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‘’Walking becomes a task which cannot be performed 
without considerable attention. The legs are not raised to 

that height, or with that promptitude which the will 
directs, so that the utmost care is necessary to prevent 

frequent falls’ 

James Parkinson, 1817 
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Abstract 

Cognitive decline and dementia are core features of Parkinson’s disease (PD) 

with major personal and socioeconomic impact. Identifying individuals at risk of 

cognitive decline and dementia is vital in order to optimise clinical management 

and develop novel therapeutics. However, biomarkers for cognitive decline 

remain a major unmet need. A large structured review undertaken as part of this 

thesis revealed discrete gait characteristics predicted cognitive decline and 

dementia in older adults but to date no such study has been conducted in PD. 

Thus, the primary aim of this thesis was to investigate gait as a clinical biomarker 

for cognitive decline in PD. 

Newly diagnosed PD participants (n=118) and controls (n=184) completed a 

detailed quantitative gait assessment under single and dual task conditions at 

baseline. Additionally, a comprehensive battery of neuropsychological 

assessments were completed at baseline, 18 and 36 months later. Mixed-effects 

models identified significant gait predictors of cognitive decline over three years. 

Baseline cognition was also explored as a predictor for cognitive decline. Finally, 

gait was collected in the free-living environment using a body-worn monitor 

(BWM) and cross-sectional analysis explored free-living gait-cognition 

associations.   

Original contributions to knowledge were that gait characteristics under single 

and dual task in an incident cohort of PD predicted decline in discrete cognitive 

domains over three years. Critically, in comparison to gait, baseline 

neuropsychological assessment performance did not predict cognitive decline. 

Additionally, cross-sectional analysis in early PD revealed discrete gait-cognition 

associations in free-living signifying future clinical utility for gait as a clinical 

biomarker.  

This thesis provides the first evidence for gait as a clinical biomarker for cognitive 

decline in PD. Discrete gait characteristics may provide a low cost clinical 

biomarker and make an important contribution to prognostic models of dementia 

risk in PD. 
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Chapter 1 :  Parkinson’s disease and setting the context 

 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is a neurodegenerative disorder which was first 

described by the General Practitioner James Parkinson in 1817 in his essay on 

the ‘shaking palsy’ (Parkinson, 2002). Two hundred years since James Parkinson 

first described the disorder, the National Institute for Clinical Excellence (NICE) 

has outlined PD as a progressive neurodegenerative condition which still remains 

a huge challenge to both patients with PD and those involved in their care (NICE, 

2006).  

PD is the second most common neurodegenerative disorder, behind that of 

Alzheimer’s disease (AD). Standardised incidence rates are reported as between 

8-18 per 100 000 (de Lau and Breteler, 2006) and in the Newcastle-Gateshead 

area incidence has been reported at 15.9 per 100 000 (Khoo et al., 2013). An 

increase in PD incidence is seen in those who are older (Schrag et al., 2000; Van 

Den Eeden et al., 2003; de Lau and Breteler, 2006; Wickremaratchi et al., 2009) 

thus, with an ageing population incidence is only expected to increase (Dorsey et 

al., 2007). 

PD is most commonly described as a movement disorder with motor symptoms 

which include bradykinesia (slowness of movement), rigidity and a tremor at rest 

with two out of three of these cardinal symptoms required for diagnosis (Archibald 

and Burn, 2008). Non-motor symptoms (NMS) are common in PD and include 

cognitive impairment, mental health problems, depression and sleep disturbance 

(NICE, 2006).  NMS are a significant factor in PD, affecting the majority of 

patients. Previous incidence studies have identified that only 1.6-3% of patients 

reported an absence of NMS (Martinez-Martin et al., 2007; Bostantjopoulou et al., 

2013) and often these symptoms have the worst impact on quality of life 

(Rahman et al., 2008). 

Pathologically, PD stems from the loss of dopaminergic neurons in the substantia 

nigra pars compacta (SNpc) (Fearnley and Lees, 1991) as well as abnormal 

aggregation of α-synuclien that collate to form Lewy bodies (LB) (Braak et al., 

2004).  The above features are both prerequisites of post-mortem diagnosis of 
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PD (Gelb et al., 1999). Though dopaminergic deficiency is most associated with 

PD, some symptoms appear to be ‘dopa-resistant’ (Gotham et al., 1988; Devos et 

al., 2010). This suggests involvement of other neurotransmitter systems such as 

acetylcholine (Ach) and serotonin (5HT). Two sources of cholinergic output are 

shown to decline in PD; the nucleus basalis of Meynert (nbM) and the 

pedunculopontine nucleus (PPN) with the nbM projecting to the frontal lobe and 

the PPN to the thalamus, cerebellum and nbM (Yarnall et al., 2011). In addition to 

the cholinergic system, there is dysfunction to the serotonergic system with loss 

of serotonin markers in PD patients (Tohgi et al., 1993). Degeneration and 

disruption to the serotonergic system is associated with tremor (Doder et al., 

2003), depression, fatigue and visual hallucinations (Politis and Niccolini, 2015).  

 

1.2 Cognition in Parkinson’s disease 

One of the most debilitating NMS is that of cognitive impairment and Parkinson’s 

disease dementia (PDD). In his original essay, James Parkinson did not highlight 

cognitive impairment and stated ‘the senses and intellects being uninjured’ 

(Parkinson, 2002). However, he did describe that towards the end of the disease 

patients may experience a slight delirium (Parkinson, 2002). More definitive 

recognition was proposed by Charcot who some years later in 1875 recognised 

‘the mind becomes clouded and memory is lost’ (Lees and Smith, 1983). 

Following this, studies in the mid 1900’s began to explore the nature of cognitive 

decline in PD and recognised cognitive functions other than memory are affected 

(Warburton, 1967; Reitan and Boll, 1971).  

It is now well understood that cognitive deficits in PD occur across a number of 

different cognitive domains. The profile of cognitive deficit in PD appears complex 

however with different cognitive profiles amongst patients (Aarsland et al., 2010; 

Yarnall et al., 2014). The domains of cognitive deficit in PD include; global 

cognition, working memory, attention, fluctuating attention, executive function, 

memory and visuospatial function. These domains will now be discussed in turn. 
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1.2.1 Global cognition 

Cognitive impairment in PD is evident in early disease (Cooper et al., 1991; 

Foltynie et al., 2004) and identified by global cognitive assessments such as the 

Montreal Cognitive Assessment (MoCA) or Mini Mental Status Examination 

(MMSE). Although the MoCA and MMSE are both used to assess global 

cognition, the MoCA is a better tool for diagnosing dementia in PD (Hoops et al., 

2009; Dalrymple-Alford et al., 2010) due to its increased sensitivity (Nazem et al., 

2009). Although assessments of global cognition show sensitivity to cognitive 

decline in PD, they lack specificity and often require additional assessments 

(Hoops et al., 2009).  

1.2.2 Working memory 

Working memory is described as a system which ‘provides temporary storage 

and manipulation of the information necessary for such complex cognitive tasks 

as language comprehension, learning and reasoning’ (Baddeley, 1992). Working 

memory is impaired in PD compared to healthy older adults (Beato et al., 2008) 

and deficits tend to increase with progression of PD (Owen et al., 1997). This has 

been associated with further dopamine depletion as dopaminergic medication 

has a positive effect on working memory task performance (Lewis et al., 2005). 

However, working memory is also thought to draw on executive function and 

attention (McCabe et al., 2010), which are also known to be affected in PD.   

1.2.3 Attention 

Attention is an overarching system which interacts with many areas of the brain 

(Posner and Petersen, 1990). Attention is thought to be built on three individual 

networks; alerting, orientating and executive (Posner and Petersen, 1990; 

Peterson and Posner, 2012). One of the main cognitive deficits recognised in PD 

is attention with impairment evident at diagnosis (Aarsland et al., 2010; Lord et 

al., 2014; Yarnall et al., 2014) and progression of symptoms apparent in the early 

years following diagnosis (Muslimović et al., 2005; Aarsland et al., 2010). 

Compared to AD, PDD and Dementia with Lewy bodies (DLB) patients perform 

worse on tests of attention (Noe et al., 2004) with some assessments identifying 

patients at risk of future PDD (Taylor et al., 2008; Pedersen et al., 2013). 
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Importantly, attentional measures also determine poorer performance on 

activities of daily living (ADL) (Bronnick et al., 2006), which demonstrates direct 

impact on function. Recent evidence suggests attentional deficits are due to 

dysregulation of the cholinergic system attributed to changes of the nbM and 

PPN (Yarnall et al., 2011). Further evidence is provided by intervention studies by 

which Rivastigmine improves attention levels in PDD (Emre et al., 2004; Wesnes 

et al., 2005). 

1.2.4 Fluctuating attention 

Compared to attention, fluctuating attention has been poorly explored in PD. A 

study by Ballard and colleagues measured fluctuating attention in DLB, AD, PDD, 

PD and healthy older adults. Ballard et al. (2002) found fluctuating attention to be 

worse in PDD compared to PD when using the Cognitive Drug Research (CDR) 

randomised battery. Previous work by Lord et al. (2014) found fluctuating 

attention as measured by the coefficient of variation (CV) for choice reaction time 

(CRT) to be significantly worse in PD compared to controls within 6 months of 

diagnosis. Compared to PD, fluctuating attention has better been explored in 

DLB. Critically, PDD and DLB are often classified under the same umbrella term 

of Lewy Body Dementia (LBD), thought to be disorders on the same continuum. 

In LBD, fluctuating cognition, as recognised by fluctuating attention, is one of 

three core features for disease diagnosis (McKeith et al., 1996).  

1.2.5 Executive function 

Executive function is defined as “a set of cognitive skills that are responsible for 

the planning, initiation, sequencing and monitoring of complex goal-directed 

behaviour” (Royall et al., 2002). Due to executive function deficits, people with 

PD present with difficulties with planning and problem solving (Bronnick et al., 

2006). Impaired executive function in PD has been shown in previous research 

(Morris et al., 1988; Cooper et al., 1991; Dujardin et al., 2001; Williams-Gray et 

al., 2009a; Bronnick et al., 2011) and is evident in those with newly diagnosed PD 

(Muslimović et al., 2005) by use of assessments such as the Tower of London 

(TOL) task (Morris et al., 1988; Kehagia et al., 2010). Janvin et al. (2005) 

performed a longitudinal study in PD and identified Stroop Third Card 

assessment was independently associated with onset of dementia. Compared to 
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attention, executive function is dependent on the fronto-striatal dopamine network 

with dopaminergic function of the caudate nucleus related to impaired 

assessment performance (Brück et al., 2001). Although a number of studies have 

recognised impairment in executive function and attention, it has to be noted that 

the terms ‘executive function’ and ‘attention’ are often used interchangeably or 

combined (e.g. executive-attention) (Emre et al., 2007). 

1.2.6 Memory 

Memory impairment is present in newly diagnosed PD (Aarsland et al., 2010; 

Yarnall et al., 2014) who demonstrate deficits compared to healthy control 

subjects (Bronnick et al., 2011). Memory is mediated by the basal ganglia and 

frontal cortex (Cabeza et al., 1997; McNab and Klingberg, 2008), two areas of 

dysregulation in PD. Longitudinal cohorts have identified memory deficits over 

three to five years (Williams-Gray et al., 2007; Muslimović et al., 2009) in PD with 

prominent memory deficits in those with mild cognitive impairment (MCI) found to 

be a predictive marker of future transition to PDD (Aarsland et al., 2010). 

However, it has been argued that deficits identified in memory are due to 

executive-attention processes needed for successful assessment completion 

(Ivory et al., 1999). 

1.2.7 Visuospatial function 

Visuospatial function is defined as a skill which includes observation of a visual 

stimuli and judging its location in space (Quental et al., 2013), such as the 

distance and orientation of the stimulus. Visuospatial function is known to 

deteriorate as disease progresses and is impaired in PD patients with and without 

dementia (Williams-Gray et al., 2009). A previous study identified one 

visuospatial assessment, pentagons, was found to be predictive of future PDD 

(Levin et al., 1991; Williams-Gray et al., 2007). Visuospatial deficits in PD have 

been compared to other dementias, with worse deficits in PDD compared to AD 

(Starkstein et al., 1996; Mosimann et al., 2004) but similar deficits seen in DLB 

(Mosimann et al., 2004). One explanation is a blood perfusion deficit observed in 

visual processing areas seen in those with DLB and PDD but not AD (Firbank et 

al., 2003). As with other domains of cognition, visuospatial function requires 
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executive-attention control (Crucian et al., 2000); however this notion is still under 

dispute.  

 

1.3 The spectrum of cognitive decline in Parkinson’s disease 

A spectrum of cognitive impairment is evident in PD, as shown in Figure 1-1. 

Patients often present with cognitive deficits compared to age-matched controls 

(Leung et al., 2015) and may or may not transition to MCI and advance to PDD. 

 

Figure 1-1 The spectrum of cognitive decline in Parkinson's disease. 
[Cognitive deficits are often seen in patients compared to age matched controls. As 

disease progresses patients may transition to mild cognitive impairment (MCI) and lastly 

Parkinson’s disease dementia (PDD). A number of patients may revert from MCI to 

normal cognition, as depicted by the solid blue line]. 

 

1.3.1 Mild cognitive impairment  

MCI is thought to be a transitioning stage of cognitive deficit towards PDD. 

Incidence of MCI is high in those with newly diagnosed PD; one cross-sectional 

study focusing on patients at diagnosis identified an incidence of 42.5% in a 

cohort of 219 subjects (Yarnall et al., 2014). In contrast, the Norwegian Park 

West study identified 18.9% of their cohort met the criteria for MCI at diagnosis 
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which was a twofold increase on incidence compared to age matched controls 

(Aarsland et al., 2010). A longitudinal study from 2006 found 52.8% (38 

participants) met criteria for MCI with a number of MCI subtypes identified (Janvin 

et al., 2006). More recently, incident cohort studies have explored cognitive 

impairment over time. The CamPaIGN cohort highlighted that incidence of MCI 

increases as disease progresses, they demonstrated that 3-5 years post 

diagnosis 57% of a cohort of 239 patients had developed MCI (Williams-Gray et 

al., 2007).  Due to heterogeneity of PD-MCI definition, a recent task force was 

used to outline PD-MCI in order to produce a diagnostic criterion (Litvan et al., 

2012). Importantly the criteria stipulate that PD-MCI is not just a ‘memory-

complaint’ but must occur across different cognitive domains. Although a number 

of patients prove to have stable MCI, those with MCI are most at risk of 

transitioning to PDD. For example, Pedersen et al. (2013) identified significantly 

more patients with MCI at diagnosis converted to PDD compared to non-MCI 

participants. It must be noted however that 21.6% of patients with MCI at 

baseline reverted back to normal cognition (as characterised in Figure 1-1). 

Critically, those with persistent MCI at both baseline and one year follow-up were 

much more likely to develop dementia (45.5%) with only 9.1% of this group 

reverting back to normal cognition (Pedersen et al., 2013).  

1.3.2 Parkinson’s disease dementia 

The final stage of the spectrum of cognitive decline is PDD (Figure 1-1). Contrary 

to previous understanding, the prevalence of PDD in Parkinson’s disease 

patients is high with one systematic review identifying a PDD point prevalence of 

24-31% (Aarsland et al., 2005). Cumulative prevalence also shows that the 

incidence of PDD could be as high as 17% in one cohort of patients within 5 

years of diagnosis (Williams-Gray et al., 2009a) and 75% in those who survive 

longer than 10 years with the disease (Aarsland and Kurz, 2010). Diagnostic 

criteria for PDD specify impairment must be present in more than one cognitive 

domain, represent decline from a premorbid level and importantly have deficits 

that are severe enough to impact on ADL’s (Emre et al., 2007).  

A number of risk factors have been linked to the development of PDD. One of the 

most noted risk factors is both age and age at disease onset (Aarsland et al., 
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2001; Levy et al., 2002; Hobson and Meara, 2004; Buter et al., 2008) this is not 

surprising as age is the most prominent risk factor throughout all dementias (Ott 

et al., 1998; Aarsland and Kurz, 2010). Additionally, worse Parkinsonism 

symptoms, represented by higher Hoehn & Yahr (H & Y) and Movement Disorder 

Society- Unified Parkinson’s disease Rating Scale (MDS-UPDRS) scores have 

also been shown to be a risk factor for PDD (Aarsland et al., 2001; Levy et al., 

2002; Hobson and Meara, 2004). Furthermore, patients who present with MCI 

(Aarsland et al., 2001) and other specific cognitive dysfunctions (Williams-Gray et 

al., 2009a) are at higher risk of developing PDD. The nature of cognitive 

impairment for future PDD is still under debate, for example a dual syndrome 

hypothesis has been proposed for cognitive impairment in PD and PDD. The dual 

syndrome hypothesis proposes that those with posterior cortical and temporal 

lobe dysfunction (i.e. visuospatial and semantic fluency) are at higher risk of 

conversion to PDD compared to those with frontal executive function difficulties 

(Kehagia et al., 2013). Other risk factors include visual hallucinations, depression, 

apathy and Rapid Eye Movement (REM) sleep disorder amongst others (Emre et 

al., 2007; Aarsland and Kurz, 2010; Postuma et al., 2012).  

1.3.3 Treatment for cognitive decline and dementia in PD 

Currently there is no cure for cognitive decline and dementia in PD. A number of 

transmitter based treatments have shown to improve symptoms in patients due to 

the involvement of dopaminergic, cholinergic, noradrenergic and glutamatergic 

neurotransmitters.  

Cholinesterase inhibitors i.e. Rivastigmine and Donepezil have shown the most 

promise amongst transmitter based treatments. A large study observing the use 

of Rivastigmine in 541 patients with PDD found Rivastigmine to improve 

performance on measures of global cognition, attention and visuospatial tests 

(Emre et al., 2004). Other than PDD, Rivastigmine has also shown to benefit 

patients with PD-MCI (Mamikonyan et al., 2015). Studies focusing on specific 

cognitive domains found Rivastigmine to improve performance on attention 

(Wesnes et al., 2005) and executive function (Schmitt et al., 2010) assessments. 

More recently, the long-term safety of Rivastigmine has been assessed and the 

drug has been deemed safe for long term use although several adverse events 
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were reported including nausea, vomiting, tremor and falls (Emre et al., 2014). A 

small study (n=22) observing the use of Donepezil reported modest benefits from 

the drug (Ravina et al., 2005), however a larger and more recent trial (n=550) 

identified an improvement in global cognition and executive function (Dubois et 

al., 2012). A number of studies have explored Memantine as a treatment, the 

drug appears to be well tolerated among patients but only modest benefits have 

been seen (Ravina et al., 2005; Aarsland et al., 2009). A Movement Disorder 

evidence based medicine update review concluded that Rivastigmine was an 

effective treatment for cognitive decline but that there was insufficient evidence 

for Donepezil and Memantine. However it was decided these medications could 

be used as investigational treatments (Seppi et al., 2011). 

Due to the limitations of pharmacological treatments, nonpharmacological 

treatments which include cognitive training and exercise have been sought. A 

number of studies have assessed the effect of cognitive training including 

computer and paper based tests. One study identified improvement in several 

cognitive domains including attention, executive function and memory when 

training for 45 minutes, three times per week for four weeks (París et al., 2011). 

Although benefits have been seen,  studies are of poor quality and contain only 

small numbers of participants (Hindle et al., 2013).  

Physical exercise has recently come into the literature as a treatment to improve 

cognition. One study observed a control group (normal daily routine) and a 

training group with a varied training programme for six months (the exercise 

programme included aerobics, balance, motor-coordination and stretching). The 

training group demonstrated a significant improvement in executive function 

compared to the control group (Tanaka et al., 2009). Other exercises such as 

passive cycling have also shown to improve executive functioning (Ridgel et al., 

2011). A more recent study spanning a two year intervention observed two 

exercise groups, firstly a combination of balance, stretching and breathing 

exercises and secondly a weight lifting programme. The study found both groups 

to improve on tests of working memory and attention (David et al., 2015). Finally, 

one study observing both fitness and cognition identified that after an intervention 

of aerobic exercise, PD participants improved both in terms of aerobic capacity 
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and executive function (Duchesne et al., 2015) demonstrating multiple benefits 

from exercise programmes in PD. 

1.3.4 The Importance of cognitive decline  

Previously the high incidence of cognitive impairment in PD was described. The 

effect on each individual can have devastating impact on personal, social and 

economic levels. Dementia in PD has been identified as an independent predictor 

of reduced quality of life in a study of 70 Italian patients (Winter et al., 2011). 

Additionally, cross sectional work reveals that deficits in cognitive domains can 

reduce quality of life (Barone et al., 2009) even in early PD (Duncan et al., 2014). 

Longitudinally, in a large cohort of PD recruited at diagnosis, attentional deficits 

were found to be the strongest predictor of quality of life as well as MCI status 

(Lawson et al., 2016). In addition, presence of dementia in PD increases burden 

on carers and reduces their quality of life (Leroi et al., 2012) as well as increased 

healthcare costs. One study identified that the costs of patients with dementia 

were three times that of normal cognition with the majority of increased costs 

stemming from institutionalised care (Vossius et al., 2011). Notably, those with 

cognitive impairment preceding dementia were also associated with higher costs 

in the same study. As expected, cognitive decline in PD also leads to increased 

risk of nursing home admittance (Aarsland et al., 2000), with cost increase per 

patient resulting in a 500% rise (Findley et al., 2003). Importantly, dementia can 

reduce life expectancy and this has been seen specifically in PDD (Levy et al., 

2002).  

The above gives just a few examples of the devastating effects of cognitive 

decline in this patient group. Thus, detecting those at risk of cognitive decline and 

dementia early in disease is of upmost importance. There is evidence in AD that 

early detection increases the effectiveness of treatment with cholinesterase 

inhibitors (Chang and Silverman, 2004) and in PD early treatment with 

Memantine predicts longer survival in patients with PDD (Stubendorff et al., 

2014). Such treatments allow patients to benefit from improved cognition, but 

early effective treatment would also allow for improved psychological wellbeing 

and increased time to plan future treatment, care and finances for both patients 
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and their carers (Chang and Silverman, 2004). In order to identify those at risk, 

early biomarkers need to be sought.  

1.4 Biomarkers for cognitive decline in PD 

Currently, prognostic indicators of cognitive decline in PD continue to be sought. 

Additionally, only 25% of patients are recognised as having dementia in the 

clinical setting (Hu et al., 2011) proving current diagnostic tools are inadequate. 

Cognitive testing such as the MoCA and Scopa-Cog are often used to assess 

cognitive decline and monitor progression to PDD. However, such assessments 

provide a ‘blunt tool’ and identify cognitive decline and dementia long after the 

pathological changes have occurred, as seen in AD (Chang and Silverman, 

2004). Therefore, there is a need to identify biomarkers for cognitive decline that 

are sensitive and specific to a prodromal state of PDD. A biomarker is defined as 

‘a characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacological 

responses to a therapeutic intervention’ (Biomarkers Definitions Working, 2001). 

Thus, effective biomarkers in PD would improve patient management and 

stimulate the development of novel therapeutics.  

There has been a recent surge to identify biomarkers for PDD (Aarsland and 

Kurz, 2010). Due to the complexity of cognitive decline in PD however, one 

biomarker alone will not be adequate and in fact a combinational approach is 

required. Already, a number of biomarkers have been associated with cognitive 

impairment in PD. Biomarkers are often classified as ‘wet’ biomarkers i.e. the 

source is a bodily fluid and ‘dry’ biomarkers i.e. imaging and other 

neurophysiological assessments (Alves et al., 2015). A number of biomarkers in 

the literature will be discussed here and are displayed in Table 1-1. 

A number of ‘wet’ biomarkers are contained in cerebrospinal fluid (CSF). CSF is 

usually the focus of biomarkers in neurodegenerative disease due to its 

anatomical location (Alves et al., 2015).  Reduced levels of Aβ (1-42) have been 

identified in an incident cohort of PD (Yarnall et al., 2014) and found to be an 

independent predictor of cognitive decline in a separate study (Siderowf et al., 

2010). A large study of 414 early and untreated PD participants identified that 

lower CSF levels of a-synuclein contributes to early dysfunction of executive-



Chapter 1: Parkinson’s disease and setting the context 

12 
 

attention and that Aβ 1-42 was decreased in MCI but not in non-MCI PD patients 

(Skogseth et al., 2015). In addition, reduced levels of Aβ 1-40 have been 

identified in PD-MCI but not those with normal cognitive function (Yarnall et al., 

2014). Another component of CSF, tau protein, has shown marginally elevated 

levels in those with PDD, but does not appear to be as sensitive as amyloid-beta 

markers (Mollenhauer et al., 2006). However, a recent study found tau levels to 

predict decline on assessments of executive function and memory (Liu et al., 

2015). Overall, components of CSF are showing promise as biomarkers but 

obtaining CSF is an invasive procedure making screening of patients 

problematic.   

Other ‘wet’ biomarkers include those found in blood. One study identified low 

blood plasma levels of epidermal growth factor (EGF) was associated with poor 

cognitive test scores and predicted an eight fold increased risk of development of 

dementia (Chen-Plotkin et al., 2011). Additionally, a study in drug naïve patients 

found EGF levels to be related to frontal and posterior cognitive function over two 

years (Pellecchia et al., 2012). More recently, low baseline EGF levels have been 

associated with poor visuospatial performance (Lim et al., 2016).  

In comparison, ‘dry’ biomarkers such as imaging and other neuropsychological 

tests (e.g. electroencephalogram (EEG)) have received little attention. Structural 

magnetic resonance imaging (MRI) has identified posterior cortical atrophy in 

patients with MCI, over time this atrophy extends anteriorly in PDD patients 

(Song et al., 2011; Melzer et al., 2012). In a cohort of recently diagnosed PD 

patients, those with PD-MCI showed significantly more severe thinning of 

temporo-parietal regions and frontal regions relative to those with normal 

cognition (Mak et al., 2015). In comparison, functional-MRI (fMRI) studies have 

shown less promise (Duncan et al., 2013). Functional imaging of dopaminergic 

and cholinergic systems however have shown interesting results (Klein et al., 

2010), in particular cortical acetylcholinesterase was reduced in those with poor 

performance on attention and executive function assessments (Bohnen et al., 

2005). However, imaging is an expensive resource and thus would be an 

expensive screening tool.  
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Alternative ‘dry’ biomarkers include short latency afferent inhibition (SAI). In a 

study of 22 patients with early PD, those with MCI (n=11) showed significantly 

less inhibition than both control and PD patients of normal cognition (Yarnall et 

al., 2013). One study identified a ‘dry’ biomarker in EEG which identified a hazard 

of dementia development in those with low background rhythm frequency 

(Klassen et al., 2011). Although evidence is building, there is still some way to go 

before an established prognostic battery is available. Additionally, given the 

pragmatic issues surrounding biomarkers such as high cost and invasive nature, 

there is a need to identify clinical biomarkers (biomarkers which can be obtained 

quickly and easily in the clinic environment) for PDD.  

A recent study combined neuropsychological measures and cognitive 

assessments and found the combination of simple and obtainable measures 

provided a strong battery of clinical biomarkers that can be utilised in the clinical 

setting (Olde Dubbelink et al., 2014). However, other cost-effective and clinic 

friendly assessments are still being sought. A recent concept in older adults is 

motoric cognitive risk syndrome (MCR). MCR provides a clinically accessible risk 

tool that does not contain complex neuropsychological or imaging assessments 

(Verghese et al., 2015). The MCR tool is dependent on four criteria; cognitive 

complaints using a simple questionnaire, slow gait speed, preserved activities of 

daily living scale and an absence of dementia (Verghese et al., 2012). Thus, 

MCR provides a battery of simple assessments, including measurement of gait 

that can be used clinically in numerous populations as further described below.  
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Table 1-1 Current biomarkers associated with cognitive decline and Parkinson's disease dementia. 

Category Biomarker Author Outcome Issues 

Wet CSF- Aβ 1-

42 

Yarnall et al. 

(2014) 

 

Newly diagnosed cohort, significantly lower levels of CSF Aβ 1-42 in those with 

PD-MCI. 

 

Invasive 

Expensive 

Mollenhauer et al. 
(2006) 
 

Levels of CSF Aβ 1-42 significantly lower in PDD compared to PD and healthy 
controls. 

Siderowf et al. 
(2010) 
 

Reduced levels of CSF Aβ 1-42 at baseline assessment associated with more 
rapid cognitive decline over one year. 
 

Skogseth et al. 
(2015) 
 

Levels of CSF Aβ 1-42 significantly decreased in PD-MCI compared to healthy 
controls and PD without MCI. 
 

 CSF Aβ 1-40 Yarnall et al. 
(2014) 

Newly diagnosed cohort, significantly lower levels of CSF Aβ 1-40 in those with 
PD-MCI. 
 

Invasive 
Expensive 

 CSF Tau Mollenhauer et al. 
(2006) 
 

Levels of CSF Τau protein significantly higher in PDD compared to PD and 

healthy controls. 

Invasive 
Expensive 

Liu et al. (2015) 
 

After levodopa treatment initiated higher Tau protein predicted cognitive decline 
on assessments of memory and executive function.  
 

 Blood Serum 

EGF 

Chen-Plotkin et al. 
(2011) 
 

Low levels of plasma EGF correlated with poor cognitive test scores at baseline 

and predicted an 8-fold greater risk of cognitive decline. Results significantly 

replicated in a separate cohort. 

Invasive 

Pellecchia et al. 
(2012) 
 

Levels of plasma EGF associated with semantic fluency performance at 
baseline. At 2 year follow up, levels of EGF associated with semantic fluency 
and Stroop-colour-word test performance. 

Lim et al. (2016) 
 

Low levels of plasma EGF predicted poorer cognitive outcomes. In PD, low 
levels of EGF associated with poorer performance on visuospatial tasks. 

Dry Structural Song et al. (2011) PD-MCI had significantly decreased grey matter in right frontal middle area Expensive 
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[MCI= mild cognitive impairment, PDD= Parkinson’s disease dementia, EGF= epidermal growth factor, AChE= acetylcholinesterase.]

MRI  compared to PD non-MCI. PDD patients had decreased GM in right parietal, 

middle frontal, insular and lentiform areas. Grey matter atrophy in the posterior 

cingulate greater in those with shorter disease duration before dementia.  

 

Melzer et al. (2012) 
 

PD MCI and PDD showed grey matter atrophy compared to PD non-MCI. PDD 
showed extensive atrophy in the temporal lobe, intracalcarine and lingual gyri, 
posterior cingulate gyrus, frontal regions and bilateral caudate. Grey matter loss 
associated with global cognitive score. 
 

Mak et al. (2015) 
 

Widespread cortical thinning evident in PD-MCI. At baseline regional cortical 
thickness associated with global cognitive score. Over 18 months, those with 
PD-MCI had severe cortical thinning in frontal and temporo-parietal cortices 
including hippocampal atrophy.  
 

 fMRI Klein et al. (2010) 
 

Dopaminergic and cholinergic deficits present in patients with PDD and DLB. 

Cholinergic deficits critical for development of dementia.  

 

Expensive 

Bohnen et al. 
(2005) 
 

Cortical AChE activity reduced in PDD and PD compared to controls. 
Cholinergic denervation in both PD and PDD associated with worse 
performance on assessments of attention and executive function. 
 

 SAI Yarnall et al. 

(2013) 

 

Significantly less short latency afferent inhibition in group with mild PD-MCI 

compared to healthy controls. 

 

Minimal 

evidence 

 EEG Klassen et al. 

(2011) 

PD patients with low background rhythm frequency were 13 times more likely to 

develop dementia than those with high background rhythm frequency. 

Minimal 

evidence 
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1.5 Gait  

Gait is defined as the walking pattern of an individual. Gait provides a marker of 

global health and is an important tool as a predictor for health status and survival 

in older adults (Hausdorff et al., 2001; Studenski et al., 2011). Previously gait was 

regarded as purely an automatic task reliant on subcortical structures such as the 

brainstem and spinal cord (Takakusaki, 2013). However, gait is no longer 

regarded as purely a motor task. An extensive body of research has established 

that safe and effective gait requires input from higher cognitive areas (Hausdorff, 

2005). Research over the past decade has refined our understanding of the 

relationship between gait and cognition to reveal compensatory cognitive 

strategies which vary as a function of age and pathology (Hausdorff, 2005). 

Cross sectional studies identify associations between gait and cognition in normal 

ageing and neurodegenerative disease (Yogev et al., 2005; Ijmker and Lamoth, 

2012; Verlinden et al., 2013; Lord et al., 2014) as supported by neuroimaging 

studies (Holtzer et al., 2014). Longitudinally, gait emerges as a strong and 

significant predictor of future cognitive impairment and dementia in older adults 

(Marquis et al., 2002; Verghese et al., 2007; Buracchio et al., 2010; Mielke et al., 

2013). However, it is not clear as to whether gait would provide a clinical 

biomarker in PD as to date no longitudinal studies have been conducted in this 

patient group. 

Gait speed is universally used to reflect gait because of its utility and robust 

clinometric properties (Wade, 1992). Gait, however is a complex task and due to 

its inherent complexity and because it is a multidimensional construct comprised 

of a number of discrete spatiotemporal characteristics, gait cannot be 

represented by a single outcome. 

1.5.1 Spatiotemporal gait characteristics  

Gait characteristics are often measured as spatiotemporal variables; these are 

different aspects of gait measured in distance and time, which can be seen in 

Figure 1-2. Previously Lord et al. (2013b) identified 16 spatio-temporal 

characteristics to describe gait performance.  Spatial characteristics of gait 

measured by Lord et al. (2013b) included step length and step width with 

temporal characteristics including step time, swing time and stance time. In 
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addition the variability and asymmetry of these characteristics have been 

calculated to identify the differences from one step to the next and the differences 

between the right and left foot respectively. For example, other gait 

characteristics include step length asymmetry, step width variability and step time 

variability. Discrete gait characteristics, such as those described above, are 

known to change both in normal ageing and onset of neurodegenerative disease 

amongst other conditions. It is critical to measure discrete gait characteristics as 

although gait speed is sensitive to pathology, it is neither discriminative nor 

reflective of subtle and selective alterations of gait expressed in response to 

change in neuropathology in ageing and disease (Stolze et al., 2001; Verghese et 

al., 2007; Lord et al., 2014). For example, stride time variability over and above 

gait speed is able to discriminate between carriers and non-carriers of the 

LRRK2-G2019S mutation, a pre-cursor for PD (Mirelman et al., 2011). Selective 

identification of gait characteristics is therefore critical for discrimination of 

pathology, identifying specific features of disease progression and discerning the 

effect of age.  

 

 

 

 

 

 

Figure 1-2 Spatiotemporal features of gait. Taken from Lord et al., 2013 
 

 

1.5.2 Gait Factor Domains 

Due to high specificity and sensitivity, a large number of gait variables are useful; 

however this can also be problematic. A high co-variance exists between certain 
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gait characteristics (e.g. step velocity and step length) which therefore leads to 

redundancy and a complex method by which to explain findings.  

In response, several groups have proposed gait models that group gait 

characteristics into gait domains using data reduction techniques such as 

principle component analysis (PCA) (Verghese et al., 2007; Hollman et al., 2011; 

Lord et al., 2013b; Verlinden et al., 2013). Whilst the models are comparable, 

there are subtle differences. For example Verghese et al. (2007) and colleagues 

collated eight gait characteristics to form three domains; pace, variability and 

rhythm. Other models have produced more novel domains such as tandem and 

turning (Verlinden et al., 2013) allowing for inclusion of more complex motor 

tasks. A model developed by Lord et al. (2013b) in older adults assessed 16 gait 

characteristics forming five domains of gait (pace, rhythm, variability, asymmetry 

and postural control) which was later validated in PD (Lord et al., 2013a) (see 

chapter 3, figure 3-4). Although such models address the concern of 

redundancy they also come at a cost in that the strength of an independent gait 

variable is diluted among its factor. In order to address this, analysis should be 

completed on both independent gait variables and their factors in order to 

distinguish differences in the results and strongest variables among factors.  

1.5.3 Measuring Gait 

It has now been established that measurement of a comprehensive battery of gait 

characteristics is of upmost importance. Traditionally, comprehensive gait 

assessments were carried out in controlled gait laboratories using specialised 

validated equipment such as instrumented walkways (e.g. GaitRite) (Nelson et 

al., 2002; Menz et al., 2004) and infra-red camera systems (e.g. Vicon) (Barker et 

al., 2006). Recent advances in technology has allowed for the development of a 

more novel method of gait data collection by using accelerometer based body 

worn monitors (BWM). The use of BWM allows for the measurement of 

quantitative gait characteristics in the clinic and in the ‘free-living’; the patient’s 

habitual environment i.e. home and local community. Algorithms have been 

developed to calculate comprehensive gait characteristics from older adults and 

patients with PD which have been validated against the ‘gold-standard’ 

instrumented walkway (Del Din et al., 2016b; Del Din et al., 2016c). The field of 
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gait measurement using BWM is expanding and this will be discussed further in 

Chapter 6.  

1.5.4 Gait in Parkinson’s disease 

Gait impairment in PD is one of the main motor symptoms of the disorder which 

is recognised as a slow, shuffling walk often with a flexed posture. Gait 

impairments are critical in PD as they lead to increased risk of falls and poorer 

quality of life (Muslimovic et al., 2008).  

Problems with mobility that are recognised in PD such as bradykinesia and 

hypokinesia are ultimately down to changes in quantitative gait variables 

(Peterson and Horak, 2016). For example, one study found the ability to regulate 

stride length to be the underlying deficit fundamental for gait hypokinesia (Morris 

et al., 1994). Although older adults show an alteration of gait characteristics with 

ageing, differences in the spatiotemporal parameters of gait can be seen in those 

with PD compared to healthy control participants even when optimally medicated 

(Morris et al., 1996; Wild et al., 2013).  

One of the most recognised gait deficits in PD is decreased pace e.g. gait 

velocity as shown in work by the Morris group (Morris et al., 1994; Morris et al., 

1996). Since this work, a number of studies have replicated this finding 

(Baltadjieva et al., 2006; Hass et al., 2012; Rochester et al., 2012; Lord et al., 

2013a; Wild et al., 2013) as well as more discrete impairments such as 

decreased step and stride length (Morris et al., 1998; Baltadjieva et al., 2006; 

Hass et al., 2012; Rochester et al., 2012). Importantly, deficits in pace of gait (i.e. 

velocity and step length) have been recognised in very early PD (Galna et al., 

2015). Deficits in rhythm, the ability to maintain a steady and stable walking 

pattern, have also been noted in early PD (Galna et al., 2015). Deficits in rhythm 

have been demonstrated in a number of characteristics including stride time and 

swing time (Hausdorff et al., 1998; Hausdorff et al., 2003; Frenkel-Toledo et al., 

2005) as well as gait domains in PD (Amboni et al., 2012).  

Other than pace and rhythm, impairment also affects other discrete gait 

characteristics of variability and asymmetry. At diagnosis, a number of 

characteristics of variability and asymmetry are significantly higher in PD subjects 
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compared to age matched older adults (Lord et al., 2014). Characteristics of 

asymmetry are associated with an increase in Levodopa, suggesting significant 

implication of the dopaminergic system in these characteristics. Stride length 

variability in particular has been associated with increased falls risk (Hausdorff et 

al., 2001), marking the importance of measuring characteristics other than gait 

velocity.    

Another gait domain critical to PD is postural control. Postural control is affected 

in people with PD both statically and during movement (Peterson and Horak, 

2016). In particular, one feature of gait related postural control, step width 

variability, demonstrates impairment in early PD (Galna et al., 2015). Importantly, 

step width variability is another important measure for predicting falls (Brach et 

al., 2005), this once again signifies the importance of measuring additional gait 

characteristics over and above gait velocity.  

1.5.5 Pathology of gait in PD 

Primarily, gait impairment has been related to the dopaminergic system. It has 

been hypothesised that gait impairment originates from hyperactivity of inhibitory 

projections of the basal ganglia (BG) this in turn alters projections to the 

supplementary motor area (SMA) and the primary motor cortex. It is thought that 

the ‘cue’ from the BG is affected and leads to poor preparation of movement and 

thus a slowing or absence of an internal cue from the BG leads to slower and 

reduced performance of sequencing tasks, such as gait (Morris et al., 1994; 

Phillips et al., 1994). A number of studies have observed the response of gait to 

dopaminergic therapy. Firstly, Galna et al. (2015) found that in the first 18 months 

of PD step length, a measurement of pace, improved with medication although it 

did not fully compensate for the impairment. In addition, measures of rhythm 

declined even though levels of dopaminergic medication significantly increased. 

In the same cohort, characteristics of step length and step time variability were 

shown to be dopa-resistant over the first three years of disease (Rochester, 

2016). A separate study by Curtze et al. (2015) observed 104 patients in PD 

identified dopaminergic medication to improve some, but not all aspects of gait. 

Such studies therefore indicate the involvement of other neurotransmitters in the 

control of gait. For example, in newly diagnosed PD, slower gait speed has been 
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associated with an impaired cholinergic system (Rochester et al., 2012). The 

above evidence highlights that gait impairment in PD is complex and involves 

multiple neural regions and transmitters.  

 

1.6 Gait and cognition  

In ‘An Essay of the Shaking Palsy’ James Parkinson wrote ‘Walking becomes a 

task which cannot be performed without considerable attention. The legs are not 

raised to that height, or with that promptitude which the will directs, so that the 

utmost care is necessary to prevent frequent falls’ (Parkinson, 2002). This was 

the first indication of the importance of cognition on gait in PD.  

The ability to complete two tasks at once is critical for everyday functional tasks 

such as walking while carrying objects, walking and focusing on another task or 

walking and talking. This concept was tested in the work of Lundin-Olsson et al. 

(1997) who produced a short report in elderly nursing home residents identifying 

older adults who stopped walking when they started to talk. Lundin-Olsson et al. 

(1997) described that those who stopped walking when talking had less safe gait, 

decreased gait velocity and were more dependent on activities of daily living. 

Furthermore, these participants were significantly more likely to fall in the 

following 6 months compared to those who were able to complete the two tasks 

simultaneously.  This simple study suggests cognition is required to refine gait 

patterns on the premise that if gait and cognition were dependent on separate 

resources, gait would not alter when cognitive load increased.   

1.6.1 Dual task methodology  

Lundin-Olsson et al. (1997) was one of the original studies to utilise what is now 

referred to as a dual task paradigm. Since the study by Lundin-Olsson et al. 

