
 

 

 

Robustness of hierarchical spatial critical 

infrastructure networks 

 

 

Craig Robson 

 

 

School of Civil Engineering and Geosciences 

Newcastle University 

 

 

 

 

 

Thesis submitted for the Degree of Doctor of Philosophy 

April 2017 

 



 

 

  



 

 

i 

 

Abstract 

 

The economic state and wellbeing of a nation is dependent upon the critical infrastructure 

networks that deliver resources, goods and services. However, these are increasingly exposed 

to a number of hazards, both natural and man-made, which threaten to disrupt their ability to 

function. It is essential that in order to develop long-term strategic plans of infrastructure 

provision we are able to understand their current robustness to such hazards. 

The robustness of critical infrastructure networks has typically been investigated from a 

topological perspective as a means of simplifying the complexities associated with their 

analysis. Such work has led to many studies suggesting critical infrastructures exhibit a 

topological structure, from random to exponential degree distributions. However, often such 

analysis ignores the explicit spatial characteristics of the node and edge assets. Furthermore, 

the very nature of topological analysis means that flows/movements that take place over such 

networks cannot be considered. 

This work addresses these weaknesses by extending traditional topological analysis to consider 

emergent properties critical infrastructure networks exhibit when considering higher-order 

connectivity and flows. An analysis of a suite of synthetic networks with a spectrum of 

topologies alongside real infrastructure spatial networks, in terms of their basic topology and 

high-order connectivity, shows that a number of critical infrastructure networks seem to be 

better characterised as hierarchical networks. Subsequent failure modelling reveals that such 

hierarchical networks responded in a dramatically different manner to perturbations; complete 

failure occurring approximately 19 and 34 percent sooner for random and targeted failures 

compared to random networks. Such poor robustness is further exacerbated when flow 

simulation modelling over the resulting hierarchical networks is undertaken, revealing 

particular sensitivity to cascading failures from spatial hazards. In light of these results, it is 

suggested that it is essential to improve the robustness of critical infrastructure networks that 

exhibit a hierarchical spatial organisation.
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Chapter 1: Introduction 

 

1.1 Research introduction 

Critical infrastructure networks are vital to the functioning of societies (Boin and McConnell, 

2007) and “if lost would lead to severe economic or social consequences or to loss of life” 

(Cabinet Office, 2010). Infrastructure networks provide services which are used and relied upon 

in nearly all aspects of life (Sterbenz et al., 2011), making their security vital in order to avoid 

failure or disruption that impacts on national security, economic security and public health and 

wellbeing (107th Congress, 2001; Rinaldi, 2004; Schulman and Roe, 2007; HM Treasury, 

2010). Critical infrastructures are spread over nine sectors including energy, food, water, 

transportation, communications, emergency services, health care, financial services and 

government (Cabinet Office, 2010). More concisely, networks such as those for electric, gas 

and water distribution, roads, rail and air as well as telecommunications are generally regarded 

as those physical infrastructure networks which are critical (Rinaldi, 2004; Ulieru, 2007; 

Doglioni et al., 2009). 

Recent failures of critical infrastructure networks, such as energy distribution and 

telecommunications (Rinaldi et al., 2001; Andersson et al., 2005) have shown the extent to 

which modern societies rely upon them and to how vulnerable these networks can be when 

exposed to hazard events or smaller asset failures. For example, a electricity blackout of Italy 

in 2003 lasted 19 hours (power started being restored after 1.5 hours) and is estimated to have 

had an economic cost of €1,182 million (Royal Academy of Engineering, 2014). Four deaths 

were reported, along with severe transport impacts, with train services disrupted and flights 

cancelled. The extent of the impacts was lessened with the blackout occurring during the night, 

with services gradually restored across Italy. The blackout was triggered following a fault on 

the power network in Switzerland which fed transmission lines to Italy, causing the failure of 

the lines Italy relied upon as an importer of Swiss electric, triggering a cascading failure (Berizzi, 

2004; Royal Academy of Engineering, 2014). Similarly, the failure of a high-voltage line, or 

number of, in Ohio triggered a blackout which is estimated to cost the US $6billion 

economically and Canada lost 18.9million work hours in total (Royal Academy of Engineering, 

2014). The blackout shutdown oil refineries and pipelines, transport systems and key 

manufacturing industries for on average for over 24 hours, all ultimately due to the failure of a 

single utility company to ensure trees were properly cut back from transmission lines and a lack 
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of built in resilience in the electric supply network (Electricity Consumers Resource Council, 

2004).  

Large natural hazards have caused significant impacts on critical infrastructure networks, with 

the disruption and destruction caused by events such as earthquakes, flooding and ice storms 

impacting on the ability for infrastructure networks to continue to function. The 1998 ice storm 

in Canada demonstrated how dependent and vulnerable it is to power outages (Purcell and Fyfe, 

1998) with 16% of the population left without power for up to three weeks at an economic cost 

in excess of $4.7billion (Chang et al., 2007). More recently the 2011 earthquake off the coast 

of Japan has highlighted the vulnerability of network assets to hazards with the water inundation 

at Fukushima nuclear power plant, the subsequent failure of the plant, which in response led to 

the closure of similar plants, leading to rolling blackouts due to a reduction of 30% in electricity 

capacity (Royal Academy of Engineering, 2014). Compounding this, the transmission networks 

across mainland Japan, between the East and West are effectively separate networks meaning 

shortfalls could not be compensated by areas where excess was available (Scawthorn et al., 

2011). The lack of capacity and redundancy in the transmission network, and the loss in 

confidence of Nuclear generation led to significant economic impacts, though not quantifiable 

due to the disaster itself, though industrial production was estimated to be down 15% during 

the month of the disaster and subsequent period of blackouts (Royal Academy of Engineering, 

2014). Hazards such as earthquakes and floods can affect multiple critical infrastructures 

directly (Little, 2003), rather than just one in the case of an asset fault, exacerbating the potential 

impacts on the infrastructure networks. 

Extreme weather events such as the ice storm mentioned previously affect geographic areas 

with the critical infrastructures within the area exposed to the hazard. These events extend to 

hazards such as flooding, forest fires, drought and storms, many a result directly or indirectly, 

of extreme weather. The impacts of such events on critical infrastructure networks can be 

significant, as exemplified by the 1998 ice storm in Canada (Chang et al., 2007), as well as the 

flooding in the UK in 2007 (Cabinet Office, 2008) and hurricane Katrina in 2005 (Leavitt and 

Kiefer, 2006). Such events were a result of extreme weather, and with the frequency and scale 

of such weather expected to increase as a result of a changing climate (Royal Academy of 

Engineering, 2011) the need for an increasing robustness and resilience to these events is 

becoming critical.  

Understanding how extreme weather events as well as asset faults and failures impact on 

infrastructure networks is critical to reduce the impacts on the networks and services which 

they provide. However infrastructure networks are complex systems when considered as stand-
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alone entities, though do not exist as such, and instead are interconnected, with networks relying 

on each other (Rinaldi, 2004), forming an interconnected web of networks (Figure 1.1) which 

deliver the services modern societies depend upon. These interdependencies between networks 

have developed through increasing demands, technological advances and the drive for greater 

efficiency (Chiaradonna et al., 2009) with societies now relying upon these (Rinaldi, 2004).  

 

Figure 1.1: The dependencies and interdependencies between a number of critical 

infrastructures (Little, 2003). 

 

In order to try and understand the functionally of critical infrastructure networks modelling and 

simulation is increasingly employed (Amaral and Ottino, 2004; Rinaldi, 2004). In particular, 

graph theory/models have been used for the analysis and simulation of networks (Newman, 

2003b; Amaral and Ottino, 2004; Jungnickel, 2004; Boccaletti et al., 2006), since the original 

‘random’ graph model of Erdos and Renyi (1959). Since this work, graph theory and models 

have been extensively developed and applied for the analysis and simulation modelling of 

networks (Newman, 2003b), including critical infrastructures (Amaral and Ottino, 2004). In 

particular, since the first random models (Erdos and Renyi, 1959) small-world (Watts and 

Strogatz, 1998) and scale-free models (Barabasi and Albert, 1999) have been extensively 

investigated. These graph models have been associated with real-world critical infrastructure 

networks (Albert and Barabasi, 2002; Newman, 2003b), such as the internet and electricity 

distribution networks (Watts and Strogatz, 1998; Barabasi and Albert, 1999; Cohen et al., 2001). 
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However, there is a growing literature around networks having a hierarchical structure (Ravasz 

et al., 2002; Ravasz and Barabasi, 2003; Trusina et al., 2004; Clauset et al., 2008; Lancichinetti 

et al., 2009). Analysis has shown hierarchical structures existing in biological networks (Costa 

et al., 2008) and in particular in metabolic networks (Ravasz et al., 2002; Holme et al., 2003; 

Ravasz and Barabasi, 2003), as well as social networks (Watts et al., 2002; Clauset et al., 2008). 

However, analysis of hierarchical organisation in critical infrastructure networks is less strong 

(Costa and Silva, 2006). Research such as that done by Yerra and Levinson (2005) has 

suggested hierarchies exist in road networks, and some research has indicated that a hierarchical 

organisation exists in airline networks (Bagler, 2008a), though Ravasz and Barabasi (2003) 

have suggested that networks which a geographical organisation do not have a modular 

hierarchical organisation as found in some networks. This apparent contradiction may suggest 

that more than one form of hierarchiy exists, with the modular organisation potentially differing 

in charachteristics from that found by Yerra and Levinson (2005) and Bagler (2008a) in spatial 

infrastructure networks. The underlying reasons for the difference in the identified hierarchies 

could vary, from differences in network evolution for the best structure to meet the purpose of 

the network, to possible contrainsts enforced by the network being inherently spatial. These 

could include the cost of new links for infrastructure networks and the constraints imposed by 

geographic boundaries, be that physical or political. 

Hierarchical networks have been suggested to be vulnerable to failures, but especially to the 

failure of the most critical nodes (Helbing et al., 2006a; Wuellner et al., 2010). With 

infrastructure networks being vital to so many aspects of modern societies (Rinaldi, 2004) it is 

considered imperative that these are robust to all forms of hazards, whether natural hazards, 

asset breakdowns or targeted attacks (Little, 2003). However, despite an emerging set of 

literature on the characteristics of hierarchical networks (Barabasi et al., 2003; Clauset et al., 

2008), little of this has focused or been directed towards critical infrastructure networks, with 

only a few studies approaching this potential field of research (Yerra and Levinson, 2005). 

 

1.2 Aims and objectives 

The research aim of this thesis is to identify the hierarchical organisation of critical spatial 

infrastructure networks and the robustness of these to a range of failure scenarios. To address 

this aim, four objectives have been defined: 

1. Review the research field pertaining to hierarchical networks and graph models and their 

application in the analysis of critical spatial infrastructure networks. 
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2. Investigate the properties of hierarchical graphs to identify the characteristics which 

makes them recognisable from non-hierarchical graphs. 

3. Identify examples of hierarchically organised critical spatial infrastructure networks 

using the outcomes from objective 2. 

4. Explore the robustness of hierarchical infrastructure networks to perturbations and the 

reasons why such networks behave differently to those of other topological structures. 

 

This research will investigate the extent of a hierarchical organisation in critical spatial 

infrastructure networks and the effect this has on the robustness of these infrastructure networks 

to perturbations. To achieve this the characteristics of hierarchically organised graphs must be 

investigated to identify how these can be recognised from those without a hierarchical 

organisation. This then allows for the identification of hierarchically organised critical 

infrastructure networks and the effect the hierarchical organisation has on the robustness of the 

infrastructure networks and their ability to continue to deliver services/function as designed. 

 

1.3 Thesis structure 

The remainder of this thesis addresses the aims and objectives as set out above in Section 1.2 

and is split into a further five chapters. The following chapter, Chapter 2, reviews the previous 

research which has been undertaken with regard to critical spatial infrastructure networks, the 

characterisation of these networks and the analysis undertaken to establish and improve the 

robustness of infrastructure networks to hazards and failures. Chapter 3 presents the 

methodological approach used to address the aims and objectives of this research using the 

knowledge acquired from Chapter 2. The suite of software, including tools, modules and 

database schema’s developed for the research are also detailed in Chapter 3. The results from 

the analysis set out in Chapter 3 are then presented in Chapter 4. Chapter 5 then discusses the 

results and the major findings from the analysis undertaken as well as critiquing the employed 

methods. Chapter 6 then finally presents the conclusions of the research including a summary 

of the results along with potential future areas of research. 
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Chapter 2: Infrastructure network modelling 

2.1 Infrastructure systems and networks 

Infrastructure systems are those systems which provide the critical services we depend upon 

including energy, water, telecommunication and transportation (Rinaldi, 2004; Ulieru, 2007; 

Doglioni et al., 2009). These systems are critical, influencing both the economic and social 

wellbeing of society through the services and commodities they provide (107th Congress, 2001; 

Rinaldi, 2004; Boin and McConnell, 2007; Schulman and Roe, 2007; HM Treasury, 2010; 

Sterbenz et al., 2011).  

The term infrastructure system describes the functioning of the infrastructure, or multiple 

infrastructures, from the physical assets to the operational control of the infrastructure and the 

behaviour of it (Rinaldi et al., 2001; Egan, 2007; Richards et al., 2007), as well as the 

interactions humans have with the infrastructure (Egan, 2007). At all aspects of the 

infrastructure system failures/errors can occur which affect the ability of the infrastructure to 

function (Rinaldi et al., 2001; Little, 2003), from the breakdown of individual components to 

the failure of control systems. However, it is the failure of physical assets that has triggered 

some of the worst recorded infrastructures failures, such as the blackouts in Europe and North 

America in 2003 (Andersson et al., 2005). Physical network assets are exposed to a range of 

known hazards including natural events like earthquakes and weather related events such as 

wind storms and flooding (Rinaldi et al., 2001; Rinaldi, 2004).  

The control systems for infrastructure systems are becoming increasingly computerised (Little, 

2003), including SCADA (Supervisory Control And Data Acquisition) systems for the electric 

distribution networks for example (Rinaldi et al., 2001; Bobbio et al., 2010). These systems are 

also under threat, and increasingly so, from cyber threats which target the control systems 

aiming to disrupt the operation of infrastructure systems (Ten et al., 2008; Bronk, 2015; Genge 

et al., 2015). An increasing number of SCADA systems rely on the internet (Ten et al., 2008), 

which itself has physical assets which are vulnerable to failures, thus enabling a robustness to 

the cyber threat is alone not enough.  

Physical assets are those assets which constitute the network which delivers the service, which 

for an electricity network for example, includes, but is not limited to the power stations, 

substations as well as transmission and distribution lines (Wang et al., 2012). The network itself 

is considered decoupled from the systems used to control, operate and manage it, such as 
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SCADA systems (Rinaldi, 2004; Zio, 2014), as well as those which influence how it develops, 

with these part of the wider infrastructure system. Control systems can affect a networks 

response to perturbations, with these managing the networks in real-time to limit the impact on 

the networks functionality (Rinaldi et al., 2001; Eusgeld et al., 2011; Merabti et al., 2011). The 

control systems also can cause disruptions to the systems themselves, with these being 

vulnerable to failures, preventing the system from functioning (Ulieru, 2007; Velykiene and 

Jones, 2011). By excluding this aspect of infrastructure systems, as well as the possible human 

interventions associated with the control of the systems from any analysis the operational 

behaviour of the system is ignored. This therefore limits the ability of any analysis to 

realistically model the behaviour of the systems and especially their response to perturbations, 

with the mechanisms whereby interventions may be made to reduce the impact of failures on 

the networks operational functionality ignored in the analysis. However, by not attempting to 

model the control systems it allows for subsequent analysis to focus on the built aspect of the 

network system, the physical infrastructure which exists and how this aspect might be affected 

by hazards/perturbations. To this end, the physical assets can be modelled using graph theory 

approaches where the network, G, is modelled using a set of nodes, N and a set of edges, E, 

𝐺 =  {𝑁, 𝐸}. Assets such as power stations and substations, those located as a single point form 

the node set, 𝑛 ∈ 𝑁, and assets such as transmission/distribution lines the edge set, 𝑒 ∈ 𝐸. 

Graph theory for network modelling is reviewed in much more detail in Section 2.3. 

 

2.2 Infrastructure robustness and resilience  

Critical infrastructure networks are exposed to a large range of hazards including those caused 

by human interventions, mechanical failures of equipment and natural events such as floods 

and extreme winds (Little, 2002). All such hazards can result in failures which effect the service 

provided, with what may seem like minor failures potentially having major impacts (Merabti et 

al., 2011). The ability of infrastructure systems and networks to continue to deliver the services 

is thus critical. A number of terms have been associated with the measurement of the ability for 

infrastructure networks to withstand perturbations; resilient (resilience), robustness, reliability 

and vulnerability, all of which will be discussed in this section in relation to the analysis of 

critical infrastructure networks. 

The term resilience was first defined by Holling (1973) who defined resilience as “determining 

the persistence of relationships within a system and is a measure of the ability of these systems 

to absorb changes of state variables, driving variables, and parameters, and still persist”. 
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Although from the field of ecology, the definition refers to the ability of a system to cope with 

changes, and appears equally applicable to infrastructure networks/systems as it is ecology. 

Within the field of ecology Walker et al. (2004) have more recently refined the definition of 

resilience as ‘the capacity of a system to absorb disturbance and reorganize while undergoing 

change so as to still retain essentially the same function, structure, identity, and feedbacks’. 

Unlike the definition of Holling (1973), this refers to the ability of the system to not only 

continue to function while perturbed, but to re-organise and continue to deliver the same level 

of performance. This feature, the ability of a system to return to its normal operating state 

following perturbations, is also suggested in the definition by Pimm (1984) who defines 

resilience as how fast a system returns to equilibrium (its normal state) following a change to 

its normal operating state.  

Within the fields of engineering and infrastructure systems analysis, a range of definitions have 

also been proposed that differ somewhat from the ecological perspective. McDaniels et al. 

(2008) defines resilience as the capacity to absorb shocks while maintaining function, Leu et 

al. (2010) defines it as ‘the system’s ability to keep focusing on and meeting key objectives 

when faced with challenges in the surrounding operating environment’, Sterbenz et al. (2011) 

defines it ‘as the ability of a network to provide desired service even when challenged by attacks, 

large-scale disasters, and other failures’ and Hosseini et al. (2016) states that the term resilience 

implies ‘the ability of an entity or system to return to normal condition after the occurrence of 

an event that disrupts its state’. These all provide a similar definition to that of Holling (1973), 

with the focus on the ability to continue to function and provide a service while being perturbed. 

However, it is worth noting that they have no explicit mention of the ability of the 

system/infrastructure to recover, as suggested by the definition provided by Pimm (1984). 

McDaniels et al. (2008) does state that there are many aspects of resilience, with robustness 

and rapidity (the time required for the system to return to its normal state of operation), being 

important measures. This is demonstrated in Figure 2.1 where the rapidity of the network to 

respond to a failure, illustrated by a drop in system function, is shown as a measure of time. 

The robustness is shown to be the amount of the network/system unaffected by the failure. Two 

dashed lines also highlight the possible alternative effects of a failure if early mitigation 

methods are employed or if greater post failure adaption is undertaken. 
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Figure 2.1: An illustration of the properties of resilience (McDaniels et al., 2008). 

A number of authors do include the ability to recover within their definitions with regard to 

engineering and infrastructure analysis. Reed et al. (2009) define resilience as ‘the ability to 

bounce back after a major disruption’, Ouyang et al. (2012) it as ‘the ability to resist (prevent 

and withstand) possible hazards, absorb the initial damage, and recover to normal operation’ 

and O'Rourke (2007) states that resilience by ‘the loss in quality (of service) over the time to 

recover’. These three definitions all refer to resilience as some function of the time to recover, 

as well as the ability to continue to function while perturbed; a more complete assessment of 

the performance of a network when perturbed. Bruneau et al. (2003) also provide a diagram of 

resilience (Figure 2.2), highlighting that resilience is the ability to function when not at 100% 

due to an event. This explicit handling of the time components of resilience re-enforces the 

concept of the time to recover being a critical part of a systems resilience. 

 

Figure 2.2: Diagrammatic definition of resilience (Bruneau et al., 2003). 
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The need for critical infrastructures to be able to perform while perturbed has also involved 

many governments, including the UK and the USA. Resilience was defined by the Pitt Review 

in the UK as ‘the ability of a system or organisation to withstand and recover from adversity’ 

(Cabinet Office, 2008) and the Homeland Secutity Advisory Council (2011) for the USA 

defines it as the ‘ability to resist, absorb, recover from or successfully adapt to adversity due to 

a change in conditions’. This highlights the recognition of the resilience of networks being 

critical from a governance perspective, with the ability to recover from perturbations forming 

a key part of this.  

The definitions of resilience share similarities to other concepts, including robustness (Hosseini 

et al., 2016), itself a significant characteristics for infrastructure systems (Callaway et al., 2000; 

Reed et al., 2009; Gao et al., 2011). Bruneau and Reinhorn (2007) define it as the ‘strength, or 

the ability of elements, systems, and other measures of analysis to withstand a given level of 

stress or demand without suffering degradation or loss of function’ and McDaniels et al. (2008) 

define it as ‘the extent of system function that is maintained’ (Figure 2.1). These three 

definitions are similar with all referring to robustness being the ability of a network to perform 

while perturbed in some manner, though do share some similarities to the definition of 

resilience, such as those by Leu et al. (2010) and Sterbenz et al. (2011), with regard to the 

ability of network to still function when perturbed. These definitions however are distinct from 

those for resilience, with resilience including the ability of a system to absorb and recover from 

a hazard/perturbation and the consequences of this on the system (Reed et al., 2009; Ouyang et 

al., 2012; Hosseini et al., 2016). This clearly differentiates the two concepts of resilience and 

robustness, of which it is evident in some cases from the literature that the terms are used 

interchangeably and can cause some confusion. However, for the rest of this work, the focus 

will be on network robustness, and the ability of a network to withstand perturbations. 

Although much of the literature presented refers to the robustness and/or resilience of 

infrastructure networks as a single entity (Walker et al., 2004; Cabinet Office, 2008; McDaniels 

et al., 2008; Leu et al., 2010), there are many individual components which form an 

infrastructure system, with each having its own level of robustness/resilience. Infrastructure 

systems commonly exist of physical assets/entities, as well as a control system, such as a 

SCADA system (Zio, 2014). For an infrastructure system to be resilient or robust all aspects 

must play a part in this, from the individual assets which form the network, to the operational 

and control aspects, and by ignoring one in a systems analysis results in un-realistic results. 

When defining robustness Bruneau and Reinhorn (2007), as discussed above, include ‘elements’ 

as well as ‘systems’ in their definition of robustness, suggesting an acknowledgement that the 



 

11 

 

robustness of the elements are just as important as that of the system.  This work instead of 

focusing on the robustness of the system focuses on the robustness of the network, the way in 

which the physical assets are connected, ignoring that of the individual assets as well as the 

control systems. This allows for the work to focus on the structure as well connectivity of the 

network, and how this influences the ability of an infrastructure to function when perturbed. 

As defined in the previous paragraphs, resilience and robustness have contrasting definitions, 

and thus effect the design and running of infrastructure networks, with one about the system 

being able to resist failures and the other the system being able to recover from a failure quickly. 

A robust network/entity is not necessarily resilient, with the entity being designed to reduce the 

likelihood of failure and thus there is little need to consider how the entity/network may recover 

(be resilient). In contrast a resilient network/entity is designed to be able to recover from a 

failure, with the robustness, the ability not to fail, a lesser concern as some failures are expected. 

A robust system therefore is not designed with the features which may make a system resilient, 

such as redundancy (Jenelius, 2010; Royal Academy of Engineering, 2011; Yazdani and Jeffrey, 

2012), as these are not expected to be required. A resilient system focuses on having high levels 

of redundancy, with the expectation that some components will fail and the redundancy will 

therefore be required if the network as a whole is to not fail. Despite this apparent tension 

between these two factors, there has been little research into this relationship, and how this 

affects the design and control of infrastructure networks. 

 

2.3 Models of infrastructure networks 

The function, characteristics and behaviour of infrastructure networks has been explored 

through a range of approaches; from modelling using complex networks (Bagler, 2008a; Wang 

and Rong, 2009; Wilkinson et al., 2012), agent based models (van Dam and Lukszo, 2006; 

Oliva et al., 2010) and petri-nets (Gursesli and Desrochers, 2003; Pye and Warren, 2006). This 

range of approaches has afforded the potential to gain a greater understanding of infrastructure 

networks, with each method offering the ability to model the networks/systems from different 

perspectives.  

Agent based modelling simulates individual agents which behave based on a set of predefined 

rules to analyse how systems and models change over time (Bonabeau, 2002; Macal and North, 

2010; Helbing, 2012). Such modelling has been used across a range of fields, from economic 

modelling and population modelling (Helbing, 2012), to the modelling of interdependencies 

between infrastructure systems (Valeria et al., 2007) and the modelling of flows over networks 
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(Hoogendoorn and Bovy, 2001). Models are developed with multiple agents used to simulate 

the network and the processes on it, with domain specific knowledge required to parameterise 

the agents using rules, conditional or mathematical, in as realistic way as possible (Bonabeau, 

2002). For example, the TRANSMIS agent based model has been developed to simulate road 

networks at a fine scale, with the model using individual agents moving over a regional road 

network (Nagel et al., 1997; Nagel and Rickert, 2001), and thus rules are developed to describe 

how they make decisions about moving over the network. This micro-simulation agent based 

model has been deployed to simulate traffic behaviour including queuing patterns, on road 

networks in the cities of Dallas and Portland (USA) (Helbing, 2012), aiding traffic management 

strategies and future planning. At a broader scale Valeria et al. (2007) have developed an agent 

based model to analyse the impact of perturbations of one infrastructure on those which are 

dependent on it. The agents within the model represent different sectors and the components 

within them and are developed with rules about how they communicate and interact with each 

other, allowing the simulation to help improve the understanding of how the system of 

infrastructure systems are affected by just a single failure. As well as highlighting why domain 

specific knowledge is required per agent based model, it also exemplifies the different scales at 

which agent based models can be used to learn and help understand infrastructure systems. 

With the ability of agent based models to simulate systems at a vast range of scales, the number 

of agents used in the models can vary. As the number of agents does increase, the computational 

overheads associated with simulating the behaviour of each agent, and it’s interactions with 

other agents as well as the environment/infrastructure, can make the application of agent based 

modelling less conducive in some situations (Helbing, 2012). However, as a method it can 

provide detailed information on modelled systems as the behaviour of agents (people or 

components) can be modelled explicitly providing a wealth of detailed information on the 

processes, flows and interactions. 

Graph theory has been widely adopted as an approach to modelling and understanding networks 

from the social sciences (Girvan and Newman, 2002), biology (Ravasz et al., 2002; Costa et al., 

2008) through to communication/technology networks (Cohen et al., 2001; Doyle et al., 2005). 

As a method of modelling graphs and networks it has been used widely in helping to understand 

the structure of real-world networks, aiding in improving the research communities knowledge 

on how networks form/evolve and their structural properties. These have helped to develop 

better models which offer a more realistic view of networks where the real network data is 

unavailable, allowing further research to be undertaken in areas such as a networks resilience 

to failures. However, modelling the behaviour of processes on networks and behaviours of 
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assets in the networks is not a native application of the complex networks field with it better 

suited to analysis based around the topological connectivity of the networks allowing insights 

into the structure and form of the networks (Newman, 2003b; Amaral and Ottino, 2004). 

Petri-Nets are an alternative to the complex networks methods discussed above, based on a 

similar theory where the systems/networks are modelled using graph representation (Pye and 

Warren, 2006). However, Petri-Net methods focus on the processes, states and conditions of 

the nodes and edges within the graph representation, enabling an analysis of both the physical 

and operational structure of the infrastructure system (Pye and Warren, 2006). The graphs are 

constructed as directed, weighted and bi-partite graphs (Murata, 1989), which more easily 

facilitate the modelling of processes, but also makes them less conducive to fundamental 

network analysis possible through complex network methods discussed previously. This added 

complexity within these graph representations of systems also greatly increases the 

computational requirements, limiting the size of systems/networks which can realistically be 

modelled (Murata, 1989; Ng et al., 2013). Petri-Nets are thus better suited to analysing systems 

to understand their operational states and the process on the networks, exemplified by Laprie 

and Kanoun (2007), who analysed how the interdependency between an energy system and an 

information system affected the state of each when either network was perturbed. The analysis 

used a series of defined states to describe the effect of failures on both networks, while the 

processes between the two networks were analysed to identify the effects of failures.  

The merits and downfalls of the three methods looked at for the analysis of graphs/networks, 

agent based modelling, complex network theory and Petri-Nets, have been briefly discussed. 

Each has been developed for a specific analysis purpose, though cross-over does exist between 

the methods. Of the three methods complex network theory is the most applicable for large 

ensemble analysis for investigating the characteristics of graphs and networks from a 

topological and structural perspective. This is highlighted by the wide adoption of this in the 

analysis of graph models and networks (Dunn et al., 2013), with it being used since the 

development of the first graph models (Erdos and Renyi, 1959). The remainder of this section 

provides more in depth review of the key areas for the modelling of complex networks with 

network theory with a focus on critical infrastructure networks. 

 

2.3.1 Graph theory 

Graph theory is the mathematical study of graph structures which consist of a set of nodes 

(points/vertices) and edges (lines) (Dolan and Aldous, 1993; Newman, 2004). Figure 2.3 shows 
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a graph, G, consisting of a set of seven nodes (N) and nine edges (E), 𝐺 =  {𝑁, 𝐸}, where  𝑁 ≠

0 and 𝐸 =  {𝑒1, 𝑒2, … , 𝑒𝑛}. The edges connect nodes, forming links between the nodes, such as 

sections of roads between junctions for example. G can exist where E = 0, though N > 0, and 

where edges do exist, they must connect nodes. Where a node exists, but is not connected, such 

as node 7 in Figure 2.3(a), the node is termed isolated (Erdos and Renyi, 1959; Albert and 

Barabasi, 2002; Dueñas-Osorio, 2005). 

 

 

Figure 2.3: Two graphs, (a) a simple graph with an isolated node, (b) a digraph of the same 

form as (a) and (c) which shows a directed multigraph. 

 

Each 𝑛 ∈ 𝑁  and 𝑒 ∈ 𝐸, can have characteristics which can define how a graph functions. e 

(edges) can have directions assigned to them, makeing G a digraph (Dolan and Aldous, 1993; 

Newman, 2003a; Boccaletti et al., 2006), as in Figure 2.3(b) and (c). These can be used to model 

a network where flows in opposite directions between nodes have different attributes (e.g. time 

to traverse), or where multiple routes exist (Fortunato, 2010).  

Each 𝑛 ∈ 𝑁 has deg(n), defined as the number of edges incident on a node (Callaway et al., 

2000; Shi et al., 2008). Table 2.1 shows the degree of each node for G in Figure 2.3(a), along 

with the in and out-degree of G in Figure 2.3 (b), where the in-degree is edges directed to a 

node, and the out-degree those directed away from a node (Newman, 2003b). 
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Node Degree In-degree Out-degree 

0 3 0 3 

1 3 2 1 

2 5 3 2 

3 3 1 2 

4 3 3 0 

5 3 1 2 

6 2 1 1 

7 0 0 0 

Table 2.1: Degree statistics for graph in Figure 2.3, including the degree of nodes in (a) and 

the in-degree and out-degree of nodes in (b). 

 

2.3.2 Measuring network characteristics 

The metrics and methods covered in the following are only those which are frequently used in 

the characterisation of graph/networks. A more comprehensive presentation of the field of 

graph theory for the analysis of complex networks is given in review papers such as those by 

Albert and Barabasi (2002), Newman (2003b) and Costa et al. (2007) and is deemed beyond 

the scope of this chapter. 

The degree of node can suggest it’s importance in the graph, with those with proportionally 

high degrees being hub nodes, vital to the functioning and structure of the graph (Barabasi et 

al., 2003; Ravasz and Barabasi, 2003). This is shown in Figure 2.3(a) where node 2 has a degree 

5 and the others with degree 3 or lower. Real-world examples of such hubs include major 

international air ports such as Heathrow (London) and Charles de Gaulle (Paris) which are 

viewed as long-haul hubs for Europe (Dennis, 2005; Grubesic et al., 2009).  

The degree distribution, the probability (P(k)) that a node selected randomly from the graph 

will have degree k (Albert and Barabasi, 2002; Newman, 2003b), it becomes possible to 

compare the topological structure of graphs (Albert and Barabasi, 2002). Through analysing 

the distributions of graphs, new models have been developed such as the development of the 

scale-free Barabasi-Model (Barabasi and Albert, 1999) where the degree distribution is scale-

free, following a power law (Figure 2.4). 
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Figure 2.4: A scale-free degree distribution (Barabasi and Albert, 1999). 

The degree distribution is one method of characterising a network. However, many other 

methods exist, including the average (geodesic) path length, the clustering coefficient and 

centrality metrics (Albert and Barabasi, 2002; Boccaletti et al., 2006; Costa et al., 2008). The 

shortest path, 𝑑𝑖𝑗, or the geodesic path, is measured by the number edges between the two nodes, 

i and j. In Figure 2.5 the shortest path between nodes 1 and 6 is 2, passing over edges (1, 4) and 

(4, 6). The weighted shortest path between nodes 1 and 6 in Figure 2.5, where the weight of 

edges is denoted by L, is edges (1, 2), (2, 3), (3, 6), different to the geodesic shortest path. 

 

 

Figure 2.5: A graph where the geodesic shortest between node 1 and 6 is (1-4-6), measured in 

the term of edges. The shortest weighted, using edge lengths, L, is (1-2-3-6). 
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The average path length is the average of the sum of all the shortest paths between all node 

pairs (Albert and Barabasi, 2002; Dueñas-Osorio et al., 2007a). This describes the ease with 

which the network can be traversed. It is defined as (Newman, 2003b): 

 

𝑙 =  
1

1
2 𝑛(𝑛 + 1)

 ∑ 𝑑𝑖𝑗

𝑖 ≥𝑗

 (Equation 2.1) 

 

 

where l is the average path length of G (the network), dij is the shortest path between nodes i 

and j and n is the number of nodes in G. In some cases Equation 2.3 may also be referred to as 

the characteristic path length (Boccaletti et al., 2006). The measure is used to characterise the 

structure of networks with a shorter l suggesting a better connected network with few long paths 

between pairs of nodes (Newman, 2003b). An alternative to the average path length metric is 

the diameter, defined by Newman (2003b) as the longest geodesic (shortest) path between any 

two pairs of nodes. Albert et al. (2000) uses the diameter of the network to record the behaviour 

of a network while its being perturbed while Gastner and Newman (2006) use the diameter 

metric to help characterise the structure of networks, finding the diameter of graphs varies per 

graph model, with low values expected for better connected graphs. 

The betweenness centrality measures the number of shortest paths which pass through a node 

when shortest paths are computed between each pair of nodes in the graph. Girvan and Newman 

(2002) define it as the number of geodesic (shortest) paths between all vertex pairs which pass 

through a vertex (or edge). The value can then be normalised by dividing the betweenness value 

by the number of total node pairs in the graph, excluding the node of interest. The normalised 

betweenness centrality of node i in graph G is defined as (Crucitti et al., 2006): 

 

𝐶𝑖
𝐵 =  

1

(𝑁 − 1)(𝑁 − 2)
 ∑ 𝑛𝑗𝑘(𝑖)/𝑛𝑗𝑘

𝑗,𝑘 ∈𝐺,𝑗 ≠𝑘 ≠𝑖

 (Equation 2.2) 

 

where N is the number of nodes in G, 𝑛𝑗𝑘 is the count of geodesic paths between node 𝑗 and 

node 𝑘 and 𝑛𝑗𝑘(𝑖) is the count of geodesic (shortest, Figure 2.5) paths through node 𝑖 between 

nodes 𝑗 and 𝑘. This results in those nodes with the greatest values being those which have the 

greatest proportion of shortest paths passing through them, an indicator of their criticality in the 

network. The size of the maximum value also gives an indication as to how critical the node is, 
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with the greater the value, the greater the importance in the network (Girvan and Newman, 

2002; Luca et al., 2006).  

Further to path based metrics the clustering coefficient has been used by many authors to 

characterise the topological structure of networks (Albert and Barabasi, 2002; Newman, 2003b; 

Bagler, 2008a). The clustering coefficient for node i in network G is defined as (Albert and 

Barabasi, 2002): 

  

𝐶𝑖 =  
2𝐸𝑖

𝐾𝑖(𝐾𝑖 − 1)
 (Equation 2.3) 

 

where Ei is the set of edges in G and Ki is the number of edges incident on node i. The value for 

node i refers to the likelihood of the nodes which it is connected to also being connected to each 

other (Newman, 2003b). As such it forms a local measure of network structure (Girvan and 

Newman, 2002; Newman, 2003b), but can be calculated for G (Newman, 2003b): 

 

𝐶 =
1

𝑁
∑ 𝐶𝑖

𝑖

 (Equation 2.4) 

   

where C is the clustering coefficient for G, 𝐶𝑖 is the clustering coefficient for  𝑛𝑖 and N is the 

number of nodes in G. This allows for the assessment of the connectivity of the entire graph 

allowing graphs to be compared to one another (Albert and Barabasi, 2002).  

 

2.3.3 Graph models 

Graphs have been used to replicate and model real-world infrastructure networks allowing an 

analysis of their topological structure and characteristics (Newman, 2003b). The first model 

was developed by Erdos and Renyi (1959), before further developments led to the small-world 

model developed by Watts and Strogatz (1998) and then the scale-free model proposed by 

Barabasi and Albert (1999). These models have been used extensively across a range of 

research fields for comparing the structure of networks in social sciences such as human 

friendship/sexual contact networks (Liljeros et al., 2001; Newman et al., 2002) and biology 

(Barabasi and Oltvai, 2004; Costa et al., 2008) to the study of critical infrastructure networks 
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such as the internet (Cohen et al., 2001) and water distribution networks (Shuang et al., 2014). 

Review papers such as those by Albert and Barabasi (2002), Newman (2003b) and Boccaletti 

et al. (2006) provide multiple references to the use of and association of graph models to 

infrastructure networks from a spectrum of sectors. 

The random model (Erdos and Renyi, 1959), known as the Erdos-Renyi model, is defined as N 

nodes connected with E edges where each 𝑒 ∈ 𝐸 is added at random, with the number of 𝑒 ∈

𝐸 calculated using (Albert and Barabasi, 2002):  

 

𝐸 = 𝑝 [
𝑁(𝑁 − 1)

2
] (Equation. 2.5) 

 

where p is the probability value and N is the number of nodes. Equation 2.1 presumes the graph 

is undirected, allowing the maximum number edges such that each node is connect to each other 

node through one edge only. E = 0 where p = 0 (Figure 2.6), with E increasing as p increases, 

with a complete graph (all possible edges) forming where p = 1.  

 

 

Figure 2.6: The generation of the Erdos-Renyi random graph, showing the difference the 

probability (p) value makes (Albert and Barabasi, 2002). 
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The typical degree distribution of the Erdos-Renyi random graph exhibits a Poisson  distribution 

(Newman, 2003b; Birmelé, 2009) (Figure 2.7), and typically has a low clustering coefficient, 

C, a measure of the connectivity of a node and its neighbours. This model has been used for 

analysis of networks and a benchmark for many studies (Callaway et al., 2000; Albert and 

Barabasi, 2002; Newman et al., 2002; Palla et al., 2005). However, it has been found to be 

inadequate for modelling all real-world networks by Albert and Barabasi (2002) who showed 

the C (clustering coefficient) of the Erdos-Renyi model was lower than that found for many 

real-world networks, such as the power grid for Western USA which instead returned a value 

more closely to those for regular grids (Watts and Strogatz, 1998). 

 

Figure 2.7: Degree distribution of a random network (Albert and Barabasi, 2002). 

 

Watts and Strogatz (1998) were the first to successfully generate a network which has a higher 

C, than that for the Erods-Renyi model (where N is equal for both models), typical of real-world 

networks (Barrat and Weigt, 2000) such as a power grid and a graph of film actors (Watts and 

Strogatz, 1998). This is known as the Watts-Strogatz model (WS) and is said to have a small-

world topology (Watts and Strogatz, 1998) as 𝑛 ∈ 𝑁  are well connected locally, but not 

globally, hence the high C  while having a large average path length (Barrat and Weigt, 2000). 

The graph, G, is based on a regular lattice where each node, 𝑛 ∈ 𝑁, is connected to a set number 

of its nearest neighbours, resulting in G having a high average path length and C (Watts and 

Strogatz, 1998). The small-world model is then created by rewiring a proportion of the 𝑒 ∈ 𝐸 
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randomly to create the randomness of the graph, while in turn lowering the average path length 

by creating shortcuts across the graph  (Watts and Strogatz, 1998; Newman, 2000; Newman, 

2003b), as illustrated in Figure 2.8. Albert and Barabasi (2002) have found that just by rewiring 

a relatively low fraction of edges the average path length is reduced drastically, bringing it 

closer to that observed in some networks such as power grids and social friendship networks.  

 

 

Figure 2.8: Rewiring a regular lattice (a) to create the small-world network (b) and (c) where 

edges have been added instead of existing edges being re-wired (Newman, 2003b). 

 

More success in replicating the characteristics of real-world networks was found by modelling 

the evolution of networks using a growth based approach, modelling a preferential attachment 

methodology, where new nodes are most likely to be connected to already well connected nodes, 

as seen in some real-world networks (Barabasi et al., 2003; Dueñas-Osorio et al., 2004). This 

produces a network with a power-law degree distribution (Figure 2.4), which is scale-free, being 

independent of the number of nodes in the graph. This also results in the formation of hub nodes, 

nodes with proportionally higher degrees, a result of the preferential attachment criteria in the 

evolution of the network (Ahmed et al., 2005). The generated graphs have a low average path 

length compared to the Watts-Strogatz (WS) model, and C, clustering coefficient values similar 

to the WS model which can be five times higher than values found in random graphs (Albert 

and Barabasi, 2002). These values are also much closer to those exhibited by some real-world 

networks, such as worldwide flights (Barrat et al., 2004), the worldwide web (Albert et al., 

1999) and the web of sexual contacts (Liljeros et al., 2001). 
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The first scale-free model to achieve this was developed by Barabasi and Albert (1999), where 

an initial ensemble of nodes is used then new nodes are added with a number of new edges 

using a preferential attachment rule: 

 

where pi is the probability of the new node connecting to in, Ki is the degree of ni, and Kj is the 

degree of nj. Therefore, the probability, pi, of a new node connecting to ni is dependent of the 

degree of ni, with the greater the degree, Ki, the greater the probability of the node connecting 

to i.  

 

2.3.4 Hierarchical networks and models 

Hierarchical organisation is a common feature of many complex systems; the organisation of 

large companies (Trusina et al., 2004) to the modular and hierarchically organised metabolic 

networks (Costa et al., 2008), hierarchically organised transport networks (Yerra and Levinson, 

2005) and the hierarchical organisation of the internet (Pastor-Satorras et al., 2004). These are 

all hierarchical through a number of ‘levels’ within the networks, which in the case of metabolic 

and social friendship networks translates as the graphs has a whole subdividing into smaller 

modules/communities, which themselves sub-dived into smaller modules/communities, each 

forming levels within the graph (Sales-Pardo et al., 2007; Clauset et al., 2008). Road networks 

on the other hand have a hierarchical structure based on the quantity of flow which each node 

and edge carries, with those carrying the most at the top of the hierarchy (Yerra and Levinson, 

2005). 

The hierarchical structure of networks can be represented through a dendrogram (Clauset et al., 

2008), Figure 2.9, which in this case shows the relationship between each of the nodes (coloured) 

along the bottom of diagram. This highlights the criticality of the two black nodes in Figure 2.9 

which without, the network would be disconnected, with two/three distinct 

subgraphs/components forming. These two nodes are just as important has hub nodes, nodes 

which are highly connected (Ravasz and Barabasi, 2003), as these connect otherwise disparate 

parts of the network together. Such features are common in hierarchical networks such as in the 

internet (Pastor-Satorras et al., 2004), air networks (Grubesic et al., 2009), metabolic networks 

(Ravasz et al., 2002) and social networks (Clauset et al., 2008). 

𝑝𝑖 =  
𝐾𝑖

∑ 𝐾𝑗𝑗

 (Equation. 2.6) 
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Figure 2.9: A hierarchical network shown as a dendrogram (Clauset et al., 2008). 

 

The clearest example of a hierarchical network is river networks, which form an explicit tree 

like structure, with water flowing from multiple points of source which all eventually join 

together by the river mouth (Katifori et al., 2010; Barthelemy, 2011). The internet also has a 

hierarchical structure, realised through the volume of data/traffic using the links, where a 

number of links and nodes form the ‘backbone’ for the internet carrying a large fraction of all 

traffic (Pastor-Satorras et al., 2004). These backbone links and nodes allow data to be 

transferred between weakly connected parts of the internet facilitating the functioning of the 

network. It has also been suggested that road networks possess a hierarchical structure based, 

like the internet, on the volume of traffic which flows over each node/edge (Yerra and Levinson, 

2005). This creates the hierarchical structure of road classifications, with the most extreme 

being highways/motorways, with the length of roads at each level of the hierarchy increasing 

as they move away from the top level. Yerra and Levinson (2005) also showed that this structure 

was not designed, but instead emerged as the network has developed over time due to 

constraints such as geography and monetary considerations. Airline networks have also been 

shown to be hierarchical (Bagler, 2008b), with the topology showing the presence of hub nodes 

with traffic accumulated into interconnected communities of airports, connected through these 

hub airports. This results in a large number of airports with a small number of flights, with a 

few highly connected. 

The hierarchical structure of some networks, such as rivers (Katifori et al., 2010; Barthelemy, 

2011), can be characterised through a tree graph (Figure 2.10(a)). This structure contains the 
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minimum number of possible edges to connect all the nodes in the graph, 𝐸 = 𝑁 − 1 

(Barthelemy, 2011), making it the most efficient graph topology for N where each edge has a 

cost associated with it (Katifori et al., 2010). However, this results in there being no loops (a 

closed path of edges (Newman, 2003b)), making the network potentially vulnerable to 

perturbations, failures of nodes and edges, with a higher density of loops inducing a greater 

resilience (Barthelemy, 2011). The network can however be augmented through the addition of 

edges, creating cycles and thus increasing redundancy (Helbing et al., 2006b), Figure 2.10(b). 

 

 

Figure 2.10: Two hierarchical networks; (a) a tree with no cycles, and (b) a tree with 

increased redundancy creating cycles. 

 

An alternative hierarchical structure to the tree topology has been suggested based around a 

more modular structure (Ravasz et al., 2002; Ravasz and Barabasi, 2003) (Figure 2.11). The 

graph uses a small community of nodes (Figure 2.11(a)), where a community is defined as a 

collection of nodes where the density of edges is greater between some nodes than between 

other nodes (Boccaletti et al., 2006). This base community is then built upon as the level of the 

hierarchical graph is increased. Figure 2.11 (b) shows the model with a level of 1, which 

combines N (the number of nodes in the base model (5)), number of level 0 graphs (Figure 

2.11(a)) to form the level 1 graph. This process is repeated for a level 2 graph, with N level 1 

graphs used to form the graph. This results in a graph with a hierarchical structure, with all 

communities forming part of larger communities. Two versions have been used, with Ravasz 

et al. (2002) using a graph where 4 nodes are in the base community, and (Ravasz and Barabasi, 

2003) using a graph where 5 nodes are in the base community as presented in Figure 2.11. With 
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each community being well connected, there is redundancy within these communities of nodes, 

though globally the redundancy in the network may be poor as four of the five communities in 

Figure 2.11(c) are only connected through the central community of nodes, a result of the 

underlying hierarchical nature of the model. 

 

 

Figure 2.11: The hierarchical community model. (a) Shows the base level community of 

nodes and (b) shows how these are combined. (c) shows the third level where the community 

in (b) is used to generate a much larger network (Ravasz and Barabasi, 2003). 

 

2.4 Studies of robustness and resilience 

This section presents a review of the models employed for assessing the resilience and 

robustness of graphs and networks. The first section, Section 2.4.1, reviews the methods 

employed when assessing the robustness of graphs generated by graph models, with a number 

of papers presented where methods have been detailed. The second section, Section 2.4.2, 

reviews the methods used to assess critical infrastructure networks. The final section, Section 

2.4.3, reviews the methods which have been presented for the explicit analysis of the robustness 

of spatial critical infrastructure networks to spatial hazards. 
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2.4.1 Robustness of graph models 

Albert et al. (2000) has studied the topological response of the scale-free (Barabasi-Albert) 

graph model to two forms of topological failures, one where at each time step another random 

node is removed and the other simulates a targeted attack through the removal of the node with 

the greatest node degree at each step. Three variants of the graph are used each with different 

sized node sets; N = 1,000, N = 5,000 and N = 20,000. This found that the diameter of the graph, 

the longest shortest path between node pairs, increased more slowly through the removal of 

random nodes then compared to the targeted method. Further to this Albert et al. (2000) also 

found that the rate of change in the diameter of the networks during perturbations was 

independent of the number of nodes in the networks, indicating the exhibited behaviour was a 

result of the graph structure alone, and the way in which the available edges are used to connect 

nodes across the networks.. 

Holme et al. (2002) has employed similar methods to Albert et al. (2000) to compare the 

robustness of a Erdos-Renyi model generated random graph, a Watts-Strogatz model generated 

small-world graph and a scale-free Barabasi-Albert model generated graph. These were used as 

comparators for two real networks, a network of scientific collaborators and a computer 

network. Four node removal strategies were used; initial node degree, initial node betweenness, 

recalculated degree and recalculated betweenness, where in the recalculated methods the values 

are recalculated after the removal of each node. The recalculated betweenness method was the 

most effective at disrupting the graphs, with recalculated degree the second most effective. 

However, the initial degree method was more effective than initial betweenness indicating the 

distribution of node betweenness values changes more during the failure process. This is due to 

betweenness being calculated over the global network whereas the degree of each node is 

dependent on its neighbours and thus a more local metric. 

Bassett and Bullmore (2006) have also used the random, scale-free and small-world graphs to 

compare the robustness of the latter, used to represent a brain network, to the other models. 

Again a topological failure model has been used where the graphs were perturbed using the 

random and maximum node degree removal strategies, with the same underlying methodology 

as used in the previous two studies reviewed. The effectiveness of the node removal strategies 

has been measured using the largest component size against the fraction of nodes removed. The 

results show, Figure 2.12, that the scale-free graph is much less robust than the random graph 

with the largest component size decreasing much faster for the targeted (node degree) removal 

strategy than for the random strategy. The small-world (brain) graph exhibits a greater 

robustness than the scale-free graph, but is clearly less robust than the random graph. This poor 
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resilience is explained through the presence of hub nodes in both the scale-free and small-world 

graphs, though due to the lower frequency of these, and the stronger local connectivity in the 

small-world graph, they display different behaviours. 

 

Figure 2.12: The results from the removal of random nodes (dashed) and nodes with the 

highest degrees (solid) for a random, scale-free and human Brain network (Bassett and 

Bullmore, 2006). 

Shi et al. (2008) has examined the robustness of a Barabasi-Albert scale-free graph to failures 

using four scenarios, varying from those used in the previous studies reviewed. The first 

removes the node with the greatest degree at each epoch and the second removes the nodes 

based on degree but does not remove the node with the greatest degree. The final two methods 

remove nodes based on degree, but leaves 90% and 50% respectively of the nodes which are in 

the top 2-5% when the nodes are ranked by their degrees. Through this combination of targeted 

strategies, the robustness of the graphs when different proportions of the most connected nodes 

are removed is explored. The results show that removing nodes with the greatest degree at each 

step has the greatest impact reducing the size of the greatest cluster quicker than the other three 

strategies, with the graph failing after only 15% of nodes have been removed. The second 

strategy, missing the most connected node, and the 90%, strategy, leaving 90% of the top 2-5%, 

both result in a similar behaviour from the graph which results showing only a slightly greater 

robustness than the first method, the graph failing once closer to 20% of nodes have been 

removed. The plot for the 50% methodology exhibits a much better robustness, only failing 

once approximately 25% of nodes have been removed.  

Cohen et al. (2001) has also analysed the robustness of the scale-free graph to perturbations by 

again using a random node removal strategy and a targeted strategy using node degree, where 

a node is removed at each epoch until the network fails. Three variations of the scale-free graph 

are generated using different power law values, 2.5, 2.8 and 3.3. The results highlight the 
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sensitivity of the scale-free networks to targeted attacks, with the presence of a small number 

of highly connected nodes which are critical to the connectivity of the networks making them 

vulnerable.   

The reviewed methods have all employed the same underlying failure process whereby at each 

epoch/iteration another node is removed from the graph and the status of the graph assessed. 

However, the failure methods then vary as to how the nodes to remove are selected, though a 

number employ methods based around node degree and betweenness as well as random 

selection. A number of methods were also used for measuring the response of the graphs to 

perturbations. In most cases these centre around size of the giant component, whether measured 

using the diameter or the number of nodes. 

 

2.4.2 Robustness of infrastructure networks 

The resilience and robustness of critical infrastructure networks is important due to societies 

dependence on them (Little, 2003), and thus this has been a point researched in some studies. 

The analysis methodologies which have been employed in some of the studies is reviewed in 

the following paragraphs.  

Some of the most extensive analysis has been undertaken on electricity networks, the backbone 

of modern societies (Dueñas-Osorio, 2005), with examples including work done by Crucitti et 

al. (2004b), Albert et al. (2004), Dueñas-Osorio and Vemuru (2009) and Wang and Rong 

(2011). Crucitti et al. (2004b) focused on analysing the Italian power grid (220 and 380Kv 

assets only), where N = 341 and E = 517, identifying its vulnerabilities to node failures through 

the use of model where a graph metric, betweenness (defined in Section 2.3.2), was used to 

simulate the flows over the network. The robustness of the network was examined by removing 

those nodes with the highest load and, showing that the network is vulnerable to the failures of 

these nodes but also vulnerable to the random removal of nodes. A similar method has been 

used by Albert et al. (2004) for the American power grid, where N = 14,099 and E = 19,657, 

with the robustness to failures examined by removing  nodes with greatest loads, simulated 

using the betweenness values. As with Crucitti et al. (2004b) the results showed that it was 

more vulnerable to the higher load nodes being removed than random failures and a node degree 

based strategy, where nodes with the highest degree are removed. Although the use of 

betweenness as a proxy for the load on network assets is used in both studies, it is a “heavy 

simplification of what happens in a real electric power grid” (Crucitti et al., 2004b), with this 
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measure presuming shortest paths from generators and no asset capacities are considered when 

computing the values (Albert et al., 2004; Crucitti et al., 2004b). 

