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Abstract

Multivariate regression analysis has been developed rapidly in the last decade for de-

pendent data. The most difficult part in multivariate cases is how to construct a cross-

correlation between response variables. We need to make sure that the covariance matrix

is positive definite which is not an easy task. Several approaches have been developed to

overcome the issue. However, most of them have some limitations, such as it is hard to

extend it to the case involving high dimensional variables or capture individual charac-

teristics. It also should point out that the meaning of the cross-correlation structure for

some methods is unclear. To address the issues, we propose to use convolved Gaussian

process (CGP) priors (Boyle & Frean, 2005).

In this dissertation, we propose a novel approach for multivariate regression using CGP
priors. The approach provides a semiparametric model with multi-dimensional covariates

and offers a natural framework for modelling common mean structures and covariance

structures simultaneously for multivariate dependent data. Information about observa-

tions is provided by the common mean structure while individual characteristics also can

be captured by the covariance structure. At the same time, the covariance function is able

to accommodate a large-dimensional covariate as well.

We start to make a broader problem from a general framework of CGP proposed by

Andriluka et al. (2006). We investigate some of the stationary covariance functions and

the mixed forms for constructing multiple dependent Gaussian processes to solve a more

complex issue. Then, we extend the idea to a multivariate non-linear regression model by

using convolved Gaussian processes as priors.

We then focus on an applying the idea to multivariate non-Gaussian data, i.e. multi-

variate Poisson, and other multivariate non-Gaussian distributions from the exponential

family. We start our focus on multivariate Poisson data which are found in many prob-

lems relating to public health issues. Then finally, we provide a general framework for a

multivariate binomial data and other multivariate non-Gaussian data.

The definition of the model, the inference, and the implementation, as well as its

asymptotic properties, are discussed. Comprehensive numerical examples with both sim-

ulation studies and real data are presented.

Key Words : Convolved Gaussian process, Cross-correlation, Multivariate dependent data,

Multivariate nonlinear regression, Multivariate non-Gaussian regression, Stationary covari-

ance functions
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Chapter 1

Introduction

1.1 Aims

Regression analysis for multivariate non-Gaussian data has been developed rapidly in the

last decade. One of the well-known models is multivariate Poisson regression which can

be used for analysing count data. The observed data become more complex when they

are dependent and when there is more than one response variable. One of the examples

is dengue fever and malaria data that we will discuss in this thesis, where the outputs are

the number of cases of dengue fever and malaria. We begin the investigation by exploring

the areas at risk of dengue and malaria transmission which are presented in Figures 1.1

and 1.2. From those figures, it is clearly seen that the transmission of two diseases have

a similar structure mapping where tropical regions of developing countries are the most

high-risk areas in the world, such as Indonesia.

Several methods have been proposed to investigate the issue. We start analysing the

data separately by using a simple method, i.e. Poisson regression. This approach assumes

independent observations. In fact, this assumption is unrealistic in many problems. Some

research on Poisson regression for dependent data has been done, such as the intrinsic

conditional autoregressive model. Other methods include using kriging or Gaussian process

regression where Gaussian processes are the backbone of the method and its performance

shows promising results. Although those approaches are able to handle correlation within

observations for each response variable, they could not accommodate the cross-correlation

between two response variables .

In the dengue fever and malaria data, we highlight that it is more sensible if we

analyse them at the same time since the diseases involve a similar correlation structure.

Those diseases, which are transmitted by a virus from mosquitoes, have similar signs and

symptoms. It is also worth noting that the study of spatial correlation is an important

issue since the geographical patterns of the diseases are similar to each other. The outputs

1



Chapter 1. Introduction

Figure 1.1: Countries at risk of dengue transmission in 2013 (Source: World Health Organization,
2013)

Figure 1.2: Countries at risk of malaria transmission in 2010 (Source: World Health Organization,
2010)

2



Chapter 1. Introduction

of the data are the number of cases of dengue fever and malaria in East Java, Indonesia.

Thus, in this case, we are interested in a single set of composite boundaries for multiple

disease outcomes. As a consequence, the statistical model needs to account for correlation

between diseases and locations, see Ma & Carlin (2007).

Constructing a cross-correlation structure for each response, where we should guarantee

that the covariance matrix is positive definite, is another major problem in analyzing

dependent data. This issue makes it difficult since ensuring that the covariance matrix

is positive definite is not an easy job. Several methods have been developed to overcome

the problem, such as using multivariate conditional autrogressive (MCAR) or multivariate

conditional kriging. However, all the approaches present some limitations, such as unclear

covariance structure of the cross-corrrelation, difficulty in extending to high dimensional

variables, see Martinez-Beneito (2013) or hard to capture individual characteristics for

each response variable, see Crainiceanu et al. (2012).

We are going to address these difficult cases by using convolved Gaussian process re-

gression models in this thesis. It is an extension of a general framework for constructing

dependent outputs proposed by Andriluka et al. (2006) which offers flexibility and robust-

ness.

1.2 A Brief Literature Review

A univariate Poisson regression with correlation structure has been developed in the last

decade. Some research has been done regarding the handling of this issue. The intrinsic

conditional autoregressive (ICAR) model introduced by Besag & Kooperberg (1995) is

one of the popular methods. This method has been extended into a spatial or temporal

correlated generalized linear mixed model (Sun et al. (2000); MacNab & Dean (2001);

Martinez-Beneito et al. (2008); Silva et al. (2008)). A generalized linear mixed model

using prior distribution for spatially structured random effect is a common alternative

way, see Carlin & Gelfand (2004). But they limited the correlation structure into in-

trinsic conditional autoregressive model (ICAR), Rue & Held (2005) and Mohebbi (2011)

demonstrated an application on how to apply it to analyse cancer data.

However, based on extensive studies by Wall (2004), the spatially correlated struc-

ture of ICAR approach is too complicated, involving complex implementation and lack of

physical explanation. Renato & Krainski (2004) have also pointed out that preliminary

knowledge and a good understanding are needed in determining and investigating the ef-

fect of the choice of precision for the covariance matrix. This approach is therefore less

efficient for practitioners. Thus, it is essential to develop a more efficient method to model

the spatial correlation, see Haining (1990); Bernadinelli et al. (1995).

An alternative way is using kriging under spatial statistics which is also used in geo-
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statistics, see Diggle et al. (2007a). The Gaussian process is the backbone of the method

and its performance shows promising results. The Gaussian processes have been widely

use in the field of geostatistics since the 1960’s. However the Gaussian process in this

approach was limited to two or three dimensions with a known covariance kernel.

To provide a more flexible model, we extend the idea by proposing to use Gaussian

process regression (GPR) as the correlation structure. Recently GPR and related methods

have been developed quickly and have a wide application in machine learning and other

areas, see Rasmussen & Williams (2006). Some recent development can be found in Shi

& Choi (2011) and Wang & Shi (2014). The covariance structure of GPR is defined by

a covariance kernel which depends on a set of covariates. Consequently it provides a

very flexible covariance structure coping with large dimensional covariates with a known

covariance kernel and a variety of variables such as geographic position, distance among

the spatial areas and other variables related to culture, lifestyle and even the previous

observations.

However, in practice, there are many cases where it is more sensible to analyse the

multivariate data together, for example, the dengue fever and malaria data discussed

in the previous section or the cancer data (lung and oesophageal cancer) which will be

discussed in Chapter 5. Research on a bivariate case is still an active area in statistics.

Many researchers have studied and explored this topic, for example, Kocherladota &

Kocherlakota (1992) have investigated the inference of bivariate Poisson regression; Karlis

& Ntzoufras (2003) have developed an EM algorithm for bivariate Poisson distribution and

related models; and Jung & Winkelmann (1993), Karlis & Ntzoufras (2003), and Karlis &

Bermudez (2011); Vernic (1997) have applied a bivariate Poisson for two aspects of labour

mobility, football champions, and insurance respectively. All these methods have some

limitations, one major problem is that they did not model the cross-correlation between

response variables.

Constructing a cross-correlation structure for each response is not an easy task because

we need to ensure that the covariance matrix is positive definite. A variety of alternative

approaches with special model structures have been proposed to overcome this problem.

Kim et al. (2001) have presented a twofold CAR for two different diseases. However,

this approach is only applicable to bivariate cases and it is difficult to extend to the larger

dimensional case. Gelfand & Vounatsou (2003) have introduced a multivariate conditional

autoregressive model (MCAR) based on Mardia (1988). The restriction of this approach

is that it is not easy to understand the structure of the cross-correlation. Jin et al. (2005b)

have tried to improve the method by providing a general framework for the multivariate

conditional autoregressive model(GMCAR). The joint distribution of GMCAR is

p(z1, z2) = p(z1 | z2)p(z2),

4
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where z1 and z2 are the first and the second response variable respectively. This approach

has one big problem, i.e. its performance depends on the ordering of response variables.

Another restriction, if we increase the dimension of response variables to more than two,

is that it leads to a very complex problem since it has many potential orderings. Thus,

Jin et al. (2007) have further improved their method called co-regionalized model.

One big restriction on the above approaches is that they are not allowed to include other

correlations apart from a spatial neighbourhood, see Martinez-Beneito (2013). The kriging

method provides flexibility. Crainiceanu et al. (2012) have developed an extension of the

kriging method. The approach has presented a natural method of smoothing the dependent

bivariate data involving stationary Gaussian processes and it provides promising results

for some problems. However, this approach has difficulty in capturing the individual

characteristics of each response variable since the method uses a conditional dependency

correlated structure.

As an alternative way, we can parameterize covariance functions directly and treat

Gaussian processes as a convolution of a white noise processes with a smoothing kernel

function. This approach is called a convolution method and performs well for multivari-

ate dependent processes; it was introduced firstly by Boyle & Frean (2005). It also has

provided huge flexibility and robustness since Andriluka et al. (2006) proposed a general

framework for constructing dependent outputs using some of the stationary covariance

structures.

We propose using the convolved Gaussian process priors to model the multivariate

dependent Gaussian and non-Gaussian data. The convolution method has been used

in the last decade, e.g. a multivariate spatial process have been presented by Paciorek

(2003) and Majumdar et al. (2010). The computational efficiency of multiple outputs

and its implementation in the dynamic model have also been investigated by Alvarez &

Lawrence (2011) and Alvarez (2011).

There are some points worth noting regarding the advantages of our proposed model:

(1) it offers a semiparametric regression model for Gaussian and non-Gaussian data with

multivariate responses and multi-dimensional covariates; (2) it provides a natural frame-

work for capturing the individual features on modelling mean structure and covariance

structure simultaneously; (3) it enables us to handle a large dimensional covariate in co-

variance functions as priors.

1.3 Structure of the Thesis

The thesis is organized as follows. In Chapter 2, we review the development of Poisson

regression for dependent univariate response variable. We focus on the spatial correlation

structure of the count regression. We investigate several correlation structures for Poisson
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data. In this chapter, we provide the details of the model and describe how we estimate

unknown parameters. Simulation studies have been presented to help understand the

performance of the approaches.

Chapter 3 still focuses on the Poisson regression problem with a univariate response

variable but having a spatial correlation structure. We propose to use a Gaussian process

prior to model correlated structure. We will provide details on how to define the model,

how to estimate unknown parameters and hyper-parameters and how to calculate predic-

tions. A comprehensive simulation study is conducted to illustrate the performance of the

new method. It is also compared with some existing methods. The method has also been

used to analyse our real data : Dengue fever data in Indonesia.

In Chapter 4, we extend the GPR approach to construct the cross-correlation of de-

pendent Gaussian processes by using a convolution method. Several stationary covariance

functions and a mixed form of covariance structure are investigated. Then, we propose

the convolved Gaussian process (CGP) priors for multivariate non-linear regression. We

will extend the general framework proposed by Andriluka et al. (2006) and use a mixed

covariance function to construct the covariance structure of the model. We also provide

details on how to define the model, how to estimate parameters and hyper-parameters

and how to calculate the predictions. Some simulation studies are presented to investigate

the performance of the proposed model including how the model reacts from misspecified

covariance structures schemes. We also compare the proposed model with an existing

approach.

We apply the idea of using CGP priors to multivariate non-Gaussian data in Chapter 5.

We focus on bivariate Poisson regression. We explain the details including the definition

of the model, and explain how to estimate the unknown parameters and hyper-parameters

and calculate the predictions. The asymptotic consistency is also reported in this chapter.

We provide extensive simulation studies including a scenario which illustrates how the

proposed model is able to offer high flexibility on the choice of covariance functions and to

accommodate a large dimensional covariance function. We also apply this proposed model

to two real data sets, i.e. dengue fever and malaria data and cancer data. The proposed

method is also compared with existing methods.

Then, we provide a general model using CGP priors to other non-Gaussian data in an

exponential family, such as binomial and ordinal data in Chapter 6. We present a natural

framework of semiparametric multivariate regression for data following an exponential

family distribution. Similar to the previous chapter, we also report the details of the

model, inference for estimating unknown parameters and hyper-parameters and calculating

the predictions. Consistency is explained in this chapter as well. Several simulation

studies and real data, e.g. adverse birth outcome data are provided to investigate the

performance of the proposed model including robustness and how it handles the difficulty of
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large dimensional covariance functions. Finally, we conclude in Chapter 7 with comments

regarding further research.
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Chapter 2

Correlation Structures of Poisson

Regression

2.1 Introduction

Regression analysis is a well established statistical method which is used to show the

relationship between independent variables and dependent variables. Thus, it can be

said that Poisson regression is analysing the relation between independent variables and a

dependent variable which follows Poisson distribution, see e.g., Cameron & Trivedi (1998).

The approach typically deals with count data which is very common in the area of public

health.

One of our examples concerns dengue fever data which will be discussed in later chap-

ters of the thesis. The output of the data is the number of dengue fever cases. We have

began the investigation by exploring the transmission of the disease in the previous chap-

ter through Figure 1.1. It has shown that there is strong evidence that the spread of the

disease displays a certain geographical pattern. In fact, there is also considerable correla-

tion between observed data since the disease is transmitted by a virus from mosquitoes.

As a consequence, it seems more sensible if we include a spatial effect when analysing the

data.

The problem now is that spatially correlated observations do not satisfy the indepen-

dence assumption of Poisson regression as a part of a generalized linear model. However,

to accommodate this issue, a generalized linear mixed model (GLMM) offers flexibility

by including a correlated effect in the model. Thus, in this chapter, we will review the

development of the correlation structures under GLMM and focus on dealing with spatial

count data.

This chapter is organized as follows. Section 2 reviews the conventional Poisson method

for modelling disease incidence rate. Some natural frameworks for capturing a spatial

8
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correlation in Poisson regression are discussed in Sections 3 and 4.

2.2 Poisson Regression Model

In modelling disease incidence rates, there are a definition which needs to understand.

The most common indicator used for comparing regional death rates is the standardized

mortality ratio (SMR) in place i which is defined by

SMRi =
zi
Ei
,

where zi is observed number of deaths in place i and Ei is the expected number of deaths

based on reference mortality rates applied to the regional demographic structure. Also Ei

is defined as

Ei =
∑
g

rg × pg,i,

where rg is a standard mortality rate (e.g. national mortality rate) of demographic group

g and pg,i is regional population size specific to demographic group g in place i. The

demographic group g is usually determined by age or sex-age attributes.

In a generalized linear model (GLM), there is a link function h connecting mean from

the dependent variable with independent variables (U), i.e.

E

(
zi
Ei

)
= h

(
µi
Ei

)
= UT

i β

= β0 + β1Ui1 + β2Ui2 + ...+ βkUik.

So we can write the above equation as follows

h

(
µi
Ei

)
= β0 + β1Ui1 + β2Ui2 + ...+ βkUik, i = 1, ..., N, (2.1)

where N is the number of observations and k is the number of predictors (covariates).

Function h is called the link function. We can also rewrite (2.1) as

µi
Ei

= h−1(UT
i β)

There are two link functions that can be used in Poisson regression. The first is the

identity link and the second is the log link. The form of identity link function as follows :

µi
Ei

= UT
i β.

9
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The log link is

log

(
µi
Ei

)
= UT

i β.

If we use the log link, the relationship between mean and independent is described

below.

µi = Eie
UT
i β.

The log link function is a more popular one because the link guarantees that the value

of independent variable is non negative. In term of Poisson regression, the common link

function is the log link function and the model is :

µi = Ei exp(β0 + β1Ui1 + β2Ui2 + ...+ βkUik) = Eie
UT
i β. (2.2)

Hence, the probability density function of Poisson regression can be written as follows

Pr(zi;β) =
e−µiµzii
zi!

where µi = Ei exp(UT
i β) is the mean and β are unknown parameters. Meanwhile, the

mean and the variance for Poisson regression model is defined as

µi = Ei exp(UT
i β) = V ar(zi).

The likelihood function of Poisson regression is

L(β | z) =

N∏
i=1

e−µiµzii
zi!

. (2.3)

And, the log likelihood function of equation (2.3) is therefore given by

log(L(β | z)) =
N∑
i=1

(−µi + zi log(µi)− log(zi!))

=

N∑
i=1

zi log(µi)−
∑

µi + constant.

Here µi is given in equation (2.2) and then unknown parameters β can be estimated by

maximizing the above log likelihood, ignoring the constant.

10
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2.3 Non-Spatial Correlation

Now, for the ith observation, let zi denote the response variable, τi denote a random

effect and Ui denote covariates for the fixed effects, where i = 1, ...N and N is the sample

size. Typically in a spatial GLMM for Poisson distribution, observations are assumed to

be conditional independent and follow a Poisson distribution. Then, a Poisson log linear

mixed model with non spatial random effect can be expressed as follows

zi | τi ∼ Poisson(µi)

log(µi) = log(Ei) + UT
i β + τi (2.4)

where τi ∼ N (0, σ2). The parameter θ, i.e. σ2 indicates the variances in the population

distribution and these random effects represents the influences of area i that are not

captured by the observed covariates, Mohebbi (2011).

The random effects τ are unknown , thus the marginal density of z does not have a con-

venient closed-form representation. To estimate parameters, we can do so by maximizing

the following marginal density z = (z1, ..., zN )T

p(z|β, θ) =

∫
p(z|β, τ )p(τ )dτ

=

∫
p(y, τ )dτ (2.5)

where τ ∼ N (0, σ2). Obviously, the above marginal density function is analytically in-

tractable. One of the methods used to address this issue is to use a Laplace approximation.

Note that

Φ(τ ) = log p(y, τ ) = log p(y|β, τ ) + log p(τ )

= log p(y|β, τ )− N

2
log 2π − N

2
log(σ2)− 1

2σ2

N∑
i=1

τ2
i (2.6)

where log p(y|β, τ ) =
∑N

i=1(yi log(µi) − µi) with µi = exp(UT
i β + τi) and then the log

likelihood of equation (2.5) can be written as

l(β,θ) =

N∑
i=1

log

∫
exp(Φ(τ ))dτ . (2.7)

Let τ 0 be the maximiser of Φ(τ ), then a Laplace approximation is∫
exp(Φ(τ ))dτ = exp

{
Φ(τ 0) +

N

2
log(2π)− 1

2
log |H|

}
(2.8)
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where H is the negative of the second derivative of Φ(τ ) respect to τ and evaluated at τ 0,

see Wood (2012). We have H = C− diag( 1
σ2 , ...,

1
σ2 ) and C is a diagonal matrix,

C = Diag
(

exp(UT
1 β̂ + τ01), ..., exp(UT

N β̂ + τ0N )
)
.

In order to estimate the parameters, we maximize the likelihood function with Laplace

approximation in equation (2.7).

2.3.1 Simulation Study

In this section, we provide an illustration to investigate the performance of the model in

equation (2.4). The procedure is as follows :

i. The true value parameters of θ = σ2 and β = (β0, β1) are 1, 2 and 3 respectively

ii. Generate U ∼ N (0, 1) and the random effect τi ∼ N (0, σ2)

iii. Calculate µi = exp(β0 + β1Ui + τi)

iv. Generate response response zi ∼ Poisson(µi)

v. Estimate parameters by maximizing the log likelihood of the marginal distribution

from equation (2.7) and (2.8).

In order to measure model performance, we use root mean square error (RMSE) which

can be defined as follows.

RMSEj =


∑r

i=1

(
βij − β̂ij

)2

r


1
2

(2.9)

where β̂ is an estimated parameter and r is the number of replication. Table 2.1 shows

the sample mean and the average of RMSE based on one hundred replications for two

different sample sizes. From Table 2.1, it is clear that the estimated parameters tend to

Sample Mean RMSE

Sample size σ2 β0 β1 σ2 β0 β1

200 0.9856 2.0030 2.9984 0.0508 0.0197 0.0096
600 0.9827 2.0000 2.9999 0.0311 0.0097 0.0050

Table 2.1: Sample mean and RMSE with different sample size based on one hundred replications.

the true values and the RMSE is decreasing as the sample size increases as we expected.
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2.4 Neighbourhood-based Spatial Correlation

In this section, we use a model similar to equation (2.4). The Poisson regression with

neighbourhood-based spatial effect can be specified as follows

zi | τi ∼ Poisson(µi)

µi = exp(UTβ + τi)

log(µi) = UTi β + τi, i = 1..., N

where the random effect τi is assumed to have general conditional autoregressive structure

which can be defined as

τi|τj ∼ N (
∑
j 6=i

bijτj , σ
2
i ).

The component bij is the weight of each other observation on the mean of τi and σ2
i is a

variance for τi. As an example, if state i has M neighbours and bij = 1
M for every state

that is a neighbour and 0 otherwise, then the conditional mean of a state’s observation is

the mean of all neighbours’ observations.

In order to estimate the parameters involved in the model, we need to derive the joint

distribution of all observations. Unfortunately, the above assumption just gives us full

conditional distributions. But, by applying Brook’s lemma with Gaussian conditional, we

can define the following

p(τ1, ..., τn) ∝ exp

{
−1

2
τ ′D−1(I−B)τ

}
(2.10)

where B = bij and Dii = σ2
i . This implies that a joint multivariate normal distribution

for τ with mean 0 and covariance matrix Σ = (I−B)−1D, Banerjee et al. (2011).

There are two problems that we need to consider before we estimate parameters of the

model using a joint distribution for all observations given the conditional neighbour. The

first problem is symmetry. It can be addressed by making some definition, i.e. bijσ
2
j = bjiσ

2
i

or
bij
σ2
i

=
bji
σ2
j

, Monogan (2012). However, B is still not symmetric. The proximity matrix

W where entries wij (with wii = 0) and the choices for wij . For example wij is equal to 1

if i, j share a common boundary. Now, we assume that W is symmetric when we suppose

the bij =
wij
wi+

and σ2
i = σ2

wi+
. Thus, we can rewrite the joint distribution in equation (2.10)

as following

p(τ1, ..., τn) ∝ exp

{
−1

2σ2
τ ′(Dw −W)τ

}
where Dw is diagonal with (Dw)ii = wi+ and W = wij . Here wij is a measure of the asso-
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ciation between two observations (typically equal to 1 if the observations are neighbours

and 0 otherwise) and wi+ is the sum of all wij for observation i.

