View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

Passive OS Fingerprinting Prototype Demonstration

Martin Lastovicka*T, Daniel Filakovsky*
*Masaryk University, Institute of Computer Science, Brno, Czech Republic
TMasaka University, Faculty of Informatics, Brno, Czech Republic

Email: lastovicka@ics.muni.cz,

Abstract—Operating system identification of communicating
devices plays an important part in network protection. However,
current networks are large and change often which implies the
need for a system that will be able to continuously monitor the
network and handle changes in identified operating systems. In
this paper, we propose an architecture of an OS fingerprinting
system based on passive network monitoring and a graph-based
data model to store and present information about operating
systems in the network. We implemented the proposed archi-
tecture and tested it on the backbone network of Masaryk
University. Our results suggest that it is suitable for monitoring a
large network with tens of thousands of actively communicating
devices.

I. INTRODUCTION

In our previous work, we have shown that OS fingerprinting
methods are viable in the environment of wireless networks
and will outlast adaptation of new network protocols [1].
However, modern networks are constantly changing and evolv-
ing environment which poses new challenges on any OS
fingerprint system. We identified them as follows:

e Dynamic IP assignment — a large number of devices
connect without a static address, but rather use address
assigned during connection. The fingerprinting system
needs to keep track of the actual relation between device
and address.

o Rapid changes in the network — devices connect to
the network and disconnect from it freely. In our mea-
surement, the median time for device connection was
8.6 minute, after which another device can take the IP
address. The fingerprinting system must be able to update
its state within the span of minutes and update it for the
whole network.

In this paper, we propose a system architecture to detect
operating system of every actively communicating device in
the network. We use the methods of passive OS fingerprinting
presented in our previous work [1] which suit the continuous
monitoring requirements. Our system solves the first challenge
by maintaining timestamps for each observed fingerprint. This
brings the possibility to track device operating system in the
present as well as in the past. The second challenge is solved
implicitly by the passive monitoring architecture which in our
implementation can bring the update of whole network state
down to 30 seconds.

II. SYSTEM ARCHITECTURE

Our architecture is based on four basic components — flow
data collection, data processing, results storage, and web

filakovsky@mail.muni.cz

interface. Their interconnection is depicted in Fig. 1 and they
are described in detail further in this section.

Network Schedul Web
Probes cheduler Interface
l IPFIX export l Time interval T
FlOW REST REST Graph
——>»| Anal —
Collector Database
-—

Fig. 1. Proposed architecture

A. Flow monitoring

In our architecture, we aim to monitor large networks using
extended network flow technology [2]. In the prototype set-
tings, probes monitor data from network tap mirroring 40 GE
backbone link which provides visibility into communication
between the monitored network and the Internet. This probe
location and connection does not affect OS fingerprinting
much as the methods require such communication or are able
to identify OS from it.

The flow export must have capabilities to enrich flows with
TCP/IP stack parameters (initial window size, size of first
SYN packet, time to live value), HTTP User-agent, requested
hostname (HTTP hostname or SNI value). We use IPFIX
protocol for the data transfer.

B. Data Processing

Two components are responsible for the processing of
primary IPFIX data. The first one, scheduler, is a controlling
component which invokes data analysis. It is important to
schedule the analysis to match collector data storage interval
so that each run of analysis has new data to process.

The second component, analyser, is responsible for obtain-
ing data from collector, OS detection, and storing results in
the database. The primary data transfer from the collector
is realized via REST API through which analyser requests
data from the last time interval and filter them so that only
flows with the source from subnets of interest are transferred.
Primary data may contain sensitive user information, and thus
the connection must be encrypted and both collector and
analyser should authenticate to each other.

Upon receiving data, an operating system is determined
for every active IP address in the network according to the
methods introduced in our previous paper [1]. This IP address


https://core.ac.uk/display/153794078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and OS are bound and stored in the graph database after every
run of the analyser.

C. Graph Database

A graph is a natural representation of a network and
graph databases allow to store them efficiently and are easily
extensible with new types of data or attributes.

We have proposed a lightweight data model to store results
with two types of nodes and two of edges, The nodes are:

o Host — node representing an element in the network.
Has one attribute corresponding to its IP address for
identification during OS detection.