(1997) dual task paradigms have become one of the most popular methods of 

assessing the gait-cognition relationship. Under more recent dual task protocols, 

subjects complete a walking task as well as concurrently completing a cognitively 

demanding task. Such concurrent tasks vary between protocols but examples 

include serial number subtraction, verbal recall, semantic fluency and Stroop 

tasks.  
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Alongside the increased use of dual task paradigms there has been heightened 

interest in the theoretical models underpinning dual task (Yogev-Seligmann et al., 

2008; Strouwen et al., 2015). Three of the most researched models include the 

bottleneck theory, the central capacity-sharing model and the multiple resource 

model. The bottle-neck theory suggests that cognitive resources of the same 

neural network cannot be divided between different tasks i.e. there is a bottle-

neck when competing for the resource (Pashler, 1994). This theory depicts that 

neural network resource allocation for a secondary task is delayed until the first 

task is no longer utilising the resource. The bottle-neck theory therefore suggests 

that if gait and cognitive processes are reliant on the same neural networks then 

there will be poorer performance to one of the tasks i.e. gait or the concurrent 

cognitive task. Second, the central capacity-sharing model extends on the bottle-

neck theory which suggests that at particular stages during dual tasking the 

neural network resources can be allocated to the two tasks, however, there is a 

limited capacity of resource and thus there will be poorer performance on both 

tasks i.e. gait and concurrent cognitive task (Tombu and Jolicœur, 2003). Third, 

the multiple resource model depicts that there can be competition for neural 

network resources but that this can be multi-dimensional as opposed to one-

dimensional (Wickens, 2008). This model identifies that there is a finite capacity 

of resources and therefore performance on dual tasking is dependent on the 

capacity to utilise different resources concurrently.  

Dual tasking is dependent on attentional resources and therefore in PD dual task 

deficits are thought to be exacerbated due to frontal executive-attention 

dysfunction commonly seen in this patient population (Yogev-Seligmann et al., 

2008). A number of studies have explored dual task gait in PD. Dual task deficits 

emerge in PD as reduced pace (i.e. slower speed and reduced step length) (Al-

Yahya et al., 2011), increased variability (Plotnik et al., 2011), reduction in 

cadence (Al-Yahya et al., 2011) and increased asymmetry (Yogev et al., 2006). 

The largest study assessing dual task performance in PD was explored early in 

disease and identified characteristics of gait related postural control to be most 

susceptible to dual task conditions in comparison to age matched controls 

(Rochester et al., 2014).  
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Dual task paradigms provide a useful tool to assess the gait-cognition 

relationship but due to methodological inconsistencies it is essential to measure 

gait under single task conditions (Kelly et al., 2012). When measured under 

single task conditions, gait can be associated with cognitive assessments and 

thus allow for the ability to tease out the cognitive elements needed for 

refinement of gait.  

 

1.6.2 Gait and cognition selective associations  

Current understanding of disease pathology provides insight into potential 

associations of gait and cognition. For example, people with AD present foremost 

with deficits in amnestic ability predominantly due to amyloid deposition in the 

entorhinal cortex and hippocampus (Braak and Braak, 1995), with concordant 

findings of an association between atrophy of the hippocampus and decreased 

gait velocity and step length (Callisaya et al., 2013).  Similarly, for people with PD 

who present with executive-attention deficits due to compromised fronto-striatal 

circuitry (Stern et al., 1993; Burton et al., 2004) attention has been significantly 

associated with reduced gait velocity and step length (Lord et al., 2014).  The 

question remains however if discrete gait domains share a different association 

dependent upon cognitive function? Furthermore, if the relationship between gait 

and cognitive variables is selective one may expect a different signature of 

impairments to emerge underpinned by the selective influence of pathology. A 

better understanding of this relationship would strengthen an understanding of 

the mechanisms of gait impairment, the shared neural and pathological correlates 

of gait and cognitive function and validate the role of gait as a clinical biomarker 

of cognitive decline, dementia and pathology (Lord et al., 2014; Mollenhauer et 

al., 2014). The relationship between gait and cognition however is still an 

emerging area of work, largely due to recent advances in the understanding of 

gait and improvement in the ability to measure its discrete characteristics. This 

thesis firstly aims to provide a better understanding of this topic as detailed 

below.  
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1.7 Thesis outline, aims and hypothesis 

This thesis was designed to explore the role of gait as a predictor for cognitive 

decline in PD, the significance of which has been highlighted in this chapter. This 

thesis is split into a further five chapters which are outlined below. 

 

1.7.1 Chapter 2: Gait and cognition: mapping the global and discrete 

relationships in ageing and neurodegenerative disease 

This chapter forms a published structured review exploring associations of gait 

and cognition in three cohorts; older adults, cognitive impairment and Parkinson’s 

disease. The review also explores longitudinal studies of gait and cognition. This 

structured review was undertaken to provide a clear understanding of current 

associations in the literature to further inform this thesis.  

Aims: 

 Explore evidence for the associations between independent features of 

gait and cognitive function in older adults, cognitive impairment and PD 

 Identify the longitudinal nature of relationships in the same cohorts 

Hypothesis: 

 Independent gait characteristics will be related to discrete cognitive 

functions in a specific rather than global manner and the pattern of 

association will be different with respect to pathology and ageing 

 

1.7.2 Chapter 3: General methods- the ICICLE-Gait study 

Chapter 3 provides an overview of the ICICLE-Gait study, the longitudinal study 

that formed the basis of this thesis. Chapter 3 provides details on the ICICLE-gait 

study aims, participant recruitment, participant retention, gait and cognitive 

testing and statistical analysis applicable to all chapters. Further specific 

methodology is described in subsequent chapters where needed.  

 



Chapter 1: Parkinson’s disease and setting the context 

25 
 

1.7.3 Chapter 4: Single task gait as a predictor for cognitive decline in PD 

Chapter 4 presents an investigation of single task gait as a predictor for cognitive 

decline in PD. Linear mixed effects analysis explores the predictive ability of both 

gait domains and gait characteristics at diagnosis of PD as predictors of decline 

in several cognitive domains over three years. The chapter also observes the 

predictive ability of cognition to determine if gait provides a more sensitive 

predictor over neuropsychological cognitive assessments. The chapter concludes 

by exploring potential underpinning mechanisms behind findings.  

Aims: 

 Examine whether gait under single task conditions can predict cognitive 

decline in PD 

 Determine whether the pattern of association is global or specific  

 Determine whether gait predictors are specific to PD pathology  

 Determine whether gait is superior to a clinically used cognitive measure 

Hypothesis: 

 It is hypothesised that discrete gait characteristics will be sensitive to early 

cognitive decline in PD. 

 

1.7.4 Chapter 5: Dual task gait as a predictor for cognitive decline in PD 

Chapter 5 follows on from chapter 4, exploring whether gait under dual task 

conditions is able to predict cognitive decline in PD. In addition, the chapter will 

compare findings with chapter 4 to decipher whether dual task gait provides a 

more sensitive predictor. Once again, this chapter will conclude by exploring 

potential underpinning mechanisms as well as discussing clinical significance of 

findings.  

Aims: 

 Examine dual task gait characteristics and domains as predictors for 

cognitive decline in PD 
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 Determine whether dual task gait is superior to a baseline cognitive 

measure  

 Determine whether predictors are specific to PD pathology  

 Compare predictive value to single task gait characteristics 

Hypothesis: 

 It is hypothesised that dual task gait will be able to predict cognitive 

decline in PD and that gait characteristics will be more sensitive to this 

decline compared to single task gait.  

 

1.7.5 Chapter 6: Gait and cognition in free-living; an exploratory look 

This chapter provides exploratory analysis of the relationship between gait and 

cognition in ‘free-living’ measuring gait with accelerometer BWM. This chapter 

focuses on a cross-sectional approach at three years post PD diagnosis. The 

chapter will be split into two sections which are described below.  

Section 1: A model of free-living gait; a factor analysis in PD 

This first section of chapter 6 will explore a factor-analysis approach to free-living 

gait characteristics in order to develop a conceptual gait model for free-living data 

similar to the model used as a framework in the previous chapters. The chapter 

explores conceptual gait models using BWM both in controlled (laboratory) and 

free-living environments in PD and healthy older adults. The results from section 

one will be used to further inform analysis in section two.  

Aims: 

 Explore a gait model using body-worn monitors in controlled and free-living 

environments in older adults and PD 

 Compare the models to a previous GaitRite™ derived model 

Hypothesis: 

 Due to differences in measurement tools, free-living derived gait 

characteristics will load differently onto a conceptual gait model  
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Section 2: The gait-cognition relationship in free-living 

This section provides exploratory analysis of the gait-cognition relationship in 

free-living compared to laboratory. This chapter is of cross-sectional design 

focusing on associations between gait and cognition at three years post 

diagnosis in PD.  

Aims: 

 Explore gait-cognition associations using a BWM in relation to protocol i.e. 

laboratory v’s free-living conditions in PD 

 Explore the effect of ambulatory bout length on gait and cognition 

associations in PD 

Hypotheses: 

 Gait-cognition associations will be more evident in the laboratory setting 

due to primed attention 

 Gait and cognition associations will be more evident during shorter 

ambulatory bouts due to the likelihood of increased environment 

complexity 

 

1.7.6 Chapter 7: Thesis summary 

Chapter 7 provides the final section of this thesis and provides an overall 

summary of all chapters. The chapter outlines the clinical implications of this 

thesis and provides an overview limitations and direction for future research.  

 



Chapter 2: Gait and cognition: mapping the global and discrete relationships in ageing and 
neurodegenerative disease 

*This chapter has been published in Neuroscience and Biobehavioural Reviews  

Chapter 2 : Gait and cognition: mapping the global and discrete 

relationships in ageing and neurodegenerative disease* 

As discussed in chapter one, both gait and cognition are affected in PD. 

However, recent literature has recognised associations between gait and 

cognition and have explored this concept through cross-sectional and longitudinal 

studies. In order to further understand this concept, a structured literature review 

was performed which forms the basis of this chapter. 

 

2.1 Introduction 

To date a comprehensive investigation of the selective associations between 

independent gait and cognition characteristics in ageing and neurodegenerative 

disease has not been undertaken. The purpose of this review was therefore to 

undertake a detailed comparison of studies exploring discrete relationships of gait 

and cognitive domains.  For this review, studies were limited to measuring gait 

under single task conditions. Gait under single task conditions reflects the ability 

of the cognitive system to control locomotion and to compensate for motor and 

cognitive deficit as a consequence of ageing and pathology. Therefore it is 

expected that changes in cognitive function would be reflected in changes in gait 

performance. Although dual task paradigm studies are extensively used to 

examine associations of gait and cognition, inconsistent findings are reported due 

to methodological issues such as diverse concurrent tasks, controlling for 

baseline task demand and different analysis of calculating dual task interference 

(Rochester et al., 2014). In addition to these inconsistencies, the underlying 

cognitive nature of dual task methodology remains unclear and does not reflect 

baseline cognitive influence on gait; therefore making it difficult to tease out direct 

underlying neural correlates.  

In light of this, the aims of this review are to i) explore evidence for the 

associations between independent features of gait and cognitive function and ii) 

identify the longitudinal nature of relationships. It is hypothesised that 

independent gait characteristics would be related to discrete cognitive functions 

in a specific rather than global manner and the pattern of association would be 

different with respect to pathology and ageing.  In order to address this 
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hypothesis a model of gait previously used in older adults was adopted (Lord et 

al., 2013b)(Figure 2-1) and a comprehensive range of cognitive domains 

previously described (Emre et al., 2007) were chosen. This was done in order to 

improve consistency, reduce redundancy and retain independence between gait 

and cognitive features respectively to ease interpretation of results. Individual gait 

domains (or respective characteristics) were mapped to individual cognitive 

functions to develop a matrix from which to identify discrete relationships. Three 

different cohorts were included: older adults (OA); those with cognitive 

impairment (CI); and people with PD, in order to explore gait-cognition 

associations in pathology and normal ageing. Cross-sectional and longitudinal 

study designs were examined to identify causality. It is hoped this review will not 

only to provide a clear understanding of current associations but in addition 

identify gaps in the literature to inform recommendations for future work. 

 

2.2 Methods 

2.2.1 Search Strategy 

Three databases were used for the search: Medline, Psychinfo and Scopus. For 

each of the databases used, three separate searches were performed for the 

three cohorts included in the review; OA, CI and PD. In total, nine separate 

searches were completed. Each search used the key terms ‘Gait’, ‘Cognition’ and 

either ‘Parkinson’s disease’, ‘dementia’ or ‘older adults’. For each of the key 

terms, a list of synonyms were correlated and entered into the search (Table 2-

1).  Where possible, MESH headings were used for Medline and Psychinfo. The 

search was limited for papers published since 1990 to February 2014, written in 

English language and restricted to full journal articles only.  

The initial nine searches were combined into three master databases; 

‘Parkinson’s disease’, ‘Cognitive Impairment’ and ‘Older Adults’. Duplicates were 

then deleted and an initial title screen was performed by the reviewer (RM). After 

the initial title screen, the titles and abstracts were reviewed by independent 

reviewers (authors Rosie Morris and Jennifer Bunce). A review of the full text was 
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needed in incidences where it was unclear from the abstract whether the paper 

was suitable for inclusion. 

 

Figure 2-1: Model of gait proposed by Lord et al, 2013 in older adults. 



 
 

 
 

3
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Table 2-1: Key terms search table for structured literature review.  

 

 

Table includes the three databases used, the individual terms for each cohort and MESH headings where applicable. 

 Medline Psychinfo Scopus 

Gait MESH Headings: Gait, locomotion, 
walking,  
Keywords: symmetry, asymmetry, 
frequency, variability, pace, rhythm, 
speed, velocity, step 

MESH Headings: Gait, locomotion, walking 
Keywords; symmetry, asymmetry, base of 
support, frequency, variability, speed/velocity, 
stance 

Keyword Search: Gait OR locomotion OR 
walking OR symmetry OR asymmetry OR 
frequency OR variability OR speed OR 
velocity OR stance OR step OR swing OR 
stride OR “double limb” 

Cognition  MESH Headings: Cognition, cognition 
disorders, memory, neuropsychological 
tests, attention, executive function, 
reaction time, psychomotor 
performance 
Keywords; Processing speed, 
visuospatial, verbal fluency 

MESH Headings; cognition, cognitive ability (tick 
spatial ability, verbal ability, cognitive assessment, 
cognitive impairment, cognitive processing speed, 
executive function, metacognition) Memory, 
Attention, visuospatial ability, verbal fluency, 
reaction time 
Keywords; psychomotor performance  

Keyword Search: Cognition* OR “global 
intelligence” OR cognitive* OR memory 
OR attention OR “executive function” OR 
“processing speed” OR psychomotor OR 
visuospatial OR “verbal fluency” OR 
“reaction time”  

Cohort PD:  
MESH: Parkinson’s disease 

PD:  
MESH: Parkinson’s disease 

PD:  
Parkinson* 

Dementia: 
MESH: Dementia (explode), 
Alzheimer’s disease,  

Dementia: 
MESH: Dementia (explode dementia- cognitive 
impairment, Alzheimer’s disease, dementia with 
lewy bodies, vascular dementia) 

Dementia:  
Alzheimer*, “lewy body”, dementia, “frontal 
lobe dementia”, “intellectual impairment” 

Older Adults:  
 Seniors, older*, aging, elderly* 

Older Adults:  
Seniors, older*, aging, elderly* 

Older Adults:   
Older* OR elderly* OR Seniors OR aging  
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2.2.2 Inclusion and Exclusion Criteria 

Articles were included if they assessed OA and patients with either a degree of 

cognitive impairment or PD completing a gait assessment under single task 

conditions and independently completing a minimum of one cognitive 

assessment. Cognitive assessments included global cognitive tests (e.g. 

MMSE/MOCA) as well as tests of attention, executive function, memory, 

language, processing speed and visuospatial skills. Articles must have completed 

analysis for gait assessment under single task conditions. Articles were excluded 

if they only completed cognitive tasks under dual task conditions or if analysis 

was only reported for dual task conditions. Intervention studies were excluded as 

well as studies focusing on falls, freezing of gait (FOG) and overall physical 

activity.  

2.2.3. Data Extraction 

A title and abstract screen was undertaken by two independent reviewers; RM 

and JB. Three separate data extraction forms were created for the three cohorts. 

Data from the extraction forms was then transferred into a table. Information 

included; participant groups, participant characteristics, study type, gait variables 

measured, gait analysis tool, cognitive domains tested, cognitive assessments 

used and main study findings. The cognitive impairment cohort included the type 

of cognitive impairment and for the PD cohort whether participants were ON or 

OFF medication.  

 

 



Chapter 2: Gait and cognition: mapping the global and discrete relationships in ageing and 
neurodegenerative disease 
 

33 
 

 

Figure 2-2: Prisma diagram presenting the search yield for the structured review.  
 

 

2.3 Results 

2.3.1 Search Yield 

The search strategy generated a total of 43,828 papers; after exclusion criteria 

were applied the search strategy generated a total of 25,487 papers. After 

duplicates were removed, a total number of 22,128 papers were yielded from the 

search. The total number of papers were compiled into three databases; OA 

(n=11609), CI (n=7919 and PD (n=2600). After the initial title screen, the total 

number of papers of interest for each group were OA (n=168), CI (n=119) and PD 

(n=62). 

After an abstract screen, 66 papers were eligible for data extraction (n=34 OA, 

n=22 CI, n=10 PD). 11 papers were excluded due to inability to access paper 
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(n=7), duplicate findings (n=1) and studies which were not full journal articles 

(n=3). Data extraction was completed for a total of 55 papers; 30 for the OA 

cohort, 15 for the CI cohort and 10 for the PD cohort. After data extraction, 9 

papers were excluded due to completing only dual task conditions (n=4), not 

associating gait and cognition (n=1), associating fast speed only (n=1), 

participants being too young (n=1, all <60 years), not completing both 

independent cognitive domains and gait variables (n=1) and focusing on cognitive 

reserve (n=1). Four papers (Dodge et al., 2012; Lord et al., 2014) (Kaye et al., 

2012; Xu et al., 2014) have been identified since the search closed and were 

added to the data extraction process. The total number of papers used was 50. 

The search yield is demonstrated in Figure 2-2. All articles were originally 

published in the English language. Publication dates ranged from 2002 (Lord and 

Menz, 2002; Marquis et al., 2002)  to 2014 (Lord et al., 2014; Xu et al., 2014).  

2.3.2 Measurement of gait and cognition – methodological comparisons 

Gait measurement techniques included the use of activity monitors (Rochester et 

al., 2004; Rochester et al., 2005; Rochester et al., 2008; Gillain et al., 2009; Lord 

et al., 2010; Maquet et al., 2010; Ijmker and Lamoth, 2012), gait walkway 

systems (Holtzer et al., 2006; Hollman et al., 2007; van Iersel et al., 2008; 

Beauchet et al., 2012; Coelho et al., 2012; Holtzer et al., 2012; Muir et al., 2012; 

Beauchet et al., 2013; Lord et al., 2013b; Martin et al., 2013; Verlinden et al., 

2013; Lord et al., 2014), optokinetic systems (Ble et al., 2005; Amboni et al., 

2012), foot pressure sensors (Sheridan et al., 2003; Allali et al., 2010b), infra-red 

cameras (Kaye et al., 2012; Wild et al., 2013), timed up and go test (Donoghue et 

al., 2012; Smulders et al., 2013; Xu et al., 2014), timed to walk (Fitzpatrick et al., 

2007; Auyeung et al., 2008; Duff et al., 2008; Persad et al., 2008; McGough et 

al., 2011) and 6 minute walk distance test (Lord and Menz, 2002). A number of 

studies used a combination of techniques listed above (Hausdorff et al., 2005; 

Yogev et al., 2005; Lamoth et al., 2011; Bramell-Risberg et al., 2012). The 

majority of studies assessed single gait characteristics but five studies utilised 

gait domains (Verghese et al., 2007; Amboni et al., 2012; Lord et al., 2013b; 

Verlinden et al., 2013; Lord et al., 2014).  
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A variety of cognitive assessments were utilised as shown in Tables 2-6, 2-7, 2-8 

and 2-9 however, several of the same assessments were used in different 

studies and reported as testing different cognitive domains. Therefore for clarity 

we’ve noted studies that either assessed single cognitive assessments in 

association with gait; (Lord and Menz, 2002; Marquis et al., 2002; Sheridan et al., 

2003; Rochester et al., 2004; Ble et al., 2005; Hausdorff et al., 2005; Rochester 

et al., 2005; Yogev et al., 2005; Alfaro-Acha et al., 2007; Atkinson et al., 2007; 

Fitzpatrick et al., 2007; Hollman et al., 2007; Inzitari et al., 2007; Auyeung et al., 

2008; Duff et al., 2008; Persad et al., 2008; Rochester et al., 2008; van Iersel et 

al., 2008; Deshpande et al., 2009; Gillain et al., 2009; Allali et al., 2010a; 

Atkinson et al., 2010; Buracchio et al., 2010; Lord et al., 2010; Maquet et al., 

2010; Auyeung et al., 2011; Lamoth et al., 2011; McGough et al., 2011; Beauchet 

et al., 2012; Bramell-Risberg et al., 2012; Coelho et al., 2012; Donoghue et al., 

2012; Ijmker and Lamoth, 2012; Muir et al., 2012; Taniguchi et al., 2012; 

Beauchet et al., 2013; Lord et al., 2013b; Smulders et al., 2013; Wild et al., 2013; 

Xu et al., 2014) or grouped assessments to form domains (Holtzer et al., 2006; 

Verghese et al., 2007; Watson et al., 2010; Amboni et al., 2012; Dodge et al., 

2012; Holtzer et al., 2012; Kaye et al., 2012; Martin et al., 2013; Verlinden et al., 

2013; Lord et al., 2014). 
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Table 2-2: Colour correlation table to display gait and cognitive correlations in older adults. 

1Beauchet et al. (2012); 2Ble et al. (2005); 3Bramell-Risberg et al. (2012); 4Donoghue et al. (2012); 5Duff et al. (2008); 6Fitzpatrick et al. (2007); 7Hausdorff 
et al. (2005); 8Hollman et al. (2007); 9Holtzer et al. (2006); 10Holtzer et al. (2012); 11 Kaye et al. (2012); 12Lord and Menz (2002); 13Lord et al. (2013b); 
14Martin et al. (2013); 15 van Iersel et al. (2008); 16Verlinden et al. (2013). From longitudinal studies: 17Alfaro-Acha et al. (2007); 18Atkinson et al. (2010); 
19Deshpande et al. (2009); 20Watson et al. (2010). * Referred executive function and attention as ‘Executive Attention’. ᵻ speed of executive attention. 
Green indicates an association was found, red indicates no association found. 

Domain/Factor Global cognition Executive function Attention Visuospatial Memory Language Processing 
Speed 

Pace 
Step Velocity (m/s) 
Step Length (m) 
Step Time Variability (ms) 
Step Swing Time Variability 
(ms) 
Step Stance Time Variability 
(ms) 

   4       5        17      19   
 
   20              
 
 
   3       6      7      8     11      
 
   12      13      18   

  1       4      7       9*    10* 
 
   14*     16       20 
 
  
   2       11      13       15 

   5       9*      11      13 
 
   10*      14*      20                  

   5       11 
 
 
 
 
   14 

   4       5       9      10         
 
   20       
 
 
   7          11       13      
 
  14         15         16 

   5      9     10               
 
 
        

  4       9ᵻ       11 
 
  14        20 
 
 
   16        

Variability 
Step Velocity Variability 
(m/s) 
Step Length Variability (m) 
Step Width Variability (m)   

     
 
 
   11      13       

    10*   
 
 
   11      13      14*       15   
 
   16 

   

   10* 
 
 
    11      13       14* 

 
 
 
   14 

 
 
 
   10        11         13 
 
   14        15          16 
 

 
 
 
    10 

 
 
 
  11         14  
 
   16 

Rhythm 
Step Time (ms) 
Step Swing Time (ms) 
Step Stance Time (ms) 

 
 
 
   7       13 

    10* 
 
 
    7         13       14*      16 

   10* 
  
 
   13        14* 

 
 
 
   14 

  10 
 
 
   7        13        14 
 
    16 

 
 
 
   10  
 

   

  14        16 

Asymmetry 
Step Time Asymmetry (ms) 
Step Swing Asymmetry (ms) 
Step Stance Asymmetry 
(ms) 

 
 
  13 

 

 
 
    13 

 
 
   13 

  
 
   13 

  

Postural Control 
Step Width (m) 
Step Length Asymmetry (m) 

 
 
 
   13      

  13     14* 
 
 
  15      16 

    14* 
 
 
    13 

   14  
 
 
  13        14       15  
 
  16 

 
 
 

    

  14 
 
 
   16 
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Table 2-3: Colour correlation table to display cognitive and gait correlations in the cognitive impairment cohort. 
Domain/Factor ADᶧ FTDᶧ CI Global 

Cognition 
Executive 
Function 

Attention Visuospatial Memory Language Processing 
speed 

Pace 
Step Velocity (m/s) 
Step Length (m) 
Step Time Variability (ms) 
Step Swing Time Variability 
(ms) 
Step Stance Time Variability 
(ms) 

 
 
 
 

    4       5       6       
 
   8      11     12 
 
 
 
   1       3        7                            
   
B 10 

    1       6     2 
 
 
 
 
 
   3      5      10 

    8** 
 
 
 
 
 
 
 
 

    9       11*** 
 
 
 
 
 
    12 

   8** 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
     

 
 
 
 
 
 
 
 

    

  

Variability 
Step Velocity Variability (m/s) 
Step Length Variability (m) 
Step Width Variability (m)   

  
 
    

 
 
   
             

 
 
 

           

Rhythm 
Step Time (ms) 
Step Swing Time (ms) 
Step Stance Time (ms) 

   6  
 
 
    4      5       7 
 
    8      10     

   6 
 
 
   

   5       8      
 
 
    10 

    8**        
  
 
        

 
 
 
   8** 

    

Asymmetry 
Step Time Asymmetry (ms) 
Step Swing Asymmetry (ms) 
Step Stance Asymmetry (ms) 

 
 
 
   

  
 
 
      

 

 
 
 
 

  
 
 

    

Postural Control 
Step Width (m) 
Step Length Asymmetry (m)  

    
    
   5       8 

   
 
    5       8 

    
    
    8** 

  
 
   8** 

      

1Allali et al. (2010a); 2Auyeung et al. (2008); 3Beauchet et al. (2013); 4Coelho et al. (2012); 5Gillain et al. (2009); 6Ijmker and Lamoth (2012); 7Lamoth et al. 

(2011); 8Maquet et al. (2010); 9McGough et al. (2011), 10Muir et al. (2012); 11Persad et al. (2008); 12Sheridan et al. (2003).*results found for those with 

dementia as well as healthy controls; analysed as whole cohort.** MCI group only. *** Had AD or MCI with executive function impairment. Green 

indicates an association was found, red indicates no association found. 

 

 



 

   
 

3
8

 

Table 2-4: Colour correlation table to display cognitive and gait correlations in Parkinson’s disease.  
 

1Amboni et al. (2012); 2Lord et al. (2010); 3Lord et al. (2014); 4Rochester et al. (2004); 5Rochester et al. (2005); 6Rochester et al. (2008); 7Smulders et al. 

(2013); 8Wild et al. (2013); 9Xu et al. (2014); 10Yogev et al. (2005). *PIGD phenotype only. ** Executive Function and attention classified as one domain. 

Green indicates an association was found, red indicates no association found. 

 

 

 

 

Domain/Factor Global Cognition Executive Function Attention Visuospatial Memory Language Processing 
speed 

Pace 
Step velocity (m/s) 
Step Length (m) 
Step Time Variability (ms) 
Step Swing Time Variability 
(ms) 
Step Stance Time Variability 
(ms) 

   
 
 
    3        4       9        

   4       5      7      9       10  
 
 
  1       2      3      6     8** 

   2      3 
 
 
     8** 

   1 
 
 
   3 

   3  
 
 
   1         

 
 
 

  

Variability 
Step Velocity Variability (m/s) 
Step Length Variability (m) 
Step Width Variability (m) 

    3 
 
 
     

   
 
 
   1       3 

 
 
 
   3 

   1 
 
 
   3 

 
   

1     3 

  

Rhythm 
Step Time (ms) 
Step Swing Time (ms) 
Step Stance Time (ms) 

    
 
 
   3       4 

    3* 
 
 
   1       4       8**    

    
 
 
   3       8** 

    
 
 
  1        3 

 
 
 
   1      3 

  

Asymmetry 
Step Time Asymmetry (ms) 
Step Swing Asymmetry (ms) 
Step Stance Asymmetry (ms) 

  
 
 
   3 

 
 
 
   3 

 
 
 
   3 

 
 
 
   3 

 
 
 
   3 

  

Postural Control 
Step Width (m) 
Step Length Asymmetry (m)  

 
 
 
    3 

 
 
 
   1      3 

  
 
 
   3 

   1 
 
      
   3 

   3  
 
 
   1 
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Table 2-5: Colour correlation table to display cognitive and gait correlations from longitudinal studies (older adults only).  
 

Domain/Factor Global cognition Executive Function Attention Visuospatial Memory Language Processing 
Speed 

Pace 
Step Velocity (m/s) 
Step Length (m) 
Step Time Variability (ms) 
Step Swing Time Variability (ms) 
Step Stance Time Variability (ms) 

   1         2Ϯ        3       4       
 
   6         9ɫ        10 
 
   11       12 
 
  
   5        5       7*       
 
  

   4       11       12 
 
 
 
 
 
 
     

   8  
 
 
 
 
 
 
   11      12* 

 
 
 
 
 
 
 
 

   12 
 
 
 
 
 
 
   11 

          8        
 
 
 
 
 
    
   12* 

Variability  
Step Velocity Variability (m/s) 
Step Length Variability (m)  
Step Width Variability (m) 
 

   11**   
 
 
   11 

 
 
 
   11 

    
 
 
   11 

  

Rhythm 
Step Time (ms) 
Step Swing Time (ms) 
Step Stance Time (ms) 
 

   11** 
 
 
    10 

 
 
 
  11 

 
 
 
   11 

    11   

Asymmetry 
Step Time Asymmetry (ms) 
Step Swing Asymmetry (ms) 
Step Stance Asymmetry (ms) 

       

Postural Control 
Step Width (m) 
Step Length Asymmetry (m)  

         

1Buracchio et al. (2010); 2Dodge et al. (2012); 3Alfaro-Acha et al. (2007); 4Atkinson et al. (2007); 5Atkinson et al. (2010); 6Auyeung et al. (2011); 
7Deshpande et al. (2009); 8Inzitari et al. (2007); 9Marquis et al. (2002); 10Taniguchi et al. (2012); 11Verghese et al. (2007); 12Watson et al. (2010). No circle 

outline= gait as predictor, black circle outline= cognition as a predictor. *= seen at baseline but not longitudinal. **= associated with the onset of dementia. 

Ϯ= classified as na-MCI where there was an impairment in any domain other than memory but particular domain not specified. ɫ gait speed enhanced 

prediction model. Green indicates an association was found, red indicates no association found. 
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2.3.3 Associations between gait domains and cognition 

Associations between independent cognitive functions were explored with 

respect to independent gait domains (Figure 2-1). Individual gait characteristics 

were mapped onto their respective domains such that relationships are explored 

with respect to broad gait domains. Where possible, studies which outlined their 

own domains were appropriately matched to the most relevant domain in the 

model used in this review as individual gait characteristic associations were 

mainly not reported. In addition, the strongest statistical analysis has been 

reported for each study (e.g. if the analysis included consideration of covariates). 

Tables 2-2, 2-3, 2-4 and 2-5 summarises the findings into associations for each 

cohort which are colour coded to show whether an association was found (green) 

or not (red). Tables 2-6, 2-7, 2-8 and 2-9 provide further details on each individual 

study. Figures 2-3 and 2-4 complete the schema map of associations for cross-

sectional (Figure 2-3) and longitudinal studies (Figure 2-4).  

2.3.3.1 Pace 

Pace was the most frequently assessed gait variable in all three cohorts (Lord 

and Menz, 2002; Sheridan et al., 2003; Rochester et al., 2004; Ble et al., 2005; 

Hausdorff et al., 2005; Rochester et al., 2005; Yogev et al., 2005; Holtzer et al., 

2006; Fitzpatrick et al., 2007; Hollman et al., 2007; Auyeung et al., 2008; Duff et 

al., 2008; Persad et al., 2008; Rochester et al., 2008; van Iersel et al., 2008; 

Deshpande et al., 2009; Gillain et al., 2009; Allali et al., 2010b; Atkinson et al., 

2010; Lord et al., 2010; Maquet et al., 2010; Watson et al., 2010; Lamoth et al., 

2011; McGough et al., 2011; Amboni et al., 2012; Beauchet et al., 2012; Bramell-

Risberg et al., 2012; Donoghue et al., 2012; Holtzer et al., 2012; Kaye et al., 

2012; Muir et al., 2012; Beauchet et al., 2013; Lord et al., 2013b; Martin et al., 

2013; Smulders et al., 2013; Verlinden et al., 2013; Wild et al., 2013; Lord et al., 

2014; Xu et al., 2014). In addition, a number of studies assessed specific gait 

characteristics that loaded onto the pace domain (Sheridan et al., 2003; 

Rochester et al., 2004; Hausdorff et al., 2005; Yogev et al., 2005; Holtzer et al., 

2006; Hollman et al., 2007; van Iersel et al., 2008; Gillain et al., 2009; Allali et al., 

2010b; Maquet et al., 2010; Lamoth et al., 2011; Amboni et al., 2012; Beauchet et 

al., 2012; Coelho et al., 2012; Holtzer et al., 2012; Ijmker and Lamoth, 2012; Muir 
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et al., 2012; Beauchet et al., 2013; Lord et al., 2013b; Martin et al., 2013; 

Verlinden et al., 2013; Lord et al., 2014) (Figure 2-1). In OA, associations were 

evident between pace and attention as shown by 7 of 7 studies (Holtzer et al., 

2006; Duff et al., 2008; Watson et al., 2010; Holtzer et al., 2012; Kaye et al., 

2012; Lord et al., 2013b; Martin et al., 2013), executive function as shown by 8 of 

12 studies (Hausdorff et al., 2005; Holtzer et al., 2006; Watson et al., 2010; 

Beauchet et al., 2012; Donoghue et al., 2012; Holtzer et al., 2012; Martin et al., 

2013; Verlinden et al., 2013), processing speed as shown by 5 of 6 studies 

(Holtzer et al., 2006; Watson et al., 2010; Donoghue et al., 2012; Kaye et al., 

2012; Martin et al., 2013), language as shown by 3 of 3 studies (Holtzer et al., 

2006; Duff et al., 2008; Holtzer et al., 2012) and visuospatial skills as shown by 2 

of 3 studies (Duff et al., 2008; Kaye et al., 2012). In OA no association was 

evident between pace and global cognition (Hausdorff et al., 2005; Fitzpatrick et 

al., 2007; Hollman et al., 2007; Irani et al., 2007; Atkinson et al., 2010; Bramell-

Risberg et al., 2012; Lord et al., 2013b) and pace and memory (Hausdorff et al., 

2005; van Iersel et al., 2008; Kaye et al., 2012; Lord et al., 2013b; Martin et al., 

2013; Verlinden et al., 2013). In the CI cohort pace was assessed in nine studies 

with AD participants (Sheridan et al., 2003; Persad et al., 2008; Gillain et al., 

2009; Allali et al., 2010a; Maquet et al., 2010; Lamoth et al., 2011; Coelho et al., 

2012; Ijmker and Lamoth, 2012; Muir et al., 2012; Beauchet et al., 2013), two with 

FTD (Allali et al., 2010a; Ijmker and Lamoth, 2012), one with CI (Auyeung et al., 

2008) and three with MCI (Gillain et al., 2009; Muir et al., 2012; Beauchet et al., 

2013). Slower gait speed was associated with AD (Sheridan et al., 2003; Persad 

et al., 2008; Gillain et al., 2009; Maquet et al., 2010; Coelho et al., 2012; Ijmker 

and Lamoth, 2012), FTD (Allali et al., 2010a) and CI (Auyeung et al., 2008; Ijmker 

and Lamoth, 2012) but not MCI (Gillain et al., 2009; Muir et al., 2012; Beauchet et 

al., 2013). In the CI cohort, an association between pace and executive function 

was supported by 2 of 3 studies (Persad et al., 2008; McGough et al., 2011). 

Only one study associated pace with global cognition and attention (Maquet et 

al., 2010). In PD, an association was evident between pace and attention with 2 

of 3 studies obtaining this result (Lord et al., 2010; Lord et al., 2014). Evidence 

was inconclusive for pace and executive function with 5 studies finding an 

association (Rochester et al., 2004; Rochester et al., 2005; Yogev et al., 2005; 
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Smulders et al., 2013; Xu et al., 2014) and 5 not (Rochester et al., 2008; Lord et 

al., 2010; Amboni et al., 2012; Wild et al., 2013; Lord et al., 2014), pace and 

visuospatial with one study finding an association (Amboni et al., 2012) and one 

study not (Lord et al., 2014) and pace and memory with one study finding an 

association (Lord et al., 2014) and one study not (Amboni et al., 2012). There 

was no association between pace and global cognition for PD. 

2.3.3.2 Variability  

Characteristics of gait variability including step velocity variability, step length 

variability and step width variability (Figure 2-1) were comprehensively assessed 

in OA (van Iersel et al., 2008; Holtzer et al., 2012; Kaye et al., 2012; Lord et al., 

2013b; Martin et al., 2013; Verlinden et al., 2013) but were limited in PD (Amboni 

et al., 2012; Lord et al., 2014) and were not studied in CI. In OA no consistent 

associations were evident with any of the cognitive domains (van Iersel et al., 

2008; Holtzer et al., 2012; Kaye et al., 2012; Lord et al., 2013b; Martin et al., 

2013). In PD only two studies explored variability and cognition (Amboni et al., 

2012; Lord et al., 2014). One study assessed global cognition for which an 

association was found (Lord et al., 2014). Evidence was inconclusive for 

visuospatial ability with one study finding an association (Amboni et al., 2012) 

and the other study refuting these findings (Lord et al., 2014).  No associations 

were found with executive function, attention or memory in PD.  

2.3.3.3 Rhythm 

Characteristics of rhythm including step time, step swing time and step stance 

time (Figure 2-1) were assessed throughout the three cohorts (Rochester et al., 

2004; Hausdorff et al., 2005; Gillain et al., 2009; Allali et al., 2010a; Maquet et al., 

2010; Lamoth et al., 2011; Coelho et al., 2012; Holtzer et al., 2012; Ijmker and 

Lamoth, 2012; Muir et al., 2012; Lord et al., 2013b; Martin et al., 2013; Verlinden 

et al., 2013; Wild et al., 2013; Lord et al., 2014). Five studies in OA assessed 

rhythm (Hausdorff et al., 2005; Holtzer et al., 2012; Lord et al., 2013b; Martin et 

al., 2013; Verlinden et al., 2013) providing evidence for an association with 

processing speed (Martin et al., 2013; Verlinden et al., 2013) but no other 

domains. Rhythm was assessed in AD (Gillain et al., 2009; Maquet et al., 2010; 

Lamoth et al., 2011; Coelho et al., 2012; Ijmker and Lamoth, 2012; Muir et al., 
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2012), FTD (Ijmker and Lamoth, 2012) and MCI (Gillain et al., 2009; Maquet et 

al., 2010; Muir et al., 2012) with only inconclusive evidence associating rhythm 

deficit in FTD (Ijmker and Lamoth, 2012) and MCI (Gillain et al., 2009; Maquet et 

al., 2010). In the CI group, only one study assessed global cognition for which an 

association was found (Maquet et al., 2010). There was no evidence for an 

association between rhythm and attention (Maquet et al., 2010). In PD, rhythm 

was measured by four studies (Rochester et al., 2004; Amboni et al., 2012; Wild 

et al., 2013; Lord et al., 2014) with no evidence for associations with cognition. 

One study which sub-grouped motor phenotype (Lord et al., 2014) associated 

rhythm and executive function in the postural instability/gait difficulty (PIGD) 

phenotype only. 

2.3.3.4 Asymmetry  

Asymmetry was the least frequently tested gait variable with characteristics of 

step time asymmetry, step swing asymmetry and step stance asymmetry (Lord et 

al., 2013b; Lord et al., 2014) assessed in OA and PD only (Figure 2-1). There 

were no associations with cognition. 

2.3.3.5 Postural Control 

Postural control characteristics of step width and step length asymmetry (Figure 

2-1) were assessed by a total of seven studies (van Iersel et al., 2008; Amboni et 

al., 2012; Lord et al., 2013b; Martin et al., 2013; Verlinden et al., 2013; Lord et al., 

2014) throughout the cohorts. In OA one study assessed postural control and 

visuospatial function, and reported a significant association (Martin et al., 2013). 

Evidence was inconclusive in OA for an association with executive function, 

attention and processing speed with 2 of 4 studies (Lord et al., 2013b; Martin et 

al., 2013), 1 of 2 studies (Martin et al., 2013) and 1 of 2 (Martin et al., 2013) 

studies observing associations respectively. No association was evident in OA for 

postural control for global cognition (Lord et al., 2013b) and memory (van Iersel 

et al., 2008; Lord et al., 2013b; Martin et al., 2013; Verlinden et al., 2013). There 

was no evidence for associations in the CI cohort. Two studies observed postural 

control in PD (Amboni et al., 2012; Lord et al., 2014) with inconclusive evidence 

for associations with memory (Lord et al., 2014) and visuospatial (Amboni et al., 

2012). In PD there were no associations with global cognition (Amboni et al., 
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2012; Lord et al., 2014), executive function (Amboni et al., 2012; Lord et al., 

2014) or attention (Lord et al., 2014).  
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Table 2-6: Main characteristics of the studies assessing cross-sectional gait and cognitive domains in older adults. 

Study Participant Characteristics Gait Variables Measured 
Gait Analysis 

Tool 
Cognitive Domains Associated Main Findings 

1. Beauchet et al. 
(2012) 

Older Adults (n=78) Age; 69.9±0.9 Stride Time Variability (%CV) 
SMTEC Gait 

Walkway (10m + 2m 
pre and post) 

Executive Function (Digit Span Test, 
TMT A & B, Stroop Colour Word Test) 

↑Stride time variability correlated 
with ↓ executive function. 

2. Ble et al. (2005) 
Older Adults (n=926) Age; 74.6±6.7, 
44% M, MMSE 25.5±2.8, Education 

5.6±3.3 
Gait Velocity (m/sec) Photocells (4m) Executive Function (TMT A & B) 

No correlation found after 
adjusting for variables. 

