
On the Security of Mobile Sensors

Maryam Mehrnezhad
School of Computing Science
Newcastle University, UK

A thesis submitted for the degree of
Doctor of Philosophy

April 2017

To science
In the hope of a better world

For generations to come

Acknowledgements

I would like to thank my supervisors, Dr. Feng Hao and Dr. Siamak F.
Shahandashti – I am truly grateful to them for their expertise, guidance,
and support of my research, and their mentorship and friendship over the
years. I would like to thank the School of Computing Science, Newcastle
University and the Secure and Resilient Systems (SRS) group for their
world-class and friendly academic environment, and the generous support
that they provided to me during my studies.

I would like to acknowledge specific people with whom I had the pleasure
to collaborate during this research project. In Chapter 3, Mohammed
A. Ali and Ehsan Toreini helped with designing and performing some of
the experiments. Prof. Aad van Moorsel, Dr. Michael Ward (from Master-
Card), and Dr. Martin Emms contributed insights on the EMV contactless
specifications. The initial JavaScript code used in Chapter 4 was devel-
oped by Ehsan Toreini. In Chapter 5, Dr. Kovila Coopamootoo provided
feedback on designing the user studies; Ehsan Toreini, and Dr. Siamak F.
Shahandashti helped with participant recruitment and interviews.

I wish to thank my examiners Dr. Charles Morisset form Newcastle Uni-
versity and Prof. Chris Mitchell from Royal Holloway, University of Lon-
don for their constructive feedback on this thesis. Many people fromW3C,
Qualcomm, Intel, Apple, Google Chrome, Mozilla Firefox, Opera, ISO,
EMV, and MasterCard provided valuable feedback on some of the works
done in this project. I thank all the volunteer participants in the techni-
cal experiments and user studies of this research. All the experiments of
this thesis gained approval through Newcastle University’s research ethics
processes.

I wish to thank the following people from Newcastle University for their
support over the years: Prof. Brian Randell, Prof. Aad van Moorsel, Prof.
Tom Anderson, my friends: Sami, Zoya, Ako, David, Paddy, Diego, Iryna,
Cov, the school admins: Dee Carr, Jill Green, Catherine McAndrew, and

my mentor: Dr. Joy Dinsdale. My special thanks goes to my friends
beyond the university: Mahshid, Marziyeh, Nasrin, Elham, Mehran, Leila,
Nadia, Mahsa, Samin, and Fesenjoon. I would like to thank the Blackswan
company (Tynemouth, UK) whom I had the pleasure to work with toward
the end of my PhD.

Finally, I would like to thank my beloved parents, sisters, and grandpar-
ents for their faith, encouragement, support, and love over the years of
my studies. Last but not least, I would like to truly thank my husband
and my best friend, Ehsan, who believed in me more than I did myself. I
feel fortunate to share my passion for science and this journey with him.

iv

Publications

Journals

• M.Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “TouchSig-
natures: Identification of User Touch Actions and PINs based on
Mobile Sensors via JavaScript”, Journal of Information Security and
Applications, Elsevier, Volume 26, February 2016, Pages 23-38.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing
PINs via Mobile Sensors: Actual Risk versus User Perception”, In-
ternational Journal of Information Security, Springer, April 2017,
Pages 1-23.

Conferences

• M.Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “TouchSig-
natures: Identification of User Touch Actions based on Mobile Sen-
sors via JavaScript”, In the Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security, ASIA CCS
2015, Singapore, April 14-17, 2015, ACM, Pages 673-673.

• M. Mehrnezhad, F. Hao, and S. F. Shahandashti, “Tap-Tap and
Pay (TTP): Preventing Man-In-The-Middle Attacks in NFC Pay-
ment Using Mobile Sensors”, In the Proceedings of the Second In-
ternational Conference of Security Standardisation Research, SSR
2015, Tokyo, Japan, December 15-16, 2015, Springer International
Publishing, Pages 21-39.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing
PINs via Mobile Sensors: Actual Risk versus User Perception”, The
1st European Workshop on Usable Security, EuroUSEC 2016, Work-
shop at the Privacy Enhancing Technologies Symposium (PETS 2016),
July 18, 2016, Germany.

• M. Mehrnezhad, M. A. Ali, F. Hao, A. V. Moorsel, “NFC Payment
Spy: Privacy attacks on contactless payments using NFC-enabled
mobile”, In the Proceedings of the Third International Conference of
Security Standardisation Research, SSR 2016, USA, December 5-6,
2016, Springer International Publishing, Pages 1-20.

vi

Abstract

The age of sensor technology is upon us. Sensor-rich mobile devices
are ubiquitous. Smart-phones, tablets, and wearables are increasingly
equipped with sensors such as GPS, accelerometer, Near Field Communi-
cation (NFC), and ambient sensors. Data provided by such sensors, com-
bined with the fast-growing computational capabilities on mobile plat-
forms, offer richer and more personalised apps. However, these sensors
introduce new security challenges to the users, and make sensor manage-
ment more complicated.

In this PhD thesis, we contribute to the field of mobile sensor security by
investigating a wide spectrum of open problems in this field covering at-
tacks and defences, standardisation and industrial approaches, and human
dimensions. We study the problems in detail and propose solutions.

First, we propose “Tap-Tap and Pay” (TTP), a sensor-based protocol to
prevent the Mafia attack in NFC payment. The Mafia attack is a special
type of Man-In-The-Middle attack which charges the user for something
more expensive than what she intends to pay by relaying transactions
to a remote payment terminal. In TTP, a user initiates the payment by
physically tapping her mobile phone against the reader. We observe that
this tapping causes transient vibrations at both devices which are mea-
surable by the embedded accelerometers. Our observations indicate that
these sensor measurements are closely correlated within the same tapping,
and different if obtained from different tapping events. By comparing the
similarity between the two measurements, the bank can distinguish the
Mafia fraud apart from a legitimate NFC transaction. The experimental
results and the user feedback suggest the practical feasibility of TTP. As
compared with previous sensor-based solutions, ours is the only one that
works even when the attacker and the user are in nearby locations or share
similar ambient environments.

Second, we demonstrate an in-app attack based on a real world problem
in contactless payment known as the card collision or card clash. A card
collision happens when more than one card (or NFC-enabled device) are
presented to the payment terminal’s field, and the terminal does not know
which card to choose. By performing experiments, we observe that the
implementation of contactless terminals in practice matches neither EMV
nor ISO standards (the two primary standards for smart card payment)
on card collision. Based on this inconsistency, we propose “NFC Payment
Spy”, a malicious app that tracks the user’s contactless payment trans-
actions. This app, running on a smart phone, simulates a card which
requests the payment information (amount, time, etc.) from the termi-
nal. When the phone and the card are both presented to a contactless
terminal (given that many people use mobile case wallets to travel light
and keep wallet essentials close to hand), our app can effectively win the
race condition over the card. This attack is the first privacy attack on
contactless payments based on the problem of card collision. By showing
the feasibility of this attack, we raise awareness of privacy and security
issues in contactless payment protocols and implementation, specifically
in the presence of new technologies for payment such as mobile platforms.

Third, we show that, apart from attacking mobile devices by having access
to the sensors through native apps, we can also perform sensor-based
attacks via mobile browsers. We examine multiple browsers on Android
and iOS platforms and study their policies in granting permissions to
JavaScript code with respect to access to motion and orientation sensor
data. Based on our observations, we identify multiple vulnerabilities,
and propose “TouchSignatures” and “PINLogger.js”, two novel attacks in
which malicious JavaScript code listens to such sensor data measurements.
We demonstrate that, despite the much lower sampling rate (comparing to
a native app), a remote attacker is able to learn sensitive user information
such as physical activities, phone call timing, touch actions (tap, scroll,
hold, zoom), and PINs based on these sensor data. This is the first report
of such a JavaScript-based attack. We disclosed the above vulnerability to
the community and major mobile browser vendors classified the problem
as high-risk and fixed it accordingly.

Finally, we investigate human dimensions in the problem of sensor man-
agement. Although different types of attacks via sensors have been known

viii

for many years, the problem of data leakage caused by sensors has re-
mained unsolved. While working with W3C and browser vendors to fix
the identified problem, we came to appreciate the complexity of this prob-
lem in practice and the challenge of balancing security, usability, and func-
tionality. We believe a major reason for this is that users are not fully
aware of these sensors and the associated risks to their privacy and secu-
rity. Therefore, we study user understanding of mobile sensors, specifically
their risk perceptions. This is the only research to date that studies risk
perceptions for a comprehensive list of mobile sensors (25 in total). We
interview multiple participants from a range of backgrounds by providing
them with multiple self-declared questionnaires. The results indicate that
people in general do not have a good understanding of the complexities
of these sensors; hence making security judgements about these sensors
is not easy for them. We discuss how this observation, along with other
factors, renders many academic and industry solutions ineffective. This
makes the security and privacy issues of mobile sensors and other sensor-
enabled technologies an important topic to be investigated further.

ix

Contents

1 Introduction 1
1.1 Mobile device sensors . 2
1.2 Smart apps . 4
1.3 In-app attacks . 5
1.4 Sensor management challenges . 6
1.5 In-browser attacks . 7
1.6 Industrial vs. academic approaches 8
1.7 Human dimensions . 10
1.8 Methodology . 11
1.9 Contributions . 13
1.10 Industrial impact . 14
1.11 Media coverage . 15

2 Preventing the Mafia Attack in NFC Payment 18
2.1 Chapter overview . 19
2.2 Introduction . 19

2.2.1 NFC payment . 20
2.2.2 Mafia attack . 21
2.2.3 NFC payment standards and specifications 21
2.2.4 Distance bounding protocols 22
2.2.5 Other countermeasures . 23
2.2.6 Contributions . 23

2.3 Tap-Tap and Pay (TTP) . 24
2.3.1 Threat model . 24
2.3.2 Overview of the solution . 25
2.3.3 Host-based card emulation and Reader emulation 26
2.3.4 Sensor data preprocessing . 27
2.3.5 Similarity comparison . 29

i

2.4 System evaluation . 31
2.4.1 Experiment setup and data collection 32
2.4.2 Results . 33
2.4.3 Online and offline modes . 34

2.5 Usability study . 34
2.5.1 Experiment setup and data collection 34
2.5.2 Findings . 35

2.6 Comparison with previous work . 36
2.7 Further related work . 38
2.8 Summary . 39

3 A Privacy Attack on Contactless Payments 41
3.1 Chapter overview . 42
3.2 Introduction . 43
3.3 Card collision . 44

3.3.1 Oystercard and bank card clash 45
3.3.2 EMV contactless specifications 46
3.3.3 ISO/IEC 14443 . 48

3.4 Experiments on contactless readers in practice 50
3.4.1 Experiment setup . 50
3.4.2 Experiment results and analysis 51

3.5 Attack design . 53
3.5.1 Threat model and attack scenario 53
3.5.2 Designing the attack based on NFC payment protocols 54

3.6 Implementation . 56
3.6.1 Android HCE . 56
3.6.2 Android flight mode . 57

3.7 Experiments and results . 58
3.7.1 Expected results . 58
3.7.2 Experiment A: card and phone collision 58
3.7.3 Experiment B: PDOL data . 60

3.8 Summary . 61

ii

4 Identification of User Touch Actions and PINs via JavaScript 64
4.1 Chapter overview . 65
4.2 Introduction . 66

4.2.1 Mobile sensors access . 67
4.2.2 Access to mobile sensors within app 67
4.2.3 Access to mobile sensors within browser 67
4.2.4 Access to mobile sensors within app vs. browser 68
4.2.5 Contributions . 70

4.3 Examining mobile browsers . 71
4.3.1 JavaScript code to access motion and orientation data 71
4.3.2 Popular browsers . 72
4.3.3 Mobile browser access results 73

4.4 Identifying user activities . 76
4.5 TouchSignatures: Identifying touch actions and PIN digits 78

4.5.1 Overview . 79
4.5.2 In-browser sensor data detail 80
4.5.3 Application implementation 81
4.5.4 Feature extraction . 83
4.5.5 Classification method . 84

4.6 Phase 1: Identifying touch actions . 84
4.6.1 Touch actions set . 84
4.6.2 Experiments . 84
4.6.3 Classification algorithm . 86
4.6.4 Results . 87

4.7 Phase 2: Identifying PIN digits . 88
4.7.1 Digit set . 89
4.7.2 Experiments . 89
4.7.3 Classification algorithm . 90
4.7.4 Results . 91
4.7.5 Comparison with related work 93

4.8 PINLogger.js: Identifying full 4-digit PINs 94
4.8.1 PINs set . 95
4.8.2 Experiments . 96
4.8.3 Feature extraction . 97
4.8.4 Classification algorithm . 98
4.8.5 Results . 98

iii

4.8.6 Comparison with related works 100
4.9 Possible solutions . 102
4.10 Industry feedback . 103
4.11 Summary . 105

5 Human Dimensions of Mobile Sensors Security 107
5.1 Chapter overview . 108
5.2 Introduction . 108
5.3 Sensor management complexity . 110

5.3.1 Unmanaged sensors . 110
5.3.2 Unknown sensors . 112

5.4 User studies on general knowledge about mobile sensors 113
5.4.1 Recruitment and participants demography 113
5.4.2 Study approach . 114
5.4.3 Findings . 117

5.5 User studies on risk perception of mobile sensors 118
5.5.1 Study one: within-subject . 118
5.5.2 Study two: between-subject 119
5.5.3 Intuitive risk perception . 119

5.6 General knowledge vs. risk perception 123
5.7 Perceived risk vs. the actual risk . 124
5.8 Possible solutions . 125

5.8.1 Academic approach . 126
5.8.2 Industrial approach . 126

5.9 Discussions . 129
5.10 Limitations . 130
5.11 Summary . 131

6 Conclusion 132
6.1 Thesis summary . 133
6.2 Future work . 134

A TTP Usability Experiment 137

B Help Document for Sensor Data Collection Process 141

C Touch Action Study Guide 146

iv

D Interview Description of Mobile Sensors User Study 148

Bibliography 152

v

List of Figures

2.1 The Mafia attack . 20
2.2 Tap-Tap and Pay overview . 24
2.3 Accelerometer measurements for a double-tapping 28
2.4 TTP decision engine’s algorithm . 31
2.5 Data collection setting . 32
2.6 User study card app . 35
2.7 TTP user study results . 36

3.1 Card holder mobile cases . 44
3.2 EMV contactless terminal main loop 47
3.3 EMV collision detection . 49
3.4 ISO anticollision loop . 50
3.5 Attack app sequence diagram . 56
3.6 Phone and card collision experiment setting 58

4.1 JavaScript code for sensor reading . 72
4.2 In-brwoser attack example . 75
4.3 Accelerometer data associated with phone call timing 77
4.4 Accelerometer data associated with physical activities 78
4.5 TouchSignatures overview . 79
4.6 Implementation of the client and server sides 82
4.7 Average identification rate vs. random guess 94
4.8 Different PIN entrance methods . 95
4.9 The existing browser interfaces for having access to GPS 103

5.1 Potential JavaScript-based attack scenarios 109
5.2 Sample of flyer distributed for participant recruitment. 114
5.3 Self-declared knowledge about sensors 116
5.4 Perceived risk, within-subject . 120
5.5 Perceived risk, between-subject . 121

vi

5.6 An Android app and its permissions 127

vii

List of Tables

1.1 Categorisation of current mobile sensors 3
1.2 Permission policies of sensors . 7

2.1 Equal error rates for different suggested methods 33
2.2 Comparing TTP with related work 37

3.1 Cards’ information . 51
3.2 Results of card collision experiment 52
3.3 Results of the phone and card collision experiment, TSB cards 60
3.4 Results of the phone and card collision experiment, Barclays cards . . 61
3.5 Exchanged APDUs of the PDOL experiment 62

4.1 Sensor-based password/ PIN identifiers 66
4.2 Maximum in-app sampling rates . 69
4.3 Maximum in-browser sampling rates 69
4.4 Popular Android web browsers . 73
4.5 Mobile browser access to the orientation and motion sensor data . . . 74
4.6 Touch actions description . 85
4.7 Confusion matrix of touch actions . 87
4.8 Confusion matrix of scroll types . 88
4.9 The device information accessible via JavaScript 89
4.10 Identification rates of digits in Nexus 5 and iPhone 5 90
4.11 Confusion matrices in Nexus 5 . 91
4.12 Confusion matrices in iPhone 5 . 92
4.13 Identification rate per attempt, Nexus 5 92
4.14 Identification rate per attempt, iPhone 5 93
4.15 TouchSignatures vs. in-app attacks 93
4.16 PINlogger.js’s PIN identification rates in different attempts 99
4.17 Average digit identification rates in different attempts 100
4.18 Comparison of PINlogger.js with related works 100

viii

5.1 Motion sensors supported by Android vs. W3C 110
5.2 Position sensors supported by Android vs. W3C 111
5.3 Participants’ demographics . 115
5.4 Spearman’s correlation between the knowledge and the perceived risk 124

6.1 A summary on our communication with mobile industry 134

D.1 Demography table . 149
D.2 Sensor familiarity form . 150
D.3 Sensor concern form . 151

ix

Chapter 1

Introduction

1

Today sensors are everywhere: from your personal devices such as mobiles, tablets,
watches, fitness trackers, and other wearables, to TVs, cars, kitchens and homes, as
well as roads, parking lots, and smart cities. These new technologies are equipped
with many different sensors, such as NFC, accelerometer, orientation and motion, and
are connected to each other through the Internet of Things (IoT). These sensors are
providing ever more features to end users enabling to interact with their real world
surroundings. As a result, users are benefiting from richer and more personalised
apps which use these sensors for different purposes such as fitness, gaming, and even
security applications such as authentication. However, the growing number of sensors
introduces new security and privacy risks to end users, and makes the task of sensor
management more complex.

1.1 Mobile device sensors

According to the Economist [38], smartphones have become the fastest-selling gadgets
in history, outselling personal computers four to one. Today about half the adult
population owns a smartphone; by 2020, 80% will. In this thesis, the focus will be on
the sensors of mobile devices, particularly smart phones and tablets. However, the
problems and the solutions we investigate are generally applicable to other sensor-
enabled technologies.

Mobile device vendors are increasingly augmenting their products with different
types of sensors. Here we present a list of different sensors by inspecting the official
websites of the latest iOS (iPhone 61) and Android (Nexus 6P2) products, and the
specifications that W3C3 and Android [52] provide for developers. We also add some
extra sensors (wireless technologies, camera, microphone, touch screen, and GPS) as
common sensing mobile hardware. We categorise these sensors into four main groups:
communicational sensors, identity-related (biometric) sensors, ambient (environmen-
tal) sensors, and movement sensors, as presented in Table 1.1. Note that this list
can be even longer if all mobile brands are included. For example, the world’s first
thermal imaging sensor on mobile phones is offered by Cat S60 smartphone4.

In the following, we present a brief description of each sensor:

• GPS: identifies the real-world geographic location.
1apple.com/uk/iphone-6/specs/
2store.google.com/product/nexus_6p
3w3.org/2009/dap/
4catphones.com/en-gb/phones/s60-smartphone

2

Category Sensors
Identity-related (Biometric) GPS, Camera, Microphone,

Fingerprint (TouchID), Touch Screen
Communicational WiFi, Bluetooth, NFC
Ambient (Environmental) Temperature (ambient, device), Humidity,

Pressure (Barometer), Light, Proximity,
Gravity, Magnetic Field, Hall Sensor

Movement Gyroscope, Accelerometer, Rotation,
Orientation, Motion, Sensor Hub

Table 1.1: Categorisation of current mobile sensors

• Camera, Microphone: capture pictures/videos and voice, respectively.

• Fingerprint, TouchID: scans the fingerprint.

• Touch Screen: enables the user to interact directly with the display by physically
touching it.

• WiFi: is a wireless technology that allows the device to connect to a network.

• Bluetooth: is a wireless technology for exchanging data over short distances.

• NFC (Near Filed Communication): is a wireless technology for exchanging data
over shorter distances (less than 10 cm) for purposes such as contacless payment.

• Proximity: measures the distance of objects from the touch screen.

• Ambient Light: measures the light level in the environment of the device.

• Ambient Pressure (Barometer), Ambient Humidity, and Ambient Temperature:
measure the air pressure, humidity, and temperature in the environment of the
device, respectively.

• Device Temperature: measures the temperature of the device.

• Gravity: measures the force of gravity.

• Magnetic Field: reports the ambient magnetic field intensity around the device.

• Hall Sensor: produces voltage based on the magnetic field.

• Accelerometer: measures the acceleration of the device movement or vibration.

• Rotation: reports how much and in what direction the device is rotated.

3

• Gyroscope: estimates the rotation rate of the device.

• Motion: measures the acceleration and the rotation of the device.

• Orientation: reports the physical angle that the device is held in.

• Sensor Hub: is an activity recognition sensor and its purpose is to monitor the
device’s movement.

1.2 Smart apps

From an artificial intelligence point of view, sensors are added to mobile devices to
make them “smart”: to sense the surrounding environment and infer aspects of the
context of use from the sensor data, and thus to facilitate more meaningful interactions
with the user. Many of these sensors are used in popular mobile apps such as fitness
training and games. Mobile sensors have also been proposed to use for security
purposes, e.g. for authentication [20, 34], authorization [69], and device pairing [76].
In this vein, in Chapter 2, we propose to utilize sensors to build a novel “Tap-Tap-
and-Pay” (TTP) mechanism [79] to prevent the Mafia attack.

The problem. The Mafia attack presents a realistic threat to payment systems
including mobile NFC payment. In this attack, a user consciously initiates an NFC
payment against a legitimate-looking NFC reader (controlled by the Mafia), not know-
ing that the reader actually relays the data to a remote legitimate NFC reader to pay
for something more expensive. Two main categories of solutions have been commonly
suggested for the Mafia attack: distance bounding protocols [13, 23, 37], and (ambi-
ent) sensor-based solutions [53, 73, 98]. Most distance bounding protocols defined in
the literature [23,37] are based on symmetric key encryption which requires the card
and the reader to have a pre-shared symmetric key. In current practice, the card
only has a pre-shared key with the issuing bank. On the other hand, the underlying
assumption in the previous sensor-based solutions is that malicious and legitimate
readers are in two different locations with distinct ambient environments. However,
the validity of this assumption may not always hold in practice.

Our solution. In TTP, we address the above shortcomings by leveraging the
characteristics of vibrations when an NFC card is physically tapped on an NFC reader.
We observe that the accelerometer measurements produced by both devices are closely
correlated within the same tapping event, while they are different if obtained from
different tapping events. Hence by comparing the two measurements, the issuing bank
in the back-end of the payment network can distinguish legitimate NFC payments

4

from Mafia frauds. This work serves to highlight the potential to make use of sensors
to build useful security mechanisms.

1.3 In-app attacks

There is also the other side of sensors: access to the sensor streams provides an app
running in the background with an exploit path. Researchers have shown that the
user’s PIN/password can be disclosed through sensors such as camera and micro-
phone [99], ambient light [100], and gyroscope [115].

Sensors can also be misused to attack financial payments. Since the introduction
of Google Wallet5, almost all new smart phones have added NFC sensors. A malicious
app (with permission to access the NFC sensor) can easily turn the phone into an
NFC reader. This presents a realistic threat to users, as in practice many people
place the smart phone in close proximity to their contactless bank cards (e.g. in
purses). Once the card is within the NFC field of the phone, using techniques we
present in Chapter 3, we demonstrate a privacy attack, “NFC Payment Spy” [78], on
contactless payments by taking advantage of a situation called card collision [9, 15]
or card clash [105].

The vulnerability. In a contactless transaction, a card collision happens when
more than one card (or an NFC-enabled device) are presented to the payment termi-
nal’s field, and the terminal does not know which card to choose to proceed with the
transaction. According to EMV [15] (the primary standard for smart card payment),
once a collision is detected, the terminal should not proceed with the interaction;
instead it should reset the field. On the other hand, ISO/IEC 14443 [9] specifies no
termination in the case of a collision. Instead, a race condition is created in which
depending on the implementation of the terminal and the UIDs of the cards available
in the field, only one card would be selected.

Our attack. We observe that the implementation of contactless NFC readers in
practice does not follow EMV’s card collision algorithm, or ISO’s. Our attack works
based on this inconsistency; when the user aims to pay contactlessly while placing her
card close to her phone, the attack app engages with the terminal before the card does.
Accordingly, the attack app can retrieve from the terminal the Processing Options/
Data Object List (PDOL) data, which include information about the payment such as
the amount and date. This attack is the first privacy attack on contactless payments
based on the problem of card collision. By suggesting this attack we raise awareness

5wallet.google.com/

5

of privacy and security issues in the standard specifications and implementations
of contactless cards and readers, especially with regard to the sensors available in
modern mobile devices.

1.4 Sensor management challenges

Over-privileged apps. Today users spend much of their time consuming digital
media within mobile applications [68]. Android is the most popular mobile OS with
84.7% market share as of 2015 Q3 [50], and the Google Play Store (as the largest
and only official Android marketplace) is boasting in excess of 1.6 million apps [101].
According to [90], the average consumer uses over 26 different apps per month.

As shown in [103], the average number of permissions used by Android apps
(installed from Google Play) increases over time, especially for popular apps as well
as free apps. These permissions are requested for having access to the OS resources
as well as sensors such as GPS, camera, and microphone. This has the potential to
make apps over-privileged and unnecessarily increase the attack surface.

Unmanaged sensors. As pointed out by researchers in [115], the fundamental
problem here is that “sensing is unmanaged on existing smartphone platforms”. The
in-app access to certain sensors including GPS, camera, and microphone requires user
permission when installing and running the app. However, as discussed in [99], an
attacker can easily trick a user into granting permission through social engineering
(e.g. presenting it as a free game app). Once the app is installed, usage of the
sensor data is not restricted. Even worse, access to many other sensors including
accelerometer, gyroscope, and light is unrestricted; any app can have free access
to the sensor data without needing any user permission, as these sensors are left
unmanaged in operating systems. As it can be seen in Table 1.2, permission policies
for having access to different sensors vary across sensors and platforms [6, 108].

Relying on users and app stores. Although the information leakage caused
by sensors has been known for years [99,100,115], the problem has remained unsolved
in practice. One main reason is the complexity of the problem (as we illustrate in
Chapter 5). Another reason, from the practical perspective, is that all the reported
attacks depend on one condition: the user must initiate the downloading and installing
of the app. Therefore, users are relied upon to be vigilant and not to install untrusted
apps. Furthermore, it is expected that app stores such as the Apple app store and
Google Play will screen the apps, and impose severe penalties if the app is found to

6

Sensor Android iOS W3C
GPS 3 3 3

Camera 3 3 3

Microphone 3 3 3

Fingerprint/ TouchID 3 3 NA
Touch Screen 7 7 7

WiFi 3 3 7

Bluetooth 3 3 3

NFC 7* Locked 7

Proximity 7 7 7

Ambient Light 7 7 7

Ambient Pressure/ Barometer 7 7 NA
Ambient Humidity 7 NA NA
Ambient Temperature 7 NA NA
Device Temperature 7 NA NA
Gravity 7 7 NA
Magnetic Field 7 7 7

Hall Sensor 7 NA NA
Accelerometer 7 7 7

Rotation 7 7 7

Gyroscope 7 7 7

Motion 7 7 7

Orientation 7 7 7

Sensor Hub Locked Locked NA

Table 1.2: Current permission policies of sensors on different platforms, 3: permission
required, 7: permission not required, NA: not supported, and Locked: not open to
developers. *NFC should be turned on manually in Android for any program to be
able to use it.

contain malicious content. However, in a new attack shown below we demonstrate
that these measures are ineffective.

1.5 In-browser attacks

The vulnerability. In Chapter 4, we show that the sensor management problem is
spreading from apps to browsers. W3C specifies standard APIs to allow in-browser
access to certain sensors (e.g. GPS, light, motion and orientation) through JavaScript
code. As shown in Table 1.2, mobile web browsers allow the JavaScript code in a
web page to access motion and orientation sensor data without any user permission
being required. The associated risks to user security and privacy are, however, not
considered in the W3C specification. Nonetheless, browser vendors still took the

7

precaution to reduce the sensor rate available in-browser by a factor of 3 to 5 as
compared with what is attainable in-app (e.g. in Chrome, the rate is reduced from
200 Hz to 60 Hz6).

Our attacks. We introduce two JavaScript-based attacks: “TouchSignatures”
and “PINLogger.js” [80–83], and demonstrate that despite the much lower sampling
rate, a remote attacker is still able to learn the user’s touch actions (i.e./ tap, scroll,
hold, and zoom) and PINs based on reading the motion and orientation sensor data.
In contrast to previous attacks, our JavaScript-based attack does not require any
app installation. Once the malicious web page is opened, it can covertly read the
sensor streams without needing any user permission. The attack works when the
JavaScript code is embedded in an iframe (this is where the third-party advertisement
is often hosted) instead of the main page. Depending on the mobile platform and
browsers, the attack continues to work when the attacker’s web page is left open in
an inactive tab, when the browser is minimized, or even when the screen is locked.
These vulnerabilities present a serious threat to the end user’s privacy and security.

Reporting to industry. Following responsible disclosure practices, we informed
W3C and browser vendors in private of our findings. W3C acknowledged: “This
would be an issue to address for any future iterations on this [W3C] document.”
All major mobile browser vendors, including Google Chrome, Mozilla Firefox, Apple
Safari and Opera, have also acknowledged the problem we identified. For example,
Mozilla replied, “Indeed, and it should be fixed consistently across all the browsers
and also the spec [W3C specification] needs to be fixed.”

1.6 Industrial vs. academic approaches

Industrial approach. As mentioned earlier, some mobile sensors such as accelerom-
eter and gyroscope are unrestrictedly accessible through both native apps and browsers
without any permissions. For other sensors such as GPS and camera, mobile plat-
forms and browsers have adopted different approaches for granting permissions. For
example, run-time permissions are granted by users in iOS, while it used to be install-
time permission requests for Android before Android 67. In addition, although the
run-time approach offers more control, but many users continue to accept permission
requests blindly possibly due to a lack of understanding [39,47,48].

6bugs.chromium.org/p/chromium/issues/detail?id=421691
7developer.android.com/training/permissions/requesting.html

8

Academic approach. A range of solutions to address the in-app access attacks
have been suggested in the literature: e.g. restricting the sensor to one app, reducing
the sampling rate, temporal pause of the sensor on sensitive entries such as keyboard,
rearranging keyboard for password entry, asking for explicit permission from the user,
ranking apps based on their similarities to malware, and obfuscating anomalies in
sensor data [17,21,33,84,85,88,92,99,100,115]. However, after many years of research,
none of the major mobile platforms have revised their access policy. While the number
of sensors is increasing on mobile platforms, the risk of the newer sensors such as
movement sensors (accelerometer, gyroscope, etc.) and ambient sensors (pressure,
temperature, etc.) to users privacy and security seems to be still underestimated.

Our countermeasures. When reporting our in-browser attack [81] to the in-
dustry, we suggested several countermeasures, including: 1) to treat the motion and
orientation sensors with the same sensitivity as the GPS sensor; 2) to disable the
JavaScript access to sensors when the JavaScript code in the iframe has a different
origin from the main page, or when the view of the web page is hidden. Our first
suggestion is consistent with what has been recommended in many previous academic
papers: namely, requiring user permission to access the sensor data. However, relying
on user prompts is not considered a usable solution by the industrial community.

In the end, browser vendors have chosen to adopt the second countermeasure we
suggested in [81]. For example, starting from version 46 (released in April 2016),
Firefox restricts JavaScript access to motion and orientation sensors to only top-level
documents and the same-origin iframe. In the latest Apple Security Updates for iOS
9.3 (released in March 2016), Safari took a similar countermeasure by “suspending
the availability of this [motion and orientation] data when the web view is hidden.”
Moreover, W3C has drafted a new version of the motion and orientation specifications
including a security section as suggested by us.

Limitation. However, we believe the second countermeasure should only serve as
a temporary fix rather than the ultimate solution. In particular, it has the drawback
of removing potentially useful web applications in the future. For example, a web
page running a fitness program has a legitimate reason to access the motion sensors
even when the web page view is hidden. However, this is no longer possible in the
new versions of Firefox and Safari. Our concern is shared by the Google Chromium
team. As stated by one member of the Chromium team on the online Bug Track of the
issue, “We’re particularly concerned about preventing interesting future use cases. We
suspect we could copy Safari’s behavior without breaking too much existing content,

9

but preventing new forms of content (like spherical video) is a serious risk”8.
Necessity of sensor management. In future, we expect the boundary between

apps and web programs on mobile devices will gradually diminish. Many native apps
will move towards web-based programs so they do not require client installation. This
is similar to the trend in the PC era that many installable programs migrate to be
web based so no client software installation is needed. With the growing number of
sensors, and more sensitive sensor hardware provisioned with new mobile devices, the
problem of information leakage caused by sensors is expected to become more severe.
In view of all this, we believe a systematic solution to securely manage the sensors in
both apps and browsers is urgently needed.

1.7 Human dimensions

While working with W3C and browser vendors to fix the identified problem, we
came to appreciate the complexity of the sensor management problem in practice
and the challenge of balancing security, usability and functionality. We believe a
major reason for this is that users are not aware of i) the data generated by the
sensors, ii) how that data might be used to undermine their security and privacy, and
iii) what precautionary measure they could and should take. As stated by the chair
of the Geolocation Working Group in W3C (the working group which is in charge of
motion and orientation standard), “the need for research into balancing usability of
sensor data with privacy and security is acute, given explosion in mobile applications
and websites that leverage access to such data”.

In Chapter 5, we study users’ perception of the risks associated with mobile phone
sensors [80,83]. We design a few user studies to measure the general familiarity with
different sensors and their functionality, and to investigate how concerned users are
about their PIN being stolen by an app that has access to all these sensors. Our results
show that mobile users are not generally familiar with mobile sensors, specifically
with the newer ones. Moreover, we observe that there is significant disparity between
the actual and perceived levels of the threat with regard to the compromise of the
user PIN. We discuss how this observation, along with other factors, renders many
academic and industry solutions ineffective in managing mobile sensors. This result
has significant implications on the appropriate interaction design strategy for a sensor
management system. For example, it might indicate that relying on user prompts to
manage sensors is inadequate.

8bugs.chromium.org/p/chromium/issues/detail?id=523320#c18

10

We believe that, in conjunction with more large scale user studies, a solution that
adopts a human-centred approach to designing a sensor management system would
address this issue. We leave this as future work and encourage the researchers in the
field to pay more attention to security and privacy issues associated with sensors.

1.8 Methodology

The research in this thesis is driven by tackling real-world security problems. Through-
out this research, we worked on practical problems concerning security and privacy
issues of mobile users based on sensors. In order to demonstrate the feasibility of
our ideas in practice, we have performed all of our experiments by using off-the-shelf
devices and tools. In Chapters 2, 3, and 4 of this thesis, we develop application-level
attacks and designs, and in Chapter 5, we conduct users studies to directly investigate
some of the human dimensions of the sensor technology.

Data collection from mobile users. All of our proposed attacks and designs
follow an experimental method for collecting data from real mobile users. In Chapter
2, when designing TTP as an NFC payment protocol, we simulate a contactless
payment activity and augment our proposed Tap-Tap gesture in a payment app in
the lab. This experiment is very similar to a real NFC payment in terms of the
procedure. The only difference is that we use a mobile phone as a reader which is
not connected to the bank and does not charge the simulated card on the phone. We
collect the sensor data (accelerometer measurements) during multiple Tap-Tap and
Pay activities being performed by volunteer users. Furthermore, when conducting
user studies to compare TTP with a conventional contactless payment, we again
simulate both activities as close as possible to the implementation of contactless
cards and readers in a real-world payment system.

In Chapter 4, we perform a series of attacks on sensitive user information such as
touch actions and PINs. We set our data collection configuration in a way that allows
our users to work with a mobile phone in an everyday manner. While our users are
completing the required task (working with the mobile screen by using different touch
actions such as click, scroll, and type, and entering PINs), our JavaScript code sends
the sensor measurements (motion and orientation) to the server. In different phases
of our attacks in Chapter 4, multiple volunteer users have been working with iPhone
and Android devices using Chrome.