The robustness of transport networks to perturbations has also be analysed. Lordan et al. (2014) 

have analysed the global air traffic network (ATN) robustness to the failure of the most critical 

airports through five strategies; node degree, betweenness, modal analysis, damage and 

Bonacich power. The modal analysis ranks nodes based on their busyness (Petreska et al., 2010), 

the damage method ranks nodes on the proportion of the giant component affected when its 

removed and the Bonacich method removes nodes based on a combination of centrality 

measures. Each method was used to perturb the network with results (Figure 2.13) showing that 

the betweenness method was the most effective at disrupting the network and causing the largest 

connected component, the giant component, to reduce in size the fastest. In contrast, Wuellner 

et al. (2010) analysed the networks of individual airline carries in the US through a four 

strategies, random edge failures, random node failures and targeted node failures through both 

node degree and betweenness. The betweenness method was shown to have the greatest impact 

on the largest connected component, with it staying connected until more than 50% of nodes 

removed when using node degree, and only 30% when using betweenness. Although the results 

varied per network, this highlighted that those airlines which route flights through a smaller 

number of hub airports are more vulnerable to failures than those which use more hubs for 

flights as they cannot route flights through other hubs following the failure of a small number 

of such airports.  

Duan and Lu (2014) compared the robustness of road networks in six cities (Paris, London, San 

Francisco, Toronto, Singapore and Beijing) to random, degree and betweenness node failure 

methods. Through the successive removal of nodes, the robustness of the networks was 

analysed finding again that that degree and betweenness based methods had a greater impact 

on all networks than the random node failure method, with the average path length increasing 

quicker before falling as the network decreased in size following the removal of nodes. 
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Figure 2.13: Failure analysis of the global airline network to different node removal strategies 

(Lordan et al., 2014). 

Communication infrastructure networks have also received attention due to other critical 

infrastructure networks and systems relying on them (Rinaldi et al., 2001). Doyle et al. (2005) 

analysed the Abilene network, the high speed internet network between universities in the USA, 

analysing its robustness to the removal of the most connected routers, those with the highest 

degree. Through measuring the effect on the original amount of traffic which can still use the 

network, after being re-routed while considering bandwidth (capacity) constraints, it was shown 

that the performance degrades with the more nodes which are removed, though the effect is not 

as fast when nodes are selected at random. Albert et al. (2000) also analysed the structure of 

the internet (N = 6,209, E = 12,200) with regard to its robustness to the failure of nodes, with 

both random and node degree methods employed. As seen in the previous results, the random 

failure method has less effect on the network when compared to the node degree method, with 

the effect measured using the network diameter (Figure 2.14). The diameter of the network 

increased quickly under the targeted attack, with by the time 2% of the nodes had been removed 

the diameter having increased from approximately 4 to 12.5. In the random failure scenario, no 

noticeable increase was measured, highlighting the different impact these two failure 
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mechanisms can have and the significant impact targeted methods can have in infrastructure 

networks. 

 

 

Figure 2.14: The diameter of the internet network (N = 6,209, E = 12,200) as the fraction of 

nodes removed increases under the random (failure) and highest degree node removal 

strategies (Albert et al., 2000). 

The robustness analysis examples presented thus far all perform the analysis where the 

connectivity of the network is explored, with few considering the actual dynamics of the flows 

over the networks and the effect of the changes in these on the response of the network to 

failures. Cascading failures model the behaviour of the flows over a network, with node and 

edge assets failing when they are over capacity, normally as a result of the redistribution of 

flows following the failure of other nodes or edges (Motter and Lai, 2002; Crucitti et al., 2004a). 

Such failures occur in many infrastructure networks, but are common in both communication 

and transport networks (Crucitti et al., 2004a) as well as electricity networks (Motter and Lai, 

2002). 

Wang and Rong (2011) has performed an analysis of the Western US power grid (N = 4,941, E 

= 6,594), using the betweenness metric as a proxy for load, and using a cascading failure model 

to examine the impact of removing edges from the network. The ‘avalanche’ of failures, where 

edges are over capacity, which occur following the redistribution of the load (recalculation of 

betweenness), are recorded to monitor the effect. They found that the cascading failures 

triggered by removing the edges with the highest load were more effective at disrupting the 

network, with a greater proportion of failed edges when the cascading failure stopped. Crucitti 

et al. (2004a) has used a developed cascading failure model to compare the robustness of the 
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electric grid in Western USA (N = 6,491, E = 6,592) to both targeted and random failure 

triggered cascading failures. Again the load is simulated using betweenness with insufficient 

data available to physically model the flow of electric and its behaviour when redistributed. A 

tolerance parameter was also used to model the likelihood of an edge asset failing when 

overcapacity, allowing for a tolerance in assets. However, the analysis shows that through 

targeting the node with highest load the effect is much greater than the random selection of a 

node to trigger cascading failures, though as very few nodes have high loads there was a low 

probability of the more catastrophic failure occurring. Bao et al. (2009b), although using a 

simulated electric network (N = 300, E = 600), uses a physical model, where the flow of electric 

is actually modelled, to examine the robustness to cascading failures of the electric system on 

the generated network. A tolerance parameter is used for the likelihood of edges failing when 

above or at capacity, and varied per simulation. Four simulations are run with a different set of 

trigger (failed) assets initially, with the resulting cascading failures recorded. The results show 

that a derived metric, power flow entropy, based around the ratio of load to capacity on edges, 

can be used to help prevent large scale blackouts through the value increasing as a network 

becomes more stressed.  

Dueñas-Osorio and Vemuru (2009) has explored the effect of cascading failures on a well-used 

example electric network. Again betweenness is used as a proxy for load, with capacities 

assigned to assets as a proportion of the initial load, with this extra capacity viewed as the 

tolerance to redistribution of flows. Trigger strategies include the nodes with the greatest load 

and the random selection of nodes, with both used to initiate cascading failures with each 

removing 1% of the elements as a trigger. Alternative trigger strategies are also used including 

those assets which through history have had the greatest exposure to lightning and those which 

lie in areas where seismic activity (earthquakes) is most likely. The results show that the 

strategy using the nodes with the highest loads has the greatest impact on the network, with the 

loss of connectivity greater than any of the other scenarios when no allowance for extra capacity 

was allowed.  When the capacity was doubled to that of the initial load the results were still the 

fourth worst in terms of the loss of connectivity. The lightning and earthquake scenarios have 

a lesser impact on the connectivity of the network, but still have an effect greater than the 

random selection method.  

The internet has also been analysed using cascading failure models, with Crucitti et al. (2004a) 

analysing a network of the internet (N = 6,474, E = 12,567), using the same cascading flow 

model with betweenness as a proxy for flows as used for the analysis of the electricity network 

reviewed earlier. As with the earlier results, the network was more vulnerable to the targeted 
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removal of nodes than compared to the random removal, with the internet less vulnerable than 

the electricity network. Motter and Lai (2002) has undertaken a similar analysis using the same 

two networks as used by Crucitti et al. (2004a), analysing the robustness of the internet and the 

electricity network for Western USA. Three trigger scenarios were used, with the random node 

selection scenario using 50 nodes, while a load (betweenness) method and a node degree 

method used 5 nodes. In the internet network the results showed that the random method had 

less of an effect than the degree and load methods which returned similar results. However, for 

the electric network the load method had much greater effect than the random and degree 

methods which both resulted in a similar effect on the network. 

Shuang et al. (2014) has developed a physically based model for the analysis of water 

distribution networks, though has used a simulated network to exemplify the method. The 

model evaluates the vulnerability of all nodes in the network, with nodes failing if the pressure 

(of water) at the node is greater than its capacity after the redistribution of loads following an 

initial failure. Both betweenness and the calculated load were used as methods to trigger 

cascading failures, with again a tolerance value used to parameterise the point of which network 

assets fail given the calculated load on them. Both methods identified critical nodes, though 

these differed, with the most notable difference for the supply node, where through the 

calculated load it was identified as the most critical, as without it there is no supply to the rest 

of the network. The betweenness method on the other hand returned the same node as one of 

the least vulnerable, as the node itself had very few shortest paths passing through it thus 

returning a low betweenness value. 

A range of failure models have been developed for the analysis of critical infrastructure 

networks, with both topological approaches and cascading approaches employed. The 

topological approaches have been found to be similar to those used to analyse the robustness of 

the synthetic graphs. However, attempts have been made to simulate flows over infrastructure 

networks to examine their robustness to cascading failures. 

 

2.4.3 Spatial infrastructure robustness 

The examples presented and discussed thus far all focus on the failures of assets either based 

on their topological position within the network, or due to the importance in the network as 

identified through metrics such as betweenness or as in the case of some physical models the 

actual load on them. However, critical infrastructure networks are embedded in space (Louf et 

al., 2013; Danziger et al., 2014), which not only affects their layout and development over time 
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(Huang et al., 2006; Barthelemy, 2011; Louf et al., 2013), but also means they are exposed to 

events such as natural hazards and weather events, all of which are spatial. Despite this, there 

has been comparatively little work dedicated to looking at networks in terms of their spatial 

characteristics including the robustness to spatial failures (Barthelemy, 2011). As Gastner and 

Newman (2006) note “most previous studies of real-world networks have ignored geography”.   

Within many real-world networks long range links tend to connect nodes which are well 

connected, with shorter links connecting those which are less well connected within their local 

neighbourhood (Barthelemy, 2003; Barrat et al., 2005); a feature which can only be identified 

when the geography of the network is considered. Pastor-Satorras et al. (2001) and Barrat et al. 

(2005) both suggest that the topology of a network can be affected by the geographic boundary 

constraints in which a network develops/grows and individual node assets which may limit the 

capacity of a node or how the network evolves to deliver a service. Further to this, Guimera and 

Amaral (2004) suggest that as well as geographic constraints such as boundary conditions, and 

the cost/length of edge features, geo-political constraints effect the development of networks 

across borders such as air networks and power networks. This was shown through attempting 

to replicate air networks, and in particular the worldwide air network, with the best 

representations only arising though the inclusion of geo-political constrains (on top of 

geographic consideration such as flight distances). 

Through considering the geography of a network the efficiency of a network can be assessed  

by comparing the total length of edges to the straight line distance (Gastner and Newman, 2004; 

Barrat et al., 2005). Gastner and Newman (2004) have performed this analysis of the subway 

in Boston (USA) (Figure 2.15(a)), and gas pipelines in Australia using a route factor value, the 

ratio between the distance along the network edges from each node to the root node and the 

Euclidean distance from all nodes to the root node (the equivalent of a star graph Figure 2.15(b)). 

A value of two suggests that the shortest path through the network is twice as long as the 

Euclidean distance, but values of 1.13 and 1.59 were returned for the two analysed networks. It 

is clear that both networks had developed a good compromise in structure where instead of an 

edge going from each node straight to the root node a network has developed which reduces 

the number of edges required while still being efficient with regard to the length of routes to 

the root node. This suggest that there is a tendency for networks to develop in an efficient 

manner with geography being a clear factor in their development otherwise route factor values 

would be expected to be greater with the length of routes not considered. Figure 2.15(c) shows 

the minimum spanning tree over the nodes for the Boston rail network, which connects them 
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all with the minimum number of edges, with a degree of similarity between this and the real 

network (Figure 2.15(a)). 

 

Figure 2.15: (a) the commuter rail in Boston (USA) with the root node indicated with an 

arrow. (b) the star graph for the same node set (each node connected directly to the root node) 

and (c) the minimum spanning tree (the network with the minimum set of edges). 

Li et al. (2016) have presented a methodology for modelling spatial hazards, termed ‘regional 

failures’, where failures are applied to a network which cover a geographic area. Nodes and 

edges which lie, either completely or partly, within the geographic area are regarded as failed. 

The method is used to compare the structure of a series of graphs generated through an 

employed spatial graph model as developed by Louf et al. (2013), the LJB model, where a set 

of nodes are distributed uniformly across an area with each assigned a weight according to a 

power law. Using these weights, and the distance between nodes, nodes are connected where 

the importance of the connection, based on the weights, is considered along with the cost, the 

distance between the nodes. This generates graphs which can vary in structure based on the 

geographic distances between nodes. The findings show that the developed graph models 

generated have a poor robustness to the regional failures, the spatial hazard areas, though as the 

consideration for the cost of links is reduced, the robustness of the generated graphs improve. 

The robustness of the European air network to spatial hazards has been investigated by 

Wilkinson et al. (2012) through using an ensemble of generated spatial models of the network 

to simulate a range of spatial hazards. A range of scenarios were employed to perturb the 

network including those to simulate the spread of a hazard over the network from one side 

(simulating the Eyjafjallajokull volcanic eruption), and random but spatially coherent hazard 

areas, with both covering the same percentage of airspace allowing for the effects to be 

compared directly. The results of the simulation, with routes deemed broken if they intersect a 

hazard area, show that the networks are robust until 10-15% of the network area is affected by 
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the hazard(s), after which their robustness decreases. This suggests a tipping point within the 

ability of the network to withstand hazards of different scales, with the network able to 

withstand those where the affected area is less than 15% of the network space. The worst 

disruption across all scenarios occurred when random hazards were located near the spatial 

centre of the network, with catastrophic consequences in the network, as major flight lines 

passed through this area affecting the connectivity of nodes around the entire network. Such 

analysis highlights that the robustness of a spatial network needs to consider the geographic 

distribution of assets, with topological robustness not alone enough to ensure the network is 

robust to spatial hazards. 

The vulnerability of the road network in the City of York to flooding has been assessed by 

Balijepalli and Oppong (2014) who have considered the impact of flooding on the network. 

Three scenarios were employed including a 20%, 50% and 100% reduction in capacity for road 

links prone to flooding, with traffic flows which are simulated using origin and destination pairs 

redistributed in each scenario. The effects are measured using a developed vulnerability index 

which considers the change in travel time rather than distance when flows are rerouted. The 

research found that the effect of a partial reduction in capacity had different effects to a 100% 

reduction, with edges which had a limited effect when capacity was partially reduced having 

the greatest effect in the 100% reduction scenario. This is thought to be caused by the 

redistribution of flows being based on travel time rather than just distance, accounting for 

congestion on links as well as the availability of alternative routes. 

Sterbenz et al. (2010) uses a regional hazard to exemplify how a major power failure or storm 

could be modelled, applying this to the GEANT2 network, the high-bandwidth academic 

internet for Europe (Figure 2.16). Three scenarios of increasing size from the spatial centre of 

the network are used showing that as the size of the hazard area grows, the loss of connectivity 

in the network increases. The largest size results in the network breaking into two components, 

leading to the suggestion redundancy in the network could be improved, and thus its robustness 

to such a hazard could be improved through the addition of a link between the UK and Iceland, 

though there are other options for this as well. 
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Figure 2.16: GEANT2 high-bandwidth European academic internet network with a spatial 

hazard at its geographic centre, with three sizes shown (Sterbenz et al., 2010). 

Ouyang (2016) has used spatial hazard areas to identify the critical points in infrastructure 

networks, with the electric and gas networks in Harris County, Texas used as an example 

(Figure 2.17). Nodes and edges are presumed to fail if they lie within the hazard area, with the 

electric network dependent on the gas network in the area as well. The analysis has shown that 

as the hazard area increases in size (2.5Km < radius < 10Km), the location with greatest effect 

on the functionality of the networks moves closer to the centre of the networks, away from the 

edge where maximum damage was caused when using the smallest hazard size (Figure 2.17).  
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Figure 2.17: Location of the spatial hazards with the greatest impact on the interdependent 

electricity (solid lines) and gas (dashed lines) networks in Harris County, Texas, with failed 

assets in red (Ouyang, 2016). 

 

2.5 Discussion and research challenges 

The following paragraphs in this section will highlight and outline the research challenges and 

the recommendations for the research to be undertaken. The previous Sections have presented 

a review of the key literature in the field of critical infrastructure network analysis including 

the ability to withstand perturbations and the underlying graph theory methods and models. 

Section 2.1 has introduced the field of critical infrastructure networks and the extent to which 

these are relied upon. It has defined the difference between infrastructure systems and 

infrastructure networks, the physical assets on the ground, and how these can be treated as 

decoupled parts of the infrastructure system allowing for the physical assets to be treated as a 

stand-alone network.  

Section 2.2 has reviewed the way in which the response of infrastructure networks to 

perturbations is measured, comparing the use of terminology such as resilience and robustness. 
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Despite the apparent conflict in the usage of these terms, the definition of each has been 

reviewed. Therefore, throughout this thesis the term robustness will be used as defined by 

McDaniels et al. (2008), ‘the extent of system function that is maintained’. 

A review of the field of models used for the modelling of infrastructure networks and those 

associated to different infrastructure networks has been presented in Section 2.3.3. This has 

detailed the existing suite of models which have been associated with infrastructure networks 

through the characteristics which they exhibit. These have been detailed, with Section 2.3.2 

introducing the basic concepts of graph theory required to understand the development and the 

varying characteristics of the models. Although Section 2.3.3 has presented graph models which 

have previously been associated with infrastructure networks, Section 2.3.4 reviews the 

emerging field of hierarchical networks and the properties which these exhibit to suggest 

hierarchies exist in critical infrastructures, a characteristic not common amongst the original 

models reviewed. Throughout Section 2.3 a series of graph models have been presented, all of 

which have been used in the analysis of networks. These will thus be used to form the 

foundations of a suite of graphs for identifying the characteristics of hierarchical graph models.  

A review of the existing literature surrounding the analysis of robustness/resilience of 

infrastructure networks to hazards has been undertaken to assess the methods which have been 

employed across multiple infrastructure sectors, Section 2.4. It is clear that a set of common 

methods have been applied across those studies which have undertaken topological based 

failure analysis, with these finding the methods sufficient. Based on this the success and breadth 

of the use of the detailed methods, these should be adopted for the analysis of both infrastructure 

networks and graphs generated through the earlier reviewed models. A suite of literature has 

also been reviewed where dynamic failure models, or cascading failure models, have been used 

to analyse infrastructure networks. These, like the topological methods, all detail a similar 

failure model whether using a proxy for flows such as betweenness or through modelling them 

explicitly using physically based models, suggesting a standard which should be adopted for 

such analysis.  

The literature has suggested that the spatial characteristics of the infrastructure networks is 

critical, and that many of the hazards faced by infrastructure networks, such as natural hazards, 

are inherently spatial. Yet when reviewed (Section 2.4.3), only a limited number of studies 

could be found where the effect of spatial hazards on spatial infrastructure networks was 

analysed. Although a small number of studies were identified, the coverage of these is limited 

suggesting further work could be done in this area to explore further the effect of spatial hazards 

on spatial infrastructure networks. 
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2.6 Conclusion 

This chapter has presented a review of the literature in the areas of critical infrastructure analysis 

and graph theory for the modelling of infrastructure networks. This has highlighted the 

dependence society has on critical infrastructure networks and the need to ensure these are 

robust to a range of perturbations. The ways in which complex infrastructure networks can be 

modelled has been reviewed with both models for infrastructure networks and modelling 

approaches identified. This includes the growing theory around hierarchical organisations in 

infrastructure networks and the development of graph models which attempt to capture this 

characteristic.  

The review has defined a number of methods and concepts which can be applied to approach 

the aims and objectives in Chapter 1 Section 1.2. The following chapter will introduce the 

methods which will be employed to address the aims and objectives. 
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Chapter 3: Methodological framework 

 

3.1 Introduction 

The previous chapter, Chapter 2, has highlighted gaps and potential areas of study with regard 

to the analysis of the robustness of critical infrastructure systems. The criticality of 

infrastructure networks to society has been highlighted along with the importance of these being 

robust to perturbations from a range of hazards. Previous studies have predominately assessed 

the topological robustness of infrastructure networks, although few have considered explicitly 

the spatial aspects of hazards that infrastructure networks can be exposed to. The methods used 

to model critical infrastructure networks have also been introduced, with recent developments 

including the emergence of literature suggesting a hierarchical organisation is present in 

infrastructure networks. However, it has been highlighted that this has yet to be studied 

extensively with regard to spatial critical infrastructure networks. It is not clear from the 

existing literature the extent to which hierarchical organisation can be found in critical 

infrastructure networks, and the effect of this on the robustness of these networks to 

perturbations. In relation to these points this chapter presents the methods which will be 

employed to address the aims and objectives presented in Chapter 1 Section 1.2 (page 4).  

 

3.2 Overall experimental design 

The robustness of hierarchical critical spatial infrastructure networks will be investigated, 

exploring how hierarchical networks respond to a range of perturbation scenarios. To 

understand the hierarchical organisation of networks (objective 2) a suite of graph models will 

be used to characterise the differences between the hierarchical and non-hierarchical topology. 

The key properties of hierarchical graph models will be used to characterise a suite of real-

world critical spatial infrastructure networks, with networks identified as being hierarchical or 

not through association to the metric values from the graph models (objective 3). 

The robustness of each of the graph models is also explored through topological based failure 

modelling and capacity constrained cascading failure modelling. These will both provide 

insights into the robustness of the graph models, including those which are hierarchical and 

non-hierarchical. Finally, a series of flow based failure simulations will be used to explore the 

robustness of hierarchical spatial critical infrastructure networks, to both hierarchical failures 

and spatial hazards (objective 4). 
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In Section 3.3, a series of graph models (Chapter 2, Section 2.3), for both hierarchical and non-

hierarchical graphs, are created and a detailed statistical analysis of the topological structure of 

these is undertaken to recognise the differences between hierarchical and non-hierarchical 

topological structures, Section 3.4. Additionally, the robustness of these graphs is explored 

through a topological failure model developed in Section 3.5. A comparison between the 

behaviour of each of the graph models, how they respond to perturbations, is used to define the 

key properties of hierarchical graphs. 

Building upon the analysis of the suite of synthetic graphs, the properties and characteristics of 

a series critical spatial infrastructure networks is investigated, generated in Section 3.6. These 

are subjected to similar methods employed in Section 3.4 and 3.5 and is presented in Section 

3.7. This analysis will support the recognition of hierarchical infrastructure networks and the 

characteristics of these. 

With infrastructure networks supplying commodities/information, the flows over these is an 

important characteristic (Motter and Lai, 2002; Ash and Newth, 2007). In order to gain a greater 

understanding of the robustness of hierarchical networks to flows, a capacity constrained 

cascading failure model has been developed (Section 3.9), along with an adapted network 

representation model to allow the attributes of nodes to be considered as with the edges, Section 

3.8. The failure model is applied to the synthetic graphs in order to understand whether 

hierarchical networks respond differently to non-hierarchical with regards to flow based 

cascading failures. 

Section 3.10 presents the methods developed to extend the analysis above to investigate the 

robustness of the England and Wales electricity transmission and distribution network to 

different configurations of spatial hazards. This analysis is undertaken as it has been recognised 

that spatial hazards have the potential to cause wide spread disruption in infrastructure networks 

(Little, 2003). This is followed by details of the framework and software stack developed to 

facilitate the analysis and research undertaken (Section 3.11), with a final section to conclude 

the presented methods (Section 3.12). 

 

3.3 Synthetic suite of graphs 

A suite of synthetic graphs has been generated covering a spectrum of graph types/topological 

structures, (Figure 3.1). Figure 3.2 shows the eight graph types employed, that provide a breadth 

of topological structures. In Figure 3.2 the example graphs have N = 15 and while the degree 

distribution plots have been generated for N = 781. For each of the eight models 1,000 
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realisations unless stated otherwise, are generated to describe the topological structure that 

exists for a range of possible node degrees. For each graph type a different model has been used 

to generate the graphs, each with a unique set of parameters, as shown in Table 3.1. However, 

across these different graph types 0 < N ≤ 2000 and 0 < E ≤ 20000. 

 

Figure 3.1: Employed graph spectrum.  

 

Graph 

Model 

Example graphs (N = 15) Degree distribution plot (N = 781) 

Random - 

Erdos-Renyi 

 

 

 

  

Random - 

GNM 

  

Small-

World - 

Watts-

Strogatz 
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Scale-free  - 

Barabasi-

Albert 

 

  

Hierarchical 

random 

  

Hierarchical 

random + 

 

 

  

Hierarchical 

communities  
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Tree 

  

Figure 3.2: The spectrum of graph models through a network diagram and a degree 

distribution plot, where P(k) is the fraction of nodes with degree k. 

 

Topological 

structure 

Graph model Parameter(s) Value range 

Random Erdos-Renyi Number of nodes 2 - 2000 

Probability value -  for the proportion of 

the total possible edges to be added 
0.0 - 1.0 

Random GNM Number of nodes 2 - 2000 

Number of edges Minimum 

required - 2000 

Small-World Watts-Strogatz Number of nodes 2 - 2000 

Number of closest neighbours 

connected to 

2 - 30 

Probability value – for the proportion of 

edges to re-wire 

0.1 - 1.0 

Scale-Free Barabasi-

Albert 

Number of nodes 2 - 2000 

Number of edges connected to a new 

node 

1 - 30 

Hierarchical Hierarchical 

random 

Number of levels 2 - 10 

Number of nodes from each parent 2 - 9 

Probability value – for the proportion of 

new edges to add 

0.1 - 1.0 

Hierarchical Hierarchical 

random + 

Number of levels 2 - 10 

Number of nodes from each parent 2 - 9 

Probability value – for the proportion of 

new edges to add 

0.1 - 1.0 

Hierarchical 

community 

Hierarchical 

communities 

Triangle or square (0 or 1) 0 - 1 

Number of levels 1 – 4 

Tree Trees Number of levels 2 - 10 

Number of nodes from each parent 2 - 9 

Table 3.1: Graph models and the parameters required for generation of the graphs. More 

details on the parameters are given in the model specific sub-sections, 3.3.1 to 3.3.8. 
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3.3.1 Erdos-Renyi graph model 

The topological structure of graphs was long presumed to be random (Watts and Strogatz, 1998), 

consequently leading to the development of the Erdos-Renyi graph model (Erdos and Renyi, 

1959). The model is based on a simple premise; connections of a graph develop randomly with 

no factors affecting which nodes an edge connects (Erdos and Renyi, 1959). The Erdos-Renyi 

model, also known as G(n,p) (Newman, 2003b; Beygelzimer et al., 2005), generates a graph 

using two parameters; the number of nodes and a probability value, p (0 < p < 1) (Table 3.1). 

Graphs are generated by creating a node set, N, where the number of nodes is equal to the first 

parameter. The number of edges to add to the network between nodes is then calculated as a 

proportion of the total number of possible edges in the graph: 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑒𝑑𝑔𝑒𝑠 = 𝑝 ×
(𝑁 × (𝑁 − 1))

2
 

(Equation 3.1) 

 

where N is the total number of nodes and p is chosen randomly. Edges are then added at random 

between different nodes until the calculated number of edges have been added. This creates a 

graph which has been generated at random giving a unique topological graph structure. These 

graphs are generated using an existing algorithm available in the NetworkX python library 

(NetworkX, 2014).  

 

3.3.2 GNM random graph model 

The GNM model has also been implemented within the graph suite, generating graphs with a 

random topology, with the model again using the NetworkX library (NetworkX, 2014). The 

algorithm generates an instance of a random network for a set number of nodes and edges which 

are selected at random from a predefined range (2 ≤ N ≤ 2000 and N-1 ≤ E ≤ 20000). The lower 

bound on the number of edges is set such that a connected network could be potentially 

generated. As both variables can be set randomly, again 1,000 exemplars are created for this 

model.  

 

3.3.3 Watts-Strogatz small-world graph model 

Increasingly random graph models are considered poor representations of real-world networks 

such as technological and social networks (Barthelemy and Amaral, 1999). Instead, real-world 

networks were found to share only some characteristics with random graphs, with Watts and 
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Strogatz (1998) proposing the small-world model which appeared to share a greater set of 

characteristics to the real-world networks than the random model. 

The Watts-Strogatz model uses three parameters for the generation of the graph; the number of 

nodes, the number of neighbours each node is connected to and a probability of rewiring (0 < p 

< 1). The first two parameters are used to generate a regular grid of nodes where the total 

number is equal to the first parameter, with each node then connected to the specified number 

of neighbouring nodes (the second parameter). The probability value, p, the third parameter, is 

used to calculate how many of the edges in the regular lattice will be re-wired to create shortcuts 

across the graph. To ensure only shortcuts are generated, self-loops, where an edge starts and 

finished at the same node, are not permitted. Where p = 0 no edges are rewired and where p = 

1.0 all edges in the graph are re-wired (Figure 3.3). Therefore graphs generated by the model 

can vary from those with a regular pattern where the average path length is long as nodes are 

only connected to a small number of neighbours, to those which have similar characteristics as 

a random model, such as those produced by the Erdos-Renyi model in Section 3.3.1. Those 

with a small-world topology will lie within these bounds where only some edges from the 

regular grid have been re-wired creating the shortcuts across the graph which results in a lower 

average path length than in a regular grid, though at the same time still leaving groups of nodes 

connected. Graphs are generated using the available Watts-Strogatz algorithm in the NetworkX 

python library. 

 

 

Figure 3.3: The effect of the probability parameter p on the structure of the Watts-Strogatz 

small-world graph model (Watts and Strogatz, 1998).  
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3.3.4 Barabasi-Albert scale-free graph model 

Barabasi and Albert (1999) developed a further model which better represented some real-world 

networks, generating graphs with a scale-free topology, where the distribution follows a power 

law and thus is invariant to graph size (Albert and Barabasi, 2002; Newman, 2003b). Exemplars 

are created for the suite of synthetic graphs using a model available within the NetworkX 

python library (NetworkX, 2014), for which two parameters are required. The first is the 

number of nodes which the graph is to have, again limited to 2,000, and the second the number 

of edges to add to each new node, set between 1 and 10 so E ≤ 20000 where N = 2000. The 

graph is generated by adding new edges to each new node added linking this to the existing 

graph (Figure 3.4), the number of which is set by the second parameter, with a preference for 

the edges to connect to those nodes which are already well connected (have a high degree). 

Thus, the larger the number of edges to add for each new node, the greater the likelihood of the 

presence of highly connected nodes, or ‘hub’ nodes. 

 

Figure 3.4: Addition of new nodes in the BA model where two edges are added with each new 

node. (a) shows the base graph, and (b) shows the addition of a new node, 7, and the two new 

edges (3,7) and (4,7) where the first connects to the node with the highest degree (node 3). 

 

3.3.5 Hierarchical random 

To explore the characteristics of hierarchical graphs an example based on the TREE model 

(Section 3.3.8) has been developed which allows for a range of shortcuts/edges to be added to 

the graph structure. As with the Watts-Strogatz small-world model (Section 3.3.3), shortcuts 

are used to make it easier to traverse the graph, improving redundancy (Helbing et al., 2006a). 

However, unlike the Watts-Strogatz model, these shortcut edges are new to the graph and are 

not created by re-wiring existing edges, a step performed as the tree model only has the 

minimum number of edges for it to be connected. 

An algorithm (Listing 3.1), has been developed using python and the NetworkX library 

(NetworkX, 2014) to allow the developed hierarchical random graphs to be generated given the 
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required set of parameters; the number of levels, the number of branches per node and a 

probability value, 0 < p < 1, for the number of new edges to be added. The first two parameters, 

the number of levels and number of branches, are used to generate the underlying tree graph 

(detailed in Section 3.3.8). The number of edges to add to the graph is then calculated by 

multiplying p by E, the number of edges in the graph. Edges are then added to the graph until 

the number of new edges to add have been successfully added, with edges allowed to connect 

any two different nodes together, including those in different levels of the tree. p allows for a 

range of graphs to be generated with different levels of randomness, with a value of 1.0 resulting 

in a doubling of the number of edges in the graph, with a value of 0 resulting in no new edges 

being added. For the generation of the graphs, the three parameter values are chosen at random 

within a set of constraints (Table 3.1). 

Input: h :number of levels 
Input: b :number of branches 

Input: p :probability for edges 

G = balanced tree network(h,b) 

 
E = E(G) 

N = N(G) 

Eold =|E| 

Enew = |E| × p 

DO 

 DO 

  iterate = False 

  na = random(N) 

  ny = random(N) 

  DO 

   ny = random(N) 

  WHILE na = ny 

  if na, ny in 𝐸𝑛𝑎
 

   iterate = True 

 WHILE iterate = True 

 E = E+ (na, ny) 

WHILE  |E| != Eold + Enew 

RETURN G 

Listing 3.1: Pseudo-code for the HR graph model. More detail is available in Appendix A. 

 

3.3.6 Hierarchical random + 

The hierarchical random + model (HR+) uses a similar methodology to the HR model (Section 

3.3.5), but with greater constraints on the nodes the new edges can connect to and how the 

number of edges to add is calculated and assigned throughout the graph. This has been 

developed additionally to the HR model to provide a further hierarchical model but with much 

shorter shortcuts, creating a graph which is likely to be more difficult to traverse. 
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As with the HR model, three parameters are required; the number of levels, the number of nodes 

and a probability value, 0 < p < 1, for the calculation of the number of new edges to add. The 

first two parameters are used to generate the underlying tree graph, the first step in the HR+ 

algorithm (Listing 3.2). The new edges are then added per level, with the first nodes in each 

level of the tree graph calculated using the parameters used to generate this. The first set of new 

edges are added to nodes within the same level of the graph (Figure 3.5(b)), and then the second 

set between nodes in adjacent levels (Figure 3.5(c)), with each level done separately. The 

number of edges added for each set varies with the number calculated by multiplying p by the 

number of level in the graph, and then a value chosen between this and number of nodes in the 

level. By not allowing edges to connect nodes more than a single level apart the length of these 

additional edges are less effective as shortcuts compared to those in the HR graphs which can 

span multiple levels across the graph. 

 

Figure 3.5: The three stages of the HR+ algorithm. (a) a tree network with 2 levels and a 

branching of 2, (b) the addition of edges within levels (between nodes (2,3) and (4,5), and (c) 

the addition of edges between adjacent levels (nodes (2,6)). 
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Input: h :number of levels 
Input: b :number of branches 

Input: p :probability for edges 

G = balanced tree network(h,b) 

E = E(G) 

N = N(G) 

get_node_levels(G,h,b) 

i = 1 

DO 

 Enew = random((Nlevel i × p) - Nlevel i) 

 Enewadded = 0 

 DO 

  DO 

   iterate = False 

   na = random(Nlevel i) 

   ny = random(Nlevel i) 

   DO 

    ny = random(Nlevel i) 

   WHILE na = ny 

   if na, ny in 𝐸𝑛𝑎
 

    iterate = True 

  WHILE iterate = True 

  E = E + (na, ny) 

  Enewadded += 1 

 WHILE Enewadded < Enew 

  

 Enew = random((Nlevel i × p) - Nlevel i) 

 Enewadded = 0 

 DO  

  DO 

   iterate = False 

   na = random(Nlevel i) 

   ny = random(Nlevel i+1) 

   if na, ny in 𝐸𝑛𝑎
 

    iterate = True 

  WHILE iterate = True 

  E = E + (na, ny) 

  Enewadded += 1 

 WHILE Enewadded < Enew 

 i = i +1 

WHILE i < h+1 

RETURN G 

Listing 3.2: Pseudo-code for the HR+ graph model. More detail is available in Appendix A. 

 

3.3.7 Hierarchical communities 

A graph termed hierarchical communities (HC), derived by Ravasz et al. (2002) has been 

included within the suite of synthetic graphs due to the explicit community structure it contains 

which is similar to those found in social and metabolic networks (Ravasz et al., 2002; Barabasi 
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et al., 2003), Figure 3.6. An algorithm has been developed to replicate the graphs produced by 

Ravasz et al. (2002) and Ravasz and Barabasi (2003), where the community sizes were set to 

three and four nodes. The developed algorithm for the hierarchical community graphs is 

detailed in Appendix A. The function allows the community size to be specified as the first 

parameter (limited to 3 or 4) as well as the number of levels, currently limited to four due to all 

graphs in the suite having N ≤ 2000. Using the community size, the number of communities 

required is first created, and then the edges between the created communities added to form the 

HC graph. Due to the N ≤ 2000 bound only seven instances are generated due to the rigid 

structure of the model. 

 

Figure 3.6: Example of a hierarchical community graph (Ravasz et al., 2002).  

 

3.3.8 Tree  

The tree graph type is one of the simplest types of graphs (Jungnickel, 2004) and has a 

hierarchical structure. An example of real-world systems which exhibits this structure are river 

networks (Barthelemy, 2011). Exemplars for the synthetic suite are created using the balanced 

tree algorithm available in NetworkX (NetworkX, 2012), which generates a tree network with 

a symmetrical pattern (Figure 3.7). This algorithm requires two inputs; the number of levels 

(how deep the network is, e.g., 3 in Figure 3.7), and the number branches (or the number of 

children for each parent node, e.g., 2 in Figure 3.7). Due to the structure of this network type, 

only 36 exemplars are created with N ≤ 2000. 
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Figure 3.7: Example graph generated by the balanced tree algorithm using input values of 3 

(the number of levels) and 2 (the number of branches). 

                                                                                                                                                                                                                                                                                                                       

3.4 Statistical Comparison of graph types 

The suite of graph models are analysed to establish the key characteristics that allow 

hierarchical graphs to be recognised from non-hierarchical graphs. This is achieved through 

first comparing the degree distributions of the graphs, Section 3.4.1, a measure which reports 

on the topological structure of the graph (Newman, 2003b). In Section 3.4.2  graph metrics are 

used to characterise the graphs to achieve a characterisation of the each of the eight synthetic 

graph types. The methods used to assess these results are then presented in Section 3.4.3 and 

3.4.4. 

 

3.4.1 Degree distributions 

One of the most widely used graph descriptors is the degree distribution (e.g. Barabasi and 

Albert (1999), Amaral et al. (2000), Barabasi et al. (2000),  Jeong et al. (2000) and Barrat et al. 

(2005)), the distribution of node degrees in a graph, which describes the connectivity of the 

nodes by using the probability of selecting a node with a set degree (Newman (2003b). This 

allows for a qualitative comparison of graph types, but for large scale analysis of graphs, it can 

be difficult to use due to the visual interpretation which is required to make an assessment. The 

degree distribution is calculated over the entire suite of synthetic graphs (up to 1,000 for each 

type), allowing the topological characteristics of each graph type to be assessed. 

 

3.4.2 Metrics 

Typically network/graph characteristics have been identified through metrics including the 

degree distribution, the average shortest path length and the clustering coefficient (Albert and 

Barabasi, 2002; Newman, 2003b; Amaral and Ottino, 2004; Boccaletti et al., 2006). These three 
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metrics offer a global perspective on the topological structure of a graph allowing the 

connectivity of the nodes to be described and hence can be used to help differentiate between 

different graph topologies (Newman, 2003b).  

As already mentioned the clustering coefficient is widely used as one of three metrics 

traditionally used in identifying the structure of networks. The metric, as defined in Chapter 2 

Section 2.3.1 (page 13), calculates a value per node as to the number of loops of length three 

which it is part of. Within many networks there are often loops of a higher order found in graphs 

(Caldarelli et al., 2004; Kim and Kim, 2005), which can be an important characteristic of the 

graphs being analysed, but are missed by the clustering coefficient (Caldarelli et al., 2004), and 

this is not an ideal measure to characterise some graphs/networks (Holmgren, 2006). Previous 

research has hence explored the effectiveness of using other measures which account for longer 

cycles with these highlighting some new characteristics of graphs (Caldarelli et al., 2004; 

Boccaletti et al., 2006) or has suggested the use of the number of cycles (Holmgren, 2006).  

Along with the clustering coefficient the average path length, defined in Chapter 2 Section 2.3.2, 

has been used as a metric for identifying the characteristics of graphs (Albert and Barabasi, 

2002; Costa et al., 2007), as well as in the assessment of the robustness of graphs and networks 

to perturbations (Newman, 2003b). The metric provides a measure of how well a graph is 

connected (Newman, 2003b), with the value an average over all shortest paths between each 

pair of nodes. This gives an indication of the proximity of each node to all other nodes, but 

using the average can be problematic (Evans, 2010), with in this case the average being taken 

over all node pairs, resulting in extreme values being lost, such as those for nodes which are 

very poorly connected to the rest of the graph. Further to this, if the graph is not connected, 

there is a node or group of nodes which are not part of the main network, these do not have a 

path to all nodes, and thus cannot return a shortest path length to be included in the average for 

the whole graph (Costa et al., 2007). This results in any value returned for the average path 

length not truly reflecting the structure, and thus the connectivity, of the graph. 

The diameter graph metric, defined in Chapter 2 Section 2.3.2, can also be used as a measure 

for the structure of graphs/networks (Gastner and Newman, 2006), with it reporting on the 

greatest path length between any two nodes in the graph (Newman, 2003b). It forms a measure 

of how well a graph is interconnected (Albert et al., 2000), and has been used as a measure for 

the characterisation of graph structures (Albert et al., 1999; Barabasi et al., 2000; Bagler, 

2008a). It has aslo been used to measure the resilience of graphs to perturbations (Albert et al., 

2000), reporting on how perturbations change how well the network is connected, with an 

increased value suggesting a less connected graph. However, as with the average shortest path 
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length as discussed in the above paragraph, where a node or group of nodes become 

disconnected from the rest of the graph, there is no longer paths possible between all node pairs 

as required for the honest calculation of the metric, and thus any reported values do not reflect 

the true structure of the graph. 

Three commonly used graph metrics have been discussed in the previous paragraphs, including 

the clustering coefficient, the average shortest path length and the graph diameter. These have 

previously been employed in the characterisation of graphs, though all have some limitation 

(Ouyang et al., 2009). A suite of three alternative metrics is thus proposed to be used in this 

research and are discussed in the following paragraphs. These are, the maximum node 

betweenness centrality (Section 3.4.2.1), the assortativity coefficient of the graph (Section 

3.4.2.2) and the number of cycle basis in the graph (Section 3.4.2.3).  

 

3.4.2.1 Betweenness centrality 

Betweenness centrality, as defined in Chapter 2, Section 2.3.1 (page 13), returns centrality 

values for the vertices which have the greatest number of shortest paths passing through them 

when the shortest paths are calculated over all node pairs (Girvan and Newman, 2002). The 

highest values are those nodes with the greatest number of shortest paths and most critical to 

the ability to traverse the graph (Girvan and Newman, 2002). The removal of these will not 

only result in metrics such as the average shortest path length increasing, but may also result in 

the graph fragmenting into a greater number of components (Holme et al., 2002; Luca et al., 

2006; Börner et al., 2007) and therefore is considered an import metric for consideration in 

infrastructure networks as well (Wuellner et al., 2010). The metric is also considered as a proxy 

for flows through graphs allowing it to be used when simulating the behaviour of graphs when 

perturbed (Dueñas-Osorio and Vemuru, 2009; Mishkovski et al., 2011). For these reasons, the 

maximum betweenness centrality value is employed as a measure as it allows for the 

identification of a graphs dependence on a single critical node, something which might be 

expected in hierarchical graphs, such as those similar to the tree model (Section 3.3.7). 

The ability of the betweenness centrality to identify key nodes which may be critical in a graph 

staying connected or for the average shortest path length to remain low can be exemplified 

when looking at hierarchical graphs. For those graphs with an explicit tree structure the node at 

the top level of the hierarchy connects two distinct parts of the graph together, node 1 in Figure 

3.8(a), and thus has a higher betweenness centrality value compared to all other nodes in the 
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graph. However, by adding more links to the tree structure the betweenness of the nodes at the 

top decreases, as shown in Figure 3.8(b), as shortest paths no longer use this node. 

 

Figure 3.8: The betweenness centrality (normalised) values variations in a tree graph (a) and 

where two extra edges (between nodes 2 and 3 and between 3 and 4) have been added to a 

previously identical tree graph (b). 

 

3.4.2.2 Assortativity coefficient 

The assortativity coefficient allows for the characterisation of the structure of the graph through 

reporting on the similarity of the degree of the nodes that each node is connected to, describing 

the topological correlation between the degree of the nodes in a graph (Barthelemy, 2003). A 

value close to one suggests an assortatively mixed graph (nodes are connected to nodes with 

similar degrees (Figure 3.9(b)), and negative one indicates a dissassortatively mixed graph 

(nodes are connected to nodes with different degrees Figure 3.9(a)) (Newman, 2002). It has 

been suggested that an assortatively mixed graph has no significant dominance of high and/or 

low connected nodes, a feature which implies a robust graph (Newman, 2002).  
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Figure 3.9: A dissassortatively mixed network (a) where nodes with high degree are only 

connected to nodes with low degree and (b) an assortative network where every node is 

connected to another with the same degree. 

 

The assortativity coefficient is defined as the Pearson correlation coefficient of the degree of 

the nodes at opposite ends of an edge (Newman, 2003a): 

 

𝑟 =
∑ 𝑒𝑖𝑗𝑖 − ∑ 𝑎𝑖𝑏𝑗𝑖

1 − ∑ 𝑎𝑖𝑏𝑗𝑖
  (Equation 3.2) 

 

where r is the correlation coefficient (0 < r < 1.0), 𝑒𝑖𝑗 is the fraction of edges that connect a 

vertex of degree 𝑖 to a vertex of degree 𝑗 and 𝑎𝑖𝑏𝑖 are the fraction of each type of edge end that 

is attached to a vertex with degree 𝑖. 

 

3.4.2.3 Cycle basis 

Cycle basis are the fundamental set of cycles which make up all cycles found within a network 

(Paton, 1969; Kavitha et al., 2009). A cycle base can be any length greater than 2 edges as 

shown in Figure 3.10 (b) which shows the cycle basis in Figure 3.10(a), where a cycle is a path 

through at least three nodes where all edges and nodes are distinct except the start and finish 

node (Dolan and Aldous, 1993). The presence of a large number of cycle basis suggests that a 

network is well connected with nodes having a high number of neighbours (Barthelemy, 2011). 

This provides a suggestion as to the topological structure of the graph as well as providing an 

indication to the robustness of the graph, as with more cycles there is likely to be a greater 
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number of routes between nodes and hence the graph is likely to be topologically more robust 

to failures (Katifori et al., 2010; Barthelemy, 2011). 

 

 

Figure 3.10: Example of cycle basis in a regular grid (a) which has four cycle basis (b). 

 

3.4.3 Multivariate metric analysis 

The metric values computed for the suite of synthetic graphs are compared through their 

multivariate distributions for the three metrics, resulting in three sets of results; assortativity 

coefficient and maximum betweenness centrality, the assortativity coefficient and the number 

of cycle basis per node, and finally the maximum betweenness centrality and the number of 

cycle basis per node. The values for each graph are used for each multivariate combination of 

metrics. Scatter plots are used to compare the graph models with single standard deviation 

ellipses used to show the extents of the distribution of the values for the graphs for each model. 

This method allows the overlap between the different graph models to be shown.  

 

3.4.4 Transformed divergence 

As described in Section 3.4.3 the multivariate results from the analysis of the suite of synthetic 

graphs will be analysed to compare the results from the eight graph models. To statistically test 

the similarity of the metric values to compare the characteristics of the hierarchical and non-

hierarchical graph models, the transformed divergence statistic is used to compute the degree 

of separability between the graph models for the different metric combinations. The test is a 

multivariate, bi-directional pairwise test, returning a value which can be used to quantitatively 
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asses the separability between two sets of values. For each pair of graph types the divergence 

(Dij) between their structural metrics is defined as (Swain and Davis, 1978) : 

𝐷𝑖𝑗 =  
1

2
𝑡𝑟 ((𝐶𝑖 − 𝐶𝑗)(𝐶𝑖

−1 − 𝐶𝑗
−1))

+  
1

2
𝑡𝑟 ((𝐶𝑖

−1 − 𝐶𝑗
−1)(𝜇𝑖 − 𝜇𝑗)(𝜇𝑖 − 𝜇𝑗)

𝑇
) 

(Equation 3.3) 

 

where Ci is the covariance matrix of the metric values for graph type i (Cj for graph type j), 𝐶𝑖
−1 

is the inverse of the covariance matrix of the metric values for graph type i and µi is the mean 

vector of the metric values for graph type i, T is the transposition function and tr is the trace 

function. In order to get a divergence value in the range 0 – 100 such that it can be interpreted 

as the probability of separability it is normal to apply a saturation function of the form: 

𝑇𝐷𝑖𝑗 = 100 (1 − 𝑒𝑥𝑝 (
−𝐷𝑖𝑗

8
)) 

(Equation 3.4) 

 

where –Dij is taken from (Equation 3.3. This results in values between 0 and 100 being returned; 

0 indicates two identical sets of values while a value of 100 indicates that they do not overlap 

at all in their multivariate distributions. 

 

3.5 Topological failures 

To explore the characteristics of the synthetic graphs further the robustness of the graphs is 

explored through a topological failure model. Robustness of graphs is critical for them to 

withstand perturbations, with infrastructure networks sharing some of the same characteristics 

exhibited by graph models as discussed in Chapter 2, when exposed to hazards which have the 

potential to disrupt their functioning (Boccaletti et al., 2006). 

A topological failure model has been implemented recognising previous models developed 

(Albert et al., 2000; Callaway et al., 2000; Crucitti et al., 2004b) for exploring the topological 

robustness of a network (G), Figure 3.11. Starting with G, with node set N and edge set E, for 

the first epoch a node, ni, is selected to be removed based on the method set for the simulation, 

random, degree or betweenness ((a) in Figure 3.11) (detailed later). When ni is removed from 

G, each edge, e, incident to ni is also removed. 

As a result of the removal of a ni and its edges,  {𝑒𝑖
1, 𝑒𝑖

2, … , 𝑒𝑖
𝑚}, the topology of G changes and 

it may become disconnected such that there is no longer a path from every node to every other 
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node (Dolan and Aldous, 1993; Jungnickel, 2004), and/or  components form subgraphs which 

are subsets N and E, but are disconnected (from the largest component) (Dolan and Aldous, 

1993) and/or isolated nodes occur which become disconnected from G and have a degree of 

zero (Dolan and Aldous, 1993). These last two scenarios, the formation of components and 

isolated nodes, can be handled differently depending on the parameterisation of the failure 

simulation, either being removed or left in G at the end of each epoch. 

For the simulations undertaken, isolated nodes are removed from G as these are disconnected 

from G, and components are left in G as these still form an ‘active’ part of G. Where either of 

these features are left in G, all future metric calculations must consider the presence of such 

features, as metrics such as the average shortest path length of the network, the average of the 

shortest path between every pair of nodes in the network (Costa et al., 2008), can be affected if 

G is not fully connected, as no paths will exist between some of the node pairs.  

The implemented failure model as described above and in Figure 3.11 allows the removal of 

nodes for examining the robustness of networks to topological failures. Three methods of node 

selection are used to explore this, detailed in 3.5.1, falling broadly into two categories, random 

and targeted, where targeted methods are those which focus on the most critical nodes in a 

network, identified using metrics such as node degree (Albert et al., 2000; Callaway et al., 

2000), and the random method selects nodes at random from those in the network. For each 

simulation one method is used throughout. 

At the end of each epoch (Figure 3.11), metrics are calculated over G to record the changing 

topological structure of G as a result of the perturbation. A set of metrics have been chosen to 

record the behaviour of the networks analysed and are detailed in Section 3.5.2. 
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Figure 3.11: Process diagram of the developed topological failure model. 

 

3.5.1 Methods of node selection 

Three failure methods are employed in the failure model; (i) random, (ii) node degree and (iii) 

node betweenness, detailed below. Such methods have previously been employed in the 

assessment of the robustness of graphs (Albert et al., 2000; Holme et al., 2002; Tanizawa et al., 

2005) and infrastructure networks (Bagler, 2008a; Bompard et al., 2011; Lordan et al., 2014) 

previously, as also detailed in Chapter 2. The difference in the way the three methods target 

nodes in the graphs and the response from the graphs (Figure 3.12), helps to explore and 

understand the characteristics of the eight models better than would be possible if only one or 

two of the methods were employed. This will also help in the recognition of the characteristic 

differences between the hierarchical and non-hierarchical models. 
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Figure 3.12: Exemplifying the three different node selection methods during a topological 

failure model using the same example network at three selected epochs, 1, 2 and 6. Failed 

nodes and edges are shown in red with dashed lines. 

 

The random node selection method simulates the random failure of network assets, such as 

breakdowns and maintenance periods (Albert et al., 2000). These failures tend to have a lesser 

impact when compared to the degree based method (Crucitti et al., 2004b). This is demonstrated 

in Figure 3.12 where the random method only removed six nodes having a smaller impact on 

the network topology than the other two methods.   

The node degree targeted failure method removes the node with the greatest number of incident 

edges at each epoch. Node degree has been used as a measure of node importance in a graph, 

as the node with the most edges has been viewed as critical to the connectivity of the network 

and hence the ease that a network can be traversed (Holme et al., 2002). Using similar methods 

to those employed previously (Albert et al., 2000; Holme et al., 2002), at each epoch the node 

with the most edges is removed causing the number of edges in the network to be reduced. 

Within the failure model, the node degrees are re-calculated at each epoch, ensuring that at each 
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epoch it is the most connected node that is removed. As expected this method has a tendency 

to cause greater disruption to the network than the random selection method, as shown in Figure 

3.12, which shows the degree based method has a greater impact than the random method by 

removing two more nodes and six more edges by epoch 6. 

The betweenness centrality node selection method removes the nodes which are most critical 

to shortest paths through the network (Dueñas-Osorio and Vemuru, 2009; Mishkovski et al., 

2011), with betweenness centrality defined in Section 3.4.2.1 (Equation 2.2). The nodes with 

the greatest values are seen as the most critical in the network as these have the greatest number 

of shortest paths passing through them, thus those removed first in the analysis are the nodes 

which are on the most shortest paths through the graph and therefore critical to the topological 

connectivity. The impact of removing these is expected to have a significant impact on the 

network, equal or greater to that of the degree based method (Holme et al., 2002), as this just 

selects those nodes which have the most connections, whether are not they are critical to the 

connectivity of the graph. As with the node degree method, the betweenness values are 

recalculated in the failure model at each epoch so the node with the greatest value at each epoch 

is removed. 

 

3.5.2 Recording failure behaviour 

At the end of each epoch (T) in the failure model (Figure 3.11), a suite of metrics are computed 

to characterise the state of the network following the removal of a node. Previous studies have 

used metrics such as the average shortest path length (Albert and Barabasi, 2002; Holme et al., 

2002) and the size of the giant component (Holme et al., 2002; Bassett and Bullmore, 2006; 

Lordan et al., 2014). However, the average shortest path length as a measure of network 

robustness becomes poor when a network starts to fragment, when groups of nodes (or single 

nodes) become separated from the largest connected part of the network (the giant component). 

The average path length as a metric cannot report the fragmentation of the network as not all 

nodes in the network are connected to each other, and thus have no path length between them. 

The first metric employed is the average number of nodes removed before a graph becomes 

null. This allows for an assessment of the rate of failure in a network while being perturbed 

through knowing the fraction of nodes affected/removed (e.g. Barabási et al. (2001) and 

Beygelzimer et al. (2005)).  

The second method is the number of components and the average size of these as a function of 

the number of epochs of the simulation(s). This is employed as it shows the behaviour of the 
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network with regard to its fragmentation and the formation of components (connected nodes 

which become disconnected from the rest of the network (Albert and Barabasi, 2002)). The 

fragmentation of a network is associated with a vulnerability to perturbations, with more 

components expected to form if a network is vulnerable to failures (Newman, 2003b; Costa et 

al., 2007). 

 

3.6 Real-world spatial infrastructure data 

In addition to the suite of synthetic graphs models, spatial infrastructure networks have been 

generated from a series of spatial datasets. These are split across six infrastructure sectors; air 

(Section 3.6.1), communications (Section 3.6.2), energy (Section 3.6.3), rail (Section 3.6.4), 

rivers (Section 3.6.5) and roads (Section 3.6.6). A total of 42 networks were created including 

some variants of the same infrastructure networks to account for different levels of granularity. 