The second problem is that we need to ensure that (Dw −W) is positive definite to

provide a valid joint distribution. This does not seem easy since in practice, it might

not be positive semi definite. Moreover, (Dw −W)1 = 0, if we define matrix W as wij

which is equal to 1 if the observations are neighbours and 0 otherwise. As consequence

the inverse of covariance matrix Σ−1 is singular meaning that Σ does not exist.

As a consequence, in this case, it provides an improper distribution which is called

intrinsic conditional autoregressive model (ICAR) model or intrinsic Gaussian Markov

random field, Rue & Held (2005). We can rewrite the model ICAR as follows

p(τ1, ..., τn) ∝ exp

 −1

2σ2

∑
i¬j

wij(τi − τj)2

 .

The distribution does not change if we add any constant to a τi, thus it is considered that

p is an improper distribution. To address this issue, we need a constraint in the model

such as ∑
i

τi = 0

and can redefine the inverse of the covariance matrix as follows.

Σ−1 = Dw − ρW

and choose ρ to make Σ−1 non singular. This is guaranteed if

ρ ∈ (
1

λ1
,

1

λn
),

where λ1 < ... < λn are ordered eigenvalues of D
− 1

2
w WD

− 1
2

w . The bounds can be simplified,

by replacing W with W̃ = Diag( 1
wi+

)W. Then,

Σ−1 = Dw(I− αW̃)

where Dw is diagonal and if |α| < 1, then I − αW̃ is nonsingular, see Carlin & Banerjee

(2003).

2.4.1 Correlation in the Neighbourhood GLMM

In this subsection, we provide an illustration in order to understand how α of a covariance

structure influences the correlation matrix. As we have explained in the previous subsec-

tion, we can write that τ1, ...τN ∼ N (0,Σ), where Σ = (σ−2Q)−1 and Q = Dw(I− αW̃).
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Figure 2.1: Map of East Java province, Indonesia (http://mapsof.net/indonesia/east-java-
province)

In practice, it does not seem easy to investigate the correlation for each observation.

Thus, we need to investigate how the precision matrix and other parameters can affect the

covariance matrix. We will show how α plays an important role in terms of the performance

of correlation matrix. Specially, we use dengue data cases in East Java, Indonesia in 2010

which will discuss in the next chapter. The output is the number of dengue fever cases in

every city and there are 38 cities in total. We left two cities out since they have missing

data. Figure 2.1 shows the real map based on present circumstances. In this investigation,

we focus on the 1st and 2nd city, i.e. Ponorogo and Trenggalek respectively. From Figure

2.1, it is clear that between Ponorogo and Trenggalek there could be a high correlation

because they share a common boundary.

From Figure 2.2 and 2.3 we see the different performance of the correlation matrix

based on two choices of α. From Figure 2.2, there is considerable evidence to show that

by taking α = 0.9, the correlation between two cities is sensible. It is because both areas,

which are represented by 1 and 2, have a dark color which means that the areas are highly

correlated. We now compare the performance by taking another value of α, say 0.75 which

can be found in Figure 2.3. As we expected, the choice of the value of α has a big impact

in terms of correlation matrix performance. From Figure 2.3, it shows that the correlation

between the two areas (1 and 2) has changed into a low correlation which is not acceptable

based on the actual situation.
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Figure 2.2: The correlation matrix from 36 cities in East Java province, Indonesia based on α = 0.9.

Figure 2.3: The correlation matrix from 36 cities in East Java province, Indonesia based on α = 0.75
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2.4.2 Simulation Study

Similar to the previous simulation study, the aim of this subsection is to understand the

performance of the spatially based neighbourhood model. The procedure used to simulate

the data is as follows :

i, Give the true value as parameters of theta β0, β1 and σ2, i.e. 6.7,−0.002 and 0.8

respectively

ii, Generate random effects; e.g. τ1, ...τN ∼ N (0,Σ), where Σ = (σ−2Q)−1 and Q =

Dw(I− αW̃). The bounds can be simplified, by replacing W by W̃ = Diag( 1
wi+

)W.

Define Dw as a diagonal matrix with (Dw)ii = wi+ and W = wij . Here, wij is a

measure of the association between two observations (typically equal to 1 if the obser-

vations are neighbours and 0 otherwise) and wi+ is the sum of all wij for observation

i. For α, if |α| < 1, then I− αW̃ is non singular and here, we define α = 0.5. Hence,

we can generate τ1, ...τN ∼MVN (0, (σ−2(Dw(I− 0.5W̃))−1).

iii, Generate the covariates Ui ∼ N (0, 1) and calculate the mean µi = exp(β0 +β1Ui+ τi)

iv, Generate response variable zi ∼ Poisson(µi)

v, Estimate parameters by redefining equation (2.6) as follows

Φ(τ ) = log p(z|β, τ )− 1

2
log |Σ| − 1

2
τTΣ−1τ − N

2
log 2π (2.11)

where N is the number of observations.

σ β0 β1

True values 0.8 6.7 -0.002
Sample mean 0.79989 6.70175 -0.002016

Average SD 0.00034 0.01018 0.000132
RMSE 0.00018 0.01485 0.000133

Table 2.2: Sample mean, the average of standard deviation (Average SD) taken from the informa-
tion matrix and the RMSE based on one hundred replications.

Table 2.2 shows that estimated parameters (Sample mean) and the value of the average

standard deviation (Average SD) which can be calculated from information matrix or the

inverse of negative Hessian matrix. Meanwhile, the Hessian matrix is the second derivative

of marginal likelihood respect to parameters. Another measurement is the value of root

mean square ( RMSE) between estimated parameters and true values as it is defined in

equation (2.9) based on one hundred replications. The estimated parameters perform

reasonably well. Although one of the parameters have a slightly different value of the
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average SD and RMSE, the measurement performance values of other parameters tend to

be similar each other as we would expect.

2.5 Chapter Summary

In this chapter, we have reviewed the development of the correlation structure in Poisson

regression. We noticed that a spatial correlation structure based on neighbourhood is

more realistic in capturing spatially correlated compared with non-spatial structure or

conventional Poisson regression. The performance of the spatial approach provided a

promising result.

However, there are some points worth noting in terms of the neighbours method, i.e.

in practice, we need to ensure that Q = Dw(I− αW̃) is at least semi-definite positive by

taking some number for |α| < 1. If we take α = 0, it can be interpreted that zi become

independent. Therefore, this seems to offer a less convenient approach for practitioners

since we know that the performance of the correlation matrix might change significantly if

we take different values. We then need to find a more flexible and efficient way of handling

spatial correlated count data. This is the aim of the next chapter.
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Chapter 3

Spatial Poisson Modelling using

Gaussian Process Regression

3.1 Introduction

In recent years, modelling for count data has developed quickly, particularly for health

data. The conventional way to handle this situation is using a Poisson regression model by

assuming independence among the data. However, in practice this is a strong assumption

since the majority of health data are dependent. One popular approach is to solve the

problem by using a conditional autoregressive model to model the correlation structure,

which is first proposed in Besag & Kooperberg (1995).

In the previous chapter, we discussed the performance of the ICAR model. It provided

a promising result, but we need to have a basic knowledge of how to choose the precision

matrix and other parameters in order to define the covariance matrix. Therefore, further

development is needed. Kriging is another well known geostatistical, approach based

on stationary Gaussian processes, see Diggle et al. (2007a). However, this approach has

limitations, i.e. it is not allowed to involve more than two or three dimensions of covariates

in the covariance structure. Thus, the aim of this chapter is to propose a model which can

describe the spatial covariance flexibly. To overcome the problem, we propose a method

which enables us to accommodate a large dimensional covariance structure. To achieve

this we extend the method by using a Gaussian process regression (GPR) model.

This chapter will be organized as follows. Sections 3.2 and 3.3 will describe the details

on how we use a GPR to model dependency and provide the technical details for infer-

ence and implementation respectively. comprehensive numerical investigations including

simulation studies and a real example will be presented to demonstrate the performance

of the proposed method in Section 3.4.
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3.2 Gaussian Process Regression (GPR)

Let yi be a response variable and xi be P -dimensional covariates. A Gaussian process

regression model can be specified as follows :

yi = f(xi) + εi, i = 1, ..., N (3.1)

where εi ∼ i.i.d N (0, σ2), σ2 unknown and

f(.) ∼ GP(µ(·), k(·, ·)),

if

f = (f1, f2, .., fN ) ∼ N (µ,K),

where the i -th element of µ is µ(xi), the (i, j)-th element of K is k(xi,xj) and k(·, ·) is a

covariance function.

It is common to assume a zero mean function in the Gaussian process prior, i.e. µ(.) =

0. The most popular choice for the covariance function is the following squared exponential

kernel,

k(xi,xj) = v0 exp

−1

2

P∑
p=1

wp(xip − xjp)2

 (3.2)

where v0, wp, p = 1, ...P denotes the set of hyper-parameters and are defined as θ. Making

a suitable choice of a kernel covariance function and its hyper-parameters can improve the

prediction accuracy. One of the popular methods is using empirical Bayesian estimation

to select hyper-parameters, Shi & Choi (2011).

3.2.1 Empirical Bayesian Estimates

As in the previous section the problem of estimating hyper-parameters is an important

topic. In this case, rather than making assumptions on the probability structure for the

hyper-parameters, the empirical Bayesian approach uses the observed data to estimate

them.

Now, we focus on the empirical Bayesian approach. Let us assume that we have

observed a set of data D = (yi,xi), i = 1, ..., N,xi ∈ T ⊂ RP , P is the dimension of the

input vector xi. A Gaussian process regression model is generally formulated as

yi|fi ∼ g(fi) (3.3)

(f1, ..., fN ) ∼ GP(0, k(·, ·)) (3.4)
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where k(xi,xj) = cov(f(xi), f(xj)). Here g(fi) may be a normal distribution with mean

fi and variance σ2. In this case (3.3) can be rewritten as

yi|fi ∼ N (fi, σ
2). (3.5)

The observations yi may have some other distributions, for example Poisson distribu-

tion which will be discussed in the next section. From (3.3) and (3.4) we can obtain the

marginal likelihood of y = (y1, ..., yN )T given θ, i.e.

p(y|θ) =

∫
p(y|f)p(f |θ)df (3.6)

where p(y|f) =
∏n
i=1 g(fi) and f ∼ N (0,K). Consequently for the continuous response

with normal distribution as given in (3.5), the marginal (3.6) has an analytical form as a

multivariate normal. Thus, the marginal distribution of y is a normal distribution N(0,Ψ)

where Ψ = K + σ2
ε I. Hence, the marginal log likelihood of θ is written as

L(θ|D) = −1

2
log |Ψ(θ)| − 1

2
yTΨ(θ)−1y − N

2
log 2π (3.7)

Now, θ = (wp, v0) is estimated by maximizing the above log likelihood. In practice, we

often estimate σ2 and θ at the same time. For other distributions, it is not straightforward

to calculate the marginal likelihood in equation (3.6). The model with Poisson data will

be discussed in the next section. Other types of data will be discussed in Chapter 6.

3.2.2 Fitted Values and Predictions

From the model structure defined in (3.3), we can calculate posterior probabilities of

f = (f(x1), ..., f(xN ))T . Let K be a N × N covariance matrix evaluated at all pairs of

the N design points. Furthermore, the observed variables y = (y1, ..., yN )T given f and

noise variance σ2 have a multivariate normal distribution with mean f and covariance σ2I

in which f also follows a multivariate normal with mean 0 and covariance K, see (Shi &

Choi, 2011). We can express it as follows :

(y1, ..., yN |f , σ2) ∼ N (f , σ2I)

where f ∼ N (0,K). Thus, the posterior distribution of f , p(f |D, σ2) from a set of data

(D) is proportional to the product of two normal distributions.

p(f |D, σ2) ∝ ϕN (y|f , σ2I)ϕN (f |0,K)

21



Chapter 3. Spatial Poisson Modelling using Gaussian Process Regression

where ϕN (.|µ,Σ) denotes the density function of N -variate normal distribution with mean

vector µ and covariance matrix Σ. Hence, ϕN (y|f , σ2I) denotes as a multivariate normal

distribution with mean f and covariance matrix σ2I. Also ϕN (f |0,K) defines as a multi-

variate normal distribution with mean 0 and covariance matrix K.

When θ is given (or estimated), the posterior distribution p(f |D, σ2) is a multivariate

normal distribution with

E(f |D, σ2) = K(K + σ2I)−1y,

V ar(f |D, σ2) = σ2K(K + σ2I)−1.

The marginal distribution of y, p(y) is also given by a multivariate normal distribution,

y = (y1, ..., yN ) ∼ N (0,Ψ) (3.8)

where Ψ is a N ×N matrix, of which the (i, j) th element is defined as

Ψ(i, j) = Cov(yi, yj) = k(xi,xj) + σ2δij (3.9)

where δij is the Kronecker delta.

In terms of prediction, let x∗ be a new input and f(x∗) be the related nonlinear

function. Thus, (f(x1), ..., f(xN ), f(x∗)) can be assumed to be the same Gaussian process

as the training data. Hence, the posterior distribution of f(x∗) given the training data D
is a Gaussian distribution with

E(f(x∗)|D, σ2) = ΨT (x∗)Ψ−1y (3.10)

V ar(f(x∗)|D, σ2) = k(x∗,x∗)−ΨT (x∗)Ψ−1Ψ(x∗) (3.11)

where Ψ(x∗) = (k(x∗,x1), ..., k(x∗,xN ))T is covariance between f(x∗) and f = (f(x1, ..., f(xN )).

Also Ψ is covariance matrix of y = (y1, ..., yN ).

The predictive distribution of y∗ = f(x∗) + ε∗ is also a Gaussian distribution with the

same mean as equation 3.10 and variance given by

k(x∗,x∗)−ΨT (x∗)Ψ−1Ψ(x∗) + σ∗2.

3.3 Spatial Poisson Model with GPR

We now use a GPR to model the correlated structure for non-Gaussian data; it can be

called as a spatial generalized linear mixed model (SGLMM GPR). In this chapter , we

focus on Poisson data, i.e. the model is defined by

zi|τi ∼ Poisson(µi) (3.12)
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log(µi) = UT
i β + τ(xi), i = 1, ..., N

where N is the sample size and τ(·) ∼ GP(0, k(·, ·) has been explained in the previous

section.

3.3.1 Empirical Bayesian Estimates

As in the previous chapter, the problem of estimating the hyper-parameters θ and coef-

ficient parameters (β) is a significant topic. We use an empirical Bayesian approach to

estimate hyper-parameters θ. In practice, θ and β can be estimated at the same time.

We recall how we obtain the marginal likelihood of z = (z1, ..., zN )T given θ and β

from (3.6) as follows.

p(z|β,θ) =

∫
p(z|β, τ )p(τ |θ)dτ (3.13)

=

∫
Φ(τ )dτ

where τ ∼ N (0,K) and

Φ(τ ) = log p(z|β, τ )− 1

2
log |K(θ)| − 1

2
τTK−1(θ)τ − N

2
log 2π. (3.14)

It is impossible to calculate (3.13) directly since the dimension of the integration is N ,

which is usually a large number. We use a Laplace approximation as discussed around

equation (2.8).

3.3.2 Predictions

It is of interest to predict z∗ at a new test input x∗. The main purpose in this section is

to calculate E(z∗|D) and V ar(z∗|D).

Let τ(x∗) = τ∗ be the underlying latent variable at x∗. The expectation of z∗, condi-

tional on τ∗ is given by

E(z∗|τ∗,D) = exp(U∗T β̂ + τ∗). (3.15)

It follows that

E(z∗|D) = E[E(z∗|τ∗,D)] =

∫
exp(U∗T β̂ + τ∗)p(τ∗|D)dτ∗. (3.16)

One method to calculate the above expectation is to approximate p(τ∗|D) using a Laplace
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approximation. We can rewrite it as

p(τ∗|D) =

∫
p(τ∗|τ , D)p(τ |D)dτ (3.17)

=

∫
p(τ∗, τ |D)dτ

=
1

p(z)

∫
p(y|τ )p(τ∗, τ )dτ .

For convenience, we denote (τ , τ∗)T and its covariance matrix KN+1,N+1 by τ+ and

K+ respectively. Thus, the equation (3.16) can be written as

1

p(y)

∫ [
exp(U∗T β̂ + τ∗)

N∏
i=1

p(zi|β̂, τi)

] [
(2π)−

(N+1)
2 |K+|−

1
2 exp(−1

2
τTK−1

+ τ+)

]
dτ+

(3.18)

The calculation of the integral is not tractable, since the dimension of τ+ is usually very

large. We still use a Laplace approximation. Note that

Φ̃(τ+) = log(exp(U∗T β̂+τ∗))+
N∑
i=1

log p(zi|β̂, τi)−
N + 1

2
log(2π)−1

2
log |K+|−

1

2
τT+K−1

+ τ+

where log p(z|β, τ ) =
∑N

i=1(zi log(µi) − µi) with µi = exp(U∗T β̂ + τi). Equation (3.17)

can be expressed as

p(z∗|D) =
1

p(z)

∫
exp(Φ̃(τ+))dτ+.

Let τ̂+ be the maximiser of Φ̃(τ+), then by using Laplace approximation we have∫
exp(Φ̃(τ+))dτ+ = exp(Φ̃(τ̂+) +

N + 1

2
log(2π)− 1

2
log |K−1

+ + C+|) (3.19)

where C+ is the negative of the second derivative of

(U∗T β̂ + τ∗) +
N∑
i=1

[
zi(U

T
i β̂ + τi)− exp(UT

i β̂ + τi)
]

with respect to τ+ and evaluated at τ̂+. Here C+ is a diagonal matrix, i.e.

C+ = Diag
(

exp(UT
1 β̂ + τ̂1), ..., exp(UT

N β̂ + τ̂N ), 0
)
.

Since p(z) has already been investigated, the predictive mean (3.16) can be calculated.

To calculate V ar(z∗|D), we use the formula :

V ar(z∗|D) = E[V ar(z∗|τ∗,D)] + V ar[E(z∗|τ∗,D)]. (3.20)
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Because V ar(z∗|τ∗,D) = E(z∗|τ∗,D), therefore

E[V ar(z∗|τ∗,D)] = E(z∗|D). (3.21)

From the model definition, we have

V ar(E[z∗|τ∗, D]) = E[E(z∗|τ∗, D)]2 − [E[E(z∗|τ∗,D)]]2

=

∫
(exp(U∗T β̂ + τ∗))2p(τ∗|D)dτ∗ − [E(z∗|τ∗,D)]2. (3.22)

The first item in (3.22) can be obtained by Laplace approximation similar to E(z∗|D) in

(3.16). The second item is the square of (3.17).

3.4 Numerical Examples

In this section we demonstrate several numerical examples including a simulated study

and a real application using dengue fever data from East Java, Indonesia.

3.4.1 Simulation study: Scenario 1

We generate random numbers from a Poisson distribution using the algorithm below.

The first issue is to estimate parameters using empirical Bayesian estimates and below is

the procedure for generating data and estimating parameters. The simulation example

is similar to our Dengue fever data. The correlated structure depends on the location

(latitude and longitude) of each area.

i. Give the true values as the parameters β = (β0, β1) are 1 and 2 respectively and the

hyper-parameters of covariance kernel θ = (w, v) are 0.04 and 1 respectively.

ii. Generate covariate U ∼ N (0, 1)

iii. Generate random effect, we generate τi ∼ GP(0, k(xi,xj)). Here k(xi,xj) is squared

exponential covariance function based on previous section where x is latitude and

longitude from each city in Dengue fever data

iv. Generate the response variable , i.e Poisson distribution

µi = exp(β0 + β1Ui + τi)

zi ∼ Poisson(µi)

v. Estimate parameters by maximizing equation (3.14) with Laplace aproximation.
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We generate 30 observations as the training data, the remaining cities are used as the

test data. Table 3.1 shows the sample mean and the values of RMSE ( RMSE) of the

estimated parameters β0 and β1, based on one hundred replications.

Parameters(β) β0 β1

True values 1 2
Sample mean 0.99475 2.00275
RMSE 0.00035 0.14478

Table 3.1: Sample mean and RMSE for estimated parameters based on one hundred replications

To evaluate the performance of the model, we use root-mean-square error (RMSE).

This measurement calculates the differences between estimated parameters and the true

values using equation (2.9). Now, we recall the formula of RMSE from the equation (2.9)

for measuring performance of prediction as follows.

RMSEj =

√∑r
i=1(yij − ŷij)2

r
,

where ŷ is predicted value, y is actually observed values and r is the number of replications.

Table 3.1 shows that the value of sample mean of estimated parameters are close to the true

values and the RMSE values are close to zero. It means that the Laplace approximation

works well. The estimates of the parameters are very close to their true values.

We are also interested in predicting the response at a new point. The estimated

parameters can be used to predict the performance of test data. The average values of

the root mean squared error (average RMSE) between µ̂ and µ for test data calculated

based on one hundred replications is 0.2620. Here, the average true values of µ is 18.19.

Thus, It shows that the predictive performance is acceptable.

3.4.2 Simulation study: Scenario 2

In this scenario, we will present numerical results of a simulation study comparing several

models. Here, the three models considered are SGLMM GPR, the existing approach

SGLMM ICAR and the conventional Poisson regression model which assumes the data

are independent.

In the simulation study, we first generate random data from a Poisson distribution

(3.12) with true values β0 = 1 and β1 = 2, using the structure similar to that used for

the thirty six cities specified in the Dengue fever data example. The spatial covariates

x are longitude and latitude of each city. We select 30 of them as training data and the

remaining as test data. To measure performance, we calculate the sample mean of the

estimated parameters and the root mean squared error (RMSE) between the estimated
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and the true values of the parameters, and also calculate the average of RMSE between

the predicted values and the actual observed data.

We suppose that z are observed data and the model can be specified as

zi ∼ Poisson(µi)

log(µi) = UTi β + τi

where the vector of random effects τi is assumed to have a general conditional autoregres-

sive structure. In the intrinsic conditional autoregressive (ICAR) method, the conditional

distribution of the random effect is given by :

τi|τj ∼ N (
∑
j¬i

bijτj , σ
2
i ), i = 1, ...., n

where bij =
wij
wi+

and σ2
i = σ2

wi+
and wij is a measure of the association between two

observations ( equal to 1 if the observations are neighbours and 0 otherwise) and wi+ is

the sum of all wij for observation i.