Before running any experiment in this research, we gain approval through New-
castle University’s research ethics processes. During different data collections, we

11

present a description of our studies to the users. These description presentations can
be either oral, printed papers, video guides, or combined methods as we explain in
each chapter in detail. The reported results in different chapters of this thesis are
based on the above data collection approach originated from real mobile users.

Experiments in the wild. When possible, we extend our lab experiments to
the wild. In Chapter 3, when investigating the card collision problem, we perform all
of our experiments in different metro stations. We use pairs of real bank cards and
test each pair in a race condition when both are presented to the terminals (ticket
machines) in each metro station. Moreover, when performing our attack by attaching
the bank cards on the back of an NFC-enabled phone, we again test the experiments
in the wild. We put each card and the phone (simulated card app) in a race condition
and observe the behaviour of the terminal. The results of these real-world experiments
are presented in Chapter 3.

Communication with the industry. In each phase of this thesis, not only do
we study the literature, but we also investigate the state-of-the-art practical solutions
offered by the industry. By following this approach, we carefully go through the stan-
dards and specifications available for each technology. For example in Chapters 2 and
3, we read over a thousand pages of EMV and ISO documents on contactless payment
technology. Similarly in Chapters 4 and 5, we studied sensor-related specifications
presented by W3C.

Furthermore due to the evolving nature of mobile sensors, while conducting some
parts of this research, we followed many different forum discussions and mailing lists
accommodated by the mobile browser vendors and standardisation bodies. We con-
tinuously were in contact with the industry (namely EMV, MasterCard, ISO, W3C,
Qualcomm, Intel, Mozilla Firefox, Google Chrome, Apple Safari and Opera) via
mailing-lists, forums, and in some cases private emails. W3C is interested in github
discussions (and sometimes via the mailing-lists) when the team members are draft-
ing new (versions of the) specifications. We actively followed the up-to-date changes
and engaged in the process. Similarly, our communication with Firefox and Chrome
has been mainly through Bugzilla (the Mozilla’s bugtracker), and Chromium bugs
website, respectively. We find that forums and mailing-lists are very effective chan-
nels to interact with technical and non-technical group members from different teams.
These forum discussions and emails are normally publicly available, and are consid-
ered as track records of (un)solved problems. Researchers actively follow these forum
discussions to gain better insight on the issues which have been discussed by experts

12

previously. Due to our continuous and active connection with the industry, we man-
aged to contribute toward fixing some of the problems of the sensor technology as we
present in Section 1.10.

Being in contact with the industry has other benefits for academic researchers
too. For example, after Google Chrome team expressed their concern on the usability
issues of some of the suggested solutions (limiting sensor access on mobile platforms
and browsers), we were inspired to specifically study some of the human dimensions
of the sensor technology. We dedicate Chapter 5 of this thesis to such study. The
results of our user studies in this chapter has been shared with the community to be
considered as expert opinion on their ongoing sensor-related projects 9.

1.9 Contributions

The work presented in this thesis makes a number of contributions:

• We propose “Tap-Tap and Pay” (TTP) as a new countermeasure to prevent
Mafia attacks in contactless payment. We present a proof-of-concept imple-
mentation of TTP by using a pair of NFC-enabled smartphones. We also con-
duct user studies to evaluate the usability of our TTP prototype. The results
show that our solution can effectively prevent the Mafia attack in contactless
payments. Details of this work are presented in Chapter 2.

• We perform experiments to discover the behaviour of contactless terminals when
a card collision occurs. We show that, due to the inconsistency between the im-
plementation of contactless terminals and EMV protocols, it is possible to track
the user’s contactless payment activities, for instance through a malicious app.
We propose an attack named “NFC Payment Spy” following EMV contactless
specifications. We develop an Android app and perform experiments to support
our claim. The results show that our attack can effectively break users’ privacy
and discover the pattern of their contactless payment activities. This work is
demonstrated in Chapter 3.

• We examine multiple popular browsers on mobile platforms for their policies in
granting permissions to JavaScript code with respect to access to orientation and
motion sensor data. Based on our findings, we propose “TouchSignatures” and
“PINLogger.js” which include attacks that compromise user security through

9w3.org/2000/09/dbwg/details?group=43696&public=1

13

malicious JavaScript code by listening to these sensor data streams. Our at-
tacks are designed in three phases: 1) identifying the touch actions (e.g. tap,
scroll, hold, and zoom), 2) identifying the PIN digits, and 3) identifying full 4-
digit PINs. We demonstrate the practicality of the above attacks by collecting
data from real users and reporting high success rates using our proof-of-concept
implementations. These attacks are illustrated in Chapter 4.

• We conduct user studies to investigate users’ understanding about mobile sen-
sors and also their perception of the security risks associated with them. We
show that users in fact have fewer security concerns about mobile movement
sensors (motion and orientation) as compared to better known examples such
as camera and microphone. We also study and challenge current suggested so-
lutions by the industry and academia, and discuss why our studies show they
cannot be effective. We argue that a usable and secure solution is not straight-
forward and requires further research. Details of this work are presented in
Chapter 5.

1.10 Industrial impact

During this PhD research, we have been in close contact with the mobile industry via
bug forums, github, mailing lists, and private emails. As mentioned before, we have
disclosed the vulnerability that we discovered in Chapter 4 to W3C and all major
mobile browser vendors, and contributed toward fixing this problem. As a direct
result of this work:

• Firefox deployed the fix based on our proposed solution and released it in Firefox
46, with the unique Vulnerabilities and Exposures ID of CVE-2016-281310.

• Apple included a fix based on our work in iOS 9.3, with the unique Vulnerabil-
ities and Exposures ID of CVE-2016-178011.

• The World Wide Web Consortium (W3C), the main international standards
organisation for the World Wide Web, has drafted a new version of the motion
and orientation specifications which includes a security section as suggested by
us and citing our work12.

10mozilla.org/en-US/security/advisories/mfsa2016-43/
11prod.lists.apple.com/archives/security-announce/2016/Mar/msg00000.html
12w3c.github.io/deviceorientation/spec-source-orientation.html#security-and-privacy

14

1.11 Media coverage

The work described in Chapters 4 and 5 attracted considerable national and interna-
tional media coverage (newspaper, radio, tv, online news, social media, etc.) in many
different languages. Our journal paper [83] associated with this news, covering the
PIN attacks and the user studies, was downloaded 10,000 times within a week of its
publication. Examples of the media articles and interviews include:

• The Guardian13: “Tilted device could pinpoint PIN number for hackers, study
claims”, by Alex Hern, 11 April 2017.

• BBC14: “The way people tilt their smartphone can give away passwords and
PINs”, BBC Newsbeat, 11 April 2017.

• The Telegraph15: “How the way you hold your smartphone could allow hackers
to steal your bank details”, by Henry Bodkin, 11 April 2017.

• The Independent16, “PINs and passwords can be stolen just by watching the
way a phone tilts, scientists find”, by Andrew Griffin, 10 April 2017.

• Mail Online17: “How the way you tap a phone can give hackers your PIN:
Criminals can guess four-digit code by using software to monitor movements”,
by Sean Poulter, 11 April 2017.

• New York Post 18 via The Sun19: “The way you hold your phone could get
you hacked” and “CYBER-SPY WARNING Hackers could discover your phone
password by analysing the way the device tilts while you hold it”, by Jasper
Hamill, 11 April 2017.

• The Australian20 via The Times: “How tilting your phone could let in hackers”,
11 April 2017.

13theguardian.com/technology/2017/apr/11/tilted-device-could-pinpoint-pin-number-for-
hackers-study-claims

14bbc.co.uk/newsbeat/article/39565372/the-way-people-tilt-their-smartphone-can-give-away-
passwords-and-pins

15telegraph.co.uk/science/2017/04/10/smartphone-motion-sensors-provide-backdoor-hackers-
steal-bank/

16independent.co.uk/life-style/gadgets-and-tech/news/pin-password-iphone-apple-android-
security-safety-privacy-study-newcastle-university-a7677321.html

17dailymail.co.uk/news/article-4399932/How-way-tap-phone-hackers-PIN.html
18nypost.com/2017/04/11/the-way-you-hold-your-phone-could-get-you-hacked/
19thesun.co.uk/tech/3306078/hackers-could-guess-your-phone-password-by-analysing-the-way-

the-device-tilts-whilst-you-hold-it/
20theaustralian.com.au/news/world/the-times/how-tilting-your-phone-could-let-in-hackers/news-

story/83846b772b23f474a137a9f3e08a970c

15

• The Economic Times (the world’s second-most widely read business newspaper,
after the Wall Street Journal)21: “The way you type on your smartphone can
help hackers steal your bank details”, 11 April 2017.

• TechCrunch (a leading online publisher of technology industry news)22: “Re-
searchers demonstrate how PINs and other info can be gathered through phone
movement”, by Brian Heater, 10 April 2017.

• Engadget (a multilingual technology blog network)23: “Your phone’s motion
sensors can give away PINs and passwords”, by Mariella Moon, 12 April 2017.

• XDA Developers (a mobile software development community of over 6.6 million
members worldwide)24: “Malicious JavaScript Code Can Steal PIN Codes via
Motion Sensors”, by Doug Lynch, 19 April 2017.

• Popular Science (an American bi-monthly magazine)25: “A neural network
helped researchers crack smartphone PINs using built-in motion sensors”, by
Rob Verger, 11 April 2017.

• Science Friday (weekly radio talk show, recording in New York City)26: “Sensing
Steps, And Perhaps Your PIN”, 14 April 2017.

• CBC News (Canadian Broadcasting Corporation)27: “Mobile phone motion sen-
sors can be used to crack your PIN”, by Brandie Weikle, 12 April 2017.

• German Public Radio Deutschlandfunk28: “Wenn die Sensoren zum Sicherheit-
srisiko werden (When the sensors become a safety risk)”, interviwed by Manfred
Kloiber, 15 April 2017.

• Die Welt (a German national daily newspaper)29: “Wie du dein Handy haltst,
verrat PIN und Passworter (How you hold your mobile phone reveals PIN and
passwords)”, by Philipp Nagels, 11 April 2017.

21economictimes.indiatimes.com/magazines/panache/the-way-you-type-on-your-smartphone-can-
help-hackers-steal-your-bank-details/articleshow/58125226.cms

22techcrunch.com/2017/04/10/pin-gathering-mobile/
23engadget.com/2017/04/12/phone-motion-sensor-pin-vulnerability/
24www.xda-developers.com/malicious-javascript-code-can-steal-pin-codes-via-motion-sensors/
25popsci.com/sensors-in-your-smartphone-could-be-its-weakest-link
26sciencefriday.com/segments/sensing-steps-and-perhaps-your-pin/
27cbc.ca/news/technology/mobile-phone-sensor-spy-1.4067407
28deutschlandfunk.de/smartphones-wenn-die-sensoren-zum-sicherheitsrisiko-

werden.684.de.html?dram:article_id=383916
29welt.de/kmpkt/article163617553/Wie-du-dein-Handy-haeltst-verraet-PIN-und-

Passwoerter.html

16

• Sina30 and Sohu31 (the two largest Chinese-language web portals): “Phone gy-
roscope or spoiler information! Look at the tilt angle to guess the password”
and “The phone sensor may reveal your password”, 13 April 2017.

• Mashable (one of the top a digital media website in French and English)32: “Des
scientifiques peuvent deviner un code PIN en analysant les mouvements de votre
smartphone (Scientists can guess a PIN code by analyzing the movements of
your smartphone)”, by Par Charlotte Viguie, 11 April 2017.

• Lavoz (a leading daily Spanish-language newspaper published in Argentina)33:
“Dificil pero no imposible: el modo en que se inclina el celular al usarlo puede
revelar contrasenas (Difficult but not impossible: the way the cellphone is tilted
when using it can reveal passwords)”, by Agencia Telam, 12 April 2017.

• Khorasan (a widely read Persian national newspaper published in Iran)34: “The
possibility of hacking mobile PINs using mobile movements”, 19 April 2017.

• Newcastle University Press Office35: “How criminals can steal your PIN by
tracking the motion of your phone”, 11 April 2017.

As a result, the work in this thesis has helped raise awareness amongst every-
day users of the security and privacy risks involved in using sensor-rich devices. To
contribute more to the public knowledge about sensor security, we also organised a
workshop entitled: “What your sensors say about you?” on managing sensors on
mobile devices. This workshop was hosted by Thinking Digital Women 201636. In
addition, we have provided two articles entitled: “Is your mobile phone spying on
you?” and “Auditing your mobile app permissions” in the Cyber Security: Safety at
Home, Online, in Life online course37, part of Newcastle University’s series of massive
open online courses (MOOCs). This free online course, aimed at providing people
with the knowledge to make informed security and privacy decisions in the modern
world, has already had 20,000 subscribers in two rounds in 2016 and 2017.

30tech.sina.com.cn/it/2017-04-13/doc-ifyeimqc3202830.shtml
31sohu.com/a/133724154_114877
32mashable.france24.com/tech-business/20170411-smartphone-capteur-mouvement-code-pin-

acces
33lavoz.com.ar/tecnologia/dificil-pero-no-imposible-el-modo-en-que-se-inclina-el-celular-al-usarlo-

puede-revelar-co
34khorasannews.com/Newspaper/MobileBlock?NewspaperBlockID=571265
35ncl.ac.uk/press/news/2017/04/sensors/
36tdcwomen.com/workshops/
37futurelearn.com/courses/cyber-security

17

Chapter 2

Preventing the Mafia Attack in
NFC Payment

18

2.1 Chapter overview

Mobile NFC payment is already very popular among mobile users. As has been
estimated, nearly 150 million consumers will make NFC mobile payments in 2016 [1].
The Mafia attack presents a realistic threat to payment systems including mobile
NFC payment. In this attack, a user consciously initiates an NFC payment against a
legitimate-looking NFC reader (controlled by the Mafia), not knowing that the reader
actually relays the data to a remote legitimate NFC reader to pay for something more
expensive.

In this work, we present “Tap-Tap and Pay” (TTP), to effectively prevent the
Mafia attack in mobile NFC payment. In TTP, a user initiates an NFC payment
by physically tapping her mobile phone against the reader twice in succession. The
physical tapping causes transient vibrations at both devices, which can be measured
by the embedded accelerometers. Our experiments indicate that the two measure-
ments are closely correlated if they are from the same tapping, and are different if
obtained from different tapping events. By comparing the similarity between the
two measurements, we can effectively tell apart the Mafia fraud from a legitimate
NFC transaction. To evaluate the practical feasibility of this solution, we present a
prototype of the TTP system based on a pair of NFC-enabled mobile phones and
also conduct a user study. The results suggest that our solution is reliable, fast,
easy-to-use and has good potential for practical deployment.

Most parts of the work in this chapter was published as follows under the super-
vision of Dr. Hao and Dr. Shahandashti. Some extra details about the TTP protocol
are available in this chapter.

• M. Mehrnezhad, F. Hao, and S. F. Shahandashti, “Tap-Tap and Pay (TTP):
Preventing Man-In-The-Middle Attacks in NFC Payment Using Mobile Sen-
sors”, In the Proceedings of the Second Conference of International Security
Standardisation Research, SSR 2015, Tokyo, Japan, December 15-16, 2015,
Springer International Publishing, Pages 21-39.

2.2 Introduction

In this section, first we present an overview on NFC payment. Next, we present
the Mafia attack in detail. We then give an overview on NFC payment standards.
Finally, after presenting the current suggested solutions for this attack, we describe
our solution to this problem.

19

Figure 2.1: The Mafia attack: a malicious reader colludes with a malicious card and
fools the honest card into paying for something more expensive to a legitimate reader.

2.2.1 NFC payment

Near Field Communication (NFC) payment is an upcoming technology that uses
Radio Frequency Identification (RFID) to perform contactless payments. An RFID
system has two parts: the RFID tag (card) that can be attached to any physical
object to be identified and the RFID reader that can interrogate a tag within physical
proximity, via radio frequency communication. An NFC-enabled payment card has
an embedded RFID tag. To make an NFC payment, the user just needs to hold the
card in front of an NFC reader for a short while and wait for confirmation. NFC
payments are usually limited to rather small-value purchases1.

A mobile phone can also be used as an NFC payment card. HSBC Hong Kong
Mobile Payment2, Google Wallet3, Apple Pay4, and Android Pay5 are examples of
NFC payment mobile apps. Using a mobile phone for NFC payment is considered
convenient since people can save all of their cards in their phones. As estimated, nearly
150 million consumers will make NFC mobile payments in 2016 [1]. To support this
trend, new generations of smart phones are commonly equipped with NFC sensors.
In this work, we focus on mobile payment using NFC. Hence, unless stated otherwise,
by “NFC card”, we refer to an NFC-enabled mobile phone functioning as a payment
card. By “NFC reader”, we refer to a payment terminal that communicates with
the card via NFC. A legitimate NFC reader is one that is authorised by the banking
network and is connected to the back-end banking network for payment processing.

It is known that NFC payments are vulnerable to different types of Man-In-The-
Middle (MITM) attacks [49], also known in the literature as relay or wormhole attacks
[37]. In a simple form of relay attack known as a ghost-and-leech attack [53], the
attacker places an NFC reader so as to secretly interrogate the user’s NFC card

1For instance, the contactless limit increased from £20 to £30 in 2015 in the UK.
2hsbc.com.hk
3wallet.google.com
4apple.com/iphone-6/apple-pay
5android.com/intl/en_us/pay

20

without the user’s awareness, and relays the card response to a remote NFC reader to
obtain a payment from the victim’s account. Such an attack is demonstrated in [41]
and [49].

Relay attacks can be countered in a number of ways. A simple solution is to put
the NFC card within an NFC protective shield such as Id Stronghold6. Equivalently,
one can add an activation button so that the NFC function on the phone is only
turned on with an explicit user action. More advanced countermeasures are proposed
in the literature, including Secret Handshakes [32], UWave [72], Still and Silent [97],
and Rub [69]. However, none of these solutions can prevent a more severe type of
attack, as we explain below.

2.2.2 Mafia attack

Another type of MITM attack is called the Mafia attack, also known as Mafia fraud
[37] or the reader-and-ghost attack [53, 98]. In this more severe attack, the user
consciously initiates an NFC payment with a legitimate-looking reader controlled by
the Mafia; but the reader actually relays the card response to a remote legitimate NFC
reader — via a malicious card — to pay for something more expensive. Figure 2.1
shows an example of such an attack. This attack has been shown to be feasible [37].

Unlike simple relay attacks, the Mafia attack cannot be prevented by using a
protective shield or an activation button since the user consciously initiates the pay-
ment. For the same reason, various user-movement-based unlocking mechanisms
[32,69,72,97] cannot stop the attack either. We will explain the current countermea-
sures to this attack by first reviewing the NFC payment standards and specifications.

2.2.3 NFC payment standards and specifications

EMV is the primary protocol standard for smart card payments in Europe. The
EMV standards are managed by EMVCo7, a consortium of multinational companies
such as Visa, Mastercard, and American Express. These standards use smart-cards
including contact and contactless cards and are based on ISO/IEC 7816 [16] and
ISO/IEC 14443. Mobile NFC payment technologies, such as Android Host-based Card
Emulation (HCE) [4], are also based on ISO/IEC 14443, which is an international
standard in four parts, defining the technology-specific requirements for proximity
cards used for identification [7–10].

6www.idstronghold.com
7emvco.com

21

The extensive EMV specifications — presented in 10 books: A [11], B [12], C1–C7
(e.g. [13, 14]), and D [15] — provide the details of EMV-compliant payment system
design. Furthermore, EMVCo provides a book on security and key management [43]
as part of the EMV 4.3 specifications, as well as additional security guidelines for
acquirers [44] and issuers [45] of EMV payment cards.

The risk of MITM attacks in payment systems has generally been neglected in
the above standards and specifications (except in a recent 2015 EMV Contactless
payment specifications Book C-2 [13], as we will explain). As has been explained by
Drimer et al. in [37], such attacks are commonly perceived to be too expensive to
work. However, in the same paper, Drimer et al. show this is a misperception by
demonstrating practical MITM attacks in a set of live experiments against the UK’s
EMV system. Given the practicality of deploying such attacks [37] and the projected
rapid growth in the size of the contactless payment industry [2], we believe that it is
important for the payment industry to seriously consider the security concerns posed
by such attacks and the countermeasures that are needed.

2.2.4 Distance bounding protocols

Distance bounding protocols have been considered a potential solution to this prob-
lem. In the latest MasterCard EMV specifications (Book C-2 [13] released in March
2015), a distance bounding protocol (called the Relay Resistance Protocol in the spec-
ifications) is defined. This protocol starts with the reader sending the card a random
challenge and the card replying with a digitally signed response. The reader verifies
the digital signature and also checks the response time is within a specified range.
This protocol requires an additional private key and a public key certificate to be
installed on the card. Furthermore, the card needs to perform expensive public key
operations, which may incur a notable processing delay. To minimize the processing
delay on the card, most distance bounding protocols defined in the literature [23,37]
only use symmetric key operations, such as hash and symmetric-cipher encryptions.
However, applying those solutions to NFC payment would require the card and the
reader to have a pre-shared symmetric key. In current practice, the card only has a
pre-shared key with the issuing bank. By contrast, our solution does not require any
additional cryptographic keys. In fact, it is orthogonal to distance bounding protocols
and can be used in conjunction with any of them.

22

2.2.5 Other countermeasures

Other countermeasures to the MITM attack have been actively explored by a number
of researchers. One straightforward solution is to require user vigilance at the time of
making the NFC payment. However, it has been generally agreed that user vigilance
alone is not sufficient [53, 73,98]. It is desirable to design a countermeasure that can
effectively prevent Mafia attacks without having to rely on user vigilance. Current
solutions generally involve using ambient sensors to measure the characteristics of
the surrounding environment, such as light [53], sound [53], location via GPS [73]
and a combination of temperature, humidity, precision gas, and altitude [98]. The
underlying assumption is that the malicious and legitimate readers will be in two
different locations with distinct ambient environments. However, the validity of this
assumption may be challenged in some situations where the two readers are in similar
environments (e.g. nearby stalls in the same mall).

2.2.6 Contributions

Our idea is based on the following observation: as a result of the physical tapping be-
tween a pair of devices (a card and a reader quipped with accelerometers), the tapping
creates transient vibrations, which can be measured using embedded accelerometer
sensors. By comparing the similarity of the two measurements, we are able to de-
termine if the two devices were involved in the same tapping event. This effectively
distinguishes the Mafia attack from a normal NFC transaction.

In contrast to the solutions described above, we do not assume that the attacker’s
reader is in an environment different from that of the legitimate reader. Thus our
threat model considers a more severe attack.

Our main contributions are summarised below:

1. We propose “Tap-Tap and Pay” (TTP) as a new countermeasure to prevent
Mafia attacks. Our solution is the first that works even if the malicious and
legitimate readers are in similar environments.

2. We present a proof-of-concept implementation of TTP by using a pair of NFC-
enabled smart phones. Experiments confirm that vibrations induced from the
same tapping event are closely correlated between the card and the reader, while
they are not if originating from different tapping events.

3. We conduct user studies to evaluate the usability of our TTP prototype. Based
on the feedback, users generally find the suggested solution fast and easy to use.

23

A) Physically tapping the B) Recording accelerometer
mobile to the reader measurements on both sides

acc_card acc_reader

C) Sending the accelerometer measurements to the bank via the reader

1. challenge_card 3. response_card,
acc_reader

2. response_card =
(challenge, acc_card, . . .)key 4. result

Figure 2.2: Overview of the proposed solution: Tap-Tap and Pay

2.3 Tap-Tap and Pay (TTP)

In this section, first we present the threat model and the overview of our system.
Then, we demonstrate the sensor data processing steps. Finally, we explain our
suggested comparison method.

2.3.1 Threat model

We assume a user consciously initiates an NFC payment against a legitimate-looking
but malicious NFC reader without realizing that it is controlled by the Mafia. The
difference between a malicious reader and the legitimate reader is that the former is
not connected to the back-end banking network while the latter is. We assume the
Mafia does not want to directly connect to the banking network, as that will run the
risk of being caught by the bank. The malicious reader relays the victim’s card to
a remote legitimate reader to pay for something more expensive, through the help
of an accomplice who holds a legitimate-looking NFC card (see Figure 2.1). From
the perspective of the legitimate merchant, there is nothing suspicious — a customer
uses a mobile phone to make an NFC payment. The amount of the payment may
be near the upper end of the limit, but that is perfectly acceptable (see [37] for a
demonstration of successful Mafia attacks on the UK’s EMV payment system using
contact chip-and-PIN cards; the attacks on the contactless payment work in the same
way).

Furthermore, we assume the attacker is able to put the NFC reader in an ambient
environment that is very similar to the legitimate reader. In one scenario, the attacker
sets up a mobile temporary stall near a shopping mall. He may pretend to sell cheap
items such as coffee, tea or confectionery, and shows the buyer a small amount on the

24

reader’s screen. While accepting the buyer’s NFC payment, the attacker relays it to
one of his accomplices in nearby shop to buy something more expensive. The attacker
and his accomplices can avoid detection by constantly changing their location. Once
they have made enough profit in a day, they will disappear and repeat the same attack
at a different place. Under the above threat model, previous ambient-sensor-based
solutions may fail completely. However, despite the assumption of a stronger attacker,
we will present a solution that can effectively prevent Mafia attacks under the same
condition.

The practical feasibility of such Mafia attacks [37], compounded by the fact that
they are undetectable by banks in the backend, can prove problematic. This can have
serious implications on the liability of the cardholder and merchant if the security of
the system only depends on user vigilance. In practice, if any dispute arises regarding
the discrepancy of the amount charged for an NFC payment, users might be to blame
by service providers since they are expected to be “vigilant”. We believe this is not fair
to users. Our solution addresses this problem by providing banks more evidence so
they can distinguish a legitimate NFC payment from a Mafia fraud. This is achieved
with minimum inconvenience to users, as we explain in the next section.

2.3.2 Overview of the solution

An overview of our solution is shown in Figure 2.2. First, the user physically taps
the mobile phone against the reader twice to make an NFC payment. The tapping
causes transient vibrations at both devices, which are measured by the embedded
accelerometer sensors. The user then holds the card close to the reader. At this
point, the reader detects the presence of an NFC card within physical proximity
and starts a standard challenge-and-response process for the NFC payment. At a
high level, this involves the reader sending a challenge to the card, and the card
replying with a response authenticated via a MAC computed using a secret shared-
key with the issuing bank. Our solution does not alter this existing data flow; however
within the card response, we propose to add an additional item acc_card to the items
being sent by the card. This new item represents the measurement of the vibration
by the card accelerometer. When the reader forwards the card’s response to the
issuing bank through a secure back-end network, it appends acc_reader , which is the
measurement of the vibration by the reader accelerometer. The bank compares the
two measurements and approves the transaction only if it finds the two sufficiently
similar. Recall that in Figure 2.1, the user’s NFC card and the legitimate NFC reader
are honest devices and can perform trustworthy measurements.

25

TTP suggests two taps because we found it to be the minimum number of taps
needed to obtain both sufficiently correlated measurements of the same tapping, and
at the same time sufficiently uncorrelated measurements of different tappings. We
performed an informal experiment and observed that with one tap we would not
achieve the desired accuracy. Similarly after a quick test with more than two taps, as
we expected, more features could be extracted, but of course this is at the expense of
user convenience. Hence, we chose double-tap as the default setting for our solution
and leave further experiments with more taps to future work.

2.3.3 Host-based card emulation and Reader emulation

To enable data collection, we developed two Android apps: Card app and Reader app
and installed them on two NFC-enabled smart phones, two Nexus 5 devices8, which
are equipped with a range of different sensors.

Prior to the release of Android 4.4, to emulate a smart card on an Android device,
it was required to root the device in order to get access to the Secure Element, a
hardware chip capable of performing sensitive cryptographic operations. Android 4.4
introduced host-based card emulation (HCE) as a new method of card emulation
that does not involve the secure element. This allows us to develop a card application
capable of talking to any NFC reader directly in the way that a smart card does —
by holding it in front of a reader9. Android 4.4 supports several protocols used by
mainstream NFC readers in the market today. Furthermore, NFC-equipped Android
devices can function as reader as well. This means that by emulating a card through
HCE on one hand and developing an NFC reader on the other hand, we were able to
build a complete NFC payment system using only Android devices.

Android 4.4 supports emulating cards that are based on the NFC-Forum ISO-
DEP specification (based on ISO/IEC 14443-4) and process Application Protocol
Data Units (APDUs) as defined in the ISO/IEC 7816-4 specification. In compliance
with the ISO/IEC 7816-4 specification, each HCE application has an Application ID
(AID). This ID enables the reader app to select the correct service.

8Prototyping of our TTP protocol requires the facility of bidirectional NFC using Host-based
Card Emulation (HCE). At the time of experiments, Nexus 5 was the only device allowing that
facility.

9Note that Android API guide [4] uses “tapping the card against the NFC reader” and “holding
the device over the NFC reader” interchangeably. That is, contrary to what we call tapping, i.e.,
physically “bumping” the card to the reader, in the Android API guide context, tapping is used to
simply mean that the card should be held very close to the reader.

26

HCE API on Android 4.4 (and newer versions) provides services for host-based
card emulation. The HostApduService class is extended for implementing an HCE
service with two abstract methods: processCommandApdu and onDeactivated. The
former is called whenever the card receives an APDU from an NFC reader and enables
half-duplex communication with the reader. The latter is called when either the NFC
link is broken or the reader wishes to talk to another service. The first APDU is
typically for service selection. After a successful service selection, card and reader
can exchange any type of data.

For reader emulation on the other hand, Android suggests to use the IsoDep class.
IsoDep provides access to ISO-DEP (ISO 14443-4) properties and I/O operations on
the emulated NFC card. The most important method of this class is transcieve
which sends APDUs to the card and receives the response. When the NFC reader
discovers a tag, it sends the service selection APDU, and if successfully selected, the
communication starts and continues until the NFC link is lost.

We have implemented our own card and reader applications using HostApduService
and IsoDep classes, respectively, in order to simulate a complete NFC payment sys-
tem based on the method we propose. These apps are publicly available via the
author’s homepage10.

2.3.4 Sensor data preprocessing

In the main activity functions of our card and reader apps described above, we have
included a SensorManager [5] which lets us access the device’s sensors. We define
a variable type of sensor and assign Sensor.TYPE_ACCELEROMETER to it. During
tapping events, the sensor measurements (3 dimensions: x, y and z) along with their
reading times are saved in an array in both card and reader apps. At the end of each
experiment, these measurements are saved to text files. In addition to the complete
code, the sensor measurements dataset used for the experiments of this chapter is
also released via the author’s homepage.

Accelerometer data. We use the embedded accelerometer sensor on the mo-
bile phone to capture vibration changes during physical tapping. The accelerometer
sensor returns acceleration data in three dimensions, obtained by measuring forces
(including the force of gravity) applied to the sensor along the local x, y and z axes.
The coordinate system is defined with reference to the phone screen in its portrait
orientation; x is horizontal in the plane of the screen from left of the screen towards

10homepages.cs.ncl.ac.uk/m.mehrnezhad/

27

0 50 100 150
0

5

10

15

20

25

30
Accelerometer measurements

0 20 40 60 80 100 120 140
-20

-15

-10

-5

0

5

10
Derivatives

Sample/ Time

Card
Rerader

Figure 2.3: Final sequences obtained from Equation 2.1 (top), and their derivatives
from Equation 2.2 (bottom) of a sample of double-tapping

right, y vertical from the bottom of the screen towards up, and z perpendicular to the
plane of the screen from inside the screen towards outside. We consider the sequence
representing the length of the three-dimensional vector obtained through accelerome-
ter measurements calculated from Equation 2.1, where the components represent the
i-th measurement in the three dimensions (accxi, accyi, acczi):

acci =
√
acc2

xi + acc2
yi + acc2

zi (2.1)

Fig. 2.3 (top) shows the above vector length sequences acci for a typical double-
tapping as measured on a card and a reader. From now on, we refer to the vector
length sequence acci simply as the accelerometer measurement.

Derivatives As shown in Fig. 2.3 (top), the accelerometer measurement made by
the card has greater magnitude than that by the reader, since the card is moving in
the hand of the user. They are also different in scale, depending on the start status of
accelerometers. In order to smooth out irrelevant movements, especially of the card,
we apply the following equation (based on [63]) to approximate the first derivatives
of the sequences. The results are displayed in Fig. 2.3 (bottom).

Di = (acci − acci−1) + ((acci+1 − acci−1)/2)
2 (2.2)

28

Sequence alignment. After obtaining the derivatives, we align the two se-
quences by identifying the peaks. This can be simply achieved by searching for the
extreme values (max or min) with a minimum gap between them. The two sequences
are then aligned based on the first peak (with a few linear shifts to get the best
matching by trial-and-error). Based on our evaluation of the collected data, we found
that this simple alignment algorithm is accurate and fast.

After the alignment of the two sequences, we cut a segment of each sequence,
starting from 0.2 seconds before the first peak until 0.2 seconds after the second
peak. This covers the whole significant variation of the accelerometer data. Our
analysis shows that with this setting, the whole recording time is in the range of 0.6
and 1.5 seconds.

2.3.5 Similarity comparison

Suggested sensor data comparison methods include correlation coefficients, covari-
ance, cross covariance (e.g. [19]) and cross correlation (e.g. [32] and [53]) in the time
domain, and coherence (e.g. [77]) in the frequency domain. After a few informal
experiments using the above methods on a small set of data, we found the correla-
tion coefficients in the time domain and the coherence in the frequency domain to be
the two most effective methods on our collected data. Moreover, while performing
the experiments, we observed different users would tap the phone to the reader with
different amount of pressure and speed. Here we use the correlation coefficients and
coherence methods along with the energy of the series as well as the distance between
the two peaks as the inputs of our suggest TTP decision maker.

Correlation coefficient (Time domain). The correlation coefficient is com-
monly used to compare the similarity of the shapes of two signals. The intuition
is that if the two measurements originate from the same double-tap, their signal
shapes, especially their tap shapes, would be highly correlated, and otherwise they
would not be correlated. Given two sequences X and Y and Cov(X, Y) denoting
covariance between X and Y, the correlation coefficient is computed as below, where
Cov(X,X) = σ2

X and Cov(Y, Y) = σ2
Y :

RXY = Cov(X, Y)√
Cov(X,X) · Cov(Y, Y)

(2.3)

Coherence (Frequency domain). To obtain a similarity measure in the fre-
quency domain, we apply the coherence method which indicates the level of matching
of features in the frequency domain between two time series. Given two sequences X

29

and Y , we compute the magnitude squared coherence based on the following equa-
tion, where PXX(f) and PY Y (f) are power spectral densities of X and Y , and PXY (f)
the cross power spectral density between X and Y :

CXY (f) = |PXY (f)|2
PXX(f) · PY Y (f) (2.4)

We define the similarity rate between the two signals based on magnitude squared
coherence as the sum of the squares of the magnitudes of coherence values at all
frequencies as follows:

FXY =
∑

f

CXY (f) (2.5)

Energy Difference. Our analysis shows that different users tap devices with
different strengths; some taps are very gentle, some are of medium strength, and
some are very strong. We found that the total energy levels of the card and reader
sequences of the same tap are strongly correlated, while they are distinctive if obtained
from different taps. Hence, we use the following measure to capture the distance of
two signals X and Y in term of the total signal energy levels:

DXY =
∣∣∣∣∣∑

t

X(t)2 −
∑

t

Y (t)2
∣∣∣∣∣ (2.6)

Peak Gap Difference. Last but not least, the distance between the two peaks
in each measured sequence is an important factor in deciding if two measurements
come from the same double-tapping or not. We define GXY in Equation 2.7 where
GapX is the distance between the two extremums of sequence X and GapY is the
distance defined similarly for sequence Y :

GXY = |GapX −GapY | (2.7)

TTP Decision Engine. Our TTP decision engine has two steps. First, we have
an initial check according to the peak gap (threshold T1) defined in Equation 2.7
and then we use a combined method to include the other three similarity measures
(threshold T2). We suggest a simple linear fusion method by using the weighted sum
of the three measures: correlation coefficient, coherence, and the energy similarity.
Therefore, the ultimate decision is made based on comparing the peak gap against
a threshold and if successful comparing the weighted sum of the combined method
against another threshold. Hence according to the output of the decision engine, the
bank decides to authorize or decline the transaction.

We use a simple linear normalisation that maps the three values to the interval
[0, 1]. Let us denote these normalised versions by R̄XY , F̄XY , and D̄XY , respectively.