For each sector a summary is given in the appropriate sub-sections, with more details available 

in Appendix B, including a summary of how the networks were generated.  

Topologically valid networks are created using a suite of tools developed and provided by the 

Infrastructure Transitions Research Consortium (ITRC) (ITRC, 2013), and through the use of 

GIS software. Tools have been developed to solve errors in data such as nodes/edges being 

disconnected as in Figure 3.13, which shows part of the electricity network provided by 

National Grid, and for errors such as over and under shoots where edges don’t meet exactly. 

 

 

Figure 3.13: Highlighting the topological errors contained within some datasets which 

required correcting to form topologically valid networks. 

 



 

 65  

3.6.1 Air networks 

Six air networks have been created using 2012 data from OpenFlights, a freely available online 

resource which contains all known airport locations along with the routes which serve these. 

From this dataset air networks have been generated for four regions; the UK, Europe, United 

States of America and North America (Figure 3.14(b)), along with the networks of two 

providers, British Airways and EasyJet (Figure 3.14(a)). These networks have been processed 

using developed tools to ensure topological integrity. 

 

Figure 3.14: EasyJet flight network (N = 125, E = 498) (a) and the network for North America 

(N = 889, E = 3760) (b). 

 

3.6.2 Communication networks 

A single network falls within this category, the core JANET network for the provision of high 

speed internet connections for academic institutions in the UK (Jisc, 2015). This has been 

digitised using GIS software from schematic network diagrams which are freely available. The 

network consists of the locations of the main connections within the system resulting in a 

network with 38 nodes and 58 edges (Figure 3.15). 

 

Figure 3.15: The JANET network (N = 38, E = 58). 
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3.6.3 Energy networks 

Two primary energy networks, electricity and gas, are included in the suite of networks with 

data provided through the ITRC project, but originally from National Grid, the owners and 

operators of the main transmission systems. This data has been edited to form topologically 

valid networks using the suite of tools developed as part of ITRC project as previously 

mentioned. In total five networks form this category, including three variants of the electricity 

transmission network which include varying levels of detail with regard to transmission pylons, 

with the largest, the full network (Figure 3.16(a)), having 23,787 nodes and 24,185 edges and 

the smallest having 2,218 nodes and 2,520 edges (Figure 3.16(b)). As well as these, a further 

generated/simulated network for electricity transmission and distribution as provided by the 

ITRC project has been included which provides a network for England and Wales to the 11Kv 

level, with 170,667 nodes and 172,019 edges. The full suite of energy networks is detailed in 

Appendix B with the networks shown along with the size of the node and edge sets. 

 

 

 Figure 3.16: The full national grid transmission network (N = 23787, E = 24185) (a) and the 

NT (no towers) version (N = 2218, E = 2520) (b). 

 

3.6.4 Rail networks 

A large suite of rail networks, totalling 19 examples (including variants), has been created 

covering the UK, Ireland, Paris (France) and Boston (United States of America). The UK based 

examples have been generated from the Ordnance Survey Meridian 2 data using GIS systems 

and developed tools from the ITRC project, to build topologically valid models. These cover a 

range of scales, from the national network to local scale such as the London Tube network 

(Figure 3.17(a)) and the Manchester Metrolink (tram) system. Open Street Map (OSM) data, 
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along with system maps for verification purposes, have been used to create those networks 

outside of the UK, such as the network for Ireland (Figure 3.17(b)). The full suite of rail 

networks can be found in Appendix B with details of the size of the node and edge sets included. 

 

 

Figure 3.17: Networks for (a) London Tube (N = 436, E = 466) and (b) Ireland (N = 201, E = 

203). 

 

3.6.5 River networks 

Four river networks have been created using the Ordnance Survey Meridian 2 data, including 

the River Dee, the River Eden, the River Severn (England) and the River Tyne (Northern 

England), (Figure 3.18). As with the other infrastructure networks these have then been 

processed to ensure topologically valid models are produced for analysis using the ITRC tools. 

 

3.6.6 Road networks 

Ten road networks were generated. Networks for the UK have been built using Ordnance 

Survey Meridian 2 data with a range of detail with some editing to create topologically valid 

networks. This includes regional scale networks for three areas, Tyne and Wear, Leeds and 

Milton Keynes. For these regions/areas networks with different levels of detail through the 

inclusion of varying road classes were created, from motorways to minor roads, resulting in 

seven networks. For example, for Tyne and Wear three networks are created, each more detailed 

than the previous, starting with motorways and A roads (Figure 3.19(b)) culminating in a 

network with all road classes with 15,249 nodes and 21,817 edges (Figure 3.19(a)). At the 

national scale, motorways, and A and B roads are used for the UK, generating a network with 
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24,071 nodes and 50,292 edges. One other network has been created using Open Street Map 

(OSM) data for Ireland (including Northern Ireland) and contains the motorways, primary and 

trunk roads. Details for the full suite of road networks is given in Appendix B including the size 

of the node and edge sets for all networks. 

 

 

Figure 3.18: The four river networks; (a) Dee (N = 896, E = 900), (b) Eden (N = 302, E = 

301), (c) Tyne (N = 616, E = 615) and (d) Severn (N = 1944, E = 2005). 

 

 

Figure 3.19: Road network for Tyne and Wear with motorways, A, B and minor class roads 

(N = 15249, E = 21817) (a) and with only motorways and A roads (N = 212, E = 311) (b). 
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3.7 Identifying hierarchical infrastructure networks                                                                          

Employing the characteristics of hierarchical graphs learned from the analysis of the suite of 

synthetic graphs (Section 3.4), the suite of critical infrastructure networks (Section 3.6) will be 

analysed using the same methodological processes to recognise those with hierarchical traits. 

The degree distributions of the networks will be computed and analysed to identify the 

topological structure of the infrastructure networks, including a direct comparison to the 

distributions of the synthetic suite of graphs. A metric analysis will then be performed, 

calculating the same three metrics as used for the synthetic graphs (Section 3.4.2) to characterise 

the networks, helping to recognise those which share similar characteristics to hierarchical 

graphs. Finally the topological robustness of the infrastructure networks will be explored, again 

employing the same methods as used for the analysis of the suite of synthetic graphs in Section 

3.5 (page 59). This analysis is employed in order to recognise any critical spatial infrastructure 

networks that are seemingly hierarchical and to understand their robustness to different forms 

of perturbation. 

 

3.8 Enhanced network representation 

Infrastructure networks are designed to deliver a commodity/information, both involving a flow 

over the network (Little, 2003; Ash and Newth, 2007; Dueñas-Osorio and Vemuru, 2009). 

Therefore, modelling the flows over the network gives a better representation of how network 

behaves. The developed representation model allows four node and four edge attributes to be 

modelled (Figure 3.20), and are detailed in Table 3.2. The attributes are stored for each node, n 

ϵ N, and each edge, e ϵ E. The attributes include the flow (F), 𝑛𝐹  and 𝑒𝐹 , and flow capacity (FC), 

𝑛𝐹𝐶  and 𝑒𝐹𝐶 . Included also is resistance (weight) (W) of nodes 𝑛𝑊 and edges 𝑒𝑊, buffering (B) 

𝑛𝐵 and buffer capacity (BC), 𝑛𝐵𝐶 , latency (time lag between event and response) (L), 𝑛𝐿, the 

length (D) of edges, 𝑒𝐷 , and the stacking (queuing) (S) on edges, 𝑒𝑆. As well as these each node 

(n) can have a role (R) assigned to it. This is handled differently to the other attributes as this is 

a description of the function of a node in the network, and is not a quantitative value which can 

be used to model the behaviour of network assets. 
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Figure 3.20: Network diagram showing node and edge attribution for modelling of flows over 

a network. 

 

Attribute Node (n), 

Edge (e) 

Description 

Flow (F) nF, eF The flow attribute (F) facilitates the modelling of flows over a 

network by allowing the flow level to be explicitly stored. The 

flow capacity (nFC, eFC) is stored as well, with the ability for a 

defined function to be used to adjust the capacity of the 

node/edge based on other attributes/properties. 

Resistance 

(W) 

nW, eW The resistance (or weight) attribute (W) allows for the modelling 

of characteristics such as travel time over a node/edge which can 

then be used in the routing of flows for example. As with the 

flow attribute, functions can be used to alter the resistance value 

for each distinct node and edge based on other values, such as 

flow itself. 

Latency (L) nL The latency of a node (L), the time it takes for the node to react 

to an event, allows for the modelling systems which may be 

operating at a site represented by a node. Again, functions can 

be used to alter this value based on other values in the network, 

such as the flow. 

Buffer (B) nB Buffering at a node (B), the stock at the location, allows a node 

to continue to function once a disruption event has occurred. The 

amount as ‘stock’ as the node is stored as well as the capacity at 

the node, nBC. 

Role (R) nR Each node is assigned a role (R), normally similar to supply, 

demand and intermediate, though these can be customised as 

well as added to. 

Length (D) eD The length of an edge (D) can be stored explicitly and used for 

weighting for the identification of the shortest paths through a 

network with respect to distance. 

Stacking (S) eS The stacking (queuing) attribute (S) allows for values on queues 

to pass over an edge to be modelled where appropriate. 

Table 3.2: Node and edge attributes explicitly stored within the nx_pgnet_atts schema. 
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The attributes are modelled as part of the network, with each node and edge having its own sets 

of attributes, as well as function if required. However, traditional graph theory algorithms, such 

as those for finding the shortest path between nodes, do not consider capacities or weights for 

traversing nodes, only considering those on edges (Dolan and Aldous, 1993). Networks can 

possess node attributes which need to be considered when modelling flows over the networks, 

such as the capacity or the time to traverse a road junction. To facilitate this nodes can be 

converted into two nodes (Figure 3.21), an in and an out node, linking these with a single new 

edge and assigning it the node attributes, including the id of the node, while also making the 

network directed (Dolan and Aldous, 1993; Chen, 2003). This process is shown in Figure 3.21 

for an example node v which has a capacity of six. Through this method existing algorithms 

can be utilised for the computation of flows over networks where node and edge attributes are 

both considered. 

 

 

Figure 3.21: Method for modelling node capacities (Dolan and Aldous, 1993), with node and 

edge capacities shown. 

 

3.9 Capacity constrained failure modelling 

Cascading failures, occur where the failure of a small number of nodes or edges is propagated 

through the redistribution of flows leading to further nodes/edges failing as a result of being 

over capacity (Crucitti et al., 2004a; Ash and Newth, 2007; Bao et al., 2009a). Such failures 

have been observed within critical spatial infrastructures, causing disruptions to the service 

which they supply (Andersson et al., 2005; Havlin et al., 2010), such as in electricity 

distribution systems where such failures have been well documented (Ash and Newth, 2007; 

Rosas-Casals and Sole, 2011). A cascading failure is triggered by an initial single, or set of, 

failures (Crucitti et al., 2004a), where these then trigger the re-distribution of flows (loads) 

caused by the re-routing of flows resulting from the initial failures. Following the redistribution 

of flows, some nodes or edges may be over capacity resulting in these failing and thus again a 

redistribution of flows, resulting in a cascading failure (Crucitti et al., 2004a; Bao et al., 2009a). 

The trigger for the cascading failure can be a range of causes, from the breakdown of a 
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component to a natural event which leads to the failure of a component, such as the flooding of 

a substation (Little, 2003), or as in Europe in 2003, the failure of transmission line due to contact 

with overhanging vegetation (Andersson et al., 2005). 

It has been shown through modelling that cascading failures from a single point of failure can 

result in complete breakdown of network function (Motter and Lai, 2002; Crucitti et al., 2004a), 

or at least cause significant disruption to the network (Ash and Newth, 2007; Dueñas-Osorio 

and Vemuru, 2009; Xia et al., 2010). This potential vulnerability to cascading failures requires 

networks to have properties which make then robust to such failures to avoid service disruption 

to users. 

To investigate the robustness of different graph topologies and in particular hierarchical graphs,  

a flow-based capacity constrained cascading failure model is developed (Section 3.9.1), which 

allows the modelling of flows through synthetic and real-world critical spatial infrastructures 

networks with supply and demand nodes. The methods of triggering cascading failures are 

discussed in Section 3.9.2 and the methods employed for recording the results from the 

simulations using the developed capacity constrained failure model are presented in Section 

3.9.3. The analysis and the scenarios investigated are presented in Section 3.9.4. 

 

3.9.1 Developed failure model 

A capacity constrained cascading failure model has been developed for modelling cascading 

failures over graphs (Figure 3.22), with the general approach to the model similar to previously 

developed models (Crucitti et al., 2004a; Bao et al., 2009a). The failure model allows for the 

modelling of flows through a graph between supply and demand nodes allowing the effect of a 

single failure on the graph to be examined. 
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Figure 3.22: Developed capacity constrained cascading failure model. 

 

For a graph, G, supply and demand nodes are defined with values assigned, where the sum of 

the demand is equal to the sum of the supply. The shortest path is then found between these 

nodes where the demand is met through the routing of flow(s) from the supply node(s). The 

supply and demand nodes are defined in an instance of the nx_pgnet_atts database schema 

(Section 3.11.2), where their role is set as appropriate (either as supply or demand).  

Alternatively, this can be specified when loading the graph from the database, as can the supply 

and demand values. To simplify the algorithmic approach to calculating flows over a network 

where multiple supply/demand nodes are used, {𝑠1, 𝑠2, … , 𝑠𝑚}  and {𝑑1, 𝑑2, … , 𝑑𝑚}  (Figure 

3.23), super supply/demand nodes are created, 𝑠∗ and  𝑑∗ . Each has the accumulated sum 
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(supply/demand value) across the respective node sets, with the edges between these and the 

original supply/demand nodes (𝑠∗ =  ∑{𝑠1, 𝑠2, … , 𝑠𝑚} and 𝑑∗ =  ∑{𝑑1, 𝑑2, … , 𝑑𝑚}) having the 

capacity of the node they link to the super node. This approach reduces the computational 

complexity of computing flows from multiple supply nodes to multiple demand nodes to just 

between two nodes with capacities used to constrain the amount which can be supplied be each 

supply node and the level of demand at each demand node. This allows for existing algorithms 

for the modelling of flows over networks, such as the network_simplex algorithm (NetworkX, 

2015), to be used without the need to develop the algorithms further. 

 

 

Figure 3.23: Super supply (𝑠∗) and super demand nodes (𝑑∗) (b) added to a network with 

multiple supply (𝑠𝑥) and demand nodes (𝑑𝑥) (a) (Dolan and Aldous, 1993). 

 

The topology of the graph is then converted as detailed in Section 3.8 (page 69) with each node 

converted into an edge with the node attributes, allowing pre-existing algorithms which only 

considered edge attributes to use those of the nodes as well. The network simplex algorithm is 

then used, available in the NetworkX python library, which allows for solutions to flow 

problems to be found where the supply in the graph is equal to the demand, and where edge 

weights (the cost of traversing an edge) and capacities are considered in finding the minimum 

cost solution (NetworkX, 2015). However, where no solution can be found due to a lack of 

capacity an error is normally returned. Therefore the algorithm has been further developed for 

this work to return the graph with the flows which have been assigned (Figure 3.24(b)), along 

with the flows which could not be assigned and the nodes where the lack of capacity is between 

(edge (1, 4) in Figure 3.24(b)). This then allows the flows which could not be accommodated 

on the graph without nodes and/or edge capacities being exceeded to be assigned (Figure 

3.24(c)). 
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Figure 3.24: The routing of flows (b) to (c) where insufficient capacity is available between 

the supply node, 1, and the demand node, 4, where a flow of five is required from node 1 to 

meet the demand at node 4, where all edges have a capacity of 2 (a). 

 

Where the initial calculation of flows is successful over the graph (G), the first step, T(0) (Figure 

3.25(a)), the effect of removing nodes/edges from the G can then be explored with the 

expectation of cascading failures being triggered. Following the removal of a trigger node/edge 

(Section 3.9.2), the flows are recalculated over G, T(1) (Figure 3.25(b)), using the adapted 

network simplex algorithm to find routes for the flows through G from the supply to the demand 

node(s). From the solution for the routing of flows for T(1), the first epoch of the simulation, 

any nodes over capacity (𝑛𝐹
𝑇(1)

> 𝑛𝐹𝐶) or edges over capacity (𝑒𝐹
𝑇(1)

 > 𝑒𝐹𝐶), are deemed as 

failed and thus are removed from G, T(2) ( Figure 3.25(c)). The process of repeating the 

calculation of flows and the identification and removal of nodes/edges over capacity continues 

until no more node or edges are over capacity, G becomes completely disconnected, or there is 

no path from the supply to demand node at all (Figure 3.25(d)). 
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Figure 3.25: Capacity constrained cascading failure example where node 5 has a demand of 

five and node 1 has a supply of five, with each node and edge having a capacity of two. (a) 

shows the network at T(0), (b) after the rerouting of flows after the removal of edge (1,3) as a 

trigger, (c) shows the failure of edge (1,5) as a result of being over capacity and the flow on 

each edge after the re-routing of flows again, and (d) shows the results of the failure of those 

edges over capacity, with no route from the supply node, node 1. 

 

3.9.2 Triggering cascading failures 

Following the initial calculation of flows T(0) of a graph G, cascading failures are then 

simulated through the removal of trigger edges, Z (Bao et al., 2009a). Trigger edges are 

removed from a network, with flows then re-routed giving with the potential for other nodes 

and/or edges to fail by then being over capacity (𝑛𝐹 > 𝑛𝐹𝐶 , 𝑒𝐹 > 𝑒𝐹𝐶) in an attempt to continue 

to route all flows from the supply to the demand nodes (Ash and Newth, 2007). This process of 

flow redistribution as described in Section 3.9.1, continues leading to failures to propagate 
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through G with the potential for the entire network to be affected. Therefore, the selection of 

the trigger edges affects the effectiveness of the resulting simulation and the size of the 

cascading failure which is triggered. 

A number of methods can be used to select the trigger edges, from random selection (Crucitti 

et al., 2004a), to topological methods such as node degree (Dueñas-Osorio and Vemuru, 2009) 

or betweenness (Crucitti et al., 2004b; Dueñas-Osorio and Vemuru, 2009), as well as the initial 

load following the flow calculations (𝐹𝑇(0)
∗ ) (Bao et al., 2009a; Wang and Rong, 2011) and 

those that fall within a defined spatial area. The random selection method, along with the degree 

and betweenness node selection methods have been previously explained in Section 3.5.1. 

The success of the removal of trigger edges in causing cascading failures depends on those 

selected to be removed, the topological structure of the graph and the node and edge 

characteristics. Of the targeted approaches, betweenness (as defined in Section 3.4.2.1) or the 

initial flow load as methods are more successful in triggering cascading failures than the node 

degree selection method (Crucitti et al., 2004a; Dueñas-Osorio and Vemuru, 2009). These 

targeted approaches remove the nodes/edges with the greatest flow and hence appear more 

effective at causing disruptions in the network as more flows have to be re-routed than 

compared to a degree based node removal. Despite the targeted methods, some networks may 

exhibit a robustness to a single failure of a node/edge with no cascading failure being triggered. 

However, multiple trigger nodes/edges can be removed to further explore the robustness to 

failures (Dueñas-Osorio and Vemuru, 2009), with the greater the number of trigger nodes/edges 

removed, the greater likelihood of a cascading failure being triggered as the capacity within the 

network will be reduced. 

For the simulation of hazard events, such as flooding, trigger nodes/edges can also be those 

which lie within the effected geographic area. This method maybe less disruptive with regard 

to the cascading event triggered by the removal of nodes/edges based on flows (Dueñas-Osorio 

and Vemuru, 2009), but attempts to simulate events such as natural hazards where geographic 

areas are effected. Events such as floods and wind storms can hence be simulated and the 

robustness of networks to such failures examined.  

 

3.9.3 Recording failure behaviour 

The effect of the removal of trigger edges from a network are recorded through the impact these 

have on the network including the length of the cascading failure if one is triggered. For each 

simulation the reason for the simulation ending is recorded. If capacity is still available between 
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the supply to the demand nodes for the flow the network is said to be in equilibrium as the 

failure of the edge has had no effect on the ability of the flow to the reach the demand node. 

The graph is regarded as failed where the failure of the trigger edge, or the subsequent failures 

caused by a cascading failure, leave the graph with no route between the supply and demand 

nodes, with the graph consisting of a number of components. The length of the cascading failure 

observed in each simulation is also recorded as is the number of epochs (T) the cascading failure 

lasted for until the network failed. 

 

3.9.4 Analysis scenarios 

A set of eight graphs, one from each of the eight synthetic graph models (Section 3.3) where 

250 ≤ 𝑁 ≤ 260, is used to explore the robustness of the hierarchical and non-hierarchical 

graph models to the capacity constrained cascading failures. This helps to characterise the 

robustness of the graph models to facilitate the flow of a commodity/information/traffic over 

them (Motter and Lai, 2002; Ash and Newth, 2007) while being perturbed and their ability to 

withstand cascading failures, a reason for many failures experienced in real-word infrastructure 

networks (Andersson et al., 2005; Havlin et al., 2010). To explore the robustness of hierarchical 

networks to cascading failures six scenarios have been developed which explore the 

characteristics of the graph models to flow based failures. In each scenario five simulations are 

run with a single supply and a single demand node, both of which are randomly assigned to 

nodes in the graphs.  

The first two scenarios, (i) and (ii) explore the ability for the graphs to accommodate flows and 

their susceptibility to cascading failures. Scenario (i) explores the robustness of the graphs 

through using a node and edge capacity equal to the supply/demand in the graph. A single 

trigger edge is removed following the initial computation of flows over the graph, as long as a 

single path between the supply and demand nodes exists the demand will always be met. 

Scenario (ii) uses the same parameterisation as scenario (i), but instead of a uniform node and 

edge capacity being used the capacities are assigned based on the graph structure (Table 3.3). 

This allows for the graph type and its structure to be explicitly considered in the assessment of 

the robustness of the graphs to cascading failures, providing a greater insight into the 

characteristics of each model. 

 

 

 



 

 79  

Graph Node/edge capacity  

ER Capacities (C) are assigned randomly to the nodes and edges due to the 

random topological structure of the graph model, where 1 ≤ 𝐶 ≤ 2 ×
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑑𝑒𝑚𝑎𝑛𝑑. This allows the potential for sufficient capacity to exist 

between supply and demand nodes, while still matching the nature of the 

graph with the values assigned randomly. 

GNM Same as above. 

WS Capacities are assigned using the betweenness centrality (0-1) of the nodes 

and edges, and are thus correlated to the importance of the nodes given with 

those with the greatest betweenness having the greatest capacity, with 𝐶 =
 (2 × 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑑𝑒𝑚𝑎𝑛𝑑) × 𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 , while 𝐶 ≥ 1  By 

assigning those edges with the greatest number of shortest paths passing 

through them with the greatest capacity, the hub nodes which are a feature of 

the WS model are assigned the greatest values, replicating the nature of the 

organisation of the graph. 

BA Same as above. 

HR Assigned based in the hierarchy of nodes and edges, where 1 ≤ 𝐶 ≤ 2 ×
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑑𝑒𝑚𝑎𝑛𝑑. This results in those nodes and edges at the top of the 

hierarchy having the greatest capacity values, allowing for flows to pass 

through them, with the capacities decreasing approaching 1 as nodes and 

edges get further away from the top of the tree hierarchy.  

HR+ Same as above (HR). 

HC Same as above (HR). 

TREE Same as above (HR). 

Table 3.3: Details of the graph based assignment of node and edge capacities. 

 

Scenarios (iii) and (iv) are used to explore the extent of the robustness of the hierarchical and 

non-hierarchical graph models to cascading failures. Trigger edges are removed until either a 

cascading failure is triggered or the graph fails with the supply and demand nodes no longer 

connected. Scenario (iii) is similarly parametrised to scenario (i) though multiple trigger edges 

are removed rather than just one. This allows the robustness of the graphs to be assessed to their 

ability to continue to supply the demand while being perturbed, with the more robust graphs 

expected to require a much large proportion of edges to be removed before the supply can no 

longer be routed to the demand node. Scenario (iv) uses the same parameterisation as (iii) with 

the exception that the capacities assigned to the nodes and edges are based on the graph type 

(Table 3.3), rather than using a uniform capacity. Through the removal of multiple trigger edges 

each graph will be perturbed until it fails or a cascading failure starts, and thus the extent of 

their robustness, measured through the fraction of edges removed as trigger edges, can be 

analysed.  

The final two scenarios, (v) and (vi), explore the robustness of the graphs where the 

supply/demand is greater than the node and edge capacities. A uniform capacity for the nodes 

and edges is used with scenario (v) exploring the robustness to a single trigger edge and (vi) the 
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extent of the robustness through multiple trigger edges being removed until the graph fails or a 

cascading failure starts. These scenarios explore the ability of the graphs to accommodate a 

greater flow than in the previous scenarios, with the potential to provide greater insights into 

the robustness of the hierarchical and non-hierarchical graphs to cascading failures. 

For two of the scenarios, (ii) and (iv), capacities have been assigned based on the structural 

organisation of the graphs. This assumes that the graphs behave and have characteristics which 

match their topological structure rather than the capacities being un-related to the topological 

structure. This assumption has a significant effect on how the graphs will respond to the 

perturbations during the flow modelling and simulation as the assigned capacities directly affect 

the assignment of flows onto the networks, thus affecting their ability to continue to function 

following perturbations. 

 

3.10 Hierarchical flow robustness modelling 

The hierarchical structure of graphs/networks, as discussed in Chapter 2 Section 2.3.3, results 

in a number of levels within the network topology (Gagneur et al., 2003; Clauset et al., 2008). 

Such levels may not all be equally important to the functioning of the network. Indeed, it can 

be hypothesised that one may expect the top-level of a hierarchical network to be the most 

important as it connected the network together (Barabasi et al., 2003) and as such disruption at 

this level may have significant potential to decrease robustness. However, relatively little 

analysis has been undertaken to quantify the sensitivity of different forms of hierarchal 

networks to disruptions at different levels of their topological organisation. The robustness of 

a hierarchical network to failures at different levels of its hierarchy can be explored through 

examining the potential for flows to traverse the hierarchy, from the top level to the lowest level, 

such as might be required for the delivery of data in the internet or the transmission of electricity 

in the electricity transmission/distribution network, both of which are hierarchical (Pastor-

Satorras et al., 2004; Sanchez-Garcia et al., 2014).  

A failure model has been developed to explore the effects of failures within a hierarchical 

graph/network where flows can be modelled. This employs a generic approach analysing all 

levels of the hierarchy as part of the same network, rather than separating these into different 

networks and using a staged analysis approach or focusing on the transmission aspect only 

(Bompard et al., 2009; Chang and Wu, 2011), therefore allowing the method to be applied 

across different infrastructure sectors. The model uses a list of supply/source nodes, and a 

second set of demand/sink nodes (Jungnickel, 2008; Chang and Wu, 2011). The failure analyses 
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for a given perturbation, be it a single node or edge failure, or a larger set of failures, checks if 

any paths remain available to all the demand nodes from the supply nodes. Where no path exists 

to a demand node, the node is regarded as failed (Figure 3.26).  

 

Figure 3.26: Hierarchical failure analysis example, where node 1 is the supply node and nodes 

5,6,7,8 and 9 are demand nodes. When edge (1,3) has been removed (b), the failed nodes and 

edges are shown with dashed lines. Demand nodes 6 and 7 fail as they are no longer 

connected to the supply node, while node 3 also fails as this is also no longer connected to the 

network. 

 

For the two sets of analysis undertaken using the developed failure model described above, 

Sections 3.10.1 and 3.10.2, the electricity transmission and distribution network for England 

and Wales is used (Figure 3.27), as provided by the Infrastructure Transitions Research 

Consortium (ITRC) (ITRC, 2013). Based on Ordnance Survey (OS) points of interest data, the 

network has been generated using this base data and mathematical modelling approaches to fill 

in the gaps in the network. This has created an attributed electricity transmission and 

distribution network down to 11Kv substations. The full network comprises of 170,669 

substation nodes and 173,039 transmission or distribution cable edges. 
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Figure 3.27: Electricity transmission and distribution network for England and Wales (ITRC, 

2013). 

 

3.10.1 Hierarchical connectivity modelling 

The robustness of the electricity transmission and distribution network for England and Wales 

is used to examine the effect of removing the critical edges at the highest level of the hierarchy, 

those edges with a voltage of at least 400Kv, of which there are 323. This allows the redundancy 

in the network to be assessed in terms of whether paths still exist from the highest level of the 

transmission network the demand nodes, the 11Kv distribution substations. To achieve this each 

400Kv edge, each possible pair of 400Kv edges and each possible combination of three 400Kv 

edges are removed to explore the effects on the ability for each of the 164,090 11Kv substations 

to connect to the 400Kv part of the transmission network. Due to the complexity of the analysis, 

and the large number of simulations and the checking of routes for over 164,000 nodes for each 

failure a maximum of three edges were removed at once. 
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3.10.2 Spatial hazard modelling 

As identified in Chapter 2 infrastructure networks are exposed to a range of hazards including 

those which are explicitly spatial, including ice storms and flooding events (Little, 2003). It was 

highlighted that there has been little attention on the explicit geography of infrastructure 

networks when considering their robustness to perturbations (Barthelemy, 2011). This analysis 

will explore the robustness of the hierarchical electricity transmission and distribution network 

to different spatial hazard configurations, with each at first affecting a similar proportion of the 

network, 2% of node assets. It is presumed that any node asset falling within a hazard area fails, 

a first-order failure. The effect of these first-order failures on the network is then explored 

through the ability of the other substations in the network being able to connect through 

hierarchy to the 400Kv transmission part of the electricity network. Those which cannot are 

regarded as second-order failures. 

To explore the robustness to different hazard footprint sizes and spatial distributions, three 

scenarios have been derived within which five different realisations are randomly generated 

and their robustness explored. Scenario (i) simulates single large events such as an isolated 

storm, as in the ice storm which hit Canada in 1998 (Chang et al., 2007). Scenario set (ii) 

simulates four hazard areas, and as with (i) removes approximately 2% of nodes assets from 

the network, with these randomly distributed over the network. Scenario (iii) extends (ii) to use 

eight hazard areas simulating much smaller hazards which again are distributed randomly over 

the network. 

The effect of the failures caused by the hazards in each simulation are recorded. For the first-

order failures, the network assets which have failed as a direct result of the hazard area(s), are 

recorded in detail, with the number of substations, grouped by operating voltage, and the 

number of transmission and distribution lines, again grouped by voltage, which have failed 

recorded. The second-order failures are also recorded, including the counts of the network 

assets which have failed, again broken down by the operating voltage. However, with these the 

geographic distance of the failures from the hazard boundary are also recorded, with the average 

and maximum distances reported to measure the spread of the second-order failures from the 

hazard area(s). This can be used as an indicator of the robustness of the network, with the further 

failures are occurring away from the hazard area, the poorer the robustness of the hierarchical 

network to perturbations. 
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3.11 Software stack 

3.11.1 Framework 

A software framework (Figure 3.28) has been developed and employed for the analysis and 

modelling undertaken in this thesis to provide a consistent platform from which all work can 

be based. The framework is an extension of that developed and employed successfully by the 

ITRC (ITRC, 2013) for the analysis and simulation of the UK’s national infrastructure networks, 

with the components from this highlighted in Figure 3.28.  All other components shown have 

been developed for this work, extending the functionality of the ITRC framework. 

 

Figure 3.28: Developed software framework. Shaded features indicate those developed by the 

ITRC (ITRC, 2013). 

 

Underpinning the framework is a central data repository, a PostgreSQL relational database with 

the spatial extension postGIS (Section 3.11.3). As well as facilitating the storage of data, the 

database allows for the easier management of data and results within a formal framework. This 

has been implemented with the ITRC developed ‘nx_pgnet’ database schema for the storage of 

networks, along with an extension of this ‘nx_pgnet_atts’ developed as part of this research for 
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the explicit handling of network attributes to support the modelling of flows on networks 

(Section 3.11.2). A further schema has been developed to manage the data and result sets from 

all the simulations undertaken in the work which is presented in this thesis (Section 3.11.3). 

PostgreSQL was chosen as the relational database management system (RDMS) due to the 

existing set of tools available and the extent of experiences with managing large network 

datasets with the software. Alternatives RDMS such as MySQL and Oracle both offer the 

required base functionality including their own spatial extensions, however the extent of 

experiences with these and the existing network handling tools makes PostgreSQL the preferred 

option. 

Many components of the developed framework (Figure 3.28) have been written using the 

python programming language (Python Software Foundation, 2015). Python is a flexible 

language with a powerful and ever growing set of libraries being created by an active 

community (Aruoba and Fernández-Villaverde, 2015), providing users with the capability to 

perform a vast range of analysis. The language has full interoperability with PostgreSQL with 

the python psycopg2 PostgreSQL database connector, the most popular PostgreSQL adapter 

for python (psycopg, 2015), being employed to secure direct reading and writing to and from 

the database. The nx_pgnet database schema includes a wrapper, written in python, which 

manages the reading and writing of networks to and from the database. This was also extended 

through the developed nx_pgnet_atts wrapper. With the existing nx_pgnet wrapper already 

written in python and the extensive set of libraries available along with an existing familiarity 

with the language, python was viewed as the preferable language for code/software 

development for this research. 

The analysis and processing undertaken in this research has been achieved by developing a set 

of modules (Figure 3.28). These include a module for robustness modelling (Section 3.11.4.2), 

a module for the developed graph models (Section 3.11.4.3), as well as a module for multi-core 

processing (Section 3.11.4.4). To compliment these a GUI, Graphical User Interface (Section 

3.11.5), has also been developed with access to much of the functionality available including 

database access. This allows users to generate and save networks, calculate graph metrics over 

the networks, run failure simulations and visualise them. 

A common denominator amongst all modules is the use of the NetworkX python library 

(NetworkX, 2014). The NetworkX package allows for the creation, analysis and visualisation 

of complex networks/systems through an extensive range of functions/algorithms. Alternative 

packages were considered, such as Network Workbench (NWB) (NWB Team, 2006), graph-

tool (Peixoto, 2015) and igraph (igraph, 2016), all designed for the analysis of complex 



 

 86  

networks. However, Network Workbench is itself a standalone application and thus is difficult 

to integrate into a framework and to develop custom methods. Both the graph-tool library and 

igraph libraries are similar to NetworkX, however offer a lower level of built-in functionality 

with regard to graph generating algorithms and analysis options. Despite NetworkX being 

slower than both of these libraries, the built in functionality and the ease of extending this 

functionality further has resulted on the implementation of this package for the research. 

 

3.11.2 The network database schema 

A network schema, nx_pgnet (Barr et al., 2013) (Figure 3.29), has been used for the storage of 

networks in a PostgreSQL database. As described in the previous Section (3.11.3), the ‘Graphs’ 

relation (Figure 3.35) stores the key metadata for a network, including the ID which it can be 

referred to throughout the database, along with the network name (‘GraphName’) and the names 

of the tables which store its Node and Edge set (‘Nodes’ and ‘Edges’). Attributes for the nodes 

and edges are also stored in the respective relation, including the geometry for the nodes. For 

edges the geometry is stored in the ‘Edge_Geometry’ relation allowing edges with identical 

geometries to be stored while being part of the same network. The schema also has the capacity 

for storing edges which map dependencies as well as interdependencies between multiple 

network instances. A python wrapper allows networks to be read to and from the python 

programming environment facilitating the analysis of networks stored within the database. 

Networks can be imported through a selection of options including from shapefiles and from 

relations already within the database. 

 

Figure 3.29: nx_pgnet schema example, where ‘x’ is the name of the network. 



 

 87  

The nx_pgnet schema has in this research been extended to create nx_pgnet_atts, to allow for 

the flow based failure modelling as detailed in Section 3.9. The developments allow for the 

explicit representation of different node and edge types required for the modelling and analysis 

of flows and capacities within a network. The new schema results in the addition of 11 relations 

(Figure 3.30), including four new node type relations (flow, buffer, latency and resistance) and 

four edge attribute relations (flow, length, stacking and resistance) and generic relations for 

node function, node/edge units of measurement, along with node/edge analytical functions.  

 

 

Figure 3.30: Enhanced nx_pgnet schema, where ‘x’ is the name of the network/graph. 
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The role of a node is assigned through a ‘RoleID’, stored in the nodes relation (Figure 3.31), 

which references, through a foreign key, the ‘Roles’ relation (Figure 3.32), which stores all 

roles of nodes and edges in a network. For flow based failure modelling (Section 3.9) these 

roles can be used to identify the supply and demand nodes in the network. 

 

 

Figure 3.31: Three rows from an example ‘Nodes’ relation. 

 

 

Figure 3.32: Example of the ‘Roles’ relation. 

 

For each attribute the ‘GraphID’ and the id’s of nodes/edges is stored with the attribute data, 

including the ‘FunctionID’, the attribute value, and capacity in the case of flow and buffer 

attributes, along with the ‘UnitID’ (Figure 3.33). The ‘FunctionID’ references the ‘Functions’ 

relation, as a foreign key, allowing functions describing the behaviour of the metric to be used 

in any analysis. The ‘UnitID’ references the ‘Units’ relation using a foreign key, which stores 

a list of all attribute units which can then be assigned to any of the attributes being used in the 

network. 

  

 

Figure 3.33: Three rows from an example ‘Edges_flow’ relation. 
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The extended/enhanced nx_pgnet network schema is accessed through the developed 

nx_pgnet_atts wrapper, which allows the attribute data to be returned as part of the network, 

while still utilising the underlying nx_pgnet wrapper functions. The wrapper allows networks 

to be loaded into python as well as written back to the database populating the schema while 

all constraints are adhered to. This is either done manually or by specifying the name of the 

network attributes which contain this information. Through a set of primary and foreign keys, 

as well as designed constraints, the schema is enforced ensuring data integrity and reducing the 

need for users to check the network manually for issues.  

The schema is limited to only handling the defined attributes explicitly, with all others having 

to remain as part of the attributes for nodes and edges and therefore losing the ability to quickly 

assess and manipulate where required attribute values and the functions related to these. For 

those attributes handled explicitly, not all have to be used, and instead these can be chosen for 

each network with only those attribute tables required for the analysis being built when writing 

a network to the database through the nx_pgnet_atts wrapper. Similarly not all attributes, and 

thus associated data, have to be read into the python environment, with these again specified 

when initiating the read process. 

 

3.11.3 The analysis database schema 

The developed software stack utilises a database for the storage of the complete suite of 

synthetic and real-world networks as well as for the results from the analysis and failure 

modelling. A schema, Figure 3.34, has been developed to allow the results to be stored while 

being intrinsically linked to the networks stored using the network database schema (Section 

3.11.2). Results from the analysis of networks are linked directly through the ‘Graphs’ relation 

(Figure 3.35), which stores records for each network in the database with each having a unique 

id, the ‘GraphID’, allowing results from the analysis of a network to be linked to the network 

through a foreign key relationship to this. Further metadata on each network/graph is obtained 

from the ‘network_type_reference’ relation which records for each graph_id the ‘type_id’ of 

the model used to generate it, Figure 3.36 (left), of which details can be found in the 

‘network_types’ relation (Figure 3.36, right) using the foreign key relationship between 

‘type_id’ and ‘type’ in the ‘network_types’ relation. 

 



 

 90  

 

Figure 3.34: Database schema as employed for the research. 

 

 

Figure 3.35: The top three rows from the ‘Graph’ table.  
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Figure 3.36: The top three rows from the ‘network_type_reference’ relation (left) and from 

the ‘network_types’ relation (right). 

 

Two relations are used to store results, one for those from the analysis of the networks (Figure 

3.37), and a second for storing the failure modelling results (Figure 3.38). These both use the 

‘graph_id’ as a foreign key to reference the network used for the analysis. The ‘network_metrics’ 

table which stores results from the analysis of networks stores the calculated metric values 

allowing these to quickly be returned rather than being re-calculated when needed for 

subsequent analysis or reporting.  

 

Figure 3.37: Top three rows from the ‘network_metrics’ table. 

 

 

Figure 3.38: Top three rows of the ‘network_failure_sim_results’ relation with a sample set of 

result metrics shown. 

 

The second results relation, ‘network_failure_sim_results’ (Figure 3.36), is used to record 

results from the failure simulations over networks. This is done through storing the results at 

the end of a simulation, with the details of the failure simulation, the parameterisation, stored 

in another relation (Figure 3.39), and referenced through a foreign key relationship between 

‘method_id’ which references the ‘failure_method_id’ column.  As a network can be analysed 

multiple times with the same failure method the ‘run’ field is used to track each run, with this 

forming part of a unique constraint, with the ‘method_id’ and ‘graph_id’, to ensure each row in 

unique. 
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Figure 3.39: First three rows of the ‘network_failure_methods’ relation. 

 

Three parameters are used to define a failure method as shown in Figure 3.39 and thus each 

unique set of these values (detailed in a further three relations – ‘network_failure_process’, 

‘network_failure_selection’ and ‘network_failure_parameters’, Figure 3.40) has a unique 

failure_method_id which allows results to be searched for based on the failure method used.  

 

             

 
Figure 3.40: Two rows from the three failure methods tables – Top left: 

‘network_failure_process’. Top right: ‘network_failure_selection’. Bottom: 

‘network_failure_parameters’. 

 

3.11.4 Developed modules 

As shown in Figure 3.28 and briefly discussed in Section 3.11.1, there are three key modules 

which form part of this research as well as the nx_pgnet_atts wrapper for the developed 

database schema (Section 3.11.2). Each of these modules are described in the following sub-

sections, with details provided on their use and purpose with the developed integrated software 

framework. 

 

3.11.4.1 nx_pgnet_atts wrapper 

The developed and employed nx_pgnet_atts wrapper, facilitates reading and writing of 

networks to and from a PostgreSQL database using the nx_pgnet_atts database schema. The 

wrapper adds functionality to the existing nx_pgnet wrapper so that the extended schema, 

Section 3.11.2, can be used. The nx_pgnet_atts wrapper has two main functions, Table 3.4. 

Example uses and further details are given in Appendix C, with the developed documentation 

in Appendix F. 
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Function Input parameters Description 

read_from_db database connection: 

An open OGR connection to the 

database. 

The read_from_db function 

allows a network to be read 

from a database using the 

nx_pgnet_atts schema given 

an open database connection 

(database connection 

variable), a network exists 

with the given name (the 

network name variable) and 

the attributes variable (a 

dictionary of attributes) is 

correctly set. 

network name: 

The name of the network as stored in the 

database. 

attributes: 

The attributes to be returned which have 

been stored using the schema 

representation. 

write_to_db database connection: 

An open OGR connection to the 

database. 

To write a network to a 

database using the 

nx_pgnet_atts schema, the 

write_to_db function can be 

used given the correct set of 

parameters/variables. An 

open database connection 

must be provided (database 

connection variable) along 

with a name for the network 

(network name variable) and 

the network itself (network 

variable). Other details must 

be provided such as the 

attributes which are to be 

stored explicitly (attributes) 

and if the network contains 

the attribute values and 

functions as attributes. 

network name: 

A name for the network for the database. 

the network: 

The actual network as a NetworkX graph. 

attributes: 

The attributes to be stored in schema. 

contains atts: 

Does the attributes of the nodes and edges 

contain the attribute values to be stored in 

the database as defined by attributes 

parameter. 

contains functions: 

Are the functions for the attributes stored 

as attributes in the network. 

overwrite: 

If to overwrite a network with the same 

name in the database 

srid: 

The spatial reference (coordinate) id, e.g. 

27700 for British National Grid. -1 if a 

spatial. 

directed: 

Is the network directed. 

multigraph: 

Is the network a multigraph (multiple 

edges between the same pair of nodes). 

Table 3.4: Key functions within the nx_pgnet_atts wrapper. 
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3.11.4.2 Robustness 

The robustness module contains the methods developed for both the topological and flow based 

failure modelling as set out in earlier Sections (3.5 and 3.6 respectively), as well as some extra 

functionality, for which details can be found in Appendix C. Some of the key functions, the two 

ways in which failure simulations can be run, are described in Table 3.5.  

 

Function Input parameters Description 

main network A: 

Name of network A. 

This allows for a full failure 

analysis to be run, with the 

steps automated. The failure 

analysis to be run is defined 

within the failure 

parameters variable 

(dictionary). The when to 

calculate metrics allows for 

metrics to calculated at 

equal intervals rather than at 

every epoch. The view 

failure metric is used when 

the function is called 

through the GUI (Section 

3.11.5) where failure 

simulations can be viewed if 

this is set to True. 

network B: 

Name of second network for dependency 

analysis. 

failure parameters: 

Parameters for the failure method including node 

selection method. 

log file path: 

Location of log file. 

view failure: 

Used in GUI where the failure can be viewed. 

when to calculate metrics: 

How often to calculate metrics. 

failures to occur: 

List of epochs where failures will occur. 

step graph parameters: 

Parameters specific for the network e.g. is it 

directed. 

This allows a user to run the 

failure analysis step by step, 

with each call of this 

function running one failure 

epoch. This is also called by 

the main function. The 

details of the networks are 

stored in the graph 

parameters variable, the 

parameters for the analysis 

in the parameters variable 

and the metrics to be 

calculated are held within 

the metrics variable 

parameters: 

General analysis parameters including failure 

parameter 

metrics: 

List of metrics and whether they are to be 

calculated. 

iterate: 

If another epoch of analysis is needed. 

log file path: 

Location of log file. 

when to calculate metrics: 

How often to calculate metrics. 

failures to occur: 

List of epochs where failures will occur. 

node to fail list: 

List of dependent nodes to fail during dependency 

analysis. 

Table 3.5: Key functions in the developed robustness module. 
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Apart from allowing for failure simulations to be run, a host of other functions also exist for the 

manipulation of networks for the capacity constrained failure model (Section 3.9). The key 

functions include those for creating super supply and demand nodes and converting the 

topology to the enhanced representation, Table 3.6. 

 

Function Input parameters Description 

create_superdemand_node/ 

create_supersupply_node 

network name: 

The name of the network as stored in 

the database 

Allow the creation of 

a super supply node 

and super demand 

node as required for 

developed supply 

and demand 

modelling methods. 

Requires the 

network, the 

appropriate nodes, 

and the list of 

nodes/edges added if 

the topology has 

been converted 

(below). 

demand nodes/supply nodes: 

The list of nodes for which a super 

node will be created 

added edges: 

A list of the edges added in the 

conversion to the enhanced network  

representation (Section 3.8) 

added nodes: 

A list of the nodes added in the 

conversion to the enhanced network  

representation (Section 3.8) 

convert_topo network name: 

The name of the network. 

Converts the 

topology creating a 

directed network 

where a node is 

replaced with an 

edge (and the 

subsequent two 

nodes). Requires the 

network only. 

revert_topo network name: 

The name of the network. 

Converts a network 

back to the original 

topology, reversing 

the actions 

performed in the 

convert_topo 

function above. 

Table 3.6: Key functions available for network manipulation for failure simulations. 

 

The module can be used as a stand-alone entity, though is dependent on the NetworkX library. 

However, it can also be used in conjunction with the multi-core processing module (Section 

3.11.4.4), allowing multiple simulations to run simultaneously. Further to this, is can also be 

accessed through the developed GUI (Section 3.11.5) allowing users to access the functionality 
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of the robustness methods using a graphical interface to set the inputs and parameters for the 

desired analysis. Further documentation for this module is available in Appendix C. 

 

3.11.4.3 Graph algorithms 

As described in an earlier section (Section 3.3) three graph generation algorithms have been 

developed for the generation of the suite of synthetic networks. Algorithms have been 

developed for three graph types named, hierarchical random, hierarchical random+ and 

hierarchical communities. These are contained within the same module which has been used 

throughout the research ensuring consistency in the generation of these networks, with each 

being easily called/used (Table 3.7). More details of the algorithms themselves can be found in 

Appendix A. All other graph algorithms/generators used are found within the NetworkX 

package and thus are not included in this module.  

 

Function Input parameters Description 

hr number of levels: 

The number of levels in the tree graph. 

Through calling the hr function, 

hierarchical networks are 

generated. nodes per branch: 

The number of branches per parent node 

in the tree graph. 

probability: 

Use to calculate the number of edges to 

add to the tree graph. 

ahr number of levels: 

The number of levels in the tree graph. 

The ahr function allows the 

generation of networks using the 

HR+ model. nodes per branch: 

The number of branches per parent node 

in the tree graph. 

probability: 

Use to calculate the number of edges to 

add to the tree graph. 

hc size of cluster: 

The number of nodes per community. 

The hc function allows the 

generation of hierarchical 

community networks with a 

cluster size if three or four, with 

up to 4 levels. 

 

number of levels: 

The number of levels of communities in 

the graph. 

 

Table 3.7: Key functions in the graph algorithms module.  
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3.11.4.4 Multi-processing 

The multi-core processing module has been developed to allow modern computing 

power/technologies to be better utilised and multiple processes performed at once. This was 

developed to allow multiple failure simulations to be run simultaneously, thus speeding up the 

processing of this aspect of the research. The module utilises the python multiprocessing library 

which manages the processes allowing for multiple threads to be used simultaneously. 

 

3.11.5 Graphical User Interface (GUI) 

The developed graphical user interface (GUI) provides a graphical interface (Figure 3.41), from 

which nearly all other modules (currently it does not support use of the multi-core processing 

module) are accessible, allowing users to explore the field of complex networks from the 

generation through to the visualisation of networks, including metric computation and 

robustness analysis. A developed short user guide is given in Appendix G. 

The interface has been developed using PyQt4 (River Bank Computing, 2013), a python library 

used for interface design, the interface allows a user to perform a variety of tasks and analysis, 

summarised below. 

 Generation of networks using existing algorithms (8 available), from csv files, from 

manual entry of node and edge sets, or from a database using the nx_pgnet or 

nx_pgnet_atts schema (detailed in Sections 3.11.3) (Figure 3.42). All networks can then 

be exported in a number of formats as well. 

 Metric analysis of generated networks from a selection of over 20 metrics exploiting the 

NetworkX python library. 

 Robustness simulations using topological failure methods of networks for a single 

network, where networks have dependencies or interdependencies (Figure 3.43).  

 Visualisation of static networks (Figure 3.44), with the ability to render components 

based on metric values in a number of layouts (Figure 3.45), including geographic if the 

network has been imported via a database connection.  

 Live visualisations of failure simulations with the ability to step through and pause. 
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Figure 3.41: GUI interface. 

 

 

Figure 3.42: The list of available graph generation methods in the GUI. 

 

 

Figure 3.43: Showing the range of failure analysis methods available. 
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Figure 3.44: Example visualisation of a network as generated through the GUI. 

 

 

Figure 3.45: Layout options for visualising networks. 

 

3.12 Conclusions 

This chapter has presented and detailed the methodology designed to allow the aims and 

objectives as set out in Chapter 1, Section 1.2 (page 4) to be addressed. The generation of the 

suite of synthetic graphs has been detailed with the algorithms and the parameterisation of these 

specified. The suite of critical spatial infrastructure networks has also been presented including 

details on the generation of these networks from available spatial data.  

For the characterisation of the suite of synthetic graphs methods have been presented which 

will allow the statistical analysis of the eight synthetic graph models and leading to the 

recognition of the key characteristic differences between hierarchical and non-hierarchical 
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graphs. The methods which will be used to explore the robustness of the synthetic graph models 

have then been detailed including the developed topological failure model. The application of 

this will allow for the comparison between the response of the non-hierarchical and hierarchical 

graphs. The application of these same methods, the characterisation and topological failure 

modelling, on the suite of spatial infrastructure networks has also been discussed, with the 

ability to start to recognise the infrastructure networks which are hierarchical and those which 

are not an outcome of the methods presented. 

To further explore the robustness of hierarchical graphs, a capacity constrained failure model 

is detailed along with the developed scenarios which will be used to investigate the robustness 

of the hierarchical graphs to flow based cascading failures. Methods have also been presented 

which will assess how a hierarchical infrastructure network will respond to hierarchically 

targeted failures, through the removal of network assets in the highest level of its hierarchy 

using a number of scenarios. The robustness of a hierarchical infrastructure network to spatial 

failures is then detailed with a number of scenarios developed which explore the effect of 

varying configurations of hazards have on the function of the network. 

Finally, the employed software stack is detailed including the database framework and the 

developed software modules which allow the analysis detailed in the methods to be undertaken 

within a single environment. The integrated database framework ensures all generated graphs 

and networks are stored in a single easy to access location along with the results from the 

analysis of these. 
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Chapter 4: Results 

 

4.1 Introduction 

This chapter presents the results from the analysis performed to address the aims of this research 

outlined in Chapter 1 using the methods described and presented in Chapter 3. The chapter is 

split into four distinct sections with each presenting results that address the aim and objectives 

of the research. The first section, Section, 4.1, presents the results aimed at identifying the 

structural characteristics of hierarchical graphs, including their behaviour and response to 

perturbations and how this compares to other graph topologies. Section 4.3 compares the 

structural characteristics of hierarchical graphs and those of a suite of critical spatial 

infrastructure networks in order to ascertain if any exhibit hierarchical characteristics. Section 

4.4 extends the robustness analysis performed on the different network models in Section 4.1 

to explore the robustness of the different graph models to capacity constrained cascading 

failures, thus investigating the difference in response between those which are hierarchical and 

non-hierarchical. The robustness of hierarchical infrastructure networks is then investigated in 

more detail using the electricity transmission and distribution network for England and Wales 

as a case study in Section 4.5. The robustness to simultaneous failures in the highest level of 

the network hierarchy is explored, as well as the vulnerability of such a network to different 

spatial hazard scenarios. 

 

4.2 Characteristics of hierarchical graphs 

4.2.1 Introduction 

Using the suite of graph models developed in Chapter 3, Section 3.3, the characteristics of the 

eight different graph models have been analysed as described in Chapter 3 Section 3.4 in order 

to evaluate whether hierarchical graphs exhibit distinctive topological structure and 

organisation. The results are presented across five Sections, with the first, Section 4.2.2, 

comparing the degree distributions using a subset of the full suite of synthetic graphs. Using a 

selected set of graph metrics (Chapter 3, Section 3.4.2, page 53) (assortativity coefficient, 

maximum betweenness centrality and number of cycle basis per node), a metric based analysis 

of the full suite of graphs is performed to improve our understanding on the topological 

characteristics of the graphs. In particular, Section 4.2.4 presents the results of a multivariate 

statistical analysis of the metric values returned for each graph model using the transformed 

divergence similarity measure. Following a metric based assessment of the different models a 
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failure analysis is undertaken in Section 4.2.5 in order to investigate the robustness of the 

different graph models to perturbations, looking at the number of failures required for a null 

graph to form. The final section, Section 4.2.6, presents in more detail how each of the models 

behave when perturbed through an analysis of the how the graphs fragment into components, 

providing further insights into the robustness of each of the eight synthetic graph models. 