In SGLMM-GPRmodel, we assume that τi follows a Gaussian process regression model

as defined in equations (3.1) and (3.2). Here, the covariance kernel is squared exponential

which x are the location of each area measured by its longitude and latitude.

Table 3.2 shows the sample mean from different methods and also the value of RMSE

(RMSE) based on fifty replications. All the methods show good performance in terms

Sample Mean RMSE

Method β0 β1 β0 β1

True value 1 2
Poisson 0.9991 1.9984 0.1504 0.2295
SGLMM ICAR 0.9953 2.0013 0.1503 0.2281
SGLMM GPR 0.9991 1.9984 0.1504 0.2296

Table 3.2: Sample mean of the estimated parameters and RMSE for several models based on fifty
replications

of estimating the parameters. The value of average RMSE (average RMSE) between µ

and µ̂ can be seen in Table 3.3. It shows clearly that the performance of SGLMM GPR
is the best. SGLMM ICAR show improvement compared with the conventional Poisson

regression which assumes the data are independent.

3.4.3 Dengue Fever Data

An increasingly important topic in epidemiology is dengue fever. This disease is a mosquito-

borne infection found in tropical and sub-tropical regions around the world. In recent
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Method Average RMSE

Poisson 0.4579
SGLMM ICAR 0.1388
SGLMM GPR 0.0239

Table 3.3: The average of RMSE between µ and µ̂ using three different models based on fifty
replications

years, transmission has increased predominantly in urban and semi-urban areas and has

become a major international public health concern.

Firstly, we begin by exploring the spreading of dengue fever in Indonesia which can

be found in Figure 3.1. It is clear that the disease displays a geographical pattern and is

highly spatially correlated. Its prevalence in Indonesia is the highest in the world and had

around 50 thousand new cases in 2011. It means that for every 1000 people living in an

affected area there are two people who become infected. This is a big issue and needs to be

analysed to find out the risk and identify preventable factors in order to reverse the trend.

Moreover, research will give a better understanding of how the community can achieve

good quality of life. Therefore, this example will analyse dengue fever to determine the risk

and significant factors of the diseases in East Java, Indonesia. The conventional and two

Poisson regression models, SGLMM ICAR and SGLMM GPR, are used and compared.

The data are taken from Health Office East Java Indonesia in 2010. In this example,

the response variable (zi) is the number of dengue fever cases in 2010 at city i and the

covariates include the percentage of households that can access healthy water (x1), healthy

waste disposal (x2), waste water disposal facilities (x3), clean and healthy behaviour (x4)

and healthy housing (x5). Table 3.4 shows summaries of the Dengue Fever data in East

Java, Indonesia i 2010.

Variable Min Mean Max

Healthy water 9.15 71.57 401.10
Healthy waste disposal 0.00 55.51 100.00
Waste water disposal facilities 1.64 51.79 97.37
Clean and healthy behaviour 7.00 37.36 79.86
Healthy housing 13.84 65.39 99.69
Dengue fever cases 18.00 3379.0

Table 3.4: Summaries of Dengue Fever data

Tables 3.5 to 3.7 show the estimated parameters using three different models, i.e.

conventional Poisson regression, SGLMM GPR and SGLMM ICAR. Using Poisson re-

gression model, each covariate has a significant effect to this disease. One of the reasons

is because standard error (SE) is calculated by assuming they are independent and then

SE is extremely small, resulting in vary small p-value. In conclusion, p-value might be

28



Chapter 3. Spatial Poisson Modelling using Gaussian Process Regression

Figure 3.1: Incidence rate of dengue fever in Indonesia by provinces from 1 January to 27 March
2004 (Source: World Health Organization, 2004).
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Poisson regression

Coefficients Estimate SE Pvalue

Intercept 5.6258 0.0296 0.00
Healthywater -0.003 0.0001 0.00
Trashcan -0.001 0.0002 0.00
Wastewaterdis 0.0513 0.0003 0.00
Cleanhealthybehav 0.0014 0.0004 0.00
Healthyhouse 0.0057 0.0005 0.00

Table 3.5: Estimated parameters (coefficient of covariates) using conventional Poisson regression
model

SGLMM ICAR

Coefficients Estimate SE Pvalue

Intercept 5.6015 0.011 0.00
Healthywater -0.005 0.001 0.70
Trashcan -0.003 0.004 0.87
Wastewaterdis 0.0053 0.005 0.44
Cleanhealthybehav 0.0071 0.006 0.29
Healthyhouse 0.0112 0.006 0.04

Table 3.6: Estimated parameters (coefficient of covariates) using spatial GLMM with ICAR

SGLMM GPR

Coefficients β̂ SE P-value

Intercept 5.6005 0.012 0.0000
Healthywater -0.005 0.005 0.0000
Trashcan -0.007 0.003 0.0274
Wastewaterdis 0.0035 0.003 0.9578
Cleanhealthybehav 0.0077 0.008 0.3060
Healthyhouse 0.0052 0.002 0.0565

Table 3.7: Estimated parameters (coefficient of covariates) using spatial GLMM with GPR

questionable.

However, a more realistic model is to assume dependence between neighbouring areas.

The disease is caused by a virus and can be spread quickly to the neighbouring areas.

The geographic position is a very significant factor regarding transmission of the disease.

From Table 3.6 and Table 3.7, it can been seen that the estimates of the parameters

using SGLMM ICAR and SGLMM GPR are quite similar to the ones obtained by the

conventional model. But the P-values are quite different to the previous model. However

we cannot give an over-interpretation of the p-value. The non-significant part may be

caused by correlation among covariates.

To compare the predictive performance of the models, we randomly select 30 cities as
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training data and the remaining 6 cities as test data. After obtaining the estimation of

the parameters, we calculate the prediction for the test data.

Method RE

Poisson regression 0.0544
SGLMM ICAR 0.0238
SGLMM GPR 0.0143

Table 3.8: The relative error (RE) for different methods

Table 3.8 gives the values of relative error (RE), which is defined as the percentage of

the difference between the prediction and the observation with respect to the observation.

From Table 3.8, we see that SGLMM GPR is the best among these models.

3.5 Chapter Summary

In this chapter, we proposed a Gaussian process regression model for the covariance struc-

ture. It allows the use of geographic position and other variables to define the spatial

correlation structure, and thus it provides a very flexible model. The simulation study

and the real data example shows its good performance. The computation of the method

is quite efficient.

We discussed the model for a univariate response variable in this chapter. In practice,

it might be better to consider multivariate response variables together by borrowing in-

formation from each other. For example, other diseases such as malaria are also spread

by mosquitoes. Therefore, it is better if we analyse both dengue fever and malaria at

the same time. The main problem here is how we construct a cross-correlation between

response variables. We will discuss this problem in the next chapters.
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Chapter 4

A Convolved Gaussian Process for

Multiple Dependent processes

4.1 Introduction

In the previous chapter, we discussed non Gaussian regression with a Gaussian process as

our prior and with particular reference to spatial Poisson regression. This model provides

sufficient flexibility to define the spatial correlation structure. The benefit of using a

Gaussian process is that it enables us to extend the idea to address multiple dependent

Gaussian processes. During the last decade, many researchers have been developing this

method for multiple processes. The vast majority of approaches have attempted to handle

the difficulty of capturing inter-dependence between two processes and to ensure that the

covariance matrix is positive definite.

Now, we can estimate the parameters from observed data to model multiple dependent

processes instead of specifying and controlling the parameters of the positive covariance

structure. An alternative way is to use a convolution method. In this chapter we will

focus on constructing multiple dependent Gaussian processes, i.e. the definition of the

cross-correlation structure. We extend the method proposed by Andriluka et al. (2006)

and consider a broader range of problems by comparing models with different covariance

functions. Therefore, we are able to test sensitivity when choosing different covariance

structures.

We first investigate briefly in Section 4.2 the convolved Gaussian process for a single

process and then look at the problem of constructing a convolved Gaussian process for

multiple dependent processes using different covariance functions in Section 4.3. The last

section will explore how we analyse multivariate nonlinear data with convolved Gaussian

process as priors. Both Sections 4.3 and 4.4 will provide technical details and comprehen-

sive simulation studies.
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4.2 Convolved Gaussian Process for a Single Process

This section recalls the definition of a Gaussian process which has been discussed in Chap-

ter 3 and extends it to a convolved Gaussian process. A Gaussian process can be defined

as follows. Let f = (f(x1), ..., f(xN )), then we can define f(·) as a Gaussian process

(GP) with mean function µ(·) and a covariance function k(·, ·) and will write the Gaussian

process as

f(.) ∼ GP (µ(·), k(·, ·)),

if

f ∼ N (µ,K),

where the i -th element of µ is µ(xi), the (i, j)-th element of K is k(xi,xj) and k(·, ·) is a

covariance function. It is common to set the mean function to be zero for simplicity.

Now we define a Gaussian process in a different way, namely a convolved Gaussian

process. Let τ(x) be Gaussian white noise τ(x) ∼iid N (0, σ2) and h(x) be a smoothing

kernel for x ∈ RP . We can construct a convolved Gaussian process η(x) as

η(x) = h(x) ? τ(x)

=

∫
h(x−α)τ(α)dα =

∫
h(α)τ(x−α)dα, (4.1)

where ? denotes convolution. If we suppose a smooth kernel h(x) is given by

h(x) = v exp

{
−1

2
(x− µ)TA(x− µ)

}
then the η(x) defined in (4.1) is a convolved Gaussian process (CGP). It is equivalent to

a GP with zero mean and the following covariance function

k(xi,xj) = π
P
2 v2|A|−

1
2 exp

{
−1

4
(xi − xj)

TA(xi − xj)

}
, (4.2)

where v and A are parameters. We denote a convolved Gaussian process by

η(x) ∼ CGP(h(x), τ(x)). (4.3)

Examining the exponential and its quadratic form of covariance structure in equation

(4.2), we can see that (xi − xj)
TA(xi − xj) can be replaced by a squared Mahalanobis

distance (m2). This relationship will be used to construct a convolved Gaussian process

from a Gaussian process. For more explanation we will provide specific examples in the
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next section.

4.3 A Convolved Gaussian Process for Multiple Dependent

Processes

The convolved Gaussian process defined in the previous section can be extended to define

multiple dependent processes. We first define three independent Gaussian white noises,

namely τ0(x), τ1(x) and τ2(x). We start the discussion by constructing four CGPs as

follows :

η1(x) ∼ CGP(g1(x), τ1(x))

η2(x) ∼ CGP(g2(x), τ2(x)) (4.4)

where g1(x) and g2(x) are two smoothing kernels. Here, η1(x) and η1(x) are two indepen-

dent CGPs since they are constructed using independent Gaussian white noises τ1(x) and

τ2(x). Another two CGPs can be specified as

ξ1(x) ∼ CGP(h1(x), τ0(x))

ξ2(x) ∼ CGP(h2(x), τ0(x)) (4.5)

where different kernels h1(x) and h2(x) are used to define the different covariance struc-

tures and the same white noise τ0(x) implies the dependency between ξ1(x) and ξ2(x). It

is clear that ξ1(x) and ξ2(x) are dependent but are independent from η1(x) and η2(x).

Therefore, from four CGPs we can define bivariate dependent Gaussian processes as

fa(x) = ξa(x) + ηa(x), a = 1, 2. (4.6)

Based on equation (4.6), the dependency between f1(x) and f2(x) is modelled by ξ1(x)

and ξ2(x), while the individual characteristics are modelled by η1(x) and η2(x).

Let us assume

f = (f1(x1i), i = 1, ..., N1; f2(x2i), i = 1, ..., N2)

where xi = (x1i,x2i) ∈ T ⊂ RP . Then we can define f(·) as a dependent Gaussian

processes with zero means and a covariance function K(·, ·) and can be written as follows

:

f(.) ∼MGP(0,K(·, ·)), (4.7)
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where

K(xi,xj) =

(
Cov(f1(xi), f1(xj)) Cov(f1(xi), f2(xj))

Cov(f2(xi), f1(xj)) Cov(f2(xi), f2(xj))

)
(4.8)

=d

(
k11(xi,xj) k12(xi,xj)

k21(xi,xj) k22(xi,xj)

)
.

The dependent Gaussian processes in equation (4.6) can also be defined as follows :

f = (f1(x), f2(x))T ∼ N (0,KN1N2). (4.9)

f has multivariate normal distribution with zero mean and covariance matrix KN1N2 with

(N1 + N2) × (N1 + N2) dimensions where the (i, j)-th element of KN1N2 is K(xi,xj) and

K(·, ·) is a covariance function.

Standard Gaussian process models use a stationary covariance, in which the covariance

between any two points is a function of Euclidean distance, Paciorek (2003). Due to the

stationarity of kernel functions, we can define a separation vector d = xi − xj . In other

words, the covariance matrix for the model can be specified based on equation (4.8) as

follows

k11(d) = kξ111(d) + kη111(d); k12(d) = kξ1212 (d);

k22(d) = kξ222(d) + kη222(d); k21(d) = kξ1212 (−d). (4.10)

Now we provide a general framework to derive the set of kab(d) from any stationary

covariance kernel. Similar to the previous closed forms in equation (4.10), if a = b it is

defined as autocovariance, but if a 6= b, it is called cross-covariance between output a and

b. We can express it in a closed form by applying the proposition as follows.

Proposition 4.3.1. Assume that S(m) is an isotropic covariance function on RP , for any

P ∈ N. Then the covariance kab(d) in (4.10) is given by

kab(d) =
vavb(2π)P/2

|Aa +Ab|1/2
S(
√
Qab(d))

where

Qab(d) = dTAa(Aa +Ab)
−1Abd

va, vb ∈ R and arbitrary positive matrices Aa, a = 1, 2 and kab(d) is a positive definite

function on Rp, p = 1, 2, ... for a, b = 1, 2.

The proof of the proposition uses similar arguments to the one used in Andriluka et al.
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(2006) and Paciorek (2003) although Proposition 4.3.1 only focuses on two outputs. The

details of the proof can be found in Appendix B.

From Proposition 4.3.1, we are able to obtain closed forms of the kernel function

for the model and provide flexibility regarding the choice of the stationary covariance

structure. We can apply the proposition by taking any isotropic covariance function to

build multiple dependent Gaussian processes. There are several stationary kernels which

can be extended by Proposition 4.3.1, such as gamma exponential, exponential, Matern

and rational quadratics as we will discuss in this chapter. By using Proposition 4.3.1, the

closed forms of four kernels in equation (4.8) or (4.10) can be expressed as

kξaaa(d) =
v2
a(π)P/2

|Aa|
1
2

S(
√
Qaa(d)

kξabab (d) =
vavb(2π)P/2

|Aa +Ab|1/2
S(
√
Qab(d))

kηaaa(d) =
w2
a(π)P/2

|Ba|
1
2

S(
√
Qaa(d) ; a, b = 1, 2 and a 6= b. (4.11)

Specific examples and implementation of Proposition 4.3.1 will be provided in the remain-

der of this section.

4.3.1 Example of CGPs for Multiple Dependent Gaussian Processes

The convolution approach provides considerable flexibility in terms of generating the CGP.

However, this approach needs an integrable kernel function, and so we focus here on sta-

tionary covariance functions. Furthermore, the flexibility in selecting covariance functions

as convolved kernels will also be discussed.

i. Squared Exponential

The first example of Proposition 4.3.1 is applying a squared exponential covariance

function as a stationary convolved kernel. The squared exponential has the following

formula

k(d) = v exp
−‖d‖2

2l2
, (4.12)

where the parameter l controls the vertical scale of the process. Now, we explain

the relationship between equation (4.12) and Proposition 4.3.1. From the previous

explanation, we can replace m2 (the squared Mahalanobis distance) with Qab. As

we know, if the covariance matrix is the identity matrix, the Mahalanobis distance

reduces to the Euclidean distance. So, we can replace d
l in equation 4.12 with

√
Qab,

Paciorek (2003).
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Our aim is to develop multiple dependent Gaussian processes which are constructed

from four convolved Gaussian processes with squared exponentials as the covariance

structure. Based on Proposition 4.3.1, the covariance matrix structure for convolved

Gaussian processes using a square exponential covariance structure can be defined as

kab(d) =
vavb(2π)P/2

|Aa +Ab|
1
2

e−
1
2
Qab(d). (4.13)

where a, b = 1, 2, Qab(d) = dTAa(Aa + Ab)
−1Abd and kab(x) is a positive definite

function. We highlight that the closed forms are also provided by Boyle and Frean,

(2005).

Thus we are able to develop bivariate dependent Gaussian processes which follow a

multivariate normal distribution with zero mean and closed forms of four covariance

functions in equation (4.10) with equation (4.13). The details of the closed form

kernels are as follows

kξaaa(d) =
v2
a(π)P/2

|Aa|
1
2

e−
1
2
Qaa(d)

kξabab (d) =
vavb(2π)P/2

|Aa +Ab|
1
2

e−
1
2
Qab(d)

kηaaa(d) =
w2
a(π)P/2

|Ba|
1
2

e−
1
2
Qaa(d) ; a, b = 1, 2 and a 6= b. (4.14)

In this model, we consider estimating parameters by using a simple method, such

as maximum likelihood estimation. Now, we recall equation (4.9). Let us consider

f = (f1, ..., fN1 , fN1+1, ..., fN1+N2)T . Then we have

f ∼ N (0,KN1N2); KN1N2 =

(
C11 C12

C21 C22

)
, (4.15)

where for a, b = 1, 2

Cab =


kab(xa1,xb1) · · · kab(xa1,xbNb)

...
...

...

kab(xaNa ,xb1) · · · kab(xaNa ,xbNb)

 .

Based on the proof in Appendix B, kab is non-negative. From the covariance functions

in equation (4.11), we have defined that Θ = (va, Aa, wa, Ba) for i = 1, 2 as param-

eters. Inference for this model is actually an extension from the single GP which is

explained in the third chapter. Hence, we can calculate the log likelihood function for
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parameters Θ as follows :

L(Θ|D) = −1

2
logKN1N2(Θ)| − 1

2
fTKN1N2(Θ)−1f − N1 +N2

2
log 2π. (4.16)

Therefore, we estimate parameters by maximising the log likelihood function in equa-

tion (4.16).

Regarding the first investigation of the multiple processes, we explore its performance

by examining the sample outputs. We generate the latent process by using the model

in equation (4.6) with closed form kernel functions as in equation (4.14). Three

different curves, each containing 30 observations, are taken to be samples of multiple

output processes. Figure 4.3 shows three samples of two process components f1 and

Figure 4.1: Multiple dependent output process samples generated from squared exponential co-
variance functions as convolved kernels with parameters Θ = (v1, v2, A1, A2, w1, w2, B1, B2) are
0.2, 0.2, 1, 1, 0.2, 0.2, 1, 1 respectively, and x = (x1,x2) as equally spaced points in [−5, 5]. Red
curves are defined as f1 and blue curves are f2.

f2. Here, f1 and f2 are dependent in all the samples although each of them has its

own characteristics. Moreover, we have tried to explore further these curves regarding
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dependency issues. In Figure 4.2, we provide a correlation map between two processes.

It shows that the correlation between points in each output is high, i.e. almost 1.

Furthermore, there is also large correlation (cross correlation) between f1 and f2. The

samples also show that the performance of each response offers slightly different figures

and that the processes are dependent on each other. Choosing a suitable covariance

function is allowed for multiple output processes. Thus, this is the nature of the data

source which can be used for a priori knowledge to select it. Further investigation will

be discussed in the next section.

Figure 4.2: Correlation map of multiple dependent Gaussian processes with squared exponential
convolved kernels; top left: correlation map of f1 at 30 equally spaced points; top right: correlation
map between f1 and f2; and bottom right: correlation map of f2

A maximum likelihood estimator is used to estimate parameters by maximizing the

likelihood function in (4.16). Table 4.1 lists the average estimates of parameters, Θ

(sample mean) using a maximum likelihood estimator for one hundred replications.

It has been mentioned previously that Θ = (v1, v2, A1, A2, w1, w2, B1, B2). The maxi-

mum likelihood estimates seem acceptable when compared to the true values. Also, it

can be seen that the values of root mean square (RMSE) between the estimated pa-

rameters (A1, A2, B1, B2) and true values close to zero. It means that the differences

between estimated parameters (A1, A2, B1, B2) and true values are small. Meanwhile,

for estimated parameters v1, v2, w1 and w2 are quite far from the true values. It might

because we do not add any noise variable in this modelling. In conclusion, this issue

needs to investigate more.

ii. Gamma Exponential Family

Another stationary covariance function can be constructed using the Gamma expo-
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Parameters True value Sample Mean RMSE

v1 0.04 0.00171 0.04190
v2 0.04 0.00177 0.04209
A1 1 1.000182 0.00144
A2 1 1.000156 0.00124
w1 0.04 0.000921 0.04013
w2 0.04 0.000980 0.04022
B1 1 1.000766 0.00077
B2 1 1.000723 0.00083

Table 4.1: Sample mean and RMSE estimated parameters from multiple dependent Gaussian
processes with square exponential convolved kernels

nential family covariance structure.

By applying Proposition 4.3.1, the closed form of the covariance structure of the model

can be defined as

kab(d) =
νaνb(2π)P/2

|Aa +Ab|
1
2

e(−
√
Qab(d)γ , 0 < γ 6 2.

where a, b = 1, 2 and Qab(d) = (d)TAa(Aa+Ab)
−1Ab(d). We are also able to construct

bivariate dependent processes with Gamma exponential covariance functions which

follow multivariate normal distribution with zero means and covariance structures

given in equation (4.8). The covariance can be calculated from equation (4.10) and

the closed forms of kernel functions can be defined as

kξaaa(d) =
v2
a(π)p/2

|Aa|
1
2

e(−
√
Qaa(d))γ ; a, b = 1, 2 and a 6= b

kξabab (x) =
vavb(2π)p/2

|Aa +Ab|
1
2

e(−
√
Qab(d))γ

kηaaa(x) =
w2
a(π)p/2

|Ba|
1
2

e(−
√
Qaa(d))γ . (4.17)

iii. Rational Quadratic

The model can also be generated by using a rational quadratic covariance function.

