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Abstract 

281 species of terrestrial groWld-living beetles were recorded from 69 riparian and wetland 

sites in the floodplain of the lowland River Soar, England. Differences in species composition 

between pitfall trapped and timed hand-collected samples were smaller than those attributable 

to environmental and seasonal factors. Detrended Correspondence Analysis consistently 

ranked all sites against se~onal variations between April and June and floodplain sites against 

annual variations. DCA axis 1 scores were slightly better correlated with 11llportant 

environmental variables at the ecohabitat «SOm) scale rather than the microhabitat scale. 

Canonical Correspondence Analysis detected assemblage responses to flooding disturbance and 

grazing pressure along the main channe~ as well as to water level stability in the floodplain. A 

conceptual model of floodplain land-use and river management postulated a dynamic 

equilibrium between flooding disturbances and vegetational succession, producing geomotphic 

and vegetational structures which serve as semi-aquatic habitats for terrestrial beetle 

assemblages with appropriate species traits. ImpoWldment for navigation affects assemblages 

by modifying the severity of flooding disturbance. The effects of grazing pressure resemble 

flooding disturbance. The short-tenn «5yr) impact of bank regrading was explained by 

differences in severity, predictability and frequency compared to the beetles' generation length. 

Evenness and species richness were affected only by flooding and grazing disturbance. This 

response was not predicted by the intermediate disturbance hypothesis because the frequencies 

of flooding and grazing disturbances in the Soar valley are not appropriate to ·he hypothesis, 

which more closely relates to disturbance by bank regrading. In comparison to diversity 

indices, a rarity index was much less sensitive to environmental factors than species diversity 

indices and more robust against seasonal and yearly fluctuations. Consequently, it has more 

potential for use in site quality assessment. 
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1 Introd uction 

Rivers have long occupied an important position in the human perception of the natural world. 

In Britain, rivers and their sources were venerated in Celtic cultures (Ross 1967) and similar 

practices continue today in modern India. Today, river corridors attract more frequent visits 

and draw visitors from a wider area than parks and other open spaces (Green & Tunstall 

1992). Surveys of modern public attitudes toward rivers in Britain reveal that people 

appreciate their landscape value and the associated variety of wildlife (Green & TWlStall1992). 

Rivers are often recognised as important features of landscape protection areas and a set of 

methods for river landscape assessment (NRA 1993a) has recently been published. 

Conservation of the variety of wildlife along a river is more problematic and requires a detailed 

understanding of floral and fauna! diversity and its interactions with ftuvial and ecological 

processes (Boon 1992). This study is a contribution toward the conservation of a particular 

section of that fauna! diversity which until very recently has been severely neglected. Aquatic 

and terrestrial systems are two of the major divisions of animal habitats suggested by Ehon & 

Miller (1954), but a further class, the aquatic - terrestrial transition zone has received much less 

attention. However semi-aquatic habitats occur at all bmU\daries between aquatic and 

terrestrial systems and occupy wide areas in wetlands. The diversity and interest of beetles in 

semi-aquatic environments in the riparian and floodplain zones of river systems, especially 

lowland rivers, are largely unappreciated outside specialist entomological circles. 

Petts et al. (1995) described how in the past scientists failed to communicate the results of their 

research to managers and decision makers with detrimental consequences for the riverine 

natural environment. Since then the upsurge of concern regarding environmental issues has led 

to more co-operation between hydrologists, ecologists and river authorities and the 

implementation of schemes to benefit the aquatic environment in rivers. It is intended that the 

results of this study on the semi-aquatic environment will be of value to river authorities in 

extending their nature conservation initiatives to terrestrial margins and floodplain wetlands. 

The following introduction reviews what is known about the diversity of terrestrial beetles in 

riverine semi-aquatic habitats and how this relates to 
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Chapter 1: Introduction 

1) the riverine environment 

2) the environmental requirements of the organism 

3) their conservation. 

It finishes with a set of aims and objectives for the study. 

1.1 Ecological perspectives 

A large amoWlt has been published on fluvial processes and their manifestations in channel 

morphology, floodplain sedimentology and water quality (e.g. Gregory & Walling 1973, 

Gregory 1977, Lewin 1981). Literature on the ecological aspects of these processes has 

concentrated overwhehningly on aquatic organisms (e.g. Hynes 1970, Allan 1995). The River 

Continuum Concept recognises the importance of riparian vegetation but only in respect of its 

importance to the aquatic ecosystem (Vannote et al. 1980). Similarly work on land / water 

ccotones has dealt with the transport of material from land to water and its effect on aquatic 

organisms (Naiman & Decamps 1990, Bretschko 1995). Ecological studies of the riparian 

zone per se have concentrated on plant communities (e.g. Halsam 1978, Holmes 1983, Pautou 

& Decamps 1985) or vertebrates (e.g. Decamps et al. 1987, Carter 1989, Strachan & Jefferies 

1993). Much of the work that has been done on riparian beetles has been canied out in central 

Europe or Scandinavia and published in Gennan and these are possible contributory reasons 

for their neglect in anglophone cOWltries. Many of the older studies are mainly faunistic (e.g. 

Palmen & Platanoff 1943, Kless 1961) and more recent papers are often preoccupied with 

interspecific competition, scattered in specialist jownals and mainly confined to one family, the 

ground beetles. 

Studies of the human impact on river systems have mostly been confined to geomorphological 

changes (e.g. Park 1977, Brookes 1985) and their effect on aquatic invertebrates, fish, riparian 

vegetation and vertebrates (e.g. Cadbw-y 1984, Petts 1984, Brooker 1985, Brookes 1988, 

Smith et al. 1990, Petts et al. 1993, N'tlsson & Dynesius 1994, Mason 1995). Similar studies 

dealing with riparian beetles (e.g. Plachter 1986) are very rare. 

However, although such infonnation specific to riparian invertebrates is scarce, much of the 

above work provides a useful framework for considering which environmental factors are likely 
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Chapter 1: Introduction 

to be important for beetles with semi-aquatic habitats. The following section considers the 

physical environment in tenns of natural processes and the influences of hwnan land use and 

river management. 

1.2 The riparian and flood plain environment 

Gregory et al. (1991) put fOlward a model of rivers and their riparian zones to show how 

geomorphic and hydrologic processes such as erosion and sediment transport combine with 

terrestrial plant-successional processes to pro~de physical habitat and nutritional resoW'Ces in 

aquatic ecosystems (see fig. 1.1). Naiman et al. (1992) considered that climatic and 

geomorphic processes affect habitat featmes and biota at five different scales, namely at the 

levels of catchment, segment (length of river between major confluences), reach (length of 

river with similar gradient), poollriffie system and microhabitat (see fig 1.2). Each scale has a 

spatial and temporal dimension with small scale structures such as microhabitats lasting for 

around a year and larger scale units lasting for progressively longer time scales. When these 

time scales are matched with the time scales of the life histories and community processes of 

beetles, they may indicate a useful spatial scale for investigations into their habitat and 

conservation requirements . 

Amoros et al. (1987) viewed a river system as a continuum which changes longitudinally from 

source to mouth, laterally into the floodplain and vertically into groundwater aquifers. The 

longitudinal geomorphological continuwn involves changes from small steep channels to large 
~ 

flat channels and is connected to an ecological continuum involving transport of organic matter. 

However these upstream - downstream gradients combine with confluence effects to give 

discontinuities in the continuum and divide the river up into functional sectors. For example, 

The River Rhone between Geneva and Lyons passes through a gorge section, a braided 

section, a meander section, an anastomosed section and then at the confluence of the River Ain 

another braided section. The boundaries between these functional sectors are set by geological 

disjunctions and confluences with major tributaries. Within each sector discrete landfonns 

such as sedimentary bars serve as functional units, whose attributes such as sediment type and 

biotic character are tennedfunctional describers. 

All these approaches link fluvial processes to geomorphic and vegetational structures. 

Variation in these structures occurs at different scales and derives from environmental factors 
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Geomorphic 

and hydrologic 

processes 

Channel structure 

Physical habitat 

Valley floor 

landforms 

Retention 

Aquatic biota 

Plant 

processes 

Riparian 
vegetation 

Nutritional 
Resources 

Figure 1.1 : Interaction of floodplain structures and processes (after Gregory et 
sI 1991). Arrows represent predominant influences of physical and ecological 
processes (circles) on geomorphic and biotic components (rectangles). 
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Fig. 1.2. Spatial and temporal scales of riverine habitats 
(adapted from a table in Naiman et s/ 1992) 
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Chapter 1: Introduction 

such as climate and geology. A number of distinct types of semi-aquatic geomorphic and 

vegetation structures can be identified along river floodplains. They are here termed habitat 

structures or biotopes in concordance with the tenninology of Samways (1994) who reselVed 

the tenn habitat for the requirements of individual species from their environment. 

1.2.1 The main channel - fluvial processes and geomorphic structures 

Probably the most obvious feature of the riparian zone along the main channels of rivers is the 

Variability in topography and nature of the substrate. This Variability is both spatial and 

temporal (Gregory et al. 1991). It is related to the manner in which'rivers transport particles 

which either roll along the river bed as bed load or are carned in suspension as sediment load. 

Flow rate and particle size are two important factors in this process. For any particle size there 

is a critical flow rate at which the particle will be moved (petts 1983). Above this flow rate the 

particle will be picked up by the flow. Below this flow rate the particle will be deposited on the 

river bed. Larger particle sizes require faster flow rates to pick them up. However because of 

cohesive properties of fine sediments such as clay the critical flow rate required to pick them up 

is greater than the flow rate required to deposit them (Allan 1995). Therefore clay banks are 

more resistant to erosion than sand banks even though they are composed of smaller individual 

particles. 

Flow rate along a river channel varies with changes of gradient and the sinuosity of the 

channel. Consequently along the river channel there are sites where banks are being eroded 

over a period of time and sites of net sedimentary deposition. Zones of erosion and deposition 

exist on the bends in active meanders (Ferguson 1981). On the outside of bends the flow rate 

is relatively high and typically the banks are sites of active erosion. Eroding banks composed of 

cohesive clay and silt on the outside of bends are usually steep and often undercut. Shallower 

slopes or slumped banks can be caused by the collapse of an undercut bank especially where 

cohesive fine sediments overlay uncohesive coarse sediments. 

On the inside of bends the flow rate is relatively slow and the bank downstream of a bend is 

often a site of active deposition of sediment which when exposed become suitable for 

colonisation by riparian invertebrates. The sedimentary structure formed by this process is 

called a point bar. 
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In steep stretches of river, erosion can take place by incision into the bed to fonn gullies. 

Where the channel cuts down to the bedrock it can create a relatively stable riparian 

environment despite the high scouring power of the water flow. Moss growing on rock walls 

and large boulders provides shelter for a characteristic community of invertebrates. When the 

gradient decreases material is often deposited in mid-channel shoals in straight stretches of river 

which may fan out into a braided stream. 

Lewin (1981) described the large variety of channel bars and shoals which can form in areas of 

coarse sediments. rvtid-channel shoals termed medial bars can be 10ngitudiI\al or lobate 

(transverse). When they migrate downstream they can evolve into diagonal or lateral bars 

attached to the bank. Lateral bars also occur at confluences where sediment is brought in by a 

tributary (Brookes 1988). 

Different bar foons have different characteristics (Lewin 1981) and some of these differences 

are of potential importance to riparian beetles. Point bars are often formed from material 

derived from nearby eroding banks associated with long-lasting meanders. Consequently they 

tend to be relatively stable with regard to position. On the other hand mid-channel shoals may 

be derived from material whose origin is relatively remote. They are often mobile and can 

change fonn as they migrate down the channel. This variability in stability has implications for 

the range of life cycles that can be accommodated at a site. 

Brookes (1995) considered that channel morphology is adapted to high flows which occur on 

average around once cvcry two or three years. In many rivers in England and Wales this 

corresponds to bankfull discharge when the water level rises to the top of the banks. This 

means that the fonns of many riparian geomorphic structures are detennined by floods which 

happen at this frequency. However where rivers flow through easily erodable material such as 

sand, riparian structures can be altered more frequently (Ferguson 1981). By contrast in 

upland areas structures made of boulders are only affected by floc;>d intensities which happen 

very infrequently. The stability of an erosional or depositional structure is therefore dependant 

on both the nature of the substrate and the flow regime of the river. 

The amount of exposed sediment available for riparian invertebrates will partly depend on the 

extent of erosional activity within the catchment area. Many lowland rivers in England lack 

sufficient stream power to erode their banks even where their course is sinuous and in such 
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cases well developed point bars are rare (Ferguson 1981). Exceptions include large rivers such 

as the Trent which has migrated over large areas of its floodplain in historical times (petts et al. 

1992, Salisbury 1995). Apart from the main channel Lewin (1981) recognised two other 

natural erosion domains which acted as sources for riverine sediments. Firstly hillslopes 

provide sediment through creep, wash, solution processes and localised mass movement. 

Secondly streamheads provide sediment through seepage and overland flow. Clearly the extent 

and nature of exposed sediment at anyone site depends on a range of factors connected with 

entire catchment area upstream. These factors include topography, type of bedrock and drift 

and the extent to which vegetation interferes with erosional processes. 

In Britain water levels are highest during winter months and lowest during the summer, 

although. some Scottish rivers have a secondary peak in spring as a result of snow-melt (Ward 

1981). Consequently, in most British rivers exposed sediment is available for use by riparian 

invertebrates from spring to autumn. The amplitude between mean winter levels and mean 

summer levels varies considerably from river to river and this is another factor leading to 

variation in the amount of exposed sediment between catchments. Daily fluctuations also vary 

considerably between catchments and this leads to differences between river segments in the 

frequency of disturbance of exposed sediments by high flows associated with spates. 

Within catchments the nature of sedimentary bars changes longitudinally along the river. In 

upland areas where the channel gradient is high, finer sediments tend to be washed out to leave 

bars which are mainly composed of coarse sediments (Lewin 1981). By contrast in lowland 

areas there is a higher proportion of finer sediment in deposited material. 

Segregation of sediments by particle size can be observed in most point bars. In its simplest 

form this involves deposits of coarser sediments at the head of the bar grading into finer 

sediments at the tail where the current is slower. Successive high flows may partially rework 

this material to give localised series of graded particles within the overall pattern. The situation 

is further complicated by the complex topographies of some point bars whiah are composed of 

several different lobes arising from successive depositions. Inner depressions may form within 

compound bars as a result of dissection by chutes or the blocking of former channels. These 

depressions often retain renmant pools and deposits of finer sediments. 
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Mixing of particle sizes can occur when smaller particles are trapped in the interstices between 

larger particles. Vertical stratification can occur when successive deposits of sediments occur 

under different flow conditions or when the nature of the sediment load changes. It is common 

in Britain for fine sediments to be protected against erosion by a superficial layer of coarse 

sedirnents. This is called atmouring. 

Substrates are generally classified by their particle size (Allan 1995). Particle size can be 

measured by sieving, but it is also easy to estimate broad classes of particle size in the field. 

Other attributes of potential importance to riparian beetles such as packing and surface texture 

are more difficult to measure. 

Apart from their mineral content substrates also contain varying amounts of organic matter. 

Aquatic organic detritus is often classified by particle size into coarse particulate organic matter 

(CPOM, > 1 mm), fine particulate organic matter (FPOM, > 0.45 urn < 1mm) and dissolved 

organic matter (DOM, < O.45um) (Maltby 1992). All of these size classes can be incorporated 

into exposed sediments. The source of the detritus may be upstream or vegetation and animals 

living on site. Consequently the quantity and type of detritus depends on both local and 

catchment-wide factors. Typically a large amount of CPOM enters the system through 

headwaters and is converted to FPOM through physical and biological processes as it is canied 

downstream. 

1.2.2 The main channel- vegetation 

Haslarn (1978) describes both aquatic and riparian vegetation along rivers in Britain and North 

America and discusses the influences of flow, substrate type, nutrients, channel width and 

slope. Coarse sediments are characterised by communities of fringing herbs described as 

semi-emergent, somewhat bushy, short dicotyledons. However the shallow rooting systems of 

fringing herbs makes them susceptible to scouring by spates. Coarse sediments subject to 

scouring are therefore often free of vegetation and provide areas of bare substrate when 

exposed during low flows. Fine sediments are colonised by communities of tall 

monocotyledonous plants with deep rooting systems which are resistant to scouring. Even 

when the above-ground part of the plant is destroyed or damaged, regeneration can take place 
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from the roots. Their resistance to scouring coupled with the binding properties of their roots 

retard bank erosion and provide relatively stable microhabitats (Wade 1995). 

Species of tall monocotyledons often dominate species-poor communities both along the 

margins of slow-flowing river channels and floodplain wetlands where they create a reedswamp 

habitat (Rodwell 1995). Characteristically they produce a high weight of leaves and litter (Day 

et al. 1988, Hills et al. 1994). 

Lateral zonation of riparian vegetation is noticeable along many rivers. Church (1992) 

described a well defined boundary at the lower limit of continuous terrestrial vegetation and 

suggested that the duration, depth and periodicity of flooding at various bank heights may play 

a significant role in the distribution of plant communities in the active charutel below this 

boundary. 

1.2.3 Floodplain wetlands 

Floodplain biotopes receive water, sediment and organic matter from several sources. During 

peak flow conditions a large amount of fine sediment is deposited across large areas of the 

floodplain when floods overtop the bank. Floodwater also imports organic matter, mainly 

FPOM and DOM, and dissolved minerals. CPOM is produced on site and this may either be 

retained by the habitat structure or partially removed by floodwater. Groundwater sources 

may either maintain water levels between flooding or even provide the only source of surface 

water via springs. A fwther source of water is rainwater. 

Several types of semi-aquatic habitat structure can be recognised from the literature. Crevasse 

splays are fans of sediment deposited onto the floodplain by high flows breaking through levees 

on the bank (Gregory & Walling 1973). They have received little attention from ecologists. 

There is more information availabie on backswamps and abandoned channels. 

In braided rivers mid-channel deposition causes the channel to split up into distributaries. 

When more permanent islands are formed the channel is said to be anastomosed. In small 

side-channels, flows and stream power are considerably reduced leading to deposition of finer 

sediments than in the main channel. These side channels can eventually become filled with 

sediment so that flow above ground becomes seasonal or even restricted to rare floods. 

Abandoned river courses can also arise from sudden changes in course (avulsions) and cut off 
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events following the fonnation of chutes across point bars or the necks of meanders (Lewin 

1992). 