30

Data: RXY , FXY , EXY , GXY , T1, T2, a, b, c
Result: Are the Acc measurements from the same tapping events?

if GXY < T1 then
TXY = a · R̄XY + b · F̄XY + c · ĒXY ;
if TXY < T2 then

Return Yes;
else

Return No;
end

else
Return No;

end

Figure 2.4: TTP decision engine’s algorithm

Since unlike the other two measures, D̄XY decreases with similarity, we define ĒXY

as below. Note that ĒXY is also a normalised value belonging to the interval [0, 1].

ĒXY = 1− D̄XY (2.8)

Given R̄XY , F̄XY and ĒXY , TXY calculates the total similarity rate of two signals
X and Y as below, where a, b and c are the weights of each method:

TXY = a · R̄XY + b · F̄XY + c · ĒXY (2.9)

The weight parameters are determined through experiments based on the collected
user data by testing all possible weights up to two decimal places for a, b, and c —
under the condition that the sum of them is equal to 1 — and observing the equal
error rate. The values which gave us the best error rate have been fixed as a = 0.45,
b = 0.21, and c = 0.33.

The procedure of our TTP decision engine is presented in Fig.2.4, where the T1
are the thresholds of our system which affect our results. Through our experiment
we found the value of 7 as an optimal value for T1 and, while T2 varies depending
on the desired error rates for the system as we explain in section 2.4.2.

2.4 System evaluation

This section contains the details of our experimental setup and data collection, as
well as the system evaluation.

31

Figure 2.5: Left: Data collection environment, centre: Card app, and right: Reader
app

2.4.1 Experiment setup and data collection

We implemented a proof-of-concept prototype for the TTP system by developing
two Android apps (card and reader). When the user taps the reader, the two apps
independently record the accelerometer data. Once the NFC card is detected by the
reader in close proximity, the two devices start a two-way NFC communication and
simulate an NFC payment.

In order to evaluate the system performance based on real user data, we recruited
23 volunteers (university students and staff, 10 males and 13 females) to participate
in the data collection, each performing five double-tapping actions. We made a short
self-explanatory training video, which is accessible via the author’s homepage, to
demonstrate how to do the double-tap and showed it to the users before the experi-
ment. Users generally found the video guide useful in helping them quickly grasp the
instruction of “Tap-Tap and Pay”.

We fixed the reader phone to the table using double-sided tape, as shown in Fig.
2.5 (left). The front of the phone faced downwards and the back was labelled “Reader”.
We used MyMobiler11 to operate the reader through a USB connection. The GUIs
of the reader and card apps are shown in Fig. 2.5, right and centre, respectively.
After launching the card app, the user just double-tapped the phone to the reader
and kept it close to complete an NFC payment. Once she was notified of a successful
completion, she could repeat the experiment. The recorded sensor data were saved
into a file for further analysis in Matlab.

11www.mymobiler.com

32

Method Equal error rate
Correlation coefficients 19.15%
Coherence 27.91%
Total energy 23.48%
Peak gap 14.09%
TTP decision algorithm 9.99%

Table 2.1: Equal error rates for different suggested methods

2.4.2 Results

We use the False Negative Rate (FNR) and the False Positive Rate (FPR) to evaluate
the performance. These are common evaluation measurements used in different con-
texts e.g. biometric systems [55]. The FNR is the rate that two measurements from
the same tap event are determined as not matching. The FPR is the rate that two
measurements from two different tap events are determined as matching. FNR and
FPR vary according to a threshold. The Equal Error Rate (EER) is the rate where
the FNR and the FPR curves intersect. The EER is commonly used as a measure to
evaluate the overall performance of a system. We computed the EERs based on the
similarity comparison methods described in Section 2.3.5. The results for EER are
presented in Table 2.1.

Overall, the Equal Error Rate of our prototype system is 9.99% using the combined
method (Table 2.1). Therefore with this setting, we have FNR= FPR= 9.99%. Hence,
a legitimate NFC transaction may be falsely rejected with a probability of 9.99%.
Then the user would need to try again. On average, it takes 1/(1 − 0.099) = 1.1
attempts for a legitimate user to complete an NFC payment transaction. On the other
hand, if the Mafia attack takes place during the NFC payment, the transaction is more
likely to be denied by the bank as a result of inconsistent data measurements. The
Mafia may trick the user to try again, but it would require on average 1/0.099 = 10
attempts to get a fraudulent transaction to come through. However, consecutively
failed verifications for a single NFC transaction will likely trigger an alert at the back-
end banking network, prompting an investigation. Furthermore, when the user gets
repeated denials from the NFC payment (say three times), she might not try further
and may choose to query her bank instead. All this can significantly increase the
chance of having the Mafia attack exposed.

33

2.4.3 Online and offline modes

So far, the description of our TTP solution assumes that the NFC transaction is online
i.e. the reader is connected to the banking network, so that the backend system is
able to evaluate the received measurements and authorize the payment in real-time.
The same assumption is made in other researchers’ solutions [53, 73, 98] (which we
will detail in Section 2.6).

However in practice, an NFC transaction may be performed offline. According
to the EMV specifications, an EMV transaction flow includes several steps including
offline data authentication and online transaction authorisation. Depending on the
result of the negotiation between the card and the reader, the card may decide to
proceed with offline authorisation. This decision is based on a range of possible
factors including the transaction value, the type, and the card’s record of recent
offline transactions. Our solution will be less effective in the offline mode; however,
we believe it still provides important added value in preserving critical evidence when
a dispute regarding Mafia attacks occurs and a retrospective fraud investigation is
needed.

2.5 Usability study

In this section, we provide the detail of a usability study on our proposed system.

2.5.1 Experiment setup and data collection

We performed a second experiment to evaluate usability aspects of the system. We
asked 22 different users (partially overlapping with the previous user set, university
students and staff, 15 males and 7 females) to perform two NFC payments; first using
the contactless method, and second using TTP. We developed two Android apps
(card and reader) to simulate the two tasks. Before the experiment, we presented our
users with a study description, including a short introduction of mobile contactless
payments using NFC, followed by a general description of mobile payment using TTP
(see Appendix A). In the first task, the user was asked to hold the phone near the
reader and wait for the confirmation message. In the second task, the user was asked
to double-tap the reader, keep the phone near the reader and wait for the confirmation.
Figure 2.6 shows the GUIs of the two tasks in this experiment.

34

Figure 2.6: User study Card app; task 1: Contactless payment (left), task 2: TTP
(right)

2.5.2 Findings

After completing the two tasks, the users were asked to fill in a questionnaire and rate
the level of convenience, speed, and feeling of the security of each payment method in
a Likert scale from level 5 to 1 (corresponding to “strongly agree”, “agree”, “neutral”,
“disagree”, and “strongly disagree”). They were also asked to write free comments
about their experience in this experiment. Figure 2.7 shows the average user rating
of using the contactless payments and the TTP method.

As shown in Fig. 2.7, users generally found contactless payment more convenient
than TTP. Including a physical action makes it less convenient for some users. As
one user commented: “... the fact that I need to keep the device close to the reader
after tapping made the experience less convenient”.

However, in contrast to convenience, many users considered TTP faster than the
contactless method, since they were able to precisely sense the start of the action by
tapping, while it took them some time to find the proper distance for the contactless
payment. The uncertainty about when contactless payment would start made some
people feel that the process took longer than it actually took. As one user commented:
“Even [though] I had to tap twice, but the process felt faster comparing to the first
one. I feel after tapping I automatically bring the phone close enough to the reader,
but in first task, my phone was not close for a while and it took longer”.

Moreover, users felt TTP is more secure than contactless payment. By performing
a physical tapping action, users felt in control of the transaction and worried less

35

Figure 2.7: The average user rating of contactless payment and TTP

about accidental payments. As one of the users commented: “As before [i.e. task 1]
payment is very easy. I like the action of tapping the reader as this made me feel
more in control of when the transaction took place. I felt this method [TTP] was
more secure due to the action of tapping to start the transaction. This meant I know
when the transaction took place”. A similar view was expressed by another user in
the comment: “The payment [in task 1] is very easy, but I don’t know when the
connection between wallet and reader is made; range or time, so I would keep my
payment device away from the reader to be sure until I want to pay.”

2.6 Comparison with previous work

Table 2 briefly compares TTP with previous ambience sensing based solutions. In
terms of security, TTP is the first solution able to prevent the Mafia attack even when
both readers share the same ambient environment. Ambience sensing solutions are
inherently incapable of detecting the attack in this condition.

We now review the error rates reported in the previous work based on measuring
the ambient environment. Halevi et al. [53] (sensors: audio and light) report false pos-
itive and false negative rates of 0% for audio sensor, and around 5% for light sensor for
distinguishing different business types (such as library, concert hall, restaurant, etc.).
Ma et al. [73] (sensor: GPS) report a 0% false negative rate under the assumption
that the attacker is located 20 meters or further, 67.5% when the distance is more
that 5 meters, and 100% when the distance is less than one meter. False positive
rates are not reported in their work. Shrestha et al. [98] (sensors: multiple sensors)

36

Prevents Recording Embedded Based on
Sensor/ Solution attacker at duration mobile ambience

same env. (sec) sensors or device
Audio [53] 7 1 3 Ambience
Light [53] 7 2 3 Ambience
GPS [73] 7 10 3 Ambience
Temperature (T) [98] 7 instant 7 Ambience
Precision Gas (G) [98] 7 instant 7 Ambience
Humidity (H) [98] 7 instant 7 Ambience
Altitude (A) [98] 7 instant 7 Ambience
THGA [98] 7 instant 7 Ambience
Accelerometer (TTP) 3 0.6–1.5 3 Device

Table 2.2: Comparing TTP with related work

report false negative rates approximately in the range of 10%–25% and false positive
rates approximately in the range of 15%–30% for individual sensors. By combining
the sensor readings, they achieve a false negative rate of about 3% and a false positive
rate of about 6%.

The equal error rate of 9.99% in our result is comparable to those reported in
the previous work. However, when the two readers are nearby and share the same or
similar ambient environments, the reported error rates in [53] [73] [98] are no longer
meaningful and all previous ambient-sensor based solutions may fail completely. By
contrast, our TTP solution works regardless of whether or not the two readers share
similar ambient environments.

In terms of usability, our protocol needs a sensor recording of only 0.6 to 1.5
seconds, which is sufficiently fast for contactless payment. Schemes based on audio
and light sensors [53] achieve similar timings. However, the GPS-based protocol
[73] requires 10 seconds of sensor recording which makes the system unsuitable for
contactless payments. Our scheme is based on accelerometer sensors which are readily
available in most mobile devices, as are microphones (audio), light sensors, and GPS.
However, meteorological sensors [98] are only available on specialised devices which
is a barrier to the adoption of such protocols in practice.

Overall, our solution presents a new approach in tackling the Mafia attack with
promising initial results in terms of security, efficiency and usability. Being orthogo-
nal ways to solve the same problem, TTP and ambient-sensor-based solutions could
potentially be combined to achieve even better results. We leave this as a subject for
further investigation in future.

37

It is worth mentioning that mobile NFC payment using mobile apps, such as
Android Pay and Apple Pay, can enable the user to check the amount on the mobile
screen. This would of course improve the security of the payment. However, the
user is not always required to check the phone screen for an NFC payment. For
example, Android Pay works even if the app is in the background. Therefore, the
user only taps her phone to the reader and does not check the transaction amount
on the phone screen. On the other hand, other ways of NFC payment such as bPay
devices12 — watches, fitness bands, wristbands, and car fobs — also enable the users
to pay contactlessly. These devices, however, are not equipped with a screen for the
user to check the amount. Augmenting such devices with an accelerometer is more
cost-effective and practical (due to smaller size) in comparison to a display. As a
matter of fact, fitness bands are already equipped with accelerometer sensors.

2.7 Further related work

In this section, we present other related work that use either a Tap gesture or ac-
celerometer sensor data for other security purposes, and explain how TTP differs
from them.

Bump. Using the tap gesture to establish device-to-device communication has
been suggested before. Bump13 is probably the most well-known example. Two users
bumps their mobile phones together to exchange contacts, photos and files. Each
phone sends a set of data to a remote server, including the device’s location (via GPS),
the IP address, the timestamp of bumping and the accelerometer measurement. The
server matches the devices based on the received data and transfers the data between
the two matched devices. Bump and TTP are clearly distinct as they solve different
problems and they assume different threat models. Our threat model assumes a
malicious reader, whereas in the Bump model, the two devices bumped to each other
are assumed to be both legitimate. Consequently, our main goal is to protect against
MITM adversaries whereas Bump’s main goal is to identify devices being bumped
together. In fact, it has been shown that Bump is vulnerable to MITM attacks [102]
due to timing issues. It is worth mentioning that privacy concerns that arise from
environment sensing also apply to Bump, since at least the locations and IP addresses
of all users in the system are communicated with the Bump server each time the app

12shop.bpay.co.uk/
13www.bu.mp

38

is used. Since January 2014, Bump has been discontinued with all apps removed from
App Store and Google Play [71].

Tap identification proposals. Performing a tap gesture in order to synchronise
multiple devices has been proposed in Synchronous Gestures [59]. Tap identification
using mobile accelerometer is another problem which could also be applied for security
purposes. For example Tap-Wave-Rub [69] suggests a system for malware prevention
for smarphones. Although similar sensors are used in these proposals, they are in
general orthogonal to our solution since they are designed to solve an identification
problem for legitimate devices, whereas our solution is designed to resist Mafia attacks
in an environment where one of the devices behaves maliciously. Consequently, these
solutions can be used alongside our proposal to provide a system in which tapping is
used to both unlock the device and secure the payment.

Shake to pair. The idea of shaking two devices for device pairing has been
suggested by many researchers [19,65,66,75–77]. While both TTP and the mentioned
works use accelerometer, the amount of entropy produced by shaking, the eventual
application, the threat model, and the problem solved by this work are all different
from ours. In these works, the user needs to shake the two devices together for a while
until both devices generate and agree on a shared key, whereas in our scheme we do
not aim to generate shared keys and we only need the user to tap her device to the
reader twice. Device pairing, and more generally key exchange cannot prevent Mafia
attacks due to the involvement of the malicious reader. Device pairing and securing
NFC payments are distinct security problems. While the former has been explored
by researchers for a long time [29, 60, 67], the latter is less explored. However, with
the impending global deployment of NFC payments, we believe the security of NFC
payments deserves more attention by the security community.

2.8 Summary

In this chapter, we proposed a simple and effective solution, called “Tap-Tap and
Pay” (TTP), to prevent the Mafia attack in NFC payment by sing mobile sensors.
Our solution leverages the characteristics of vibration when an NFC card is physi-
cally tapped on an NFC reader. We observed that the accelerometer measurements
produced by both devices were closely correlated within the same tapping, while they
were different if obtained from different tapping events. The experimental results
and the user feedback suggest the practical feasibility of the proposed solution. As
compared with previous ambient-sensor based solutions, ours has the advantage that

39

it works even when the attacker’s reader and the legitimate reader are in nearby
locations or share similar ambient environments.

The TTP solution can be easily integrated into existing EMV standards and re-
quires minimal infrastructural change to the EMV system. The structure of the
payment protocol remains the same; only an extra string of accelerometer measure-
ment is added in the transmitted message. In terms of hardware, deploying TTP
requires the integration of accelerometer sensors in contactless readers. This can be
done progressively by equipping the next generation of the readers with accelerometer
sensors which are quite inexpensive (e.g. iPhone 4 accelerometers are estimated to
cost 65 cents each [58]). Furthermore, TTP can be rolled out gradually since the
protocols remain backward compatible.

So far, we have investigated the possibility of the use of mobile sensors for a
security purpose, namely, the use of mobile accelerometers for a secure contactless
payment. However, there is the other side of mobile sensors: misusing the mobile
sensors for malicious purposes. In the next chapter, we demonstrate a realistic attack
that uses an NFC sensor on a mobile device to threaten the privacy of the user’s
contactless payments.

40

Chapter 3

A Privacy Attack on Contactless
Payments

41

3.1 Chapter overview

In a contactless transaction, if more than one card is presented to the payment ter-
minal’s field, the terminal does not know which card to choose to proceed with the
transaction. This situation is called card collision. EMV (which is the primary stan-
dard for smart card payments) specifies that the reader should not proceed when it
detects a card collision and that instead it should notify the payer. In comparison,
the ISO/IEC 14443 standard specifies that the reader should choose one card based
on comparing the UIDs of the cards detected in the field. However, our observations
show that implementations of contactless readers in practice does not follow EMV’s
card collision algorithm, nor does it match the card collision procedure specified in
ISO.

Due to this inconsistency between the implementation and the standards, we show
an attack that may compromise the user privacy by collecting the user’s payment
details. We design and implement a malicious app, NFC Payment Spy, simulating
an NFC card which the user needs to install on her phone. When she aims to pay
contactlessly while placing her card close to her phone, this app engages with the
terminal before the card does. The experiments show that even when the terminal
detects a card collision (the app essentially acts like a card), it proceeds with the
EMV protocol. We show the app can retrieve from the terminal the transaction data,
which include information about the payment such as the amount and date. The
experimental results show that our app can effectively spy on contactless payment
transactions, winning the race condition caused by card collisions around 66% of
the time when testing with different cards. By suggesting these attacks we raise
awareness of privacy and security issues in the specifications, standardisation and
implementations of contactless cards and readers.

The work in this chapter is mainly published as follows under the supervision of
Dr. Hao. Mohammed A. Ali helped with designing some of the experiments (the
attack app) of this chapter. Prof. Aad van Moorsel contributed insights on EMV
contactless specifications. Some more details about the experiments are added to
this chapter.

• M. Mehrnezhad, M. A. Ali, F. Hao, A. V. Moorsel, “NFC Payment Spy: Privacy
attacks on contactless payments using NFC-enabled mobile”, In the Proceedings
of the Third International Conference of Security Standardisation Research,
SSR 2016, USA, December 5-6, 2016, Springer International Publishing, Pages
1-20.

42

3.2 Introduction

NFC payment is now very popular. The statistics show that, as of February 2016,
£1,318.3 million was spent in the UK in the month using a contactless card. This is
an increase of 19.1% on the previous month and an increase of 306.8% over the year1.
Apart from contactless cards, other types of technologies for contactless payment are
suggested to the users. Examples include mobiles, tablets, watches, bPay bands,
and bPay Stickers (bpay.co.uk). In fact, there are more than 350 different types of
NFC-enabled devices on the market2.

NFC technology is based on RFID technology. Security and privacy issues of
RFID communication, and in particular NFC, have been studied intensively in the
literature. Contactless cards are always open to being engaged in a transaction, and
a malicious reader in the proximity of such a device is able to trigger a response from
the card without the user’s awareness. A number of security and privacy violations
have been reported in the literature exploiting such unauthorised readings [40]. More
security attacks include various types of relay attacks, such as Man-in-The-Middle
and Mafia attacks [54,79,98,107].

On the other hand, many researchers have shown how malicious apps compromise
user’s security/privacy by listening to mobile sensor data via a background process.
Examples include accelerometer and gyroscope [17,26,81,82,85,92,115], camera and
microphone [99], light [100], and Geolocation [18]. Most of these attacks work by
accessing sensor data through a background process activated by a mobile app, which
requires installation and user permission. Users typically install many different apps
without even reviewing the app permissions. Thus, even if there is a permission
request from the users, they normally ignore it [18]. This behaviour leaves the door
open for attackers to obtain access to sensors. In this chapter, we also rely on such
a behaviour; we develop an app using the phone’s NFC functionality which the user
needs to install.

Contributions. In this chapter, for the first time, we show that the NFC func-
tionality on the victim’s mobile phone can be used to compromise her contactless
payment activities. This happens due to a particular situation in contactless pay-
ment which is called card collision or card clash. Card collision is the situation when
more than a contactless card is available in the reader’s field at the same time. Card

1theukcardsassociation.org.uk/contactless_contactless_statistics/
2nfcworld.com/nfc-phones-list/

43

Figure 3.1: Different card holder cases: flip wallet, back cover/stand, Opanable back
cover, sticker cover, transparent cover

collision has been explained and addressed by EMV [15] and ISO 14443 [9]3, as the two
main contactless payment references for developers to implement contactless systems.
We study these standards and propose attacks based on our findings. In particular,
the contributions are:

• We explain the race condition caused by card collision and study the approaches
to it suggested by EMV and ISO. We perform experiments to discover the
behaviour of contactless terminals when a card collision occurs. The results
show that implementations on contactless terminals match neither EMV nor
ISO.

• We show that, due to this inconsistency, it is possible to track the user’s con-
tactless payment activities, for instance through a malicious app. The malicious
app would have a chance to intercept payment messages and data if the phone
is closely located to the contactless payment card (Fig. 3.1). We propose an
attack vector, called NFC Payment Spy, following EMV contactless specifica-
tions by requesting the PDOL data from the terminal when the malicious app
wins the race and connects with the terminal first.

• We develop an Android app and perform experiments to support our claim.
The results show that our attack can effectively break user privacy and discover
the pattern of their contactless payment activities.

3.3 Card collision

In this section, first we present a real-world example of card collision, called Card
Clash by Transport for London (TfL) [105]. Next, we explain the approaches sug-
gested by EMV and ISO to handle card collision.

3For the rest of this chapter, unless noted otherwise, by ISO standard we mean ISO/IEC 14443,
and by EMV standard, we mean EMV Contactless Specifications.

44

3.3.1 Oystercard and bank card clash

Card clash is a well-known phenomenon for a metro traveller. For example in the
London metro, a traveller can either use an Oystercard or a contactless bank card4 to
pay for her journey. While swiping a wallet containing Oystercard and bank cards,
the reader gets confused and does not know which card to take payment from. This
causes inconvenience for users in the following ways [104,105]:

• The commuter might inadvertently pay for her travel with a card she did not
intend to use.

• The reader might refuse to work under this situation and the gate won’t open.

• The passenger could be charged two maximum fares for the same journey. This
happens when the reader charges one card when she touches in and another
card when she touches out.

• Even if the reader opts for the contactless bank card over Oystercards for both
the start and end of a journey, the passenger might end up being charged twice
since she has already paid for a weekly travelcard on the Oystercard.

The only way to find out if a card clash has happened is to sign into the user online
accounts and check the records of payment. If the user has been charged a maximum
fare on two separate cards for the same journey, she can apply for a refund provided
by TfL [105]. In fact, when TfL introduced card payments as an additional payment
method to paper tickets and Oystercards in September 2014, a huge number of double
payments occurred in just a few weeks. Many of those were automatically refunded
within 3-5 working days. TfL has automatically handed back about £300,000 to about
50,000 customers, with refunds averaging £5.93. Although the Card Clash issue was
publicised very well, surprisingly, TFL estimates that around 1,500 instances of it are
occurring every day [86]. Accordingly, a range of solutions have been suggested to
passengers to avoid card clash [31,74,86,104] including:

• To choose the card that you want to pay with and take it out from the wallet.

• To register the Oystercard online, so that you can regularly check the online
account for auditing.

4In the rest of this chapter unless noted otherwise, by bank card we mean contactless payment
card.

45

• To check your bank statements regularly to find out if you have been charged
on the wrong card.

• In the case of a double payment, to claim the refund by applying to the TfL
website.

• To use protective cases for your contactless cards that you do not aim to pay
with. Actually, Metro Bank gives free card protectors to all of its customers.

• To switch to contactless payments. TfL has fixed the problem of weekly trav-
elcards by applying them automatically both on Oystercards and contactless
bank cards. Hence, the cost would not differ that much if a passenger switches
to a contactless bank card. There are reports which show that it is even cheaper
if costumers move to contactless bank cards [96].

• To use a Barclaycard contactless bPay wristband (bpay.co.uk) and pay with a
wave of your hand. Any UK Visa or MasterCard debit or credit card can be
linked to the bPay wristband.

Among the above solutions, those which suggest replacing the Oystercard by con-
tactless cards or bands seem more user friendly. However, not all passengers are
happy with paying for a bPay and wearing it all the time. On the other hand, people
normally carry multiple bank cards. Hence, even in the absence of the Oystercard,
other contactless cards are still subject to card clash. Therefore, we believe that a
fundamental approach is needed to overcome this real-world problem.

3.3.2 EMV contactless specifications

EMV is the primary protocol standard for smart card payments. The EMV standards
are managed by EMVCo (emvco.com), a consortium of multinational companies such
as Visa, MasterCard, and American Express. EMV has specifically defined specifica-
tions for contactless payment in books A, B, C and D [11–15]. ISO/IEC 14443 on the
other hand, is an international standard that defines proximity cards used for identifi-
cation, and the transmission protocols used for communication between the card and
host. Generally, there are two ISO/IEC 14443 communication signal interfaces: Type
A and Type B. They use different Radio Frequency Field (RF) modulation methods
for the Proximity Coupling Device (PCD, Reader) to Proximity Integrated Circuit
Card (PICC, Card) and the PICC to PCD communication. In this chapter, the focus

46

Figure 3.2: Terminal Main Loop, taken from EMV contactless Book D

is Type A, which is the mainstream technology [89]. Android supports it, and all of
our tested bank cards are Type A.

EMV Contactless Book D [15] defines Collision as follows: “Transmission by two
or more PICCs in the same PCD energizing field and during the same time period,
such that the PCD [reader] is unable to distinguish from which PICC [card] the data
originated”. Based on this definition, the aim of the of EMV is to describe how EMV
anti-collision mechanism handles the situation when there is more than a card in the
field. Here we generally review the whole process for a contactless transaction from
the reader’s point of view.

According to EMV contactless Book D [15], the terminal is constantly running a
main loop as illustrated in Fig 3.2. In the polling phase, the reader ensures that there
only exists one type of technology (Type A or B) in the field by using a Wake UP
command, e.g. WUPA for type A. Then it checks if there is only one card from the
same technology in the field. If so, it activates the card. Remember that contactless
bank cards are passive, and the reader creates an energising RF (the operating field)

47

that enables the card to power up. Next, the terminal application performs the
transaction.

On the other hand, if there exists more than a card in the field, a collision is
detected. Accordingly, the terminal will not initiate a transaction in this situation.
The collision detection procedure is applicable both to cards of different technologies
(Type A, B, and others), or to multiple cards with the same technology. If more
than one technology is in the field, the reader must report a collision, reset the
operating field, and return to the polling phase. For Type A collision detection, the
terminal performs a specific procedure as follows (illustrated in Fig. 3.3). Type A
cards respond to Wake UP command synchronously using Manchester coding. This
allows the terminal to detect the collision in the bit level. After the terminal waits
for an interval tp, it sends a WUPA command. In all parts of this algorithm, if the
terminal detects a transmission error in response to the WUPA and Anti-Collision
(AC) commands, it reports a collision, resets, and returns to the polling procedure.
Otherwise, the reader sends an AC command which is used to obtain the complete
UID of a Type A card, and to detect whether more than one Type A card is in the
field. Depending on the UID size of the card, the response to the AC is different.
In summary, regardless of the card collision procedure, according to EMV, once a
collision is detected, the terminal should not proceed; instead it should
reset the field and go back to the polling procedure.

3.3.3 ISO/IEC 14443

Payment cards including contact and contactless cards are based on ISO/IEC 7816 [16]
and ISO/IEC 14443 [7–10]. Mobile NFC payment technologies, such as Android
Host-based Card Emulation (HCE) [4], are also based on ISO/IEC 14443, which is
an international standard in four parts, defining the technology-specific requirements
for proximity cards [7–10]. The third part of this standard [9], namely, Part 3: Initial-
ization and anticollision, presents the same definition for collision as EMV. However,
handling collision is different, as we next explain (presented in Fig. 3.4).

In this standard, anticollisions are detected based on a conflict in the bits of the
UIDs (started from uid0 as the most significant byte). The least significant bit (LSB)
of each byte is transmitted first. As an example, consider two cards as follows. Card
1: UID size = 4 bytes (single), value of uid0 =‘10’, and Card 2: UID size = 7 bytes
(double). After both cards respond to the reader’s command, the terminal performs
the first cascade level for the anticollision loop. As its response, the first card sends
back the four UID bytes (uid0 uid1 uid2 uid3) plus some extra data. However since

48

Figure 3.3: Type A collision detection, taken from EMV contactless Book D

the second card’s UID is double, it sends back the cascade tag (CT) and the first
three bytes (‘88’ uid0 uid1 uid2), plus some extra data. Hence the bits received by
the terminal are: (00001000)b and (00010001)b, respectively. If the implementation
pads (1)b (which is what a typical implementation does [9]) to the previous similar
bits, the terminal chooses the second card over the first one and continues with it.

Therefore, unlike EMV, ISO specifies no termination in the case of a col-
lision. Instead, a race condition is created in which, depending on the
implementation of the terminal and the UIDs of the cards available in the
field, one card would be selected. This inconsistency between EMV and ISO
might cause confusion when it comes to practical implementations of these systems.
We believe this is an important issue and should be addressed by the community.

49

Figure 3.4: Anticollision loop, flowchart for PCD, taken from ISO/IEC 14443-3

3.4 Experiments on contactless readers in practice

In this section, we examine the anticollision procedure in the contactless terminals
as implemented in practice. We already know that in the case of a card clash in
the London metro system, the card reader may either not proceed or pick one card
over another without any particular pattern [105]. It is also reported that the cards
that are picked up at the start and the end of a journey may be different (in this
case the passenger can apply for a refund). This suggests that the implementation in
practice is not consistent with either EMV or ISO. To investigate this issue further,
we performed an experiment to observe how payment terminals actually handle card
collisions.

3.4.1 Experiment setup

In this experiment, we examined 3 pairs of contactless cards as presented in Table
3.1. Each were requested and issued from the same banks and roughly at the same

50

Card Tech. UID UID0 UID0 ISO
size Hex Binary (LSB) winner

TSB- Card 1 A 4 0x35 (10101100)b 3

TSB- Card 2 A 4 0x65 (10100110)b 7

Barclays- Card 1 A 4 0xE7 (11100111)b 3

Barclays- Card 2 A 4 0x87 (11100001)b 7

barclaycard- Card 1 A 4 0x67 (11100110)b 7

barclaycard- Card 2 A 4 0xDF (11111011)b 3

Nexus 5 A 4 x08 (00010000)b 7

Table 3.1: Cards’ information, LSB: Least Significant Bit, TSB: TSB visa debit,
Barclays: Barclays visa debit, and barclaycard: barclaycard Platinum visa

time. These tested cards including the two TSB visa debit, and the two Barclays visa
debit, were requested at the exact same time, and the two barclaycard Platinum visa,
were requested and received within a month. The TSB card 1 had been in use more
than card 2, and the barclaycard card 2 had been in use much more than card 1.

Before running the experiment, we tested the NFC chipsets on the cards and the
phones that we used in the experiments of this chapter by writing a simple reader
app using the getId() function5. All the tested bank cards including TSB visa debit,
Barclays visa debit, and barclaycard visa have fixed 4-byte UIDs, as presented in
Table 3.1. We also present the UID of two Nexus 5 mobile phones in this table. We
will later use these phones for the experiments in Section 3.5. They both returned
random 4-byte UIDs which always start with ‘08’. The first byte represents the brand
of the technology [91].

3.4.2 Experiment results and analysis

We presented each pair of the cards listed in Table 3.1 to different contactless terminals
(in multiple metro stations) several times in order to put them in race conditions. We
made sure that both cards were attached to each other from the same side -contactless
chipsets on each other. More specifically, when tapping the cards together to the
reader, we put one of the cards on top of the other one for half of the experiments,
and exchanged them for the rest of the tests. We performed the experiments of this
section with the three pairs of cards in two different metro stations and at least with
two different terminals (ticket machines or POS) in each station. We ended up having
27 different records. While we were doing the experiment, we carefully observed and

5developer.android.com/reference/android/nfc/Tag.html#getId

51

No. POS Issuing Facing card Result Msg
bank to reader

1 MS 1, POS 1 TSB Card 1 No operation
2 MS 1, POS 1 TSB Card 2 No operation
3 MS 2, POS 1 TSB Card 1 No operation
4 MS 2, POS 1 TSB Card 2 No operation
5 MS 1, POS 2 TSB Card 1 No operation
6 MS 1, POS 2 TSB Card 2 Card 1 won msg1
7 MS 1, POS 2 TSB Card 1 Card 2 won on 2nd try msg1
8 MS 2, POS 2 TSB Card 2 Card 1 won
9 MS 2, POS 2 TSB Card 1 No operation
10 MS 2, POS 2 TSB Card 1 No operation
11 MS 1, POS 2 Barclays Card 2 Card 1 won
12 MS 1, POS 2 Barclays Card 1 Card 2 won
13 MS 1, POS 2 Barclays Card 2 Card 1 won msg1
14 MS 1, POS 2 Barclays Card 1 Card 2 won
15 MS 2, POS 1 Barclays Card 2 Card 1 won
16 MS 2, POS 1 Barclays Card 1 Card 2 won msg1
17 MS 2, POS 1 Barclays Card 2 Card 1 won msg1
18 MS 1, POS 3 barclaycard Card 2 Card 1 won
19 MS 1, POS 3 barclaycard Card 1 Card 1 won
20 MS 1, POS 3 barclaycard Card 2 Card 1 won
21 MS 1, POS 3 barclaycard Card 1 Card 1 won
22 MS 2, POS 2 barclaycard Card 2 Card 1 won
23 MS 2, POS 2 barclaycard Card 1 Card 1 won
24 MS 1, POS 1 barclaycard Card 2 Card 1 won on 2nd try msg2
25 MS 1, POS 1 barclaycard Card 1 Card 1 won
26 MS 2, POS 3 barclaycard Card 2 Card 1 won
27 MS 2, POS 3 barclaycard Card 1 Card 1 won

Table 3.2: The results of putting card pairs in the race condition. MS stands for
Metro Station. In the case of No operation, the cards were presented 3 times to the
POS (point of sale, or ticket machine) for the same transaction. msg1: “Only present
one card”, msg2: “Card read failed”

manually logged the behaviour of the reader in each phase. The results are presented
in Table 3.2.

As can be seen, these results do not match the anticollision algorithms suggested
by either EMV or ISO. For example, regardless of the station and the terminal, most
of the cases for TSB cards did not go through the payment and there was no message
displayed6 (records 1 to 5, and 9 to 10 in Table 3.2). They were two cases (records 6

6We only mean anti-collision messages in this context.

52

and 7 in the table), however, where the terminal showed this message: “only present
one card”, but it completed the payment. Also there was only one case (record 8)
where one of the cards went through the payment without any message. On the
other hand, when performing experiments with Barclays cards, the one which was
not facing to the terminal won over the facing card, and this pattern was repeated
(records 11 to 17 in the table). And finally between the two barclaycards, without
any message shown on the terminal screen (except one case, record 24), one of the
cards always won.

Generally, we can not find any specific pattern in the behaviour of these terminals
when facing more than a card. Interestingly, in a few cases, the terminal shows this
message: “only present one card”, yet it proceeds with the payment. Based on this
observation, next we demonstrate an attack which can compromise user privacy.

3.5 Attack design

In this section, first we present the context of the attack. Then, we explain the
feasibility of our attack by designing it based on the existing contactless payment
specifications.

3.5.1 Threat model and attack scenario

The context of this attack is when a user aims to pay for something by her contactless
card where her card and phone are close to each other and both are presented to the
reader’s field. If the phone manages to hijack a few initial NFC signals that the
card is meant to receive from the terminal, the attack is successful. In this situation,
the phone is able to learn a lot about this contactless payment by requesting the
PDOL data (details in section 3.5.2). The data can then be sent to a remote server
controlled by the attacker. However, the malicious app would not continue further
communication with the reader at some point (since it does not simulate the entire
payment) and the user would realise that the payment is not being processed. In
order to not disappoint the user on her second effort to pay, the NFC service on the
mobile should be turned off for a few minutes once it hears from the reader. In this
way, the user is able to complete the payment on the second try.

There are various ways in which the user might keep her card very close to her
phone. For example, different models of card holder mobile cases are now available.
These cases are capable of containing a few cards, as shown in Fig 3.1. These types
of wallet are already very popular with users since they offer an easy way to travel

53

light and keep wallet essentials close to hand. When it comes to contactless payment,
these accessories are even more popular since users do not even need to take the card
out of the case. Users can slide their contactless card that is kept inside the mobile
case and easily tap it against the reader for daily purchases. After the increase of
the cap limit from £20 to £30 in 2015, more retailer started to accept contactless
payments for small item purchases7. Furthermore, as shown in Fig. 3.1 (right), bPay
Sticks provided by Barclays are offered to users for attachment to the back of their
mobile phones. In these ways, the phone is physically close to the card.