According to proposition 4.3.1, the closed forms of the covariance structure for the

model with rational quadratic covariance structure can be defined as

kab(d) =
vavb(2π)P/2

|Aa +Ab|
1
2

(
1

1 + 1
2αQab(d)

)α
, α > 0. (4.18)
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iv. Matern

Furthermore, the model can also use Matern covariance functions as convolved kernel

and the general closed forms of four kernels can be specified as

kab(d) =
vavb(2π)P/2

|Aa +Ab|
1
2

1

Γ (ν)2ν−1

(√
2νQab(d)

)ν
Kν

(√
2νQab(d)

)
, ν > 0, (4.19)

if ν = 3
2 , so the closed forms of kernel functions from equation (4.10) can be defined

as

kξabab (d) =
vavb(2π)P/2

|Aa +Ab|
1
2

(
1 +

√
3Qab(d)

)
exp

(√
−3Qab(d)

)
(4.20)

where a, b = 1, 2 and Qab(d) = (d)TAa(Aa +Aj)
−1Ab(d).

v. Mixed Covariance functions as a Convolved Kernel

Different covariance functions can be used to model specific characteristics for each

component in convolved Gaussian processes. The idea here is to set up dependent

Gaussian processes based on equation (4.6) by using mixed kernels. We now use

an example to illustrate this idea. The shared convolved Gaussian processes (ξ)

have squared exponential covariance functions. The independent convolved Gaussian

process η1 is constructed by using a squared exponential kernel and η2 by using a

gamma exponential with (γ = 0.5). The closed forms for four kernels are :

kξaaa(d) =
v2
a(π)p/2

|Aa|
1
2

e−
1
2
Qaa(d) kη111(d) =

w2
1(π)p/2

|B1|
1
2

e−
1
2
Q11(d)

kξabab (d) =
vavb(2π)p/2

|Aa +Ab|
1
2

e−
1
2
Qab(d) kη222(d) =

w2
2(π)p/2

|B2|
1
2

e(−
√
Q22(d))γ

a, b = 1, 2 and a 6= b. (4.21)

The characteristics of the two dependent processes can be seen from Figure 4.3. From

the figure, it can be seen that there are significantly different performances between

two process components but they are clearly dependent. This is also shown by the

correlation map in Figure 4.4. The panels on the top left and bottom right clearly

show the difference in the covariance structures between f1 and f2.

Table 4.2 shows the result of estimated parameters and the RMSE based on one

hundred replications. We still use two sample sizes of 30. Similar to the Table 4.1,

some of estimated parameter shows good performance although the data look very

different for the two components. This shows the flexibility of using the convolved GP
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Figure 4.3: Multiple dependent output process samples generated from squared exponential co-
variance functions and a Gamma exponential covariance function (γ = 1) as convolved kernels.
Red curves are defined as f1 and blue curves are f2.

approach. Meanwhile for v1, v2, w1 and w2 are fairly far form the true values. Again,

we need to have more work to investigate, such as adding ”jitter” (noise). In the next

section, we will discuss nonlinear model which is added some noises. Inference and

simulation examples will also provide in the next section.

4.4 Convolved Gaussian Process Priors for Multivariate Non-

linear Regression Analysis

Multivariate nonlinear regression is developing rapidly. The approach using Gaussian

process priors is becoming more and more popular due to its flexibility, particularly in

the field of machine learning and geostatistics. In the multivariate case, we have showed

in the previous sections that CGP is a flexible and good way to model the dependency

and individual characteristics of multiple processes. In this section we will briefly explain

the model of multivariate nonlinear regression using convolved Gaussian process (CGP)
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Figure 4.4: Correlation map of multiple dependent Gaussian processes using squared exponentials
and a Gamma exponential as convolved kernels between f1 and f2; top left: correlation map of
f1 at 30 equally spaced points; top right: correlation map between f1 and f2; and bottom right:
correlation map of f2

Parameters True value sample Mean RMSE

v1 0.04 0.00029 0.03981
v2 0.04 0.00049 0.03981
A1 1 0.99972 0.00031
A2 1 0.99974 0.00027
w1 0.04 0.00026 0.03997
w2 0.04 -0.00026 0.04003
B1 1 1.00041 0.00042
B2 1 1.00037 0.00037

Table 4.2: The estimated parameters and the RMSE from multiple Gaussian process with square
exponential convolution and gamma exponential (γ = 0.5) as mixed convolved kernel based on 100
replications.

priors.

The general model can be written as

y1 = f1(x) + ε1

y2 = f2(x) + ε2, (4.22)

where (y1,y2) are the two responses, x is a P -dimensional covariate and two independent

error items ε1 ∼ N (0, σ2
1) and ε2 ∼ N (0, σ2

2). Here, f1(x) and f2(x) are two unknown

nonlinear regression function. We will use CGP’s defined in (4.6) to (4.10) as priors of f1
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and f2. Similar to the univariate case, the performance of Bayesian inference for the above

model often depends on the choice of the hyper-parameters. Thus, rather than assuming

the probability structure of hyper-parameters, we can use observed data to estimate them

by using an empirical Bayesian approach.

4.4.1 Empirical Bayesian Estimates

Let us consider that we have observed the following set of data

D =

{(
y1i

x1i

)
; i = 1, ..., N1,

(
y2i

x2i

)
; i = 1, ..., N2

}
.

It comprises N1 and N2 observations, each consisting of a P-dimensional input vector x1i

and x2i and scalar output y1i and y2i respectively. A discrete multivariate nonlinear with

CGP priors model is given by

y1i = f1(x1i) + ε1i, y2i = f2(x2i) + ε2i, (4.23)

ε1i ∼ N (0, σ2
1); ε2i ∼ N (0, σ2

2)

where (f1(·), f2(·))T follows a multivariate normal prior with zero mean and a covariance

function which is explained in equations (4.8) and (4.10). A dependent Gaussian process

regression with CGP priors is an extension of the single output model which has been

explained in Chapter 3. As a result, inference for Gaussian process regression can be

applied to this model by replacing the number of observations and the size of covariance

structure.

Now, we can rewrite y = (y1, ..., yN1 , yN1+1, ..., yN1+N2)T , then we have

y ∼ N (0,Ψ); Ψ =

(
C11 + σ2

1IN1 C12

C21 C22 + σ2
2IN2

)
. (4.24)

The log likelihood function with hyper-parameters θ = (v1, v2, A1, A2, w1, w2, B1, B2) is

L(θ|D) = −1

2
log |Ψ(θ)| − 1

2
yTΨ(θ)−1y − N1 +N2

2
log 2π. (4.25)

We will estimate the hyper-parameters by maximising the likelihood function in (4.25).

4.4.2 Predictions

Regarding the predictions, we can refer to and extend the inference from Gaussian regres-

sion around equation (3.10) which is explained in the third chapter. Suppose that we want

to calculate the predictive distribution of y∗ = (y∗1, y
∗
2)T at a new points x∗. It is also a
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bivariate Gaussian distribution with

ŷ∗ = Ψ∗Ty Ψ−1y (4.26)

Ψ̂y∗ = Ψ∗ −Ψ∗Ty Ψ−1Ψ∗. (4.27)

where Ψ∗Ty is a 2× (N1 +N2) covariance matrix between y∗ and y which can be expressed

as (
k11(x∗,x11)...k11(x∗,x1N1) k12(x∗,x21)...k12(x∗,x2N2)

k21(x11,x
∗)...k21(x1N1 ,x

∗) k22(x∗,x21)...k22(x∗,x2N2)

)
,

Ψ∗ is a 2× 2 covariance matrix of y∗

Ψ∗ =

(
k11(x∗,x∗) + σ2

1IN1 k12(x∗,x∗)

k21(x∗,x∗) k22(x∗,x∗) + σ2
2IN2

)
,

and Ψ is defined in (4.24).

4.4.3 Numerical Examples

In this subsection, two different examples are considered. We first generate a set of data

as training and test data, y given the latent variable x, by assuming that y and x are

nonlinearly related. We estimate hyper-parameters using training data with an empirical

Bayesian approach and then calculate the prediction mean and variance. As a measure of

goodness of fit, the values of root mean squared error (RMSE) between predictions and

their true values are used.

Scenario 1

The aim of the first scenario is to test the sensitivity of the proposed model with differ-

ent covariances functions, considering mixed squared exponential and gamma exponential

covariance functions. The true model used to generate the process is(
y1i

y2i

)
=

(
Sin(6xi)

Cos(6xi)

)
+

(
τ1i(xi)

τ2i(xi)

)
+

(
ε1i

ε2i

)

where τ(·) ∼MGP(0,K(·, ·)) and K(·, ·) is defined by equations (4.8) and (4.10). Here x

are equally spaced points in [0, 1]. We consider a mixed squared exponential and gamma

exponential covariance functions which have been discussed in the previous section. The

covariance structure is the same as the example discussed in part(v) in Section 4.3.1, ı.e

η1 is generated from a squared exponential covariance function with the true values of

(w1 = 0.04, B1 = 1); η2 follows from a Gamma exponential covariance functions with true

values of the hyper-parameters (w2 = 0.04, B2 = 1). The shared processes, ξ have squared
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exponential covariance functions with true values of (v1 = 0.04, A1 = 1, v2 = 0.04, A2 = 1).

The true values of hyper-parameters θ = (v1, v2, A1, A2, w1, w2, B1, B2, σ1, σ2) are 0.04,

0.04, 1, 1, 0.04, 0.04, 1, 1, 0.1 and 0.1 respectively. Two component processes, each

containing 30 data points, are generated and used as training data. We generate also the

same number of data points for test data.

We use the nonlinear regression model (4.22) and the convolved Gaussian process priors

as discussed in Sections 4.4.1 and 4.4.2. To test the sensitivity of the choice of covariance

functions, several models are considered and compared.

1. Model 1

We assume that it has the same covariance structure as the true model, i.e. ξ1, ξ1, η1

have a squared exponential covariance function while η2 has a Gamma exponential

covariance function.

2. Model 2

Similar to Model 1, but η2 has a rational quadratic covariance function with the

value of α is 0.5

3. Model 3

Similar to Model 1, but η2 has a Matern covariance function with ν = 3
2

4. Model 4

Similar to Model 1, but η2 has a squared exponential covariance function

5. Model 5

We also compare with exist model proposed by Crainiceanu et al. (2012), namely

the CD model.

Now, we define CD model. Suppose that y1 and y2 are two dependent processes that

can be written as follows

y2 | y1 ∼ N (αy1, σ
2
ε ) (4.28)

where y1 is a Gaussian process with zero mean and any stationary covariance functions.

In this setting, we define the model in (4.28) with squared exponential covariance function

in y1. Figures 4.5 and 4.6 show the prediction mean curves with the different models.

The figures show that the prediction mean curves given by all the proposed models

are quite close to the true curves. It also can be seen from the figures that Model 2,

Model 3 and Model 4 also perform reasonably well, even though misspecified covariance

functions are used. This is possibly because the empirical Bayesian approach can select the

best member from each covariance function family respectively for η1, η2 and the shared

processes ξ. Although it cannot beat the true model, the flexibility can still guarantee
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Figure 4.5: The predictions from two strongly dependent outputs. The dots denote test data
(sample), the red dashed lines represent the predictions by three different covariance functions
(Model 1, Model 2 and Model 3 ) and the blue solid lines are the true curves with 95% confidence
intervals (the shaded regions)

a reasonably good solution. In contrast, the dependency across the component processes

in Model 5 is determined by a covariance structure. It fails to capture the individual
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Figure 4.6: The predictions from two strongly dependent outputs. The dots denote test data
(sample), the red dashed lines represent the predictions by two different covariance functions
(Model 4 and Model 5 ) and the blue solid lines are the true curves with 95% confidence intervals
(the shaded regions)

characteristics.

The above findings are confirmed by a simulation study. The average values of the root

of mean squared errors (RMSE) between ya(x) at test data points and ŷa(x) are calculated

based on one hundred repetitions for different models and are reported in Table 4.3.

Type of Models Average RMSE

Model 1 0.01145
Model 2 0.01220
Model 3 0.01185
Model 4 0.01222
Model 5 0.16470

Table 4.3: Average of RMSE prediction between y and ŷ from various models for one hundred
replications.
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Scenario 2

In the second scenario, we provide another setting to test the performance of the proposed

model for data with a more general covariance structure.

The true model for generating random process as follows :

yai(xi) = sin(6xi) + τai(xi) + εai(xi)

τai(·) ∼ MGP(0,K(·, ·)); εa(x) ∼ N (0, σ2
a), a = 1, 2

where K(·, ·) is defined by equations (4.8) and (4.10). We use a Matern class with ν = 3
2 as

covariance functions for η and ξ. Then two output processes, each containing 30 equally

spaced points in [0, 1] are simulated from the same initial values of hyper-parameters θ in

previous scenario, i.e. (v1 = 0.04, v2 = 0.04, A1 = 1, A2 = 1, w1 = 0.04, w2 = 0.04, B1 =

1, B2 = 1).

In this scenario, we compare the performance of different models, i.e. Model 6 which is

similar to the true model that η and ξ have Matern class with ν = 3
2 covariance function,

Model 4 and Model 5. The procedure for constructing the last two models are the same

as in the previous scenario. In Model 4, we define that η1, η2, ξ1 and ξ2 have a squared

exponential covariance function. For Model 5 has the same covariance structure as CD
model.

The prediction mean functions for different models are presented in Figure 4.7. We use

Bayesian information criterion (BIC) to select models and use the value of RMSE between

the actual values of ya(x) and the prediction mean function ŷa(x) for test data to compare

the models. The results are also compared to the CD approach in Model 5.

Type of Models BIC RMSE

Model 6 30.668 0.001938
Model 4 165.984 0.004572
Model 5 194.166 0.005425

Table 4.4: The value of BIC from Three Different Models for one replication.

The results for one replication are presented in Figure 4.7 and Table 4.4. The results

show that the prediction mean functions for Model 6, with different covariance functions,

are similar and all close to the true mean function and that the performance for prediction

of the individual processes are comparable to each other. Also we obtain the smallest

value of BIC among all of the models. From Table 4.5, we see that Model 6 provides

the best model performance as expected. Although Model 4 is not the best choice, the

performance is only slightly worse than the best model. This shows the flexibility and

robustness of the proposed model by using CGP priors. As with the first scenario, Model
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Figure 4.7: The predictions from two strongly dependent outputs. The dots are test data (sample),
the red dashed lines represent the predictions by three different covariance functions (Model 6,
Model 4 and Model 5 ) and the blue solid lines are the true curves with 95% confidence intervals
(the shaded regions)

5 fails to provide a good fit.

Table 4.5 shows the summary statistics based on a simulation study with 100 replica-
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tions, where Prop-BIC is the proportion achieving the smallest value of BIC and Average

RMSE is the average of RMSE. Table 4.5 has shown that the proposed model with differ-

Type of Models Prop-BIC Average RMSE

Model 6 0.75 0.01382
Model 4 0.25 0.01411
Model 5 0 0.28946

Table 4.5: Average RMSE of prediction between y and ŷ and the Proportion of the Smallest Values
of BIC (Prop-BIC) from three different models for one hundered replications.

ent covariance gives comparable results in term of average RMSE values. Similar to the

previous results, the value of the average RMSE for all models is quite close to the true

mean function although the true model (Model 6 ) is the best one as expected. Regarding

the proportion of the smallest values of BIC, Model 6, as the true model, has shown good

performance as well. Meanwhile, Model 6 would be selected in most of the cases although

Model 4 would also be selected occasionally. The performance of Model 5 is much worse

than the other two.

4.5 Chapter Summary

In this chapter, we proposed the extension of convolved Gaussian processes for multivari-

ate nonlinear regression analysis by investigating many stationary covariance functions

and their mixed forms as convolved kernels. We considered covariance functions such as

squared exponential, gamma exponential, rational quadratic and Matern. Furthermore,

we also explored a way to apply mixed covariance functions for constructing multiple de-

pendent Gaussian processes and used them as priors in a multivariate nonlinear model.

During our investigation, we were able to identify several advantages using a convolved

Gaussian process for multiple dependent processes. One of the most significant advantages

is that the proposed model provided huge flexibility regarding the choice of covariance func-

tions. From the first scenario, it has been shown that the model is very robust because it

still provides a reasonably good result even if a misspecified covariance function is used.

Furthermore, this proposed method is also able to perfectly capture the main features of

each processes. Strong evidence has been delivered both in Scenario 1 and 2. In all scenar-

ios, we have compared several models with the CD approach in Crainiceanu et al. (2012).

As a result, the extension model with convolved Gaussian process priors provides a way

to tackle individual characteristics of each response component in multivariate nonlinear

regression. But their model fails to do so. However, there are some limitations to the

model. It seems not every covariance function has a closed from in terms of kab(d). Thus

in this chapter we mainly focussed on stationary covariance functions. We will extend the
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model to non-Gaussian multivariate models in the next two chapters.
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Chapter 5

Convolved Gaussian Process

Priors for Multivariate Poisson

Regression Analysis

5.1 Introduction

The previous chapter sets out the framework of Convolved GPs for multiple dependent

processes. We now extend the model to multivariate non-Gaussian data, such as classifi-

cation and count data. In this chapter, we will focus on bivariate Poisson regression which

is still an active topic in the recent statistics literature.

The vast majority of approaches assume that observed data are independent. In prac-

tice, however, many bivariate count data sets contain dependent observations, especially

in medical data which have a spatial correlation related to area or region. In recent

years, many researchers have explored this widely, such as the conditional dependency

(CD) model proposed by Crainiceanu et al. (2012). Unfortunately, it fails to tackle the

individual characteristics of each response component as we explained in Chapter 4. The

Convolved Gaussian process (CGP) model has performed well and offers flexibility in

choosing covariance structures. It enables us to propose a novel approach to multivariate

Poisson regression analysis. The main advantage of the model is that it can offer flexibility

in handling cross-correlations between two responses and capture the important features

of each response component. At the same time, the model is also able to ensure that

the spatial correlation structure is modelled properly and the covariance matrix for the

combined responses is positive definite.

Based on Section 4.4 in Chapter 4, we emphasize that our proposed model for multi-

variate nonlinear regression is very flexible and robust. We extend the idea to use CGP
priors for multivariate Poisson regression, namely multivariate convolved Gaussian pro-
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cess Poisson regression analysis (MCGPPR). This model has some features worth noting,

i.e. it offers a semiparametric regression model for multivariate Poisson data. It means

that the model is able to combine the regression relationship between multivariate Pois-

son responses and multidimensional covariates which consist of both linear and nonlinear

models. The prior specification of the covariance kernel also enables us to accommodate

a nonlinear model involving large dimensional covariates.

This chapter is organized as follows. We will explain the details of the MCGPPR
model in Section 5.2. The details of inference including estimation and prediction will be

provided in Sections 5.3 and 5.4. In Section 5.5, we will explain an asymptotic theory of

information consistency. Comprehensive simulation studies and real data applications will

be discussed in the last section.

5.2 The Model

In this section we will explain the multivariate Poisson regression model using convolved

Gaussian processes(CGP) as priors. The general model can be written as

za | τ a ∼ Poisson(µa)

log(µa) = UT
aβa + τ a, a = 1, 2. (5.1)

Here za, a = 1, 2 stands for two correlated response variables, for example the number

of dengue fever and number of malaria cases in our Dengue fever and Malaria data. As

we discussed in Chapter 3, the observations are spatially correlated. We used a Gaussian

process prior to define such correlation, but we analyse the dengue fever data and malaria

data separately. In practice, those diseases are certainly correlated. It would, therefore,

be better to analyse those two data sets together by defining a cross-correlation among the

different observations for the two response variables. Crainiceanu et al. (2012) proposed

a conditional dependency approach.

As we have pointed out in Chapter 4, CGP is a more flexible model in terms of defining

cross-correlation for multivariate dependent data. We extend the idea to the above model.

The cross-correlation of za is modelled via a dependent latent variable τ a, a = 1, 2. We as-

sume a CGP prior for τ a depending on x and an unknown hyper-parameter θ. Specifically

we define a nonparametric CGP by equations (4.6) to (4.10). In this case the regression

relationship between the bivariate Poisson regression za and the covariates xa is modelled

by the covariance structure of τ (x).

The za’s follow a Poisson distribution with (µa) where a = 1, 2. If we use the log link
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function, the density function is given by

p(za | τ a) =
e−(UT

a βa+τa)(UT
aβa + τ a)

za

za!
. (5.2)

The marginal density function of z = (z1, z2) is therefore given by

p(z) =

∫
p(z | τ ,β)p(τ | θ)dτ ,

where p(τ | θ) is the density function of τ = (τ 1, τ 2). Similar to the multivariate non-

linear regression case, the performance of Bayesian inference for the above model often

depends on the choice of the hyper-parameters θ. Thus, in order to estimate β and θ, we

also use an empirical Bayesian analogue of the approach used in the previous chapter.

5.3 Empirical Bayesian Estimates

Suppose that we have observed the following data,

D =


z1i

U1i

x1i

 ; i = 1, ..., N1,

z2i

U2i

x2i

 ; i = 1, ..., N2

 (5.3)

where z1i, z2i are observations of the two variable responses, U1i, U2i are bivariate covariates

and xi = (x1i,x2i) are covariates modelled covariance structure τi1, τ2i. N1 and N2 are the

number of the first and the second responses respectively. A proposed discrete multivariate

Poisson regression model with CGP priors (MCGPPR) is therefore given by(
z1i(x1i)

z2i(x2i)

)
∼

(
Poisson(µ1i(x1i)), i = 1, ..., N1

Poisson(µ2i(x2i)), i = 1, ..., N2

)
(5.4)

where(
µ1i(x1i) = exp(UT

1iβ1 + τ1i(x1i))

µ2i(x2i) = exp(UT
2iβ2 + τ2i(x2i))

)
and

(
τ1i(·)
τ2i(·)

)
∼MGP(0,K(·, ·)),

where K(·, ·)) is defined by equation (4.8) and (4.10). We can say also that (τ1i(·), τ2i(·))T

follow a multivariate normal prior with zero mean and covariance function based on equa-

tion (4.11).

