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“The most astounding fact is the knowledge that the atoms that comprise life on Earth,

the atoms that make up the human body, are traceable to the crucibles that cooked light

elements into heavy elements in their core under extreme temperatures and pressures.

These stars - the high mass ones among them - went unstable in their later years.

They collapsed and then exploded scattering their enriched guts across the galaxy; guts

made of carbon, nitrogen, oxygen and all the fundamental ingredients of life itself.

These ingredients become part of gas clouds that condense, collapse, form the next

generation of solar systems - stars with orbiting planets, and those planets now have

the ingredients for life itself.

So that when I look up at the night sky and I know that yes, we are part of this

universe, we are in this universe, but perhaps more important than both of those facts

is that the Universe is in us. When I reflect on that fact, I look up - many people feel

small because they’re small and the Universe is big - but I feel big because my atoms

came from those stars. There’s a level of connectivity. That’s really what you want in

life, you want to feel connected, you want to feel relevant, you want to feel like you’re

a participant in the goings on of activities and events around you. That’s precisely

what we are, just by being alive...”

Neil deGrasse Tyson



Abstract

The manipulation of physical reality on the molecular level and construction of devices

operating on the nanoscale has been the focal point of nanotechnology. In particular,

nanotechnology based on DNA and RNA has a potential to find applications in the

field of Synthetic Biology thanks to the inherent compatibility of nucleic acids with

biological systems. Scaffolded DNA origami, proposed by P. Rothemund, is one of

the leading and most successful methods in which nanostructures are realised through

rational programming of short ’staple’ oligomers which fold a long single-stranded

DNA called the ’scaffold’ strand into a variety of desired shapes. DNA origami already

has many applications; including intelligent drug delivery, miniaturisation of logic

circuits and computation in vivo. However, one of the factors that are limiting the

complexity, applicability and scalability of this approach is the source of the scaffold

which commonly originates from viruses or phages. Furthermore, developing a robust

and orthogonal interface between DNA nanotechnology and biological parts remains

a significant challenge.

The first part of this thesis tackles these issues by challenging the fundamental as-

sumption in the field, namely that a viral sequence is to be used as the DNA origami

scaffold. A method is introduced for de novo generation of long synthetic sequences

based on De Bruijn sequence, which has been previously proposed in combinatorics.

The thesis presents a collection of algorithms which allow the construction of custom-

made sequences that are uniquely addressable and biologically orthogonal (i.e. they

do not code for any known biological function). Synthetic scaffolds generated by these

algorithms are computationally analysed and compared with their natural counter-

parts with respect to: repetition in sequence, secondary structure and thermodynamic

addressability. This also aids the design of wet lab experiments pursuing justification

and verification of this novel approach by empirical evidence.

The second part of this thesis discusses the possibility of applying evolutionary op-

timisation to synthetic DNA sequences under constraints dictated by the biological

interface. A multi-strand system is introduced based on an alternative approach to



DNA self-assembly, which relies on strand-displacement cascades, for molecular data

storage. The thesis demonstrates how a genetic algorithm can be used to generate

viable solutions to this sequence optimisation problem which favours the target self-

assembly configuration. Additionally, the kinetics of strand-displacement reactions

are analysed with existing coarse-grained DNA models (oxDNA).

This thesis is motivated by the application of scientific computing to problems which

lie on the boundary of Computer Science and the fields of DNA Nanotechnology, DNA

Computing and Synthetic Biology, and thus I endeavour to the best of my ability to

establish this work within the context of these disciplines.
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Chapter 1

Introduction

1.1 Background and Motivation

Every cell of every living organism on Earth contains a full set of instructions needed to

create, duplicate and make variations of itself. These instructions are stored in chains

of polymeric molecules: deoxyribonucleic and ribonucleic acids (commonly known

as DNA and RNA). There are many parallels one can draw between nucleic acids

and computer programs. Both are a collection of instructions but are executed on

different hardware. Computer programs run on electronic machines, while the genetic

code is executed on a biochemical hardware of cellular and molecular machinery. In

this mechanistic view [1] cells are microscopic processing devices (built from a mere

handful of extremely versatile building blocks) each of which is seemingly programmed

to express a specific, surviving phenotype. The consequence of this view was a natural

desire to effect change in biological systems. It gave rise to the synthetic biology –

an entirely new field of science focused on a design of artificial organisms [2, 3].

Synthetic biology views the genetic code as a collection of abstracted units or parts.

These parts can be combined together into novel genetic circuits to create new devices

with a predictable and controllable behaviour. These devices are able to build new

systems of interactions which are very different from those occurring in nature, and

potentially allowing expression of much more sophisticated phenomena than what is

1
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possible naturally. Thus, the promise of the synthetic biology is to program life that

would have never be created by means of natural selection.

Programming DNA sequences allows us to regulate and express genetic information.

However, many of the properties which make it so useful as an information storage

molecule in nature also let us build nanoscale structures or assemble chemical systems.

The growing area of DNA nanotechnology regards DNA as a building material used

for arranging and controlling matter on the nanoscale – which can be programmed to

self-assemble into stable structures. DNA nanotechnology is now a well-established

field with DNA origami being one of the most prominent methods [4]. In DNA

origami, a long single-stranded ’scaffold’ DNA molecule is folded using multiple short

oligonucleotides called ’staples’, which bind the scaffold and hold it in place. This

simple one-pot technique enables construction of versatile, custom-shaped objects;

for instance, DNA nanorobot for intelligent drug delivery [5]. Another fascinating

area of research is DNA computing in which DNA is used as a medium for data

processing.Because of the relative ease with which molecular interactions can be de-

signed by choosing appropriate nucleic acid sequences, DNA is a prominent substrate

for designing artificial reaction networks with designed functionality. In particular,

it has been shown that arbitrary chemical reaction networks can be translated into

equivalent toehold mediated DNA strand displacement systems [6]. DNA nanotech-

nology and molecular computing solutions can be readily synthesised and tested in

vitro. Also, both DNA origami and DNA computing methods were shown to work

well in an array of biotic environments, such as insects [7], mammalian cells [8] as well

as lysed human cells [9].

The effort of the scientific community is focused on developing essential tools allowing

programming cells like robots – to carry out complex and coordinated tasks. The hope

is that a new platform may be developed, suitable for the next generation of biological

systems; systems including man-made nanodevices operating in the regime of nucleic

acids [10, 11]. The ultimate goal is for these devices to be used as nanocomputers of

a new kind: performing a new type of computation and information processing [12].

The premise is that a right combination of synthetic biology and DNA nanotechnology
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could help us achieve this novel kind of computing. Both fields are clearly in an

emerging state, but their potential is evident – they hold the promise to advance not

only basic science but also medicine, manufacturing and electronics [13, 14]. Major

problems facing society might also be addressed via the use of these technologies in

a sustainable way – problems in health, energy and environment to name a few. It is

imperative that, so as to make rapid advances in those areas, we will need a mastery

of both theory and experimentation.

1.2 Problem Statement

To make possible the creation of DNA-based nanocomputers operating in vivo, a series

of challenging problems has to be tackled first. These problems lie at the intersection

of three disciplines: DNA nanotechnology, DNA computing and synthetic biology

(Figure 1.1).

Figure 1.1: Two research hypotheses in a broader context. The intersection of all
three fields represents the emerging field of nanobiotechnology (grey area).

The key limiting factor in synthetic biology is the gap between our ability to synthesise

DNA and to design biological systems that work well. The problem is partially caused
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by genetic elements which are often incompatible with biological chassis [15]. On top

of that, prior verification of synthetic devices in vivo is frequently intractable or simply

unavailable [16].

The downside of DNA origami is the cost of synthetic DNA for in vitro experiments,

which is still too high for viable industrial-scale applications [17]. A potential route to

remove this bottleneck may involve employing bacterial cells as factories to manufac-

ture DNA origami – seemingly similar to how viruses use bacterial cells as factories for

new DNA [18]. Nevertheless, resorting to viruses lacks biological orthogonality, as bac-

teriophages infect bacteria, replicate and cause turbid plaques [19]. Previous attempts

to fold complex structures in vivo may have been hindered by the adoption of viral

genomes as scaffolds, thus severely limiting its future applicability as non-interfering

nanotechnology platform. It seems that part of the problem is caused by the lack of

rules for effective sequence design [20]. The need for a programmable construction

of biologically neutral DNA sequences was emphasised recently [21]. However, the

current computational methodologies are difficult to apply in the context of DNA

origami.

Recent years have seen theoretical designs and molecular implementations of conven-

tional and unconventional circuits in DNA computing. The majority of this work has

been concerned with implementing devices such as Boolean logic gates [22, 23]. This

approach toward molecular computing, which closely imitates electrical engineering,

is somewhat disconnected from algorithmic computer science, where algorithms are

built by composing structures and actions that operate upon them. DNA is an organic

molecule for data storage, yet programmable mechanisms to read and write data in

vivo are currently lacking. Indeed, DNA computing has so far seen few designs for

DNA data structures – with Qian et al.’s theoretical design of a DNA-based stack

machine being one noteworthy exception [24].
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1.3 Aims and Objectives

In essence, this thesis is concerned with the nucleic acid sequence design problem

which is an integral part of research in the area of DNA nanotechnology and DNA

computing. The aim is to establish some of the elementary rules for sequence design in

order to facilitate the incorporation of these artificial nanoscale systems into synthetic

biology. We seek to design and model in silico as well as build and test in vitro two

prototypes: a nanostructure and a nanodevice, both based on synthetic sequences.

In this thesis, we detail the engineering cycle walkthrough by developing computa-

tional tools and laboratory protocols for synthetic DNA nanodevices. We strive to

get to a stage, where these nanodevices could be safely tested in intracellular context.

Ultimately, we endeavour to use this work as a foundation of programmable architec-

tures for next generation of molecular computers and a bridging step between DNA

nanotechnologies and synthetic biology.

In biology, a structure and function, more often than not, are two sides of the same

coin [25]. Here, we ponder upon two alternative hypotheses: one related to the

structure (H1), another related to the function (H2).

The first problem we tackle lies at the intersection of DNA nanotechnology and syn-

thetic biology (Figure 1.1 in green). The main objective is to improve DNA origami

by using a synthetic scaffold. The synthetic sequence should be designed such that

it does not interfere with the bacterial machinery (or interacts minimally) and which

allows assembly of DNA origami structures in the most efficient way. This reasoning

led me to formulate the following hypothesis:

H1 : It is possible to program a synthetic scaffold for DNA origami

which is both bio-orthogonal and uniquely addressable.

To eliminate the ambiguity in scaffold addressability (i.e. where staples bind), and to

ensure the scaffold sequences are biologically neutral (i.e. “bio-orthogonal”) have been
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key objectives behind this research question. The aspects of biological orthogonality

and addressability are covered in detail in Section 2.6.

The second problem lies at the interface of DNA computing and synthetic biology

(Figure 1.1 in red). The main aim is to design a DNA device mimicking what in

computer science is called a data structure. We argue that DNA self-assembly can be

used as a reliable mechanism for storing a collection of elements. Hence, the second

hypothesis is stated as:

H2 : It is possible to program a synthetic DNA structure allowing

recording of data in a controllable and, in principle (albeit not physically),

unlimited manner.

The key objective of the study was to design, optimise and characterise the function

of such a device.

1.4 Structure of the Dissertation

Synthetic biology differs from other biological research areas – the field embraces

approaches normally used in engineering disciplines (see Figure 1.2). The same engi-

neering cycle should also apply to nanotechnology. Here, we seek to establish a similar

cycle to address the two working hypotheses.

This dissertation is organised as follows.

Chapter 2 introduces the disciplines of DNA nanotechnology, DNA computing and

synthetic biology. In particular, two key systems are explained: scaffolded DNA

origami and toehold-mediated strand displacement. The chapter summarises current

research efforts and outlook on the potential future applications. Finally, it concludes

with some of the concepts which are essential to understanding the motivation behind

the thesis as a whole.
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Figure 1.2: The engineering life cycle in synthetic biology.

The core of the thesis is composed of two parts, two chapters each. Those parts

present two alternative approaches to sequence design: the former originates from

combinatorics and graph theory, the latter is based on genetic algorithms. The prop-

erties of the two systems are investigated using an array of computational techniques

and verified experimentally (i.e. design-build-test-learn cycle).

The first part, aiming to address H1, begins with Chapter 3 which provides specifi-

cation and design for the synthetic DNA scaffolds. Chapter 4 evaluates the aspect

of biological orthogonality and measures repetitions in existing scaffolds, which af-

fects the thermodynamic addressability. The chapter concludes with a presentation

of microscopy images (AFM) of folded DNA origami using both viral and synthetic

scaffolds.

The second part investigates a DNA stack machine – the data structure we have chosen

as the demonstration for H2. Chapter 5 covers the key requirements and our proposed

design for this nanodevice. Chapter 6 analyses the DNA stack using secondary struc-

ture prediction (ViennaRNA) and coarse-grained DNA model (oxDNA) simulations;
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finally it contains bioanalyzer spectra as well as microscopy images (TEM) of a DNA

stack construct.

Chapter 7 reviews the validity of the proposed hypotheses, discusses the limitations

and examines the routes for future work.

1.5 Main Contributions

This dissertation addresses the issue of DNA sequence design at the interface between

nano-bio technologies using computing science methods. The proposed solutions can

potentially lower the barrier of entry of these technologies into the field of synthetic

biology.

In this thesis, we present the design of biologically inert (i.e. “bio-orthogonal”) origami

scaffolds. The synthetic scaffolds have the additional advantage of being uniquely

addressable (unlike biologically derived ones) and hence are better optimised for high-

yield folding. We demonstrate the fully synthetic scaffold design with both DNA and

RNA origamis and set up a benchmark protocol to produce them. To the best of my

knowledge, this work is the first to apply successfully an entirely synthetic scaffold in

DNA and RNA origami systems.

Additionally, we present the in vitro implementation and experimental characteriza-

tion of a DNA data structure, namely a stack, where data and operations form the

core of the molecular interaction network. This design shares similarities with the

one presented by Qian et al. [24] but has been optimised for maximal robustness

among all molecular interactions and minimal occurrence of undesirable reactions.

The stack data structure is here employed as a reversible, and potentially unlimited,

data storage, and its recording and readout fidelity is characterised experimentally.

This contribution is a stepping stone toward in vitro implementations of more general

data structures, as well as computationally universal stack machines. We believe that

this work provides the first experimental results on a DNA-based stack in particular,

and DNA-based data structures in general.
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This is a highly interdisciplinary work where I have conducted the computational work

in its entirety. In addition, the specification of the De Bruijn system is my own while

the specification of the stack data structure was done collaboratively with Annunziata

Lopiccolo. The computational analysis is my own work while the laboratory work

was done in collaboration with Alessandro Ceccarelli and Annunziata Lopiccolo, who

performed the experimental verification of my designs.

1.6 Published Work

Journal article

• Jerzy Kozyra, Alessandro Ceccarelli, Annunziata Lopiccolo, Jing-Ying Gu, Harold

Fellermann, Ulrich Stimming, and Natalio Krasnogor. “Designing uniquely ad-

dressable bio-orthogonal synthetic scaffolds for DNA and RNA origami”, ACS

Synthetic Biology (under review)

Conference papers

• Harold Fellermann, Annunziata Lopiccolo, Jerzy Kozyra, and Natalio Krasno-

gor. “In vitro implementation of a stack data structure based on DNA strand

displacement”, Proceedings of Unconventional Computation and Natural Com-

putation, Manchester, UK, 2016 (see Reference [26])

• Jerzy Kozyra, Harold Fellermann, Ben Shirt-Ediss, Annunziata Lopiccolo, and

Natalio Krasnogor. “Optimizing nucleic acid sequences for a molecular data

recorder”, Genetic and Evolutionary Computation Conference (GECCO-2017),

Berlin, Germany, 2017 (under review)
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Others

• Harold Fellermann, Annunziata Lopiccolo, Jerzy Kozyra, Ben Shirt-Ediss, and

Natalio Krasnogor. “A DNA-based signal recorder studied in vitro and simula-

tion”, Abstract for Czech Chemical Society Symposium Series 14, 2016

• Jerzy Kozyra, Chien-Yi Chang, Alessandro Ceccarelli, Harold Fellermann, and

Natalio Krasnogor. “Programming synthetic scaffolds for DNA origami”, Ex-

tended abstract printed for ECAL satellite workshop: Toward Programmable

Biology, pp. 12-13, York, UK, 2015



Chapter 2

Background and Related Work

This brief chapter sets the stage for the results which follow; situating the

two systems investigated in this thesis. We explain the current perspectives

in the literature, the computational and experimental techniques which

may be applied and some of the distinctions we make between the essential

concepts in the fields of nanotechnology and synthetic biology as they relate

to artificial nanodevices and nanocomputers in general.

2.1 Introduction

According to the “RNA world” hypothesis, the first self-replicating RNA has formed

in a primordial soup several billion years ago. It emerged, multiplied and evolved

through a series of coincidences and led to the creation of DNA and proteins [27].

Although the details of this process remain unknown, certainly nucleic acids played a

key role in the emergence of the complex biochemistry which we now recognise as life.

Living systems utilise DNA as a stable, ”high-tech” archive of genetic information

which stores blueprints of the most successful RNA and proteins. The central dogma

of molecular biology describes the transfer of sequence information: DNA to DNA

11
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(through replication), DNA to mRNA (transcription) and mRNA to proteins (trans-

lation). Intrinsic self-organisation of these molecules lies at the core of the complexity

and diversity of life forms on Earth. Living cells evolved to replicate expeditiously

and independently. They can sense and react to external stimuli as well as their in-

ternal state often in a very intricate fashion. Another level of complexity arises in a

multicellular life where specialised cells are elaborately orchestrated, for instance, in

bacterial colonies or mammalian tissues. Peculiarly, what we don’t yet know about

biology vastly outnumbers that what we do know. Indeed, the groundbreaking re-

search on a minimal bacterial genome syn3.0 [28] (i.e. genome containing only the

genes necessary for life) has determined that almost a third of its genes have no known

function; yet they are essential for life [29].

To gain a better insight into how biological entities work, it is reasonable to make tools

that are similar in size. This way it will be easier to take apart these nano-assemblies

and understand how they function (and the reasons why they might break). Likewise,

it might be possible to use these unconventional tools to fix problems and maybe even

make gradual improvements to existing systems.

It is believed that in the near future these tools (or nanodevices) will be performing

variety of vital roles in the human body, including improvement of the respiratory

system (respirocytes), reversing the ageing process, delivering target-specific drugs or

even repairing damaged DNA which encodes our genome (to a greater extent than is

allowed by modern genetic engineering)

The study of deoxyribonucleic acid, or simply DNA, came a long way since the first

major discovery by Watson and Crick about its intrinsic and regular structure of dou-

ble helix [31] (Figure 2.1). Based on the x-ray images provided by Rosalind Franklin

they proposed a model which accurately predicts arrangement of atoms in the most

common B-form of DNA. Hardly anyone could suspect at the time that study of

DNA would evolve so quickly into a broad branch of science on its own and embrace

multidisciplinary approaches to the subject. The same principles and mechanics re-

searchers started to grasp half a century ago, are now used to create nanostructures

and nanodevices which are thousands time smaller than the width of human hair.
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Figure 2.1: Structure of DNA: from left to right: A-, B- and Z-DNA. The most
common structure is B-DNA which is found in cells and other aqueous environments.
Dehydrated samples typically adopt A-DNA form – a similar helical structure occurs
in double-stranded RNA and in DNA-RNA hybrid. The Z-DNA is rare as it occurs

when DNA interacts with certain proteins. (Taken from Reference [30]).

Similarly, it is hard to predict how bionanotechnology is going to look like and what

kind of applications are yet to be seen in the future.

2.2 Molecular Properties of DNA and RNA

Although DNA and RNA both carry genetic information, there are quite a few crucial

differences between them (see Figure 2.2 and Table 2.1). In DNA the sugar backbone

consists of deoxyribose; in RNA the sugar is ribose. The sugar type is partially

responsible for the stability of the nucleic acid molecule. Typically, DNA forms a

double-stranded helix, while RNA is usually single stranded.

DNA is relatively easy to work with: enzymes such us ligase, polymerase and restric-

tion enzymes are used to glue, copy and cut sequences at desired places. Additionally,

rapid and inexpensive access to short fragments of DNA is available thanks to oligonu-

cleotide chemical synthesis. Last and probably the most important is a fundamental
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Figure 2.2: Differences in composition and structure between DNA and RNA.
(Taken from Reference [32]).

principle of complementary base pairing which states that single strands of DNA self-

assemble into double helices using the elegant recognition of Watson-Crick bindings.

Simply put, a sequence composed of four nucleotides: A, C, G and T (standing for

adenine, cytosine, guanine and thymine) create the strongest bonds with its perfect

complement; the reason for that being A interacts only with T while C only inter-

acts with G on the other strand. For instance, a sequence S1 = 3′-GTAGGACTTC-5′

binds most strongly to complementary sequence S2 = 5′-CATCCTGAAG-3′ and nor-

mally prefers it over less attractive S3 = 5′-CATCCCGAAG-3′. Note that strands run

in opposite directions (i.e. 5′ and 3′ markers).

A secondary structure of RNA and DNA is defined as a set of nucleotides that form

base pairs. Strands of RNA and DNA can form various secondary structure motifs

which are shown in Figure 2.3.

The ordering of binding strengths is highly dependent on the composition and length

of given sequences. Although not perfect, an approximation using the Hamming dis-

tance provides an adequate indication of those attraction forces. Furthermore, it is
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RNA DNA
Main function Transfer of genetic information Stable storage of genetic information

to produce proteins
Structure A-form, B-form,

single-stranded double-helix
Bases Adenine, Guanine, Adenine, Guanine,

Cytosine, Uracil Cytosine, Thymine
Base A-U A-T

Pairing C-G C-G
Stability Unstable Stable

More reactive Less reactive
Location Found in cell nucleus Found in cell nucleus

cytoplasm and ribosome and mitochondria
Propagation Synthesised from DNA Self-replicating

when needed

Table 2.1: Overview of the main difference between RNA and DNA.

worth mentioning that binding energy is correlated more or less linearly with Ham-

ming distance, which is equal to the number of Watson-Crick mismatches between the

two strands. On the other hand, the likelihood of strands binding together, as mea-

sured by the equilibrium constant, decreases exponentially when Hamming distance

is increased. That property allows a creation of DNA parts of astonishing specificity.