Third parties are very interested in the sort of information that can be recovered
this way, e.g. for advertising purposes. The collected information could be used in sev-
eral ways. Third parties normally stimulate the users to purchase items by providing
them customized ads based on this information. In addition, they can perform data
mining programs to extract the patterns of individual shopping behaviours. An ad-
vanced attack might even pretend to be the user’s bank by presenting this shopping
information to her and tricking her to reveal her credentials via social engineering
techniques. The attack we describe can be even more impactful if the malicious app
turns into the reader mode and extracts the card’s information, as suggested by Emms
et al. [40]. Once the information is extracted, the app goes to the card mode for the
rest of the attack. In this way, the attacker can easily pretend to be the user’s bank
by having her card information and her shopping records. We believe that these sorts
of information are private to the users and should not be collected and shared without
their permission.

3.5.2 Designing the attack based on NFC payment protocols

In this section, we cover a few key points in relation to contactless payment protocols
relevant to our implementation. EMV Contactless Book B [12] covers the Entry Point
Specification. This specification defines the reader requirements necessary to enable
the discovery and selection of a contactless application, and activation of the appro-
priate kernel for processing the transaction. Different kernels are used for different
Application Definition File (ADF) names (e.g. for a MasterCard ADF name, Kernel
2 is used, and for a Visa ADF name, Kernel 3 is used). Based on the chosen Ker-
nel, different procedures will run to complete a payment. However, the entry point
protocols are the same for all card schemes.

7theukcardsassociation.org.uk/Contactless_(our_views)/index.asp

54

Entry Point is designed around the use of a Proximity Payment System Environ-
ment (PPSE) as the selection mechanism. For multi-brand acceptance, this allows
a reader to quickly obtain all the available brands and applications with a single
command and to make an immediate choice based on priority and kernel availability.
The Entry Point command and response Application Protocol Data Units (APDUs)
are presented in Fig. 3.5. The File Control Information (FCI) as the response to the
PPSE command from the card includes the Directory Definition File (DDF) covering
a product supported by the card, the Kernel Identifier of the kernel required for the
specific application underpinning the product (conditional), and the priority of the
Combination (conditional). The product is indicated by its ADF name in the card.
Hence, it is the card which decides what kernel to choose and talk to. Entry Point
finds Combinations by matching pairs of data elements (ADF Name and Kernel Iden-
tifier) in the card with pairs of data elements in the reader (AID and Kernel ID). Once
all supported Combinations have been found and the highest priority Combination
has been identified, Entry Point selects the associated card application by sending
a SELECT (AID) command with the ADF Name of the selected Combination. De-
pending on the selected AID and the kernel in the selected Combinations, a specific
kernel is called to take care of the rest of the payment.

As part of the response to SELECT AID command, the card requests the Process-
ing Options Data Object List (PDOL). Generally, a Get Processing Option (GPO)
command is returned in response to this FCI command (SELECT AID) which in-
cludes the Terminal Transaction Qualifiers (TTQ), Unpredictable Number, Amount,
Authorised, Transaction Currency Code, and other tags [42].

As shown in Fig. 3.5 and we explain in the next section, our attack app will take
the proper action in response to each command from the terminal in order to retrieve
as much as information as possible about each transaction. As mentioned earlier,
when the phone and the card are closed enough to each other (see Fig. 3.1), if the
phone manages to hijack a few initial NFC signals that the card is meant to receive
from the terminal, the attack is successful. In this case, our malicious app follows
our suggested sequence diagram as shown in Fig. 3.5. After exchanging the SELECT
commands, our app requests for PDOL data which includes information about the
transaction. When the terminal responds to the app with returning the requested
data, our app goes to flight mode to allow the user to successfully pay with his card
when he tries next time.

55

Figure 3.5: The sequence diagram of the communication between our app and the
reader

3.6 Implementation

In this section we present the technical implementation of our attack.

3.6.1 Android HCE

Android supports emulating cards that are based on the NFC-Forum ISO-DEP spec-
ification (based on ISO/IEC 14443-1 to 4) and processes Application Protocol Data
Units (APDUs) as defined in the ISO/IEC 7816-4 specification. In compliance with
ISO/IEC 7816-4, each HCE application has an Application ID (AID). This ID enables
the reader app to select the correct service.

In our implementation, we declared an AID group including an AID filter of a Visa
card (0xA0000000031010) in an XML resource to be pointed by a SERVICE_META_DATA
tag in the manifest declaration. On the other hand, Android does not interpret
the PPSE selection command and, consequently, it does not generate or send a
list of available payment applications. Hence we have to handle the PPSE com-
mand in the app. Typically, an HCE payment application based on EMV stan-

56

dards would register for both: the payment application AID and the PPSE ADF
name. Note that from a protocol perspective there is no difference between an
ADF name and an AID, so we can register for it in our service XML file with
an AID filter for the ADF name (“2PAY.SYS.DDF01”) in its ASCII hexadecimal
representation of 0x325041592E5359532E4444463031. In the same file, we set the
android:requireDeviceUnlock attribute to false in order to avoid the user being
asked for unlocking her device.

The HostApduService class is extended for implementing an HCE service with
two abstract methods: processCommandApdu and onDeactivated. The former is
called whenever the card receives an APDU from an NFC reader and enables half-
duplex communication with the reader. The latter is called when either the NFC link
is broken or the reader wishes to talk to another service. According to EMV, the first
two APDUs (SELECT PPSE and SELECT AID) are for service selection. That is
where we request PDOL, as shown in Fig. 3.5. After a successful service selection,
the card and reader can exchange any type of data. When the app receives the first
GPO command including the requested data, it logs the data in a file, and the attack
terminates. Accordingly, our app turns the NFC off by going to the flight mode to
allow the user to complete the purchase on the second try.

3.6.2 Android flight mode

Android does not offer any API for turning the NFC controller on/off programmati-
cally. Therefore, developers usually set the NFC settings in a way that prompts the
user to turn it on/off manually. In our attack, once our app hears from the terminal,
it needs to turn off the NFC, so that the user can successfully pay on her second try.
One possible way to control the NFC adapter is to change the phone’s airplane mode
setting. However, only those apps with the superuser permissions can change the Air-
plane mode setting which requires WRITE_SETTINGS and WRITE_SECURE_SETTINGS to
be declared in the manifest file. Starting from Android 4.2 , turning on/off airplane
mode is no longer supported by android APIs. Hence, this part of our attack only
works on a rooted device.

On the other hand, this attack needs to keep the phone’s screen on since, at the
moment, NFC does not work when the phone is off [4]. An advanced attack would
turn the screen on only when the user wants to pay by using accelerometer and
gyroscope sensor measurements in order to recognise such a gesture. Li et al. [69]
show that it is effectively possible to use the tap gesture to unlock the phone for NFC
applications based on accelerometer data. By augmenting such a gesture recognition

57

Figure 3.6: Contactless card attached to the phone in two different positions for the
experiments; A (left): the NFC chipset was down, B (right): the NFC chipset was up

feature to our code, we will have a complete application that is able to compromise
users privacy in contactless payments.

3.7 Experiments and results

We performed an experiment by installing the app on two Android phones (Nexus 5).
We attached the card to the back of the phone in two different positions, as shown in
Fig 3.6. The position that the card was attached to the phone was important in our
experiments since it effected the results, as we explain later. In all experiments, the
back of the phone was faced to the terminal (hence, the card was in a closer distance
to the terminal than the phone).

3.7.1 Expected results

According to the EMV specifications, regardless of the UID of the card and the
phone, the terminal should not proceed in the case of a card collision. ISO standards,
however, suggest to select one of the UIDs (typically with higher values) in the race
condition. The first UID byte (UID0) of mobile phones that we tested is always
‘08’ (LSB: 00010000), and it is a single UID. As presented in Table 3.1, all of our
cards should always win over the phone if it is a typical ISO implementation. In
the following experiments, we show that the expected behaviour does not happen in
practice, and the phone wins with a high probability.

3.7.2 Experiment A: card and phone collision

In this experiment, we tested a few different contactless cards by presenting each card
with the phone to a few terminals (contactless metro ticket machines). We tested

58

multiple cards including two TSB visa debit, and two Barclays visa debit on different
machines. During this experiment, we asked two users (colleagues from university)
to pay for metro tickets with different contactless cards (from Table 3.1) that we
provided to them. These cards were attached to mobile phones (Nexus 5). These
participants were generally informed of the purpose of the experiment, but were not
asked to follow any particular procedure. We explained to them that we want to test
what is the behaviour of the terminal when both card and phone are tapped to it.
We asked them to naturally pay contactlessly.

We made sure that all of our 6 tested cards were tested in different metro stations
and at least with two different ticket machines. We especially made sure that both
positions (A and B) were equally tested through our experiments. This lead us to end
up with 44 experiments. We observed the behaviour of the terminals as summarized
in Table 3.4 and 3.3. For example, in Table 3.4, the first experiment shows that our
user has presented a TSB card, while it was attached to the phone in position A, to
the reader. Without displaying any message on the reader, the phone managed to
hear from the terminal before the card, and hence was the winner of this experiment.
As another example, record number 40 in Table 3.4 is a sample of one of the cases
that the card won. When a Barclayse card was attached to the phone in position B
and presented to the reader by our user, on the second attempt and after displaying
massage 1 (“Card read failed”), the payment went through and the card was charged.

The results show that when the card is attached to the phone in position A (the
card’s NFC chipset is down), the phone can hear the reader’s signal first with a very
high probability. On the other hand, when the card’s NFC chipset is positioned to
the top of the phone (position B), the chance of the card winning is slightly more
than the phone. Nevertheless, an average user might put the card in any of these
two positions close to the phone. Based on our experiment, generally our app is
able to recognise about 66% of the user’s contactless payment activities. Over time,
this success rate would allow the attacker to accumulate information about the user’s
contactless payment patterns.

Our observations show that contactless terminals present different messages on
the display based on the situation. When select to pay, it displays: “Insert, swipe
or tap for GBP 0.80” as the first message. If it can not choose either the card or
the phone it displays: “Card read failed”, and it goes back to the first message. The
fail message happened when our users tapped the card and the phone very quickly,
hence none of them were presented to the field for a sufficient time. Similar to our

59

No. Card Terminal Position Winner Msg
1 TSB 1 MS 1, POS 2 A Phone
2 TSB 1 MS 2, POS 2 A Phone
3 TSB 1 MS 2, POS 2 A Card
4 TSB 1 MS 2, POS 2 A Phone
5 TSB 1 MS 1, POS 1 B Card
6 TSB 1 MS 1, POS 1 B Card
7 TSB 1 MS 1, POS 1 B Phone
8 TSB 1 MS 1, POS 1 B Phone
9 TSB 1 MS 2, POS 2 B Card
10 TSB 1 MS 2, POS 2 B Card
11 TSB 2 MS 1, POS 2 A Phone
12 TSB 2 MS 1, POS 2 A Phone
13 TSB 2 MS 1, POS 2 A Phone
14 TSB 2 MS 1, POS 2 A Phone
15 TSB 2 MS 1, POS 2 A Phone
16 TSB 2 MS 3, POS 1 A Phone
17 TSB 2 MS 3, POS 2 B Card
18 TSB 2 MS 3, POS 2 B Phone
19 TSB 2 MS 3, POS 2 B Phone, 2nd try msg1
20 TSB 2 MS 3, POS 2 B Card, 2nd try msg1
21 TSB 2 MS 3, POS 2 B Phone

Table 3.3: Results of experiment A for TSB cards, ms1: “Card read failed”, msg2:
“Only present one card”

experiments in Section 3.4.1, the terminal may show another message: “Only present
one card”, but it still proceeds with the transaction.

3.7.3 Experiment B: PDOL data

In order to show the impact of the attack more visibly, we performed another exper-
iment. While purchasing a ticket, we presented our final app to a payment terminal
in a metro station. Our app logged the PDOL data of the transaction and then went
to the Airplane mode. We built our card app in a way that it responded to the two
SELECT commands – PPSE and AID – before asking for PDOL data (see Fig. 3.5).

The exchanged commands and responses APDUs are shown in Table 3.5. As it
can be seen, when the card sends the second FCI, by sending PDOL tag (‘9F38’),
it requests different sort of information about the transaction such as the amount
(tag=‘9F02’, Amount, Authorised (Numeric)) and transaction date (tag=‘9A’). Ac-
cordingly, the terminal responds with the first GPO command including the requested

60

No. Card Terminal Position Winner Msg
22 Barclays 1 MS 1, POS 1 A Phone
23 Barclays 1 MS 1, POS 1 A Phone
24 Barclays 1 MS 1, POS 1 A Phone, 2nd try msg1
25 Barclays 1 MS 1, POS 1 A Phone
26 Barclays 1 MS 1, POS 1 A Phone
27 Barclays 1 MS 1, POS 1 A Phone
28 Barclays 1 MS 1, POS 1 B Card
29 Barclays 1 MS 1, POS 1 B Phone
30 Barclays 1 MS 1, POS 2 B Card, 2nd try msg1
31 Barclays 1 MS 1, POS 2 B Phone
32 Barclays 1 MS 1, POS 2 B Card
33 Barclays 1 MS 1, POS 2 B Phone
34 Barclays 2 MS 1, POS 2 A Phone
35 Barclays 2 MS 1, POS 2 A Phone
36 Barclays 2 MS 1, POS 2 A Phone
37 Barclays 2 MS 1, POS 2 A Phone
38 Barclays 2 MS 1, POS 2 A Card msg2
39 Barclays 2 MS 1, POS 2 B Card msg2
40 Barclays 2 MS 1, POS 2 B Card, 2nd try msg1
41 Barclays 2 MS 1, POS 2 B Phone
42 Barclays 2 MS 1, POS 1 B Card
43 Barclays 2 MS 1, POS 1 B Card
44 Barclays 2 MS 1, POS 1 B Phone, 2nd try msg1

Table 3.4: Results of experiment A for Barclays cards, msg1: “Card read failed”,
msg2: “Only present one card”

items for PDOL (‘83’) i.e. amount (‘000000000080’ = 0.80 pence) and date (‘160523’
= 2016 May 23) [42].

As it can be seen, the attacker can easily build such a table for all transactions
and discover the user’s payment patterns.

3.8 Summary

In this chapter, we discussed a real world problem concerning the card collision when
making contactless payments. We studied the EMV and ISO standards on card
collision, and by performing experiments we discovered that the implementation in
practice matches neither of them. Based on this inconsistency, we described and
implemented an attack on the privacy of contactless payments. In this attack, we
simulated a card within an app and tracked the user’s contactless payment transac-

61

Sender APDU Command
Terminal 00A404000E325041592E5359532E SELECT

E444446303100 PPSE
Phone 6F3C840E325041592E5359532E44 FCI

44463031A52ABF0C2761254F07A0
0000000310108701015010424152
434C4159434152442056495341BF
6304DF2001809000

Reader 00A4040007A000000003101000 SELECT AID
Phone 6F4B8407A0000000031010A54050 FCI including

10424152434C4159434152442056 PDOL request
4953418701019F38189F66049F02
069F03069F1A0295055F2A029A03
9C019F37045F2D02656EBF0C089F
5A0531082608269000

Terminal 80A8000023832130000000000000 GPO including
0000800000000000000826000000 PDOL data
00000826160523001612673900

Table 3.5: Exchanged APDUs of the PDOL experiment

tions by requesting PDOL data from the terminal. When the phone and the card
were both presented to a contactless terminal, our app could successfully win the race
condition over the card in the majority of test cases.

Our findings suggest vulnerabilities in the current infrastructure which needs to
be addressed. More specifically, the results of our experiments show that when tap-
ping the terminal with more than one card, in most cases (Tables 3.2, 3.4, and 3.3),
the terminal does not even identify the card collision. Nevertheless, even if the ter-
minal identifies the presence of multiple cards in the field (by showing a message),
it still proceeds with the transactions. The selection of the card appears random. A
countermeasure to this identified privacy attack is updating the implementation of
the payment terminals according to EMV’s card collision algorithm: i.e. the process
should not proceed when more that one card is detected in the field. Updating some
parts of EMV’s protocol and protecting the PDOL data would also mitigate the in-
troduced attack. Finally, the EMV and ISO standards would need to be updated to
have a consistent algorithm to handle card collision.

Our findings in this chapter show that by using a malicious app, it is possible to
impose security and privacy risks to mobile users. In the next chapter however, we
show that the vulnerabilities associated with mobile sensors are not limited to native

62

apps which need installation by users. We will demonstrate novel side channel attacks
that steal the user’s private information via JavaScript code. In this way, we do not
even need the user to install the malicious app on his phone; once the attack content
is loaded in the mobile browser, our program starts listening to the sensor data, and
by the use of classification methods, it discovers user’s phone call timing, physical
activities, touch actions, and even his PINs.

63

Chapter 4

Identification of User Touch
Actions and PINs via JavaScript

64

4.1 Chapter overview

Mobile web browsers that conform to W3C specifications [112] allow JavaScript code
in a web page to access motion and orientation sensor data without the user’s permis-
sion. The associated risks to user security and privacy are, however, not considered in
W3C specifications. In this chapter, for the first time, we show how user security can
be compromised using these sensor data via browser, despite that the data rate is 3 to
5 times lower than what is available in app. We examine multiple popular browsers
on Android and iOS platforms and study their policies in granting permissions to
JavaScript code with respect to access to motion and orientation sensor data.

Based on our observations, we identify multiple vulnerabilities, and propose TouchSig-
natures which implements an attack where malicious JavaScript code on an attack tab
listens to such sensor data measurements. Based on these streams, TouchSignatures
is able to distinguish the user’s touch actions (i.e. tap, scroll, hold, and zoom) and
her entered PIN digits, allowing a remote website to learn client-side user activities.
We demonstrate the practicality of this attack by collecting data from real users and
reporting high success rates using our proof-of-concept implementations. Moreover,
we implement a more advanced attack on full 4-digit user PINs (as opposed to digits
only) by introducing PINlogger.js. Based on a test set of fifty 4-digit PINs, PINlog-
ger.js is able to correctly identify PINs at the first attempt with a success rate of 74%,
which increases to 86% and 94% on the second and third attempts, respectively. The
high success rates of stealing user PINs on mobile devices via JavaScript indicate a
serious threat to user security.

We also present a set of potential solutions to address the vulnerabilities. The
W3C community and major mobile browser vendors including Mozilla, Google, Apple
and Opera have acknowledged our work, and have implemented some of our counter-
measures, as we will explain in Section 4.10.

The work in this chapter is mainly published as follows under the supervision of
Dr. Hao and Dr. Shahandashti. Some of the JavaScript code for the data collections
of this chapter was developed by Ehsan Toreini. He also helped on recruiting users
for the data collection.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “TouchSignatures:
Identification of User Touch Actions based on Mobile Sensors via JavaScript”,
In the Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2015, Singapore, April 14-17, 2015,
ACM, Pages 673-673.

65

Work Sensor Identification item Access
PIN Skimmer [99] Camera, Mic PINs in-app
PIN Skimming [100] Light PINs in-app
Keylogging by Mic [88] Mic Keyboard, PINs in-app
ACCessory [92] Acc Keyboard, Area taps in-app
Tapprints [85] Acc, Gyr Keyboard, Icon taps in-app
Acc side channel [17] Acc PINs, Patterns in-app
Motion side channel [27] Acc, Gyr Keyboard, PINs in-app
TapLogger [115] Acc, Ori PINs in-app
TouchLogger [26] Ori PINs in-app
TouchSignatures Motion, Ori Touch actions, PINs in-browser
PINLogger.js Motion, Ori 4-digit PINs in-browser

Table 4.1: Brief description of TouchSignatures and PINLogger.js and in-app sensor-
based password/ PIN identifiers. Acc: accelerometer, Gyr: gyroscope, and Ori: Ori-
entation. Motion streams are a set of measurements which are accessible within
browsers and include accelerometer, accelerometer-including-gravity, and rotation
rate (see Section 4.5.2).

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, and F. Hao, “TouchSigna-
tures: Identification of User Touch Actions and PINs based on Mobile Sensors
via JavaScript”, Journal of Information Security and Applications, Volume 26,
February 2016, Pages 23-38.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing PINs via
Mobile Sensors: Actual Risk versus User Perception”, The 1st European Work-
shop on Usable Security, EuroUSEC 2016, Workshop at the Privacy Enhancing
Technologies Symposium (PETS 2016), July 18, 2016, Germany.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing PINs via
Mobile Sensors: Actual Risk versus User Perception”, International Journal of
Information Security, Springer, April 2017, Pages 1-23.

4.2 Introduction

In this section, first we present the types of accesses to mobile sensors, i.e. within
app and within browser, and compare them. Then we give an overview the attacks
presented in this chapter.

66

4.2.1 Mobile sensors access

Developers can have access to mobile sensors either by 1) writing native code using
mobile OS APIs [52], 2) hybrid apps i.e. recompiling HTML5 code into a native
app [61], or 3) using standard APIs provided by the W3C which are accessible through
JavaScript code within a mobile browser1. The last method has the advantage of
not needing any app-store approval for releasing the app or making future updates.
More importantly, the JavaScript code is platform independent, i.e. once the code is
developed it can be executed within any modern browser on any mobile OS.

4.2.2 Access to mobile sensors within app

Listening to mobile sensor data via a background process either for improving user
security [20, 21, 34, 53, 69, 95, 98, 106] or attacking it [26, 84, 85, 85, 92, 115] has been
always interesting for researchers. Listening to the sensor data through a malicious
background process may enable the app to compromise user security. Here, we present
Table 4.1 and briefly describe existing in-app sensor-based password/PIN identifiers.
Some of the existing work listed in Table 4.1 try to identify PINs and passwords by
using sensors such as light, camera and microphone [88,99,100]. In this work, we are
interested in the use of accelerometer and gyroscope sensors as a side channel to learn
about user PINs and passwords [17,26,85,92,115].

4.2.3 Access to mobile sensors within browser

All these attacks involve obtaining sensor data through a background process acti-
vated by a mobile app, which requires installation and user permission. By contrast,
we suggest recording sensor measurements via JavaScript code without any user per-
mission. This is the first report of such a JavaScript-based attack. This attack is
potentially more dangerous than previous app-based attacks as it does not need any
user permission for installation to run the attack code.

Mobile web applications are increasingly provided access to more mobile resources,
particularly sensor data. Client-side scripting languages such as JavaScript are pro-
gressively providing richer APIs to access mobile sensor data. As can be seen in Table
1.2, currently, mobile web applications have access to many sensors such as: geoloca-
tion [110], multimedia (video cameras, microphones, webcams) [109], light [111], and
device motion and orientation [112].

1w3.org/TR/#tr_Javascript_APIs

67

The W3C specifications discuss security and privacy issues for some mobile sen-
sors, such as GPS and light. For example, the working draft on ambient light events
explicitly discusses security and privacy considerations as follows [111]: “The event
defined in this specification is only fired in the top-level browsing context to avoid
the privacy risk of sharing the information defined in this specification with contexts
unfamiliar to the user. For example, a mobile device will only fire the event on the
active tab, and not on the background tabs or within iframes”. The geolocation API
on the other hand, requires explicit user permission to grant access to the web app
due to security and privacy considerations.

On the other hand, security and privacy issues regarding motion and orientation
sensor data have not been as readily evident to the W3C community and browser
vendors as those of the sensors discussed above. Interestingly, in contrast to the
geolocation and ambient light sensors, there is no security and privacy considerations
section in the W3C working draft on motion and orientation sensors [112]. JavaScript
code in a web page is given full access to motion and orientation sensor streams on
mobile devices without needing to ask for user permission. This opens the door
for attackers to compromise user security by listening to the motion and orientation
sensor data, as we present here.

4.2.4 Access to mobile sensors within app vs. browser

The in-browser sensor data access that the W3C specification allows is heavily re-
stricted in multiple ways. First, the access is restricted to only two types of streams:
the device orientation which supplies the physical orientation of the device, and the
device motion which represents the acceleration of the device2. Motion data in-
cludes sequences from accelerometer, accelerometer-including-gravity, and rotation
rate [112]. The orientation sensor, on the other hand, derives its data by processing
the raw sensor data from the accelerometer and the geomagnetic field sensor3.

More importantly, access is also restricted to low-rate streams which provide data
with lower frequencies as compared to those provided in-app. Here, we present two
tables (Tables 4.2 and 4.3) on sampling frequencies on different platforms and popular
browsers. The in-app frequency rates in Table 4.2 for Android are obtained from run-
ning an open source program (MPLSensor.cpp file) available in the Android Git repos-
itory4. And the in-app frequency rates for iOS are from system.setAccelerometer

2At the time of the writing of this thesis, W3C is developing more specification documents for
sensors (w3.org/TR/generic-sensor/).

3developer.android.com/guide/topics/sensors/sensors_position.html#sensors-pos-orient
4android.googlesource.com/platform/hardware/invensense/+/android-5.0.1_r4

68

Device/mOS Accelerometer Gyroscope
Freq. (Hz) Freq. (Hz)

Nexus 5/Android 5.0.1 200 200
iPhone 5/iOS 8.2 100 100

Table 4.2: Maximum in-app sampling rates

Device OS Browser Motion Orientation
Freq. (Hz) Freq. (Hz)

N
ex
us

5

A
nd

ro
id

5.
0.
1 Chrome 60 44

Opera 60 52
Firefox 50 50
Dolphin NA 151
UC Browser NA 15

iP
ho

ne
5

iO
S
8.
2 Safari 20 20

Chrome 20 20
Dolphin 20 20
UC Browser 20 20

Table 4.3: Maximum in-browser sampling rates

Interval() and system.setGyroscopeInterval() functions available on Coronal-
abs5. For obtaining the in-browser accelerometer and gyroscope sampling rates pre-
sented in Table 4.3, we implemented our own JavaScript code (see Section 4.3.1). We
observed the amount of data recordable during a second in different mobile operating
systems (mobile OS) and browsers.

As can be seen in Table 4.2, iOS and Android limit the maximum sampling rates
to 100 Hz and 200 Hz, respectively. However, the hardware is capable to sample the
sensor signals at much higher frequencies (up to thousands of Hz) [84]. This reduction
is to save power consumption. Moreover, according to the results of our tests in Table
4.3, we discovered that all currently available versions on different mobile browsers
reduce the sampling rate even further — 3 to 5 times lower, regardless of the engine
(Webkit, Blink, Gecko, etc.) that they use. Our observations on the sampling rates
of different mobile browsers are mostly consistent with the results reported in [84].

The tight restrictions for in-browser access on sensor-related data streams seem to
be put in place as a measure to strike a balance between providing too little data to
be useful, and too much data which can potentially compromise user security. Indeed,
the low-rate and processed device orientation and motion data streams provided in-
browser give the impression of being the minimum needed to make applications such

5docs.coronalabs.com/api/library/system

69

as game control possible in-browser, and might project a sense of security in using
such in-browser access to sensor-related data in practice. However, in this work, for
the first time, we show how user security can be compromised using device motion
and orientation data provided in-browser as a side channel. We demonstrate how
an inactive or even a minimised web page, using JavaScript, is able to listen to and
silently report the device motion and orientation data about a user who is working on
a separate tab or a separate app on the device. Moreover, we show that the reported
data, although restricted in multiple ways as discussed before, is sufficient to recognise
the user’s touch actions such as tapping, holding, scrolling (up, down, left, and right),
and zooming (in and out), and eventually the user’s PINs on the separate tab/app.

Note that neither Android nor iOS explicitly require user permission to access
such sensor data at the time when the browser is installed. Furthermore, none of
the browsers seek user permission or even notify the user when such sensor data is
provided to a JavaScript-enabled web page. Consequently, the user is completely
oblivious to such an attack, that may compromise her security. At the same time,
users increasingly use web browsers on their mobile devices to access services such
as online banking and healthcare services which involve personal and highly sensitive
information. These facts demonstrate the potential damage that may be caused by
attacks such as ours and stress the urgent need for major mobile operating systems
and browser developers, and also W3C standards, to address this problem.

4.2.5 Contributions

In this chapter, we describe the first study on the possibility of attacks compromising
user security via web content, and demonstrate weaknesses in W3C standards, and
also mobile OS and browser policies which leave the door open for such exploits. In
particular, the main contributions of this work are as follows:

• We examine multiple popular browsers on both Android and iOS platforms and
study 1) their sampling frequencies, and 2) their policies in granting permissions
to JavaScript code with respect to access to orientation and motion sensor data.
Based on these examinations, we identify multiple vulnerabilities which could
be potentially exploited in different attack scenarios.

• Based on our findings, we propose TouchSignatures, which includes attacks
that compromise user security through malicious JavaScript code by listening
to orientation and motion sensor data streams. Our attack is designed in two
phases: 1) identifying user’s touch actions (e.g. tap, scroll, hold, and zoom),

70

and 2) identifying user PINs. We demonstrate the practicality of the above
two-phase attack by collecting data from real users and reporting high success
rates using our proof-of-concept implementations.

• Finally, we introduce PINLogger.js, an attack on full 4-digit PINs as opposed to
only single digits. We show that improving the features of our neural network
system by enriching its feature vector would further improve the attack results
and even extend it to full 4-digit PINs.

4.3 Examining mobile browsers

In this section, we report our findings for a range of mobile OSs and mobile browsers
with respect to policies for providing access to device motion and orientation sensor
data to active web content. We developed JavaScript code (see 4.3.1) that listens to
and records the above sensor data streams and carried out tests on different combi-
nations of mobile OSs and browsers. We considered both Android and iOS, and on
each mobile OS we tested a range of widely used browsers.

4.3.1 JavaScript code to access motion and orientation data

The JavaScript code, used in the experiments described in this chapter, sends the
orientation and motion sensor data of the mobile device, if accessible through the
testing browser, to our NoSQL database on mongolab.com. When the event listener
fires, it establishes a socket (by using Socket.IO) between the client and the server
and continuously transmits the sensor data to the database. This part of the code is
presented in Fig 4.1.

1 f u n c t i o n s o c k e t I n i t (){
// i n i t i a l s e t t i n g s

3 s o c k e t= i o . connect () ;
s o c k e t . on (’ connected ’ , f u n c t i o n (){

5 i f (window . D e v i c e O r i e n t a t i o n E v e n t){
window . a d d E v e n t L i s t e n e r (’ d e v i c e o r i e n t a t i o n ’ , f u n c t i o n (even t){

7 va r gamma= even t . gamma ;
va r beta= event . beta ;

9 va r a lpha= even t . a l pha ;
s o c k e t . emit (’OX ’ , gamma) ;

11 s o c k e t . emit (’OY ’ , beta) ;
s o c k e t . emit (’OZ ’ , a l pha) ; }) ; }

13 i f (window . Dev iceMot ionEvent){
window . a d d E v e n t L i s t e n e r (’ d ev i c emot i on ’ , f u n c t i o n (even t){

15 va r a c c e l e r a t i o n= even t . a c c e l e r a t i o n ;
va r gacc= event . a c c e l e r a t i o n I n c l u d i n g G r a v i t y ;

17 va r r o t a t i o n R a t e= even t . r o t a t i o n R a t e ;

71

va r i n t e r v a l= even t . i n t e r v a l ;
19 va r ax= a c c e l e r a t i o n . x ;

va r ay= a c c e l e r a t i o n . y ;
21 va r az= a c c e l e r a t i o n . z ;

va r r a l p h a= r o t a t i o n R a t e . a l pha ;
23 va r r b e t a= r o t a t i o n R a t e . beta ;

va r rgama= r o t a t i o n R a t e . gamma ;
25 va r gx= gacc . x ; va r gy= gacc . y ; va r gz= gacc . z ;

s o c k e t . emit (’MX’ , ax) ;
27 s o c k e t . emit (’MY’ , ay) ;

s o c k e t . emit (’MZ’ , az) ;
29 s o c k e t . emit (’ rA lpha ’ , r a l p h a) ;

s o c k e t . emit (’ rBeta ’ , r b e t a) ;
31 s o c k e t . emit (’ rGama ’ , rgama) ;

s o c k e t . emit (’MGX’ , gx) ;
33 s o c k e t . emit (’MGY’ , gy) ;

s o c k e t . emit (’MGZ’ , gz) ;
35 s o c k e t . emit (’ i n t e r v a l ’ , i n t e r v a l) ; }) ; }

s o ck e t . on (’ d i s c o n n e c t ’ , f u n c t i o n (){
37 a l e r t (" D i s connec ted ! ") ; }) ; }

Figure 4.1: A part of our js code used for sensor reading in our experiments

We provided a help document for a sample data collection process with full details
as presented in Appendix B. This file has links to our data collection code and some
of our datasets which are publicly available via the project page on github 6 and the
author’s homepage.

4.3.2 Popular browsers

We tested several browsers including three major browsers on Android: Chrome,
Firefox, and Opera, and three major browsers on iOS: Safari, Chrome, and Opera.
Other Android browsers were also included in the study due to their high download
counts on the Google Play Store. The full list of tested Android browsers and their
download counts can be seen in Table 4.4. There are a number of browsers with
high numbers of downloads but limited capabilities, e.g. specialised search engine
browsers or email-based browsers. Since these browsers do not support features such
as multi-tab browsing, they are excluded from our study. The iOS App Store does
not report the number of downloads, hence we used a combination of user ratings,
iTunes Charts, and checking the availability of the listed Android browsers on iOS
to discover and select a list of popular browsers on iOS. On both platforms, we only
considered browsers that are available free of charge from the official app stores.

6github.com/maryammjd/Reading-sensor-data-for-fifty-4digit-PINs

72

Name Version #Downloads
Chrome 40.0.2214.89 500,000,000+
Opera Mini Fast Browser 7.6.40234 100,000,000+
Opera browser for Android 20.0.1656.87080 50,000,000+
Firefox 34.0.1 50,000,000+
Dolphin 11.3.4 50,000,000+
UC Browser for Android 10.1.0.527 50,000,000+
UC Browser Mini for Android 9.7.0.520 10,000,000+
UC Browser HD 3.4.3.532 10,000,000+
Baidu Browser (fast and secure) 4.6.0.6 10,000,000+
CM Browser Fast & Secure 5.1.44 10,000,000+
Mobile Classic (Opera-based) N/A 10,000,000+
Photon Flash Player & Browser 4.8 10,000,000+
Maxthon Browser Fast 4.3.7.2000 5,000,000+
Boat Browser for Android 8.2.1 5,000,000+
Next Browser for Android 1.17 5,000,000+
Yandex.Browser 14.12 5,000,000+

Table 4.4: Popular Android web browsers with full capabilities. Browsers with limited
capabilities that do not support multi-tab browsing are excluded. The numbers of
downloads were obtained from the Google Play Store, Jan 2015.

4.3.3 Mobile browser access results

Table 4.5 shows the results of our tests as to whether each browser provides access
to device motion and orientation sensor data in different conditions. The culumn(s)
list the device, mobile OS (mOS), and browser combination under which the test
has been carried out. In case of multiple versions of the same browser, as for Opera
and Opera Mini, we list all of them as a family in one bundle since we found that
they behave similarly in terms of granting access to the sensor data with which we are
concerned. The “yes” indications under “active/same” show that all browsers provide
access to the mentioned sensor data if the browser is active and the user is working on
the same tab as the tab in which the code listening to the sensor data resides. This
represents the situation in which there is perhaps a common understanding that the
code should have access to the sensor data. In all other cases, as we discuss bellow,
access to the sensor data provides a possible security leakage vector through which
attacks can be mounted against user security. In the following we give more details
on these results.