The idea of empirical Bayesian learning is to choose the value of the hyper-parameter θ

by maximizing the marginal density function. Thus, θ as well as the unknown parameter

β can be estimated at the same time by maximizing the following marginal density of
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z = (z11, ..., z1N1 , z21, ..., z2N2)T given θ and β, i.e.

p(z|β,θ,x) =

∫
p(z | τ ,β)p(τ |θ)dτ

=

∫ 2∏
a=1

p(za | τ ,β)p(τ |θ)dτ

=

∫ { 2∏
a=1

Na∏
i=1

p(zai | τai,β)

}
p(τ |θ)dτ

or the marginal log-likelihood

l(β,θ) = log {p(z | β,θ,x)}

= log

∫ 2∏
a=1

Na∏
i=1

p(zai | τai,β)(2π)
−

∑2
a=1 Na
2 | KN1N2 |

−1
2 exp

{
τTK−1

N1N2
τ
}
dτ

(5.5)

where p(zai | τai,β) is derived from the Poisson distribution. Obviously the integral

involved in the above marginal density is analytically intractable unless p(zai | τai,β) has

a special form such as the density function of the normal distribution. One method to

address this problem is to use a Laplace approximation. We denote

Φ(τ ) =

2∑
a=1

Na∑
i=1

{log p(zai | τai,β)} − 1

2
log |KN1N2 | −

1

2
τTK−1

N1N2
τ − N1 +N2

2
log 2π,

(5.6)

where
∑2

a=1

∑Na
i=1 log p(zai | τai,β) =

∑N1
i=1(z1i log(µ1i) − µ1i) +

∑N2
i=1(z2i log(µ2i) − µ2i)

with µ1i = exp(UT
1iβ1 + τ1i) and µ2i = exp(UT

2iβ2 + τ2i). Then the log likelihood of

equation (5.5) can be written as

l(β,θ) = log

∫
exp(Φ(τ ))dτ . (5.7)

Let τ 0 be the maximiser of Φ(τ ), then by Laplace approximation we have∫
exp(Φ(τ ))dτ = exp

{
Φ(τ 0) +

N1 +N2

2
log(2π)− 1

2
log |H|

}
(5.8)

where H is the second derivative of log p(z, τ ) respect to τ and evaluated at τ 0 values
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(Wood, 2012). Thus, H = C +K−1
N1N2(θ) and C is a diagonal matrix,

C = Diag(exp(UT
11β̂1 + τ011), ..., exp(UT

1N1
β̂1 + τ01N1 ,

exp(UT
21β̂2 + τ021), ..., exp(UT

2N2
β̂2 + τ02N2)).

In order to estimate hyper-parameters, we maximize the likelihood function with Laplace

approximation in equation (5.7) and (5.8).

5.4 Predictions

In term of prediction, it is of interest to predict z = (z∗1 , z
∗
2)T at a new point U = (U∗1 , U

∗
2 )

and x = (x∗1, x
∗
2). We use D to denote all the training data and assume that the model

itself has been trained (i.e. all unknown parameters have been estimated) by the method

discussed in the previous section. The main purpose of this section is to calculate E(z∗|D)

and V ar(z∗|D).

Let x∗ = (x∗1, x
∗
2) be a new input and τ ∗ = τ (x∗) = (τ∗1 , τ

∗
2 ) be the underlying latent

variable at x∗. The expectation of z conditional on τ ∗ is given by

E(z∗|τ ∗,D) =

(
E(z∗1 |τ∗1 ,D)

E(z∗2 |τ∗2 ,D)

)
=

(
exp(U∗T1 β̂1

exp(U∗T2 β̂2

)
= exp(U∗T β̂ + τ ∗)

It follows that

E(z∗ | D) = E[E(z∗ | τ ∗,D)] =

∫
exp(U∗T β̂ + τ ∗)p(τ ∗|D)dτ ∗. (5.9)

We denote τ ∗ = (τ∗1 , τ
∗
2 ) and, to calculate the above expectation (5.9), we can approximate

using a Laplace approximation where p(τ ∗|D) can be written as

p(τ ∗|D) =

∫
p(τ ∗|τ ,D)p(τ |D)dτ (5.10)

=

∫
p(τ ∗, τ |D)dτ

=
1

p(z)

∫
p(z|τ )p(τ ∗, τ )dτ .

Hence, equation (5.9) above can be rewritten as

E(z∗|D) =
1

p(z)

∫ ∫
exp(U∗T β̂ + τ ∗)p(z|τ )p(τ ∗, τ )dτdτ ∗. (5.11)

For convenience we denote (τ , τ ∗)T and its covariance matrix KN1N2 with dimension

(N1 +N2 + 2)× (N1 +N2 + 2) by τ+ and K+ respectively. Thus, the equation (5.10)
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can be written as

E(z∗|D) =
1

p(z)

∫
exp(U∗T β̂ + τ ∗)

[
N1∏
i=1

p(y1i|β̂1, τ1i)

][
N2∏
i=1

p(y2i|β̂2, τ2i)

]
[
(2π)−

(N1+N2+2)
2 |K+|−

1
2 exp(−1

2
τT+K−1

+ τ+)

]
dτ+.

The calculation of the integral is not tractable, since the dimension of τ+ is usually

very large. We now use Laplace approximation and denote

Φ̃(τ+) = log exp(U∗T β̂ + τ ∗) +

N1∑
i=1

log p(z1i|β̂1, τ1i) +

N2∑
i=1

log p(z2i|β̂2, τ2i)−

N1 +N2 + 2

2
log(2π)− 1

2
log |K+| −

1

2
τT+K−1

+ τ+,

where log p(z1|β1, τ 1) =
∑N1

i=1(z1i log(µ1i)−µ1i) with µ1i = exp(UT
1iβ1+τ1i) and log p(z2|β2, τ 2) =∑N2

i=1(z2i log(µ2i)− µ2i) with µ2i = exp(UT
2iβ2 + τ2i). Equation (5.2) can be expressed as

E(z∗|D) =
1

p(z)

∫
exp(Φ̃(τ+))dτ+. (5.12)

Let τ̂+ be the maximiser of Φ̃(τ+), then by using Laplace approximation we have∫
exp(Φ̃(τ+))dτ+ = exp(Φ̃(τ̂+) +

N1 +N2 + 2

2
log(2π) +

−1

2
log |K−1

+ + C+|) (5.13)

where C+ is the second derivative of

log exp(U∗T β̂ + τ ∗) +

N1∑
i=1

[
z1i(U

T
1iβ̂1 + τ1i)− exp(UT

1iβ̂1 + τ1i)
]

+

N2∑
i=1

[
z2i(U

T
2iβ̂2 + τ2i)− exp(UT

2iβ̂2 + τ2i)
]

with respect to τ+, evaluated at τ̂+. Therefore C+ becomes a diagonal matrix which can

be written as follows.

C+ = Diag(exp(UT
11β̂1 + ˆτ11), ..., exp(UT

1N1
β̂1 + ˆτ1N1),

exp(UT
21β̂2 + ˆτ21), ..., exp(UT

2N2
β̂2 + ˆτ2N2), 0, 0).
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In terms of V ar(z∗|D), we can evaluate it from

V ar(z∗|D) =

(
V ar(z∗1 |D) Cov(z∗1 , z

∗
2 |D)

Cov(z∗1 , z
∗
2 |D) V ar(z∗2 |D),

)
(5.14)

and to calculate V ar(z∗|D) , we use the formula :

V ar(z∗|D) = E[V ar(z∗|τ ∗,D)] + V ar[E(z∗|τ ∗,D), (5.15)

where z could be either z1 or z2. From the model definition, we have

V ar[E(z∗|τ ∗,D) = E[E(z∗|τ ∗,D)]2 − [E[E(z∗|τ ∗,D)]]2

=

∫
(exp(U∗T β̂ + τ ∗))2p(τ ∗|D)dτ ∗ − [E(z∗|τ ∗,D)]2. (5.16)

The first equation in (5.16) can be obtained by Laplace approximation similar to E(z∗|D)

in (5.12). Because V ar(z∗|τ ∗,D) = E(z∗|τ ∗,D) for Poisson distribution, we can write

E[V ar(z∗|τ ∗,D)] = E(z∗|D). (5.17)

We can calculate the equation 5.17 exactly similar to equation (5.12).

We apply the formula to evaluate Cov(z∗1 , z
∗
2 |D) :

Cov(z∗1 , z
∗
2 |D) = E[z∗1z

∗
2 |D]− E[(z∗1 |D)]E[(z∗2 |D)]. (5.18)

The procedure for calculating E[z∗|τ ∗,D] can be applied to evaluate E[z∗1z
∗
2 |D] and the

second equation in (5.18) is exactly the same as (5.9).

5.5 Consistency

The prediction based on a GPR model is consistent when the sample size of the data col-

lected from a certain curve is sufficiently large and the covariance function satisfies certain

regularity conditions. The consistency does not depend on the common mean structure or

the choice of the values of hyper-parameters involved in the covariance function, see Shi

& Choi (2011).

In this section, we will discuss information consistency and extend it to a more gen-

eral context than the result of Wang & Shi (2014). We focus on z̃ to z, where z̃ =

(z̃11, ...z̃1N1 , z̃21, ..., z̃2N2) are predicted observations and z = (z11, ..., z1N1 , z21, ..., z2N2) are

actual observations. N1 and N2 are the number of observations of the first input and the

second input respectively. We can rewrite the data as z = (z1i, z2i) i = 1, ..., N1 or N2

at the points τ = (τ1i, τ2i) and corresponding covariate values XN1N2 = (x1i,x2i) where
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(x1i,x2i) ∈ X ⊂ RP are independently drawn from distribution u(x).

We assume that z1i and z2i are sets of samples and follow a bivariate Poisson distribu-

tion with µ1i(xi) = exp(UT
1iβ1 + τ1i(xi)) and µ2i(xi) = exp(UT

2iβ2 + τ2i(xi)) respectively

and (τ1i(·), τ2i(·)) ∼ MGP(0,K(·, ·)) was discussed in the previous chapter. Therefore,

the stochastic process τ1(·) and τ2(·) induces a measure on space F : {f(·) : X → R}. For

convenience, we can rewrite

z = (z11, ..., z1N1 , z21, ..., z2N2)

= (z1, ..., zN1 , zN1+1, ..., zN1+N2)

and covariate values XN1N2 = (x1, ...xN1 ,xN1+1, ...,xN1+N2). Let

DN1N2 = {(xi, zi), i = 1, ..., N1 +N2)} ,

where

E(z|τ ) =

(
E(z1i|τ1i)

E(z2i|τ2i)

)
=

(
exp(UT

1iβ1 + τ1i(x1i))

exp(UT
2iβ2 + τ2i(x2i))

)
= exp(UT β̂ + τi(xi)).

Suppose that the hyper-parameters θ in the covariance function are estimated by

an empirical Bayesian method and the estimator is denoted by θ̃. Let τ0 be the true

underlying function, i.e. the true mean of zi given by µi = exp(UTi β + τ0(xi)). Denote

pmgp(z) =

∫
p(z1, ..., zN1 , zN1+1, ..., zN1+N2 |τ(x)dpN1+N2(τ)

and

p0(z) = p(z1, ..., zN1 , zN1+1, ..., zN1+N2 |τ0(x)),

then pmgp(z) is the Bayesian predictive distribution of z based on CGP model. Note that

dpN1+N2(τ) depends on the N1 +N2 since the hyper-parameters of τ are estimated from

the data. We say that pmgp achieves information consistency if

1

N1 +N2
EXN1N2

(D[p0(z), pmgp(z)])→ 0 as N1 →∞ and N2 →∞, (5.19)

where EXN1N2
denotes the expectation under the distribution of XN1N2 andD[p0(z), pmgp(z)]

is the Kullback-Leibler divergence between p0(.) and pmgp(.), i.e. ,

D[p0(z), pmgp(z)] =

∫
p0(z) log

p0(z)

pmgp(z)
dz

Theorem 5.1. Under theMCGPPR model (5.1) and the condition given in Lemma D.1,
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the prediction ẑ is information consistent to the true curve z0 if the RKHS norm ‖τ0‖2KN1N2

is bounded and the expected regret term EXN1N2
(log |I+δKN1N2 |) = o(N1 +N2). The error

bound is specified in (D.8).

The proof of the theorem is also given in Appendix D.

Remark. The condition |b′′(α)| 6 eκα in Lemma D.1 is satisfied for a bivariate Poisson

model with a convolved GPR where b(α) = log p(zi|τ(xi)) = eα with α = UTi β + τi

Remark. The regret term R = log |I + δKN1N2 | depends on the covariance function

(xi,xj) for a convolved bivariate Gaussian Process and covariate distribution u(x). The

convolved Gaussian process still belongs stationary Gaussian processes, see Choi (2005).

We can use it to identify the upper bounds of the expected regret for some widely used

covariance functions by extending some specific results in Seeger et al. (2008) and Wang

& Shi (2014). The details of discussion is in Appendix D.

5.6 Numerical Results

In this section, we demonstrate the proposed method by comprehensive simulation studies

with several scenarios and also present results from some real data analysis.

5.6.1 Simulation Studies

i. Scenario 1

In the first scenario, we use a discrete bivariate Poisson regression model in 5.4 as the

true model to generate random data from bivariate Poisson distribution.(
z1i(xi)

z2i(xi)

)
∼

(
Poisson(µ1i(xi)), i = 1, ..., N1

Poisson(µ2i(xi)), i = 1, ..., N2

)
(5.20)

where(
µ1i(xi) = exp(UT

1iβ1 + τ1i(xi))

µ2i(xi) = exp(UT
2iβ2 + τ2i(xi))

)
,

(
τ1i(·)
τ2i(·)

)
∼MGP(0,K(·, ·)),

and K(·, ·) is defined by (4.8) and (4.10) with the following hyper-parameter. β are

β10 = 1, β11 = 2, β20 = 1 and β21 = 2.

Random processes τ1i and τ2i are generated by a mixed covariance structure which

is the same as the one used in Scenario 1, Section 4.4.3, i.e. the combination of the

squared exponential covariance function and the Gamma exponential covariance func-

tion. We recall the setting of the covariance structure for true model as follows, i.e. the
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covariance structure, which contains η1, is generated from a squared exponential co-

variance function with true values of (w1 = 0.04, B1 = 1) and η2 is built from a Gamma

exponential family covariance function with the true values of (w2 = 0.04, B2 = 1).

Also, the shared processes ξ follow the squared exponential covariance function with

true values (v1 = 0.04, v2 = 0.04, A1 = 1, A2 = 1). Here, xi’s are equally spaced

in [−5, 5] and τ = {τ1i, τ2i} are dependent Gaussian processes which are simulated

with the above true values. The observations zai follow a Poisson distribution with

µai = exp(UT
aiβa + τai) where a = 1, 2 and i = 1, ..., N1 or N2 and each response

variable contains 20 observations.

We set two different covariance structures of τ as priors for our MCGPPR models

and compare them with an existing approach. We recall again equation (4.6) to define

random processes (τ ). The details are as follows

τ1 = ξ1 + η1

τ2 = ξ2 + η2

where η1(x) and η1(x) are two independent CGPs since they are constructed by inde-

pendent Gaussian white noises. Different kernels h1(x) and h2(x) are used to define

the different covariance structures and the same white noise defines the dependency

between ξ1(x) and ξ2(x), see equations (4.4) and (4.5) in Chapter 4.

1. Model 1

Here, ξ1, ξ2 and η1 have squared exponential covariance functions and η2 has a

Gamma exponential covariance function. It is also the same as the above true

model.

2. Model 4

All η1, η2, ξ1 and ξ2 have squared exponential covariance functions.

3. Model 5

For comparison, we use the (CD) model developed in Crainiceanu et al. (2012). We

recall the model in equation (4.28), it assumes that τ 1 and τ 2 are two dependent

processes that can be written as follows

τ 2 | τ 1 ∼ N (ατ 1, σ
2
ε ) (5.21)

where τ 1 is a Gaussian process with zero mean and a squared exponential covari-

ance function.

Table 5.1 shows the results of the sample mean of the estimated parameters β̂ us-
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ing an empirical Bayesian approach for three different models based on one hundred

replications. Table 5.2 provides the values of RMSE (RMSE) based on one hundred

replications.

Sample Mean

Model β11 β12 β21 β22

True values 1 2 1 2
Model 1 0.99918 1.99568 0.99467 1.99344
Model 4 0.99698 2.00071 0.99615 2.00055
Model 5 0.98020 2.02617 0.98334 2.00496

Table 5.1: The sample mean of estimated parameters (β) for bivariate Poisson model with Con-
volved GPR based on one hundred times replications.

RMSE

Model β11 β12 β21 β22

Model 1 0.03496 0.04547 0.03967 0.03739
Model 4 0.04833 0.04560 0.04106 0.04066
Model 5 0.13076 0.17025 0.13972 0.15640

Table 5.2: The values of RMSE (RMSE) from estimated parameters β for bivariate Poisson model
with Convolved GPR based on one hundred times replications.

From Table 5.1, it can be seen that empirical Bayesian estimation provides good

estimate of parameters and all three different models have a similar result, although

Model 1 gives the closest value of estimated parameters to the true values as expected.

It is not surprising that Model 1 gives the best results since it has the same covariance

structure as the true model. However, Model 4 also gives fairly good results although

the covariance structure is not the same as the true model. It shows the great flexibility

and robustness of theMCGPPR model proposed in this chapter. The results of both

Model 1 and Model 4 are much better than those of Model 5.

ii. Scenario 2

In the second scenario, we set up several different MCGPPR models with mixed

covariance functions to illustrate how sensitively the results depend on the choice

of covariance structures. We use the same true model and true values as the first

scenario, i.e. we use the mixed the covariance structure of Gamma exponential and

squared exponential covariance functions.

Several different models have been set up previously based on scenario 1 in Chapter 4.

Firstly, we redefine four different priors ofMCGPPR models and comparison model.

In this scenario, we still apply the same priors as the first scenario, i.e. Model 1, Model
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4 and Model 5. Also for the remaining models namely, Model 2 and Model 3, we recall

the set up as follows

a. Model 2

η2 has a rational quadratic covariance function and other Gaussian processes (

ξ1, ξ2, η1 ) have covariance functions similar to Model 1, i.e. squared exponential

covariance function

b. Model 3

η2 has a Matern covariance function with ν = 3
2 and the remaining convolved

Guassian procesess (ξ1, ξ2, η1 )have squared exponential covariance functions.

We randomly generate 40 observations as training data and test data separately for

each component response. After estimating parameters using empirical Bayesian es-

timates for all training data, we then use estimated parameters to predict test data.

Table 5.3 shows the average values of RMSE (Average RMSE) for different models

between µ and µ̂ based on one hundred replications.

Model Average RMSE

Model 1 0.02627
Model 2 0.03841
Model 3 0.03028
Model 4 0.03459
Model 5 0.10920

Table 5.3: Average RMSE prediction between µ and µ̂ from various models based on one hundred
replications.

From the results in Table (5.3), the average RMSE’s are quite similar to each other

apart from Model 5. Model 1 also provides the best result among all of the models

as expected. For other models, the results are still reasonable, even though we used

misspecified covariance functions in those models. That means that the MCGPPR
model is robust. Also, similar to the result of Scenario 1 in Chapter 3, the comparison

model Model 5 fails again to achieve a good performance.

iii. Scenario 3

In the third scenario, we will show another important feature of the proposed model,

i.e. dealing with multidimensional covariates in the covariance structure. We set the

true model as follows

1. Generate random processes
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The following is the true model used to generate multiple processes.

y1i(xi) = 0.2x1i × |x1i|
1
3 + log(x2i) + τ1i(xi) i = 1, ..., N1

y2i(xi) = sin(x2i) + 0.4x2i × |x1i|
1
4 + τ2i(xi) i = 1, ..., N2

where (τ1i(·), τ2i(·)) ∼MGP(0,K(·, ·)) and K(·, ·) is explained in Chapter 4.

x = {x1i,x2i} are equally spaced points [−5, 10] and [1, 2] respectively and τ =

{τ1i, τ2i} is dependent Gaussian processes which can be formed in a similar way

to the first scenario in Model 1, i.e. a mixture squared exponential covariance

function and a Gamma exponential covariance function were used. Also the true

values are the same as those used in Scenario 1. We recall the setting of the mixed

form of covariance structures based on Scenario 1. The structure of the covariance

function is such that η1 has a squared exponential covariance function and η2 has a

Gamma exponential covariance functions with the true values (w1 = 0.04, B1) and

(w2 = 0.04, B2 = 1) respectively. The shared processes ξ = (ξ1, ξ2) have squared

exponential covariance functions with the true values (v1 = 0.04, A1 = 1, v2 =

0.04, A2 = 1). Each generated process contains 20 observations. We generate

training data and test data separately.

2. Generate random multivariate Poisson data

In order to generate randomly multivariate Poisson data, we need to calculate the

mean of each response component as following

µ1i(xi) = exp(y1i(xi)); z1i(xi) ∼ Poisson(µ1i(xi)), i = 1, ..., N1

µ2i(xi) = exp(y2i(xi)); z2i(xi) ∼ Poisson(µ2i(xi)), i = 1, .., N2

In this setting, we consider two different models, i.e. Model 1 assuming a similar

covariance structure to the true model and Model 5, a comparison model formed

based on equation (5.21).

Figures 5.1 and 5.2 show a comparison between the predicted means of underying

process y using Model 1, Model 5 and the true mean curve for the first and the second

output.

In Figure 5.1, there are some points worth noting. Although the estimated curve

of Model 5 is acceptable, it still is not better than the best model, i.e. Model 1

which provides the smallest difference between estimated mean curve and mean true

curve. Another important feature is that our proposed model is able to provide good

performance which deals with multidimensional covariance structures.
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Figure 5.1: The predictions of the first outputs of bivariate Poisson regression where the dots are
test data (sample), the red and black dashed lines represent the predicted mean of underlying
process y1 using Model 1 and Model 5 respectively. The blue solid lines are the true mean curve
with 95% confidence intervals (the shaded regions).

Table 5.4 shows the average values of RMSE (average RMSE) between the estimated

µ and µ̂ for the two models based on one hundred replications. Table 5.4 shows that

Model Average RMSE

Model 1 0.00304
Model 5 0.00579

Table 5.4: The average of RMSE (Average RMSE) from prediction between µ and µ̂ with two
different models based on one hundred replications.

Model 1 performs much better than Model 5.
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Figure 5.2: The predictions of the second outputs of bivariate Poisson regression where the dots
are test data (sample), the red and black dashed lines represent the predicted mean of underlying
process y1 using Model 1 and Model 5 respectively. The blue solid lines are the true mean curve
with 95% confidence intervals (the shaded regions).

5.6.2 Real Data Analysis

We will present results for two real sets of data. The first one is data relating to two

type of cancers in Minnesota, USA. The second data concern Dengue fever and Malaria

in Indonesia.

1. Lung and Oesophageal Cancer data

From information on the NHS web site (www.nhs.uk), we believe that one of the most

dangerous and common types of cancer is lung cancer. Every year there are around

44,500 people diagnosed with this condition in the UK. The symptoms usually do not

always appear in the early stages, although some symptoms develop in many people,

such as blood or persistent coughing, breathlessness and weight loss. In over 85 percent

of cases, the main cause of lung cancer is cigarette smoking although people who have

never smoked can be diagnosed with this cancer. Smoking can cause other cancers,
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such as oesophageal cancer and mouth cancer.

There are more than 8,500 new cases of oesophageal cancer diagnosed each year in the

UK which means that this cancer is uncommon but is not rare. As with lung cancer,

smoking and drinking alcohol are the risk factors associated with this cancer.