More detailed explanation of DNA thermodynamics is provided in Section 2.3.

2.3 Modelling DNA and RNA

Many processes involving DNA, including hybridisation, can be elegantly described

by thermodynamic equations. Two single-stranded oligonucleotides A and B form a

duplex AB:

A + B −−⇀↽−− AB (2.1)

The equilibrium constant of this reaction is given by:
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Figure 2.3: Secondary structure motifs in RNA and DNA. The dots represent
bases which are connected to the backbone (solid lines) and form hydrogen bonds

(dotted lines).

K =
[A][B]

[AB]
(2.2)

where [A], [B] and [AB] are concentrations of respective species in the solution.

The stability of a duplex depends on nucleic acid concentration but also on the tem-

perature and the buffer solution.

Derived from the Van ’t Hoff equation:

∆G = −RTlnK (2.3)

where R is the ideal gas constant, and T is the temperature. This equation gives a

Gibbs free energy (∆G) – a thermodynamic potential which is commonly used as an
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indicator of stability for DNA and RNA complexes. The lower the free energy, the

more stable the structure is. Another way to express Gibbs free energy

∆G = ∆H − T∆S (2.4)

where ∆H is the change in enthalpy, T is the temperature, and ∆S is the change in

entropy.

Another indicator of stability is the melting temperature:

Tm = − ∆G

Rln/α
(2.5)

where R is the ideal gas constant, and ∆G is Gibbs free energy. Parameter α is set to

one for self-complementary strands, and to four for non-self-complementary strands.

Melting temperature defines a temperature at which a single and double strands are

in 1:1 ratio. The higher the melting temperature is, the more stable the structure is.

Thermodynamic parameters ∆G, ∆H, ∆S for any nucleic acids sequence can be pre-

dicted with high accuracy with the nearest-neighbor model of SantaLucia [33]. The

interaction between bases on different strands depends on the neighbouring bases

(since the stacking interactions are stronger than hydrogen bonds). Instead of treat-

ing a DNA helix as a string of interactions between base pairs, the nearest-neighbor

model treats a DNA duplex as a string of interactions between ’pairs’ of base pairs.

Experimental verification of the model allowed deriving all thermodynamic param-

eters for DNA, RNA and DNA/RNA hybrid duplexes. These parameters were, in

turn, used to create various software packages for modelling nucleic acids, such as

Mfold [34], NUPACK [35]; and also fully atomistic models. Here we describe two of

them: ViennaRNA for secondary structure prediction and MFE calculation [36]; and

oxDNA which is a coarse-grained DNA model [37].
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2.3.1 ViennaRNA

The ViennaRNA Package consists of libraries and programs for the prediction and

comparison of RNA and DNA secondary structures [36]. The secondary structure

prediction of nucleic acids is achieved through energy minimization. Vienna RNA

provides three kinds of algorithms which are based on dynamic programming: (1) the

minimum free energy algorithm calculating the optimal structure for a single-stranded

species [38]; (2) the partition function algorithm for the base pair probabilities in the

thermodynamic ensemble [39]; (3) and the suboptimal folding algorithm [40] which

finds suboptimal structures within a given range of the optimal energy.

Figure 2.4: Typical output of the RNAfold program. The structures are coloured
by base-pairing probabilities. For the unpaired regions, the color denotes the prob-

ability of being unpaired.

The two programs that were used most often throughout this research were: RNAfold,

which predicts secondary structures of single-stranded RNA and DNA sequences; as

well as RNAcofold, which predicts dimer formation between two sequences. Besides

the value of a minimum free energy, the software also provides the base-pairing prob-

ability and positional entropy. The typical output of the program is shown below (i.e.
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single-stranded RNA and its secondary structure prediction in dot-bracket notation):

AGAUCAUGCGCGCAUCUCGGCCGCGAUCGAUCGAUCGAU

.((((.((((.((......))))))...))))....... MFE: -10.40 kcal/mol

In this notation, the dots correspond to unpaired nucleotides while the brackets de-

note the base pairs. The graphical output for the same input sequence is shown in

Figure 2.4.

2.3.2 oxDNA Model

oxDNA is a simulation code which was recently developed to implement the coarse-

grained DNA model introduced by Ouldridge et al. [41, 42] at the University of Oxford.

It includes extendable simulation and analysis framework and natively supports DNA,

RNA, Lennard-Jones and patchy particle simulations on both CPUs and NVIDIA

GPUs.

a)

b)

c) d)

Figure 2.5: The oxDNA model: (a) abstracted molecules; (b) flat nucleobases
which indicate stacking direction; (c) an example of a DNA duplex; (d) some of the

captured interactions.

The oxDNA model offers a coarse-grained approach for simulations of DNA. In this

model, DNA molecules are represented as chains of backbone molecules and nucle-

obases (see Figure 2.5a-c). The captured interactions (presented in Figure 2.5d) were

parametrised to produce the well-known double-helical structure of DNA. Specifically,

the interactions are:
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1. sugar-phosphate backbone connectivity,

2. excluded volume,

3. hydrogen bonding,

4. nearest-neighbour stacking,

5. cross-stacking between base-pair steps in a duplex,

6. coaxial stacking

oxDNA focuses on interactions at the nucleotide level that allow the self-assembly

processes associated with DNA nanotechnology to be studied [37]. Recently the model

was extended with explicit major and minor grooves and modified coaxial stacking

and backbone-backbone interactions, which allows the model to treat large (kilobase-

pair) structures [43]. Moreover, the model can be parameterised to a range of salt

concentrations. In this thesis, the oxDNA model is used to study the operation of

DNA stack (see Section 6.3).

2.4 Experimental Techniques

An array of laboratory techniques exists which is extremely helpful to observe objects

that cannot be seen with the naked eye. This section describes some of the standard

investigation methods in microbiology and nanotechnology.

2.4.1 Gel Electrophoresis and On-chip Electrophoresis

Gel electrophoresis is a standard technique used in molecular biology allowing sepa-

ration and analysis of DNA based on its size. Nucleic acids are negatively charged

molecules – when placed in an electric field DNA migrates towards the positive pole.

When the electrophoresis is performed in a gel medium such as agarose or polyacry-

lamide [44] the migration speed is influenced by the size of the migrating molecule. In
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a mixed-size population of DNA, shorter molecules move faster and migrate farther

than longer ones, because shorter molecules migrate more easily through the dense

network of pores in the gel. This phenomenon is called sieving and it allows separation

and sorting of DNA fragments.

sample wells

ladder
oligos

plasmid

CONTROL EXPERIMENT

1 2 3 4 5

Figure 2.6: Gel electrophoresis

One example of gel electrophoresis is shown in Figure 2.6. Initially, the mixed solutions

of DNA are placed in the sample wells (top of Figure 2.6) such that each lane contains

one particular sample. The leftmost lane contains the DNA ladder, a standardised

solution of various DNA fragments of known length, for the purpose of comparison.

The remaining control and experimental samples are loaded into adjacent wells and

run in parallel in their individual lanes. DNA fragments of the same length migrate

together and therefore they are grouped into a single horizontal band visible on the

gel. Depending on the sample, each lane shows separation of DNA as one or more

distinct bands. For example, short DNA oligonucleotides travel the fastest and they

appear on the bottom of the gel image, as opposed to a longer plasmid whose migration

rate is lower. The brightness of a particular band depends on the amount and type

of a fluorescent dye incorporated into DNA for visualisation. For example, larger
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concentrations of DNA absorb more dye and therefore appears brighter; also, single-

stranded DNA usually absorbs less dye than double-stranded DNA and therefore

appears dimmer.

Figure 2.7: LabChip 7500 used in the Agilent 2100 Bioanalyzer. (A) Top side
of the chip showing layout of marker and sample wells. (B) The chip performs
capillary electrophoresis in a series of micro-fabricated channels (taken from [45]).

Based on the same principle, on-chip electrophoresis offers another approach towards

an advanced qualitative analysis. The DNA “High Sensitivity Chip” provided by

Agilent Technology allows size measurement, quantification and quality control of

nucleic acids on a single platform. The Bioanalyzer system (see Figure 2.7) can be used

to obtain quantitative and qualitative measurements of short DNA strands. The kit

provides lower and higher markers (35bp and 10Kb) which the software uses to align

sample solutions with a DNA ladder of known composition that is run in a separate

lane (the ladder range is 50-7000 bp). The raw data is measured and displayed in

the form of an electropherogram that plots the arbitrary fluorescent units displayed

against either migration time or predicted fragment size.

In this study, the Agilent High sensitivity DNA kit was used to assay the states of

the DNA nanodevice (see Section 6.4.1).

2.4.2 Atomic Force Microscope (AFM)

Atomic Force Microscope (AFM) is a type of a scanning probe microscope. AFM

allows imaging with a very high resolution, typically on the order of fractions of
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Figure 2.8: AFM schematics

a nanometre (i.e. size of individual atoms). In principle, AFM works due to the

intermolecular forces between the microscope’s probe and the surface being imaged.

The key element of AFM is a small cantilever with a sharp tip that oscillates up

and down over the sampling surface (Figure 2.8). The laser points at the tip and its

beam is differentially refracted according to the cantilever oscillations. The tip can

sense depth fluctuations over the background, thus creating a shift in the z-axis of the

laser beam. When scanning the surface of interest, a topography software is used to

reconstitute 3D images of the sampling units.

The main advantage of AFM over classic scanning microscopy is the ability to create

3D images. Its resolution can also be increased in liquid environments, but it also

imposes high samples purity to minimise detection of noise over the background.

Inherent from the resolution achieved via AFM, its computer processing requires more

time than usual scanning microscopes and it can take hours to get a refined image of

a certain sampling area.

In this thesis, AFM is used to observe folded DNA origami (see Section 4.4).
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Figure 2.9: TEM schematics

2.4.3 Transmission Electron Microscope (TEM)

Transmission Electron Microscope (TEM) was inspired by a classic light microscope;

however, it uses a beam of electrons instead of light. Imaging under TEM can reach

the resolution of a few angstroms (10−10 m), which corresponds to a 100,000 times

magnification. In perspective, if one stands at the bottom of Mount Everest, a TEM

could visualise a rock that is at the mountain highest peak. With a filament of very

high intensity (about 100 kV), a powerful electron beam is generated and focused

into a thinner beam via condensing lenses (Figure 2.9). In the illumination part,

focused electrons travel through the sampling unit and are affected by the studied

specimen (they are scattered by dense objects). Electron beams pass into the objective

lenses and the unscattered electrons move towards the screen. Shadows of the objects

detected in the sample can be distinguished from the background; the denser objects

are easier to recognise.

TEM is a very powerful instrument that provides incredible detail of the sampling

units. However, prolonged illumination of the same area within a sample may lead
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to its degradation due to the high capacity of the electron beam and relative dimen-

sions of the sample. The downside of electron microscopes relies on the instrument

parameterisation and maintenance; for instance, samples need to be loaded onto vac-

uumed carbon grids specially coated to optimise the signal detection. In addition,

TEM requires a heavy set of lab instruments and targeted microscopy expertise.

In this study, we use TEM for the readout of DNA nanorecorder (see Section 6.4.2).

2.5 Literature Survey

In the late 1950s, Richard Feynman first proposed the idea of using living cells and

molecular complexes for a construction of “sub-microscopic computers”. In his famous

talk “There’s Plenty of Room at the Bottom” [46], Feynman considered the problem

of “manipulating and controlling things on a small scale”, which established the foun-

dation of nanotechnology. Although he focused primarily on information storage and

molecular manipulation, Feynman highlighted the potential for biological systems to

act as small-scale information processors:

The biological example of writing information on a small scale has inspired

me to think of something that should be possible. Biology is not simply

writing information; it is doing something about it. A biological system

can be exceedingly small. Many of the cells are very tiny, but they are

very active; they manufacture various substances; they walk around; they

wiggle; and they do all kinds of marvelous things all on a very small

scale. Also, they store information. Consider the possibility that we too

can make a thing very small which does what we want that we can man-

ufacture an object that maneuvers at that level! [46].

Nowadays, scientists use DNA as a material of choice for building things on a nanoscale.

The purpose of this section is to provide a concise survey about DNA as a nanomate-

rial and how it has been used over the years in fields of DNA nanotechnology, DNA

computing and synthetic biology.
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2.5.1 DNA Nanotechnology

Currently, researchers show that various capable nanotools can be created using DNA

and RNA molecules. Regular structure of nucleic acids makes them an appeal-

ing building material for supramolecular assemblies (see Figure 2.10). In addition,

they can be used for the realisation of molecular machines and computers (see Sec-

tion 2.5.2).

Figure 2.10: Regular structure of DNA B-form: complementary strands of double
helices running anti-parallel to each other have a diameter of 2 nm with a twist of
10.5 base pairs (right panel). Nucleotides are roughly 1

3 nm wide (left panel). As
a simplified representation of double helix, a solid cylinder could be used (middle
panel). Adapted by permission from Macmillan Publishers Ltd: Nature Meth-

ods [47], copyright 2011.

Brief History

In the early 1980s N. Seeman, now considered a father of DNA nanotechnology, came

up with an innovative proposal to construct complex multidimensional objects and

lattices using DNA [48]. Instead of the usual linear duplexes that are formed by nucleic

acids, he based his design on a branched architecture. At the time, the existence of

branched DNA structures, such us Holliday junctions, was already known. Inspired by

the woodcut Depth of M. C. Escher (Figure 2.11 left), Seeman envisioned organising

matter on the nanoscale in a similar manner. He designed a set of predefined sequences

such that they assemble into immobile junctions with sticky ends. That, in turn, would

result in the formation of more complex geometric objects, such as lattices (shown in

Figure 2.11 right).
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Figure 2.11: Depth by M. C. Esher (left) and two-dimensional lattice formed
from immobile junctions with sticky ends (right). Sequences a and a’, b and b’ are

complementary to each other.

Since then, DNA has been used to build increasingly complex structures: two-dimensional

lattices [49–51] and three-dimensional objects [52–54]. Also, the RNA tectosquares

units were shown to self-assemble into arrays and patterns [55].

DNA Origami

One of the problems with DNA nanotechnology was that construction of relatively

complex structures required interactions between a vast number of small DNA strands.

In consequence, the yield of self-assembly was highly sensitive to stoichiometry (i.e.

relative ratios of DNA strands). The synthesis of nanostructures was, therefore, a

laborious process requiring multiple reaction steps and purifications.

The revolutionary idea came in 2006 when P. Rothemund presented scaffolded DNA

origami. DNA origami quickly became one of the most promising methods of matter

arrangement in DNA nanotechnology. In DNA origami, a long single-stranded scaffold

DNA molecule is folded using multiple short DNA strands which bind it at target

locations and hold it in place. A single scaffold folding a single shape has proved to

provide a staggering robustness and greatly simplified the required laboratory work.
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Figure 2.12: Basic building block in DNA origami: two double-helices running
parallel to each other are joined by the staple crossovers 21 base pairs apart, here
marked by green arrows (left and right panels). Electrostatic repulsion is believed
to cause bending of helices (white dotted lines). The crossovers are hidden in the
cylindrical representation (middle panel). Adapted by permission from Macmillan

Publishers Ltd: Nature Methods [47], copyright 2011.

The elementary building block in DNA origami, which one can think of as a molecular

brick of specified dimensions, is composed of double-helical domains stacked together

and interlinked by anti-parallel periodic crossovers (see Figure 2.12). Those crossovers

are allowed by U-turns of the phosphate backbone and could only be placed at the

tangent point between parallel helices.

DNA Origami Construction Phase

The design process can be thought of as developing a blueprint for any other physical

object (the difference being that instead of bricks one uses DNA domains).

All structures follow similar design algorithm, shown in Figure 2.13. The steps are as

follows:

1. The scaffold strand is laid down so that an approximated shape is obtained.

2. The potential positions of scaffold double crossovers are determined. Usually,

these are then placed in the centre (i.e. a seam across the shape is created).
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Figure 2.13: Design pipeline: (a) firstly a desired shape (red outline) is raster-filled
with cylinders representing double helices; scaffold crossovers are placed 1.5 turns
along the altering sides. (b) Scaffold path (black) is guided through the shape and
staple crossover places are determined (grey) bearing in mind minor-major groves
of DNA. (c) Initially, most staples binding to the backbone (coloured) are 16-mers.
Adapted by permission from Macmillan Publishers Ltd: Nature [4], copyright 2006.

3. Staple strands are added. At first, most of the strands are 16-bp long and have

two arms of equal length.

4. In case there is no obvious continuation (mostly because there is no neighbouring

strand) a single-domain staple may be introduced.

5. The exact arrangement of staples is chosen in such a way as to maximise the

number of strand crossovers: the feasible location is dictated by the tangent

point between neighbouring helices.

6. A subset of staples, called “bridged staples”, may be spanning across the back-

bone seam and holding distant regions of the scaffold.

7. Finally, some adjacent staples may be merged to form a longer staple with

multiple arms (which has an influence on the nanostructure stability).

Applications

This novel method enables versatile construction of custom-shaped objects with nanome-

tre precision [4] (Figure 2.14a). A range of impressive nanostructures has been con-

ceived, such as tetrahedron [56] (Fig. 2.14c, top); cube [57] (Fig. 2.14c, bottom); reg-

ular multi-layer solids [58] (Fig. 2.14d); bent bars and gears [59] (Fig. 2.14f-g). as well

as tensegrity objects [60] (Fig. 2.14h). Objects constructed in that way follow slightly
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altered design principles (i.e. shifted crossover points - the honeycomb arrangement

imposes a threefold symmetry between neighbouring helices). Furthermore, insertion

and deletions of base pairs can be used to induce the global twist: bent and curved

parts obtained that way allow building nonlinear objects (Fig. 2.14e-g). DNA origami

being a bottom-up method of patterning can be combined with top-down methods by

treating origami objects as molecular tiles [61]. In this approach, crystalline origami

arrays are assembled from hundreds of smaller cross-shaped objects (Fig. 2.14b).

Figure 2.14: Examples of DNA origami: single-layer DNA origami design of star
and smiley with AFM images (a); crystalline two-dimensional arrays (b); three-
dimensional containers: tetrahedron and cube (c); regular multi-layer objects (d)
and long object with global twist deformation (e), bent bars (f) and gears (g);
tensegrity structure (h); origami with site-detected protein attachment (i). Scale
bars: 100 nm (a), 1000 nm (b), 20 nm (c-i). Reprinted by permission from Macmil-

lan Publishers Ltd: Nature Methods [47], copyright 2011.

The tetrahedron and cube, mentioned above, are composed of four triangular and

six quadrangular flat faces, respectively. Those faces are held together by additional

staples across their edges. As a result, molecular containers were constructed with
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interior compartments suggesting that DNA origami could serve as a cargo carrying

nanostructure. Moreover, in the cube design one of the faces is designated to act

as a lid: externally supplied DNA ’keys’ could dynamically open the box through

strand displacement reactions (described in Section2.5.2). Other structures with con-

trollable behaviour include diffusive molecular cargo [62], dynamic mechanisms [63]

and nanorobots [5].

This particular nanorobot is an autonomous device which can carry molecular cargo to

target cells [5]; the device is essentially an open-ended barrel with two lock duplexes

which could be opened in the presence of particular aptamers ’keys’ (i.e. oligonu-

cleotides or peptides binding specific DNA sequence). When the lock is opened, the

nanorobot is reconfigured exposing the internal payload it is carrying. Several dif-

ferent lock-key combinations were implemented to show controlled functionality and

specificity of the nanorobot. This nanodevice was able to deliver molecular cargo to

cancerous cell lines (present in a culture of healthy cells) with astonishing specificity.

The community has also seen an implementation of mechanical parts that display

rotational [64, 65] as well as the translational movement [66, 67]. These examples

have laid the foundation for mechanically active nanomachines that can generate,

transmit, and respond to physical cues in molecular systems [68, 69].

Biological Compatibility

Recent research on scaffolded DNA origami has been used to design a range of nat-

urally bio-compatible materials. Assembled structures were used as two-dimensional

origami landscapes for molecular robots [70]; DNA nanochips for direct analysis of

single enzymes through atomic force microscopy [71]; and observation of chemical reac-

tions involving single molecule [72]. The possibility of attaching site-directed proteins

has been explored [73] (see Figure 2.14i). Apart from those applications, a cellular

scale of DNA structures, actively studied chemistries and well developed enzymatic

procedures on top of easily modifiable functionalities makes DNA origami an attrac-

tive candidate for cellular studies. DNA origami was shown to be stable in the cell

lysate solution obtained from normal and cancerous cell lines [9] (see Figure 2.15).
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Figure 2.15: DNA origami has been shown to maintain its structure when placed
in a cell lysate. Recovered objects were fully intact which indicates the method is
well suited for various cellular studies. Reprinted with permission from [9]. Copy-

right 2011 American Chemical Society.

Also, DNA origami robots have been shown to emulate logic gates which remain

functional in a living animal [7]. Expressing DNA origami objects genetically and

folding in vivo remains an open problem.

2.5.2 DNA Computing

Besides the creation of nanodevices, DNA has been utilised for computation [74, 75].

The very first work on DNA-based computation was conducted by Adleman [76] in

an attempt to solve a Hamiltonian path problem [77]. The Hamiltonian path problem

requires finding a path through a graph that visits each node (or vertex) exactly once

(see Figure 2.16).

Adleman solved a small instance of this NP-complete problem using the standard

techniques of molecular biology. Specifically, he used the incredible storage capacity

of DNA to develop a brute force method resulting in a massively-parallel and combi-

natorial algorithm. In his proof-of-principle experiment, DNA strands are encoding

random paths (i.e. potential solutions) in such a way that a strand representing the

Hamiltonian path (the correct solution) is present with high probability. By removing

all strands that do not encode the Hamiltonian path and verifying that the remaining
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Figure 2.16: Instance of the Hamiltonian path problem solved by Adleman. The
unique solution for this particular problem is denoted by blue arrows.

strands indeed encode a solution, Adleman succeeded in this first wet-lab demonstra-

tion of molecular computing.

Adleman’s original experiment suffers some limitations, such as: (1) excessive volumes

of DNA needed to solve problems of larger size, (2) experimental purification of the

solution is error prone, and (3) the final verification step assumes a single solution.