3.Bramell-Risberg et 
al. (2012) 

Older Adults (n=2115) split into 3 
groups depending on word recall 

score: Cases (0/3) ; Age 75.8±10.2, 
Intermediate (1/3) Age 71.8±9.5, 

Controls (2-3/3) Age 69.0±9.1 

Gait Velocity (m/sec) 
 
 
 
 

TUG (3m, turn, 3m), 
Time to Walk Test 
(15m, turn, 15m) 

Global Cognition (MMSE- 3 word 
delayed recall subsection) 

No correlation found at usual 
pace walking. 

 
 
 

4.Donoghue et al. 
(2012) 

Older Adults (n=4998) Age: 62, 
54%F, MMSE 29 

Gait Velocity (s) TUG (3m, turn, 3m) 

Global Cognition (MMSE, MOCA), 
Executive Function (CTT, Clock drawing, 

Cube drawing, SART, Word fluency, 
Letter fluency), Processing Speed (CTT, 

CRT, SART) 

↓TUG correlated with ↓ global 
cognition, EF, memory and 

processing speed. 

5.Duff et al. (2008) 
Older Adults (n=675) Age; 73.2±5.8, 

288M & 387F 

Gait Velocity (s, split into 3 
groups: <14 secs, 14-17s, 

>17s) 

Time to Walk Test 
(25ft, turn, 25ft) 

Attention, Language, Visuospatial and 
Memory (Repeatable Battery for the 
Assessment of Neuropsychological 

Status Domains) 

↓Velocity was associated with ↓ 
global RBANS score as well as 

each RBANS domain. 

6.Fitzpatrick et al. 
(2007) 

Older Adults (n=3070) Age; 
78.6±3.3, 53.9% M, 

Gait Velocity (m/s) 
Time to Walk Test 

(15ft) 
Global Cognition (3MSE) 

No correlation was found 
between gait velocity and global 

cognition. 

7.Hausdorff et al. 
(2005) 

Older Adults (n=43) Age; 71.9±6.4, 
22W & 21M, MMSE 29.0±1.1, 

Education 13.7±2.1 

Gait Velocity (m/s), Stride 
Time (s), Stride time 

Variability (%CV) 

Force-sensitive 
Sensors, Time to 

Walk (10m + 7.5m 
pre/post) 

Global Cognition (MMSE), Executive 
Function (Stroop Test), Verbal Memory 

(Verbal Memory Test) 

↑ Stride time variability but not 
stride time correlated with ↓ 

executive function after adjusting 
for covariates. 

8.Hollman et al. 
(2007) 

Older Adults (n=20), Age 81±5, 7M 
& 13W 

Middle Aged adults (n=20) age 
48±5, 9M & 11W 

Younger Adults (n=20) age 25±3, 
9M & 11W 

Gait Velocity (cm/s), Stride 
Time Variability (%CV) 

GaitRite 80Hz (8.3m 
+ 1m pre/post 

walkway) 

Global cognition (Short Test of Mental 
Status) 

No correlation found under ST 
conditions 

9.Holtzer et al. 
(2006) 

Older Adults (n=186) Age; 
78.00±4.50, 43.4%M, Education 

14.30±3.30 

Gait Velocity (cm/s), Step 
Length (cm), Stride Length 

(cm), Stride Length Variability 
(%CV), Double Support time 

(s) 

GaitRite (12ft), 
including 3ft pre/post 

walkway) 

Factor analysis domains: Verbal IQ 
(Information, vocabulary, digit span, 

Boston naming test, FAS). 
Attention/Executive speed (Block design, 

Digit Symbol, TMT A & B). Memory  
(Category Fluency, FCSRT) 

Only correlated gait velocity. All 
cognitive domains were 

associated. 

10.Holtzer et al. 
(2012) 

Older Adults (N=671) Age; 79±5.2, 
60%F, Education 13.8±3.5 

Gait Velocity (cm/s), Stride 
Length (cm), Stride length 

GaitRite (12ft 
including 3ft pre/post 

Executive Attention, Memory, Verbal IQ 
(Battery Included: Vocabulary, 

All domains associated with 
pace. Memory and executive 
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Variability (%CV), Cadence 
(Steps/min) 

walkway) Information, Digit Span, Digit Symbol, 
Block Design, WAIS, FCSRT, total free 

recall, Boston Naming Test, letter 
fluency, category fluency, TMT A and B) 

attention correlated with 
cadence. 

Executive attention was 
correlated with stride length 

variability. 

11.Kaye et al. (2012) 
Older Adults (n=76) Age; 85.9±4.9, 
86%F, MMSE 28.3±1.7, Education 

15.5±2.5 

Gait Velocity (cm/s), Gait 
Velocity (%CV), Mean 

Number walks/day, Number 
walks/ day (%CV) 

Passive Infra-red 
motion sensor fixed 
in-home (Avg 500 
walks per month) 

Global Cognition (MMSE), Executive 
Function (TMT-B, Category Fluency), 

Working Memory (Letter-number 
sequencing), Attention/Processing Speed 
(Digit Span Forward, Digit Symbol, TMT-
A), Memory (Logical Memory II, Visual 

Reproduction II, Word-List Recall), 
Visuospatial (Picture Completion, Block 

Design) 

↑Attention, processing speed and 
visuospatial scores associated 
with mean ↑ walking velocity. 

12.Lord and Menz 
(2002) 

Older Adults (n=515) Age; 79.5±6.4, 
76M & 439F 

Gait Distance (m) 6 Minute Walk Test Global Cognition (MMSE) 
No correlation was found 

between gait velocity and global 
cognition. 

13.Lord et al. 
(2013b) 

Older Adults (n=189) Age; 69.5±7.6, 
79M & 110F, MMSE 29.3±1.0 

16 Gait Variables into 5 
domains: Pace (step velocity 

m/s), mean step length m, 
swing time variability ms), 

Rhythm (step time ms, swing 
time ms, stance time ms), 
Variability (step velocity 

variability m.s-1, step length 
variability m, step time 

variability ms, stance time 
variability ms), Asymmetry 
(swing time asymmetry ms, 
step time asymmetry ms, 

stance time asymmetry ms), 
Postural Control (step length 
asymmetry m, step width m, 

step width variability m) 

GaitRite (7m), 2min 
walk around 25m 

circuit 

Global Cognition (MMSE), Power of 
Attention (CDR; SRT, CRT, DV), Memory 

(PRM, SRM), Executive Function (One 
Touch Stocking of Cambridge) 

↑Executive function correlated 
↑postural control. ↑Attention 

correlated with ↑pace. 

14.Martin et al. 
(2013) 

Older Adults (n=422) Age; 72.0±7.0, 
238M & 184F, GDS 2.05±2.3 

Gait Velocity (cm/s), Step 
Time (ms CV%), Step Length 

(cm, CV%), Support Base 
(cm, CV%), Double Support 

Phase (ms, CV%) 

GaitRite (4.6m, + 2m 
pre/post walkway) 

Executive/Attention (Controlled word 
association test, category fluency, stoop 

test, digit span), Processing Speed 
(Symbol Search, Digit Symbol Coding), 

Visuospatial Ability (Rey Complex Figure 
Copy Task), Memory (Hopkins Verbal 

Learning Test) 

Executive /Attention correlated 
with velocity, step length, step 
time variability, double support 

time, double support time 
variability. 

Processing speed correlated with 
velocity, step time, step length, 

DSP and DSP variability. 
Visuospatial correlated with DSP 

variability. 

15.van Iersel et al. 
(2008) 

Older Adults (n=100) Age; 80.6±4.0, 
64M & 36F 

Gait Velocity (m/s) Stride 
Length Variability (%CV), 

Stride Time Variability 
(%CV), Mediolateral body 

GaitRite (5.6m + 2m 
pre/post walkway) 

Executive Function (TMT A & B, Stroop 
Colour-Word Test), Memory (CANTAB; 

PAL, PRM) 

No correlation found under single 
task conditions 
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sway (degrees) 

16.Verlinden et al. 
(2013) 

Older Adults (n=1232) Age; 66.3 
±11.8, 558M & 674F, MMSE 28.0 ± 

1.8 

Factors; Rhythm (single 
support time [s], swing time 
[s], step time [s], stride time 

[s], cadence [steps/min], 
stance time [s]) Variability 

(stride length SD [cm], step 
length SD [cm], stride 

velocity SD [cm/s], stride time 
SD [s], step time SD [s], 

stance time SD [s], swing 
time SD [s], single support 
time SD [s], double support 
time SD [s], Phases (single 

support [%GC], swing 
[%GC], stance [%GC], 
double support [%GC], 

double support time [%GC], 
Pace (stride length [cm], step 
length [cm], velocity [cm/s]), 

Tandem (Sum of feet surface 
[fraction], sum of step 

distance [cm], double step 
[n]), Turning (turning step 
count [n], turning time [s]), 

Base of support (stride width 
SD [cm], stride width [cm]). 

GaitRite (5.79m) 

Memory (immediate and delayed recall of 
15 word verbal learning test), Executive 

Function (stroop interference, word 
fluency, LDST), Information Processing 

Speed (stroop reading, stroop colour 
naming & LDST), Fine Motor Speed 

(Purdue Pegboard Test), Global 
Cognition (average of all above test 

scores) 

After adjusting for covariates 
(including independence of 

cognitive domains); information 
processing speed correlated with 

rhythm, executive function 
associated with pace. 

Abbreviations as follows; 3MSE, modified mini mental state examination; CDR, cognitive drug research battery; CRT, choice reaction time; 

CTT, colour trails test; DV, digit vigilance; FCSRT, free and cued selective reminding test; LDST, letter digit substitution test;  MMSE, mini 

mental examination; MoCA, Montreal cognitive assessment; PAL, paired associate learning; PRM, pattern recognition memory; SART, 

sustained attention response task; SRM, spatial recognition memory; SRT, simple reaction time; TMT, trail making test; TUG, timed up and 

go; WAIS, Wechsler adult intelligence scale. 
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Table 2-7: Main characteristics of the studies assessing cross-sectional gait and cognitive domains in cognitive impairment and 
dementia.    

Study Participant Characteristics Gait Variables 
Measured (Units) 

Gait Analysis Tool 
(Distance) 

Cognitive Domains Tested 
(Test Used) 

Main Study Findings 

1. Allali et al. 
(2010a) 

HC (n=22) Age 71.0±0.5, 8M & 14F 
 AD (n=19) Age 79.3±8.4 6 6M & 

13F, MMSE 19± 7 
FTD (n=19) Age 66.8±9.7 
10M & 9F, MMSE 26 ± 6 

Stride Time (Mean & 
CV) 

SMTEC Footswitch 
System (10m) 

Global cognition (MMSE, Mattis 
Dementia Rating Scale), Frontal 

Cognition (FCRT) 

Stride time variability was ↑ in FTD 
after adjusting for variables. 

2. Auyeung et 
al. (2008) 

Cognitively Intact (n=NR) 
M=72.18±0.11 W=71.87±0.13 

Cognitively Impaired (n=NR) M= 
76.43±0.59, W=74.64±0.26 

Gait Velocity (m/s) Timed to Walk Test 
(6m) 

Global cognition (MMSE), Dementia 
Severity (Community Screening 

Instrument for Dementia) 

Gait velocity correlated with CI in men 
and women. 

3. Beauchet et 
al. (2013) 

HC (n=44) Age 74.5±6.5 14M & 28F, 
MMSE 29.0±1.1 

MCI (n=39) Age 73.6±6.1 24M & 15F, 
MMSE 27.8±1.4 

 AD with mild dementia (n=21) Age 
79.2±5.6 12M & 21F, MMSE 

25.0±2.3 

Gait Velocity (cm/s), 
Stride time Variability 

(CV%) 

GaitRite 60Hz (9.72m, 
+ 2m pre/post 

walkway) 

Global cognition (MMSE), Frontal 
lobe assessment (FAB), AD Severity 

(ADAS-Cog) 

Under usual pace walking there were 
no differences between MCI or AD 

after adjusting for variables.   

4. Coelho et al. 
(2012) 

Mild AD (n=12) Age 75.7±6.8, MMSE 
22.0±2.2, Education 5.5±3.0  

Moderate AD (n=11) Age 80.1±7.5, 
MMSE 16.2±2.2, Education 3.5±1.1 

Stride Length (m), 
Stride Speed (m/sec), 
Cadence (Strides/sec) 

GaitRite 60Hz (8m) Executive Function (FAB & Clock 
Drawing Test), Attention (Symbol 

Search) 

Moderate AD had ↓ stride length and 
↓ stride speed compared to mild AD.  
Did not assess EF and attention in 

association with ST conditions. 

5. Gillain et al. 
(2009) 

HC (n=14) Age 73.53, MMSE 28.21± 
1.58, Education 13.71±3.73 

 MCI (n=14) Age 72.85, MMSE 
26.71±1.68, Education 13.64±3.30 

AD (n=6) Age 73.66, MMSE 
22.83±2.14, Education 9.33±3.78 

Gait Velocity (m/s), 
Stride Frequency (Hz), 

Stride Length (m), 
Stride regularity, Stride 

symmetry 

Locometrix 3 Axis 
Accelerometer (30m) 

Global cognition (MMSE & Mattis), 
Episodic Memory (Graber & Buschke- 

version of), 
Visuoconstructive/Visuospatial ability 

(Rey’s Complex Figure Test), 
Attention (TAP) 

Velocity and stride length were↓ in 
AD compared to HC. 

 Those with MCI had ↓ stride 
frequency compared to HC. 

Associations between domains under 
ST conditions were unclear. 

6. Ijmker and 
Lamoth 
(2012) 

HC Elderly (n=14) Age 76.9±4.1, 
12M & 2F, MMSE 28.5±1.16 

HC Younger (n=12) Age 64.3±2.8, 
9M & 3F, MMSE 29.1±0.93 

Dem (AD and FTD, n=15) Age 
81.7±6.3, 13M and 2F, MMSE 

19.6±3.58  

Gait velocity (m/s), 
mean stride time (m), 
stride time variability 

(%CV) 

Dynaport®Ambulant 
Accelerometer (3 mins 

on 10m course) 

Global cognition (MMSE), Processing 
speed (Category Fluency), 

Psychomotor Speed (Stroop), 
Executive Function (Stroop), 

Attention (Digit Span 
Forward/Backward & TMT), Working 

Memory (Digit Span) 

Those with Dem had ↓ gait velocity; ↑ 
stride time and ↑ stride time variability 

compared to both HC groups. 
Cognitive domains associated with 

gait as whole cohort only so therefore 
not reported. 

7. Lamoth et al. 
(2011) 

HC (n=13) Age 79.38±5.55, 
10M&16F, MMSE 28.23±1.09 

AD (n=13) Age 82.62±4.29, 6M&7F, 
MMSE 18.00±3.54 

Gait Velocity (m/sec), 
Stride Frequency 

(strides/sec), Stride 
Time (s), Stride Time 

Variability (%CV), 
Phase Variability Index 

(%) 

Timed to walk test, 
Dynaport® Tri-Axial 

Ambulant 
Accelerometer (160m) 

Global cognition (MMSE, 7min 
Screening) 

No correlations found under ST 
conditions. 

8. Maquet et al. 
(2010) 

HC (n=14) Age 74±5, 7M&7F 
 MCI (n=14) Age 73±4, 7M&7F  

Mild AD (n=6) Age 74±4, 3M&3F 

Gait Velocity(ms-1), 
Stride Frequency (Hz), 
Stride length (m), Step 

Locometrix ™ 
Acceleration Sensor  

(90m) 

Global Cognition (MMSE & Mattis), 
Episodic Memory (Grober & 

Buschke), 

↓gait velocity and ↓stride length in AD 
compared to HC and MCI. MCI s.d to 

controls for stride 
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Asymmetry (Sym) Visuoconstruction/Visuospatial Ability 
(Rey’s Complex Figure Test), 

Attention (TAP) 

In MCI group, correlation between 
↓velocity and ↓stride length and 

↓cognition and ↓attention and stride 
frequency and global cognition. 

9. McGough et 
al. (2011) 

CI (n=201) Age; 84.6±5.7, 80.1% 
female, high school educated 97.5% 

Gait Velocity (m/s) Timed to Walk Test 
(2.4m) 

Executive Function (TMT-B & Stroop 
Word-Colour) 

↓ gait velocity associated with lower 
executive function score 

10. Muir et al. 
(2012) 

HC (n=22) 
Age 71.0±5.0, 3M &19F, MMSE 

29.5±0.6, MOCA 28.2±1.5 
MCI (n=29) Age 73.6±6.2, 12M&17F, 

MMSE 27.5±1.9, MOCA 23.4±2.8 
AD (n=23) Age 77.5±5.0, 9M&14F, 
MMSE 24.2±2.3, MOCA 17.2±3.4 

Gait Velocity (cm/s), 
Stride Time (ms) Stride 
Time Variability (CV%) 

GaitRite (6m + 1m 
pre/post walkway) 

Global Cognition (MMSE, MOCA, 
CDR) 

No difference in gait variables under 
ST conditions 

11. Persad et al. 
(2008) 

HC (N=12) Age 70.0±5.8, 7M&5W, 
MMSE 27.8±2.2, Education 17.0±2.6 

MCI-EF (n=14) Age 72.5±4.6, 
10M&4W, MMSE 26.6±2.1, 

Education 16.57±3.2 
MCI+EF (n=10) Age 75.1±6.9, 

6M&4W, MMSE 25.8±2.0, Education 
15.8±3.2 

AD (n=12) Age 77.5±5.3, 9M&3W, 
MMSE 22.6±2.3, Education 14.8±2.9 

Gait Velocity (s) Timed to Walk Test 
(10m) 

Executive Function (Map Planning & 
Paper Folding), Visual Short Term 

Attention (Corsi Block Task & Benton 
Form Visual Discrimination), Visuo-

Motor (Block-Design), Memory 
(Delayed Recall) 

Those with AD and MCI+EF had a 
↓gait velocity compared to HC and 
MCI-EF. Walking speed correlated 

with EF.  

12. Sheridan et 
al. (2003) 

Patients diagnosed with probable 
AD (n=28) Age; 77.9±6.9, MMSE 

13.8±7.9 

Velocity (msec), 
Stride Time Variability 

(%CV)  

Footswitch System 
(100Hz) 
(~500ft) 

Global Cognition (MMSE), Executive 
Function (Clox I & II, Verbal Fluency) 

Dementia Severity (CDR) 

Those with AD had ↓ gait velocity and 
↑ increased stride time variability. No 

correlation with executive function 
under ST conditions 

Abbreviations as follows; AD, Alzheimer’s disease; ADAS-cog, Alzheimer’s disease assessment scale-cognition; CDR, cognitive drug 

research battery; FAB, frontal assessment battery; FCRT, free and cued recall test; FTD, fronto-temporal dementia; HC, healthy control; 

MCI, mild cognitive impairment; Dem, dementia; MCI-/+ EF, MCI with or without impairment in executive function; MMSE, mini mental 

examination; MoCA, Montreal cognitive assessment; TAP, test of attentional performance; TMT, trail making test. 
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Table 2-8; Main characteristics of the studies assessing cross-sectional gait and cognitive domains in Parkinson’s disease. 
Study Participant Characteristics Gait Variables Measured 

(Units) 
Gait Analysis 
Tool/ Distance 

Walked 

Cognitive Domains Tested 
(test used) 

Main Findings from Study 

1. Amboni et 
al. (2012) 

HC: (n=20) Age; 63.5±3.14, 10M 
& 10F 

PD-MCI: (n=24) Age; 
64.08±6.44, 20M & 4F, Disease 

duration; 5.42±2.80 
FOG-Q; 5.83±5.71 

PD+MCI: (n=19) Age; 
65.1±6.85, 13M & 6F, Disease 

duration; 5.47±2.71 
FOG-Q; 7.26±6.17 
Med: On and Off 

Factors: 
Pace (stance phase (s), swing 

phase (s), cadence 
(steps/min), velocity (m/s) 
Stability (step length (m), 

single/double support time 
ratio, step length variability 

(COV), swing time variability 
(COV). 

Optokinetic 
system (6 camera, 

240Hz) 
8M 

 

Episodic memory (Rey 15 words), 
executive function (Phonemic 
Fluency, FAB, Stroop II & III), 

visuospatial (spatial span, 
constructive apraxia, Raven’s PM 

47, Ten point clock test) 

The Pace ‘domain’ was not correlated with a 
cognitive domain. ↓Stability of gait strongly 

correlated with ↓visuospatial ability. 

2. Lord et al. 
(2010) 

PD: n= 29 Age; 71.3±7.4, 19M & 
10F, MMSE 26.9±2.8, Disease 

duration; 5.8±5.5 
Med: Off 

Gait Velocity (m/s) Vitaport Activity 
Monitor  (6.5m 

±1.5m) 

Executive Function (Brixton), 
Attention (Telephone Search & 

Lottery Task) 

Those with impaired sustained attention had ↓ 
gait velocity. 

3. Lord et al. 
(2014) 

HC: n=184, Age; 69.4±7.7, 78M 
& 106F, NART 116.9±7.6 

PD: n=121, Age; 67.0±10.4, 
NART 114.9±11.0, UPDRS III 

25.5±10.4, H & Y; I (28), II (72), 
III (21) 

Med: on 

16 Gait Variables into 5 
domains: Pace (step velocity 

m/s), mean step length m, 
swing time variability ms), 

Rhythm (step time ms, swing 
time ms, stance time ms), 
Variability (step velocity 

variability m.s-1, step length 
variability m, step time 

variability ms, stance time 
variability ms), Asymmetry 
(swing time asymmetry ms, 
step time asymmetry ms, 

stance time asymmetry ms), 
Postural Control (step length 
asymmetry m, step width m, 

step width variability m) 

GaitRite Platinum 
Model (7m) 

Global cognition (MoCA), Working 
Memory (Forward Digit Span), 

Power of Attention (Mean single 
reaction time, mean choice reaction 

time, mean digit vigilance), 
Fluctuating Attention (Single reaction 

time CV, Choice reaction time CV, 
Digit Vigilance CV), Executive 
Function (one touch stocking, 
Semantic Fluency, Hayling & 

Brixton), Memory (Pattern 
recognition memory, spatial 
recognition memory, paired 

associate learning), Visuospatial 
(Pentagons, MoCA Item 1) 

PD & HC: those with ↑pace had ↑attention test 
scores. PD: ↑ postural control and better 

working memory, ↑gait variability associated 
with ↓global cognition. HC: those with 

↑postural control had ↑ attention scores. 

4. Rochester 
et al. (2004) 

HC: (n=10) Age; 63.5±7.03, 6M 
& 4F, MMSE 28.90 

PD: (n=20) Age; 64.6±7.96, 12M 
& 8F, MMSE 27.15±1.98 H&Y 
2.7±0.69. Disease duration; 

10.0±1.6 
Med: On 

Gait velocity (m/s), step 
frequency (steps/s), step 

length (m)  

Vitaport Activity 
Monitor 

(6.60±1.51m) 

Global cognition (MMSE), Executive 
Function (Hayling & Brixton) 

↓gait velocity was correlated with ↓ executive 
function scores. 

5. Rochester 
et al. (2005) 

HC: (n=10) Age; 63.5±7.03, 6M 
& 4F, MMSE 28.90 

PD: PD: (n=20) Age; 64.6±7.96, 
12M & 8F, MMSE 27.15±1.98 

Gait Velocity (m/s) Vitaport Activity 
Monitor 

(6.60±1.51m) 

Executive Function (Hayling & 
Brixton) 

↓gait velocity was correlated with ↓ executive 
function scores. 
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H&Y 2.7±0.69. Disease duration; 
10.0±1.6 
Med: On 

6. Rochester 
et al. (2008) 

PD: (n=153). Age; 66.61±7.57, 
78M & 52F, MMSE 28.30±1.77, 

UPDRS III; 33.05±11.28, 
Disease duration 8.26±4.90 

Med: On 

Gait Velocity (m/s) Vitaport Activity 
Monitor (6m, turn, 

6m) 

Executive Function (Brixton) No correlation was found under single task 
conditions.  

7. Smulders 
et al. (2013) 

PD: (n=232). Age; 64.4±7.9, 
153M & 79F, MMSE 28.1±1.6, 

UPDRS III 33.4±9.1 
Med: NR 

Gait Velocity (s) TUG (3m, turn, 
3m) 

Executive Function (Spatial working 
memory, Set Shift Test, Auditory 

Stroop Paradigm, Phonological and 
Semantic Cue)  

↓Executive function correlated with ↓TUG time. 

8. Wild et al. 
(2013) 

HC: (n=18)Age; 69.44±1.41, 8M 
& 10F 

PD: (n=18) Age; 69.33±2.65, 8M 
& 10F 

Med: On 

Gait velocity (Km/h), Mean 
swing  time (s), Relative 

stance time (s) 

Fixed Infra-Red 
Camera (8m) 

Executive function/attention 
(Winconsin Card Sorting Test, 

Stroop Colour and Word) 

No correlation was found under single task 
conditions. 

9. Xu et al. 
(2014) 

HC: (n=20) Age; 68.9 ± 4.8, 65% 
M, MMSE 28.7 ± 1.1, Education 

12.7 ± 3.4 
PD: (n=20) Age 65.9 ± 9.4, 65% 
M, MMSE 27.6 ± 1.6, Education 
12.4 ± 2.5, Disease duration 6.0 
± 3.8, UPDRS III 26.6 ± 10.8, H 

& Y 1.4 ± 0.9 
Med: On 

Gait Velocity (s) TUG (3m, turn, 
3m) 

Global cognition (MMSE, 
Addenbrooke’s), Executive function 

(TMT-A, TMT-B) 

↓ Executive function associated with ↓ pace in 
PD but not control. 

10. Yogev et al. 
(2005) 

HC: (n=28) Age; 69.8±6.3, 
MMSE 29.1±1.1, Education 

13.7±2.1 
PD: (n=30) Age; 70.9±.9, MMSE 
28.1±1.6, Education 13.9±3.8, 

UPDRS III 17.5±8.3, H &Y 
2.3±0.4 

Med: NR 

Gait velocity (m/s), stride time 
(s), swing time (s), stride time 

variability (%), swing time 
variability (%) 

Timed to walk test 
(2 min), In-Shoe 
Pressure sensor 

(100Hz) 

Executive function (Stroop & Go-
Nogo), Memory (Trail Recall) 

Only associated stride and swing variability 
with EF. Correlation was found between 

↓executive function and ↑stride and swing time 
variability.  

Abbreviations as follows; FAB, frontal assessment battery; FOG-Q, freezing of gait questionnaire; H & Y, Hoehn & Yahr disease severity 

classification; HC, healthy controls; MCI; mild cognitive impairment; MCI+/MCI-, with/without mild cognitive impairment; MMSE, mini mental 

examination; MoCA, Montreal cognitive assessment; PD, Parkinson’s disease; UPDRS, unified Parkinson’s disease rating scale. 
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Table 2-9: Main characteristics of the studies assessing longitudinal gait and cognitive domains in older adults. 
Study Participant Characteristics Gait Variables 

Measured (Units) 
Gait Analysis Tool 

(Distance) 
Cognitive Domains 
Tested (Test used) 

Main Study Findings 

1. Buracchio et 
al. (2010) 

HC (n=109) Age 79.0±8.8, 60M & 49F, 
MMSE 28.3±1.5, Years Education 14.5±2.7  
Converters to MCI (n=95) Age 83.5±7.0, 
37M & 58F, MMSE 28.1±1.6, Education 

14.7±2.6 

Gait Velocity (m/s) Timed to Walk Test 
(30ft) 

Global Cognition (MMSE), 
Dementia Rating Scale (CDR) 

Those who converted to MCI had ↓ 
gait velocity up to 12.1 years prior 

to MCI. 

2. Dodge et al. 
(2012) 

HC (n=54) Age 84.9±4.0, 91% female, 
MMSE 29.0±1.3 

 aMCI (n=8) Age 84.5±2.6, 88% female, 
MMSE 28.3±1.2 naMCI (n=31) Age 

83.8±6.0, 84% female, MMSE 28.1±1.6 

Gait velocity (cm/s), Gait 
velocity variability (%CV) 

Passive Infra-red 
motion sensor fixed in-

home 

Global Cognition (MMSE), 
Memory (Logical Memory 

Delayed), Executive Function 
(Category Fluency, TMT Part 

B), Attention (WAIS Digit 
Symbol), Language (Boston 
Naming Test), Visuospatial 

(WAIS Revised Block Design) 

naMCI had ↓ gait velocity 
compared to HC and showed 

decline in gait velocity over time, 
those with naMCI had ↑ gait speed 

variability in the home. 

3. Alfaro-Acha et 
al. (2007) 

Older Adults (n=1218) Age; 71.7±5.7, 
57.5% F, MMSE 26.5±2.9, Education 

5.4±3.9 

Gait Velocity (Split into 
quartiles: 1; ≥9s, 2;6-8s, 3; 

4-5s, 4; <4s) 

Time to Walk Test (8ft) Global Cognition (MMSE) No correlation at baseline. At 7 
year follow up association between 
slow gait velocity and ↓cognition. 

4. Atkinson et al. 
(2007) 

Older Adults (n=2349) Age; 75.6±2.9, 
52.3% F 

Gait Velocity (m/s) Time to Walk Test 
(20m) 

Global Cognition (MMSE, 
3MS), Executive Function 

(Clox 1, EXIT 15) 

Greater gait velocity decline over 3 
years was seen in those with 

lowest cognition and EF scores. 

5. Atkinson et al. 
(2010) 

Older Adults (n=1793) Age; 70.3±3.7, 
3MS Score 95.1±4.4 

Gait Velocity (m/s) Time to Walk Test 
(6m) 

Global Cognition (3MS) Gait speed was not associated with 
3MS score at baseline when 

adjusting for covariates. Baseline 
3MS did not predict decline in gait 

speed (or vice versa) after 
adjusting for covariates. 

6. Auyeung et al. 
(2011) 

Older Adults (n=2737) M=1514 Age 
71.6±4.58, MMSE 27.4±2.25 

F=1223 Age 71.5±4.85 MMSE 25.8±2.80 

Gait Velocity (m/s), Step 
Length (m), Step Number 

Time to Walk Test 
(6m) 

Global Cognition (MMSE) In male subjects, stride length 
correlated with decline MMSE 
score but not gait velocity after 

adjusting for covariates. 

7. Deshpande et 
al. (2009) 

Older Adults (n=660) Age; 74.6±5.3, 
54.2% F, Education 5.8±3.4 

Gait Velocity (m/s) Timed to Walk Test 
(7m) 

Global Cognition (MMSE) Baseline; those with ↓MMSE had 
↓gait speed.  

Longitudinal; Gait velocity at fast 
pace only predicted decline in 

cognition. 

8. Inzitari et al. 
(2007) 

Older Adults (n=3075) Age; 73.6±2.9, 
1491M & 1584F 

Gait Velocity (m/s) Timed to Walk Test 
(6m) 

Global Cognition (3MS), 
Attention and Psychomotor 

Speed (Digit Symbol 
Substitution Test) 

↑global cognition scores related to 
↑ gait speed. Gait speed predicted 

↓attention and ↓ psychomotor 
speed at 5 years. Difference in gait 
speed at baseline related to ↑ risk 

of decline in attention and 
psychomotor speed. 

9. Marquis et al. 
(2002) 

Older Adults (n=108) Age; 83.2±7.9, 40M 
& 68W 

Gait Velocity (s), Step 
Number (excluding turn) 

Timed to Walk Test 
(4.5m, turn, 4.5m) 

Global Cognition (MMSE), 
Dementia Severity (CDR), 

Memory (Wechsler Memory 

Time to walk aided the prediction 
model of onset of persistent 

cognitive impairment.  
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Scale) 

10. Taniguchi et al. 
(2012) 

Older Adults (n=853) Age; 77.5±5.4, 
47.3% M, MMSE 28.1±1.7, Education 

8.3±2.2, GDS 4.0±2.4 

Gait Velocity (m/s), Mean  
Step Length (cm), Step 
Frequency (times/min) 

Timed to Walk Test 
(5m) 

Global Cognition (MMSE) ↓Gait velocity and ↓step length 
associated with decline in general 

cognition. 
Step length found to be a better 

predictor of cognitive decline than 
gait speed. 

11. Verghese et al. 
(2007) 

Older Adults (n=399) 
Non-dementia; Age 78.9±4.7, 56.3%M, 

Education 13.4±3.5. 
Developed Dem; (n=33) Age 82.6±5.7, 

57.6%M, Education 14.0±3.6 

Pace (Gait Velocity (cm/s), 
Stride Length (cm)) 

Rhythm 
 (Cadence (steps/min), 

Double Support (s), Swing 
Time (s), Stance Time (s)) 

Variability (stride length 
variability, swing time 

variability)   

GaitRite(180 inches 
+3ft Pre/Post 

Walkway) 

Global Cognition (Blessed 
Information Memory-

Concentration Test), Memory 
(Free & Cued Selective 

Reminding Test), Executive 
Function (Digit Symbol 

Substitution & Letter Fluency 
Test), Attention (Digit Span) 

Rhythm was associated ↓memory; 
pace was associated with ↓ 

executive function. 
Rhythm and variability associated 

with dementia onset. 
Pace of gait predicted vascular 

dementia. 

12. Watson et al. 
(2010) 

Older Adults (n=909) Age; 75.2±2.8, 
49.4%M, Education below 12y 78.4% 

Gait Velocity (m/s) Time to Walk Test 
(20m) 

Global Cognition (3MS), 
Memory (Buschke Selective 
Reminding Test), Executive 

Function (EXIT 15), 
Psychomotor Speed (Box and 

Digit Copying), Attention 
(Pattern and Letter 
Comparison Test) 

Cross sectional; All cognitive 
domains correlated with gait 

velocity. Longitudinal; ↓ global 
cognition, memory and executive 
function associated with greater 

speed decline per year. 

Abbreviations as follows; 3MS, modified mini mental state examination; a/na MCI, amnestic/ non-amnestic mild cognitive impairment; CDR, 

cognitive drug research battery;  EXIT 15, the executive interview; MCI, mild cognitive impairment; MMSE, mini mental examination; TMT, 

trail making test; WAIS, Wechsler adult intelligence scale.



Chapter 2: Gait and cognition: mapping the global and discrete relationships in ageing and 
neurodegenerative disease 
 

54 
 

2.3.4 Longitudinal studies of the gait-cognition relationship 

Twelve studies investigated longitudinal relationships between gait and cognition 

(Marquis et al., 2002; Alfaro-Acha et al., 2007; Atkinson et al., 2007; Inzitari et al., 

2007; Verghese et al., 2007; Deshpande et al., 2009; Atkinson et al., 2010; 

Buracchio et al., 2010; Watson et al., 2010; Auyeung et al., 2011; Dodge et al., 

2012; Taniguchi et al., 2012). Eleven studies assessed healthy OA at baseline 

(Marquis et al., 2002; Alfaro-Acha et al., 2007; Atkinson et al., 2007; Inzitari et al., 

2007; Verghese et al., 2007; Deshpande et al., 2009; Atkinson et al., 2010; 

Buracchio et al., 2010; Watson et al., 2010; Auyeung et al., 2011; Taniguchi et 

al., 2012). One study observed three cohorts at different stages of MCI (Dodge et 

al., 2012). 9 of the 12 studies assessed gait as a predictor for cognitive decline 

(Marquis et al., 2002; Alfaro-Acha et al., 2007; Inzitari et al., 2007; Verghese et 

al., 2007; Auyeung et al., 2008; Deshpande et al., 2009; Buracchio et al., 2010; 

Dodge et al., 2012; Taniguchi et al., 2012), 2 of 12 assessed cognition as a 

predictor for gait decline (Atkinson et al., 2007; Watson et al., 2010) and 1 of 12 

studied the decline of gait and cognition simultaneously (Atkinson et al., 2010).  

2.3.4.1 Gait as a predictor for cognitive decline 

All nine studies assessing gait as a predictor measured pace. Evidence was 

strong for pace as a predictor for global cognition as shown by 7 of 9 studies 

(Marquis et al., 2002; Alfaro-Acha et al., 2007; Verghese et al., 2007; Buracchio 

et al., 2010; Auyeung et al., 2011; Dodge et al., 2012; Taniguchi et al., 2012) with 

two studies refuting these findings (Deshpande et al., 2009; Atkinson et al., 

2010).Two studies observed cognitive domains (Inzitari et al., 2007; Verghese et 

al., 2007). Pace predicted a decline in executive function (Verghese et al., 2007) 

and processing speed (Inzitari et al., 2007). Evidence was inconclusive for 

decline in attention with one study finding this (Inzitari et al., 2007) and one not 

(Verghese et al., 2007). Pace was not found to be a predictor of memory decline 

(Verghese et al., 2007). One study assessed variability of gait (Verghese et al., 

2007) which predicted dementia onset but not domains of global cognition, 

attention, executive function or memory. Two studies assessed rhythm of gait 

(Verghese et al., 2007; Taniguchi et al., 2012). An association between rhythm 

and decline in memory was identified by one study (Verghese et al., 2007). 
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Evidence was inconclusive for rhythm as a predictor of global cognitive decline 

(Verghese et al., 2007; Taniguchi et al., 2012) with one study identifying rhythm 

as a risk factor for dementia onset (Verghese et al., 2007) . No links were found 

between rhythm and decline in executive function or attention (Verghese et al., 

2007). 

2.3.4.2 Cognition as a predictor for gait decline  

All three studies assessed pace only. Evidence suggested that global cognition 

(Atkinson et al., 2007; Watson et al., 2010), executive function (Atkinson et al., 

2007; Watson et al., 2010) and memory (Watson et al., 2010) predicted a decline 

in pace. There were no evidence for processing speed (Watson et al., 2010) or 

attention (Watson et al., 2010) as predictors of decline in pace. 

 

2.4 Discussion 

To the knowledge of the author this is the first structured review to summarise the 

relationship between single task gait and cognition in older adults with and 

without cognitive impairment, and in PD. Key findings from this structured review 

are that for all groups the pace domain of gait (driven predominantly by gait 

speed) is associated with a broad range of cognitive functions but also selectively 

associated with executive attention. Gait speed is also a strong predictor of 

cognitive decline in OA, however there is also some evidence of reverse 

causality. Other relationships are emerging but restricted by a limited scope of 

gait and cognitive outcomes as well as methodological inconsistencies. Results 

from this study partly confirm our hypotheses. Independent gait characteristics 

relate to discrete cognitive functions and the pattern of association varies as a 

function of pathology and age. This specificity will help inform our understanding 

of co-incident pathology and shared neural networks, and help identify the pattern 

of change for each over time. In all three groups the pace domain of gait was also 

associated almost universally with cognitive measures. Although less discrete, 

this sensitivity provides a basis for understanding the broader relationship 

between gait and cognition, and provides a platform for more specific inquiry.  
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2.4.1 Gait and cognition a global relationship 

This review identified a broad range of cognitive correlates for gait. Of all gait 

characteristics measured, those from the pace domain (particularly gait speed) 

yielded the strongest relationships. Reasons for this are twofold. With one 

exception, gait speed was universally measured in all studies which increased 

the likelihood of chance findings and dominated the results. Secondly, of the 16 

gait characteristics reflected in the gait model, gait speed is the most sensitive 

and least specific metric. It reflects global gait impairment but does not inform 

about the underlying cause of that impairment. Gait speed may be considered 

‘the final common expression’ of gait, and associations with cognition are 

therefore likely to be more evident for this global measure.  

2.4.2 Gait and cognition; a selective relationship 

A number of studies adopted a broader approach to measurement where 

selective associations became evident (Verghese et al., 2007; Verlinden et al., 

2013; Lord et al., 2014). Assessments were particularly limited in pathological 

cohorts and in addition, sample sizes tended to be small, albeit with some 

exceptions (Rochester et al., 2008; McGough et al., 2011; Amboni et al., 2012; 

Smulders et al., 2013; Lord et al., 2014). Despite limitations, subtle emergent 

associations have been mapped that appear specific to pathology which are 

discussed below. These findings contribute to our understanding of underlying 

pathology and the mechanisms that underpin cognitive and gait functions with 

respect to that pathology. What is evident is that common neural substrates for 

gait and cognition emerge which may differ according to age and pathology. This 

knowledge will ultimately lead to refinement of diagnostics and development of 

novel therapeutics. 

Evidence associating pace with attention and executive function (considered here 

as the executive attention domain (Perry and Hodges, 1999; Woodruff-Pak and 

Papka, 1999; Emre et al., 2007; Wild et al., 2013) was demonstrated in all three 

groups. This was most evident in OA as demonstrated by large number of high 

quality studies. In disease cohorts this association was not as strong, due to a 

smaller number of studies which were more varied in quality and therefore must 



Chapter 2: Gait and cognition: mapping the global and discrete relationships in ageing and 
neurodegenerative disease 
 

57 
 

be interpreted with more caution. Lesion (Wilkins et al., 1987) and imaging 

studies (Collette et al., 2006) implicate the prefrontal cortex (PFc) as the site for 

executive attention which initiates purposeful, goal directed behaviours essential 

to daily living (Criado et al., 1997; Perry and Hodges, 1999) . In addition, the PFc 

drives executive attention processes during locomotion to modulate gait (Malouin 

et al., 2003; Koenraadt et al., 2014). In normal ageing, executive attention 

declines (Gunning-Dixon and Raz, 2000; Grieve et al., 2007) with more 

pronounced deficits occurring in neurological disorders including PD (Emre, 

2003) and AD (Perry and Hodges, 1999). Decline in PFc function is associated 

with increased white matter lesions in older adults and pathology (Bartzokis et al., 

2003; Resnick et al., 2003) resulting in deficits in velocity and step length of gait 

(Nadkarni et al., 2009; de Laat et al., 2012). An important caveat to interpretation 

of imaging data is that not all brain structures potentially implicated in gait and 

cognitive processing are imaged, and this may lead to an incomplete view. The 

notion of shared cognitive and gait neural substrates is supported elsewhere. For 

example, in PD, dopaminergic neuronal loss of the SNpc impacts on the PFc via 

a complex network of neuronal pathways and connections (Gotham et al., 1988). 