 

4.2.2 Graph degree distributions  

The degree distribution of a graph describes its topological structure through the probability of 

selecting a node at random with a particular degree (Newman, 2003b). This has been calculated 

for the all graphs within the synthetic suite allowing these to be compared to explore the 

difference in topological structure between each graph model. However, due to the nature of 

degree distributions, a single example from each graph model is shown in Figure 4.1, with six 

example plots for each shown in Appendix D Section D.1. Most strikingly there are clear 

differences between the random, scale-free and small-world models (ER, GNM, BA and WS) 

and the suite of hierarchal models generated (HR, HR+, HC and TREE) (Figure 4.1). The 

random graph models, ER and GNM, exhibit the expected bell-curve normal distribution while 

the BA model generates a scale-free degree distribution with the proportion of nodes with a 

high degree decreasing gradually. The WS model exhibits a similar distribution, though with a 

much smaller maximum degree resulting in the tail being much shorter.  

However, the four hierarchal models exhibit strikingly different degree distributions 

particularly in term of exhibiting a series of discrete peaks in terms of their degree distribution. 

This is clearly demonstrated by the plot for the TREE model where there are two peaks with no 

other degrees represented in the plot. Similarly, a number of clear peaks can be seen in the plots 

for the HR and HR+ plots; however, the distributions also show the existence of other node 

degrees although at much lower probabilities between these peaks. 
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ER

 

GNM 

 

WS

 

BA

 
 

HR

 

HR+ 

 

HC 

 

TREE 

 

Figure 4.1: Example degree distribution plots for the eight graph models. 
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The clear differences between the standard graph models (ER, GNM, WS and BA) and the four 

hierarchical (HR, HR+, HC and TREE), implies that the presence of a hierarchical structure in 

an infrastructure network may have a significant effect on its topological structure. The 

presence of a small number of discrete peaks in the degree distributions of the hierarchical 

models, as seen in the plots for the HR, HR+, HC and TREE graph models (Figure 4.1) means 

that these models are comprised of a few key nodes with high node degrees (connectivity); this 

may make them more sensitive to perturbations particularly when focused on these key nodes. 

This is investigated in detail in Section 4.2.5. 

 

4.2.3 Assessment of graph metrics 

Figure 4.2 shows the multivariate distribution (mean and standard deviational ellipse) for the 

calculation of the maximum betweenness centrality (MBC) and the assortativity coefficient 

(AC) for the full suite of synthetic graph models (Table 4.1), (for more details see Chapter 3, 

Section 3.3, page 42). Detailed plots for each graph model showing all graphs are given in 

Appendix D Section D.2. It is evident in Figure 4.2 that the TREE and HC (hierarchical 

community) graphs exhibit different characteristics compared to the non-hierarchical graph 

types; which are clustered around the origin of the plot (0.0,0.0). The TREE model has a much 

higher MBC, 0.76, as expected (Newman, 2002), compared to a mean of 12.86 for the ER, 

GNM, WS and BA combined (Table 4.2). The HC graph type exhibits AC values much closer 

to zero, -0.183, rather than the -0.65 for the TREE graphs, which is similar to those associated 

with the non-hierarchical graph types, though it has MBC values similar to the TREE model, 

0.77. This shows that the HC model, although hierarchical, also shares some properties with 

the non-hierarchical graphs suggesting a greater similarity with  the BA and WS graph models 

which have been strongly associated with infrastructure networks previously (Albert and 

Barabasi, 2002; Newman, 2003b). The two in-house models, HR and HR+, show a greater 

similarity with the non-hierarchical graph types than the hierarchical graph types (Figure 4.2), 

despite their origins being the TREE model. Both models have MBC values, 0.25 and 0.31 

(Table 4.2), more closely related to those for the WS and BA graphs, 0.03 and 0.08. This 

highlights the effects of the extra edges which have been added to create a better connected 

network as these result in more paths between previously disparate parts of the graphs and thus 

avoids shortest paths having to pass through the same critical nodes and hence results in a lower 

MBC. 
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Graph model Metric analysis Failure analysis 

ER 1000 500 

GNM 1000 500 

WS 1000 500 

BA 1000 500 

HR 1000 500 

HR+ 1000 500 

HC 7 7 

TREE 31 31 

Table 4.1: Number of exemplars for the eight graph types used in employed analysis. 

 

 

Figure 4.2: Showing the single standard deviation ellipses for the distribution of the 

assortativity coefficient values and maximum betweenness centrality value for each graph 

from the eight models in the spectrum (Table 4.1). 
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Graph 

model 
Graph theme 

Assortativity 

coefficient 𝒙̅ (σ) 

Maximum 

betweenness 

centrality 𝒙̅ (σ) 

Number of 

cycle basis  per 

node 𝒙̅ (σ) 

ER Random -0.01 (0.04) 0.01 (0.04) 15.53 (13.75) 

GNM Random -0.00 (0.01) 0.01 (0.00) 15.09 (14.34) 

WS Small-world -0.04 (0.05) 0.03 (0.10) 6.86 (4.16) 

BA Scale-free -0.05 (0.08) 0.08 (0.15) 13.96 (8.38) 

HR Hierarchical -0.37 (0.20) 0.31 (0.23) 0.51 (0.29) 

HR+ Hierarchical -0.17 (0.38) 0.25 (0.15) 0.55 (0.29) 

HC 
Hierarchical 

communities 
-0.18 (0.05) 0.77 (0.14) 1.91 (0.38) 

TREE Tree/hierarchical -0.65 (0.18) 0.76 (0.11) 0.00 (0.00) 

Table 4.2: The mean values for each of the eight graph types across the graph metrics 

computed. 

 

Figure 4.3 compares the multivariate relationship between the AC values and the number of 

cycle basis (CB) per node, again calculated for all graph models. The standard deviation ellipses 

highlight the large variation in the CB per node values for the non-hierarchical graphs; a mean 

of 10.16 compared to 0.24 for the hierarchical models (Table 4.2). In particular, the two random 

models, ER and GNM, have the highest CB per node values, 15.53 and 15.09 respectively. In 

contrast the TREE graph and the two in-house developed models based on this, HR and HR+, 

all have a very low count of CB per node values, with the TREE having zero, and HR and HR+ 

having an average value of 0.51 and 0.55 respectively (Table 4.2). The final hierarchical graph 

type, HC, has a greater number of CB per node (𝑥̅ = 1.91), though this is still much lower than 

the next highest for the BA (scale-free) graph model (𝑥̅ = 6.86), making it very clear that there 

is a difference between the number of CB per node in the hierarchical and non-hierarchical 

graphs. This indicates that the hierarchical graphs are not as well connected with potential 

consequences on the level of redundancy in the graphs which may affect their robustness to 

failures. 

It is evident that where the number of CB per node is low, the AC value will be negative, 

meaning the graph is dissassortatively mixed with respect to the degree of the nodes (nodes are 

connected to nodes with different degrees rather than nodes with the same degrees). The reverse 

of this can also be inferred, that where the CB per node values are high, the AC values will tend 

towards one. This is a result of the nodes in the weaker connected graphs, which have a lower 
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CB per node value, having similar degrees or a low variation as each node tends to have just 

enough incident edges to allow a connected graph. In the stronger connected graphs, more edges 

are present and this leads to greater redundancy in the graph connectivity, allowing the number 

of incident edges to vary more per node leading to a dissassortatively mixed graph. 

 

Figure 4.3: The single standard deviation ellipses comparing the relationship between the 

assortativity coefficient and the number of cycle basis for each graph within the graph suite 

(Table 4.1). 

 

A comparison of the values of CB per node and the MBC values suggests there is a clear 

difference between the hierarchical and non-hierarchical models (Figure 4.4). The single 

standard deviation ellipses show that the hierarchical graph types, while having high MBC 

values (≥0.25) (Table 4.2) also have a low number of CB per node (0-1.91). However, the non-

hierarchical graph types exhibit much higher CB values (≥6.86), while having low MBC values 

which tend towards zero (highest being 0.08). This shows that in general the greater the number 

of CB the lower the MBC value will be, a result of greater connectivity in the graphs providing 

more paths between nodes. This is an observed trend with one notable exception being the HC 

graph type which exhibits a higher than expected MBC for the number of CB. Having a modular 

structure, with communities of well-connected nodes at levels within a hierarchy allows some 

cycle basis to form, though globally the graphs still have an explicit hierarchical structure 
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meaning the graph is still topologically reliant on a small number of critical nodes as illustrated 

with a high MBC value.  

 

Figure 4.4: The single standard deviation ellipses comparing the distribution of values for  all 

graphs and graph types (Table 4.1) for the maximum betweenness value and the number of 

cycle basis. 

 

4.2.4 Statistical graph similarity 

In order to quantify the statistical difference between the graph models on the basis of the 

multivariate distribution of the metrics employed, a transformed divergence analysis was 

performed. This performs a bi-directional pairwise test over two sets of values to quantitatively 

asses the degree of statistical separability between them (Chapter 3, Section 3.4.4, page 58). 

Table 4.3 shows the results of this, where a value of 100 indicates that any two graph-models 

in terms of their multivariate distribution exhibit no overlap, while a value of zero indicates 

identical distributions; values between 0-100 can be interpreted linearly as the percentage of 

multivariate separability that exists between any two graph models. Within the range of values 

returned, a value ≥85.00 is considered in many cases to be indicative of very good separability 

between the distriubtions being assessed (Swain and Davis, 1978). The separabilities are 

presented for each pair-wise combination of metrics for each pair of graph models. The key 



  

 109  

values of interest are those towards the top right corner of the Table 4.3 where the statistical 

values of similarity between the hierarchical and non-hierarchical graphs are located.  

 

  ER GNM WS BA HR HR+ HC TREE 

ER 

AC–

MBC 
- 99.91 84.78 99.58 100.00 100.00 100.00 100.00 

AC-

CB 
- 53.22 70.14 27.90 100.00 100.00 100.00 -* 

MBC-

CB 
- 99.96 75.43 72.62 100.00 100.00 100.00 -* 

GNM 

AC–

MBC 
- - 100.00 100.00 100.00 100.00 100.00 100.00 

AC-

CB 
- - 95.81 98.99 100.00 100.00 100.00 -* 

MBC-

CB 
- - 100.00 100.00 100.00 100.00 100.00 -* 

WS 

AC–

MBC 
- - - 14.13 97.79 99.55 99.99 100.00 

AC-

CB 
- - - 43.86 100.00 100.00 100.00 -* 

MBC-

CB 
- - - 43.98 100.00 100.00 100.00 -* 

BA 

AC–

MBC 
- - - - 75.24 83.36 99.81 99.90 

AC-

CB 
- - - - 100.00 100.00 100.00 -* 

MBC-

CB 
- - - - 100.00 100.00 100.00 -* 

HR 

AC–

MBC 
- - - - - 39.84 98.85 90.23 

AC-

CB 
- - - - - 27.34 99.37 -* 

MBC-

CB 
- - - - - 6.53 99.76 -* 

HR+ 

AC–

MBC 
- - - - - - 99.99 94.71 

AC-

CB 
- - - - - - 100.00 -* 

MBC-

CB 
- - - - - - 99.72   -* 

HC 

AC–

MBC 
- - - - - - - 100.00 

AC-

CB 
- - - - - - - -* 

MBC-

CB 
- - - - - - - -* 

Table 4.3: The transformed divergence analysis of the distribution of the metric values for 

each graph type. * Results cannot be computed as the TREE model has no cycles. 
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The values presented in Table 4.3 suggest only in a relatively small number of cases similarities 

exist between any two graph models/types. The first is the HR and HR+ graph types, where 

values of 27.34 and 6.53 were returned for the AC-CB and MBC-CB metrics. This similarity 

was expected as both of these graph types originate from the same underlying TREE model 

with the only difference being the method employed for the addition of edges to the topological 

structure (Chapter 3, Section 3.3.5 and 3.3.6, pages 48 and 49 ). The second similarity identified 

is between the BA and WS graph types for the AC-MBC relationship, where a value of 14.13 

is returned, indicating that the two models may at least share some characteristics. The other 

two metric relationships, AC-CB and MBC-CB, do show less similarity with both returning 

values of 43.86 and 43.98 respectively, but low enough values to indicate that there is a degree 

of similarity between the two graph models. This similarity can be seen in the standard deviation 

ellipses for the metrics (Figure 4.2, Figure 4.3 and Figure 4.4) where there is always a degree 

of overlap between them. 

Other values of note include those which suggest a similarity between the ER graph model and 

the GNM and BA models, where values for the AC-CB distribution of 53.22 and 27.90 have 

been returned respectively. The low value for ER-BA relationship, 27.90, is unexpected, 

especially where values of 99.58 and 72.62 have been returned for the other two metric 

distributions, AC-MBC and MBC-CB respectively. The structure of both graphs, and these 

values, suggest the similarity between these models as a result of the number of cycle basis 

(CB), the common metric between the two distributions with the lowest statistical values. 

Within both the ER and BA graph models there is no limit or constraints on the generation of 

cycles, with these generated as nodes are connected at random, unlike in the other non-

hierarchical models. The BA model allows cycle basis to be generated, with these likely 

involving the few nodes with high degrees which form in this model, whereas within the random 

models the cycles are likely to be more evenly distributed through the nodes of the network. 

The other relationship, between ER and GNM models, where a value of 53.22 was returned for 

the AC-CB distribution, both use methods where edges are added to connected nodes at random. 

This value is much lower than those returned for the other two metric distributions, 99.91 and 

99.96 respectively, showing that the graphs are not similar.  

The top right corner of Table 4.3 compares the hierarchical graph types (HR, HR+, HC and 

TREE) against non-hierarchical graph types (ER, GNM, BA and WS). In these cases, there are 

only two values below 97.00; 75.24 for BA and HR and 83.36 for BA and HR+ both for the 

combination of AC and MBC metrics. This indicates that there is a significant difference 
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between those graphs with a non-hierarchical organisation and those with a hierarchical 

organisation. 

As expected the results in Table 4.3 show that the TREE network type has very few similarities 

to the other network types analysed, with only a slight similarity being suggested to the HR and 

HR+ graph types with values of  90.23 and 94.71 respectively for the AC–MBC metrics.  

Uniquely, the HC graph type has a high separability to all the other graph types, even more so 

than the TREE model, with no value below 98.85. This suggests that despite being a hierarchical 

graph, it shares little in common in terms of its topological structure with the other hierarchical 

models (and the non-hierarchical models). 

The results presented statistically show that there are two sets of graphs within the suite 

generated from the eight models, with the characteristics of the four hierarchical models 

showing no similarities with the four non-hierarchical graph models through three metrics, AC, 

MBC and number of CB per node. These characteristics explicitly show that topology of the 

hierarchical graphs is different from the non-hierarchical graphs, with the differences also 

suggesting that the hierarchical graphs my exhibit a poorer robustness to perturbations given 

their high MBC and low CB values. 

 

4.2.5 Topological hierarchical graph robustness 

Using the developed topological failure model presented in Chapter 3, Section 3.5 (page 59), 

the robustness of the suite of synthetic graphs is examined. The developed failure model 

iteratively removes a single node and those edges which are incident to it, repeating this until 

no edges are left in the graph (i.e., a null graph is formed). Three methods are used in the 

selection of the node to remove at each epoch, random selection, the node with the greatest 

degree and the node with the greatest betweenness centrality. For the second two approaches, 

after each epoch the degree and betweenness centrality are recalculated ensuring the most 

critical node, that with the greatest value, for these metrics is removed at each epoch. All three 

methods are used to explore the robustness of the suite of synthetic graphs with the results 

presented using the mean and standard deviations of the percentage of nodes required to be 

removed before null graphs were obtained. A total of 3038 graphs are analysed for each failure 

method, with 500 randomly selected from all graph models except for the HC and TREE models 

where the full suite, 7 and 31, are used (Table 4.1, page 105). Five simulations are performed 

for each graph for each failure method. 
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For the random node removal approach (Figure 4.5(a)), the random graph types show a greater 

robustness to the perturbations, with on average over 90% of the nodes needing to be removed 

for a null graph to form. The hierarchical graphs, with the exception of the HC graph type, 

exhibit a greater vulnerability to the random removal of nodes, with only 70% of nodes required 

to be removed (73.46, 74.68 and 68.20 for the HR, HR+ and TREE models respectively). The 

HC graph type displays a response similar to the non-hierarchical graphs, with 88.06% of the 

nodes needing to be removed on average to produce a null graph. In a manner similar to the 

transformed divergence analysis, while a hierarchical model, it displays a very different 

response compared to the other hierarchical graphs. 

The first targeted node removal strategy employed, based on removing the node with the 

greatest degree at each epoch, results in a similar pattern of response (Figure 4.5(b)), with the 

hierarchical graph models remaining the most sensitive to perturbation. Again the non-

hierarchal graphs exhibit a greater robustness to the failures than the hierarchical graph types 

(with the exception of the HC model), with between 70 and 85% of nodes needing to be 

removed before a null graph is formed (85.35% (ER),  82.77% (GNM), 72.57% (BA) and   

77.89% (WS)). Figure 4.5(a) and (b) show that the difference between the GNM and ER models 

and the BA and WS models is greater in the degree based failure, with a difference of 

approximately 10% between compared to approximately 2% for the random failure simulations. 

This highlights the greater sensitivity of the BA and WS models to targeted failure methods 

compared to the random failure method, likely as a result of the presence of hub nodes within 

these graphs which makes them more vulnerable to the targeted approaches. 

The HC graph type shows an average response to the node degree failure method (Figure 4.5(b)), 

which is much closer to the random graph models (83.70%), while the other hierarchical graph 

models exhibit a much greater vulnerability to the degree-based failure, with less than 50% of 

the nodes required on average to be removed to form null graphs (45.36% (HR), 47.16% (HR+) 

and 36.61% (TREE)). This combined with the metric analysis results presented in Section 4.2.3 

and 4.2.4, suggest that the topological structure of the HC model may lead to a greater 

robustness to random or targeted perturbations compared to the other hierarchal structures, and 

indeed a behaviour more typical of non-hierarchical models. 

Finally Figure 4.5(c) presents the results for the betweenness based method, showing a similar 

pattern of behaviour as the degree-based mechanism (Figure 4.5(b)). Again the non-hierarchical 

graphs exhibit a greater robustness to the failures compared to the hierarchical graphs, with 

approximately 80% of nodes needing to be removed compared to approximately 40% for the 
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hierarchical graphs. Again, the HC graph type exhibits a behaviour similar to the random, non-

hierarchical models with 84% of nodes having to be removed.  

The patterns of robustness observed through the three failure mechanisms suggests that the 

hierarchical graphs, with the exception of the HC graph type, are much more vulnerable to 

failures than the non-hierarchical graphs (i.e., ER, GNM, BA and WS graph models). For the 

random failure strategy, the hierarchical graphs fail 19% quicker, where for the targeted 

methods the hierarchical graphs fail approximately 34% quicker (Table 4.4). The HC graph 

type has a behaviour that is more like that of a random graph than any of the other hierarchical 

models suggesting that aspects of its topological structure allow it to be robust to perturbations 

more effectively than the other hierarchical models. 

 

Node removal 

strategy 

Non-hierarchical 

graphs 𝒙̅  (%) 

Hierarchical 

graphs 𝒙̅ (%) 

% difference/change 

Random 94 76 19 

Degree 80 53 34 

Betweenness 81 54 33 

Table 4.4: Mean percentage of nodes removed for the node removal options for the 

hierarchical and non-hierarchical network groups and the percentage difference between 

these. 
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(a)  

 

(b)  

 

(c)  

 

Figure 4.5: Average percentage of nodes removed for each graph to become empty for (a) 

random node selection, (b) degree based node selection and (c) betweenness centrality based 

node selection. 
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4.2.6 Failure characteristics of hierarchical graphs 

The results from the failure analysis over the suite of synthetic graph models have shown a 

consistent set of observed behaviour, highlighting the lack of robustness of the hierarchical 

graphs other than the HC model (Section 4.2.5). This sub-section presents a more detailed 

analysis of the graph failure model results, presenting how they transition from the original state 

to null graphs. Due to the large number of graphs analysed, the results from a single graph 

which represents the collective behaviour of each model is presented in Figure 4.6 and Figure 

4.7, with a greater set of results presented in Appendix D Section D.3. 

Figure 4.6 and Figure 4.7, show the number of components as well as the average size of these 

for each graph model for the three different failure approaches. The non-hierarchical graphs, 

Figure 4.6 (a - d) only start to fragment once at least 20% of their nodes have been removed 

(20% for the BA and WS graphs and 50% for ER and GNM graphs). Once these models start 

to fragment, the number of components rises quickly. This indicates that the non-hierarchical 

models are initially robust to the failures but once between 20-50% of the nodes have bene 

removed they rapidly start to form a large number of relatively small (in term so the number of 

nodes) disconnected components. This is likely a result of the greater connectivity in these 

graphs as indicated by the greater number of cycle basis and lower maximum betweenness 

centrality presented in Section 4.2.3. 

In contrast the hierarchical graphs (Figure 4.7 (a - d)), start to fragment after <5% of the nodes 

have been removed, with components quickly forming showing a much weaker robustness. The 

TREE graph exhibits characteristics suggesting this is the least robust graph with a null graph 

forming for the three failure methods after as little as 25% of nodes have been removed. The 

HR graph appears the next least robust graph with all edges having been removed by the time 

30-35% of nodes have been removed. The peak in the number of components in the network 

also comes after approximately 15% of nodes have been removed whereas for the TREE model 

this is much closer to 10% of nodes. The HR+ model exhibits a more robust behaviour with the 

peak in the number of components approximately after 35% of nodes have been removed from 

the graph and a null graph not forming until 50-60% of nodes have been removed.  

The HC graph, Figure 4.7 (c) shows a very different failure pattern to the other graph models, 

both hierarchical and non-hierarchical. The difference in behaviour is caused by the structure 

of the network, with disparate modules/communities embedded within the topology (Chapter 

3, Section 3.3.7, page 51) meaning that the graph relies on a small number of highly connected 

hub nodes to connect communities. Once these are removed the graph rapidly fragments, as 
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shown in the results (Figure 4.7(c)), where the removal of <5% of nodes results in >100 

components forming for both the targeted failure mechanisms. However, thereafter, the number 

and size of the components is sustained for many epochs due to the communities staying 

‘internally’ connected. This therefore means these communities can still function as graphs, and 

it is not until at least another 20-40% of nodes have been removed that the topology of the 

network begins to change significantly again, with complete failure occurring after > 80% of 

nodes have been removed, compared to 20-60% of the nodes in the other hierarchical graphs. 

The betweenness response differs from the degree response slightly as this targets those nodes 

within each community which have the greatest number of flows passing through them, causing 

the communities to fragment quicker with the key connecting nodes failing first. In many cases 

these nodes may have the same degree of the other nodes in the communities, but their location 

and the nodes they are connected too makes them more central to the ability to traverse the 

graph and for the community to stay connected. Thus, while the HC graph fragments after a 

small number of perturbations, the community structure within its modules allow it to remain 

robust for much longer.  
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(a) ER (b) GNM 

 

 
  

(c) WS (d) BA 

 

  
Figure 4.6: The typical response observed for each of the non-hierarchical graph models, ER 

(a), GNM (b), WS (c) and BA (d) to the three failure models. The plots show the rate of 

which each graph fragments via the proportion of subgraphs relative to the original number of 

nodes in the graph (y-axis) as nodes are removed from the graph, shown as a percentage of 

the original count (x-axis). The coloured symbols show the average size of the subgraphs as a 

percentage of the number of nodes in the original graph. 
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(a) HR (b) HR+ 

 

  
(c) HC (d) TREE 

 

  
Figure 4.7: The response of the hierarchical graph types, HR (a), HR+ (b), HC (d) and TREE 

(d), to the three failure mechanisms. These show the rate of which each graph fragments via 

the proportion of subgraphs relative to the original number of nodes in the graph (y-axis) as 

nodes are removed from the graph, shown as a percentage of the original count (x-axis). The 

coloured symbols show the average size of the subgraphs as a percentage of the number of 

nodes in the original graph. 

 

4.3 The hierarchical characteristics of infrastructure networks  

4.3.1 Introduction 

Section 4.2 has presented an analysis of the synthetic graph models exploring the characteristics 

of each of the eight models including those which are hierarchical and non-hierarchical. Chapter 

2 Section 2.3.3 also reviewed the emerging literature which suggests that some infrastructure 

networks may be hierarchically organised. Given this, the characteristics of the analysed 

hierarchical graphs are used to explore the existence of a hierarchical organisation in critical 

infrastructure networks. 
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A suite of critical infrastructure networks has been generated, Table 4.5, as detailed in Chapter 

3, Section 3.6 (page 64), totalling 42 infrastructure networks. The characteristics of the groups 

and the individual infrastructure networks will be analysed allowing the characteristics of these 

to be compared to the synthetic graph models presented in Section 4.2. This includes identifying 

within the suite of infrastructures networks any which exhibit characteristics of hierarchical 

networks. The suite of infrastructure networks is analysed using the same methods applied to 

the suite of synthetic graphs in Section 4.2. 

Infrastructure group Infrastructure networks 

Air (flights) British airways, EasyJet, European, Northern America, UK, 

USA 

Communications Janet 

Energy National electricity transmission, National electricity 

transmission NT (no towers), National electricity transmission 

MT (minimal towers), National gas transmission, Synthesised 

electricity transmission 

Rail – national GB rail, Ireland rail, Ireland rail with shortcuts 

Rail – regional Boston (MA, USA) subway, Boston subway with TAPAN, 

London DLR, London light rail, London Overground, London 

tube, Manchester Metrolink, RATP (Paris public transports) 

rail, RATP metro, RATP RER, RATP tram, Tyne and Wear 

metro, Tyne and Wear metro with shortcuts 

Rivers Dee, Eden, Severn, Tyne 

Roads – national Great Britain motorways, A and B roads, Ireland motorways 

and trunk roads, Ireland motorways, trunk and primary roads 

Roads – regional  Leeds motorways, A, B and minor roads, Leeds motorways, A 

and B roads, Milton Keynes motorways, A, B and minor roads, 

Milton Keynes motorways, A and B roads, Tyne and Wear 

motorways, A, B and minor roads, Tyne and Wear motorways, 

A and B roads, Tyne and Wear motorways and A roads 

Table 4.5: For each infrastructure group the infrastructure networks included in the suite. 

 

4.3.2 Degree distributions of critical infrastructure networks 

 With 42 infrastructure networks analysed in total, only a sub-set of the degree distributions 

from each infrastructure group are presented. The complete set of degree distributions for all 

networks that belong to each group is presented in Appendix E Section E.1. 

The degree distributions of the rail infrastructure networks, both national and regional, show a 

similar set of distributions (Figure 4.8), with all having a single peak where the node degree is 

two (k = 2). Although the tail of the fours distributions vary in shape, they all indicate a similar 

trend with a decreasing proportion of nodes having higher node degree. The shape of the 

distributions for the national and regional rail networks all suggest that these infrastructures 
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have a similar distribution to those of small-world (the WS model) graphs (Section 4.2.2, page 

102).  

 

Great Britain rail network

 

Irish rail network 

 

Tyne and Wear metro network 

 

RATP (Paris) Metro 

 

Figure 4.8: Degree distribution plots for selected rail critical infrastructure networks. 

 

Degree distributions are shown for two of the air networks (Figure 4.9). The two presented and 

indeed the other air networks (Appendix E Section E.1) exhibit similar degree distributions 

which is similar to graphs generated using the scale-free BA model; the distributions quickly 

tail off from the peak proportion of nodes having low degrees to a high proportion of nodes 

with low degree.  
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EasyJet flight network

 

North American flights network 

 

Figure 4.9: Degree distributions for selected air networks. 

 

For the four river networks in the suite of infrastructure networks the degree distribution of two 

are shown in Figure 4.10 due to all four displaying similar characteristics. The distributions 

bear the greatest resemblance to the TREE network, with two clear distinct peaks indicating 

that the greatest proportion of nodes have a degree of one or three. This result is expected as 

river networks have previously been discussed as having a tree like structure (Barthelemy, 

2011). However, as can be seen in the plot for the River Severn in Figure 4.10, as well as nodes 

with a degree of one and three as expected, there are also a small proportion of nodes with a 

degree of four. This is caused by rivers naturally braiding and altering the pure tree like topology. 

Further to this man-management of rivers, with courses diverted for canals and water 

wheels/turbines, results in the networks also being altered from the expected tree like topology. 

 

River Severn network

 

River Tyne network

 

Figure 4.10: Degree distributions for selected river networks. 
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Two of the three distributions for the national road networks are presented in Figure 4.11. The 

plots show that there is a large number of nodes with a degree of one (k = 1), and a degree of 

three (k = 3). The proportion of nodes with degrees greater than three then decreases giving a 

tail to the distribution. The distributions don’t match any of the non-hierarchical graph models 

or the HR and HR+ hierarchical models due to having no nodes with a degree of two, and with 

the distributions showing a small number of nodes with increasing degrees from the peak where 

K=3, these are not like the TREE or HC models either. However, road networks have previously 

been found to have a scale-free degree distribution (Kalapala et al., 2006), a distribution which 

has some (ablbeit limited) similarities with those shown the Figure 4.11, including the tail, from 

the peak for those nodes with grater degrees. 

Figure 4.12 shows the degree distributions for two of the seven regional road networks. These 

distributions are similar to the national road networks and as such again do not match any of 

the distributions generated by the eight graph models. 

 

Great Britain motorways, A and B roads 

 

Ireland motorways, trunk and primary roads

 

Figure 4.11: Degree distribution plots for selected national scale road networks. 
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Tyne and Wear motorways, A, B and minor 

roads

 

Tyne and Wear motorways, A and B roads 

 

 

Figure 4.12: Degree distributions for selected regional road networks. 

 

Degree distribution plots for two of the five energy networks are presented in Figure 4.12. The 

distributions have long right tails, a relatively large number of nodes that exhibit a high degree, 

indicative of scale-free distributions (Section 4.2.2, page 102). 

National Grid electricity transmission (all 

nodes) network

 

National Grid gas transmission for Great 

Britain network 

 

Figure 4.13: Selected degree distribution plots for energy networks. 

 

4.3.3 Assessment of critical infrastructure network metrics 

In order to better characterise the infrastructure networks compared to the graph models the 

same multivariate graph-metric analysis has been undertaken as in Section 4.2.3. For each group 

of infrastructure networks the multivariate results are plotted with the single standard deviation 

ellipses of each of the eight graph models (more detailed plots are shown in Appendix E Section 

E.2 where plots are presented showing the individual infrastructure networks). 
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For the assortativity coefficient (AC) and maximum betweenness centrality (MBC) (Figure 

4.14) 24 of the 42 infrastructure networks lie within the standard deviation ellipses of the 

synthetic graph models, with 19 of these within the ellipses for the HR and HR+ graph models, 

and five within the ellipses for the WS (small-world) and BA (scale-free) models (noting that 

three of these lie closer to the mean of the HR+ model) (Table 4.6). For all the infrastructure 

networks not within an ellipse, there are all closer to hierarchical graphs. These results clearly 

suggest the infrastructure networks are most similar to the hierarchical graphs, with all but five 

having MBC values more similar to those. The AC metric appears to be less of a differentiator 

between hierarchical and non-hierarchical, though together the two metrics suggest the 

infrastructure networks are more similar to the hierarchical models. The AC and MBC values 

show that the infrastructure networks don’t share characteristics with the non-hierarchical graph 

models, despite a number of them, including the rail, air and energy networks, all exhibiting 

degree distributions most similar to either the WS or BA model. This suggests that the metrics 

used return different characteristic properties to those shown by the degree distributions, a result 

of the metrics proving a higher level set of graph characteristics not captured by the degree 

distribution which captures the topological structure only.  

 

Figure 4.14: Showing for every infrastructure network (presented by group only) the 

maximum betweenness centrality value against its assortativity coefficient with the single 

standard deviation ellipses for the synthetic graph models.  
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Infrastructure AC 

value 

MBC 

value 

Euclidean 

distance 

to WS 

Euclidean 

distance 

to BA 

Euclidean 

distance 

to HR+ 

RATP tram -0.04 0.06 0.01* 0.03 0.16 

European flights -0.11 0.11 0.09 0.06* 0.11 

Electricity 

transmission MT 

0.07 0.20 0.19 0.16 0.16* 

Leeds motorways, 

A and B roads 

-0.04 0.23 0.19 0.15 0.04* 

Ireland motorways 

and trunk roads 

-0.03 0.34 0.30 0.25 0.14* 

Table 4.6: The AC and MBC values for the five infrastructure networks within the non-

hierarchical ellipses and the Euclidean distance to the nearest mean values for the synthetic 

models. * denotes lowest value. 

 

There is a clear grouping of infrastructure networks within the HR single standard deviation 

ellipse where -0.1<AC< 0.3 and 0.2<MBC<0.4 (Figure 4.14). This is seen in the results for the 

energy networks (Figure 4.15), where all six are clustered in this area, though one of the national 

electricity transmission networks does fall within the scale-free ellipse. The MBC values 

returned for these energy networks indicates that they have at least a single node which is 

critical, though with values less than those observed in the TREE/HC models there is the 

potential for multiple nodes within these networks to have high values, with a subset of hub 

nodes rather than just one as in the TREE and HC graph models. The AC value is found to be 

similar to that found for many of the non-hierarchical graph models, but also is within the range 

for the HR and HR+ models. 



  

 126  

 

 

Figure 4.15: Comapring the values of the energy networks compared to the single standrd 

devtions for the graph models for the assortativity coefficient and maximum betweenness 

centrality metrics. 

 

A similar set of results have been returned for the national and regional road networks (Figure 

4.16 and Figure 4.17). As with the energy networks the road networks have returned values for 

the maximum betweenness which suggests a greater likeness to the hierarchical models and the 

presence of critical nodes within the network which are relied upon for connectivity of the 

network. However, for the AC metric the networks have returned values more familiar to the 

non-hierarchical models, with only the HR+ hierarchical model graphs returning similar AC 

values. As a result 8 of the 10 networks lie within the HR+ ellipse, with the rest lying above 

these due to having higher MBC values.  

The degree distributions for the road networks were not easily identifiable with any of the 

synthetic graphs, exhibiting some limited similarities with the hierarchical models as well as 

the WS and BA models (Section 4.3.2).  
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Figure 4.16: Assortativity coefficient and maximum betrweenness centrality results for the 

national raod networks comapred to the standard deviation ellipsesfor the eight graph models. 

 

 

Figure 4.17: Comparing the results for the regional road networks and the distriubtion of the 

eight graph mdoels for the assortativity coefficient and maxiimum betweenness centrality. 
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Both national and regional rail networks predominantly return similar values for the AC metric 

(Figure 4.18 and Figure 4.19) to those for the road networks, -0.3<AC<0.3, similar to the values 

for the non-hierarchical graphs and as well as the HR+ model. However, again they also have 

MBC values greater than 0.2, higher than those for the non-hierarchical graphs rendering the 

network closer in similarity to the hierarchical graphs. Three of the regional networks, Tyne 

and Wear Metro, London Overground and the RATP RER, lie very close to the HC model 

ellipse, the closest of the all the infrastructure networks to either the HC or TREE ellipse. For 

these networks in particular, these have high MBC values, greater than 0.6, suggesting that most 

shortest paths go through a single node in the networks. 

 

 

Figure 4.18: Metric distribution of the assortativty coefficient and maximum betweenness 

centrality metrics for the national rail networks. 
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Figure 4.19: Metric distriubtions for the regional/metropolitan rail networks for the 

assorativity coefficeint and maximum betweenness centrality metrics. 

 

Some of the networks with the lowest AC values are those for air networks (Figure 4.20), where 

-0.5<AC<-0.1. These low values suggest that nodes with different node degrees are connected 

to each other, rather than nodes with similar degrees being connected. This structure suggests 

that these networks, especially those where the values are closer to -1, may have significant hub 

nodes where the majority of the nodes linked to this have much lower degrees. This is also 

suggested by the MBC values returned for some of these networks, where the higher the value, 

the more likely there is a single hub node in the network. Specifically the network for British 

Airways has an AC value of -0.42 and MBC value of 0.82, the highest for any of the 

infrastructure networks, and indicative of having a hub node. This potentially makes these 

networks vulnerable to perturbations with a strong dependence on a single node for the 

connectivity of the network, as shown by the results in the failure modelling of the hierarchical 

graphs, and specifically the tree graph model, which the British Airways network is most like 

with regards to the metric values returned. 
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Figure 4.20: Location of the six air networks with regard to the single standard devation 

ellipses for the eight grah modesl using the maximum betweenness centrality and assortativity 

coefficient values.  

 

The suite of River networks (Figure 4.21) also exhibit AC values below 0, again suggesting a 

structure for these networks where nodes are not connected to nodes with similar degrees. 

However, in the case of the river networks this is caused by nodes having either a degree of one, 

those representing sources as well as the sink/river mouth, or a degree of three, those nodes 

where rivers/tributaries merge. Due to the tree like structure of river networks, they also have 

high MBC values, 0.5<MBC<0.7, though not as high as those seen in the TREE and HC model 

graphs. This suggests that the River networks have a structure which may be vulnerable to 

failures as was exhibited by the tree model graphs, given the exhibited metric similarities. 

The final network, the JANET communication network, exhibits similar values to the HR and 

HR+ graphs lying within the ellipses for both of these (Figure 4.22). The network has an AC 

value of -0.41 and a MBC value of 0.39, suggesting that no single node acts as a hub in the 

network, but that the network has a mixed set of node degrees leading to nodes being connected 

to others with different degrees. Without a node with a high MBC, the network may be more 

robust to failures than some of the other hierarchical graphs such as the HC and TREE model 

graphs. 
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Figure 4.21: Distribution of the river networks using the assortativity coefficient and 

maximum betweenness centrality metrics with reference to the eight graph models. 

 

 

Figure 4.22: Metric result for the communication network for the assortativity coefficient and 

maxmium betweennes centrality metric values with reference to the eight graph models. 
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A number of the infrastructure networks, all four river networks along with a two air networks 

(British Airways and EasyJet) and three rail networks (London Overground, Tyne and Wear 

Metro and Paris RER), return values for the AC and MBC metrics which suggest a similarity 

with the HC and TREE models. However, none of these actually lie within the ellipses, though 

the mean for the HC model is closest for six of the nine networks (Table 4.7), while the other 

three are closer to the TREE or HR models. This indicates that the aforementioned 

infrastructure networks analysed are hierarchical with a greater likeness to the hierarchical 

models than the non-hierarchical models. 

 

Infrastructure AC 

value 

MBC 

value 

Euclidean 

distance 

to HR 

Euclidean 

distance 

to HC 

Euclidean 

distance 

to TREE 

Dee -0.33 0.58 0.28 0.26* 0.37 

Eden -0.34 0.60 0.30 0.26* 0.35 

Severn -0.28 0.53 0.24* 0.29 0.44 

Tyne -0.34 0.66 0.36 0.21* 0.34 

British Airways -0.42 0.82 0.52 0.25* 0.25*  

EasyJet -0.45 0.51 0.22* 0.40 0.31 

London Overground -0.16 0.63 0.39 0.17* 0.52 

Tyne and Wear Metro -0.19 0.59 0.34 0.21* 0.49 

Paris RER -0.16 0.65 0.40 0.16* 0.51 

Table 4.7: The AC and MBC values for the nine infrastructure networks closest to the HC and 

TREE mean AC and MBC values, with the Euclidean distance calculated. * denotes shortest 

distance. 

 

The relationship between the AC and CB is shown in Figure 4.23 where all but the air networks 

show a greater similarity to the hierarchical graphs  than the non-hierarchical graphs. The air 

networks in all but one case (British Airways), have returned values greater than the HR, HR+ 

and TREE with one of those, flights for Northern America, having similar values to the HC 

model. Table 4.8 shows the Euclidean distance to the mean of the WS, HR and HC graph 

models for the six air networks, indicating that many of the networks are in fact more similar 

to the HC model, with one similar to the HR and one similar, the British Airways network, to 

the WS model. Although five of the air networks have a greater number of CB, the AC values 

result in them being closer to the hierarchical networks, and in particular the HC model. This 

suggests that not only are these five networks hierarchical, they are similar to the most robust 

hierarchical network (Section 4.2.5, page 111). 
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Figure 4.23: Single standard deviation ellipses for assortativity coefficient and number of 

cycle basis for each synthetic network type and each infrastructure. 

 

Infrastructure AC value CB value Euclidean 

distance 

to WS 

Euclidean 

distance 

to HR 

Euclidean 

distance 

to HC 

British Airways -0.42 0.38 6.50 0.14* 1.55 

EasyJet -0.45 2.99 3.89 2.48 1.11* 

European -0.11 7.93 1.07* 7.42 6.01 

North American -0.19 3.24 3.63 2.73 1.32* 

USA -0.30 3.68 3.19 3.17 1.77* 

UK -0.31 1.83 5.04 1.32 0.15* 

Table 4.8: The AC and CB values for the six air networks and the Euclidean distance to the 

mean centres of the three graph models which are the shortest distance from each of the air 

networks, denoted by ‘*’. 

All other in infrastructure networks returned values for the CB metric similar or lower than the 

HR, HR+ and TREE models (Figure 4.23). The previous analysis of the synthetic graphs shows 

that such low values reduce the robustness of the networks to perturbations (Section 4.2.5), 

suggesting the infrastructure networks with similar values may also share this characteristics of 

poor robustness.  
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Figure 4.24 shows the multivariate plot between the MBC and CB metrics. Nearly all of the 

infrastructure networks, with the exception of five of the six air networks, lie much closer to 

the ellipses of the hierarchical graphs than the non-hierarchical graphs. The five air networks 

all exhibit a greater number of cycle basis per node than the hierarchical graphs, with the 

average for the suite of air networks, 3.34, being greater than that for all of the other 

infrastructure networks, <0.55 (Table 4.9).  

 

Figure 4.24: Single standard deviation ellipses comparing the relationship between maximum 

betweenness centrality and the number of cycle basis for the eight synthetic network types. 
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Table 4.9: Average metric values for the infrastructure network groups. 

 

4.3.4 Topological robustness of infrastructure networks 

A comparison of how the infrastructure networks respond to the same failure perturbations as 

the synthetic graph models explored in Section 4.2.5 was undertaken in order to evaluate 

whether any infrastructure networks exhibited a similar response to any of the models. As with 

the synthetic graph models, three failure models have been applied to the infrastructure 

networks, with the results averaged across all networks of each particular group. 

Figure 4.25(a) shows for the random node removal method that all infrastructure network types 

respond similarly, exhibiting a response broadly the same as the hierarchical graphs (Figure 

4.5). The least robust infrastructure group is the river networks with only on average 62.99% 

of nodes needing to be removed to generate a null state; similar to the TREE graph model 

(Chapter 4, Section 4.2.5, page 111). Both the regional and national versions of the rail and 

road networks exhibit a similar robustness, with there being only a 1.5% difference between all 

road networks and 0.4% between all rail networks. With an average of 67.0% of nodes removed 

for the rail networks these behave most similarly to the TREE (68.2%). The road networks 

required on average 70.9% of nodes to be removed before failing, most similar to the HR model 

(73.4%). It must be noted that although the behaviour of the road networks is most similar to 

that of the HR graphs, this is only marginal, with the difference to the results for the TREE 

model only 0.2% greater. 

Infrastructure 

group 

Assortativity 

coefficient 𝒙̅ (σ) 

Maximum betweenness 

centrality 𝒙̅ (σ) 

Number of cycle 

basis per node 𝒙̅ (σ) 

Air -0.30 (0.12) 0.39 (0.23) 3.34 (2.32) 

Communications -0.41 (0.00) 0.39 (0.00) 0.55 (0.00) 

Energy 0.03 (0.08) 0.25 (0.05) 0.12 (0.08) 

Rail – national 0.13 (0.10) 0.34 (0.14) 0.06 (0.01) 

Rail - regional 0.06 (0.17) 0.45 (0.18) 0.06 (0.06) 

Rivers -0.30 (0.03) 0.57 (0.06) 0.01 (0.01) 

Roads – national -0.06 (0.02) 0.30 (0.03) 0.31 (0.04) 

Roads – regional 0.02 (0.07) 0.31 (0.07) 0.42 (0.08) 
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(a)  

 

(b)  

 

(c)  

 

Figure 4.25: Plots showing the average response across the infrastructure groups to the three 

failure models. Failure plots for each infrastructure network can be found in Appendix E 

Section E.3. 
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In the case of the degree (Figure 4.25(b)) and betweenness centrality based failure methods 

(Figure 4.25(c)), the responses of the infrastructure networks show a similar pattern with all 

networks exhibited a decreased robustness to these node selection methods than for the random 

method. This was also the case for the synthetic models (Figure 4.5 Section 4.2.5), with both 

the hierarchical and non-hierarchical graphs all being less robust to the targeted methods.  

It is clear that the air networks are the least robust to targeted attacks with only 37.78% and 

37.85% of nodes needing to be removed for both approaches to become null. In the case of the 

river networks 47.98% and 49.28% of nodes needed to be removed before a null state was 

reached. The most robust networks are the roads, with the national and regional variations 

failing after 61.50% and 61.41% of nodes have been removed. A number of other infrastructure 

networks show similar values such as communications (58.16% and 60.00%), the national rail 

networks (58.98% and 58.94%) and the regional rail networks (58.16% and 58.63%). The 

infrastructure networks all fail after 50% - 60% of nodes have been removed (with the exception 

of the air networks noted above); a similar level as the majority of hierarchical networks (with 

the exception of the HC model) (Figure 4.5).  

In general, the air networks exhibit a greater vulnerability to the failure models than all the other 

infrastructures, with the road networks appearing to have the greatest levels of robustness to 

failures. The river networks also exhibited a poor robustness to failures; an expected result 

given their similarity to tree networks, as discussed in Chapter 2 and highlighted in the degree 

distribution plots (Section 4.3.2). As expected none of the infrastructure networks behave like 

the random graph models (ER and GNM models) (Chapter 2, Section 2.3, page 11), or have a 

behaviour like that observed for the scale-free (BA) and small-world (WS) models, especially 

for the targeted failure models. Instead the majority exhibit a behaviour more similar to the 

HR+ model which has values of 74.71%, 52.42% and 52.37% respectively for the three failure 

models. This suggests that many infrastructure networks may have a hierarchical organisation 

given the results for the random, degree and betweenness failure methods. 

The results from each infrastructure sector for both targeted methods are similar suggesting 

they have a similar effect on the networks with percentage of nodes needing to be removed 

similar. Both failure methods however identify and target nodes in a different order so a 

difference in response is expected, with the networks expected to fragment differently as the 

betweenness method removes the most critical nodes to the connectivity of the network first. 

The difference in response although is not clearly visible when the results are shown as above 

using the average percentage of nodes which need to be removed. However, the response is 
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more visible in the following section where the results are shown per network and the behaviour 

of the networks and how they fragment while being perturbed is plotted. 

 

4.3.5 Failure characteristics of infrastructure networks 

Given the results presented in the previous section, Section 4.3.4, more detail on how the 

individual infrastructure networks fail is presented in this section. This allows the behaviour of 

the infrastructures to be analysed in detail to examine how they fail rather than just looking at 

how long it takes for null networks to emerge. As in the case of the synthetic graph models 

(Section 4.2.6), only the results from a selected number of infrastructures are presented in this 

section. However, the full set of results can be found in Appendix E, Section E.3. The selected 

results include at least one infrastructure network from each of the infrastructure groups. Where 

this is considered not to be indicative of all networks within a group, multiple examples are 

presented. 

Figure 4.26 shows how one of the six air networks responded to the three failure methods. The 

results presented in Figure 4.25 (Section 4.3.4) showed that the air networks were robust to 

random failures, but also the least robust of the infrastructure networks to the targeted methods. 

Again the air networks become fragmented very quickly, with < 5% of nodes needing to be 

removed for all three failure methods. The response to random failure is much worse than for 

the TREE example, with the peak in the number of components being much closer to that seen 

for the targeted methods, though the mean size of these components is much less at between 6-

10% of the total size of the network, indicating that although the network fragments, the largest 

connected component remains large, with much smaller subgraphs forming around this. This 

results in the network being more robust with the greater proportion of the nodes in the network 

remaining connected despite the perturbations, a feature not seen in the tree network, or any 

other hierarchical network. The results for air networks again clearly indicate the network has 

a small number of highly connected nodes which make it vulnerable to the targeted failure 

methods, but robust to the random method. The small number of hub nodes in comparison to 

the number with much lower degrees mean the chances of these being removed is low resulting 

in the network staying connected for longer.   
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(a) Tree network example (b) USA flight network 

  

Figure 4.26: Two plots showing the behaviour of networks to the three failure models. The 

first shows the behaviour of a tree network (left) and (right) shows the behaviour of the flight 

network for the USA. 

The river networks from the previous analysis suggest a hierarchical structure with degree 

distributions most like those for the TREE graphs (Section 4.3.2), and metric values similar to 

the HC/TREE graphs (Section 4.3.3). The response of the river networks is exemplified through 

the result of the River Dee (Figure 4.27), where the response appears to be similar to that 

observed for the HR graphs. Both networks fragment quickly from the outset, <5% of nodes 

removed, and fail completely when only 40-50% of the nodes have been removed. The River 

Dee does however not fail as quickly producing a more gradual failure, with the mean size of 

the subgraphs decreasing more slowly, to approximately 5% of the size of the network when 

15-20% of nodes have been removed. In the case of the HR graph this occurs within 10% of 

the nodes being removed. This behaviour of the river network makes the response different to 

the TREE graphs (Figure 4.26).  

(a) HR network example (b) River Dee 

  
Figure 4.27: Comparing the behaviour to all three failure models the River Dee network 

(right) and that of a randomly selected HR network (left), highlighting the comparable 

similarities between the responses for both networks. 
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The behaviour of the energy networks suggests a better robustness to the three failure models 

compared to many of the other critical infrastructures (Figure 4.25). The behaviour associated 

with this poor robustness is exemplified in Figure 4.28 which shows the response of the full 

transmission network to the failure models. The plot shows how the network fragments at a 

slower rate than the results presented for many of the other infrastructure networks (Figure 4.29, 

Figure 4.26 and Figure 4.27), with the peak in the number of components in the network 

occurring after 30% of nodes have been removed (compared to 15-20% of nodes for other 

infrastructure examples presented). The profile shown in Figure 4.28 is different to those 

observed in the response of the non-hierarchical networks (Section 4.2.6,  page 115) and instead 

is most similar to that for HR+ graphs. In contrast to this, the degree distribution of the energy 

networks was most similar to the BA model (Section 4.3.2), and had metric values most similar 

to the BA/HR graph models (Section 4.3.3). This set of results suggests that the topological 

structure of the energy networks are most like that observed for the HR graphs given both the 

similar behaviour observed to when perturbed and the metric results returned. 

 

(a) HR+ example (b) National Grid transmission network 

  

Figure 4.28: Showing the plot for the behaviour of the electricity transmission network for 

England and Wales (b) and the plot for a HR+ graph. 
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The rail networks all returned metric values which suggested they had a hierarchical topology, 

driven by high MBC values (Section 4.3.3), though exhibited degree distributions most similar 

to the WS model (Section 4.3.2). The failure response to the three perturbation methods, 

exemplified by the response of the London Tube network (Figure 4.29(b)) shows a response 

different from that exhibited by the WS (small-world) model (Figure 4.29(a)). Instead the 

response is more similar to that exhibited by the HR+ model example (Figure 4.28(a)). Both 

the Tube network and the HR+ example have a peak number of components after approximately 

30% of nodes have been removed from the network, though the HR+ model appears to be more 

robust initially, with > 10% of nodes removed before the number of components starts to 

increase rapidly. However, the rail network does appear to be more vulnerable to the random 

failure method than the HR+ graph, with the greater peak in the number of components 

compared to those for the targeted methods. This suggests that although the degree distribution 

may suggest a non-hierarchical organisation, that the rail networks are actually hierarchical, 

with both the failure and metric results suggesting a similarity to the HR/HR+ models.  

 

(a) Small-World example (b) London Tube example 

  

  

Figure 4.29: Failure plots for a Small-World graph (a) and the London Tube (d). 

 

The road networks, exemplified by the response of the Irish road network (down to the trunk 

road level) (Figure 4.30(a)), exhibits a similar response to that of the Tube network (Figure 

4.29(b)), and thus the HR+ response is the most similar from the synthetic graphs (Figure 

4.28(a)). The shape of the response from the road network is similar, though the network 

appears to form components when it starts to fragment which are smaller than those formed in 

the failure of the HR+ graph. This could suggest that the network does not break in to large 

subgraphs, but instead the giant component of the network remains large but with many 
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components each with only a small number of nodes in forming. The metric values for the road 

networks also suggest that these networks where hierarchical (HR model), though the degree 

distributions of the network were unclear as to the topological structure of the networks. 

 

(a) Irish road network example (includes 

motorways and trunk roads) 

 
 

Figure 4.30: Failure plot the Irish road network including motorways and trunk roads. 

 

4.4 Capacity constrained cascading failures on hierarchical graphs 

4.4.1 Introduction 

The results in this section explore the effect of structure on the flows through a network and 

consequentially the robustness to perturbations. Previous sections have addressed the 

robustness of graphs/networks to topological based failures. However, the function of many 

infrastructure networks involves the flow of commodities and information or the delivery of a 

service between supply and demand points (Little, 2002), examples including the supply of 

electricity and gas (Bao et al., 2009b), and water distribution networks (Shuang et al., 2014). 

As such the attributes of a graph/network, including the capacity of the nodes/edges, are critical 

to how the flows can move over the network and as such effect the robustness of the 

graphs/networks to perturbations. A failure model has been developed (Chapter 3, Section 3.9) 

to explore how failures affect flows over a network and can lead to cascading failures through 

a graph. This failure model has been used to investigate the robustness of hierarchicaly 

structured graphs to cascading failures, with a set of eigth synthetic graphs (Figure 4.31) 

employed corresponding to one graph from each of the eight graph models types.  
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Erdos-Renyi (ER): 

 

 

 

 

 
GNM: 

 

 

 

Barabasi-Albert (BA): 
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Watts-Strogatz (WS): 

 

 

 

 

 
Hierarchical-Random (HR): 

 

 

 

 

 

Hierarchical Random + (HR+): 

 

  

 

 

 
Hierarchical Communities (HC): 
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TREE: 

 

 

 

 

 

Figure 4.31: Synthetic network exemplars used in the analysis of robustness to cascading 

failure represented using a circular layout (left) and spring layout (right) which puts the most 

connected nodes at the centre of the plot. 

 

4.4.2 Scenarios 

The analysis is run using a capacity constrained cascading failure model, Chapter 3, Section 3.9 

(page 71). For a graph a node is nominated at random as a supply node and a second node is 

nominated at random as a demand node with each assigned equal values so the supply in the 

graph always equals the demand. Each node and edge in the graph is then assigned a capacity, 

the maximum amount of the flow which can pass over the node/edge. The value assigned to the 

supply node is then routed, if possible, through the network to the demand node where the 

assigned capacity to the nodes and edges is used to constrain the number of flows which can 

use each node and edge. The simulation then attempts to trigger a cascading failure by removing 

the edge with the greatest flow, known as the trigger edge. Where multiple edges share the 

greatest flow value, one of these is picked at random.  