Nonetheless, Adleman’s approach created a storm of excitement and galvanised scien-

tists into considering the chemistry of DNA as a potential route to the next generation

of molecular computers. Since then, a variety of examples for DNA-based information

processing have been shown, including Boolean circuits [78, 79] and molecular finite

state automata [80, 81]. Recently, a genetic circuit relying on DNA was engineered

to mimic a biological transistor [82].

One particularly powerful branch of DNA computing is based on toehold-mediated

strand-displacement (shown in Figure 2.17). These systems utilise DNA strands with

partially identical sequences whose competition for common binding partners can

induce dynamical changes in the configuration of the DNA/RNA assemblies. In these
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Figure 2.17: Schematic of toehold mediated strand-displacement. Toehold (in
purple) initiates the binding between input strand and initial complex; the reaction
is reversible. Once the toehold is bound, the input strand can displace the output
strand through branch migration. Since the input strand forms a more stable du-
plex, the output strand is eventually released from the final complex (irreversibly).

designs, nanodevices feature short stretches of unpaired, single-stranded nucleotides

(referred to as toeholds) which can capture strands with complementary regions. If the

captured strand extends over the toehold and is also complementary to the adjacent

sequence, it can compete for hybridization partners with any other strand that is

bound to the adjacent domain. This thermally driven branch migration can result in

the complete displacement of the original binding partner. This causes a potentially

irreversible structural change of the nanodevice that has been used for programming

dynamical behaviour such as mechanical actuation [65] and molecular computation

[23, 83, 84]. These computing devices usually consist of multiple DNA strands which

fold into a rationally designed structure; the configuration of a device may be switched

between a number of states, often induced by addition of DNA or RNA strands.

Thanks to strand-displacement reactions, the DNA nanodevices may be used, for

instance, as sensors which detect input DNA sequences. This relatively simple system

can lead to a surprising diversity of dynamic behaviours [85]. In particular, this

mechanism allows for the precise kinetic control of reaction pathways.

2.5.3 Synthetic Biology

The advances in modern molecular biology have “led us into the new era of synthetic

biology where not only existing genes are described and analysed but also new gene
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arrangements can be constructed and evaluated” [86]. This new engineering disci-

pline perceives cells as microscopic processing devices built from a mere handful of

extremely versatile building blocks, each evolved to express a particular phenotype.

With the rise of synthetic biology came two essential revelations. The genetic code

of living organisms contains abstracted units called “parts”. By putting several parts

together, it is possible to create new “devices” which contain novel genetic circuits

with a predictable and controllable behaviour [87]. But perhaps more thrilling than

just putting several genes together is the creation of new systems of interactions al-

lowing expression of much more sophisticated phenomena than what the cells are now

programmed to do. In other words, we strive to programme life that never existed

before and which otherwise would not be possible. Secondly, synthetic biology poses

a question (arguably one of the most profound questions in science): is it possible to

create synthetic organisms or artificial life in vitro from organic material? And if so,

what does it take to synthesise minimal life?

Creation, from the point of view of synthetic biology, amounts to being able to put

together basic cellular parts, thus building a novel entity that exhibits all the charac-

teristics of life [88]. It is important to note that this kind of creative activity is not

“creatio ex nihilo”, creation from nothing [89]. Even if we could, following a bottom-

up approach, create a living cell from organic molecules alone, this would still be

classified as creation by means of a refined combination of given parts. It may be said

that in this scenario, we do not create life from scratch; we merely supply necessary

conditions for the matter to actualize its potential to form living organisms [88].

As a species, we learned how to control materials, physics, conditions and, to some

extent, the environment; however, we don’t have nearly as much control over life.

Living systems are complex things that have the appearance of having been “designed”

with a purpose. Richard Dawkins refers to them as “designoids” which are complex

objects that are not designed but superficially look a bit like they are [90]. Not only

are “designoid objects” complex on the outside, they are also complex on the inside

and perhaps vastly more complex than designed objects are. While it is true that

“designoids” cannot come about by chance, evolution provides a non-random method
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of creation, namely, Darwinian natural selection. However, natural selection does not

develop systems that are easy to understand. Living things have the quality of being

able to adapt, survive and propagate their genes in reproduction. With no doubt, the

transparency in the perceived design is not one of the qualities favoured by evolution.

Figure 2.18: Systematic design of biological systems in synthetic biology. The
engineering cycle describes the iterative process requiring multiple rounds of design,

build and testing (taken from [91]).

As a result, there is currently a gap between our ability to synthesise DNA and

create biological systems that work well. Synthetic biology is quite different from

other engineering areas; many challenges remain to make living systems comply with

engineering principles [88]. Unlike electronic or mechanical parts, genetic parts tend

to change. Cells work for themselves and disfavour exploitation against their survival.

Thus, recombinant DNA is often mutated if no selective pressure exists to maintain its

function. Besides mutations, other issues exist including crosstalk, noise, cell death,

environmental conditions, cellular context and incomplete models. Synthetic biology,

therefore, requires entirely new engineering rules. For instance, a common practice is

to create solutions that are suboptimal, learn from them and iterate over until better

solutions are developed (see Figure 2.18). More than five years after its publication [92]

these core 10 challenges of synthetic biology remain unresolved:

1. Reaching a consensus on synthetic and streamlined genomes
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2. Cooking from scratch (bottom-up)

3. Learning from nature: naturally evolved reduced minimal genomes

4. Refine and make reality the notion of biological chassis

5. Manufacturing engineered biosystems

6. Overcoming physical and chemical constraints

7. From models to cells and back

8. Replication and reproduction

9. Towards an integrated design strategy of synthetic organisms

10. Coupling scientific development and public opinion information

In particular, cooking from scratch (bottom-up), make reality the notion of biological

chassis and manufacturing engineered biosystems are the problems that are closely

tied to the core of this thesis. In other words, we are interested with self-assembling

nanodevices (i.e. bottom-up manufacturing) which could, in principle, be “installed”

in any biological chassis.

To summarise, a primary goal of synthetic biology is to harness the inherent “biologi-

cal nanotechnology” of living cells for the purposes of computation, manufacturing, or

diagnosis. Advances in synthetic biology were made in three waves: modules, systems,

and networks (with the last wave still yet to peak) [93]. These waves follow the hier-

archy of layers, similar to computers, where each layer corresponds to a specific level

of complexity and organisation. At the lowest level (i.e. the physical layer) lie fun-

damental components: in computer architecture, these are transistors and resistors,

while in synthetic biology, these are promoters and repressors. These components can

be combined to form functional devices (i.e. Boolean logic gates); and several of those

devices may in turn form modules to achieve specific tasks, such as pulse generation,

switching, or oscillation.
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2.6 Summary and Essential Concepts

In the classical view of synthetic biology, the parts forming the physical layer are DNA

sequences of defined structure and function [94]. The majority of parts are derived

from various organisms and include promoters, ribosome binding sites, protein-coding

sequences, terminators etc. [95–97]. However, synthetic biology is a more creative

activity than genetic engineering has been before and carries with it a new level

of aspiration. While genetic engineering was primarily focused on optimisation of

existing systems and organisms, synthetic biology allows full play to artistry and

imagination. It seems attainable that synthetic biology will take us beyond nature;

“Nature 2.0,” i.e., nature with novel functions or even an orthogonal system of life, is

not pure speculation anymore [88].

To explore this possibility we may branch out from systems of existing parts and

create new parts, including artificial nanomachines operating in the regime of nucleic

acids [11, 98]. These novel nanomachines could potentially be synthesised in vivo to

carry out complex and coordinated tasks. The ultimate goal is for these devices to

be used as nanocomputers of a new kind: performing a new type of computation and

information processing [12]. Jungmann et al. [10] identify three potential merging

points between DNA-based nanodevices and nanocomputers with synthetic biology.

These are:

1. Biological cells could be simply used to produce RNA nanodevices by transcrip-

tion

2. Gene regulatory mechanisms can be used to control the time and production of

the nanodevices and naturally occurring RNA

3. Concepts from DNA nanotechnology and DNA computing can be adapted to

devise novel strategies for the control of gene transcription and translation

One can envision novel “assembly lines” embedded in vivo that produce self-assembling

nanodevices upon transcription. Those devices may even be used as controllers of their
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own production (i.e. autoregulation). This way, we may be able to incorporate a novel

type of programmable production and control circuits into biological systems.

Essential Concepts

When considering the idea of introducing novel nanodevices into living systems there

are several essential factors to consider; among them are biological orthogonality and

addressability.

The term orthogonal (borrowed from mathematics and computer science) is an alle-

gory that implies a factual independence between otherwise co-existing systems [99].

While the term orthogonal means independent, when used in the synthetic biology

literature it largely denotes a lesser dependence on the hosts native programs. Only

a few orthogonal functions are available in the existing biological world which come

from bacteriophages (for instance, the T7 RNA polymerase) and mobile genetic ele-

ments, whose genetic program has evolved to depend only minimally on the recipient

cells. Paraphrasing from Boldt [88] we define this notion as:

Biological orthogonality (or bio-orthogonality) is the property of a system

whose basic structure or function are so dissimilar to those occurring in nature

that they can only interact with them to a very limited extent, if at all.

Existing scaffolds for DNA origami contain genetic information; e.g. they code viral

proteins and are recognised by various restriction enzymes. These inherent biological

features are problematic if one tries to express and fold DNA origami that interferes

minimally with a cell’s machinery. Little research has focused on addressing this issue,

as the phage-based scaffolds became easy to obtain and manipulate [100]. Currently,

with the exception of Geary et al. [101], the sequence design and its optimisation

are restricted to cyclic permutations of the existing viral scaffolds or modifications of

scaffold-staples layouts [47]. On the other hand, while Geary et al. [101] present a

synthetic sequence optimised for co-transcription, it requires a different sequence for

each nanostructure one may want to assemble. It is a clear limiting factor, especially
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when one considers the potential biological (i.e. in vivo) production of multi-shaped

(and hence multi-functional) origami.

Furthermore, and of concern not only within a synthetic biology context, is the issue

of addressable complexity [102]. DNA origami and DNA brick [103] structures are the

two important examples of multicomponent structures; their remarkable complexity

is due to the fact that the structures are completely “addressable” [104]; other exam-

ples include single-stranded tile [105–108] and double crossover tile [109]. Since every

building block within an aperiodic addressable structure (or unit cell in a periodic

addressable structure) is unique, it is possible to specify exactly where a particular

subunit will be located within the target structure [102, 110]. Thus, the term ad-

dressability when used in nanoscience has the desired connotation of being able to

target specific parts of the nanostructure with a nanometre precision. Addressability

was demonstrated, for example, by anchoring proteins on DNA origami nanostruc-

tures [111]. Hence, our working definition of unique addressability is slightly stronger

than the established definition found in literature:

Addressability is the capacity for an entity to be targeted and found within

a system. To be uniquely addressable, such an entity must be uniquely

identifiable, i.e. the association with its target must be strongly favourable –

thermodynamically and kinetically – over anything else that exists within that

system.

The repetition of nucleotide sequences in existing scaffolds and staple strands may

cause unspecific hybridization [4]. The resulting misfolding (primarily kinetic traps)

can disrupt the self-assembly process and lead to structural deformations or malfunc-

tion of folded nanodevices. The evidence of potential misfolding was explored by the

previous study and prevented by a judicious design of the folding funnel [112]. The

problem might also be counteracted by the cooperative nature of the folding [113] and

strand-displacement reactions as an error-fixing mechanism. All these effects play a

role in the self-assembly of DNA origami but are currently hard to control in a prag-

matic manner [114]. On top of that, strand-displacement reactions are known to have
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slower kinetics compared to hybridization [115] which may be a setback in the folding

process, especially in the cellular environment.





Part I

DNA ORIGAMI
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Chapter 3

Synthetic Scaffolds Design

We propose a method for designing scaffold sequences as a synthetic exten-

sion of DNA origami technique suitable when reliance on viral genomes is

not realistic. We develop a set of algorithms allowing a rapid construction

of synthetic scaffolds and explain why they are good candidates to satisfy

the criteria of biological orthogonality and unique addressability. Finally,

we develop a workflow and design a number of nanostructures utilising

these synthetic scaffolds. This leads to a case study which is explored

further in Chapter 4.

3.1 Introduction

In this chapter, we propose a theoretical framework to address hypothesis H1:

H1 : It is possible to program a synthetic scaffold for DNA origami

which is both bio-orthogonal and uniquely addressable.

45
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Addressability, in the context of DNA nanotechnology, is an essential concept which

allows precise arrangement of DNA strands through the Watson-Crick complemen-

tarity. However, the same motif of nucleotides might, in general, address multiple

sections of the long DNA strands (as shown in Figure 3.1). This is suboptimal from

an engineering viewpoint and hence having a certainty of where it will Watson-Crick

complement is crucial.

1821 TCCCTGAAAATGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGTTCTGAGGGT

CGAGACTCCC
||||||||||

2307 GTGGCGGCTCTGAGGGTGGTGGCTCTGAGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGA

CGAGACTCCC
||||||||||

A

B

A

B

Figure 3.1: M13mp18 bacteriophage map: the most commonly used DNA origami
scaffold consists of multiple genes and restriction enzyme sites (shown in bold).
Additionally, it contains repeated subsequences (for example A and B; underlined)
which are ambiguous and violate the addressability property. For instance, sequence
’3’-CGAGACTCCC-5’ designed to address a domain in A may instead bind to an
incorrect domain in B (in fact, this is the case for the entire underlined sequence).

(M13mp18 map is available on the NEB website).

Also, Figure 3.1 shows the genome map of the M13mp18, which is a standard scaffold

in DNA origami. This DNA sequence, which is a result of viral evolution, is easy and

cheap to obtain simply by infecting E. coli bacteria. Using M13mp18 genome as the
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scaffold is a double-edged sword: its availability comes with a serious drawback. Upon

entry into the cytoplasm, the virus hijacks the internal machinery of the infected host

and induces its own replication. M13mp18 contains 10 genes (for replication, coating

proteins, and phage assembly) as well as multiple restriction enzymes cutting sites.

Indeed, from a synthetic biology point of view, the viral scaffold violates the biological

orthogonality. Therefore, being able to design a sequence without biological function

or meaning is critical.

The approach that we chose to employ here has its grounds in combinatorics and graph

theory. Namely, we are exploiting a property of a family of combinatorial objects

called de Bruijn sequences (DBS). More specifically DBS of order n have no duplicate

subsequences of size n or larger, thus rendering them uniquely addressable by design.

This uniqueness property (i.e. lack of repetitions) makes DBS an attractive candidate

for addressable scaffolds: any staple binding a specific region of such a scaffold is by

design complementary only to that specific region. This in principle should favour

specific hybridisation over any non-specific one (see Figure 3.2).

Figure 3.2: Unique addressability: DNA origami scaffold (blue) should be con-
structed in such a way that each of the short complementary domains (black) can
potentially bind to its respective fragment and this fragment only. Following that
property, joining two or more domains, here A and B, introduces a new staple

strand AB that binds the scaffold in designed place only.

We explain how to generate De Bruijn sequences algorithmically and how forbidden

sequences can be removed from DBS. That method allows designing DNA origami

scaffolds that are orthogonal to a biological system of choice. The design pipeline
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is automated by software, which is explained in the following section. Optionally,

generated sequences undergo a secondary structure optimisation. Lastly, the chap-

ter presents DNA origami and DNA/RNA hybrid origami designs based on those

synthetic scaffolds.

3.2 De Bruijn Sequence

De Bruijn sequence B(k, n) is a cyclic sequence in which every possible n-long com-

bination of symbols from given alphabet A of size k appears exactly once. Nicolaas

Govert de Bruijn, after whom the sequences are named, has shown that construction

of this type of sequences can be generalised for an arbitrary alphabet of symbols; he

has also proved that the length of any B(k, n) is always kn and the total number of

distinct sequences is given by (k!)k
n−1 × k−n [116].

For example, consider a binary alphabet A = {0, 1} and n = 3. In that case, there are

only two sequences of length 8; those are 00010111(00) and 00011101(00) (note that

symbols in parentheses refer to the beginning of the sequence to emphasise its cyclic

nature).

It is possible to generate DBS for a DNA alphabet A = {A,C,G, T}. For example, the

lexicographically smallest DBS of order 3 is shown in Figure 3.3. Careful observation

shows that each substring of length 3 is a unique nucleotide string. For an alphabet

with four symbols, there are (4!)4
n−1 × 4−n different DBS of length 4n. Hence, the

DBS shown in Figure 3.3 is chosen from a large set containing over 189 quintillions

(1.89× 1020) sequences in total.

De Bruijn sequences have been used in bioinformatics before, for instance, for whole

genome assembly from a multitude of short reads [117–120]; also to study the structure

and stability of the genetic code [121]. In the context of DNA origami, De Bruijn

sequences were used to quantify the quality of the folding process by coding short

DNA probes [122]. These DBS probes were used to measure the content of unpaired

DNA bases in several nanostructures.
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AAACAAGAATA
C
C
A
C
G
A
C
T
A
G
C
AGGAGTATCATGATT

CC
CG

CC
TC

G
G
C
G
T
C
TG

C
TT

GG
GT

GTTT

TGC
CTG
TCT
GTC

Figure 3.3: De Bruijn sequence. An example of De Bruijn sequence (DBS) of order
3 which contains all nucleotide triplets (i.e. codons). DBS is uniquely addressable
because the repetitions are not allowed, e.g. sequences TGC, CTG, TCT and GTC

appear exactly once in the sequence.

By definition, De Bruijn sequence B(k, n) contains exactly one occurrence of every

n-long subsequence. It also contains k occurrences of every (n-1)-long subsequence,

k2 of (n-2)-long and so on. It is also worth mentioning that this property holds true in

the opposite direction: B(k, n) contains 1
k

of all possible (n+1)-long sequences, 1
k2

of

all possible (n+2)-long sequences and so on. That gives a very reliable way by which

to estimate the probability of finding sequences of a particular length in any given

De Bruijn sequence (bear in mind that probability of finding a sequence containing

repetitions is zero). In other words, the probability that a specific sequence B(k, n)

includes subsequence s decreases exponentially as the length of s is increased.

Furthermore, two important characteristics of De Bruijn sequence are uniqueness,

meaning that n-long duplicates are not allowed, and completeness, meaning that

all n-long instances are included. From biological perspective, De Bruijn sequence

allows obtaining a synthetic scaffold for DNA origami which is ’programmable’ and

uniquely addressable (see Figure 3.2). In that case, it is essential to highlight the

following: for the purpose of this work, uniqueness is an essential property that should

be retained. On the other hand, completeness is problematic as some of the sequences
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composing DBS may be biologically active and hence should be avoided (violating

the completeness principle). Simply put, in programmable DNA origami what truly

matters is unique addressability while in a synthetic biology context bio-orthogonality

is essential. Thus, the staples are designed for one binding site only (i.e. a unique

address), however having all possible addresses may be undesirable if that stands in

conflict with the biological orthogonality.

3.2.1 Sequence Construction

Only a few efficient constructions of de Bruijn sequences are known [123]. In partic-

ular, there are:

• a shift generation approach based on primitive polynomials by Golomb [124],

• three different algorithms to generate the lexicographically smallest DBS (also

known as the Ford sequence): a Lyndon word concatenation algorithm by

Fredricksen and Maiorana [125], a successor rule approach by Fredricksen [126],

and a block concatenation algorithm by Ralston [127],

• a lexicographic composition concatenation algorithm by Fredricksen and Kessler [128],

• three different pure cycle concatenation algorithms by Fredricksen [129], Etzion

and Lempel [130], and Huang [131] respectively, and

• cool-lex based constructions by Sawada, Stevens and Williams [132] and Sawada,

Williams and Wong [133].

Each algorithm requires only O(n) space and generates their DBS in O(n) time per

bit, except the pure cycle concatenation algorithm by Etizon and Lempel which re-

quires O(n2) space. The Lyndon word concatenation algorithm and the cool-lex based

approaches achieve O(1)-amortised time per bit. There also exist interesting greedy

constructions including the prefer-1 and prefer-opposite approaches by Martin [134]
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and Alhakim [135]; however, they require Ω(2n) space. The drawback of these ap-

proaches is that they generate a handful of sequences (usually just the lexicographi-

cally smallest one).

In order to have a better coverage of the search space (i.e. be able to potentially

generate every DBS), we chose to make use of de Bruijn graphs and Euler cycles [118].

While practically it might not be feasible to generate all possible de Bruijn sequences

for large values of n, it is important that our method allows a fair sampling of the

search space for a DNA alphabet. Finding Euler cycles in the de Bruijn graph is an

approach that will find all de Bruijn sequences for a given n, but again, storing the

graph requires Ω(2n) space (in binary) or Ω(4n) space (in DNA). This approach relies

on a de Bruijn graph – a directed and symmetric graph which represents overlaps

between sequences from any given alphabet A (for an example refer to Figures 3.4

and 3.5).

Figure 3.4: De Bruijn graph for an alphabet A = {0, 1} and n = 4. Starting from
the edge e1 = 000 and traversing the edges in order from 1 to 16 (blue numbers) a
cyclic De Bruijn sequence is produced that spells 0000110010111101(000). In total
there are 16 unique sequences that can be produced based on this graph. Reprinted
by permission from Macmillan Publishers Ltd: Nature Biotechnology [118], copy-

right 2011.
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Construction of De Bruijn Graph of order n is conducted in two steps. First, all

possible n-mers are listed and assigned to the graph nodes. Here, the term n-mer

is simply an n-long permutation of symbols over the alphabet A. Secondly, any two

nodes are connected by an edge iff the suffix of the first node is equal to the prefix of the

second node (signifying overlaps). At the end of this procedure, every node should

have k incoming and k outgoing edges. For instance, a node containing sequence

ATG will be followed by 4 nodes: TGA, TGC, TGG and TGT, and preceded by 4

other nodes: AAT, CAT, GAT and TAT (a common part is underlined for clarity).

Note that loops are allowed: nodes AAA, CCC, GGG and TTT all have an edge that

connects the node to itself (i.e. edges AAAA, CCCC, GGGG and TTTT respectively).