In 2005, Jin, et al. analyzed the relationship between lung cancer and oesophageal

cancer using a generalized intrinsics autoregressive model which was based on neigh-

bourhood for each region as the main effect of the model. Unfortunately, the existing

model has some difficulty in prediction when determining of the neighbourhood for

each area. When applying our proposed model, we expect that it will overcome these

difficulties and provide an easy way to predict cases in future.

We present the number of cases for each cancer in Minnesota, US. The map presented in

5.3 shows clearly that the county-level maps of the age-adjusted standardized mortality

ratios (SMRs) between lung and oesophageal have a positive correlation across region

or area. This strong evidence motivates us to use the MCGPPR model. Summaries

Figure 5.3: Maps of age-adjusted SMR for lung and esophagus cancer in Minnesota (Source :
Biometrics , 61(4) : 950-61, December 2005)

of Lung and Oesophageal Cancer data in Minnesota also can be seen in Table 5.5.

Variable (cases) Min Max
Lung cancer 15.0 3797.0
Esophagus cancer 0.0 319.0

Table 5.5: Summaries of Lung and Oesophageal Cancer data
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The model can be written as

zia ∼ Poisson(Eiae
τia(xi)), i = 1, ..., 87, a = 1, 2 (5.22)

where zia is the observed number of deaths due to cancer a in county i, Eia is the cor-

responding expected number of deaths (assumed known) and τia(·) ∼MGP(0,K(·, ·))
which is explained in equations (4.8) and (4.10). Here, all component of K(·, ·) have a

squared exponential covariance function. Also, x are defined as latitude and longitude

for each county. Then we compare our proposed models with the CD model.

To measure the goodness of fit of the model, we use the Akaike information criteria

(AIC) which are shown in Table 5.6. From Table 5.6 it shows clearly that using our

Method AIC
CD 1640.202
MCGPPR 1399.822

Table 5.6: AIC’s values for different methods

model is better than CD model.

We now select data randomly from the whole data set to form training data consisting

of two thirds of the data and the remainder is used for test data. Then we estimate

parameters by an empirical Bayesian approach using training data and after that, we

consider the problem of prediction for test data. To measure predictive performance of

the models, we compare the predicted responses with true values based on ten repli-

cations. Then we calculate the average of values of realtive error (Average RE) which

can be defined as the average of the difference between the predicted values and the

actual observation defined by actual observation. In Table 5.7 shows the average of

the relative error of actual observation and µ̂. The performance ofMCGPPR is much

better than CD .

Method Average RE
CD 0.0149
MCGPPR 0.0080

Table 5.7: The average of relative error for different methods based on ten replications

2. Dengue Fever and Malaria data

In Chapter 2, we analysed dengue fever and malaria data separately. We believe that

the two of response variables have spatial correlation. We compared several methods

to deal with this spatial effect, i.e. using an intrinsic autoregressive model, a Gaussian

process prior and a conventional Poisson regression model. From the results, we have

noted that using a Gaussian process prior provides more flexibility in defining the
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covariance structure. However, both of the diseases can be spread by two different

types mosquitoes which are hard to distinguish from each other. Dengue fever and

malaria are from infected Aedes Aegypti and the plasmodium parasite of Anopheles

mosquitoes respectively. Therefore, it is more sensible if we analyse them together as

those diseases are correlated.

We consider three type of models and include the different sets of multidimensional

covariates in the covariance structure. The first model involves location (latitude and

longitude) and all covariates (health water (x1), healthy rubbish bin (x2), waste water

disposal facilities (x3), clean and healthy behaviour (x4) and healthy house (x5)). The

second model contains location and some of the covariates, x1, x2, x3, i.e. healthy water,

healthy rubbish bin and waste water disposal facilities respectively . The third model for

the covariance structure uses only distance measured by geographical position (latitude

and longitude). Summaries Dengue Fever data can be seen in Table 3.4. For Malaria

data, the minimum cases is zero and the maximum cases is 428.

Average ER

Models MCGPPR CD

Full (location and all covariates) 0.000994 0.001374
Location and x1, x2, x3 0.001018 0.002000

Location 0.001137 0.002252

Table 5.8: The average of error rate for different set of covariates in covariance structures between
MCGPPR model and CD approach based on fifteen replications

To compare the performance of the models, we randomly selected two thirds of the

cities as training data and the remaining cities as test data. After obtaining estimates

of the parameters, we then predict the test data . Table 5.8 gives the average values

of relative error (Average RE) for each model, which is defined as the average of the

difference between the prediction and the observation with respect to the observation

based on fifteen replications. We also compare them with the CD approach. Table 5.8

shows clearly that the model with location and all covariates involved in the covariance

structure of our proposed model give the best results with an average percentage error

0.09 % only. Although the two other models from the proposed approach are not a

good choice, the results are still acceptable. It also shows that the MCGPPR model

performs better than the CD model.

5.7 Chapter Summary

In this chapter, we proposed a novel method for multivariate Poisson regression analysis by

applying different types of stationary covariance functions and also investigating a mixed

70



Chapter 5. Convolved Gaussian Process Priors for Multivariate Poisson Regression
Analysis

form using convolved Gaussian process priors. One of the most important features of the

model is that it enables us to deal with the relationship between multidimensional Poisson

covariates and a Poisson dependent variable. The multiple dependent processes formed

by a convolved Gaussian process CGP model can be treated as nonlinear random effects.

We provided a framework for constructing a model for multivariate Poisson regression

using convolved Gaussian process priors. The procedures for inference and implementa-

tion in simulation studies and real data analysis are established. We also presented the

asymptotic theory based on information consistency.

There are several advantages of the proposed model that are worth noting. Similar to

the previous chapter, the model provides a robust approach and offers flexibility in choosing

covariance structures and this is confirmed in our comprehensive simulation studies. The

MCGPPR model performs very well in term of prediction.

Another important feature ofMCGPPRmodel is that it is able to address the problem

of large dimensional covariates. Based on the third simulation study, the proposed model

offers good performance with a multidimensional covariates scenario. In all scenarios, we

compare MCGPPR model with the CD model. Our model performs consistently better

than the existing approach.

In this chapter, even though our framework model focuses on multivariate Poisson

regression, it is not difficult to extend the model to other multivariate non-Gaussian data

in the exponential families. In the next chapter, we will discuss the general model.

We offered a general framework model to use CGP priors in multivariate semiparame-

teric regression analysis for response variables from Gaussian and non-Gaussian distribu-

tions in the exponential family of distribution. The model, and its implementation, includ-

ing the technical details of the inference, are provided. We also reported asymptotic theory

based on information consistency of the general model for multivariate non-Gaussian. The

natural general extension can be applied for any distribution which assumes data from the

exponential family distribution. Comprehensive simulation studies and applications with

real data are also explored. The performance of the proposed models are usually better

than other methods and show good flexibility and robustness.

Related to the topics discussed in this thesis, some interesting problems are worth

further attention. For example, large dimensional integration. We used Laplace approx-

imation. It provides reasonably good results. However, the approximation error will

increase when the dimension increases (bear in mind that the dimension of the integration

is equal to the sample size). We need to develop more efficient algorithms; see e.g Wang

& Shi (2014).

We also encounter restriction sin terms of building mixture covariance functions. It

seems that not every covariance function is integrable; thus, here we just focused on

some stationary covariance functions, such as exponential squared, rational quadratic,
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Matern and Gamma exponential covariance functions. Therefore, a further investigation

is needed to provide a very flexible model although the proposed models have offered a

good performance. We focused on bivariate response variables in the thesis. Although

there is no difficulty in extending the method to the multivariate case in theory, the

implementation may be challenging. More research in this area is essential.
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Convolved Gaussian Process

Priors for Multivariate

Non-Gaussian Regression Analysis

The aim of this chapter is to extend the MCGPPR model (5.1) to situations where the

response variable, denoted by z = (z1, z2), is known to be non-Gaussian data. In the previ-

ous chapter we discussed Poisson data; here we also focus on other bivariate non-Gaussian

data. The work is motivated by the following example which concerns data collected

during adverse birth outcomes. Length of pregnancy and birth weight are crucial factors

that can determine infant health and survival rates for years to come. The huge risk for

mortality and a variety of health and developmental issues come from preterm and low

birth weight infants. Preterm birth (PTB) is defined as the length of gestation being

less than 37 weeks, and weighing less than 2,500 grams is the definition of a low birth

weight (LBW). The measures z1 and z1 take a value of either 0 or 1, each component

corresponding to the normal term pregnancies or preterm birth and the normal or low

weight respectively. Whilst there is considerable evidence that those factors are correlated

and correlation also exists within geographic regions as demographic characteristics, so-

cioeconomic characteristics can vary geographically. The aim of the example is to develop

a general framework to investigate the regression relationship between the multivariate

binary response variables z and a set of covariates. The general model also can define a

cross-correlation between multivariate dependent non-Gaussian data.

Neelon et al. (2014) have attempted using a bivariate conditional autoregressive model.

Unfortunately, the existing approach has a limitation, i.e. they assigned a uniform prior

restricted to interval (−1, 1) for parameter α which is used to control the within-subject

correlation between PTB and LBW. Some authors, such as Crainiceanu et al. (2012)

have provided another model using conditional dependency via a Gaussian process to deal
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with bivariate binomial spatial data. But, again this approach also has a limitation, i.e.

it has failed to accommodate individual characteristics since the conditional dependency

structure is not able to capture them.

To overcome the issues, we will investigate an alternative method using convolution

Gaussian process priors with our proposed model. This method has been discussed in

the last two chapters and has some advantages worth noting , i.e. our proposed model

via CGP priors (MCGPPR) provided a promising result and good performance. It also

offered flexibility in the choice of covariate functions. Therefore, it enables us to extend the

idea to consider CGP priors for multivariate non-Gaussian regression, namely multivariate

convolved Gaussian process non-Gaussian regression analysis (MCGPNGR).

Similar toMCGPPR, the advantages of this model include : (1) it provides a general

framework on how to use a convolved Gaussian process to define a model for multivariate

semiparametric regression analysis for multivariate response variables from exponential

families with multi-dimensional covariates; (2) a cross-correlation between two responses

is captured by modelling the mean and covariance structures simultaneously; and (3) it

is able to accommodate a large multidimensional nonlinear function involving covariates

since the priors are formed by covariance functions.

This chapter is organized as follows. The general framework of theMCGPNGRmodel,

how we estimate hyper-parameters and calculate prediction and the asymptotic properties

based on information consistency are provided in Section 6.1. Comprehensive numerical

examples including simulation studies and real data applications are considered in Section

6.2.

6.1 The Model

Let za be a non-Gaussian response variable where a is a-th response. We assume that

za are dependent and also within the response to zai and zaj are dependent at different

observations. We suppose that za has a distribution from an exponential family with the

following density function

f(za | αa, φa) = exp

{
zaαa − b(αa)

c(φa)
+ d(za, φa)

}
(6.1)

where αa and φa are the canonical and dispersion parameter respectively. We have E(za) =

b′(αa) and V ar(za) = b′′(αa)c(φa), where b′(αa) and b′′(αa) are the first and two derivatives

of b(α) with respect to α.

Multivariate convolved Gaussian process non-Gaussian regression analysis (MCGPNGR)
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models are defined as follows :

E(za | τ a) = h(µa + τ a) a = 1, 2 (6.2)

where h−1(·) is a given link function. Similar to za in Chapter 4, here za (where a = 1, 2)

also define two dependent response variables, for example the number of preterm and

low weight infant in adverse birth outcomes data. Many researchers believe that the

observations are spatially correlated. Thus, rather than analysing separately, it is more

sensible to investigate those data together.

Some important features of MCGPPR are also true for MCGPNG. For example, it

is a robust model; it provides the flexibility to construct a cross-correlation between two

components. Here, we also assume that the latent variables τ a which depend on x and

unknown hyper-parameters θ define a cross-correlation of za. A nonparametric CGP can

be used as priors for τ a which is explained by equations (4.6) to (4.10). The regression

relationship between the bivariate non-Gaussian regression za and the covariates xa is

modelled by the covariance structure of τ (x).

If we use a linear mean function which depends on a set of p scalar covariates Ua, then

equation (6.2) can be written as

E(za | τ a) = h(UT
aβ + τ a). (6.3)

As an example, we consider a special case of dependent binary data (e.g. classifica-

tion problem with two classes). Convolved Gaussian process priors for bivariate binomial

regression can be specified as follows

za|τ a ∼ Bin(1,πa).

If we use the logit link function, given by

πa =
exp(UT

aβa + τ a)

1 + exp(UT
aβa + τ a)

, a = 1, 2, (6.4)

where (τ1, τ2) follows a CGP as defined in equation (4.6) to (4.10). We can get the marginal

density function of z = (z1, z2) using

p(z) =

∫
p(z | τ ,β)p(τ | θ)dτ , (6.5)

where p(τ |θ) is the density function of τ = (τ 1, τ 2). The density functions for other

distributions from the exponential families can be obtained similarly.

As an analogue with the MCGPPR model, to estimate β and θ, we also use an
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empirical Bayesian approach. In general, the technical details for inference regarding

parameters and prediction using the MCGPNGR model are quite similar to the case of

MCGPPR model discussed briefly in Chapter 5. Therefore, we can rewrite a general

marginal log-likelihood function based on equation (5.5) as follows

l(β,θ) = log

∫ 2∏
a=1

Na∏
i=1

p(zai | τai,β)(2π)
−

∑2
a=1 Na
2 | KN1N2 |−

1
2

exp
{
τTK−1

N1N2
τ
}
dτ (6.6)

where p(zai | τai,β) is derived from the exponential family as defined in equation (6.1)

and (6.2).

Meanwhile, in terms of prediction, we focus on how we calculate E(z∗ | D) and V ar(z∗ |
D) which are used as the prediction mean and predictive variance of z∗. In order to make

a general form, we rewrite the expectation of z∗ conditional on τ ∗ based on equation (5.9)

as follows

E(z∗ | D) = E[E(z∗ | τ ∗,D)] =

∫
h(U∗T β̂ + τ ∗)p(τ ∗|D)dτ ∗. (6.7)

The form of equation (6.7) is analytically intractable. We again a Laplace approximation.

Therefore, the remaining inference is the same as in the previous chapter.

To calculate V ar(z∗ | D) , we redefine equation (5.16) and (5.17) and the variance of

z∗ conditional on τ ∗ is given by

V ar(z∗|D) = E[V ar(z∗|τ ∗,D)] + V ar[E(z∗|τ ∗,D). (6.8)

Based on the model definition, we have

V ar[E(z∗|τ ∗,D) = E[E(z∗|τ ∗,D)]2 − [E[E(z∗|τ ∗,D)]]2

=

∫
(h(U∗T β̂ + τ ∗))2p(τ ∗|D)dτ ∗ − [E(z∗|τ ∗,D)]2, (6.9)

and

E[V ar(z∗ | τ ∗,D)] =

∫
V ar(z∗ | τ ∗,D))p(τ ∗ | D)dτ ∗

=

∫
b′′(α̂∗)c(φ)p(τ ∗ | D)dτ ∗ (6.10)

where α̂∗ is a function of h(U∗T β̂ + τ ∗). Thus (6.8) and (6.10) can be also calculated by

numerical integration.

In terms of information consistency of the MCGPNGR model, we provide a general

theorem from Theorem 5.1 and Lemma D.1 as follows
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Theorem 6.1. Under the MCGPNGR model (6.1) and (6.2) and the condition given in

Lemma 6.1, the prediction ẑ is information consistent to the true curve z0 if the RKHS

norm ‖τ0‖2KN1N2
is bounded and the expected regret term EXN1N2

(log |I+δKN1N2 |) = o(N1+

N2). The error bound is specified in Appendix D.

The proof of the theorem is similar to that given in Appendix D.

Lemma 6.1. Suppose z1i and z2i are conditionally independent samples from exponential

family given (6.1) and τ0 ∈ F has a multivariate convolved Gaussian prior with zero mean

and bounded covariance function KN1N2 for any covariate values in X . Suppose that KN1N2

is continuous in θ and the estimator θ̂ → θ almost surely as N1 → ∞ and N2 → ∞. If

there exists a positive number κ such that |b′′(α)| 6 eκα, then

− log pmgp(z1, ..., zN1 , zN1+1, .., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, .., zN1+N2)

6
1

2
‖τ0‖2KN1N2

+
1

2
log |I + δKN1N2 |+ C (6.11)

where ‖τ0‖2KN1N2
is the reproducing kernel Hilbert space (RKHS) norm of τ0 associated

with KN1N2, I is the (N1 + N2) × (N1 + N2) identity matrix, δ and C are some positive

constants.

Remark. The condition |b′′(α)| 6 eκα in Lemma 6.1 is satisfied for a wide range of

exponential family distribution in (6.1), see Wang & Shi (2014) for the detailed discussion.

6.2 Numerical Results

In this section we demonstrate the proposed method with several examples involving com-

prehensive simulation studies and a real data application. Various distributions in the

exponential family will be discussed, such as the bivariate binomial and ordinal distribu-

tions.

6.2.1 Bivariate Binomial Data

We use aMCGPNGR model with logit link function to generate bivariate Binomial data.

The following equation defines a data set with a classification case,

D =


z1i

U1i

x1i

 ; i = 1, ..., N1,

z2i

U2i

x2i

 ; i = 1, ..., N2

 (6.12)

where z1i, z2i are observations of the two responses, U1i, U2i are bivariate binomial co-

variates and xi = (x1i,x2i) are P -dimensional covariates involved in covariance structure
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τi1, τ2i. Here, N1 and N2 are the sample size of each responses. A discrete multivariate

binomial regression model with CGP priors (MCGPNGR) is therefore given by(
z1i(x1i) | τ1i(x1i)

z2i(x2i) | τ2i(x2i)

)
∼

(
Bin(1, π1i), i = 1, ..., N1

Bin(1, π2i), i = 1, ..., N2

)
(6.13)


π1i =

exp(UT
1iβ1+τ1i(x1i))

1+exp(UT
1iβ1+τ1i(x1i))

π2i =
exp(UT

2iβ2+τ2i(x2i))

1+exp(UT
2iβ2+τ2i(x2i))


and (

τ1i(·)
τ2i(·)

)
∼MGP(0,K(·, ·)),

where K(·, ·) is defined by equation (4.8) and (4.10). The density function for z =

(z11, ..., z1N1 , z21, ..., z2N2) is given by

p(z | τ ) =
2∏

a=1

p(za | τ ,β)

=

2∏
a=1

Na∏
i=1

p(zai | τai, τ )

=
2∏

a=1

Na∏
i=1

πzaiai (1− πai)1−zai

The marginal log-likelihood is calculated by equation (6.6) and the empirical Bayesian

estimates of hyper-parameters (θ) and parameters (β) can be estimated.

Scenario1

The aim of this scenario is to show the performance of proposed model by using different

sample sizes. We use a discrete model in equation (6.13) as the true model and K(·, ·) is

given by equations (4.6) to (4.10). The true values of β are β10 = 1, β11 = 2, β20 = 1

and β21 = 2. In this scenario, latent variables τ are generated similarly to scenario 1

in Chapter 4. i.e. via a mixed form covariance structure. We recall the setting of how

we generate random latent variables based on equation (4.6) and also Scenario 1 in the

previous chapter as follows

τ1 = ξ1 + η1

τ2 = ξ2 + η2. (6.14)
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The mixed form contains η1 which is generated from a squared exponential covariance

function with true value of (w1 = 0.04, B1 = 1) and η2 is formed from a Gamma expo-

nential family covariance function with the true values of (w2 = 0.04, B2 = 1). Also, the

shared processes ξ follow the squared exponential covariance function with true values

(v1 = 0.04, v2 = 0.04, A1 = 1, A2 = 1). In this scenario, we investigate several different

sample sizes, i.e. 15, 20 and 25 for each response. The generated data are equally spaced

in [−5, 5]. The observations zai follow a binary distribution Bin(1, πai) with

πai =
exp(UT

aiβa + τai(x))

1 + exp(UT
aiβa + τai(x))

where a = 1, 2 and i = 1, ..., N1 or N2. N1 and N2 are the number of first response and

second response variables respectively.

Similar to Scenario 1 in the previous chapter, we generate new data as training data

and test data. In order to investigate the performance of the estimated parameters, we

calculate the sample mean of the estimates β and the root mean squared error ( RMSE)

between the estimated and the true values.

Table 6.1 shows the result of mean estimated parameters (sample mean) for β using

the empirical Bayesian approach for three different sample sizes based on one hundred

replications. Table 6.2 provides RMSE between estimated values and the true values for

three different sample sizes based on one hundred replications.

Sample Mean

Parameter True Sample 15 Sample 20 Sample 25

β11 1 1.00857 1.01319 1.00138
β12 2 1.98954 1.99088 2.00983
β21 1 1.00118 1.00519 0.99543
β22 2 2.00487 2.00221 2.00326

Table 6.1: The sample mean of estimated parameters (β) for bivariate Poisson model with Con-
volved GPR for three different sample size based on one hundred replications.

RMSE

Parameter Sample 15 Sample 20 Sample 25

β11 0.17885 0.16853 0.05417
β12 0.21904 0.14082 0.06442
β21 0.10635 0.15774 0.07657
β22 0.10544 0.11192 0.07019

Table 6.2: RMSE between estimated parameters (β) and true values for bivariate the binomial
model with convolved GPR for three different sample sizes based on one hundred replications.

Table 6.1 and 6.2 show that estimated parameters are acceptable and closer to the true
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values with sample size increasing as we would expect.

In order to explore the performance of the prediction, for convenience we use the

estimated mean (µ̂ = π̂) of the model in equation (6.13) to predict the actual response.

Later, we consider calculating the difference between µ and µ̂ by using RMSE criterion as

the measurement of predictive performance. Table 6.3 shows the average values of RMSE

(Average RMSE) based on one hundred replications. From Table 6.3, it is clearly seen

that the performance is reasonably good and the accuracy improves as the sample size

increases.

Sample Size Average RMSE

15 0.013999
20 0.013304
25 0.013034

Table 6.3: The average values of RMSE between µ and µ̂ for bivariate Binomial model with
Convolved GPR for three different sample size based on one hundred replications.

Scenario 2

The aim of this scenario is to investigate how sensitive the results are to the choice of

covariance structures. The method of generating random processes is the same as the one

used in Section 2 Chapter 4. We design several different priors forMCGPNGR model as

following

i. Generate random processes

The true model used to generate a multiple process is :

y1i(xi) = 0.8sin(0.5xi)
3 + τ1i(xi), i = 1, ..., N1

y2i(xi) = 0.8cos(0.5xi)
3 + τ2i(xi) i = 1, ..., N2

(τ1i(·), τ2i(·))T ∼ MGP(0,K(·, ·))

where for each response, xai, a = 1, 2 is equally spaced in [−4, 4] and covariance

function K(·, ·) based on equations (4.8) and (4.10) in Chapter 4. For this scenario,

we set the covariance structure (mixed form) and initial values the same as the ones

used in the first scenario.