Following the removal of the trigger edge, the routing of flows is performed again. As long as 

a route is available, irrespective of the capacity of the nodes and edges, the simulation continues. 

Where the route or routes found have sufficient capacity, the nodes and edges used are not over 

capacity, the network is said to be in a state of equilibrium. This describes the network as still 

being able to function following the perturbation. 

Where at least a single route exists between the supply and demand nodes, the flows are routed 

along this, though when there is insufficient capacity along a single route the flow will be 

distributed across multiple routes if possible. If the flow to be routed cannot be accommodated 

on all possible routes without node and/or edge capacities being exceeded, the flows are 

assigned to the shortest route resulting in some nodes and/or edges being over capacity.  Nodes 
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and edges over their capacity are regarded as failed in the next epoch, simulating a cascading 

failure. In the following epoch, the route searching process is repeated with the nodes and edges 

over capacity identified and tagged as failed. Only once no nodes or edges are found to be over 

capacity or no route exists between the supply and demand node does the simulation stop. 

As only one supply node and one demand node are assigned in each graph, the analysis is 

sensitive to the location of the selected nodes, and therefore each node selection is at random 

for each of the 5 simulations run for each scenario for each graph. This attempts to negate the 

potential bias of any specific node locations may have on the results, either positively or 

negatively for the robustness of the graphs being analysed. It should also be noted that the only 

flows on the graphs are those assigned between the supply and demand nodes, with no other 

flows on the graphs, therefore simplifying the analysis undertaken. 

The eight graphs, Figure 4.31, were analysed using six developed scenarios (Table 4.10) to 

investigate the robustness of hierarchical graphs to cascading failures. Scenario (i) investigates 

the robustness of the hierarchical graphs to simple cascading failures through assigning node 

and edges capacities equal to that of the supply/demand in the graph. A value of four has been 

used for this, but the value itself is immaterial as long as the capacity of the nodes and edges is 

equal the supply/demand. A single trigger is removed to analyse the robustness of the graph to 

a single failure. With each node and edge having the capacity to accommodate all the flow the 

inability of the flow to reach the demand from the supply node following the single perturbation 

highlights a poor robustness in the graph, indicating the network has fragmented into at least 

two components. Scenario (ii) is parameterised similarly to scenario (i), though the capacities 

of the features are assigned based on the graph model as described in Chapter 3, Section 3.9.4 

(page 78), rather than with a uniform value. Nodes and edges within the hierarchical graphs are 

assigned capacities based on the level of the hierarchy they are in, whereas the random graphs 

are assigned capacities randomly. Scale-free and small-world graphs are assigned values based 

on the betweenness centrality of the nodes and edges. The assigned capacities all lie between 1 

and 8. This allows for more graph structure specific simulations to be undertaken, and is an 

attempt at assigning capacities which are more closely related to the role the nodes and edges 

play in the topology of the graph. 
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Scenario Method of node and edge capacity 

assignment 

Number of trigger edges 

removed 

(i) Capacities equal to supply value Single trigger edge removed 

(ii) Capacities assigned based on graph 

model 

Single trigger edge removed 

(iii) Capacities equal to supply value Trigger edges removed until 

cascading failure triggered 

(iv) Capacities assigned based on graph 

model 

Trigger edged removed until 

cascading failure triggered 

(v) Capacities lower than supply value Single trigger edge removed 

(vi) Capacities lower than supply value Trigger edges removed until 

cascading failure triggered 

Table 4.10: Scenarios employed in the modelling of cascading failures. 

 

Scenarios (iii) and (iv) investigate the robustness of the graphs to cascading failures by 

removing trigger edges until a cascading failure is triggered or until no path exists between the 

supply and demand nodes (Table 4.10). These two scenarios are otherwise the same as scenarios 

(i) and (ii) respectively. This analysis allows for those graphs which are robust to the removal 

of a single trigger edge to be analysed further to identify the strength of the robustness. This is 

reported using the proportion of edges removed as trigger edges until a cascading failure is 

triggered or the supply and demand nodes become disconnected. Through this the strength of 

the robustness across the hierarchical and non-hierarchical graphs can be compared. This 

analysis allows for the identification of those graphs which exhibit the greatest robustness to 

cascading failures and the characteristics which facilitate this.  

The final two scenarios, (v) and (vi) explore the robustness of the graph models where the 

supply/demand value is greater than the capacity of the nodes and edges in the graph (Table 

4.10). For each graph this means multiple routes must exist between the supply and demand 

nodes, unlike in the previous scenarios where only a single route was required. This requires 

the graphs to be better connected with greater redundancy if they are to be robust to cascading 

failures. For both scenarios a capacity of four is assigned to the nodes and edges, whereas a 

supply of six is assigned to the single supply node and a demand of six to the single demand 

node. In scenario (v) only a single trigger is used, but in scenario (vi) multiple triggers are 

removed to identify the most robust graphs to the cascading failures where each node and edge 

lacks sufficient capacity to accommodate all the flow between the supply and demand nodes. 

Five simulations have been run over each graph for each scenario. 

The performance of graphs to cascading failures is measured in three ways; the reason for each 

simulation terminating, the average length of cascading failure and for those scenarios where 
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multiple trigger edges are removed, the average number of trigger edges removed over the 

simulations. Simulations can terminate for three separate reasons, the first being due to a lack 

of a route of sufficient capacity between the supply and demand node before a trigger edge has 

been removed, referred to as ‘Not computable’. Where the flow has been routed from the supply 

to a demand node without any nodes or edges being over capacity after the removal of trigger 

edge, the graph is said to be in equilibrium. The third reason for a simulation terminating arises 

when the supply and demand nodes become disconnected from each other, such that they are 

in different component/subgraphs of the original graph, which can be a result of trigger edges 

being removed or from the failure of nodes or/and edges being over capacity. The second 

method of reporting the robustness from this analysis is the average length of the cascading 

failures, measured by the average number of epochs across the five simulations for each graph. 

In those scenarios where multiple trigger edges are removed, the number of these is recorded, 

and then averaged for each simulation for each graph model, providing a third metric on the 

robustness of hierarchical graphs to cascading failures. 

 

4.4.3 Cascading failures results 

The results for scenario (i) (Figure 4.32) shows the reason for the each simulation stopping as 

a percentage across the five simulations run for each graph and the average length of the 

cascading failure for each graph analysed. Of the four hierarchical graphs the TREE graph was 

the least robust, failing in 100% of simulations after the removal of a trigger edge, with no route 

between the supply and demand nodes (Figure 4.32) and the network becoming disconnected. 

The HR and HR+ graphs however exhibited a greater robustness to the removal of the trigger 

edge with 80% and 40% of simulations reaching equilibrium, with a path with sufficient 

capacity still existing between the supply and demand nodes. In 20% and 60% of the 

simulations however the network failed with no route available between the supply and demand 

nodes for the HR and HR+ graphs. This is a result of a single route existing between the 

locations of the supply node and demand node, which is then broken when the trigger edge is 

removed. These results indicate that given the random allocation of supply and demand nodes, 

that the HR and HR+ graphs are more robust then the TREE graph. This is likely a result of the 

better connectivity within the HR and HR+ graphs than in the TREE graph as a result of the 

addition of new edges in the graph models for these graphs (Chapter 3, Section 3.3.5 and 3.3.6). 

The HC graph exhibited a mixed response, with 60% of simulations reaching equilibrium and 

40% resulting in no path from the supply to the demand node. This shows a similar behaviour 

to the HR and HR+ graphs, indicating that the network is reasonably well connected with in 
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some cases multiple routes which can accommodate the flow. However, in contrast, the non-

hierarchical graphs exhibit a much greater robustness with 100% of simulations resulting in the 

graphs being in equilibrium. This is a result of the greater connectivity of these graphs providing 

an increased level of redundancy and thus robustness to perturbations, with in this case this 

resulting in multiple paths between the supply node and demand node.  

 

 

Figure 4.32: Results from cascading failure simulation (scenario (i)) over the synthetic 

network exemplars with a single trigger edge, a demand of four and capacities of four. 

 

Scenario (ii) was parameterised similarly to scenario (i), but with node and edge capacities 

assigned based on the graph structure. The results (Figure 4.33), show that three of the 

hierarchical graphs, the HR, HR+ and TREE, could no longer be solved with 100% of the 

simulations finding no path with sufficient capacity between the supply and demand nodes even 

before a trigger edge was removed. It is strikingly clear that these graphs obviously lack the 

capacity to accommodate the flow from the supply node to the demand node. However, the 

fourth hierarchical graph model, the HC model, exhibited a greater robustness with the network 

not being affected by the removal of a single trigger edge in 80% of simulations. In the one 

simulation where the HC graph failed following the removal of the trigger edge, it is likely the 

location of the supply/demand node was such that they were poorly connected and the trigger 

edge selected on this occasion resulted in the only path between the two nodes being broken. 

However, due to its modular structure flows within communities of nodes that are well 

connected are supported. Thus, this model seems to be sensitive to failure on the edges that 

connect the different communities within the graph.  
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The four non-hierarchical graphs in scenario (ii) (Figure 4.33), exhibited a similar response to 

that observed in scenario (i). Three of the four graphs, those generated by the ER, GNM, and 

BA models all exhibited a strong robustness to cascading failures with all ending in a state of 

equilibrium. However, the WS model in one simulation failed following the removal of the 

trigger edge but after a cascading failure of 18 epochs (5×3.6 average epoch length of cascading 

failures), while the other four simulations were not affected by the removal of the trigger edge. 

This indicates that the graph was connected for much of the simulation with redundancy 

allowing solutions for the demand to be met. However, the capacities of the nodes and edges 

on the shortest path were not great enough to accommodate the flow, resulting in the cascading 

failure until no more routes were available (as demonstrated by the example in Figure 3.25, 

page 76). The only differentiator between the five WS simulations is the location of the supply 

and demand nodes, which highlights the sensitivity of the analysis to the location of these, and 

therefore the structure of the graph as well. 

 

Figure 4.33: Results of the cascading failure simulation (scenario (ii)) over the selected 

synthetic networks where the demand was four, the capacities were based on structure and a 

single trigger edge was removed. 

 

The results for scenario (iii) are presented in Figure 4.34 and Figure 4.35 which shows the 

proportion of edges removed before the failed graphs. For each graph, as with scenario (i), the 

capacity of the nodes and edges was set to four, with the supply and demand both set to four. 

The supply and demand nodes were also assigned randomly. Unlike scenario (i), trigger edges 

were removed until a cascading failure started or there was no longer a route between the supply 

and demand nodes. This allows the most robust graphs to cascading failures to be identified, 

with the least robust failing after a smaller proportion of edges have been removed and the 
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robust graphs not suffering from a cascading failure and only failing after a greater proportion 

of edges removed. For all graph models, 100% of the simulation runs failed with no path from 

the supply and demand node existing and no cascading failures occurring, suggesting a 

robustness to cascading failures (Figure 4.34). Figure 4.35, which shows the percentage of 

edges removed until the networks failed, shows that the hierarchical graphs, with the exception 

of the HR model, were the least robust to the removal of trigger edges. The HR+, HC and TREE 

model all failed with <0.8% of edges removed, whereas the non-hierarchical networks, as well 

as the HR model, failed after 2.0-4.9% of edges had been removed. Through the shortcuts added 

to the TREE graph to form the HR graph being unconstrained in terms of the nodes they could 

connect, these have added a much greater redundancy into the network. Whereas for the HR+ 

model the edges were only added to nodes in the same level and those in adjacent levels, thus 

the impact of these on the robustness of the network seems to be much less. The BA model 

behaves differently to the other graph models, failing after 2.0% of edges have been removed, 

rather than 4.3-4.9% as for the ER, GNM and WS models, likely due to a greater dependency 

on hub nodes for flows passing over the network, as indicated by the higher maximum 

betweenness centrality compared to the other three non-hierarchical models.  

 

Figure 4.34: Result of the cascading failure simulations (scenario (iii)) on the selected 

synthetic networks where a supply of four has been used, with capacities set to four and 

multiple trigger edges removed. 
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Figure 4.35:  Percentage of edges removed as trigger edges for the analysed synthetic graphs 

for scenario (iii). 

 

Figure 4.36 and Figure 4.37 show the results from scenario (iv). This has been parameterised 

similarly to scenario (iii), but with node and edge capacities based on the graph structure. The 

results presented in Figure 4.36 show that for 100% of the simulations with the HR, HR+ and 

TREE models no path between the supply and demand nodes existed with sufficient capacity 

to accommodate the flow of four from the supply node to the demand node. This is a result of 

the parameterisation and the redundancy in the graphs which is non-existent in the TREE graph, 

and is clearly limited in the HR and HR+ graphs. The HC model fails with an average cascading 

failure value of 0.6 epochs over the five simulations, showing a cascading failure of either 6 

epochs occurred in one simulation, or 1 epoch in three. This short cascading failure suggests 

that the edges or nodes removed were part of the only path between the supply and demand. 

These results suggest that the HC model is more robust than the other three hierarchical models 

which didn’t have the capacity to facilitate the flow from the supply to the demand node before 

any edges were removed. However, the HC graph failed after an average of 2.2 edges (0.3%) 

were removed Figure 4.37, which suggests the graph is vulnerable. 
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Figure 4.36: The results from the cascading failure simulations (scenario iv) on the selected 

synthetic networks where a single demand of four was used, capacities were based on the 

graph structure and multiple trigger edges were removed. 

 

Figure 4.37: Percentage of edges removed as trigger edges for the cascading failure scenario 

(iv). 

 

In contrast the non-hierarchical graphs have demonstrated a greater robustness with a greater 

proportion of edges needing to be removed before the graphs failed; for the ER and GNM 
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0.5%. However, all four graphs exhibited cascading failures, with those for the BA and WS 

models averaging at 1.8 and 1.6 epochs respectively. This indicates that although only a small 

proportion of edges were removed as triggers, many more may have been removed as a result 
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demonstrate the robustness of the two random models to these type of failures, with a large 

percentage of edges removed in comparison to the other graph models, likely a result of greater 

connectivity, and hence redundancy. This is linked to the previous metric analysis of the graph 

models which indicated that the random models both have a greater number of cycle basis and 

a lower maximum betweenness centrality (Section 4.2.3). 

The result of the simulations for scenario (v) are shown in Figure 4.38, where the graphs have 

been parameterised so the supply and demand in the graphs is six, though the capacity of the 

nodes and edges is four. The supply and demand nodes have been selected at random and only 

a single trigger edge is removed from the graphs. For both the HR+ and TREE graphs there was 

insufficient capacity on the available routes between the supply and demand nodes for the 

required flow from the outset, with 100% of the simulations not being computable. This makes 

it strikingly clear that these graphs lack connectivity and the redundancy to continue to function 

when perturbed. For the HR graph it was also the case that 60% of the simulations could not be 

computed, but due to the random location of the supply and demand nodes, solutions could be 

computed for 40% of the simulations, with 20% of these failing after the removal of a trigger 

edge and 20% reaming computable with enough capacity on paths between the supply and 

demand nodes. This reveals that the HR graph is more robust than the HR+ and TREE models.  

However, the HC model is more robust than the HR+ and TREE models, only not being 

computable in 40% of simulations due to insufficient capacity between the supply and demand 

node, compared to 100% for the HR+ and TREE models. In 60% of simulations the graph 

reached equilibrium meaning there was sufficient capacity between the two nodes as well as 

some redundancy with this still being the case following the removal of a trigger edge. In 

contrast to the hierarchical graphs, the non-hierarchical graphs all were robust to the single 

failure, with 100% of simulations reaching equilibrium for each of the four models, further 

highlighting the clear differences between the two sets of graphs. The non-hierarchical graphs 

clearly have a greater connectivity and redundancy and thus are robust to the greater flow on 

the network, with multiple routes between the supply and demand nodes. 
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Figure 4.38: The results from the cascading failure simulations (scenario (v)) over the selected 

synthetic networks where the demand is six, the capacities are four, and a single trigger edge 

is removed. 

 

Scenario (vi) runs a similar set of simulations as done in scenario (v), but with trigger edges 

removed until a cascading failure is triggered or there is no longer a path between the supply 

node and demand node, to identify the most robust graph model to cascading failures. The 

results are presented in Figure 4.39 and Figure 4.40 which respectively show the performance 

of the graphs to the scenario and the proportion of edges removed for the graphs to fail or a 

cascading failure to start. 100% of the simulation for the HR+, HC and TREE graphs show that 

insufficient capacity was available between the supply and demand nodes to accommodate the 

required flow. Although the node and edge capacities and the supply/demand in the graph are 

parameterised the same as in scenario (v), the random location of the nodes has had a significant 

effect with no simulations being computable. The HR graphs however were computable in 60% 

of the simulations, highlighting again the greater availability of routes between the supply and 

demand nodes. In contrast to the hierarchical graphs 100% of the simulations for the four non-

hierarchical graphs were computable. As well as being computable, a cascading failure of one 

epoch was seen in each simulation for the non-hierarchical graphs. This is a result of when two 

routes exist between the demand and supply node; one of these is broken by the removal of 

trigger edge resulting in the remaining single route being overloaded and thus failing in the next 

epoch and resulting in no routes between the supply and demand nodes. Figure 4.40 shows that 

the random graph models, ER and GNM, are the most robust with 3.8% and 3.7% of edges 

being removed before there was insufficient capacity between the supply and demand nodes. 

In the BA and WS models, 2.0% and 3.3% of edges were removed showing a lower robustness 
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to cascading failures than the two random graphs. The HR model failed with a mean of 2.3% 

of edges removed indicating that it is more robust then the non-hierarchical graph with the 

exception of the BA graphs, which failed with 2% of edges removed, though in absolute terms 

7.6 edges were on average removed from the HR graph and 38.6 on average from the BA graph.  

 

 

Figure 4.39: The results from the cascading failure simulation (scenario (vi)) over the selected 

synthetic networks where the edge capacities were set to four, the demand six and multiple 

trigger edges were removed. 

 

 

Figure 4.40: Percentage of edges for cascading failure scenario (vi) removed from the graphs. 
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4.5 Robustness of a hierarchical critical infrastructure network 

4.5.1 Introduction 

There is building evidence of critical spatial infrastructures having a hierarchical structure, from 

the electricity network (Chang and Wu, 2011) to the road network (Yerra and Levinson, 2005). 

Such infrastructure networks use a hierarchy to transmit/support the delivery of flows over the 

network between two locations. At the centre of this is highest level of the hierarchy, be that 

the high voltage transmission network for electricity (Chang and Wu, 2011) or the 

motorways/highways in the road network (Yerra and Levinson, 2005).  

The electricity transmission and distribution network for England and Wales is used as an 

example of an infrastructure network which has a hierarchical organisation, with energy 

flowing from the power stations down to the substations (Chang and Wu, 2011). Using the 

electricity transmission network two forms of failure analysis are undertaken to explore the 

robustness of this hierarchical network. The first section, Section 4.5.2 explores the robustness 

of the hierarchical electricity network to multiple failures at the highest level of its hierarchy, 

the 400Kv transmission edges, exploring the robustness of the network to failures at the highest 

level of its structure. Three scenarios are investigated including the failure of one, two and three 

400Kv transmission line simultaneously. The second analysis undertaken, Section 4.5.3,  

investigates the robustness of the network to different configurations of spatial hazards, from a 

single large hazard, to eight smaller hazards but which affect the same proportion of network 

assets. Hazard areas are spatially generated randomly to affect 2% of the network in total in 

each scenario. This allows for an analysis of how the number of hazards on a hierarchical 

network affect its ability to function and how the spatial configuration of these also affects the 

infrastructure network. 

 

4.5.2 Hierarchical dependency of the electricity network 

The electricity transmission network, shown in Figure 4.41 and described in Chapter 3, Section 

3.9, has 323 400Kv or higher transmission lines (Table 4.11), forming the highest level in the 

hierarchy of transmission and distribution network. 
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Figure 4.41: 400Kv transmission line network for England and Wales. 
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Role/voltage (Kv) Number of nodes 

(substations) 

Number of edges 

Generators 156 NA 

400 161 323 

275 123 201 

132 1146 1361 

66 19 19 

33 4808 5781 

25 2 7 

22 2 1 

11 164090 164090 

0 (retired) 162 32 

Generator edges (connect 

generators to the network) 

NA 204 

Logical (connect co-

located substations) 

NA 1020 

Table 4.11: A breakdown of the nodes and edges in the electricity transmission and 

distribution network for England and Wales. 

 

Failures in the full electricity transmission and distribution network (Figure 3.27, page 82) are 

simulated using three scenarios, with the number of the edges removed in the highest level of 

the hierarchy in the network increasing with each scenario. In scenario (i) each 400Kv edge is 

removed, of which there are 323, in turn and the connectivity, through the hierarchy of the 

network to the 11Kv substations is checked to ensure each is still connected to the 400Kv 

transmission network. Scenario (ii) removes every possible pair of 400Kv transmission edges 

again checking that each 11Kv substation is still connected to the 400Kv network through the 

hierarchy of substations. This results in 52,003 different configurations of edge failures. Finally, 

scenario (iii) investigates the robustness of the electricity network to the failure of three 400Kv 

transmission edges, resulting in 5,564,321 failure simulations. The connectivity of the 164,090 

11Kv substations is then checked in each simulation to find those which are no longer connected 

through the hierarchy of the electricity network to the 400Kv substations.  

For all three scenarios the results returned that none of the 164,090 11Kv substations were 

disconnected from the 400Kv level of the electricity transmission and distribution network. 

This observed robustness to failures of multiple edges in the highest level of the electricity 

transmission network shows that together the transmission and distribution aspects of the 

network are robust to these failures, even when they are co-located spatially (Figure 4.42). 

Along with this suggesting that the 400Kv aspect of the transmission network is robust to 
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failures with sufficient redundancy to remain connected despite 3 three failures, it could also 

be interpreted that it is the hierarchical nature of the network which is robust. The second level 

of the hierarchy, 275Kv, and the third level, 132Kv, both have a large number of assets, 201 

and 1361 edges respectively (Table 4.11) along with 123 and 1146 substations. These form an 

extensive set of connections below the top level 400Kv assets, with the potential to provide 

alternative routes to the 400Kv level of the network. However, it should be noted that these 

results are based on the topology of the network alone, ignoring the capacities of the network 

assets, substations and transmission lines, along with the actual supply from the power stations 

and demand from the substations. It is only with greater data which allows a better attribution 

of the network assets that these factors could be considered in the analysis. 

 

Figure 4.42: (a) showing three co-located transmission edge failures (red) and (b) showing 

three spatialy distriuted transmission edge failues. 

 

4.5.3 Robustness to geographic hazards 

The robustness of infrastructure networks to geographic hazards is critical given that many of 

the threats they face are inherently spatial such as flooding and strong winds (Little, 2003). 

These events directly affect the specific parts of a network that fall within their spatial footprint, 

but can also lead to failures outside of the hazard, second-order impacts, through the failures 

cascading to those assets which lie outside of the footprint of the hazard (Little, 2002). When 

infrastructure networks are exposed to such hazards they have the potential to affect the ability 
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of the entire network to function (Little, 2003; Sterbenz et al., 2011). A model has been 

developed to measure the robustness of networks when exposed to spatial hazards, where a 

hazard is applied as an area (Figure 4.43(a)). All nodes and edges (assets) which fall within the 

spatial hazard are presumed to fail and referred to as first-order failures (Figure 4.43(b)). 

Following these failures, subsequent failures caused by nodes and edges becoming 

disconnected from the network through the first-order failures, are recorded and referred to as 

second-order failures (Figure 4.43(c)). 

 

Figure 4.43: Examplfying the cascade of failures though the electricity transmission and 

distribution network from an initial hazard. (a) an exampel hazard area with the electricity 

network, (b) the first-order failures shown in red and (c) with second order failures shown in 

blue. 
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In order to investigate the impact different spatial configurations of hazards may have on a 

hierarchical infrastructure network, an analysis of the robustness of the electricity transmission 

and distribution network has been performed using three sets of scenarios. The first (A) uses a 

single spatial large hazard, the second (B) uses four spatial hazards and the third (C) employs 

eight spatial hazards. In each case five randomly generated realisations were used to test the 

robustness of the network. For each realisation the size of the spatial hazard(s) has been set to 

affect approximately 2% of the total number of node assets in the network. Both the first-order 

failures, those nodes and edges which lie within the hazard areas are recorded, as well as the 

second-order failures, those nodes and edges which lie outside the hazards but are no longer 

connected to the network as a result of the first-order failures. With each hazard realisation set 

to effect 2% of the substations in the network, the relationship between the size of the hazard 

area(s) as well as their location(s) and the second-order failures can be examined across the 

three different scenarios. 

Scenario set A is shown in Figure 4.44, with counts of the first-order failures as a result of the 

hazards shown in Table 4.12. With each hazard area set to approximately 2% of nodes in the 

electricity network a similar number of nodes are seen to fail in each hazard realisation. These 

first-order failures show that there is a significant difference between many of the realisations, 

with (iii) for example having a larger impact on the transmission lines with twelve 400Kv lines 

affected compared to six and seven for realisation (i) and (ii) respectively (Table 4.12). 

Realisation (i), around the Lake District (Figure 4.44), affects 19 generators, many more than 

either of the other four realisations which affect 1-7. For all realisations a large number of the 

failed nodes are the 11Kv substations (Table 4.12), the lowest level of distribution assets within 

the electricity network. 

 



  

 163  

 

Figure 4.44: The single hazard areas for the five simulations in scenario set A. 

 

Realisation Total 

affected 

Breakdown of affected network assets (nodes and edges) 

generators 400Kv 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 logical gen 

i 
nodes 3403 19 5 1 24 0 118 1 3231 4 NA NA 

edges 3468 NA 7 2 37 0 148 2 3231 0 20 21 

ii 
nodes 3383 1 2 0 19 0 84 0 3275 2 NA NA 

edges 3534 NA 6 0 28 0 97 2 3383 0 14 6 

iii 
nodes 3259 7 3 0 21 0 89 1 3134 4 NA NA 

edges 3472 NA 12 0 34 0 126 2 3270 0 19 10 

iv 
nodes 3292 1 1 0 15 0 66 0 3207 2 NA NA 

edges 3414 NA 4 1 22 0 79 0 3292 0 13 3 

v 
nodes 3193 2 1 3 24 0 109 0 3051 3 NA NA 

edges 3344 NA 9 3 32 0 142 0 3136 0 20 2 

Table 4.12: First-order failure counts for the realisations in scenario set A. Figure 4.44 shows 

the location of the each hazard areas. 
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The second-order failures, are recorded in Table 4.13 and shown in Figure 4.45. In a number 

instances the second-order failures are small in number, such as for realisation (i) where only 

23 substations are affected where the hazard area covers an area of 12086.7Km2 of land. In 

contrast, 1087 substation failures have been identified in realisation (iii) which has a land area 

of 5043.8Km2. This suggests little relationship between the size of the hazard area and the 

number of second-order failures, and although realisation (i) has a large coastal boundary unlike 

realisation (iii), they both have perimeters on land which are less than 20Km’s different, 

248.2Km and 167.4Km respectively. However, the results (Table 4.12) show that for realisation 

(iii) over 30 33Kv substations were affected, all of which will have supplied the subsequent 

11Kv substations which failed. This is not the case in realisation (i) with only 3 such substations 

failing. This further suggests a lack of robustness in the distribution aspect of the electricity 

network and not within the transmission part of the hierarchy. 

The spread of the effect of the second-order failures is greatest for realisation (iii) where the 

average distance of a second-order substation failure is 7.32Km from the hazard area, Table 

4.15 and Figure 4.44, with the furthest individual failure being over 20.45Km away. In contrast 

the lowest spread is seen in realisation (i) where the average distance for a second-order 

substation failure is just 0.76Km and the maximum just 2.65Km (Table 4.15). Realisation (i) is 

very much an extreme case, with the other realisations, (ii), (iv) and (v), having average values 

closer to that of realisation (iii), 6.29Km, 3.18Km and 4.09Km respectively, and maximum 

distance values of 12.99Km, 15.819Km and 6.669Km. The comparatively shorter distances in 

realisation (i) are likely a result of the predominantly rural area around the hazard footprint 

resulting in a low density of network assets. 
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Realisation 
Total 

affected 

Second-order failures of network assets (nodes and edges) 

generators 400Kv 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 Logical gen 

i 
nodes 23 0 0 0 0 0 3 0 20 0 NA NA 

edges 18 NA 0 0 0 0 0 0 18 0 0 0 

ii 
nodes 359 4 0 0 0 0 5 0 350 0 NA NA 

edges 242 NA 0 0 0 0 2 0 240 0 0 0 

iii 
nodes 1087 0 0 0 5 0 31 0 1051 0 NA NA 

edges 940 NA 0 0 0 0 22 0 913 0 5 0 

iv 
nodes 166 0 0 0 0 0 2 0 164 0 NA NA 

edges 79 NA 0 0 0 0 0 0 79 0 0 0 

v 
nodes 171 0 0 0 0 0 2 0 169 0 NA NA 

edges 82 NA 0 0 0 0 0 0 82 0 0 0 

 Table 4.13: Second-order asset failure counts for the realisations in scenario set A. 

Mapped in Figure 4.45. 

 

Realisation 
Node distance from hazard (Km): 

𝒙̅ Maximum 

i 0.76 2.65 

ii 6.29 12.99 

iii 7.32 20.45 

iv 3.18 15.82 

v 4.09 6.67 

Table 4.14: Average and maximum distance of the second-order substation failures from the 

hazard of the realisations in scenario set A. 
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Figure 4.45: Second-order failures for realisations in scenario set A. 
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The hierarchical electricity network was exposed to four smaller hazards, scenario set B (Figure 

4.46), created randomly, with again approximately 2% of the nodes in the network affected for 

each realisation. For each of the five realisations the first-order failures vary with regard to the 

type of features which are affected (Table 4.15). Across all realisations very few generators are 

effected, though a small number of assets towards the highest level of the hierarchy, the 

transmission substations and lines, are affected due to the random location of the hazard areas. 

Realisation (iv) has the largest effect on the transmission network with the greatest number of 

high voltage substations, two 400Kv and four 275Kv, affected as well as eight and nine 400Kv 

and 275Kv transmission lines respectively. The location of the hazard areas for this realisation, 

three of which are within or very close to dense network areas (Figure 4.46), suggesting that 

those lines affected may be those serving the urban areas, potentially having less impact on the 

wider network. With a hazard area of 1756.0Km2, realisation (v) has less of an impact on the 

transmission network than realisation (iv), which affects an area of 995.5Km2, indicating that 

realisation (v) hazard areas are located in slightly more rural areas where the network is less 

dense requiring greater area for 2% of the network to be affected.  

 

Figure 4.46: Map of the four hazard areas for each of the five realisations in scenario set B. 
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Realisation 
Total 

affected 

Breakdown of affected network assets (nodes and edges) 

generators 400Kv 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 logical Gen 

i 
nodes 3059 2 1 0 13 0 61 0 2982 0 NA NA 

edges 3513 NA 3 0 24 0 96 0 3377 0 11 2 

ii 
nodes 3207 0 1 2 20 1 97 0 3085 1 NA NA 

edges 3506 NA 6 5 34 1 142 0 3295 2 21 0 

iii 
nodes 3209 0 1 1 23 0 93 0 3091 0 NA NA 

edges 3642 NA 3 1 36 0 135 0 3444 1 22 0 

iv 
nodes 3211 1 2 4 26 0 104 0 3071 3 NA NA 

edges 3605 NA 8 9 43 0 132 1 3387 1 23 1 

v 
nodes 3160 2 2 2 24 0 105 0 3023 2 NA NA 

edges 3467 NA 8 5 41 0 140 0 3249 0 22 2 

Table 4.15: First-order asset failure counts for the five realisations in scenario set B. Figure 

4.46 shows the hazard areas for the five realisations. 

 

The second-order effects of these hazards show a greater impact (Table 4.16), than for the single 

hazard realisation in scenario set A (Table 4.13), with many more substations becoming 

disconnected from the network. Realisation (v) had the greatest impact with 6580 substations 

affected as a result of the first-order network asset failures. These hazards affected an area of 

1755.9Km2, whereas realisation (i) which affects the largest area, 3429.6Km2, resulted in 5452 

substation failures. The realisation with the hazards which affected the smallest land area, 

633.6Km2 in realisation (iii), resulted in 6069 substation failures in total, clearly demonstrating 

that as with the single hazard realisations in scenario set A, that the areas affected has little 

relationship to the number of second-order failures. Instead, the results from Table 4.15 and 

Table 4.16 suggest that the number of second-order failures, rather than being dictated by the 

size of the hazard areas or the number of failures in the transmission level of the network, are 

instead more related to the number of first-order failures in the lower level distribution network. 

The trends shown in Figure 4.47 shows that the total second-order node and edge failures follow 

a similar trend, with the closest match shown in the trend of the first-order failures for the 33Kv 

edges. The trend line for the high level transmission edges, the 400Kv, 275Kv and 132Kv edges, 

follow the general trend for the second-order failures apart from in realisation (iv). This suggest 

a correlation between the number of second-order edge failures and second-order node failures, 

a relationship which was expected given the failure of an edge will lead to the failure of at least 

one node. It is also noticeable that across all five scenarios the number of second-order node 

and edge failures was similar, despite each scenario having four hazard areas which were 



  

 169  

randomly distributed over the network. This suggests that the impact of the hazards in each 

scenario, although they may have varied individually, when aggregated results in a similar 

number of failures. 

 

Realisation 
Total 

affected 

Second-order failures of network assets (nodes and edges) 

generators 400Kv 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 Logical gen 

i 
nodes 5452 4 4 1 28 0 121 0 5294 0 NA NA 

edges 3183 NA 0 0 2 0 43 0 3086 0 5 2 

ii 
nodes 6463 4 5 7 40 2 164 0 6239 2 NA NA 

edges 4226 NA 0 0 4 0 95 0 4113 0 11 3 

iii 
nodes 6059 4 4 1 32 0 147 0 5869 2 NA NA 

edges 3552 NA 0 0 4 0 72 0 3465  9 2 

iv 
nodes 4953 4 3 4 28 0 131 0 4778 5 NA NA 

edges 2648 NA 0 0 0 0 56 0 2589 0 3 0 

v 
nodes 6580 2 6 2 39 0 179 1 6343 8 NA NA 

edges 4158 NA 0 0 4 0 74 0 4071 0 8 1 

 Table 4.16: Second-order asset failures for the five realisations in scenario set B, also 

mapped in Figure 4.48. 

 

 

Figure 4.47: Trends between the number of first and second-order asset failures for selected 

nodes and edges for each realisation in scenario set B, shown using a log scale. 
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The geographic pattern of second-order failures are shown in Figure 4.48. It is clear that in both 

realisations (ii) and (iii) there is wide dispersal of second-order failures, where (ii) shows a large 

spread of failures in the North East of England and (iii) shows this in East Anglia also. This 

large spread of failures can also be seen in Table 4.17 where the maximum distance for the 

second-order failures for realisations (ii) and (iii) are 85.7Km’s and 60.1Km’s, over 10Km’s 

greater than for any other of the realisations. This suggest a poor robustness to failures in these 

areas, though the North East of England would also normally be connected to the power 

network in Southern Scotland which may improve the robustness in this region. The average 

distance from the hazard areas for the second-order failures for all five realisations is 9Km - 

19Km (Table 4.17). This is greater than the observed values for scenario set A, 0.7Km – 7.3Km 

(Table 4.14), a result of the smaller hazard areas being more likely to lie within urban areas 

whereas the urban areas tend to fall completely within the single hazard areas. This causes fewer 

second-order failures as there is a lower density of assets around the boundaries of the single 

hazard areas compared to those smaller areas which lie within urban areas. 

 

Realisation 
Node distance from hazard (Km): 

𝒙̅ Maximum 

I 10.93 44.58 

Ii 13.16 85.74 

Iii 18.24 60.08 

Iv 9.63 32.51 

V 11.23 49.31 

Table 4.17: Average and maximum distance of the second-order substation failures from the 

hazard areas for each realisation in scenario set B. 
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Figure 4.48: Second-order substation and edge failures for the five realisations in scenario set 

B. 
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The final set of scenarios, set C, uses eight small hazard areas to perturb the hierarchical 

electricity network, with hazard sets for each of the five realisations shown in Figure 4.49. 

Again the areas are selected at random and with the total number of nodes directly affected 

approximately 2% of the total in the network. All five realisations effect the transmission 

features, the highest level of the hierarchy, in the network similarly with regard to the failure of 

the 400Kv and 275Kv substations (3, 6, 3, 4 and 3) and edges (16, 16, 10, 9 and 12) (Table 

4.18), with little discernible difference between the different realisations. There are no direct 

failures of generators in realisation (iii), but all others result in at least a single failure, Table 

4.18, which has the potential to remove critical power supply stations from the network.  

 

Realisation 
Total 

affected 

Breakdown of affected network assets (nodes and edges) 

generators 400Kv 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 logical gen 

i 
nodes 3323 3 2 1 31 0 128 0 3156 2 NA NA 

Edges 3805 NA 9 7 56 0 198 0 3501 2 27 5 

ii 
nodes 3244 2 3 3 29 0 91 0 3115 1 NA NA 

Edges 3742 NA 8 8 58 0 134 0 3508 3 21 2 

iii 
nodes 3371 0 1 2 21 1 102 0 3244 0 NA NA 

Edges 3893 NA 4 6 35 1 144 0 3681 0 22 0 

iv 
nodes 3065 1 2 2 18 2 86 0 2953 1 NA NA 

Edges 3518 NA 6 3 32 2 130 0 3325 1 18 1 

v 
nodes 3145 1 1 2 24 0 94 0 3020 3 NA NA 

Edges 3690 NA 5 7 40 0 156 0 3457 1 23 1 

Table 4.18: First-order network asset failures for each realisation in scenario set C. The 

location of the hazards for these realisations are shown in Figure 4.49. 
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Figure 4.49: Showing the location of the eight hazard areas for each of the five realisations in 

scenario set C. 

 

The second-order failures for the five hazard realisations in scenario set C show a significant 

variation in effect on the electricity network with realisation (iii) only resulting in the failure of 

a further 5187 substations/generators (Table 4.19), whereas realisation (i) results in the failures 

of 9173 substations. With both realisations (i) and (iii) having four hazard areas in urban areas 

as well as four non-urban locations, the distribution between dense and less dense areas of 

network assets is similar. However, realisation (i) has three hazards in close proximity to each 

other in London, potentially causing a greater proportion of failures as the failure caused by 

each hazard may have affected the robustness of the substations around the other hazards, 

increasing the number of second-order failures observed.  

The total for second-order substation failures in realisation (i) is greater by 2153 than the total 

for any other of the realisations (Table 4.19). This same difference is not observed for the first-

order failures (Table 4.18) with the number of substations failures for realisation (i) being 3323, 

less than observed for realisation (iii) which has a total of 3371. However, there is a noticeable 

difference between the five realisations with the number of 33Kv edge failures, with 198 first-
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order failures for realisation (i), with the next highest being 156 for realisation (v). The trend 

for the first-order 33Kv edge failures seems to provide an explanation for the varying number 

of second-order substation failures, as was the case for scenario set B (Figure 4.47). Although 

the hazard areas in realisation (i) cover the largest area, 2811.587Km2, this is a result of the 

three of the hazard areas lying in rural areas. This is further exemplified by realisation (ii) which 

covers the second largest area of land at 940.0Km2, yet has the second fewest second-order 

substation failures. These results strongly suggest a relationship between the number of second-

order failures and the location of the hazards, rather than the size, with those in urban areas 

affecting a greater number of distribution lines and substations, such as the 33Kv edges, leading 

to a greater number of second-order failures. The trend lines showing the relationship between 

the first and second-order node and edge failures across the five scenarios for scenario set C 

(Figure 4.50) indicate that the strength of the relationship between first-order failures and 

second-order failures is weaker than for scenario set B (Figure 4.47). This is likely a result of 

the greater number of hazard areas in each scenario and the local network structure in and round 

these areas creating a greater variation in robustness than when only four hazard areas were 

used in scenario set B. As with the results from the previous scenario the trend lines appear 

relatively flat, a result of the similar robustness to the perturbations exhibited in each of the five 

simulations. This suggests that the electricity network may have a uniform robustness, with the 

same response to failures no matter the location of the hazards. 

 

Realisation 
Total 

affected 

Second-order failures of network assets (nodes and edges) 

generators 400Kv+ 275Kv 132Kv 66Kv 33Kv 25Kv 11Kv 0 logical Gen 

i 
Nodes 9173 5 10 7 59 1 276 0 8813 2 NA NA 

Edges 5306 NA 0 0 6 0 120 0 5162 0 17 1 

ii 
Nodes 6325 7 11 7 47 0 191 0 6055 7 NA NA 

Edges 3635 NA 0 1 1 0 79 0 3549 0 4 1 

iii 
Nodes 5187 4 6 9 45 0 139 0 4977 7 NA NA 

Edges 2596 NA 0 0 1 0 48 0 2541 1 5 0 

iv 
Nodes 7020 1 4 4 41 2 183 0 6779 6 NA NA 

Edges 4144 NA 0 0 6 0 78 0 4047 0 12 1 

v 
Nodes 6770 4 5 8 41 2 173 0 6532 5 NA NA 

Edges 3788 NA 0 0 2 0 80 0 3693 0 11 2 

Table 4.19: Second-order network asset failure counts for each realisation in scenario set C. 
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Figure 4.50: Trends between the number of first and second-order asset failures for selected 

nodes and edges for each realisation in scenario set C, shown using a log scale. 

 

The average distance of the second-order substation failures for all realisations is very similar, 

between 7.7Km and 11.5Km suggesting that these failures occur relatively close to the hazard 

areas with a similar behaviour across all areas. For the maximum distance of second-order 

failures from the hazard areas there is much greater range (55.2Km), with the maximum 

distance found in realisation (v) being 87.8Km compared to the shortest at 32.6Km for 

realisation (ii). The second greatest maximum distance (56.4Km) is 30Km less than realisation 

(v), showing that realisation (v) is an extreme case. This distance is observed in the North East 

England (Figure 4.51), where the failures spread to the border with Scotland, where no network 

has been included in this analysis. It is suggested that if a network for Scotland were to be 

included, the results would differ as a second high level supply line may connect the affected 

area reducing the number of second-order failures. However, again there is no relationship 

evident between the distance of second-order failures in this realisation set and the size of the 

areas, with realisation (v) affecting the smallest areas (657.6Km2), while realisation (ii) affects 

a greater area (940.0Km2), with realisation (i) affecting the greatest area (2811.6Km2). This 

suggests the effect of the hazard areas is again dependent entirely in the location of the hazard 

areas. 
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 Figure 4.51: Second-order asset failures for the five hazard realisations in scenario set 

C. 
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Realisation 
Node distance from hazard (Km): 

𝒙̅ Maximum 

i 10.76 47.85 

ii 7.75 32.56 

iii 8.44 56.43 

iv 11.50 48.82 

v 11.36 87.79 

Table 4.20: Average and maximum distance from hazard areas of second-order substation 

failures for the five realisations in scenario set C. 

 

4.6 Summary 

This chapter has presented the results from the analysis of a suite of synthetic graph models and 

critical spatial infrastructure networks in order to understand whether the structure of 

hierarchical infrastructure networks results in a different level of robustness than non-

hierarchical infrastructure networks.  

The results have shown that hierarchically organised graphs can be recognised from non-

hierarchically organised graphs. The most effective method employed was through the use of 

graph metrics such as the number of CB and the MBC where the hierarchical graphs were found 

to be statistically different from the non-hierarchical graphs using these metrics. Typically, the 

hierarchical graphs had < 2 CB per node and MBC values > 0.3. The response exhibited by 

hierarchical and non-hierarchical graphs to perturbations also shows significant differences. 

The hierarchical models have been found to exhibit a much weaker robustness to perturbations, 

with the hierarchical graphs on average failing 28.37% quicker than the non-hierarchical graphs. 

The hierarchical HC model did however fail more similarly to the non-hierarchical graphs than 

the other hierarchical graphs, exhibiting a greater robustness to perturbations. An analysis using 

a capacity constrained cascading failure model over the hierarchical and non-hierarchical 

graphs has shown that the hierarchical graphs were much less robust, failing nearly twice as 

quick in all six scenarios, or not being computable due to poor connectivity. However, the HR 

graph was an exception to this exhibiting a robustness more similar to the non-hierarchical 

graphs. 

It has been found that critical spatial infrastructure networks including air networks, river 

networks, and rail networks exhibit characteristics, such as values for the MBC and number of 

CB which are the same, to a greater extent, as those found the already analysed hierarchical 

graphs. Some of these networks, such as the river networks, have hierarchical degree 
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distributions, though some infrastructure networks including some rail and energy networks do 

also share similarities with the non-hierarchical graph models such as the scale-free and small-

world models. For a number of infrastructure networks, including the road and rail networks, 

the metric values have returned a different similarity to graph models than the degree 

distributions, highlighting the ability of the higher level metrics to provide deeper insights into 

the organisation of the networks. 

The robustness of the infrastructure networks also showed similarities to the hierarchical graphs, 

with all infrastructure networks analysed behaving like the hierarchical TREE, HR and HR+ 

graphs. None of the infrastructure networks returned a response similar to that exhibited by the 

most robust hierarchical model, the HC model however. 

Finally, a case study using the electricity transmission and distribution network for England and 

Wales has shown that the network is robust to a range of failure scenarios. This included the 

targeted removal of multiple 400Kv transmission lines, the highest level in the network, finding 

that this had no effect on the connection of the 11Kv substations to the transmission network. 

The robustness of the network to a range of spatial hazards was also explored using three 

scenarios showing as the number of hazards increases with the total number of affected node 

assets remaining similar (2% of substations), the network becomes more vulnerable to second-

order failures. For single hazards a mean of 358.8 second-order substation failures was recorded, 

with a mean of 6366.8 for the eight hazard realisations. The land area covered by the hazards 

was found not to be a factor in the resulting number of second-order substations failures, with 

instead the first-order failure of 33Kv edges, those which feed the 11Kv substations, found to 

be a possible factor. However, the location of the hazard areas seems to be the biggest factor in 

the scale of the second-order failures, with those in urban areas having the greatest effect. 
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Chapter 5: Discussion 

 

5.1 Introduction 

The dependence on critical infrastructure networks within societies around the world, and the 

vulnerability of these to a range of hazards and subsequent failures, has been highlighted in 

Chapter 2. The literature review also showed that graph models, such as the scale-free and 

small-world models, have been used for the analysis of critical infrastructure networks to 

improve our understanding of their characteristics, including their robustness to failures (Albert 

et al., 2000; Bassett and Bullmore, 2006). This review also highlighted the existence of a 

hierarchical structure in some real networks such as those in social sciences and biological 

networks (Ravasz et al., 2002; Clauset et al., 2008), with graph models being developed for 

such graph topologies (Ravasz et al., 2002; Ravasz and Barabasi, 2003). However, there exists 

relatively little understanding of whether certain critical infrastructure networks exhibit a  

hierarchal structure either topologically or in terms of the flows and movements taking place 

on them. To address this, Chapter 3 presented a methodological framework and suite of 

software to investigate the charachtersitics of hierarchical networks and if critical infrastructure 

networks exhibit these charachtersitics. Chapter 4 then presented the result of this analysis. In 

this chapter a discussion is presented which synthesises the findings of Chapter 4 in order to 

consider the robustness of critical infrastructure networks and the subsequent potential impacts 

on the broader systems they operate within. 

 

5.2 Characteristics of hierarchical graphs and networks 

5.2.1 Graph models and characteristics 

The analysis of the suite of eight graph models has shown that hierarchical graphs can be 

distinguished from non-hierarchical graphs (Chapter 4, Section 4.2, page 101) using three 

metrics, the maximum betweenness centrality (MBC), the assortativity coefficient (AC) and the 

number of cycle basis per node (CB). Via a pair-wise analysis of the three metrics (Figure 4.2, 

Figure 4.3 and Figure 4.4), it is clear that the graphs generated by the four hierarchical graph 

models return different characteristics to those generated by the four non-hierarchical models. 

In general the hierarchical models exhibit lower AC values, ≤-0.17 with greater MBC values, 

≥0.25 and lower CB values, ≤1.91 compared to AC values ≥-0.05, MBC values ≤0.08 and CB 

values ≥6.86 for the non-hierarchical models (Table 4.2, page 106).  
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The MBC values, an indication of the level of connectivity within a graph (Girvan and Newman, 

2002), are higher for the hierarchical graphs, with an average of 0.52, whereas the non-

hierarchical models have an average of 0.03. This indicates a reliance on one or possibly several 

critical nodes in the hierarchical graphs in order to remain traversable. The HC and TREE 

models exhibit particularly high values for the MBC metric, an average of 0.77, indicating that 

these two models in particular are more dependent on a single node than all other models. Those 

graphs with high MBC vales are more likely to be relying on a hub node, with a large proportion 

of shortest paths passing through this, and thus is more likely to be vulnerable to the failure of 

these nodes, especially in targeted failure models. 

Inversely related to the MBC metric is the CB metric, with lower values, showing fewer 

loops/cycles in the graph and hence potentially a smaller number of unique paths between any 

pairwise set of nodes. This is shown by the hierarchical models, where they have an average 

CB of 0.74, whereas the non-hierarchical graphs have an average of 12.86. A low value also 

indicates a lack of redundancy in the graphs, with few cycles indicating the lack of alternative 

paths between nodes (Katifori et al., 2010). Therefore the analysed hierarchical graphs may be 

more vulnerable to failures compared to the non-hierarchical graphs. The AC metric shows a 

difference in the structure of the hierarchical and non-hierarchical graphs with the hierarchical 

models having a mean of -0.34, indicating nodes with different degrees are connected to each 

other (Newman, 2002), as might be found in a network relying on hub nodes. The non-

hierarchical models on the other hand have a mean of  0.02, similar to Newman (2002) who 

found random and scale-free models have a value of zero. These values suggest the degree of 

connected nodes are not correlated, indicating a more mixed structure which may be more 

robust to perturbations (Newman, 2002). This indicates no reliance, or a limited reliance, on 

hub nodes within the non-hierarchical graphs and thus less reliance on a small subset of 

hub/critical nodes.  

With the distribution of metrics being statistically different between the four suites of 

hierarchical and non-hierarchical graphs, it is clear the metrics can be employed to distinguish 

between the two sets of models (Table 4.3). Only two of the metric distributions between the 

hierarchical and non-hierarchical graphs fall below the critical value of 85 which indicates 

statistically different distributions (Swain and Davis, 1978), with these being the HR and HR+ 

values against the BA model for the AC-MBC metric combinations (75.24 and 83.36 

respectively). The identified similarity between these models is only across one combination of 

the metric distributions, and the values are still high indicating that the similarity between them 

is relatively similar. There is thus a clear difference between the two sets of graph models, with 
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each having disparate characteristics as identified through the three graph metrics, implying 

that hierarchical graphs are distinct from non-hierarchical graphs.  

The results have highlighted that the use of the three metrics, MBC, AC and CB, has allowed 

the characteristics of the hierarchical graphs to be identified, with these being unique from those 

found for the non-hierarchical graphs. Previous research has focused on identifying the 

characteristics of graphs using metrics such as the degree distribution, the average path length 

and the clustering coefficient (Newman, 2003b; Amaral and Ottino, 2004; Boccaletti et al., 

2006). These all focus on the topological structure of the graphs, though as discussed previously 

(Chapter 3, Section 3.4.2), these also have a number of limitations when measuring the 

characteristics of graphs (Ouyang et al., 2009). The application instead of the MBC, AC and 

CB metrics enabled high-level insights into the graphs analysed to be ascertained compared to 

metrics such a degree distribution. The betweenness centrality metric for example relates to the 

connectivity of the graph through reporting on the importance of each node (Girvan and 

Newman, 2002). The metric calculates a value for each node on its importance for the shortest 

paths through the network with regard to all other nodes, and thus the role the node plays in 

keeping the network well connected, rather than just reporting on its topological properties. The 

successful application of these higher-level metrics in this research further indicates that 

research can look beyond the traditional metrics, degree distribution, average path length and 

clustering coefficient, for the characterisation of graph structures. A number of other studies 

have examined the use of these metrics including research by Caldarelli et al. (2004) who 

examined using alternatives to the clustering coefficient when characterising the structure of 

graphs and Foster et al. (2010) who employed assortativity measures when comparing the 

structure of directed graphs and networks. However, none of those studies, or others found, 

have performed a comprehensive ensemble analysis either over an extensive range of graph 

models as employed in this work, or with as many exemplars with regards to the models 

employed. 

The comparison of the degree distributions over the graphs generated by the eight models are 

less conclusive at being able to differentiate between hierarchical and non-hierarchical graphs. 

There is a tendency for the plots for the hierarchical graphs to have a number of peaks and 

troughs when plotted (Figure 4.1, page 103). These features though also appear in the plots for 

the non-hierarchical graphs such as in the scale-free plots, especially towards the tail of the 

distribution. Further to this, there is little differentiation possible between the degree 

distribution plots for the HR and HR+ graph models, indicating that these models may produce 

graphs which are near identical. However, these have been shown not to be identical in the 
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metric results discussed in the above paragraphs highlighting the ability of the higher-level 

metrics to identify characteristics otherwise not seen in metrics such as the degree distribution.  

The results have also shown that within the two groups of models, the non-hierarchical and 

hierarchical graph models, there is little homogeneity within them, highlighting the breadth of 

the spectrum of graph models employed in the research. Of the 18 statistical values from the 

transformed divergence analysis measuring the overlap between the non-hierarchical graphs 

five values were below 70, with the greatest similarity being between the BA and WS model 

where values of 14.13, 43.86 and 43.98 were returned (Table 4.3, page 109). Both models share 

some similar characteristics including similar average path lengths (Albert and Barabasi, 2002), 

giving rise to the observed similarity. For the four hierarchical graph models, the similarities 

observed were between the HR and HR+ models, with values less than 40 for the three metric 

combinations. The similarity of these two models is to some degree expected given that both 

models share the same base graph (the TREE model) and have similar generation methods 

(Chapter 3, Section 3.3). Other studies examining the properties of graphs have focused on a 

smaller number of models, or have been specific to a single model. Work by Barrat and Weigt 

(2000) for example examined the properties of small-world graphs with the only the one graph 

type used while Newman (2002) only used two graph models along with a number of real-

world networks to examine assortative mixing in networks. A greater a number of models were 

used by Costa and Silva (2006) with three employed to investigate the effect of a new set of 

metrics. However, this still falls short of the eight employed in this work. Further to this, none 

of these previously mentioned studies have employed large ensembles of the graphs employed, 

with these limited to single figures in some cases, with Costa and Silva (2006) only employing 

three versions of each model, significantly less than 1000 employed for six of the eight models 

in this research (with the other two have 7 and 31 exemplars). 