AA AAA

AC

AAC

AG

AAG

AT

AAT

CA

ACA

CC

ACC

CG

ACG

CT

ACT

GA

AGA

GC
AGC

GG

AGG

GT
AGT

TA
ATA

TC

ATC

TG

ATG

TT

ATT

CAA

CAC

CAG

CAT

CCA

CCC

CCG

CCT

CGA

CGC

CGG

CGT

CTA

CTC

CTG

CTT

GAA

GAC

GAG

GAT

GCA

GCC

GCG

GCT

GGA

GGC

GGG

GGT

GTA

GTC

GTG

GTT

TAA

TAC

TAG

TAT

TCA

TCC

TCG

TCT

TGA

TGC

TGG

TGT

TTA

TTC

TTG

TTT

A B

Figure 3.5: De Bruijn graph for the genetic code where the alphabet is a set of
nucleotides, A = {A,C,G,U} and n = 3. Every edge in the graph has a unique
DNA codon assigned to it. Start and stop codons have been marked, with black
triangle and circles respectively: (A) RNA codon table; (B) de Bruijn graph (4, 3)

for DNA alphabet.

Once the De Bruijn graph is constructed, finding a DBS is equivalent to finding an

Eulerian cycle in that graph [136]. This can be accomplished through graph traversal

(see Figure 3.4).

Technically, producing an instance of B(k, n) is equivalent to finding a Hamiltonian

cycle in an n-dimensional De Bruijn graph over an alphabet A of size k (i.e. find a cycle

that visits each node once). Alternatively, an Eulerian cycle in the (n-1)-dimensional
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graph can be found (i.e. traverse every edge once and return to the starting point).

Figure 3.4 shows an example of an Eulerian cycle: all 16 edges are visited exactly

once. The same graph contains Hamiltonian cycles; one instance can be obtained by

traversing edges in order: 2, 7, 8, 9, 10, 12, 5, 16 which spells 00010111(00).

Note that those problems are equivalent to each other because each n-dimensional De

Bruijn graph is the line graph of the (n-1)-dimensional De Bruijn graph over a similar

alphabet A (i.e. there is a one-to-one relationship between edges of the base graph

and nodes of the other graph). However, since the problem of finding Hamiltonian

cycles is known to be NP-hard, we resort to the latter method instead.

Algorithm 1 Traverse()

1: function Traverse
2: current = start
3: for edge in remaining do
4: if edge matches current then
5: current = edge
6: remove current from remaining
7: sequence += last symbol of current
8: traverse(current, remaining, sequence)
9: end if

10: end for
11: if remaining is empty then
12: print sequence
13: end if
14: end function

Two versions of the algorithm have been implemented that find Eulerian cycles in

De Bruijn graphs; the former is based on a recursive procedure that simply tries all

possible combinations of edges arrangement and outputs a De Bruijn sequence if one

is found. This method is suitable for relatively small graphs (low values of n) as

it produces all distinct permutations (see Algorithm 1). An example output (based

on n = 3, A = {A,C,G, T}) is shown below (note the sequences differ only in the

rearmost part).
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The first five DBS permutations (lexicographically smallest sequences) are:

1) AAACAAGAATACCACGACTAGCAGGAGTATCATGATTCCCGCCTCGGCGTCTGCTTGGGTGTTT(AA)

2) AAACAAGAATACCACGACTAGCAGGAGTATCATGATTCCCGCCTCGGCGTCTGCTTGTGGGTTT(AA)

3) AAACAAGAATACCACGACTAGCAGGAGTATCATGATTCCCGCCTCGGCGTCTGCTTTGGGTGTT(AA)

4) AAACAAGAATACCACGACTAGCAGGAGTATCATGATTCCCGCCTCGGCGTCTGCTTTGTGGGTT(AA)

5) AAACAAGAATACCACGACTAGCAGGAGTATCATGATTCCCGCCTCGGCGTCTGGGTGCTTGTTT(AA)

Even for small values of n the number of unique sequences one can generate is colossal;

for example for n = 4 we have a total of 8.42 ∗ 1085 sequences (i.e. more than the

number of atoms in the universe1). For practical reasons, one may want to sample

this huge search space in a more random fashion. We implemented another version of

the algorithm to find random Eulerian cycles in a De Bruijn graph. First, a random

edge is selected as a starting point and marked as visited. The first symbol of that

edge is written which corresponds to the first symbol in the final DBS. Then at

each step of the algorithm, the next edge is selected from the current node (also at

random) iff it has not been visited yet; its first symbol is appended to the DBS. This

procedure repeats until the current node has no unvisited edges left (i.e. a dead-end

is found). Dead-end during traversing does not necessarily complete the algorithm:

it only establishes the initial cyclic sequence. It is likely that not all edges have been

visited yet. If this is the case, the unvisited edges are traversed separately in a similar

fashion (finding Eulerian paths) and the linear sequences they produce are inserted

into the initial cyclic DBS at valid positions. This method is more suitable for larger

graphs for which it is practically impossible to generate all existing permutations and

a representative sample of well-shuffled sequences is more appropriate. The example

output (based on n = 3, A = {A,C,G, T}) is shown below.

1The commonly accepted estimate for the number of particles in the observable universe is 1080;
it is derived by dividing the mass of all ordinary matter (1.45 ∗ 1053 kg) by the mass of a single
hydrogen atom (1.67 ∗ 10−27 kg).



Chapter 3. Synthetic Scaffolds Design 55

A five random DBS permutations generated by the algorithm:

1) AAATTATGACACGAGATAGCCCTACTTGGGCTCCGCAGTGTAAGGTCGTTTCTGCGGAACCATC(AA)

2) AAAGCCGAGGGATTCCTTTGCAATATCTAGACGTCACATGGTTACTCGCGGCTGTAACCCAGTG(AA)

3) AAACCCATGTTTACACGACTCAAGAGCTGAATAGGATTCCGCCTTGCAGTCGGTGGGCGTATCT(AA)

4) AAACGAATAGTCCGGGCTGACAAGCACCAGGAGATCGCGTGCCCTTACTCTATTTCATGTTGGT(AA)

5) AAATTTCATAAGTCTTAGATCGGCCACGCAACTATGAGCTGCGTTGTGGGTACCCTCCGACAGG(AA)

The sequences are generated using a stochastic algorithm. Much of what the algorithm

does revolves around limiting repeated stretches of a forward sequence. However, it

is possible to modify the algorithm to achieve additional features in the generated

sequences. For instance, one immediate alteration would be to have the algorithm

also minimise stretches of reverse-complementarity, which could potentially interfere

with proper folding by allowing the scaffold to base pair with itself. We address this

issue in Section 3.2.3. In the following section, we show how the generated scaffold

sequence is curated to achieve bio-orthogonality.

3.2.2 Bio-orthogonal Filtering

As briefly mentioned before uniqueness is favoured over completeness. What is more

important, sometimes completeness might even be considered undesirable as some

subsequences might carry biological meaning depending on the context (e.g. an E.

coli cell) in which they will operate. Note that the folding of DNA origami was

so far performed in vitro – the environment pure of any entities other than DNA

origami strands (and of course additional chemistry that induces the self-assembly).

On the other hand, folding DNA origami in vivo is likely to interfere with cell internal

mechanics to some extent – after all, it is a living entity, based on DNA, with numerous

processes constantly targeting DNA strands [137, 138] (such as sequence-specific DNA

binding proteins). Therefore, the idea here is to be able to identify sequences, which

we call “taboo”, that carry some biological function and either avoid them or position

them at a specific place within the DNA origami shape. These taboo sequences will
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be context specific, that is, will depend on the cellular context the origami will be

designed for (e.g., E. coli, S. cerevisiae, CHO cells, etc). Here, we present the method

of deleting taboo sequences from the DNA origami scaffold.

The graph can be constrained with edges containing undesired sequences. If an edge

contains a restricted sequence it can be removed from the graph and never visited.

However, removing edges can leave the graph unbalanced in which case it will be

impossible to construct the DBS (i.e. an Eulerian cycle does not exist). A solution

to this is to remove a cycle which includes a restricted edge rather than the edge

alone. This method maintains the balance in the underlying graph and ensures that

the sequence (without restricted subsequences) can be produced.

For the following filtering examples, consider this problem: from a class of De Bruijn

sequences B(4, 4) over the DNA alphabet A = {A,C,G, T} exclude a single taboo

sequence. Suppose that the unwanted sequence is given by s = ”GTAC” (that de-

pending on the reading frame might code for valine, encoded by GTA, or methionine,

encoded by TAC). Since we consider B(4, 4) and the length of s is 4, there is exactly

one instance of s to be removed.

Figure 3.6: Post-generation filtering: firstly a taboo sequence s = ”GTAC” is
found (red). Two similar (n-1)-mers surrounding s are chosen (blue) such that the
distance in between them is minimised. A whole fragment containing s is removed
(underlined) resulting in a 23 bp-long deletion. The remaining sequence could now

be joined as is.

This can be accomplished in two alternative ways. The former is used when De

Bruijn sequence is given already (i.e. post-generation filtering). Simply deleting the

target subsequence from De Bruijn results in breaking the cycle and leaving a gap

(similarly, any further deletions would partition the original sequence into consecutive

number of shorter sequences). Note that simply joining two loose ends at that point
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is problematic as it introduces unwanted repetitions. To maintain a cyclic sequence a

splicing technique should be used in the following way: scan left and right-hand site

of target subsequence in order to find two similar (n-1)-mers. Now remove the whole

sequence that falls in between the first (n-1)-mer (inclusively) and second (n-1)-mer

(exclusively) (see Figure 3.6 for details). That procedure results in matching loose

ends which are joined together in the final step. The distance between (n-1)-mers

affects the total number of deleted symbols, therefore the aim is to find such a pair

for which the distance is minimised.

Figure 3.7: Pre-generation filtering: before the sequence is produced a loop con-
taining unwanted sequence s = ”GTAC” (red) is removed from the underlying
graph. All sequences produced by traversing the adjusted graph are guaranteed
to lack s. Note: resulting sequences are shorter than original De Bruijn sequence

by 4 bp.

The latter method is based on pre-generation filtering, i.e. rather than the sequence

itself an underlying graph is modified. The edges containing taboo subsequence are

removed (and since the length of s is 4 there is exactly one edge to be removed).

However, in order for this approach to work (i.e. to construct a De Bruijn-based

cyclic sequence), there has to exist an Eulerian cycle in the resulting graph. Euler’s

theorem states that such a cycle exist iff the connected directed graph is balanced (for

each node its indegree and outdegree must be equal) [118]. Since one edge has been

removed this property does not hold any longer. The solution is to identify a loop

containing the unwanted edge and remove all edges within that loop from the graph
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(see Figure 3.7). Indeed, after this operation indegree and outdegree of every node

remain equal. As a consequence, each and every sequence generated from that graph

will lack the taboo sequence.

It is vital to point out that this method relies heavily on the data provided. In

order to design scaffold that is “perfectly” orthogonal, we would require the total

knowledge of biological sequences; in particular, about sequences recognised by various

biomolecules, digested by enzymes, or sequences that are functional in any other way.

Although this “big unknown” may be daunting, the method presented here can be

used in an iterative way. If a synthetic scaffold turns out to have some unwanted

effect on the host cell, and if this effect can be linked to a specific sequence, the next

iteration should be restricted with this new sequence (i.e. an improvement by trial

and error). On the other hand, non-specific DNA-proteins with a general affinity for

DNA could still have some interaction with the scaffold.

3.2.3 Energetic Optimisation

As mentioned earlier, because of a large number of DBS from which a designer can

choose from, a scaffold for DNA origami can be selected according to certain desired

characteristics. Therefore, we specified the additional criterion for the synthetic scaf-

fold sequences based on their folding properties, namely, minimisation of secondary

structures. If the scaffold can base pair with itself and form stable structures, the

origami folding would be impeded. The extent to which this is problematic can be

measured using a thermodynamic analysis and mitigated by the choice of scaffold.

The DNA origami scaffold (2.4 knt) was picked as a compromise between following

factors: elimination of all forbidden sequences (Section 3.2.2), the stability of the

secondary structure and the nucleotide composition. ViennaRNA package [36] was

used to predict minimum free energy (MFE) of DNA sequences using energy param-

eters provided by Turner and Mathews [139]. The MFE of pUC19 scaffold is -414.6

kcal/mol (GC content: 0.52). Interestingly, it is more stable than that of a randomly

generated sequence with the same nucleotide composition (see Figure 3.8 in red). We
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Figure 3.8: The MFE distribution: 1000 DBS scaffolds (blue) and 1000 randomly
generated scaffolds with similar nucleotide composition as pUC19 (red), are plotted

according to the secondary structure energy. Sequences are 2.4 knt long.

aimed to obtain a weaker secondary structure in DBS scaffold while preserving similar

nucleotide composition (MFE of -376.4 kcal/mol, GC content: 0.5). This should fa-

cilitate the origami folding as the scaffold will hybridise more readily with the staples

rather than with itself. In addition, in RNA-DNA origami both the DBS scaffold (1.1

knt) as well as the staple sequences were optimised to weaken secondary structures

and avoid hairpin formation.

3.3 Scaffold Design and Analysis Software

The workflow for constructing synthetic DBS scaffolds for DNA origami is automated

with a custom-made software; it is available as a plug-in for a popular open-source tool

caDNAno [140]. The software features are provided in the appendix (see Section A.1).
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The software automates the generation of De Bruijn sequences and uses as an input the

list of restricted sequences (i.e. taboo list) provided by the user (as explained earlier in

this chapter). Additionally, when the origami is designed and the scaffold is chosen,

one can analyse the thermodynamic addressability in this particular design. The

algorithm uses dynamic programming to find potential binding regions in the scaffold

for each of the staples in the design. This is possible by aligning the scaffold sequence

and the reverse-complement of the staple sequences. When such an alignment (within

certain mismatch threshold) is found it is considered in the Boltzmann distribution.

The tool will then calculate the probability that a staple binds its correct target in

the scaffold. The results are visualised as addressability measure distribution.

This software was used to design two synthetic scaffolds as well as for the further

analysis (described in Section 4.3.3).

3.4 Case Study and Diagrams

The first synthetic DBS was constructed to fold into a square DNA origami, roughly

50 nm in size, which required 2.4 knt of the scaffold (see designs in Section 2.5.1).

The shortest DBS satisfying this requirement can be built from subsequences of 6 nt

(i.e. DBS of order 6) and thus have a total length of 4096 nt (i.e. 46). However,

this theoretical maximum was reduced to 3.3 knt when DBS was constrained with

biological sequences (see Section 4.2 for details) and then trimmed to the length

required by the square design (2484 nt).

The second synthetic DBS was constructed to fold into a triangular RNA-DNA hybrid

origami, roughly 30 nm in size, which required 1.1 knt of the scaffold. Similarly, DBS

of order 6 was used. Also, in RNA-DNA origami both the scaffold as well as the

staple sequences were optimised to weaken secondary structures and avoid the hairpin

formation of staples (data not shown).
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The square DNA origami (Figure 3.9) and the triangular RNA-DNA hybrid origami

(Figure 3.10) have been designed using caDNAno [140] that is now considered a stan-

dard tool for DNA design. The designs follow the architectures that were tested

in previous studies [4],[141]. Note that, RNA-DNA hybrid structure assumes A-

conformation (11 bp per turn).
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Figure 3.9: Detailed design of a square DNA origami based on synthetic DBS
scaffold.
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Figure 3.10: Detailed design of a triangular RNA-DNA hybrid origami based on
synthetic DBS scaffold.
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3.5 DNA Origami Structure Flexibility

DNA origami structures have been analysed using CanDo online service [47]. This tool

enables the prediction of the 3D equilibrium structure of programmed DNA assemblies

that are designed to reside on a honeycomb or square lattice. The DNA double-helix

is modelled as an elastic cylinder which bends and twists; cross-overs are assumed to

be rigid links in between the neighbouring helices. The analysis ignores the sequence

information.

Figure 3.11: 3D equilibrium structure of a square DNA origami obtained with
canDo software.

The resulting structure is shown on Figure 3.11. Deformed object is colour-coded

according to the root mean square of the thermal fluctuations as calculated by the

finite element modelling procedure. Also, CanDo is parametrised for the B-form

structure of DNA. Since the triangular design follows A-form (i.e. RNA-DNA hybrid)

the resulting prediction appears severely deformed and hence is not shown here.
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3.6 Workflow and Summary

The workflow developed in this chapter to test the hypothesis is shown in Figure 3.12.

The overall design pipeline is divided into four steps: (i) construction of De Bruijn

graph, (ii) filtering of biological sequences, (iii) construction of alternative De Bruijn

sequences and (iv) further optimisation. Currently, steps (i-iii) are fully automated,

while step (iv) is semi-automated as the optimisation procedures differ depending on

the criteria chosen for the specific application.

Graph construction

input1 
Desired scaffold size

input2 
List of biological sequences

Sequence construction

Optimisation Filtering examination

Bio-orthogonal filtering

DNA origami design

Computational 
analysis

Experimental 
verification

Scaffold selection

Figure 3.12: Workflow developed to test the hypothesis.

In this chapter, we presented the design phase of the synthetic scaffolds for DNA and

RNA origami. We showed how the pipeline above was used to create a case study for

these nanostructures. The computational analysis and experimental verification are

the focus of the following chapter.





Chapter 4

Computational and Experimental

Results

In this chapter we seek a verification of the DNA origami system with syn-

thetic scaffolds; using both computational and experimental methods we

investigate the aspects of biological orthogonality and unique addressabil-

ity. We attempt to answer how “synthetic” our scaffold sequences really are

using bioinformatics tools. Then, we introduce two types of addressability

measures (i.e. thermodynamic addressability of staples and scaffold) which

we apply to designs of Chapter 3. Comparisons are made with several of

the standard viral scaffolds used in DNA origami. Finally, we pursue the

experimental demonstration of the nanostructures folding.

4.1 Introduction

In this chapter, we use a variety of tools to asses bio-orthogonality and addressabil-

ity. Then, we pursue experimental verification of the DNA origami with synthetic

scaffolds. We explain the protocols that were used to obtain different scaffolds and

67
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fold the nanostructures. We follow with the images of the origami samples: square

tile based on pUC19 (control experiment), as well as square and triangular tile based

on synthetic DBS. The experiments were performed in collaboration with Alessandro

Ceccarelli, Jing-Ying Gu, and Chien-Yi Chang.

4.2 Bio-orthogonality

Here, we investigate the question of biological orthogonality. We show the sources of

biological data that were used to constrain the construction of DBS; then we highlight

the contrast between synthetic DBS scaffolds and standard viral scaffolds used in DNA

origami.

4.2.1 Sources of Biological Sequences

To demonstrate the site-specific sequence constraining, the sequence data related to

E.coli (K12 strain) was fetched from the PRODORIC[142] database together with a

list of common restriction endonucleases provided by New England Biolabs (NEB)

and eliminated in the scaffold generation.

Prodoric (Prokaryotic Database Of Gene Regulation) aids the search for DNA binding

sites of various organisms including bacteria such as Escherichia coli. Records from

the database contain information such as site name, region, element, DNA sequence

and its position in the genome.

Querying Prodoric for the complete chromosome of E. coli (K-12 strain) returns 1698

entries: 26 of those contain empty sequences (virtual sites) and among the remain-

ing entries a total of 1384 unique DNA sequences could be identified. Their length

ranges from 4 to 69 bp, with an average being x = 21.81 bp and standard deviation

σ = 10.56 bp. Figure 4.1 shows the distribution of those sequences.

Following conclusion from section 3.2 we can divide the data into two segments when

confronted with the order of De Bruijn sequences B(k, n):
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Figure 4.1: PRODORIC collective data: histogram of known binding sites for E.
coli (K-12 strain). Red dotted line set at n = 6 is an example of separation between

sequences guaranteed to be found in B(4, 6) from those that might be found.

1. set of sequences of length x ≤ n

2. set of sequences of length x > n

The former includes subsequences that are certain to be found; in a single (x = n)

or multiple (x < n) places across the B(k, n) sequence. The latter contains sequences

that are probable, yet the probability that they occur decreases exponentially - pro-

portional to their length.

The second DBS was additionally constrained to exclude RNA-specific sequences (and

their reverse-complements). These were1: starting codon (ATG), Shine-Dalgarno se-

quence (GGAGG), T7 promoter (TAATAC...), lac operon (GGAATT...), PacI re-

striction enzyme (TTAATT...), EcoNI restriction enzyme (CCT...), ClaI restriction

enzyme (ATCGAT), and two custom linkers sequences (CGATCC, CGCGAA).

1the sequences given in parentheses were removed, note that some coding sequences are longer,
however, it is sufficient to remove first (n = 6) bases to prevent the sequence occurring in the final
scaffold
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After construction, the T7 promoter was inserted upstream of the second DBS to

enable transcription in vitro (similar to the previous study [141]). Deeper explanation

is provided in Section 4.4. The analysis of the filtering procedures is provided in the

following section.

4.2.2 Validation

A DBS may contain some undesirable sequences, such as restriction enzymes binding

sites. One may want to constrain the scaffold construction with certain site-specific se-

quences. Thus, in the second step, the user specifies a set of forbidden DNA sequences

which will be excluded from DBS scaffold.

The synthetic DBS scaffold construction was restrained by a set of forbidden se-

quences. As mentioned in Section 3.2.2, we fetched the sequence data related to

E.coli K12 from the PRODORIC[142] database together with a list of restriction en-

donucleases provided by New England Biolabs (NEB). The removal of taboo sequences

is summarised in Table 4.1.

Scaffold PRODORIC NEB
(length in knt) common all
DBS (1.1) 0 0 27
DBS (2.4) 0 0 63
pUC19 (2.6) 28 9 66
M13mp18 (7.2) 42 9 89
λ-phage (48.5) 69 12 145

Table 4.1: Number of hits in databases for scaffold sequences. The data is from:
PRODORIC database for E.coli strain K12 (1686 entries), NEB list of restriction
endonucleases (280 entries; 13 selected as common). Note that both PRODORIC
and common NEB were used to constrain the generation of DBS and thus no hits

were found for those databases.

In addition, several other databases and software tools for short motifs predictions

have been used, including: Pfam [143], CATH [144], tRNAscan [145], Glimmer [146],

TMHMM [147] and miRBase [148, 149]. No hits were obtained for the two DBS that

were tested. The lack of matches can be explained by the fact these databases contain
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relatively long sequences (usually proteins) and thus are extremely unlikely to appear

in any DBS of order 6.

To further validate the bio-orthogonality, we used the Reciprocal Best Hits (RBH)

method. NCBIs BLAST has been used to find alignments of DBS against known

genetic sequences. Significant hits were found when adjusting advanced options of

BLASTN to word size 16. The analysis revealed six alignments in the two sequences

we designed for this study (Table 4.2). The low scores confirm the synthetic nature

of the DBS thus further supporting it as a novel bio-orthogonal method for designing

DNA origami, as these few hits can easily be added to the taboo sequences for filtering

purposes.