Remnant marshes, pools and lakes are potentially important, semi-aquatic features in 

abandoned channels. When they occur in old meanders they are called oxbow lakes. A more 

general tenn employed here is backwater. The tenn cut-off is avoided because it has been 

applied to several different features. The ecology of backwaters has not attracted much 

attention in Britain, although they are known to be of importance as spawning grounds and 

refuges for fish (petts 1984). Research into floodplain sedirnentology suggests that they must 

have been a common feature of the Holocene landscape (Lewin 1992). Work on the 

floodplain of the River Rhone has revealed two different types of vegetational succession in 

backwaters depending on the nature of the abandoned channel (Bravard et al. 1992). In 

abandoned meanders and anastomosed channels the succession proceeds slowly from open 

water communities through reedswamp, Salbe cinerea fen to Alnus glutinosa carr. In fomter 

braided channels the succession proceeds more quickly through a stage dominated by Phalaris 

arundinacea to Ulmus minor woodland. Chemical analysis of sediments in these old channels 

also revealed two patterns of development (Rostan et a1. 1987). Sediments with a high organic 

content were found in large sites in meanders which were abandoned before 1880 - 1890 and 

are tenned paleopotamon. Lower organic contents were found at smaller sites more closely 

connected with the main channel and derived from braided channels abandoned after 1880 -

1890. This type of site is termed plesiopotamon, or parapotamon if there is still a permanent 

connection with the main channel. 

Floodplain wetlands also occur where levees along the riverbank prevent the return of 

floodwater to the main channel. When the water ponds in low lying areas backswamps can 

form. Gilinan (1994) classifies these along with other types of wetland according to their stage 

of vegetational and hydrological succession from marsh, through fen to carr or bog. 

The succession in both backwaters and bacbwamps is similar in both broad vegetational and 

hydrological tenns to the classic hydrosere (Tansley 1939). Marsh develops on a mainly 

mineral substrate either along the margins of open water or in frequently flooded sites, but as 

organic matter builds up the substrate becomes peaty and a fen community develops. As the 
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peat builds up the ground surface becomes isolated from the groundw.ater and the fen 

community is replaced by carr or in areas of high rainfall, ombrogenous bog. 

This succession from aquatic to terrestrial systems is driven by organic matter produced within 

the site. Hydrological connection to the main channel can either retard this succession or send 

it in a different direction (Bravard et al. 1992). Flood flows through abandoned channels can 

remove organic matter and retard peat fonnation. The duration, frequency, season and depth 

of flooding, termed the hydroperiod (Lugo et al. 1990) has a direct influence on the 

composition of the vegetational community. Many trees in their early stages cannot tolerate 

prolonged submersion. Consequently sites which are subject to more frequent and prolonged 

flooding have their succession retarded unless submersion is avoided by the foonation of 

floating mats of vegetation (Kangas 1990). Deposition of silt by floodwaters maintains the 

mineral content of the substrate which is necessary for the maintenance of marsh communities. 

When the succession is driven by silt rather than by organic matter produced on site, the marsh 

stage proceeds quickly to a terrestrial stage without any fen stage (Rostan et al. 1987). 

Fluctuating water levels are a common type of disturbance which can result in reversals and 

perturbations of the succession (Kangas 1990). When hydroperiods increase, trees die and 

forest systems can revert to fen or marsh in a process tetmed paludification. Drought leads to 

aeration of the substrate, oxidation of peat and, when the water table rises again, a marsh 

community based on mineral substrates results. 

Studies of the ecology of disturbance have concentrated on forest, arid grasslands and marine 

littoral ecosystems (pickett & White 1985). However, flooding is clearly an important 

disturbance factor in both floodplains and along main channels. Sousa (1984) listed five 

descriptors of disturbance regimes (see table 1.1), all of which can be applied to disturbance by 

flooding. The spatial scale of disturbance by flooding is highly characteristic, being much 

larger in the longitudinal dimension than the lateral dimension. 

Succession can also be regulated by alluvial aquifers which maintain a high water table; 

variations in the chemical properties of the groundwater can result in the development of either 

an oligotrophic or a minerotrophic vegetation community (Bravard et al. 1992). Connectivity 

between groundwater and the main channel is affected by the geology and topography of the 
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Descriptor How measured 

spatial scale size of disturbed area 

magnitude intensity measured as the strength. of the disturbing force (e.g power of 
current), severity measured as the damage caused by the disturbance (e.g. 
mortality, habitat change) 

frequency number of disturbances per unit time 

predictability variance in the mean time between disturbances 

twnover rate the mean time required to disturb the entire area in question 

Table 1.1. Descri ptors of disturbance regimes (adapted from Sousa 1984). 
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floodplain (Brinson 1990). Thick clay strata and clay plugs in abandoned channels restrict 

groundwater movement between the main channel and its floodplain. 

Figure 1.3 summarises the successional processes operating in river floodplains. 

1.2.4 Impact of river management 

Engineering works on river channels can be divided into two main categories. Firstly 

channelisation involving embankments and direct modifications to the channel are canied out 

to alleviate flooding, to assist drainage schemes in the adjacent floodplain, to control erosion 

and to aid navigation. Secondly rivers are impounded by weirs and dams for a variety of 

pwposes: fishing, navigation, flood contro~ water mills, hydroelectric schemes, water supply 

and inigation. 

Channelisation is the method used in most flood alleviation schemes in Britain. It has severe 

effects, both direct and indirect, on semi-aquatic habitat structures. Direct effects include the 

removal of physical structures, bankside vegetation and especially trees (Brooker 1985). 

Brookes (1985, 1988) lists the main operations involved in modem channelisation works. 

Resectioning involves widening or deepening the main channel to achieve a trapezoidal section 

sufficient to take the desired peak discharge. Sedimentary bars may be totally removed. Banks 

are regraded to a 45° slope which replaces existing steep eroding banks and lateral bars. 

Sometimes banks are revetted. This involves lining the banks with materials ranging from 

willow piling to concrete. In urban areas the channel may be completely lined with concrete or 

steel sheets. 

Realignment involves the shortening of river channels by artificial cut-off channels to by-pass 

meanders. The abandoned meanders, jf not filled in, then become floodplain structures while 

the number of structures within the main channel decreases. Realignment also increases the 

slope and thus the flow within the main channel resulting in greater bed scouring. In some 

cases a nick point develops in the channel bed and progresses upstream. The increase in 

sediment load leads to greater deposition downstream of the realignment. Consequently 

realignment can change channel morphology both upstream and downstream. Both 

resectioning and realignment can also have large short tenn effects during the construction 

phase when downstream sediment loads can reach forty times their natural1evel. 
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Bank protection in the fonn of groynes is used to protect banks from erosion in large rivers 

flowing through easy erodable materials such as sand. This measure encourages the deposition 

of sediment and so increases the area of exposed bars. 

Embankment involves the construction of a flood bank to a height designed to cut down the 

frequency of floods reaching the floodplain. Petts (1987) points out that this reduces 

connectivity between the main channel and the floodplain. This would have a significant effect 

on floodplain biotopes whose ecological succession is regulated by flooding. Bravard et al. 

(1986) studied the effects of the construction of a submersible embankment which imposed a 

single navigation channel onto braided and anastomosed stretches of the Rhone. Slow 

accumulation of silt and organic matter occurred in formerly active channels but aggradation in 

the main channel raised the water table in old channels nearby maintaining open water 

conditions and retarding the succession. Consequently the embankment created a new 

generation of floodplain habitat structures whose rate of succession varied with distance :from 

the main channel. However these new structures were gained at the expense of diversity of 

main channel habitat structures. Elsewhere on the Rhone, Bomette & Heiler (1994) fOWld that 

deepening of the channelled to some abandoned channels becoming more oligotrophic due to 

the increased influence of hillslope aquifers, whereas other old channels dried out because of 

the lowering of the water table. 

Petts (1984) gives a comprehensive accoWlt of the effects of dam construction on channel 

morphology, vegetation and aquatic fauna due to changes in hydrology, water quality and 

sediment transport. Of particular relevance to sedimentary structures is the interception of 

sediment and organic matter by reservoirs. Grimshaw & Lewin (1980) found that the MOll 

Rbeidol below a dam which cut off 84% of its catchment, had sediments 16 to 17 times lower 

than a neighbouring unregulated river. Large amounts of fine sediment are deposited in the 

impounded reservoir and the build of nutrients encourages algal blooms. Changes in 

downstream patterns of erosion and sedimentation take place throughout a significant length of 

river and may take several decades to be completed. Outflows of clear sediment-free water 

rapidly erode the channel causing incision or bank erosion where the bed is protected by 

annouring. However, because peak flows are diminished in reservoir outflows, stream power 

is also reduced and increased deposition of sediment is often observed at the confluence of 
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unaffected tributaries downstream. Reduction of peak flows also reduces the lateral flow of 

water to floodplain wetlands. 

Much less infonnation is available on the effects of smaller impoundments. Murphy et al. 

(1995) describe how rivers modified for navigation by locks and weirs have a low habitat 

diversity with a predominantly depositional regime with low seasonal variations in water level. 

Prolonged dI)' weather may result in low flows and almost lacustrine conditions. 

Natural lakes act as sediment traps in a manner similar to artificial impoundments. However by 

the 1980s the effects of man-made lakes on stream flow exceeded that of natural lakes by a 

factor of three (pens 1984). In small rivers natural impoundments can also result from debris 

jams such as fallen trees (Church 1992) or the activities of beavers which Nairnan et al. (1986) 

fOlUld to have considerable effects on the hydrology, channel geomorphology and community 

productivity of river systems in Canada. 

1 .2.5 Effects of recreation 

Liddle & Scorgie (1980) review the effects of recreational activities on both aquatic and 

riparian wildlife. Of water-based activities, boating is considered to have the greatest impact. 

Wash from boats not only erodes the bank but also affects vegetational composition because 

some plants are better able to withstand the eroding action of wash than others. Mooring and 

accidental collision can also erode areas of bank and completely remove areas of riparian 

vegetation. 

A variety of shore-based activities can lead to trampling of riparian vegetation. Use of a stretch 

of the River Ouse near Huntingdon by anglers resulted in replacement of tall riparian 

vegetation by a short sward of grasses and plantains along 20% of the riverbank, rising to 30% 

near an access track (Liddle & Scorgie 1980). This had the effect of breaking up a 

continuous habitat into small units. Anglers can also cause localised erosion of the bank where 

they fish. The impact of anglers on habitat structures varies according to the type of water 

body and associated vegetation. Lowland sites with soft margins and vegetation subject to 

trampling by a high density of anglers may be affected more than sparsely vegetated upland 

sites on coarse sediments with a low density of anglers (Murphy & Pearce 1987). 
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Clearly recreational activities have an impact on riparian vegetation. Disturbance also affects 

nesting birds (Liddle & Scorgie 1980), but the responses of riparian invertebrates to recreation 

along rivers are unknown. 

1 .2.6 Effects of discharge and abstraction 

Under natural conditions British rivers show a wide variation in water quality because of 

differences in the nature of dissolved substances or solute load (Walling & Webb 1981). 

Upland catchments with high rainfalls tend to have a lower concentration of dissolved ions and 

a lower pH than lowland catchments containing basic bedrock and mineral-rich drift. However 

human activity has changed the water quality of rivers to the extent that at low flows the major 

proportion of many lowland rivers is made up of treated discharge from industrial and sewage 

outfalls (Mason 1991). The high concentration of pollutants in some lowland rivers is also 

connected to abstraction of water upstream. 

Eutrophication of lowland rivers arises from agricultural run-off containing nitrates and sewage 

oUtfalls containing phosphates. In parts of Western Europe and North America levels of 

dissolved nitrogen and phosphorus have increased by a factor of 10 to 50 from natural levels 

(Allan 1995). In floodplains with established agriculture nitrates originate largely from 

fertilisers. However, the drainage of wetland areas in floodplains can also lead to long tenn 

increased nitrate loads through oxidation of drying organic matter in the soil (Harris & Parish 

1992). Eutrophication affects the productivity, cover and species composition of vegetation 

communities. 

Discharge of sewage into rivers has long been known to have a deleterious effect on most 

natural aquatic macroinvertebrates by removing oxygen from the water (Mason 1991). The 

effects on semi-aquatic macroinvertebrates are likely to be quite different. Green (1983) 

recorded species rich assemblages of 79 species of Coleoptera from both untreated and treated 

sewage sludge drying beds at three sites near Binningham. The species recorded included 

many normally found on freshwater shores as well as those associated with decaying vegetation 

and dung. Hammond (1971) described differences in the habitats of the rove beetles, 

Platystethus cornutus and P. degener as being related to the content of organic matter in mud. 
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Heavy metals are potentially important pollutants in sediments. Persistent heavy metal 

contamination originating from 19th century mining was reported by Lewin et al. (1977) in 

reworked sediments in Wales. Transport of heavy metals which are adsorbed onto clay 

particles can result in concentrations of heavy metals in floodplain deposits and other fine 

sediments in lowland parts of the catchment far from their points of origin which can be mining 

operations or industrial discharges (Rang & Schouten 1989). Although heavy metals may 

affect benthic macroinvertebrates, their effects on semi-aquatic organisms. are unclear. F owles 

(1988) found that the distribution of beetles on coarse sediments in Wales was uncorrelated 

with heavy metal concentrations and Green (1983) recorded a rich assemblage of beetles from 

sewage sludge which contained increased levels of heavy metal concentration arising from trade 

waste. 

1.2.7 Impact of catchment-wide land use 

Lewin (1981) lists causes of increased soil erosion and consequent increased entry of fine 

sediments into river systems. These include agricultural tillage, ditching and field drainage, 

industrial activity and in uplands deep ditching as part of coniferous afforestation. Osbome 

(1988) investigated a late bronze age deposit from the River Avon in Worcestershire and found 

a sub-fossil assemblage of elmids associated with fast-flowing gravel rivers, conditions quite 

different from the modern nature of the river which is slow-flowing and silty. Many of these 

elmids have very restricted modem distributions although they are widely recorded in deposits 

up to the Roman period. It is suggested that the disappearance of these species at the Avon site 

and elsewhere was due to the influx of silt into the river following deforestation and the 

introduction of agriculture as reported by Shotton (1978). The siltation of British rivers which 

followed prehistoric landscape changes from forest to agricultW'e has probably affected some 

semi-aquatic shingle bank species in a similar fashion. 

Park (1977) reviews some effects of urbanisation on river channels. Urbanisation in the 

catclunent area removes vegetation and covers large areas of ground with impenneable 

surfaces. These changes together with the action of stonn drainage systems lead to a large 

increase in run off with consequent faster build up of higher peak discharges. Urbanisation is 

regarded as the most important cause of man-made flooding (Brandon 1987) and leads to 

changes in channel size and geometry. Increased run off and ground disturbance dwing 

large-scale corutruction works can, like agricultural tillage, increase sediment load by a factor 
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of five to ten (Walling & Gregory 1970). Consequently urbanisation upstream is likely to result 

in greater and more frequent disturbance of both main channel and floodplain habitat structures 

as well as larger volumes of sediment being deposited at least in the floodplain. Thorns (1987) 

reported less sediment than expected in the River Tame, an urban river in the British midlands, 

suggesting that excess sediment caused by construction works is quickly resorted by the 

increased flow velocities and frequency of flood discharge. Thorns also found that the 

sediment derived from urban sources was finer than in natural stretches. Urban sediments can 

include some exotic types of material such as plastic, glass, domestic refuse and supermarket 

trolleys (park 1977)! 

Floodplain wetlands have been directly affected by a variety of land uses and some biotopes 

such as fioodplain forests are now very rare in Europe (Brinson 1990). Conversion to 

agriculture has considerably reduced floodplain wetland and most of what remains has been 

affected by drainage and eutrophication. Drainage not only has the direct effect of lowering 

water levels but also creates conditions which lead to increased stocking levels and the infilling 

of small dykes (Mountford & Sheail 1984). Grazing interferes with the natural succession of 

wetland vegetation resulting in the establishment of graminoid communities (TaUis 1983). 

Floodplains are also important areas for gravel extraction. Although this can destroy large 

areas of floodplain wetland, the resulting gravel pits have been recognised as potentially 

valuable for birds and other fonus of wildlife (Giles 1992). Koch (1977) found that some 

riparian beetles colonised gravel pits up to 7 km from the Rhine. Plachter (1986) fOWld that at 

least two thirds of the ground beetles associated with natural gravel bars along the River tsar in 

Bavaria had colonised similar habitat structures in gravel pits. 

1.2.8 Conclusions 

Studies of the physical environment, aquatic biotic communities and riparian vegetation have 

resulted in advances in the Wlderstanding of hydrologic, geomorphic and successional 

processes. These advances also provide potentially valuable insights into how the same 

processes could affect the physical environment of invertebrates in semi-aquatic habitat 

structures. Figure 1.4 shows how Gregory et al.'s (1992) model of the riverine aquatic 

ecosystem (fig. 1.1) can be adapted for semi-aquatic ecosystems. The rectangles are 

components which vaty spatially and the circles are components which give rise to temporal 
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variations. Table 1.2 lists the environmental factors which influence the fluvial processes 

operating at scales corresponding to the levels of whole catchment and river segment (sensu 

Naimann et al. 1992) or functional sector (sensu Amoros et al. 1987). The different types of 

semi-aquatic habitat structure fonned by these processes are listed in table 1.3. 

In anyone segment of floodplain between major confluences, the factors listed in table 1.2 

tend not to vary very much. However other environmental factors vary at a smaller scale. The 

factors listed in table 1.4 vary within individual habitat structures. Consequently an individual 

habitat structure at a particular site contains microhabitat structures covering a range of values 

for each factor. Furthennore individual habitat structures at separate sites contain different 

ranges of values. For example a point bar associated with a riftle may be composed of sparsely 

vegetated shingle grading to coarse sand, while a point bar further downstream may be 

composed of sand and silt with patches of well developed vegetation. 