 

5.2.2 Critical spatial infrastructure networks 

Comparison of the graph model results with real critical infrastructure networks using the AC, 

MBC and CB metrics (Chapter 4, Section 4.3.3, page 123) revealed that 37 of the 42 networks 

were more similar to the hierarchical models than the non-hierarchical graph models (Figure 

4.14, Figure 4.23 and Figure 4.24). This indicates that many of the spatial infrastructure 

networks are better represented through one of the four hierarchical graph models than the four 

non-hierarchical graph models, two of which, the small-world and scale-free models, have long 

been described as being similar to infrastructure networks (Newman, 2003b; Boccaletti et al., 

2006).  
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Of the infrastructure networks investigated the air networks showed a greater similarity to the 

hierarchical HR/HR+ graph models, with the river networks also showing the greatest similarity 

to the hierarchical TREE model. These both exhibited high MBC values, especially the river 

networks, along with AC values <-0.2, resulting in these being similar to the TREE and 

HR/HR+ models. These characteristics also suggest the presence of hub nodes within the 

networks, potentially making them vulnerable to failures. As well as these, a number of the rail 

networks, including local system such as the Tyne and Wear Metro, showed the greatest 

similarity to the HC graph model, whereas the rest, including national networks for Ireland and 

Great Britain, were most similar to the HR+ graph model. A spread of values were observed 

for the MBC metric across the rail networks. The local rail networks which were similar to the 

HC graph model, exhibiting high values, >0.5, making these appear vulnerable to failures. 

However, the other rail networks exhibited values <0.5, and with AC values >-0.1, suggesting 

a degree of robustness. The energy networks were most similar to the HR+ graph model along 

with the road networks, with values of 0.18<MBC<0.5, and -0.2<AC<0.2. Both of these sets of 

networks are hierarchical, but show a tendency for a more mixed graph structure with greater 

redundancy than in the other infrastructure networks, potentially making these more robust to 

failures. 

These results are in contrast to findings from other research, with the structure of infrastructure 

networks varying from those found through the employed metrics. For example air networks 

have previously found to be scale-free (Verma et al., 2014) or to have small-world properties 

(Bagler, 2008a), and electricity networks found to possess scale-free properties (Albert et al., 

1999; Rosas-Casals et al., 2007; Hines and Blumsack, 2008). Sen et al. (2003) has also shown 

the Indian rail network shares the characteristics of the small-world graph model, although 

Latora and Marchiori (2002) found for Boston the local rail network was not similar to the 

small-world model, but the transport system as a whole was. There continues to appear to be a 

discontinuity between the results reported in these studies and the characteristics identified in 

this work, suggesting the employed metrics are identifying different characteristics which 

provide greater insights into the structure of the networks, and in many cases, the hierarchical 

form they take. This implies that many infrastructure networks may have a different structure 

to those which have been previously reported using traditional metrics, such as the degree 

distribution, the average path length and the clustering coefficient. 

The higher-level metrics employed show that the characteristics of most infrastructure networks 

imply a greater similarity with the hierarchical models suggesting these are a better 

representation of spatial infrastructure networks. Hierarchical models, such as the HR and HR+, 
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can be used to represent infrastructure networks due to the similarities that are present between 

the real-world networks and the graph models. The use of hierarchical models has been 

suggested previously but with little reference to the infrastructure sector, for example 

simulating networks from biology (Ravasz et al., 2002). However, it is now clear, through the 

results presented in this work, that infrastructure networks can be hierarchical. 

It was previously suggested by Barabasi et al. (2003) that geographical constraints prevent 

hierarchies forming in spatial networks, with the cost of building and adding long links a cause 

for this. This research has found otherwise, with a number of infrastructure networks, including 

some rail and energy networks, where costs can be associated to the development of links, 

appearing to be more similar to hierarchical models. The air networks analysed also returned 

hierarchical characteristics, though there are no (or little) costs associated with the construction 

of physical links between airports unlike in all other sectors analysed. None of the 

aforementioned networks were analysed by Barabasi et al. (2003), which instead was limited 

to the analysis of an actor network, a language network, a metabolic network, a protein 

interaction network and sample networks of the world wide web and the internet (at the AS 

(autonomous system) level). The suite of networks analysed was limited in comparison to those 

analysed in this work, which covered a breadth of spatial infrastructure sectors with over 40 

networks analysed. It is therefore clear despite the suggestion by Barabasi et al. (2003) that 

spatial networks can indeed be hierarchical. 

It is important to note that none of the infrastructure networks fell within the ellipses of the 

TREE or HC graph models (Figure 4.14, Figure 4.23 and Figure 4.24), while at least 20 

infrastructure networks for each metric distribution fell within those for the HR and HR+ graph 

models. This indicates that such infrastructure networks do not have the repeating deterministic 

hierarchical structure found in the TREE model, but have some degree of ‘positive’ stochastic 

redundancy in their hierarchical structure such as the intra and inter level connectivity of the 

HR and HR+ models (Chapter 3, Section 3.3). This is likely a result of the evolution of the real-

world networks, where the hierarchical structure, although not necessarily designed, has 

emerged through a drive for operational efficiency and economic viability, e.g. short links 

which provide the service to more users (Gastner and Newman, 2004), along with the evolution 

of the network over time to meet changing user requirements. Infrastructure networks, while 

being hierarchical, are closer to those models which do not represent the extremes of 

hierarchical structure, suggesting any models such as the HR and HR+ as developed in this 

work could be adopted as better representations of infrastructure networks. These offer the 
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ability to retain an underlying hierarchical tree structure, though with the flexibility to add new 

links which break the strict hierarchical rules found in the TREE model. 

While the results presented for the infrastructure networks using the metrics of MBC, AC and 

CB have found them to be hierarchical, the results from the degree distribution comparisons 

between the infrastructure networks and graph models are less conclusive (Chapter 4, Section 

4.3.2). For example, the air networks have degree distributions closest to the scale-free model, 

but from the analysis of MBC, AC and CB these are shown to be hierarchical (Figure 4.20), 

and the regional rail networks have distributions most similar to the small-world model, but 

return metric values most similar to the hierarchical graphs. The observed differences are 

brought about through the deeper insights the higher-level metrics, such as the betweenness 

centrality and assortativity coefficient, can reveal about a graph, as these reveal characteristics 

that are not just topologically based. The degree distribution has also been suggested as being 

redundant in the characterisation of spatial planar networks (Barthelemy, 2011), with it being 

stated that for road networks “it is of little interest” due to string spatial constraints resulting in 

a cut-off in the distribution. Other studies have used alternative methods to the degree 

distribution to examine the characteristics of graphs, such as the diameter (Albert et al., 1999; 

Bollobás and Riordan, 2004), centrality measures (Freeman, 1978; Barthélemy, 2004; Newman, 

2005; Crucitti et al., 2006) and the cyclic nature of the graphs (Caldarelli et al., 2004; Ginestra 

and Matteo, 2005; Rozenfeld et al., 2005; Klemm and Stadler, 2006), all allowing greater 

insight into the graph structure. As such, there is growing evidence that these higher-level 

metrics should be used in the characterisation of infrastructure networks. 

Although the results have found that 37 of the 42 infrastructure networks investigated are 

hierarchical, at least 17 of the infrastructure networks fell outside of the single standard ellipses 

of all graph models across the three metrics (Figure 4.14, Figure 4.23 and Figure 4.24). This 

suggests that the suite of graph models employed could be extended to try and find models 

which better match some of those infrastructure networks. Recently models have been 

developed (Barrat et al., 2005; Barthelemy, 2011) which focus on representing specific 

infrastructure systems where spatial constraints are considered. Specific examples include 

models for air networks where the distance between nodes is considered in the growth of new 

links (Wilkinson et al., 2012), with a similar model proposed by Gastner and Newman (2006) 

for both road and air networks. Such models generate networks which reportedly represent 

spatial infrastructure networks more realistically, though this field is still emerging with work 

focused on a select number of infrastructure sectors. The adoption of these models in future 

research would allow further insights to be gained on the infrastructure networks analysed, with 
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the role geographic constraints play in the evolution of real-world spatial infrastructure 

networks being considered in the network models. The extent geographic constraints also play 

on the structure of and thus characteristics of networks, and the similarity of these to 

hierarchical models should also be explored. 

 

5.2.3 Robustness analysis 

The robustness analysis shows that hierarchical graphs are, on average, less robust to all three 

failure methods than the non-hierarchical models, failing 27.9% quicker (Chapter 4, Section 

4.2.5, page 111). As mentioned in the previous section, 37 of the 42 analysed infrastructure 

networks appear to be hierarchical, and were found fail in a similar manner to the hierarchical 

graphs with the infrastructure networks failing on average after 59.8% of nodes have been 

removed (Chapter 4, Section 4.3.4, page 135), whereas the hierarchical graph models failed 

after an average of 61.1%. This highlights a critical lack of robustness across the spatial 

infrastructure networks analysed, making them vulnerable to perturbations. The results have 

also shown that the infrastructure networks fail 21.3% (Chapter 4, Section 4.3.4) quicker when 

exposed to the targeted failure methods compared to the random method, indicating a greater 

vulnerability to the failure of the most critical nodes in the networks. This same susceptibility 

to the failure of critical nodes in hierarchical graphs/networks was also suggested by Wuellner 

et al. (2010) following the analysis of the networks for a range of air passenger carriers in the 

USA. This highlights a major vulnerability of the hierarchical infrastructure networks, with 

poor robustness both in terms of random failures or the failures of critical components as 

suggested through the targeted failure analysis. With modern societies depending on the 

services these infrastructure networks provide (Boin and McConnell, 2007; Sterbenz et al., 

2011), this result clearly indicates much work is required to strengthen and improve the 

robustness of these hierarchically structured networks to make them much more robust and 

dependable. 

The HC model exhibited very different failure characteristics to the other hierarchical graph 

models. The HC model was much more robust to the failure methods, failing 21.7% quicker 

than the other hierarchical models for the random failure method and an average 48.0% quicker 

for the targeted failure methods. The structure of the HC model, a hierarchical set of 

communities, results in the network becoming fragmented into disparate communities (Section 

4.2.6 and Figure 4.7(c)), but these themselves remain connected and robust due to a strong level 

of connectivity within them (Ravasz et al., 2002). This makes these graphs much more robust, 

with disparate communities still connected and individually robust, giving a model that behaves 



  

187 

 

more like the non-hierarchical models when perturbed. Employing the HC structure in 

infrastructure networks could potentially make them more robust to perturbations. The structure 

would allow for regional parts of the network to continue to function when the network is 

perturbed where these areas are not affected directly, improving the robustness of those 

infrastructures which have a different hierarchical organisation.  

However, despite the HC model being more robust to failures than the other three hierarchical 

models, the metric analysis reveals that there are no infrastructure networks which appear to 

consistently share similar characteristics with this model (Figure 4.14, Figure 4.23 and Figure 

4.24, Chapter 4, Section 4.3.3)). As well as this, none of networks exhibit similar failure 

characteristics to the HC model (Figure 4.25, page 136), again suggesting that this structure is 

not found in any of the analysed critical infrastructure networks. It is clear the adoption of such 

a structure for infrastructure networks would improve their robustness to failures, at least where 

communities of nodes, normally part of the wider network, can continue to function and deliver 

the service they are intended for. This includes networks such as road networks, where this 

would enable road users to still travel locally when the network is perturbed, but not to other 

parts of the network (communities) which have become disconnected. The electricity network 

is an example of an infrastructure network where the adoption of the HC model is less 

applicable, with this relying on centralised electricity generation (Bouffard and Kirschen, 2008; 

Bayod-Rújula, 2009). For this to be robust while having a HC structure, each community would 

have to have sufficient capacity to meet the electricity demands within it and therefore local 

generation sites would be imperative. Although there is an increasing trend towards local 

generation, fuelled by the development of the renewable energy sector (Alanne and Saari, 2006; 

Bouffard and Kirschen, 2008; Bayod-Rújula, 2009), careful planning would be required to 

ensure this was achievable. 

The most robust infrastructure networks on average across all three failure models were the 

road networks, failing after an average of 64.8% of nodes had been removed, compared to the 

least robust, the air networks, which failed on average after only 49.7% of nodes had been 

removed. The air networks, with such a low average, suggests an inherent weakness to 

perturbations, with the network being vulnerable any failures, and nearly as vulnerable as the 

hierarchical TREE model, which on average failed after the removal of 47.1% of nodes. The 

inherent weakness exhibited by the network, also found by Lordan et al. (2014) in an analysis 

of the global air network, exposes the potential for the significant disruption to these networks, 

such as seen following the ash cloud generated by a volcanic eruption in 2010 in Iceland (from 

the Eyjafjallajokull volcano), which caused widespread disruption to the European air network 
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(Wilkinson et al., 2012). However, unlike the hierarchical TREE model, the air networks do 

exhibit some redundancy, with them having a large number of CB (3.34) compared to the TREE 

model which has none. The poor robustness is instead caused by the presence of hub nodes, as 

indicated by the low AC value and a high MBC, which when removed from the network 

resulted in the loss of the cycles which would have made the networks more robust to failures. 

This is clearly exhibited by the targeted failure results, where the air networks failed 48.6% 

quicker when compared to random failures. This highlights the criticality of hub nodes in some 

networks, a feature also identified by Lordan et al. (2014) and Wuellner et al. (2010) in the 

analysis of air traffic networks, and the need to ensure such structures have redundancy within 

them to avoid the potential for large-scale disruption through a small number of perturbations. 

The road networks, despite exhibiting a similar set of values for the MBC to the air networks 

and having a lower CB average, were found to be much more robust. These networks aren’t 

reliant on hub nodes (Dorogovtsev and Mendes, 2002), as illustrated by the higher AC value 

and lower MBC value, and thus there is also a greater redundancy within the network. This 

allows them to withstand perturbations, whether random or targeted, failing only 13.0% quicker 

for the targeted method compared to the random failure method. The difference in response 

highlights the importance and role hub nodes can play in a network, and the effect avoiding 

such components can have on the ability of a network to respond to failures. It also highlights 

the need for networks to have redundancy in order to be robust to perturbations (Jenelius, 2010).  

The failure results (Chapter 4, Section 4.3.4, page 135) also demonstrated that while the three 

metrics used in the characterisation of hierarchical networks can help to differentiate between 

hierarchical and non-hierarchical graphs/networks, they can also help us to understand how a 

graph, or infrastructure network, may behave when perturbed. The results above suggest that 

no one metric can be used as a guide to a networks robustness, with instead a combination of 

these required to understand how a network may respond to perturbations. It is clear that that 

networks which have MBC values tending to 1 and AC values approaching -1 rather than 1 are 

the least robust to failures, such as the river and the air networks. Networks with such features 

begin to rely on hub nodes and also are more likely to lack a high level of redundancy. 

Combined with a low CB value, the networks can be considered particularly weak when 

perturbed, as exemplified by the TREE model which has no loops (Table 4.2, page 106) and is 

the least robust graph model (Figure 4.5, page 114). Although networks with such 

characteristics may be unavoidable in the real-world through their natural development and the 

role of hubs in some infrastructure systems, such as air networks, measures are required to 

improve the robustness of such networks to ensure a more robust structure. Through the 
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introduction of greater redundancy, the addition of a greater number of alternative links and 

thus routes through a network, the robustness can be improved. From the analysis it is clear that 

the two metrics, the number of cycle basis and the maximum betweenness centrality, are 

intrinsically linked with regard to how they can help to characterise the redundancy and 

robustness of a network.  

Adopting more robust structures for infrastructure networks, such as the earlier mentioned HC 

model, or altering networks to move away from the characteristics which make networks 

vulnerable as discussed in the previous paragraphs, will allow networks to continue to function 

when perturbed more often, lessening the disruption to users. However, the way to achieve this 

for already developed infrastructure networks, such as those analysed in this research, remains 

an open question (Little, 2003). With many of the analysed infrastructure networks being 

closest to the HR and HR+ graph models, a transition away from these models which have 

shown a lack of robustness, to one which is more robust like the HC model, will allow the 

networks to withstand certain types of perturbations better. The way in which the transition 

might occur is however beyond the scope of this work, and instead remains a question for future 

research. Implementing a transition to more robust network structures through the addition of 

new assets, links/nodes, naturally incurs costs (Barthelemy, 2003; Royal Academy of 

Engineering, 2011), potentially inhibiting adaptions being made, and thus restricting the ease 

and speed at which such changes are made. 

 

5.3 Cascading failure analysis 

The cascading failure analysis (Chapter 4, Section 4.4.3, page 148) showed that as with the 

topological robustness analysis the hierarchical graphs are less robust than the non-hierarchical 

graphs. Across all six scenarios investigated the hierarchical graphs, HR, HR+, HC and TREE, 

on average performed worse than the non-hierarchical graphs, with these failing quicker in all 

six scenarios analysed, reaching equilibrium (not failing) in 14% of simulations compared to 

49% for the non-hierarchical graphs. This highlights the lack of robustness present in the 

hierarchical networks when flows are considered, with them consistently failing quicker. 

Further to this, in a number of cases, the analysis could not be performed on the hierarchical 

graphs as the initial flow from the supply to the demand node could not be supported within the 

capacity constraints of the nodes and edges. This further highlights when comparing the 

hierarchical and non-hierarchical graphs that the hierarchical graphs have less redundancy 

within their structure.  
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As with the topological analysis, the presence of hierarchical redundancy (redundancy within 

the levels of the hierarchy) within the networks has a strong influence on the ability of the 

networks to withstand the perturbations. This is highlighted by the response of the TREE, HR 

and HR+ models to the failure scenarios, where the HR and HR+ which both have hierarchical 

redundancy exhibited a much greater robustness in three of the six scenarios. Across the three 

scenarios the HR and HR+ model on average reached equilibrium in 23% for the simulations 

compared to 0%. Equally, the HR and HR+ models failed on the removal of the trigger edge in 

27% of the simulations compared to 33% for the TREE. The ability to support flows over the 

networks is critical as already mentioned, and thus the results from this analysis clearly indicate 

that the TREE model is especially weak at supporting flows, especially when perturbed. The 

HR and HR+ models exhibited a greater robustness despite being based upon the TREE model 

(Chapter 3, Section 3.3, page 42), with the addition of links within levels of the TREE model 

and links (shortcuts) between different levels of the TREE hierarchy. These extra links increase 

the capacity for flows as well as redundancy and hence improve the robustness of models, a 

feature also shown to work by Helbing et al. (2006a) in the analysis of hierarchical management 

systems.  

Of the HR and HR+ models, the HR model exhibited a greater robustness than the HR+ model, 

with this being more robust across four of the six scenarios. The difference between the two 

models, the type of links which are added to the base TREE model, has allowed the HR model 

to be more robust. The HR model has links which form shortcuts between different levels of 

the hierarchy, whereas the HR+ model only has links between adjacent levels and within a level. 

The addition of these longer shortcuts enables flows to move much more freely through the 

network, increasing the capacity between levels while also improving redundancy (Helbing et 

al., 2006a). These longer level links thus appear more effective at improving the redundancy 

while also improving the capacity of the network, suggesting the HR model as a better model 

to move towards than the HR+ for infrastructure networks. 

The flow based results show that not only does redundancy allow graphs/networks to be more 

robust to topological failures, but also improves their ability to handle increased volumes of 

flow and thus also improve the robustness to cascading failures. This has been shown by the 

inability of the hierarchical models to support some of the scenarios being employed (Chapter 

4, Section 4.4.3, page 148). As such, it is even clearer that hierarchical models, such as the 

TREE model, should be avoided in infrastructure networks as they are particularly weak in their 

ability to withstand both topological and cascading failures. The HR and HR+ models, the 

models found to share the most similar characteristics with the infrastructure networks analysed, 
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were more robust than the TREE model to all failures. There is therefore an indication that with 

the HC model being most robust, that infrastructure networks should migrate away from the 

HR+ model towards the HR or HC. 

 

5.4 Analysis of a hierarchical electricity network 

The initial analysis of the combined transmission/distribution electricity network has shown 

that the network is robust for up to three failures in the transmission network (Chapter 4, Section 

4.5.2, page 157), with the analysis not considering more failures than this due to the 

computational overhead of the analysis. The ability of the network to continue to function, with 

all substations remaining connected to the transmission and distribution hierarchy despite any 

three transmission line failures, shows that the network has a good degree of robustness within 

the transmission aspect of the network. This allows electricity to flow from the major sources 

of generation to all points of the network ensuring demand can be met. This robustness ensures 

that multiple failures cannot disrupt the functionality of the network.  

The results from this spatial failure analysis (Chapter 4, Section 4.5.3, page 160) revealed that 

as the number of hazard areas increased and the number of initially affected infrastructure node 

assets remained similar, the number of second-order failures rose, suggesting a vulnerability to 

multiple hazards on the network. This was shown by an increase of second-order node failures 

on average from 361 for a single hazard (Table 4.13, page 165), to 5901 for four hazards (Table 

4.16, page 169) and 6895 where there was eight hazards (Table 4.19, page 174). This clearly 

indicates a susceptibility to multiple hazards, and suggest that the network is more vulnerable 

to many smaller hazards rather than single large hazards. This makes the network vulnerable to 

events such as flooding, where multiple disparate locations can be affected at the same time 

(Suarez et al., 2005), or during wind storm events where individual network assets within a 

wider area can be affected. These sort of events are also expected to increase in frequency due 

to climate change (Royal Academy of Engineering, 2011), and thus having infrastructure 

networks which are more robust to such events is becoming more critical. This vulnerability is 

caused by the larger hazards causing the failure of the higher-level substations and those which 

depend on them, unlike the smaller hazards where each only result in first-order failures for a 

few substations, thus leaving dependent substations to fail as second-order failures, rather than 

first. The smaller hazard areas can cause large failures by affecting the key substations which 

many nodes are dependent upon, and are just as likely to do this as the larger hazard areas, with 

in each scenario the hazards affecting the same number of nodes.  
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Previous analysis of the vulnerability to spatial hazards has shown that as the size of the hazard 

increases, the greater the impact on the network (Sterbenz et al., 2010; Wilkinson et al., 2012; 

Ouyang, 2016). Although not directly comparable, these results differ slightly from the results 

found in this work. Although Wilkinson et al. (2012) did not consider multiple hazards, they 

did analyse how the size and location of the hazard affects the robustness of the European air 

network. This work showed that location of the hazards was an important factor in the effect of 

a hazard, with a small hazard in the right location able to create the same disruption as a larger 

hazard. This, to some extent, has also been found in the analysis of the electricity network, with 

those hazards in rural locations having a larger effect due to the lack of redundancy in these 

areas (Chapter 4, Section 4.5.3, page 160). The spatial distribution of the hazards within the 

research was random, though exploring the effects of the clustering of hazards will provide 

different insights into how robust the network is to such events, providing more detail on how 

the network responds to perturbations. This extra insight can help in future decisions on how to 

improve the robustness of the network, ensuring potential adaption strategies consider a wide 

spectrum of results.  

As the number of hazard footprints increased, the average distance of the second-order failures 

from these areas also increased; from an average of 4.3km for the single hazard scenarios (Table 

4.14) to 10.0km for the eight hazard scenarios (Table 4.20). This again indicates a susceptibility 

to multiple hazards, with the smaller the hazards, the greater the propagation of failures 

following the initial failures within the hazard area. The propagation of failures is caused by a 

lack of robustness, with lower level (voltage) substations only being supplied by a single, or a 

small number, of high-level substations, resulting in a large number of second-order failures 

when these supply options are all removed following a spatial hazard. This is highlighted by 

the results, where on average 93% of the second-order failures in the simulations for the eight 

hazard scenarios were 11Kv substations, the lowest level in the network. Therefore, only 7% 

of the failed substations were those responsible for the further distribution of electricity to other 

demand points, limiting the total impact on the network and the further propagation from the 

initial hazard areas.  

The identified susceptibility to multiple hazards raises many issues regarding the robustness of 

the electricity transmission and distribution network. Improving the robustness of this is critical, 

with the ability to change how the network responds to perturbations and the service the 

network is still able to deliver to customers. The hierarchical structure of the network, most 

similar to the HR+ graph model (Figure 4.15, page 126), suggests that the network structure is 

one of the more robust hierarchical structures (Figure 4.5, page 114), though improvements can 
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still be made. This could include adopting a structure more like the HC model which would 

allow communities within the network to continue to function given the adequate provision of 

electricity generation facilities within the community. The robustness of the HC model to spatial 

hazards has not been explored, though the results from the topological failure analysis suggest 

this is a more robust structure (Figure 4.5, page 114), so may improve the response to multiple 

hazards. The community structure may reduce the second-order failures by providing greater 

redundancy to the substations within the communities, resulting in the lowest level, and second-

lowest level substations being dependent on more than just one substation, improving 

robustness. A transition to towards the HC model is also supported by a trend towards a more 

decentralised electricity generation systems (Alanne and Saari, 2006; Bouffard and Kirschen, 

2008; Bayod-Rújula, 2009), with more electricity being generated within local communities. 

This offers the ability for electricity systems to become less dependent on centralised generation 

facilities, and hence local communities maybe able to provide their own energy, improving the 

potential for these to be robust to failures which result in their disconnection from the central 

transmission network. 

 

5.5 Future analysis opportunities 

The previous sections have discussed the outcomes from the research undertaken, identifying a 

hierarchical organisation within many spatial critical infrastructure networks, a structure that 

also makes the networks vulnerable to random, targeted and cascading failures. Within the 

analysis performed further opportunities to learn more about the behaviour of the hierarchical 

graphs and infrastructure networks are identifiable, with some clear opportunities arising 

following this work.  

The failure based analysis undertaken in this research can be extended in multiple ways, 

building on the methods already developed. The flow based cascading failure analysis 

undertaken can be extended to include more detail in the modelling of the flows, with the ability 

to model features such as buffering and latency (Evans, 2010; Eusgeld et al., 2011; Filippini 

and Silva, 2014) already within the developed model. These allow a greater analysis of how the 

network assets, nodes and edges, respond to failures, and can provide more a in-depth 

understanding of how the system as a whole may behave. There is also the capacity for more 

physically based modelling to be undertaken, with the functionality for modelling the behaviour 

of flows over the network, providing much more detail in the behaviour of the system when it 

is perturbed. Linked to this is also ability to use more than one supply node and demand node, 

with many networks featuring multiple of these, including networks such as that for electricity 
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(Carreras et al., 2002; Dueñas-Osorio and Vemuru, 2009) and transport, functionality which 

again is already possible with the developed framework and model. Performing this more in-

depth analysis over the networks will allow for a greater understanding of the characteristics of 

the infrastructure networks, and in particular of how the hierarchical structured networks 

behave when a more detailed flow based analysis is undertaken to test their robustness to 

cascading failures. 

The failure analysis performed in this work is based on the assumption that each asset shared 

the same level of vulnerability when exposed to a hazard, namely that it would fail. This is 

however not always the case, with some network assets being more robust than others, with the 

point of failure varying from asset to asset (Dueñas-Osorio and Vemuru, 2009). Assessing the 

robustness of a network to hazards with this extra consideration adds a further dimension to the 

analysis, allowing more in-depth analysis of the robustness of individual infrastructure 

networks. Previous research has identified and explored methods through which this can be 

done, especially when analysing the robustness to cascading failures, through assigning each 

asset a value with the probability of failure when exposed to a hazard/overloaded (Motter, 2004; 

Bao et al., 2009b; Dueñas-Osorio and Vemuru, 2009). Within the framework developed for this 

work (Chapter 3, Section 3.11, page 84) this functionality can be easily added to work within 

the existing failure models. Adopting this method would improve the analysis of hierarchical 

networks to spatial failures, allowing for new understanding to be learned on the ability of 

hierarchically organised networks to withstand perturbations, with individual assets modelled 

with greater realism. 

As mentioned in the previous sections there is a need to improve the robustness of critical 

infrastructure networks which share characteristics with graph models such as the TREE, HR 

and HR+. Achieving this has been discussed by adopting a structure similar to the HC model 

to allow a move away from the characteristics which make networks vulnerable to failures. 

How this can be achieved has not been assessed in this research and is in itself a major research 

undertaking. However, such an analysis may offer potential insights on how improving network 

structure can assist in the overall robustness of different infrastructure systems. Further options, 

including improving the redundancy of the network or improving the ability of individual assets 

to withstand hazards (Little, 2003; Beygelzimer et al., 2005) should also be explored, with these 

also being areas that have been recognised as requiring further work within infrastructure 

systems research (Little, 2003). 

All of the failure analysis undertaken in this research on the graphs and spatial infrastructure 

networks has focused on the robustness of these to a range of failures scenarios (Bruneau and 
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Reinhorn, 2007; McDaniels et al., 2008). This can be extended though to consider the resilience 

of the networks, how they recover to full functionality following the failures (Reed et al., 2009; 

Ouyang et al., 2012; Hosseini et al., 2016), providing greater insights into the ability of the 

networks to continue to function when perturbed. This will help to assess the ability of 

hierarchical networks to respond to failures with a greater realism, with the ability of 

nodes/edges affected by a hazard to be repaired and become available for use again within a 

network critical to this. The functionality to perform this analysis is not currently within the 

developed framework, though extending it to enable this analysis would be relatively straight 

forward. 

 

5.6 Conclusion 

The results from the analysis have made it clear that hierarchical graphs and networks are 

distinct from non-hierarchical graphs, with three key higher-level metrics, the assortativity 

coefficient, the maximum betweenness centrality and number of cycle basis per node, allowing 

these to be distinguished from one another. These high-level metrics provide a deeper insight 

than traditional topological methods, and have identified many infrastructure networks as 

possessing a hierarchical structure, in many cases contrary to previous research. The 

implications of infrastructure networks being hierarchically structured has been examined with 

regard to the robustness of hierarchical graphs/networks to perturbations, showing these are less 

robust than non-hierarchical graphs, to both topological failures and cascading failures. The HC 

hierarchical model was an exception, with this appearing to be as robust as the non-hierarchical 

models, with the community structure making it robust to failures through the ability of the 

communities, which the graph fragmented into, to stay connected within. With many 

infrastructure networks appearing to be hierarchical, this indicates the need to improve the 

robustness of hierarchical graphs, and thus infrastructure networks, to perturbations. Methods 

have been discussed, from increasing the redundancy in the networks, to adopting the HC 

structure, with the applicability for different infrastructure networks mentioned. Further to this, 

through a series of scenarios with spatial hazards, the hierarchical electricity transmission and 

distribution network for England and Wales was shown to be susceptible to multiple hazards, 

while the initial number of affected assets remained constant, highlighting the importance of 

considering such failure scenarios. The network was robust at the transmission level, with the 

lack of robustness identified in the lower-levels of the distribution network, making this the 

area of the network which needs improving.



 

196 

 

 

Chapter 6: Conclusion 

 

6.1 Introduction 

This chapter presents the main findings of the research presented in the previous chapters. The 

research aimed to identify the hierarchical organisation of critical spatial infrastructure 

networks and the robustness of these to a range of failure scenarios. The following objectives 

were set out in order to address the aim: 

1. Review the research field pertaining to hierarchical networks and graph models and their 

application in the analysis of critical spatial infrastructure networks. 

2. Investigate the properties of hierarchical graphs to identify the characteristics which makes 

them recognisable from non-hierarchical graphs. 

3. Identify examples of hierarchically organised critical spatial infrastructure networks using 

the outcomes from objective 2. 

4. Explore the robustness of hierarchical infrastructure networks to perturbations and the 

reasons why such networks behave differently to those of other topological structures. 

The main findings are presented in the following section, Section 6.2, with areas of future work 

given in Section 6.3. 

 

6.2 Main findings 

6.2.1 Hierarchical networks and critical infrastructures 

The research began with a review of literature around the structure and robustness of critical 

infrastructure networks (objective 1). This found that there was a growing body of research into 

the hierarchical organisation in networks, with a clear understanding of the organisation found 

in biological and social networks. To this end, models had been developed to model such 

networks allowing improved understanding of their characteristics and behaviour (Ravasz et 

al., 2002; Ravasz and Barabasi, 2003). However, there is only a small body of literature which 

has addressed the possible hierarchical organisation of critical spatial infrastructure networks. 

The review found that the structure of hierarchical networks was such that the levels of 

redundancy in networks in some cases was not as strong as non-hierarchical models, leading to 

potentially less robust networks (Helbing et al., 2006a; Helbing et al., 2006b). With all critical 

infrastructure networks embedded in space, a review of the literature where the robustness to 
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spatial hazards has been analysed showed only a small selection of studies have addressed this 

important issue. The findings of this review have highlighted a significant amount of research 

in the field of infrastructure robustness to perturbations, though it has also found that the 

presence and impact of a hierarchical organisation of infrastructure networks has not been 

examined in detail despite an emerging literature on the subject of hierarchically organised 

networks. 

 

6.2.2 Hierarchical graphs 

Objective 2 was addressed through the analysis of a suite of non-hierarchical and hierarchical 

graphs, allowing for the structure and characteristics to be compared. A range of methods were 

employed initially, with the use of three graph metrics (assortativity coefficient, maximum 

betweenness centrality and number of cycle basis per node), appearing to provide a method of 

recognising those graphs with a hierarchical organisation. These metrics were selected based 

upon the known structure of the hierarchical and non-hierarchical graph models as identified in 

Chapter 2. A statistical difference was shown to exist between the hierarchical and non-

hierarchical graphs using the metrics, with two, the maximum betweenness centrality and the 

number of cycle basis per node, shown to be the clearest indicators of a possible hierarchical 

organisation.  

Using a developed topological based failure models, similar to those reviewed in Chapter 2, the 

robustness of hierarchical and non-hierarchical networks was explored showing that three of 

the four models, the tree models and those based on it, exhibited a poor robustness to 

perturbations. The fourth model on the other hand, based on a hierarchy of communities, was 

much more robust to failures locally due to a modular community structure, though globally 

became disconnected very quickly, similar to the failure behaviour exhibited by the other 

hierarchical models. 

 

6.2.3 Hierarchical infrastructure networks 

A suite of spatial critical infrastructure networks was analysed using the results from objective 

2 with the same methods employed again, in order to address objective 3. Over 40 infrastructure 

networks were analysed and compared to the suite of synthetic graphs, with the majority of 

infrastructure networks found to share the same characteristics exhibited by the hierarchical 

graph models including road networks and air networks. A further comparison was made 

through the results of the topological robustness analysis undertaken over the networks where 
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it was found that most exhibited a behaviour when perturbed similar to the hierarchical graphs; 

the least robust graph models analysed.  

 

6.2.4 Robustness of hierarchical infrastructure networks 

Infrastructure networks are designed to deliver a service which results in the movement of a 

commodity/information over the network. An analysis of the hierarchical and non-hierarchical 

models with a developed capacity constrained cascading failure model was used to investigate 

the robustness of the different models with flows on them and their susceptibility to cascading 

failures, Objective 4. This analysis found that the hierarchical models were less robust to the 

cascading failures then the non-hierarchical models, with the hierarchical communities model 

shown to be the most robust hierarchical model. The other three hierarchical models, were as 

in the case of the topological failures, the least robust to the cascading failures. 

The robustness of a hierarchical spatial critical infrastructure network, the electricity 

transmission and distribution network for England and Wales, was explored to both hierarchical 

failures and spatial hazards. The network was first subjected to a failure model that targeted 

network assets at the highest level of the hierarchy, exploring the ability to the network to still 

function when such assets were unavailable. This analysis shows that the network was robust 

for all combinations of three 400Kv transmission lines failing, indicating a high level of 

tolerance to such failure events. The robustness to spatial hazards was then explored by 

applying a series of different spatial configurations of spatial hazards to the network, where 

those assets within the hazard footprints failed (retricted to 2% in all scenarios), and the failures 

casued by these assessed. The analysis showed that as the number of areas increases the number 

of second-order failures, substations outside of the hazard areas that become disconnected, 

increased. This has highlighted a sensitivity to an increasing number of hazards, with a greater 

number of failures occurring as the number of hazard areas increased despite the number of 

initially affected assets remaining the same. However, the network was found to be robust to 

the hazards with regard to how far failures propagated, with second-order failures tending to 

occur close to the hazards except in some rural areas where the density of network assets is low. 

 

6.3 Future work 

6.3.1 Geographic and spatial graph models 

The graph suite used to explore characteristics of hierarchical networks consisted of eight graph 

models, all of which generated networks in graph space with no consideration for geographic 
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patterns or the cost of building links between nodes over spatial distances, all of which have 

been shown to affect the development of real-world infrastructure networks (Barrat et al., 2005; 

Barthelemy, 2011). Some studies have suggested that such constraints effect the characteristics 

of the real-world networks including their degree distributions (Herrmann et al., 2003) and to 

thus replicate this graph models need to consider the same geographic/spatial constraints 

(Barthelemy, 2003; Gastner and Newman, 2004).To this end, there is an emerging suite of 

models (Gastner and Newman, 2004; Masuda et al., 2005; Gastner and Newman, 2006; 

Wilkinson et al., 2012; Fu et al., 2015) which attempt to consider some the geographic/spatial 

constraints such as the length of links. 

The inclusion of graphs generated by models which explicitly consider geographic/spatial 

constraints may present characteristics which better match some of the infrastructures analysed 

in the research presented in this thesis. For example, the model developed by Wilkinson et al. 

(2012) has been designed for air networks which one may expect to better match the 

characteristics exhibited by the suite of air networks employed in this thesis. This may help in 

a better characterisation of the hierarchical organisation in critical infrastructure networks, 

allowing for a greater understating of their characteristics as well as robustness to perturbations 

and hence how such networks may be made less vulnerable to failures. 

 

6.3.2 Cascading failures on hierarchical graphs 

The cascading failure model developed (Chapter 3, Section 3.9 (page 71)) to examine the 

robustness of hierarchical networks has been used over a suite of synthetic graphs. The analysis 

undertaken (Chapter 4, Section 4.4 (page 142)), has provided some insights into the robustness 

of the eight different graph models, showing that the random graphs are much more robust than 

any other models and the four hierarchical graph models are extremely vulnerable to cascading 

failures. The designed analysis only employed six scenarios and thus further insights into the 

behaviour and the robustness of the hierarchical models to cascading failures can be learned 

through a more detailed analysis driven by a greater range of scenarios and graphs being utilised. 

Example future scenarios should consider the dynamics of the hierarchical graphs in more detail, 

including the use of multiple supply and/or demand nodes in the graphs, such as in energy 

networks where generators supply electricity demand (Chang and Wu, 2011). Through the 

application of these methods to both hierarchical and non-hierarchical graphs, the 

characteristics which make graphs robust to cascading failures can be further understood, with 

the potential to develop an understanding of how to improve the least robust graphs. 
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6.3.3 Modelling of infrastructure flows 

Critical infrastructure networks provide a service to users (Little, 2002; Little, 2003), be that 

the delivery of commodities, data or methods of transport (Murray, 2013; Ouyang, 2014). These 

travel through infrastructure networks as flows, the movement of commodities/data over edges 

and through nodes (Murray, 2013), with such assets designed to handle a certain capacity 

(Murray et al., 2008; Ouyang, 2014). Therefore, the movement of flows through a network is 

dictated by the properties of the network assets such as their capacity. Through not only using 

the assets in a network, but also the attributes of these, the flows through the network can begin 

to be simulated in greater detail. 

A developed capacity constrained cascading flow model has been develoepd (Chapter 3, 

Section 3.9) which allows for the explicit modelling of flows over networks. This supports 

physically based models, where the behaviour of the flows are modelled following 

perturbations to the network. However, throughout the analysis undertaken in this thesis the 

potential of this model has not been fully utilised due to insufficient data being available for the 

parameterisation of the infrastructure networks investigated. Future work should thus look to 

utilise this developed model further through compiling more complete datasets which will 

facilitate physically based flow modelling to be undertaken on critical infrastructure networks. 

This will allow for the further analysis of hierarchical critical spatial infrastructure networks to 

be undertaken improving our knowledge of their robustness to failures. From those analysed 

lessons can be learned as to how the different characteristics of the networks affects their 

robustness. 

 

6.3.4 Spatial hazard modelling 

Critical spatial infrastructure networks are exposed to a large number of natural hazards, most 

of which affect a spatial area and can be modelled as such (Li et al., 2016). However, a review 

of the literature (Chapter 2) highlighted that only a small number of studies have examined 

explicitly the robustness of spatial critical infrastructure networks to spatial hazards, with 

Barthelemy (2011) noting that many studies neglect the spatial aspects of networks. This thesis 

has presented a case study whereby the robustness of a hierarchical critical infrastructure 

network was analysed with a range of spatial hazard scenarios used to perturb the network, 

exploring the robustness of the infrastructure network to different configurations of spatial 
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hazards. However, flows through the network were not modelled due to insufficient data for 

the parametrisation for this. 

Spatial hazards can come in different sizes, from a local flood in a street to extreme windstorms. 

With critical infrastructure networks often covering large spatial domains, the network can be 

exposed to many hazards of difference size simultaneously. Although this study used three 

different scenarios which varied in the number and size of spatial hazards much more detailed 

analysis can be undertaken with an extended scenario set to further explore the robustness of 

networks to multiple hazards over their spatial domain. This could include a deeper exploration 

of the effect the spatial configuration of hazards has on the robustness of networks as well as 

scenario data from past events or data frorm projections for future events.  

A greater appreciation of the characteristics of the network assets could also be incorporated, 

with each treated individually with regard to its exposure to a hazard, with each asset potentially 

having a different critical failure threashold resulting  from additional engineered protection for 

example. Such in-depth analysis would be specific to an infrastructure network, but would 

provide a greater depth of understanding on the networks robustness and how this could be 

potentially improved through the identification of less robust assets. Given the developed 

capacity constrained cascading failure model, the spatial hazard modelling could also be 

coupled with this if the correct data for the parameterisation of the networks was available. This 

would allow for a much more detailed analysis of the robustness of hierarchical critical spatial 

infrastructure networks with the loss of supply and demand assets in the network being handled 

explicitly. The most vulnerable areas of the infrastructure networks with regard to flows through 

them are more likely to be identified through this modelling approach, allowing those critical 

assets to be either hardened to failures or the redundancy improved to provide alternative routes 

for flows near the most vulnerable areas. 

 

6.3.5 Improving the robustness of hierarchical networks 

The results presented in this thesis have highlighted the existence of a hierarchical organisation 

in some critical infrastructure networks, such as rivers, railways, energy and air flight networks. 

The robustness analysis also undertaken has shown that the hierarchical models, especially 

those based around the tree model, are vulnerable to both targeted and random failures. 

Together this suggests an inherent lack of robustness in some of the critical infrastructure 

networks to perturbations, which given the results, could have catastrophic consequences on 

the services they deliver. 
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Given these findings, there is clearly a need to improve the robustness of hierarchical 

infrastructure networks to give them a greater robustness to failures. This can be achieved 

through increasing the redundancy within the networks (Doyle et al., 2005; Haimes, 2009; 

Jenelius, 2010), such as through the addition of new edges (Helbing et al., 2006a; Wuellner et 

al., 2010). However, in spatial critical infrastructures there is a financial cost associated with 

the construction of each new edge (or node) asset in the network (except for networks of air 

flights) (Barrat et al., 2005; Barthelemy, 2011), so the addition of new assets must to be 

optimised against the cost and the improvement in robustness that they offer. The rewiring of 

networks has also been analysed as a method of improving robustness in networks 

(Beygelzimer et al., 2005), though in many critical spatial  infrastructure networks this is again 

limited by the costs associated with the development of new connections between locations. 

Therefore, the development of an optimisation approach/software for improving redundancy 

while minimising the economic expenditure in hierarchical critical infrastructure networks 

could provide potential solutions to improving the robustness of networks. Through integrating 

such software with tools similar to those developed for this research the improvement in 

robustness could also be quantified. 

  

6.3.6 Robustness to dependencies in hierarchical infrastructures 

As noted in Chapter 1, infrastructure networks do not operate in isolation, but instead form an 

interconnected web of networks providing services for users (Rinaldi et al., 2001; Vespignani, 

2010), and other infrastructure networks in some cases (Rinaldi et al., 2001). Dependencies, 

where one infrastructure network relies upon another (Rinaldi et al., 2001; Rinaldi, 2004), can 

affect the functioning of infrastructure systems and networks, and thus it is important to cosider 

these when analysing the robustness/resilience of critical spatial infrastructure networks 

(Rinaldi et al., 2001). Therefore, by including and modelling dependencies between 

infrastructure networks a better understanding of their robustness to failures can be developed 

(Zimmerman, 2001; Rinaldi, 2004; Dueñas-Osorio, 2005). Models have previously been 

developed to perform such modelling (Dueñas-Osorio et al., 2007b; Havlin et al., 2010; 

Johansson and Hassel, 2010), although the focus has not been on hierarchical infrastructure 

networks and instead focused on specific infrastructure networks. However, such modelling 

requires knowledge of the dependencies existing between infrastructure networks and therefore 

the success of such an approach would be heavily dependent on such knowledge and data being 

available.  
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6.3.7 Software framework 

A developed framework (Chapter 3, Section 3.11.1, page 84)) has been used to undertake the 

research presented in this thesis. Included in this is a suite of tools and modules which have 

been developed as detailed in Chapter 3 Section 3.11.4, page 92), and have enabled the analysis 

and simulations which have been undertaken. The data for the analysis, including the graphs 

and networks, have been stored in a developed database (Chapter 3, Section 3.11.2 and 3.11.3), 

with these being easily accessible to the developed modules and tools through developed 

database wrappers. As well as storing the input data, the database has also stored the results 

from the analysis, with these written in the database following each simulation. The database 

schemas include over 40 developed procedural SQL database functions which allow the 

wrappers to effectively read and write networks and data to and from the database. 

The developed software framework has underpinned the research undertaken, and it is 

suggested that future work should look to develop the framework extending its capability and 

performance further. With the size and complexity of critical infrastructure networks ever 

increasing (Klein et al., 2008; Agarwal et al., 2014), the ability for a framework to be able to 

effectively manage and support the analysis of large networks is critical. The largest network 

analysed in the research presented in this thesis had less than 200,000 nodes. However it is 

known that much larger infrastructure networks exist with node counts greater than 1million 

(Newman, 2003b). Relational databases become slow as the size of the networks increase (due 

to the need to join data from different parts of the database), though new and emerging 

technologies such as graph databases offer the potential for the more efficient storage, 

management and analysis of large networks (Álvarez et al., 2010; Dominguez-Sal et al., 2010). 

High performance computing methods such as cloud computing offer greater computing power 

(Armbrust et al., 2010) and thus the potential to better support the analysis of the increasingly 

large critical infrastructure networks. These new, emerging and still developing technologies 

should be adopted where faster solutions are required. 

 

6.4 Key findings and implications 

The importance of national critical infrastructure is evident through the dependence on the 

services they provide including energy, water and communications. However, the growing 

complexity of modern infrastructure networks makes understanding their robustness to 

perturbations increasingly difficult in a world where the number of hazards which they are 

exposed to are increasing. As an aid graph models have been used to represent complex 

infrastructure networks to improve our understanding of the behaviour of the networks when 
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perturbed by different events, from the breakdown of components to natural hazard events. 

More recently new models have been developed with an explicit hierarchical structure and 

employed for the analysis of networks from social and biological sciences, where it has been 

shown that such networks do have a hierarchical organisation. Some studies have also suggested 

that spatial critical infrastructure networks exhibit a hierarchical organisation, though this 

analysis has been limited. 

This thesis has presented research which has examined the robustness of hierarchical critical 

infrastructure networks. The characteristics of hierarchically organised graphs was first 

identified prior to an analysis of their robustness to perturbations. Using the identified 

characteristics critical infrastructure networks were then analysed to identify the presence of a 

hierarchical organisation within their topological structures. The robustness of these to 

perturbations, using the same methods as employed on the graphs, was also explored as a 

measure of the impact of critical infrastructure networks being hierarchically organised. An 

example hierarchical network, the electricity transmission and distribution network for England 

and Wales, was used to explore how the hierarchical organisation and the hierarchical nature 

of the flows through the network, are effected by hierarchically targeted perturbations and 

spatial hazards. 

The results presented in Chapter 4 and discussed in Chapter 5 have shown that a hierarchical 

organisation exists in some critical infrastructure networks, most notably the road and air 

infrastructure networks. The hierarchical organisation of networks has also been shown to make 

them less robust to failures compared to non-hierarchical networks, with a decreased level of 

redundancy in the networks and a greater reliance on a single critical node, a hub, or a small 

subset of hub nodes. However, the hierarchical electricity network for England and Wales has 

been shown to be robust topologically to targeted hierarchical failures as well as spatial hazards, 

with the effects of spatial hazards and in particular the single hazards, at least topoligcally to 

the second-order failure level, being limited with regard to the size of the network affected. 

The outcomes of this research highlight the need for greater redundancy within critical 

infrastructure systems, with the addition of new edges between nodes which are not considered 

to be hubs suggested, lessening the impact of the removal of existing hub nodes. This also offers 

the potential to decrease the pressure/reliance on the existing hub nodes, making them less 

critical to the functioning of the network. This single strategy would likely improve the 

robustness of infrastructure networks across multiple sectors, including rail and energy 

networks where employed strategically. Although the addition of new assets is inhibited by the 

economic cost of construction, the benefits possible through the greater redundancy which 
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could be achieved go beyond the networks being more robust, but could also allow the potential 

for less inconvenience when assets are closed for maintenance/repair/replacement amoungst 

other things.  

Policies otherwise should look to encourage a move away from the reliance on hub nodes and 

a strict hierarchical structure, with greater flexibility required to achieve a greater robustness to 

perturbations. A move towards a community/modular structure, for example as seen in the HC 

model, would allow infrastructure networks to retain a hierarchical structure while having a 

greater robustness to failures. However, this is limited to those systems which are not dependent 

on a system wide network, such as electricity and gas, where supplies are transmitted at a 

national scale, and instead is better suited to networks such as those for air, road and rail where 

the systems can still function at a local scale when the network is perturbed.  

Understanding the dependency of network assets within a network is critical, with this 

highlighted by the extent at which some failures could propagate through the electricity network 

for England and Wales given an exposure to spatial hazards. Failures were exacerbated by a 

lack of redundancy in locations, especially in more rural areas, allowing the impact of an initial 

hazard to spread beyond the boundaries of the hazard. Identifying locations where redundancy 

is weak enables investment to be directed at these locations strengthening the network and its 

ability to withstand perturbations. This work would help reduce the identified susceptibility to 

multiple hazards identified in the electricity network, a characteristic making the network 

vulnerable, especially to climate based events, such as flooding and extreme temperatures, 

which are forecasted to increase in frequency and inherently affect multiple areas rather than a 

single point location.  

This research has provided new knowledge on the characteristics of hierarchically organised 

graphs as well as identifying those infrastructure networks which present a hierarchical 

organisation. The properties which cause non-hierarchical networks to exhibit a greater 

robustness than the hierarchical networks have also been identified. These findings can be used 

to identify further infrastructure networks with a hierarchical organisation which given the 

robustness of the topology is critical. Further to this, from the findings reported in this thesis, 

the robustness of hierarchical networks is now much better understood allowing for the 

potential to improve this using the identified weaknesses in the hierarchical organisation of 

networks when compared to the more robust non-hierarchical networks. To this end, some 

suggestions have been made as to how infrastructure networks might be made more robust to 

perturbations, including around improving the redundancy within the networks. 



 

206 

 

Bibliography 

 

107th Congress (2001) 'USA Patriot Act (Uniting and Stengthening America by Providing 

Appropriate Tools Required to Intercept and Obstruct Terrorism Act of 2001)' Public Law. 

pp. 1-132. 

Agarwal, J., Liu, M. and Galvan, G. (2014) 'Vulnerability and Resilience of Networked 

Infrastructures', in  Vulnerability, Uncertainty, and Risk. American Society of Civil 

Engineers, pp. 2811-2820. 

Ahmed, A., Dywer, T., Hong, S.-H., Murray, C., Song, L. and Wu, Y.X. (2005) 'Visualisation 

and Analysis of Large and Complex Scale-free Networks', IEEE VGTC Symposium on 

Visualization. 1-8. 

Alanne, K. and Saari, A. (2006) 'Distributed energy generation and sustainable development', 

Renewable and Sustainable Energy Reviews, 10(6), pp. 539-558. 

Albert, R., Albert, I. and Nakarado, G.L. (2004) 'Structural Vulnerability of the North 

American Power Grid', The American Physical Society, 69, pp. 1-4. 

Albert, R. and Barabasi, A.-L. (2002) 'Statistical mechanics of complex networks', Reveiws of 

Modern Physics, 74, pp. 47-97. 

Albert, R., Jeong, H. and Barabasi, A.-L. (1999) 'The diameter of the world wide web', 

Nature, 401. 

Albert, R., Jeong, H. and Barabasi, A.-L. (2000) 'Error and attack tolerance of complex 

networks', Nature, 406, pp. 378-382. 

Álvarez, S., Brisaboa, N.R., Ladra, S. and Pedreira, Ó. (2010) Proceedings of the Eighth 

Workshop on Mining and Learning with Graphs. ACM. 

Amaral, L.A.N. and Ottino, J.M. (2004) 'Complex networks', The European Physical Journal 

B - Condensed Matter, 38, pp. 147-162. 

Amaral, L.A.N., Scala, A., Barthelemy, M. and Stanley, H.E. (2000) 'Classes of small-world 

networks.', Proceedings of the National Academy of Sciences of the United States of America, 

97, pp. 11149-11152. 



 

207 

 

Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, 

N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C. and 

Vittal, V. (2005) 'Causes of the 2003 major grid blackouts in North America and Europe, and 

recommended means to improve system dynamic performance', Power Systems, IEEE 

Transactions on, 20, pp. 1922-1928. 

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Petterson, 

D., Rabkin, A., Stoica, I. and Zaharia, M. (2010) 'A View of Cloud Computing', 

Communications of the ACM, 53, pp. 50-58. 

Aruoba, S.B. and Fernández-Villaverde, J. (2015) 'A comparison of programming languages 

in macroeconomics', Journal of Economic Dynamics and Control, 58, pp. 265-273. 

Ash, J. and Newth, D. (2007) 'Optimizing complex networks for resilience against cascading 

failure', Physica A: Statistical Mechanics and its Applications, 380, pp. 673-683. 

Bagler, G. (2008a) 'Analysis of the airport network of India as a complex weighted network', 

Physica A: Statistical Mechanics and its Applications, 387, pp. 2972-2980. 

Bagler, G. (2008b) 'Complex Network view of performance and risks on Airport Networks', 

Airports: Performance, Risks, and Problems, pp. 1-7. 

Balijepalli, C. and Oppong, O. (2014) 'Measuring vulnerability of road network considering 

the extent of serviceability of critical road links in urban areas', Journal of Transport 

Geography, 39(0), pp. 145-155. 

Bao, Z.J., Cao, Y.J., Ding, L.J. and Wang, G.Z. (2009a) 'Comparison of cascading failures in 

small-world and scale-free networks subject to vertex and edge attacks', Physica A: Statistical 

Mechanics and its Applications, 388, pp. 4491-4498. 

Bao, Z.J., Cao, Y.J., Wang, G.Z. and Ding, L.J. (2009b) 'Analysis of cascading failure in 

electric grid based on power flow entropy', Physics Letters A, 373, pp. 3032-3040. 

Barabasi, A.-L. and Albert, R. (1999) 'Emergence of Scaling in Random Networks', Science, 

286, pp. 509-512. 

Barabási, A.-L., Ravasz, E. and Vicsek, T. (2001) 'Deterministic scale-free networks', Physica 

A: Statistical Mechanics and its Applications, 299(3–4), pp. 559-564. 