Scaffold Genome Score E Value Identities Accession No.
DBS (1.1) Halichoerus grypus 43.6 7.6 100% JX218922.1

DBS (2.4) Spirometra erinaceieuropaei 51.0 0.11 100% LN056044.1

DBS (2.4) Thelazia callipaeda 51.0 1.4 94% LK979655.1

DBS (2.4) Ovis canadensis canadensis 47.3 1.4 94% CP011893.1

DBS (2.4) Ovis Aries (predicted) 47.3 1.4 94% XR 001042372.1

DBS (2.4) Protopolystoma xenopodis 45.4 5.2 96% LM741928.1

Table 4.2: BLAST alignment results.

4.3 Addressability

Here, we investigate the question of addressability. Two methods are presented, the

former is based on the sequence composition alone while the latter is taking into

consideration the thermodynamics of the DNA hybridisation.

4.3.1 Repetitions in Natural Scaffolds

First, we quantify the number of repeated sequences in the different scaffold. This can

be determined using suffix trees. A suffix tree is a compressed, ordered data structure

containing all suffixes of the given text [150]. Once a suffix tree is generated, the count

of longest repeats can be obtained in a trivial way. Every node in that tree with at
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least two children corresponds to a repeated sequence; by counting the number of the

deepest nodes (that have at least two children) we obtain the count of the longest

repeats. Note that we count from the longest to the shortest, so as to avoid double

counting the subsequences of previously found repeats.
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Figure 4.2: Repetitions in various scaffolds. 2.6kb pUC19 vector (left), 7.2kb
M13mp18 bacteriophage genome (middle) and 48kb λ-phage genome (right). A
number of the repeated sequences (k-mers) in the scaffold is plotted according to
the length k. Note that only the longest repeats are shown and their respective
subsequences are excluded. DBS is not included because it contain by design no

repeats longer than 5 nt.

Using this method, we analysed statistical redundancy of the three common scaffolds

for DNA origami: pUC19, M13mp18 and λ-phage. The number of the repeated

sequences (k-mers) is plotted according to the length k (Figure 4.2). Note that only

the longest repeats are shown and their respective subsequences are excluded. Existing

scaffolds contain many repetitions which are longer than the typical binding domains

of staples. In 2-dimensional structures, staple domains are usually composed of 8

nt (or multiples of it). In 3-dimensional structures (build on honeycomb lattice)

domains are shorter - typically multiples of 7 nt. For example, the most frequently

used scaffold, M13mp18 has over 103 repeats of length ≥ 8 nt, while λ-phage has over

104 of them. How many of these repeats occur at staple binding domains depends on

the particular design and choice of corresponding staple set. Generally, the number,

as well as length of repeating sequences grows proportionally to the scaffold length.

M13mp18 has the longest repeats spanning 29, 30 and 42 nt which are representative

examples of ambiguity in staple addressability. Interestingly, they appear as outliers

in the underlying distribution of repeats and are not present in the other two scaffolds,
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for which the longest repeats span 13 and 15 nt respectively. In comparison synthetic

DBS scaffolds of length 4 kb, 16 kb and 64 kb can be constructed such that they have

no repeats longer than 5 nt, 6 nt and 7 nt respectively.

4.3.2 Sequence Addressability

In this section, we examine the sequence addressability in DBS and pUC19 scaffolds;

and how they influence addressability of staples in the square design. This is achieved

by listing all possible k-mers (here, of length 6) and arranging them into an address

map (see Figure 4.3).

Figure 4.3: Address maps (k = 6) of De Bruijn scaffold (left) and pUC19 scaffold
(right). Colours indicate the number of k-mers in the scaffold.

In the map every k-mer has a unique position; for instance, sequence ’AAAAAA’ oc-

cupies the top-left address, ’CCCCCC’ occupies top-right address, while ’GGGGGG’

and ’TTTTTT’ are in bottom-left and bottom-right addresses, respectively. The

colour indicates the number of particular k-mer occurrences in the scaffold sequence.

For DBS the sequences are unique, hence every k-mer either appears once or was

removed through filtering. For pUC19, there are many k-mer which are repeated.

This repetitions influence staple addressability. For every staple in the design, we

checked all k-mers that are included in that staple primary sequence. All k-mers are
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Figure 4.4: Staple chains (k = 6) from a DNA origami square design based on
DBS scaffold (left) and pUC19 scaffold (right). Colours indicate the number of
reverse complement k-mers in the scaffold. The number following each staple chain

indicates the sum of k-mers hits.

colour-coded based on the number of reverse-complementary k-mers present in the

scaffold sequence indicating a potential binding site (see Figure 4.4).

This analysis presents a basic summary of repeated sequences. The following section

provides a much more comprehensive analysis of addressability.



Chapter 4. Computational and Experimental Results 75

4.3.3 Thermodynamic Addressability

Sequence uniqueness alone does not suffice to guarantee a unique binding at the target

location. Since the scaffold might contain slight alternations of the sequence to which

the staple might bind with mismatches (although with smaller binding affinity). That

is why we investigated unique addressability based on binding energies in different

designs and scaffolds configurations.

s

s’

ΔG0

A B

s’

s p q

ΔG0

Figure 4.5: Two types of addressability measures: (A) how likely is the staple
domain (s) to bind the correct region of scaffold (s’ ); (B) how likely is the scaffold

domain (s’ ) to accept the correct staple (spq).

A custom-built algorithm is used to calculate the addressability measure for each sta-

ple (see Figure 4.5A). First, a simple heuristic based on Levenshtein distance finds

all possible regions of the scaffold to which a staple can hybridise. When a possible

binding site is detected the associated thermodynamic potential is derived using Vi-

ennaRNA package[36] (with appropriate energy parameters provided by[139]). The

resulting thermodynamic potentials (measured as Gibbs free energy) are used to es-

tablish the relative probability of staple hybridising at the specific location according

to the Boltzmann distribution. In other words, as the addressability measure increases

the staple is more likely to bind to the correct target.
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Similarly, an algorithm is used to calculate the addressability measure for each domain

in the scaffold designed to bind a staple (see Figure 4.5B). This procedure is more

straightforward, as for each scaffold domain, the relative probability is derived by

measuring thermodynamic potential with the whole repertoire of staples. In this

case, as the addressability measure increases, the domain in scaffold is more likely to

accept the correct staple.

Varying the DNA origami designs affects the addressability of staples. The most

common designs for two-dimensional shapes contain staples which are composed of 3

domains: 8-16-8 nt in length; these types of designs were tested here (see Figure 4.6a).

We found that longer staple domains (> 8 nt long) have nearly perfect addressabil-

ity measure (the probability is approximately 1) in all examined designs. For short

domains (≤ 8 nt long) there is a strong tendency for DBS scaffolds to have a higher

addressability measure than their biological counterparts (Figure 4.6b-c). It is the

case not only for pUC19 and DBS (2.4 knt) which fold into a small DNA origami

tile (presented in this study) but also for the theoretical medium tile design (85x85

nm) based on M13mp18 and DBS (order 7). Although the addressability measure in

the large tile designs (200x200 nm) is generally low, the synthetic DBS (order 8) still

outperforms the λ-phage scaffold (for the first measure; there is little difference for the

second measure). These results suggest that longer scaffolds have a higher probability

of mismatching, which is partly caused by the repeats in the scaffolds, and therefore

ambiguity of staple addressing. Moreover, it might explain the difficulties of folding

larger DNA origami using λ-phage scaffold [151].
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Figure 4.6: Thermodynamic addressability in different designs. DNA origami
designs utilising scaffolds of increasing size (a); Small (pUC19), medium (M13mp18)
and large (λ-phage) compared with DBS in terms of staple (b) and scaffold (c)

addressability; smoothing is applied for representational purposes.
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4.4 Experimental Validation

The first synthetic DBS was constructed to fold into a square DNA origami, roughly

50 nm in size, which required 2.4 knt of the scaffold. The second synthetic DBS was

constructed to fold into a triangular RNA-DNA hybrid origami, roughly 30 nm in size,

which required 1.1 knt of the scaffold. The construction of single-stranded scaffolds

from double-stranded plasmids is illustrated in Figure 4.7.

Folding
a)

ExonucleaseExonucleaseNicking Folding
b)

FoldingTranscriptiond)

c)
SeparationAmplification Folding

a)

b)

c)

d)

Figure 4.7: Scaffold preparation protocols: a) the common folding protocol as-
sumes ready-to-use viral ssDNA; b) removal of anti-scaffold strand from pUC19 via
enzymatic reactions; c) removal of anti-scaffold of de Bruijn PCR product using

magnetic beads; d) transcription of RNA de Bruijn scaffold

The 2.6 Kb long pUC19 cloning vector was subjected to enzymatic reactions to obtain

single-stranded DNA scaffold. This reaction nicked the anti-scaffold strand of DNA

and allowed for the digestion of the anti-scaffold strand (Figure 4.7b).
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The 2.4 Kb De Bruijn DNA sequence encoded in a commercial plasmid was amplified

through a PCR. The reverse primer was modified with a biotin molecule linked through

a triethylene glycol (TEG) spacer-arm (IDT). The sequence was then attached to

the magnetic beads and denatured. The complementary strand was finally removed

through magnetic beads (Figure 4.7c). The single-stranded sequence was purified

through agarose gel electrophoresis [152].

Finally, the 1.1 Kb long De Bruijn RNA sequence was synthesised with a standard

T7 transcription kit and purified (Figure 4.7d).

The detailed protocols for scaffold preparation are explained in the Appendix A.

DNA Origami of the Square Tile

First, as a control experiment we folded a pUC19 scaffold into a square (Figure 4.8

bottom panel). The square design follows closely the design shown for DBS square

(Section 2.5.1). The 2.6 kb long cloning vector was subjected to enzymatic reactions

and folded into a square DNA origami tile following protocols described in Refer-

ence [47]. Because the folding of a square required only 2.4 knt of the scaffold, the

remaining 200 nt were left unpaired and formed a dangling loop at the corner of the

shape.

The De Bruijn origami was then folded into a square following the rapid isothermal

protocol described by Sobczak et al. [113] This method grants a more stable product

with a lower rate of misfolding, reducing the folding time from hours to minutes. The

samples were finally analysed by AFM to compare the quality against the pUC19

DNA origami.

For AFM imaging, 5 µL of purified origami sample solution was applied onto freshly-

cleaved mica. Subsequently, 10 µL of NiCl2 (10 mM) was applied to stabilise the

sample on the substrate. AFM imaging was performed on a Bruker multimode 8 AFM

in ScanAsyst mode, using Bruker Scanasyst-Fluid+ tip. Atomic force microscopy

(AFM) imaging confirmed the correct folding of the nanostructures (Figure 4.8).
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Figure 4.8: AFM imaging of the square DNA origami based on DBS scaffold (top)
and pUC19 scaffold (bottom).

RNA-DNA Hybrid Origami of Triangular Tile

Furthermore, in order to test our design for RNA-DNA hybrid origamis, we con-

structed a 1.1 knt long DBS scaffold which was designed to fold into a triangular tile

with a hole. Again, a DBS satisfying this length requirement was built from 6 nt long

unique subsequences.

The RNA-DNA hybrid origami follows the protocol similar to the previous study [141]

(see Figure 4.7d).

These two experiments demonstrate that DBS scaffolds can be utilised in the same

manner as viral ones without folding protocol change. The bottleneck was a single-

stranded DNA scaffold production, which is long-drawn and labour-intensive for syn-

thetic DBS: it requires excessive laboratory handling in order to produce the volume
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Figure 4.9: AFM imaging of the triangular RNA-DNA hybrid origami based on
DBS scaffold.

of DNA which is comparable to that of the viral scaffold. This is not the case for

RNA-DNA origami, where the scaffold is an RNA transcript and can be easily syn-

thesised. However, the drawback of RNA scaffolds is that once produced they are

subject to degradation by RNases (and hence require special lab conditions).

4.5 Summary

Establishing the nonspecific sources of interactions (or interference) within a given

biological system is a challenging task. Regardless of this difficulty, we explained

here how our method allows explicit exclusion or inclusion of sequence specific sites

from the synthetic scaffold. In consequence, the final DNA nanostructure can be

programmed for bio-orthogonality (provided that one has sufficient knowledge about

the given biological system).

Our computational analysis shows that the repetition of sequences in natural scaf-

folds has a negative impact on the staple specificity. This problem is magnified for

longer scaffolds because the number of potentially stable targets for a staple grows

proportionally with the scaffold length. (An obvious solution would be to use only

long staples, however, the exact hybridisation kinetics of longer sequences might be



Chapter 4. Computational and Experimental Results 82

not-trivial; also, sparse double-crossover motifs may compromise the rigidity of nanos-

tructures.) Thus, the use of natural sequences does not scale well for the creation of

large objects based on a single scaffold. Further, we show that scaffolds based on DBS

provide more specificity and are therefore uniquely addressable.

Also, we showed experimentally that DBS scaffolds can be utilised for DNA and

DNA/RNA hybrid origami without folding protocol change.
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Chapter 5

DNA-based Stack Machine

We propose the in vitro implementation of a DNA data structure, where

data and operations form the core of the molecular interaction network.

We demonstrate how an evolutionary algorithm can be used to optimise

the system for maximal robustness among all molecular interactions and

minimal occurrence of undesirable reactions. The stack data structure is

here employed as a reversible, and potentially unlimited, data storage. The

following Chapter 6 evaluates the design we propose and develop here.

5.1 Introduction

In this chapter we propose a conceptual framework to address hypothesis H2:

H2 : It is possible to program a synthetic DNA structure allowing

recording of data in a controllable and, in principle (albeit not physically),

unlimited manner.

To tackle this hypothesis, we have decided to implement a DNA-based stack machine.

Stack is among the most elementary data structures – operations on stack occur only

85
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at one end of the structure [153]. The simplicity of operation and sufficient com-

putational power were the two key features motivating our prototype creation. The

specification of the DNA stack data structure, presented here, was done collabora-

tively with N. Lopiccolo. The sequence optimisation (Section 5.6) and computational

analysis (Chapter 6) is my own work. In addition, the laboratory work was done in

collaboration with N. Lopiccolo who performed the experimental verification of my

designs (Chapter 6).

This chapter describes how to implement a stack machine using DNA strands. We

explain the recording and reading operations (Section 5.4); these two modes of oper-

ation are realised through toehold-mediated strand displacement reactions. We chose

DNA strand displacement because this mechanism allows for the strict kinetic con-

trol of reaction pathways; moreover, it is enzyme-free as opposed to Benenson et

al. [81]. To design robust system favouring desired operations and minimising unspe-

cific interactions we resorted to a genetic algorithm. Evolutionary algorithms have

been successfully utilised for evolving nano-scale and self-assembling systems in the

past [154–157]. We conclude the chapter with the proposed solution: a set of bricks

generated by our algorithm.

The stack was optimised for RNA interaction as the end goal is to use this system

in vivo. However, here we verify its feasibility using DNA strands. For this reason,

when DNA is mentioned it does apply to both DNA and RNA. When we speak about

RNA we specifically mean RNA only.

5.2 Stack Data Structure

A stack is an abstract data structure that stores as a sequential collection of elements,

with two principal operations: push adds a new element to the top of the stack, and

pop removes an element from the top of stack [153]. Formally, the stack is implemented
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as follows:

push : stack× element −→ stack

pop : stack −→ stack× element

with the invariant

pop(push(stack, element)) = stack, element

to guarantee last-in-first-out operation.

Further common but non-essential operations such as peek (return the last element

without removal) and empty (return true if the stack experienced at least as many

pop as push operations) are not provided in our implementation.

Fully implementing this data type in DNA requires molecular realisations of the assem-

bled stack, all potential elements, as well as the push and pop operations. We achieve

this by associating each data element and each operation with a single-stranded DNA

(ssDNA) oligonucleotide with partial secondary structures. We call those strands

“DNA bricks”, or simply “bricks”. An abstract schematic of the operation of a molec-

ular stack machine is depicted on Figure 5.1.
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Figure 5.1: An abstract depiction of molecular stack machine. Here, the stack is
initialised with the start bricks (light blue); which are then triggered by activators
(green) to accept data tokens (red). This cycle allows, in principle, an unlimited

data storage.
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Core specification:

1. The data structure is implemented by a growing chain of DNA “bricks”.

2. There is exactly one site at which the chain can grow by addition of write

strands.

3. Toggling between an activator strand and a write strand ensures that only one

data token is recorded. Prevents run-away process.

4. Surplus activators and unbound write bricks should be removed or degraded

between the individual steps.

5. Addition of specific readout strands should release recorded information (last

in, first out)

Additional desired features:

6. Recording followed by readout should leave the stack state (effectively) invariant.

7. Binding sites could be addressable by specific sequences to allow for multiple

stacks.

The last two features would allow the implementation of (Turing-universal) stack

machines as suggested in previous studies [24, 158].

5.3 DNA Bricks Design

The stack data structure is built from bricks via hybridization of complementary DNA

domains. More precisely, the stack forms a double stranded DNA (dsDNA) assembly

with essentially no single-stranded regions but one active toehold domain, that offers

an entry for operation. This design aspect was chosen to ensure bio-orthogonality

(see Section 5.5 for details). Data bricks form the top strand and push bricks form

the bottom strand of this dsDNA assembly.
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Figure 5.2: Schematic of the different bricks involved in the DNA data structure.
Arrows indicate 5’→ 3’ direction.

brick label domains
start S a′bac
push P c′a′b′ad′f ′g′fe′

writeX X a′bacehxlxkxh
′
xd

writeY Y a′bacehylykyh
′
yd

read R d′e′c′

pop Q ef ′gfda′bac
reportX TX mx′

reportY TY my′

Table 5.1: Specification of bricks in the design. The ssDNA strand sequences have
been divided into domains. The strands are given in 5’ to 3’ direction.

domain length [nt] domain length [nt]
a 6 hx 10
b 4 hy 25
c 11 kx, ky 10
d 10 lx, ly 10
e 10 x 11
f 6 y 11
g 5 m 11

Table 5.2: Specifications of individual domain lengths.

The stack operates with six distinct DNA bricks and is able to store combinations of

two different data tokens, encoded by two types of data elements. Two further bricks
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are added for experimental analysis. See Figure 5.2 for a schematic representation of

the employed bricks and their interactions (note the sequence notation: an apostrophe

marks reverse complements, i.e. a′ is a reverse complement sequence of a).

• Start (S): data brick initialising the data structure. It features a toehold domain

for interaction with push and a hairpin motif at the 5’ end. This hairpin under-

goes branch migration with a complementary hairpin in push but is otherwise

not functional in the current design.

• Push (P): operator brick to initiate subsequent recording of data tokens. The

brick contains the complementary toehold for interaction with start, a hairpin

motif complementary to the one in start, the second hairpin for structural rea-

sons that does not participate in branch migration, and two toehold domains,

one on each side of the structural hairpin, to bind write bricks.

• Write (X/Y): data bricks that can be stored in the data structure. These bricks

contain two toehold domains complementary to the push toeholds, a structural

hairpin that does not undergo branch migration, plus the same toehold domain

and 5’ hairpin that form the start brick. Toehold domains and branch migration

hairpins are identical for all types of write bricks. Thus, they can only differ

in their structural hairpin motif. Since these hairpins do not participate in

hybridization or branch migration, they can be functionalized to host any desired

functionality such as recognition sites for DNA binding proteins.

We employ two different types of write bricks, denoted as write-X and write-Y.

Write-Y features a longer hairpin stem than write-X (twenty-five base pairs

against ten base pairs) and has a different sequence in its stem-loop. Although

we currently employ binary data (X or Y ), the approach is intrinsically n-ary.

• Pop (Q): data brick that undoes the rightmost push operation. This brick is

the exact complement of push

• Read (R): operator brick that removes the rightmost write operation. The brick

is the complement of all toehold domains used in write’s. Notably, it does not

contain any domains that interact with the structural hairpin of write bricks.
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• Report (T): non-essential bricks for experimental analysis. Report bricks do not

participate directly in the operations of the stack data structure. Instead, they

interact with the data domains of structural hairpins in the write bricks. Report

bricks can be added to the device in any configuration since their binding sites

in the data hairpins are always accessible and since they do not interfere with

the operating modes of the device.

In this study, we use linear report strands that are 5’ biotinylated via a 2.6 nm

tetraethylene glycol (TEG) spacer. We functionalized these report bricks with

streptavidin coated gold nanoparticles of different diameters, which allows for

easy recognition using transmission electron microscopy (TEM).

We introduce single-letter nomenclature for the bricks to easily denote the state of

the stack. For instance, an empty stack is denoted by single start brick: S, while a

stack with a single push attached is denoted by: SP. Each of the configurations SPX

and SPY denote stacks with one data token recorded. In a similar way, there are four

configurations of two data tokens recorder: SPXPX, SPXPY, SPYPX, and SPYPY.

5.4 Modes of Operation

DNA hybridization, branch migration and strand displacement are the three processes

governing all DNA interactions involved in the system. All reactions are energetically

downhill, driven by the binding energy of the closing toehold domains.

5.4.1 Recording

A schematic of the recording process is shown in Figure 5.3. Starting from an empty

stack, which is represented by the start brick (S), the device is toggled into its data

state by providing a push operator (P). The start-push interaction begins by irre-

versibly binding toehold c and continues via branch migration among the two com-

plementary aba’ domains. The stack is now in its data state (SP), where a single
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Figure 5.3: Schematic of the recording process. Start (a) and push (b) bricks
collide and hybridise partially (c). Through the branch migration, they hybridise
entirely (d). The DNA stack can now accept a free write brick (e). The final

configuration (f) is analogous to (a) and the cycle can be repeated.

open toehold region (d’e’ ) can recruit a write brick (X or Y). The write will partially

hybridise with the d’e’ push toeholds, thus toggling the stack back into its operator

state (SPX). In this state, the stack exposes the same toehold-hairpin interface that

characterises the start brick, which allows the device to undergo subsequent rounds

of recording.