« Operating System — node to represent one specific ver-
sion of OS. Has name attribute filled by our hierarchy [1]
format OS name, Major version, Minor version. If the
level of details is missing, the corresponding fields are
left empty.

Types of edges in our model are as follows:

o Has_OS_Actual — this edge represents the last discov-
ered relationship of Host to OS and carries time attribute
to check when the last calculation was triggered. One
Host node can have at most one adjacent Has_OS_Actual
edge.

« Has_OS_History — edges to track the Host to OS relation
in time. Every time OS is detected for a host, its current
OS_Actual edge is replaced by OS_history with the same
timestamp attribute and a new OS_actual edge is created.

D. Web Interface

We use the Neodj! database frontend in our prototype to
access the data and manipulate them. Its built-in visualization
engine is suitable for demonstration of both big picture of
operating systems in the network and individual host details.

III. SYSTEM PROTOTYPE

We have created a prototype implementation of the proposed
architecture and run it on Masaryk university backbone net-
work to evaluate its performance. All source codes are publicly
available on GitHub?.

We used already deployed passive monitoring infrastructure
based on Flowmon Networks® products for data collection.
Our network probes are located at the backbone links con-
necting the university to outside world which consist of two
40 GE optical routes. For OS fingerprinting we filter the traffic
so that only flows with source IP from the university network
are processed. For the data processing, we implemented the
scheduler and analyser in Python and used Neo4j graph
database for results storage and graphical presentation.

For prototype demonstration, we deployed analyser, sched-
uler and database on a virtual VMware server which used
4 cores of Intel(R) Xeon(R) CPU E5-2680 v2 2.80GHz
processor, 8GB RAM and 1TB hard drive. The schedule was

Thttps://neo4j.com
Zhttps://github.com/CSIRT-MU/PassiveOSFingerprint
3https://www.flowmon.com

HAS_OS_ACTUAL 2017-11-2411:25

2017-11-2411:20 2017-11-2411:15

2017-11-2411:00 2017-11-2410:50
2017-11-2410:45 2017-11-2410:25
2017-11-24 09:50 2017-11-2410:10

2017-11-24 0955

%
%
A3
2
3,

Fig. 2. Screenshot of database filled with data from real traffic

set to 5 minutes typical for flow processing. Even if the
server performance parameters are quite low for high-speed
monitoring, it was able to do the whole processing cycle from
obtaining data to database updates within 2 to 3 minutes.
Example of the resulting database is depicted in Fig. 2.

IV. DEMONSTRATION STRUCTURE

We are going to present the prototype capabilities on
live network traffic. First, we will discuss monitoring probes
location and its impacts on OS fingerprinting. Then we are
going to go through flow data transfer, processing and impacts
of time schedule settings. Finally, we plan to demonstrate
interaction with Neo4j database and use it to present statistics
about operating systems in our network.

V. CONCLUSION

We introduced a system architecture for continuous passive
OS fingerprinting of devices in large dynamic networks. This
architecture is designed to deal with the rapid changes in real
networks and our prototype demonstration showed it is capable
of processing data from 40 GE uplink with more than 22
thousands of concurrently communicating devices.

ACKNOWLEDGEMENT

This research was supported by the Security Research
Programme of the Czech Republic 2015 - 2020 (BV III /
1 VS) granted by the Ministry of the Interior of the Czech
Republic under No. VI20172020070 Research of Tools for
Cyber Situation Awareness and Decision Support of CSIRT
Teams in the Protection of Critical Infrastructure.

Martin LaStovicka is Brno Ph.D. Talent Scholarship Holder
— Funded by the Brno City Municipality.

REFERENCES

[1] M. Lastovicka, T. Jirsik, P. Celeda, S. Spacek, and D. Filakovsky, “Passive
OS Fingerprinting Methods in the Jungle of Wireless Networks,” in
Network Operations and Management Symposium (NOMS), 2018 IEEE,
2018, [To appear].

[2] R. Hofstede, P. Celeda, B. Trammell, L. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow Monitoring Explained: From Packet Capture to
Data Analysis With NetFlow and IPFIX,” IEEE Communications Surveys
Tutorials, vol. 16, no. 4, pp. 2037-2064, Fourthquarter 2014.