We recall that the structure of the covariance function is based on equation (6.14), i.e.

ξ1, ξ2 are generated from squared exponential covariance functions with the true values

(v1 = 0.04, A1 = 1) and (v2 = 0.04, A2 = 1) respectively. Meanwhile, η1 has a squared

exponential covariance function with the true values (w1 = 0.04, B1 = 1) and η2 has

a Gamma exponential covariance function with the true values (w2 = 0.04, B2 = 1).
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In order to generate random bivariate binomial data, we first calculate the mean of

each response as follows : (
π1i = exp(y1i)

1+exp(y1i)

π2i = exp(y2i)
1+exp(y2i)

)
and

z | y =

(
z1i | y1i

z2i | y2i

)
∼

(
Bin(1, π1i), i = 1, ..., N1

Bin(1, π2i), i = 1, ..., N2

)
.

A sample containing 20 data observations for each component is generated and used

as training data. We also generate another 20 observations as test data to investigate

the performance of the prediction.

ii. Model comparison Now, we use four different priors of MCGPNGR and equation

(5.21) (CD method). The covariance structure is given by equation (6.14) with the

following specific assumptions :

1. Model 1

This model is similar to the true model i.e. ξ1, ξ2 and η1 have a squared exponential

covariance function while η2 has a Gamma exponential covariance function

2. Model 2

Similar to Model 1 but η2 has a rational quadratic covariance function

3. Model 3

Similar to Model 1 but η2 has a Matern covariance function

4. Model 4

η2 has a squared exponential covariance function while the rest of processes are the

same as Model 1

5. Model 5

We compare the proposed model with existed model, i.e. CD approach based on

equation (5.21).

Figure 6.1 and 6.2 show a comparison between prediction means of underlying process y

by using different models which compare the true mean and the prediction mean using

the CD approach. The average of RMSE (Average RMSE) is also calculated based on one

hundred replications and is given in Table 6.4.

In Figure 6.1 and Figure 6.2, there are some points worth noting. Although the

predicted mean of Model 5 is acceptable, it does not do better than the other models, i.e.

Model 1 which provides the smallest difference between predicted mean and mean true

curve.

From Table 6.4, Model 1 is the best as we would expect. Models 2 to 4 are not the

best choices but their results are very close to the best model and perform much better
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Figure 6.1: Example 1 : The predictions from two strongly dependent bivariate binomial data with
three different models (Model 1, Model 2 and Model 5 ). The dots are test data (sample), the red
dashed lines represent the predictions using three different covariance functions and the blue solid
lines are the true curves with 95% confidence intervals (the shaded regions)

Model Average RMSE

Model 1 0.0267220
Model 2 0.0268342
Model 3 0.0268087
Model 4 0.0267539
Model 5 0.0468069

Table 6.4: Average RMSE prediction between µ and µ̂ of bivariate binomial data from various
models based on one hundred replications.

than Model 5 although we used misspecified covariance functions in those models. This

shows the robustness of our approach.
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Figure 6.2: Example 2 : The predictions from two strongly dependent bivariate binomial data with
two different models (Model 3 and Model 4 ). The dots are test data (sample), the red dashed lines
represent the predictions using two different covariance functions and the blue solid lines are the
true curves with 95% confidence intervals (the shaded regions)

6.2.2 Bivariate Ordinal Data

We further demonstrate the proposed method using ordinal data. We use a MCGPNGR
model with probit link function. Similar to bivariate binomial data, we redefine the

procedure. The observed data are

D =


z1i

U1i

x1i

 ; i = 1, ..., N1,

z2i

U2i

x2i

 ; i = 1, ..., N2

 (6.15)

where z1i, z2i are observations of the two responses, U1i, U2i are bivariate ordinal covariates

and x1i,x2i are P -dimensional covariates involved in the covariance structure for τi1, τ2i.

Here, N1 and N2 are the sample size of each responses. A discrete multivariate ordinal
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regression model with CGP priors (MCGPNGR) with r ordered categories is given by(
z1i(x1i) | y1i(x1i)

z2i(x2i) | y2i(x2i)

)
=

(
j if bj < y1i(x1i) 6 bj+1

j if bj < y2i(x2i) 6 bj+1

)
(6.16)

(
y1i(x1i) = UT

2iβ1 + τ1i(x1i)

y2i(x2i) = UT
2iβ2 + τ2i(x2i)

)
and (

τ1i(·)
τ2i(·)

)
∼MGP(0,K(·, ·)),

where i = 1, ..., N1 or N2, b0 = −∞ br = ∞ and bj for j = 1, ..., r − 1 are the thresholds

to be estimated. Meanwhile, K(·, ·)) is defined by equations (4.8) to (4.10). The density

function for z = (z11, .., z1N1 , z21, ..., z2N2) is given by

p(z | y) =
2∏

a=1

Na∏
i=1

p(zai | yai)

=
2∏

a=1

Na∏
i=1

p(bzai < yai < bzai+1)

The marginal log-likelihood is calculated by (6.6). The empirical Bayesian estimates of

β, the hyper-parameter and the thresholds are estimated by maximizing the marginal

likelihood.

Scenario 1

The true model used to generate the latent process is based on a discete model in equation

(6.16) and is specified as follows :

yai(xai) = UTaiβ(xai) + τai(xai), a = 1, 2 i = 1, ..., Na

zai(xai) =


0 if yai(xai) ≤ 2

1 if 2 < yai(xai) ≤ 3

2 if yai(xai) > 3

and (
τ1i(·)
τ2i(·)

)
∼MGP(0,K(·, ·)).

The random data of bivariate ordinal type are generated by using the true values of

β10 = 1, β11 = 2, β20 = 1 and β21 = 2. Latent variables τ are generated using the same

procedure described in subsection 6.2.1. The training data and test data are generated
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separately. Each response contains 20 observations and is equally spaced in [−5, 5]. In

this scenario, we assume r = 2 and thresholds b1 and b2 are unknown parameters. We

compare two different priors ofMCGPNGR , i.e. Model 1 and Model 4 with CD approach

(Model 5 ) defined in Scenario 2 in subsection 6.2.1.

Table 6.5 shows the result of mean estimated parameters (sample mean) and the value

of RMSE ( RMSE) for β using empirical Bayesian approach for three different models

based on one hundred replications. Table 6.6 shows the results for estimated threshold

and the value of RMSE’s (RMSE).

Sample Mean RMSE

Parameter β10 β11 β20 β21 β10 β11 β20 β21

True Values 1 2 1 2
Model 1 1.003723 2.000646 1.003581 2.000532 0.003842 0.000734 0.003709 0.000637
Model 4 1.003756 2.000696 1.003606 2.000548 0.003886 0.000786 0.003707 0.000639
Model 5 1.021499 1.997239 1.011650 2.001238 0.077500 0.010801 0.041669 0.004394

Table 6.5: The sample mean and the value of RMSE (RMSE) of estimated parameters (β) for the
bivariate ordinal model with several models based on one hundred replications.

Sample Mean RMSE

Parameter b1 b2 b1 b2

True Values 2 3
Model 1 1.98107 3.01162 0.01894 0.011634
Model 4 1.98091 3.01172 0.01909 0.011733
Model 5 1.97604 3.06227 0.07645 0.224627

Table 6.6: The sample mean of estimated thresholds (b) and the value of RMSE (RMSE) for
bivariate ordinal data with several models based on one hundred replications.

It is not surprising that the result of Model 1 has the best performance since Model

1 uses the same covariance structure as the true model. However, Model 4 also offers a

promising result although the covariance structure is different to the true model. We can

conclude that the proposed model provides good robustness in the choice of covariance

function.

Scenario 2

We further consider all the models defined in Scenario 2 in subsection 6.2.1, where Model

5 is based on CD approach. Table 6.7 shows the average of RMSE (average RMSE ) of

the prediction of y and ŷ based on one hundred replictions. From Table 6.7, three models

from Model 2 to Model 4 show good performance although they can not be better than

Model 1. It means that there is great robustness in MCGPNGR. Meanwhile, similar
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Model Average RMSE

Model 1 0.001105
Model 2 0.001905
Model 3 0.001905
Model 4 0.001120
Model 5 0.003864

Table 6.7: Average RMSE prediction between y and ŷ of bivariate ordinal data from various
models based on one hundred replications.

again to other scenarios, Model 5 fails.

Scenario 3

In the third scenario, we show another promising feature of the proposed model, i.e. the

capacity to accommodate large dimensional covariates in the covariance function. We

design the true model as follows.

i. Generate random processes

The true model used to generate multiple processes is follows

y1i(xi) = 0.2x1i × |x1i|
1
4 +

1

(x2i)
+ τ1i(xi)

y2i(xi) =
1

1 + exp(−1.5× x1i)
+ 0.01x2i × |x2i|

1
4 + τ2i(xi)

i = 1, ..., N1 or N2

where (τ1i(·), τ2i(·)T ∼ MGP(0,K(·, ·)), where is K(·, ·) defined by equation (4.10)

and (4.8). Meanwhile, the latent variables τ are generated the same as Model 1 via a

mixed form covariance function including squared exponential and Gamma exponen-

tial covariance functions.

We recall the setting of the covariance structure as follows. Here, η1 has a squared

exponential covariance function with the true values (w1 = 0.04, B1 = 1), ξ1 and ξ2

are generated also from squared exponential covariance functions with the true values

v1 = 0.04, A1 = 1 and v2 = 0.04, A2 = 1 respectively. But η2 are formed from a

Gamma exponential covariance function with true values (v2 = 0.04, A2 = 1). Each

generated process of training data contains 20 observations where x = (x1,x2) are

equally spaced in [1, 5] and [1, 4] respectively. Further we generate the same number

of observations as test data.

ii. Generate random bivariate ordinal data
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In order to generate random bivariate ordinal data. We use the following formula :

zai(xi) =


0 if yai(xi) ≤ 0.2

1 if 0.2 < yai(xi) ≤ 0.7

2 if yai(xi) > 0.7

where a = 1, 2 and i = 1, .., N1 or N2.

We consider two different models, i.e. Model 1 assuming similar a covariance structure to

the true model and Model 5, a comparison model formed based on equation (5.21).

Figure 6.3: Example 1: The predictions of the first outputs of bivariate ordinal regression where
the dots are test data (sample), the red and black dashed lines represent the predicted mean using
Model 1 and Model 5 respectively. The blue solid lines are the true mean curve with 95% confidence
intervals (the shaded regions).

Figures 6.3 to 6.4 show the performance of the prediction mean and the true mean

curve. Table 6.8 shows the results of average values of RMSE (Average RMSE) between

the estimated y and ŷ based on one hundred replications. From those results, there are
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Figure 6.4: Example 2: The predictions of the second outputs of bivariate ordinal regression where
the dots are test data (sample), the red and black dashed lines represent the predicted mean using
Model 1 and Model 5 respectively. The blue solid lines are the true mean curve with 95% confidence
intervals (the shaded regions).

Model Average RMSE

Model 1 0.0007813
Model 5 0.0012219

Table 6.8: The average of RMSE (Average RMSE) from prediction between y and ŷ with two
different models based on one hundred replications.

some findings that we can highlight. Model 1 has the best performance as we expect.

We can also say that our proposed models are better than Model 5 for handling multi-

dimensional covariates in the covariate structure.
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6.2.3 Adverse Birth Outcome Data

We now consider the example of bivariate binomial data. This application involves the

analysis of the period of gestation which is the most important indicator to determine an

infants health. We consider two important measures : the length of pregnancy and the

birth weight.

The normal term of gestation is around 37 weeks to 41 weeks, while preterm birth

means a live birth before 37 completed weeks of gestation. The results of a preterm birth

are more likely to include complications such as acute respiratory, gastrointestinal, im-

munologic, and central nervous system problems. Meanwhile, birth weight also influences

an infant’s health for years to come. A live birth which has a weight of less than 2500

grammes is considered a low birth weight. It is also more likely to be associated with a

range of neuro-developmental disorders, underdeveloped lungs, breathing and heart.

Neelon et al. (2014) attempted to analyse the problem between preterm and low birth

weight in North Carolina, USA using a bivariate conditional autoregressive model. The

data is taken from the North Carolina Center for Health Statistics from 2007 to 2008. Also,

they considered demographic and socioeconomic information. Table 6.9 shows summaries

of Adverse Birth Outcome data in North Carolina, USA in 2007-2008

Variable (cases) Min Max

Low birth weight 3.0 1373.0
Preterm 49.0 14050.0

Table 6.9: The summaries of Adverse Birth Outcome data in North Carolina, USA in 2007-2008.

In most cases, the low birth weight is caused by the preterm birth. It is therefore

better to model them as dependent multivariate response variables. This motivated us to

use MCGPNGR model. The model can be defined as following

zai ∼ Bin(nai, πai), i = 1, ..., 100 a = 1, 2. (6.17)

and

πai =
exp(τai(xi))

1 + exp(τai(xi))

where z1i denotes the numbers of positive indications of a preterm birth in county i and

z2i denotes the numbers of positive indications of a low birth weight in county i, and n1i

and n2i denote the corresponding numbers of people giving birth in county i. Whereas,

xi are defined from spatial point values of latitude and longitude of each county. Also,

τ = {τ1i, τ2i} are dependent Gaussian processes with zero mean and covariance function

based on equations (4.8) to (4.10).

We select two thirds of the whole data set randomly as training data and the remaining
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as test data. We estimate hyper-parameters via an empirical Bayesian approach using

training data. The estimated hyper-parameters are used to predict the test data. We then

calculate the average of relative error (average RE) for measuring predictive performance

with ten replications. We also compare the proposed method with CD approach.

Table 6.10 shows the average error rate for the predicted values and the actual obser-

vations. The performance of MCGPNGR is much better than CD approach.

Model Average RE

MCGPNGR 0.00170
CD 0.00448

Table 6.10: The average value of relative error (average RE) from prediction between the predicted
values and the actual observations with two different models based on ten replications.

6.3 Chapter Summary

In this chapter, we proposed a MCGPNGR for multivariate dependent non-Gaussian

data. The general framework is able to capture the relationship between multidimensional

covariates and multivariate non-Gaussian dependent data. The novel approach enables us

to handle cross-correlation between response variables which can be defined from convolved

Gaussian process priors.

We provided a natural framework on how to use CGP to define multivariate generalized

semiparametric regression analysis for response variable from exponential families. We

offered a procedure of inference and its implementation and also an asymptotic theory

based on information consistency. MCGPNGR assumes that the response variable follows

a distribution from the exponential family. Therefore, it is easy to apply them to other

distributions, although the examples reported only include binomial data, ordinal data

and Poisson data.

One of the important features of the CGP method is that it can deal with multidimen-

sional covariates with a known covariance kernel. A promising result has been provided

and the results are consistently better than CD method.
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Conclusion and Future Work

In this thesis, we started the investigation with a univariate model for count data using

a GPR since this method is more flexible in modelling the correlated structure than the

existing ICAR model. However, if the data set is dependent, such as in the cases of dengue

fever and malaria, it might be better if we use multivariate analysis. Constructing the

cross-correlation structure is one of the biggest issues in dependent data analysis since we

need to ensure that the correlation matrix is positive definite. Therefore, we proposed

using convolved Gaussian process (CGP) priors and implemented this method to analysis

multivariate non-Gaussian data. This is the main purpose of this thesis.

An existing method has been developed by Crainiceanu et al. (2012). This method

provided a natural framework to smooth dependent binomial data using a stationary Gaus-

sian process. Unfortunately, this approach has failed to cover individual characteristics of

each response because the conditional dependent structure is not allowed to capture the

features. A convolution method is an alternative way to address this issue since it provides

huge flexibility and robustness. Andriluka et al. (2006) have also investigated a framework

of constructing general convolved Gaussian processes for a stationary Gaussian process.

We extended the idea with mixed covariance functions to build the cross-correlation be-

tween two variable responses.

We began the discussion with a multivariate nonlinear model using CGP priors. We

used mixture covariance functions to solve a complex problem. We have also deter-

mined that the proposed model is very robust since good performance is consistent even

when there is a misspecification of the covariance structure. Meanwhile the comparison

model, i.e. conditionally dependent approach in Crainiceanu et al. (2012), can not beat

the achievement of the proposed model.

In this thesis, we extended the idea to multivariate non-Gaussian data, which are

provided in Chapter 5 focusing on mutivariate Poisson data. Similar to the Gaussian

data, the performance of the proposed (MCGPPR) model offered a robust model as we
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also expected. It means that the proposed model provides good result consistently even

though we set a misspecification of the covariance structure. Another advantage is that

using the specified covariance functions as priors also enables us to accommodate a large

dimensionality of covariates in the covariance matrix. We further extend the model to

cover the distributions in the exponential family in Chapter 6.

We offered a general framework model to use CGP priors in multivariate semiparam-

eteric regression analysis for response variables from Gaussian and non-Gaussian distri-

butions in the exponential family of distributions. The model, and its implementation,

including the technical details of the inference, are provided. We also reported asymp-

totic theory based on information consistency of the general model for multivariate non-

Gaussian. The natural general extension can be applied for any distribution which assumes

data from the exponential family distribution. Comprehensive simulation studies and ap-

plications with real data are also explored. The performance of the proposed models are

usually better than other methods and show good flexibility and robustness.

Related to the topics discussed in this thesis, some interesting problems are worth

further attention. For example, large dimensional integration. We used Laplace approx-

imation. It provides reasonably good results. However, the approximation error will

increase when the dimension increases (bear in mind that the dimension of the integration

is equal to the sample size). We need to develop more efficient algorithms; see e.g Wang

& Shi (2014).

We also encounter restriction in terms of building mixture covariance functions. It

seems that not every covariance function is integrable; thus, here we just focused on some

stationary covariance functions, such as exponential squared, rational quadratic, Matern

and Gamma exponential covariance functions. Further investigation is needed to provide

a very flexible model although the proposed models have offered a good performance.

We focused on bivariate response variables in the thesis. Although there is no difficulty

in extending the method to the multivariate case in theory, the implementation may be

challenging. More research in this area is essential.
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Appendix A

A solution of the symmetry

problem in the covariance matrix

of the CAR model

We can rely on Brook’s Lemma to derive a unique joint distribution from the full con-

ditionals. For y0 = (y10, ..., yn0)′ any fixed point in the support of p, Brook’s Lemma

informs us :

p(y1, ..., yn) =
P (y1|y2, ..., yn)

P (y10|y2, ..., yn)

P (y2|y10, y3, ..., yn)

P (y20|y10, y3, ..., yn)
...
P (yn|y10, ..., yn−1, 0)

P (yn0|y10, ..., yn−1, 0)
P (y10, ..., yn0).

To show the implementation of Brook’s Lemma in CAR model, first, notice that the

product or difference of two gaussian density function can be easily derived :

1√
2πσ

exp

{
−1

2σ2
(x− µ)2

}
× 1√

2πτ
exp

{
−1

2τ2
(y − ν)2

}

=
1

2πστ
exp

{
−1

2σ2
(x− µ)2 − 1

2τ2
(y − ν)2

}
and we can easily find :

1√
2πσ

exp

{
−1

2σ2
(y − µ)2

}
÷ −1√

2πτ
exp

{
−1

2τ2
(y − ν)2

}

=
1

2πστ
exp

{
−1

2σ2
(y − µ)2 +

1

2τ2
(x− ν)2

}
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Appendix A. A solution of the symmetry problem in the covariance matrix of the CAR
model

Since we are going to take τ and σ to be known, the determination of the product comes

down to working with the terms in the exponential, which are of the form :

−1

2

{
(x− µ)2

σ2
± (y − ν)2

τ2

}
.

We now apply Brook’s Lemma. Let’s work with case where we have n = 3 for con-

vinience. Also, for convenience, let us choose yi,0 = 0 for i = 1, 2, 3. Using what we

know about Gaussian densities, we know it is good enough to determine the term in the

exponential if all of the parameters are known. Therefore, to determine

P (y1, y2, y3)

P (y1 = 0, y2 = 0, y3 = 0)

all we have to do is determine what term are in the exponential and what signs they have.

The term in the exponential is :

−1

2

{
(y1 − b12y2 − b13y3)2

τ2
1

− (b12y2 + b13y3)2

τ2
1

+
(y2 − b23y3)2

τ2
2

− (b23y3)2

τ2
2

+
(y3)2

τ2
3

}

=
−1

2

(
y2

1

τ2
1

− 2y1(b12y2 + b12y3)

τ2
1

+
y2

2

τ2
2

− 2y2(b23y3)

τ2
2

+
y2

3

τ32

)
.

This suggest that we can rewrite this a quadratic form :

=
−1

2

[
y1 y2 y3

]τ
−2
1 c12 c13

c12 τ−2
2 c23

c13 c23 τ−2
3


y1

y2

y3

 .
We get :

c12 =
b12

τ2
1

; c13 =
b13

τ2
1

; c23 =
b23

τ2
2

.

Since we could have performed Brooks Lemma in any order, we necessarily get that :
bij
τ2i

=
bji
τ2j

if we are indeed to get a compatible joint distribution.
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Proof of Proposition 4.3.1

The proof is a application from Schoenberg’s theorem which states on Hilbert space, there

is positive definite function, such as

S(m) =

∫ ∞
0

exp(−m2s)dH(s)

where H(·) is non-decreasing, bounded and s ≥ 0. We can express S(
√
Qa(d)) as

S(
√
Qab(d)) =

∫ ∞
0

exp(−Qab(d)s)dH(s). (B.1)

Meanwhile, we have a convolved Gaussian process with covariance function kab(xi,xj)

which can be constructed by convolving gaussian white noise and a smoothing kernel as

follows

kab(xi,xj) =

∫
kaxi(α)kbxj(α)dα (B.2)

where kx is a kernel function centered at x and xi,xj and α are location in R2. Now,

let us assume a set of data D = ((f1i,x1i), i = 1, ..., N ; (f2i,x2i), i = 1, ..., N) where

(x1i,x2i) ∈ T ⊂ RP or we can also consider D = (fa,xa). We write ta and xa for the task

and the input of fa. Therefore, we need to show that the covariance function is positive
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definite in every Euclidean space, Rp, p = 1, 2, ... as follows

N∑
i=1

N∑
j=1

aiajk(xi,xj) =

N∑
i=1

N∑
j=1

aiaj

∫
ktaxi(α)ktaxj (α)dα

=

∫ N∑
i=1

N∑
j=1

aiajktaxi(α)ktaxj (α)dα

=

∫ N∑
i=1

aiktaxi(α)
N∑
j=1

ajktaxj (α)dα

=

∫ ( N∑
i=1

aiktaxi(α)dα

)2

≥ 0.