Browser-active iframe access. HTML frames are commonly used to divide a
browser window into multiple segments, each of which can independently load a sepa-

73

Device/OS/Browser Active Bg Locked
same iframe other same other same other

N
ex
us

5/
A
nd

ro
id

5.
0.
1

Chrome yes yes — — — — —
Opera † yes yes — — — — —
Firefox yes yes — — — — —
Dolphin yes yes — — — — —
UC Browser † yes yes yes — — — —
Baidu yes yes yes yes yes yes yes
CM Browser yes yes yes yes yes yes yes
Photon yes yes yes yes — yes yes
Maxthon yes yes yes yes yes yes yes
Boat yes yes yes yes yes yes yes
Next yes yes yes yes yes yes yes
Yandex yes yes — yes — yes —

iP
ho

ne
5/
iO

S
8.
2

Safari yes yes — — — yes —
Chrome yes yes yes — — — —
Dolphin yes yes yes — — — —
UC Browser yes yes — yes — yes —
Baidu Browser yes yes yes yes yes yes yes
Maxthon yes yes yes — — — —
Yandex yes yes yes — — — —
Mercury yes yes yes — — — —

Table 4.5: Mobile browser access to the orientation and motion sensor data on An-
droid and iOS under different conditions. A yes indicates the browser support to
access to these sensors. A † indicates a family of browsers (e.g. Opera and Opera
Mini are considered to be in the same Opera family). A yes (in italics) indicates a
possible security leakage vector. A yes (in italics and underlined) indicates a possible
security leakage vector only in the case when the browser was active before the screen
is locked.

rate web document possibly from a different web origin. We embedded our JavaScript
listener into an HTML frame, namely an iframe, which resided within a web page
at a different web address. The test was to find out whether or not the listener in a
separate segment of the browser window was able to access the sensor data streams if
the user was interacting (via touch actions) with the content within the same tab but
on a different segment of the browser window. Figure 4.2 (left) gives an example on
how an iframe works inside a page. The iframe content is loaded from a different
source and is able to collect sensor data using JavaScript. Through experiments, we
found that all the browsers under test provided access to the sensor data streams in
this case. The findings are listed in the column under “active/iframe” in Table 4.5
indicating such an access.

74

Figure 4.2: Left: An example of a page that includes an iframe (at the bottom of the
page). Right: An example of a pre-opened attack page while the user is working on
a different tab. These two examples demonstrate why iframe and other tab accesses
can be threats to user security.

Browser-active different-tab access. In this test, we had the browser active
and our JavaScript listener opened in a tab while the user was interacting with the
content on a separate tab. Figure 4.2 (right) gives an example of this condition.
Interestingly, we found that in addition to most of the other browsers on Android
and iOS, some major browsers such as Google Chrome on iOS provided different-tab
access to the sensor data streams in this case. The findings are listed in the column
under “active/other” in Table 4.5 indicating browser-active different-tab access.

Browser-in-background access. In this test, we first opened a web page con-
taining our JavaScript listener and then minimised the browser. While the browser
was still running in the background, the user would interact with another app (via
touch actions), or try to unlock the screen by providing a PIN or pattern input. We
ran the test in two cases: 1) the browser had only the tab containing our JavaScript
listener open, or 2) the browser had multiple tabs open including one containing our
JavaScript listener. Surprisingly, we found that a few browsers on both the Android
and iOS provided access to the sensor data streams when the user was interacting with
another app. The findings are listed in the column under “background” in Table 4.5
indicating browser-in-background access.

75

Screen-locked access. In this test, we first opened a web page containing our
JavaScript listener and then locked the screen. We found that a few browsers on both
Android and iOS, including Safari, provided access to the sensor data streams even
when the screen was locked. The findings are listed in the column under “locked” in
Table 4.5 indicating screen-locked access.

We emphasise that none of the tested browsers (on Android or iOS) asked for any
user permissions to access the sensor data when we installed them or while performing
the experiments.

The above findings suggest possible attack vectors through which malicious web
content may gather information about user activities and hence breach user security.
In particular, browser-active iframe access enables active web content embedded in
HTML frames, e.g. posing as an advertisement banner, to discretely record the sensor
data and determine how the user is interacting with other segments of the host page.
Browser-active different-tab access enables active web content that was opened previ-
ously and remains in an inactive tab, to eavesdrop the sensor data on how the user is
interacting with the web content on other tabs. Browser-in-background and screen-
locked access enable active web content that remains open in a minimised browser
to eavesdrop the sensor data on how the user is interacting with other apps and on
user’s actions while carrying the device.

4.4 Identifying user activities

The potential threats to the user security posed by an unauthorised access to the
described sensor data are not immediately clear. Here we demonstrate two simple
scenarios which show that sensitive user information such as phone calls timing and
physical activities can be deduced from device orientation and motion sensor data
obtained from JavaScript.

Users tend to move their mobile devices in distinctive manners while performing
certain tasks on the devices, or by simply carrying them. Examples of the former
include answering a call or taking a photo, while the latter covers their transport
mode. In both cases, an identifiable succession of movements is exhibited by the
device. As a result, a web-based program which has access to the device orientation
and motion data may reveal sensitive facts about users such as the exact timing
information of the start and end of phone calls and that of taking photos. On the other
hand, while the user is simply carrying her device, the device movement pattern may
reveal information about the user’s movement pattern, e.g. if the user is stationary

76

Figure 4.3: Left: Three dimensions (x, y, and z) of acceleration data including gravity
(from the motion sensor). The start time, duration, and end time of four phone calls
are easily recognisable from these measurements. Right: The screenshot of the call
history of the phone during the experiment

in one place, walking, running, on the bus, in a car, or on the train. We present
the results of two initial experiments that we performed on a Nexus 5 using Maxthon
Browser (as an example of a browser that provides access to sensor data even when
the screen is locked).

Phone call timing. In the first experiment, we opened the website carrying our
Javascript code, then locked the screen and put the phone on a desk. The Javascript
code continued to log orientation and motion data while the Android phone was on
a desk. For this experiment, we used another phone to call the Android phone four
times with a few seconds gap between the calls. We picked up the calls and after
a few seconds (without talking) we ended the calls and returned the phone to the
desk. As demonstrated in Fig. 4.3 (left), the 4 distinct phone calls along with their
timing are recognisable from the three dimensions of acceleration (including gravity)
which come from the device motion sensor. For a better comparison, Fig. 4.3 (right)
shows the received call history of the phone during the experiment with their start
times and durations. As shown in this figure, the captured sensor data match the call
history.

User physical activities. In the second experiment, we again locked the phone,
and while holding the phone in a typical pose in hand, we recorded the sensor data

77

Figure 4.4: Three dimensions (x, y, and z) of acceleration data (from the motion
sensor) during 22 s of sitting, 34 s of walking and 25 s of running

during 22 seconds of sitting, 34 seconds of walking and 25 seconds of slow running. We
observed that these activities have visibly distinctive sensor streams. As an example,
Fig. 4.4 shows the acceleration data from a motion sensor measurement. As can be
seen, the mentioned activities are recognisable from each other since they are visibly
different in the sensor measurements.

Our initial evaluations suggest that discovering device movement related informa-
tion such as call times and user’s mode of transport can be easily implemented. How-
ever, as we will explain, distinguishing user PINs is a lot harder as the induced sensor
measurements are only subtly different. In the following sections we will demonstrate
that, with advanced machine learning techniques, we are able to remotely infer the
entered PINs on a mobile with high accuracy.

4.5 TouchSignatures: Identifying touch actions and
PIN digits

To show the feasibility of our security attack, in the following sections, we will demon-
strate that, with advanced machine learning techniques, we are able to distinguish
the user’s touch actions and PINs with high accuracy when the user is working with

78

Figure 4.5: TouchSignatures overview

a mobile phone.

4.5.1 Overview

Each user touch action, such as clicking, scrolling, and holding, and even tapping
characters on the mobile soft keyboard, induces device orientation and motion traces
that are potentially distinguishable from those of other touch actions. The identifica-
tion of such touch actions may reveal a range of activities about user interaction with
other webpages or apps, and ultimately PINs. A user’s touch actions may reveal what
type of web service the user is using as the patterns of user interaction are different
for different web services: e.g. users tend to mostly scroll on a news web site, while
they tend to mostly type on an email client. On known web pages, a user’s touch
actions might reveal which part of the page the user is more interested in. Combined
with identifying the position of the click on a page, which is possible by using the
differing signatures produced by clicking different parts of the screen, the user’s input
characters could become identifiable. This in turn reveals what the user is typing
on a page by leveraging the redundancy in human languages, or it may dramatically
decrease the size of the search space to identify user passwords.

We introduce TouchSignatures, which distinguishes user touch actions and learns
PIN digits in two phases. Figure 4.5 shows a top level view of the two phases of
TouchSignatures. The input to the TouchSignatures system is a feature vector, which
we will explain later, and the output is the type of the touch action (click, hold, scroll,
and zoom) in phase one and the PIN digits (0 to 9) in phase two. This is the first
attack in the literature that compromises user security through JavaScript access to
sensor data.

Bearing in mind that this is only the first investigation of JavaScript access to
sensor data on mobile devices, we limit the scope of our investigation in the following
ways. First, we only identify digital PINs rather than alphanumeric passwords. We

79

expect it to be possible to extend our work to recognize the full alphanumeric soft
keyboard, but the classification techniques would probably be different. Second, in
the proof-of-concept implementation of the attack, we focus on working with active
web pages, which allows us to easily identify the start of a touch action through the
JavaScript access to the onkeydown event. A similar approach is adopted in other
works (e.g. TouchLogger [26] and TapLogger [115]). In a general attack scenario, a
more complex segmentation process is needed to identify the start and end of a touch
action. This may be achieved by measuring the peak amplitudes of a signal, as done
in [88]. However, the segmentation process will be more complex, and we leave that
to future work.

4.5.2 In-browser sensor data detail

The attack model we consider is malicious web content spying on a user via JavaScript.
The web content is opened as a web page or embedded as an HTML frame in a segment
of a web page. The user may be interacting with the browser or any other app given
that the browser is still running in the background. We assume that the user has
access to the Internet as reasonably implied by the user launching the browser app.
TouchSignatures’s client-side malicious web content collects and reports sensor data
to a server which stores and processes the data to identify the user’s touch actions.

The sensor data measurements available as per the W3C specifications [112], i.e.
device motion and orientation, as follows:

• device orientation which provides the physical orientation of the device, ex-
pressed as three rotation angles: alpha, beta, and gamma, in the device’s local
coordinate frame,

• device acceleration which provides the physical acceleration of the device, ex-
pressed in Cartesian coordinates: x, y, and z, in the device’s local coordinate
frame,

• device acceleration-including-gravity which is similar to acceleration except that
it includes gravity as well,

• device rotation rate which provides the rotation rate of the device about the
local coordinate frame, expressed as three rotation angles: alpha, beta, and
gamma, and

80

• interval which provides the constant rate with which motion-related sensor read-
ings are provided, expressed in milliseconds.

The device’s local coordinate frame is defined with reference to the screen in its
portrait orientation: x is horizontal in the plane of the screen from left of the screen
towards right; y is vertical in the plane of the screen from the bottom of the screen
towards up; and z is perpendicular to the plane of the screen from inside the screen
towards outside. Alpha indicates device rotation around the z axis, beta around the
x axis, and gamma around the y axis, all in degrees.

To design TouchSignatures, we employ the supervised learning approach, i.e. train
a machine learning system based on labelled data collected from the field. Consistent
with the attack model discussed above, we developed a suite of applications including
a client-side JavaScript program in a web page that records the sensor data and
a server-side database management system (DBMS) that captures and stores user
sensor data in real-time. Subsequently, we recruited different groups of users and
collected sensor data samples for different touch actions and PINs, using our client-
side web page that we developed for data collection purposes, while in real-time
the captured sensor data was reported to and stored at our server-side database.
Eventually, we extracted a set of descriptive features from the sensor data and trained
a machine learning system for TouchSignatures which includes multiple classifiers. In
the following, we give the details of our application implementation, experiments,
feature extraction, and training algorithms.

4.5.3 Application implementation

Client side. On the client side, we developed a listener, which records sensor data
streams, and a web page interface, which is used to collect labelled data from the
subjects in our experiment. The implementation is in JavaScript. The listener mainly
includes the following components: an event listener which is fired on page load
and establishes a socket connection between the client and server using Socket.IO7,
an open source JavaScript library supporting real-time bidirectional communication
which runs in browser on the client side; and two event listeners on the window
object, fired on device motion and device orientation Document Object Model (DOM)
events (called devicemotion and deviceorientation), which send the raw sensor
data streams to the server through the established socket. The sensor data streams

7socket.io

81

Figure 4.6: The client side GUIs presented to the user during data collections (left for
Touch actions, and centre for PINs), and the data received at the server side (right)

are sent continuously until the socket is disconnected, e.g. when the tab that loads
the listener is closed. The code is presented in 4.3.1.

The (user) interface sits on top of the listener and is used for data collection.
We developed an HTML 5 compliant page including JavaScript using bootstrap8

(a popular framework for web app creation). Data collection occurs in two rounds
(for touch actions and PINs) and multiple steps. In each step the user is instructed
to perform a single touch action or enter a 4-digit PIN. Sensor data from the touch
actions and PINs are collected from the user successively. The label describing the
type of the task or the digits in the PIN and timing information for the tasks is
reported to the server. The GUI includes a concise instruction to the user as to what
the user needs to do at each step. Snapshots of the GUIs presented to the users in
the two different phases are illustrated in Figure 4.6 (left, and centre). More details
can be found in Sections 4.6.2 and 4.7.2.

Server side. On the server side, we developed a server to host the data and handle
communications, and a database to handle the storage of the captured sensor data
continuously. The server is implemented using Node.js9, which is capable of support-
ing data intensive applications in real-time. The Socket.IO JavaScript library sits on
Node.js and handles the communications with the client; see Figure 4.6 (right). For
the DBMS we have opted to implement a NoSQL database on MongoLab10. NoSQL

8getbootstrap.com
9nodejs.org

10mongolab.com

82

databases are document-oriented, rather than relational. They are known for being
capable handling high-speed streams of data in real-time. MongoLab is a cloud-based
database-as-a-service NoSQL database management system (DBMS).

4.5.4 Feature extraction

In this section, we discuss the features we extract to construct the feature vector which
subsequently will be used as the input to the classifier. Various type of features are
proposed by researchers in the literature including time domain and frequency domain
features (e.g. see [17,84,85,92,95]). After a few set of informal experiments and testing
some of the features proposed by previous works, we decided to consider both time
domain and frequency domain features as we explain here. The captured data include
12 sequences: acceleration, acceleration-including-gravity, orientation, and rotation
rate, with three sequences for each sensor measurement. Before extracting features, to
cancel out the effect of the initial position and orientation of the device, we subtract
the initial value in each sequence from subsequent values in the sequence.

Time domain features. In the time domain, we consider both the raw captured
sequences and the (first order) derivative of each sequence. The rationale is that
each sequence and its derivative include complementary information on the touch
action. To calculate the derivative, since we have low frequency sequences, we employ
the basic method of subtracting each value from the value appearing immediately
afterwards in the sequence. That is, if the sequence values are represented by vi, the
derivative sequence is defined as di = vi − vi−1.

For the device acceleration sequences, we furthermore consider the Euclidean dis-
tance between consecutive readings as a representation of the change in device accel-
eration. This is simply calculated as the following sequence:

ci =
√

(xi − xi−1)2 + (yi − yi−1)2 + (zi − zi−1)2

This gives us a sequence which we call the device acceleration change sequence, or
DAC sequence for short.

First we consider basic statistical features for all sequences, their derivative, and
the DAC sequence. These features include maximum, minimum, and mean (average)
of each sequence and its derivative, plus those of the DAC sequence. We also consider
the total energy of each sequence and its derivative, plus that of the DAC sequence,
calculated as the sum of the squared sequence values, i.e. E = ∑

v2
i . Here, in total

83

we get 102 features for each sensor reading in the time domain. Later we add further
features to the input of the first phase (touch actions) in Section 4.6.3.

Frequency domain features. To distinguish between sequences with different fre-
quency contents, we applied the Fast Fourier transform (FFT) [25] of the sequences.
We calculated the maximum, minimum, mean, and energy of the FFT of each se-
quence and consider them as our frequency domain features, i.e. a total of 48 frequency
domain features.

4.5.5 Classification method

To decide which classification method to apply to our data, we implemented various
classification algorithms to assess their efficiency. Our test classifiers included dis-
criminant analysis, naive Bayes, classification tree, kNN, and ANN [36]. Different
classifiers work better in the different phases of TouchSignatures (touch actions and
PINs). The chosen classifiers in each phase are presented in Sections 4.6.3 and 4.7.3.
In both phases, we consider a generic approach and train our algorithms with the
data collected from multiple users. Hence, our results are not user-dependent.

4.6 Phase 1: Identifying touch actions

In this section we present the first phase of TouchSignatures that is able to distinguish
user touch actions given access to the device orientation and motions sensor data
provided by a mobile browser.

4.6.1 Touch actions set

We consider a set of 8 commonly used touch actions through which users interact
with mobile devices. These actions include: click, scroll (up, down, right, left), zoom
(in, out), and hold. They are presented in Table 4.6 along with their corresponding
descriptions. Our experiments show that by applying machine learning techniques
these actions are recognisable from their associated sensor measurements.

4.6.2 Experiments

We collected touch action samples from 11 users (university staff and students) using
Google Chrome on an iPhone 5. We presented each user with a brief description of
the project as well as the instruction to perform each of the 8 touch actions (details

84

Touch Action Description
Click Touching an item momentarily with one finger
Scroll Touching continuously and simultaneously sliding
– up, down, right, left in the corresponding direction
Zoom Placing 2 fingers on the screen and sliding them
– in, out apart or toward each other, respectively
Hold Touching continuously for a while with one finger

Table 4.6: The description of different touch actions users perform on the touch screen
of a mobile device.

in Appendix C). The users were provided with the opportunity of trials before the
experiment to get comfortable using the web browser on the mobile phone. They
also could ask any question before and during the experiments. We asked the user
to remain sitting on a chair in an office environment while performing the tasks.
The provided GUI instructed the user to perform a single touch action in each step,
collecting 5 samples for each touch action in successive steps with a three-second
wait between steps. During the experiment, the user was notified of her progress in
completing the expected tasks by the count of touch actions in an overall progress
bar, as shown in Figure 4.6 (left).

Data were collected from each user in two settings: one-hand mode and two-hand
mode. In the one-hand mode, we asked the users to hold the phone in one hand, and
use the same hand’s thumb for touching the screen. In the two-hand mode, we asked
them to use both hands to perform the touch actions. With these two settings, we
made sure that our collected data set is a combination of different modes of phone
usage. Note that zoom in/out actions can only be performed in the two-hand mode.
Still, we distinguish two postures: 1) when a user holds the phone using one hand
and performs zoom in/out actions by using the thumb of that hand and any finger of
the other hand, and 2) when a user holds the phone using both hands and performs
zoom in/out by using the thumbs of both hands. We collected data for both postures.

We had 10 samples of each of the following actions: click, hold, scroll down, scroll
up, scroll right and scroll down. Five samples were collected in the one-hand mode
and 5 in the two-hand mode. In addition, we collected 10 samples for each of the
following two actions: zoom in and zoom out. All 10 samples were collected in the
two-hand mode, with half for each of the two postures. Each user’s output was a set
of 80 samples. With 11 users, we ended up with 880 samples for our set of touch
actions. The experiment took each user on average about 45 minutes to complete.
Each user received a £10 Amazon voucher for their contribution to the work.

85

4.6.3 Classification algorithm

Before discussing the algorithms used in this phase, we add another 14 features to the
TouchSignatures’ time domain features. To differentiate between touch actions with
a longer “footprint” and those with a shorter footprint, we consider a feature which
represents the length (i.e. number of readings) of each dimension of the acceleration
and acceleration-including-gravity sequences that contain 70% of the total energy of
the sequence. The reason behind this choice is that, based on our observations, while
the length of some the touch actions were similar, the length of the energised parts
were different. To calculate this length, we first find the “centre of energy” of the
sequence as follows: CoE = ∑ (i v2

i)/E, where E is the total energy as calculated
before. We then consider intervals centred at CoE and find the shortest interval
containing 70% of the total energy of the sequence. Therefore, considering both time
domain and frequency domain features from Section 4.5.4 in addition to the new ones,
TouchSignatures’ final vector for phase one has 164 features in total.

Our evaluations show that the k-nearest neighbour (k-NN) algorithm [30] gives the
best overall identification rate for our data. k-NN is a type of lazy learning in which
each object is assigned to the class to which the majority of its k nearest neighbours
are assigned, i.e. each feature vector is assigned to the label of the majority of the
k nearest training feature vectors. A distance function is used to decide the nearest
neighbours. The most common distance function is the Euclidean distance, but there
are other distance functions such as the city block distance (a.k.a. Manhattan or
taxicab distance). For two given feature vectors (f1, f2, . . . , fn) and (f ′1, f ′2, . . . , f ′n),
the Euclidean distance is defined as

√∑ (fi − f ′i)2 and the city block distance as∑ |fi − f ′i |.
Based on the results of our evaluations, we decide to use two classifiers in two

stages. In the first stage, the data is fed to the first classifier which is a 1-NN
classifier using Euclidean distance. This classifier is responsible for classification of
the input data into 5 categories: click, hold, zoom in, zoom out, and scroll. In the
second stage, if the output of the first stage is scroll, then the data is fed into the
second classifier which is a 1-NN classifier using city block distance. This classifier is
responsible for classification of a scroll into one of the 4 categories: scroll up, scroll
down, scroll right, and scroll left. We used a 10-fold cross validation approach for all
the experiments.

86

Touch Click Hold Scroll Zoom Zoom
action in out
Click 78.18% 5.45% 2.73% 0% 0%
Hold 10.90% 88.18% 0.68% 1.81% 1.82%
Scroll 7.27% 2.72% 95.91% 0.90% 0.90%
Zoom in 0% 1.82% 0.23% 71.82% 20.90%
Zoom out 3.64% 1.82% 0.45% 25.45% 76.36%
Total 100% 100% 100% 100% 100%

Table 4.7: Confusion matrix for the first classifier for different touch actions

4.6.4 Results

In this section we show the results from the cross validation of the collected user data
by presenting the identification rates and confusion matrices for both classifiers. As
mentioned before, in our experiments, we input the data collected from all users to
our classifiers. Therefore, these results are the outputs of our classifiers for multiple
users. In a 10-fold cross validation approach, the classifier randomly segments the
input data into 10 parts, trains the system with 9 parts of it, and tests the system with
the remaining part. This process is repeated 10 time for each segment separately, and
the results is the average of these 10 tests. Considering all scrolls (up, down, right,
and left) in one category, the overall identification rate is 87.39%.

Table 4.7 shows the confusion matrix for our first classifier. In each cell, the
matrix lists the probability that the classifier correctly labels or mislabels a sample
in a category. The actual and classified categories are listed in the columns and rows
of the table, respectively. As shown in Table 4.7, the worst results are for the pairs of
Click and Hold (10.9% and 5.45%), and also pairs of Zoom in and Zoom out (25.45%
and 20.9%). This is expected since click and hold are very similar actions: and hold
is basically equivalent to a long click. Zoom in and zoom out also require the user
to perform similar gestures. Another significant value is the classifier’s confusion
between click and scroll (7.27%, 2.73%), which again is not surprising since scroll
involves a gesture similar to a click. Apart from the mentioned cases, the rest of the
confusion probabilities are nearly negligible.

Table 4.8 shows the identification rates and confusion matrix for our second clas-
sifier, respectively. Overall, our second classifier is able to correctly identify the scroll
type with a success rate of 61.59%. The classifier mostly mislabels the pairs (down,
up), and (right, left), which is somehow expected since they involve similar gestures.

The obtained results show that attacks on user privacy and security by eavesdrop-
ping sensor data through web content are feasible and are able to achieve accurate

87

Touch Scroll Scroll Scroll Scroll
action down up right left
Scroll down 57.27% 19.09% 12.73% 4.55%
Scroll up 26.36% 69.09% 16.36% 6.36%
Scroll right 9.09% 4.55% 48.18% 17.27%
Scroll left 7.27% 7.27% 22.73% 71.82%
Total 100% 100% 100% 100%

Table 4.8: Confusion matrix for the second classifier for different scroll types

results. Further security risks could be imposed to the users if the attack tries to
identify what character has been pressed on the touch screen. In phase 2 of TouchSig-
natures, we show that it is indeed possible to succeed such an attack by identifying
the digits entered for the user’s PINs.

4.7 Phase 2: Identifying PIN digits

In this section, we present the second phase of TouchSignatures which is able to
identify user PINs based on the motion and orientation sensor data provided by
JavaScript code. As mentioned in Section 4.2, classifying characters entered on a
touch screen virtual keyboard has already been explored by other researchers based
on the sensor data accessible through native apps. In this chapter, for the first time,
we show that it is also possible to achieve the same result using the sensor data
obtained via JavaScript, despite the fact that the available frequency is much lower
(see Table 4.3).

In this phase, we present the results of our attack on both Android (Nexus 5) and
iOS (iPhone 5) devices and we describe the training of two different classifiers (neural
networks) for them. Note that JavaScript is able to obtain specific information about
a mobile device. For example the browser platform and the screen size are accessible
via Navigator DOM11 and Screen DOM12 objects, respectively. Even more, by using
Navigator userAgent Property13, the brand of the device (along with some other
information) is accessible. The obtained values for the tested devices are summarized
in Table 4.9. Hence, though the experiments are performed using specific mobile
devices, the results have general implications on all devices.

11w3schools.com/js/js_window_navigator.asp
12w3schools.com/js/js_window_screen.asp
13https://www.w3schools.com/jsref/prop_nav_useragent.asp

88

Attribute iPhone 5 Nexus 5
navigator.platform iPhone Linux armv7l
screen.width 320 pixs 360 pixs
screen.height 568 pixs 640 pixs
navigator.userAgent iPhone 5 Nexus 5

Table 4.9: The device information accessible via JavaScript

4.7.1 Digit set

We consider a numerical keypad and leave the attack on the full keyboard as future
work. A numerical keyboard includes a set of 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and
9, and a few more characters such as -, ., and #, depending on the mobile OS. For
example Figure 4.6 (centre) shows a numerical keypad on an Android device. The
idea is to identify the pressed digits in a PIN. Hence from a top view, once the first
phase of TouchSignatures distinguishes that the user is “clicking” digits on a soft
keyboard, the second phase is started in order to obtain the entered digits.

4.7.2 Experiments

Similar to the first experiment, we asked a group of users (university student and
staff) including 12 users to participate in our experiment in two parts. The first part
was on an iPhone 5 and the second part was on a Nexus 5, both using Chrome. After
giving a brief description about the study to the users, they were presented with a
simple GUI (Figure 4.6, centre) asking them to enter 25 4-digit PINs on both devices.
The 4-digit PINs were designed in a way that each number was exactly repeated 10
times in total. After entering each 4-digit PIN, the user could press a next button
to go to the next PIN. They also could keep track of their progress as the number of
PINs they have entered so far was shown on the page.

In this experiment, we asked the users to remain sitting on a chair and hold the
phone in the way that they felt comfortable. The collected data contained a mixture
of one-hand mode and two-hand mode records. In the one-hand mode, the user pressed
the digits with one of the fingers of the same hand with which they were holding the
phone. In the two-hand mode, they pressed the digits with either the free hand, or
both hands. We had 10 samples of each digit for each user. Since we had 10 digits,
each user’s output was a set of 100 samples for each device. With 12 users, the input
of our classifiers was 1200 records for iPhone 5 and 1200 records for Nexus 5. It
took each user 2 minutes on average to complete each part of the experiment with

89

1 (54%) 2 (64%) 3 (63%) -
4 (81%) 5 (67%) 6 (73%) .
7 (57%) 8 (74%) 9 (79%) X

∗# 0 (73%) English >

1 (70%) 2 (50%) 3 (59%)

4 (70%) 5 (46%) 6 (56%)

7 (53%) 8 (48%) 9 (67%)

+ ∗# 0 (41%) >

Nexus 5 (Ave. iden. rate: 70%) iPhone 5 (Ave. iden. rate: 56%)

Table 4.10: Identification rates of digits in Nexus 5 and iPhone 5

preparation and explanations. It took each user less than 10 minutes to finish the
whole experiment.

4.7.3 Classification algorithm

After performing some informal analysis, among different classification methods (clas-
sification tree, kNN, ANN, etc.), we observed that ANN (Artificial Neural Network)
works significantly better than other classifiers on our dataset. A neural network sys-
tem for recognition is defined by a set of input neurons (nodes) which can be activated
by the information of the intended object to be classified. The input can be either
raw data, or pre-processed data from the samples. In our case, we have preprocessed
our samples by building a feature vector as described in Section 4.5.4. Therefore, as
input, TouchSignatures’ ANN system receives a set of 150 features for each sample.

A neural network can have multiple layers and a number of nodes in each layer.
Once the first layer of the nodes receives the input, ANN weights and transfers the
data to the next layer until it reaches the output layer which is the set of the labels
in a classification problem. For better performance and to stop training before over-
fitting, a common practice is to divide the samples into three sets: training, validation,
and test sets.

We trained a neural network with 70% of our data, validated it with 15% of the
records and tested it with the remaining 15% of our data set. We trained our data
by using pattern recognition/classifying network with one hidden layer and 10,000
nodes. Pattern recognition/classifying networks normally use a scaled conjugate gra-
dient (SCG) back-propagation algorithm for updating weight and bias values in train-
ing. SCG [87] is a fast supervised learning algorithm based on conjugate directions.
The results of the second phase of TouchSignatures are obtained according to these
settings.

90

1 (54%) (8%) (0%)

(15%) (0%) (0%)

(15%) (8%) (0%)

- (0%) -

(8%) 2 (64%) (12%)

(0%) (12%) (0%)

(0%) (4%) (0%)

- (0%) -

(10%) (5%) 3 (63%)

(0%) (0%) (5%)

(5%) (5%) (0%)

- (5%) -

-

(0%) (0%) (6%)

4 (81%) (0%) (6%)

(6%) (0%) (0%)

- (0%) -

(7%) (27%) (0%)

(0%) 5 (67%) (0%)

(0%) (0%) (0%)

- (0%) -

(0%) (0%) (7%)

(0%) (7%) 6 (73%)

(0%) (0%) (13%)

- (0%) -

.

(7%) (0%) (14%)

(14%) (7%) (0%)

7 (57%) (0%) (0%)

- (0%) -

(0%) (0%) (0%)

(0%) (0%) (5%)

(5%) 8 (74%) (5%)

- (11%) -

(0%) (0%) (0%)

(0%) (7%) (3%)

(0%) (3%) 9 (79%)

(- (7%) -

x

∗#

(0%) (0%) (0%)

(7%) (0%) (7%)

(0%) (7%) (7%)

- 0 (73%) -

English >

Table 4.11: Confusion matrices in Nexus 5

4.7.4 Results

Here, we present the output of the suggested ANN for Nexus 5 and iPhone 5, sepa-
rately. Table 4.10 shows the accuracy of the ANN in classifying the digits presented in
two parts for the two devices. The average identification rates for Nexus 5 and iPhone
5 are 70% and 56%, respectively. In general, the resolution of the data sequences on
Android was higher than iOS. We recorded about 37 motion and 20 orientation mea-
surements for a typical digit on Android, while there were only 15 for each sequence
on iOS. This can explain the better performance of TouchSignatures on Android than
on iOS. It is worth mentioning that attacks on iPhone 5 actually are the ones with
the lowest sampling rates that we observed in Table 4.3 (20Hz for both motion and
orientation). Interestingly, even with readings on the lowest available sampling rate,
the attack is still possible.

In Tables 4.11 and 4.12, we show the identification results of each digit (bold
in each cell), as well as confusion matrices on both devices. The general forms of
the tables are according to Android and iOS numpads. As demonstrated, each digit
is presented with all possible misclassifiable digits. As it can be observed, most
misclassified cases are either in the same row or column, or in the neighbourhood of
each expected digit.

Note that the probability of success in finding the actual digit will significantly
improve with more tries at guessing the digit. In fact, while the chance of the attack

91

1 (70%) (0%) (4%)

(4%) (0%) (0%)

(4%) (17%) (0%)

- (0%) -

(0%) 2 (50%) (0%)

(17%) (11%) (5%)

(5%) (11%) (0%)

- (0%) -

(0%) (6%) 3 (59%)

(0%) (6%) (12%)

(0%) (6%) (6%)

- (6%) -

(5%) (10%) (5%)

4 (70%) (0%) (0%)

(0%) (5%) (0%)

- (5%) -

(8%) (8%) (0%)

(15%) 5 (46%) (8%)

(8%) (0%) (8%)

- (0%) -

(0%) (6%) (0%)

(0%) (19%) 6 (56%)

(6%) (6%) (0%)

- (6%) -

(13%) (0%) (13%)

(0%) (0%) (7%)

7 (53%) (0%) (0%)

- (13%) -

(0%) (10%) (0%)

(0%) (5%) (10%)

(0%) 8 (48%) (5%)

- (24%) -

(0%) (0%) (10%)

(0%) (5%) (0%)

(10%) (5%) 9 (67%)

- (5%) -

+ ∗#

(0%) (6%) (0%)

(12% (0%) (12%)

(0% (15%) (12%)

- 0 (41%) -

>

Table 4.12: Confusion matrices in iPhone 5

Digits 0 1 2 3 4 5 6 7 8 9
Attempt No.

First 73% 54% 64% 63% 81% 67% 73% 57% 74% 79%
Second 80% 69% 76% 74% 88% 93% 87% 71% 84% 86%
Third 87% 85% 88% 79% 94% 100% 93% 86% 89% 93%
Forth 93% 92% 96% 84% 100% 100% 100% 93% 98% 97%
Fifth 100% 100% 100% 89% 100% 100% 100% 100% 100% 100%
Sixth 100% 100% 100% 95% 100% 100% 100% 100% 100% 100%
Seventh 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.13: Identification rate based on the number of guesses that the attacker makes
on Nexus 5 for each digit separately

succeeding is relatively good on the first guess, it increases on further guesses as shown
in Tables 4.13 and 4.14. Figure 4.7 shows the average identification rates based on the
number of guesses in Nexus 5 and iPhone 5 compared to random guessing. As shown
on the figure, TouchSignatures can predict the correct touched digits on average in
almost 90% of the cases on Nexus 5 and 80% of the cases on iPhone 5 in the third
guess.

The high identification rates prove the feasibility of the suggested attack by
TouchSignatures and show that it is practical for a remote attacker to significantly
reduce the search space for the user’s PIN using JavaScript code.

92

Digits 0 1 2 3 4 5 6 7 8 9
Attempt No.

First 41% 70% 50% 59% 70% 46% 56% 53% 48% 67%
Second 56% 87% 67% 71% 80% 62% 75% 67% 71% 76%
Third 69% 91% 78% 76% 85% 69% 81% 80% 81% 86%
Forth 81% 96% 89% 82% 90% 78% 88% 93% 90% 90%
Fifth 94% 100% 94% 88% 95% 85% 94% 100% 95% 95%
Sixth 100% 100% 100% 94% 100% 92% 100% 100% 100% 100%
Seventh 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.14: Identification rate based on the number of guesses that the attacker makes
on iPhone 5 for each digit separately

Work Sensor(s) Rate Access
TapLogger [115] Acc, Orientation 36.4% in-app
TouchLogger [26] Orientation 71.5% in-app
TouchSignatures Motion, Orientation 77.0% in-browser

Table 4.15: Identification rate of phase two of TouchSignatures (PIN) under the
similar test condition as in-app attacks.

4.7.5 Comparison with related work

In this section we compare the second phase of TouchSignatures, the identification
of PIN digits, with previous in-app sensor-based PIN identifiers. Among the work
described in Table 4.1, we choose to compare TouchSignatures with TouchLogger [26],
and TapLogger [115], since they use similar sensors for identifying digits on soft
numerical keyboards.

Taplogger performs its experiments on Android devices and identifies 36.4% of the
digit positions in the first attempt by using accelerometer and orientation sensors. On
the other hand, TouchLogger is able to identify the digits with 71.5% accuracy on an
Android device by using device orientation.

TouchLogger collects around 30 samples per digit from one user, while Taplogger
has the input of one user for 20 random 16-digit sequences in 60 rounds. However,
we noticed that in these works the data has been collected from only one user. In
general, data obtained form a single user are more consistent than those collected
from a diversified group of users. To verify this, we performed another experiment
by simulating the same test condition as described above with the Android device
(Nexus 5) and asked only one user to repeat the experiment 3 times. We collected
30 samples for each digit. The results are presented in Table 4.15. As expected,
the identification rate of TouchSignatures increased to 77% in this situation, which is

93

Figure 4.7: Average identification rate based on the number of attempts on Android
and iOS vs. random guess

better than the results reported in TapLogger and TouchLogger.
Our results demonstrate the practicality of distinguishing the user’s PIN by listen-

ing to sensor data via JavaScript code. Consequently, TouchSignatures highlights the
limitations of the security policies in mobile operating systems and web browsers. As
a result, urgent modifications are needed in updating the security policies for granting
permissions to mobile web browsers to access sensor data.