Human activities have resulted in major modifications to the riverine environment starting 

probably in the Neolithic period and escalating from the 19th century onward. Understanding 

the natural processes operating in this environment leads to an understanding and prediction of 

the consequences of river and land management. Potentially important impacts of human 

activities for invertebrates of semi-aquatic habitat structures are listed in tables 1.5 and 1.6. 
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Process Potentially important Large scale environmental factors 
attributes which influence attributes 

Hydrology Peak discharge / stream power Catclunent area 
(flow above ground) F10w regime - seasonality Rainfall - volume 

F10wregime Rainfall - temporal variations 
- daily variations or spatiness Topography 

Hydrology Seasonal fluctuations Solid geology 

(ground-water flow) Drift geology 

Sediment transport, Volume 
Land cover - evapotranspiration 
Land cover - ecological prodUCtivity 

erosion and Particle size Temperature - evapotranspiration 
deposition Mineral content Snowfall 
Transport of organic Volume Glaciers 
matter Type 

Transport of solutes Influence on riparian 
vegetation 
Toxicity 

Table 1.2. Fluvial processes of potential importance for beetles of semi-aquatic habitats. 
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Sediment Habitat structure Classes of each Factors v8I1ing 
transport status structure described in between classes 

literature 

eroding bank undercut bank or cliff topography 
Nett erosion slumped bank 

incised gully / ravine 

medial bar (transverse, 
longitudinal, diagonal) position in channe~ 

sedimentary bar point bar shape, stability (Lewin 

lateral bar / benn 
1981) 

parapotamon connectivity with main 

plesiopotamon channel flow (Rostan et 

paleopotamon 
al1987) 

Nett deposition backwater open water 

reed-swamp stage of vegetational 

fen 
succession (Bravard et al 
1992) 

carr 

marsh 

fen stage of vegetational and 
backswamp 

bog 
hydrological succession 
(Gilman 1994) 

carr 

crevasse splay 

Table 1.3. Habitat structures of potential importance for beetles of semi-aquatic 
environments. 
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Environmental variable attribute 

Hydrology (flow above ground) peak flow rate 

connectivity with main channel 

Hydrology (ground-water flow) height of water table 

lateral flow rate 

particle size 

cohesiveness (resistance to erosion) 

Substrate proportion of organic matter 

type of organic matter 

packing 

surface textw'e 

cover 
Vegetation species composition I successional stage 

prodUCtivity (litter) 

slope 
Topography complexity (remnant pools etc) 

aspect 

Table 1.4. Small scale environmental variables which are of potential importance for 
beetles of semi-aquatic habitat structures 
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Sedimentary bars Flood plain wetlands 

Forest clearance and Increase in sediment Drainage and conversion to 
agricultural tillage Change from coarse sediments terrestrial habitat 

to silt and clay Eutrophication leading to 
Eutrophication leading to changes in vegetation 
changes in vegetation 

Floodplain grazing Interruption of vegetational 
succession and change to 
grarninoid commWlity 

Urbanisation Decrease in stability and Increase in flooding leading 
change in particle size and either to retardation of 
vegetation succession or change in type 

of succession 

Floodplain gravel extraction Possible increase in sediment New sites 
although this is subject to 
control in U.K. 

Table 1.S. Possible etTects of catchment land uses on some semi-aquatic habitat 
structures. 
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Sedimentary bars Floodplain wetlands 

Resectioning Removal Lowering of water table 

Realignment Conversion to floodplain New sites 
structure 
Increased scouring upstream 
and downstream leading to lack 
of stability and change in 
particle size and vegetation 

Grroyneconstruction New sites 

Embankment Reduction in flooding leading 
either to accelaration of 
succession or change in type 
of succession 

Impoundment Increased scouring downstream Possible reduction in flooding 
leading to lack of stability and downstream from resetVoirs 
change in particle size and leading either to accelaration 
vegetation of succession or change in 
Decrease in particle size and type of succession 
increase in organic matter 
upstream 

Recreational use including Bank erosion Bank erosion 
boating and angling Changes in vegetation Changes in vegetation 

community community 
Localised reduction in Localised reduction in 
vegetation cover vegetation cover 

Discharge of sewage etc and Eutrophication leading to Eutrophication leading to 
abstraction changes in vegetation changes in vegetation 

Heavy metal contamination of 
sediments 

Table. 1.6. Possible effects of river management practices on some semi-aquatic habitat 
structures. 
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1.3 The organisms 

The geomorphic and vegetational structures which are the products of these processes can be 

viewed as habitat structures available for occupation by populations of beetles. These 

structures are often recorded as habitats in, for example, river conidor habitat swveys (NRA 

1992), but they do not necessarily represent ecologically fimctional units (Harper et al. 1995). 

Harper et al. (1992) empirically analysed the functional relevance of habitat structures, defined 

in terms of geomorphic and vegetational structures in streams, by studying the distribution of 

aquatic invertebrate species between these structures. 

Information on the autoecology of species and synecology of species assemblages may give 

insights into the functional relevance of various attributes of habitat structures. This section 

looks at how the species traits of riparian and floodplain beetles are expressed in environmental 

requirements which are constrained by the fluvial and successional processes descn'bed in the 

previous section. 

1.3.1 Taxonomic groups with semi-aquatic habitats. 

Table 1.7 shows the families of British beetles with semi-aquatic habitats except for those 

confined to coastal habitats. The numbers of relevant species in each family were identified 

from individual species accounts in Koch (1989 - 92), Hyman (1992, 1994) and from personal 

experience in Britain, France and Spain, supplemented by works on individual families (Clarke 

1973, Lindroth 1977, Boyce et al. 1991, Majerus 1991, Johnson 1992, 1993). Species are 

categorised as riparian if they are predominantly associated with open shores. They are 

characterised as wetland if they are associated with more vegetated marshes and mires. 

Because of difficulties in defining boundaries between such broad habitat types, numbers must 

be regarded as approximate, but they do give some indication of the taxonomic distribution of 

the potential diversity of beetles along river floodplains. The riparian species are all liable to be 

found by main river channels, although they also occur by lakes and trickles on crumbling 

cliffs. The wetland species have the potential to occur in floodplain wetlands, but may also 

occur along the main channels of slow-flowing rivers. 

76% of riparian species and 54% of wetland species belong to just two families: the 

Staphylinidae or rove beetles and the Carabidae or ground beetles. These and some of the 
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Family Approximate number of species associated with 

river margins wetlands trees near water 

Carabidae 60 S3 
'Microsporidae 1 

Georissidae 1 

Hydropbilidae 3 4 

Ptiliidae 3 8 

StaphyJinidae 128 159 

Pselaphidae 3 11 

Scarabaeidae 1 

Clambidae 3 1 

Scirtidae 2 17 

Byrrhidae 1 1 

Phesphenidae 1 

Heteroceridae 3 

Limnichidae 1 

pryopidae 2 7 

Elateridae 5 2 

Cantharidae 4 2 

Melyridae 2 

Nitidulidae 4 

Rhizophagidae 2 

Silvanidae 1 

Ctyptophagidae 1 12 1 

Phalacridae 2 

Corylopbidae 3 

Coccinellidae 1 3 

Lathridiidae 1 

Anthicidae 1 

Cluysomelidae 1 50 15 

Apionidae 2 

Curculionidae 24 46 18 

total 248 394 36 

Table 1.7. Families containing specialist semi-aquatic beetles associated with riven and 
wetlands in Britain (not including species confined to coastal habitats). 
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other families represented in the table are nonnally considered to be predominantly 

ground-living predators (Good & Giller 1991, Thiele 1977), although some fossorial 

Staphylinidae feed on algae (Hennan 1986) and Lindroth (1949) has pointed out that the 

majority of Carabidae are in fact omnivorous. Hering and Plachter (1997) reported that 

riparian ground beetles along the River !sar in Gennany feed largely on aquatic insects and 

their exuviae which drift ashore on the water surface. Families such as the Cantharidae, 

Chrysomelidae and Curculionidae, whose adults tend to climb plants and trees, are less well 

represented, especially in the riparian category. 

1 .3.2 Morphological and behavioural adaptations 

Adult ground beetles show a variety of morphological adaptations to different lifestyles 

(Forsythe 1987). Evans (1990) classified ground beetles into three groups according to the 

anatomy of their legs, which suited them to different locomotor lifestyles. Rapid runners have 

long thin legs and are able to sprint over the surface, but they are weak at pushing against a 

force. Strong wedge-pushers have thicker legs and are slower runners, but their large hind 

trochanters enable them to push horizontally into crevices. Powerful burrowers have shorter 

legs still and so are much less mobile above ground. However, their powerful leg muscles 

enable them to burrow into the ground. Often the front tibia are flattened and equipped with 

teeth to facilitate digging and their bodies are elongate and pedunculate. Evans (1990) found 

that most ground beetles were strong wedge-pushers, but noted the high numbers of rapid 

runners and powerful burrowers in riparian habitats where their adaptations are suited either to 

a cursorial or fossorial lifestyle in areas of bare sand. Strong wedge-pushers are suited to a 

compromise lifestyle and are equipped both for activity on the surface and also for pushing into 

hiding places at the end of activity periods. They are also well equipped for activity in 

deciduous litter which requires pushing against vegetative obstacles (Evans & Forsythe 1984). 

A remarkable morphological adaptation is exhibited by species of Omophron which have a leg 

structure similar to rapid runners, but the body shape of a dytiscid water beetle and this 

enables them to move through loose sand (Forsythe 1991). Andersen (1978) found that 

species of Cicindela, Omophron and Bembidion subgenus Chrysobracteon, which have long 

legs for running as well as the ability to burrow into sand, have similar modifications to the 

front tibiae. 
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A similar gradient in leg morphology seems to occur in the Staphylinidae. Several species of 

Stenus s. str. , Paederidus and Tachyusa) have long thin legs and are often encOlUltered 

running over bare soils in riparian habitats. Coiffait (1972) mentioned two genera with tibiae 

adapted for a fossoriallifestyle. Bledius and, to a lesser extent, Carpelimus are two riparian 

genera with adaptations for burrowing. Remarkably few, if any, authors mention the long thin 

body shape of rove beetles which would appear to be an adaptation for moving through 

fissures in the ground and tangled vegetation in litter and tussocks. It is also useful for 

sheltering in honow plant stems during hibernation (pahnen 1949). 

Andersen (1985a) divided NOIWcgian specics of Bembidion into three groups according to 

their hind body shape. He found that flat parallel-sided species are confined to gravel or stone 

shores and banks, whereas more convex species, which tend to have more rounded elytra, live 

in more or less vegctated sites on fine sand, silt or clay. Species of intermediate morphology 

tended to occur on a wider range of substrate types. These results were supported by 

Dcscnder (1989) in a study of seven Belgian species of riverbank Bembidion, who fOWld a 

similar relationship between the convexity of body type and particle size of the preferred 

substrate type. Andersen (1985a) proposed that a flattened body-fonn is an adaptation for 

moving in a restricted environment under stones to find food and breeding partners. He lists 

several further beetles which are confined to coarse substrates and which have flattened bodies. 

ThCSG includG grO\Dld beetles in the genera PeriJeptus and Nebria, rove ~GS in the gcmcra 

Thinobius, Hydrosmecta and Aloconota, and the click beetle, Fleutiauxellus maritimus. 

However this group exhibit a wide range of leg morphology and fall into several groups 

a~rding to Evans (1990); Beetles such as Nebria. Aloconota and Fleutiauxellus maritimus 

have long legs which are adapted to running fast over the swfacc and which would be 

disadvantageous when moving through gravel or under stones. Possibly their flattened body 

shape is adapted less for activity in this environmental and more for biding dwing periods of 

inactivity . 

Wen vegetated habitat struct\U"es such as fens contain several species of ground beetles and 

rove beetles capable of climbing plants. Demetrias species and several fenland Stenus species 

have enlarged bilobed tarsal segments similar to Chrysomelidae and Coccinellidae which are 

habitual plant-climbers. Several species of Quedius and Hygronoma are adept at climbing the 

vertical walls of glass tubes (personal obsetvation). Landry (1994) found that, out of four 
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species of Agonum in a Canadian lakeside fen, A. nigriceps had the highest climbing ability and 

also the longest tarsi. He associated this climbing ability to a preference on the part of A. 

nigriceps for flooded areas with tall emergent vegetation. Other fenland beetles such as A. 

thoreyi and Paederus riparius survive flooding by clinging to submersed vegetation and 

becoming torpid (palmen 1945). Palmen (1945, 1949) showed that many species can survive 

submersion in this way at least in cold water for long periods of time. However, Arens and 

Bauer (1987) obsetved that B/ethisa mu/ffpunctata is quite active when it enters the water and 

suggested that it habitually enters water in order to escape predation and to hunt. 

Joy (1910) studied the behaviour of beetles during flooding of main river channels. He 

identified four types of active locomotion over the water surface to escape from submersion. 

Firstly several species of rove beetles in the subfamily Steninae together with the ground beetle, 

Agonum albipes, can skim over the water surface. In order to do this they secrete a substance 

which lowers the surface tension behind them and propels them forward. Some species of 

Stenus together with several species of Bembidion swim with their legs, whereas other species 

of Stenus raise themselves above the water surface and walk. Joy also observed the rove 

beetle, Gnypeta carbonaria, raising itself above the surface with its abdomen held aloft like a 

sail to be propelled by the wind. This behaviour has also been observed in a species of 

Myllaena in Spain (G.N. Foster, pers. cornm.). Andersen (1968) recorded two species of 

Bembidion flying from the water surface at temperatures above 25° C and suggested that 

species of Bledius and Gnypeta can fly from the water at lower temperatures. When on the 

water surface, beetles tend to orientate themselves toward the largest dark object on the horizon 

which is usually the bank (Jenkins 1959, Andersen 1968). Zulka (1994) reported that some 

ground beetles associated with floodplains were relatively fast at reaching the bank when 

stranded on water. However, Joy (1910) also notes that several species of Quedius and many 

smaller rove beetles are very poor at moving in the water and his observations of huge numbers 

of beetles in flood litter deposited on the bank suggests that many individuals escape 

submersion passively by clinging onto fragments of vegetation. 

Andersen (1968) studied the response of riparian beetles to rising floodwater and suggested 

that fossorial adults and larvae tended to remain in the substrate. However, adults are often 
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forced out of coarser substrates, where the current tends to be stronger. Cursorial species 

retreat up the bank as the flood advances. 

Rehfeldt (1984) looked at the characteristics of ground beetles in several different habitats in a 

river valley in Lower Saxony and found that riverbanks contained a high proportion of both 

diurnal species and macropterous species. He suggested that macroptery in riparian ground 

beetles enabled them to colonise new habitat structures created by flooding. However, 

macroptery in ground beetles is not always associated with good dispersal ability. Dispersing 

ground beetles are often weak fliers which disperse passively using wind cUITents and often 

time their flights with optimal weather conditions, whereas species that use flight to hunt or 

migrate tend to be strong fliers in control of their flight direction and geographically 

conservative (den Boer 1990). Some full-winged beetles cannot fly at all. The flight muscles 

of many insects degenerate during periods of reproductive activity (Johnson 1969) and 

Nelemans (1987) found that most individuals of the full-winged ground beetle, Nebria 

brevicollis, in cultivated land in the Netherlands have undeveloped flight muscles and disperse 

by walking. 

1.3.3 Life histories 

Larsson (1939) listed details of the reproductive cycle in all Danish ground beetles and 

recognised three different types of cycle. All of them involve one generation per year. 

Autumn-breeders reproduce in the autwnn and ovetWinter as larvae. Spring-breeders with 

autumn activity overwinter as adults and reproduce in the spring after which the adults die off. 

The new generation of adults emerges in the autumn but does not reproduce unbl after 

hibernation. Spring-breeders without autumn activity have a similar breeding season, but 

freshly emerged adults remain inactive in the autumn. Lindroth (1949) noted that some species 

showed regional variations in F ennoscandia and introduced an additional group which 

overwintered both as larvae and adults. He also relabelled spring breeders as imaginal 

hibernators and autumn breeders as larval hibernators. lbiele (1911) pointed out that in 

many regions Larsson's autumn breeders actually breed in the summer and gave examples of 

several variations to his life history types involving diapause and partial ovetWintering of adult 

autumn-breeders. Furthennore he reported that spring-breeders can exhibit different levels of 

autumn activity in different parts of their range and are best treated as a single group. Clearly 
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there are wide variations from Larsson's original simple classification even within single species. 

Butterfield (1986) found that, at higher altitudes in northern England, Carabus problematicus 

females bred in their second year rather than their first. Den Boer & den Boer-Daanje (1990) 

rejected Larsson's classification into spring breeders and autumn breeders after reviewing the 

breeding periods of 68 species in the Netherlands. They discovered a continuous gradation of 

breeding seasons between spring and autumn. They also found evidence of winter breeding in 

several species. Due to partial overwintering of adults in some species, they also rejected 

Lindroth's classification into larval hibernators and imaginal hibernators. However, they did 

find that species could be classified into species with summer latvae and species with winter 

larvae and these roughly correspond to Larsson's spring breeders and autumn breeders, tenns 

which are still widely quoted in the literature. 

Kasule (1968) recognised four types of reproductive cycle in rove beetles based on field studies 

in Scotland. Species with summer larvae are equivalent to Larsson's spring breeders and 

species with winter larvae are equivalent to autumn breeders. Stenus impressus was 

categorised as a species with autwnn and winter larvae. Eggs were laid between the end of 

July and the beginning of October. Some larvae matured in the autumn and overwinter as 

adults while some remained as lalvae throughout the winter. The final group includes two 

species of athius in which larvae were present for a greater part of or throughout the year. In 

fact o. myrmecophilus bred all year round, while O. punctulatus had a break from breeding in 

the autumn (Kasule 1970). Luff (1966) also found that Stenus impress us overwintered as 

larvae, but unlike Kasule did not find any adults ovenvintering. He also found that Stenus 

clavicornis bred in spring and summer and had summer larvae. Walker (1985) was able to 

allocate six species to the first two of Kasule's groups on the basis of fieldwork in woodland 

and pasture in Durham. Frank (1967, 1968) also labelled seven woodland species in Berkshire 

as either summer breeding (= spring breeders) or winter breeding (= autumn breeders), but 

found that some adult Quedius picipes, which is an autumn breeder, overwintered after 

breeding. Steel (1970) divided Omaliinae into those which lay eggs in the swnmer and those 

which lay eggs in the late autumn. However there are variations which include winter activity 

and periods of adult quiescence. 

Although the reproductive cycles of rove beetles seem to fit into categories similar to those of 

ground beetles, they have received much less attention especially amongst the smaller species, 
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It is possible that a wider range of cycles remains to be discovered. Bordoni (1982) mentioned 

that some Oxytelinae and Aleocharinae have three generations per year. Hennan (1986) 

quoted reports of two or more breeding periods in Danish and Japanese species of Bledius, but 

it is unclear whether this is due to more than one generation per year or a prolonged breeding 

season of a single generation. 

Lehmann (1965) found that in ground beetle assemblages along the Rhine, autumn breeders 

predominated in woods and meadows above the riverbank but in areas regularly inundated by 

the river they were almost entirely replaced by spring breeders. The only autumn breeder 

present on the bank was Amara fulva, which was confined to the topmost zone. Lehmann 

reviewed faunal lists of riverbank ground beetles from Scandinavia and found that they were 

composed almost entirely of spring breeders. He attributed the scarcity of autumn breeders to 

the difficulty of their latvae in escaping the effects of high winter flows. Wetland ground 

beetles show a similar pattern to riparian ground beetles. Murdoch studied the life histories of 

21 wetland ground beetles in marshes in Britain and found that all but one are spring breeders. 

Furthennore he examined data on Scandinavian ground beetles and found that only 11 out of 

124 hygropbilous species were autumn breeders. Like Lehmann he suggested that larvae are 

wlnerable to inundation during the winter, whereas adults can escape more easily into 

hibernation quarters. However, the proposed wlnerability of larvae to flooding does not 

explain the preponderance of spring breeders along the banks of the Rhine (Lehmann 1965) 

and rivers in Norway (Andersen 1969) whose seasonal high water levels occur in the spring or 

early summer when the latvae are present along the bank. Lehmann's suggestion that the 

majority of latvae along the Rhine are killed each summer and that populations are sustained by 

annual immigrations each spring implies that the banks of the Rhine act as a huge mortality sink 

for local riparian populations and seems implausible. Furthennore Andersen (1968) reported 

high survival rates of eggs, larvae and pupae during submersion and even recorded a higher 

survival rate for larvae than adults. 