Note that the assembled stack is essentially double stranded with a single exposed

toehold domain. Because the structural hairpins of neither the push nor the write

participate in branch migration, the stack will form holiday junctions for each recorded

data element. As data specific domains are encoded in the loop regions of this holiday

junction, the recording cycle is independent on the actual data written.
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Figure 5.4: Schematic of the reading process. The stack containing one write
brick (f) hybridises with the read brick (g). Through strand displacement reaction
the data token is released (h) and the stack (d) can potentially accept a new write
brick. However, if the pop brick (j) is provided instead, the stack is reset to its

original configuration (a). This process produce a waste duplex (k).

5.4.2 Reading

While recording elongates the stack, the read-out will shorten the stack by undoing

any recording in the last-in-first-out manner required by the stack specification. The

read-out cycle is schematically presented in the Figure 5.4.

In operator state (SPX), providing a read brick (R) will peel the last recorded write

brick off the stack, thereby toggling the device back into the data state (SP). This

reaction proceeds in two steps: first, the read brick hybridises to the stack at its unique

exposed c domain. Secondly, the dangling d′e′ domains of the read brick initiate a

three-way branch migration with the d′e′ domains of the adjacent push brick against

the de domains of the write brick, until the push strand is completely displaced.

Note that the data hairpin of the write brick does not participate in the branch

migration. This ensures that a unique read brick can interact with any write brick,

ensuring that data elements can be read from the data structure without a need to
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know which information has been stored. The resulting read-write complex (RX)

does not expose any single-stranded domains and will not participate in further DNA

interactions.

In its data state (SP), the stack can either be extended again with another data

element by switching to the recording operation, or reading can be completed by

toggling the stack back into its operator state. The latter is done by providing a pop

brick (Q) that will interact with and peel off the exposed push brick. Analogue to

the previous reaction, pop-push interactions are composed of their initial irreversible

toehold hybridization, subsequent branch migration and eventual strand displacement.

Again, the resulting push-pop complex (PQ) is completely double stranded and will

not participate in further DNA interactions.

It is important to point here the issue of synchronisation. For example, it is possible

that after a read action a write action can occur immediately (without a push having

occurred first). While this is not really a problem in vitro, where one have control

over the order of adding the bricks, it is a possible source of error in vivo. The

synchronisation of operations has to be ensured if the stack was placed in a noisy

cellular context.

5.5 Molecular Structure and Other Requirements

Figure 5.5: 3D conformation of an assembled DNA stack. The visualisation
assumes a B-DNA form.
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Domain sizes have been chosen with the following objectives: toeholds are long enough

to span a single helical turn when hybridised with their complements (10 nt) which

should promote irreversible hybridization. Hairpin loops that participate in branch

migration are long enough to promote stable stems (6 base pair stems with 4-5 nt

loops) but short enough to obtain quick branch migration times.

The structural hairpin loop of write bricks (containing data tokens) together with the

unpaired domain of report are long enough to accommodate 5 nm and 10 nm diameter

nanoparticles in close vicinity to the device. When assembled, subsequent data tokens

are separated by the domains ecaba′d (47 bp). Data-carrying hairpins are orthogonal

and formed by domain hx (10 bp) or hy (25 bp). The biotin spacer is formed by m

(11 bp) and k (10 bp) or part of the latter.

Assuming A-DNA conformation (raise 0.24 nm/bp, rotation 33.6◦/bp) data-carrying

hairpins are separated by about 11 nm and lie in a 139◦ degree turn. The data-carrying

hairpin is orthogonal and 2.4 nm long. The biotin is separated from the recording site

by an up to 2.5 nm spacer.

Assuming B-DNA conformation (raise 0.34 nm/bp, rotation 35.9◦/bp) data-carrying

hairpins are separated by about 16 nm and lie in a 247◦ degree turn (-112.70). The

data-carrying hairpin is orthogonal and 3.4 nm long. The biotin is separated from the

recording site by an up to 3.7 nm spacer. See Figure 5.5 for an example.

In order to facilitate future implementation of our device in vivo, all strands (except

the report strands) have to begin with a sequence that encodes a promoter. That is

because for the transcription to take place, the enzyme that synthesises RNA, namely

RNA polymerase, must attach to the template DNA containing the brick ”blueprint”.

Promoters contain a specific DNA sequence recognised by the polymerases which pro-

vide a secure initial binding site and regulate the transcription of RNA [159–161].

While the entire promoter sequence is necessary for a successful recognition and initi-

ation of the transcription, only the last few nucleotides (underlined in the Table 5.3)

are included in the transcription product. And thus, every brick should start with the
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promoter sequence
T3 AATTAACCCTCACTAAAGGGAGA
T7 TAATACGACTCACTATAGGGAGA
SP6 ATTTAGGTGACACTATAGAAGNG

Table 5.3: Potential promoter sequences. Information from the MEGAscript c© Kit
user guide 1330M(G).

sequence of the specific promoter that regulates its expression. The sequences here

were chosen in such a way as to maximise the transcription efficiency [162].

In addition, binding sites of (unbound) push and pop strands are dangling single

strands that allow for a 3′→5′ ribonuclease (RNase) digestion. Similarly, the dangling

strand of write bricks is oriented opposite to that of push and pops, and would thus

be susceptible to RNAse digestion when unbound; however, write bricks bound to the

stack should be protected from enzymatic attack.

Since all hybridization should be irreversible, we require len(c) and len(d) ≥ 11 (im-

plying one full turn of an RNA A helix). To support stability of the a′ba hairpin,

len(a) = len(a′) should be at least four, and len(b) between four and eight nucle-

obases. The aba′ motif should not constitute a terminator.

When assembled, subsequent data tokens are separated by the domains ecaba′d. Fol-

lowing the architecture of Reference [163], we would like this sequence to be 44 nu-

cleotides long, implying 11 nm separation and 105◦ turn between two subsequent data

tokens.

5.6 Genetic Algorithm for Sequence Optimisation

Designing the nucleotide sequences that make up the DNA data structure, based on

the various specification and constraints mentioned previously, is a complex combina-

torial design problem. Thus, an evolutionary algorithm is used to optimise the various

sequences; namely, we employ a variant of a genetic algorithm [164]. Genetic algo-

rithms are a way of solving problems by mimicking the processes of natural selection.
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They rely on selection, recombination and mutation to quickly evolve a solution to an

optimisation and search problems. The key advantage of using genetic algorithms is

that they are most effective in handling a large and complex search space for which

little is known.

Our custom-build genetic algorithm is based on the free and open-source inspyred1

framework. For an overview of the main loop see Algorithm 2.

Algorithm 2 Evolve()

1: function Evolve
2: initialise random population P
3: evaluate fitness of P
4: while terminator not satisfied do
5: select parents F0 ← selector(P )
6: create offspring F1 ← variator(F0)
7: evaluate fitness of F1

8: update population P ← replacer(P , F1)
9: end while

10: end function

In our representation, an individual (i.e. candidate solution) is described by its geno-

type, such that each gene corresponds to a separate domain from Table 5.1. Thus,

a gene codes a domain sequence of a given length and initially consists of random

nucleotides. A phenotype is expressed as a complete design of DNA bricks assem-

bled from these genes; its fitness is evaluated using a multiple objective function (see

Table B.1). The fitness function calculation (i.e. the evaluator) and other genetic

operators are described in the following sections.

5.6.1 Evaluator

The fitness of an individual is evaluated based on two factors: desired secondary struc-

ture and binding energies. We implemented the following partial scoring functions:

(i) hairpin loop formation Shlf , (ii) intermolecular hybridisation Sih and (iii) energy

gain Seg.

1Software available at https://pypi.python.org/pypi/inspyred
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Hairpin loop formation evaluates a single RNA strand using RNAfold to predict its

minimum free energy structure (MFE). The result is compared to a secondary struc-

ture imposed by the design. Similarly, intermolecular hybridisation uses RNAcofold

to evaluate two RNA sequences which are forming a dimer structure. These functions

are given by:

Shlf (s, s′) = len(s)− (DH(s, s′))2 (5.1)

Sih(s1, s2, s
′
1, s
′
2) = len(s1s2)− (DH(s1s2, s

′
1s
′
2))

2 (5.2)

where len(s) is length of a sequence s; DH is the Hamming distance between two

sequences s and s′ denoting the predicted and desired secondary structures in a dot

bracket notation (as described in Section 2.3.1). Furthermore, s1s2 denotes a dimer

structure of two molecules.

Thus, each function penalises individuals which are further away from the desired

structure; its score decreases quadratically with an increasing number of mismatches.

The algorithm aims to maximise the value of these functions.

Energy gain function measures the net free energy gain obtained from dimerisation

of two RNA strands at a cost of breaking the secondary structure of the individual

strands. It is given by:

Seg(s1, s2) = ∆G(s1s2)−∆G(s1)−∆G(s2) (5.3)

where ∆G is a minimum free energy (in kcal/mol). For all specific interactions (as

shown in recording and readout processes) the energy gain is contributing positively to

the total score function (denoted Seg+), but it penalises non-specific interactions (de-

noted Seg−). The detailed list of all evaluator functions is provided in Appendix B.1.
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The absolute fitness of an individual is then evaluated by a weighted sum of all the

individual scores in the following manner:

Fitness = Σ(Shlf × whlf ) + Σ(Sih × wih) + Σ(±Seg± × weg) (5.4)

where weight values whlf , wih, weg are set to 3.0, 2.0, and 1.0 respectively.

5.6.2 Variator

The variator combines existing solutions (from the parental population) into others,

possibly unexplored solutions (the offspring population). We defined 3 genetic opera-

tors which are applied to individuals with a certain probability and independently of

one another. These are:

• single-gene mutation: a gene is picked at random2 and assigned a new random

nucleotide sequence – similar to reinitialising the domain (prob = 0.01).

• single-nucleotide mutation: similar to above, but rather than mutating the

entire gene a nucleotide at random position is mutated into another type of

nucleotide (prob = 0.14).

• crossover: is a standard one-point crossover in which a crossover point is set

to a random nucleotide position at the random domain. All nucleotides beyond

that point are swapped between the two parents (prob = 0.8).

5.6.3 Terminator, Selector and Replacer

The main loop is guarded by the terminator which stops the genetic algorithm when

a total of 105 individuals have been evaluated. The population size is set to 1000

individuals, and thus the evolution is complete after 100 generations.

2In our case ”picked at random” imply sampling with a discrete uniform distribution (i.e. each
outcome is equally likely to happen).
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Figure 5.6: Trajectories of the best individual in each of the 11 populations. Also,
the theoretical maximum fitness (green) and random search (blue) is shown.

domain sequence domain sequence
a TCTCCC hy GCACGCTCGAGCTCGTATCGCAGTA
b GCCA kx CTCTAATCAC
c GCACACACTTC ky CATCCCTATA
d ACACCACTTC lx AGACAAAAAA
e GGGAGACCAA ly ATTTTTTTCC
f CGGCGG m TATGACTGCAA
g CTGCC x AGACCGCTAAA
hx ATTAGTAGGT y ATACTGCTTTA

Table 5.4: Sequence specification of domains in the design (i.e. the “winning
genotype”). Sequences are indicated in 5’→3’ direction. Underlined nucleotides

were set as constants (imposed by the promoter choice).

The selector is a default tournament selector provided by the inspyred framework. It

pulls 2 individuals from the population using random sampling without replacement

and selects the best one. This procedure is repeated until 1000 parents are selected

for reproduction.

In the last step, the replacer discards the worst 2% of the offspring population and

retains the top 2% of parents population as survivors (i.e. elite individuals).
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5.7 The Proposed Solution

Table 5.4 lists the domain sequences of the highest-scoring genotype found by the

genetic algorithm. The trajectories of the highest-scoring individuals in each of 11

independent populations is shown on Figure 5.6. The best individual (marked with

an arrow) was chosen from a set including 105 contenders. The theoretical maximum

was calculated by assigning maximum score value to all individual evaluator functions

(i.e. perfect structures, maximum energy gains). In reality this optimal solution is not

reachable (i.e. suboptimal energy gains are required to achieve desired structures).

5.8 Summary

In this chapter, we presented the design phase of the DNA-based stack data structure.

The primary sequence of DNA strands was obtained using a genetic algorithm. One of

the prohibitive factors in our approach is repeated fitness function evaluation; finding

the optimal solution to this multi-objective optimisation problem requires computa-

tionally expensive evaluation. To study the behavior of the DNA stack one may want

to use, for example, molecular dynamics simulation which may require several hours

to several days to complete. We resorted to this type of simulation as a validation

of the final design (see Section 6.3), while the genetic algorithm is based on fitness

evaluation that is computationally more efficient, namely, dynamic programming for

secondary structure prediction. Our algorithm optimised the DNA stack design for

the individual structures, dimer structures as well as energies of desired and undesired

reactions. The computational modeling of the stack and experimental verification are

the focus of the following chapter.

As our design is based on ssDNA bricks, our entire data structure could – in prin-

ciple – be expressed in vivo by a living cell as an RNA data structure and post-

transcriptionally controlled. As we store data in a double-stranded fashion rather

than in dangling single strands, an in vivo realization is likely to suffer less from

enzymatic attack.





Chapter 6

Computational Modelling and

Experimental Results

In this chapter, we present results of the operations performed by the DNA

stack in silico and in vitro. We model the stack computationally using

secondary structure prediction software as well as molecular dynamics and

Monte Carlo methods. We build the stack and test it in the lab using both

standard molecular biology procedures (gel electrophoresis) and a sensitive

DNA quantification method (on-chip electrophoresis). Finally, we visualise

the structure using Transmission Electron Microscope (TEM).

6.1 Introduction

This chapter analyses the DNA-based stack using ViennaRNA package for secondary

structure prediction; the predictions were made using RNA sequences and param-

eterised accordingly; the correct folding was also verified for DNA parameters. In

the section that follows, we show the oxDNA simulations of the DNA stack in room

temperature. Brief descriptions of ViennaRNA and oxDNA model were provided in

103
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Chapter 2. Finally, we follow up with the experimental results: electrophoresis of

DNA stack in different states and microscopy of the assembled stack decorated with

report bricks. The experiments were performed in collaboration with Annunziata

Lopiccolo.

6.2 Secondary Structure Prediction

Here, we analysed the individual RNA bricks that are used to assemble molecular

data structure. As shown on Figure 6.1 start, push, both writes, and pop bricks all

form desirable secondary structures. However, both reports form undesired secondary

structures. Similarly, read brick form a minor stem-loop but both 5’- and 3’-end are

dangling and thus should not impede the reading operation.
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Figure 6.1: RNAfold secondary structure prediction for individual strands

Next, we investigated RNA bricks involved in recording (Figure 6.2) and reading (Fig-

ure 6.3). The software predicts that the bricks form stable dimer structures (i.e. start-

start, push-push, etc.), however, all these dimers are a result of self-complementarity.

There is no free energy gain when comparing secondary structures of two single bricks

and one dimer complex, meaning that dimer formation process is not spontaneous.

Moreover, the prediction indicates the correct formation of the start-push complex
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as well as binding of two write bricks. Note that, for the last two predictions we

introduced a special ’startpush’ brick since the software cannot make predictions for

more than two strands.
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Figure 6.2: RNAcofold secondary structure prediction of strands involved in
recording process.
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Figure 6.3: RNAcofold secondary structure prediction of strands involved in read-
ing process.
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6.3 Coarse-grained DNA Simulations

Here, we simulate all individual bricks and focus on the assembly of the growing DNA

stack; the read-out process is not simulated. Two types of simulations were run:

Monte Carlo (running on CPU) and molecular dynamics (running on CUDA/GPU).

The simulations were parameterised to run at constant room temperature (23 ◦C for

CPU simulation, 295 K for CUDA/GPU simulation). For details of the simulation

setup refer to Appendix B.2.

6.3.1 Individual Bricks

start push

write-X write-Y

read pop

Figure 6.4: Individual bricks at the equilibrium state. The 5’-end of each brick is
marked in grey.
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All brick from the DNA stack design were simulated as separated systems until they

reach the equilibrium state (i.e. no further change in the configuration is observed).

The individual structures (shown on Figure 6.4) are close to the predictions obtained

with ViennaRNA package, with the exception of the writeY brick. For that single

brick, we failed to observe a long hairpin stem. Instead, the simulation indicates

a formation of two shorter hairpin stems. The tertiary structure is non-trivial and

somewhat difficult to analyse: here, writeY resembles a three-way junction with an ad-

ditional pseudoknot at 5’-end. Whether the writeY structure as predicted by oxDNA

is also realised in reality remains a matter of further investigation.

6.3.2 Start-Push Complex

A

B

C

D

E

F

Figure 6.5: Formation of the start (blue) – push (green) complex (SP). The
intermediate structures are shown in snapshots (A–F at 0, 3, 18, 24, 27, and 38 µs).
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Here, we explore the interaction between the first two bricks of the DNA stack (Fig-

ure 6.5). First, two separated systems containing start and push bricks are joined into

a single system (A). In order to avoid time-consuming simulation of the Brownian mo-

tion (which are not interesting in the given context), a mutual trap is added. A mutual

trap will exert a constant force on two particles, thus pulling them together. Here the

mutual trap is applied to the 3’-end of the start and 5’-end of the push brick (marked

in red). As a consequence, the simulation is focused on the interaction between two

bricks when they are in close proximity to each other (B). The hybridisation of the

c and c′ domains is initiated and the first five base pairs are formed (C). The c-to-c′

duplex is completed (D); at this stage, the start brick hairpin is partially opened

(E). This allows the formation of the final start-push complex (F). Throughout this

process, the push brick hairpin (designed to bind on of the write bricks) remains in a

stable configuration.

6.3.3 Longer Complex

Following the procedure described in the previous section, a formation of the longer

SPXPX complex was analysed. First, a system with a stable SP complex was joined

with a system containing the writeX brick. The joined system was simulated until

the hybridisation completed and equilibrium state was reached. In a similar way,

additional push and writeX were added. Interestingly, despite the correct binding,

the final stack structure (Figure 6.6) varies from the predicted conformation (see

Figure 5.5). Moreover, one can observe that the hybridisation of the writeX and the

following push brick did not run to completion (on the time scale of this simulation),

Instead, two small hairpins were formed where a linear duplex was expected (marked

with arrows). In consequence, the stack might not adopt a linear structure (as in

Figure 5.5) but perhaps assemble into a zig-zag pattern.
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S

P

X

P X

Figure 6.6: The SPXPX complex simulation. The individual bricks are added
in order: start (blue), push (green), writeX (red), push (dark green), and writeX
(dark red). The arrows indicate two small hairpins between the writeX and push

bricks.

6.3.4 Report Binding

During the design of the DNA stack, one aspect was particularly problematic. Namely,

the binding of the report brick to the hairpin loop of the write brick. This issue is

due to the fact that ViennaRNA lacks the ability to predict kissing stem-loops. The

report brick is not a stem-loop per se, but its interaction with the write brick can be

described as a kissing complex.

Here, a reporter binding is simulated with oxDNA. A reporter brick is joined with

a system containing assembled SPX complex. Similarly to previous simulations, a

mutual trap is set between the report brick and the corresponding domain of the

write brick (Figure 6.7). Despite simulating the system for a relatively long time (i.e.

606 µs) the report brick failed to bind to the stack. Throughout the simulation, the

hairpin loop of the write brick remains in a stable, closed conformation. This prevents

the report brick to initiate hybridisation.
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A

B C

(B
)

(C
)

Figure 6.7: Attempt at binding the report (purple) to the hairpin loop of the
write brick (red). Report strand is kept in close proximity to its target but the

hairpin loop remain inaccessible.
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6.4 Experimental Verification

This section presents experiments conducted with on-chip electrophoresis aimed at the

characterization of the ssDNA bricks that compose the stack, as well as the validation

of data recording and reading cycles. For additional confirmation of the data storage,

the assembled nanodevice was imaged using transmission electron microscopy (TEM).

6.4.1 Bioanalyzer Results

We performed capillary electrophoresis measurements of all individual bricks in order

to determine the response of the Agilent 2100 Bioanalyzer High Sensitivity DNA

Assay for our non-standard DNAs. All bricks were provided in 200 nM concentration.

Electropherograms always detected a single clear peak per brick. Table 6.1 summarises

for each brick its known size, the measured migration time and fluorescence area under

the peak, as well as the calculated size and molarity derived by the instrument software

from comparison to the reference ladder. Averages and standard deviations have been

calculated from at least three independent measurements.

measured derived
brick size[nt] time [s] area [FU] size [bp] molarity [nM]]

start (S) 27 45.22±0.92 94.6±61.23 51±7.6 34.80±15.92
push (P) 64 46.81±0.76 74.4±39.2 64±6.9 8.08±0.174

write-X (X) 98 53.27±0.34 55.93±39.65 128±3.78 5.961±0.473
write-Y (Y) 128 55.35±0.06 5.27±1.15 147±0.8 0.845±0.221
report-X (Rx) 22 44.81±0.81 248.5±60.57 47±6.4 78.25±16.81
report-Y (Ry) 22 45.18±1.02 241.3±84.49 47±11.3 86.44±12.77

read (R) 31 44.61±0.35 73.85±15.76 46±2.82 31.67±1.21
pop (Q) 64 47.89±0.28 28.13±25.4 74±3.4 6.602±6.78

Table 6.1: Calibration results (given as averages and standard deviation) for all
individual strands provided in 200 nM concentrations.

The measurements successfully discriminate the migration times of almost all strands

(disregarding report strands) with significant differences. Only start and read cannot

be reliably differentiated.

Striking discrepancies between the known brick sizes and the sizes derived by the

software from comparison to the ladder might be attributed to two reasons: firstly,

short oligomers such as start, read and report are well below the detection limit of
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the high sensitivity kit, which can resolve dsDNA fragments between 50 – 7000 base

pairs in length. Secondly, the reported deviations might lie in the fact that our

bricks contain extensive secondary structures that might affect their motility in the

gel matrix.

A similar discrepancy is observed in the derived molarity values. This is partly due to

the fact that molarity calculation is based on the base pair estimation and will thus

suffer from the issues described before, partly because our bricks contain extensive

ssDNA regions which interact differently with the fluorescent dye than dsDNA.

Recording Process

To probe the performance of the data recording (push) cycle, we performed exper-

iments in which we sequentially recorded five data tokens (X,X,X, Y,X) onto the

growing stack. We ran five parallel experiments and stopped them at different steps

in the protocol. Gel-like images of the Bioanalyzer output are shown in Fig. 6.8.