 

208 

 

Barabasi, A.-L., Zoltan, D., Erzsebet, R., Soon-Hyung, Y. and Zoltan, O. (2003) 'Scale-Free 

and Hierarchical Structures in Complex Networks', AIP Conference Proceedings, 661, pp. 1-

16. 

Barabasi, A., Albert, R. and Jeong, H. (2000) 'Scale-free characteristics of random networks: 

the topology of the world-wide web', Physica A: Statistical Mechanics and its Applications, 

281, pp. 69-77. 

Barabasi, A. and Oltvai, Z.N. (2004) 'Network biology: Understanding the cell's functional 

organization', Nature Reviews Genetics, 5(2), pp. 101-113. 

Barr, S.L., Alderson, D., Robson, C., Otto, A., Hall, J., Thacker, S. and Pant, R. (2013) 'A 

National Scale Infrastructure Database and Modelling Environment for the UK', International 

Symposium for Next Generation Infrastructure. Wollongong, New South Wales, Australia. 

Barrat, A., Barthelemy, M., Pastor-Satorras, R. and Vespignani, A. (2004) 'The architecture of 

complex weighted networks', Proceedings of the National Academy of Sciences of the United 

States of America, 101, pp. 3747-3752. 

Barrat, A., Barthelemy, M. and Vespignani, A. (2005) 'The effects of spatial constraints on 

the evolution of weighted complex networks', Journal of Statistical Mechanics: Theory and 

Experiment, 2005, pp. 1-20. 

Barrat, A. and Weigt, M. (2000) 'On the properties of small-world network models', The 

European Physical Journal B - Condensed Matter and Complex Systems, 13(3), pp. 547-560. 

Barthelemy, M. (2003) 'Crossover from scale-free to spatial networks', Europhysics Letters, 

63(6), pp. 915-921. 

Barthelemy, M. (2011) 'Spatial networks', Physics Reports, 499, pp. 1-101. 

Barthélemy, M. (2004) 'Betweenness centrality in large complex networks', The European 

Physical Journal B - Condensed Matter and Complex Systems, 38(2), pp. 163-168. 

Barthelemy, M. and Amaral, L.A.N. (1999) 'Small-world networks: Evidence for a crossover 

picture', Physical Review Letters, 82, pp. 3180-3183. 

Bassett, D.S. and Bullmore, E. (2006) 'Small-world brain networks', The Neuroscientist : a 

review journal bringing neurobiology, neurology and psychiatry, 12, pp. 512-23. 



 

209 

 

Bayod-Rújula, A.A. (2009) 'Future development of the electricity systems with distributed 

generation', Energy, 34(3), pp. 377-383. 

Berizzi, A. (2004) Power Engineering Society General Meeting, 2004. IEEE. 10-10 June 

2004. 

Beygelzimer, A., Grinstein, G., Linsker, R. and Rish, I. (2005) 'Improving network robustness 

by edge modification', Physica A: Statistical Mechanics and its Applications, 357(3–4), pp. 

593-612. 

Birmelé, E. (2009) 'A scale-free graph model based on bipartite graphs', Discrete Applied 

Mathematics, 157, pp. 2267-2284. 

Bobbio, A., Bonanni, G., Ciancamerla, E., Clemente, R., Iacomini, A., Minichino, M., 

Scarlatti, A., Terruggia, R. and Zendri, E. (2010) 'Unavailability of critical SCADA 

communication links interconnecting a power grid and a Telco network', Reliability 

Engineering & System Safety, 95(12), pp. 1345-1357. 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and Hwang, D.U. (2006) 'Complex 

networks: Structure and dynamics', Physics Reports, 424, pp. 175-308. 

Boin, A. and McConnell, A. (2007) 'Preparing for critical infrastructure breakdowns: the 

limits of crisis management and the need for resilience', Journal of Contingencies and Crisis 

Management, 15, pp. 50-59. 

Bollobás, B. and Riordan, O. (2004) 'The Diameter of a Scale-Free RandomGraph', 

Combinatorica, 24(1), pp. 5-34. 

Bompard, E., Napoli, R. and Xue, F. (2009) 'Analysis of structural vulnerabilities in power 

transmission grids', International Journal of Critical Infrastructure Protection, 2, pp. 5-12. 

Bompard, E., Wu, D. and Xue, F. (2011) 'Structural vulnerability of power systems: A 

topological approach', Electric Power Systems Research, 81, pp. 1334-1340. 

Bonabeau, E. (2002) 'Agent-based modeling: Methods and techniques for simulating human 

systems', Proceedings of the National Academy of Sciences, 99(suppl 3), pp. 7280-7287. 

Börner, K., Sanyal, S. and Vespignani, A. (2007) 'Network science', Annual Review of 

Information Science and Technology, 41(1), pp. 537-607. 



 

210 

 

Bouffard, F. and Kirschen, D.S. (2008) 'Centralised and distributed electricity systems', 

Energy Policy, 36(12), pp. 4504-4508. 

Bronk, C. (2015) 'Two securities: How contemporary cyber geopolitics impacts critical 

infrastructure protection', International Journal of Critical Infrastructure Protection, 8(0), pp. 

24-26. 

Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O'Rourke, T.D., Reinhorn, A.M., 

Shinozuka, M., Tierney, K., Wallace, W.A. and von Winterfeldt, D. (2003) 'A Framework to 

Quantitatively Assess and Enhance the Seismic Resilience of Communities', Earthquake 

Spectra, 19, pp. 733-752. 

Bruneau, M. and Reinhorn, A.M. (2007) 'Exploring the Concept of Seismic Resilience for 

Acute Care Facilities', Earthquake Spectra, 23(1), pp. 41-62. 

Cabinet Office (2008) The Pitt Review: Learning lessons from the 2007 floods. London. 

[Online]. Available at: 

http://webarchive.nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.u

k/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full%20

pdf.pdf. 

Cabinet Office (2010) Strategic Framework and Policy Statement: on Improving the 

Resilience of Critical Infrastructure to Disruption from Natural Hazards. London. 

Caldarelli, G., Pastor-Satorras, R. and Vespignani, A. (2004) 'Structure of cycles and local 

ordering in complex networks', The European Physical Journal B, 38, pp. 183-186. 

Callaway, D.S., Newman, M.E.J., Strogatz, S.H. and Watts, D.J. (2000) 'Network robustness 

and fragility: percolation on random graphs.', Physical Review Letters, 85, pp. 5468-5471. 

Carreras, B.A., Lynch, V.E., Dobson, I. and Newman, D.E. (2002) 'Critical points and 

transitions in an electric power transmission model for cascading failure blackouts.', Chaos 

(Woodbury, N.Y.), 12, pp. 985-994. 

Chang, L. and Wu, Z. (2011) 'Performance and reliability of electrical power grids under 

cascading failures', International Journal of Electrical Power & Energy Systems, 33, pp. 

1410-1419. 

http://webarchive.nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.uk/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full%20pdf.pdf
http://webarchive.nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.uk/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full%20pdf.pdf
http://webarchive.nationalarchives.gov.uk/20100807034701/http:/archive.cabinetoffice.gov.uk/pittreview/_/media/assets/www.cabinetoffice.gov.uk/flooding_review/pitt_review_full%20pdf.pdf


 

211 

 

Chang, S.E., McDaniels, T.L., Mikawoz, J. and Peterson, K. (2007) 'Infrastructure failure 

interdependencies in extreme events: power outage consequences in the 1998 Ice Storm', 

Natural Hazards, 41, pp. 337-358. 

Chen, W.-K. (2003) Net Theory And Its Applications: Flows In Networks. London, UK: 

Imperial College Press. 

Chiaradonna, S., Di Giandomenico, F. and Lollini, P. (2009) 'Interdependency Analysis in 

Electric Power Systems', Critical Information Infrastructure Security, 5508, pp. 60-71. 

Clauset, A., Moore, C. and Newman, M.E.J. (2008) 'Hierarchical structure and the prediction 

of missing links in networks', Nature, 453, pp. 98-101. 

Cohen, R., Erez, K., Ben-Avraham, D. and Havlin, S. (2001) 'Breakdown of the Internet 

under Intentional Attack', Physical Review Letters, 86, pp. 3862-3865. 

Costa, L.D.F., Rodrigues, F.a. and Cristino, A.S. (2008) 'Complex networks: the key to 

systems biology', Genetics and Molecular Biology, 31, pp. 591-601. 

Costa, L.D.F., Rodrigues, F.A., Travieso, G. and Villas Boas, P.R. (2007) 'Characterization of 

complex networks: A survey of measurements', Advances in Physics, 56, pp. 167-242. 

Costa, L.F. and Silva, F. (2006) 'Hierarchical Characterization of Complex Networks', 

Journal of Statistical Physics, 125(4), pp. 841-872. 

Crucitti, P., Latora, V. and Marchiori, M. (2004a) 'Model for cascading failures in complex 

networks', Physical Review E, 69. 

Crucitti, P., Latora, V. and Marchiori, M. (2004b) 'A topological analysis of the Italian power 

grid', Physica A: Statistical Mechanics and its Applications, 388, pp. 92-97. 

Crucitti, P., Latora, V. and Porta, S. (2006) 'Centrality measures in spatial networks of urban 

streets', Physical Review E, 73. 

Danziger, M.M., Bashan, A., Berezin, Y. and Havlin, S. (2014) 'Percolation and cascade 

dynamics of spatial networks with partial dependency', Journal of Complex Networks, pp. 1-

15. 

Dennis, N. (2005) 'Industry consolidation and future airline network structures in Europe', 

Journal of Air Transport Management, 11, pp. 175-183. 



 

212 

 

Doglioni, A., Primativo, F., Laucelli, D., Monno, V., Khu, S.-T. and Giustolisi, O. (2009) 'An 

integrated modelling approach for the assessment of land use change effects on wastewater 

infrastructures', Environmental Modelling & Software, 24(12), pp. 1522-1528. 

Dolan, A. and Aldous, J. (1993) Networks and Algorithms (An introductory approach). 1 edn. 

Chichester, UK: John Wiley and Sons. 

Dominguez-Sal, D., Urbon-Bayers, P., Gimenez_vano, A., Gomez-Villamor, S., Martinez-

Bazan, N. and Larriba-Pey, J.L. (2010) 'Survey of graph database performance on the HPC 

scalable graph analysis benchmark', Web-Age Information, pp. 37-48. 

Dorogovtsev, S.N. and Mendes, J.F.F. (2002) 'Evolution of networks', Advances in physics, 

51(4), pp. 1079-1187. 

Doyle, J.C., Alderson, D.L., Li, L., Low, S., Roughan, M., Shalunov, S., Tanaka, R. and 

Willinger, W. (2005) 'The “robust yet fragile” nature of the Internet', Proceedings of the 

National Academy of Sciences of the United States of America, 102, pp. 14497-14502. 

Duan, Y. and Lu, F. (2014) 'Robustness of city road networks at different granularities', 

Physica A: Statistical Mechanics and its Applications, pp. 1-14. 

Dueñas-Osorio, L.A. (2005) 'Interdependent response of networked systems to natural 

hazards and intentional disruptions'. 

Dueñas-Osorio, L.A., Craig, J.I. and Goodno, B.J. (2004) 'Probabilistic response of 

interdependent infrastructure networks', 2nd annual meting of the Asian-pacific network of 

centers for earthquake engineering research (ANCER). Honolulu, Hawaii. July, pp. 28-30. 

Dueñas-Osorio, L.A., Craig, J.I. and Goodno, B.J. (2007a) 'Seismic response of critical 

interdependent networks', Earthquake Engineering & Structural Dynamics, 36, pp. 285-306. 

Dueñas-Osorio, L.A., Craig, J.I., Goodno, B.J. and Bostrom, A. (2007b) 'Interdependent 

Responce of Networked Systems', Journal of Infrastructure Systems, 13, pp. 185-194. 

Dueñas-Osorio, L.A. and Vemuru, S.M. (2009) 'Cascading failures in complex infrastructure 

systems', Structural Safety, 31, pp. 157-167. 

Dunn, S., Fu, G., Wilkinson, S. and Dawson, R. (2013) 'Network theory for infrastructure 

systems modelling', Engineering Sustainability, 166(5), pp. 281-292. 



 

213 

 

Egan, M.J. (2007) 'Anticipating future vulnerability: Defining characteristics of increasingly 

critical infrastructure-like systems', Journal of contingencies and crisis management, 15, pp. 

4-17. 

Electricity Consumers Resource Council (2004) The economic impacts of the August 2003 

blackout. Washington DC: Council, E.C.R. 

Erdos, P. and Renyi, A. (1959) 'On random graphs I.', Publ. Math. Debrecen, 6, pp. 290-297. 

Eusgeld, I., Nan, C. and Dietz, S. (2011) '“System-of-systems” approach for interdependent 

critical infrastructures', Reliability Engineering & System Safety, 96(6), pp. 679-686. 

Evans, A.J. (2010) 'Complex Spatial Networks in Application', Complexity, 16, pp. 11-19. 

Filippini, R. and Silva, A. (2014) 'A modeling framework for the resilience analysis of 

networked systems-of-systems based on functional dependencies', Reliability Engineering & 

System Safety, 125(0), pp. 82-91. 

Fortunato, S. (2010) 'Community detection in graphs', Physics Reports, 486, pp. 75-174. 

Foster, J.G., Foster, D.V., Grassberger, P. and Paczuski, M. (2010) 'Edge direction and the 

structure of networks.', Proceedings of the National Academy of Sciences of the United States 

of America, 107, pp. 10815-10820. 

Freeman, L.C. (1978) 'Centrality in Social Networks Conceptual Clarification', Social 

Networks, 1, pp. 215-239. 

Fu, G., Wilkinson, S. and Dawson, R. (2015) 'A Spatial Model for Infrastructure Network 

Generation and Evolution', in Sanayei, A., E. Rössler, O. and Zelinka, I. (eds.) ISCS 2014: 

Interdisciplinary Symposium on Complex Systems. Springer International Publishing, pp. 365-

371. 

Gagneur, J., Jackson, D.B. and Casari, G. (2003) 'Hierarchical analysis of dependency in 

metabolic networks', Bioinformatics, 19, pp. 1027-1034. 

Gao, J., Buldyrev, S.V., Havlin, S. and Stanley, H.E. (2011) 'Robustness of a Network of 

Networks', Physical Review Letters, 107, pp. 1-5. 

Gastner, M.T. and Newman, M.E.J. (2004) 'Shape and efficiency in spatial distribution 

networks', Journal of Statistical Mechanics: Theory and Experiment, 2006. 



 

214 

 

Gastner, M.T. and Newman, M.E.J. (2006) 'The spatial structure of networks', The European 

Physical Journal B - Condensed Matter and Complex Systems, 49, pp. 247-252. 

Genge, B., Kiss, I. and Haller, P. (2015) 'A system dynamics approach for assessing the 

impact of cyber attacks on critical infrastructures', International Journal of Critical 

Infrastructure Protection. 

Ginestra, B. and Matteo, M. (2005) 'Loops of any size and Hamilton cycles in random scale-

free networks', Journal of Statistical Mechanics: Theory and Experiment, 2005(06). 

Girvan, M. and Newman, M.E.J. (2002) 'Community structure in social and biological 

networks', Proceedings of the National Academy of Sciences, 99, pp. 7821-7826. 

Grubesic, T.H., Matisziw, T.C. and Zook, M.A. (2009) 'Spatio-temporal fluctuations in the 

global airport hierarchies', Journal of Transport Geography, 17, pp. 264-275. 

Guimera, R. and Amaral, L.A.N. (2004) 'Modeling the world-wide airport network', The 

European Physical Journal B, 38, pp. 381-385. 

Gursesli, O. and Desrochers, A.A. (2003) Systems, Man and Cybernetics, 2003. IEEE 

International Conference on. 5-8 Oct. 2003. 

Haimes, Y.Y. (2009) 'On the definition of resilience in systems.', Risk analysis : an official 

publication of the Society for Risk Analysis, 29, pp. 498-501. 

Havlin, S., Araujo, N.A.M., Buldyrev, S.V., Dias, C.S., Parshani, R., Paul, G. and Stanley, 

H.E. (2010) 'Catastrophic Cascade of Failures in Interdependent Networks', Nature Letters, 

464, pp. 1025-1028. 

Helbing, D. (2012) 'Agent-Based Modeling', in Helbing, D. (ed.) Social Self-Organization: 

Agent-Based Simulations and Experiments to Study Emergent Social Behavior. Berlin, 

Heidelberg: Springer Berlin Heidelberg, pp. 25-70. 

Helbing, D., Ammoser, H. and Kühnert, C. (2006a) 'Information flows in hierarchical 

networks and the capability of organizations to successfully respond to failures, crises, and 

disasters', Physica A: Statistical Mechanics and its Applications, 363(1), pp. 141-150. 



 

215 

 

Helbing, D., Armbruster, D., Mikhailov, A.S. and Lefeber, E. (2006b) 'Information and 

material flows in complex networks', Physica A: Statistical Mechanics and its Applications, 

363(1), pp. 11-16. 

Herrmann, C., Barthélemy, M. and Provero, P. (2003) 'Connectivity distribution of spatial 

networks', Physical Review E, 68(2). 

Hines, P. and Blumsack, S. (2008) Hawaii International Conference on System Sciences, 

Proceedings of the 41st Annual. 7-10 Jan. 2008. 

HM Treasury (2010) Strategy for National Infrastructure. UK: HM Treasury,. 

Holling, C.S. (1973) 'Resilience and stability of ecological systems', Annual review of ecology 

and systematics, 4. 

Holme, P., Huss, M. and Jeong, H. (2003) 'Subnetwork hierarchies of biochemical pathways', 

Bioinformatics, 19(4), pp. 532-538. 

Holme, P., Kim, B.J., Yoon, C.N. and Han, S.K. (2002) 'Attack vulnerability of complex 

networks', Physical Review E, 65(5). 

Holmgren, Å.J. (2006) 'Using Graph Models to Analyze the Vulnerability of Electric Power 

Networks', Risk Analysis, 26(4), pp. 955-969. 

Homeland Secutity Advisory Council (2011) Community Resilience Task Force 

Recommendations. 

Hoogendoorn, S.P. and Bovy, P.H.L. (2001) 'State-of-the-art of vehicular traffic flow 

modelling', Proceedings of the Institution of Mechanical Engineers, Part I: Journal of 

Systems and Control Engineering, 215(4), pp. 283-303. 

Hosseini, S., Barker, K. and Ramirez-Marquez, J.E. (2016) 'A review of definitions and 

measures of system resilience', Reliability Engineering & System Safety, 145, pp. 47-61. 

Huang, L., Yang, L. and Yang, K. (2006) 'Geographical effects on cascading breakdowns of 

scale-free networks', Physical Review E, 73(3). 

igraph (2016) igraph. Available at: http://igraph.org/redirect.html (Accessed: 04/08). 

http://igraph.org/redirect.html


 

216 

 

ITRC (2013) Infrastructure Transitions Research Consortium. Available at: 

http://www.itrc.org.uk/ (Accessed: 12/03/13). 

Jenelius, E. (2010) 'Redundancy importance: Links as rerouting alternatives during road 

network disruptions', Procedia Engineering, 3(0), pp. 129-137. 

Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabasi, A.L. (2000) 'The large-scale 

organization of metabolic networks', Nature, 407(6804), pp. 651-654. 

Jisc (2015) Janet network. Available at: https://www.jisc.ac.uk/janet (Accessed: 24/2). 

Johansson, J. and Hassel, H. (2010) 'An approach for modelling interdependent infrastructures 

in the context of vulnerability analysis', Reliability Engineering & System Safety, 95(12), pp. 

1335-1344. 

Jungnickel, D. (2004) Graphs, networks and algorithms. Third edn. Springer. 

Jungnickel, D. (2008) 'Algorithms and Computation in Mathematics', 5. 

Kalapala, V., Sanwalani, V., Clauset, A. and Moore, C. (2006) 'Scale invariance in road 

networks', Physical Review E, 73(2). 

Katifori, E., Szollosi, G.J. and Magnasco, M.O. (2010) 'Damage and Fluctuations Induce 

Loops in Optimal Transport Networks', Physical Review Letters, 104(4). 

Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T. and Zweig, K.A. 

(2009) 'Cycle bases in graphs characterization, algorithms, complexity, and applications', 

Computer Science Review, 3(4), pp. 199-243. 

Kim, H.-J. and Kim, J.M. (2005) 'Cyclic topology in complex networks', Physical Review E, 

72(3). 

Klein, R., Rome, E., Beyel, C., Linnemann, R., Reinhardt, W. and Usov, A. (2008) 

'Information Modelling and Simulation in large interdependent Critical Infrastructures in 

IRRIIS', in  Critical Information Infrastructure Security. Springer, pp. 36-47. 

Klemm, K. and Stadler, P.F. (2006) 'Statistics of cycles in large networks', Physical Review E, 

73(2). 

http://www.itrc.org.uk/
https://www.jisc.ac.uk/janet


 

217 

 

Lancichinetti, A., Fortunato, S. and Kertész, J. (2009) 'Detecting the overlapping and 

hierarchical community structure in complex networks', New Journal of Physics, 11. 

Laprie, J.C. and Kanoun, K. (2007) 'Modelling interdependencies between the electricity and 

information infrastructures', Computer Safety, Reliability, and, pp. 54-67. 

Latora, V. and Marchiori, M. (2002) 'Is the Boston subway a small-world network?', Physica 

A: Statistical Mechanics and its Applications, 314, pp. 109-113. 

Leavitt, W.M. and Kiefer, J.J. (2006) 'Infrastructure Interdependency and the Creation of a 

Normal Disaster: The Case of Hurricane Katrina and the City of New Orleans', Public Works 

Management & Policy, 10(4), pp. 306-314. 

Leu, G., Abbass, H. and Curtis, N. (2010) 'Resilience of ground transportation networks: a 

case study on Melbourne', 33rd Australian Transport Research Forum Conference. 

Li, Y., Zhang, L., Huang, C. and Shen, B. (2016) 'The structural robustness of geographical 

networks against regional failure and their pre-optimization', Physica A: Statistical Mechanics 

and its Applications, 451, pp. 420-428. 

Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E. and Åberg, Y. (2001) 'The web of 

human sexual contacts', Nature, 411(6840), pp. 907-908. 

Little, R.G. (2002) 'Controlling cascading failure: understanding the vulnerabilities of 

interconnected infrastructures', Journal of Urban Technology, pp. 37-41. 

Little, R.G. (2003) International Conference on System Sciences. 

Lordan, O., Sallan, J.M., Simo, P. and Gonzalez-Prieto, D. (2014) 'Robustness of the air 

transport network', Transportation Research Part E: Logistics and Transportation Review, 

68(0), pp. 155-163. 

Louf, R., Jensen, P. and Barthelemy, M. (2013) 'Emergence of hierarchy in cost driven 

growth of spatial networks', Proceedings of the National Academy of Sciences of the United 

States of America, 110(22). 

Luca, D.A., Alain, B., Marc, B. and Alessandro, V. (2006) 'Vulnerability of weighted 

networks', Journal of Statistical Mechanics: Theory and Experiment, 2006(04). 



 

218 

 

Macal, C.M. and North, M.J. (2010) 'Tutorial on agent-based modelling and simulation', 

Journal of Simulation, 4(3), pp. 151-162. 

Masuda, N., Miwa, H. and Konno, N. (2005) 'Geographical threshold graphs with small-

world and scale-free properties', Physical Review E, 71. 

McDaniels, T.L., Chang, S.E., Cole, D., Mikawoz, J. and Longstaff, H. (2008) 'Fostering 

resilience to extreme events within infrastructure systems: Characterizing decision contexts 

for mitigation and adaptation', Global Environmental Change, 18, pp. 310-318. 

Merabti, M., Kennedy, M. and Hurst, W. (2011) Communications and Information 

Technology (ICCIT), 2011 International Conference on. 29-31 March 2011. 

Mishkovski, I., Biev, M. and Kocarev, L. (2011) 'Vulnerability of complex networks', 

Communications in Nonlinear Science and Numerical Simulation, 16, pp. 341-349. 

Motter, A.E. (2004) 'Cascade Control and Defense in Complex Networks', Physical Review 

Letters, 93(9). 

Motter, A.E. and Lai, Y.-C. (2002) 'Cascade-based attacks on complex networks', Physical 

Review E, 66(6). 

Murata, T. (1989) 'Petri nets: Properties, analysis and applications', Proceedings of the IEEE, 

77(4), pp. 541-580. 

Murray, A.T. (2013) 'An overview of network vulnerability modeling approaches', 

GeoJournal, 78(2), pp. 209-221. 

Murray, A.T., Matisziw, T.C. and Grubesic, T.H. (2008) 'A Methodological Overview of 

Network Vulnerability Analysis', Growth and Change, 39(4), pp. 573-592. 

Nagel, K. and Rickert, M. (2001) 'Parallel implementation of the TRANSIMS micro-

simulation', Parallel Computing, 27(12), pp. 1611-1639. 

Nagel, K., Stretz, P., Pieck, M., Donnelly, R. and Barrett, C.L. (1997) 'TRANSIMS traffic 

flow characteristics', arXiv preprint adap-org/9710003. 

NetworkX (2012) NetworkX - balanced_tree. Available at: 

http://networkx.lanl.gov/reference/generated/networkx.generators.classic.balanced_tree.html 

(Accessed: 16/03). 

http://networkx.lanl.gov/reference/generated/networkx.generators.classic.balanced_tree.html


 

219 

 

NetworkX (2014) NetworkX: Overview. Available at: https://networkx.github.io/. (Accessed: 

24/10). 

NetworkX (2015) network_simplex. Available at: 

https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.flo

w.network_simplex.html (Accessed: 23/07). 

Newman, M.E.J. (2000) 'Models of the small world', Journal of Statistical Physics, 101, pp. 

819-841. 

Newman, M.E.J. (2002) 'Assortative Mixing in Networks', Physical Review Letters, 89, pp. 1-

4. 

Newman, M.E.J. (2003a) 'Mixing patterns in networks', Physical Review E, 67, pp. 1-13. 

Newman, M.E.J. (2003b) 'The Structure and function of complex networks', Physics, pp. 1-

58. 

Newman, M.E.J. (2004) 'Analysis of weighted networks', Physical Reveiw, 70. 

Newman, M.E.J. (2005) 'A measure of betweenness centrality based on random walks', Social 

Networks, 27(1), pp. 39-54. 

Newman, M.E.J., Watts, D.J. and Strogatz, S.H. (2002) 'Random graph models of social 

networks.', Proceedings of the National Academy of Sciences of the United States of America, 

99 Suppl 1, pp. 2566-2572. 

Ng, K.M., Reaz, M.B.I. and Ali, M.A.M. (2013) 'A Review on the Applications of Petri Nets 

in Modeling, Analysis, and Control of Urban Traffic', IEEE Transactions on Intelligent 

Transportation Systems, 14(2), pp. 858-870. 

NWB Team (2006) Network Workbench Tool. Available at: http://nwb.cns.iu.edu/ (Accessed: 

28/02/2012). 

O'Rourke, T.D. (2007) 'Critical Infrastructure, Interdependencies, and Resilience', The Bridge, 

37(1), pp. 22-29. 

Oliva, G., Panzieri, S. and Setola, R. (2010) 'Agent-based input–output interdependency 

model', International Journal of Critical Infrastructure Protection, 3(2), pp. 76-82. 

https://networkx.github.io/
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.flow.network_simplex.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.flow.network_simplex.html
http://nwb.cns.iu.edu/


 

220 

 

Ouyang, M. (2014) 'Review on modeling and simulation of interdependent critical 

infrastructure systems', Reliability Engineering & System Safety, 121(0), pp. 43-60. 

Ouyang, M. (2016) 'Critical location identification and vulnerability analysis of 

interdependent infrastructure systems under spatially localized attacks', Reliability 

Engineering & System Safety, 154, pp. 106-116. 

Ouyang, M., Dueñas-Osorio, L. and Min, X. (2012) 'A three-stage resilience analysis 

framework for urban infrastructure systems', Structural Safety, 36–37(0), pp. 23-31. 

Ouyang, M., Hong, L., Mao, Z.-J., Yu, M.-H. and Qi, F. (2009) 'A methodological approach 

to analyze vulnerability of interdependent infrastructures', Simulation Modelling Practice and 

Theory, 17, pp. 817-828. 

Palla, G., Derényi, I., Farkas, I. and Vicsek, T. (2005) 'Uncovering the overlapping 

community structure of complex networks in nature and society.', Nature, 435, pp. 814-818. 

Pastor-Satorras, R., Alexei, V. and Vespignani, A. 440 (2004) 'Topology , Hierarchy , and 

Correlations in Internet Graphs' Lecture Notes in Physics. pp. 425-440. 

Pastor-Satorras, R., Vázquez, A. and Vespignani, A. (2001) 'Dynamical and Correlation 

Properties of the Internet', Physical Review Letters, 87, pp. 3-6. 

Paton, K. (1969) 'An algorithm for finding a fundamental set of cycles of a graph', 

Communications of the ACM, 12(9), pp. 514-518. 

Peixoto, T.P. (2015) graph-tool: efficient network analysis. Available at: http://graph-

tool.skewed.de/ (Accessed: 28/02/2012). 

Petreska, I., Tomovski, I., Gutierrez, E., Kocarev, L., Bono, F. and Poljansek, K. (2010) 

'Application of modal analysis in assessing attack vulnerability of complex networks', 

Communications in Nonlinear Science and Numerical Simulation, 15(4), pp. 1008-1018. 

Pimm, S.L. (1984) 'The complexity and stability of ecosystems', Nature, 307, pp. 321-326. 

psycopg (2015) psycopg. Available at: http://initd.org/psycopg/ (Accessed: 25/08). 

Purcell, M. and Fyfe, S. (1998) Queen's University Ice Storm '98 study: emergency 

preparedness and responce issues. Ottawa: Canada, E.P. 

http://graph-tool.skewed.de/
http://graph-tool.skewed.de/
http://initd.org/psycopg/


 

221 

 

Pye, G. and Warren, M. (2006) Proceedings of the 7th Australian Information Warfare and 

Security Conference. [Australian Information Warfare & Security Conference]. 

Python Software Foundation (2015) Python. Available at: https://www.python.org/ 

(Accessed: 24/08). 

Ravasz, E. and Barabasi, A.-L. (2003) 'Hierarchical organization in complex networks', 

Physical Review E, 67. 

Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. and Barabasi, A.-L. (2002) 

'Hierarchical organization of modularity in metabolic networks.', Science (New York, N.Y.), 

297, pp. 1551-1555. 

Reed, D.A., Kapur, K.C. and Christie, R.D. (2009) 'Methodology for assessing the resilience 

of networked infrastructure', Systems Journal, IEEE, 3, pp. 174-180. 

Richards, M.G., Hastings, D.E., Rhodes, D.H. and Weigel, A.L. (2007) 'Defining 

Survivability for Engineering Systems', Conference on Systems Engineering Research. pp. 1-

12. 

Rinaldi, S.M. (2004) 'Modeling and Simulating Critical Infrastructures and Their 

Interdependencies', International Conference on System Sciences. Hawaii. 

Rinaldi, S.M., Peerenboom, J. and Kelly, T. (2001) 'Identifying, understnading and analysing 

Critical Infrastructure Interdependencies', IEEE Control Systems Magazine, 21, pp. 11-25. 

River Bank Computing (2013) PyQt4. Available at: 

https://www.riverbankcomputing.com/software/pyqt/download. 

Rosas-Casals, M. and Sole, R. (2011) 'Analysis of major failures in Europe's power grid', 

Electrical Power and Energy Systems, 33, pp. 805-808. 

Rosas-Casals, M., Valverde, S. and Sole, R.V. (2007) 'Topological Vulnerability of the 

European Power Grid Under Errors and Attacks', International Journal of Bifurcation and 

Chaos, 17, pp. 2465-2475. 

Royal Academy of Engineering (2011) Engineering the Future. London, UK: Royal 

Academy of Engineering. 

https://www.python.org/
https://www.riverbankcomputing.com/software/pyqt/download


 

222 

 

Royal Academy of Engineering (2014) Counting the cost: the economic and scocial costs of 

electricity shortfalls in the UK. London, UK: Royal Academy of Engineering. 

Rozenfeld, H.D., Kirk, J.E., Bollt, E.M. and Ben-Avraham, D. (2005) 'Statistics of cycles: 

how loopy is your network?', Journal of Physics A: Mathematical and General, 38, pp. 4589-

4595. 

Sales-Pardo, M., Guimerà, R., Moreira, A.A. and Amaral, L.A.N. (2007) 'Extracting the 

hierarchical organization of complex systems.', Proceedings of the National Academy of 

Sciences of the United States of America, 104, pp. 15224–15229. 

Sanchez-Garcia, R.J., Fennelly, M., Norris, S., Wright, N., Niblo, G., Brodzki, J. and Bialek, 

J.W. (2014) 'Hierarchical Spectral Clustering of Power Grids', IEEE Transactions on Power 

Systems. 

Scawthorn, C., Porter, K.A. and Risk, S.P.A. (2011) 'Aspects of the 11 March 2011 Eastern 

Japan Earthquake and Tsunami', Reconnaissance Report. 

Schulman, P.R. and Roe, E. (2007) 'Designing infrastructures: Dilemmas of design and the 

reliability of critical infrastructures', Journal of Contingencies and Crisis Management, 15, 

pp. 42-49. 

Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P.A., Mukherjee, G. and Manna, S.S. (2003) 

'Small-world properties of the Indian Railway network', Physical Review E, 67. 

Shi, X., Gaoxi, X. and Tee Hiang, C. (2008) 'Tolerance of intentional attacks in complex 

communication networks', Communications Magazine, IEEE, 46, pp. 146-152. 

Shuang, Q., Zhang, M. and Yuan, Y. (2014) 'Node vulnerability of water distribution 

networks under cascading failures', Reliability Engineering & System Safety, 124(0), pp. 132-

141. 

Sterbenz, J.P.G., Cetinkaya, E.K., Hameed, M.A., Jabbar, A. and Rohrer, J.P. (2011) 

'Modelling and analysis of network resilience', Communication Systems and Networks 

(COMSNETS), 2011 Third International Conference on. IEEE, pp. 1-10. 

Sterbenz, J.P.G., Hutchison, D., Çetinkaya, E.K., Jabbar, A., Rohrer, J.P., Schöller, M. and 

Smith, P. (2010) 'Resilience and survivability in communication networks: Strategies, 

principles, and survey of disciplines', Computer Networks, 54, pp. 1245-1265. 



 

223 

 

Suarez, P., Anderson, W., Mahal, V. and Lakshmanan, T.R. (2005) 'Impacts of flooding and 

climate change on urban transportation: A systemwide performance assessment of the Boston 

Metro Area', Transportation Research Part D: Transport and Environment, 10(3), pp. 231-

244. 

Swain, P.H. and Davis, S.M. (1978) Remote Sensing: The  Quantitative Approach. 1st edn. 

McGraw-Hill International Book Company. 

Tanizawa, T., Paul, G., Cohen, R., Havlin, S. and Stanley, H.E. (2005) 'Optimization of 

network robustness to waves of targeted and random attacks', Physical Review E, 71(4), pp. 1-

4. 

Ten, C.W., Liu, C.C. and Manimaran, G. (2008) 'Vulnerability Assessment of Cybersecurity 

for SCADA Systems', IEEE Transactions on Power Systems, 23(4), pp. 1836-1846. 

Trusina, A., Maslov, S., Minnhagen, P. and Sneppen, K. (2004) 'Hierarchy Measures in 

Complex Networks', Physical Review Letters, 92(17). 

Ulieru, M. (2007) 'Design for resilience of networked critical infrastructures', Digital 

EcoSystems and Technologies Conference, 2007. DEST'07. Inaugural IEEE-IES. IEEE, pp. 

540-545. 

Valeria, C., Emiliano, C. and Emanuele, G. (2007) 'Agent-based modeling of 

interdependencies in critical infrastructures through UML', Proceedings of the 2007 spring 

simulation multiconference - Volume 2. Norfolk, Virginia. Society for Computer Simulation 

International, pp. 119-126. 

van Dam, K.H. and Lukszo, Z. (2006) Systems, Man and Cybernetics, 2006. SMC '06. IEEE 

International Conference on. 8-11 Oct. 2006. 

Velykiene, R. and Jones, C.B. (2011) A Fast Track Analysis of ICT Constraints on Evolving 

Physical Infrastructure. 

Verma, T., Araujo, N.A.M. and Herrmann, H.J. (2014) 'Revealing the structure of the world 

airline network', p. 12. 

Vespignani, A. (2010) 'The fragility of interdependency', Nature, 464, pp. 984-985. 



 

224 

 

Walker, B., Holling, C.S., Carpenter, S.R. and Kinzig, A. (2004) 'Resilience , Adaptability 

and Transformability in Social – ecological Systems', Ecology And Society, 9(2). 

Wang, J.-W. and Rong, L.-L. (2011) 'Robustness of the western United States power grid 

under edge attack strategies due to cascading failures', Safety Science, 49, pp. 807-812. 

Wang, J. and Rong, L. (2009) 'Cascade-based attack vulnerability on the US power grid', 

Safety Science, 47, pp. 1332-1336. 

Wang, S., Hong, L. and Chen, X. (2012) 'Vulnerability analysis of interdependent 

infrastructure systems: A methodological framework', Physica A: Statistical Mechanics and 

its Applications, 391(11), pp. 3323-3335. 

Watts, D.J., Dodds, P.S. and Newman, M.E.J. (2002) 'Identity and Search in Social 

Networks', Science, 296(5571), pp. 1302-1305. 

Watts, D.J. and Strogatz, S.H. (1998) 'Collective dynamics of 'small-world' networks.', 

Nature, 393, pp. 440-442. 

Wilkinson, S., Dunn, S. and Ma, S. (2012) 'The vulnerability of the European air traffic 

network to spatial hazards', Natural Hazards, 60, pp. 1027-1036. 

Wuellner, D.R., Roy, S. and D’Souza, R.M. (2010) 'Resilience and rewiring of the passenger 

airline networks in the United States', Physical Review E, 82(5). 

Xia, Y., Fan, J. and Hill, D. (2010) 'Cascading failure in Watts–Strogatz small-world 

networks', Physica A: Statistical Mechanics and its Applications, 389(6), pp. 1281-1285. 

Yazdani, A. and Jeffrey, P. (2012) 'Applying Network Theory to Quantify the Redundancy 

and Structural Robustness of Water Distribution Systems', Journal of Water Resources 

Planning and Management, 138(2), pp. 153-161. 

Yerra, B. and Levinson, D. (2005) 'The emergence of hierarchy in transportation networks', 

The Annals of Regional Science, 39, pp. 541-553. 

Zimmerman, R. (2001) 'Social Implications of Infrastructure Network Interactions', Journal of 

Urban Technology, 8, pp. 97-119. 

Zio, E. (2014) 'Vulnerability and Risk Analysis of Critical Infrastructures', in  Vulnerability, 

Uncertainty, and Risk. American Society of Civil Engineers, pp. 23-30. 



 

225 

 

 

 

 

 

 

 

Appendix A: Suite of synthetic networks 

 

More details on the suite of synthetic networks as presented in Chapter 3. 
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A.1 Summary of synthetic suite 

The synthetic suite of networks employed in the analysis has been generated randomly to 

produce an ensemble of 6043 networks with each being generated through one of eight graph 

models. Statistics on the networks generated by each of the models are given in Table A.1. 

Graph type Number of 

exemplars 

Average number 

of nodes 

Average number 

of edges 

ER 1000 1013 12726 

GNM 1000 1004 11657 

BA 1000 996 15501 

WS 1000 962 7676 

HR 1000 348 548 

HR+ 1000 386 586 

HC 7 140 451 

TREE 36 372 371 

Table A.1: Statistics covering the set networks for each of the eight graph types within the 

suite of synthetic networks. 

 

A.2 Generation of synthetic suite 

The suite of synthetic networks has been generated using eight models, with five using existing 

algorithms available in the NetworkX python library (Erdos-Renyi, GNM, Watts-Strogatz, 

Barabasi-Albert and TREE), and three using developed algorithms (Hierarchical random, 

Hierarchical random + and Hierarchical communities). 

A.2.1 Erdos-Renyi 

Networks within the suite use the Erdos-Renyi algorithm available in the NetworkX library. 

This uses the function ‘erdos_renyi_graph’ with the two input parameters, the number of nodes 

of the proportion of the total possible edges for the network to be added to the generated network.  

 

A.2.2 GNM 

Again the GNM networks are generated using the GNM algorithm within the NetworkX library, 

‘gnm_random_graph’. This function is used with two input parameters, the number of nodes 

and the number of edges. 

 

A.2.3 Watts-Strogatz 

Watts-Strogatz networks are created using the Watts-Strogatz algorithm available in the 

NetworkX library. The function, ‘watts_strogatz_graph’, creates a network using an 
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implementation of the Watts-Strogatz algorithm requiring three input parameters, the number 

of nodes, the number of neighbours each node is joined to and the probability of rewiring each 

edge. 

 

A.2.4 Barabasi-Albert 

Scale-free networks are generated using the Barabasi-Albert model which is part of the 

NetworkX library. Networks can be created using the ‘barabasi_albert_graph’ function with 

two parameters, the number of node and the number of edges to connect each new node with. 

 

A.2.5 Hierarchical random 

The hierarchical random graph type is a custom graph type developed for the purposes of this 

research and based upon the TREE model (A.2.8). The algorithm, Figure A.1, at first builds a 

tree network (line 7) using the first two specified input parameters. Using the third parameter 

the number of edges to add to the network is calculated by multiplying this with the number of 

nodes in the network (line 10). While adding the new edges (line 12) the start and end nodes 

are selected at random (lines 13 and 14), with the first constraint being that the start and end 

nodes must be different (line 15) thus avoiding self-loops, and the second constraint (lines 19 – 

22) being that the edge must already exist in the network. Once all edges are added, the graph, 

G, is returned. 
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Figure A.1: HR graph model code.  

 

A.2.6 Hierarchical random + 

The hierarchical random + model is, like the HR model, based on the Tree model (A.2.8). 

However, due to the constraints in the way in which new edges can connect nodes, restricted to 

those is adjacent levels or those in the same level, and the way in which the number of edges to 

add is calculated, the algorithm is much longer and more complex. As with the HR model the 

network is generated from a balanced tree network (line 5, Figure A.2). The number of nodes 

in each level, and the id of those nodes in each level, are then identified allowing for the 

subsequent calculations of the number of new edges to add to each level and the nodes which 

those edges can connect to.  
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Figure A.2: The initial steps of the HR+ graph model. 

 

A.2.7 Hierarchical community 

The hierarchical community (HC) networks have been generated using a developed algorithm 

which produced networks derived by Ravasz et al. (2002) and Ravasz and Barabasi (2003). The 

networks proposed by the authors vary in the size of community, Figure A.3, thus two different 

algorithms are used, but a higher level function, Figure A.4, controls which algorithm is used 

to generate the requested network. Each algorithm has a similar structure, with Figure A.5 

exampling the initial structure which controls the building of the models depending on the level 

specified. The ‘createnodes’ function, Figure A.6, is then used to create all the nodes required, 

connecting them into the applicable community size, in this case five. These are then stitched 

together as required forming the final network. 
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Figure A.3: The two HC graph types. Community size of four (triangles) (a) and (b) a 

community size of five (squares). 

 

 

Figure A.4: HC graph model code. Code controls the generation of a HC model based 

network by calling either of the model network types. 

 

 

Figure A.5: The control function for the HC model where the community size of five is used 

to generate the network. 
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Figure A.6: Algorithm for creating the base level community of five nodes for the second of 

the network within the HC model. 

 

A.2.8 Tree 

All tree networks have been created using the Balanced-Tree algorithm, ‘balanced_tree’, in the 

NetworkX library. This takes two input parameters, the number of levels/layers (excluding the 

single source node) and the number of branches per node (the number of nodes connected to a 

parent node).
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Appendix B: Suite of critical infrastructure networks 

 

Further details of the suite of critical spatial infrastructure networks. 
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The second suite of networks generated contains 42 infrastructure networks across six different 

sectors covering a variety of scales. A mix of data sources has also been used to maximise the 

number and variety of networks which can be used for analysis. The following sub-sections, 

B.1-B.8, detail for each subset of networks the networks which fall within these groups, 

including the data source(s) and the size of the networks. 

 

B.1 Air networks 

In total six air networks have been created, all using data from the OpenFlights online resource, 

Table B.1. These cover flights within four regions as well as for two service providers. 

Network Data source Size  

UK OpenFlights Nodes:48 

Edges: 135 

 

Europe OpenFlights Nodes: 643 

Edges: 5737 
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USA OpenFlights Nodes: 601 

Edges: 2808 

 

North 

America 

  

  

OpenFlights Nodes: 889 

Edges: 3760 

 

EasyJet 

 

 

 

 

OpenFlights Nodes: 125 

Edges: 498 
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British 

Airways 

OpenFlights Nodes: 198 

Edges: 271 

 

Table B.1: Details of the air networks contained with the infrastructure database. 

 

B.2 Communication networks 

Due to the limited availability of data, only one communication network is included within the 

suite of infrastructure networks, Table B.2. The JANET network which provides high speed 

network and inter connections between major academic institution in the UK, has been 

manually digitised using network diagrams to generate the best possible representation  

Network Data source Size  

JANET JANET Nodes: 38 

Edges: 58 

 

Table B.2: Details of the communication network within the infrastructure suite. 

 

B.3 Energy networks 

The suite of energy networks consists of five exemplars covering national gas and electricity 

transmission networks, as owned by the National Grid, Table B.3. Three of the networks cover 

the transmission network for electricity, with all based on the same data but variants generated 

at different scales of simplification. A single gas transmission network is included which is 

directly based on national grid data again. The fifth network is an electricity transmission and 

distribution network which has been generated as part of the ITRC project using the national 



 

236 

 

transmission network, Ordnance Survey Points of Interst dataset, and a sample distribution 

network for a single area of the UK. 

Network Data source Size  

Electricity 

transmission 

ITRC/National 

grid 

Nodes: 

23787 

Edges: 

24185 

 

Electricity 

transmission 

(MT) 

ITRC/National 

grid 

Nodes: 

2218 

Edges: 

2520 
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Electricity 

transmission 

(NT) 

ITRC/National 

grid 

Nodes: 

7980 

Edges: 

8264 

 

 

 

 

 

Electricity 

transmission 

and 

distribution 

ITRC 

(Generated 

network from 

National Grid 

and Ordnance 

Survey data) 

Nodes: 

170669 

Edges: 

173039 
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Gas 

transmission 

ITRC/National 

grid 

Nodes: 

1486 

Edges: 

1739 

 

Table B.3: Details of the energy networks within the infrastructure suite. 

 

B.4 Rail – National 

Two national rail networks have been generated, one for the UK using Ordnance Survey data 

and a second for Ireland, for which there are two versions, which have been generated using 

Open Street Map data, Table B.4. The difference between the two variations for Ireland is the 

inclusion of apparent rail lines which no routes appear to use. 

Network Data source Size  

UK rail 

network 

 

 

OS Meridian 2 Nodes: 7995 

Edges: 8490 

 



 

239 

 

Ireland rail 

network 

Open Street 

Map 

Nodes: 201 

Edges: 203 

 

Ireland rail 

network (all 

track) 

 

 

Open Street 

Map 

Nodes: 201 

Edges: 208 

 

Table B.4: Details of national rail networks within the infrastructure suite. 

 

B.5 Rail – Regional 

An array of urban rail systems have been used to build a suite of rail networks of varying 

degrees of complexity, covering the UK, Paris (France) and Boston (USA), Table B.5. For 

London the main rail systems, taken from Ordnance Survey data, have been used to generate 

networks, including the Overground, the Docklands light railway and the tube. All three of 

which have also been used to generate a combined light rail network for Greater London as 

well. Networks have also been generated for the Manchester Metrolink and the Tyne and Wear 

Metro system, both of which have been generated form Ordnance Survey Meridian 2 data sets. 

As with London, for Paris the main rail systems have been generated as networks, using Open 

Street Map data. The network sets includes the RER, tram and metro networks, with a fourth 

network with all systems in as well. Further afield the transport network, the lightrail/subway 

in Boston, USA, has been used to generate an example network, with two versions, with the 

second containing the TAPAN extension. These has been created using Open Street Map data 

with verification using the published system maps. 
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Network Data source Size  

London 

DLR 

(Docklands 

Light 

Railway) 

OS Meridian 2 Nodes: 45 

Edges: 46 

 

London 

overground 

OS Meridian 2 Nodes: 86 

Edges: 85 

 

London 

tube 

 

 

  

Transport for 

London (TFL) 

Nodes: 436 

Edges: 466 

 

London 

tube 

(merged 

stations) 

TFL Nodes: 296 

Edges: 332 
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London 

light rail 

OS Meridian 

2/TFL 

Nodes: 399 

Edges: 452 

 

Manchester 

metrolink 

OS Meridian 2 Nodes: 65 

Edges: 66 

 

Tyne and 

Wear metro 

OS Meridian 2 Nodes: 60 

Edges: 60 

 

Tyne and 

Wear metro 

(all 

shortcuts) 

OS Meridian 2 Nodes: 60 

Edges: 64 
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RATP 

(Paris) 

RER 

Open Street 

Map 

Nodes: 64 

Edges: 63 

 

RATP 

(Paris) tram 

Open Street 

Map 

Nodes: 103 

Edges: 99 

 

RATP 

(Paris) 

metro 

Open Street 

Map 

Nodes: 301 

Edges: 357 

 

RATP 

(Paris) 

integrated 

rail 

Open Street 

Map 

Nodes: 467 

Edges: 519 
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Boston 

light rail 

Open Street 

Map 

Nodes: 113 

Edges: 114 

 

Boston 

light rail 

(with 

TAPAN)  

Open Street 

Map 

Nodes: 120 

Edges: 121 

 

Table B.5: Details of the regional rail networks within the infrastructure suite. 

 

B.6 Rivers 

Four river networks have been generated as part of the suite of networks. These are all for the 

UK and have been generated using OS Meridian 2 data. The rivers included are the Eden (North 

West England), Dee (Scotland), Severn (England) and Tyne (North East England), Table B.6. 
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Network Data source Size  

River Eden 

 

 

OS Meridian 2 Nodes: 302 

Edges: 301 

 

River Dee 

 

OS Meridian 2 Nodes: 896 

Edges: 900 

 

River 

Severn 

 

OS Meridian 2 Nodes: 

1905 

Edges: 

1966 

 

River Tyne OS Meridian 2 Nodes: 616 

Edges: 615 

 

Table B.6: Details of the river networks within the infrastructure suite. 
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B.7 Road – National 

Two national scale road networks have been generated, one for the UK and one for Ireland 

(including Northern Ireland), Table B.7. The UK network, with 24071 nodes, has been created 

using Ordnance Survey Meridian 2 data, whereas the Irish network has been created from Open 

Street Map data. 

Network Data 

source 

Size  

UK 

motorways, A 

and B roads 

OS 

Meridian 2 

Nodes: 

24071 

Edges: 

50292 

 

Ireland 

primary and 

trunk roads 

Open 

Street Map  

Nodes:4444 

Edges: 

6011 

 

Table B.7: Details of the national road networks within the infrastructure suite. 
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B.8 Road – Regional 

Along with the national road networks, seven regional networks, Table B.8, have also been 

included in the suite of road networks. Three regions/cities are covered by the suite, Tyne and 

Wear, Leeds and Milton Keynes. For Tyne and Wear three variations are included, from the 

first with motorways and A roads, to the third which also has B roads and minor roads. For 

Leeds and Milton Keynes, each has two versions of the roads networks, with the first having 

motorways, A and B roads, and the second extended to include minor roads as well. 

Network Data 

source 

Size  

Tyne and 

Wear 

Motorways 

and A roads 

OS 

Meridian 

2 

Nodes: 

212 

Edges: 

311 

 

Tyne and 

Wear 

Motorways, 

A and B 

roads 

OS 

Meridian 

2 

Nodes: 

398 

Edges: 

600 
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Tyne and 

Wear 

Motorways, 

A, B and 

minor roads 

OS 

Meridian 

2 

Nodes: 

15249 

Edges: 

21817 

 

Leeds 

Motorways, 

A and B 

roads 

OS 

Meridian 

2 

Nodes: 

283 

Edges: 

411 

 

Leeds 

Motorways, 

A and minor 

roads 

OS 

Meridian 

2 

Nodes: 

9732 

Edges: 

14015 

 



 

248 

 

Milton 

Keynes 

Motorways, 

A and B 

roads 

OS 

Meridian 

2 

Nodes: 

42 

Edges: 

51 

 

Milton 

Keynes 

Motorways, 

A, B and 

minor roads 

OS 

Meridian 

2 

Nodes: 

2587 

Edges: 

3583 

 

Table B.8: Details of the regional road networks within the infrastructure suite. 

 

 

B.9 Summary of edits to infrastructure groups 

Table B.9 summarises the edits made to each of the infrastructure network groups using tools 

developed by ITRC and GIS tools. 
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Group Editing 

Air From the open flights data the airports were plotted using the provided 

coordinates and then the flights plotted by connecting them via their origin 

and destination airport codes. For the two networks of flight operators, 

these were generated by using the operator code to select the applicable 

flights and then selecting the airports based on those required for the 

flights. 

Communication The JANET network has been replicated at a national level using available 

diagrams on their website and those of associated partners/groups. This 

was created using GIS software. 

Energy None – These were provided topologically valid. 

Rail - national The GB rail network was provided via ITRC, though was generated from 

Ordnance Survey Meridian 2 dataset. 

The network for Ireland (including Northern Ireland) has been built using 

Open Street Map data. This data was used as the basis for the network 

which required editing to make it topologically valid. Public rail maps and 

timetables were also used to check the integrity of the data and the 

resulting network. 

Rail - regional For those within England, these were generated using Ordnance Survey 

Meridian 2 data, with the use of Open Street Map to check the validity of 

the data and any amendments required to make the network topologically 

valid. For the Boston rail networks these have been generated using Open 

Street Map as the main source, with supporting evidence from official 

documentation and maps. ITRC tools were used in the generation of the 

valid networks from the datasets employed. 

Rivers These have been created using the Meridian 2 Ordnance Survey product. 

Editing was required to create networks where only junctions were found 

at the intersection of three edges (or more where applicable).  

Roads - 

regional 

Using Ordnance Survey Meridian 2 these networks have been generated 

to reproduce the road networks as close as possible. These required some 

editing, especially those where the full suite of road classification were not 

used. Networks were edited using GIS and ITRC tools to create nodes only 

where road junction appeared in the networks. 

Roads - 

national 

The networks for Ireland have been generated using Open Street map data 

only, though required a vast amount of editing due to the way the data has 

been recorded. Again this was to create valid topological networks where 

nodes were only present where junctions were found. 

The national network for GB was provided by ITRC. 