There are some riparian species which overwinter as larvae. Nebria gyllenhali, Bembidion 

lunatum and Trechus secalis are riparian or wetland specialists classified by Andersen (1969) 

as exclusively larval hibernators. In addition the reproductive cycles of riparian ground beetle 

species are not always constant. Meissner (1983) reported that a population of Bembidion 

Jemoratum by a Gennan gravel pit was sexually active all year round and egg laying occwred 
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over a long period from March to September. Andersen (1969) recorded teneral adults of 

several riparian species of Bembidion in early spring suggesting occasional larval or pupal 

oveIWintering. He also found that Asaphidion pallipes hibernates commonly as both larvae 

and adults. 

It is not known whether the domination of spring breeders amongst riparian ground beetle 

assemblages is reflected amongst rove beetles. Methodically collected infonnation on riparian 

rove beetles is lacking, although Horion (1963, 1965, 1967) gives records of many riparian and 

wetland species overwintering as adults. On the other hand Steel (1970) reported that riparian 

species of Lesteva breed in autwnn and overwinter as larvae. He also found larvae of the 

riparian species Psephidonus (= Geodromicus) nigrita in September and October but 

suspected that it hibernated in the adult stage. Clarke (1973) gives breeding details of the 

heterocerid, Heterocerus jenestratus, which confonn to the standard pattern of a spring 

breeder. 

Usually evidence of breeding in riparian or wetland structures relies on examination of the 

female ovaries or the presence of teneral adults (e.g. Dawson 1965, Kurka 1975, 1976) 

However Krogerus (1948) included field observations of developmental stages when he studied 

the insect fauna of a Finnish lake margin whose seasonal water levels were affected by 

snow-melt. The ground beetles were nearly all spring breeders (except Agonum obscurum & 

Amara brunnea) but did not arrive at the breeding site until late Mayor June. Numbers built 

up very quickly with strong migrations from hibernation sites on the wann days. Some species 

arrived one week later than others. Many species showed an abundance peak in late summer as 

wen as in June. However there was no breeding activity at this time. Krogerus suggested three 

explanations for the non-appearance of some species at this time: 

1) They visit the lake niargin in spring but do not breed there. 

2) They overwinter at their pupation sites. 

3) Adults do occur at the lake margin in late summer but in such low 

numbers that they are not sampled. 
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Young larvae first appeared in June close to the water margin. As the water level dropped, the 

adults moved with it and most died off several weeks later. The larvae lived deep within the 

soil and did not move from a zone which became progressively drier and more remote from the 

water margin. By July remaining adults were concentrated near the water's edge, young larvae 

were found highet up the bank and older larvae were found higher still. Pupation took place in 

flat depressions on mud under a thin layer of moss. Adults emerged from their pupation site in 

August. Mass emergences often followed heavy rain. The teneral adults hardened up in dry 

areas high up on the bank and then moved down to the water margin before migrating to 

hibernation sites in September. There were annual fluctuations in the timing of these events 

which were related to weather conditions. 

Andersen (1978) observed Bembidion argenteolum in the laboratory ovipositing in burrows 

excavated in sand whereas B. schueppeli and B. semipunctatum oviposited in natural crevices. 

He found that the larvae of several species were able to burrow but that this depended on the 

nature of the substrate. Bauer (1974) found that larvae of Elaphrus species are active surface 

predators. They are nocturnal and so avoid the adults which are active· by day on the same 

area of riverbank. Field records of wetland rove beetle larvae and pupae are very scarce. 

Welch (1965) reported finding two pupae of Stenus canaliculatus in soft rotten timber beneath 

the bark of a fallen willow on the muddy banks of a stream. 

Interest in the hibernation sites of riparian beetles has been generated by observations of their 

absence from riparian habitats during the winter. For example, Palmen & Platanoff (1943) 

found that the summer fauna of Karelian riverbanks disappeared in mid September and 

returned suddenly in mid May. In Sweden Lindroth (1942) concluded that the ground beetle, 

Oodes gracilis, flies some distance from its summer habitat in order to hibernate. Krogerus 

(1948) reported that most species of a Finnish lake shore assemblage of ground beetles and 

rove beetles were found in large numbers above marginal areas in leaf litter in sallow scrub in 

the winter. Only a few species were found by the water's edge and these were often washed up 

into the sallow scrub by winter floods. Some species were never found in winter and must 

have ovenvintered at some distance from the lake. There were fewer species in this group but 

they included many of the larger species. Krogerus reported isolated instances from elsewhere 

37 



Chapter 1: Introduction 

in Finland of some of these species (Blethisa muitipunctata, Pterostichus minor. P. nigrita & 

Agonum versutum) being found in leaf litter around lkm from the nearest wetland. 

Palmen (1945) observed that some shore habitats such as extensive reedbeds growing in 

shallow water do not lose their summer fauna in the winter. He investigated overwmtcring in 

six beetle species which spent the summer in a reedbed growing in the shallow margins of an 

ahnost freshwater inlet of the Baltic and found that Agonum fuliginosum moved higher up the 

bank to an area dominated by sedge during the autumn. However, there was no sudden 

emigration as had been reported by Palmen & PlatanofI (1943). There was also a partial 

migration of the rove beetle, Paederus riparius, to the sedge zone. The other species 

investigated together with some Paederus riparius stayed throughout the winter in the 

inundated reedbed. Several small species including many rove beetles were found shehering in 

hollow reed stems in ice (pahnen 1949). Laboratory experiments suggested that the presence 

of litter is important in enabling many beetles to survive freezing conditions WldetWater 

(palmen 194~, 1949). Species of marsh Agonum and Pterostichus in Oxfordshire were fOlmd 

hibernating in rotten logs and grass tussocks on site, although some individuals washed out by 

winter floods moved to grass tussocks in surrounding grassland (Murdoch 1966). 

Andersen (1968) investigated hibernation sites on rivers in Norway where winter water levels 

are not the highest of the year. He found that many species (several species of Bembidion. 

Hypnoidus and many rove beetles including Bledius species) overwintered close to their 

breeding grounds, albeit slightly higher on the rWerbank. There is evidence that some of these 

species may change their hibernation site in the event of flooding. He also found overwintering 

larvae of the ground beetles, Nebria gyllenhali and Bembidion lunatum on the riverbank. 

Andersen suggested that Bembidion semipunctatum and B. quadrimaculatum hibernate in 

areas adjacent to the riverbank and that other species of Bembidion together with many rove 

beetles that probably hibernate as adults (species of Ochthephilus, Thinobius, Stenus, 

Tachyusa and Gnypeta) fly to hibernation sites more distant from the river. Similar variations 

in hibernation strategies are reported from elsewhere. Agonum albipes was found to be absent 

from the banks of mountain streams in Bohemia between late October and mid March (Kurka 

1976), whereas Bembidion tibiaJe was present on gravel deposits all year round (Kurka 1975). 

Dieterich (1996) captured four species of Bembidion (E. ascend ens, B. conforme, B. andreae 

and B. tricolor) hibernating in traps filled with coarse sediment buried at depths of up to 75 
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depths of up to 75 cms in gravel bars by the River Isar in Gennany. Meissner (1983) found 

that Bembidion punctulatum and, to a minor degree, B. femoratum, undertook seasonal 

migration flights over long distances between their breeding sites by a Gennan gravel pit and 

their luoernation sites which were suspected to be hedges and woodland edges. Bauer (1974) 

found that in Austria Elaphrus cupreus and E. riparius moved away from the water to find 

dry ground into which they dug several centimetres in order to pass the winter. He found no 

evidence of long-distance flight to hibernation sites remote from the river as suggested by 

Krogerus (1948). 

The available infonnation on hibernation for wetland beetles including those of open shores 

suggests three hibernation strategies. 

1) Beetles can stay at their breeding sites and cope with winter conditions. 

2) Beetles can move to adjacent areas to escape winter immdations. 1bis 

can be accomplished either actively or passively in flood debris (Joy 

1910). 

3) Beetles can migrate to hibernation sites well away from the river. 

Individual populations may adopt more than one strategy (palmen 1945). 

There has been plenty of speculation that riparian beetles need to be good dispersen in order to 

recolonise riverbanks after flooding (Lindroth 1949, Lehmann 1965, Holeski 1984). On the 

basis of three decades of pitfall trapping and window trapping in the Netherlands, den Boer 

(1990) considered that a dispersal phase amongst ground beetles was the rule rather than the 

exception. He suggested that some species, especially the larger ones, disperse by walking, but 

that individuals from many macropterous and wing-dimorphic species disperse by flight to new 

breeding sites after emergence from the pupa. Lindroth (1949) reviewed flight records of 

Scandinavian ground beetles and found that for spring breeders there was a peak of activity in 

the spring suggesting that dispersal takes place between hibernation and breeding. Many rove 

beetles also disperse by flight. Bauer (1989b) found a high incidence of vagrant species in an 
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upland site in northern England and Lindroth (1949) quotes a report that rove beetles were the 

most ab\U1dant beetle family in high altitude aerial plankton. 

1.3.4 Habitat preferences 

In any consideration of habitats it is necessary to be clear about definitions of tenns. Firstly 

habitats can be considered at different scales. Secondly habitats of beetles can be defined as 

the requirements of species in terms of physical and chemical factors such as temperature, 

humidity, salinity, soil particle size etc. (Lindroth 1949) or in the more traditional tcnns of 

habitat structW'es such as woodland, riverbanks, mammal nests etc. (e.g. Koch 1989-1992). 

The scale problem has been addressed for rivers by Naiman et al. (1992) (sec section 1.2) who 

classified enwonmental processes according to the spatial and temporal scale on which they 

were operating. One habitat scale which has been defined in tenns related to the requirements 

of beetles is microhabitat. Luff (1966) defined microhabitat as the minimum part of the 

ecohabitat which supplies the requirements of the species in its particular phySiological state 

at that time. Information on the life histories of riparian and wetland ground beetles suggests 

that they could potentially have five different microhabitat requirements at different life stages, 

namely larva, pupa, teneral adult, hibernating adult and active adult. Furthermore breeding and 

feeding adults restrict their activities to different times of the day (Thiele & Weber 1968) and 

may use different microhabitats when resting and when active. By extending Luffs definition 

of microhabitat we can regard the habitat of an organism as the sum of all the microhabitats 

required to complete its life cycle. 

This definition fits in the use of habitat as an autoecological term to describe the interaction of 

a species with its enwonment (Samways 1994). There is then a choice of description of 

habitats in terms of quantitative enwonmental factors which relate to the requirements of 

species and species assemblages, or in tenns of traditional habitat structures reflecting land 

management categories and vegetation communities which are easy to identify and interpret as 

products of fluvial or successional processes. This choice will depend on the context in which 

habitat descriptions are to be used. 

On the subcontinental scale the geographic distributions of beetles are often matched against 

macroclimatic influences portrayed as isothetmS and isohyets or dispersal events following 
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macroclimatic change (Lindroth 1949). At the landscape scale many works on beetles often 

characterise their habitats in tenns of land management Wlits or vegetation community type. 

For example Buse (1988) described the habitats occupied by beetles in Wales as herb-rich 

grassland, wet flush and several other categories defined by their dominant plant species. 

However, in a series of laboratory experiments Lindroth (1949) showed that several 

Fennoscandian ground beetles traditionally regarded as limestone grassland species should 

more accurately be described as thermophilic and xerophilic. Lindroth concluded that the 

decisive influences on the local distribution of ground beetles are local climatic factors and soil 

factors, both physical and chemical. 

Lindroth's analysis has implications for the concept of a riparian species. Riparian ground 

beetles may not be obligate riverbank-dweUers. They may be species whose physical and 

chemical requirements are matched by the combination of local climatic and edaphic factors 

found in the riparian environment. This hypothesis is supported by the fact that many species 

characteristic of open exposed riverine sediments are also found on similar artificial structures 

such as gravel pit margins (plachter 1986, Gerken et a1. 1991) or on similar natural structures 

such as lake margins and sea shores (Andersen 1969, 1983). Superficial differences in 

occupied habitat structures may sometimes mask a similarity of environmental conditions. 

Furthermore the same environmental conditions may be provided by superficially different 

habitat structures in different regions. Table 1.8 shows the variation in habitat structures 

occupied by three species of ground beetle in Britain, Holland, Scandinavia and Central 

Europe. Similar variations are found in the rove beetles. For example, Scopaeus laevigafus is 

characteristic of riverbanks and associated wetlands in Central Europe (Koch 1989-1992) and 

Spain (Lott, personal observation) but is one of a group of such species which have only been 

recorded in Britain from beside trickles on collapsing sea cliffs along the south coast (Hyman 

1994). In northern Norway, Andersen (1983) found a wide variation in the degree to which 

species of Bembidion were restricted to riverbanks. Some species were mainly confined to one 

type of river, whereas four species occurred in a wide range of sites including those away from 

water. He also reported that, although Bembidion lunatum was confined to sites by flowing 

water in northern Norway, it occurred in a wider range of sites including gravel pits and 

roadsides in central Norway. 
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Species Britain Holland Central Europe Scandinavia 
(Turin et al. 1991) (Koch 1989-1992) (Undroth 1985) 

Elaphrll:r barren sand or young moist sunny sand and banks of standing 
ripariu:r clay by habitats in polders mud banks, or slow-running 

freshwater and other brickpits waters in open 
(Lindroth 1974) colonisation sites country 

Qivinll open localities, open sand and cultivated areas 
co/laris predominantly gravel banks with hwnus-rich 

riparian soil 

Bembidion on damp fine shaded muddy on moist silty 
~chllJ1peli sand and silt or banks of woodland vegetated 

fine shingle with pools riverbanks 
SO-I00% cover 
of low herbage 
on riverbanks 
(Reid & E}Te 
1985) 

Table 1.8. Regional variations in the occupation or habitat structures by three species of 
ground beetles 
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Palmen & Platanoff (1943) characterised beetle species along riverbanks in southern Karelia 

according to their habitat preferences within the region. 63 species were mostly confined to 

riverbanks and were described as stenotopic species. Ewytopic species were defined as those 

found in other damp habitats such as lake margins and woodland pools. However, Lindroth 

(1949) found that their list of eurytopic ground beetle species contained several which are 

regarded as stenotopic riverbank species in Sweden and other parts of Finland and suggested 

that a species is often more stenotopic at the edge of its range. Turin et al. (1991) calculated 

values of ecological amplitude for Dutch species of ground beetles based on the range of 

habitat structures recorded for each species. Species with a large ecological amplitude were 

regarded as ewytopic. However their values were based on a priori selected habitat structures 

which may be unevenly distributed along the natural environmental gradients which are 

important to ground beetles. Therefore these values are not necessarily related to their tIUc 

ecological amplitude which would reflect their degree of adaptability to a range of 

environmental conditions. Moreover their values were based on pitfall samples from a set of 

sites in which riparian habitat stIUctures were poorly represented and in which floodplain 

wetland habitat structures were not differentiated. Consequently species with strong 

associations with riverine semi-aquatic habitat structures emerged with high values for their 

ecological amplitude. 

These arguments show that the designation of a species as stenotopic or eurytopic has only 

local validity because a species' occupancy of habitat structure types may vary between regions. 

Furthermore these terms are subjective in that they are relative to the range and classification of 

habitat structures selected for analysis. However, although the characterisation of species as 

stenotopic riparian or wet1and may lack ecological validity, it could have some use in 

conservation work because it reflects the way that the landscape is divided up for land 

management. 

Relatively little work has been done on the preferences of species for different types of 

semi-aquatic habitats at the scale of river segment or catchment, tenned macrohabitat by some 

authors (Spence 1977, Andersen 1983), Andersen (1983) found that some species were 

mainly found by rivers of a certain size categOl)'. Fowles (1989) found that some species of 

groWld beetles had an uneven longitudinal distribution on shingle banks along the River 

Y stwyth in Wales. Bembidion punctulatum was confined to the lower mature stretches 
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whereas Bembidion tibiale was mostly restricted to the higher stretches and smaller tributaries 

lower down. Similarly in a study of ground beetles on gravel banks along the River Isar in 

Bavaria Plachter (1986) found that alpine and sUbalpine species were concentrated in the upper 

stretches although they were present in smaller numbers on gravel banks as far as 110 km north 

of the mOWltains. He reported that species confined to lower levels tended to be more 

eurytopic. 

In Karelia, Palmen and Platanoff (1943) studied the distribution of beetle species between steep 

banks which were not covered by floods and sloping banks which were more frequently 

inundated. They reported that species confined to structures subject to inundation tended to be 

hygropbiles whereas species confined to steep banks tended to prefer dJy habitats. They also 

found that many species preferred banks composed of substrates with a particular particle size 

and these were characterised as shingle, sand, fine sand/clay and clay. Many authors have 

stressed the importance of substrate particle size in detennining the presence of particular 

species of groWld beetles (e.g. Lindroth 1945, Andersen 1969, Reid & Eyre 1985, Desender 

1989, Koch 1989-92, Gerken et al. 1991), but unfortunately they are often imprecise with 

regard to scale and usua1ly employ a rather simple classification of substrate particle size which 

does not take accOlmt of the local heterogeneity that usually occurs along rivers. Most work on 

substrate type has been canied out at the microhabitat scale. 

The vast majority of work on microhabitat preferences for riparian beetles has been done on 

groWld beetles, especially active adults, although Andersen (1969) noted that larvae of 

Bembidion species had stricter microhabitat preferences than adults. Andersen (1969, 1983) 

described a number of different microhabitats using a wide range of environmental factors 

including height on bank, substrate particle size and organic content, vegetation cover, shade 

and presence of litter. He fOWld that many species of NOlWegian Bembidion were present in 

high numbers at only one or a few microhabitats, although a few species seem to change their 

microhabitat preferences from site to site. Similarly in Bavaria Plachter (1986) found that a 

large proportion of shingle bank ground beetle species were collected mainly in one of four 

microhabitats classified by distance from water and vegetation cover. Along the Weser, 

Gerken et al. (1991) fOWld that the activity of Bembidion decorum and B. punctulatum was 

mainly confined to sparsely vegetated, coarse substrates, whereas Bembidion articulatum was 

active over a wide range of substrate particle sizes and percentage vegetation cover. Lehmann 
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(1965) fmmd that ground beetle species abundances varied between lateral zones on the banks 

of the Rhine. Bauer (1974) regarded shade as an important factor in separating the 

microhabitats of Elaphrus cupreus and E. riparius. 

In laboratory experiments Andersen (1978) and Meissner (1984) found that several species of 

Bembidion preferred substrates of a certain particle size, but that their preferences were often 

affected or ovenidden by differences in moisture. Substrate preferences can also be affected 

by the presence of other species (Sowig 1986). Species vary in the range of substrate particle 

sizes that they prefer (Andersen 1978, Meissner 1984). Laboratory experiments also show that 

temperature and humidity responses vary with time and the physiological state of the beetle 

(Andersen 1985b, 1986). Evans (1988) found that riparian gl'Ound beetles are attracted to 

volatile chemicals collected from microflora associated with their habitats in the field and 

suggested that they use them to locate suitable microhabitats. 