Hence, it is clear that covariance function is positive definite because the value of integral

is non negative. In term of the definition of convolution, Boyle (2005) and Shi & Choi

(2011) have provided great details and proofs. First, let us consider ka(x) = v exp(−1
2(x−

µ)TAa(x− µ)) and kab(xi,xj) can be defined as

kab(xi,xj) = π
P
2 vavb|Aa + Ab|−

1
2 exp

{
−1

2
(xi − xj)

TΣ(xi − xj)

}
, (B.3)

where Σ = Aa(Aa + Ab)
−1Ab. Therefore, we can say that equation (B.1) can be defined

based on (B.3) and (B.2) as

S(
√
Qab(d)) =

∫ ∞
0

exp

{
−1

2
(xi − xj)

TΣ(xi − xj)s

}
dH(s)

=

∫ ∞
0

∫
ksaxi(α)ksbxj(α)dαdH(s). (B.4)

It has been shown that the value of integral is non negative value since s ≤ 0. Hence, the

covariance function of kab(d) is positive definite. As a result, covariance function K based

on equation (4.8) is also positive definite.
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Appendix C

Convolved Covariance Functions

C.1 Gamma Exponential Covariance Function

Figure C.1: Multiple dependent output process samples generated from a Gamma exponential
covariance function (γ = 1) as convolved kernels. Red curves are defined as f1 and blue curves are
f2.
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Appendix C. Convolved Covariance Functions

Figure C.2: Correlation map of multiple dependent Gaussian processes using a Gamma exponential
as convolved kernels between f1 and f2; top left: correlation map of f1 at 30 equally spaced points;
top right: correlation map between f1 and f2; and bottom right: correlation map of f2

Parameters True value Average Mean Average RMSE

v1 0.04 -0.000015 0.04000
v2 0.04 -0.000015 0.04000
A1 1 1.000257 0.00025
A2 1 1.000257 0.00025
w1 0.04 0.000099 0.03999
w2 0.04 0.000099 0.03999
B1 1 1.000427 0.00042
B2 1 1.000427 0.00042

Table C.1: Average RMSE of the estimated parameters from multiple Gaussian process with
Gamma exponential covariance function with γ = 1 based on 100 replications.
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Figure C.3: Multiple dependent output process samples generated from rational quadratic covari-
ance function with α = 0.5 as convolved kernels . Red curves are defined as f1 and blue curves are
f2.

C.2 Rational Quadratic Covariance Function

The closed forms of kernel functions from equation (4.10) can be defined as

kξaaa(d) =
va(π)P/2

|Aa|
1
2

(
1

1 + 1
2αQaa(d)

)ν

kξabab (d) =
vavb(2π)P/2

|Aa +Ab|
1
2

(
1

1 + 1
2αQab(d)

)ν

kηaaa(x) =
wa(π)P/2

|Ba|
1
2

(
1

1 + 1
2αQaa(d)

)ν
, ν > 0 (C.1)

where a, b = 1, 2 and Qab(d) = (d)TAa(Aa +Aj)
−1Ab(d).
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Appendix C. Convolved Covariance Functions

Figure C.4: Correlation map of multiple dependent Gaussian processes using a rational quadratic
as convolved kernels between f1 and f2; top left: correlation map of f1 at 30 equally spaced points;
top right: correlation map between f1 and f2; and bottom right: correlation map of f2

Parameters True value Average Mean Average RMSE

v1 0.04 0.000017 0.03999
v2 0.04 0.000027 0.03999
A1 1 1.000089 0.00008
A2 1 1.000089 0.00008
w1 0.04 0.000027 0.03747
w2 0.04 0.000025 0.03999
B1 1 1.00034 7 0.00034
B2 1 1.000342 0.00034

Table C.2: Average RMSE of the estimated parameters from multiple Gaussian process with
rational quadratic covariance function with α = 0.5 based on 100 replications.

C.3 Matern Covariance Function

The closed forms of kernel functions from equation (4.10) can be defined as

kξaaa(d) =
va(π)P/2

|Aa|
1
2

1

Γ (ν)2ν−1

(√
2νQaa(d)

)ν
Kν

(√
2νQaa(d)

)
, ν > 0,
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Appendix C. Convolved Covariance Functions

Figure C.5: Multiple dependent output process samples generated from Matern covariance function
as convolved kernels. Red curves are defined as f1 and blue curves are f2.

kξabab (d) =
vavb(2π)P/2

|Aa +Ab|
1
2

1

Γ (ν)2ν−1

(√
2νQab(d)

)ν
Kν

(√
2νQab(d)

)
, ν > 0,

kηaaa(d) =
wa(π)P/2

|Ba|
1
2

1

Γ (ν)2ν−1

(√
2νQaa(d)

)ν
Kν

(√
2νQaa(d)

)
, ν > 0, (C.2)

where a, b = 1, 2 and Qab(d) = (d)TAa(Aa +Aj)
−1Ab(d). If ν = 3

2 , so the closed forms of
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Appendix C. Convolved Covariance Functions

Figure C.6: Correlation map of multiple dependent Gaussian processes using a Matern as convolved
kernels between f1 and f2; top left: correlation map of f1 at 30 equally spaced points; top right:
correlation map between f1 and f2; and bottom right: correlation map of f2

Parameters True value Average Mean Average RMSE

v1 0.04 0.000015 0.03999
v2 0.04 0.000015 0.03999
A1 1 1.000122 0.00012
A2 1 1.0000122 0.00012
w1 0.04 -0.000004 0.04000
w2 0.04 -0.000004 0.04000
B1 1 1.000384 0.00038
B2 1 1.000384 0.00038

Table C.3: Average RMSE of the estimated parameters from multiple Gaussian process with
Matern covariance function with ν = 3

2 based on 100 replications.

kernel functions from equation (4.10) can be defined as

kξaaa(d) =
va(π)P/2

|Aa|
1
2

(
1 +

√
3Qaa(d)

)
exp

(√
−3Qaa(d)

)
kξabab (d) =

vavb(2π)P/2

|Aa +Ab|
1
2

(
1 +

√
3Qab(d)

)
exp

(√
−3Qab(d)

)
kηaaa(d) =

wa(π)P/2

|Ba|
1
2

(
1 +

√
3Qaa(d)

)
exp

(√
−3Qaa(d)

)
(C.3)

103



Appendix C. Convolved Covariance Functions

where a, b = 1, 2 and Qab(d) = (d)TAa(Aa +Aj)
−1Ab(d).

The maximum likelihood estimates seem acceptable when compared to the true values.

Also, it can be seen that the values of root mean square (RMSE) between the estimated

parameters (A1, A2, B1, B2) and true values close to zero. It means that the differences

between estimated parameters (A1, A2, B1, B2) and true values are small. Meanwhile,

for estimated parameters v1, v2, w1 and w2 are quite far from the true values. It might

because we do not add any noise variable in this modelling. In conclusion, this issue needs

to investigate more.
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Appendix D

Some Technical Details for

Consistency

This technical details is extension from consistency theorem in (Wang & Shi, 2014).

Lemma D.1. Suppose z1i and z2i are conditional independent samples from a bivariate

Poisson distribution given (5.1) and τ0 ∈ F has a multivariate convolved Gaussian prior

with zero mean and bounded covariance function K(·, ·) for any covariate values in X .

Suppose that K(·, ·) is continuous in θ and the estimator θ̂ → θ almost surely as N1 →∞
and N2 →∞. If there exists a positive number κ such that |b”(α)| 6 eκα, then

− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

6
1

2
‖τ0‖2KN1N2

+
1

2
log |I + δKN1N2 |+ C (D.1)

where ‖τ0‖2KN1N2
is the reproducing kernel Hilbert space (RKHS) norm of τ0 associated

with K(·, ·), KN1N2 is the covariance matrix of τ0 over the covariance XN1N2, I is the

(N1 +N2)× (N1 +N2) identity matrix, δ and C are some positive constants.

Proof. In this proof, we use these covariance functions to define functions on X . The space

of such functions is known as a reproducing kernel Hilbert space (RKHS) . Let H be RKHS

associated with covariance function K(·, ·) defined as the previous section. Consider the

linear space of all finite kernel expansions and HN1+N2 the span of {K(·, ·)} i.e.

HN1+N2 =

{
f(·) : f(x) =

N1+N2∑
i=1

αiK(x,xi), αi ∈ R

}
.
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We first assume the true underlying function τ0 ∈ HN1+N2 then τ0(·) can be expressed as

τ0(.) =

N1+N2∑
i=1

αiK(·,xi) , KN1N2(.)α.

where KN1N2 = (K(·,xi), ...,K(·,xN1+N2)) and α = (α1, ..., αN1+N2). By the properties of

RKHS, ‖τ0‖2KN1N2
= αTKN1N2α, and (τ(x1), ..., τ(xN1+N2))T = KN1N2α where KN1N2 =

(K(xi,xj)) is the covariance matrix over xi, i = 1, ..., (N1 +N2).

Let P and P̂ be any two measures on F , then it yields by the Fenchel-Legendre duality

relationship that, for any functional g(.) on F ,

Ep̂[g(τ)] 6 logEp[e
g(τ)] +D[P̄ , P ] (D.2)

Now in the above inequality let

1. g(τ) be log p(z1, ..., zN1 , zN1+1, ..., zN1+N2) for any z1, ..., zN1+N2 in Z and τ ∈ F

2. P be the measure induced byMGP(0,K(·, ·)), hence p̃(z1, ..., zN1 , zN1+1, ..., zN1+N2) =

N (0, ˆKN1N2) and

Ep[e
g(τ)] = Ep[p(z1, ..., zN1 , zN1+1, ..., zN1+N2)]

=

∫
p(z1, ..., zN1 , zN1+1, ..., zN1+N2 | τ)dpN1+N2

= pmgp(z)

where K̂N1N2 is defined in the same way as KN1N2 but the θ being replaced by its

estimator θ̂.

3. P̄ be the posterior distribution of τ(·) on F which has a prior distributionMGP(0,K(·, ·))
and normal likelihood

∏N1+N2
i=1 N(ẑ(i); τ(xi), σ

2), where

ẑ ,


ẑ1

...

ẑN1+N2

 = (KN1N2 + σ2I)α (D.3)

and σ2 is a constant to be specified. In other words, we assume a model z = τ(x)+ ε

with ε ∼ N(0, σ2) and τ(·) ∼MGP(0,K(·, ·)), and ẑ defined by equation (D.3) is a

set of observations at x1, ...,xN1+N2 . Thus, P̄ (τ) = p(τ | ẑ,XN1N2) is a probability

measure on F . Therefore, by bivariate convolved Gaussian process regression, the
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posterior of (τ1, ..., τN1+N2) , (τ(x1, ..., τ(xN1+N2))) is

p̄(τ1, ..., τN1+N2) , p(τ1, ..., τN1+N2 | ẑ,XN1N2)

= N(KN1N2(KN1N2 + σ2I)−1ẑ,KN1N2(KN1N2 + σ2I)−1σ2)

= N(KN1N2α,KN1N2(KN1N2 + σ2I)−1σ2))

= N(KN1N2α,KN1N2B
−1) (D.4)

where B = (I + σ−2KN1N2)

It follows that

D[P̄ , P ] =

∫
F

log
dP̄

dP
dP̄

=

∫
RN1+N2

p̄(τ1, ..., τN1+N2) log
p̄(τ1, ..., τN1+N2)

p̃(τ1, ..., τN1+N2)

=
1

2
[log |K̂N1N2 | − log |KN1+N2 |+ log |B|+ tr(K−1

N1+N2
KN1N2B

−1) + (KN1N2α)T

K̂−1
N1N2

(KN1N2α)− n]

=
1

2
[− log |K̂−1

N1N2
KN1+N2 |+ log |B|+ tr(K−1

N1+N2
KN1N2B

−1) + ‖τ0‖2KN1N2

αTKN1N2(K̂−1
N1N2

KN1N2 − I)α− n]

On the other hand,

Ep̄[g(τ)] = Ep̂[log p(τ1, ..., τN1+N2)|τ ] =

N1+N2∑
i=1

Ep̄[log p(zi)|τ(xi)].

By Taylor’s expansion, expanding log p(zi|τ(xi)) to the second order τ0(xi) yields

log p(zi|τ(xi)) = log p(zi|τ0(xi)) +
d[log p(zi|τ(xi))]

dτ(ti)

∣∣∣
τ(xi)=τ0(xi)

(τ(xi)− τ0(xi))

+
1

2

d2[log p(zi|τ(xi))]

[dτ(xi)]2

∣∣∣
τ(xi)=τ̃(xi)

(τ(xi)− τ0(xi))
2

where τ̃(xi) = τ0(xi) + λ(τ(xi)− τ0(xi)) for some 0 6 α 6 1.

The canonical link function with Convolved GPR , we have

p(zi|τ(xi)) = exp

{
ziτ(x)− b(τ(x))

c(φi)
+ d(zi, φi)

}
, (D.5)

thus
d2[log p(zi|τ(xi))]

[dτ(xi)]2

∣∣∣
τ(xi)=τ̃(xi)

(τ(xi)− τ0(xi))
2 = −b

′′τ̃(xi)

c(φi)
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It follows that

Ep̄[log p(zi|τ(xi))] = log p(zi|τ0(xi)) +
d[log p(zi|τ(xi))]

dτ(xi)

∣∣∣
τ(xi)=τ0(xi)

(τ(xi)− τ0(xi))

+
1

2c(φi)
Ep̄[b

′′τ̃(xi)(τ(xi)− τ0(xi)
2].

Since ¯P (.) is the posterior of τ(.) which has prior MGP(0,K(·, ·)) and normal likelihood∏N1+N2
i=1 N(zi; τ(xi), σ

2), where τ(xi) is normally distibuted under P̄ and it follows from

(D.4) that

τ(xi) ∼ N (K(i)
N1N2

, (KN1N2B−1)ii)

= N (τ0(xi), (KN1N2B
−1)ii)) , N (τ0i,Kii)

where K(i)
N1N2

denotes the ith the row of KN1N2 and (KN1N2B
−1)ii is the ith diagonal

element of (KN1N2B)−1. Therefore, Ep̄[τ(xi)− τ0(xi)] = 0 and

Ep̄[b
′′τ̃(xi)(τ(xi)− τ0(xi))

2] 6 Ep̄[e
κτ̃(xi)(τ(xi)− τ0(xi))

2]

=

∫ +∞

−∞
(τi − τ0i)

2eκτ0i+κλ(τi−τ0i)N(τ0i,Kii)dτi

= eκτ0i+
1
2
κ2λ2Kii(κ2λ2Kii + 1)Kii 6 δ̃Kii

since the covariance function is bounded. Here δ̃ is a generic positive constant. Thus, we

have

−EP̄ [log p(zi|τ(xi))] 6 − log p(zi|τ0(xi)) +
δ̃

2
tr(KN1N2B

−1)ii.

and

−
N1+N2∑
i=1

EP̄ [log p(zi|τ(xi))] 6 −
N1+N2∑
i=1

log p(yi|τ0(xi)) +
δ̃

2
tr(KN1N2B

−1).

i.e.

log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2) 6 Ep̄[g(τ)] +
δ̃

2
tr(KN1N2B

−1)

Combining the bounds give

− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

6 logEp[e
g(τ)] + Ep̄[g(τ)] +

δ̃

2
tr(KN1N2B

−1)

6 D[P̄ , P ] +
δ̃

2
tr(KN1N2B

−1)

=
1

2
[− log |K̂−1

N1N2
KN1+N2 |+ log |B|+ tr(K−1

N1+N2
KN1N2B

−1 + δ̃KN1N2B
−1) + ‖τ0‖2KN1N2

αTKN1N2(K̂−1
N1N2

KN1N2 − I)α− n] (D.6)
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Since the covariance function is continuous in θ and θ̂N1+N2 → θ and we have

ˆKN1N2KN1N2 − I → 0 as N1 → ∞ and N2 → ∞, hence N1 + N2 → ∞. Therefore

there exist some positive constants C and ε such that

− log |K̂−1
N1N2

KN1+N2 | < C, αTKN1N2(K̂−1
N1N2

KN1N2 − I)α < C,

tr(K−1
N1+N2

KN1N2B
−1 < tr((I + εKN1N2)B−1),

since the covariance function is bounded.

Thus RHS of (D.6)

<
1

2
‖τ0‖2KN1N2

+
1

2
[2C + log |B|+ tr((I + (ε+ δ̃)KN1N2)B−1)− n]

Note that thee above inequality holds for all σ2 > 0, thus letting σ2 = (ε + δ̃)−1 and

δ = ε+ δ̃ yields that the RHS of (D.6) becomes

1

2
‖τ0‖2KN1N2

+
1

2
log(I + δKN1N2) + C

Thus we have

− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) 6 − log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2) +
1

2
‖τ0‖2KN1N2

+

1

2
log(I + δKN1N2) + C (D.7)

for any τ0(·) ∈ HN1+N2 .

Taking infimum on RHS of (D.7) over τ0 and applying Representer Theorem (see

Lemma 2 in Seeger et al. (2008)), we obtain

log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

6
1

2
‖τ0‖2KN1N2

+
1

2
log(I + δKN1N2) + C

for all τ0(·) ∈ HN1+N2 . The proof is complete

Proof of Theorem 5.1. It follows from the definition of information consistency that

D[p0(z), pmgp(z)] =

∫
p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2)

=

∫
p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

[− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)]

d(z1, ..., zN1 , zN1+1, ..., zN1+N2).
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Applying Lemma D.1 we obtain that

1

N1 +N2
EXN1N2

(D[p0(z), pmgp(z)]) 6
1

2(N1 +N2)
‖τ0‖2KN1N2

+

1

2(N1 +N2)
EXN1N2

log(I + δKN1N2) +
C

N1 +N2

(D.8)

where δ and C are some positive constants. Theorem 1 follows from (D.8).

Remark. Lemma D.1 requires that the estimator of the coefficients (β) and hyper-

parameters (θ) are consistent. Yi et al. (2011), provided that the empirical Bayesian

estimator of hyper-parameters θ as N → ∞ under certain regularity. The estimator β

and θ for bivariate Poisson regression with convolved Gaussian process priors are consis-

tent under certain regularity, if N = N1 +N2, where N1 →∞ and N2 →∞.

Remark. Some specific results of the regret term R = EXN1N1
(log |I+δKN1N2 |) as follows

:

i. if K(xi,xj) = xTi xj , i.e. a linear covariance kernel, and the covariate distribution u(x)

has bounded support, then

EXN1N1
(log |I + δKN1N2 |) = O(log(N1 +N2));

ii. if u(x) is normal and the covariance functions are the squared exponential

EXN1N1
(log |I + δKN1N2 |) = O((log(N1 +N2))P+1);

iii. if u(x) is bounded support and the covariance functions are Matern, then

EXN1N1
(log |I + δKN1N2 |) = O((N1 +N2)P/(2v+P )(log(N1 +N2)2v/(2v+P )));

iv. if covariance functions are mixed between squared exponential and Matern, then

EXN1N1
(log |I + δKN1N2 |) = O((N1 +N2)P/(2v+P )(log(N1 +N2)2v/(2v+P )));

It is obvious that for all of the above cases the information consistency in the proposed

model is achieved.

Remark. The consistency considered in Theorem 1 assumes the mean function is known.

If the mean function is unknown and is estimated from the observations, its uncertainty
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needs to be taken into account. We denote by ˆµ(t) the estimator of the mean function

µ(t) and let

p̂gp(y) =

∫
F
p̂(z1, ..., zN1 , zN1+1, ..., zN1+N2 |τ(XN1N2))dpN1+N2

where p̂(z1, ..., zN1 , zN1+1, ..., zN1+N2 |XN1N2)) is the conditional distribution of

(z1, ..., zN1 , zN1+1, ..., zN1+N2)

with the estimated mean function ˆµ(t). It follow from Lemma D.1 that

− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

= log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2)− log p̂(z1, ..., zN1 , zN1+1, ..., zN1+N2)

− log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2)

6 − log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) + log p0(z1, ..., zN1 , zN1+1, ..., zN1+N2) +

‖τ0‖2KN1N2
+ log(I + δKN1N2) + C.

For the canonical link function,we have

p̂(z1, ..., zN1 , zN1+1, ..., zN1+N2 |τ(XN1N2))

= exp

{
N1+N2∑
i=1

zi(µ̂+ τ(x))− b(µ̂+ τ(x))

c(φi)
+

N1+N2∑
i=1

d(zi, φi)

}
, eg(µ̂+τ)

and

p(z1, ..., zN1 , zN1+1, ..., zN1+N2 |τ(XN1N2))

= exp

{
N1+N2∑
i=1

zi(µ+ τ(x))− b(µ+ τ(x))

c(φi)
+

N1+N2∑
i=1

d(zi, φi)

}
, eg(µ+τ)

If zi has finite two moments and its variance is bounded away from zero, there exist

positive constants C1, C2 and C3 such that |b′(·)| < C1 and C2 < c(·) < C3. For a bivariate

Poisson distribution the dispersion value c(·) in canonical link function is one. It follows

that

b(µ̂+ τ)− b(µ+ τ) 6 C1 ‖µ̂− µ‖ , or, −b(µ+ τ) 6 C1 ‖µ̂− µ‖ − b(µ̂+ τ).
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Hence,

g(µ+ τ) 6
N1+N2∑
i=1

(|zi|+ C1) ‖µ̂− µ‖
c(φi)

+ g(µ̂− τ)

=

N1+N2∑
i=1

zi(µ− µ̂) + C1 ‖µ̂− µ‖+ g(µ̂+ τ).

It yields that

log pmgp(z1, ..., zN1 , zN1+1, ..., zN1+N2) − log p̂mgp(z1, ..., zN1 , zN1+1, ..., zN1+N2)

= log

∫
F e

g(µ+τ)dpN1+N2∫
F e

g(µ̂+τ)dpN1+N2

6
N1+N2∑
i=1

(|zi|+ C1) ‖µ̂− µ‖ .

Therefore, following the same argument as in (D.8) we obtain

1

N1 +N2
EXN1N2

(D[p0(z), pmgp(y)]) 6 C̃ ‖µ̂− µ‖ 1

2(N1 +N2)
‖τ0‖2KN1N2

+

1

2(N1 +N2)
log(I + δKN1N2) +

C

N1 +N2
,

where C̃, δ and C are some positive constants.
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