This loss attenuates cognitive resource in people with PD, which in turn 

compromises the ability to cognitively compensate for gait deficit (Yogev-

Seligmann et al., 2008). Other neurotransmitters are implicated in this 

relationship. For example, acetyl-choline (Ach) mediates attentional processes of 

the PFc (Yarnall et al., 2011) which is associated with a slower gait speed 

(Rochester et al., 2012). Preliminary results report beneficial effects of 

Rivastigmine, an acetylcholinesterase inhibitor, on reducing step time variability 

in people with PD (Henderson et al., 2016), considered a proxy of falls. Thus, 

age-related degeneration in white matter may elicit an associated decline in pace 

and executive attention, predominantly due to cholinergic burden. This burden 

may be exacerbated in disease such as dementia and PD. Development of 

cognitive enhancement therapies is likely to expand as our understanding of the 

effect of cognitive processes on gait becomes more refined.  

Specific to PD pathology but not dementia, postural control and variability were 

both associated with cognition. Postural control is an essential component of gait, 

and similarly to pace, cortical networks are used to modulate postural control 
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(Kelly et al., 2015) via activation of executive-attention networks (Lord et al., 

2013b; Martin et al., 2013).  The ability to regulate postural control is 

compromised by white matter pathology in these and other cortical networks (de 

Laat et al., 2011; Rosano et al., 2012). Executive-attention also mediates visuo-

spatial function which is critical to postural control (Suarez et al., 2011). This 

association of visuospatial function was noted in older adults (Martin et al., 2013), 

although this was reported only in one study. However previous literature has 

identified an association of visual performance and measures of balance in older 

people (Brach et al., 2008). This relationship may be exacerbated, in people with 

PD with freezing of gait (FOG), who perform worse on tests of visuospatial ability 

compared to non-FOG (Cowie et al., 2010) possibly due to decreased grey 

matter in posterior cortical areas (Tessitore et al., 2012). Evidence of association 

for postural control and memory was contradictory for the two studies that 

examined these features (Amboni et al., 2012; Lord et al., 2014). Both studies 

used valid tests as recognised by the PDD movement disorder task force (Dubois 

et al., 2007), Lords’ study showed an association used working memory (forward 

digit span) (Lord et al., 2014) in contrast to Amboni’s study which did not show an 

association used the Rey Auditory Verbal Learning Test (RAVLT) (Amboni et al., 

2012). Important to note is the association in Lord’s study was driven by the 

PIGD phenotype (Lord et al., 2014), which further sensitised results. Associations 

for global cognition and visuospatial ability with variability were also evident for 

people with PD but once again were contradictory. A positive association was 

found with global cognition using the MoCA (Lord et al., 2014) but not the MMSE 

(Amboni et al., 2012) essentially because the MoCA is a more sensitive test of 

cognition in those with PD (Zadikoff et al., 2008). Similarly for visuospatial 

outcomes, an association was found when a rigorous visuospatial assessment 

battery was used, thus optimising neural correlates (Lord et al., 2014).  However, 

once again these results were in the FOG cohort. The same results were not 

replicated in OA suggesting the relationship is mediated by visuospatial 

difficulties in PD and not normal ageing. However, the data emerges from a small 

number of studies and, although promising, will need to be explored in future 

research. 
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For participants with cognitive impairment and dementia an association emerged 

between cognitive function and the rhythm domain of gait, possibly mediated by 

the hippocampus which is affected by cognitive decline and FTD (Fellgiebel et al., 

2004; Franceschi et al., 2005). The hippocampus plays an important role in motor 

and gait tasks (Bland and Oddie, 2001; Paylor et al., 2001; Malouin et al., 2003), 

and is key to effective spatial navigation (Epstein, 2008). However, this data 

should be interpreted cautiously because AD and FTD groups were combined, 

and this may have confounded results. More surprisingly, rhythm was also 

associated with executive function in PIGD phenotype of PD (Lord et al., 2014). 

People with PD who present with the PIGD phenotype deteriorate at a faster rate 

in both gait and cognitive function and are at a higher risk of developing dementia 

than those with the tremor-dominant phenotype (Burn et al., 2006) making the 

association more sensitive. Unexpectedly, rhythm was also associated with 

processing speed in older adults (Martin et al., 2013; Verlinden et al., 2013). The 

authors suggested this may be linked to the velocity aspect of rhythm and to the 

timing nature of cognitive assessments (Martin et al., 2013; Verlinden et al., 

2013). In addition, cognitive tests of processing speed may overlap with 

executive-attentional elements (Donoghue et al., 2012) which may well have 

contributed to this association.  Although rhythm is considered a ‘rudimentary’ 

characteristic of gait (Lord et al., 2013b) controlled by subcortical brain regions 

including the brain stem and spinal cord (Taniguchi et al., 2012), in response to 

pathology and ageing it may become more cortically mediated.  

There were no reported associations between the asymmetry domain of gait and 

cognition, although only four studies assessed asymmetry across all cohorts 

(Gillain et al., 2009; Maquet et al., 2010; Lord et al., 2013b; Lord et al., 2014). 

Asymmetry comprises both spatial and temporal features of gait. Spatial 

asymmetry is more likely to be associated with cognitive function given its 

relationship with step length which, as evidenced by this review, is frontally 

mediated (Martin et al., 2013). In contrast, temporal features of asymmetry are 

driven subcortically (Barrière et al., 2008) and cognitive correlates are therefore 

less likely. However, the single study in early PD that examined these features 

separately did not find a relationship between spatial asymmetry and cognition. 

Although spatial asymmetry was significantly worse in PD compared to controls, 
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the threshold for cognitive deficit to provide a signal with asymmetry was not 

reached. 

2.4.3 Gait as a predictor of cognitive decline  

This review provides robust evidence of the capacity of gait to predict cognitive 

decline, with a number of large, community based studies in older adults 

supporting this view (Table 2-5). Risk of developing vascular dementia or decline 

in executive attention is predicted by impairment in the pace domain of gait 

(Gootjes et al., 2004; Verghese et al., 2007) signalling that gait is sensitive to 

early changes in WMH. This finding is also evident in older adults (Nadkarni et 

al., 2009) suggesting sensitivity of gait to more subtle cognitive burden. Studies 

that take a nuanced approach have found specific associations (Verghese et al., 

2007). For example, Verghese and colleagues reported that change over time in 

gait rhythm was a predictor of memory decline and risk of future dementia in 

healthy older adults (Verghese et al., 2007) which may reflect early pathology in 

the hippocampus (Braak and Braak, 1997).   

The question of reverse causality however cannot be ignored. Several studies 

(although smaller in number) report that cognition was predictive of decline in the 

pace domain of gait (Atkinson et al., 2007; Watson et al., 2010). These findings 

further indicate the intricate relationship between gait and cognition and argue for 

a comprehensive and sensitive battery of testing for both in order to tease out 

their relative burden and temporal course. Figure 2-5 explores this complexity in 

more detail. It is plausible, for example, for cognitive and gait deficit to coincide in 

response to ageing and the time course of decline to occur in parallel or for one 

to precede the other (Tabbarah et al., 2002; Gale et al., 2014)(Figure 2-5, 

concept 1 & 2). By contrast, this is less likely to be the case for pathology where 

different pathophysiological substrates define the initial magnitude and direction 

of change, and their putative course (Figure 2-5, concept 4). In the absence of 

data we are left to speculate and future research will examine these questions in 

greater depth and discern these complex processes. No longitudinal studies on 

the relationship between gait and cognition have been conducted in PD, and the 

field is open at this stage to interpretation. Based on current evidence (Lord et al., 

2014), we speculate that for people with PD, decline in cognition and 
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development of dementia will be predicted by frontal and pre-frontal mechanisms 

that manifest as deficits in the pace domain of gait (Figure 2-5, concept 3 & 4).   

The time course of the relationships between gait and cognition is likely to be 

variable and disease-specific, although there is limited evidence to support this. 

Most cross sectional studies in established AD report an association with pace 

but not rhythm (Sheridan et al., 2003; Gillain et al., 2009; Allali et al., 2010a; 

Maquet et al., 2010; Coelho et al., 2012; Ijmker and Lamoth, 2012; Muir et al., 

2012) suggesting as disease progresses cortical influences on gait may become 

more dominant (Braak and Braak, 1995). One longitudinal study supported an 

association between early change in gait variability and global cognitive decline, 

similar to cross sectional findings (Verlinden et al., 2013; Lord et al., 2014). 

However, further work is required to examine these features. 
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Figure 2-3 Map of cross sectional associations between gait and cognitive domains. 
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Figure 2-4 Map of longitudinal associations between gait and cognitive domains. 
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2.4.4 Recommendations and future work 

The key recommendation from this review is that future studies need to 

incorporate comprehensive batteries of gait and cognition in order to robustly 

identify associations. In addition, this review has demonstrated the wide range of 

gait acquisition systems utilised in the literature (Tables 2-6, 2-7, 2-8 and 2-9) 

which makes findings subject to protocol. For example, measurement of reliable 

gait variability requires testing protocols to acquire over 30 steps (Galna et al., 

2013). Furthermore, some protocols utilise continuous walks (Lord et al., 2014) 

as opposed to intermittent walks; continuous walks derive measurement of 

steady state walking which may impact on cognitive associations over and above 

short intermittent walks. In the future, use of standardised protocols and gait 

acquisition systems will therefore ensure consistency and aid interpretation. 

Advances in technology via use of validated body worn senses mean that gait 

can now be measured in home and community environments rather than the 

laboratory (Godfrey et al., 2014a). Not only do sensors provide a simple and cost-

effective method of data collection, their use also facilitates measurement in 

naturalistic environments which reflect habitual gait patterns. The cognitive 

correlates of naturalistic gait may be different to what we have reported here 

(Hagler et al., 2010) and this is an exciting field of future research.  

Limitations to this review include the use of a model of gait that was familiar to 

structure the analysis. We may have found more associations if we had included 

more gait characteristics or used a different model. However, we were confident 

in selecting the model because it has been validated in PD and older adults, and 

it allowed for a more structured and robust interpretation. Nevertheless, it is 

important to recognise the interdependence of both gait characteristics (and 

therefore gait domains), and cognitive functions which also overlap. This has the 

potential to obfuscate findings and challenge interpretation. Secondly, a quality 

assessment tool was not used within this structured review which may have 

limited interpretation. Early on our review process clearly indicated predominance 

of measurement for the pace domain of gait to the exclusion of other domains. 

We felt this would bias results if a full systematic review with grading for study 

quality had been undertaken. Our findings highlight the need for a more robust 

methodological approach in this field, which warrants further investigation. 
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Finally, dual task conditions were not reviewed here because we were interested 

in habitual gait performance. Also, dual task protocols vary widely and findings 

are inconsistent (Kelly et al., 2015).  Methodological issues include diversity of 

concurrent tasks, inadequate control of baseline task demand, and a varied 

approach to calculating and interpreting dual task interference (Rochester et al., 

2014). However, not including dual task studies may have attenuated findings. 

Studies report an increase in gait variability (Hollman et al., 2007), rhythm (Yogev 

et al., 2005) and asymmetry (Yogev et al., 2006) in OA and PD under dual task 

conditions, reflecting an inability to compensate cognitively for gait deficit. 

Selective associations with cognitive outcomes have been reported, but it is 

beyond the scope of this review to comment on these.  

In conclusion, this review has systematically examined and reported on a large 

number of studies concerning the relationship between gait and cognition which 

is firmly established. Future research will consolidate findings and procure a more 

nuanced understanding.  
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Figure 2-5 Hypothesised relationship of cognitive decline with respect to the temporal course of decline in gait and cognition in 
ageing and neurodegenerative disease. 

 

① Gait and cognition decline concurrently, this may occur in normal ageing –  and explains evidence for reverse causality (Tabbarah et al., 2002)  

② The temporal nature of decline with age is unknown, it is unclear therefore if gait and cognition decline together or if one precedes the other in 

normal ageing (Gale et al., 2014) 

③ Neural substrate (pathological change) underpins decline in cognition, but gait proves a more sensitive metric of cognitive change (due to role 

of cognition in gait) than global cognitive measures which are in common use.  

④ Common neural substrate with a different temporal course (pathology affects motor function prior to cognitive      function), gait therefore 

declines prior to cognition 
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Chapter 3 : Methods- the ICICLE-Gait Study 

 

This study was approved by the NHS Local Research Ethics Committee, 

Newcastle and North Tyneside 1. All participants gave written consent and had 

cognitive capacity to give informed consent. 

 

3.1 Study overview 

The Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation-

PD (ICICLE-PD) study recruited potential participants between June 2009 and 

December 2011 (Khoo et al., 2013).  The ICICLE-PD study is a longitudinal 

observational study of which the ultimate aim is to further understand anatomical, 

biochemical and genotypic mechanisms associated with the transition from PD to 

PDD. The study aims to determine which clinical features may provide clinical 

biomarkers for the prediction of PDD. The ICICLE-Gait study is a nested sub-

study of ICICLE assessing gait, balance and falls to provide a better 

understanding of the predictive value of gait for cognitive decline and transition to 

PDD.  

ICICLE participants underwent a comprehensive battery of assessments, first at 

baseline (newly diagnosed PD) and every 18 months with current assessments at 

54 and 72 months. Participants were asked to complete a number of clinical and 

neuropsychological assessments at each follow-up assessment. A number of 

participants also consented to a number of the following assessments; blood 

tests, cerebrospinal fluid (CSF), magnetic resonance imaging (MRI), functional 

magnetic resonance imaging (fMRI), positron emission tomography (PET), short 

latency afferent inhibition (SAI) and sleep analysis. This PhD thesis focuses on 

clinical, neuropsychological and gait assessments at baseline, 18 month and 36 

month assessments of which further details are given below.  
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3.2 Participants and Recruitment 

3.2.1 Parkinson’s disease participants  

People with newly diagnosed PD were asked to participate in the ICICLE Study. 

Participants were recruited through outpatient clinics in Newcastle-upon-Tyne, 

Cambridge and Gateshead. All patients had newly diagnosed idiopathic PD 

which was confirmed by a movement disorder specialist and met the Queen’s 

Square Brain Bank Criteria (Hughes et al., 1992). ICICLE-GAIT recruited a 

subset of the cohort alongside ICICLE. A number of exclusion criteria were 

specified as following; memory impairment (classed as ≤ 24 on the mini mental 

state exam [MMSE]), met the DSM-IV criteria for dementia or the Movement 

Disorder Society criteria (Emre et al., 2007), diagnosis of PD onset before start of 

study, insufficient English language so as poor understanding of 

neuropsychological assessments, inability to consent and diagnosis of 

parkinsonism disorders other than PD including; Dementia with Lewy bodies 

(DLB), drug induced parkinsonism, vascular parkinsonism, progressive 

supranuclear palsy (PSP), multiple system atrophy (MSA) and cortico-basal 

degeneration.  

3.2.2 Control participants  

To provide a comparison of cognitive decline with normal ageing, controls of a 

similar age and sex were recruited from community sources. Control participants 

were recruited in two separate cohorts, the first cohort (N=94) completed 

assessments at baseline and 36 months, the second cohort (N=100) completed 

assessments at all three time points.   

Control participants from the first cohort were recruited through word of mouth 

and local advertising to allow for normative data. Control participants were over 

the age of 45 years of age. Inclusion criteria of this cohort included sufficient 

knowledge of English language so that neuropsychological assessments could 

be understood, able to walk independently without a mobility aid, no previous 

history of cognitive impairment or dementia. Control participants were excluded if 

they scored ≤ 24 on the MMSE, met DSM-IV criteria for dementia, had history of 
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a psychiatric or movement disorders and if they were unable to give informed 

consent.  

For an overview of participants recruited and assessed throughout the ICICLE-

Gait study up to 36 months, see Figure 3-1.  

 

3.3 Clinical Assessment 

Clinical assessments were undertaken in collaboration with the ICICLE-PD study. 

At each time point age, height and weight were recorded for all participants. In 

addition, all participants underwent a medical history examination at every 

session. Specific to this thesis, premorbid intelligence was assessed at baseline 

only using the National Adult Reading Test (NART, Appendix 1.0) (Nelson and 

O'Connell, 1978). and depression, using the geriatric depression scale (GDS-15, 

Appendix 2.0) (Yesavage et al., 1982) was assessed at each time point. 

3.3.1 Parkinson’s disease specific outcomes 

A number of PD specific clinical assessments were completed. Motor disease 

severity was assessed using the Movement Disorders Society Unified 

Parkinson’s Disease Rating Scale part III (MDS-UPDRS-III, Appendix 3.0) 

(Goetz et al., 2008). The MDS-UPDRS-III gives a maximum score of 136 of 

which a higher score represents worse disability. Overall disease severity was 

rated with the widely used Hoehn & Yahr (H & Y, Appendix 4.0) clinical scale. 

The H & Y derived a score ranging from 0-5 with a higher score representing 

worsening disability. To assess dopamine dose for each patient at each 

assessment, Levodopa equivalent daily dose was calculated (LEDD) as per 

(Tomlinson et al., 2010) providing a useful tool to asses dose intensity. All clinical 

testing was completed one hour after medication to ensure optimal performance.  
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Figure 3-1 - Flowchart of participants recruited and assessed throughout the ICICLE-Gait study. 
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3.4 Neuropsychological Assessment 

A comprehensive battery of cognitive assessments was completed by all 

participants at each time point in collaboration with ICICLE-PD. The battery 

involved a number of cognitive assessments in order to measure previously 

defined domains of cognition (Lord et al., 2014); global cognition, working 

memory, attention, fluctuating attention, executive function, visual memory and 

visuospatial function. Participants were asked not to consume caffeine or smoke 

up to one hour before appointments and during sessions in order to prevent 

increased stimulant effects during neuropsychological assessment.  

3.4.1 Global cognition 

To assess global cognition, participants completed the Montreal Cognitive 

Assessment (MoCA, Appendix 5.0). The MoCA was developed as a brief 

cognitive screening tool for clinicians to identify mild cognitive impairment (MCI) 

(Nasreddine et al., 2005). For PD, the MoCA has been shown to be a more 

sensitive measure to identify early cognitive impairment in comparison to other 

global assessments such as the Mini Mental State Examination (MMSE).  

3.4.2 Working memory 

Working memory was assessed using the maximum forward digit span from the 

Wechsler adult intelligence scale (Wechsler, 1958). The forward digit span 

assessment starts initially with two numbers being played over a loud speaker 

which participants are then asked to recall. This continues until a maximum of 

nine digits is reached. The assessment consists of three trials per span length of 

digits, participants must get two out of three recalls correct, once the participants 

fails to get two out of three trials correct, the maximum digit span is determined. 

Digits are spoken over the loud speaker at a rate of one digit per second. The 

forward digit span in particular is a simple assessment that can be used clinically 

to assess working memory (Wilde et al., 2004). 
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3.4.3 Attention 

Attention was assessed using the cognitive drug research battery (CDR) (Nicholl 

et al., 1995) computerised system to objectively assess attention. Three separate 

assessments were completed by participants; simple reaction time (SRT), choice 

reaction time (CRT) and digit vigilance (DV). In brief, participants were given a 

number of computerised tests and responded by pressing one of two buttons 

‘Yes’ or ‘No’. Full details of each assessment are given in Table 3-1.  

The CDR system was initially designed to provide both a reliable and sensitive 

assessment for repeated measures of cognitive function (Wesnes, 2003). The 

system has been validated in older adults as well as patient populations including 

PD (Wesnes et al., 2005) and dementia (Simpson et al., 1991). A higher score 

determines worse impairment of attention on all three tests. 

3.4.4 Fluctuating attention 

Fluctuating attention was also assessed with the CDR battery as in section 3.4.3. 

Fluctuating attention was measured using the coefficient of variance (CV%) 

scores of the SRT, CRT and DV assessments. Coefficient of variance scores 

look at the consistency of response from a participant and have been used 

previously to measure fluctuations in attention (Allcock et al., 2009). Further 

details can be found in Table 3-1. 

3.4.5 Executive function 

A number of assessments were used to assess executive function; one touch 

stockings (OTS), Hayling and Brixton and semantic fluency. The OTS 

assessment is one of the tests from the Cambridge Neuropsychological Test 

Automated Battery (CANTAB). The CANTAB battery is used to assess neural 

substrates of learning and memory and is used in dementia as well as patients 

with frontal and temporal lobe lesions (Robbins et al., 1994). The OTS 

assessment is a modified form of the Tower of London (TOL) task assessing 

planning with the use of working memory (Foltynie et al., 2004). Participants are 

given twenty trials and one point is given for each successful trial giving a 

maximum score of twenty.  A description of the OTS assessment can be seen in 

Table 3-2.  
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The Hayling test is a paper based assessment which measures both initiation 

and inhibition components of executive functioning (Burgess and Shallice, 1997) 

(Appendix 6.0). In the first part of the test the participant is presented with a 

sentence of which the last word is omitted, the participant is then asked to 

complete the sentence with one word which fits the context. In the second part of 

the test participants are given additional sentences with the last word omitted of 

which they must respond with one word which makes no sense in terms of 

context. The second part of the test causes the natural response to be inhibited. 

Reduced performance of the Hayling task has been identified in patients with 

frontal lobe lesions (Burgess and Shallice, 1996) as well as frontotemporal 

dementia (Hornberger et al., 2008) and PD (Bouquet et al., 2003). The Brixton 

test is another paper based test examining executive function (Burgess and 

Shallice, 1997) and is shown in Figure 3-2 (Appendix 6.0). For the Brixton test, 

participants are presented with a page of ten circles with one of the circles filled 

on each trial as in Figure 3-2. For each trial the coloured circle moves position in 

line with a sequence e.g. circle 1, 2, 3, 4. The participant is asked to say which 

circle would be filled on the following page according to the sequence. The 

Brixton assessment has been validated in a number of patient groups with 

impairment noted in Korsakoff’s syndrome, stroke and anterior lobe lesions 

(Burgess and Shallice, 1997; Van Den Berg et al., 2009). 

The semantic fluency test was the final assessment to measure executive 

function. In this assessment, participants were asked to name as many animals 

as possible in 90 seconds. Semantic fluency, which utilises executive searching 

and retrieval, is notably impaired in PD (Williams-Gray et al., 2007).  
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Figure 3-2 - An example of a sequence from the Brixton test to examine Executive 

Function ability.  

Test derived by Burgess and Shallice (1997) and image taken from Van Den Berg et al. 

(2009). 

3.4.6 Visual memory 

Visual memory assessments were completed using the CANTAB battery 

(described in section 3.4.5). Three assessments were undertaken; pattern 

recognition memory (PRM), spatial recognition memory (SRM) and paired 

associate learning (PAL). Descriptions of all three tests are placed in Table 3-2. 

The PRM assessment has been shown to be sensitive to temporal lobe function 

(Owen et al., 1995), participants are given a total of two trials totalling 12 patterns 

giving a maximum score of 24. The SRM is more sensitive to frontal lobe function 

(Owen et al., 1995); participants are given four trials of five prompts totalling a 

maximum score of twenty points. The PAL assesses visual memory and new 

learning and requires visual pattern and visuospatial memory, previously deficits 

have been demonstrated in severely impaired PD patients (Owen et al., 1993). 

3.4.7 Visuospatial 

Visuospatial skills were evaluated using the pentagon’s copying task, a sub-

section of the MMSE (Appendix 7.0). Scores were graded between 0 and 2 

according to modified scoring scale in which two points indicates that all 10 

angles are evident and the two pentagons are intersecting, one point indicating 
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intersecting pentagons with one shape having less than 5 angles and 0 not 

meeting the above criteria (Ala et al., 2001; Williams-Gray et al., 2007). 

 

Table 3-1 - An outline of assessments used from the Cognitive Drug Research 
battery. 

Test Description Measure 

Simple reaction 
time (SRT) 

The word ‘yes’ will appear on 
the computer screen. The 
participant has to press the 
YES button as fast as possible 
every time the YES word 
appears on the computer 
screen. 

Mean reaction time (ms), 
coefficient of variance 
(CV%) 

Choice reaction 
time (CRT) 

Either the word ‘yes’ or ‘no’ will 
appear on the computer 
screen. The participant must 
press the ‘yes’ button as fast 
as possible when the word yes 
appears on the computer 
screen. The participant must 
also press the NO button as 
soon as possible when the 
word ‘no’ appears on the 
computer screen  

Mean reaction time (ms), 
coefficient of variance 
(CV%) 

Digit Vigilance 
(DV) 

A random whole number is 
chosen by the computer 
programme and is displayed 
continuously on the screen 
throughout the assessment To 
the left of this digit, on the 
centre of the screen a series 
of digits will appear one at a 
time at a rate of 150 per 
minute. The participant must 
press the YES button when 
the two numbers on the 
computer screen are matched. 

Mean reaction time (ms), 
coefficient of variance 
(CV%) 

Three assessments were used; Simple Reaction Time (SRT), Choice Reaction Time 

(CRT) and Digit Vigilance (DV). Mean and coefficient of variance was calculated for each 

test. Further details of assessments and participant instructions can be found in the 

above table. 
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Table 3-2 - An outline of assessments used from the CANTAB 

Test Image Instruction Outcome 

PRM  

 
 

‘12 patterns will flash up 
on the screen one by one. 
After all 12 patterns have 
been displayed you will be 
presented with a choice of 
two patterns. Please press 
the pattern you have seen 
before’ 

Number Correct 

SRM  

 

‘Five squares will appear 
one by one at a different 
location on the screen. 
You will then be presented 
with a choice of two 
squares. Please select the 
square you have seen in 
that location before’ 

Number Correct 

PAL  

 

‘Boxes are displayed on 
the screen and opened in 
a random order; one or 
more box will contain a 
pattern. The patterns 
shown previously in the 
boxes will now be shown 
one at a time in the centre 
of the screen, touch the 
box the pattern was in’ 
 

Mean trials to 
success (total 
number of trials 
completed) 

OTS  

 

‘You will see two separate 
displays of three coloured 
balls (green, red and blue) 
in ‘stockings’. Work out 
how many moves of the 
balls it would take to make 
the bottom display match 
the top display’ 

Number of 
problems solved 

Neuropsychological Test Automated Battery (CANTAB). Four assessments were used; 

Pattern Recognition Memory (PRM), Spatial Recognition Memory (SRM), Paired 

Associate Learning (PAL) and One Touch Stockings (OTS, a modified version of the 

Tower of London). Further details of assessments and instructions given to participants 

can be found in the table above. 

 



Chapter 3: Methods- the ICICLE-Gait Study 

77 
 

3.5 Gait Assessment 

Gait assessments were completed at each session; testing was completed one 

hour after medication in PD participants to ensure optimal performance. 

Participants were assessed on a separate day or in the afternoon from the 

neuropsychological assessment to allow for medication intake.  

3.5.1 Assessment 

All gait assessments were completed in the gait laboratory at the Clinical Ageing 

Research Unit (CARU), Newcastle University. Gait was assessed using a 7m 

long x 0.6m wide instrumented walkway (Platinum model GaitRite™, software 

version 4.5, CIR systems Inc, United States of America), a valid and reliable 

method for gait capture both in ageing and pathology (Bilney et al., 2003). 

Participants were asked to walk at their ‘comfortable walking pace’ for two 

minutes around a 25m continuous circuit which was inclusive of the GaitRite™ 

mat (Figure 3-3). To avoid acceleration phases, participants began walking 2.5m 

in front of the walkway. In addition, cones guided participants around the circuit to 

ensure participants were walking in a straight line before stepping onto the 

walkway. Gait was repeatedly sampled as they walked over the mat and 

continued the circuit with a minimum of five passes over the mat (allowing for 

over collection of over 40 steps per participant). The continuous condition under 

which gait data was collected allowed for an increased number of steps to be 

derived which provides a more reliable estimate of gait variability (Galna et al., 

2013). 
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Figure 3-3 - Laboratory set up for gait assessment. 
 

3.5.2 Task conditions 

Participants completed gait assessment under single and dual task conditions. 

The order of single and dual-task conditions was randomised across participants. 

For single task conditions participants were asked to ‘concentrate on their 

walking’. For dual task conditions participants were asked to ‘concentrate equally 

on their walking and the concurrent task’. The Wechsler Forward Digit Span 

(Wechsler, 1958) provided the concurrent cognitive task; a validated task of 

working memory tailored to individual performance. Maximum digit span was 

assessed in sitting; this was determined as the longest digit span a participant 

could recall in two out of three attempts. Participants were asked to recall 

continuous strings of their maximum digit span whilst completing the two minute 

walk.   

3.5.3 Gait outcomes  

Sixteen gait characteristics were derived from the GaitRite™ mat which load onto 

five gait domains developed in older adults and which has been validated in PD 

(Lord et al., 2013a; Lord et al., 2013b), Figure 3-4. This thesis is going to use the 

model portrayed in Figure 3-4 as a framework throughout, speaking both to 

domains of gait (i.e. pace) and characteristics representative of domains (i.e. step 

velocity, a representative of pace). Gait characteristics were derived from left and 

right steps which were calculated separately and reported as mean values of left 

and right steps. Variability characteristics were calculated using the standard 
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deviation (SD of left and right steps calculated separately and then combined). 

Asymmetry characteristics were calculated as the absolute difference between 

the mean of the right and left steps (Galna et al., 2015). Figure 1-2 illustrates the 

spatial and temporal gait characteristics measured for this study. Gait domains 

(as shown in Figure 1-2) were also calculated using the Z score (for PD 

participants this was relative to control) and then multiplying the Z score by the 

corresponding loading factor from the PCA (Lord et al., 2013b).  

 

 

Figure 3-4 - A gait model validated in Parkinson’s disease. Lord et al. (2013a). 

3.5.4 Gait assessment in free-living  

For both control and PD participants at each assessment a seven day gait 

assessment was conducted in the free-living environment using BWM. Following 

laboratory assessment, participants were asked to wear a single BWM (AX3; 

Axivity, York, UK; 100Hz, ±8g) located at the fifth lumbar vertebra (L5). The BWM 

was attached with a hydrogel adhesive (PALStickies, PAL Technologies, 

Glasgow, UK) and Hypafix (BSN Medical Limited, Hull, UK). Participants were 
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asked to wear the BWM continuously for seven days and only to remove when 

bathing. Once data collection had been completed, participants sent the monitors 

back via recorded delivery and the data was downloaded. The BWM allows for 

measurement of 14 of the 16 characteristics displayed in Figure 3-4. Further 

specific methodology for BWM data collection can be found in Chapter 6, an 

instruction sheet can be found in Appendix 8.0.   

 

3.6 Data Analysis  

Statistical analyses were performed using SPSS software (version 19.0; SPSS, 

Inc., Chicago, IL) and R Software (R Core Team, 2013). Data were initially 

examined for normality and distribution using the Skewness-Kurtosis test and by 

inspection of boxplots and histograms. Student’s t-tests and Chi Squared tests 

were used as appropriate. Pearson chi-squared (X2) tests were used to compare 

frequency differences between groups. Further specific statistical analyses are 

detailed in each chapter where needed.
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Chapter 4 : Single task gait as a predictor of cognitive decline 

 

This chapter explores gait under single task conditions as a predictor for cognitive 

decline in PD. In addition, gait is compared to a global cognitive test as a 

predictor of cognitive decline to see if gait proves to be a more sensitive 

measure. 

 

4.1 Introduction 

Cognitive decline and PD dementia (PDD) significantly impact on day to day 

functioning and quality of life (Lawson et al., 2016), and ultimately reduce life 

expectancy (Levy et al., 2002). Detecting ‘at risk’ individuals in early disease is of 

upmost importance to optimise clinical management and progress novel 

therapeutics. However, as reviewed in chapter 1, clinical biomarkers remain a 

major unmet need. Due to complexity underlying pathology, a single biomarker to 

predict cognitive decline and dementia is unlikely to be sufficient with a 

combinatorial approach now considered optimal (Mollenhauer et al., 2014). 

Clinical biomarkers make an important contribution to a combinatorial battery 

given the complexity, cost and invasive nature of some laboratory and imaging 

biomarkers (Williams-Gray et al., 2009b; Mollenhauer et al., 2014; Olivier et al., 

2016).  

The previous chapters of this thesis outlined that gait has potential to provide a 

simplistic and non-invasive clinical biomarker for cognitive decline in PD. This is 

based on findings identified in chapter two which show gait changes precede and 

predict cognitive decline and dementia in older adults (Verghese et al., 2007; 

Mielke et al., 2013). Additionally, findings from chapter two demonstrated that 

there is a robust relationship between gait and cognition in early PD but that the 

longitudinal nature of the relationship has yet to be established (Lord et al., 2014; 

Morris et al., 2016). Moreover, previous work in this field lacks a consistent and 

detailed approach to evaluating gait characteristics, limiting interpretation (Morris 

et al., 2016).  
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Although gait analysis may provide a simplistic and cost-effective clinical 

biomarker, it may be questioned as to whether gait is superior to cognitive 

assessments which also provide non-invasive and pragmatic clinical biomarkers. 

Therefore, it is of interest to see if discrete gait characteristics are more sensitive 

than global cognitive measures to early cognitive decline.  Previous interim 

analysis by Lord et al. (2013c) demonstrated that baseline gait was able to 

predict a decline in attention yet baseline attention itself was unable to predict a 

decline in attention over 18 months. Thus far evidence suggests that gait may be 

a more superior clinical biomarker compared to baseline cognitive assessment.  

This chapter explores a comprehensive battery of gait characteristics to 

determine i) if gait can predict cognitive decline in early PD, ii) if gait 

characteristics are global or specific predictors, iii) if predictors are specific to PD 

pathology and iv) if gait is more sensitive than cognition in predicting cognitive 

decline. Based on current associative literature (Morris et al., 2016) and our 

previous cross-sectional work (Lord et al., 2014), it is hypothesised that discrete 

gait characteristics will be sensitive to cognitive decline in early PD.  

  

4.2 Methods 

4.2.1 Participants  

Subjects with newly diagnosed idiopathic PD were recruited to the ICICLE-Gait 

study. ICICLE-Gait is a nested study within ICICLE-PD (Incidence of Cognitive 

Impairment in Cohorts with Longitudinal Evaluation in Parkinson’s disease); 

potential participants were recruited between June 2009 and December 2011 

(Khoo et al., 2013). Idiopathic PD was diagnosed according to the UK 

Parkinson’s disease Brain Bank Criteria (Hughes et al., 1992). PD participants 

were assessed over three sessions (1) baseline, (2) 18 months and (3) 36 

months. PD participants were excluded according to criteria outlined in chapter 3 

section 3.2.1.  Participants were assessed ‘on’ medication, defined as one hour 

after PD medication. 

To provide a comparison of cognitive decline with normal ageing, controls of a 

similar age and sex were recruited from community sources. Control participants 
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were recruited in two cohorts; the first cohort completed assessments at sessions 

1 and 3, the second cohort completed assessments at all three time points. 

Inclusion criteria for control participants is outlined in chapter 3, section 3.2.2.  

4.2.2 Clinical assessment  

Age, sex, height and weight were recorded at each session. The National Adult 

Reading Test (NART) score was collected at baseline to assess premorbid 

intelligence (Nelson and O'Connell, 1978). Depression using the Geriatric 

Depression Scale (GDS-15) (Yesavage et al., 1982) was assessed at each 

session. PD specific assessments included: disease motor severity using the 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) Part III (Goetz et al., 2008), Hoehn and Yahr (H & Y) (Hoehn and Yahr, 

2001) and Levodopa equivalent daily dose (LEDD) (Tomlinson et al., 2010).  

4.2.3 Gait assessment 

Participants walked for two minutes at a comfortable pace around a 25m circuit 

inclusive of a 7m x 0.6m instrumented walkway (Platinum model GaitRite™, CIR 

systems Inc, USA) (Figure 3-3). Gait assessment was completed under single 

task conditions for which participants were asked to ‘concentrate on their 

walking’. Gait outcomes were derived from a model of gait developed in older 

adults (Lord et al., 2013b) and validated in PD (Lord et al., 2013a). The model 

describes 16 discrete gait characteristics representing domains of pace, rhythm, 

variability, asymmetry and postural control (Figure 3-4).  

4.2.4 Cognitive assessment 

A comprehensive battery of cognitive assessments was completed at all 

sessions. Individual tests were represented by seven domains of cognition. 

Global cognition was measured using the MoCA (Nasreddine et al., 2005). 

Attention was measured using the Cognitive Drug Research battery (CDR); 

simple reaction time (SRT), choice reaction time (CRT) and digit vigilance (DV) 

(Nicholl et al., 1995). Fluctuating attention was measured using the coefficient of 

variance (CV) of the SRT, CRT and DV from the CDR. Visual memory was 

measured with the Cambridge Neuropsychological Test Automated Battery 
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(CANTAB) (Robbins et al., 1994); spatial recognition memory (SRM), pattern 

recognition memory (PRM) and paired associate learning (PAL). Executive 

function was measured using a modified one touch stockings (OTS) version of 

the Tower of London (TOL) task from CANTAB, semantic fluency; number of 

animals in 90 seconds (Goodglass et al., 2001) and the Hayling and Brixton 

(Burgess and Shallice, 1997). Visuospatial function was measured using the 

interlocking pentagon’s copying composite score from the MMSE (Ala et al., 

2001). Working memory was assessed using Wechsler forward digit span 

(Wechsler, 1958). 

4.2.5 Data analysis 

The first stage was univariate to describe gait and cognitive data using SPSS 

V.21. Distribution of continuous variables was tested for normality using the 

Skewness-Kurtosis test and by inspection of boxplots and histograms. Paired 

Samples t-test was used to examine differences in baseline and final assessment 

for clinical characteristics. Student’s t-test and Chi-square test were used to 

examine differences between those who did and did not complete assessments 

at 36 months (p=.05). 

The second stage of analysis utilised linear mixed effects (LMEM)(R (R Core 

Team, 2013),‘lme4’ (Bates D, 2014)) to model cognitive decline and its 

predictors. LMEM were chosen as they do not assume independence between 

the data and account for random effects. LMEM provides a robust statistical 

analysis technique in cases of missing data and prevents omission of participants 

with missing data at one time point (Field A, 2012). Random intercept models 

were used to give each participant a unique intercept and regression coefficient. 

Firstly, LMEM were used to identify cognitive change in PD and controls over the 

three sessions. Initially, univariate analysis was conducted to determine cognitive 

assessments that significantly changed over time. Cognitive assessments which 

changed significantly were then entered into an adjusted model. Covariates 

included age, NART and gender as fixed effects, as well as interactions of 

session with GDS-15 (GDS-15 x Session) and LEDD (LEDD x Session). For 

each cognitive test a backward stepwise method was employed to remove non-

significant covariates.  
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Secondly, LMEM were used to identify baseline gait characteristics as predictors 

of cognitive decline. Cognitive decline was determined for each domain using the 

strongest representative of each domain i.e. greatest decline over time. Base 

models were constructed for each cognitive assessment using baseline predictor 

variables only (age, gender, NART, GDS-15 and LEDD) which were entered into 

the models as fixed effects. A backward stepwise method was employed to 

remove non-significant predictors. Gait characteristics at baseline were then 

entered into the model as a fixed effect to determine whether gait characteristics 

in addition to covariates were a significant predictor of cognitive decline.  

The final step was to identify whether baseline global cognition could predict 

change in cognition over time in PD participants. MoCA and each gait 

characteristic at baseline were added to base models to assess which was a 

stronger predictor of cognitive decline. In order to further validate findings, 

additional linear regression analysis was performed to identify whether baseline 

cognitive measures could predict change in the same measure over time. For this 

analysis cognitive change was entered as the dependent variable with age, sex 

and NART entered in the first block and baseline cognition entered in the second 

block. 

Log-likelihood ratio tests were used to compare fit between all models. Due to the 

exploratory nature of this study, multiple comparisons were not adjusted for in 

order to reduce the risk of type II error (Rothman, 1990). In order to reduce 

inflation of type I error a stringent p value of ≤.01 was used to determine 

significance.  

 

4.3 Results 

4.3.1 Study participants & demographics 

Figure 3-1 summarises participant recruitment and attrition in the ICICE-Gait 

study. Initially 150 participants with PD were referred, of whom 127 consented 

with 194 controls consented. After exclusions, 119 PD and 184 control subjects 

completed baseline assessment. At 18 months, 106 (89%) PD and 72 (39%) 
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control participants completed assessments, at 36 months 81 (68%) PD and 118 

(64%) control participants returned. Table 4-1 displays demographic and clinical 

characteristics of participants at baseline and 36 months. The PD group 

contained proportionally more males throughout the study whereas the control 

group contained proportionally more females.  The average duration of PD at 

baseline was 6.29 ± 4.67 months. Over three years, PD motor disease severity 

significantly increased (p<.001) as did LEDD (p<.001). Depression did not 

significantly change in either group. There were no significant differences in 

clinical demographics for PD or control participants who withdrew from the study 

compared to those who completed assessments at 36 months (Appendix 9.0). 

4.3.2 Baseline gait 

Table 4-2 presents baseline gait characteristics for all participants. Comparing 

gait characteristics for PD subjects at baseline between those that did and did not 

complete assessments at 36 months; step length variability was significantly 

higher (p=.02) in those who did not complete final assessment (Appendix 10.0). 

In control subjects; step velocity (p <.01) and step length (p <.01) were 

significantly reduced and swing time SD (p <.01), step time SD (p <.01) and 

stance time SD (p <.01) were significantly increased in those who did not 

complete assessments at 36 months (Appendix 10.0).  

4.3.3 Change in cognition  

Table 4-3 presents descriptive data on cognitive test performance at each 

session for both PD and control participants. Table 4-4 presents univariate and 

modelled change in cognition for both groups. Over three years, PD participants 

significantly declined on eight of 16 cognitive assessments. Attention declined on 

SRT (19.41ms per session, p=.01), CRT (36.65ms per session, p<.01) and DV 

(8.89ms session, p <.01). Fluctuating attention increased on CRT CV (1.29% per 

session, p <.01). PD participants declined on executive function; OTS (0.75 

points per session, p. <01) and Brixton (0.31 points per session, p <.01). Finally, 

PD participants declined on visual memory; SRM (0.71 points per session, p 

<.01) and PAL (0.13 points per session, p. <.01). Control participants declined on 

two of 16 assessments; CRT (10.23ms per session, p <.01) and SRM (0.37 
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points per session, p <.01). PD participants who withdrew before 36 months had 

significantly worse baseline working memory, attention, visual memory and 

increased fluctuating attention (Appendix 11.0). 
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Table 4-1 - Demographic and clinical characteristics of participants at baseline and 36 month assessment.  