4.8 PINLogger.js: Identifying full 4-digit PINs

In this section, we describe an advanced attack on user’s PINs by introducing PIN-
logger.js. Similar to previous section, we consider an attacker who wants to learn
the user’s PIN tapped on a soft keyboard of a smartphone via side channel informa-
tion. However, in opposite to single digits, in this section we consider 4-digit PINs
since they are popular passwords used by users for many purposes such as unlocking
phone, SIM PIN, NFC payments, bank cards, other banking services, gaming, and
other personalised applications such as healthcare, insurance, etc.

In order to uncover when the user enters his PIN, we need to classify his touch

94

Figure 4.8: Different input methods used by the users for PIN entrance

actions such as click, scroll, and zoom. We already have shown in TouchSignatures
[81, 82] that with the same sensor data and by applying classification algorithms, it
is possible to effectively identify user’s touch actions. Here, we consider a scenario
after the touch action classification. In other words, our attacker already knows that
the user is entering his PIN. Similar to TouchSignatures, unless explicitly noted, we
consider a generic attack scenario which is not user-dependent. This means that we
do not need to train our machine learning algorithm with the same user as the subject
of the attack. Instead, we have a one-round training phase with data from multiple
voluntary users. This approach has the benefit of not needing to trick individual users
to collect data for training.

4.8.1 PINs set

Following the approach of Aviv et al. [17] and Spreitzer [100], we consider a set of 50
fixed PINs with uniformly distributed digits. We created these PINs in a way that all
digits are repeated about the same time (around 20 times). As mentioned before, the
data collection code is publicly available via the project’s github page. The technical
details of the data collection process and the collected data are publicly available
too14 (see Appendix B). These PINs include: 5113, 3268, 2917, 8460, 8508, 2427,
7497, 8030, 1887, 3695, 7203, 2486, 2641, 4051, 9422, 9336, 6034, 5586, 1095, 2098,
5159, 6491, 7107, 6343, 5779, 6875, 9431, 4654, 8331, 8160, 4971, 2274, 6138, 6575,
9602, 9951, 9496, 1035, 2278, 9140, 6258, 2880, 7772, 1096, 4303, 2516, 3484, 3200,
and 1986.

14github.com/maryammjd/Reading-sensor-data-for-fifty-4digit-PINs

95

4.8.2 Experiments

Similar to our implementation in the previous phases, we implemented a web page
with embedded JavaScript code in order to collect the data from voluntary users. On
the client side, we developed a GUI in HTML5 which shows our 4-digit PINs to the
users and activates a numpad for them to enter the PINs as shown in Figure 4.8.

We conducted our user studies using Chrome on an Android device (Nexus 5). The
experiments and results are based on the collected data from 10 users, each entering all
the 50 4-digit PINs for 5 times. Our voluntary participants were university students
and staff and performed the experiments at university offices. We simply explained
to them that all they needed was to enter a few PINs shown in a web page.

In relation to the environmental setting for the data collection, we asked the users
to remain sitting in a chair while working with the phone. We did not require our
users to hold the phone in any particular mode (portrait or landscape) or work with
it by using any specific input method (using one or two hands). We let them choose
their most comfortable posture for holding the phone and working with it as they do
in their usual manner. While watching the users during the experiments, we noticed
that all of our users used the phone in the portrait mode by default. Users were either
leaning their hands on the desk or freely keeping them in the air. We also observed
the following input methods used by the users.

• Holding the phone in one hand and entering the PIN with the thumb of the
same hand (Figure 4.8, left).

• Holding the phone in one hand and entering the PIN with the fingers of the
other hand (Figure 4.8, centre).

• Holding the phone with two hands and entering the PIN with the thumbs or
fingers of both hands (Figure 4.8, right).

In the first two cases, users exchangeably used either their right hands or left
hands in order to hold the phone. In order to simulate a real world data collection
environment, we took the phone to each user’s workspace and briefly explained the
experiment to them, and let them complete the experiment without our supervision.
All users found this way of data collection very easy and could finish the experiments
without any difficulties.

96

4.8.3 Feature extraction

In order to build the feature vector as the input to our classifier algorithm, we con-
sider both time domain and frequency domain features. We improve our suggested
feature vectors in previous section by adding some more complex features such as the
correlation between the measurements. This addition improves the results, as we will
discuss in Section 4.8.5. As discussed before, 12 different sequences obtained from
the collected data include orientation (ori), acceleration (acc), acceleration-including-
gravity (accG), and rotation rate (rotR) with three sequences (either x, y and z, or
α, β and γ) for each sensor measurement. As a pre-processing step and in order to
remove the effect of the initial position and orientation of the device, we subtract the
initial value in each sequence from subsequent values in the sequence.

We use these pre-processed sequences for feature extraction in time domain di-
rectly. In frequency domain, we apply the Fast Fourier transform (FFT) on the
pre-processed sequences and use the transformed sequences for feature extraction. In
order to build our feature vector, first we obtain the maximum, minimum, and aver-
age values of each pre-processed and FFT sequences. These statistical measurements
give us 3 × 12 = 36 features in the time domain, and the same number of features
in the frequency domain. We also consider the total energy of each sequence in both
time and frequency domains calculated as the sum of the squared sequence values,
i.e. E = ∑

v2
i which gives us 24 new features.

The next set of features are in time domain and are based on the correlation
between each pair of sequences in different axes. We have 4 different sequences; ori,
acc, accG, and rotR, each represented by 3 measurements. Hence, we can calculate
6 different correlation values between the possible pairs; (ori, acc), (ori, accG), (ori,
rotR), (acc, accG), (acc, rotR), and (accG, rotR), each presented in a vector with
3 elements. We use the Correlation coefficient function in order to calculate the
similarity rate between the mentioned sequences. The correlation coefficient method
is commonly used to compare the similarity of the shapes of two signals (e.g. [19]).
Given two sequences A and B and Cov(A,B) denoting covariance between A and B,
the correlation coefficient is computed as below:

RAB = Cov(A,B)√
Cov(A,A) · Cov(B,B)

(4.1)

The correlation coefficient of two vectors measures their linear dependence by
using covariance. By adding these new 18 features, our feature vector consists of a
total of 114 features.

97

4.8.4 Classification algorithm

Similar to the previous section, we apply a supervised machine learning algorithm
by using an ANN system to solve this classification problem. The input of an ANN
system could be either raw data, or pre-processed data from the samples. In our case,
we have preprocessed our samples by building a feature vector as described before.
Therefore, as input, our ANN receives a set of 114 features for each sample. As
explained before, we collected 5 samples per each 4-digit PIN from 10 users. While
reading the records, we realised that some of the PINs have been entered wrongly by
some users. This was expected since each user was required to enter 250 PINs. Since
we recorded both expected and entered PINs in our data collection, we could easily
identify these PINs and exclude them from our analysis. Overall, out of 2500 records
collected from 10 users, 12 of the PINs were entered wrongly. Hence we ended up
with 2488 samples for our ANN.

The feature vectors are mapped to specific labels from a finite set: i.e. 50 fixed
4-digit PINs. We train and validate our algorithm with two different subsets of our
collected data, and test the neural network against a separate subset of the data. We
train the network with 70% of our data, validate it with 15% of the records and test
it with the remaining 15% of our data set. We use a pattern recognition/classifying
network in Matlab with one hidden layer and 1000 nodes.

4.8.5 Results

In this section we present the results of our attack on 4-digit PINs in two different
forms: multiple-users mode, and same-user mode. We also train separate ANN sys-
tems to learn individual digits of PINs and compare these results with other works.

Multiple-users mode The second column of Table 4.16 shows the accuracy of
our ANN trained with the data from all users. In this mode, the results are based on
training, validating, and testing our ANN using the collected data from all of our 10
participants. As the table shows, in the first attempt PINlogger.js is able to infer the
user’s 4-digit PIN correctly with accuracy of 74.43%, and as expected it gets better
in further attempts. By comparison, a random attack can guess a PIN from a set of
50 PINs with the probability of 2% in the first attempt, and 6% in three attempts.

Same-user mode In order to study the impact of individual training, we trained,
validated and tested the network with the data collected from one user. We refer
to this mode of analysis as the same-user mode. We asked our user to enter 50

98

Attempts Multiple-users Same-user
One 74% 79%
Two 86% 93%
Three 94% 97%

Table 4.16: PINlogger.js’s PIN identification rates in different attempts

random PINs, each five times, and repeated the experiment for 10 times (rounds).
The reason we have repeated the experiments is that the classifier needs to receive
enough samples to be able to train the system. Interestingly, our user used all three
different input methods shown in Figure 4.8 during the PIN entrance. As expected,
our classifier performs better when it is personalized: the accuracy reaches 79.23%
in the first attempt, and increases to 93.52% and 97.71% in two and three attempts,
respectively.

In the same-user mode, convincing the users to provide the attacker with sufficient
data for training customised classifiers is not easy, but still possible. Approaches simi-
lar to gaming apps such as Math Trainer15 could be applied. Math-based CAPTCHAs
are possible web-based alternatives. Any other web-based game application which
segments the GUI similar to a numerical keypad will do as well. Nonetheless, in this
thesis we mainly follow the multiple-users approach.

Guessing the PIN from the entire PIN space. One might argue that the
attack should be evaluated against the whole 4-digit PIN space. However, we believe
that the attack could still be practical when selecting from a limited set of PINs since
users do not select their PINs randomly [22]. It has been reported that around 27%
of all possible 4-digit PINs belong to a set of 20 PINs16, including straightforward
ones like ‘1111’, ‘1234’, or ‘2000’. Nevertheless, we present the results of our analysis
of the attack against the entire search space for the two experiment modes discussed
above. We considered 10 classes of the entered digits (0–9) from the data we collected
on 4-digit PINs used in Section 4.8.5.

In the multiple-users mode, we trained, validated, and tested our system with
data from all 10 users. In the same-user mode, we trained personalised classifiers for
each user. Unlike the test condition of Section 4.8.5, we did not have to increase the
number of rounds of PIN entry here since we had enough samples for each digit per
user. In the same-user mode in this section, we used the average of the results of
our 10 users. The average identification rates of different digits for the two different
approaches are presented in Table 4.17.

15play.google.com/store/apps/details?id=com.solirify.mathgame
16datagenetics.com/blog/september32012/

99

Attempts Multiple-users Same-user
One 70% 79%
Two 83% 90%
Three 92% 96%

Table 4.17: Average digit identification rates in different attempts

Features Sensor Access Training Rate on ith try
Work 1 2 5
PIN Skimming [100] Light in-app user-dep NA 50% 65%
PIN Skimmer [99] Cam, Mic in-app user-dep NA 30% 50%
Keylogging Mic [88] Mic, Gyr in-app use-dep 94% NA NA
TapLogger [115] Acc, Ori in-app user-dep 40% 75% 100%
Acc side channel [17] Acc in-app user-dep 18% NA 43%
PINlogger.js Motion, Ori in-browser user-indep 74% 86% 98%

user-dep 79% 93% 99%

Table 4.18: Comparison of PINlogger.js with related works

The results in our multiple-users mode indicate that we can infer the digits with
a success probability of 70.75%, 83.27% and 92.06% in the first, second, and third
attempts, respectively. This means that for a 4-digit PIN and based on the obtained
sensor data, the attacker can guess the PIN from a set of 34 = 81 possible PINs with
a probability of success of 0.92064 = 71.82%. A random attack, however, can only
predict the 4-digit PIN with the probability of 0.81% in 81 attempts. By comparison,
PINlogger.js achieves a dramatically higher success rate than a random attacker.

Using a similar argument, in the same-user mode the success probability of guess-
ing the PIN in 81 attempts is 85.46%. In the same setting, Cai and Chen report a
success rate of 65% using accelerometer and gyroscope data [3] and Simon and An-
derson’s PIN Skimmer only achieves a 12% success rate in 81 attempts using camera
and microphone [99]. Our results in digit recognition in this work are also better than
what is achieved in TouchSignatures [82]. In summary, PINlogger.js performs better
than all sensor-based digit-identifier attacks in the literature.

4.8.6 Comparison with related works

Obtaining sensitive information about users such as PINs based on mobile sensors
has been actively explored by researchers in the field [70,113]. In particular, there is
a number of research which use mobile sensors through a malicious app running in
the background to extract PINs entered on the soft keyboard of the mobile device.
For example, GyroPhone, by Michalevsky et al. [84], shows that gyroscope data is

100

sufficient to identify the speaker and even parse speech to some extent. Other exam-
ples include Accessory [92] by Owusu et al. and Tapprints [85] by Miluzzo. They infer
passwords on full alphabetical soft keyboards based on accelerometer measurements.
Touchlogger [26] is another example by Cai and Chen [3] which shows the possibility
of distinguishing user’s input on a mobile numpad by using accelerometer and gyro-
scope. The same authors demonstrate a similar attack in [27] on both numerical and
full keyboards. The only work which relies on in-browser access to sensors to attack
a numpad is our previous work, TouchSignatures [82]. All of these works, however,
aim for the individual digits or characters of a keyboard, rather than the entire PIN
or password.

Another category of works directly target user PINs. For example, PIN skim-
mer by Simon and Anderson [99] is an attack on a user’s numpad and PINs using
the camera and microphone on the smartphone. Spreitzer suggests another PIN
Skimming attack [100] and steals a user’s PIN based on the measurements from the
smartphone’s ambient light sensor. Narain et al. introduce another attack [88] on
smartphone numerical and alphabetical keyboards and the user’s PINs and credit
card numbers by using the smartphone microphone. TapLogger by Xu et al. [115] is
another attack on the smartphone numpad which outputs the pressed digits and PINs
based on accelerometer and orientation sensor data. Similarly, Aviv et al. introduce
an accelerometer-based side channel attack on the user’s PINs and patterns in [17].
We choose to compare PINlogger.js with the works in this category since they have
the same goal of revealing the user’s PINs. Table 4.18 presents the results of our
comparison.

As shown in Table 4.18, PINlogger.js is the only attack on PINs which acquires
the sensor data via JavaScript code. In-browser JavaScript-based attacks impose even
more security threats to users since unlike in-app attacks, they do not require any app
installation and user permission to work. Moreover, the attacker does not need to de-
velop different apps for different platforms such as Android, iOs, and Windows. Once
the attacker develops the JavaScript code, it can be deployed to attack all mobile
devices regardless of the platform. Moreover, Touchlogger.js is the only work which
uses the data coming from multiple users. By contrast, the results from other works
are mainly based on training the classifiers for individual users. In other words, they
assume the attacker is able to collect input training data from the victim user before
launching the PIN attack. We do not have such an assumption as the training data
is obtained from multiple users in the experiment. In terms of accuracy, with the ex-
ception of [88], PINlogger.js generally outperforms other works with an identification

101

rate of 74% in the first attempt. This is a significant success rate (despite that the
sampling rate in-browser is much lower than that available in-app) and confirms that
the described attack imposes a serious threat to the users’ security and privacy.

4.9 Possible solutions

To be able to suggest appropriate countermeasures, we need to first identify the
exact entity responsible for the access control policy in each situation. Mobile OS
access control policy decides whether the browser gets access to the device motion
and orientation sensor data in the first place, no matter if the browser is active or
not. If access is provided, then mobile browser access control policy decides whether
a web app gets access to the sensor data, no matter if the web app is open in the
same tab and in the same segment, in the same tab but in a different segment, or
in a different tab. Hence any effective countermeasure must address changes in both
mobile OS and browser policies with respect to access to such sensor data.

One approach to protect user security would be to require the mobile OS to deny
access to the browser altogether when the browser is not active, and require the
browser to deny access to web content altogether when it is running in an inactive
tab or in a segment of the page with the different web origin. However, this approach
may be considered too restrictive as it will disallow many potential web applications
such as activity monitoring for health and gaming.

A more flexible approach would be to notify the user when a web page is request-
ing access to such sensor data, and provide control mechanisms through which the
user is able to set their preferences with respect to such requests. This is the approach
currently taken by both the mobile operating systems and browsers with respect to
providing access to the device location (i.e. GPS sensor data [110]) when a web page
requests such access. We believe similar measures for device motion and orienta-
tion would be necessary in order to achieve a suitable balance between usability and
security. Possible (mock-up) interfaces for this countermeasure, based on existing
solutions for GPS sensor data, are presented in Figure 4.9. In particular, we think
the user should have three options: either allow access to the browser (in the mobile
OS setting) or web pages (in the browser setting) indefinitely, or allow access only
when the user is working on the browser (in the mobile OS settings) or interacting
with the web page (in the browser settings), or deny access indefinitely. These three
options provided to the user seem to be neither too few to render the access control
ineffective, nor too many to exhaust the user attention span.

102

Figure 4.9: Left: The existing interfaces to allow the web page to access Geolocation
in browser (top) and in mobile OS (down). Right: Our suggested mock-up interfaces
to allow web page (top) and OS setting (down) to access Motion and Orientation
data in browser

Furthermore, we believe raising this issue in the W3C specification would help the
browsers to consider it in a more systematic and consistent way. Our suggestion for
the new version of the specification is to include a section for security and privacy
considerations and discuss these issues in that section properly.

4.10 Industry feedback

We reported the results of this research to the W3C community and mobile browser
vendors including Mozilla, Opera, Chromium and Apple. We discussed the identified
issues with them and received positive feedback as summarized below.

Mozilla. After we reported to Mozilla about Firefox allowing JavaScript access
to sensor data within an iframe on Bugzilla, a senior platform engineer from Mozilla
stated that: “Indeed, and it should be fixed consistently across all the browsers and

103

also the spec [W3C specification] needs to be fixed”17. Subsequently, a patch was
proposed and implemented by Mozilla which was out on Firefox 46, April 26, 2016.
test18. The impact of our reported bug has been categorised as “high” in Mozilla
Foundation Security Advisory 2016-43.

Chrome & Opera. Opera uses the Chromium engine’s implementation for de-
vice orientation. Therefore, fixing the problem on Opera is dependent on the fix on
Chromium. We reported to both Chrome and Opera about their browsers allowing
JavaScript access to sensor data within an iframe and in the other-tab. After dis-
cussing this issue on the Chromium forum, a security team member of Chrome stated
that: “It [i.e. this research] sounds like a good reason to restrict it [i.e. sensor reading]
from iframes”19. At the time of the writing this thesis, the status of our reported
bug in Chromium is “assigned”. Commenting on the JavaScript access to sensor data
through other-tab, a member of the Opera security team forwarded their response to
us via email stating that: “Opera on iOS giving background tabs access to the events
does seem like an unwanted bug”.

Safari. We reported to Apple about Safari allowing JavaScript access to sensor
data within an iframe and also when the phone is locked. The Apple security team
acknowledged the problem via email stating that: “We have reviewed your paper and
are working on the mitigations listed in the paper”. Accordingly, this problem was
fixed by Apple in iOS 9.320 with an acknowledgement to our research.

W3C. After we disclosed the identified problems to the W3C community, the
community acknowledged the attack vectors introduced in this work and stated that:
“This would be an issue to address for any future iterations on this document [i.e.
W3C specification on mobile orientation and motion [112]]”. A security issue was be
taken into account by W3C in this regard21. The community discussed this issue in
their latest meeting and suggested to add a security section to the specification in
response to the findings of our work22. Finally, a security section has been added to
this specification with a reference to our research23.

17bugzilla.mozilla.org/show_bug.cgi?id=1197901 (login required)
18mozilla.org/en-US/security/advisories/mfsa2016-43/
19bugs.chromium.org/p/chromium/issues/detail?id=523320#c18
20support.apple.com/en-gb/HT206166
21github.com/w3c/deviceorientation/issues/13
22w3.org/2015/10/26-geolocation-minutes.html#item03
23w3.org/TR/2016/CR-orientation-event-20160818/#security-and-privacy

104

4.11 Summary

In this chapter we introduced the first practical attack that was able to distinguish
user touch actions as well as learning her PIN through JavaScript code embedded in
a web page. We designed and implemented TouchSignatures and PINLogger.js: two
simple and effective JavaScript-based attacks which when loaded within the browser
were able to listen to the device orientation and motion sensor data streams and
send the data back to a remote server for analysis. We demonstrated that our attack
systems were able to distinguish different user touch actions through a k-NN classifier,
and PINs through ANN system, respectively. The results show that our attack can
classify user touch actions and identify her PINs with high success rates.

Our results highlight major shortcomings in W3C standards, mobile operating
systems, and browsers access control policy with respect to user security. As a coun-
termeasure which strikes a balance between security and usability, we suggest that
device orientation and motion data be treated similarly to GPS sensor data. Effec-
tive user notification and control mechanisms for access to such sensor data should
be implemented both in mobile operating systems and in mobile browsers. The pos-
itive industry feedback confirms that serious damage could be caused exploiting the
introduced attack vectors. As a matter of fact, some of the browser vendors such
as Mozilla and Apple have already provided the mitigations suggested in this work.
Moreover, as a result of our communication, W3C has added a new section to the
associated specification named: “Security and privacy considerations”.

During our discussions with the mobile industry, we realised that our solution
might not be the most usable way to manage sensors on mobile platforms. In partic-
ular, Google Chrome was not convinced enough to fix the problem as we suggested,
as stated by one of the team members: “It’s tempting to just copy mobile safari, but
we’re concerned about limiting valuable scenarios. Eg. embedded spherical videos,
embedded maps using orientation data, etc.́’.

On the other hand, we discussed the user opt-in option with Chrome. However,
we agree with them that: “opt-in is a pretty poor tradeoff” since it needs lots of
infrastructural changes, it doesn’t address a lot of the scenarios, and in long term
it might not even decrease the amount of risk since the users would get used to the
permission messages and skip them without realising the risks.

We believe that usability plays a critical role when it comes to a practical solution
supported by industry. For this reason, in the next chapter, we study the human

105

dimensions of mobile sensors to provide a better insight for a practical solution for
the problem of sensor management.

106

Chapter 5

Human Dimensions of Mobile
Sensors Security

107

5.1 Chapter overview

In this chapter, we study users’ perception of the risks associated with mobile phone
sensors. With the technical understanding of the information leakage caused by
mobile phone sensors, we study users’ perception of the risks associated with these
sensors. We design user studies to measure the general familiarity with different
sensors and their functionality, and to investigate how concerned users are about their
PIN being discovered by an app that has access to all these sensors. Our studies show
that there is significant disparity between the actual and perceived levels of threat
with regard to the compromise of the user PIN. We confirm our results by interviewing
our participants using two different approaches, within-subject and between-subject,
and compare the results. We discuss how this observation, along with other factors,
renders many academic and industry solutions ineffective in preventing such side
channel attacks.

The work in this chapter (with some parts of the previous chapter) was published
as follows under the supervision of Dr. Hao and Dr. Shahandashti. Ehsan Toreini and
Dr. Shahandashti helped with participant recruitment and interviews of this chapter.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing PINs via
Mobile Sensors: Actual Risk versus User Perception”, The 1st European Work-
shop on Usable Security, EuroUSEC 2016, Workshop at the Privacy Enhancing
Technologies Symposium (PETS 2016), July 18, 2016, Germany.

• M. Mehrnezhad, E. Toreini, S. F. Shahandashti, F Hao, “Stealing PINs via
Mobile Sensors: Actual Risk versus User Perception”, International Journal of
Information Security, Springer, April 2017, Pages 1-23.

5.2 Introduction

Actual and perceived risks of mobile sensors. We showed in earlier chapters,
that via different means e.g. in-app and in-browser access, we can attack users’
privacy and security based on mobile sensors such as motion and orientation. For
example, many popular browsers such as Safari, Chrome, Firefox, Opera and Dolphin
have already implemented access to the above sensor data. As we demonstrated in
previous chapters, all of these mobile browsers allow such access when the code is
placed in any part of the active tab including iframes (Figure 5.1, a). In some cases
such as Chrome and Dolphine on iOS, an inactive tab including the sensor listeners

108

Figure 5.1: Potential JavaScript-based attack scenarios; a) the malicious code is
loaded in an iframe and the user is on the same tab, b) the attack tab is already open
and the user is on a different tab, c) the attack content is already open in a minimised
browser, and the user is on an installed app, d) the attack content is already open
in a (minimised) browser, and the screen is locked. The attacker listens to the side
channel motion and orientation measurements of the victim’s mobile device through
JavaScript code, and uses machine learning methods to discover the user’s sensitive
information such as activity types and PINs.

have access to the sensor measurements as well (Figure 5.1, b). Even worse, some
browsers such as Safari allow the inactive tabs to access the sensor data, when the
browser is minimised (Figure 5.1, c), or even when the screen is locked (Figure 5.1, d).
Mobile operating systems and browsers do not seem to be implementing consistent
access control policies in regard to mobile orientation and motion sensor data and
other sensors (see Table 1.2). As we showed in Table 4.18, researchers have already
shown the risks of mobile sensors including the movement sensors to the users’ PINs.

While sensors on mobile platforms are getting more powerful, and starting to col-
lect more information about the users and their environment, we want to evaluate the
general knowledge about these sensors among the mobile users. We are particularly
interested to know the level of concern people may have about these sensors being
able to threaten their privacy and security.

Contributions. In this chapter, we contribute to the study of human dimensions
of mobile sensors security as follows:

• We conduct user studies to investigate users’ understanding about these sensors
and also their perception of the security risks associated with them. We show

109

Android Description Unit W3C def.
motion sensors
Accelerometer Acceleration force m/s2 Acceleration

along 3 axes with gravity
Gravity Force of gravity m/s2 NA

along 3 axes
Gyroscope Rate of rotation rad/s Rotation rate

around 3 axes
Uncalibrated Rate of rotation (no drift rad/s NA
gyroscope compensation), and

Estimated drift around 3 axes rad/s NA
Linear Acceleration force excluding m/s2 Acceleration
accelerometer gravity along 3 axes
Rotation Rotation vector Unitless NA
vector component along 3 axes
Step Number of user’s Steps NA
counter steps since last reboot

Table 5.1: Motion sensors supported by Android and their corresponding W3C defi-
nitions

that users in fact have fewer security concerns about these sensors comparing
to more well-known ones.

• We study and challenge current suggested solutions, and discuss why our studies
show they cannot be effective. We argue that a usable and secure solution is
not straightforward and requires further research.

5.3 Sensor management complexity

Although reports of side channel attacks based on the in-browser access to mobile
sensors via JavaScript are relatively recent, similar attacks via in-app access to mobile
sensors have been known for years. Yet the problem has not been fixed. Here, we
discuss some of potential reasons why such a vulnerability has remained unfixed for
a long time.

5.3.1 Unmanaged sensors

In an attempt to explain multiple sensor-related in-app vulnerabilities, Xu et al. argue
that “the fundamental problem is that sensing is unmanaged on existing smartphone
platforms” [115]. There are multiple in-app side-channel attacks that support this

110

Android Description Unit W3C def.
position sensors
Game Rotation vector component Unitless NA
rotation vector along 3 axes
Geomagnetic Rotation vector component Unitless NA
rotation vector along 3 axes
Geomagnetic Geomagnetic field strength µT NA
magnetic field along 3 axes
Uncalibrated Geomagnetic field strength µT NA
magnetic field (no hard iron calibration)

and Iron bias estimation µT NA
along 3 axes

Orientation Angles around 3 axes Degrees Orientation
Proximity Distance from object cm NA

Table 5.2: Position sensors supported by Android and their corresponding W3C def-
initions. Note: Orientation sensor was deprecated in Android 2.2 (API Level 8)

argument, as we discussed in the previous section. Our work shows that the problem
of in-app access to “unmanaged sensors” is now spreading to in-browser access. Here
we present the “unmanaged” motion and orientation sensor case which shows how the
technical mismanagement of these sensors causes serious user privacy consequences
when it comes to unregulated access to such sensors via JavaScript.

W3C vs. Android. According to W3C specifications [112], the motion and
orientation sensor streams are not raw sensor data, but rather high-level data which
are agnostic to the underlying source of information. Common sources of informa-
tion include gyroscopes, compasses and accelerometers. In Tables 5.1 and 5.2, we
present raw (low-level) and synthesized (high-level) motion sensors supported by An-
droid [52] along with their descriptions and units, as well as their corresponding W3C
definitions [112].

As it can be seen from the tables, different terminologies have been used for
describing the same measurements in-app and in-browser. For example, while in-app
access uses the raw sensor terminology, i.e., accelerometer, gyroscope, magnetic field,
the in-browser access uses synthesized sensor terminology, i.e., motion and orientation
[112]. This creates confusion for users (as we will explain later) and developers (as we
experienced it ourselves). One of the W3C’s specifications on mobile sensors, “Generic
Sensor API” [51], dedicates a few sections to the issue of naming sensors, and low-level
and high-level sensors. It discusses how the terminology for in-browser access has been
high-level so far. It also mentions that the low-level use cases are increasingly popular

111

among the developers. As stated in this specification: “The distinction between high-
level and low-level sensor types is somewhat arbitrary and the line between the two
is often blurred”. And, “Because the distinction is somewhat blurry, extensions to
this specification are encouraged to provide domain-specific definitions of high-level
and low-level sensors for the given sensor types they are targeting”. We believe due
to the rapid increase of mobile sensors, it is necessary to come up with a consistent
approach.

5.3.2 Unknown sensors

We believe another contributing factor is that users seem to be less familiar with
the relatively newer (and less advertised) sensors such as motion and orientation, as
opposed to their immediate familiarity with well-established sensors such as camera
and GPS. For example, a user has asked this question on a mobile forum: “... What
benefits do having a gyroscope, accelerometer, proximity sensor, digital compass, and
barometer offer the user? I understand it has to do with the phone orientation but
am unclear in their benefits. Any explanation would be great! Thanks!”1.

We design and conduct user studies in this work in order to investigate to what
extent are these sensors and their risks known to the users.

List of mobile sensors. We prepared a list of different mobile sensors by inspect-
ing the official websites of the latest iOS and Android products, and the specifications
that W3C and Android provide for developers. We also added some extra sensors as
common sensing mobile hardware which are not covered before.

• iPhone 62: Touch ID, Barometer, Three-axis gyro, Accelerometer, Proximity
sensor, Ambient light sensor.

• Nexus 6P3: Fingerprint sensor, Accelerometer, Gyroscope, Barometer, Proxim-
ity sensor, Ambient light sensor, Hall sensor, Android Sensor hub.

• Android [52]: Accelerometer, Ambient temperature, Gravity (software or hard-
ware), Gyroscope, Light, Linear Acceleration (software or hardware), Magnetic
Field, Orientation (software), Pressure, proximity, Relative humidity, Rotation
vector (Software or Hardware), Temperature.

1forums.androidcentral.com/verizon-galaxy-nexus/171482-barometer-accelerometer-how-they-
useful.html

2apple.com/uk/iphone-6/specs/
3store.google.com/product/nexus_6p

112

• W3C4 [112]: Device orientation (software), Device motion (software), Ambient
light, Proximity, Ambient temperature, Humidity, Atmospheric Pressure.

• Extra sensors (Common sensing hardware): Wireless technologies (WiFi, Blue-
tooth, NFC), Camera, Microphone, Touch screen, GPS.

Unless specified otherwise, all the listed sensors are hardware sensors. We added
the last category of the sensors to this list since they indeed sense the device’s sur-
rounding although in different ways. However, they are neither counted as sensors in
mobile product descriptions, nor in technical specifications. These sensors are often
categorised as OS resources [114], and hence different security policies apply to them.

5.4 User studies on general knowledge about mo-
bile sensors

In this section, we aimed to observe the amount of knowledge that mobile users have
about mobile sensors. We prepared a list of sensors based on what we explained
above and asked volunteer participants to rate the level of their familiarity with
each sensor. All of our experiments and user studies were approved by Newcastle
University’s ethical committee.

5.4.1 Recruitment and participants demography

We recruited 60 participants (in two groups as explained in Section 5.5) to take part
in this study via different means including mailing lists, social networking, vocational
networks, and distributing flyers in different places such as different schools in the
university, colleges, local shops, churches and mosques. A sample of our call for
participation is available in Fin. 5.2.

Among our participants, 28 self-identified themselves as male and 32 as female,
from 18 to 67 years old, with a median age of 33.85. None of the participants were
studying or working in the field of mobile sensor security. Our university participants
were from multiple degree programs and levels, and the remaining participants worked
in a different range of fields. Moreover, our participants owned a wide range of
mobile devices, and had been using a smartphone/tablet for 5.6 years on average.
Our participants were from different countries, and all could speak English. We
interviewed our participants at a university office and gave each an Amazon voucher

4w3.org/2009/dap/

113

Figure 5.2: Sample of flyer distributed for participant recruitment.

(worth £10) at the end for their participation. Details of the interview template can
be found in Table 5.3.

5.4.2 Study approach

For a list of 25 different sensors, we used a five-point scale self-rated familiarity
questionnaire as used in [62]: “I’ve never heard of this”, “I’ve heard of this, but I
don’t know what this is”, “I know what this is, but I don’t know how this works”,
“I know generally how this works”, and “I know very well how this works”. The
list of sensors was randomly ordered for each user to minimize bias. In addition, we
needed to observe the experiments to make sure users were answering the questions
based on their own knowledge in order to avoid the effect of processed answers. Full
descriptions of all studies are provided in Appendix D.

We went through the questionnaires filled by our participants and analysed them
in an Excel file. We have published this Excel file on the author’s homepage. In
this file, we have five separate sheets representing the results of different parts of this
chapter (sheet 1: general sensor knowledge- study one, sheet 2: perceived concern
before knowing the sensor description- study one, sheet 3: perceived concern after
knowing the sensor description- study one, sheet 4: general sensor knowledge- study
two, and sheet 5: perceived concern after knowing the sensor description- study two).
Each sheet includes a list of 25 different sensors and the values chosen by different
users for each of these sensors. We coded the options of the questionnaire of this
section in the following form: “I’ve never heard of this” = 1, “I’ve heard of this, but
I don’t know what this is” = 2, “I know what this is, but I don’t know how this
works” = 3, “I know generally how this works” = 4, and “I know very well how this

114

Sex Age Job/Bg Mobile (y) Sex Age Job/Bg Mobile (y)
f 23 Civil Eng. Nokia (0) f 27 Teacher HTC(3)
f 28 Customer Sup. HTC (2) m 30 Services iPhone (4)
f 22 Media Sony (3) m 26 Computer Samsung (7)
m 43 IT iPhone (9) m 30 Teacher Blackberry(7)
f 27 Media iPhone (9) m 52 Nanotech Nokia (0)
m 18 Mathematics Samsung (3) m 41 Nanotech HTC (10)
f 30 Management iPhone (7) m 47 Lecturer Samsung (2)
m 22 Medical iPhone (10) f 39 Physics iPhone (4)
f 27 Human Mng. Huawei (9) f 31 Biology Samsung(10)
f 21 Literature Samsung (4) m 39 Student iPhone (6)
m 35 Media Samsung (6) f 30 Civil Eng. iPhone (5)
f 20 Languages Samsung (3) m 20 Student Samsung (4)
f 59 Services iPhone (3) f 52 Admin Samsung (3)
m 40 IT LG (7) f 30 Admin Samsung (5)
m 21 Biomedical Samsung (4) f 58 Admin iPhone (12)
f 22 Biomedical OnePlus (6) f 44 Admin Samsung (3)
m 30 Civil Eng. Samsung (3) f 27 Student Motorola (5)
m 29 Geodesy Samsung (7) f 47 Services iPhone (5)
m 28 Medical Sony (5) m 67 Teacher Nokia (0)
f 38 Computer Samsung (5) m 23 Student Nexus (5)
f 30 Animation iPhone (9) m 46 Cable Maker iPhone (5)
f 56 Business Mng. iPhone (11) m 35 Services Samsung (5)
f 29 Admin Samsung (5) f 39 Admin iPhone(5)
f 30 Admin Samsung (6) f 24 Student Gionee (3)
m 47 Driving Inst. Sony (11) f 34 Education iPhone (4)
f 28 Admin Motorola (7) m 32 Student OnePlus (6)
m 40 Education LG (5) f 37 Researcher Honor (3)
m 32 Computer iPhone (6) m 33 Management iPhone(12)
f 25 Law HTC (3) f 33 Math Samsung (3)
m 30 Student Nexus (5) m 27 Student iPhone (18)

Table 5.3: Participants’ self-reported demographics in the two studies, (y) indicates
the years of owning a smartphone

works” = 5 (similarly, in Section 5.5, we use the following coding: “Not concerned”
= 1, “A little concerned” = 2, “Moderately concerned” = 3, “Concerned” = 4, and
“Extremely concerned” = 5).