Figure 6.8: Capillary electrophoresis of the recording process. Lane 1=SPX;
Lane2=SPXPX; Lane 3=SPXPXPX; Lane 4=SPXPXPXPY; Lane 5=SPXPXPX-

PYPX. Data obtained from five parallel experiments.

For the first three recorded data tokens, the addition of each write-X brick is ac-

companied by the appearance of a new clear peak in the spectrum: after addition of

the first write-X brick, this peak (start-push-write-X complex, or SPX) accounts for

more than 58% of the total fluorescence. Lane 2 shows the appearance of a second
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peak (SPXPX) that corresponds to the two data tokens. However, this second peak

accounts for only about 22% of the total fluorescence, whereas almost 40% still cor-

respond to the single data token recorded (SPX). The situation repeats in the third

lane, where the correct complex (SPXPXPX) accounts for slightly more than 17% of

the fluorescence, the second peak (SPXPX) for about 30% and the first peak still for

about 23%.

The addition of write-Y in lane 4 leads to the appearance of several new peaks,

which we identify as SPY, SPXPY, and SPXPXPY. A very faint peak at about 98 s

migration time might correspond to the desired SPXPXPPXPY, but the signal is too

weak to be properly identified by the analysis software. Lane 5 essentially shows the

same peaks as lane 4, with peak sizes changing as expected: peaks from complexes

ending in a write-Y brick become smaller, whereas the corresponding complexes with

added write-X become proportionally larger.

In all lanes, faint higher peaks indicate that there is a very small potential for run-

away processes to create complexes with more data tokens than the provided ones.

Yet, in all cases, the fluorescence of all these longer bands combined does not exceed

10% of the total.

Read Out Process

Lanes 1 through 3 reconfirm the working of the recording cycle with the same obser-

vations than for the experiment of the last section: each added write brick generates

a new peak in the spectrum with very little evidence for run-away processes and

persistence of peaks that indicate intermediate complexes.

Lane 4 shows the response of the device after provision of 200 nM read and pop,

which is supposed to trigger one readout cycle: newly created push-pop as well as

read-write complexes result in the appearance of three new peaks at around 47.42

(QP), 52.22 (RX), and 57.39 (RY) seconds. The push-pop complexes account for 38%

of the fluorescence, whereas start-write-X and start-write-Y account for 2.8 and 12%

respectively. Peaks associated with the different stack states SPXPYPY, SPYPY,

SPXPY, and SPY decrease accordingly. The situation repeats in Lane 5 where the
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Figure 6.9: Capillary electrophoresis of the recording and reading of three data
tokens. Recording: Lane 1=SPX; Lane2=SPXPY; Lane 3=SPXPYPY. Reading:

Lane 4=SPXPYPY+RQ; Lane 5=SPXPYPY+RQRQ.

second readout cycle further increases push-pop and read-write peaks and simultane-

ously reduces intensities of the corresponding stack complexes. Noteworthily, after

reading out the two recorded data tokens, 14.1% of the fluorescence results from the

start-push complex whereas peaks of stacks that still contain recorded information

only register with 8, 4.2, 4.8 and 3.3%.

To sumarise, the measurements successfully discriminate the migration times of almost

all individual strands with significant differences. However, because we employ non-

standard DNA strands, the electrophoresis analysis software does not correctly detect

molecular concentrations, which prevents us to gain a precise quantitative picture of

the involved processes. That problem is caused by the molarity calculation which is

based on the base pair estimation and will thus suffer from the fact that the assembled

stack contains extensive ssDNA regions which interact differently with the fluorescent

dye than dsDNA (for which the analysis kit has been designed). Nonetheless, capillary

electrophoresis indicates that the nanodevice is able to store at least three consecutive

data tokens and does not suffer from problematic runaway processes.
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Figure 6.10: Representative TEM image of the DNA stack. The encoded infor-
mation consists of XXYXXX (gold nanoparticles: 5 nm for X, 10 nm for Y).

6.4.2 TEM Imaging

For additional confirmation of the recording, we imaged the assembled nanodevice

using TEM. For this purpose, assembled stacks were mixed with report strands that,

in turn, are decorated with 5 and 10 nm gold nanoparticles. Report bricks associate

with their respective write bricks at any position in the assembled stack. Nanoparticles

appear in TEM images as black dots that can be easily distinguished and classified.
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Figure 6.10 shows TEM results from an experiment where five data tokens (X, Y,X,X,X)

have been recorded. The image show a stack with just one extra write-X on the left

side of the recorder, resulting in a stack with six data tokens (X,X, Y,X,X,X). The

image shows a separation of 15-20 nm between the nanoparticles with a zig-zag con-

figuration predicted by the simulations (see Section 6.3.3).

6.5 Summary

In this chapter we confirmed the correct self-assembly of the DNA stack through

secondary structure prediction and coarse-grained DNA model simulations. Through

oxDNA simulations, we showed that upon initial collision, DNA bricks form desired

structures. However, it is worth noting that the simulated structure slightly diverges

from designed one in the arrangement of the backbone (zig-zag pattern rahter than

rod-like). Moreover, using simulations, we identified a potential problem with the

report binding (i.e. write brick hairpin loop is closed and stable).

The capillary electrophoresis indicates that the nanodevice is able to store at least

three consecutive data tokens and does not suffer from problematic runaway processes.

After recording several data tokens, electrophoresis analysis indicates that the device

is not only present in the desired final state, but also in several intermediate recording

states. Because of the limits of experimental quantification, we can currently not offer

a satisfying explanation for these intermediate peaks. This currently impacts the

readout cycle, as the pop operation interacts with all present stacks and thus returns

a superposition of recorded data. While this is contrary to the intended working, we

point out that such a superposition might also have advantages, as it might allow one

to reverse engineer the composition and order of recorded information from a single

electrophoresis read out.

TEM experiments shown an example of correctly arranged gold nanoparticles, however

the observable yield is low. This may point to a bottleneck involving the binding of

reporter strands to the assembled chain (as explained in Section 6.3.4).





Chapter 7

Conclusions and Discussion

The construction of DNA-based nanostructures has opened the door to a new realm

in which we are able not only to construct but also to program synthetic nanodevices.

This section contains the summary of what was achieved in this thesis and the main

limitations; also a number of extensions to the studied systems of a somewhat less

complete nature, but which present some exciting avenues down which this work is

being pursued.

DNA Origami with Synthetic Scaffolds

Although the initial application of the scaffolded DNA origami folding was very suc-

cessful, the approach does not scale to larger, more complex structures; it is also

infeasible in certain biological systems, such as E. coli cells. The main limiting fac-

tors have been the reliance on the viral sequences and lack of attention to the biological

interface and its side-effects.

In this thesis, we have proposed the use of a synthetic scaffold in the DNA origami to

eliminate issues with the undesirable binding of staples; and careful optimisation of

the synthetic sequence to minimise the side-effects caused by the biological interface

(Chapter 3). We introduced an algorithm to design the DNA origami based on the

119
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combinatorial properties of the De Bruijn sequence (Chapter 3). We found that, con-

trary to what is now widely accepted in the scientific community, DNA origami are

not uniquely addressable (Chapter 4). The repetitions in the natural scaffolds have

an adverse impact on the staple specificity and cannot be neglected in long origami

scaffolds (such as 7.2 kb-long M13mp18 and 49 kb-long λ-phage genomes), therefore

the natural scaffolds are not scalable. On the other hand, the synthetic DBS scaf-

folds are uniquely addressable (on the sequence level) and bio-orthogonal by design

(hypothesis H1). Also, we have found that the sequence uniqueness improves the ther-

modynamic addressability of synthetic scaffolds (Chapter 4). In addition, we verified

that they fold into DNA origami and RNA-DNA hybrid origami without alteration to

the folding protocol (Chapter 4). Moreover, this new approach grants strict control

over the interface between the DNA origami devices and various biomolecules through

the insertion of biological sites in the otherwise bio-orthogonal scaffold. Finally, our

approach provides a broad design space which allows tailoring the nanostructures for

particular applications.

Limitations and Future Work

The computational tools for simulating the actual folding process of large DNA

origami, based purely on scaffold and staple sequences, are currently lacking. Tools

of that kind would be of great value while designing complex shapes before the cost

and time-intensive sequence synthesis; they would also allow us to understand the

folding process and help us define design better rules for the optimal folding. Also,

it might be possible to track the folding process using advanced, high-speed AFM,

which would provide the ultimate insight into the folding process.

The protocols for single-stranded DNA manipulation are not as advanced as those

for double-stranded DNA. Despite numerous attempts, we were unable to establish

a robust laboratory protocol for efficient production of DNA scaffolds. However, one

possible workaround is to use transcribed RNA sequence as a scaffold. Our experimen-

tal results bear promise that this avenue is viable, especially suited for future in vivo
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applications. However, another issue that requires closer attention is efficient staple

production in vivo; there are no ready solutions one can apply to achieve that yet. One

interesting avenue to explore would be to include the staples in a high copy number

plasmid and “cut” them out in vivo (using, for instance, CRISPR system [165, 166]).

The future efforts should concentrate on three goals: (1) the experimental confir-

mation of the superior folding for long scaffolds; (2) the investigation of potential

strategies for scaffold and staple production in vivo; and (3) the development of ex-

perimental protocols allowing folding and visualisation of nanostructures in vivo.

DNA-based data structure

We have presented a working data storage device, implementing push and pop stack

operations (Chapter 5). We used a genetic algorithm to optimise the DNA sequences

in this nanodevice on constraints of the biological interface (Chapter 5). Through

simulations (Chapter 6), we showed that synthetic DNA strands self-assemble into

a functional data structure (hypothesis H2) and in principle can store an unlimited

number of data elements. Also, the coarse-grained model simulations provided insight

into some of the nuances with the experimental detection of recorded data (i.e. report

binding). Nonetheless, capillary electrophoresis and TEM imaging (Chapter 6) indi-

cated that the data storage device was able to store at least three consecutive signals

and did not suffer from problematic runaway processes.

Limitations and Future Work

After the recording of several signals, the data storage device was not only present

in the desired final state, but also in several intermediate recording states. Because

of the limits of the experimental quantification, we cannot currently offer a satisfying

explanation for these intermediate states. As the pop operation interacts with all

present stacks, it returns a superposition of recorded signals. While this is contrary

to the design intentions, such a superposition might also have advantages. It might
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allow one to reverse engineer the composition and order of recorded information from

a single electrophoresis read out.

Because non-standard DNA strands were used in the stack, the electrophoresis analy-

sis is limited to qualitative analysis – it was not possible to gain a precise quantitative

picture of the involved processes. This could be perhaps mitigated by the use of more

advanced (and costly) techniques such as experiments with molecular beacons [167].

Better experimental quantification should also improve the calibration of computa-

tional models, and in turn, help to understand the fidelity of the storage device.

Here, we investigated DNA stack, which is an elementary abstract data type, however,

one can envision molecular implementation of more complex data structures. It is

likely that some data structures would be more suitable for certain operations than

others in a cellular context. On the other hand, it might be possible that some data

structures from computer science cannot be reliably realised as molecular nanodevices,

and thus will require us to invent novel models of computation.

The future efforts should concentrate on three goals: (1) further optimisation of the

design and experimental protocols (such as washing steps) for in vitro data recording

and reading; (2) in vivo trials and subsequent linking of the stack to downstream

processes (for control and monitoring purposes); and (3) investigation of alternative

molecular data structures realised in DNA/RNA (e.g. list, heap, queue, tree, etc.).

Possible Extension: Multiple Stacks Construct

A multiple stack construct should implement all the same operations as a single stack.

In addition, the multiple stacks should meet the following requirements:

1. Push, pop and read bricks are stack-specific (i.e. operations of one stack should

not affect other stacks) while data tokens are orthogonal to the stack

2. It should be possible to move data from stack A to stack B (see Figure 7.1)

using a new type of the move brick

3. The moveA−B brick may be some combination of readA−pushB bricks (followed

by popA)
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A0 A1 A2 A3
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A3
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B0 A3

A0 A1 A2

A3

Stack A

Stack B

moveA-B waste

Figure 7.1: An abstract depiction of a multiple stack construct. Here, the data
token (A3) from one stack can be released using move operation (A). The released

data token is then accepted by the target stack (B).

Note that in the actual design, some of the operation (such as write) may have to

be implemented with multiple DNA strands to ensure orthogonality of operations on

different stacks. Also, a design of the move bricks has to prevent the run-away process.

These features would allow the implementation of (Turing-universal) stack machines

as in References [24] and [158].
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Appendix A

Appendix A: DNA origami

A.1 Software Tools

The sequence tool, shown on Figure A.1, has following options:

1. Block size: a number specifying the order of underlying De Bruijn graph, the

larger the number the longer the DBS that can be created

2. Maximum length available (before filtering)

3. Random seed: used by a random number generator during the graph traversal

4. Browse: allows to select a .csv file with taboo sequences

5. Remove reverse complements: if ticked will also remove the sequences that are

reverse complements of the ones provided

6. Generate button: starts the algorithm

7. A textfield with resulting DBS sequence

149
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Figure A.1: A screenshot of sequence tool available as caDNAno plugin.
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Figure A.2: A screenshot of addressability analyser available as caDNAno plugin.
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A.2 Preparation of Samples

DNA Origami with pUC19

Briefly, the pUC19 plasmid was treated with Nt.BspQI nicking enzyme (NEB, UK)

at 50 for 90 minutes. The mix solution was then incubated for 20 hours at 37 with T7

exonuclease and Lambda exonuclease to remove the complementary strand, leaving

the scaffold intact After adding ethylenediaminetetraacetic acid (EDTA; 10 mM final

concentration) for 30 minutes at room temperature to inactivate the enzyme, the

ssDNA scaffold was ethanol precipitated, air dried and then dissolved in Tris-EDTA

(TE) buffer.

To generat a linear pUC19 scaffold, a short oligo (GCCACCTGACGTCTAAGAAA)

which contains restriction enzyme site (underlined), ZraI, was designed and synthe-

sized. The circular single-strand pUC19 was then incubated with this oligo and treated

with ZraI at 37 for 45 min. After heat inactivation, the digested DNA was then puri-

fied and concentrated by ethanol precipitation and re-suspended in TE buffer as linear

single-strand scaffold.

DNA Origami with DBS

The 2.4 kb DBS was synthesized and cloned into a plasmid commercially (Life Tech-

nologies, UK). To generate linear ssDNA, a PCR based method with 5’ phosphorylated

forward primer and biotinylated reverse 3’ primer was used as in previous study [152].

The biotinlyated PCR product was captured by streptavidin coated magnetic beads.

After the treatment with 0.2M NaOH, the (ssDNA) scaffold strand was released and

subsequently neutralized by NH4(OAc), ethanol precipitated and resuspended in TE

buffer.

To generate a circular DBS scaffold, the linear ssDNA was ligated with Circligase

(Epicentre, US) following manufacturer’s instruction. The remaining linear ssDNA

substrate and linear single-stranded adenylated intermediate was removed by treat-

ment with E. coli exonuclease I and exonuclease III (NEB, UK). The circularized DBS

ssDNA was then purified and eluted in TE buffer (Figure 4.7c).
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For the assembly reaction, 20 nM ssDNA scaffold and 200 nM each staples oligos were

mixed in a folding buffer containing 5 mM Tris, 5 mM NaCl, 1 mM EDTA (pH of 8)

and 8 mM MgCl2 (pH of 8). The reaction was heated to 95 for 30 second and cooled

to 25 at the rate of 100 sec per degree in a thermal cycler.

Electrophoresis of the folded DNA was carried out in 2% agarose gel containing 0.5

µg/ml ethidium bromide and 0.5x TBE/Mg buffer (44.5 mM Tris base, 44.5 mM borix

acid, 1mM EDTA, 11mM MgCl2). The electrophoresis gels were run in 0.5x TBE/Mg

buffer for 2 hours at 70 V in an ice/water-cooled tray. The DNA bands in gels were

visualized using ultraviolet light and desired band was excised by scalpels. The DNA

in excised gels was then extracted using Bio-Rad freezensqueeze column according to

manufacturers instruction. The recovered material was then prepared for imaging.

DNA/RNA Hybrid Origami with DBS

The 1.1 kb DBS preceded by a T7 promoter was synthesised and cloned in a 14AA575P

plasmid commercially (Life Technologies, UK). The DNA template-scaffold was ob-

tained by PCR amplification with Phusion Hi-fidelity DNA Polymerase (NEB, UK).

The RNA scaffold was synthesised using Ampliscribe T7-Flash Transcription kit (Epi-

centre) on the DNA scaffold template at 42 ◦C for 100 minutes. The scaffold was

subsequently purified through a phenol-chloroform-isoamyl (125:24:1 Sigma Aldrich)

and chloroform (Sigma Aldrich) precipitation. The concentration of the nucleic acids

was evaluated by Nanodrop analysis (Thermo scientific).

Folding of the origami was carried out in TAE buffer (40 mM Tris, 4 mM Acetate, 1

mM EDTA) enriched with Magnesium acetate 12.5 mM. The reaction was performed

using a concentration of 10 nM of RNA scaffold and 100 nM of DNA staples oligos.

The folding solution was incubated for 10 minutes at 65 ◦C followed by a temperature

ramp of 0.01 ◦C/s to 25 ◦C and maintained at that temperature for 5 minutes. The

solution was then held at constant temperature of 4 ◦C to stop the reaction. The

origami structures were purified through Amicon ultra filters 100 KDa to remove the

excess of free staples and to concentrate the samples.
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A.3 Scaffold and Staple Sequences

DBS scaffold for square DNA origami of length 2.4 knt.