 

 

Demographic 

 PD  Control 

 
Baseline 

 
36 Month 

 Paired Samples T-test  
Baseline 

 
36 Month 

 Paired Samples T-test 

   T P    T P 

Sex (M & F) 
 

 79 & 40  55 & 26  - -  78 & 106  53 & 64  - - 

Age (years) 
 

 66.11 (9.90)  69.13 (9.90)  -89.96 <.01  68.87 (7.10)  72.64 (7.06)  102.89 <.01 

Height (m) 
 

 1.70 (.08)  1.69 (.09)  3.41 <.01  1.68 (0.10)  1.68 (0.09)  -2.39 .02 

NART 
 

 115.02 
(11.13) 

 

 -  - -  117 (7.72)  -  - - 

Disease 
Duration 
(months) 
 

 6.29 (4.67)  -  - -  -  -  - - 

LEDD 
(mg/day) 
 

 172.26 
(129.53) 

 515.05 
(256.08) 

 -12.94 <.01  -  -  - - 

UPDRS III 
 

 24.97 
(10.44) 

 38.04 
(12.50) 

 -11.33 <.01  -  -  - - 

GDS 
 

 2.59 (2.23)  2.80 (2.41)  -0.89 .38  1.28 (2.03)  1.41 (2.34)  -0.71 .48 

Hoehn and 
Yahr stage n 
(%) 

 I (28) 
II (70) 
III (21) 
IV (0) 

 I (1) 
II (82) 
III (9) 
IV (2) 

 - -  -  -  - - 

8
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Table 4-2 – Single task gait characteristics at baseline. 

Gait Domain Gait Variable  PD n=119  Control n=184 

    

   Mean SD  Mean SD 

Pace         

 Step velocity (m/s)  1.12 0.21  1.26 0.19 

 Step length (m)  0.62 0.10  0.67 0.08 

 Swing time SD (ms)ǂ  2.81 0.32  2.67 0.30 

Variability        

 Step time SD (ms)ǂ  2.88 0.33  2.74 0.30 

 Stance time SD (ms)ǂ  3.06 0.38  2.92 0.34 

 Step velocity SD (m/s)  0.054 0.017  0.053 0.013 

 Step length SD (m)  0.023 0.009  0.020 0.006 

Rhythm        

 Step time (ms)  559.89 48.74  536.96 46.90 

 Swing time (ms)  391.83 33.20  386.75 30.14 

 Stance time (ms)  728.40 76.80  687.66 71.68 

Asymmetry        

 Step time asymmetry (ms)ǂ  4.15 2.34  3.03 1.44 

 Swing time asymmetry (ms)ǂ  3.69 1.97  2.67 1.34 

 Stance time asymmetry (ms)ǂ  3.67 1.93  2.66 1.34 

Postural Control        

 Step length asymmetry (m)  0.146 0.067  0.129 0.061 

 Step width (m)  0.093 0.031  0.089 0.025 

 Step width SD (m)  0.019 0.006  0.022 0.005 
ǂ variability characteristics log transformed and asymmetry characteristics square root transformed. 

8
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4.3.4 Single task gait as a predictor for cognitive decline  

Table 4-5 and Figure 4-1 summarise significant baseline gait predictors of 

cognitive decline over 36 months in PD participants. In PD, increase in fluctuating 

attention was predicted by pace (slower velocity (β 4.05 p <.01); reduced step 

length (β 8.64 p < .01)), variability (increased swing time SD (β 2.56 p < .01); step 

stance variability (β 1.98 p=.01) and step length variability (β 115.68 p <.01)) and 

gait-related postural control (increased step width (β 26.69 p <.01). Decline in 

visual memory was also predicted by pace (reduced step length (β 2.93 p= .01). 

Prediction of decline in attention by variability was near significance (increased 

step length variability (β 1639.29 p=.04)) but decline in executive function was not 

predicted by any gait characteristic. All gait characteristics improved the fit of the 

model except for step width as a predictor of increased fluctuating attention (χ2 

=5.91, p= .05). For domains of gait, increase in fluctuating attention was 

predicted by postural control (β -0.59±0.23, p=.01) with the pace domain near 

significance (β -0.61±0.26, p= .02). Decline in visual memory predicted by pace 

was also close to significance (β 0.26±0.11, p=.02). Results from all gait 

characteristics and domains as predictors for cognitive decline in PD can be 

found in the appendices; Appendix 12.0 and 13.0.  

Table 4-6 and Figure 4-1 summarise significant baseline gait predictors of 

cognitive decline in control participants. For control participants decline in 

attention was predicted by rhythm (reduced step time (β -0.21± 0.08, p=<.01) and 

reduced stance time (β -0.14±0.05, p=<.01)). In addition, decline in executive 

function was predicted by variability (increased step length variability, β -

57.78±20.08, p=<.01). No gait characteristics were able to predict increase in 

fluctuating attention or visual memory. For controls stance time as a predictor of 

decline in attention significantly improved the fit of the model (χ2 8.79, p=.01) as 

did step length variability as a predictor for decline in executive function (χ2 9.93, 

p <.01). Of the gait domains, decline in attention was significantly predicted by 

rhythm of gait (β 8.90±3.23, p=<.01). Results from all gait characteristics and 

domains as predictors for cognitive decline in controls can be found in the 

appendices; Appendix 14.0 and 15.0. 
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Table 4-3 - Descriptive data of cognitive assessments at baseline, 18 and 36 months for PD and control.

 

 

  
  

PD  Control 

BL    18 Months 
 

36 Months  BL  18 Months  36 Months 

Mean SD 
 

Mean SD 
 

Mean SD  Mean SD  Mean SD  Mean SD 

Global Cognition 
        

         
MoCA  25.22 3.57 

 
26.05 3.62 

 
25.74 4.03  - -  - -  - - 

Working memory 
        

         
Forward digit span 5.82 1.11 

 
5.97 1.38 

 
5.94 1.17  6.18 1.22  6.19 1.25  6.30 1.13 

Attention  
        

         
Reaction time (mean) 347.48 101.16 

 
361.5 90.95 

 
387.10 141.28  325.03 63.46  316.59 61.07  331.34 74.69 

Choice reaction time (mean) 528.95 85.64 
 

569.92 117.06 
 

598.01 162.79  521.75 74.13  525.47 77.93  540.08 82.95 

Digit Vigilance (mean) 479.53 56.27 
 

483.23 63.8 
 

496.19 65.30  455.33 49.94  458.15 47.92  461.44 45.75 

Fluctuating Attention 
        

         
Reaction time (CV) (%) 17.00 5.55 

 
17.88 6.41 

 
18.21 6.13  17.19 5.64  17.86 5.01  17.69 5.73 

Choice reaction time (CV) (%) 18.93 3.85 
 

20.62 6.00 
 

21.18 6.21  17.88 3.90  18.38 4.50  18.86 4.43 

Digit Vigilance (CV) (%) 16.08 3.74 
 

16.35 4.36 
 

17.17 4.95  14.65 3.91  14.94 4.22  15.83 5.51 

Executive Function 
        

         
One touch stocking (problems solved) 14.06 4.30 

 
14.49 5.00 

 
12.70 5.91  15.92 3.15  16.89 2.11  15.82 3.26 

Semantic Fluency (animals in 90 secs) 21.77 6.38 
 

22.14 7.12 
 

21.34 8.12  24.24 6.06  24.18 6.39  23.12 5.18 

Hayling Score 5.28 1.68 
 

5.43 1.62 
 

5.43 1.64  - -  - -  - - 

Brixton Score 4.54 2.36 
 

3.99 2.48 
 

4.04 2.47  - -  - -  - - 

Visual Memory 
        

         
Pattern Recognition memory (number correct) 19.91 2.78 

 
19.96 2.97 

 
19.66 3.52  20.81 2.30  20.75 2.69  20.71 2.65 

Spatial Recognition memory (number correct) 15.46 2.18 
 

14.58 2.75 
 

14.11 2.35  16.20 1.86  15.71 2.06  15.58 2.17 

Paired associate learning (mean trials to 
success) 

2.10 0.85 
 

2.26 0.93 
 

2.27 1.11  - -  - -  - - 

Visuospatial 
        

         
Pentagon copying 1.91 0.29 

 
1.74 0.57 

 
1.81 0.52  1.91 0.31  1.95 0.22  1.94 0.27 
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Table 4-4 - Modelled change in cognitive assessments over three years. 
 

[Covariates as follows; 1 Age, 2 Age, NART, 3 Age, GDS, 4Age, NART, LEDD, 5 Age, NART, GDS, Gender.] 

 

 PD  Control 

  Univariate change Modelled Change Adjusted  Univariate change  Modelled Change Adjusted 

  
Change 

per 
session 

SE T p 
 Chang

e per 
session 

SE T p 
 Change 

per 
session 

SE T p 
 Change 

per 
session 

SE T p 

Global Cognition 
    

 
    

          

MoCA  0.23 0.14 1.62 .12       - - - -      

Working memory 
    

 
    

          

Forward digit span 0.03 0.06 0.50 .62       0.05 0.05 1.10 .27      

Attention  
    

 
    

          

Reaction time (mean)2 19.20 7.23 2.67 .01  19.41 7.31 2.66   .01  5.50 3.26 1.69 .09      

Choice reaction time (mean)1, 2 37.02 5.77 6.42 <.01  36.65 5.76 6.36 <.01  9.97 3.46 2.88 <.01  10.23 3.46 2.96 <.01 

Digit Vigilance (mean)1 9.08 2.35 3.86 <.01  8.89 0.44 3.75 <.01  4.00 1.87 2.14 .03      

Fluctuating Attention 
    

 
    

          

Reaction time (CV) (%)3 0.63 0.32 1.92 .06       0.28 0.30 0.95 .35      

Choice reaction time (CV) (%)1 1.31 0.29 4.47 <.01  1.29 0.29 4.45 <.01  0.50 0.21 2.43 .02      

Digit Vigilance (CV) (%)1 0.57 0.26 2.17 .03       0.61 0.25 2.47 .02      

Executive Function 
    

 
    

          

One touch stocking (prob. solved)4 -0.76 0.23 -3.35 <.01  -0.75 0.23 -3.34 <.01  -0.09 0.11 -0.83 .41      

Semantic Fluency (Animals in 90s) -0.33 0.32 -1.03 .30       -0.66 0.31 -2.13 .04      

Hayling Score2 0.04 0.09 0.43 .67       - - - -      

Brixton Score2 -0.33 0.12 -2.90 <.01  -0.31 0.11 -2.72 <.01  - - - -      

Visual Memory 
    

 
    

          

Pattern Recognition memory 
(number correct)2 

-0.20 0.13 -1.50 .14       -0.17 0.11 -1.50 .14      

Spatial Recognition memory 
(number correct)2 

-0.72 0.12 -5.89 <.01  -0.71 0.12 -5.83 <.01  -0.36 0.10 -3.62 <.01  -0.37 0.10 -3.76 <.01 

Paired associate learning (mean 
trials to success)2 

0.14 0.04 3.45 <.01  0.13 0.04 3.20 <.01  - - - -      

Visuospatial 
    

 
    

          

Pentagon copying2 -0.06 0.03 -2.40 .02       0.02 0.02 1.21 .23      
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Table 4-5 - Linear mixed effects models identifying single task gait characteristic predictors of cognitive decline in PD. 
PD 

Cognitive Domain Cognitive 

Assessment 

Predictor Domain Predictor 

Characteristic 

Regression Coefficients 

β SE T P  

Attention CRT Variability 

 

Step length SD x 

Session 

1639.29 807.78 2.10 .04 

Fluctuating Attention CRTCV 

 

Pace 

 

Step Velocity x 

Session 

-4.05 1.34 -3.02 <.01 

   Step Length x 

Session 

-8.64 2.86 -3.02 <.01 

   Swing Time SD x 

Session 

2.56 0.93 2.75 <.01 

 

  Variability 

 

Step Time SD x 

Session 

2.14 0.90 2.38 .02 

   Stance Time SD x 

Session 

1.98 0.77 2.58 .01 

   Step Length SD  x 

Session 

 

115.68 40.41 2.86 <.01 

  Rhythm 

 

Stance time x 

Session 

0.01 0.03 2.26 .03 

  Postural control 

 

Step Width x Session 26.69 9.02 2.96 <.01 

Visual Memory SRM Pace 

 

Step Velocity x 

Session 

1.32 0.56 2.33 .02 

   Step Length x 

Session 

2.93 1.19 2.47 .01 

[P value significant at <0.01] 

 



Chapter 4: Single task gait as a predictor of cognitive decline 

 
 

9
4

 

Table 4-6 - Linear mixed effects models identifying single task gait characteristic predictors of cognitive decline in controls. 
 

 

[P value significant at <0.01] 

 

 

 

 

 

Control 

Cognitive Domain Cognitive 

Assessment 

Predictor Domain Predictor 

Characteristic 

Regression Coefficients 

β SE T P 

Attention CRT Pace Step Velocity x 

Session 

46.91 20.39 2.30 0.02 

  Rhythm Step Time x Session -0.21 0.08 -2.73 <.01 

   Stance Time x 

Session 

-0.14 0.05 -2.81 <.01 

Visual Memory SRM Rhythm Stance Time x 

Session 

<.01 <.01 -2.05 .04 

Executive Function OTS Variability  Step Length SD x 

Session 

-57.78 20.08 -2.88 <.01 
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Figure 4-1 - Map of associations adapted from Morris et al, 2016 for longitudinal gait and cognition associations in PD and controls under 

single task conditions. Black dotted lines signify attentional influence on visual memory.  
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4.3.5 Gait vs. global cognition as a predictor for cognitive decline  

Compared to gait characteristics shown in Table 4-7, MoCA was a significant 

predictor of a decline in attention (p<.01) but could not predict an increase in 

fluctuating attention (p=.04) or visual memory (p= .15) during single task gait in 

PD participants.  

A number of characteristics of pace and variability proved better predictors of 

increased fluctuating attention compared to MoCA; step velocity (χ2=10.93, 

p<.01), step length (χ2=11.22, p<.01) and step length variability (χ2=8.75, p=.01). 

In addition, characteristics of pace (step velocity and step length) were 

significantly better at predicting visual memory decline than MoCA (χ2=8.70 p=.01 

and χ2=10.90, p<.01 respectively). However, swing time SD (χ2=6.73, p=.03) and 

stance time variability (χ2=7.11, p=.03) did not improve the fit of the model for 

increase in fluctuating attention, although these gait measures remained 

significant in the model whilst MoCA did not. Additional linear regression analysis 

revealed baseline CRTCV was unable to predict an increase in CRTCV over 

three years (p=.75) (Appendix 16.0).  
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Table 4-7 - Linear mixed effects models identifying baseline MoCA as predictors of cognitive decline in PD. 
 

Cognitive 

Assessment 

Predictor Regression Coefficients 

β SE T P 

Attention 

(CRT) 

MoCA -5.68 1.54 -3.70 <.01 

Fluctuating Attention 

(CRTCV) 

 

MoCA -1.68 0.80 -2.10 .04 

Visual Memory 

(SRM) 

MoCA 0.05 0.03 1.45 .15 

 

 

 

 

 

 

 

 

 

 

 

9
7

 



Chapter 4: Single task gait as a predictor of cognitive decline 

98 
 

4.4 Discussion  

This chapter forms the first study to determine the role of quantitative gait 

characteristics as independent predictors of cognitive decline in early PD. 

Moreover this was a large study in an incident cohort followed from diagnosis 

allowing for prognostic significance of gait in early disease to be determined. Gait 

predicted cognitive decline over three years and this was selective to discrete gait 

characteristics, discrete cognitive domains and was specific to PD pathology. 

Importantly, gait was a stronger predictor than baseline cognition. This therefore 

provides the first evidence for the utility of gait as a clinical biomarker for early 

cognitive changes in PD.   

4.4.1 Gait predicts decline in specific cognitive domains 

As hypothesised, an increase in fluctuating attention and visual memory was 

independently predicted by single task gait characteristics represented by 

domains of gait describing pace, variability and gait related postural control (Lord 

et al., 2013a). Slower pace (represented by slower step velocity and shorter step 

length), higher gait variability (represented by step length variability and step 

stance variability) and more unstable postural control (represented by increased 

step width variability) at diagnosis independently predicted an increase in 

fluctuating attention. In addition, slower pace (represented by shorter step length) 

independently predicted decline in visual memory. By comparison, characteristics 

representing rhythm and asymmetry were unable to predict cognitive decline. 

This is the first longitudinal study to explore the gait-cognition relationship in PD 

and therefore direct comparisons from other studies cannot be drawn. The study 

findings however can be related to evidence from robust gait-cognition 

associations reported in cross-sectional studies in PD (Morris et al., 2016) and 

parallels can be drawn from work in older adults.   

Firstly, cross-sectional studies have found associations between pace and 

attention in PD (Morris et al., 2016). Only two studies to date (Lord et al., 2010; 

Lord et al., 2014) have directly measured attention with both finding an 

association with pace. An additional study did not find an association between 

pace and attention but this study combined broad measures of executive-function 

and attention which may have impacted on findings (Wild et al., 2013). However, 
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the association between pace and attention does not appear to be specific to PD 

as it is also evident in cohorts of ageing and cognitive impairment (Morris et al., 

2016). This suggests ageing may drive this association which is further 

emphasised by pathology. The majority of gait-cognition association studies 

measure only gait speed, increasing the evidence for gait-cognition associations 

for the pace domain with minimal evidence for other gait domains. In addition to 

pace, this study identified measures of variability and gait related postural control 

to be predictors of fluctuating attention. Findings from chapter two revealed that 

associations of variability and postural control were specific to PD but not 

dementia pathology (Amboni et al., 2012; Lord et al., 2014; Morris et al., 2016), 

further supporting the findings from this study. Previous cross-sectional findings 

highlighted a relationship between variability with global cognition and 

visuospatial function (Amboni et al., 2012; Lord et al., 2014) and postural control 

with visuospatial function and working memory (Amboni et al., 2012; Lord et al., 

2014). These findings support the cognitive control theories of both variability and 

postural control, however cognitive associations differ from the findings here. 

Work in older adults which has explored both cross-sectional and longitudinal 

gait-cognition associations identified findings to differ with study design i.e. cross-

sectional and longitudinal (Mielke et al., 2013). Thus, gait and cognition 

associations compared to predictors do differ. As this is the only longitudinal 

study in PD we can only speculate that baseline gait deficits in variability and 

postural control are specific to cognitive decline in PD. In comparison, rhythm and 

asymmetry characteristics were not found to be associated with cognitive decline 

in this cohort of PD. This is in agreement with previous cross-sectional findings 

although studies are limited in number (Morris et al., 2016). Previously, rhythm 

has been associated with attention in the Postural Instability and Gait Disorder 

(PIGD) phenotype of PD only. This phenotype of PD is linked to worse gait, 

cognition and more rapid cognitive decline (Burn et al., 2006) which may have 

driven this relationship. Notably one characteristic of rhythm was close to 

significance as a predictor of fluctuating attention (step stance time, p=.03). It 

could be speculated this result would have reached significance if analysed in the 

PIGD phenotype only. However, for this study model prediction was not split into 

PD phenotypes largely because phenotype classification is unstable over disease 

course and additionally numbers for analysis would have been small. 
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Parallels can be drawn from an extensive body of longitudinal research in older 

adults that show prognostic associations between slow gait speed and increased 

gait variability with cognitive decline (including executive-attention) (Verghese et 

al., 2007; Mielke et al., 2013). Compared to cross-sectional work, longitudinal 

studies assessing both quantitative gait characteristics and comprehensive 

batteries of cognitive assessments are few and far between in older adults 

(Kikkert et al., 2016). Previously, rhythm has been assessed by two studies 

(Verghese et al., 2007; Taniguchi et al., 2012) with links associating decline in 

global cognition but not attention (Verghese et al., 2007). Similarly, variability in 

older adults has been associated with onset of dementia in one study (Verghese 

et al., 2007) however; it was not associated with attention. Results from older 

adults in this study revealed rhythm predicted decline in attention and variability 

predicted decline in executive function. Reasons for differences compared to 

previous literature may be twofold. Firstly, the study by Verghese et al. (2007) 

used the digit span to assess attention. Here, digit span was used to asses 

working memory which did not significantly decline in this cohort of older adults. 

Thus, differences in protocol may underpin this with the computerised batteries in 

this study providing more sensitive measures of attention and executive function. 

Secondly, a decline in global cognition and memory related to variability and 

rhythm were not identified here. This may be due to the younger age of our 

cohort and the shorter duration of the study. Importantly, characteristics of 

postural control did not predict change in cognition in older adults. To date, no 

other longitudinal studies have assessed postural control characteristics making it 

difficult to draw comparisons but it can be speculated that characteristics of 

postural control are specific to decline in cognition in PD. 

4.4.2 Cognitive profiles in early Parkinson’s disease 

Progression of cognitive impairment over 36 months in our early PD cohort was 

characterised by attention, fluctuating attention, executive function and visual 

memory.  The greatest decline was seen in assessments of choice reaction time 

(CRT, both mean and coefficient of variation) and spatial recognition memory 

(SRM). A number of studies have tracked cognitive decline in incident cohorts to 

which the findings can be compared. Firstly, the results show consistency with 

Muslimović et al. (2009) who conducted a study in 115 patients with PD. At three 
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years Muslimović et al. (2009) found the greatest decline in psychomotor speed 

and attention with modest decline in executive function, memory and visuospatial 

measures. The Campaign study, assessing 239 patients with PD,  found visual 

memory and executive function were early cognitive features to decline at three 

years with common deficits seen in assessments of Tower of London (TOL) and 

SRM (Williams-Gray et al., 2007). Consistent with findings here, the Campaign 

study saw minimal deficits on assessments of pattern recognition memory (PRM) 

at three years. This further validates our findings and suggest this assessment is 

not sensitive to cognitive decline in PD. Notably, the Campaign group did not 

assess attention and therefore we cannot draw parallels with the domain 

demonstrating most prominent decline in our study (Williams-Gray et al., 2007). 

Finally, a study by Pedersen et al. (2013) focused on MCI status in 238 

participants with PD. Pedersen et al. (2013) importantly identified that those who 

transitioned from MCI to PDD showed greatest deficits on assessments of 

attention and verbal memory; however this group did not assess fluctuating 

attention. It is important to note that discrepancies in findings may be due to 

different methods of assessment with different test batteries used in cohorts. 

Guidelines have been outlined in PD identifying appropriate assessments for 

cognition and cognitive domains (Litvan et al., 2012) which may help with 

consistency in future studies. For this study, the test battery was limited for 

measures of language and visuospatial function domains which is addressed 

further in the limitations below. Even though decline in attention is in agreement 

with the literature, sensitivity to attention in this study may have been induced by 

the precision of computerised batteries (Wesnes et al., 1999).  

4.4.3 Is fluctuating attention a marker of dementia? 

Gait characteristics were able to predict an increase in fluctuating attention and 

visual memory and importantly this was specific to PD. This finding is highly 

relevant given the contribution both assessments make to the evolution of 

cognitive decline and dementia in PD. Fluctuating attention was particularly 

sensitive to baseline gait in this study. Previous work has shown that these 

cognitive features may be important precursors for dementia in PD. Woods and 

Trőster (2003) identified that those with ‘prodromal’ PDD i.e. those who converted 

to PDD within one year, performed worse on frontal cognitive assessments and 
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poorer performance was predictive of future dementia. In addition a more recent 

study identified attentional deficits to be the most prominent deficit in those with 

PD MCI who went on to convert to PDD (Pedersen et al., 2013). Fluctuating 

attention (measured by choice reaction time standard deviation) is significantly 

worse in Lewy Body Dementias (LBD (an overarching term comprising both PDD 

and DLB) compared to AD (Walker et al., 2000) and is able to discriminate 

between the dementias (McKeith et al., 1996). Fluctuating attention is one of 

three core symptoms in LBD and has an impact on patients day-to-day 

functioning and activities of daily living (Ballard et al., 2001) which was more 

recently found in PDD (Bronnick et al., 2006). Fluctuation of attention, for the 

purpose of this study, was measured using choice reaction time (CRT) coefficient 

of variation (CV). CRT variability is the strongest measure of fluctuating cognition 

(Taylor et al., 2013) with CRT shown to be sensitive to discriminating between 

different dementias (Ballard et al., 2002). Previously the majority of studies have 

assessed this using CRT SD (Ballard et al., 2002; Taylor et al., 2013) however 

the CV provides an advantage over the SD. The CV provides a measure of 

dispersion and describes the extent of variability of a variable relative to the 

mean; it is an easily understood measure as it is expressed as a percentage of 

variation. This is particularly useful when comparing measures that have different 

scoring mechanisms, as unlike SD’s the CV has no units of measurement.   

 Visual and memory components play a vital role in spatial recognition memory 

(SRM) which is temporally-mediated, however, lesion (Owen et al., 1995) and 

cognitive cohort studies (Foltynie et al., 2004) also suggest a role for frontal 

involvement, indicating overlap of underlying mechanisms. Thus, it is plausible 

this association was driven by attentional mechanisms; this is depicted with the 

black dashed lines in Figure 4-1. However, these findings do have an interesting 

implication in regards to the dual syndrome hypothesis (Kehagia et al., 2013). 

Kehagia et al. (2013) proposed that those who exhibit a more rapid decline to 

PDD demonstrate primarily posterior cortical and temporal lobe dysfunction such 

as visuospatial function deficits. This study identified step length at baseline was 

a significant predictor of decline on a SRM task.  Although it remains unclear at 

present, in accordance with the dual syndrome hypothesis the findings for 

prediction of SRM decline may be of significant importance for identifying future 



Chapter 4: Single task gait as a predictor of cognitive decline 

103 
 

dementia. Due to the overlapping attentional and visual mechanisms needed for 

this battery this may be sensitive to cognitive decline in PDD. 

4.4.4 Potential underlying mechanisms 

Underlying pathology of gait and cognition is poorly understood but evidence 

suggests they share at least some substrates. Gait is not purely dopaminergic 

(Galna et al., 2015) but interacts with other systems. Previous work implicates the 

cholinergic system in gait dysfunction, demonstrated by short-latency afferent 

inhibition (Rochester et al., 2012) and intervention (Henderson et al., 2016) 

studies.  

Two sources of cholinergic output are shown to decline in PD; the nucleus 

basalis of Meynert (nbM) and the pedunculopontine nucleus (PPN) (Yarnall et al., 

2011) with the nbM projecting to the frontal lobe and thalmic nuclei and the PPN 

to the thalamus, cerebellum, brainstem and nbM. The nbM has a recognised role 

in gait, for example, in rodents’ dual dopaminergic and cholinergic lesions led to 

more frequent falls (Kucinski et al., 2013). In humans, imaging work has identified 

increased activation of the prefrontal cortex both during goal directed gait 

(Hamacher et al., 2015) and maintaining balance whilst standing (Mahoney et al., 

2016). Slower walking in particular has been associated with basal forebrain 

cholinergic degeneration (Bohnen et al., 2013). The PPN also plays an intrinsic 

role in mobility. Cholinergic loss from the PPN is related in particular to postural 

instability and falls (Bohnen et al., 2009; Bohnen and Albin, 2011; Yarnall et al., 

2011; Müller and Bohnen, 2013). Previous work has identified cholinergic cell 

loss of the PPN in PD fallers compared to non-fallers (Karachi et al., 2010) and in 

addition, cholinergic dysregulation of the thalamus is heightened in fallers 

compared to non-fallers (Bohnen et al., 2009).  

Importantly, the cholinergic system also has an essential role in cognition. 

Deficits in attention and increased fluctuating attention may arise from 

dysfunction of both the nbM and PPN. Previously, lesions to the nbM and its 

projections have revealed deficits in attention and fluctuating attention (Baxter 

and Chiba, 1999; Gratwicke et al., 2015; Colloby et al., 2016a; Colloby et al., 

2016b). The PPN has a primary role in executive function and attention (Winn, 

2006; Gut and Winn, 2016) demonstrated in animal studies in which selective 
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lesions to cholinergic cells of the PPN has demonstrated in deficits in sustained 

attention (Cyr et al., 2015). In human studies, stimulation of the PPN has been 

achieved using deep brain stimulation (DBS) and has shown to improve 

sustained alertness (Fischer et al., 2015). Work in patients with DLB has 

identified that the thalamus plays a critical role in fluctuating cognition (Delli Pizzi 

et al., 2015). Delli Pizzi et al. (2015) identified structural changes as well as 

impaired cholinergic function to thalamic regions associated both with alertness 

and attention in patients with DLB compared to controls. Due to intrinsic 

cholinergic projections from both the NbM and PPN the thalamus may also play a 

critical role in fluctuating attention in PD. Imaging evidence suggests changes to 

perfusion network alterations as opposed to specific neural structures may 

underpin dysfunctions in fluctuating attention (Taylor et al., 2013; Colloby et al., 

2016b). Taylor et al. (2013) conducted single photon emission computed 

tomography (SPECT) in patients with AD and DLB and demonstrated specific 

perfusion patterns, thought to be mediated by cholinergic activity, in patients with 

DLB. Importantly, these perfusion networks were associated with poorer attention 

and increased fluctuating cognition that was not seen in patients with AD. More 

recently, Colloby et al. (2016b) conducted SPECT imaging in patients with PDD 

and healthy older adults and identified dysfunctional cholinergic perfusion 

networks in those with PDD compared to controls, of interest these networks 

mapped onto resting state networks critical for attention and working memory.  

It has to be noted that the precise neurobiological underpinnings of fluctuating 

attention are not completely understood but it is proposed here that there is a 

common cholinergic underpinning to neural correlates of gait (namely pace, 

variability and postural control) and cognition (namely fluctuating attention). 

Furthermore the role of attention may also mediate visual deficits (Gratwicke et 

al., 2015; Colloby et al., 2016b) contributing to decline in SRM. Interestingly, gait 

was unable to predict decline in executive function which has been shown to be 

an early feature of cognitive decline (Williams-Gray et al., 2007). This may reflect 

the overarching role of attention in mediating cognitive function (Lückmann et al., 

2014), or sensitivity of attentional measures over measures of executive function 

in this early stage of the disease.  
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4.4.5 Comparison of gait and cognitive outcomes; clinical implications 

One aim of this study was to identify whether discrete gait characteristics were 

more sensitive than cognitive measures to early cognitive decline.  Our findings 

suggest that this is the case. Global cognition (described by MoCA) did not 

predict an increase in fluctuating attention or visual memory. Furthermore, the 

additional analysis carried out to substantiate gait findings showed that fluctuating 

attention did not predict future cognition decline. These findings strengthen the 

case for the role of discrete gait characteristics as predictors of cognitive decline 

in early PD. It is proposed that gait is a sensitive predictor of increased fluctuating 

attention and visual memory, prior to cognitive assessments and that future work 

will identify gait and fluctuating attention to be critical in the advancing pathology 

to PDD. This hypothesis is explored in Figure 4-2. 

The use of cognitive batteries proves problematic due to lack of equipment, 

validation, staff competence and resources  (Lee et al., 2012) with computerised 

assessments difficult for some patients resulting in data loss (Williams-Gray et 

al., 2007). Comprehensive gait assessments, however, are evolving from 

laboratory to clinical settings via BWM providing a simple and cost effective 

method of collecting discrete gait characteristics. This further demonstrates the 

potential for gait as a clinical biomarker for specific cognitive decline in PD. As 

suggested in chapter one, one biomarker is insufficient and combinatorial 

markers are essential to create ‘biomarker batteries’ to determine ‘at risk’ 

individuals. Recently a combinatorial biomarker inclusive of gait has been 

identified in older adults. Verghese et al. (2012) proposed a four point risk 

battery; motoric cognitive risk syndrome (MCR), including gait speed, to identify 

those at risk of dementia. The study identified that those who met criteria for 

MCR had greater predictive ability for future dementia, in particular vascular 

dementia. This study only measured gait speed, whereas the use of quantitative 

gait characteristics may improve sensitivity and specificity of the battery.  

4.4.6 Study strengths and limitations 

This study has a number of strengths. The ICICLE study forms a large incident 

cohort study following patients at diagnosis of PD with assessments every 18 

months. The nature of the study has allowed for the predictive ability of gait to be 
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determined from very early disease which is key for a clinical biomarker. 

Furthermore, to predict cognitive decline, quantitative gait analysis has been 

utilised measuring sixteen gait characteristics that form a gait model validated in 

PD. To date, the majority of longitudinal studies only measure gait speed- the 

final common expression of gait leading to loss of sensitivity and specificity. The 

importance of utilising quantitative gait analysis has been stressed when 

associating gait and cognition (Kikkert et al., 2016) and here this has been done 

thoroughly, allowing for a strong foundation for future work.  

It also has to be addressed that this study has several limitations. Firstly, the 

cognitive battery was comprehensive for attention, executive function and 

memory but less comprehensive for visuospatial. Significant visuospatial decline 

was not apparent in this cohort but other work identified pentagons to decline in 

early PD (Williams-Gray et al., 2007) suggesting this assessment was adequate. 

Secondly, the main outcome from this study was gait as a predictor of increasing 

fluctuating attention. Fluctuating attention was defined here as the coefficient of 

variance (CoV) which is calculated by mean reaction time/ standard deviation for 

each individual person. This is a central tendency measure which can inflate 

sensitivity when the mean is a negative value or zero. However, for this outcome 

all measures were positive values and greater than zero which limits potential 

sources of error. Thirdly, the longitudinal nature of the study inevitably leads to 

attrition. Attrition rates in this study totaled 32%, comparable to similarly designed 

studies (Williams-Gray et al., 2007; Muslimović et al., 2009). Baseline scores 

revealed that those who withdrew were representative of the whole sample for 

clinical demographics and gait. However, those who withdrew were worse on a 

number of cognitive assessments. This may indicate that those with more rapid 

decline were more likely to withdraw and would have been of interest to this 

study. In an attempt to alleviate bias, LMEM were chosen as this modeling 

technique is able to handle missing data yet it is possible that rate of cognitive 

decline was underestimated. Additionally, the population was drawn from an 

incident PD cohort followed from diagnosis with repeat assessments every 18 

months. While misdiagnosis may have contributed this is unlikely to have made a 

major impact. Diagnosis followed a stringent process and revised diagnosis over 
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the course of the study revealed that the numbers were low. Finally, the findings 

need to be replicated in an independent cohort. 

4.4.7 Conclusions 

In conclusion, this is the first study to identify gait as a predictor of cognitive 

decline, specific to fluctuating attention and visual memory in a large incident PD 

cohort. The novel findings provide evidence for gait as a non-invasive clinical 

biomarker for cognitive decline in PD. Work focused on specific assessments of 

cognitive decline, a critical approach providing further understanding of the 

underlying pathology of gait and cognition.  Future work will focus on gait as a 

predictor of PDD as the cohort continues to evolve.  

 



 

 
 

 

Figure 4-2 - Hypothesised relationship of cognitive decline in PD and the temporal course of gait and cognition deficits in 
response to advancing pathology. 

① In early pathology discrete changes to networks including the cholinergic system stemming from the nbM and PPN become apparent in deficits of gait 

characteristics. ② as pathology progresses, deficits in cognition, namely fluctuating attention become affected. ③ Pathology advances to a diagnosis of 

PDD. 
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Chapter 5 : Dual task gait as a predictor of cognitive decline 

 

The notion of dual task gait was introduced in chapter 1. This chapter will explore 

the role of gait under dual task as a predictor for cognitive decline in PD. This 

chapter will decipher whether gait under dual task provides a more sensitive 

clinical predictor than single task conditions, and will discuss the clinical 

implications of findings.  

 

5.1 Introduction 

This thesis has so far outlined the importance of detecting cognitive decline in 

those with early PD. Current biomarkers were outlined in chapter 1 with chapter 4 

demonstrating the first evidence for gait under single task conditions as a 

predictor for cognitive decline over the first three years of PD. It became evident 

in chapter 4 that a number of features of gait under single task conditions were 

able to predict an increase in fluctuating attention and decline in visual memory, 

mediated through frontal attentional mechanisms. Due to the sensitivity to decline 

in these resources, it is critical that we explore the predictive capability of dual 

task gait characteristics for cognitive decline, as these may be more sensitive 

than single task. 

The notion of dual task paradigms were introduced in chapter 1, a popular 

method in which to assess the gait-cognition relationship. A number of theoretical 

models underpin dual task gait performance which depict that resource allocation 

(of attentional and executive functional processes) is challenged under dual task 

conditions (Pashler, 1994; Tombu and Jolicœur, 2003; Wickens, 2008). The 

effect of dual task gait paradigms is further illustrated in Figure 5-1. Due to the 

underlying pathology, dual task deficit is exacerbated in PD compared to healthy 

adults as demonstrated in Figure 5-1C.  

Previously in the ICICLE study, cross-sectional analysis was completed at 

baseline (diagnosis) to identify associations between dual task gait and cognition 

(Rochester et al., 2014). Surprisingly, dual task gait was not found to associate 
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with cognitive assessments of global cognition, attention or executive function. 

The authors speculated this was due to the mild stage of PD as in contrast; work 

in later stage disease found executive function and attention deficits to correlate 

with dual task performance (Rochester et al., 2008; Lord et al., 2010). In addition, 

a number of studies in older adults, dementia and PD have identified gait-

cognition associations only to be evident under dual task but not single task gait 

(Sheridan et al., 2003; Yogev et al., 2005; Wild et al., 2013). It also has to be 

acknowledged that gait-cognition associations and predictors do differ (Mielke et 

al., 2013). One study to date explored the role of dual task gait as a marker of 

cognitive decline but did not find the measure to be superior to single task 

(Deshpande et al., 2009). However, interpretation of findings is limited as the 

authors only assessed global measures of gait and cognition. In addition, 

Deshpande et al. (2009) studied older adults only and due to the underlying 

pathology it would be expected that a longitudinal relationship would be more 

evident in PD over and above other cohorts. Evidence to date is not robust but it 

could be hypothesised that gait under more challenging conditions may provide a 

better predictor of cognitive decline compared to single task conditions in PD.  

Clinically, identifying whether dual task provides a stronger predictor than single 

task gait is of importance as there is much less burden on patients to complete a 

single task gait assessment. In addition, dual task paradigms would require 

additional training for clinicians. Therefore, this chapter aims to i) explore dual 

task gait characteristics as predictors for cognitive decline in PD, ii) identify if dual 

task gait characteristics are global or specific predictors iii) compare dual task 

gait predictors to single task iii) identify whether dual task predictors are specific 

to pathology and finally iv) assess if dual task gait is more sensitive than 

cognition in predicting cognitive decline. It is hypothesised that dual task gait will 

be able to predict cognitive decline in PD and that gait characteristics will be 

more sensitive to this decline compared to single task gait.  
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Figure 5-1. Dual task gait paradigms in older adults and people with Parkinson’s disease.
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5.2 Methods 

For the dual task study, participants were once again recruited from ICICLE-Gait 

as outlined in chapter 3. The same cognitive assessments were analysed as in 

chapter 4 and all participants (n=119) completed dual task gait assessment at 

baseline. Participant recruitment and attrition can be found in Figure 3-1. 

Participants completed assessments ‘on’ medication, defined as within one hour 

of PD medication.  

5.2.1 Dual task paradigm 

Participants completed the gait assessment as outlined in chapter 4 (section 

4.2.3), but for dual task conditions participants were asked to ‘concentrate equally 

on their walking and the concurrent task’. To recap, the Wechsler Forward Digit 

Span (Wechsler, 1958) was adopted for the concurrent cognitive task; a validated 

task of working memory tailored to individual performance. Maximum digit span 

was assessed in sitting; this was determined as the longest digit span a 

participant could recall in two out of three attempts. Participants were asked to 

recall continuous strings of their maximum digit span whilst completing the two 

minute walk.    

5.2.2 Data analysis 

Univariate analysis was used initially to describe the data, these were inspected 

for normality and met criteria for parametric analysis. Paired samples t-tests were 

used to decipher significant differences between single and dual task gait 

(significance p ≤.05). Student’s t-tests were used to determine differences in 

those who did and did not complete assessments at 36 months (significance p 

≤.05). Linear mixed effects models (LMEM) were used for analysis as in chapter 

4 to derive dual task gait predictors of cognitive decline. Briefly, random intercept 

models were used to give each participant a unique intercept and regression 

coefficient. Cognitive change over the three sessions was modelled as in chapter 

4 using LMEM with an adjusted model with appropriate covariates determined by 

the backward stepwise method. LMEM were used to identify baseline gait 

characteristics under dual task conditions as predictors of cognitive decline. Base 

models were once again constructed for each cognitive assessment using 
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baseline predictor variables only and were entered as fixed effects. Dual task gait 

characteristics at baseline were then entered into the model as a fixed effect to 

determine whether gait characteristics under dual task conditions in addition to 

covariates were a significant predictor of cognitive decline. Once again, the 

predictive value of dual task gait characteristics versus a global cognitive test 

(MoCA) was assessed. MoCA and each gait characteristic under dual task 

condition were added to base models to assess which was a stronger predictor of 

cognitive decline. Similarly to the analysis for chapter 4, for LMEM a stringent p 

value of ≤.01 was required for significance to guide interpretation in an attempt to 

correct for multiple comparisons.   

 

5.3 Results 

5.3.1 Baseline dual task gait 

Table 5-1 and Table 5-2 summarise descriptive gait characteristics under dual 

task for PD and control subjects respectively. Comparing dual task gait 

characteristics for PD subjects at baseline between those who did and did not 

complete assessments at 36 months; step velocity variability (p <.01) and step 

length variability (p <.01) were significantly higher in those who did not complete 

assessments at 36 months, see Appendix 17.0. Comparing dual task gait 

characteristics for control subjects at baseline between those who did and did not 

complete assessments at 36 months; step velocity (p <.01), step length (p <.01) 

and step width variability (p <.01) were significantly reduced in those who 

withdrew and step time variability and step time asymmetry were significantly 

increased (p .02 and p <.01 respectively), see Appendix 17.0.  

5.3.2 Dual task v’s single task gait characteristics  

Table 5-1 and Table 5-2 compare single and dual task gait at baseline in PD and 

control subjects respectively. In PD gait under dual task was poorer; gait was 

slower with shorter steps, it was more variable, more asymmetrical and with 

poorer postural control. All characteristics of pace were significantly worse under 

dual task; step velocity was slower (p=<.01), step length was shorter (p=<.01) 

and swing time SD increased (p=<.01) compared to single task. All 
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characteristics of variability were significantly worse under dual task compared to 

single task with step time SD (p=<.01), stance time SD (p=<.01), step velocity SD 

(p=<.01) and step length SD (p=.01) all significantly increased. For characteristics 

of rhythm, step time (p=<.01) and stance time (p=<.01) significantly increased 

under dual task compared to single task but swing time did not significantly 

change (p=.84). All characteristics of asymmetry significantly increased under 

dual task; step time asymmetry (p=.01), swing time asymmetry (p=.01) and 

stance time asymmetry (p=.02). Only one characteristic of postural control 

changed under dual task with step width significantly increasing (p=<.01). In 

contrast, neither step length asymmetry (p=.37) nor step width variability (p=.16) 

changed under dual task.  

