	Kelah, Tor tambroides	306
2	Sebarau, Hampala macrolepidota	307
3A	Toman, Channa microlepis	308
3B	Haruan, Channa striatus	308

species accounts for more than 80 per cent of the species composition. The three most dominant species are *Amblyrhynchichthys truncatus*, *Thynnichthys thynnoides* and *Puntius schwanenfeldii*.

The pattern of seasonal abundance indicates influence of physico-chemical parameters like water level (WL), water temperature (T) and conductivity (C). Their relationship was formulated and simplified into an equation. The fish population of Paya Bungor are highly-heterogenous and they exhibit spatial and temporal patterns of distributions, mostly related to feeding. However the pattern breaks down during breeding season. The distribution of fish communities fits both log-normal and canonical log-normal distribution rather well, reflecting a large assemblies of species existing in Paya Bungor. Seasonal variations in the community diversity are noted mostly accounted by fluctuations in water level.

A large proportion of the fish species are carnivorous, followed by omnivores and detritivores. However, in terms of population abundance, the detritivores constitutes almost sixty per cent of the total population in Paya Bungor. Together with the omnivores, they comprise 85 per cent of the total fish population, corresponding to the fish community in the middle and lower reaches of rivers.

The growth of the three major species, Amblyrhynchichthys truncatus, Thynnichthys thynnoides and Puntius schwanenfeldii,

xxiii

reflected by the length-weight relationships, are isometric for the two former species and allometric for the latter species. The von Bertalanffy's Growth Formula for the three species are computed.

The coefficients of total mortality, natural mortality, fishing mortality and the exploitation rate for the three major species were also calculated. The mean age of first capture for *T. thynnoides* and *A. truncatus* is about one year old and by the time they reach about 1^{1} ₂ years old, they can be fully retained by the fishing gear. On the other hand, *P. schwanenfeldii* exhibits low fishing mortality but are retained much earlier in life, *at* the age of nine months. However this species also remains in the exploitable size range for only about six months.

There appears to be a single recruitment season for A. truncatus occurring during periods of high water. In contrast, although T. thynnoides also has a major recruitment season, it occurs during dry season when the water level is low. P. schwanenfeldii is recruited almost all the year round.

With regard to the proposed Paya Bungor Development Plan, a few drawbacks were identified which can cause several adverse effects on the existing fish populations. Several management options for Paya Bungor were also proposed.

xxiv