Clearly a number of environmental factors are important in determining the microhabitat 

preferences of riparian grOlU'ld beetles and that these vary from species to species. Other than 

descriptive accounts very little infonnation is available on the microhabitats of riparian rove 

beetles. 

In wetland sites the distribution of species of ground beetles between different vegetation 

communities has been studied by Dawson (1965) and Landry (1994). At a microhabitat scale 

Dawson (1965) found variations between species of ground beetle in their occupation of 

different layers, ranging from the soil through litter to low vegetation. Landry (1994) found 

that some species of Agonum in Canadian marshes were strongly associated with particular 

microhabitats such as emergent tussocks and concentrations of dead vegetation. 

1.3.5 Habitat templets 

In recent decades major progress in ecological theory has arisen from attempts to find a 

predictive relationship between habitat and species traits such as life history strategies. 

Southwood (1977) proposed that habitat acted as a templet which selected certain species 

traits. Southwood (1988) attempted to unify four major theories linking habitat and species 

traits and identified a habitat type in which growth potential or productivity is high, disturbance 

is low and interactions with other organisms (e.g. competition) is high as a common feature to 
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all theories. Habitats deviate from this condition along three main axes related to disturbance, 

adversity or environmental stress and degree of biotic interaction (fig. 1. 5). The adversity axis 

is often interpreted environmentally as productivity (Hildrew & Townsend 1987, Eyre 1994). 

Inclusion of the third axis could be somewhat contentious. For example, Begon et al. (1990) 

regard predation as a type of disturbance. 

However, the disturbance axis is a feature common to all theories and its importance in the 

selection of life history strategies has been the subject of a large amount of literature. Highly 

disturbed enviromnents favour r-selected organisms which invest a large proportion of their 

resources in fecundity, whereas stable environments favour K -selected organisms which invest 

a large proportion of their resources in survivorship. There has been a wide range of 

interpretation of r- and K-selection (Parry 1981) and the original concept has been broadened 

to take in a variety of perspectives (e.g. Southwood 1977). In simple life-history tenns 

r-selected organisms tend to have earlier maturity, more offspring and breed only once. Most 

riparian ground beetles appear to be univoltine (Larsson 1939) suggesting little scope for 

variation between r- and K -selection in this respect, although some wetland species of Agonum 

and Pterostichus live for two years and breed twice (Dawson 1965, Murdoch 1966, Wasner 

1979), a possible tendency toward a K-strategy. In addition Wasner (1979) found that 

Agonum thoreyi had a higher egg production than related species of Agonum suggesting that 

fecundity may be a more effective descriptor of r- and K -selection among ground beetles than 

generation time. 

Because they are associated with temporary habitat structures, r-selected insects also show a 

high rate of dispersal in order to be able to colonise newly disturbed sites (Schowalter 1985). 

Aukema (1987) found that in wing-dimorphic populations of the ground beetle, Calathus 

erythroderus, fun-winged females tend to have higher fecundity and a longer egg-laying period 

than short-winged females. Den Boer (1977) characterised 64 common species of ground 

beetle in a cultivated region of the Netherlands as either good dispersers or poor dispersers 

according to the ratio of wing length to length of elytron and their frequency of capture in 

window traps. He found that poor dispersers tended to exist in populations with an even 

spread of abundances, whereas good dispersers are also found in populations of low 

abundances which could represent unsuccessful or nascent colonies (den Boer 1977). Poor 

dispersers also tend to have lower population turn-overs (frequency of extinction and 
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Fig 1.5: Habitat templet (from Southwood 1988) 

47 



Chapter 1: Introduction 

re colonisation ) and within a population it is suggested that genes associated with poor dispersal 

are positively selected in a stable environment (den Boer 1987). Den Boer (1990) suggested 

that ground beetle species of old stable habitats are threatened with extinction in a fragmented 

landscape because they have lost the ability to disperse across unsuitable disturbed areas 

between habitat islands. 

E)Te (1994) analysed the distribution of ground beetles in 160 sites in northern England in 

tenns of their response to a two dimensional disturbance - productivity matrix. Most species 

were found to have significant responses to these indices and were classified into ten strategy 

groups. E)Te argued that it should be possible to describe the distribution of ground beetles in 

tenns of environmental stresses (in which he includes disturbance), but pointed out that this is 

most easily achieved in limited situations where environmental stresses can be identified more 

confidently. 

Townsend & Hildrew (1994) devised a habitat templet for predicting the habitat distribution of 

species traits in aquatic systems within the upper Rhone valley. Their first axis was related to 

temporal scale of disturbance and their second axis was spatial heterogeneity which interacted 

with the first axis, in that heterogeneous habitats were more likely to ameliorate the effects of 

disturbance through the provision of refuges. A large amount of data from thirteen taxonomic 

groups was used to test the predictions of Townsend & Hildrew (1994), but although there was 

a significant relationship between species traits and habitat utilisation and although species traits 

were significantly arranged along the axes of spatial and temporal heterogeneity for most 

groups, the species traits did not fonow the predicted pattern (Resh et al. 1994). Resh et al. 

(1994) sl1f8ested that, despite the failure of habitat templet theory to predict the precise species 

traits present along a disturbance gradient, two important lessons for ecologically sound river 

management emerged from the study. Firstly habitat does act as a templet for species traits. 

Secondly species traits are relatively uniformly distributed within each taxonomic group. It 

could be added that habitat templets can be used to interpret correlation between environmental 

factors and species traits in a functional context and that if the functional relationship between 

natural habitat characteristics and species traits is understood for a certain group, then we may 

be able to predict the species traits favoured by hwnan activity. 
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Habitat templet theory is based on the premise that habitats provide the templet on which 

evolution forges characteristic species traits (Southwood 1977). Evans (1990) suggested that 

morphological traits present in one habitat may have been pre-adaptations which were selected 

in an ancestral habitat. Traits found in species occupying modem habitat structures created by 

human activity have probably evolved in natural habitats if we accept that they have existed for 

a short period in the tirnescale of evolutionary processes. However, we can still use the 

predictive methodology outlined above if we also consider selection of species traits in a habitat 

structure as an ecological process governing occupancy of that structure. 

1.3.6 Species assemblages 

An ecological community is defined as a group of organisms from all taxonomic groups within 

an ecosystem in order to include relationships between different trophic groups (Putman 1994). 

Therefore the term species assemblage will be used to cover the collection of taxonornically 

related species found in one place. A species assemblage has several attnbutes. One of the 

most obvious is species composition. There have been many studies comparing assemblages 

from different samples to investigate how differences in various environmental factors are 

related to differences in species composition, either using direct gradient analysis to study 

variation along a single environmental gradient (Gauch 1982) or multivariate analysis to 

consider variation along several axes related to more than one environmental factor (ter Braak 

& Prentice 1988). Multivariate analyses of ground beetle assemblages have been canied out at 

several different scales. At a regional scale these have included TWINSP AN classifications of 

assemblages according to species composition and relating the resultant end groups to habitat 

structures or environmental gradients (Eyre & Luff 199Oa, 1990b, Luff et al. 1989, Turin et 

al. 1991). Most of these studies recognised soil humidity and altitude as important falttors 

affecting species composition. At a more local scale an ordination teclmique, DECORANA or 

dctrended correspondence analysis (Hill & Gauch 1980), has been widely used to interpret 

variations in species composition as being influenced by a number of factors including 

moorland vegetation type and wetness (Gardner 1991), meadow vegetation structure (Foster et 

al. 1995), botanical diversity of hedgerow margins (Asterald 1994), forest fragmentation 

(HaJrne & Niemela 1993) and grassland management (Eyre et al. 1989, 1990, Rushton et al. 

1990). Assemblages of rove beetles have received less attention. Ordinations of assemblages 

on arable land and pasture in south-west Ireland were used to investigate the effects of different 
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management operations (Good & Giller 1991). The importance of a variety of edaphic factors 

as well as afforestation, altitude and habitat size was suggested by studies involving ordination 

of rove beetle assemblages in northern England (Bauer 1989a, Buse & Good 1993). 

Similar studies of riparian or floodplain assemblages are very rare. Desender et al. (1994) used 

ordination to compare 25 samples of ground beetles from seven sites beside a Belgian river and 

found that samples were distributed along the main axis of variation according to substrate 

particle size and vegetation cover at the sample site. Sustek (1994) analysed terrestrial and 

wetland assemblages from 26 sites in floodplains in Moravia and Slovakia. Correspondence 

analysis revealed important variations in species composition between assemblages from dry 

sites and damp sites subject to flooding and also between assemblages from oligotrophic sites 

flooded by fast-flowing water and eutrophic sites flooded by stagnant water. Sustek also found 

significant differences between assemblages in sites flooded only in early spring and those in 

sites flooded more frequently. Other comparisons of species composition between assemblages 

have relied on the use of similarity indices between a small number of sample sites. Zulka 

(1994) argued that flooding was the major factor detennining species assemblages in the 

floodplain of the Morava river in Austria, but his conclusions were based on a comparison of 

only five sites. 

A species assemblage can also be described by the species traits exhibited by its members. 

Relationships between such assemblage attributes and their distribution along environmental 

gradients have been explored for grassland ground beetles and body length (Blake et al. 1994), 

water beetles and morphology (Ribera & !sert 1992) and floodplain water beetles and a variety 

of species traits (Richoux 1994). 

Perhaps because computerised multivariate analysis packages have only become widely 

available relatively recently, species diversity indices have been used more often than species 

composition in quantitative comparisons between beetle assemblages from the riparian and 

floodplain environment. Many different diversity indices have been fonnulated, but in general 

they are composed of two elements, one relating to species richness or number of species, 

which is dependent on sampling effort (Southwood 1978), the other relating to equitabiJity, 

often teImed evenness, which relates to the distribution of abundances between species 

(Putman 1994). Hill (1973) reviewed several versions of diversity index and concluded that 
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they differed in the weighting that they gave to rare species. He showed that evenness could be 

quantified as the quotient of two similarly fonnatted diversity indices. Evenness is also related 

to the slope of a graph drawn between log abundance and rank (Begon et al. 1990). 

Consequently it can be related theoretically to different models of niche occupancy (Putman 

1994). In ecological communities with high levels of interspecific competition, a geometric 

relationship between abundance and rank is predicted with low values for evenness. In 

stochastic community models involving chance colonisations a broken stick relationship is 

predicted with high values for evenness. Southwood's habitat templet would predict that 

K -selecting environments with high levels of biotic interactions should support assemblages 

with lower values for evermess than r-selecting disturbed environments. However, Magurran 

(1988) gave examples of studies which fOWld reductions in species diversity following pollution 

of freshwater systems. Several studies found an increase in dominance, which is inversely 

related to evenness. 

Huston (1979) modelled the population changes of six species with different life history 

strategies and varied the frequency of periodic disturbance which he defined as a 

density-independent event causing mortality. His model predicted that species richness should 

peak at intermediate frequencies of disturbance. As disturbances become less frequent 

competitive interactions leads to extinctions of less K-selected species. As disturbances 

become more frequent K -selected species become extinct as they are unable to recover 

between disturbance events. His model also predicts at constant frequency of disturbance a 

similar response curve of species richness to ecosystem productivity which operates by 

affecting growth rate. In effect these predictions are similar to the intermediate disturbance 

hypothesis (White & Pickett 1985) which predicts maximum species diversity at intcnnediate 

levels of disturbance, i.e. magnitude rather than frequency. 

The lateral floodplain gradient in frequency of disturbance led Townsend and Hildrew (1994) 

to predict maximwn species diversity within the upper Rhone valley at intermediate levels of 

spatial and temporal variability. However, Resh et al. (1994) reported that such a pattern was 

found only in water beetles (Richoux 1994) out of thirteen taxonomic groups. 

Slunida and Wtlson (1985) described four determinants of species richness which operated at 

different scales the within community scale (alpha diversity), the between community scale 
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(beta diversity) and the regional scale (gamma diversity). They suggested that niche 

relationships are most important at the community scale, whereas habitat diversity is important 

at all scales, although it is difficult to appreciate the separation of niche relationships and 

microhabitat diversity at community level. Their third detemrinant is mass effects, which 

relates to the presence of vagrant individuals from adjacent habitats. This detenninant becomes 

unimportant at regional level. Their fowth detenninant is ecological equivalency which only 

becomes important at regional level. Application of Shmida and Wilson's analysis to the 

intennediate distW"bance hypothesis shows that it is based primarily on niche relationships as a 

detenninant and takes no account of mass effects. Combining Shmida and Wilson's analysis 

with the work of den Boer (1990) on dispersal of ground beetles suggests that mass effects will 

have an important impact on alpha diversity in disturbed landscapes. 

In a study of beetles at a site in North Wales, Buse (1988) found that their species richness at 

dUferent sampling stations was correlated with the species richness of plants and suggested that 

this relationship is due to the greater variety of microhabitats available for the beetle species 

when more plant species are present. A number of studies of floodplain ground beetles have 

compared the species diversities of different assemblages (Holeski & Graves 1978, Jarosik 

1983, Rehfeldt 1984, Vitner & Vitner 1986). Unfortunately, the results have rarely been 

placed in any theoretical or functional context. 

1.3.7 Summary 

... Ground beetles and rove beetles are the most species-rich beetle 

families likely to be fOlUld in semi-aquatic biotopes in the riparian and 

floodplain zones of river systems. 

... These beetles show a variety of morphological and behavioural 

adaptations to disturbance by flooding, but little is knovrn about their 

variations in life history strategies. 

... Assemblages of these beetles show variations in species composition 

and other attributes along environmental gradients. 
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1.4 Nature Conservation and rivers - the riparian and floodplain environments 

An ecological framework for conserving diversity in riparian and floodplain beetles is now 

apparent. A knowledge of fluvial and successional processes allows prediction of the effects of 

human actMty on geomorphic and vegetational structures. A deeper knowledge of the 

envirorunental requirements of beetles occupying these structures will allow prediction of the 

effects of human activity directly on beetle assemblages. This present section examines the 

conselVation practices currently being employed on rivers and other ecosystems which might 

be relevant to riparian and floodplain beetles. 

1.4.1 Recognition of conservation value in rivers 

Reviews of plant and animal groups associated with rivers nonnaUy include vertebrates, aquatic 

macro-invertebrates, higher plants, bryophytes and, more rarely, phytoplankton (e.g. Whitton 

1975, Calow & Petts 1992, RSPB et al. 1994). Possibly because there is no wen defined 

dividing line between aquatic and terrestrial plants, botanists have tended to include riparian 

species in their studies more than zoologists (e.g. Haslam 1978, HoJmes 1983). Although the 

use of the riparian zone by certain mammals and birds is well known (Newbold et al. 1983), 

riparian invertebrates have received very little attention. Williams & Feltmate (1992) are 

unusual in listing several families in the insect orders Collembola, Hemiptera, Coleoptera and 

Diptera which are normally considered to be terrestrial but which contain specialist species 

associated with the margins of aquatic habitats. 

Conservationists have therefore generally regarded river biodiversity as being concentrated in 

aquatic organisms especially fish and macro-invertebrates. Riparian communities of plants do 

not receive the same degree of attention in Britain as more species-rich communities such as 

those found in semi-natural grassland. ConselVation efforts targeted at inland wetland birds 

have relied heavily on natw"e reserves created on reservoirs and other man-made habitats rather 

than more natural habitats along rivers. Only initiatives toward the conselVation of otters 

(NRA 1993b) and more recently water voles (Strachan & Jefferies 1993) have viewed 

terrestrial river margins as being of major conservation importance. 

In Britain rivers considered important for nature consetvation have been given statutory 

protection by being designated as Sites of Special Scientific Interest or SSSIs. Rivers have 

been selected as SSSIs firstly by classifying them according to abiotic factors and then by 
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evaluating them on the basis of their plants, amphibia, mammals, birds and some aquatic 

invertebrate groups (Newbold et al. 1983). 

The bias toward aquatic organisms ignores important semi-aquatic invertebrate communities in 

the riparian zone. Table 1.9 shows the numbers of species in various groups found in faunal 

surveys conducted along various riverbanks in Europe. It is probable that the number of 

riparian invertebrate species along rivers is of a similar magnitude to the number of aquatic 

species as enumerated by RSPB et al. (1994). 

Among the rich assemblages of species in the riparian zone are invertebrates whose populations 

are believed to be under threat. In Britain the conservation profile of shingle bank beetles has 

recently been raised by a study of the River Y stwyth in Wales which discovered a number of 

rare species including the endemic rove beetle, Thinobius newberyi, which had not been 

recorded for fifty years (Fowles 1989). Shirt (1987) listed insects which are rare or threatened 

in Britain and included 23 beetle species with well-established associations with riverbanks (see 

table 1.10). Many more nationally scarce riverbank beetles are listed by Hyman (1992, 1994). 

Mawdsley & Stork (1995) analysed the habitats of both rare and threatened beetles in Britain 

and found that riparian habitats were included in the top five habitats in each category. 

Consequently upland shingle banks are now becoming recognised as of conservation value for 

semi-aquatic beetles (Stubbs & Whelan 1991, Kirby 1992, RSPB et al. 1994) even if there is 

not yet any coherent strategy for their conservation. However recent studies in Belgium have 

found several rare ground beetles along lowland rivers (Desender et al. 1994). There is an 

urgent need to investigate British lowland riverbanks whose neglected beetle fauna contribute 

eleven (48%) of the rare and threatened species listed in table 1.10. 