For control subjects (Table 5-2), overall gait was poorer with reduced pace, 

increased variability and poorer gait related postural control under dual task as 

opposed to single task. All characteristics of pace were significantly poorer under 

dual task; step velocity was slower (p <.01), step length was shorter and swing 

time SD was increased (p <.01). All characteristics of variability were significantly 

higher under DT; step time variability (p <.01), stance time variability (p <.01), 

step velocity variability (p <.01) and step length variability (p <.01). All 

characteristics of rhythm were significantly higher; step time (p <.01), swing time 

(p <.01) and stance time (p <.01). Two measures of gait related postural control 

were less stable demonstrated by increased step width (p <.01) and step width 

variability (p <.01). Asymmetry characteristics were not significantly different in 

controls under dual task conditions .  
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Table 5-1 - Dual task gait characteristics in PD subjects at baseline. 
 

PD 

Gait Domain Gait Variable 

 
ST (n=119)  DT (n=119)  Paired Samples Test 

 Mean SD  Mean SD  t P 

Pace            

 Step velocity (m/s)  1.12 0.21  1.06 0.22  9.55 <.01 

 Step Length (m)  0.62 0.10  0.59 0.10  10.81 <.01 

 Swing time SD (ms)ǂ  2.81 0.32  2.92 0.32  -5.25 <.01 

Variability           

 Step time SD (ms)ǂ  2.88 0.33  3.04 0.36  -6.71 <.01 

 Stance time SD (ms)ǂ  3.06 0.38  3.27 0.41  -7.24 <.01 

 Step velocity SD (m/s)  0.054 0.017  0.060 0.018  -3.66 <.01 

 Step length SD (m)  0.023 0.009  0.025 0.009  -3.38 <.01 

Rhythm           

 Step time (ms)  559.89 48.74  571.05 53.41  -5.31 <.01 

 Swing time (ms)  391.83 33.20  391.58 34.84  0.21 .84 

 Stance time (ms)  728.40 76.80  751.03 85.45  -7.13 <.01 

Asymmetry           

 Step time asymmetry (ms)ǂ  4.15 2.34  4.51 2.52  -2.52 <.01 

 Swing time asymmetry (ms)ǂ  3.69 1.97  3.98 1.97  -2.66 <.01 

 Stance time asymmetry (ms)ǂ  3.67 1.93  3.95 2.01  -2.35 .02 

Postural Control           

 Step length asymmetry (m)ǂ  0.146 0.067  0.149 0.076  -0.90 .37 

 Step width (m)  0.093 0.031  0.095 0.032  -3.80 <.01 

 Step width SD (m)  0.019 0.006  0.018 0.005  1.43 .16 

[ǂ variability characteristics log transformed and asymmetry characteristics square root transformed] 
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Table 5-2 - Dual task gait characteristics in control subjects at baseline. 

Control 

Gait Domain Gait Variable 

 
ST (n=184)  DT (n=184)  Paired Samples Test 

 Mean SD  Mean SD  t P 

Pace            

 Step velocity (m/s)  1.26 0.19  1.19 0.20  11.06 <.01 

 Step Length (m)  0.67 0.08  0.65 0.08  13.01 <.01 

 Swing time SD (ms)ǂ  2.67 0.30  2.77 0.33  -5.98 <.01 

Variability           

 Step time SD (ms)ǂ  2.74 0.30  2.91 0.35  -7.83 <.01 

 Stance time SD (ms)ǂ  2.92 0.34  3.11 0.39  -7.90 <.01 

 Step velocity SD (m/s)  0.053 0.013  0.060 0.016  -5.30 <.01 

 Step length SD (m)  0.020 0.006  0.022 0.006  -5.19 <.01 

Rhythm           

 Step time (ms)  536.96 46.90  549.57 54.22  -7.16 <.01 

 Swing time (ms)  386.75 30.14  390.02 33.36  -3.15 <.01 

 Stance time (ms)  687.66 71.68  709.77 82.71  -8.60 <.01 

Asymmetry           

 Step time asymmetry (ms)ǂ  3.03 1.44  3.16 1.67  -1.38 .17 

 Swing time asymmetry (ms)ǂ  2.67 1.34  2.80 1.54  -1.41 .16 

 Stance time asymmetry (ms)ǂ  2.66 1.34  2.82 1.52  -1.75 .08 

Postural Control           

 Step length asymmetry (m)ǂ  0.129 0.061  0.132 0.060  -1.04 .30 

 Step width (m)  0.089 0.025  0.094 0.027  -8.43 <.01 

 Step width SD (m)  0.022 0.005  0.023 0.006  -3.32 <.01 

[ǂ variability characteristics log transformed and asymmetry characteristics square root transformed]
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5.3.3 Dual task gait as a predictor for cognitive decline 

Table 5-3 and Figure 5-2 summarise the baseline dual task gait characteristics 

that predicted cognitive decline over 36 months in PD. Decline in attention was 

predicted by one measure of variability (increased step time variability (β 42.54± 

16.30, p=.01)). An increase in fluctuating attention was predicted by 

characteristics from all gait domains; pace (slower velocity (β -3.86±1.24, p <.01), 

reduced step length (β -8.37 ± 2.69, p <.01) and increased swing time SD (β 

2.83± 0.89, p <.01)), variability (increased step time SD (β 2.35±0.82, p=.01)), 

rhythm (increased stance time (β 0.01 ± <0.01, p= .01)), asymmetry (increased 

stance time asymmetry (β 0.36± 0.14, p=.01)) and postural control (increased 

step width (β 27.70± 8.86, p <.01)). Decline in visual memory was predicted by 

pace (slower velocity (β 1.36 ± 0.52, p=.01) and reduced step length (β 

3.00±1.13, p <.01)) and variability (increased step stance variability (β -

0.76±0.30, p=.01)). Decline in executive function was not predicted by any gait 

characteristic. All gait characteristics improved the fit of the model except for step 

time variability as a predictor of decline in attention (χ2 =7.50, p= .02) and stance 

time asymmetry as a predictor of increased fluctuating attention (χ2 =6.55, p= 

.04). Calculated gait domains were less sensitive at predicting cognitive decline, 

decline in visual memory was predicted by the pace domain only (β 0.30 ± 0.10, p 

<.01). Full results of dual task gait characteristics and domain predictors in PD 

can be found in the appendices 18.0 and 19.0. 

Table 5-4 and Figure 5-2 summarise the baseline dual task gait predictors of 

cognitive decline in control subjects. Decline in attention was predicted by rhythm 

(reduced step time (β -0.17 ± 0.07, p .01) and reduced stance time (β -0.12 ± 

0.04, p <.01)) and decline in executive function was predicted by pace (higher 

swing time SD (β -1.01 ± 0.40, p .01). No gait characteristics predicted either 

increased fluctuating attention or a decline in visual memory. For controls, only 

stance time as a predictor of attention improved the fit of the model (χ 2=9.40, p 

<.01) compared to the base model. For calculated gait domains, decline in 

attention was predicted by rhythm (β 7.94 ± 3.01, p <.01). Full results of dual task 

gait characteristics and domain predictors in controls can be found in the 

appendices; 20.0 and 21.0. 
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5.3.4 Dual task gait vs. global cognition as a predictor for cognitive decline 

As described in chapter 4, MoCA was a significant predictor of decline in 

attention (p<.01) but was unable to predict increased fluctuating attention (p=.04) 

or visual memory (p=.15) in PD during single task gait. For further details see 

Table 4-7. 

A number of dual task gait characteristics provided a stronger predictor of 

fluctuating attention and visual memory decline compared to baseline MoCA. 

Step velocity (X2 12.10, p=<.01), step length (X2 11.76, p=<.01) and swing time 

SD (X2 8.52, p=.01) from the pace domain improved the fit of the model when 

combined with MoCA and remained significant whereas MoCA did not. In 

comparison, step time variability did not improve the fit of the model for 

fluctuating attention (X2 7.70, p=.02). For stance time as a predictor of fluctuating 

attention gait improved the model fit and remained significant (X2 9.80, p=<.01). 

However, both stance time asymmetry and step width did not improve the fit of 

the model for fluctuating attention (X2 7.34, p=.03 and X2 6.90, p=.03 

respectively). For decline in visual memory, both step velocity and step length 

improved the fit of the model (X2 9.65, p=<.01 and X2 11.25, p=<.01 respectively). 

In addition step stance variability also improved the fit of the model for decline in 

visual memory (X2 9.71, p=<.01). 
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Table 5-3 - Linear mixed effects models for DT gait predictors of cognitive decline in PD. 
PD 

Cognitive Domain Cognitive 
Assessment 

Predictor Domain Predictor 
Characteristic 

Regression Coefficients 

β SE T P  

Attention  CRT Variability  

 

Step Time SD x 

Session 

42.54 16.30 2.61 0.01 

Fluctuating 

Attention 

CRTCV 

 

Pace 

 

Step Velocity x 

Session 

-3.86 1.24 -3.11 <0.01 

   Step Length x 

Session   

-8.37 2.69 -3.12 <0.01 

   Swing Time SD x 

Session   

2.83 0.89 3.17 <0.01 

 

  Variability 

 

Step Time SD x 

Session   

2.35 0.82 2.87 0.01 

  Rhythm 

 

Stance time x 

Session 

0.01 <0.01 2.93 <0.01 

  Asymmetry Stance Time Asy x 

Session   

0.36 0.14 2.55 0.01 

  Postural control 

 

Step Width x 

Session 

27.70 8.86 3.13 <0.01 

Visual Memory SRM Pace 

 

Step Velocity x 

Session   

1.36 0.52 2.60 0.01 

   

 

Step Length  x 

Session 

3.00 1.13 2.65 <0.01 

  Variability  

 

Stance Time SD x 

Session 

-0.76 0.30 -2.51 0.01 

[CRT= choice reaction time, CRTCV= choice reaction time coefficient of variation, SRM= spatial recognition memory] 

 

 

 



 

 
 

1
2

0
 

Table 5-4 - Linear mixed effects methods for DT gait predictors of cognitive decline in control. 
 

Control  

Cognitive Domain 
Cognitive 
Assessment 

DT Predictor 
Domain 

DT Predictor 
Characteristic 

Regression Coefficients 

β SE T P  

Attention  CRT Rhythm 

 

Step Time x 

Session 

-0.17 0.07 -2.57 0.01 

  Rhythm  Stance Time x 

Session 

-0.12 0.04 -2.72 <0.01 

Executive Function OTS Pace  

 

Swing Time SD x 

Session 

-1.01 0.40 -2.54 0.01 

[CRT= choice reaction time, OTS= one touch stockings] 
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Figure 5-2. Map of dual task associations adapted from Morris et al, 2016 for longitudinal gait and cognition associations in PD and 
controls. Black dotted lines signify attentional influence on visual memory. 
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5.4 Discussion  

This chapter extended results from chapter 4 by exploring gait characteristics 

under dual task as predictors for specific domains of cognitive decline. Prior to 

this study, there was insufficient evidence to decipher whether gait under more 

challenging conditions improved the accuracy of prediction of cognitive decline in 

PD. Importantly, knowledge of dual task gait as a prognostic marker has been 

extended by taking a comprehensive measurement approach which has 

highlighted the specificity of gait to cognitive decline. The results demonstrate 

that discrete gait characteristics under dual task predict decline in a number of 

cognitive domains. However, contrary to the hypothesis, dual task gait showed 

similar predictive ability to single task. Reasons and implications for these 

findings will be discussed below.  

5.4.1 Dual task gait predicts decline in specific cognitive domains  

As hypothesised, selective gait characteristics under dual task were able to 

predict cognitive decline in specific cognitive domains. Compared to single task, 

gait predictors stemmed from a wider range of gait domains. Slower pace 

(represented by slower step velocity, shorter step length and higher swing time 

SD), increased gait variability (represented by step time variability) faster rhythm 

(represented by step stance time), increased asymmetry (represented by stance 

asymmetry) and more unstable postural control (represented by increased step 

width) predicted an increase in fluctuating attention. In addition, increased gait 

variability (represented by step time variability) predicted decline in attention. 

Furthermore, slower pace (represented by slower velocity and shorted step 

length) and more unstable postural control (represented by increased step width 

variability) predicted decline in visual memory. Similar to chapter 4 there have 

been no previous studies exploring dual task gait as a predictor for cognitive 

decline in PD which makes comparison and interpretation of findings challenging.     

A number of cross-sectional studies have explored associations between gait and 

cognition under dual task, from this, parallels can be drawn with the findings here. 

A number of cross-sectional studies have identified pace (Rochester et al., 2004; 

Lord et al., 2010; Plotnik et al., 2011; Kelly et al., 2012) and variability (Yogev et 

al., 2005; Lord et al., 2011; Plotnik et al., 2011; Kelly et al., 2012) under dual task 
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to be associated with frontal cognitive assessments, mainly attention and 

executive function- complementing the findings here. However, similar to single 

task findings, this is not specific to PD pathology (Ble et al., 2005; Holtzer et al., 

2006; Springer et al., 2006). In disagreement with this literature, baseline cross-

sectional results from the dual-task protocol of ICICLE-gait did not find the same 

associations with attention and executive function (Rochester et al., 2014). 

Reasons for this could be twofold. First, perhaps the cohort was too early in 

pathology to detect dual task deficit to the same degree as previous studies with 

later-stage PD participants. Second, results may have been desensitised by the 

use of a dual task paradigm tailored to each individual’s cognitive capacity, which 

is not done in other studies. However, within the current study use of the same 

tailored dual task paradigm demonstrated dual task gait was sensitive to decline 

in cognition. This suggests that, similar to single task (Mielke et al., 2013), 

specificity between gait-cognition associations and predictors are distinct.  

Dual task studies exploring rhythm and asymmetry, much like single task, are 

less abundant than those assessing pace. Deficits in rhythm of gait have been 

reported in both older adults and people with PD under dual task in the majority 

of studies (Al-Yahya et al., 2011), with greater deficit identified in PD (O'Shea et 

al., 2002). In comparison, deficits in asymmetry have been noted in PD but not 

older adults under dual task (Yogev et al., 2006). However, Yogev et al. (2006) 

did not find an association between dual task asymmetry with either attention or 

executive function. The authors concluded this may be due to individual response 

of resource allocation during dual tasking (Yogev et al., 2006). Our findings may 

demonstrate differences in associations and predictors once again, or possibly 

due to the sensitive computer battery assessments used here to measure 

attention and executive function (Wesnes et al., 1999). 

Postural control as a predictor of cognitive decline complements previous findings 

from the ICICLE-Gait study. Previously using this dual task paradigm significant 

dual task gait deficit was seen for characteristics of postural control in PD 

compared to control subjects (Rochester et al., 2014). Other than the study by 

Rochester et al. (2014) associations of cognition and gait related postural control 

are limited. However, parallels can be drawn from static postural control tasks 

which demonstrate deficits under dual task conditions (Morris et al., 2000; 
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Marchese et al., 2003), most likely related to prefrontal cortex control (Mahoney 

et al., 2016). Previous associative work in older adults has recognised a 

relationship between postural control and attention (Lord et al., 2013b; Martin et 

al., 2013; Lord et al., 2014), however postural control was not sensitive to 

attentional decline in older adults in this study suggesting this is driven by PD 

pathology.  

Parallels once again can be drawn from longitudinal cohorts of older adults and 

cognitive impairment but studies remain small in number. A study by Chong et al. 

(2013) assessed single task and dual task gait under a number of dual task 

paradigms in subjects who did and did not convert to MCI. Chong et al. (2013) 

identified dual task performance was significantly worse in MCI converters under 

one dual task paradigm. In agreement with findings from this study, this suggests 

that dual task gait may be sensitive to future cognitive decline, however it must 

be noted the study contained small numbers and therefore results should be 

interpreted with caution. The study by Deshpande et al. (2009) assessed single 

task, dual task and fast walking in a cohort of 660 older adults but only found fast 

gait speed to predict cognitive decline. It is important to note that the single task 

findings by Deshpande et al. (2009) contradict the majority of the literature 

including those that only assessed global cognition (Morris et al. (2016), see 

chapter 2). This may indicate a difference in their cohort, e.g. they only followed 

the cohort for three years, a shorter duration than most studies in older adults. 

The authors hypothesised that dual task gait would be the most sensitive 

condition to cognitive decline and were surprised by their findings. It was 

reasoned that dual tasking may actually represent cognitive flexibility as opposed 

to assessing cognitive capacity. Over and above these findings, the results of fast 

walking as a predictor are interesting. Fast walking conditions increase cortical 

demand to the task, similar to cueing for gait in PD. Deshpande et al. (2009) 

identified that those who were in the slowest quartile under fast walking 

conditions were more likely to decline cognitively. This was identified after 

controlling for factors of age, BMI and depression suggesting that those who 

were unable to achieve fast speed had reduced cognitive capacity. It would be 

interesting to explore the predictive ability of fast gait in the ICICLE-Gait cohort, 
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considering the reduced attentional resources in PD it would be hypothesised 

that fast gait would be a sensitive predictor of cognitive decline.  

5.4.2 Dual task compared to single task as a predictor  

It was hypothesised that dual task would provide a better predictor than single 

task conditions and this hypothesis can be accepted in part. Characteristics of 

pace, variability and postural control were independent predictors but in addition 

under dual task characteristics of rhythm and asymmetry proved significant 

independent predictors.  

A number of gait characteristics under both conditions predicted an increase in 

fluctuating attention and visual memory but there was minimal difference in 

strength of predictors. For example step velocity (single task; β -4.05±1.34, 

p=<.01 and dual task; β -3.86 ± 1.24, p=<.01) and step length (single task; β -

8.64±2.86, p=<.01 and dual task; β -8.37 ± 2.69, p=<.01) were both significant 

independent predictors. Furthermore, both characteristics improved the accuracy 

of prediction compared to the base model under both conditions (e.g. step length: 

single task; X2 11.22, p=<.01 and dual task; X211.76, p=<.01). On the other hand, 

characteristics of rhythm and asymmetry became independent predictors under 

dual task. In particular, the predictive ability of asymmetry may be of importance. 

Asymmetry, unlike other gait measures, is not affected under dual task in older 

adults (Yogev et al., 2006) suggesting asymmetry is no longer generated 

subcortically in PD and it is presumed cortical refinement becomes necessary in 

PD pathology (Yogev et al., 2006). It is plausible that under dual task discrete 

latent deficits in these domains emerge providing an early marker of cognitive 

deficit which are specific to PD. This theory supports findings from older adults in 

this study for whom asymmetry did not prove to be a significant predictor, 

however it remains speculative due to limited work measuring asymmetry in older 

adults and other dementia subtypes (Morris et al., 2016). Thus, further work in 

PD and other cohorts is needed to validate this notion. 

The marginal differences between task conditions, although only speculative, 

may be down to the dual task paradigm used in this study. The paradigm used in 

the ICICLE-Gait appears to be less sensitive to dual task deficit compared to 

other paradigms (Yogev et al., 2005; Hollman et al., 2007; Kelly et al., 2012). 
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However, by tailoring task difficulty to each individual rather than conducting a 

standardised task allows for avoidance of over-estimation of dual task 

interference and allows for true dual-task interference to be determined. 

Protocols in other pathologies have tailored levels of task demand and identified 

gait deficits compared to single task conditions (Hamilton et al., 2009). It would 

be interesting to see if dual task gait using a standardised protocol proved more 

sensitive to cognitive decline over time in PD.  

5.4.3 Gait under both single and dual task predicted decline in the same 

cognitive domains 

Increased fluctuating attention and a decline in visual memory was predicted by 

gait characteristics from the same domains. Additionally, decline in attention was 

predicted by one characteristic of pace (step time variability) under dual task.  

The predictive ability of gait under dual task for an increase in fluctuating 

attention and decline in visual memory further emphasises the hypothesis of 

underpinning pathology discussed in chapter 4, section 4.4.3 and further 

demonstrated in Figure 4-2. This finding suggests a common neural correlate of 

gait and fluctuating attention of which gait under natural and stressed conditions 

is sensitive to fluctuating attention decline. Importantly, under dual task, step time 

variability was able to predict decline in attention. It must be stressed that this 

characteristic was weaker than predictors of fluctuating attention as it did not 

significantly improve the fit of the model (p=.02). However, step time variability in 

particular is a gait characteristic that has previously been indicated as sensitive to 

pathology, including frontal cognitive measures under single (Hausdorff et al., 

2001; Sheridan et al., 2003; Beauchet et al., 2012; Henderson et al., 2016) and 

dual task gait (Mirelman et al., 2011). The fact that those with poorer dual but not 

single task gait at baseline had significant attentional decline may point to subtle 

differences in underlying neural correlates of gait and cognition. Depending on 

the sub-domain of attention, the underpinning mechanisms differ. For example, 

the cholinergic system is associated with ‘lower level’ attentional systems (e.g. 

sustained or orientating attention), whereas the dopaminergic system is thought 

to underpin more complex ‘executive’ aspects of attention (Berger et al., 1989; 

Coull, 1998). This is demonstrated by unaffected sustained attention with intake 
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of Haloperidol (Berger et al., 1989) indicating the role of other systems. It is 

plausible that additional neural correlates corresponding to higher attention 

mechanisms are needed to refine gait in more challenging conditions. This 

interpretation is only speculative however as no other work has been done and 

further work in independent cohorts is needed. 

In addition to fluctuating attention, decline in visual memory (measured by SRM) 

was sensitive to both single and dual task gait. As noted previously in chapter 4 it 

is hypothesised that SRM performance is frontally mediated and therefore reliant 

on attentional mechanisms. This is depicted by the dashed lines in Figure 5-2. 

Under dual task, one representative of variability (stance time variability) was also 

sensitive to visual memory decline suggesting that variability in particular relies 

on cognitive mechanisms under challenging walking conditions. This finding 

further emphasises the importance of evaluating comprehensive batteries of gait 

characteristics as well as under different conditions.  

5.4.4 Clinical implications  

The clinical implications of these findings need to be discussed. If dual task gait 

does not provide much more sensitivity over single task then only a simple 

walking assessment is required as a clinical biomarker. This is beneficial for 

patients as they would not be required to complete a complex assessment during 

a screening process. In addition, dual task paradigms in the literature are highly 

variable and as it remains unknown whether different dual task paradigms would 

provide more sensitive predictors of cognitive decline. Before dual task gait can 

be utilised as a clinical biomarker, a standardised task would need to be used 

throughout the patient population. 

Neither a titrated or standardised dual task represents real life dual tasking with 

dual task protocols providing an unnatural stress condition. Possibly observing 

real life complexity will provide a natural dual task paradigm. Free-living gait (gait 

in the home and community environment) gives us insight into naturalistic gait 

patterns that are not impacted by false environmental or attentional manipulation. 

Free-living gait can now be assessed in habitual environments using BWM. 

Associations between free-living gait and cognition are starting to emerge in the 

literature and this will be discussed further in the following chapter (Chapter 6).  
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5.4.5 Limitations  

There are a number of limitations to this study, a number of which were outlined 

in Chapter 4, section 4.6.6. In addition, this study only assessed one dual task 

paradigm for which findings have previously differed from the literature. It is 

possible that the nature of the dual task paradigm used in this study reduced 

predicative ability.  Future work should compare the effect of standardised and 

titrated tasks on gait and whether one provides a more sensitive predictor of 

future cognitive decline. Regardless, it can be argued that a dual task paradigm 

tailored to individual performance provides a better representative of individual 

ability under stressed conditions.  

5.4.6 Conclusions 

This chapter has identified dual task gait as a predictor of early cognitive decline 

in PD, specific to fluctuating attention and visual memory. Assessment of dual 

task revealed characteristics of additional domains were able to predict decline in 

attention, increased fluctuating attention and a decline in visual memory. The 

significance of this will become apparent with the evolution of the cohort to PDD.   
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Chapter 6 : Gait and cognition in free-living; an exploratory look* 

 

The previous chapters of this thesis have identified that a comprehensive gait 

assessment is able to predict decline in cognition in PD specific to fluctuating 

attention and visual memory. However, in order for this biomarker to be 

transferable into the clinic, measurement needs to become portable and cost-

effective. Recently the use of body worn monitors (BWM), such as tri-axial 

accelerometers, has enabled gait measurement in the free-living environment. 

This chapter will firstly explore a model of gait in the free-living environment and 

secondly examine the gait-cognition relationship using BWM both in the 

laboratory and free-living. 
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Section 1: A model of free-living gait; a factor analysis in PD 

 

6.1. Overview   

As discussed in chapter one, when measuring a large number of gait 

characteristics covariance is high and in a bid to eliminate redundancy and ease 

interpretation, conceptual gait models have been developed both in older adults 

and PD (Verghese et al., 2007; Hollman et al., 2011; Lord et al., 2013a; Lord et 

al., 2013b). The model framework which has been used throughout this thesis 

identified five domains of gait comprising 16 gait characteristics derived from the 

GaitRite™ system (Lord et al., 2013a) (Figure 6-1A). Subsequently, the model 

has been used to demonstrate associations of gait with age, gender and 

cognition (Lord et al., 2013a; Lord et al., 2014). In addition, this thesis has used 

the structure of the conceptual gait model to predict changes in cognition.  

To date neither laboratory nor free-living gait characteristics derived from BWM 

have been applied to a conceptual framework, limiting their utility. Differences 

occur in gait metrics when comparing GaitRite™ with BWM as the latter 

measures continuous motion and the former measures discrete events (separate 

foot-falls). As a result, BWM demonstrate increased sensitivity to asymmetry and 

variability characteristics (Del Din et al., 2016c). In addition, BWM derive 14 of 

the previous 16 characteristics due to limitations measuring step width and step 

width variability with single tri-axial accelerometers (Del Din et al., 2016c). 

Therefore in the first section of this chapter, a conceptual gait model using a 

BWM both in a controlled laboratory environment and in free-living is explored. It 

is hypothesised, due to differences in measurement tools, free-living 

characteristics will load differently onto a conceptual gait model. The aims of this 

short study were to i) explore a gait model using a BWM in controlled and free-

living environments in older adults and PD, and ii) compare to our previous 

GaitRite™ derived model.   
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6.2 Specific methods 

6.2.1 Participants 

Subjects with idiopathic PD were recruited from the ICICLE-Gait study. PD was 

diagnosed according to UK PD brain bank criteria. Participants were excluded if 

they presented with memory impairment (MMSE ≤24), dementia with Lewy 

bodies, Parkinson’s plus syndrome and poor English. PD participants were tested 

three years post diagnosis. Age matched controls were recruited that were >60 

years, able to walk independently and had no significant cognitive impairment, 

mood or movement disorder. The study was approved by the Newcastle and 

North Tyneside research and ethics committee.  

6.2.2 Clinical Assessment 

Age, sex and body mass index (BMI) were recorded for all participants. Disease 

severity was measured using the Movement Disorders Society Unified 

Parkinson’s disease rating scale part III (MDS-UPDRS III).  

6.2.3 Gait Assessment 

Participants were asked to wear a single tri-axial accelerometer BWM (AX3; 

Axivity, York, UK; 100Hz, ±8g) located at the fifth lumbar vertebra (L5). During 

controlled assessment, participants walked for two minutes around a 25m circuit 

at preferred pace in a laboratory. The BWM was attached with a hydrogel 

adhesive (PALStickies, PAL Technologies, Glasgow, UK) and Hypafix (BSN 

Medical Limited, Hull, UK). For free-living assessment, participants wore the 

BWM continuously for 7 days (Godfrey et al., 2014b). See Appendix 8.0 for 

instructions. 

6.2.4 Data Processing 

Recorded signals were stored locally on the sensor’s internal memory and 

downloaded on completion of assessment. Raw acceleration data for controlled 

and free-living assessments were analysed using a bespoke MATLAB® (Version 

2015a) program, further details of controlled and free living data processing are 

detailed in (Del Din et al., 2016c) and (Del Din et al., 2016a) respectively. 14 
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previously validated spatiotemporal gait characteristics were quantified (Del Din 

et al., 2016c) (Figure 6-1). 

6.2.5 Statistical analysis 

Free-living data were screened so that full 7 day data were included in the 

analysis only. Data were inspected for outliers with histograms and boxplots. 

Student t-tests and Chi-squared (X²) tests were used to compare demographic 

data. Principle component analysis (PCA) was conducted to identify independent 

gait domains in controlled and free-living environments. A varimax rotation was 

applied to derive orthogonal factor scores with the minimum eigenvalue for 

extraction set at 1. Items which met a minimum loading of 0.6 were considered 

significant. Loading value was increased from previous work due to fewer 

participants (Field, 2013; Lord et al., 2013b).  

6.3 Results 

6.3.1 Participants  

PD and control participants were matched for age (69.8±9.74, and 72.34 years 

respectively, p=.068) and BMI (27.23±5.10 and 27.23±5.61, p=.998 respectively). 

The PD group had significantly fewer females than controls (46M & 21F, versus 

49M & 54F, p<.01). PD participants presented with a mean (SD) MDS-UPDRS 

score of 37.18±11.98. PD participants scored significantly lower on the MoCA 

(p<.01), were significantly lower in mood (p<.01) and had significantly reduced 

balance confidence (p<.01).  

Table 6-1 - Demographic data of PD and control participants 

Demographic PD (n=67) Control (n=107) p 

Age (years) 69.83 ± 9.74 72.34 ± 6.74 .068 
Sex (M & F) 46M & 21F 49M & 54F .007ᵻ 

BMI 27.23 ± 5.10 27.23 ± 5.61 .998 
MoCA 26.24 ± 3.49 27.53 ± 2.31 .009 
NART 114.91 ± 11.58 117.54 ± 7.83 .107 
GDS 2.57 ± 2.22 1.34 ± 2.24 .001 
ABC (%) 80.28 ± 20.89 91.18 ± 13.82 <.001 
UPDRS III 37.18 ± 11.98 - - 

[ᵻ = X2] 

 



Chapter 6: Gait and cognition in free-living; an exploratory look 

133 
 

6.3.2 Controlled conditions 

A total of 103 control and 67 PD participants completed laboratory based 

assessment. The mean total number of steps performed by PD and control 

participants was 226 ± 22 and 237 ± 23 respectively.  

Fourteen gait characteristics were entered into the PCA yielding four factors 

(pace, variability, rhythm and asymmetry) and accounted for 84.84% and 88.43% 

of variance for control and PD participants respectively(pace; 17.18%, 13.29%, 

variability; 26.58%, 32.15%, rhythm; 22.27%, 21.38%, asymmetry; 18.82%, 

21.67% for controls and PD respectively). All item loadings were >0.6 except for 

step length asymmetry in both groups with cross-loading evident for variability in 

controls (Table 6-2 and Table 6-3, Figure 6-1B). 

6.3.3 Free-living conditions 

Ninety-nine controls and 64 PD participants completed free-living assessment. 

Ten controls and 6 PD participants did not wear the BWM for the amount of time 

specified and were removed from the analysis. Thus, a total of 89 controls and 58 

PD participants were included.  

The mean total number of steps per day completed by PD and control 

participants were 11899 ± 5183 and 13434 ± 4393 respectively. Fourteen gait 

characteristics were entered into the PCA yielding four factors in both groups 

(pace, variability, rhythm and asymmetry) and accounted for 90.00% and 93.03% 

of total variance for control and PD respectively (pace; 13.60%, 13.49%, 

variability; 22.08%, 21.10%, rhythm; 25.53%, 27.92%, asymmetry; 28.79%, 

30.52% for control and PD respectively). All item loadings were >0.6 with cross-

loading evident for variability in both groups (Table 6-4 and Table 6-5, Figure 6-

1C). 
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Table 6-2 - Item loadings of the principle component analysis for controlled (laboratory) BWM gait in controls. 
 

Item Pace Rhythm Asymmetry Variability 

Pace     
  Step Velocity 0.936 0.201 -0.100 -0.024 
  Step Length 0.845 -0.422 -0.143 -0.082 
  Step Length Asymmetry 0.578 -0.203 0.231 0.171 
Rhythm     
  Step Time -0.100 0.970 0.115 0.152 
  Stance Time -0.039 0.938 0.133 0.052 
  Swing Time -0.161 0.856 0.074 0.245 
Asymmetry     
  Step Time Asymmetry 0.126 0.118 0.808 -0.039 
  Stance Time Asymmetry -0.076 0.089 0.956 0.071 
  Swing Time Asymmetry -0.056 0.085 0.965 0.070 
Variability (SD)     
  Step Time -0.038 0.228 -0.024 0.922 
  Stance Time -0.074 0.244 0.025 0.919 
  Swing Time -0.163 0.281 0.039 0.905 
  Step Length 0.400 -0.079 0.079 0.782 
  Step Velocity 0.473 -0.280 0.080 0.679 
% Variance (84.84%) 17.18% 22.27% 18.82% 26.58% 

 

 

 

 

 



  

 
  

1
3

5
 

Table 6-3 - Item loadings of the principle component analysis for controlled (laboratory) BWM gait in PD. 
 

Item Pace Rhythm Asymmetry Variability 

Pace     
  Step Velocity 0.974 0.108 -0.132 0.131 
  Step Length 0.888 -0.415 -0.143 0.010 
Rhythm     
  Step Time -0.065 0.951 0.052 0.285 
  Stance Time -0.067 0.880 0.152 0.192 
  Swing Time -0.050 0.855 -0.055 0.332 
Asymmetry     
  Step Time Asymmetry -0.035 -0.048 0.927 0.104 
  Stance Time Asymmetry -0.112 0.074 0.968 0.089 
  Swing Time Asymmetry -0.093 0.098 0.961 0.099 
  Step Length Asymmetry -0.184 0.352 0.405 0.251 
Variability (SD)     
  Step Time -0.027 0.222 0.196 0.922 
  Stance Time -0.048 0.269 0.129 0.922 
  Swing Time -0.065 0.275 0.126 0.920 
  Step Length 0.133 0.227 0.058 0.889 
  Step Velocity 0.177 0.098 0.042 0.909 
% Variance (88.43%) 13.29% 21.38% 21.67% 32.15% 
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Table 6-4 - Item loadings of the principle component analysis for free-living BWM gait for controls. 
 

Item Pace Rhythm Asymmetry Variability 

Pace     
  Step Velocity 0.797 -0.054 -0.109 -0.156 
  Step Length 0.970 -0.558 0.119 -0.027 
Rhythm     
  Step Time -0.110 0.982 0.072 0.120 
  Stance Time -0.065 0.950 0.166 0.132 
  Swing Time -0.191 0.936 -0.033 0.136 
Asymmetry     
  Step Time Asymmetry -0.104 0.085 0.968 0.099 
  Stance Time Asymmetry -0.082 0.043 0.968 0.115 
  Swing Time Asymmetry -0.082 0.096 0.915 0.117 
  Step Length Asymmetry 0.227 -0.053 0.728 0.047 
Variability (SD)     
  Step Time -0.251 0.358 0.493 0.704 
  Stance Time -0.241 0.280 0.525 0.711 
  Swing Time -0.229 0.448 0.451 0.682 
  Step Length -0.100 0.228 -0.070 0.784 
  Step Velocity 0.123 -0.193 0.033 0.946 
% Variance (90.00%) 13.60% 25.53% 28.79% 22.08% 
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Table 6-5 - Item loadings of the principle component analysis for free-living BWM gait in PD.  
 

Item Pace Rhythm Asymmetry Variability 

Pace     
  Step Velocity 0.991 -0.024 -0.016 0.014 
  Step Length 0.789 -0.562 0.122 0.140 
Rhythm     
  Step Time -0.088 0.974 0.160 0.114 
  Stance Time -0.067 0.927 0.248 0.166 
  Swing Time -0.131 0.945 0.014 0.079 
Asymmetry     
  Step Time Asymmetry -0.002 0.130 0.959 0.209 
  Stance Time Asymmetry -0.029 0.130 0.967 0.140 
  Swing Time Asymmetry -0.060 0.101 0.950 0.119 
  Step Length Asymmetry 0.274 0.058 0.780 0.240 
Variability (SD)     
  Step Time -0.165 0.463 0.522 0.664 
  Stance Time -0.182 0.465 0.533 0.624 
  Swing Time -0.215 0.542 0.435 0.660 
  Step Length 0.088 0.226 0.073 0.856 
  Step Velocity 0.242 -0.261 0.231 0.869 
% Variance (93.03%) 13.49% 27.92% 30.52% 21.10% 
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Figure 6-1 - Conceptual gait models derived A) previously using a pressure-sensor walkway in the laboratory B) with BWM in 

controlled conditions and C) with BWM in the free-living environment.(C) = control only, (P) = PD only
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6.4 Discussion  

This is the first study to explore conceptual gait models with BWM from controlled 

and free-living gait characteristics. Furthermore, the models remained stable 

compared to our previously published model derived from laboratory based 

GaitRite™ data (Lord et al., 2013a).  

When creating the model, four discrete gait domains were identified under both 

conditions (pace, rhythm, variability and asymmetry), which showed that the 

domains are not protocol dependent. Unexpectedly, step length asymmetry 

loaded onto pace for controls. Previously, gait domains appear more discrete in 

pathological cohorts than healthy older adults (Lord et al., 2013a); this 

complements our findings and demonstrates the impact of PD on gait. 

Interestingly, step length asymmetry loaded onto the asymmetry domain in free-

living for both groups. BWM are more sensitive at detecting characteristics of 

asymmetry (Del Din et al., 2016c), but in addition, perhaps due to environment 

complexity, asymmetry increased in free-living (Del Din et al., 2016a) thereby 

emphasising it.  

The postural control domain was unable to be replicated, which in the earlier 

model had been expressed by three gait characteristics (step width, step width 

variability and step length asymmetry). Step width and step width variability 

cannot be measured using our BWM, and their omission from the PCA altered 

the factor loading for step length asymmetry. This is a limitation as postural 

control is a critical aspect of gait. Future algorithm development is underway for 

measurement of these characteristics with BWM. However, BWM do provide a 

nuanced approach to postural control measurement (Lowry et al., 2009) which 

could be used in addition to our gait model for simplistic clinical interpretation. 

Although loading of variability characteristics demonstrated instability compared 

to other domains, in contrast to our previous model, characteristics loaded onto 

one domain. Reasons may be twofold: similarly to asymmetry, BWM analysis 

appears to be more sensitive to variability characteristics compared to 

GaitRite™(Del Din et al., 2016c) and; measures of variability become more 

accurate with increased step count (Galna et al., 2013).  
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This work shows stability of the gait model when using BWM derived 

characteristics. This is an important finding to inform future clinical research with 

the progression of gait assessment into free-living. 
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Section 2: The gait-cognition relationship in free-living 

 

Following on from section one, the conceptual framework of gait in free-living will 

now be applied to data from the ICICLE-Gait study to explore gait-cognition 

associations in controlled and free-living environments.  

 

6.5 Overview 

Although gait measurement in the laboratory provides a controlled and detailed 

assessment it also poses a number of limitations. The process is expensive, 

requiring complex equipment and highly trained staff, and in addition equipment 

can be cumbersome. Thus, laboratory gait assessment provides a challenge for 

widespread clinical use. Furthermore, laboratory gait measurement is usually a 

one-off assessment, leading to only a snapshot of a participant’s ability. This is 

particularly problematic in disorders such as PD for which there are often 

fluctuations in symptoms according to medication status.  

Gait assessment environment can also play a factor in participant performance. 

In particular, the relationship between attention and gait is strong in data derived 

from laboratory settings (Morris et al., 2016). This association may be derived 

from primed attention during laboratory or clinical setting assessments leading to 

an improved performance compared to the participant’s norm. This is often 

termed the ‘Hawthorne effect’ in which performance alters under overt evaluation 

compared to covert evaluation (Robles-García et al., 2015). This has been 

demonstrated in PD in which differences in gait using the instrumented timed up 

and go (iTug) in controlled and habitual environments were identified (Zampieri et 

al., 2011). Currently, there is limited research on the effect of environment on a 

comprehensive battery of gait characteristics and the effect this has on the gait-

cognition relationship. 

A number of studies have explored gait and cognition associations in the free-

living. In older adults, Kaye et al. (2012) used an infra-red motion system for four 

weeks in the home allowing for continuous testing conditions. Kaye et al. 
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measured the mean and variability of number of walks per day and walking 

speed and found associations between number of daily walks and mean speed 

with global cognition as well as mean speed with attention and visuospatial 

function. Using the same device, gait in the home was measured as a predictor 

for cognitive decline in participants with MCI (Dodge et al., 2012). Dodge et al. 

(2012) found that those with a slower gait speed and increased variability in 

walking speed (average, calculated weekly) were more likely to develop non-

amnestic MCI. Both these studies demonstrate the gait-cognition relationship 

remains evident in habitual environments. However, the studies pose limitations 

in that only global gait measurements were assessed and walking bouts were 

only measured at one indoor location.  

Gait and cognition associations in free-living are likely to reflect environment 

context. For example, free-living data contains both short bouts of dual tasking 

(e.g. carrying objects whilst walking in the home) and long periods of steady state 

walking (e.g. walking through the park). To reflect this, ambulatory activity can be 

analysed using ambulatory bouts (AB) which provide gait characteristics for 

different bout lengths e.g. short bouts (10-20 seconds) and longer bouts (≥120 

seconds). One recent publication assessed gait during AB ≥60 seconds using a 

BWM for a three day period and explored associations with cognition (Weiss et 

al., 2015). The study found associations with gait and postural control with global 

cognition, attention and executive function. Specifying AB over 60 seconds poses 

limitations as gait characteristics differ according to bout length (Del Din et al., 

2016a) and very few AB over 60 seconds are completed in people with PD, thus 

leading to significant data loss (Del Din et al., 2016a). This limits interpretation of 

the gait-cognition relationship in free-living and to date associations have not 

been explored in shorter AB.  

This exploratory study aimed to i) explore gait-cognition associations using a 

BWM in relation to protocol i.e. laboratory v’s free-living conditions and ii) explore 

the effect of short versus long AB length on gait-cognition associations in PD. 

Although this study is exploratory, it is hypothesised that i) gait-cognition 

associations will be more evident in the laboratory setting due to primed attention 

and ii) gait and cognition associations will be more evident in shorter AB due to 

the likelihood of increased environment complexity.  
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6.6 Specific methods 

6.6.1 Participants  

PD participants were recruited from the ICICLE-Gait study as previously 

described in chapter 3. This exploratory study was of cross-sectional design at 

the 36 month assessment (three years post diagnosis). Age, sex and height were 

recorded for all participants. Premorbid intelligence was assessed using the 

National Adult Reading Test (NART) (Nelson and O'Connell, 1978). PD specific 

assessments included; disease severity using the Movement Disorders Society 

Unified Parkinson’s disease rating scale (MDS-UPDRS) (Goetz et al., 2008) 

(Appendix 3.0) and Hoehn and Yahr scale (Hoehn and Yahr, 2001) (Appendix 

4.0).  