TTTCTATGTCTGAGCCTGAAAATGCGATATATCGTCAGTCTCTGCGGCTGCCGAAACGCGCTCAACCTCTACCGTGGAAC

CACGGGAAAGGCAACCGAACCCTTTAAGGCTAATCGCGAGCCGGGTCCCTAAGACAGCGGGATTACCCGGGCCGCGTCAC

GCAGTCCTGTCTACTAAGCCTACAGTGTAAAGAGAGCCAAGAGGTCTCGTGTCATGGTCGCACGCCTGGTTGAGTCAGGC

TTAGACTCTTGCATCCCCAGCAATAAGTACATTGACGTGCCGTTCACGTACGTTTCCTGGACGCATGTGTGCGTAAGGTC

ATAGAAGCCGATCTCACCAAGCGCTTACAGAAGAGCTGGCGACACGGATGGCGGTATACCGATACCCCCATATAAAGTTC

GTATAAGGGCAGGAGTTACCTCGCGGTTCGGTGGCCGACGGCTCACTGGATGTATAGTCCCACTTCCTCAGATGCACATC

CTCGAAGACTTCTGTTCGCATTTTAGAAAACTAACAGCTCTCCAGCCGCCCAAGTTAAAACGACCCTGTTTGGTCAATGA

AGGTGGGAGTGCTTGCCGCAGGTAGCGAGGTACACTTACGCCGGACCAAATCTTTGGCCCGTGTATGGATCATCCATAGC

GCGAAGTGACACACTGCCCCACCTCATCTGACTACGGTAAGTGCGGATTCGGCATGGGGAACAAAGCTCATTGGATAGCT

GAATAGCCATACTGAGGATAAACACTAGGAATCGGGGGATATCCGTGAAGTTGACCATTACGGGCGCTACCATGACCGAG

GGATGACGAGATTTAGGCACGTTGTCCTACTTAACCCCTTGCGGTCGGACTTTCGCGTGCTCTAATGACTCGATTTGGGA

TCGTGGCGTTGGTGTAGAGCGTATTGGCACTGTTGCAATGTGAAATCGAACATGGAGACGTTAGATGAGTGTGATCCACG

TGAGCTTTGCAGACAAAACAATGGTGATACTTCGTTGCTCAGGTGAGGCATAAGATGGTACTTGCTTATCGCAGCCTTAA

AGCAGGGTCAGAGTCGGCTTCAGACCGGAAAAATTCAAAAGCGACTGTCGGTTATTCGCTCGCAATTATCTCGCTTTCAC

CTGTACCCAACAACGTATCTTCCCCGATTCACTTTAGCCGTGCGACGCTTGTCGATAACGCTATCCTGCACTTGAGAAAT

TAAACCAGCGAATCTATACTACTCGTAGCAGATTGCTGCGTTCGATCCCGGTGACCTAACGGAGCTACATCTAAGGAAGC

GTCCTTTTGGACTGACGGAATTAGCTATGACAATAGTAACCGGCTATTACACGATAGTGGTTAAGAGTGAACACGCGACC

GCGCCCGAGTGGAGTACCAGGCGCGGCGATTAAGTCTATTTATGGTTTCGACTATGCTCGGCCCTTAGGACTAGCATCTC

TCTTATTTTGCTAAATACAAGGGAGATCAGTGAGTTGCCTCTTCATAAATCACGAAGGGGCATTGCCCGGCACACAGCAT

TAGGTCCAGGACGACAAGAATCAGAATTGCGTCTAAAAGTAAGCACGGCGGGTGTCGCTAACCTGACATCGTTTTCTGCT

GAGTAGAATACTCAGTATATACATAATGGCAAATGAGCATATGGGAAGGATGCGGGGTAGTCACTAAACTTCACACCTAC

GCAAAGATCGACATGTTCAGTTATGCGTGTGTCCCGTCGCGCGCATCGAGTTTGCCAGGGAATAATCTGTCAGCGTTTGT

GTACGCGTTAACTATAGGTTCAATTTCCGTCTGTAAGAAACAGATAAGCGGTGCAAGACCTGGCTTGGCTACGAGTAATC

ATGAAAGTCGTAATGTCAAATAGAGTTCCTAGGGACTCATGCCTAGCCTCCCTGCGAGACTAATACGATTGTGACGCGGG

CTCGTCGGGTTAGCGGCCAACTTGGAAGTAGTTGTGGCATCAGGGCCACAAATTGAGCGATCGGTAGGAGCAAGGAGAAC

TTTGTCTCAGCTAAGTTTCAGGATTTTCCCTTCCGAGAGACACCCTCGGTCACCGACTTATACGCTGTCCGGTTTGAATG

TACTCTGAACGTCTCCTTCGCCAAAATCCGAAGCAAAAACCGCAAGTGTCTTCGGATACACATACGTGTTTCTTGTTTTG

TTACTATTCTCAAAGTGGCTGACCCACACGTCATCGGCGTCGTGCATTCCAAGGTTACGAACTAGAACAGTCGCCTATGG

CTCTGGAATGCAACAGGAAACTCACGGTTGGGGCGGCAGAGGCCCATGTCCAAAGGGTGAATTTTTAATCCCTCACATTC

TTCTTTCTCTAGGTAATAGGCTGGGTCGAAAAGGTATGCAGTAGGTGTGGATTGGTTCTGGCAGTTTTATAGACATTTGC

GAACGCCCCCTGGGCTGTGAGACCCGCGATGGGCAATCGTACCTATAACAAGCCAGAAAGAAGGCGGACATAGTTAGGGC

GAAA
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Staple sequence Length

TAGGAACTGAGGATGTGCATCTGAGCGAACAG 32

CTCAATTTGCAGGGAGGCTAGGCACTTTCATG 32

AAAACGATTCCCCCGATTCCTAGTGTCAACTT 32

CACGGATAGTCAGGTTAGCGACACCTCAGCAG 32

CTGGTACTCCACTCGGGCGCGTCCGTTAGGTCACCGGGATCG 42

GCAGAGACTATAGGTACGATTGCCCATCGCGGGTCTCACAGCCCAGGG 48

GTATCGGTATCCAGTGAGCCGTCGGGGCGGCT 32

TCCTGCCCTTATACGAACTTTGGAAACGTACGTGAACGGCAC 42

CTCCATGTCCTGAGCAACGAAGTACGCTTTTG 32

TGGGGCAGGCTATTCAGCTATCCAGTCATCCC 32

CCCGCATCCTTCCCATATGCTTCTTGTCGTCCTGGACCTAAT 42

TTAGTCTCGTGGCCCTGATGCCACCCGAGGGT 32

GCCACTTTCAGAGCCATAGGCGACAAGAAGAA 32

ACGTATGTAGACCTCTTGGCTCTCGTGCGACC 32

TTCACTCTGCATAGTCGAAACCATCTTCGTGA 32

GTAGGCTTGGTTCGGTTGCCTTTCCGGCAGCC 32

AAAGGACGGTTTAATTTCTCAAGTGCAGGATAGCGTTATCGACAAGCG 48

AGGACAACGTGCCTAAATCTCATGAGCTTTGTTCCCCATGCC 42

TGCGAGCGAATAACCGACAGTTCACCATTGTTTTGTCTGCAA 42

AACGCAGCAATCTGCTACGAGTAGTATAG 29

ATTACTCGAACGCTGACAGATTATCACGCATA 32

AAGTCTTCCTATTTGACATTACGATGAGTCCC 32

GGGCCTCTGAGGTTGAGCGCGTTTCCGTGGTT 32

AAACTCGACGGGCCAAAGATTTGGATGGATGA 32

GTCTCTCGATTTTGGCGAAGGAGAGTGGGTCA 32

CTTCTGTAAGTTCTCCTTGCTCCTAACTTAGC 32

GCTGTGTGCCGGGCAATGCCCAAATAGACTTAATCGCCGCGC 42

AATACGCTAAAATAAGAGAGATGCCTCCCTTG 32

CGTACACATAGCCAAGCCAGGTCTCAATCGTA 32

TGCTTCGGGAAGGGAAAATCCTGAACCGATCG 32

AGGGCCGATAACCACTATCGTGTATCAGTCCA 32

AGCTCACGTGGATCACACTCATCCGACCGCAAGGGGTTAAGT 42

ATGCCTCATCGATTTCACATTGCAATCCCAAA 32

AATTTTTCAAGATACGTTGTTGGGTACAGGTGAAAGCGAGATAAT 45

GCTGTCTTAGGGACCCGGCTCTTTCAGGCTCAGACATAGAAA 42
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TGGCTTGTTGACGATATATCGCATGCGATTAG 32

TTACTATTGCTGCGATAAGCAAGTCTGACCCT 32

CCACGGTAGCCGCCCCAACCGTGATTGGACAT 32

AATGCACGACGCCGATGACGTCGTTCAGAGTACATTCAAACC 42

ATTCGCTGCTTCCTTAGATGTAGCGTCGCGTG 32

CAAACAGGGTCGTTTTAACTTGCCACCGAACCGCGAGGTAAC 42

CTTACTTTGAGGCAACTCACTGATTAGTCCTA 32

AAGTGTACGTTAGTTTTCTAAAATGGAAGTGG 32

TCAGTATGTGTGTCACTTCGCGCTTCCGGCGT 32

TCGGTCATTTAGAGCACGCGAAAGTCTAACGT 32

TCCATACATGCGCGCGACGGGACATCCCTGGC 32

TAACCCGACGAGCCCGCGTCATGCACCGCTTATCTGTTTCTT 42

TTTATGAATAGACGCAATTCTGATCATTTGCC 32

ACCCAGCCTATTACCTAGAGATGTTCTAGTTCGTAACCTTGG 42

GGACAGCGTATAAGTCGGTGAAACTACTTCCAAGTTGGCCGC 42

ATTATGTATGTCGATCTTTGCGTAAGTTAACG 32

TCGCACGGCTAAAGTGAATCGGGGCGGTCTGAAGCCGACTACCATCTT 48

ACAGACGGAAATTGAACCTATGGTGTGAAGTTTAGTGACTAC 42

TATTTAGCCTACACCAACGCCACGACAGTGCC 32

TGTGAGGGTGCCAGAACCAATCCACACCTACTGCATACCTTTTCG 45

GGCGTTCGCAAATGTCTATAAAACATTAAAAATTCACCCTGTTTCCTG 48

AGTCTAAGCGCACACATGCGTCCAATATGGGG 32

GACTATACATACCGCCATCCGTGTGGCTTCTA 32

TTTCGCCCTAACTATGTCCGCCTTCTTTC 29

ATGACACGGTATCCGAAGACACTTCAAGAAAC 32

TGAGACAAAGCGCTTGGTGAGATCCGCCAGCT 32

GGAGAGCTCTCGCTACCTGCGGCAAGATGAGG 32

TCGAGTCAGGTAGCGCCCGTAATGGTTTATCC 32

GAATCCGCACTTACCGTAGTCAGCACTCCCACCTTCATTGAC 42

TGACCTTACCTGACTCAACCAGGCTTTACACT 32

GTCAATGTACTTATTGCTGGGTGACGCGGCCCGGGTAATCCC 42

ACTGAACATATACTGAGTATTCTACCGCCGTG 32

GCTTTAAGGTCATAGCTAATTCCGATAGCCGG 32

TTGCATTCGAGAATAGTAACAAAAGCGGTTTT 32

CCTTAAAGAGTAGACAGGACTGCGGATGCAAG 32

Table A.1: Staple sequences for square DNA origami based on DBS scaffold.
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pUC19 scaffold region (2.4 knt) used for folding the square DNA origami.

GGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGC

TATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG

GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT

GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGG

GGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATG

CCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGA

CTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTG

GAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTAC

ACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTA

ACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGA

TCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATC

AAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT

TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTC

TTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTA

CCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCG

GTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTG

AGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAG

CGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCG

ATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTT

GCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCT

GATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACC

GCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCA

ACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGA

ATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTTGCATGCCTGCAGGTCGACTC

TAGAGGATCCCCGGGTACCGAGCTCGAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACC

CAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCA

ACAGTTGCGCAGCCTGAATGGCGAATGGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCA

TATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCG

CCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT

TTCACCGTCATCACCGAAACGCGCGAGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCT

TCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCG

AACT

Staple sequence Length
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CACGACGTTGGCGTAATCATGGTCTCACAATT 32

TAAGACACGACTTATCGGTGGCCTAACTACGGCTCTGCTG 40

AAGCCCGTAGTGCACCATATGCGGATACCGCA 32

ACCATCTGGATAACTACGATACGGTCAATCTA 32

CGAGCGCAGATACCGCGAGACCCATCATCCAT 32

TCAGCAATAAACCAGCCAGCCAATAGTTTGCGCAACGTTGTT 42

CTTCACCTGTCTGACGCTCAGTGGGGTGGTTT 32

GATGCCGGACGGTCACAGCTTGTCTGAGCAAAAACAGGAA 40

AAGCCAGTGCAAGCAGCAGATTACTGATCTTT 32

GCTGCAATGAAGTGGTCCTGCAACGCCGGGAA 32

GGCAAAATGCCGCAAACATGCAGCTCCCGGAGGAGCAGAC 40

AAACAAACCACCGCTGGTAGCAACGAAAACTCACGTTAAGGG 42

GCTGCATTCCAGTCGGGAAACCTGTGAAATTG 32

AAGGCCAGGAACCGTAAAAAGTAAAGATACCAGGCGTTTCCC 42

CTGATCTTGCGAAAACTCTCAAGGTGCCCGGC 32

ACTTGGTCGACTCCCCGTCGTGTAGCCCCAGT 32

ATCCGTAAGCATAATTCTCTTACTCGATCAAG 32

TCGACGCTCCCCCCTGACGAGCATGCGGTAAT 32

GATCGGTGCGGGCCTCTTCGCGTGAATTCGAGCTCGGTACCC 42

CTCGTCGTAAGTAGTTCGCCAGTTGGAAGGGC 32

GCTTCCTCGCTCACTGACTCGATGTGAGCAAAAGGCCAGCAA 42

TCAGGGGATTTTCCATAGGCTCCGCAAGTCAG 32

AAGTATATAAAATGAAGTTTTAAATCTCAAGA 32

ATGCGGCGACCGAGTTGCTCTATCTTACCGCTGTTGAGATCC 42

GCTAGAGTTTGGTATGGCTTCATTCATGATCC 32

TGCGTTGCCATACGAGCCGGAAGCTGCAGGCA 32

TCCAAGCTGGGCTGTGTGCACGAACCCCC 29

TTATCCGCATAGCTGTTTCCTGTGGGGTAACG 32

CATCATTGACATAGCAGAACTTTAGTCATGCC 32

GGTCGTTCCGCGGGGAGAGGCGGTACATTAAT 32

GCGAGGTATGTAGGCGGTGCTGTTGGTAGCTCTTGATCCGGC 42

TCGCGCGTTTCGGTGATGACGGTGTTGGCGGGTGTCGGGGCT 42

TCTGTGACGGGATAATACCGCGCCGAAAACGT 32

TCAGCGATCTGTCTATTTCGTCGCTCACCGGCTCCAGATTTA 42

ACGGTTATATCAGCTCACTCAAAGTCGTGCCA 32

TATCTGCGCTACACTAGAAGAACACTTGAGTCCAACCCGG 40
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GGGGATCCTCTAGAGTCGACCATAAAGTGTAAAGCCTGGGGT 42

GCCTAATGAGTGAGCTAACTCTTGCGTATTGGGCGCTCTTCC 42

CCAGGGTTGCAAGGCGATTAAGTTGATGCGTA 32

CAGCTGGCCATTCGCCATTCAGGCAGCAGATT 32

TGCAAGCTTGTAAAACGACGGCCATATTACGC 32

GTACTGAGCAGGGCGCGTCAGCGGGTGAAAAC 32

AGATCCTTGCGCAGAAAAAAAGGAGTATTTGG 32

AGTTGCCTTGACAGTTACCAATGCAAAAGGAT 32

AGTTCGATGTAACCCACTCGTGCACCCAA 29

TCTACGGGAGATCCTTTTAAATTAATGAGTAA 32

TCAGGCGCGAAAGGGGGATGTGCTTTCCCAGT 32

CCCATGTTTGGTTATGGCAGCACTGATGCTTT 32

TTTTGTTTTACCTTCGGAAAAAGAACAGAGTT 32

TCTTCGGGCAGCATCTTTTACTTTCACCAGCGTTTCTGGGAAAGTGCT 48

TAATTGTTTTTATCCGCCTCCATCGAGGGCTT 32

AAGCGTGGCCTGTCCGCCTTTCTCCACAAAAA 32

CTTGAAGTGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGA 45

ATTTTGGTCATGAGATTATCATTAATCAGTGAGGCACCTATC 42

CCACACAAGCTCACTGCCCGCTTTAATGAATC 32

GCCATTGCTACAGGCATCGTGAGCTCCTTCGGTCCTCCGATC 42

GGCTTAACTATGCGGCATCAGTGCGCAACTGTTGGGAAGGGC 42

TCCGACCCAAACCCGACAGGACTAGCCGCGTT 32

CGTTCAGCACGCTGTAGGTATCTCTCTCCTGT 32

ATCACTCAGTGCAAAAAAGCGGTTGTGTCACG 32

CATAGCTCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCCTTCGGG 48

GGCCAACGGGCTGCGGCGAGCGGTCCACAGAA 32

GTTGTCAGAAGTAAGTTGGCCAAGTCATTCTGAGAATAGTGT 42

GCGAGTTACAGCTCCGGTTCCCAACAGTCTAT 32

AGGAGAAATGTGAAATACCGCACATGTAAGCG 32

AGGTGGCGTGCCGCTTACCGGATACGCTTTCT 32

GCTGGCGTTAACGCAGGAAAGAACCTGCGCTC 32

CTCTGACAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTC 45

CCTGGAAGCTCCCTCGTGCGCAGTTCGGTGTAGGTCGTTCGC 42

GTCAATACTGGTGAGTACTCAACCGCAGTGTT 32

Table A.2: Staple sequences for square DNA origami based on pUC19 scaffold.
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DBS scaffold for triangle RNA-DNA hybrid origami of length 1.1 knt.

GGCGCACGGTTCTGTGATCGTGGCGGTCCAGCTAGCAGGTTTGCGGCTCAGAAGAGCTGTTGTGTTTGTTTTCGACTACC

AGAACGGAGTCTCTAGCGTGAGATAAGTAAGATTAGGCTCGGAGAGTGTGAGGCTTCGTAATCGTACCACACACCAGGCG

TAACCGCACTTAGACGCACAGGGTACAAGTGATAGGTAAAGTTACGGCAGGACGCCCAAAAGTCTGGAGCACAAACGGGG

CCCCGCTAGGGAAAACGCCGGGGTAACTATTGTTATAATTCAAGAATTAGAACTAAAAGGTAGTAGCACCACTCGGTGGG

TTAAACTAGCTAAAGACACCGCTCCAACAGCCGAAAGTGTACGCTGAATCACAGTCAAATTATACGGTGTTCGAGATCGC

GAGTTTTGTGGGATTTGCACTCCAGATACCGATTCGGTAGCTTTATCGTTCACTGTGTCACGCGCAGCGCCACCAAAGCT

GAGACGTTCTCGAAATTCTAATTTCTACGATTAAGTCCAAACAGAAAGCAATCTATTACACTGGAAGTCAGTAAAACAAA

GGGATACAGATCCCGTGACGGCTAGTGCTGTGGTGTCCGAAGTTGACTGTCAGAGAACAATCGCACCGGACAGTTCGTTG

AGTTCCAGTTGCAATTGCGATAGTAATAATAGATAGAGGCCGTGGAACCCCGTACTTCAGCGAGAAGTGGTCTTGGACTT

GTACTGGGGCGAGCGGTGCGGGAACTCGTGTTGCCCGCAAGCACTGCAACACAGCGGAAGGATAGCAACGATCACTCTTG

CTTTGTCGGACTCAGTCTAGGAGCCGCCGAGCCAGTCCCGCGCGTTCCCACGTTTCCGTAAACGTCCGCTTGGCCCGTCC

ACTGATATAGTTGGATCGGGAGAAATCGAAGCTCACGAACAGGAACGTAAGGCTGCTTGTTCTTTCACGGATCTCGGGCA

GAATCTCAAACTCAATTACTCGATTTAGGTCGTCGCAGTACAGCTTCCACGGGCTTGAAATAGCTC
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Staple sequence Length

ACTTGTACCACAGAACCGTGTGCTTGCGGGCAACACCCTTCCGC 44

GCGTCCTGCCGTAACTTGTGCTCCAGACTTTTGGCTGCGACGACCTAAAT 56

CGAGTA

ACTTATCTCAGCTAGTTTAACCCACCGAGTGGTGCTACTACCCTCACACT 50

CTCCGAGCCTGGTAGTCGAAAACAAACACAACAGCTCTTCTTGGTACGA 49

TTACGAAGCTTTTAGTTCTAATTCTTGAATTATAACAATAGTGGTTACGC 50

CTGGTGTGGAGCCGCAAACCTGCTAGCTGGACCGCCACGATCCTGTGCG 49

TCTAAGTGCTACCCCGGCGTTTTCCCTAGCGGGGCCCCGTTTTACCTATC 50

TGTATCCCCCACAGCACTAGCCGTCACGCTAGAGACTCCGTTCTAATCTT 50

GCGTACACTTTCGGCTGTTGGAGCGGTGTCTTT 33

CGTCTCAGCGCGTGACACAGTGAACGATAAAGCTACCGAATCTCGTAGAA 50

ATTAGAATCGCAATTGCAACTGGAACTCAACGAACTGTCCGTTTCTGTT 49

TGGACTTAAGGTATCTGGAGTGCAAATCCCACAAAACTCGCGCAGTGTAA 50

TAGATTGCGTGCGATTGTTCTCTGACAGTCAACTTCGGACATTTGTTTT 49

ACTGACTTCATCTCGAACACCGTATAATTTGACTGTGATTCAACGGGATC 50

AAACGTGGGGCCTCTATCTATTATTACTATTTCGAGAA 38

GCGCTGCTTTGGTGAGCGGACCGGGCCA 28

TGTGTTGCAATTGAGTTTGAGATTCTGCCCGAGATCCGTGAAGAGTGATC 50

GTTGCTATGAGTTCCCGCACCGCTCGCCCCAGTACAAGTCCTGAGTCCG 49

ACAAAGCAAAGAACAAGCAGCCTTACGTTCCTGTTCGTGAGCTCGGCGGC 50

TCCTAGACAAGACCACTTCTCGCTGAAGTACGGGGTTCCACGAACGCGC 49

GGGACTGGCTTCGATTTCTCCCGATCCAACTATATCAGTGGAGTTTACGG 50

Table A.3: Staple sequences for triangle RNA-DNA hybrid origami based on
DBS scaffold.



Appendix A. Supplementary Material: DNA origami 162

A.4 Secondary Structure of Scaffolds
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Figure A.3: Secondary structure of pUC19 scaffold (generated with UNAFold
Web Server).
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Figure A.4: Secondary structure of DBS scaffold (2.6 knt). Notice the self-
complementary fragments forming the long stem near the beginning of the DBS
scaffold. This fragment (making 5% of scaffold length) contributes roughly 25% to

∆G in the secondary structure (generated with UNAFold Web Server).
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Appendix B: DNA stack

B.1 Full Set of Fitness Functions

function input s function input s1 input s2

Shlf start Sih start push

Shlf push Sih startpush writex

Shlf writex Sih startpush writey

Shlf writey Sih writex read

Shlf pop Sih writey read

function input s1 input s2

Seg+ start push

Seg+ push pop

Seg− start start

Seg− push push

Seg− read read

Seg− pop pop

Seg− writex writex

Seg− writey writey

165
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function input s1 input s2 function input s1 input s2
Seg+ startpush writex Seg+ startpush writey
Seg+ writex push Seg+ writey push
Seg+ writex read Seg+ writey read
Seg− writex reporty Seg− writey reportx
Seg− reportx start Seg− reporty start
Seg− reportx push Seg− reporty push
Seg− reportx read Seg− reporty read
Seg− reportx pop Seg− reporty pop

Table B.1: Complete set of evaluator functions used to calculate the fitness of an
individual.

B.2 oxDNA Simulation Parameters

CPU simulations

##############################

#### PROGRAM PARAMETERS ####

##############################

backend = CPU

backend_precision = double

#### SIM PARAMETERS ####

sim_type = MC

ensemble = NVT

steps = 1e9

check_energy_every = 1e4

check_energy_threshold = 1.e-4

delta_translation = 0.10

delta_rotation = 0.2

T = 23C

verlet_skin = 0.20

#### INPUT / OUTPUT ####

topology = joined.top

conf_file = joined.dat

trajectory_file = trajectory.dat

no_stdout_energy = 0

restart_step_counter = 1

energy_file = energy.dat

print_conf_interval = 1e5

print_energy_every = 1e4

time_scale = linear
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## External forces

external_forces = 1

external_forces_file = external.conf

CUDA simulations

##############################

#### PROGRAM PARAMETERS ####

##############################

backend = CUDA

backend_precision = mixed

CUDA_list = verlet

CUDA_sort_every = 0

use_edge = 1

edge_n_forces = 1

seed = 19382

debug = 1

#### SIM PARAMETERS ####

steps = 1e11

dt = 0.001

thermostat = john

diff_coeff = 0.5

newtonian_steps = 53

T = 295K

verlet_skin = 0.05

#### INPUT / OUTPUT ####

conf_file = joined.dat

topology = joined.top

trajectory_file = trajectory.dat

energy_file = energy.dat

restart_step_counter = 1

refresh_vel = 1

print_conf_interval = 1e8

print_energy_every = 50000

time_scale = linear

timings_filename = timings_1_0.001

print_timings = yes
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B.3 Laboratory Protocols

DNA oligomers were provided by Eurogentec (Belgium) on a 100 µM synthesis scale,

with a standard desalting procedure or a required denaturing polyacrylamide gel elec-

trophoresis (PAGE) purification for oligomers longer than 50 nucleotides and/or any

3’/5’ modification. Streptavidin coated gold nanoparticles of 5 and 10 nm diameter

were supplied by Life Technologies (Alexa Fluor 488 streptavidin). Samples and stock

solutions were stored at -20 ◦C.

The DNA recorder was prepared by sequentially adding 200 nM of each brick with

240 minutes waiting time between additions. DNA samples were dissolved in a total

volume of 20 µL of nuclease free water and 50 mM potassium acetate, 20 mM tris-

acetate, 10 mM magnesium acetate, pH 7.9 buffer at room temperature (25 ◦C) and

incubated for ten minutes if not otherwise specified. The mixture was shaken at 300

revolutions per minute in an Eppendorf Thermomixer Comfort set at 25 ◦C.

Capillary electrophoresis has been performed using the Agilent Technology 2100 Bio-

analyzer system with its DNA High Sensitivity Chip and adhered to manufacturer

protocols.

Transmission electron microscopy (TEM) was performed with a Philips CM 100 Com-

pustage (FEI) microscope and digital images were collected using an AMT CCD

camera (Deben). A volume of 5µL sample was applied on glow discharge grids pre-

liminary washed with 0.5 mM magnesium chloride to change the hydrophilic surface

charge orientation.
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