Modern approaches to nature conservation along rivers emphasise the importance of the 

ecological connectivity between a river and its floodplain (Newson 1992). Studies of 

floodplain habitats in the flood plain of the River Rhone in France have highlighted the 

ecological value of flood plain communities and their hydrological interdependence with the 

main channel (Bravard et al. 1992). Several European studies of tloodplain forest ground 

beetles (e.g. Lehmann 1965, Lienemann 1978, Vitner & Vitner 1987) have concentrated on 

relatively dry areas whose assemblages contained species present in a wider range of woodland 

habitats. However, other studies (Jarosik 1983, Sustek 1984, Zulka 1994) have revealed rich 
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Location Major groups recorded together Source 
with no. species 

7 rivers in S. Karelia Coleoptera (295) Palmen & Platanoff 
(1943) 

R. Wutach, SW Gennany Heteroptera (3-10), Kless (1961) 
(4 types of bank) Coleoptera (52-148) 

R. Rhein, Cologne (Gennany) Coleoptera - Carabidae (31 + ) Lehmann (1965) 

F. Amo & F. Serchio, Coleoptera - Carabidae & Bordoni (1967, 1969) 
Tuscany (Italy) Staphy1inidae (88) 

9 streams in Ohio (U.S.A.) Coleoptera - Carabidae, Holcski & Graves 
Staphylinidae & Heteroceridae (90) (1978) 

R. Ourthe, Belgium Diptera - Dolichopodidae (26) Pollet et al. (1988) 

IR. Rheidol & R. Ystwyth, Orthoptera (2), Heteroptera (1), Fowles (1988) 
Wales Diptera - Empididae (6), 

H)n1enoptera - F onnicidae (3), 
Coleoptera (70), Araneae (44) 

Upper Weser, Gennany Coleoptera - Carabidae (127) Gerken et al. (1991) 

Guadiato river basin, SW Coleoptera - Carabidae (46 & 33) Cardenas & Bach 
Spain (2 sites) (1993) 

Grensmaas, Belgium Coleoptera - Carabidae (81) Desender et al. (1994) 

8 streams in N Hesse Araneae (77), Coleoptera (55) Smit et al. (1996) 

Table 1.9. Numbers of riparian invertebrate species recorded in some faunal studies 
along river banks 
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Species Habitat Sources 

lJ3embidion virens shingle by lakes and rivers Lindroth (1985), Shirt (1987) 

'fLionychus quadrillum fine gravel on shingle banks Fowles (1989) 

IPolistichus connexus coastal undercliffs, silt & clay riverbanks, Shirt (1987), Hyman (1992) 
saltmarshes 

~~tadentata trickles on cliffs, silt & clay riverbanks Shirt (1987), Hyman (1992) 

IBledius erraticus sandy riverbanks & sandpits Hyman (1994) 

CarpeJimus obesus bare mud by streams & rivers Hyman (1994) 

Carpelimus subtilis sandy margins of rivers, dykes & ponds Hyman (1994) 

Thinobius mqjor sand & fine shingle by rivers & lakes Hyman (1994) 

Thinohius newberyi river shirlgle Shirt (1987), Fowles (1989) 

iStenus caJcaratus banks oflarge rivers Horion (1963) 

Stenus ;ncanus sand & shingle by rivers Hyman (1994) 

~athrobium dilutum sand & shingle by rivers & lakes Hyman (1994) 

'fLathrobium pa/Iidum riversides & marshes Hyman (1994) 

Scopaeus gracilis riverside shingle Hyman (1994) 

IScopaeus laevigatus trickles on cliffs, sand, mud & detritus by Horion (1965), Hyman (1994) 
streams and pits 

Gabrius astutoides undercliffs, streamside shingle Horion (1965), Hyman (1994) 

Quedius riparius moss by fast-flowing streams Kless (1961), Hyman (1994) 

[lyobates propinquus sandy riverbanks & sandpits Hyman (1994) 

CaJodera uliginosa riverside debris Hyman (1994) 

Oxypoda riparia sandpits & riverbanks Hyman (1994) 

!,Negastrius pulchellus river slringle Hyrnan (1992) 

!,Negastrius sabulicola river shingle Hyrnan (1992) 

CoccineUa quinquepunctata river shingle Majerus & Fowles (1989) 

Table 1.10. Riverbank beetles included in the British Red Data Book (Shirt 1987) 
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assemblages of hygrophilous species. In a flooded meadow in the floodplain of the River 

Morava in Austria, Zulka (1994) found that the dominant species included three rare wetland 

species of high conservation interest, Agonum longiventre, Agonum dolens and Blethisa 

multipunctata. For invertebrate groups other than ground beetles, fauna! studies of floodplain 

wetlands are even scarcer. At a Moravian lake margin Obrtel (1972) recorded 36 species of 

rove beetles and 32 species of ground beetles amongst 116 species of beetles in a reedswarnp, a 

habitat structure well represented in floodplains. In two wetland sites in the Trent floodplain in 

Britain, Greenwood et al. (1991) recorded respectively 21 and 23 rove beetle taxa. Floodplain 

wetlands are likely to support species-rich assemblages of rove beetles as well as ground 

beetles. By contrast the reedswamps and cm characteristic of tloodplain wetlands in Britain 

are characterised by somewhat species-poor plant communities (Rodwell 1995) and as a 

consequence are not highly valued for conservation purposes. Floodplain habitats of 

Community interest that are listed in the European Community Habitats Directive (European 

Communities 1992) include lowland hay meadows and residual alluvial forests but none of the 

wetland categories are represented in lowland flood plains in Britain. Consequently, there is an 

urgent need to assess the value of floodplain wetland habitat structures for invertebrates in 

Britain. 

1.4.2 River management and conservation 

Petts (1989) summarises the early history of river management in Britain which stretches back 

at least to Roman times, when rivers were channelled for navigation. Impoundment of British 

rivers also has a long history. The Domesday Book of 1086 contains references to over 5,000 

water mills. However the weirs constructed for fishing and water mills were generally 

small-scale. A major increase in the canal network in the 18th century saw several rivers 

impounded over long stretches by weirs and locks to make them navigable. The use of rivers 

for navigation also led to the clearance of riparian vegetation for towpaths. Larger dams were 

needed for the construction of reservoirs for storage of water supplies in the 19th century. In 

the latter half of the 19th century land drainage and river engineering became widespread so 

that by 1880 major works had been canied out on most rivers which were subsequently 

maintained by regular dredging. The number and scale of river engineering works increased 

rapidly after the second world war primarily to assist land drainage schemes for agriculture. 

Brookes et al. (1983) calculated that between 1930 and 1980 8,504 km of major and capital 
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works were carned out along rivers in England and Wales. At the same time a further 35,500 

km of river in England and Wales were regularly maintained 

The environmental effects of such widespread and large scale activity became apparent as 

rivers lost their natural morphology and vegetation. This inevitably caused appreciable concern 

which was articulated by Purseglove (1988) in a television series and accompanying book. 

Purseglove acknowledged that river maintenance was necessary but suggested that different 

methods could not only reduce environmental damage but even enhance the environmental 

value of rivers. Brookes (1985, 1988) reviewed the wtforeseen effects of engineering 

practices on channel morphology and suggested alternative practices which retained more of 

the river's natural features. 

The formation of the National Rivers Authority in 1991 and its successor body, the 

Enwonment Agency, with a statutoty duty "to further conservation in respect of proposals 

relating to its functions, to protect sites of conservation interest and to take account of the 

effects that any proposals would have" (NRA 1992) meant that these concerns are now taken 

into acCOlUlt in carrying out engineering and maintenance work. There is now a handbook for 

river management containing not only more environment-friendly methods of river engineering 

and maintenance but also suggestions for methods of habitat creation which could be included 

in schemes as mitigation exercises (RSPB et al. 1994). Further CUtTent river conservation 

initiatives include the alleviation of low flows (NRA 1993c) and river restoration projects which 

seek to reverse channel straightening and other unsympathetic operations carried out in 

previous engineering schemes (Brookes 1992). The changes in management practices are 

backed up by a programme of river conidor habitat surveys which seek to identify features of 

ecological value along river channels (NR.A 1992). Maps compiled from these surveys enable 

the design of maintenance works to conserve identified features of interest and add new ones. 

Concern over the ecological effects of river management on both in-stream and bankside 

organisms (Brooker 1985) was followed by a realisation that river regulation was also having a 

serious impact on floodplain ecology (Bravard et al. 1986). The hydrological and ecological 

interconnections between the main river channel and its terrestrial SUtTounds require a much 

broader perspective to be taken of the main channel and its relations with the river conidor, the 

floodplain, the valley floor and finally to the whole catchment (Newson 1992). Such a broad 
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perspective also has advantages for meeting objectives in managing flooding, pollution, sewage 

discharge and low flows. The Environment Agency is now committed to developing a 

programme of catchment management plans which offer opportunities for environmental 

enhancement and seeking solutions through control of land use rather than main channel 

engineering works (Gardiner & Cole 1992). 

These improved approaches have undoubtedly led to rivers which fit more attractively into the 

landscape. Also benefits have accrued to those sections of the flora and fauna whose 

requirements were considered in the formulation of the new practices. However, we have no 

idea whether this enlightened regime benefits or damages riparian invertebrate communities, 

because we do not know enough about their composition, their habitat requirements or their 

responses to river management. 

1.4.3 Site classification and conservation evaluation criteria 

When selecting sites for conservation action, Margules (1986) suggested a five stage procedure 

for site evaluation which has particular relevance to isolated homogeneous areas: 

1) pre-evaluation classification or sorting; 

2) allocation of sites according to which class they represent; 

3) use of threshold criteria to select sites for detailed consideration 

(e.g. area, naturalness); 

4) use of ranking criteria for prioritisation (e.g. rarity, diversity); 

5) use of pragmatic criteria (e.g. threat, availability, accessibility). 

Kirkpatrick (1983) used an iterative procedure to select sites for nature reserves in Tasmania. 

He ranked sites according to weighted attributes such as rare species or habitats and then after 

selecting the highest-scoring site reduced the weigh_ for attributes represented in the site 

before the next selection. This effectively removes the need for classification and the use of 

representativeness, but still requires the selection of criteria to rank sites. Pressey and Nicholls 

(1989) found that iterative procedures were more efficient at giving protection to attributes than 
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the use of simple, static scoring systems, but their use is based on the premise that sites are 

ecologically independent, a premise which is not applicable to sites within river catchments. 

Proposals for assessing the conseIVation potential for rivers and selecting them for protec.tion 

(Boon 1992, Naiman et a/. 1992) have suggested a river classification system and a set of 

evaluation criteria. Boon (1995) described two classification systems for British rivers, both of 

which are community classifications rather than environmental classifications. A classification 

based on aquatic and riparian plants was developed by Holmes (1983) who used TWlNSP AN 

to classify 1,055 sites surveyed on over 200 rivers. The first two divisions into four major 

groups are related to altitude, geographical location and geology (Holmes 1989). This 

classification has been adapted to give ten river types which fonn have fonned the basis of 

SSSI selection in Britain (Holmes 1989). Aquatic macroinvertebrate communities in 

unpolluted streams were classified by Wright et al. (1984) and linked to environmental 

variables so that the natural community could be predicted from a set of environmental 

measurements at any stream (Moss et al. 1987). The recorded community present could then 

indicate any impact of pollution. Naiman et al. (1992) pointed out that this predictive model is 

based on direct impact on water quality in-channel physical features and ignores impacts on a 

larger scale. It is not known how well either of these classifications match the variety of beetle 

assemblages found in British riparian and floodplain environments. 

The much-quoted list of criteria used to assess and select sites representative of natural and 

semi-natural ecosystems in Britain includes size, diversity, naturalness, rarity, fragility, 

typicalness, recorded history, proximity to other sites of value, potential value and intrinsic 

appeal (Ratcliffe 1977). Diversity is one of the most popular criteria used to assess 

conseIVation value (Margules & Usher 1981). However, there are major problems in its 

application. There is no generally accepted method of measuring diversity for conservation 

value although Usher (1986) recommends species richness. Values of species richness increase 

with sampling effort (Southwood 1978). Rarefaction which reduces the samples of sites being 

compared to the same size is recommended by Usher (1986) to solve this problem, but this 

could inflate the values of samples with low species richness and high evenness relative to 

samples with high species richness and low evenness. F or conservation purposes the inflation 

of species richness values by vagrant species is also undesirable (Shmida & Wilson 1985). A 

further problem arises from the sensitivity of species richness to disturbance (White & Pickett 
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1985). Niemela et al. (1993) found that the species richness of ground beetle assemblages in 

primary boreal forests was lower than regenerating secondary forests even though. primary 

forest specialists had disappeared after cutting. The use of habitat diversity as an evaluation 

criterion as measured by Margules & Usher (1986) or implicit in the site management approach 

of Kirby (1992) is only applicable if the habitat requirements of the species present at the site 

are known, The habitat structures recognised by conservationists do not necessarily correspond 

with those that are important for all organisms (Harper et al. 1995). 

Rarity is another popular evaluation criterion (Margules & Usher 1981), because it is tacitly 

believed to be a good measure of threat of extinction (Gaston 1994). However, its use has 

attracted some criticism, either because many threatened organisms are not perceived as rare 

(McIntyre 1992) or because it is unfeasible to collect enough data for the rarity status of many 

invertebrate species to be established (Disney 1986). RabinoMtz (1981) recognised seven 

categories of rarity based on different combinations of low abundance, restricted geographic 

range and narrow range of habitat occupancy. Gaston (1994) based the term rarity on both 

low abundance and small range size. He stressed the positive correlation generally found 

between abundance and range size and pointed out that at very small scales range size becomes 

equivalent to abundance. However, departures from this relationship are likely to be 

interesting. For plants, McIntyre (1992) argued that the use of small range size to establish 

rarity status will overlook widely distributed species with declining populations which may be 

under the greatest threat. On the other hand for ground beetles in disturbed landscapes, den 

Boer (1977) found that poor dispersers which are declining in Holland (Turin & den Boer 

1988) tend to be found in relatively high abundances, whereas they have restricted ranges, 

because they are confined to isolated patches of stable biotopes. This contradiction may arise 

from the different scales used to measure geographic range. Gaston (1994) points out that the 

scale of precision in measuring the range size of a species will often affect its rarity status. This 

is one of several artefacts that cause problems in the detennination of species rarity. Gaston 

described pseudo-rarity and non-apparent rarity as two fonns of false rarity status. Amongst 

their causes he listed inappropriate sampling techniques and the possibility of under-recording 

cryptic species. 

Site comparisons using the numbers of rare species recorded will be affected by inconsistent 

sampling effort in the same way as species richness. Eyre & Rushton (1989) developed a 
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system for scoring beetle assemblages by weighting all of their constituent species according to 

their recorded range sizes and this aims to be independent of sampling effort. The values of 

rarity scores for sites will, like species richness, be affected by vagrant species (Gaston 1994), 

though if these are conunon species, rarity scores may be depressed rather than inflated. In a 

study of rare plants in the Sheffield area, Hodgson (1986a) found that the ranges of rare 

species are usually affected by scarcity of suitable habitat and that this scarcity is comected to 

changing land use (Hodgson 1986b). Rare species tend to be adapted to environmental stress 

(Grime 1979) and occur most frequently in species-rich, ancient biotopes on less fertile soils. 

In results similar to those found by Turin & den Boer (1988) for Dutch groWld beetles, 

disturbed sites contain a high proportion of common species and Hodgson suggested that in the 

Sheffield area plants adapted to environmental stress are being replaced by species adapted to 

disturbance. 

Naturalness is also a popular evaluation criterion, but has proved both difficult to define and to 

quantify (Margules & Usher 1981, Usher 1986). Descriptive terms such as semi-natural are 

often used to cover uncertainties with regard to definitions and characterisation of sites. Usher 

(1986) suggested that the amoWlt of disturbance at a site may pro\.i.de a reasonable basis for 

quantification of naturalness, though presumably disturbance due to natural processes would 

need to be distinguished from disturbance of hwnan origin. Attempts at quantification of 

typicalness have centred on the distance of a site in ordination space from the mean scores of 

its habitat group (Eyre et al. 1986, Eyre & Rushton 1989). Obviously the applicability of this 

criterion is closely connected with the validity of the habitat classification. It is difficult to 

appreciate the relevance of a habitat classification with boWldaries derived from an arbitrary 

number of dMsions along environmental gradients whose importance may be dependent on the 

selection of sites for analysis. Typicalness of a priori selected habitat structures may be 

relevant to site evaluation in that it may relate the site to a particular natmal or management 

process. 

In a conservation evaluation of sites along four Welsh rivers species richness and rarity of 

plants were used by Slater et aL (1987) along with a more unusual criterion, uniqueness, which 

is high for sites which are most different from other sites. Unique sites may contain locally rare 

habitats in which case uniqueness is the opposite of representativeness or typicalness. 

Uniqueness is a special type of rarity score in that it is based on species rarity scores calculated 
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from distributions within the study area, rather than from wider regional distributions. Values 

of uniqueness will be markedly affected by any sampling bias operating in site selection. 

A more comprehensive evaluation system currently being developed for evaluating rivers on 

the catchment segment scale and above is SERCON (System for Evaluating Rivers for 

Conservation) (Boon et al. 1994). SERCON is a computerised expert system which uses a 

variety of weighted evaluation criteria including physical and species diversity, rarity and levels 

of threat and human impact. It has the capacity to process information on riparian invertebrate 

assemblages, were they to become available (Boon, pers. comm.) 

1.4.4 Use of beetles in site quality evaluation and monitoring environmental change 

Refseth (1980) stressed the value of ground beetles as ecological indicators because they are 

widely distributed, easily identified and their species are restricted to specific habitats, yet 

responsive to environmental changes. It has been suggested that the diverse rove beetle fauna 

in floodplain biotopes makes them useful candidates for assessing the conservation value of 

floodplain functional units (Gt-eenwood et al. 1991, Petts et al. 1992). Luff & Woiwod (1995) 

listed desirable properties of taxonomic groups for use as environmental indicators. 

1) They should have enough species to represent, and be characteristic 

of, a wide range of habitats. 

2) They should be readily identifiable and taxonomic ally stable. 

3) There should be a suitable sampling method available which should not 

be too restricted by seasonality. 

Foster (1987) proposed that a group containing 300 to 500 species would meet both criteria 1 

and 2. If restricted to the riparian and floodplain wetland environments, ground beetles and 

rove beetles together would constitute this number of species (see table 1.7). Taxonomic 

uncertainty within British rove beetles can be found within the Atheta fungi species group 

(Bruge 1994), but this group does not fonn an important component of riparian or wetland 

assemblages. However, there appear to be seasonal variations in riparian and wetland beetle 
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assemblages (palmen & Platanoff 1943, Krogerus 1948) and these sampling constraints require 

further investigation. 

Several studies have demonstrated the sensitivity of riparian groWld beetles to site management. 

Lehmann (1965) investigated the groWld beetle assemblage on a bank of the Rhine which was 

reinforced with stones to create a series of steep steps and found its species composition to be 

more similar to nearby grassland assemblages than nearby assemblages on natural riverbanks. 

Plachter (1986) attributed incongruities in the distribution of groWld beetles along a 196 km 

stretch of the River Isar in Bavaria to human channel modifications. Fwther upstream, 

Manderbach and Reich (1995) found that the construction of a reservoir dam had reduced the 

species richness of the ground beetle fauna by altering the flow characteristics of the river, 

although a smaller dam on the same river had quite different effects. Friden (1984) 

investigated riparian groWld beetle assemblages of regulated lakes in Scandinavia and fOWld 

that species associated with natural lake shores were less abundant whereas species associated 

with high altitude benefited from the colder water and eurytopic species benefited from 

increased quantities of organic detritus. More indirect evidence of ground beetle sensitivity to 

management comes from the work of Andersen (1969, 1983) who found that several species 

of Norwegian Bembidion have strict habitat preferences. Within floodplains there seems to be 

a distinct wetland beetle faWla which not only depends on flooding but is sensitive to different 

flood regimes (Sustek 1994, Zulka 1994). Management operations which affect flooding 

should also affect these assemblages (Greenwood et al. 1991). 