6.6.2 Neuropsychological assessment 

A comprehensive battery of neuropsychological assessments examined seven 

domains of cognition; global cognition using the MoCA, working memory using 

the Wechsler forward digit span (Wechsler, 1958), attention using the mean 

score of simple reaction time (SRT), digit vigilance (DV) and choice reaction time 

(CRT) from the cognitive drug research battery (CDR), fluctuating attention using 

the coefficient of variance (CV) of the SRT, DV and CRT from the CDR, 

executive function using the one touch stockings (OTS) from the Cambridge 

Neuropsychological Test Automated Battery (CANTAB), visual memory using 

pattern recognition memory (PRM) and spatial recognition memory (SRM) from 

the CANTAB and visuospatial using the intersected pentagons test. For further 

details see chapter 3, section 3.4. 

6.6.3 Gait assessment and outcomes  

Fourteen gait characteristics were assessed representing four domains of gait 

derived from the conceptual framework in section 1 (Figure 6-1) using the BWM 

in controlled and free-living environments. Gait characteristics represented 

domains of pace (step velocity, step length), rhythm (step time, stance time, 

swing time), variability (step time SD, stance time SD, swing time SD, step length 

SD, step velocity SD) and asymmetry (step time asymmetry, stance time 
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asymmetry, swing time asymmetry, step length asymmetry). Firstly, gait 

laboratory data was collected under continuous walking conditions (as described 

in section 6.2.3) using a BWM positioned at the fifth lumbar vertebrae (L5).  

Secondly, to examine gait in the free-living participants wore the BWM positioned 

at L5 as described in section 6.2.3. Free-living data was collected over 7 days 

with data extracted as above in section 6.6.4. Free-living gait characteristics for a 

short and longer AB were also determined.  

6.6.4 Data processing  

BWM data was processed using the same stages as described in section 6.1.2. 

Additional AB data was also derived. Individual AB were extracted using 

MATLAB® with AB detected by applying selective thresholds on the standard 

deviation and magnitude vector of triaxial accelerations, as in previous work 

(Lyons et al., 2005; Del Din et al., 2016a). The fourteen gait characteristics as 

depicted in Figure 6-1 were evaluated for a short and long AB selected according 

to previous work (Del Din et al., 2016a); 10s-≤20 secs and ≥ 120 secs.  

6.6.5 Data Analysis 

All statistical analysis was carried out using SPSS v.21. Normality of data was 

first inspected with histograms and boxplots and tested using Shapiro-Wilk, all 

data met normality assumptions. Univariate and bivariate analysis was initially 

used to describe data.  

First, in order to explore associations between gait and cognition for participants 

in both the laboratory and free-living were partial correlations were conducted 

controlling for age, gender and NART. To further identify independent gait-

cognition associations multivariate linear regression analysis was then 

performed. Fourteen independent models (for each gait characteristic) were 

examined for two minute continuous walks in the laboratory and for free-living 

data for the following conditions; AB of 10s-≤20 secs and AB ≥ 120 secs. For 

each model, gait characteristics were added as the dependent variable with 

independent variables added in two stages. Demographics of age, gender and 

NART scores were entered in the first block for all models using the enter 

procedure. Cognitive assessments (MoCA, Digit Span, SRT, DV, CRT, SRT CV, 
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DV CV, CRT CV, PRM, SRM, OTS, Pentagons) that reached significance (p 

≤.01) in partial correlations for controlled laboratory conditions and each AB 

condition (10s-≤s20s and AB≥120s) were entered into the second block using the 

stepwise procedure. Due to the exploratory nature of this study multiple 

comparisons were not controlled for, however, in order to reduce the risk of Type 

II statistical error a stringent threshold of p ≤.01 was used for interpreting results.  

 

6.7 Results 

6.7.1 Participant demographics 

Tables 6-6 and Table 6-7 display descriptive data for demographic, clinical and 

cognitive characteristics for all participants. The group contained proportionally 

more males than females, the majority were classed as ‘mild Parkinsonism’ (H & 

Y II) and had an average MoCA score of 26.33 ± 3.34. 

 

Table 6-6 - Demographic and clinical data for participants. 
 

  PD (N=55) 

  Mean SD 
Age  69.60 9.48 
Male/Female (n)  35/20 
NART  114.93 10.94 
MDS-UPDRS III  36.93 11.50 
LEDD  528.02 268.18 
H & Y Stage (I-IV)  (I) 1; (II) 49; (III) 5 

 

[NART= National Adult Reading Test, MDS-UPDRS= Movement Disorders Society 

Unified Parkinson’s disease Rating Scale, LEDD=levodopa equivalent dose, H&Y= 

Hoehn & Yahr] 
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Table 6-7 - Descriptive data of cognitive characteristics. 
 

Cognitive domain/test   PD (N=55) 

  Mean SD 
Global Cognition    
MoCA  26.33 3.34 
Working Memory    
Digit span  5.80 1.21 
Attention    
Simple Reaction Time (ms)  360.89 88.77 
Digit Vigilance (ms)  489.15 59.80 
Choice Reaction Time (ms)  578.56 111.93 
Fluctuating Attention     
Simple Reaction Time CV (%)  17.72 0.05 
Digit Vigilance CV (%)  17.05 0.05 
Choice Reaction Time CV (%)  21.10 0.07 
Visual Memory    
Pattern Recognition Memory  20.05 2.90 
Spatial Recognition Memory  14.49 1.91 
Executive Function    
One Touch Stocking  13.76 5.04 
Visuospatial    
Pentagons  1.91 0.40 

 

 

6.7.2 The effect of protocol 

Figure 6-2 shows a radar plot of the fourteen gait characteristics for PD subjects 

both in the laboratory using the BWM (central dotted line) and in relation to gait 

characteristics measured in free-living. AB over 120 seconds are represented by 

the green line. Steady state walking in free-living had significantly higher pace, 

rhythm and variability compared to the laboratory. Asymmetry was similar to 

laboratory performance except for step length asymmetry which was significantly 

reduced in free-living (p<.01) (Appendix 22.0). One PD participant did not 

complete any AB ≥120 seconds and therefore was not included in further 

analysis. Significant associations (partial correlations controlling for age, gender 

and NART) between gait and cognition are shown in Table 6-8. Partial 

correlations identified that in controlled conditions reduced pace (step velocity) 

was associated with increased fluctuating attention (p<.01), increased asymmetry 

(step length asymmetry) was associated with poorer attention (p<.01) and 

increased variability was associated with poorer attention (swing time SD, p<.01), 

increased fluctuating attention (swing time SD, p<.01) and poorer visual memory 
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(step time SD, p<.01). In free-living partial correlations identified increased stance 

time asymmetry was associated with increased fluctuating attention (p<.01) and 

increased step time asymmetry was associated with poorer visual memory 

(p<.01). All partial correlations can be found in Appendix 24.0 and 25.0. 

Multivariate linear regression results from the laboratory revealed that 

representatives of pace, asymmetry and variability were associated with cognition 

(Table 6-9). A colour correlation table (Table 6-12), adapted from Morris et al, 

2016, depicts associations between gait and cognition during laboratory 

conditions. Slower pace (step velocity) was associated with poorer fluctuating 

attention (β -.359, p=.009) explaining 25.3% of total variance. Increased 

asymmetry (step length asymmetry) was associated with poorer attention (β .467, 

p=.003) explaining 11.8% of total variance. Finally, increased variability (step time 

SD (β -.620, p=.000), stance time SD (β -.617, p=.000 and swing time SD β -

.610, p=.001)) was associated with poorer visual memory explaining 21.2%, 

20.0% and 19.1% of variance respectively. In free-living, only gait characteristics 

representative of asymmetry were associated with cognition during steady state 

walking (see Table 6-9 and for colour correlation see Table 6-13). Increased step 

time asymmetry (β -.414, p=.008) was associated with worse visual memory and 

increased stance time (β .379, p=.005) and swing time (β .341, p=.010) 

asymmetry were associated with worse fluctuating attention explaining 9.0%, 

17.3% and 19.8% of variance respectively. 

Table 6-8 - Partial correlations between gait and cognition in steady state walking 
in the laboratory and free-living. 

Gait Domain  Ax L5 Lab AB ≥120 sec 

Pace  -.393 (.009) FA (SRT CV) 
 

 

Rhythm 
 

   

Asymmetry  .441 (.003) ATT (DV) .391 (.005) FA; -.371 (.008) 
VM 

 
Variability  .400 (.008) ATT (SRT) 

.434 (.004) FA (SRT CV) 
-.513 (<.001) VM (SRM) 

 

 

[ATT= attention, FA= fluctuating attention, VM=visual memory]. Controlling for age and 

NART]
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Table 6-9 - Multivariate linear regression analysis for independent gait-cognition associations in the laboratory (BWM lab) and 
free-living AB over 120 seconds (AB ≥120). 

 
 Gait 

Domain 

Gait 
Characteristic 

Cognitive 
Domain 

Cognitive 
Assessment 

β p Adjusted 
R2 

ΔR ANOVA 
F 

ANOVA   
p 

B
W

M
 L

a
b

A
 

 
Pace 

 
Step Velocity FA SRT CV -.359 .009 .253 

 
.124 4.8 .003 

Asymmetry Step Length Asy ATT DV .467 .003 .118 .194 2.5 .056 

Variability Step Time SD VM SRM -.620 <.001 .212 .257 4.0 .008 

 Stance Time SD VM SRM -.617 <.001 .200 .255 3.8 .010 

 Swing Time SD VM SRM -.610 .001 .191 .249 3.7 0.12 

A
B

 ≥
1

2
0

B
 

 
Asymmetry 

 
Step Time Asy VM SRM -.414 .008 .090 

 
.134 2.3 .074 

 Stance Time Asy FA SRT CV .379 .005 .173 .137 3.7 .010 
 Swing Time Asy   .341 .010 .198 .111 4.2 .005 

[For both models age, gender and NART entered in the first step. For model a; SRT, DV, SRT CV and SRM and for model b; SRT CV and 

SRM were entered on stepwise mode. ATT= attention, FA= fluctuating attention, VM= visual memory].  
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Figure 6-2 - Radar plot illustrating the 14 gait characteristics for AB lengths for people with PD. 
[The central dotted line represents data collected from the BWM in the laboratory. Data deviating away from this line represents standard 

deviations. Free-living data differs from laboratory data for all bouts (Ax7, orange line) and each bout category (grey; AB 10-20 secs and 

green; AB ≥120 secs)].

-2

-1

0

1

2

3

4

Step Velocity

Step Length

Step Time

Stance Time

Swing Time

Step Time SD

Stance Time SD

Swing Time SD

Step Length SD

Step Velocity SD

Step Time Asy

Stance Time Asy

Swing Time Asy

Step Length Asy

Lab

Ax7

10-20 sec

≥120sec

Pace 

Asymmetry 

Variability 

Rhythm 



Chapter 6: Gait and cognition in free-living; an exploratory look 
  

150 
 

6.7.3 The effect of shorter bout length  

Compared to longer AB, for shorter AB pace decreased, rhythm increased and 

both variability and asymmetry increased (Figure 6-2). Descriptive data of gait 

characteristics of the AB lengths can be found in Appendix 23.0. Associations 

(partial correlations) between gait and cognition for shorter AB are shown in 

Table 6-10. All partial correlations can be found in the appendices (Appendix 

26.0). Table 6-11 reports the multivariate linear regression analysis of gait and 

cognition associations for shorter AB, see Table 6-14 for colour correlation.  

Figure 6-3 provides a schematic representation of gait-cognition associations 

according to AB lengths. 

For AB of 10-20 seconds, increased rhythm (stance time) was associated with 

worse visual memory (β -.454, p=.002) explaining 18.0% of total variance. 

Increased asymmetry (step time asymmetry [β .428, p=.002] and stance time 

asymmetry [β .405, p=.004]) was associated with worse attention, explaining 

13.9% and 13.4% of total variance respectively. Increased asymmetry (swing 

time asymmetry [β .427, p=.002]) was associated with increased fluctuating 

attention explaining 17.0% of total variance. Increased variability (step time 

variability [β -.532, p=.000], stance time variability [β -.503, p=.000] and swing 

time variability [β -.503, p=.000]) was associated with worse visual memory 

explaining 31.7%, 34.5% and 28.3% of total variance respectively. Additionally, 

increased variability was associated with increased fluctuating attention (step 

time variability [β .331, p=.007] and stance time variability [β .412, p=.001]).  

Table 6-10 - Partial correlations for cognitive assessment and gait characteristics 
for shorter AB 10-20secs.  

 

 Gait Domain  PD 

A
B

 1
0
-2

0
 

Pace   

Rhythm -.420 (.002) VM 

Asymmetry .418 (.002) ATT; .431 (.002) FA 

Variability .414 (.003) FA; -.491 (<.001) VM 

[GC= global cognition, ATT= attention, FA= fluctuating attention, VM= visual memory. 

Table shows most significant associations from the gait characteristics and tests 

depicted here as domains] 
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Table 6-11 - Multivariate linear regression analysis for significant independent associations between gait and cognition in free-

living for shorter AB 10-20 secs. 

 Gait 
Domain 

Gait 
Characteristic 

Cognitive 
Domain 

Cognitive 
Assessment 

β p Adjusted R2 ΔR ANOVA 
F 

ANOVA 
p 

A
B

 1
0
-2

0
 

Rhythm Stance Time  VM SRM -.454 .002 .180 .162 3.9 .008 

Asymmetry Step Time Asy ATT SRT .428 .002 .139 .169 3.1 .022 

 Stance Time Asy   .405 .004 .134 .151 3.0 .025 

 Swing Time Asy  FA SRT CV .427 .002 .170 .175 3.7 .010 

Variability Step Time SD VM SRM -.532 <.001 .317 .229 5.9 <.001 

  FA CRT CV .331 .007  .101   

 Stance Time SD VM SRM -.503 <.001 .345 .206 6.6 <.001 

  FA CRT CV .412 .001  .157   

 Swing Time SD VM SRM -.503 <.001 .283 .200 6.2 <.001 

[Age, gender and NART entered on first step. SRT, SRT CV, CRT CV and SRM entered on stepwise for second step.] 
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Table 6-12 Colour correlation table to display cognitive and gait associations in controlled conditions. 

 

1 Simple Reaction Time CV, 2 Digit Vigilance, 3 Spatial Recognition Memory. Green indicates an association was found, red indicates 

no association found. 

 

 

 

 

 

 

Domain/Factor Global cognition Working Memory Attention Fluctuating 
Attention 

Visual Memory Executive 
Function 

Visuospatial 
Function 

Pace 
Step Velocity 
Step Length 

      1    

Rhythm 
Step Time 
Stance Time 
Swing Time 

       

Asymmetry 
Step Time Asymmetry 
Stance Time Asymmetry 
Swing Time Asymmetry 
Step Length Asymmetry 

     2     

Variability (SD) 
Step Time SD 
Stance Time SD 
Swing Time SD 
Step Length SD 
Step Velocity SD 

       3   
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Table 6-13 Colour correlation table to display cognitive and gait associations in free-living AB ≥120 seconds. 
 

1 Simple Reaction Time CV;  2 Spatial Recognition Memory. Green indicates an association was found, red indicates no association 

found. 

 

 

 

 

 

Domain/Factor Global cognition Working Memory Attention Fluctuating 
Attention 

Visual Memory Executive 
Function 

Visuospatial 
Function 

Pace 
Step Velocity 
Step Length 

       

Rhythm 
Step Time 
Stance Time 
Swing Time 

       

Asymmetry 
Step Time Asymmetry 
Stance Time Asymmetry 
Swing Time Asymmetry 
Step Length Asymmetry 

     1     2   

Variability (SD) 
Step Time SD 
Stance Time SD 
Swing Time SD 
Step Length SD 
Step Velocity SD 
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Table 6-14 Colour correlation table to display cognitive and gait associations in free-living AB 10-20 seconds. 
 

1 Spatial Recognition Memory; 2 Simple Reaction Time; 3 Simple Reaction Time CV; 4 Choice Reaction Time CV. Green indicates an 

association was found, red indicates no association found. 

Domain/Factor Global cognition Working Memory Attention Fluctuating 
Attention 

Visual Memory Executive 
Function 

Visuospatial 
Function 

Pace 
Step Velocity 
Step Length 

       

Rhythm 
Step Time 
Stance Time 
Swing Time 

      1   

Asymmetry 
Step Time Asymmetry 
Stance Time Asymmetry 
Swing Time Asymmetry 
Step Length Asymmetry 

     2    3    

Variability (SD) 
Step Time SD 
Stance Time SD 
Swing Time SD 
Step Length SD 
Step Velocity SD 

      4   1   
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Figure 6-3 - Gait and cognition associtions in free-living for different AB. Figure adapted from Morris et al, 2016. 
 

Language 
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6.8 Discussion 

This exploratory chapter deciphered differences in gait and cognition associations 

between controlled laboratory and habitual free-living environments. Additionally, 

gait and cognition associations of short and long ambulatory bout lengths (AB) in 

the free-living were explored. During steady state walking, cognition was more 

evidently associated with gait in controlled conditions compared to free-living. 

Furthermore, shorter AB in free-living showed greater association with cognition 

compared to longer AB. Importantly, this study used a comprehensive battery of 

gait characteristics to explore gait and cognition during free-living.  

6.8.1 The effect of environment 

It was hypothesised that gait and cognition associations would be more evident in 

controlled rather than habitual environments. In the laboratory, pace was 

associated with fluctuating attention, asymmetry was associated with attention 

and variability was associated with visual memory. In comparison, during steady 

state walking in free-living only asymmetry of gait was associated with visual 

memory. These findings are in agreement with the hypothesis that gait-cognition 

associations are more evident when measuring gait in controlled environments 

compared to long bouts of steady state walking in free-living.  

The majority of associations in the laboratory were with characteristics of 

asymmetry and variability. As discussed in chapter 2, there are few previous 

studies that associate gait and cognition for domains other than pace in the 

laboratory (Morris et al., 2016). Additionally, to date there are no studies which 

have assessed a comprehensive battery of gait characteristics in relation to 

cognition in controlled conditions using a BWM. Nevertheless, one previous study 

measured both variability and asymmetry using the GaitRite™ system (Lord et 

al., 2014). This study found global cognition to associate with variability however 

there were no associations for asymmetry. Contrasting findings are likely due to 

differences in measurement tool. BWM have shown heightened sensitivity to 

characteristics of variability and asymmetry, with laboratory equipment such as 

the GaitRite™ unable to detect subtle deficits in characteristics from these 

domains (Del Din et al., 2016c). Additionally, the laboratory protocol used here 

contains regular gentle turns which may have impacted on gait asymmetry. It is 
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also plausible that with progression of disease in this cohort (+3 years) 

characteristics of variability and asymmetry have become more dependent on 

cognition.  

Characteristics of pace and variability were associated with fluctuating attention 

and visual memory respectively in the controlled environment, but these results 

were not replicated in free-living. These findings may signify heightened 

attentional control of gait in the controlled environment. Gait in a laboratory 

setting forms a formal environment which increases alertness, anxiety and 

attention and reflects an individual’s ‘best’ performance (Brodie et al., 2016). This 

exploratory study demonstrates that cognitive domains associated with gait (i.e. 

attention) remain when using a BWM in a controlled environment and further 

emphasise the importance of the role of frontal cognition on gait. In comparison 

to the laboratory, steady state walking in free-living identified associations 

between gait asymmetry and attention as well as visual memory. Importantly, the 

same cognitive domains remain associated with gait signifying gait is reliant on 

the same cognitive resources despite differences in environment. One previous 

study has associated gait and cognition in free-living to which comparisons can 

be drawn (Weiss et al., 2015). Similar to this study, gait was associated with 

frontal cognitive measures but in contrast only characteristics of asymmetry were 

associated with cognition. In additional analysis of isolated ABs of 60-120 

seconds it was found that variability was associated with spatial recognition 

memory (SRM) which is frontally mediated. One possible explanation is that 

associations found by Weiss et al. (2015) were driven by AB of a slightly shorter 

duration than 120 seconds. AB over 120 seconds are likely to reflect steady state 

walking in an outdoor environment where gait becomes more rhythmical and 

automatic. However, associations with asymmetry and attention during steady-

state walking in free-living suggests attention plays an important role in refining 

asymmetry even during rhythmical gait, which is possibly due to a more complex 

environment. It is important to note that differences seen between gait and free-

living may also be dependent on other aspects of protocol. For example, 

medication status is a confounding factor in this study as in controlled conditions 

participants were ‘on’ medication whereas medication status is likely be variable 

over the free-living assessment period (continuous 7 days). Overall, gait and 
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cognition associations during steady state walking in different environments 

appears to reflect the same common neural correlate as discussed in chapter 4. 

It would be interesting to measure gait in the free-living in response to cholinergic 

treatment, in particular response of variability and asymmetry would be of interest 

due to the increased sensitivity driven both by measurement tool and 

environment complexity.  

6.8.2 The effect of bout length 

The second aim of this chapter was to observe associations between gait and 

cognition for short and longer AB lengths during free-living gait. It was 

hypothesised that shorter AB would be correlated with cognition more so than 

longer AB. It was found that for AB of 10-20 seconds there were associations for 

rhythm, variability and asymmetry with attention, fluctuating attention and visual 

memory but for AB ≥120 seconds only asymmetry was associated with 

fluctuating attention and visual memory. This confirms the hypothesis that gait 

during shorter AB is associated more with cognition compared to gait during 

longer AB. To date the only work associating gait and cognition in the free-living 

using BWM only analysed longer bouts and therefore it is difficult to compare 

findings (Weiss et al., 2015). It will be interesting to compare findings from shorter 

AB in an independent cohort in the future. In the shorter AB, variability and 

asymmetry were seen to increase which is most likely due to the complexity of 

the environment and reflecting gait adjustment in order to navigate and respond 

to obstacles. Additionally, shorter AB reflect natural dual tasking such as walking 

while carrying objects or walking while having a conversation which may also 

reflect an increase in asymmetry and variability.  

6.8.3 Clinical Implications  

This exploratory study demonstrated that gait and cognition are associated in 

free-living when using a single portable, easily implemented and cost-effective 

BWM. This has important implications for clinical practice and provides a basis 

for future studies to explore gait in the free-living as clinical biomarkers of 

cognitive decline. The use of BWM allows gait to be measured in the home and 

clinic environment and enable data to be quickly processed. This exploratory 

work has demonstrated that AB length is important when identifying gait and 
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cognition associations and that AB length needs to be taken into account for 

future longitudinal or cross-sectional studies.  

6.8.4 Limitations 

This chapter aimed to explore gait and cognition associations in free-living 

conditions, however further work is needed to determine the importance of 

environment and AB length in gait assessment. For this exploratory study, 

continuous two minute walks in the gait lab were compared to steady state 

walking in the free-living. This was chosen in order to evaluate similar walking 

periods, however continuous walks under this protocol contain gentle turns as 

participants walk in a circuit. This may have led to changes in gait (i.e. reduced 

velocity and step length and changes to variability and asymmetry) which may 

not be encountered so frequently in free-living during steady state walking 

(>120secs). In addition, the design of this circuit may have heightened attention 

further in the laboratory. These factors therefore may have confounded results.  

In the laboratory all participants were assessed ‘on’ medication but in free-living 

medication status will fluctuate. This will have a direct effect on both gait and 

cognition. To further understand this, work is currently underway at Newcastle 

University to determine the effect of medication intake on free-living gait and may 

lead to further refinement of free-living gait data. Finally, despite choosing a 

stringent p value of ≤.01 it has to be acknowledged that this cannot completely 

account for multiple comparisons. However due to the exploratory nature of this 

study it was necessary to explore a wide range of gait characteristics and 

cognitive domains. It is hoped this study will provide a foundation for future 

refined analysis. 

6.8.5 Conclusions  

This chapter presented the first exploratory study to measure a comprehensive 

battery of gait characteristics both in controlled laboratory and free-living 

environments, and their association with cognition. Furthermore, this is the first 

study to identify gait-cognition associations in accordance to different AB. This 

study identified gait and cognition associations are evident in free-living in PD 

and differ depending on AB length, which provides a basis for future studies to 

explore gait and cognition in free-living in PD. 
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Chapter 7 : Thesis overview and conclusions 

 

The original aim of this thesis was to explore gait as a predictor for cognitive 

decline in PD. PD is the second most common neurodegenerative disorder 

presenting with both motor and NMS. Of the range of NMS, cognitive impairment 

and PDD have a high incidence both in early and late disease and have major 

personal, social and economic impact. In order to optimise clinical management 

and develop novel therapeutics, it is vital that individuals ‘at risk’ of cognitive 

decline and dementia are identified early in disease. Current biomarkers are 

complex, costly and invasive highlighting a need for future clinical biomarkers. 

Previous work indicates that gait may provide a low-cost and non-invasive clinical 

biomarker.  

In order to explore this concept further, a structured review was conducted in 

chapter 2 exploring i) cross-sectional associations between gait and cognition 

and ii) the longitudinal nature of these relationships in three groups; older adults, 

cognitive impairment and PD. This structured review found gait and cognition 

associations were evident in older adults, cognitive impairment and PD. In 

addition, gait provided a strong predictor of cognitive decline in older adults. 

Importantly, the review identified that to date no longitudinal research had been 

undertaken in PD. Furthermore, it was recognised that throughout all studies 

there was a lack of a comprehensive approach to measurements of independent 

gait characteristics and cognitive domains as well as use of consistency of gait 

acquisition systems. This has led to a lack of sensitivity and specificity for gait 

predictors of cognitive decline and therefore to date has limited findings. 

The two main chapters from this thesis (chapters 4 and 5) provided a 

comprehensive and robust approach to exploring independent gait characteristics 

as predictors of cognitive decline over three years in an early, incident cohort of 

PD.  Both chapters demonstrated that gait, at diagnosis of PD, predicted 

cognitive decline over the first three years of disease and that this was selective 

to discrete gait characteristics and discrete cognitive domains. Importantly, gait 

provided a stronger predictor than baseline cognition. This work provided the first 

evidence for gait as clinical biomarker for early cognitive decline in PD.  
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Chapter 4 explored the role of single task gait as a predictor for cognitive decline. 

This chapter demonstrated that characteristics of pace, variability and postural 

control were able to predict a decline in fluctuating attention. In addition, 

characteristics of pace were able to predict a decline in visual memory. 

Importantly, these findings were isolated to PD pathology when compared to 

older adults. Critically, neuropsychological assessments were unable to predict 

decline in either fluctuating attention or visual memory. It was hypothesised that 

both gait and cognition rely on a common neural correlate, likely to stem from the 

cholinergic system. From this work, it would appear that gait is sensitive to early 

changes in a common pathology but neuropsychological assessments are not. It 

was hypothesised that fluctuating attention is an early indicator of future PDD 

pathology due to its vital role in Lewy body dementia (LBD) and therefore these 

findings may prove critical once an evolved cohort has been assessed. 

Chapter 5 explored the role of gait under a dual task paradigm as a predictor of 

cognitive decline. Dual task paradigms are often used in gait protocols and are a 

popular method in which to assess gait and cognition relationships. Chapter 5 

demonstrated that characteristics of pace, variability, rhythm, asymmetry and 

postural control were able to predict decline in fluctuating attention. In addition, 

characteristics of pace were able to predict a decline in visual memory. 

Furthermore, one characteristic of pace was able to predict decline in attention. 

These results further validated the findings from chapter 4 identifying the 

sensitivity of gait to decline in frontal cognitive assessments, mainly fluctuating 

attention. Dual task gait showed similar predictive ability to single task gait and 

although this may be due to the dual task paradigm used throughout this study, it 

may also indicate that single task gait may be sufficient for a clinical biomarker.  

Chapters 4 and 5 provided the first evidence for gait as a predictor of early 

cognitive decline in PD, indicating future utility as a clinical biomarker for 

cognitive decline and PDD. However, in order for gait to be a pragmatic and cost-

effective clinical biomarker measurement has to be transferred from the 

laboratory to the free-living (i.e. clinic, home and community environments). Thus, 

the final results chapter, chapter 6, provided an exploratory look at gait and 

cognition in free-living. First, in order to provide a conceptual gait framework, a 

factor analysis was conducted on free-living gait characteristics. The factor 
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analysis derived four independent gait domains in PD and older adults; pace, 

rhythm, variability and asymmetry. The second part of chapter 6 used this 

conceptual framework to explore associations between gait and cognition in free-

living. Gait and cognition associations were primed in the laboratory compared to 

steady state gait in free-living, possible due to heightened attention mechanisms 

thought to occur in overt testing conditions. Free-living gait and cognition 

associations were then explored in finer detail by analysing gait and cognition 

associations at different free-living ambulatory bout lengths. Gait and cognition 

associations were more evident in shorter compared to longer bouts, likely 

reflecting bout specific activities. This chapter demonstrated that gait and 

cognition associations remain in the free-living when assessed with a body worn 

monitor (BWM) as opposed to laboratory equipment. Furthermore, associations 

were most evident for domains of attention, fluctuating attention and visual 

memory- further validating the importance of these cognitive domains in PD 

pathology. This study provided an exploratory approach of comprehensive 

measurement of gait and cognition, how they are associated in different 

environments and how different AB activity may relate. This provides a 

foundation for further work in free-living gait.   

 

7.1 Clinical implications  

This thesis has identified the first evidence for gait as a predictor for decline in 

specific cognitive domains in PD. These findings have implications for future 

clinical practice by identifying a possible novel clinical biomarker for prediction of 

PD cognitive decline and PDD. It is important to identify patients at risk of 

cognitive decline and PDD as this helps reduce both direct and indirect effects of 

dementia pathology on patients (Woods and Trőster, 2003). Early detection of 

cognitive decline and dementia may help to modify medical as well as 

psychological treatment for both patients and their carers. Furthermore, it may 

help with future financial, personal and social planning which in turn would 

improve quality of life. Finally, it is hoped that early detection of ‘at risk’ patients 

will delay PDD onset and improve current impact of PDD on patients. As 

identified in chapter 1, current biomarkers are costly and invasive. Gait however 
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provides a simple and non-invasive assessment and with the use of BWM gait 

can provide a comprehensive evaluation in clinical and free-living environments. 

Ultimately, a battery of biomarkers is optimal in order to detect those at risk due 

to the complexity of pathology. This thesis identifies the first evidence for gait as 

a valuable addition to a comprehensive battery of biomarkers that can be 

obtained in the clinic. Currently, gait as a biomarker is limited by the wide range 

of gait protocols and gait acquisition systems. A standardised gait protocol needs 

to be employed across the literature in order to aid consistency of future findings.  

7.2 Limitations and Future work 

Whilst this thesis has identified novel and new evidence, further studies are 

needed to validate the role of gait as a clinical biomarker for cognitive decline in 

PD and more specifically PDD. This study provided a comprehensive and robust 

approach to identifying independent gait predictors of cognitive decline, however, 

it was limited by follow-up period. Critically, gait and cognition were assessed at 

point of diagnosis in PD which allowed for the prognostic significance of gait in 

very early disease to be determined. However, cognitive decline was only 

measured over three years. This has provided critical knowledge regarding 

underlying pathology but it remains unknown which gait characteristics will 

predict an end point diagnosis of PDD.  Therefore, further work needs to be 

completed once the cohort has evolved to determine which gait characteristics 

are independent predictors of PDD. This thesis also provided an exploratory look 

at gait and cognition associations in free-living. From this analysis it was 

determined that gait and cognition associations were still evident in free-living 

data when using a different measuring tool. However, it is understood from the 

literature that gait and cognition associations differ from predictors. This work was 

limited to a cross-sectional analysis and therefore future work needs to determine 

which gait characteristics are independent predictors of cognitive decline when 

assessing a comprehensive battery of gait characteristics using a BWM.  

Throughout this thesis a comprehensive battery of cognitive assessments was 

utilised in accordance to previously defined domains (Lord et al., 2014). However, 

it has to be acknowledged that this cannot omit the multi-determinate nature of 

neuropsychological assessments. For example, executive function and attention 



Chapter 7: Thesis overview and conclusions 

164 
 

often underpin assessment of other cognitive domains. Throughout the literature 

one neuropsychological assessment may be classified into several domains 

which was demonstrated in chapter 2. The Movement Disorder task force 

recognises that allocation of individual neuropsychological assessments is 

subjective (Litvan et al., 2012). In light of this, task force criteria have now been 

put in place to define neuropsychological assessment domains (Litvan et al., 

2012), a step which is critical in order for consistency in future work. 

Finally, analyses throughout this thesis were conducted without an adjustment for 

multiple comparisons. In order to account for this a stringent p value of ≤.01 was 

used throughout. It is important to note however, this is the first study to assess 

gait as a predictor for cognitive decline in PD and therefore it was critical that a 

comprehensive approach was used and from here future work can be refined by 

using this project as a foundation.  

 

7.3 Conclusions  

This thesis provided a comprehensive and robust approach to exploring gait in 

early PD as a predictor for cognitive decline over three years. Ultimately, this 

thesis has provided the first evidence for the utility as gait for a clinical biomarker 

for cognitive decline in early PD which proved to be specific to particular cognitive 

domains. The final conclusions from this thesis are as follows; 

1) A large structured review concluded gait and cognition associations were 

evident in PD, gait had the ability to predict cognitive decline and dementia 

in older adults but there was a lack of comprehensive measurement 

approach to gait and cognition throughout the literature 

2) Cognitive decline is evident in early PD compared to age matched controls 

3) Specific gait characteristics under single task conditions were significant 

predictors of increased fluctuating attention and poorer visuospatial 

memory over three years  

4) Specific gait characteristics under dual task conditions were also 

significant predictors of poorer attention, increased fluctuating attention 
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and poorer visual memory and provided similar predictive scope to single 

task gait 

5) A common neural correlate is thought to underpin both gait and cognition 

with gait demonstrating heightened sensitivity to pathological changes 

over cognitive assessments 

6) Gait and cognition associations remain evident in free-living demonstrating 

future ability for gait as a low-cost and non-invasive clinical biomarker for 

cognitive decline in PD
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Chapter 8 : Appendices 

1. Appendix 1.0: National Adult Reading Test (NART) 
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2. Appendix 2.0: Geriatric Depression Scale (GDS-15)  

 

 

Choose the best answer for the way you have felt over the last week: 

 

         Please circle: 

 

1. Are you basically satisfied with your life?   YES NO 

2. Have you dropped many of your interests and activities?  YES NO 

3. Do you feel that your life is empty?    YES NO 

4. Do you often get bored?     YES NO 

5. Are you in good spirits most of the time?   YES NO 

6. Are you afraid that something bad is going to happen  

to you?        YES NO 

7. Do you feel happy most of the time?    YES NO  

8. Do you often feel helpless?     YES NO 

9. Do you prefer to stay at home, rather than going out  

and doing new things?      YES NO 

10. Do you feel that you have more problems with your  

memory than most?      YES NO 

11. Do you think that it is wonderful to be alive now?  YES NO 

12. Do you feel pretty worthless the way you are now?  YES NO 

13. Do you feel full of energy?     YES NO 

14. Do you feel that your situation is hopeless?   YES NO 

15. Do you feel that most people are better off than you are? YES NO 

 

Total score:  

 

Answers in bold indicate depression. Although differing sensitivities and specificities have been 

obtained across studies, for clinical purposes a score > 5 points is suggestive of depression and 

should warrant a follow-up interview. Scores > 10 are almost always depression. 
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3. Appendix 3.0: Movement Disorders Society-Unified Disease Rating Scale 
Part III (MDS-UPDRS III) 
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4. Appendix 4.0: Hoehn and Yahr (H & Y) 
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5. Appendix 5.0: Montreal Cognitive Assessment (MoCA) 
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6. Appendix 6.0: The Hayling and Brixton Tests 
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7. Appendix 7.0: Pentagons 

 

 

Ask patient to copy a pair of intersecting pentagons    
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8. Appendix 8.0: Body Worn Monitor (BWM) patient information sheet 
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9. Appendix 9.0: Demographic characteristics of completers and non-completers 

Demographic 

 PD  Control 

 Completers 

(n=81) 

 Non-completers 

(n=38) 

 
 

T 

 

 

p 

 

 Completers 

(n=118) 

 Non-

Completers 

(n=66) 

 

T p 

 Mean SD  Mean SD   Mean SD  Mean SD  

Sex (M & F)  55M & 26F  24M & 14F  .26* 0.68*  54M & 64 F  24M & 42F  1.11* 0.29* 

Age (years)  66.11 9.91  68.72 11.60  -1.27 0.21  68.91 7.15  70.36 8.57  -1.23 0.22 

Height (m)  1.70 0.08  1.69 0.08  0.93 0.35  1.69 0.10  1.66 0.10  1.89 0.06 

NART  115.26 11.08  114.49 11.37  0.35 0.73  117.48 7.69  116.16 7.74  1.11 0.27 

LEDD (mg/day)  158.86 114.67  212.20 188.31  -1.61 0.11  - -  - -    

UPDRS III  24.35 10.32  27.55 10.37  -1.58 0.12  - -  - -    

GDS  2.65 2.30  2.50 1.89  0.36 0.72  1.28 2.03  0.99 1.44  1.15 0.25 

Hoehn & Yahr 
stage n (%) 

 I (21) II (47) III (13) 

IV (0) 

 I (7) II (23) III (8) IV (0)  -  - -  - -    
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10. Appendix 10.0: Single task gait characteristics; completers and non-completers 

   PD    Control  

Gait Domain Gait Variable Completers 
(n=81) 

Non-
Completers 

(n=38) 

T-Test  Completers 
(n=118) 

Non-
Completers 

(n=66) 

T-Test 

  Mean SD Mean SD T p  Mean SD Mean SD T p 

Pace                

 Step velocity (m/s) 1.14 0.21 1.08 0.22 1.41 0.16  1.30 0.17 1.20 0.21 3.69 <0.01 

 Step Length (m) 0.63 0.10 0.60 0.11 1.55 0.12  0.69 0.07 0.64 0.09 3.95 <0.01 

 Swing time SD (ms) 2.79 .28 2.88 0.39 -1.44 0.15  2.62 0.27 2.75 0.33 -2.98 <0.01 

Variability               

 Step time SD (ms) 2.85 0.30 2.95 0.38 -1.56 0.12  2.68 0.27 2.85 0.32 -3.84 <0.01 

 Stance time SD (ms) 3.02 0.36 3.16 0.43 -1.97 0.05  2.85 0.30 3.03 0.37 -3.45 <0.01 

 Step velocity SD (ms) 0.052 0.014 0.057 0.213 -1.42 0.16  0.052 0.013 0.055 0.012 -1.38 0.17 

 Step length SD (m) 0.022 0.006 0.025 0.010 -2.29 0.02  0.019 0.001 0.020 0.001 -1.20 0.23 

Rhythm               

 Step time (ms) 558.84 45.47 562.15 55.66 -.034 0.73  533.78 46.30 542.51 47.78 -1.22 0.23 

 Swing time (ms) 392.25 33.19 390.94 33.63 0.20 0.84  385.80 30.58 388.41 29.52 -0.56 0.57 

 Stance time (ms) 725.76 72.43 734.01 86.10 -0.54 0.59  682.31 68.69 697.00 76.26 -1.34 0.18 

Asymmetry               

 Step time asymmetry (ms) 4.13 2.34 4.21 2.36 -0.18 0.86  2.88 1.21 3.27 1.60 -1.61 0.11 

 Swing time asymmetry (ms) 3.73 2.01 3.61 1.89 0.32 0.75  2.63 1.16 2.74 1.60 -0.49 0.62 

 Stance time asymmetry (ms) 3.70 1.99 3.61 1.82 0.24 0.81  2.60 1.21 2.75 1.55 -0.70 0.49 

Postural Control               

 Step length asymmetry (m) 0.141 0.071 0.154 0.057 -0.97 0.33  0.122 0.062 0.140 0.057 -1.95 0.05 

 Step width (m) 0.091 0.032 0.095 0.027 -0.60 0.55  0.089 0.025 0.090 0.026 -0.14 0.89 

 Step width SD (m) 0.019 0.006 0.019 0.005 -0.24 0.81  0.023 0.006 0.021 0.005 1.54 0.13 
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11. Appendix 11.0: Cognitive data; completers and non-completers 

 

 

 

 Completers (n=81) Non-Completers 
(n=38) 

T-test (BL-36) 

 Mean SD Mean SD T P 

Global Cognition       

MMSE 28.83 1.09 28.32 1.63 1.76 .08 

MoCA  25.64 3.38 24.35 3.83 1.83 .07 

Working memory       

Forward digit span 5.98 1.14 5.47 0.98 2.34 .02 

Attention        

Reaction time (mean) 343.71 114.25 355.31 66.86 -0.58 .56 

Choice reaction time (mean) 520.02 79.37 547.51 95.84 -1.64 .10 

Digit Vigilance (mean) 471.11 52.19 497.04 61.00 -2.38 .02 

Fluctuating Attention       

Reaction time (CV) (%) 16.51 5.69 18.01 5.16 -1.38 .17 

Choice reaction time (CV) (%) 18.39 3.34 20.05 4.58 -1.99 .05 

Digit Vigilance (CV) (%) 15.84 3.52 16.57 4.16 -0.93 .33 

Executive Function       

One touch stocking (problems solved) 14.35 3.65 13.44 5.44 1.05 .39 

Semantic Fluency (animals in 90 secs) 22.56 6.05 20.08 6.82 1.97 .05 

Hayling Score 5.44 1.61 4.92 1.81 1.58 .12 

Brixton Score 4.53 2.36 4.56 2.41 -0.05 .96 

Visual Memory       

Pattern Recognition memory (number 
correct) 

20.14 2.86 19.19 2.87 1.64 .10 

Spatial Recognition memory (number 
correct) 

15.73 2.16 14.75 2.32 2.19 .03 

Paired associate learning (mean trials to 
success) 

1.95 0.67 2.54 1.32 -3.13 .02 

Visuospatial       

Pentagon copying 1.94 0.24 1.84 0.37 1.50 .14 
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12. Appendix 12.0: Single task gait characteristic predictors of cognitive decline in PD 

 CRT  CRTCV  SRM  OTS 

β St. Err T p  β St. Err T p  β St. Err T p  β St. Err T p 

P
a
c

e
 Step Velocity -48.30 27.59 -1.75 0.08  -4.05 1.34 -3.02 <.01 

X2 13.74* 
 1.32 0.56 2.33 0.02 

X2 7.50 
 1.07 1.08 0.10 0.32 

Step Length -114.78 58.46 -1.96 0.05  -8.64 2.86 -3.02 <.01 
X2 15.26* 

 2.93 1.19 2.47 0.01 
X2 10.48* 

 3.43 2.27 1.51 0.13 

Swing Time 
SD 

35.04 18.75 1.87 0.06  2.56 0.93 2.75 <.01 
X2 11.00* 

 -0.66 0.39 -1.69 0.09  -0.45 0.76 -0.60 0.55 

V
a
ri

a
b

il
it

y
 Step Time SD 31.23 18.13 1.72 0.09  2.14 0.90 2.38 0.02 

X2 8.57* 
 -0.75 0.38 -1.96 0.05  0.03 0.74 

 
0.04 0.97 

Step Stance 
SD 

30.12 15.49 1.95 0.06  1.98 0.77 2.58 0.01 
X2 9.46* 

 -0.54 0.33 -1.61 0.11  0.13 0.64 0.21 0.83 

Vel SD 311.01 364.88 0.85 0.40  -2.82 18.66 -0.15 0.88  -5.91 8.22 -0.72 0.47  19.55 15.65 1.25 0.21 

Len SD 1639.29 807.78 2.10 0.04 
X2 4.61 

 115.68 40.41 2.86 <.01 
X2 11.58* 

 -27.21 16.05 -1.70 0.09  -8.19 32.71 -0.25 0.80 

R
h

y
th

m
 Step time 0.03 0.13 0.21 0.83  0.01 0.01 1.45 0.15  -<.01 <.01 -0.66 0.51  <.01 <.01 0.81 0.42 

Swing time -0.11 0.18 -0.60 0.55  -0.01 0.01 -0.84 0.41  <.01 <.01 1.10 0.27  0.01 <.01 1.59 0.11 

Stance time 0.04 0.08 0.52 0.60  0.01 0.03 2.26 0.03 
X2 5.91 

 -<.01 <.01 -1.34 0.18  <.001 
 

<.01 
 

0.30 0.77 

A
s
y
m

m
e
tr

y
 Step Asy 0.16 2.55 0.06 0.95  0.08 0.13 0.60 0.55  -0.06 0.05 1.14 0.25  0.11 0.10 1.10 0.28 

Swing Asy -0.91 2.95 -0.31 0.76  0.18 0.15 1.23 0.22  -0.08 0.06 -1.42 0.16  0.12 0.11 1.10 0.28 

Stance Asy -0.23 2.99 -0.08 0.94  0.27 0.15 1.81 0.07  -0.07 0.06 -1.14 0.25  0.15 0.11 1.29 0.20 

P
o

s
tu

ra
l 

C
o

n
tr

o
l Length Asy 60.17 83.14 0.72 0.47  6.54 4.12 1.59 0.12  -2.00 1.73 -1.56 0.25  2.42 3.22 0.75 0.45 

Width -74.97 187.31 95.65 0.69  26.69 9.02 2.96 <.01 
X2 8.32 

 -3.49 3.96 -0.88 0.38  -1.48 7.38 -0.20 0.84 

Step Width SD 
 

216.68 953.93 0.23 0.82  58.53 47.49 1.23 0.22  23.94 19.72 1.21 0.23  51.24 36.57 1.40 0.16 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV= choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings.] 
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13. Appendix 13.0: Single task gait domain predictors of cognitive decline in PD.  