Table B.9: Summarising the edits made to the networks for each infrastructure group 
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Appendix C: Details on utilising developed software 

 

Brief details including code snippets for using the developed network schema and the 

robustness module. 
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C.1 nx_pgnet_atts 

The module allows for the storage of networks with the explicit handing of a specific set of 

attributes. Documentation on all the functions developed is available in Appendix F, though 

examples of use of some of the key functions such as those for writing a network to the database, 

Section C.1.1, and reading from the database, Section C.1.2, are given here. Further examples 

are given for other functions to demonstrate how the functions can be used and the breadth of 

functions available from within python. These examples include how to update the attributes of 

a node, Section C.1.3, how to add a new function to the database for a network, Section C.1.4, 

and how to view for all nodes a single attribute, Section C.1.5. 

  

C.1.1 Writing a network (python to database) 

Given a NetworkX network instance within the python environment, it can be written to the 

database using the ‘write_to_db’ function, as exemplified in Error! Reference source not 

found.. Line 1 shows the declaration of the attributes which are to be explicitly stored within 

the database, with those set as False to be ignored, which in this case is none of them. This list 

is broken into node attributes, then edge attributes. The other variables required include a valid 

psycopg2 database connection and the name which the network is to be given. Variables such 

as the presence of the attribute values and functions in the attributes of the nodes/edges in the 

network, the ‘contains_atts’ and the ‘contains_functions’ variables respectively need to be set 

to allow the schema to extract these details. Finally, the option to overwrite a network with the 

same name, the spatial reference id, if the network is directed and if the network is a multigraph 

also need to be assigned.  

 

Figure C.1: Example code to write a network to a database using the nx_pgnet_atts schema. 

 

C.1.2 Reading a network (database to python) 

A network which has been saved in a database using the nx_pgnet_atts schema can be read into 

a python environment using the ‘read_from_db’ function within the read class. Given a valid 

database connection, and the name of the network which exists in the database, the function 
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attempts to read the network into python. Exemplified in Error! Reference source not found., 

the only other variable required is the dictionary containing the information on the node and 

edge attributes which are to be read from the database and form attributes of the nodes and 

edges in the NetworkX python network instance. This is of the same form as explained in 

Section C.1.1. Not all attributes which are explicitly handled in the database need to be form 

part of the NetworkX instance. 

 

Figure C.2: Example code to read a network from a database using the nx_pgnet_atts schema. 

 

C.1.3 Update attributes of a node 

The attributes of a single node can be updated easily without having to read the network into 

python. This is done using the ‘update_node_attributes’ function within the table_sql class, as 

exemplified in Error! Reference source not found.. As with the read and write class’s, a valid 

database connection is needed and a valid name of a network within the database. Details must 

then be specified of the attribute to update, the new value, the function id to be assigned, the 

unit id, and the node id which is to be updated. The overwrite function should be specified as 

True to ensure the update functions as intended. 

 

Figure C.3: Example code to update the role of a single node within the database. 

 

C.1.4 Add a new function to the database 

A function can be added to the functions relation in the database for a specified network using 

the ‘add_functions’ function from the write class. Given a valid database connection and a 

network name, the listed functions will be added to the functions table. For each function, the 

id, the type and the function itself need to be specified in this order. The id is used as the primary 

key so this needs to be unique from all other functions already in the functions relation. 
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Figure C.4: Adding a new function to the functions relation in the network specific functions 

relation in the database. 

 

C.1.5 View attribute data for all nodes 

The attribute data for a specified attribute for all nodes can be viewed in python using the 

developed ‘get_node_data’ function, part of the table_sql class. The function returns for each 

node the attribute value(s), the functions and the units. This requires the database connection, 

the name of the network, the name of the attribute data to be returned and the names of the node 

table, function table and attribute table. Figure C.5 provides an example of how to use the 

function. 

 

Figure C.5: How to view for all nodes the data for a single attribute as specified. 

 

 

C.2 Robustness module 

The robustness modules allows for the analysis of networks with a large assortment of options 

available to users, with both the topological (Chapter 3, Section 3.5 (page 59)) and flow 

modelling (Chapter 3, Section 3.9 (page 71)) supported by this module. The options for analysis 

can be split into a number of categories including the analysis type (Section C.2.1), the analysis 

approach (Section C.2.2) and the node selection approach (Section C.2.3). 

 

C.2.1 Analysis type 

The analysis type refers to the way in which the networks are to be analysed, with the options 

including the analysis of a single network (a) and the analysis of a pair of networks where the 

function of one depends on the function of another (b). 

a. Single network analysis 

- For the analysis of a single network, treating the network as a standalone 

entity. 

b. Dependency analysis 
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- For the analysis of two networks, one of which is dependent on the other. 

 Dependencies are stored as the from and to nodes in the respective 

networks. 

 

C.2.2 Analysis/failure approach 

Networks can be analysed in a number of ways, from analysing the robustness of a network to 

single failures (a), the analysis of multiple failures with one at each epoch (b), and the analysis 

of cascading failures in networks (c). 

a. Single failure analysis 

- Explores the effect of the removal of a single node in a network by in-turn 

removing each node from the network, allowing the node with the greatest 

effect to be identified. 

- Works for all analysis types as specified in Section C.2.1. 

b. Sequential analysis 

- At each epoch a node is removed until no nodes are left in the network (or 

edges). 

- Works for all analysis types as specified in Section C.2.1. 

c. Cascading analysis 

- Cascading failures are simulated with a single trigger node/edge removed with 

the nodes/edges which are over capacity checked at each epoch after flows 

have been re-calculated. 

- Works only on the single network analysis type, Section C.2.1(a). 

 

C.2.3 Node selection approach 

For each failure approach the way in which the nodes to fail are selected is critical to how the 

network may behave as a consequence of the perturbations. Five methods are available, 

including the random selection (a), node degree based method (b), a node betweenness method 

(c), a manual/list based method (d) and a geographic option (e) where nodes and edges within 

the specified spatial area are failed. 

a. Random 

- Selects a node at random from the network. 

- Available for all failure approaches specified in Section C.2.2. 
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b. Degree 

- Selects the node with the greatest degree, the number of edges connected to 

the node. 

- Available for all failure approaches specified in Section C.2.2. 

c. Betweenness 

- Selects the node with the greatest betweenness, the node with the greatest 

number of shortest paths passing through it when considering those between 

all node pairs. 

- Available for all failure approaches specified in Section C.2.2. 

d. List 

- Allows a list of nodes to be specified with each entry being removed at an 

epoch in the order they have been listed. Where a listed node has already been 

removed, for example it may have become an isolated node and been removed 

as of this (see Section for details on these options), the node will be skipped 

and the next node in the list removed at the epoch. 

- Available for the sequential failure approach only, Section C.2.2(b). 

e. Geographic 

- Allows nodes and edges which fall within a geographic area to be removed, as 

specified by a shapefile.  

- Only available for the cascading failure approach, Section C.2.2(c). 

 

C.2.4 Failure variables 

Three variables on how the network, and certain aspects of it, should be handled also exist to 

customise the analysis being undertaken.  

a. Remove subgraphs 

b. Remove isolated nodes 

c. Exclude isolated nodes 

When running failure analysis subgraphs can form, with two options for the handling of these, 

specified through the ‘remove subgraphs’ option (a). The first it to ignore them and remove 

them from the network, classing them as failed as they are no longer connected to the largest 

part of the network. However, depending on the structure of the network, a subgraph could be 

up to half the size of the original network, and thus removing it is a significant step having 

consequences on the results of the analysis being performed. Alternatively, the second option 
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allows subgraphs to remain in the network and instead analysis results consider these as still 

part of the network. 

Along with the formation of subgraphs, isolated nodes can also appear, nodes which have no 

edges connecting to them to any other node. Variable (b) allows for nodes to either be removed 

from the network, regarding the nodes as failed, or for them to be left in the network. By 

removing the nodes from the network all components which have not failed are retained thus 

retaining the true state of the network topologically. On the other hand, removing the nodes 

allows for the nodes to be regarded as failed, as may occur in some network when a node is no 

longer connected. This can be exemplified by a rail station, whereby once no longer connected 

to the track which train run along, it has to can be regarded as failed as it no longer serves a 

purpose, presuming the analysis does not consider restoration of failed components (not 

considered/possible within the developed module).  

When selection nodes to fail option (c) can be used to specify if isolated nodes should be ignored 

when choosing a node to fail. This is obviously not an option if isolated nodes are removed 

when they appear as specified by option (b). 
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Appendix D: Synthetic graphs analysis results 

 

 

Results from the analysis of the suite of synthetic graphs generated through the employed 

eight graph models. 
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D.1 Degree distributions for the synthetic graphs 

The degree distribution of a graph provides insights into the topological structure of a graph, 

with the distribution mapping for each node degree in the graph the proportion of nodes which 

have each degree. For each of the eight graph models employed six example degree distribution 

plots are shown which represent the spectrum of distributions plotted for the full set of networks 

generated by each model. The six plots representing the degree distributions of the 1000 graphs 

generated using the ER model are shown in Figure D.1 and those selected from the suite 

generated by the GNM model are given in Figure D.2 (page 260). The selected plots for the 

graphs generated by the WS model and the BA model are presented in Figure D.3 (page 261) 

and Figure D.4 (page 262) respectively. Figure D.5 (page 263) and Figure D.6 (page 264) 

present the sample degree distribution plots for the graphs generated by the HR and HR+ 

models respectively. The example plots for the graphs generated by the HC model are presented 

in Figure D.7 (page 265) and Figure D.8 (page 266) shows the plots for the graphs generated 

by the TREE model. 
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Figure D.1: Degree distribution plots for the six example graphs generated by the ER graph 

model, Chapter 3, Section 3.3.1. 
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Figure D.2: Degree distribution plots for six example graphs generated by the GNM graph 

model, Chapter 3, Section 3.3.2. 
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Figure D.3: Degree distribution plots for the six example graphs generated by the WS graph 

model, Chapter 3, Section 3.3.3. 
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Figure D.4: Six example degree distribution plots for graphs generated by the BA graph 

model, Chapter 3, Section 3.3.4. 
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Figure D.5: Six example degree distribution plots for graphs generated by the HR graph 

model, Chapter 3, Section 3.3.5. 

 



 

264 

 

  

  

  

Figure D.6: Example degree distribution plots for six graphs generated using the HR+ graph 

model, Chapter 3, Section 3.3.6. 
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Figure D.7: Six example degree distribution plots for graphs generated by the HC graph 

model, Chapter 3, Section 3.3.7. 
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Figure D.8: Six degree distribution plots of graphs generated by the TREE graph model, 

Chapter 3, Section 3.3.8. 
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D.2 Metric values for the synthetic graphs 

For the characterisation of the synthetic graph models the three selected metric values (Chapter 

3, Section 3.4 (page 53)), the assortativity coefficient (AC), the maximum betweenness 

centrality (MBC) and the number of cycle basis per node (CB), were computed to record key 

properties of the networks generated by the models. These metric values can be used to 

characterise the networks as well as for comparing models. For each graph type the full suite 

of graphs were analysed (Table D.1). The following Sections, D.2.1 - D.2.8, present the metric 

values for each of the eight graph models, presented with the standard deviation of the metric 

values for all models to provide context for the results from each suite. 

Graph model Graph 

theme 

Number of 

graphs in suite 

Number of 

graphs analysed 

ER (Erdos-Renyi) Random 1000 1000 

GNM Random 1000 1000 

WS (Watts-Strogatz) Small-

World 

1000 1000 

BA (Barabasi-Albert) Scale-free 1000 1000 

HR (Hierarchical random) Hierarchical 

random 

1000 1000 

HR+ (Hierarchical random +) Hierarchical 

random + 

1000 1000 

HC (Hierarchical communities) Hierarchical 

communities 

7 7 

TREE Balanced 

tree 

31 31 

Table D.1: The number of graphs for each model in the graph suite and the number used for 

the metric analysis. 

The results for the ER graphs are given in Section D.2.1 (page 268), with the results for the 

second random graph model, the GNM model presented in Section D.2.2 (page 270). Section 

D.2.3 (page 272) presents the results for the small-world topological graphs as generated by the 

WS model, with the scale-free (BA) model results given in Section D.2.4. (page 274)The results 

for the HR and HR+ model graphs are presented in Sections D.2.5  (page 276) and D.2.6  (page 

278) respectively. Section D.2.7 (page 280) gives the results from the graphs generated using 

the HC model and the results for the graphs generated by the TREE model are presented in 

Section D.2.8 (page 282). 
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D.2.1 ER 

The three metrics have been calculated for the 1000 graphs generated randomly using the ER 

graph model. The results are shown with the standard deviations of the values for all of the 

graph models providing added context with the points for the ER model graphs shown as clear 

circles. The results are split into three plots, the first showing the AC and MBC values, Figure 

D.9, the second the AC and the number of CB per node, Figure D.10, and the third the MBC 

and the number of CB per node, Figure D.11. 

 

Figure D.9: The metric values for each of the ER model generated graphs for the assortativity 

coefficient and the maximum betweenness centrality metric. 
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Figure D.10: Computed assortativity coefficient and cycle basis per node values for the 

graphs generated using the ER graph model. 

 

Figure D.11: Results for the graphs generated with the ER graph model for the maximum 

betweenness centrality and number of cycle basis. 
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D.2.2 GNM 

The GNM model, the second model which generates graphs with a random topological structure, 

has been used to generate 1000 graphs. The metric values for these have been computed as with 

the other graph models and are shown alongside the results for the other graph models to enable 

these to be compared more easily. The results for each graphs are presented, with the first for 

the AC and MBC, Figure D.12, and the second for the AC and the number of CB per node, 

Figure D.13. The final set of results, Figure D.14, shows the results for the MBC and the number 

of CB per node. 

 

Figure D.12: The assortativity coefficient and maximum betweenness centrality points for the 

graphs generated by the GNM model. 
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Figure D.13: Points for the assortativity coefficient and number of cycle basis for graphs 

generated by the GNM model. 

 

Figure D.14: Points for the maximum betweenness centrality and number of cycle basis for 

the 1000 graphs generated by the GNM model. 
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D.2.3 WS 

Graphs with a small-world topological structure have been generated using the WS model, with 

1000 exemplars generated and added to the suite of synthetic graphs. The characteristics of 

those networks with regard to the selected metrics, the AC, MBC and number of CB per node, 

are have been calculated allowing the graphs to be compared to those generated by the other 

graph models. The values for the AC and the MBC are presented in Figure D.15, with Figure 

D.16 showing the AC and number of CB per node. Finally Figure D.17 presented the MBC and 

the number of CB per node. 

 

Figure D.15: For the graphs generated by the WS model the values for the assortativity 

coefficient and maximum betweenness centrality. 
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Figure D.16: Points for assortativity coefficient and number of cycle basis for the 1000 graphs 

generated using the WS model. 

 

Figure D.17: Values for the maximum betweenness centrality and number of cycle basis for 

the graphs generated by the WS models. 
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D.2.4 BA 

Using the BA (Barabasi-Albert) model 1000 scale-free networks were generated and added to 

the suite of synthetic graphs. As with the other graphs, the three selected metrics, AC, MBC 

and number of CB per node were calculated for each generated graph. The first set of results 

presented in Figure D.18 shows the AC and the MBC for the networks, with Figure D.19 

showing the values for the AC and the number of CB per node. Figure D.20 presents the final 

set of values, the MBC and the number of CB per node. 

 

Figure D.18: Assortativity coefficient and maximum betweenness centrality values for the 

1000 graphs generated by the BA graph model. 
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Figure D.19: Assortativity coefficient and number of cycle basis for the graphs generated by 

the BA graph model. 

 

Figure D.20: Points for the maximum betweenness centrality and number of cycle basis as 

calculated for the set of graphs generated by the BA graph model. 
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D.2.5 HR 

1000 exemplar graphs have been generated using the HR (hierarchical random) graph model to 

from part of the synthetic suite of graphs. Following the calculation of the selected metrics, AC, 

MBC and number of CB per node,  Figure D.21 shows the values for the AC and the MBC. 

Points for the AC and number of CB per node for the 1000 networks are presented in Figure 

D.22 and Figure D.23 shows the values for the MBC and the number of CB per node. 

 

Figure D.21: Points for graphs generated by HR for the assortativity coefficient and maximum 

betweenness centrality. 
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Figure D.22: Values for the assortativity coefficient and number of cycle basis for graphs 

generated by the HR model. 

 

Figure D.23: Maximum betweenness centrality and the number of cycle basis per node for 

each of the graphs generated by the HR graph model. 
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D.2.6 HR+ 

The HR+ graph model has been used to generate an ensemble of 1000 graphs which have 

subsequently been analysed using the selected graph metrics, the AC, the MBC and the number 

of CB per node. The results for the AC and the MBC are given in Figure D.24 with the points 

for the AC metric and number of CB per node in Figure D.25. The final set of points for the 

MBC and the number of CB per node are given in Figure D.26. 

 

Figure D.24: Values for the graphs generated by the HR+ model for the assortativity 

coefficient and maximum betweenness centrality metric values.. 
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Figure D.25: Values for the assortativity coefficient and the number of cycle basis per node 

for all graphs generated by the HR+ graph model. 

 

Figure D.26: Maximum betweenness centrality and the number of cycle basis per node values 

for all graphs generated by the HR+ graph model. 
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D.2.7 HC 

The HC (Hierarchical communities) model has been used in the generation of graphs for the 

synthetic suite of networks. Through plotting the values for the three selected metrics, the AC, 

the MBC and the number of CB per node, the characteristics of the graphs generated by the 

graph model can be compared to those of the other seven models employed in the generation 

of graphs. Figure D.27 presents the points for the AC and MBC, with the points for the AC and 

the number of CB per node given in Figure D.28. The values for the final metric pairing, the 

MBC and the number of CB per node are presented in Figure D.29. 

 

Figure D.27: Points for the HC graph model generated graphs for the assortativity coefficient 

and the maximum betweenness centrality. 
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Figure D.28: Points for the assortativity coefficient and number of cycle basis per node for 

each of the graphs generated using the HC graph model. 

 

Figure D.29: Calculated values for the graphs generated using the HC graph model for the 

maximum betweenness centrality and the number of cycle basis per node metrics. 
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D.2.8 TREE 

Using the TREE graph model an ensemble of graphs have been generated for the wider suite of 

synthetic graphs. Three metrics, the AC, the MBC and the number of CB per node, have been 

calculated for graphs to help in the characterisation of them. Through plotting each graph 

against the single standard deviation ellipses for each of the graph models, a comparison 

between models can be made. Results for the AC and MBC are presented in Figure D.30, with 

the results for the AC and the number of CB per nodes are presented in Figure D.31. Figure 

D.32 shows the final set of results for the MBC and number of CB per node. 

 

Figure D.30: Metric values for the assortativity coefficient and maximum betweenness 

centrality values for the TREE graphs. 
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Figure D.31: Assortativity coefficient and number of cycle basis for the graphs generated by 

the TREE model. 

 

Figure D.32: Points for the maximum betweenness centrality and number of cycle basis per 

node for each of the graphs generated by the TREE graph model. 



 

284 

 

D.3 Robustness of synthetic graphs 

Graphs generated using the spectrum of synthetic graph models have been analysed using a 

developed failure model (Chapter 3, Section 3.5 (page 59)) which employs three methods of 

assessing the robustness of the graphs to perturbations. The failure simulations were run over 

500 graphs from each of the eight graph models with the exception of the HC and TREE models 

were the full suite was run, 7 and 31 graphs (Table D.2). This allows for the results from each 

model to be compared aginst each other as well as for the different cardinalty of graphs to be 

accounted for. A subset of results from the graphs of different types are used to present the 

results, with those selected presenting the spectrum of behaviours exhibited in each case. The 

results for the selected six graphs for the ER model are presented in Figure D.33 with those for 

the second random model presented in Figure D.34 (page 286). Figure D.35 (page 287), shows 

the results for the WS (small-world) graphs with the results in Figure D.36 (page 288) showing 

the results for BA graphs.  Results for the selected six graphs from the set generated by the HR 

model are given in Figure D.37 (page 289) and the HR+ graph results are presented in Figure 

D.38 (page 290). The results for the final two sets of graphs, those generated by the HC and 

TREE model, are presented in Figure D.39 (page 291) and Figure D.40 (page 292). 

Graph model Number of graph 

type in suite 

Number of grapg employed 

in failure simulations 

ER 1000 500 

GNM 1000 500 

WS 1000 500 

BA 1000 500 

HR 1000 500 

HR+ 1000 500 

HC 7 7 

TREE 31 31 

Table D.2: The number of graphs used for failure simulations from each of the eight graph 

modles. 
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Number of nodes: 397 

 

Number of nodes: 746 

 

Number of nodes: 861 

 

Number of nodes: 1247 

 

Number of nodes: 1616 

 

Number of nodes: 1965 

 
Figure D.33: Behaviour of the selected six ER graphs to the topological failure methods. 
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Number of nodes: 338 

 

Number of nodes: 651 

 

Number of nodes: 940 

 

Number of nodes: 1177 

 

Number of nodes: 1692 

 

Number of nodes: 1982 

 
Figure D.34: Behaviour of six selected GNM graphs to the three topological failure methods. 
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Number of nodes: 184 

 

Number of nodes: 331 

 

Number of nodes: 706 

 

Number of nodes: 1089 

 

Number of nodes: 1673 

 

Number of nodes: 1966 

 
Figure D.35: Behaviour of the six selected WS graphs to the three topological failure 

methods. 
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Number of nodes: 163 

 

Number of nodes: 545 

 

Number of nodes: 860 

 

 

Number of nodes: 1448 

 

Number of nodes: 1699 

 

Number of nodes: 1932 

 
Figure D.36: Behaviour of the six selected BA graphs to the three topological failure methods. 
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Number of nodes: 57 

 

Number of nodes: 127 

 
 

Number of nodes: 400 

 

Number of nodes: 781 

 

Number of nodes: 1365 

 

Number of nodes: 1555 

 
Figure D.37: Behaviour of the six selected HR graphs to the three topological failure methods. 



 

290 

 

Number of nodes: 73 

 

Number of nodes: 156 

 

Number of nodes: 400 

 

Number of nodes: 781 

 

Number of nodes: 1093 

 

Number of nodes: 1365 

 

Figure D.38: Behaviour of the six selected HR+ graphs to the three topological failure 

methods. 
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Number of nodes: 16

 

Number of nodes: 25 

 

Number of nodes: 64 

 

Number of nodes: 125 

 

Number of nodes: 256 

 

Number of nodes: 625 

 

Figure D.39: Behaviour of the six selected HC graphs to the three topological failure methods. 
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Number of nodes: 40 

 

Number of nodes: 63 

 

Number of nodes: 85

 

Number of nodes: 127

 
 

Number of nodes: 781

 

Number of nodes: 1365

 

Figure D.40: Behaviour of the six selected TREE graphs to the three topological failure 

methods. 
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Appendix E: Infrastructure analysis results 

 

 

Results from the analysis of the suite of critical spatial infrastructure networks with 

comparisons to the results of the analysis of the synthetic graphs. 
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E.1 Degree distributions for critical spatial infrastructure networks 

The topology of a network can be characterised in a manner of ways, with one of those being 

the degree distribution. The degree distribution gives the likelihood of a node being selected 

with a specific node degree and thus when plotted for a network can be used and compared to 

those of other networks to characterise a networks topological structure. For the suite of spatial 

infrastructures developed (Chapter 3, Section 3.3 (page 42)), the plots for each infrastructure 

network are presented here to provide further insight into each of them.  

The plots of the degree distributions for the air networks are presented in Figure E.1 with those 

for the communication network presented in Figure E.2 (page 295). Figure E.3 (page 296) 

presents the degree distributions for the energy networks. Figure E.4 (page 297) and Figure E.5 

(page 299) present the degree distribution plots for the rail networks, with the national networks 

presented first followed by the regional light rail networks. The plots for the river networks are 

then presented, Figure E.6 (page 300), followed by those for the national scale road networks 

and the regional scale road networks, Figure E.7 (page 300) and Figure E.8 (page 302). 

British Airways flights: 

 

EasyJet flights: 

 
European flights: 

 

North American flights: 
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UK flights: 

 

USA flights: 

 

Figure E.1: Degree distribution plots for the suite of air networks, Chapter 3, Section 3.6.1. 

 

Janet: 

 

 

Figure E.2: Degree distribution plot for the communication network, Chapter 3, Section 3.6.2. 

 

National Grid electricity transmission: 

 

National Grid electricity transmission MT: 
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National Grid electricity transmission NT: 

 

National Grid gas transmission: 

 

Great Britain electricity transmission: 

 

 

Figure E.3: Degree distribution plots for the suite of energy networks, Chapter 3, Section 

3.6.3. 

Ireland rail: 

 

Ireland rail with shortcuts: 
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Great Britain rail: 

 

 

Figure E.4: Degree distribution plots for national rail networks, Chapter 3, Section 3.6.4. 

 

Boston subway: 

 

Boston subway with TAPAN: 

 

London DLR:  

 

London integrated: 
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London Overground: 

 

London Tube: 

 

Manchester Metrolink: 

 

 

RATP (Paris) metro: 

  

 

RATP (Paris) RER: 

 

RATP (Paris) tram: 
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RATP (Paris) integrated: 

 

Tyne and Wear metro: 

 

 

Tyne and Wear metro with shortcuts: 

 

 

 

 

 

 

 

 

 

 

Figure E.5: Degree distribution plots to the light rail networks, Chapter 3, Section 3.6.4. 

 

River Dee: 

 

River Eden: 
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River Severn: 

 

River Tyne: 

 

Figure E.6: Degree distribution plots for the suite of four river networks, Chapter 3, Section 

3.6.5. 

Ireland motorways, trunk and primary roads: 

 

Ireland motorways and trunk roads:  

 
Great Britain motorways, A and B roads: 

 

 

Figure E.7: Degree distribution plots for the suite of national scale road networks, Chapter 3, 

Section 3.6.6. 
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Leeds motorways, A, B and Minor roads: 

 

Leeds motorways, A and B roads: 

 
Milton-Keynes motorways, A, B and minor 

roads: 

 

Milton-Keynes motorways, A and B roads: 

 

 

Tyne and Wear motorways, A, B and minor 

roads: 

 

 

Tyne and Wear motorways, A and B roads: 
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Tyne and Wear motorways and A roads: 

 

 

Figure E.8: Degree distribution plots for the regional/city scale road networks, Chapter 3, 

Section 3.6.6. 

 

E.2 Metric values for the critical spatial infrastructure networks 

To characterise the structure of the networks three selected metrics (Chapter 3, Section 3.4 

(page 53)), the assortativity coefficient (AC), the maximum betweenness centrality (MBC) and 

the number of cycle basis per node (CB), have been calculated for each network. The same 

metrics were calculated for the synthetic graphs allowing the infrastructure networks to be 

compared to these through the use of single standard deviation ellipses, compiuted over the full 

analysed suite (Table D.1, page 267), for each of the eight graph models in the plots for the 

results. Results are presented for the infrastructure networks in the following sections for each 

group of infrastructure networks. Section E.2.1 gives the results for the suite of air networks 

while Section E.2.2 presents the results for the communication network. The results for the 

energy networks are presented in Section E.2.3. Sections E.2.4 and E.2.5 present the results for 

the national rail networks and regional networks respectively. The results for the river networks 

are given in Section E.2.6, with Sections E.2.7 and E.2.8 presenting the results for the national 

road networks and the regional road networks. 

E.2.1 Air networks 

Table E.1 shows the metric values for each of the networks, with Figure E.9, Figure E.10 and 

Figure E.11 showing the metric values for the three different pair-wise combinations with the 

synthetic graph ellipses shown for reference purposes. 
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Table E.1: The three calculated metric values for each of the six air networks. 

 

Figure E.9: Points for the air networks when plotted using the assortativity coefficient and the  

maximum betweenness centrality metric values. 

 

  

Infrastructure 

network 

Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

British Airways -0.42 0.82 0.38 

EasyJet -0.45 0.51 2.99 

European -0.11 0.11 7.93 

North American -0.19 0.24 3.24 

UK -0.30 0.30 1.83 

USA -0.30 0.35 3.68 



 

304 

 

 

Figure E.10: Values for the air networks with the assortativity coefficient and number of  

cycle basis per node plotted. 

 

Figure E.11: Points for the air networks for the maximum betweenness centrality and the 

number of cycle basis per node. 
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E.2.2 Communications 

The three metrics, AC, MBC and number of CB per node, have been calculate for the Janet 

network, Table E.2, and then compared to the values returned for the same metrics across the 

suite of synthetic graphs, Figure E.12, Figure E.13 and Figure E.14. 

 

Infrastructure 

network 

Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Janet -0.41 0.40 0.55 

Table E.2: Metric values for the communication network. 

 

 

Figure E.12: Assortativity coefficient and maximum betweenness centrality for 

communications network. 
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Figure E.13: Communications network result for the assortativity coefficient and number of 

cycle basis per node. 

 

Figure E.14: Results for the maximum betweenness centrality and number of cycle basis per 

node for the communication network. 
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E.2.3 Energy 

The three metric values have been calculated for the suite of energy networks, Table E.3, as 

with all other sets of networks allowing them to be compared against each other. Figure E.15, 

Figure E.16, Figure E.17 compare the metric values of the energy networks to those computed 

for the suite of eight graph models. 

 

Table E.3: The computed graph metric values for the suite of energy networks. 

 

 

Figure E.15: For the suite of energy networks the results for the assortativity coefficient and 

the maximum betweenness centrality metrics. 

Infrastructure network Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

National Grid electricity 

transmission 

0.16 0.28 0.02 

National Grid electricity 

transmission MT 

-0.03 0.19 0.22 

National Grid electricity 

transmission NT 

0.07 0.20 0.06 

National Grid gas 

transmission 

-0.03 0.31 0.19 

Electricity transmission 

network 

-0.03 0.28 0.38 
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Figure E.16: Results for the assortativity coefficient and number of cycle basis per node 

metrics for the suite of energy networks. 

 

Figure E.17: Maximum betweenness centrality and number of cycle basis per node metric 

results for the suite of energy networks. 
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E.2.4 Rail – National  

The computed metric values for the national rail networks are presented in Table E.4, with these 

values then compared to the same values returned for the suite of synthetic graphs, Figure E.18, 

Figure E.19 and Figure E.20. 

 

Table E.4: The computed metric values for the networks within the suite of national rail 

networks. 

 

 

Figure E.18: The metric results for the suite of national rail networks for the assortativity 

coefficient and maximum betweenness centrality. 

Infrastructure network Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Great Britain rail 0.19 0.25 0.06 

Ireland rail -0.02 0.23 0.02 

Ireland rail with shortcuts 0.21 0.53 0.04 
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Figure E.19: For the suite of national rail networks the results for the assortativity coefficient 

and number of cycle basis per node metrics. 

 

Figure E.20: Results for the suite of national rail networks for the maximum betweenness 

centrality metric and the number of cycle basis per node. 
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E.2.5 Rail – Regional (light rail) 

The metric values for the three computed metrics, AC, MBC and number of CB per node, for 

each of the light rail networks have been computed (Table E.5) and also plotted against each 

other alongside the single standard deviation ellipses for each of the eight synthetic graph 

models, Figure E.21, Figure E.22 and Figure E.23. 

Table E.5: Values for the three calculated metrics for the regional rail (light rail) networks. 

 

 Figure E.21: Results for the suite of regional rail networks for the assortativity coefficient 

and maximum betweenness centrality metrics. 

Infrastructure network Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Boston subway 0.32 0.59 0.02 

Boston subway with TAPAN 0.32 0.58 0.02 

London DLR -0.03 0.55 0.04 

London light rail 0.10 0.26 0.14 

London Overground -0.16 0.63 0.00 

London tube 0.11 0.42 0.13 

Manchester Metrolink 0.27 0.56 0.03 

RATP rail 0.06 0.20 0.12 

RATP metro -0.03 0.34 0.19 

RATP RER -0.16 0.65 0.00 

RATP tram -0.04 0.06 0.00 

Tyne and Wear metro -0.19 0.59 0.02 

Tyne and Wear metro with 

shortcuts 

0.16 0.55 0.08 



 

312 

 

 

Figure E.22: Assortativity coefficient and number of cycle basis per node results for the suite 

of regional rail networks. 

 

Figure E.23: For the suite of regional rail networks the metric results for the maximum 

betweenness centrality and number of cycle basis per node. 
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E.2.6 Rivers  

The three selected metrics, the AC, MBC and number of CB per node, have been computed for 

each of the four river networks, Table E.6, with the values plotted against each other alongside 

the single standard deviation ellipses for each of the synthetic graph models, Figure E.24, Figure 

E.25 and Figure E.26, allowing the values for the river networks to be compared to the range 

of different graph models. 

 

Infrastructure 

network 

Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Dee 0.00 0.00 0.01 

Eden 0.00 0.00 0.00 

Severn -0.28 0.53 0.03 

Tyne -0.34 0.66 0.00 

Table E.6: Calculated metric values for the suite of river networks. 

 

 

 

Figure E.24: For the suite of river networks the results for the assortativity coefficient and the 

maximum betweenness centrality metrics. 
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Figure E.25: The values for the assortativity coefficient and the number of cycles basis per 

node for the suite of river networks. 

 

Figure E.26: Results for the maximum betweenness centrality and the  number of cycle basis 

per node for the suite of river networks. 
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E.2.7 Roads – National 

The suite of national road networks consists of three networks, with the values for the selected 

metrics for the suite are presented in Table E.7. These values for each of the networks are then 

compared to the eight different graph models in Figure E.27, Figure E.28 and Figure E.29 using 

the single standard deviation of the metric values for the synthetic models. 

 

Table E.7: The values for the three calculated metrics for the national road networks. 

 

Figure E.27: The calculated metric results for the suite of national road networks for the 

assortativity coefficient and maximum betweenness centrality metrics. 

 

Infrastructure network Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Great Britain motorways, 

A and B roads 

0.12 0.27 0.55 

Ireland motorways, trunk 

and primary roads 

-0.03 0.34 0.35 

Ireland motorways and 

trunk roads 

-0.08 0.27 0.27 
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Figure E.28: Assortativity coefficient and number of cycle basis per node metric results for 

the suite of national road networks. 

 

Figure E.29: Results for the maximum betweenness centrality and number of cycle basis per 

node for the suite of national road networks. 
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E.2.8 Roads – Regional 

Severn networks of regional roads are included in the Table E.8 which shows the values for the 

computed metrics for each network. These values are then used to compare each network to the 

eight graph models for the synthetic graphs, Figure E.30, Figure E.31 and Figure E.32. 

Table E.8: The three calculated metrics for the suite of regional road networks. 

 

Figure E.30: Values for the suite of regional road networks for the assortativity coefficient 

and maximum betweenness centrality metrics. 

 

Infrastructure network Assortativity 

coefficient 

Maximum 

betweenness centrality 

Cycle basis 

per node 

Leeds motorways, A, B 

and minor roads 

0.05 0.23 0.44 

Leeds motorways, A and B 

roads 

-0.04 0.23 0.46 

Milton Keynes motorways, 

A, B and minor roads 

0.09 0.36 0.39 

Milton Keynes motorways, 

A and B roads 

-0.12 0.42 0.24 

Tyne and Wear motorways, 

A, B and minor roads 

0.06 0.33 0.43 

Tyne and Wear motorways, 

A and B roads 

0.09 0.25 0.51 

Tyne and Wear motorways 

and A roads 

0.03 0.32 0.47 
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Figure E.31: Results for the assortativity coefficient and number of cycle basis per node for 

the suite of regional road networks. 

 

Figure E.32: Values for the suite of regional road networks for the maximum betweenness 

centrality and number of cycle basis per node values. 
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E.3 Robustness of critical spatial infrastructure networks 

Each of the spatial infrastructure networks has been analysed for its robustness to three 

topological based failure methods (Chapter 3, Section 3.5 (page 59)). The results for the suite 

of infrastructure networks have been split into the respective infrastructure groups, with those 

for the air networks presented in Figure E.33. Each plot shows, for the three failure methods, 

random, node degree and maximum betweenness centrality, the number of components in the 

network on the x-axis as the percentage of nodes removed (y-axis) increases, with the symbols 

indicating the average size of the components at the selected intervals. Figure E.34 (page 320) 

shows the results for the communication network, Janet, and Figure E.35 (page 321) presented 

the failure behaviour results for the suite of energy networks. The behaviour of the rail networks 

to the failures are presented for the national rail networks in Figure E.36 (page 322) and for the 

regional rail networks in Figure E.37 (page 324). Results for the river networks are presented 

in Figure E.38 (page 325), followed by those for the road networks, Figure E.39 (page 325) and 

Figure E.40 (page 327) for the national and regional networks respectively. 

British Airways flights: 

 
 

EasyJet flights: 

 

European flights: 

 

North American flights: 
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UK flights: 

 

USA flights: 

 

Figure E.33: Failure behaviour plots for the suite of six air networks. 

 

Janet: 

 

 

Figure E.34: Behaviour for the Janet communications network to the three topological failure 

methods. 

National Grid electricity transmission: 

 

National Grid electricity transmission MT: 
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National Grid electricity transmission NT: 

 

National Grid gas transmission: 

 

Great Britain electricity transmission 

network: 

 

 

Figure E.35: Response to the three topological failure methods for the energy infrastructure 

networks. 

 

Ireland rail: 

 

Ireland rail with shortcuts: 
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Great Britain rail: 

 

 

Figure E.36: Response of the national scale rail networks to the three failure methods. 

 

Boston subway: 

 

Boston subway with TAPAN: 

 

London DLR: 

 

London lightrail: 
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London Overground: 

 

London Tube: 

 

Manchester Metrolink: 

 

RATP (Paris) metro: 

 

RATP (Paris) RER: 

 

RATP (Paris) tram: 
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RATP (Paris) integrated: 

 

Tyne and Wear metro: 

 

Tyne and Wear metro with shortcuts: 

 

 

Figure E.37: Behaviour of the regional rail (light rail) networks to the three topological failure 

methods. 

River Dee: 

 

River Eden: 
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River Severn: 

 

River Tyne: 

 

Figure E.38: Behaviour profiles for the four river networks to the three topological based 

failure methods. 

Ireland motorways, trunk and primary roads: 

 

Ireland motorways and trunk roads: 

 

Great Britain motorways: 

 

 

Figure E.39:Response of the national scale road networks to the three topological failure 

methods. 
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Leeds motorways, A, B and Minor roads: 

 

Leeds motorways, A and B roads: 

 

Milton-Keynes motorways, A, B and minor 

roads: 

 

Milton-Keynes motorways, A and B roads: 

 

 

Tyne and Wear motorways, A, B and minor 

roads: 

 

Tyne and Wear motorways, A and B roads: 
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Tyne and Wear motorways and A roads: 

 

 

Figure E.40: Behaviour of the suite of regional road networks to the three topological failure 

methods. 
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Appendix F: nx_pgnet_atts documentation 

 

Documentation on the developed nx_pgnet_atts python and postgres functions for the 

nx_pgnets_atts schema. 
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Description: 

An extension to the ITRC interdependency network database model, including database schema, 

wrappers and functions, to handle explicitly network attributes and their functions for the field 

of network modelling and simulation. 

 

Developed by: Craig Robson 

 

Newcastle University 

 

January 2016 
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 Introduction 

The contents of this document sets out the form and structure of an extension to the ITRC 

database network schema, nx_pgnet, which explicitly handles network attributes and the 

functions related to these. A schema diagram below, Figure 1, shows the local structure for a 

single network. The schema can handle multiple networks. See the nx_pgnet library for more 

details on the global structure of the database. 

Section 2 introduces how the extension can be utilised to analyse networks. Section 0 provides 

some information on the key python functions which have been developed which enable this 

extension to work seamlessly with the ITRC database schema model. Section 4 introduces the 

key PostgreSQL functions which have been developed for the handling and manipulation 

database-side of the network tables. 

 

Figure 1: nx_pgnet_atts schema. ‘x’ refers to the name of the network/graph. 
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 Using the extended database schema and functions 

Key functions which facilitate the of the database schema for the storage, management and 

analysis of networks. 

2.1 Loading a network from the database 

This creates a NetworkX instance of the network from a database. The attributes variable allows 

the attributes to be added to the network, from a selection of up to five for the nodes and five 

for the edges) when returned to be specified. Function for each are also retrieved. If attributes 

set to ‘None’, a network is returned without any of the attributes are functions attached to nodes 

or edges. 

G = nx_pgnet_atts.read(conn, network_name).read_from_db(attributes) 

attributes = [{'flow':False, 'capacity':True, 'storage':False, 'resistance':False, 'latency':False}, 

{'flow':False, 'capacity':True, 'length':False, 'resistance':False, 'stacking':False}] 

 

2.2 Adding a network to the database 

From a network instance a network can be written to the database schema. 

If the network contains the attributes and functions for them, these can be added to the database 

schema through specifying in the attribute dict those which are present in the network. The 

contains_atts variable and contains_functions variable must also be set as True. The function 

will then add the functions to the function table for the network and then add the correct function 

id for each node and edge. 

If the attributes are present in the network instance, but the functions, these can be added in a 

similar way, though the functioned for the nodes and edges will be left blank. 

The overwrite variable allows the function to overwrite a network with the same name in the 

database with that selected as the input for this function. 

G=nx_pgnet_atts.write(conn,network_name).write_to_db(G,attributes,contains_atts,contains_

functions,overwrite) 
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2.3 Add functions to function table 

Where the functions for attributes are not present in the network, these can be added separately 

to the functions table. A list of lists is used so multiple functions can be added in a single process, 

where the format for each should be ‘type,function text, function id’. 

result = nx_pgnet_atts.write(conn,name).add_functions(functions) 

2.4 Update a function 

A function can be updated directly in the database. This updates the functions table, and thus 

any network instances will have to be re-created from the database or updated directly as a 

network instance. 

result = nx_pgnet_atts.write(conn,name).update_function(functioned,new_function, 

function_type) 

2.5 Find existing functions 

All functions in the network functions table are returned, along with their id’s and types. 

result = nx_pgnet_atts.read(conn,name).return_network_functions() 

 

 

 Python functions developed 

3.1 Write class 

 

write_to_db()  

Writes a network to the database, storing the functions and attributes in separate tables for 

nodes and edges if identified by the user. 

 

populate_roles()  

Writes a network to the database, storing the functions and attributes in separate tables for 

nodes and edges if identified by the user. 

 

add_functions()  

Adds a function to the function table with the specified unique function id, the text for the 

function (written in a pythonic format) and the type of function it is. 

 

update_functions ()  
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Updates the function text (and the type is required) for a specified function in the function 

table. 

 

add_atts_randomly()  

Writes a network to the database, storing the functions and attributes in separate tables for 

nodes and edges if identified by the user. 

 

assign_roles_randomly()  

Writes a network to the database, storing the functions and attributes in separate tables for 

nodes and edges if identified by the user. 

 

3.2 Read class 

read_from_db()  

Loads a network from the database with the attributes and functions if both requested and 

present in the database, creating a networkx network instance. 

 

return_network_functions()  

Returns a list of the functions in the function table. 

 

3.3 Table_sql class 

create_units_table()  

Calls the developed postgres function ‘np_create_units_table’. Creates the relation/table to 

store the unit information in for the metrics which are handled explicitly. 

 

create_role_table()  

Calls the developed postgres function ‘np_create_role_table’. Creates the role relation/table 

which stores each role and it’s id (one should be assigned to every node). 

 

create_function_table()  

Calls the developed postgres function ‘np_create_function_table’. Creates the function 

relation/table which stores functions and an id which can assigned to each node/edge for 

each explicitly handled attribute. 

 

create_nodes_attribute_table()  

Calls the developed postgres function ‘np_create_node_attribute_table’. Creates a node 

relation/table for the storage of attribute data for the specified attribute including the value, 

the units and the function for each node. 

 

create_edge_attribute_table()  
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Calls the developed postgres function ‘np_create_edge_attribute_table’. Generated an edge 

attribute table for the specified attribute for the storage of the attribute values, units and 

functions for each edge. 

 

rename_node_column()  

Calls the developed postgres function ‘np_rename_node_column’. Renames a column in the 

node table if the same as one of the explicitly handled attributes. 

 

rename_edge_column()  

Calls the developed postgres function ‘np_rename_egde_column’. Renames a column in the 

edge table if the same as one of the explicitly handled attributes. 

 

check_attribute_table_exists()  

Calls the developed postrges function ‘np_check_attribute_table_exists’. Checks if the 

attribute table exists for the network and attribute specified. 

 

update_node_attributes()  

Updates for a specified node and attribute the given details in the respective attribute node 

table. 

 

update_edge_attributes()  

Updates for a specified edge and attribute the given details in the respective attribute edge 

table. 

 

update_fucntion()  

Updates the details for a function in the function table. 

 

update_node_functionid()  

Updates the id of a function for a given node and the given attribute. 

 

update_edge_functionid()  

Updates the id of a function for a give node and the given attribute. 

 

get_function_ids()  

Return the ids of the functions in the function relation/table. 

 

get_functionid()  

Returns the function id of the given function from the function relation/table. 
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get_node_data()  

Returns for all nodes the data (value, function etc.) for them for a specified attribute. 

 

get_edge_data()  

Returns for all edges the data (value, function etc.) for them for a specified attribute. 

 

get_units_dict()  

Returns a dictionary of the units in the units relation/table. 

 

get_role_dict()  

Returns a dictionary of the roles in the roles relation/table. 

 

get_roleid()  

Returns the role id for a given role from the role relation/table. 

 

get_unitid()  

Returns the unit id for a given unit from the unit relation/table. 

 

check_role_column()  

Checks in the node relation/table that the ‘role_id’ column has been created. 

 

 PostgreSQL functions developed 

A number of PostgreSQL functions have been developed which enable the creation, 

manipulation and management of the network tables required to full fill the requirements of the 

developed model. The key functions which may be of interest to a user are specified below. For 

all others, please see the list of functions in the database itself. 

np_add_edge_attribute()  

Updates the attribute value (attribute, the value and units user specified) and the functionID 

(providing that specified exists in the function table). 

 

np_add_edge_attribute_no_units()  

Updates the attribute value (attribute and the value user specified) and the functionID 

(providing that specified exists in the function table). 

 

np_add_function()  

Adds a new function to the function table with the user specifying the functionID. 
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np_add_function_no_checks()  

Forces the addition of a new function in the function relation/table without running the 

required checks. ‘np_add_function’ (above) should be used rather than this. 

 

np_add_functionid_to_edge_attribute_table()  

Updates the functionID, provided by the user, if it exists in the function table, for the specified 

edge record in the specified attribute table. 

 

 

np_add_functionid_to_node_attribute_table()  

Updates the functionID, provided by the user, if it exists in the function table, for the specified 

node record in the specified attribute table. 

 

np_add_node_attribute()  

Updates the attribute value (attribute, the value and the units user specified) and the 

functionID (providing that specified exists in the function table). 

 

np_add_node_attribute_no_units()  

Updates the attribute value (attribute and value user specified) and the functionID (providing 

that specified exists in the function table). 

 

np_check_attribute_table_exists()  

Given an attribute, checks if it exists that a table exists for the specified network. 

 

np_check_function_exists()  

Checks that the specified function exists in the function relation/table. 

 

np_create_edge_attribute_table()  

Build an attribute table for the edges in a network, provided with a name by the user. 

 

np_create_edge_view()  

Generates the edge view from which the network is built from. Adds attribute columns to the 

edges and their geometries as requested by the user. 

 

np_create_function_table()  

Creates the function table when the network is initially built using the network prefix. 

 

np_create_node_attribute_table()  

Build an attribute table for the nodes in a network, provided with a name by the user. 
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np_create_node_view()  

Generates the node view from which the network is built from. Adds attribute columns to the 

nodes, including their geometry, as requested by the user. 

 

np_create_role_table()  

Generates the role table for the specified network. 

 

np_create_units_table()  

Generates the units table for the specified network. 

 

np_delete_all_tables()  

Deletes all tables related to the network from the prefix provided including those for the 

network itself and the views. 

 

np_rename_edge_column()  

Renames an attribute of the edges in the edge table if the same as one of the specified 

attributes which are handled explicitly. 

 

np_rename_node_column()  

Renames an attribute of the nodes in the nodes table if the same as one of the specified 

attributes which are handled explicitly. 

 

np_update_edge_attribute()  

Updates the attribute of the specified edge record for the supplied attribute. Checks the table 

exists for attempting to run the update commend. 

 

np_update_node_attribute()  

Updates the attribute of the specified node record for the supplied attribute. Checks the table 

exists for attempting to run the update commend. 

 

np_update_units_edges()  

Updates the units id for an edge for the specified attribute. 

 

np_update_units_nodes()  

Updates the units id for an node for the specified attribute. 
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Appendix G: Graphical User Interface (GUI) documentation 

 

Documentation on using the developed user interface which allows access to many of the 

models and methods developed for complex network within the research. 
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 Introduction 

This library provides a user interface for the python library ‘resilience’ along with added visual 

aspects to improve the user experience and range of analytics available to a user. Through the 

developed user interface the tool aims to provide the same level of flexibility as available 

natively through the resilience library thus allowing users to run a multitude of failure 

simulations. The functionality of the tool also extends from this to offer the ability to compute 

a range of common graph metrics, a selectin of those available in the NetworkX library. The 

library also provides the tool, and the user, with the ability to generate networks using some 

common graph generators. Finally, the tool utilises a range of drawing functions available in 

NetworkX to offer the user the ability to visualise a network during perturbations or not. 

1.1 Dependencies 

The developed tool relies on a number of other libraries for which without the tool may not run 

or will suffer from reduced functionality. 

 Python 2.7+ 

 NetworkX 1.7+ 

 PyQt4 

 robustness 1.0+ 

1.2 Further reference material 

 NetworkX - https://networkx.github.io/  

 

 Using the interface 

2.1 User Interface 

The user interface has three main portions; (i) input network settings, (ii) failure analysis 

settings and (iii) the control buttons/menu’s. These are indicated in Figure 1 below. 

An error message may appear on the initial loading of the tool about not being able to find/load 

the ‘nx_pgnet’ module. The location of this, if downloaded and required for the users objectives, 

can be specified in the ‘View Options’ option in the ‘Edit’ menu. 

https://networkx.github.io/
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Figure 1: Diagram of interface with main aspects highlighted. 

 

 

2.2 Building a network 

There are number of options available to build a network: 

 Graph generator 

 CSV 

 List 

 Database 

 

 

Figure 2: Highlighting the input options to build a network. 

 

 

Failure analysis 
settings (ii)

Build network 
settings (i)

Button controls 
(iii)

Menus (iii)
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Before any analysis can be selected to be run the network build method should be selected and 

the parameters (file or values) entered to allow the network to be built. For the first option, 

using a graph generator algorithm, as available in the NetworkX library, help is available by 

hovering over the input boxes which are not shaded out for the network. 

The CSV option requires the user to provide a CSV which contains a list of nodes and edges on 

consecutive lines in a text file. 

The list option requires a list of nodes and a list of edges to be entered manually. 

The database option allows users who have access to a database using the nx_pgnet schema to 

build a network from this, which opens the option for visualising the network geographically 

as well. This requires the database connection parameters and the name of the network to be 

loaded. 

2.3 Calculating metrics and simple visualisation 

To calculate a metric over a network options are available in the ‘Metric’ (Figure 3) drop down 

menu. These allow the computation of a number of metrics using algorithms available in the 

NetworkX library. Results are returned in a window. There are options available for the 

computation of multiple metrics simultaneously, again with the results returned in a window. 

Visualisations of networks can be quickly obtained through the ‘Draw’ button, which then gives 

options specific to the network build method, Figure 4 (when built from the database this allows 

a geographic visualisation). The visualisation can be customised using the ‘Edit’ menu and the 

‘View Options’ item, Figure 5, which allows the colouring and size of nodes/edges to be 

changed, including having the size based on a metric value, for which there a small number of 

options. The results of any visualisation can be saved in a range of formats using the toolbar 

available in the visualisation window, Figure 6. 

 

Figure 3: Showing the 'Metrics' menu and the available calculation options. 
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Figure 4: Draw menu showing the drawing algorithms available. 

 

Figure 5: The Options menu. 
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Figure 6: Showing the visualisation window, with the save button in blue on the top toolbar.. 

 

2.4 Simple failure simulations 

To run a failure simulation first select the ‘network type’ and then enter the parameters required 

to build the specific network. Following this select one of the ‘analysis types’ and then one of 

the ‘node selection method’s’. If you click run ‘Start’ now the simulation will run. However if 

you select the ‘View net failure’ option before clicking ‘Start’ a visualisation window will 

appear and the failure can be seen. Upon clicking start a window will open asking for a file to 

write the results to, using a simple text format. A pause time is used to slow the simulation 

down so the visualisation is readable, this along with many other options are available from the 

‘Edit – View Options’ window (Figure 5) (some further advanced options are available through 

the ‘Options’ option in the ‘Failure Options’ menu). Further options are available on the user 

interface which allow for the customisation of how the simulation handles subgraphs and 

isolated nodes (under the ‘Remove subgraphs/isolated nodes’ heading). 

While a simulation is running the ‘Pause’ button can be pressed at any time with the simulation 

stopping at the end of the current iteration. This allows for a more detailed analysis of the graph 

in the visualisation window. To resume, press the ‘Start’ button again. Rather than the 

simulation running one go, via the ‘Step’ button, one step can be run at a time. At any time 

during the simulation the ‘Start’ button can be pressed and the simulation will run automatically 

until the end. 
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At the end of a simulation there is the option to view the metrics which have been computed 

throughout the analysis on two plots (to change the metrics for the next simulation see the 

following section). Simply select a metric from each of the drop down menus and the plots 

should be updated automatically, allowing for comparisons to be made between metrics and 

this the behaviour of the network analysed. At any time the plots can be saved using the save 

button in the tool bar across the top of the window. 

2.5 Complex failure simulations 

The tool and the underlying resilience module facilitates the ability to analyse dependencies 

between networks, using the same failure options as for the single network analysis. Where 

dependency is concerned, the network which is the ‘parent’ is the one subjected to the failures. 

The settings/parameters for the second network can be set by changing the ‘Analysis Type’ 

drop down menu to ‘dependency’ (Figure 7), which should then enable a second network to be 

crated. The dependency links can be created randomly (‘Failure Options’ – ‘Random 

Dependency Edges’ (Figure 8)) or entered in the input box titled ‘From A to B’. these should 

be in the form of a list of tuples. As with the analysis of a single network, clicking the ‘Start’ 

button commences the analysis. It should be noted when doing dependency analysis the 

simulation cannot be visualised.   

It is also possible to run interdependency analysis in a similar fashion to the dependency 

analysis. 

 

Figure 7: List of the different Analysis Types available, including dependency and 

interdependency. 
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Figure 8: Showing the Failure Options menu and the option to create random dependency 

links. 

 Further settings 

3.1 Metrics 

A default set of metrics are calculated during a simulation at each time step, however for each 

simulation the metrics computed can be changed going to the ‘Failure Options’ – ‘Metrics’ 

window (Figure 9). Those included, if possible, will also be listed in the visualisation at the end 

of a simulation. 

3.2 Config files 

Configuration files can be saved and re-loaded so where a user sets up the gui to run a simulation, 

the settings can be re-loaded when the gui is next opened, as well as allowing for the settings 

to be reviewed outside of the gui from the text file directly. This is done through the ‘Edit’ 

menu. 

 

Figure 9: A snapshot of the 'Metrics' window and the possible metrics (note that this shows 

less than half of the available optional metrics). 