Mawdsley & Stork (1995) found that drainage and river engineering were the sixth most 

numerous threat to all rare and endangered beetle species listed by Shirt (1987) and Hyman 

(1992) and the fowth most numerous threat to groWld beetles. The information available 

indicates that both ground beetles and rove beetles should make excellent subjects for both 

conservation evaluation and measuring the environmental impact of human activity in riparian 

and floodplain environments. 
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1.4.5 Summary 

... It is known that there is an important reservoir of biodiversity among 

beetles in semi-aquatic habitat structures along rivers in Europe. These 

habitat structures are not generally considered to be of major 

importance for higher-profile groups such as birds and plants. 

Amongst riparian beetles only the consetvation value of upland shingle 

bank beetles is recognised in Britain. 

... In populated regions modem rivers are highly managed systems which 

are subject to both large scale engineering projects and frequent small 

scale maintenance. 

Recent moves to make river management practices more attuned to 

environmental protection have concentrated on benefiting 

within-channel organisms and paid little attention to the requirements of 

riparian invertebrates. 

... Assemblages of beetles with semi-aquatic habitats in the riparian and 

floodplain environments are sensitive to river management practices 

and have sufficient diversity to be good candidates for measuring the 

impact of human activities. 

... Research is urgently needed on the diversity, habitat requirements and 

responses to site management of terrestrial beetles along river margins 

and in floodplain wetlands. 
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1.5 Objectives of this study 

The broad aims of this project are twofold: 

1) to evaluate the conservation interest of terrestrial beetles with 

semi-aquatic habitats along a lowland river floodplain. 

2) to investigate the effects on these beetles of human activity, especially 

river management practices. 

In order to achieve these aims this study attempts to answer the following questions. 

1) Are there robust, measurable attributes that we can use to describe 

beetle assemblages found on semi-aquatic habitat structures in a 

typical lowland river floodplain segment? 

2) How are these descriptors affected by natural fluvial and successional 

processes? 

3) Are these descriptors sensitive to management operations along the 

river and on adjacent land? 

4) Can we predict the impact of management operations from the 

response patterns of assemblages to natural processes? 

The lower course of the River Soar in Leicestershire was chosen for study as a typical 

medium-sized lowland river with a wide range of main channel and floodpIain habitat 

structures. The lower Soar also affords opportunities to study the impacts of several 

management activities, because large stretches have been impounded for navigation and there 

have been extensive recent engineering works as part of a flood alleviation scheme. 
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The River Soar is a tributary of the River Trent with a catchment area of 1388 sq. km and a 

length of 67.5 km. There is no maritime influence and the catchment is almost completely 

lowland in character. Only a small area in the Chamwood Forest rising to just 278 metres 

altitude on acidic, siliceous rocks can be considered to be vaguely upland in character. Most of 

the catchment surface geology is dominated by neutral clays and siltstones to the west and 

more basic clays and limestone to the east (Martin 1988). However, much of the solid geology 

is over1ain by glacial boulder clay. Consequently, although the average rainfall at around 600 

mm per year over much of the catchment is lower than most of England and Wales (Wildig 

1988), high levels of surface run-off lead to spates within the river system. Surface run-off is 

also increased by the large conurbation centred on Leicester and drainage systems associated 

with agriculture. 

Outside of population centres, land use is dominated by agriculture which has changed 

markedly in character in recent decades. A predominantly pastoral landscape with hedges has 

been converted to larger fields used for arable cultivation and grass ley. The intensification of 

agriculture has almost certainly resulted in increased levels- of fine sediment coming into the 

river system. Certainly nitrate concentrations in the River Soar are very high and rising. Jose 

(1989) reported that mean nitrate concentrations measured from 1982 to 1986 at Red Hill 

Lock near the confluence with the Trent were at 11.44 mg 1"1 the highest of eight sample points 

in the Trent catchment and the rate of increase was the second highest value. However, the 

water quality of the lower Soar is not regarded as poor. It is designated as belonging to 

chemical class 2, which is defined as suitable for potable supply after advanced treatment and 

capable of supporting reasonab(v good coarse fisheries (NRA 1989). The major discharge of 

eftluents into the river occurs at Wanlip, where sewage from Leicester is treated. 

Approximately three quarters of the summer flow below Wanlip originates as sewage efiluent. 

Biological indices of water quality indicate a decrease in organic pollution away from Wanlip 

toward the Trent confiuence, but even near Wanlip these indices have improved considerably 

following improvements to sewage treatment in the 1960s and 1970s (Harding 1986). The 

sewage outfall from Loughborough, a large town within the lower Soar study area, appears to 

have little effect on the biological indices (Harding 1986). 
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The length of the Soar investigated during this project was 30 km between its confluence with 

the Trent and a point upstream from Barrow upon Soar which constitutes most of a natural 

segment between two major confluences, but excludes an upstream stretch of about 7 km 

below the outfall at WanIip. For most of this length the Soar forms the boundary between 

Leicestershire and Nottinghamshire. The gradient along this stretch is very shallow and the 

river drops a mere 15 metres. Consequently, it is very slow-flowing and main channel 

sediments are primarily composed of silt and fine sand. Further reductions in flow rate result 

from the impoundment of long stretches for navigation. Shingle deposits are very limited and 

confined to just two stretches of unimpounded river at Cotes and Ratcliffe on Soar, although 

accumulations of bricks and other debris from artificial structW'es sometimes occur elsewhere. 

Steep bare banks are also confined to unimpounded stretches. Although these banks are 

undoubtedly scoured by the river, erosion of bank material is probably not very severe. Old 

maps provide no evidence that major natural changes in channel position have occurred for 

three hundred years. Personal observation over twenty years suggests that bank erosion and 

channel movement is limited to areas immediately downstream of weirs. Nevertheless, large 

deposits of silt and fine sand, in some cases covering up to half a hectare, are not uncommon 

below the towpath and these have presumably accumulated since navigation was introduced to 

the river. 

In areas of the floodplain not protected by flood alleviation schemes, flooding occurs regularly 

two or three times a year and inundation can last for up to four days (NRA 1990). From 

personal observation, flooding is more frequent in winter months, even though August tends to 

have the highest monthly rainfall (Wildig 1988). Numerous secondary channels can be seen in 

the form of long winding depressions in floodplain meadows. Many of these channels flood 

regularly in the winter and retain water to varying degrees into the spring and summer. In 

grazed meadows, these remnant pools tend to have a largely mineral substrate, but in 

unmanaged areas, wet woodland has formed and the substrate is composed of layers of 

undecayed organic matter (CPOM) interspersed with silt deposited by winter floods. When 

large amounts of CPOM are incorporated into fine sediment they change the physical 

properties of the substrate radically. The irregular shapes of CPOM create a much less closely 

packed matrix containing interstitial spaces which are often exploited by invertebrates. Organic 

detritus also acts as a food source for organisms such as Collembola which are important prey 

67 



Chapter 2: Study area 

items for many ground-living beetles. The origins of these secondary channels are largely 

unknown, but several are possibly related to the sites of old mill races. 

Under the vegetation classification scheme devised by Holrnes (1983), most of the lower Soar 

would be placed in the A2iv group of clay rivers, whose characteristic plants include Nuphar 

lutea, Scirpus iacustris, Sagittaria sagittaria, Rorippa amphibia, Polygonum amphibium and 

Glyceria maxima. This vegetation type is associated with an almost pure clay catchment and a 

spatey flow regime. 

In the late eighteenth century, well over half the main channel was impounded for navigation 

by a system of locks and weirs. In these sections, flow rates are now slower, water levels are 

maintained higher and adjacent land is more frequently affected by flooding. By means of a 

canal, the navigation avoided three stretches. These were the Quom loop, the Ratcliffe loop 

and a long stretch between Pillings Lock, Quam and Bishops Meadow near Dishley. 

However, even in these stretches there are additional impoundments connected with old mills. 

A large weir at Cotes Mill affected a long stretch of wmavigable river, but when this collapsed 

in the late 1980s an older rubble weir was exposed two kilometres upstream.. Other types of 

impoundment include the base of the road bridge at Cotes and a ford at Ratcliffe. 

Following widespread flooding of property in 1977, engineering works commenced in 1983 as 

part of a flood alleviation scheme. These works were designed to reduce flooding to a 

frequency of once cvet)' ten years over most of the floodplain and once cvet)' hWldred years 

adjacent to villages (NRA 1990). The engineering works consisted of three main types of 

operation. Firstly the channel was dredged to achieve a cross-section whose width and depth 

gave the minimwn necessary area required to remove a quantity of water calculated according 

to a mathematical model. Secondly, an embankment was constructed above the natural bank 

in order to hold back floods which overtopped the natural bank. Thirdly, where necessary, the 

natural bank was regraded to an angle of 45° and cleared of obstructions, such as trees, which 

might impede flow. Near Nonnanton, there is a stretch of riverbank which has been faced 

with vertical steel piling. However, bank regrading was not necessary on all stretches and only 

one bank was regraded along many stretches. 

Apart from engineering operations, many banks are affected by adjacent land use. Where 

cattle have access to the banks, they have a big impact on its structure and vegetation. 
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Trampling causes steep banks to collapse and breaks up the surface of sedimentary deposits. 

Trampling and grazing reduce vegetation cover. These conditions are found on approximately 

half the length of river bank and are only absent where the river runs beside arable fields or 

plantations such as old osier beds. Some navigable stretches which are higher than adjacent 

land are protected from grazing stock by a ditch system. Along river banks unaffected by 

cattle, anglers can affect small localised areas by cutting back vegetation for fishing platfonns. 

2.1 Environmental variables available for investigation 

There are a range of habitat structures in the lower Soar floodplain including main channel 

sedimentary deposits and floodplain wetlands. These structures contain a number of 

microhabitat types. In tenns of mineral sediment particle size, the range from clay to coarse 

sand is well represented, but shingle is found at only a few sites. A particular feature of many 

floodplain wetland sediments and some main channel sediments is the incorporation of Coarse 

Particulate Organic Material (CPOM) into the matrix. There is also wide variation in 

vegetation cover, vegetation type, shade and quantity of surface litter. 

At a larger scale, there is variation in the severity of disturbance by flooding and, in floodplains, 

in the frequency of flooding. The levels of severity of disturbance by flooding along the lower 

Soar occupy an intermediate position between those on its headwaters and those on the larger 

River Trent downstream. All stages of vegetational succession are represented in floodplain 

wetlands, although fen and marsh are less common than carr and shallow grassland depressions 

which dty out early in the year. These successional stages are characterised by different levels 

of hydrological stability. 

Different stretches of the riverbank have been regraded at different times between 1984 and 

1991. Other stretches have been directly unaffected by engineering. Similarly different 

stretches have been impOlU1ded for navigation since the end of the 18th century. Other human 

pressures which vary between stretches include grazing and use by anglers. Larger scale 

catchment land use factors, such as urbanisation will not be expressed in differences within the 

study area and require a comparison of sub-catchments. 
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3 Methods 

3.1 Sequence of investigation and site selection 

In 1991, thirty sites were sampled to investigate the relative importance of environmental 

variables across all habitat structures and to select an appropriate scale for further investigation. 

Only samples collected in April and May were used in the analysis, although additional samples 

were collected in other months in order to investigate seasonal variations. It was considered 

that thirty sites would allow all environmental variables with an important influence on species 

assemblages to be detected. The sites were selected to represent the complete range of habitat 

structures present in the lower Soar floodplain from a stretch of 5 km. between Loughborough 

and Barrow whose short length minimised Wlwanted large scale variations. They are mapped in 

figure 1 and their habitat structures summarised in table 3.1. A more detailed breakdown of 

environmental variables is given in appendices 3.1 and 3.2. 

The influence of environmental variables specific to tloodplain wetland assemblages was 

investigated using a set of 27 samples collected between 1991 and 1994. Twelve of these 

samples were from additional sites outside the stretch studied in 1991. The influence of river 

management on main channel assemblages was investigated using samples collected from 30 

sites in 1992. Eight of these sites had also been represented in the 1991 data set. 

Concurrently with these investigations, 15 reference sites originally sampled in 1991, were 

repeatedly sampled up to 1994 in order to evaluate seasonal and annual variations and sampling 

methods as detailed in chapter 4. After 1991, it was recognised that some large floodplain 

wetland sites contained areas managed in different ways and covered too large a range of 

environmental variables. From 1992, large sites were split into separate sampling units as 

detailed in table 4.26. 

3.2 Sampling methodology 

3.2.1 Target groups 

Because of the variety of beetle habitats and life histories, a suite of sampling methods is often 

required in order to study the full faWlal diversity in anyone habitat. For the present study, it 

was cost-effective to define certain target families and so limit the nwnber of sampling 

methods. Table 1.7 shows the number of species in each beetle family which occur in British 
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Figure 3.1: Map of lower Soar showing locations of sampling sites. 
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l Main channel structures (17 sites) 

Ishingle banks 1 
I 
sand banks 4 

silt banks 10 

slumped eroding banks 2 

I Floodplain wetland structures (13 sites) 

Ima~h 2 
I 
Iftn 2 

carr 

grassland depression 

spring-fed flush 

7 

3 

1 

Table 3.1: Number of sites investigated in 1991 representing different types of habitat 
structure. Note that some large floodplain wetlands contained more than one vegetation type. 
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wetland and riparian sites. The two most species-rich families are Staphylinidae and Carabidae 

and so it is these families that constitute the main target groups. These are predominantly 

ground-living species and there are a number of appropriate sampling methods which have 

been successfully employed for their study. 

Adults of species in the families Scirtidae, Phesphenidae, Cantharidae, Melyridae, Nitidulidae, 

Phalacridae, Coccinellidae and Chrysomelidae tend to climb vegetation. This is also true to a 

lesser extent for Apionidae and Curculionidae. Collecting methods designed for ground-living 

species would not yield representative samples of these families which were, therefore, not 

included in the analyses. 

Many species in the families Hydrophilidae and Dryopidae are aquatic. Some species of the 

genus Cercyon appear to be exclusive to terrestrial margins, but adults of other genera appear 

in terrestrial habitats either intennittently or under special circumstances such as the drying out 

of ponds. Sampling of the terrestrial margins of water bodies would not yield representative 

samples of these groups which were also excluded from the analyses. 

Species of Rhizophagidae have specialised habitatc; such as the bark of driftwood which would 

not be adequately sampled except by techniques peculiar to that group. There are identification 

problems with Acrotrichis, the main genus of Ptiliidae. Although specialist riparian and 

wetland species of Cryptophagidae and Lathridiidae do occur in Leicestershire, they are vet)' 

rare compared with ubiquitous species in the same family which would dominate the samples 

and which would not furnish very useful information. All of these families were also removed 

from the list of target groups and were not used in the analysis of results. 

Of the remaining families, only Pselaphidae, Heteroceridae, Elateridae and Silvanidae have 

wetland or riparian species occurring in Leicestershire. Consequently, these families were 

added to Carabidae and Staphylinidae and together they constitute the target groups for 

sampling in this study. 

3.2.2 Hand collecting 

Within each site, six sampling stations were chosen so as to maximise environmental variation 

according to the following priority: 
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a) substrate particle size, 

b) percentage of bare substrate, 

c) vegetation type, 

d) depth of litter, 

e) shade. 

Based on the number of pitfall traps required to give a representative sample (ObrteI1971), six 

sampling stations were considered sufficient to yield a representative hand-conected sample. 

Sampling stations were always damp either on or just below the surface and generally within 

two metres of open water where this was present. ~.fost sites along the River Soar are fairly 

narrow and under-representation of species confined to dryer areas further away from the 

water was assumed to be unimportant. 

This protocol leads to sampling stratified by environmental variables rather than by spatial 

position and was designed to suit the mosaics of rnicrohabitat structures present at most sites. 

Random selection of sampling stations would have required a much larger number of stations 

to have covered the variation in species composition and environmental variables present at 

each site. In 1992 the sampling protocol was modified slightly in order to suit regraded sites 

which were more homogeneous in nature. Stations were selected from separate, contiguous 

ten metre lengths at each site. \Vithin each ten metre length, en'\i.ronmental variation was 

maximised according to the priority listed above. 

Collecting for unit time was adopted to standardise sampling effort. At each station beetles 

were collected -vvith the aid of a pooter for five minutes. Thus, during each site "Visit, beetles 

were collected for a total of thirty minutes. Collecting was carried out when the air 

temperature was 140 C or above. The following techniques were used. 

Bare groWld was splashed with water and soft sediments were lightly trampled. On vegetated 

ground, the basal parts of plants were examined or pulled apart. Litter and dense mats of fallen 

vegetation were sieved over a plastic sheet. The time taken to sieve vegetable matter was not 

included in the five minutes, only the time taken to search and collect the beetles on the plastic 
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sheet. Floating vegetation mats were trampled underwater and beetles scooped up with a 

tea-strainer. 

Specimens were killed with ethyl acetate. Specimens from each sampling station within the site 

were pooled for the purposes of analysis at site level. 

3.2.3 Pitfall trapping 

At each site, six stations were chosen adjacent to those used for hand-collecting and with 

similar environmental conditions. At each station, a polypropylene beaker with a 8.S mm. 

opening was sunk into the substrate so that its mouth was flush with the surface. Commercial 

anti-freeze containing ethylene glycol was pow-ed into the bottom of the beaker as preservative. 

The catch from all six traps was pooled, sorted in a white tray and beetles extracted into 70% 

alcohol. 

3.2.4 Species identification 

Prior to commencing these investigations, taxonomic expertise had been acquired through 

contact with specialists in each of the target groups. Specimens in these families were 

identified down to species leve~ where possible, using published keys and a reference 

collection. In 1991, females belonging to the rove beetle genus, Gabrius, and the subgenus, 

Philhygra, of the genus, A theta, could not be identified. However from 1992 onwards it 

proved possible to identify Philhygra females by examining their genital segments. Most 

specimens were stored in 70% MS and lodged in the care of Leicestershire Museums Service. 

However, some critical specimens were mounted dry on card and remain in the reference 

collection maintained by the author. A copy of all records is held by the Leicestershire 

Biological Records Centre. 

3.3 Ordination of samples using species assemblage parameters 

For each sample, various indices were calculated mostly using weighted averages, where the 

weights were derived from scores given to the species forming the assemblage. Two versions 

of each weighted average index were calculated. The species version was based on the 

presence or absence of species and is simply the mean of all the scores of each individual 

species. The abundance-weighted version used the untransformed abundances of each species. 
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3.3.1 Species richness and evenness 

Two measures of species diversity were used. The Species Richness, S, was calculated as the 

number of species recorded in a sample. The Evenness, E, was calculated from the regression 

coefficient of log species abundance plotted against species rank abundance using the equation: 

E = -11 r (3.1) 

where r is the regression coefficient. 