 

 CRT 
 

 CRTCV  SRM  OTS 

β St. Err 
 

T p  β St. Err T p  β St. Err T p  β St. Err T p 

Pace 
 
 

-11.02 5.26 -2.09 0.04 
 

 -0.61 0.26 -2.31 0.02 
 

 0.26 0.11 2.34 0.02 
 

 0.36 0.21 1.76 0.08 

Rhythm 
 
 

1.92 5.67 0.34 0.73  0.0068 0.028 0.58 0.98  -0.13 0.12 -1.09 0.28  -0.23 0.23 -1.0 0.32 

Asymmetry 
 
 

1.17 3.54 0.33 0.74  -0.17 0.17 -0.97 0.34  0.08 0.07 1.13 0.26  -0.17 0.13 -1.25 0.21 

Variability 
 
 

-5.83 4.98 -1.17 0.24  -0.33 0.25 -1.28 0.20  0.03 0.11 0.37 0.71  -0.21 0.20 -1.00 0.32 

Postural Control 
 
 

-1.01 4.81 -0.21 0.83  -0.59 0.23 -2.52 0.01  0.13 0.10 1.33 0.19  -0.01 0.19 -0.05 0.96 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV= choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings.] 
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14. Appendix 14.0 Single task gait characteristic predictors of cognitive decline in controls.  

 CRT  CRTCV  SRM  OTS 

β St. 
Err 

T p  β St. 
Err 

T p  β St. 
Err 

T p  β St. 
Err 

T p 

P
a
c

e
 Step Velocity 46.91 20.39 2.30 0.02 

X2 12.04* 
 0.58 1.21 0.48 0.63  0.73 0.55 1.34 0.18  0.13 0.63 0.20 0.84 

Step Length 25.70 45.80 0.56 0.58  2.07 2.71 0.76 0.46  0.04 1.27 0.03 0.98  1.24 1.44 0.86 0.39 

Swing Time SD -10.74 12.04 -0.89 0.37  -0.61 0.71 -0.86 0.39  -0.46 0.34 -1.35 0.18  -0.50 0.40 -1.26 0.21 

V
a
ri

a
b

il
it

y
 Step Time SD -13.38 12.13 -1.10 0.27  -0.93 0.72 -1.30 0.20  -0.60 0.34 -1.76 0.08  -0.24 0.40 -0.60 0.55 

Step Stance 
SD 

-12.29 10.85 -1.13 0.26  -0.54 0.64 -0.84 0.40  -0.49 0.31 -1.62 0.11  <0.01 0.36 0.02 0.99 

Vel SD 479.85 274.32 1.75 0.08  -11.51 16.44 -0.70 0.49  -2.15 7.65 -0.28 0.78  -13.81 8.55 -1.62 0.11 

Len SD 191.68 649.31 0.30 0.77  -24.33 38.48 -0.63 0.53  -11.38 17.95 -0.63 0.53  -57.78 20.08 -2.88 <0.01 
X2 9.93 

R
h

y
th

m
 Step time -0.21 0.08 -2.73 <0.01 

X2 8.00 
 -<0.01 

 
<0.01 

 
-0.04 0.97  -<0.01 <0.01 -2.00 0.05  <0.01 <0.01 0.91 0.37 

Swing time -0.21 0.11 -1.84 0.07  <0.01 
 

<0.01 
 

0.06 0.95  -<0.01 <0.01 1.58 0.12  <0.01 <0.01 0.26 0.79 

Stance time -0.14 0.05 -2.81 <0.01 
X2 8.79* 

 <0.01 
 

<0.01 
 

-0.08 0.93  -<0.01 <0.01 -2.05 0.04 
X2 11.42* 

 <0.01 <0.01 1.15 0.25 

A
s
y
m

m
e
tr

y
 Step Asy -0.34 2.67 -0.13 0.90  0.18 0.16 1.16 0.25  -0.05 0.08 -0.73 0.47  -0.10 0.09 1.22 0.22 

Swing Asy 3.10 2.72 1.14 0.26  0.19 0.16 1.21 0.23  -0.07 0.08 -0.96 0.34  -0.08 0.09 -1.0 0.33 

Stance Asy 0.87 2.69 0.32 0.75  0.30 0.16 1.92 0.06  -0.09 0.08 -1.19 0.24  -0.10 0.09 -1.22 0.22 

P
o

s
tu

ra
l 

C
o

n
tr

o
l Length Asy -94.05 55.01 -1.71 0.09  -0.52 3.28 -0.16 0.88  -1.71 1.59 -1.08 0.28  -3.56 1.81 -1.98 0.05 

Width -7.69 140.06 -0.06 0.96  2.35 8.29 0.28 0.78  2.15 3.99 0.54 0.59  0.78 4.55 0.17 0.86 

Step Width SD 
 

-555.11 616.26 -0.90 0.37  -14.73 36.54 -0.40 0.69  9.66 17.50 0.55 0.58  -25.04 19.63 -1.28 0.20 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV=choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings]. *= Log-likelihood ratio test significance. 
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15. Appendix 15.0: Single task gait domain predictors of cognitive decline in controls. 

 

 

 CRT 
 

 CRTCV  SRM  OTS 

β St. Err 
 

T p  β St. Err T p  β St. Err T p  β St. Err T p 

Pace 
 
 

4.60 3.83 1.20 0.23  0.24 0.23 1.05 0.29  0.11 0.11 1.04 0.30  -0.03 0.12 -0.21 0.83 

Rhythm 
 
 

8.90 3.23 2.68 <0.01  0.05 0.20 0.23 0.82  0.13 0.09 1.43 0.15  -0.12 0.11 -1.09 0.28 

Asymmetry 
 
 

-4.29 3.59 -1.20 0.23  -0.39 0.21 -1.86 0.06  0.08 0.10 0.75 0.45  0.17 0.11 1.50 0.13 

Variability 
 
 

-4.16 3.47 -1.20 0.23  0.16 0.21 0.79 0.43  <0.01 <0.01 <0.01 0.1  0.21 0.11 1.91 0.06 

Postural Control 
 
 

3.85 3.42 1.13 0.26  -0.02 0.20 -0.1 0.92  0.01 0.01 0.15 0.88  0.16 0.12 1.35 0.18 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV= choice reaction time 

coefficient of variation, SRM= spatial recognition memory, OTS= one touch stockings]. 
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16. Appendix 16.0: Multivariate linear regression model.  

 

 

Dependent 
Variable 

 Predictors β P R Adjusted 
R2 

F 
Change 

ANOVA 
Sig 

Fluctuating 
Attention 
(CRTCV) 

Model 1 Age .151 .162 .236 .022 1.648 .185 

  NART -.065 .541     
  Gender  -.152 .160     
         
 Model 2 Age .156 .155 .238 .011 .102 .297 
  NART -.068 .526     
  Gender -.156 .154     
  CRT CV BL -.035 .750     

 

NART= national adult reading test, CRT CV= choice reaction time coefficient of variance, BL= baseline. CRTCV change score was entered 

as the dependent variable with age, sex and NART entered in the first block and baseline CRTCV entered in the second block as 

independent variables. 

 

 

 

 

 

 



 

 
 
 

1
9

3
 

17. Appendix 17.0:  Dual task gait characteristics; completers and non-completers  

   PD  Control  

Gait Domain Gait Variable 

 Completers 
(n=80) 

Non-
Completers 

(n=39) 

T-Test  Completers 
(n=118) 

Non-
Completers 

(n=66) 

T-Test 

 
 Mean SD Mean SD T P  Mean SD Mean SD T P 

Pace                 

 Step velocity (m/s)  1.08 0.23 1.02 0.20 1.44 0.15  1.23 0.18 1.14 0.21 2.89 <.01 

 Step Length (m)  0.61 0.10 0.57 0.10 1.73 0.09  0.66 0.08 0.62 0.09 3.46 <.01 

 Swing time SD (ms)  2.89 0.31 2.96 0.35 -1.12 0.27  2.72 0.27 2.86 0.39 -2.55 .01 

Variability                

 Step time SD (ms)  3.00 0.34 3.13 0.37 -1.94 0.06  2.86 0.30 2.99 0.42 -2.32 .02 

 Stance time SD (ms)  3.22 0.40 3.38 0.43 -2.00 0.05  3.07 0.36 3.19 0.44 -1.98 .05 

 Step velocity SD (ms)  0.057 0.016 0.066 0.018 -2.95 <.01  0.060 0.017 0.059 0.015 0.47 .64 

 Step length SD (m)  0.023 0.008 0.029 0.009 -3.15 <.01  0.022 0.006 0.022 0.007 0.35 .73 

Rhythm                

 Step time (ms)  571.20 52.07 570.74 56.74 .044 0.97  547.00 51.63 554.07 58.60 -0.85 .40 

 Swing time (ms)  393.48 35.01 387.67 34.60 0.85 0.40  389.34 31.53 391.21 36.54 -0.36 .72 

 Stance time (ms)  749.36 84.82 754.43 87.73 -0.30 0.76  705.40 78.27 717.41 90.05 -0.95 .35 

Asymmetry                

 Step time asymmetry (ms)  4.58 2.48 4.36 2.62 0.44 0.66  2.89 1.43 3.63 1.95 -2.95 <.01 

 Swing time asymmetry (ms)  4.10 1.98 3.75 1.95 0.89 0.38  2.66 1.42 3.05 1.72 -1.65 .10 

 Stance time asymmetry 
(ms) 

 4.01 2.07 3.84 1.89 0.44 0.66  2.65 1.29 3.11 1.82 -1.80 .08 

Postural 
Control 

               

 Step length asymmetry (m)  0.148 0.075 0.150 0.079 -0.14 0.89  0.126 0.058 0.141 0.063 -1.64 .10 

 Step width (m)  0.094 0.033 0.097 0.030 -0.55 0.58  0.095 0.027 0.094 0.028 0.03 .98 

 Step width SD (m)  0.018 0.005 0.019 0.005 -0.83 0.41  0.024 0.005 0.022 0.005 3.17 <.01 
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18. Appendix 18.0: Dual task gait characteristic predictors of cognitive decline in PD. 

 CRT  CRTCV  SRM  OTS 

β St. Err T p  β St. Err T p  β St. Err T p  β St. Err T p 

P
a
c

e
 Step Velocity -41.44 25.63 -1.62 0.11  -3.86 1.24 -3.11 <0.01 

X2 15.02* 
 1.36 0.52 2.60 0.01 

X2 8.56* 
 1.37 0.99 1.38 0.17 

Step Length -81.13 55.66 -1.46 0.15  -8.37 2.69 -3.12 <0.01 
X2 15.06* 

 3.00 1.13 2.65 <0.01 
X2 10.53* 

 3.18 2.15 1.48 0.14 

Swing Time 
SD 

43.15 17.99 2.40 0.02 
X2 6.68 

 2.83 0.89 3.17 <0.01 
X2 13.16* 

 -0.88 0.39 -2.29 0.02 
X2 7.40 

 -0.38 0.73 -0.52 0.61 

V
a
ri

a
b

il
it

y
 Step Time SD 42.54 16.30 2.61 0.01 

X2 7.50 
 2.35 0.82 2.87 0.01 

X2 10.57* 
 -0.85 0.35 -2.43 0.02 

X2 9.96* 
 -0.50 0.66 -0.76 0.45 

Step Stance 
SD 

28.32 14.39 1.97 0.05  1.50 0.72 2.08 0.04 
X2 6.85 

 -0.76 0.30 -2.51 0.01 
X2 9.09* 

 -0.60 0.58 -1.03 0.30 

Vel SD 426.95 330.19 1.29 0.20  -4.10 16.75 -0.25 0.81  -9.52 7.06 -1.35 0.18  -4.99 13.25 -0.38 0.71 

Len SD 1050.06 678.34 1.55 0.12  82.47 33.50 2.46 0.02 
X2 7.02 

 -28.06 14.46 -1.94 0.05  -24.58 27.42 -0.90 0.37 

R
h

y
th

m
 Step time 0.11 0.11 1.00 0.32  0.01 0.01 2.16 0.03 

X2 5.74 
 -<.01 <.01 -1.11 0.27  -<.01 <.01 -0.29 0.77 

Swing time 0.04 0.17 0.23 0.82  -<.01 0.01 -0.52 0.60  <.01 <.01 0.69 0.49  <.01 <.01 0.57 0.57 

Stance time 0.08 0.07 1.11 0.27  0.01 0.003 2.93 <0.01 
X2 10.97* 

 -<.01 <.01 -1.64 0.10  -<.01 <.01 -0.58 0.56 

A
s
y
m

m
e
tr

y
 Step Asy 0.98 2.45 0.40 0.69  0.27 0.12 2.29 0.02 

X2 5.03 
 -0.04 0.05 -0.80 0.43  -<.01 0.09 -0.05 0.96 

Swing Asy -0.53 3.01 -0.18 0.86  0.31 0.15 2.10 0.04 
X2 4.34 

 -0.07 0.06 -1.21 0.23  0.15 0.11 1.34 0.18 

Stance Asy 0.05 2.95 0.02 0.99  0.36 0.14 2.55 0.01 
X2 6.55 

 -0.03 0.06 -0.46 0.64  0.13 0.11 1.24 0.22 

P
o

s
tu

ra
l 

C
o

n
tr

o
l Length Asy -18.86 75.40 -0.25 0.80  4.68 3.74 1.25 0.21  -2.98 1.55 -1.92 0.06  1.85 2.91 0.64 0.53 

Width -45.74 184.63 -0.25 0.80  27.70 8.86 3.13 <0.01 
X2 9.46* 

 -3.04 3.89 -0.78 0.44  -2.01 7.26 -0.28 0.78 

Step Wid SD 
 

1659.43 1095.11 1.52 0.13  20.24 55.82 0.36 0.72  36.15 22.54 1.60 0.11  30.34 46.07 0.72 0.47 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV=choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings]. *= Log-likelihood ratio test significance.  
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19. Appendix 19.0: Dual task gait domains as predictors of cognitive decline in PD.  

 

 CRT 
 

 CRTCV  SRM  OTS 

β St. Err 
 

T p  β St. Err T p  β St. Err T p  β St. Err T p 

Pace 
 
 

-8.48 4.97 -1.71 0.09 
 

-0.59 0.25 -2.41 0.02 
 

0.30 0.10 2.91 <.01 
 

0.35 0.19 1.80 0.07 

Rhythm 
 
 

-4.30 5.60 -0.80 0.44 
 

-0.07 0.28 -0.25 0.80 
 

-0.08 0.12 -0.69 0.49 
 

-0.02 0.23 -0.09 0.93 

Asymmetry 
 
 

0.80 3.58 0.22 0.82 
 

-0.36 0.18 -2.07 0.04 
 

0.04 0.07 0.58 0.56 
 

-0.16 0.14 -1.17 0.25 

Variability 
 
 

-8.86 4.69 -1.89 0.06 
 

-0.19 0.24 -0.78 0.44 
 

0.079 0.01 0.78 0.43 
 

0.05 0.19 0.25 0.81 

Postural Control 
 
 

2.42 4.36 0.55 0.58 
 

-0.52 0.21 -2.46 0.02 
 

0.15 0.09 1.70 0.1 
 

-0.01 0.17 -0.05 0.96 

Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV= choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings.] 
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20. Appendix 20.0: Dual task gait characteristic predictors of cognitive decline in controls. 

 CRT  CRTCV  SRM  OTS 

β St. Err T p  β St. Err T p  β St. Err T p  β St. Err T p 

P
a
c

e
 Step Velocity 39.80 18.73 2.12 0.03 

X2 
11.69* 

 0.69 1.11 0.62 0.54  0.42 0.52 0.80 0.43  0.48 0.60 0.81 0.42 

Step Length 35.21 44.85 0.79 0.43  2.06 2.66 0.78 0.44  -0.27 1.26 -0.22 0.83  2.07 1.42 1.46 0.15 

Swing Time 
SD 

-2.22 12.13 -0.18 0.86  0.19 
 

0.72 
 

0.26 0.79  -0.64 0.34 -1.86 0.06  -1.01 0.40 -2.54 0.01 
X2 7.62 

V
a
ri

a
b

il
it

y
 Step Time SD -5.81 10.98 -0.53 0.60  -0.29 0.65 -0.45 0.65  -0.42 0.31 -1.34 0.18  -0.72 0.36 -2.00 0.05 

Step Stance 
SD 

-9.03 9.36 -0.97 0.34  -0.29 0.55 0.52 0.61  -0.31 0.27 -1.16 0.25  -0.64 0.30 -2.12 0.04 
X2 5.24 

Vel SD 423.20 211.51 2.00 0.05  -5.87 12.71 -0.46 0.65  2.65 5.79 0.46 0.65  -12.08 6.45 -1.87 0.06 

Len SD 767.71 592.33 1.30 0.20  19.98 35.25 0.57 0.57  2.64 15.60 0.17 0.87  -34.75 17.42 -1.99 0.05 

R
h

y
th

m
 Step time -0.17 0.07 -2.57 0.01 

X2 8.05 
 -<0.01 <.001 -0.30 0.76  -<0.01 <0.01 -1.65 0.10  <0.01 <0.01 0.52 0.61 

Swing time -0.18 0.11 -1.66 0.1  -<0.01 <0.01 -0.16 0.87  -<0.01 
 

<0.01 -1.26 0.21  <0.01 <0.01 0.33 0.74 

Stance time -0.12 0.04 -2.72 <0.01 
X2 

9.40* 

 -<0.01 
 

<0.01 
 

-0.30 0.77  -<0.01 <0.01 -1.67 0.10  <0.01 
 

<0.01 
 

0.56 0.58 

A
s
y
m

m
e
tr

y
 Step Asy -2.52 2.33 -1.08 0.28  0.16 

 
0.14 

 
1.16 0.25  -0.04 0.07 -0.64 0.52  -0.01 0.08 -0.16 0.87 

Swing Asy 2.37 2.33 1.02 0.31  0.10 0.14 0.75 0.45  -0.03 0.07 -0.52 0.60  -0.04 0.08 -0.55 0.58 

Stance Asy 3.08 2.47 1.25 0.21  0.09 0.15 0.59 0.56  -0.10 0.07 -1.41 0.16  -0.01 0.08 -0.16 0.87 

P
o

s
tu

ra
l 

C
o

n
tr

o
l Length Asy -69.46 58.78 -1.18 0.24  0.61 3.49 0.17 0.86  -3.18 1.67 -1.91 0.06  -2.72 1.91 -1.42 0.16 

Width -21.99 127.24 -0.17 0.86  2.47 7.53 0.33 0.74  1.67 3.65 0.46 0.65  1.55 4.16 -0.37 0.71 

Step Wid SD 
 

315.87 649.35 0.49 0.63  -16.89 38.34 -0.44 0.66  -7.75 18.23 -0.43 0.67  -40.96 20.27 -2.02 0.04 
X2 4.15 

 Bright green= significant predictors, medium green= near significant predictors. [CRT= choice reaction time, CRTCV=choice reaction time 

coefficient of variance, SRM= spatial recognition memory, OTS= one touch stockings.] *=Log-likelihood ratio test significance.  
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21. Appendix 21.0: Dual task gait domains as predictors of cognitive decline in controls. 

Domain DT 
Control 

CRT 
 

 CRTCV  SRM  OTS 

β St. Err 
 

T p  β St. Err T p  β St. Err T p  β St. Err T p 

Pace 
 
 

5.47 3.62 1.51 0.13 
 

0.15 0.21 0.72 0.47 
 

0.05 0.10 0.53 0.60 
 

0.12 0.12 1.01 0.31 

Rhythm 
 
 

7.94 3.014 2.53 0.01 
 

0.06 0.19 0.34 0.73 
 

0.13 0.09 1.48 0.14 
 

-0.06 0.10 -0.61 0.54 

Asymmetry 
 
 

-3.61 3.05 -1.18 0.24 
 

-0.19 0.18 -1.04 0.30 
 

0.06 0.09 0.65 0.51 
 

0.03 0.10 0.31 0.76 

Variability 
 
 

-6.61 3.01 -2.20 0.03 
 

0.02 0.18 0.12 0.90 
 

-0.02 0.08 -0.28 0.78 
 

0.22 0.10 2.44 0.02 

Postural Control 
 
 

3.73 3.44 1.08 0.28 
 

-0.12 0.20 -0.61 0.54 
 

0.06 0.10 0.64 0.52 
 

0.08 0.11 0.69 0.49 

Bright green= significant predictors, medium green= near significant predictors.  [CRT= choice reaction time, CRTCV= choice reaction time 

coefficient of variation, SRM= spatial recognition memory, OTS= one touch stockings]
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22. Appendix 22.0. Steady state walking; environment differences using a 
BWM

Gait 
Domain/Characteristic 

 Lab  Free-living  Paired 
Samples 

  Mean SD  Mean SD  P 
Pace         
  Step Velocity 
 

 1.01 0.05  1.07 0.13  <.01 

  Step Length 
 

 0.53 0.07  0.59 0.05  <.01 

Rhythm         
  Step Time 
 

 0.57 0.06  0.59 0.04  <.01 

  Stance Time 
 

 0.72 0.06  0.74 0.05  <.01 

  Swing Time 
 

 0.41 0.06  0.44 0.04  <.01 

Asymmetry         
  Step Time Asy 
 

 0.022 0.006  0.024 0.023  .60 

  Stance Time Asy  0.025 0.025  0.022 0.006  .36 

  Swing Time Asy  0.026 0.026  0.020 0.006  .13 

  Step Length Asy  0.084 0.071  0.025 0.100  <.01 

Variability         
  Step Time SD 
 

 0.06 0.06  0.16 0.04  <.01 

  Stance Time SD 
 

 0.06 0.06  0.17 0.05  <.01 

  Swing Time SD 
 

 0.06 0.06  0.13 0.03  <.01 

  Step Length SD 
 

 0.084 0.053  0.137 0.028  <.01 

  Step Velocity SD 
 

 0.153 0.077  0.332 0.065  <.01 
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23. Appendix 23.0. Descriptive data for gait characteristics in free-living for 
all AB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gait Domain/ 

Characteristic 
 All Bouts  AB 10-20   AB ≥120 

  Mean SD  Mean SD   Mean SD 

Pace           

Step Velocity  1.009 0.090  0.973 0.082   1.066 0.132 

Step Length  0.570 0.035  0.558 0.031   0.595 0.050 

Rhythm           

Step Time  0.607 0.032  0.620 0.034   0.593 0.042 

Stance Time  0.757 0.039  0.768 0.040   0.748 0.051 

Swing Time  0.459 0.028  0.475 0.033   0.439 0.036 

Asymmetry           

Step Time Asy  0.101 0.022  0.086 0.024   0.022 0.006 

Stance Time Asy  0.103 0.023  0.088 0.026   0.022 0.006 

Swing Time Asy  0.093 0.020  0.079 0.021   0.020 0.006 

Step Length Asy  0.078 0.012  0.084 0.014   0.025 0.009 

Variability           

Step Time SD  0.182 0.024  0.189 0.024   0.161 0.042 

Stance Time SD  0.196 0.029  0.203 0.030   0.175 0.048 

Swing Time SD  0.152 0.018  0.159 0.016   0.132 0.031 

Step Length SD  0.153 0.011  0.152 0.008   0.139 0.027 

Step Velocity SD  0.368 0.034  0.370 0.033   0.334 0.061 



Chapter 8: Appendices 

 
 

2
0

0
 

24. Appendix 24.0: Partial correlations for controlled laboratory assessment. 

Bright green= significant predictors, medium green= near significant predictors. MoCA= Montreal Cognitive Assessment, SRT= simple 

reaction time, DV= digit vigilance, CRT= choice reaction time, CV= coefficient of variation, PRM= pattern recognition memory, SRM= spatial 

recognition memory, OTS= one touch stockings, Pent= pentagons.  

Gait Domain/ Gait 
Characteristic Lab Ax 

MoCA Digit 
Span 

SRT DV CRT SRT CV DV CV CRT CV PRM SRM OTS Pent 

Pace 
            

  Step Velocity 
 

.235 
(.129) 

.171 
(.274) 

-.164 
(.293) 

-.225 
(.146) 

-.270 
(.080) 

-.393 
(.009) 

-.104 
(.508) 

-.144 
(.357) 

.061 
(.698) 

.066 
(.674) 

-.002 
(.990) 

-.131 
(.401) 

  Step Length 
 

.014 
(.928) 

.091 
(.563) 

-.158 
(.313) 

-.117 
(.456) 

-.192 
(.219) 

-.262 
(.090) 

-.047 
(.763) 

.007 
(.964) 

-.085 
(.589) 

-.112 
(.476) 

-.046 
(.772) 

-.228 
(.141) 

Rhythm             

  Step Time 
 

-.365 
(.016) 

-.194 
(.212) 

.063 
(.688) 

.216 
(.164) 

.143 
(.359) 

.234 
(.130) 

.084 
(.593) 

.234 
(.130) 

-.196 
(.208) 

-.287 
(.062) 

-.050 
(.751) 

-.143 
(.362) 

  Stance Time 
 

-.374 
(.013) 

-.080 
(.612) 

.055 
(.725) 

.224 
(.149) 

.120 
(.443) 

.297 
(.053) 

.017 
(.914) 

.120 
(.444) 

-.192 
(.218) 

-.308 
(.044) 

.013 
(.933) 

-.089 
(.571) 

  Swing Time 
 

-.309 
(.044) 

-.280 
(.069) 

.061 
(.697) 

.181 
(.245) 

.148 
(.343) 

.141 
(.368) 

.142 
(.364) 

.317 
(.038) 

-.176 
(.258) 

-.228 
(.142) 

-.107 
(.496) 

-.180 
(.249) 

Asymmetry             

  Step Time Asy 
 

-.208 
(.181) 

-.094 
(.550) 

.087 
(.581) 

.056 
(.722) 

.307 
(.045) 

.203 
(.191) 

-.103 
(.511) 

.178 
(.254) 

-.193 
(.215) 

-.173 
(.267) 

-.181 
(.247) 

.043 
(.785) 

  Stance Time Asy -.120 
(.444) 

-.053 
(.736) 

.076 
(.630) 

-.036 
(.816) 

.213 
(.170) 

.154 
(.324) 

-.091 
(.560) 

.357 
(.019) 

-.019 
(.901) 

-.020 
(.896) 

-.116 
(.457) 

.105 
(.504) 

  Swing Time Asy -.103 
(.510) 

-.040 
(.801) 

.051 
(.744) 

-.078 
(.621) 

.173 
(.267) 

.161 
(.302) 

-.082 
(.601) 

.338 
(.027) 

.004 
(.979) 

-.020 
(.896) 

-.064 
(.686) 

.141 
(.367) 

  Step Length Asy -.337 
(.027) 

-.062 
(.693) 

.220 
(.157) 

.441 
(.003) 

.251 
(.105) 

.150 
(.336) 

-.039 
(.806) 

.241 
(.120) 

.101 
(.521) 

.097 
(.538) 

-.015 
(.923) 

.088 
(.573) 

Variability             

  Step Time SD 
 

-.364 
(.016) 

-.308 
(.045) 

.382 
(.012) 

.261 
(.091) 

.230 
(.138) 

.428 
(.004) 

.124 
(.429) 

.248 
(.108) 

-.163 
(.297) 

-.513 
(<.001) 

-.164 
(.294) 

-.385 
(.011) 

  Stance Time SD 
 

-.362 
(.017) 

-.297 
(.053) 

.386 
(.011) 

.251 
(.105) 

.234 
(.131) 

.431 
(.004) 

.121 
(.439) 

.271 
(.078) 

-.151 
(.333) 

-.509 
(<.001) 

-.166 
(.287) 

-.365 
(.016) 

  Swing Time SD 
 

-.378 
(.012) 

-.275 
(.074) 

.400 
(.008) 

.261 
(.091) 

.259 
(.094) 

.434 
(.004) 

.138 
(.379) 

.284 
(.065) 

-.154 
(.325) 

-.502 
(.001) 

-.177 
(.257) 

-.373 
(.014) 

  Step Length SD 
 

-.239 
(.123) 

-.159 
(.309) 

.267 
(.084) 

.322 
(.035) 

.278 
(.071) 

.182 
(.242) 

.220 
(.156) 

.312 
(.042) 

-.054 
(.732) 

-.329 
(.031) 

-.258 
(.094) 

-.341 
(.025) 

  Step Velocity SD 
 

-.092 
(.540) 

-.148 
(.320) 

.112 
(.453) 

-.027 
(.858) 

.066 
(.659) 

.190 
(.201) 

.024 
(.872) 

.143 
(.337) 

-.184 
(.215) 

-.019 
(.899) 

-.140 
(.349) 

.188 
(.206) 
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25. Appendix 25.0: Partial correlations for gait and cognition for ≥120 second AB in PD. 

Gait Domain/ Gait 
Characteristic ≥120 

MoCA Digit 
Span 

SRT DV CRT SRT CV DV CV CRT CV PRM SRM OTS Pent 

Pace 
            

  Step Velocity 
 

-.080 
(.580) 

.137 
(.342) 

-.289 
(.042) 

-.107 
(.459) 

.004 
(.978) 

.142 
(.327) 

.080 
(.582) 

.018 
(.900) 

-.153 
(.288) 

.102 
(.483) 

-.078 
(.592) 

-.025 
(.862) 

  Step Length 
 

-.182 
(.205) 

.143 
(.322) 

-.251 
(.078) 

-.076 
(.598) 

.069 
(.636) 

.176 
(.221) 

.036 
(.806) 

.073 
(.615) 

-.148 
(.306) 

.027 
(.854) 

-.129 
(.372) 

-.039 
(.789) 

Rhythm 
            

  Step Time 
 

-.092 
(.524) 

-.101 
(.483) 

.268 
(.060) 

.166 
(.250) 

.193 
(.180) 

.023 
(.874) 

-.006 
(.967) 

.250 
(.080) 

.096 
(.505) 

-.230 
(.107) 

-.059 
(.683) 

.002 
(.991) 

  Stance Time 
 

-.088 
(.545) 

-.085 
(.559) 

.260 
(.068) 

.170 
(.237) 

.190 
(.187) 

.040 
(.780) 

.001 
(.994) 

.231 
(.106) 

.105 
(.469) 

-.243 
(.090) 

-.053 
(.717) 

-.001 
(.997) 

  Swing Time 
 

-.106 
(.465) 

-.124 
(.389) 

.237 
(.098) 

.186 
(.196) 

.202 
(.160) 

-.016 
(.911) 

-.048 
(.742) 

.289 
(.042) 

.070 
(.628) 

-.201 
(.161) 

-.074 
(.609) 

-.027 
(.855) 

Asymmetry 
            

  Step Time Asy 
 

-.299 
(.035) 

-.074 
(.608) 

.203 
(.157) 

.071 
(.626) 

.207 
(.149) 

.331 
(.019) 

-.082 
(.569) 

.109 
(.453) 

-.288 
(.042) 

-.371 
(.008) 

-.158 
(.273) 

-.145 
(.315) 

  Stance Time Asy -.215 
(.134) 

-.073 
(.615) 

.173 
(.231) 

.087 
(.547) 

.191 
(.183) 

.391 
(.005) 

.036 
(.804) 

.226 
(.114) 

-.199 
(.166) 

-.313 
(.027) 

-.067 
(.642) 

-.091 
(.531) 

  Swing Time Asy -.265 
(.063) 

-.125 
(.388) 

.252 
(.078) 

.049 
(.734) 

.270 
(.058) 

.362 
(.010) 

.094 
(.514) 

.336 
(.017) 

-.236 
(.099) 

-.316 
(.025) 

-.148 
(.306) 

-.133 
(.358) 

  Step Length Asy .032 
(.825) 

-.012 
(.932) 

-.138 
(.341) 

-.240 
(.093) 

-.015 
(.918) 

.067 
(.646) 

.235 
(.100) 

.242 
(.091) 

-.058 
(.691) 

.056 
(.697) 

-.042 
(.773) 

.072 
(.617) 

Variability 
            

  Step Time SD 
 

-.031 
(.830) 

-.125 
(.388) 

.255 
(.074) 

.196 
(.172) 

.185 
(.199) 

.109 
(.452) 

.049 
(.737) 

.197 
(.170) 

-.014 
(.922) 

-.276 
(.053) 

-.004 
(.979) 

-.016 
(.911) 

  Stance Time SD 
 

-.028 
(.846) 

-.152 
(.291) 

.252 
(.078) 

.201 
(.161) 

.202 
(.159) 

.097 
(.504) 

.035 
(.809) 

.240 
(.094) 

-.005 
(.973) 

-.267 
(.061) 

-.012 
(.933) 

-.014 
(.926) 

  Swing Time SD 
 

.003 
(.983) 

-.085 
(.557) 

.230 
(.108) 

.184 
(.201) 

.145 
(.313) 

.094 
(.518) 

.043 
(.768) 

.153 
(.290) 

.005 
(.971) 

-.276 
(.053) 

.038 
(.794) 

-.021 
(.884) 

  Step Length SD 
 

-.082 
(.572) 

-.082 
(.571) 

.082 
(.571) 

.151 
(.296) 

.010 
(.943) 

.172 
(.231) 

-.074 
(.609) 

-.148 
(.307) 

-.113 
(.433) 

-.294 
(.038) 

.041 
(.780) 

-.046 
(.751) 

  Step Velocity SD 
 

.001 
(.997) 

-.055 
(.703) 

.029 
(.841) 

.131 
(.365) 

.002 
(.990) 

.152 
(.292) 

-.016 
(.915) 

-.076 
(.599) 

-.130 
(.370) 

-.247 
(.083) 

.079 
(.584) 

-.050 
(.728) 

Bright green= significant predictors, medium green= near significant predictors. MoCA= Montreal Cognitive Assessment, SRT= simple 

reaction time, DV= digit vigilance, CRT= choice reaction time, CV= coefficient of variation, PRM= pattern recognition memory, SRM= spatial 

recognition memory, OTS= one touch stockings, Pent= pentagons.  
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26. Appendix 26.0: Partial correlations for gait and cognition for 10-20 second AB in PD. 

Gait Domain/ Gait 
Characteristic AB 10-20 

MoCA Digit 
Span 

SRT DV CRT SRT CV DV CV CRT CV PRM SRM OTS Pent 

Pace             

  Step Velocity 
 

.157 
(.271) 

-.015 
(.915) 

-.030 
(.837) 

.017 
(.903) 

-.034 
(.815) 

.169 
(.235) 

.083 
(.564) 

-.066 
(.643) 

-.101 
(.482) 

-.015 
(.916) 

.081 
(.574) 

-.080 
(.577) 

  Step Length 
 

.252 
(.075) 

.160 
(.261) 

.015 
(.917) 

.087 
(.542) 

-.013 
(.925) 

.154 
(.280) 

-.033 
(.817) 

-.040 
(.780) 

-.020 
(.889) 

-.063 
(.659) 

.216 
(.129) 

-.104 
(.468) 

Rhythm             

  Step Time 
 

-.048 
(.741) 

.010 
(.945) 

.234 
(.098) 

.197 
(.165) 

.183 
(.198) 

.117 
(.414) 

-.130 
(.363) 

.287 
(.041) 

.026 
(.856) 

-.340 
(.015) 

.044 
(.760) 

-.026 
(.858) 

  Stance Time 
 

-.130 
(.364) 

-.071 
(.621) 

.275 
(.051) 

.195 
(.169) 

.192 
(.177) 

.191 
(.179) 

-.117 
(.413) 

.324 
(.020) 

-.038 
(.794) 

-.420 
(.002) 

-.003 
(.984) 

-.059 
(.680) 

  Swing Time 
 

.040 
(.778) 

.072 
(.617) 

.129 
(.366) 

.167 
(.241) 

.186 
(.191) 

-.006 
(.968) 

-.077 
(.591) 

.262 
(.063) 

.075 
(.601) 

-.157 
(.270) 

.080 
(.575) 

.017 
(.907) 

Asymmetry             

  Step Time Asy 
 

-.194 
(.172) 

-.192 
(.176) 

.418 
(.002) 

.129 
(.366) 

.263 
(.062) 

.382 
(.006) 

.104 
(.467) 

.324 
(.020) 

-.092 
(.523) 

-.351 
(.012) 

-.177 
(.214) 

-.107 
(.456) 

  Stance Time Asy 
-.196 
(.169) 

-.193 
(.176) 

.399 
(.004) 

.106 
(.459) 

.249 
(.078) 

.394 
(.004) 

.083 
(.564) 

.344 
(.014) 

-.090 
(.531) 

-.276 
(.050) 

-.177 
(.213) 

-.049 
(.733) 

  Swing Time Asy 
-.191 
(.179) 

-.131 
(.360) 

.392 
(.004) 

.077 
(.589) 

.188 
(.187) 

.431 
(.002) 

.095 
(.509) 

.232 
(.101) 

-.114 
(.428) 

-.275 
(.051) 

-.166 
(.244) 

-.031 
(.830) 

  Step Length Asy 
.111 

(.440) 
-.044 
(.761) 

.148 
(.301) 

.066 
(.646) 

.076 
(.595) 

.269 
(.056) 

.153 
(.283) 

.174 
(.222) 

-.010 
(.942) 

-.241 
(.088) 

.076 
(.597) 

-.075 
(.599) 

Variability             

  Step Time SD 
 

-.319 
(.022) 

-.162 
(.256) 

.310 
(.027) 

.330 
(.018) 

.269 
(.056) 

.338 
(.015) 

.054 
(.705) 

.336 
(.016) 

-.132 
(.355) 

-.491 
(<.001) 

-.159 
(.265) 

-.141 
(.324) 

  Stance Time SD 
 

-.311 
(.026) 

-.218 
(.124) 

.328 
(.019) 

.294 
(.037) 

.296 
(.035) 

.353 
(.011) 

.073 
(.611) 

.414 
(.003) 

-.133 
(.353) 

-.465 
(.001) 

-.172 
(.228) 

-.121 
(.396) 

  Swing Time SD 
 

-.354 
(.011) 

-.131 
(.359) 

.279 
(.048) 

.326 
(.019) 

.210 
(.139) 

.263 
(.063) 

.008 
(.957) 

.278 
(.048) 

-.138 
(.335) 

-.481 
(<.001) 

-.159 
(.266) 

-.090 
(.528) 

  Step Length SD 
 

-.232 
(.102) 

-.104 
(.468) 

.088 
(.537) 

.170 
(.234) 

.071 
(.621) 

.211 
(.137) 

.180 
(.205) 

.113 
(.428) 

-.066 
(.647) 

-.345 
(.013) 

-.146 
(.307) 

-.129 
(.366) 

  Step Velocity SD 
 

-.144 
(.312) 

-.169 
(.235) 

.022 
(.878) 

.124 
(.387) 

.014 
(.922) 

.184 
(.196) 

.100 
(.483) 

.038 
(.793) 

-.158 
(.269) 

-.157 
(.271) 

-.012 
(.935) 

-.136 
(.340) 

Bright green= significant predictors, medium green= near significant predictors. MoCA= Montreal Cognitive Assessment, SRT= simple 

reaction time, DV= digit vigilance, CRT= choice reaction time, CV= coefficient of variation, PRM= pattern recognition memory, SRM= spatial 

recognition memory, OTS= one touch stockings, Pent= pentagons.  
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