Note that although we use numbers for saving the results of our interviews in an
Excel file, we never apply any quantitative calculation on these numbers. We only
use the counts of these values for the stacked charts and the Spearman’s correlation
values presented in the following sections.

115

Figure 5.3: Level of self-declared knowledge about different mobile sensors

116

5.4.3 Findings

Fig. 5.3 summarizes the results of this study in the form of a stacked chart. This
figure shows the level of self-declared knowledge about different mobile sensors. The
question was: “To what extent do you know each sensor on a mobile device?” Sensors
are ordered based on the aggregate percentage of participants declaring they know
generally or very well how each sensor works. This aggregate percentage is shown
on the right hand side. In the case of equal aggregate percentage, the sensor with
a bigger share on being known very well by the participants is shown earlier. Our
participants were generally surprised to hear about some sensors and impressed by
the variety. As one may expect, newer sensors tend to be less known to the users in
comparison to older ones. In particular, our participants were generally not familiar
with ambient sensors. Although some of our participants knew the ambient sensors
in other contexts (e.g. thermostats used at home), they could not recognise them in
the context of a mobile device.

Low-level hardware sensors such as accelerometer and gyroscope seem to be less
known to the users in comparison with high-level software ones such as motion, orien-
tation, and rotation. We suspect that this is partly due to the fact that the high-level
sensors are named after their functionalities and can be more immediately related to
user activities.

We also noticed that a few of the participants knew some of the low-level sensors
by name but they could not link them to their functionality. For example, one of our
participants who knew almost all of the listed sensors (except hall sensor and sensor
hub) stated that: “When I want to buy a mobile [phone], I do a lot of search, that
is why I have heard of all of these sensors. But, I know that I do not use them (like
accelerometer and gyroscope)”.

On the other hand, as the functionalities of mobile devices grow, vendors quite
naturally turn to promote the software capabilities of their products, instead of in-
troducing the hardware. For example, many mobile devices are recognised for their
gesture recognition features by the users, however the same users might not know how
these devices provide such a feature. For instance, one of the participants commented
on a feature on her smartphone called “Smart Stay”5 as follows: “I have another sen-
sor on my phone: Smart Stay. I know how it works, but I don’t know which sensors
it uses”.

5samsung.com/us/support/answer/ANS00035658/234302/SCH-R950TSAUSC

117

5.5 User studies on risk perception of mobile sen-
sors

In this section, we study the participants’ risk perception of mobile sensors. There
have been several studies on risk perception addressing different aspects of mobile
technology. Some works discuss the risks that users perceive on smartphone au-
thentication methods such as PINs and patterns [56], TouchID and Android face
unlock [35], and implicit authentication [64]. Other works focus on the privacy risks
of certain sensors such as GPS [18]. In [94], Raji et al. show users’ concerns (on
disclosure of selected behaviours and contexts) about a specific sensor-enabled device
called AutoSense6. To the best of our knowledge, the research presented in this work
is the first that studies the user risk perception for a comprehensive list of mobile
sensors (25 in total). We limit our study to the level of perceived risks users associate
with their PINs being discovered by each sensor. The reasons we chose PINs are that
first, finding one’s PIN is a clear and intuitive security risk, and second, we can put
the perceived risk levels in context with respect to the actual risk levels for a number
of sensors as described in Table 4.18.

For this study, we divide our 60 participants into two groups, and studied the
two group separately using two different approaches: within-subject and between-
subject. In the within-subject study, we interviewed 30 participants for all parts of
the study. In contrast, in the between-subject study, we interviewed a new group of
30 participants, and we later compared the results with the previous group. By these
two approaches, we aim to measure differences (after informing users on descriptions
of sensors) within a participant and between participants, respectively.

5.5.1 Study one: within-subject

In this approach, we asked 30 participants to rate the level of risk they perceive for
each sensor in regards to revealing their PINs in two phases. In phase one, we gave
the same sensor list (randomized for each user). We described a specific scenario in
which a game app which has access to all these sensors is open in the background and
the user is working on his online banking app, entering a PIN. We used a self-rated
questionnaire with five-point scale answers following the same terminology as used
in [94]: “Not concerned”, “A little concerned”, “Moderately concerned”, “Concerned”,
and “Extremely concerned”. During this phase, we asked the users to rely on the
information that they already had about each sensor (see Appendix D for details).

6sites.google.com/site/autosenseproject/

118

In the second phase, first we provided the participants with a short description
of each sensor and let them know that they can ask further questions until they
feel confident that they understand the functionality of all sensors. Participants
could use a dictionary on their device to look at the words that were less familiar
to them. Afterwards, we asked the participants to fill in another copy of the same
questionnaire on risk perceptions (details in Appendix D). Participants could keep
the sensor description paper during this phase to refer to it in the case they forgot
the description of certain sensors.

5.5.2 Study two: between-subject

In this study, first we gave the description of the sensors to our second group of 30
participants and similar to previous study we gave them enough time to familiarize
themselves with the sensors and to ask as many questions as they wanted until they
felt confident about each sensor. Then, we presented the participants with the ques-
tionnaire on risk perceptions (details in Appendix D). Similar to our previous study,
participants could keep the sensor description paper while filling in this questionnaire.

5.5.3 Intuitive risk perception

The results of our within-subject study are presented in Fig. 5.4. This stacked chart
presents the users’ perceived risk for different mobile sensors for the same group of
users before (top bars) and after (bottom bars) being presented with descriptions of
sensors. The results of our between-subject study are presented in Fig. 5.5. Note
that this figure represents the risk perception of group one of our participants before
knowing the sensors descriptions, and group two of participants after knowing the
sensors descriptions. For both figures, the question was: “To what extent are you
concerned about each sensor’s risk to your PIN?”, sensors are ordered based on the
aggregate percentage of participants declaring they are either concerned or extremely
concerned about each sensor before seeing the descriptions. This aggregate percentage
is the first value presented on the right hand side. In the case of equal aggregate
percentage, the sensor with a bigger share on being perceived extremely concerned
by the participants is shown earlier.

We make the following observations from the results of the experiment.
Touch Screen. Although our participants rated touch screen as one of the most

risky sensors in relation to a PIN discovery scenario, still about half of our participants
were either moderately concerned, a little concerned, or not concerned at all. Through

119

Figure 5.4: Users’ perceived risk for different mobile sensors for within-subject ap-
proach

120

Figure 5.5: Users’ perceived risk for different mobile sensors for between-subject
approach

121

our conversations with the users, we received some interesting comments, e.g. “Why
any of these sensors should be dangerous on an app while I have officially installed it
from a legal place such as Google Play?”, and “As long as the app with these sensors
is in the background, I have no concern at all”. It seems that a more general risk
model in relation to mobile devices is affecting the users’ perception in regard to the
presented PIN discovery threat. This fact can be a topic of research on its own, and
is out of the scope of this work.

Communicational Sensors. One category of the sensors which users are rela-
tively more concerned about includes WiFi, Bluetooth and NFC. For example one of
the participants commented that: “I am not concerned with physical [motion, orien-
tation, accelerometer, etc.]/ environmental [light, pressure, etc.] sensors, but network
ones. Hackers might be able to transfer my information and PIN”. These sensors
appearing more risky to the users is understandable since we asked them to what
extent they were concerned about each sensor in regard to the PIN discovery.

Identity-related Sensors. Another category which has been rated more risky
than others contains those sensors which can capture something related to the user’s
identity i.e. fingerprint, TouchID, GPS, camera, and microphone. Despite that we
described a PIN-related scenario, our participants were still concerned about these
sensors. This was also pointed out by a few participants through the comments. For
example a user stated: “..., however, GPS might reveal the location along with the
user input PIN that has a risk to reveal who (and where) that PIN belongs to. Also
the fingerprint/TouchID might recognize and record the biometrics with the user’s
PIN”. Some of these sensors such as GPS, fingerprint, and TouchID, however, can
not cause the disclosure of PINs on their own. Hence, the concern does not entirely
match the actual risk. Similar to the discussion on touch screen, we believe that a
more general risk model on mobile technology influences the users to perceive risk on
specific threats such as the one we presented to them.

Environmental Sensors. The level of concern on ambient sensors (humidity,
light, pressure, and temperature) is generally low and stays low after the users are
provided with the description of the sensors (see Fig. 5.4). In many cases, our users
expressed that they were concerned about these sensors simply because they did not
know them: “[now that I know these sensors,] I am quite certain that movement/envi-
ronmental sensors would not affect the security of personal id/passwords etc.”. In fact,
researchers have reported that it is possible to infer the user’s PIN using the ambient
light sensor data [100], although, to our knowledge, exploits of other environmental
sensors have not been reported in the literature.

122

Movement Sensors. On the sensors related to the movement and the position
of the phone (accelerometer, gyroscope, motion, orientation, and rotation), the users
display varying levels of the risk perceptions. In some cases they are slightly more
concerned, but in others they are less concerned once they know the functionality.
Some of our users stated that since they did not know these sensors, they were not
concerned at all, but others were more concerned when they were faced with new
sensors. Overall, knowing, or not knowing these sensors has not affected the perceived
risk level significantly, and they were rated generally low in both cases.

Motion and Orientation Sensors. The sensors which we used in our attack,
namely orientation, rotation, and motion, have not been generally scored high for their
risk in revealing PINs. Users do not seem to be able to relate the risk of these sensors
to the disclosure of their PINs, despite that they seem to have an average general
understanding about how they work. On hardware sensors such as accelerometer and
gyroscope, the risk perception seems to be even lower. A few comments include: “In
my everyday life, I don’t even think about these [movement] sensors and their security.
There is nothing on the news about their risk”, and “I have never been thinking about
these [movement] sensors and I have not heard about their risk”. On the other hand,
some of the participants expressed more concerns for sensors that they were familiar
with, as one wrote, “You always hear about privacy stuff for example on Facebook
when you put your location or pictures”. Similarly, it seems that having a previous
risk model is a factor that might explain the correlation between the user’s knowledge
and their perceived risk.

5.6 General knowledge vs. risk perception

Figs. 5.3 and 5.4 suggest that there may be a correlation between the relative level of
knowledge users have about sensors and the relative level of risk they perceive from
them.

We confirm our observation of correlation using Spearman’s rank-order correlation
measure [57]. As it can be seen in Table 5.4, we present the Spearman’s correlation
between the comparative knowledge and the perceived risk about different sensors
for different participants’ dataset: group one before being presented with the sensor
descriptions, group one after sensor description, group two after sensor descriptions,
and finally groups one and two after being presented with the sensor descriptions.

For each participants’ dataset, the sensors are separately ranked based on the level
that the users are familiar with them, similar to Figure 5.3. Accordingly, the levels

123

Participants’ Status Spearman’s
dataset correlation
Group 1 Before sensor desc. 0.61
Group 1 After sensor desc. 0.61
Group 2 After sensor desc. 0.48
Groups 1 and 2 After sensor desc. 0.58

Table 5.4: Spearman’s correlation between the comparative knowledge and the per-
ceived risk about different sensors

of concern are ranked too. The Spearman’s correlation equation has been applied on
these ranks for each group separately.

For example, the Spearman’s correlation between the comparative knowledge (me-
dian: “I know what this is, but I don’t know how this works”, IQR7: “I’ve never heard
of this” – “I know very well how this works”) and the perceived risk about different
sensors for group one (median: “Not concerned”, IQR: “Not concerned” – “A little
concerned”) before knowing the sensor descriptions is r = 0.61 (p < 0.05).

As it can be seen, these results support that the more the users know about
these sensors, the more concern they express about the risk of the sensors revealing
PINs. We acknowledge that other methods of ranking the results, e.g. using median,
produce slightly different final rankings. However, given the high confidence level of
the above test, we expect the correlation to be supported if other methods of ranking
are used.

Assuming that customer demand drives better security designs, the above correla-
tion may explain why sensors that are newer to the market have not been considered
as OS resources and consequently have not been subject to similar strict access control
policies.

5.7 Perceived risk vs. the actual risk

We are specifically interested in the users’ relative risk perception of sensors in re-
vealing their PINs in comparison to the actual relative risk level of these sensors. As
mentioned before, we only study the level of perceived risks users associate with their
PINs being discovered by each sensor. Users might have different levels of concerns
for different sensors if asked for other types of risks such as revealing touch actions,
physical activities, and phone call timing to a third party and via an installed (game)
app without their consent. As discussed earlier, we chose the risk to PINs since it is

7interquartile range

124

a clear and intuitive security risk, and we can put the perceived risk levels in context
with respect to the actual risk levels for a number of sensors as presented in Section
4.8.5.

In Chapter 4, we listed the results reported in the literature in Table 4.18 for
the following sensors: light, camera, microphone, gyroscope, motion, and orientation.
Fig. 5.4 shows that users generally have expressed more concern about sensors such
as camera and microphone than accelerometer, gyroscope, orientation, and motion.
This does not match the actual risk levels since the latter sensors allow PIN recovery
with higher accuracy as we have shown in Section 4.8.5. When asked after filling the
questionnaire, most participants could not come up with realistic attack scenarios
using camera and microphone. For microphone, some users thought they might say
the PIN out loud. For camera, a few of our participants thought face recognition
might be used to recover the PIN, hence they rated camera’s risk to their PINs high.
One user thought the camera might capture the reflection of the entered PIN in her
glasses.

Among our participants, one mentioned but described doubt about motion, ori-
entation, accelerometer, and gyroscope being able to record the shakes of the mobile
phone while entering a PIN after they saw the sensor descriptions: “I feel those po-
sitional sensors might be able to reveal something about my activities, for example
if I open my banking app or enter my PIN. But it is extremely hard for different
users, and when working with different hands and positions”. This participant ex-
pressed only “a little concern” about them, stating that: “..., and by little concern, I
mean extremely little concern”. One of our participants was completely familiar with
these attacks and in fact had read some related papers. This user was “extremely
concerned”. Other users who rated these sensors risky in general, said they were gen-
erally concerned about different sensors. One commented: “I can not think of any
particular situation in which these sensors can steal my PIN, but the hackers can do
everything these days.”

5.8 Possible solutions

In this section, we discuss the current academic and industrial countermeasures to
mitigate sensor-based attacks.

125

5.8.1 Academic approach

Different solutions to address the in-app access attacks have been suggested in the
literature: e.g. restricting the sensor to one app, reducing the sampling rate, temporal
pause of the sensor on sensitive entries such as keyboard, rearranging keyboard for
password entrance, asking for explicit permission from the user, ranking apps based
on their similarities to malware, and obfuscating anomalies in sensor data [17, 21,
33, 84, 85, 88, 92, 99, 100, 115]. However, after many years of research on showing the
serious security risks of sensors such as accelerometer and gyroscope, none of the
major mobile platforms have revised their in-app access policy.

We believe that the risks of unmanaged sensors on mobile phones, specially
through JavaScript code, are not known very well yet. More specifically, many OS-
/app level solutions such as asking for permissions at the installation time, or malware
detection approaches would not work in the context of a web attack. In our previous
work [82], we suggested to apply the same security policies as those for camera, micro-
phone, and GPS for the motion and orientation sensors. Our suggestion was to set a
multi-layer access control system on the OS and browser levels. However, the usabil-
ity and effectiveness of this solution are arguable. First, asking too many permissions
from the user for different sensors might not be usable. Furthermore, for some basic
use cases such as gesture recognition to clear a web form, or adjusting the screen
from portrait to landscape, it might not make sense to ask for user permission for
every website. Second, with the increase of the number of sensors accessible through
mobile browsers, this approach might not be effective due to the classic problem of
sidestepping the security procedure by users when it is too much of a burden [24]. As
stated by one of our participants: “I don’t mind these sensors being risky anyway. I
don’t even review the permission list. I have no other choice to be able to use the
app”. Moreover, as we have shown in Section 5.3, users generally do not understand
the implications of these sensors on discovering their PINs for example, even though
they know how these sensors work. Hence, such an approach might not be effective
in practice.

5.8.2 Industrial approach

Native apps. As mentioned in Chapter 1, having access to newer sensors such as
ambient light, accelerometer, and gyroscope is unrestricted via native apps. Android
does not require developers to declare any permission for these sensors when using
them in apps [6]. Accordingly, when users install an app using these sensors, they

126

Figure 5.6: Sensor Box, an Android app and its permissions

are not required to grant any permissions, and are not even aware of the activation
of these sensors. For example, Fig. 5.6, shows Sensor Box8, an app installed from
Google Play, which allows the users to visually test their mobile sensors. As it can be
seen, apart from GPS and microphone, no permissions are required for other sensors.
Depending on the app, these sensors can be active even when the app is running in
the background.

W3C Device Orientation Event Specification. There is no Security and
Privacy section in the latest official W3C Working Draft Document on Device Ori-
entation Event [112]. However, at the time of writing this thesis, a new version of
the W3C specification is being drafted, which includes a new section on security and
privacy issues related to mobile sensors9, as suggested by us in [82]. The authors
working on the revision of the W3C specification point out the problem of finger-
printing mobile devices [21], and touch action recovery [81,82] through these sensors,
and suggest the following mitigations:

• “Do not fire events when the page where they were registered on is not visible
or has been backgrounded.”

• “Fire events only on the top-level browsing context or same-origin nested iframes.”
8play.google.com/store/apps/details?id=imoblife.androidsensorbox
9w3c.github.io/deviceorientation/spec-source-orientation.html

127

• “Limit the frequency of events (typically 60 Hz seems to be sufficient).”

We believe that these measures may be too restrictive in blocking useful func-
tionalities. For example, imagine a user consciously running a web program in the
browser to monitor his daily physical activities such as walking and running. This
program needs to continue to have access to the motion and orientation sensor data
when the user is working on another tab or minimizes the browser. One might ar-
gue that such a program should be available as an app instead, hence the use case
is not valid. However, it is expected that the boundary between installed apps and
embedded JavaScript programs in the browser will gradually diminish [28].

Mobile browsers. As we showed in [82], browsers and mobile operating systems
behave differently on providing access to sensors. Some allow access only on the
active webpage and any embedded iframes (although with different origins), some
allow access to other tabs, when browser is minimized, or even when the phone is
locked. Hence, there is not a consistent approach across all browsers and mobile
platforms. Reducing the frequency rate has been applied to all well-known browsers
at the moment [82]. For instance, Chrome reduced the sensor readings from 200 Hz
to 60 Hz due to security concerns10. However, our attack shows that security risks
are still present even at lower frequencies. iOS and Android limit the maximum
frequency rate of some sensors such as Gyroscope to 100 Hz and 200 Hz, respectively.
It is expected that these frequencies will increase on mobile OSs in the near future and
in-browser access is no exception. In fact, current mobile gyroscopes support much
higher sampling frequencies, e.g. up to 800 Hz by STMicroelectronics (on Apple
products), and up to 8000 Hz by InvenSense (on the Google Nexus range) [84]. With
higher frequencies available, attacks such as ours can perform better in the future if
adequate security countermeasures are not applied.

As discussed in previous chapter, following our report of the issue to Mozilla,
starting from version 46 (released in April 2016), Firefox restricts JavaScript ac-
cess to motion and orientation sensors to only top-level documents and same-origin
iframes11. In the latest Apple Security Updates for iOS 9.3 (released in March 2016),
Safari took a similar countermeasure by “suspending the availability of this [motion
and orientation] data when the web view is hidden”12. However, we believe the imple-
mented countermeasures should only serve as a temporary fix rather than the ultimate

10bugs.chromium.org/p/chromium/issues/detail?id=421691
11mozilla.org/en-US/security/advisories/mfsa2016-43/
12support.apple.com/en-gb/HT206166

128

solution. In particular, we are concerned that it has the drawback of prohibiting po-
tentially useful web applications in the future. For example, a web page running a
fitness program has a legitimate reason to access the motion sensors even when the
web page view is hidden. However, this is no longer possible in the new versions of
Firefox and Safari. Our concern is confirmed by members in the Google Chromium
team13, who also believe that the issue remains unresolved.

5.9 Discussions

As we explained in section 5.3.2, there exist around 25 different sensors on mobile
platforms. They include communicational sensors such as WiFi, environmental sen-
sors such as ambient light, movement sensors such as motion and orientation, and
biometric sensors such as Fingerprint. Here we specifically discuss biometric sensors
since they are highly related to the individuals’ identity.

After decades of working on password, it seems that people still cannot remember
strong passwords. Biometrics have been offered to users as an effective authentication
mechanism. Examples include TouchID and Fingerprint sensors on iOS and Android
devices respectively. But the biometric-based authentication is not limited to mobile
devices only. For example, when paying with iPhone contactlessly, you need to rest
your finger on TouchID and hold your iPhone in close proximity to the contactless
reader until the task is finished. Furthermore, since many banks have already moved
their services to mobile platforms, they benefit from the biometrics sensors available
on mobile devices, say for implementing 2-factor authentication. As an example, in
addition to user name and passwords, HSBC authenticates their customers through
TouchID14 and voice ID15. Another example is Smile to Pay facial recognition app16

where deep learning is applied to overcome the difficulty of face authentication when
the face photo is not in the normal form. Recently Yahoo has also introduced its
ear-based smartphone identification system17.

On the other hand, our findings show that mobile users are relatively concerned
with identity-related or biometric sensors. However, we discussed that these sensors
are not necessarily the most risky ones to PINs in practice. As we mentioned earlier,
we believe that this might be the influence of a more general risk model that the users

13bugs.chromium.org/p/chromium/issues/detail?id=523320
14us.hsbc.com/1/2/home/personal-banking/pib/mobile/touchid
15hsbc.co.uk/1/2/contact-and-support/banking-made-easy/voice-id
16brandchannel.com/2015/03/16/alibaba-demos-smile-to-pay-facial-recognition-app/
17bbc.co.uk/news/technology-32498222

129

have on mobile technology. We believe that this is an important research topic and
requires further studies.

5.10 Limitations

We consider this work a pilot study that explores user risk perception on a compre-
hensive list of mobile sensors. We envisage the following future work to address these
limitations and expand this work:

• More Participants: We performed our user studies on a set of users who were
recruited from a wide range of backgrounds. Yet the number of the participants
is limited. A larger set of participants will improve the confidence in the results.
With a large and diverse set of participants, we can also study the effect of
demographic factors on perceived risk.

• Other Risks: We studied the perceived risk on PINs as a serious and immediate
risk to users’ security. The study can be expanded by studying users’ risk per-
ception on other issues such as attackers discovering phone call timing, physical
activities, or shopping habits.

• Other Types of Access: When interviewing our participants, we presented them
with a scenario involving a game app which is installed on their smartphone.
This only covers the in-app access to sensors. However, people might express
different risk levels for other types of access, e.g. in-browser access. This needs
further investigation.

• Issues with Training Users. We decided to provide our participants with a
short description of each sensor’s functionality (details in Appendix D, part 3).
Furthermore, the participants were given the chance to ask as many questions as
they wanted to fully understand the functionality of each sensor. This might not
be the most effective way to inform users about sensors since some descriptions
might seem too technical (and hence not fully understandable) to some users.
How to inform users in an effective way is a complex topic of research which
can be explored in the future. In fact, the need of teaching users about mobile
sensors has already been felt by Android. As reported, Android Pay prepares
to show new users where to find NFC on their phones18.

18androidpolice.com/2016/08/12/android-pay-v1-5-prepares-to-show-new-users-where-to-find-
nfc-on-their-phones-and-might-be-experimenting-with-the-secure-element-again-apk-teardown/

130

5.11 Summary

In this chapter we showed that users do not generally perceive a high risk about such
sensors being able to steal their PINs. Furthermore, we showed that people are not
even generally knowledgeable about these sensors on mobile devices. Accordingly,
we discussed the complexity of designing a usable and secure solution to prevent the
proposed attacks. Hence, designing a general mechanism for secure and usable sensor
data management remains a crucial open problem for future research.

Many of the suggested academic solutions either have not been applied by the
industry as a practical solution, or have failed. Given the results in our user studies,
designing a practical solution for this problem does not seem to be straightforward.
A combination of different approaches might help researchers devise a usable and
secure solution. Having control on granting access before opening a website and during
working with it, in combination with a smart notification feature in the browser would
probably achieve a balance between security and usability. Users should also have
control on reviewing, updating and deleting these data, if stored by the website or
shared with a third party afterwards. Solutions such as Taintroid [46], a tracking app
for monitoring sources of sensitive data on a mobile which has been applied for GPS
in [18] could be helpful. After all, it seems that an extensive study is required toward
designing a permission framework which is usable and secure at the same time. Such
research is a very important usable security and privacy topic to be explored further
in the future.

131

Chapter 6

Conclusion

132

In this chapter, we summarise the research work presented in this thesis, and
discuss open research problems in the field, motivating a number of ongoing research
efforts.

6.1 Thesis summary

In this thesis, we have studied the use of mobile sensors in security applications, in-
vestigating different security and privacy angles of sensors: designing a secure app
for contactless payment, attacking user’s contactless payment privacy by a malicious
app, attacking users sensitive information such as touch actions and PINs through
JavaScript code, and inspecting users’ understanding and concern about mobile sen-
sors.

By studying each angle, we contributed to the field of mobile sensors in different
ways. First, in Chapter 2, we showed that it is promising to apply mobile sensors for
security purposes such as secure contactless payment. Next in Chapter 3, we proposed
an attack on contactless payments by the use of mobile NFC, and demonstrated
that different types of in-app based attacks are possible through mobile sensors. In
Chapter 4, we described multiple side channel attacks to steal the user’s private
information via JavaScript code, in contrast to native apps which require installation.
We implemented multiple attacks on a wide range of sensitive information about
users including their 4-digit PINs. During this work we informed the mobile industry
about this vulnerability, and consequently we contributed toward fixing this issue,
as described in Chapter 4. And finally in Chapter 5, we designed and performed
multiple user studies in order to study the human aspects of mobile sensors. Our aim
was to find out to what extent are mobile users familiar with, and concerned about
these sensors while working with their mobile devices on a daily basis. We interviewed
multiple user groups from different backgrounds, and concluded that people are not
generally aware of these sensors on mobile devices, and hence their perceived risks
levels do not match the actual risks of these sensors.

As mentioned in several parts of this thesis, our research aim was tackling real-
world problems. To accomplish this, we were continuously in contact with the indus-
try to have a practical perspective on the topic. Through this valuable experience,
we found it challenging to make real-world impact based on academic research. For
example, when we reported the vulnerability that we found in Chapter 4 to W3C and
mobile browser vendors, it took us several rounds of communications with different
technical and non-technical team members via different channels for each vendor to

133

Vendor Connection Date of our Date of No. of No. of people
means first msg fix release msgs in the loop

W3C Mailing lists 10 Aug 2015 26 Feb 2016 20 15
and Github

Google Chromium 21 Aug 2015 Never 29 10
Chrome bugs
Firefox Bugzilla 24 Aug 2015 26 Apr 2016 62 23
Apple Private emails 26 Aug 2015 9 Mar 2016 10 3

Table 6.1: A summary on our communication with W3C and mobile browser vendors

make an actual impact (Table 6.1). We learned a few lessons during this process
which we reflect them here. First, when reporting a bug which requires program-
ming to fix it, provide some attack code as well as suggested solutions to the vendor.
Second, provide free versions of your technical reports and papers to the community.
Third, find the correct channel to contact each community and vendor. As you can
see in Table 6.1, different standard organisations and mobile browser vendors have
their own preferred way of communication. Finally, try to stay in the loop of the fix
development and make contribution toward it. As you can see in the Table 6.1, this
is a time-consuming process; e.g. fixing the reported issue in the case of W3C has
taken over a year.

6.2 Future work

As future work, we would like to conduct an in-depth study of all sensors available on
mobile devices. So far, only a few sensors including the ambient light [100], accelerom-
eter and gyroscope [85, 115] have been shown to leak sensitive user information. In
Chapter 5, and in [80–83], we have identified a list of 25 sensors available in modern
Android/iOS devices. It remains to be investigated whether other sensors may also
cause the information leakage. Furthermore, it is yet unclear how the information
leakage relates to the sensor sampling rate. With better understanding of sensors,
we wish to investigate if we can build new security mechanisms. On the other hand,
we are interested in more user studies related to sensors. We believe that in order to
manage these sensors on mobile platforms properly, we need to involve mobile users
as co-designers of such a systems. Accordingly, this system needs to be smart enough
to keep a balance between automatic decisions about sensor permissions and user
prompts. Such a system would probably include an artificial intelligence (AI) unit to
handle such a complex problem.

134

Extended study on sensors. We will extend the study on information leakage
from a few selected sensors [80–83, 99, 100] to the full range. As an example, certain
apps (e.g. games) tend to require intensive computation and hence cause the device
temperature to rise. Hence, by measuring device’s temperature and analysing the
patterns of changes, it might be possible to infer what kind of apps are running on
the device.

Sensor rate correlation. We will investigate the correlation between informa-
tion leakage and sensor sampling rates. This is a topic that the industrial community
is particularly interested in. The sampling rate for the in-app access to sensors is usu-
ally limited to 200 Hz, at which it has been shown that an app can reliably infer the
user inputs on the touchscreen based on the measurements of motion sensors [115].
Cautioned by this attack, browser vendors reduce the in-browser sensor access rate
by a factor of 3 to 5. But in [80–83], we demonstrate that, at this reduced rate, it
is still possible to infer the user’s 4-digital PIN with high accuracy. Hence, it will be
worthwhile to investigate whether there exist safe-zone rates, where the information
leakage is minimized (i.e., our attack in [80–83] stops working) while the normal use
of the application (e.g. orientation of screen) is unaffected.

Useful apps. Besides studying the “weaknesses” of sensors, we also plan to
investigate the “strengths” of sensors. The aim is to find ways to make good uses
of sensors, instead of simply containing their bad use. This builds on our previous
work [79] that utilizes accelerometers to prevent attacks in NFC payments. We will
investigate other novel applications of sensors, e.g. to perform secure pairing of two
devices based on their correlated sensor readings after physical tapping.

Understanding mobile users. We aim to develop an in-depth understanding
of user perceptions of the risks and benefits associated with data generated by mobile
sensors, and how they drive behaviour. Based on our previous work [80, 83], our
hypothesis is that users are not aware of the data generated by many sensors, and how
that data might be used to undermine their security and privacy. Our aim is to study
perceptions and behaviour ‘in context’ (how the device is used in users’ daily tasks),
over a longer period of time, and the response to a number of interventions (different
UI configurations, but also feedback, individual and group reflection exercises). The
resulting insights will be used to develop designs that support users’ security and
privacy goals in the context of their daily tasks, and also to create a map of mental
models of security and privacy risks associated with the data generated by mobile
devices in general, and sensors in particular.

135

AI-based sensor management system. The specific design of an intelligent
system will be informed by the understanding of users as well as the understanding
of sensors as we mentioned earlier, but we anticipate an important role will be played
by an artificial intelligence (AI) unit. The AI unit will be aware of the context of
the application in which sensors are used and assess the risk of information leakage
accordingly. We envisage that the unit works autonomously most of the time without
requiring user intervention. But we also anticipate that the user studies may demon-
strate that the user wants to have a sense of control in configuring the AI unit (e.g.
reviewing collected data, logging earlier risk assessment decisions, and updating and
deleting data). This builds on research of existing automated risk assessment tech-
niques for mobile apps such as natural language processing (NLP) of the permissions
and descriptions of the apps [93]. Another critical component of such a system is
the user interface (UI), the design of which needs further user studies for an effective
design.

136

Appendix A

TTP Usability Experiment

137

Centre for Software Reliability, School of Computing Science, Newcastle University, Newcastle Upon Tyne, NE2 7RU
Tel: +44 (0) 191 222 7997� E-mail: csr@ncl.ac.uk � Web: www.ncl.ac.uk/csr
May 2014
 1

Participant Identification Number: …………………

Name of Researcher: Maryam Mehrnezhad

1. I confirm that I have read and understand the study
description for this study. I have had the opportunity to
consider the information, ask questions and have had these
answered satisfactorily.

�

2. I understand that my participation is voluntary and that I
am free to withdraw at any time, without giving any reason.

�

3. I understand that any information given by me will be
anonymized and may be used in future reports, articles or
presentations by the research team.

�

4. I agree to take part in the above study.
 �

________________________ ________________ ________________

Name of Participant (optional) Date Signature

_________________________ ________________ ________________

Researcher Date Signature

Study description: Contactless payment is a new PIN-less approach for payment using the Near
Field Communication (NFC) technology. If you own an NFC-enabled card and wish to make a
payment, you just need to hold the card in front of an NFC reader and wait for the confirmation.
Using an NFC-enabled mobile device gives you the same functionality of a contactless card.

In this study, you will be asked to perform two experiments. In the first experiment, you will
experience the conventional process of making a contactless payment using a mobile phone. In the
second experiment, you will be asked to follow a new protocol called “Tap-Tap and Pay” to make
an NFC payment. The “Tap-Tap and Pay” protocol is designed to make the NFC payment more
secure, preventing man-in-the-middle attacks. However, we want to hear from you about your
opinions on usability of the new protocol. At the end of the two experiments, we appreciate if you
can help our research by filling in a questionnaire.

138

2

Participant Identification Number: ……………………………………..

1. Have you ever paid by a contactless card? Yes� No�

 Strongly
agree

Agree Neutral Disagree Strongly
disagree

2.
NFC payment in Experiment 1 is
convenient � � � � �

3. NFC payment in Experiment 1 is fast � � � � �

4.
I feel NFC payment in Experiment 1
is secure � � � � �

5. Do you have any comments about the usability of making an NFC payment in Experiment 1?

6. Do you have any comments about the security of making an NFC payment in Experiment 1?

139

3

Participant Identification Number: ……………………………………..

 Strongly
agree

Agree Neutral Disagree
Strongly
disagree

7.
NFC payment in Experiment 2 is
convenient � � � � �

8. NFC payment in Experiment 2 is fast � � � � �

9.
I feel NFC payment in Experiment 2
is secure � � � � �

CONTACT: Thank you for your participation in this study. If you have further questions about the study, please contact
Maryam Mehrnezhad (m.mehrnezhad@ncl.ac.uk). In addition, if you have any concerns about any aspect of the study,
you may contact Dr. Feng Hao, Room 1106, Claremont Tower, School of Computing Science, Newcastle University,
Email: feng.hao@ncl.ac.uk , Telephone: +44 191 208 6384 ; Fax: +44 191 208 8788

10. Do you have any comments about the usability of making an NFC payment in Experiment

2?

11. Do you have any comments about the security of making an NFC payment in Experiment 2?

140

Appendix B

Help Document for Sensor Data
Collection Process

141

1

Reading sensor data for 4-digit
PINs using JavaScript

Author: Maryam Mehrnezhad (m.mehrnezhad@ncl.ac.uk), Apr 2017

In this help file, we describe the details of our JavaScript code used for reading sensor data

(motion and orientation) for 4-digit PINs in a project conducted in Newcastle University,

UK. The outcome of this project is published in [1-4]. Our JavaScript code is publicly

available on Github via this link: https://github.com/maryammjd/Reading-sensor-data-for-

fifty-4digit-PINs. This code asks the user to enter fifty 4-digit PINs, each 5 times, and

saves the PINs along with their sensor measurements (motion and orientation) in an m-lab

database. A sample dataset for 10 users is also publicly available via the project’s Github

page. In case of any further questions, please contact the authors.

JavaScript code (client, server, and db)

We setup an account in mlab.com and created a deployment (database) named sensordata.

In this deployment, we created a collection named sensor. This collection is in charge of

saving json (JavaScript Object Notation) data received by the server as documents. We

defined our json structure in our JavaScript code in Node.js to include three elements: type

(status, or sensor type, or time), data (value), ts (time value). Note that the time in the type

element is when the data is read on the mobile device, versus the ts element is when each

record is inserted in the database.

In our JavaScript code (app.js), we connect to mongoDB and handle the sensor data via the

socket.io API. All user interactions (beginning PIN entry, entering PINs, and finishing),

alongside with the sensor measurements (motion and orientation), are sent to the database

by the server. We run the server on a local computer through node.js cmd. Once the index

page is opened on the phone, the data collection starts.

In our index.html file in the client side, we call the numPad.js script which presents the

users with a GUI where fifty 4-digit PINs are shown (each repeated 5 times). The user

needs to enter them in a textbox as shown in Fig. 1. As it can be seen, the number of PINs

entered (out of 50) and the number of counts (out of 5) are also shown to users. On each

digit entry, our JavaScript code sends a new record (Key Down Key Up) to our database

using the onkeydown event. Our numPad.js file includes two event listeners on the window

object which fire on device motion and device orientation DOM events (called

devicemotion and deviceorientation). We have hard-coded the fifty 4-digit PINs in this

file. These semi-random PINs are created by using a Matlab code.

142

2

Figure 1: GUI for PIN entry

This data is arrived and inserted to our MongoDB database as shown in Fig 2.

Figure 2: M-lab database

As it can be seen, the type element can include either the status of the data, the type of the

data, or the time that it has been collected from the mobile device. The order of the values

143

3

for a sample data collection for fifty 4-digit PINs (each PIN 5 times) from a user is saved

as presented in the bellow set:

{User Starts,

{{Typing Begins,

5113 (First shown PIN),

a series of Orientation and Motion Data,

Key Down, Key Up (when the first digit is clicked),

a series of Orientation and Motion Data for the first digit,

Key Down, Key Up (when the second digit is clicked),

a series of Orientation and Motion Data for the second digit,

… (the same for the third and fourth digits),

Key Down, Key Up (to show the end of the 4-digit PIN entry),

5113 (First typed PIN which could be different from the shown PIN due to user error),

Typing Ends},

… (the previous process for the first PIN for another 4 times)},

… (the previous process for another 49 PINs),

User Finishes}.

Data Exportation

After we collected data for each user, we exported the data to an Excel file on a local

computer for further processing in Matlab. Next, we deleted all the documents in the

related collection in mlab.com for the next user data collection. We used the following

command through MongoDb cmd for exportation (the username and password are set on

the time of creating the sensordata development):

mongoexport -h ds033818.mlab.com:33818 -d sensordata -c sensor -u <username> -p

<password> -o sensor.csv --csv -f "type","data","ts"

Since the browser leverage a wrapper API to provide the motion and orientation sensor

readings through JavaScript, similar to the Android sensor manager API, the same reading

to native apps is provided here (except for the sampling rate). This means that these sensor

readings are provided onSensorChanged event (with lower frequency). While analysing

our measurements, we noticed that the resolutions of the orientation data and the motion

data are different. Due to this technical issue and for simplicity while working with this

data in Matlab, when converting data from Excel files to text files, we created two

different text files (User<no.>Motion and User<no.>Orientation) for motion and

orientation separately. We repeated the same process for each user using the Sort & Filter

feature in Excel as shown in the Fig. 3. As can be seen, we only include the records that we

need and we exclude the unnecessary ones (e.g. interval and times).

When the text files were created for all users, we imported them to Matlab and performed

further analysis on them as explained in our papers [1-4].

144

4

Figure 3: Converting excel files to text files

References

[1] M. Mehrnezhad, E. Toreini, S. Shahandashti, and F. Hao, “TouchSignatures: Identification of User Touch

Actions based on Mobile Sensors via JavaScript”, In the Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security, ASIA CCS 2015, Singapore, Apr 14-17, 2015, ACM,

P 673-673.

[2] M. Mehrnezhad, E. Toreini, S. Shahandashti, and F. Hao, “TouchSignatures: Identification of User Touch

Actions and PINs based on Mobile Sensors via JavaScript”, Journal of Information Security and

Applications, Elsevier, V 26, Feb 2016, P 23-38.

[3] M. Mehrnezhad, E. Toreini, S. Shahandashti, F Hao, “Stealing PINs via Mobile Sensors: Actual Risk

versus User Perception”, The 1st European Workshop on Usable Security, EuroUSEC 2016, Workshop at

the Privacy Enhancing Technologies Symposium (PETS 2016), Jul 18, 2016, Germany.

[4] M. Mehrnezhad, E. Toreini, S. Shahandashti, F Hao, “Stealing PINs via Mobile Sensors: Actual Risk

versus User Perception”, International Journal of Information Security, Springer, April 2017, Pages 1-23.

145

Appendix C

Touch Action Study Guide

146

Dear volunteer,

Thanks for your participation in this experiment. This study will ask you to perform some quick
tasks working with mobile phones. The collected data will be anonymously used for research
purposes only. You will receive a £10 Amazon voucher as a thank you for your contribution to this
research.

This experiment has 2 sections:

• Sections 1: working with a webpage opened by Chrome on an iPhone 5 using only one hand
for holding the phone and the same hand for touching the screen while sitting on a chair.

• Sections 2: working with a webpage opened by Chrome on an iPhone 5 using two hands; one
for holding the phone and the second for touching the phone while sitting on a chair.

You will perform a simple touch action in each step and repeat each action 5 times. After that,
please wait for 3 seconds until you start the next touch action. Meanwhile, you will be notified of
the progress via the information box and alert box. The touch actions are as blow:

• Touch Action 1: One time click on any part of the box that you like
• Touch Action 3: Scroll down only once
• Touch Action 4: Scroll up only once
• Touch Action 5: Scroll right only once
• Touch Action 6: Scroll left only once
• Touch Action 7: Zoom in only once– for this action you can use two hands even in the one-

hand mode.
• Touch Action 8: Zoom out only once– for this action you can use two hands even in the one-

hand mode
• Touch action 9: Hold a word in order to copy it and when it is chosen release it

A trial setup is provided for you to practice as many times as you wish before performing the real
tests. Please remain seated while doing this experiment.

Please leave any extra comments here….

147

Appendix D

Interview Description of Mobile
Sensors User Study

148

Hi. Thanks very much for contributing to our study. In this interview, we will ask
you to fill in a few questionnaires about mobile sensors such as GPS, camera, light,
motion and orientation. You are encouraged to think out loud as you go through, and
please feel free to provide any comments during the interview. There is no right or
wrong answer, and our purpose is to evaluate the mobile sensors, not you. Everything
about this interview is anonymous. Please provide some information about yourself
in Table D.1.

Age
Gender
Profession/ background (optional)
1st language (optional)
Mobile device
Duration of owning a smartphone/tablet

Table D.1: Demography table

Part One

A list of multiple mobile sensors is presented below. To what extent do you know
each sensor on a mobile device? Please rate them in the table (Table D.2 was used).

Part Two

Imagine that you own a smartphone which is equipped with all these sensors. Consider
this scenario: you have opened a game app which can have access to all mobile sensors.
You leave the game app open in the background, and open your banking app which
requires you to enter your PIN.

Do you think any of these sensors can help the game app discover your entered
PIN? To what extent are you concerned about each sensor’s risk to your PIN? Please
rate them in the table (Table D.3 was used). In this section, please only rely on the
knowledge you already have about the sensors, and if you do not know some of them,
describe your feeling of security about them.

Part Three

Let us explain each sensor here:

• GPS: identifies the real-world geographic location.

149

Sensor I’ve never I’ve heard I know what I know I know
heard of this of this but I this is but I generally very well

don’t know don’t know how this how this
what this is how this works works works

Bluetooth
Gyroscope
GPS
Sensor Hub
Ambient
Temperature
Accelerometer
Magnetic Field
Motion
Fingerprint
Orientation
Proximity
Ambient
Pressure
Hall Sensor
Rotation
Touch Screen
Camera
TouchID
Barometer
Gravity
Microphone
Ambient
Humidity
WiFi
Ambient Light
NFC
Device
Temperature

Table D.2: Sensor familiarity form used for part one

• Camera, Microphone: capture pictures/videos and voice, respectively.

• Fingerprint, TouchID: scans the fingerprint.

• Touch Screen: enables the user to interact directly with the display by physically
touching it.

150

Risk to PIN
Not A little Moderately Extremely

Sensor Concerned Concerned Concerned Concerned Concerned
Bluetooth
Gyroscope
GPS
Sensor Hub
Ambient
Temperature
Accelerometer
Magnetic Field
Motion
Fingerprint
Orientation
Proximity
Ambient
Pressure
Hall Sensor
Rotation
Touch Screen
Camera
TouchID
Barometer
Gravity
Microphone
Ambient
Humidity
WiFi
Ambient Light
NFC
Device
Temperature

Table D.3: Sensor concern form used for parts two and three

• WiFi: is a wireless technology that allows the device to connect to a network.

• Bluetooth: is a wireless technology for exchanging data over short distances.

• NFC (Near Filed Communication): is a wireless technology for exchanging data
over shorter distances (less than 10 cm) for purposes such as contacless payment.

• Proximity: measures the distance of objects from the touch screen.

151

• Ambient Light: measures the light level in the environment of the device.

• Ambient Pressure (Barometer), Ambient Humidity, and Ambient Temperature:
measure the air pressure, humidity, and temperature in the environment of the
device, respectively.

• Device Temperature: measures the temperature of the device.

• Gravity: measures the force of gravity.

• Magnetic Field: reports the ambient magnetic field intensity around the device.

• Hall sensor: produces voltage based on the magnetic field.

• Accelerometer: measures the acceleration of the device movement or vibration.

• Rotation: reports how much and in what direction the device is rotated.

• Gyroscope: estimates the rotation rate of the device.

• Motion: measures the acceleration and the rotation of the device.

• Orientation: reports the physical angle that the device is held in.

• Sensor Hub: is an activity recognition sensor and its purpose is to monitor the
device’s movement.

Please feel free to ask us about any of these sensors for more information.
Now that you have more knowledge about the sensors, let us describe the same

scenario here again. Imagine that you own a smartphone which is equipped with
all these sensors. You have opened a game app which can have access to all mobile
sensors. You leave the game app open in the background, and open your banking
app which requires you to enter your PIN.

Do you think any of these sensors can help the game app to discover your entered
PIN? To what extent are you concerned about each sensor’s risk to your PIN? Please
rate them in the table (Table D.3 was used). In this part, please make sure that you
know the functionality of all the sensors. If you are unsure, please have another look
at the descriptions, or ask us about them.

Thanks very much for taking part in this study. Please leave any extra comment
here.

An Amazon voucher and a business card are in this envelope. Please contact us
if you have any questions about this interview, or are interested in the results of this
study.

152

Bibliography

[1] Apple & Samsung drive NFC mobile payment users to nearly 150m globally this
year. Market leading report by Juniper Research, March 2014. Available online
at http://www.juniperresearch.com/press/press-releases/apple-samsung-drive-
nfc-mobile-payment-users.

[2] Mobile payment strategies: Remote, contactless & money transfer 2014–2018.
Market leading report by Juniper Research, July 2014. Available online at
http://www.juniperresearch.com/reports.php?id=726.

[3] Ahmed Al-Haiqi, Mahamod Ismail, and Rosdiadee Nordin. On the best sensor
for keystrokes inference attack on android. Procedia Technology, 11(0):989–995,
2013.

[4] Host-based card emulation. Available online at
http://developer.android.com/guide/topics/connectivity/nfc/hce.html.

[5] Sensormanager. Available online at https://developer.android.com/reference/a
ndroid/hardware/SensorManager.html.

[6] Android sensors. Available at http://developer.android.com/guide/topics/sens
ors/sensors_overview.html.

[7] International organization for standardization, BS ISO/IEC 14443-
1:2008+A1:2012 identification cards. contactless integrated circuit cards. prox-
imity cards. physical characteristics, 2012. Available at www.bsol.bsigroup.com.

[8] International organization for standardization, BS ISO/IEC 14443-
2:2010+A2:2012 identification cards. contactless integrated circuit cards.
proximity cards. radio frequency power and signal interface, 2012. Available at
www.bsol.bsigroup.com.

153

[9] International organization for standardization, BS ISO/IEC 14443-
3:2011+A6:2014 identification cards. contactless integrated circuit cards.
proximity cards. initialization and anticollision, 2014. Available at
www.bsol.bsigroup.com.

[10] International organization for standardization, BS ISO/IEC 14443-
4:2008+A4:2014 identification cards. contactless integrated circuit cards. prox-
imity cards. transmission protocol, 2014. Available at www.bsol.bsigroup.com.

[11] Contactless Specifications for Payment Systems, Book A: Architec-
ture and General Requirements, 2015. Available at www.emvco.com
/specifications.aspx?id=21.

[12] EMV Contactless Specifications for Payment Systems, Book B: Entry Point,
2015. Available at www.emvco.com/specifications.aspx?id=21.

[13] EMV Contactless Specifications for Payment Systems, Book C2: Kernel 2 Spec-
ification, 2015. Available at www.emvco.com/specifications.aspx?id=21.

[14] EMV Contactless Specifications for Payment Systems, Book C3: Kernel 3 Spec-
ification, 2015. Available at www.emvco.com/specifications.aspx?id=21.

[15] EMV Contactless Specifications for Payment Systems, Book D: Con-
tactless Communication Protocol, 2015. Available at www.emvco.com
/specifications.aspx?id=21.

[16] International organization for standardization, BS ISO/IEC 7816-4:2013, iden-
tification cards. integrated circuit cards. organization, security and commands
for interchange, 2013. Available at www.bsol.bsigroup.com.

[17] Adam J Aviv, Benjamin Sapp, Matt Blaze, and Jonathan M Smith. Practical-
ity of accelerometer side channels on smartphones. In Proceedings of the 28th
Annual Computer Security Applications Conference. ACM, 2012.

[18] Rebecca Balebako, Jaeyeon Jung, Wei Lu, Lorrie Faith Cranor, and Carolyn
Nguyen. Little brothers watching you: Raising awareness of data leaks on
smartphones. In Proceedings of the Ninth Symposium on Usable Privacy and
Security, SOUPS 2013. ACM, 2013.

154

[19] Daniel Bichler, Guido Stromberg, Mario Huemer, and Manuel Low. Key gener-
ation based on acceleration data of shaking processes. In Ubiquitous Computing,
UbiComp 2007. Springer Berlin Heidelberg, 2007.

[20] Cheng Bo, Lan Zhang, Xiang-Yang Li, Qiuyuan Huang, and Yu Wang.
Silentsense: Silent user identification via touch and movement behavioral bio-
metrics. In Proceedings of the 19th Annual International Conference on Mobile
Computing and Networking, MobiCom 2013. ACM, 2013.

[21] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. Mobile de-
vice identification via sensor fingerprinting. 2014. Technical report available
athttp://arxiv.org/abs/1408.1416.

[22] Joseph Bonneau, Soren Preibusch, and Ross Anderson. A birthday present every
eleven wallets? the security of customer-chosen banking PINs. In Proceedings
of 16th Financial Cryptography and Data Security, FC 2012. Springer Berlin
Heidelberg, 2012.

[23] Stefan Brands and David Chaum. Distance-bounding protocols. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer Berlin Heidelberg, 1994.

[24] Cristian Bravo-Lillo, Saranga Komanduri, Lorrie Faith Cranor, Robert W.
Reeder, Manya Sleeper, Julie Downs, and Stuart Schechter. Your attention
please: Designing security-decision uis to make genuine risks harder to ignore.
In Proceedings of the Ninth Symposium on Usable Privacy and Security, SOUPS
2013. ACM, 2013.

[25] E Oran Brigham, E Oran Brigham, JulioJ Rey Pastor, Rey Pastor, Tom
M Tom M Apostol, MargaritaMartínez Rodríguez, Miguel RamónMargarita
Rodríguez, Miguel Ramón Martínez, C HenryPENNEY Edwards, DAVID
EC Henry Edwards, et al. The fast Fourier transform and its applications.
Number 517.443. Prentice Hall, 1988.

[26] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen
from smartphone motion. In Proceedings of the 6th USENIX conference on Hot
topics in security, HotSec 2011. ACM, 2011.

155

[27] Liang Cai and Hao Chen. On the practicality of motion based keystroke infer-
ence attack. In Proceedings of the 5th international conference on Trust and
Trustworthy Computing, TRUST 2012. Springer Berlin Heidelberg, 2012.

[28] Andre Charland and Brian Leroux. Mobile application development: Web vs.
native. Communications of the ACM, 54(5):49–53, 2011.

[29] Ming Ki Chong and Hans Gellersen. How users associate wireless devices.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 2011. ACM, 2011.

[30] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. Infor-
mation Theory, IEEE Transactions on, 13(1):21–27, 1967.

[31] Marianne Curphey. Card clash, what is it, and how to avoid ir, 2014. Avail-
able online at http://uk.creditcards.com/credit-card-news/what-is-card-clash-
and-how-to-avoid-it-1372.php.

[32] Alexei Czeskis, Karl Koscher, Joshua R Smith, and Tadayoshi Kohno. RFIDs
and secret handshakes: Defending against ghost-and-leech attacks and unau-
thorized reads with context-aware communications. In Proceedings of the 15th
ACM conference on Computer and communications security. ACM, 2008.

[33] Anupam Das, Nikita Borisov, and Matthew Caesar. Exploring ways to mitigate
sensor-based smartphone fingerprinting. 2015. Technical report available at
http://arxiv.org/abs/1503.01874.

[34] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner, and Hein-
rich Hussmann. Touch me once and i know it’s you!: Implicit authentication
based on touch screen patterns. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI 2012. ACM, 2012.

[35] Alexander De Luca, Alina Hang, Emanuel von Zezschwitz, and Heinrich Huss-
mann. I feel like i’m taking selfies all day!: Towards understanding biometric
authentication on smartphones. In Proceedings of the 33rd Annual ACM Con-
ference on Human Factors in Computing Systems, CHI 2015. ACM, 2015.

[36] Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artifi-
cial neural network classification models: a methodology review. Journal of
biomedical informatics, 35(5):352–359, 2002.

156

[37] Saar Drimer and Steven J. Murdoch. Keep your enemies close: Distance bound-
ing against smartcard relay attacks. In Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, SS 2007. USENIX Association,
2007.

[38] Planet of the phones. From the print edition by The Economist, 2015. Avail-
able online at http://www.economist.com/news/leaders/21645180-smartphone-
ubiquitous-addictive-and-transformative-planet-phones.

[39] Nicole Eling, Siegfried Rasthofer, Eric Bodden, and Peter Buxmann. Inves-
tigating users’ reaction to fine-grained data requests: A market experiment.
In Proceedings of Hawaii International Conference on System Sciences, HICSS
2016. IEEE Press, 2016.

[40] Martin Emms, Budi Arief, Nicholas Little, and Aad van Moorsel. Risks of offline
verify pin on contactless cards. In Proceedings of 17th Financial Cryptography
and Data Security, FC 2013. Springer Berlin Heidelberg, 2013.

[41] Martin Emms and Aad van Moorsel. Practical attack on contactless payment
cards. In HCI2011 Workshop-Heath, Wealth and Identity Theft, 2011.

[42] EMV Integrated Circuit Card Specifications for Payment Systems, Book 3,
2011. Available at www.emvco.com/specifications.aspx?id=223.

[43] Book 2 - Security and Key Management, 2011. Available at www.emvco.com
/specifications.aspx?id=223.

[44] EMV Acquirer and Terminal Security Guidelines, 2014. Available at
www.emvco.com/specifications.aspx?id=71.

[45] EMV Issuer and Application Security Guidelines, 2014. Available at
www.emvco.com/specifications.aspx?id=71.

[46] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitor-
ing on smartphones. Transactions on Computer Systems., June 2014.

[47] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve got 99 problems,
but vibration ain’t one: A survey of smartphone users’ concerns. In Proceedings

157

of the Second ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM 2012. ACM, 2012.

[48] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin,
and David Wagner. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Se-
curity, SOUPS 2012. ACM, 2012.

[49] Lishoy Francis, Gerhard P Hancke, Keith Mayes, and Konstantinos Markanton-
akis. Practical relay attack on contactless transactions by using NFC mobile
phones. 2011. Technical report available at IACR Cryptology ePrint Archive.

[50] Gartner says emerging markets drove worldwide smartphone sales to 15.5 per-
cent growth in third quarter of 2015, 2015.

[51] W3C Editor’s Draft on Generic Sensor API. Available at
w3c.github.io/sensors/.

[52] Location and Sensors APIs. Available at: devel-
oper.android.com/guide/topics/sensors/index.html.

[53] Tzipora Halevi, Di Ma, Nitesh Saxena, and Tuo Xiang. Secure proximity detec-
tion for NFC devices based on ambient sensor data. In Proceedings of 17th Euro-
pean Symposium on Research in Computer Security, ESORICS 2012. Springer,
2012.

[54] Tzipora Halevi, Di Ma, Nitesh Saxena, and Tuo Xiang. Secure proximity de-
tection for NFC devices based on ambient sensor data. In 17th European Sym-
posium on Research in Computer Security, ESORICS 2012. Springer Berlin
Heidelberg, 2012.

[55] Chan Choong Wah Hao Feng. Private key generation from on-line handwritten
signatures. Information Management & Computer Security, 10:159–164, 2002.

[56] Marian Harbach, Emanuel von Zezschwitz, Andreas Fichtner, Alexander De
Luca, and Matthew Smith. It’s a hard lock life: A field study of smartphone
(un)locking behavior and risk perception. In Symposium On Usable Privacy
and Security, SOUPS 2014. USENIX Association, 2014.

158

[57] Jan Hauke and Tomasz Kossowski. Comparison of values of pearson’s and
spearman’s correlation coefficients on the same sets of data. QUAESTIONES
GEOGRAPHICAE, 30(2):87–93, 2011.

[58] Arik Hesseldahl. Apple iPhone 4 parts cost about $188. Bloomberg Business,
June 2010. Available at www.bloomberg.com/bw/technology/content/jun2010
/tc20100627_763714.htm.

[59] Ken Hinckley. Synchronous gestures for multiple persons and computers. In
Proceedings of the 16th Annual ACM Symposium on User Interface Software
and Technology, UIST 2003. ACM, 2003.

[60] Iulia Ion, Marc Langheinrich, Ponnurangam Kumaraguru, and Srdjan Capkun.
Influence of user perception, security needs, and social factors on device pairing
method choices. In Proceedings of the Sixth Symposium on Usable Privacy and
Security, SOUPS 2010. ACM, 2010.

[61] Xing Jin, Xunchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam
Nagesh Peri. Code injection attacks on html5-based mobile apps: Character-
ization, detection and mitigation. In Proccedings of 21th ACM Conference on
Computer and Communications Security, CCS 2014. ACM, 2014.

[62] Ruogu Kang, Laura Dabbish, Nathaniel Fruchter, and Sara Kiesler. My data
just goes everywhere: User mental models of the internet and implications for
privacy and security. In Eleventh Symposium On Usable Privacy and Security,
SOUPS 2015. USENIX Association, 2015.

[63] Eamonn J Keogh and Michael J Pazzani. Derivative dynamic time warping.
In The 1st SIAM International Conference on Data Mining, SDM 2001. SIAM,
2001.

[64] Hassan Khan, Urs Hengartner, and Daniel Vogel. Usability and security per-
ceptions of implicit authentication: Convenient, secure, sometimes annoying. In
Eleventh Symposium On Usable Privacy and Security, SOUPS 2015. USENIX
Association, 2015.

[65] D. Kirovski, M. Sinclair, and D. Wilson. The martini synch: Device pairing via
joint quantization. In IEEE International Symposium on Information Theory,
ISIT 2007. IEEE, 2007.

159

[66] Darko Kirovski, Mike Sinclair, and David Wilson. The martini synch. Technical
Report MSR-TR-2007-123, Microsoft Research, September 2007.

[67] Alfred Kobsa, Rahim Sonawalla, Gene Tsudik, Ersin Uzun, and Yang Wang. Se-
rial hook-ups: A comparative usability study of secure device pairing methods.
In Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS
2009. ACM, 2009.

[68] Adam Lella and Andrew Lipsman. The u.s. mobile app report, 2014.
Available online at http://www.comscore.com/Insights/Presentations-and-
Whitepapers/2014/The-US-Mobile-App-Report/.

[69] Haoyu Li, Di Ma, Nitesh Saxena, Babins Shrestha, and Yan Zhu. Tap-Wave-
Rub: Lightweight malware prevention for smartphones using intuitive human
gestures. In Proceedings of the Sixth ACM Conference on Security and Privacy
in Wireless and Mobile Networks, WiSec 2013. ACM, 2013.

[70] Mengyuan Li, Yan Meng, Junyi Liu, Haojin Zhu, Xiaohui Liang, Yao Liu, and
Na Ruan. When csi meets public wifi: Inferring your mobile phone password via
wifi signals. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS’16, pages 1068–1079, New York, NY, USA,
2016. ACM.

[71] David Lieb. All good things..., 2014. Available at blog.bu.mp/post/
71781606704/all-good-things.

[72] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uWave:
Accelerometer-based personalized gesture recognition and its applications. Per-
vasive and Mobile Computing, 5(6):657–675, 2009.

[73] Di Ma, Nitesh Saxena, Tuo Xiang, and Yan Zhu. Location-aware and safer
cards: Enhancing RFID security and privacy via location sensing. Dependable
and Secure Computing, IEEE Transactions on, 10(2):57–69, 2013.

[74] Geoff Marshall. Travel using contactless cards: An update from tfl, 2014. Avail-
able online at http://londonist.com/2014/07/travel-using-contactless-cards-an-
update-from-tfl.

[75] Rene Mayrhofer. The candidate key protocol for generating secret shared keys
from similar sensor data streams. In Security and Privacy in Ad-hoc and Sensor
Networks. Springer Berlin Heidelberg, 2007.

160

[76] Rene Mayrhofer and Hans Gellersen. Shake well before use: Authentication
based on accelerometer data. In Pervasive Computing. Springer Berlin Heidel-
berg, 2007.

[77] Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure
pairing of mobile devices. Mobile Computing, IEEE Transactions on, 8(6):792–
806, 2009.

[78] Maryam Mehrnezhad, Mohammed Ali, Feng Hao, and Aad van Moorsel. Nfc
payment spy: Privacy attacks on contactless payments using NFC-enabled mo-
bile. In Proccedings of Third International Conference on Research in Security
Standardisation, SSR 2016. Springer International Publishing, 2016.

[79] Maryam Mehrnezhad, Feng Hao, and Siamak Shahandashti. Tap-Tap and Pay
(TTP): Preventing the mafia attack in NFC payment. In Proccedings of Second
International Conference on Research in Security Standardisation, SSR 2015.
Springer International Publishing, 2015.

[80] Maryam Mehrnezhad, Ehsan Toreini, and Feng Shahandashti, Siamakand Hao.
Stealing pins via mobile sensors: Actual risk versus user perception. In The 1st
European Workshop on Usable Security, EuroUSEC 2016, 2016.

[81] Maryam Mehrnezhad, Ehsan Toreini, Siamak Shahandashti, and Feng Hao.
Touchsignatures: Identification of user touch actions based on mobile sensors
via javascript. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS 2015. ACM, 2015.

[82] Maryam Mehrnezhad, Ehsan Toreini, Siamak Shahandashti, and Feng Hao.
Touchsignatures: Identification of user touch actions and PINs based on mobile
sensor data via javascript. Journal of Information Security and Applications,
26:23–38, 2016.

[83] Maryam Mehrnezhad, Ehsan Toreini, Siamak F. Shahandashti, and Feng Hao.
Stealing pins via mobile sensors: actual risk versus user perception. Interna-
tional Journal of Information Security, pages 1–23, 2017.

[84] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. Gyrophone: Recognizing
speech from gyroscope signals. In Proceedings of the 23rd USENIX conference
on Security Symposium, SEC 2014. ACM, 2014.

161

[85] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. Tapprints: your finger taps have fingerprints. In Proceedings of the
10th international conference on Mobile systems, applications, and services.
ACM, 2012.

[86] Katie Morley. Contactless cards: how to avoid paying twice, 2014. Available
online at http://www.telegraph.co.uk/finance/personalfinance/money-saving-
tips/11215583/Contactless-cards-how-to-avoid-paying-twice.html.

[87] Martin Fodslette Muller. A scaled conjugate gradient algorithm for fast super-
vised learning. Neural Networks, 6(4):525 – 533, 1993.

[88] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. Single-stroke
language-agnostic keylogging using stereo-microphones and domain specific ma-
chine learning. In Proceedings of the 2014 ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec 2014. ACM, 2014.

[89] ISO 14443, ISO 18092, Type-A, Type-B, Type-F, Felica, Calypso NFCIP, NFC-
HELP!, 2009. Available online at http://www.nfc.cc/2009/01/03/iso-14443-iso-
18092-type-a-type-b-type-f-felica-calypso-nfcip-nfc-help/.

[90] Smartphones: So many apps, so much time, 2015. Available online
at http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-
apps-so-much-time.html.

[91] AN10927, MIFARE and handling of UIDs, 2013. Published by NXP.

[92] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. Acces-
sory: password inference using accelerometers on smartphones. In Proceedings
of the 12th Workshop on Mobile Computing Systems & Applications. ACM,
2012.

[93] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper:
Towards automating risk assessment of mobile applications. In Proceedings of
the 22Nd USENIX Conference on Security, SEC 2013. USENIX Association,
2013.

[94] Andrew Raij, Animikh Ghosh, Santosh Kumar, and Mani Srivastava. Privacy
risks emerging from the adoption of innocuous wearable sensors in the mobile
environment. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2011. ACM, 2011.

162

[95] Oriana Riva, Chuan Qin, Karin Strauss, and Dimitrios Lymberopoulos. Pro-
gressive authentication: deciding when to authenticate on mobile phones. In In
Proceedings of 21st USENIX Security Symposium. ACM, 2012.

[96] Heather Saul. Oyster card users pay up to £91 more each week
than people using new contactless payment, 2014. Available online at
http://www.independent.co.uk/news/uk/home-news/oyster-card-users-
pay-up-to-91-more-each-week-than-people-using-new-contactless-payment-
9843642.htmll.

[97] Nitesh Saxena and Jonathan Voris. Still and silent: Motion detection for en-
hanced rfid security and privacy without changing the usage model. In In Proc-
cedings of 6th International Workshop Radio Frequency Identification: Security
and Privacy Issues, RFIDSec 2010. Springer Berlin Heidelberg, 2010.

[98] Babins Shrestha, Nitesh Saxena, Hien Thi Thu Truong, and N. Asokan. Drone
to the rescue: Relay-resilient authentication using ambient multi-sensing. In
Financial Cryptography and Data Security: 18th International Conference, FC
2014. Springer Berlin Heidelberg, 2014.

[99] Laurent Simon and Ross Anderson. PIN Skimmer: Inferring PINs through
the camera and microphone. In Proceedings of the Third ACM Workshop on
Security and Privacy in Smartphones Mobile Devices, SPSM 2013, pages 67–78.
ACM, 2013.

[100] Raphael Spreitzer. Pin skimming: Exploiting the ambient-light sensor in mobile
devices. In Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones Mobile Devices, SPSM 2014. ACM, 2014.

[101] Number of apps available in leading app stores as of july 2015, 2015. Avail-
able online at http://www.statista.com/statistics/276623/number-of-apps-
available-in-leading- app-stores/.

[102] Ahren Studer, Timothy Passaro, and Lujo Bauer. Don’t bump, shake on it:
The exploitation of a popular accelerometer-based smart phone exchange and
its secure replacement. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC 2011, pages 333–342. ACM, 2011.

163

[103] Vincent F. Taylor and Ivan Martinovic. A longitudinal study of app permis-
sion usage across the google play store. 2016. Technical report available at
http://arxiv.org/abs/1606.01708.

[104] Why contactless cards can leave you with a losing deal, 2014. Available online
at http://www.theguardian.com/money/2013/may/25/contactless-cards.

[105] Watch out for card clash. Available online at https://tfl.gov.uk/fares-and-
payments/contactless/card-clash.

[106] Michael Velten, Peter Schneider, Sascha Wessel, and Claudia Eckert. User iden-
tity verification based on touchscreen interaction analysis in web contexts. In
Information Security Practice and Experience. Springer International Publish-
ing, 2015.

[107] Jose Vila and Ricardo J. Rodriguez. Practical experiences on NFC relay attacks
with android. In Radio Frequency Identification: 11th International Workshop,
RFIDsec 2015. Springer International Publishing, 2015.

[108] Device and sensors working group, 2016. Available online at
https://www.w3.org/2009/dap/.

[109] W3C Working Draft Document on Media Capture and Streams. Available at
http://w3c.github.io/mediacapture-main/getusermedia.html.

[110] W3C Geolocation API Specification. Available at dev.w3.org/geo/api/spec-
source.html.

[111] W3C Working Draft Document on Ambient Light Events. Available at
w3.org/TR/ambient-light/.

[112] W3C Working Draft Document on Device Orientation Event. Available at
http://www.w3.org/TR/orientation-event/.

[113] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. Mole: Motion leaks
through smartwatch sensors. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking, MobiCom’15, pages 155–166,
New York, NY, USA, 2015. ACM.

164

[114] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. Un-
derstanding the inconsistencies between text descriptions and the use of privacy-
sensitive resources of mobile apps. In Eleventh Symposium On Usable Privacy
and Security, SOUPS 2015. USENIX Association, 2015.

[115] Zhi Xu, Kun Bai, and Sencun Zhu. Taplogger: Inferring user inputs on smart-
phone touchscreens using on-board motion sensors. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile Networks,
WISEC 2012. ACM, 2012.

165

	Introduction
	Mobile device sensors
	Smart apps
	In-app attacks
	Sensor management challenges
	In-browser attacks
	Industrial vs. academic approaches
	Human dimensions
	Methodology
	Contributions
	Industrial impact
	Media coverage

	Preventing the Mafia Attack in NFC Payment
	Chapter overview
	Introduction
	NFC payment
	Mafia attack
	NFC payment standards and specifications
	Distance bounding protocols
	Other countermeasures
	Contributions

	Tap-Tap and Pay (TTP)
	Threat model
	Overview of the solution
	Host-based card emulation and Reader emulation
	Sensor data preprocessing
	Similarity comparison

	System evaluation
	Experiment setup and data collection
	Results
	Online and offline modes

	Usability study
	Experiment setup and data collection
	Findings

	Comparison with previous work
	Further related work
	Summary

	A Privacy Attack on Contactless Payments
	Chapter overview
	Introduction
	Card collision
	Oystercard and bank card clash
	EMV contactless specifications
	ISO/IEC 14443

	Experiments on contactless readers in practice
	Experiment setup
	Experiment results and analysis

	Attack design
	Threat model and attack scenario
	Designing the attack based on NFC payment protocols

	Implementation
	Android HCE
	Android flight mode

	Experiments and results
	Expected results
	Experiment A: card and phone collision
	Experiment B: PDOL data

	Summary

	Identification of User Touch Actions and PINs via JavaScript
	Chapter overview
	Introduction
	Mobile sensors access
	Access to mobile sensors within app
	Access to mobile sensors within browser
	Access to mobile sensors within app vs. browser
	Contributions

	Examining mobile browsers
	JavaScript code to access motion and orientation data
	Popular browsers
	Mobile browser access results

	Identifying user activities
	TouchSignatures: Identifying touch actions and PIN digits
	Overview
	In-browser sensor data detail
	Application implementation
	Feature extraction
	Classification method

	Phase 1: Identifying touch actions
	Touch actions set
	Experiments
	Classification algorithm
	Results

	Phase 2: Identifying PIN digits
	Digit set
	Experiments
	Classification algorithm
	Results
	Comparison with related work

	PINLogger.js: Identifying full 4-digit PINs
	PINs set
	Experiments
	Feature extraction
	Classification algorithm
	Results
	Comparison with related works

	Possible solutions
	Industry feedback
	Summary

	Human Dimensions of Mobile Sensors Security
	Chapter overview
	Introduction
	Sensor management complexity
	Unmanaged sensors
	Unknown sensors

	User studies on general knowledge about mobile sensors
	Recruitment and participants demography
	Study approach
	Findings

	User studies on risk perception of mobile sensors
	Study one: within-subject
	Study two: between-subject
	Intuitive risk perception

	General knowledge vs. risk perception
	Perceived risk vs. the actual risk
	Possible solutions
	Academic approach
	Industrial approach

	Discussions
	Limitations
	Summary

	Conclusion
	Thesis summary
	Future work

	TTP Usability Experiment
	Help Document for Sensor Data Collection Process
	Touch Action Study Guide
	Interview Description of Mobile Sensors User Study
	Bibliography