3.3.2 Species composition 

For several sample sets, an objective ordination based on species composition was perfonned 

using Detrended Correspondence Analysis, (Hill 1979). DCA is a version of correspondence 

analysis, also called reciprocal averaging, which removes unwanted mathematical artefacts (Hill 

& Gauch 1980). Using this method, species scores are derived iteratively from the average 

scores of the samples in which they occur, in contrast to the subjective ordinations described 

below, where species scores were derived from attributes such as rarity and wing-length which 

are independent of the samples in which they occur. Several orthogonal axes of variation can 

be derived using DCA. Axis 1 accounts for the largest variation between samples. Axis 2 is the 

next most important. Two axes plotted together constitute an ordination plot. For the 

purposes of this study, axis 1 and, to a lesser extent, other axes were treated as approximations 

to combinations of important environmental gradients, to which individual species abundances 

exhibited a unimodal response (Jongman et al. 1995). 

3.3.3 Rarity 

Various rarity indices were adapted from the Species Quality Score (SQS) used by Eyre & 

Rushton (1989). SQS is a summation of individual species rarity scores which are grouped 

into classes given values equal to geometric powers of two. This sum is then divided by the 

total number of species in order to correct for sampling effort. The SQS of an assemblage is 

therefore the arithmetic mean of all individual species rarity scores arrayed in classes on a 

geometric scale. It is a type of weighted average using rarity to weight the scores of individual . 

species. Eyre & Rushton used only presence and absence data and calculated rarity scores on 

one scale. Four different rarity indices were calculated for this study. 
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The Local Species Rarity Index, RI. , used individual species scores which were inversely 

related to the number of post-1979 1 kilometre square records held by the Leicestershire 

Biological Records Centre. This databank holds over 55,000 records of beetle species from 

within the vice-county of Leicestershire. Table 3.2 shows the relationship between individual 

species scores and the number of records held in the databank. ~ can then be calculated as 

follows: 

(3.2) 

where rj is the score for an individual species. 

In addition a Local Abundance-weighted Rarity Index, ~, was calculated from the same 

individual species scores: 

(3.3) 

where 1\ is the abundance of an individual species and N is the total number of specimens 

present in the sample. Both of these indices range from 1 to a theor~tica1 maximum of 64. 

Similar calculations were used for the National Species Rarity Index, R.u, and the National 

Abundance-weighted Rarity Index, ROIl' except that the individual species scores were based on 

national rarity rather than local rarity. Species were scored on the basis of their national 

conselVation status which is based on the estimated number of 10 km squares occupied in 

Britain (Hyman 1992, 1994). These indices range from 1 to a theoretical maximum of 8 (see 

table 3.3). 

3.3.4 Ability to disperse 

Species of ground beetle were divided into foW' classes depending on their wing length in 

British specimen~ as described by Luff (1998). These groups were labelled B for constantly 

brachypterous (short-winged) species, C for brachypterous species "ith occasional 

macropterous (full-winged) specimens, D for constantly wing-dimorphic species and M for 
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Number of 1 km squares occupied in Individual species rarity score 
Leicestershire 

>63 1 

32-63 2 

16-31 4 

8-15 8 

4-7 16 

2-3 32 

1 64 

Table 3.2: Derivation of individual species scores used to calculate local rarity indices. 

National conservation status Estimated no. of 10 km Individual species rarity score 
(Hyman 1992, 1994) squares occupied in Britain 

no status >100 1 

Nb orN- <100 2 

RKorNa <30 4 

R3 orR! <15 8 

Table 3.3: Derivation of individual species scores used to calculate national rarity indices. 
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constantly macropterous species. Indices were then based on either the proportion of species 

or the proportion of individual specimens in each class: 

(3.4) 

where W bl is the Brachypter Species Index and Sb is the nwnber of species of brachypterous 

Carabidae; 

(3.5) 

where W tm is the Brachypter Abundance-weighted Index and Nb is the number of individual 

specimens of brachypterous species of Carabidae. 

Similar calculations were used for Wel, the Rarely Dimorphic Species Index; W u' the 

Constantly Dimorphic Species Index; W mtl' the Macropter Species Index and for W ctI' the 

Rarely Dimorphic Abundance-weighted Index; W dn' the Constantly Dimorphic 

Abundance-weighted Index and W mn.' the Macropter Abundance-weighted Index. All of these 

indices range from 0 to 1. 

Because dispersal ability is not always related to wing length (den Boer 1977), the possibility of 

calculating indices based on the dispersal ability of ground beetles in the Netherlands were 

investigated, but, unfortunately, the available data (den Boer 1977, Twin & den Boer 1988) 

does not include many of the riparian and wetland species that occur along the River Soar. 

Furthermore, there is a strong possibility that dispersal ability varies between regions and the 

idea was abandoned. 

3.2.5 Land use association 

Because riparian habitats occur in small patches, a proportion of specimens in any sample are 

likely to belong to non-riparian species. Species associated with adjacent habitats may not be 

easy to recognise if they occur regularly in samples. However, from a conservation 

perspective, it is important to give consideration to riparian specialist species rather than 

vagrants whose presence is unconnected to the environmental and management factors being 

studied. 
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In order to address this problem an index of association with other land uses was devised from 

records held at the Leicestershire Biological Records Centre. These records were collected in a 

variety of ways but most come from systematic surveys using either pitfall traps or hand 

collecting. Firstly, post 1979 records restricted to the target beetle families selected in section 

3.1.1. were extracted and then those with habitat data were classified into four land use 

categories comprising of 1) riparian and wetland sites, 2) grassland, 3) recently disturbed sites 

with extensive areas of bare ground such as arable land, recently disused quarries and 

demolition sites and 4) other land use types. Flood refuse records were excluded because 

under such conditions specimens are removed from their natural habitat. Because some 

ground beetles and rove beetles hibernate in habitats completely different to their breeding 

habitats, records taken between October and March were also excluded. Records were then 

condensed to a set of one record per species per land use category per lOOm national grid 

square. Individual species scores were then calculated for each land use category based on the 

proportion of records in each category. The Land use Association Species Index for 

Grassland, L ,was then calculated as follows: cs 

(3.6) 

where & is the grassland association score for an individual species. 

In addition, a Land use Association Abundance-weighted Index for Grassland, L , was 
!PI 

calculated from the same individual species scores: 

(3.7) 

Similar indices were calculated for riparian and wetland sites, Lw. and Lwn, and recently 

disturbed sites, Lds and Ldn• All of these indices range from 0 to 1. 

3.3 Measurement and quantification of environmental variables 

At each sampling station a range of environmental measW"ements was taken. Substrate particle 

size was recorded by estimating the proportion of material near the surface belonging to five 

categories: 1) shingle and larger particles, 2) sand, 3) silt and clay, 4) coarse particulate organic 

matter incorporated into the substrate, S) artificial material including dumped aggregate and 

rubble from collapsed weirs. Although coarse particulate organic matter is not nonnally 
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included as a substrate category in this type of study, dead leaves, litter and peaty material were 

found to be a common and characteristic feature which had an important influence on the 

physical nature of the substrate at many sites. Proportions were estimated to the nearest tenth. 

The proportion of the surface exposed at eye level and the proportion of the southern half of 

the st...-y shaded by trees and bushes were both estimated to the nearest tenth. The quantity of 

dead plant litter was scored according to table 3.4. Surface moisture was scored according to 

table 3.5. 

Sites were then ordinated either by combining scores derived from their sampling stations or 

scoring further environmental and management attributes as follows. 

3.4.1 Substrate 

Four environmental indices were devised to describe the substrate characteristics of each site. 

SlllNGLE was calculated by averaging the estimated proportions in tenths of shingle and larger 

particles at each sampling station. SAND, SILT and CPOM were calculated in the same way 

from the proportions of sand, silt and clay, and coarse particulate organic matter respectively. 

Each substrate index for a single sample was therefore derived from six values, one for each 

sampling stations, but for pooled samples from separate visits, multiples of six values were 

used. The four substrate indices were almost colinear because artificial material, the fifth 

category of substrate measured at each sampling station, was very rare. 

3.4.2 Vegetation cover 

Four en'\ironmental indices related to cover were used. BAREGRD was calculated by 

averaging the proportion of bare ground surface viewed from eye level at each sampling 

station. SHADE was calculated by averaging the proportion of shade at each sampling station. 

LITTER was calculated by averaging the scores derived from the quantity of dead plant litter 

on the surface at each sampling station. IDBSITES was scored as either 0 or 1 on the basis of 

the presence or absence on the bank above the site of suitable hibernation sites in the form of 

grass tussocks or dead wood. HIBSITES is therefore a nominal variable. 
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Description Score 

no surface litter 0 

scattered accumulations of litter 1 

thin layer of litter covering surface 2 

surface litter layer more than 10cm thick 3 

Table 3.4: Derivation of scores for surface litter at each sampling station 

Description Score 

surface dry 0 

surface damp, but mth no free water 1 

free water on surface 2 

Table 3.5: Derivation of scores for surface moisture at each sampling station 
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3.4.3 Hydrology 

Two hydrological indices were used. DW A TER was devised to represent the amplitude of 

fluctuations in water level at each site, although it can also be related to the degree of 

permanence of open water which has been termed hydroperiod (Lugo et al. 1990). The whole 

site was scored according to table 3.6. CONNECT was devised to measure the connectivity of 

the site to the main channel. This is related to the frequency of flooding. The whole site was 

scored according to table 3.7. 

3.4.4 Natural disturbance 

NAIDIST is an index devised to measure the severity of natural disturbance by flooding at 

each site. It was calculated from the substrate particles present at the site. Each sampling 

station was scored according to the predominant substrate categoty present (0 = coarse 

particulate organic matter, 1 = silt and clay, 2 = sand, 3 == shingle). NAIDIST was then 

calculated as the average score for the whole site. It is essentially a measure of the flow rate of 

water running over the site dwing inundations since this is what determines particle size in the 

substrate and is a more useful overall measure of natural disturbance than the individual 

substrate indices SIDNGLE, SAND, SILT and CPOM each of which covers only a narrow 

range of severity of disturbance. 

3.4.5 Management 

Three indices were devised to represent the intensity of management at each site. GRAZING 

is an score based on the degree to which sites had been trampled by stock within the last three 

years. Sites with no history of grazing were given a score of 0, whereas trampled sites were 

given a score of 2. Partially or infrequently grazed sites were given a score of 1. The animals 

present at all grazed sites were cattle except at one site where horses were present. At three 

sites both cattle and sheep were present. At some sites, information on stocking was available 

from tenants. At other sites, the history of access by grazing stock was deduced from adjacent 

land use. Even when stock was absent during the year of survey, it was often possible to find 

evidence of their recent presence in the form of hoof-marks. IMPOUND was scored as either 

o or 1 on the basis of impoundment for navigation of the stretch of river where the site was 

situated. RECR was scored as either 0 or 1 on the basis of presence or absence of small areas 

cleared of vegetation usually by anglers. 
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Description Score 

Low fluctuations - floating mats of vegetation are present at floodplain sites~ 1 
high water levels are maintained by impoundment at main channel sites. 

Large areas of substrate are exposed only in the summer, but open water is 2 
always present. 

Open water disappears during the summer but moisture is always retained in 3 
the substrate close to the surface. 

The substrate dries out completely near to the surface. 4 

Table 3.6: Derivation of scores for DWATER, an index of water level fluctuations at each site. 

Description Score 

no permanent connection to the main channel; only connected during major 1 
floods. 

pennanently connected at one end. 2 

pennanently connected at both ends, but only a secondary channel. 3 

directly on the main channel. 4 

Table 3.7: Derivation of scores for CONNECT, an index of connectivity to the main channel. 
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3.4 Relation of species assemblage parameters to environmental and 
management factors 

Values derived from the ordination of species assemblage parameters were treated as response 

variables and compared with the values of environmental and management factors, but a 

number of problems were identified in using methods which assumed a normal distribution of 

values. Few of the species assemblage parameters could be assumed to be nonnally distributed 

between sites. For example, species richness is expressed in integers and is more likely to 

follow a Poisson distribution, while rarity indices are based on component species scores 

distributed along a geometric scale and so are likely to have a skewed distribution producing 

out1iers with high values. Non-parametric methods which are :free from assumptions about 

normal distribution and reduce the influence of outliers (Kendall & Gibbons 1990), were 

employed to relate species assemblage parameters to envirorunental factors. 

In addition, ordination of species assemblages was obtained directly from linear combinations 

of the environmental variables using Canonical Correspondence Analysis (CCA). CCA is a 

method of multivariate analysis which is similar to DCA in assuming a unimodal response 

model. However, CCA uses environmental variables to constrain the ordination during 

iteration (ter Braak 1986, 1987-1992) and so avoids a separate interpretation of ordination axes 

in order to relate them to environmental variables. CCA was used mainly to detect which 

species were most sensitive to the chosen environmental factors. 
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4 Evaluation of sampling methods 

4.1 Comparison of pitfall trapping and hand collecting 

4.1.1 Introduction 

Beetles in riparian and wetland biotopes have been sampled using pitfall traps (Lehmann 1965, 

Murdoch 1966, Meissner 1983, Fowles 1989, Greenwood et al. 1991, Desender et al. 1994, 

Sustek 1994, Zulka 1994) and a variety of hand-collecting methods (Murdoch 1966, Koch 

1977, Kohler 1996). Methods of standardising hand-collected samples have involved 

searching a unit area or quadrat (Krogerus 1948, Murdoch 1966, Andersen 1969, Kurka 1975, 

Holeski & Graves 1978, Landry 1994) and collecting for a unit length of time (Andersen 1969, 

Plachter 1986). Sampling unit areas is the method best suited for estimating population 

densities, although Andersen (1969) devised a method for converting abundances, derived 

from timed catches, into estimated population densities using habitat correction factors. 

However, Andersen experienced difficulties with quadrat sampling due to the presence of 

bushes, high vegetation or uneven ground. He also found it unsuitable for small habitat 

mosaics. Active and less abundant species were under-represented in quadrat samples. F owles 

(1988) obtained very low numbers of specimens when using quadrat sampling on shingle banks 

in Wales. Similarly, in pilot studies along the River Soar, population densities were fOWld to 

vary enonnously from site to site and many 1m2 quadrats would have contained no beetles at 

all. For these reasons timed searching rather than quadrat sampling was used to standardise 

sampling effort when collecting by hand. 

Andersen (1969) listed three causes of unwanted variation in hand-conected samples: 

a) the subjective collecting error due to the varying efficiency of the collector; 

b) the varying activity of the beetles depending upon weather conditions; 

c) the fact that more time is used on the collecting itself in proportion to the time used for 

searching when the abundance is high. 

The species composition of pitfall trap samples is sensitive to small changes in trap design (Luff 

1975) and so is liable to variations in efficiency just like hand-collecting. However, pitfall 

trapping avoids variation arising from (c) and reduces problems connected with short-tenn 
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variations in weather conditions by operating over an extended time period. When compared 

with pitfall trapping, hand-collecting has several further possible disadvantages. Nocturnal 

species may be under-represented in samples collected by hand during the day. Evidence for 

this comes from Andersen (1995), who found that nocturnal ground beetles were better 

represented in riverbank pitfall trap samples than quadrat samples. In addition, small species 

may escape detection during hand-collecting and be less well represented than larger species. 

However, there is also a bias toward larger species in pitfall trap samples of ground beetles, 

becaWlo they are more active and so more likely to meet with traps than smaller species 

(Andersen 1995). 

An important feature of pitfall traps is that the nwnbers of a beetle species caught is dependent 

not only on population density, but also on behaviour. Interspecmc variations in surface 

activity and ability to avoid or escape from traps may lead to unwanted bias in results, 

especially between habitat structures which differentially affect species' activity by impeding 

surface movement. Consequently, it might be expected that active, cursorial species would be 

better represented in pitfall trap samples than hand-collected samples, because their locomotory 

activity would lead to more encounters with traps, while ensuring a better chance of escaping 

from the pooter. Conversely, fossorial species which do not move so easily over the surface, 

might be expected to be better represented in hand-collected samples than pitfall trap samples. 

In summary, it is predicted that hand-collected samples may contain a bias against nocturnal 

species and cursorial species. Pitfall trap samples may contain a bias against fossorial species 

and toward cursorial species. Both methods may favour large species. 

Reported logistic problems, when Wling pitfall traps in riparian sites, include flooding (plachter 

1986, Fowles 1988) and interference from children, bathers and anglers (Koch 1977). 

It was decided to investigate the practicality and bias of timed hand-collecting and pitfall 

trapping by direct comparison of samples taken by each method from the same set of sites. It 

was also decided to evaluate the importance of differences in species composition arising from 

different sampling methods in relation to between-site differences and seasonal variations. 
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4.1 .2 Methods 

In 1992, five sites listed in table 4.1 were selected to cover a range of habitat structures. Six 

pitfall traps, as described in section 3.1.3, were set within 10 metre lengths at each site, in 

positions chosen to cover variations in microhabitat. They were operated throughout l\fay. 

Timed hand-collected samples, as described in section 3.1.2, were taken at the start and end of 

the trapping period. Specimens of the target groups, chosen in section 3.1.1, were identified to 

species. 

In 1994, six pitfall traps were set at each of five main-channel sites (sites 4,9,11,13,18) and 

operated for five one-week periods in April, May, June, July and September. Hand-collected 

samples were taken from each site at the same time that the traps were either set or taken up. 

The results from 1994 were ordinated using DCA. For both years the number of specimens 

and number of species in each sample were recorded. For each sample, the proportion of 

species and individual specimens in each family and major subfamily of Staphylinidae were 

calculated together with indices based on size and daily activity. For the calculation of size 

indices, species were grouped into classes based on a geometric scale of body length and 

scored as in table 4.2. The Species Size Index was then calculated as the average score of all 

species in the sample. The Specimen Size Index was calculated as the average score of all 

specimens in the sample. For the calculation of the Daily Activity Index, ground beetle species 

were scored from 0 to 3 according to the proportion of activity that takes place during the day 

as reported by Thiele & Weber (1968). For the 1994 results, the proportions of fossorial and 

cursorial individuals in each sample were calculated and tenned Fossorial Index and Cursorial 

Index respectively. The species regarded as fossorial or cursorial were selected on the basis of 

their morphology and personal observation. They are listed in table 4.3. 

The means of indices, calculated from pitfall trap samples, were compared with those from 

hand-collected samples by studying the distribution of values obtained by subtracting 

hand-collected sample values from the equivalent pitfall trap values. Wilcoxon's test for paired 

comparisons (Bailey 1995) was used to test the significance of the departure of these 

differential values from zero. This test was chosen because it is free from asswnptions about 

the distribution of sample values which are probably not normally distributed between habitat 

structures for this data set. 
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Site Brief description 

4 Exposed, mixed sand and silt deposit by main channe~ adjacent to ungrazed 
hay-meadow. 

5c Ungrazed backwater with stable water level and covered by flating mat of tall 
vegetation. 

8w Shaded, ungrazed backwater with fluctuating water levels. 

13 Exposed, mixed sand and silt deposit by main channe~ adjacent to disused osier bed. 

23 Exposed, mixed sand and silt deposit by main channe~ adjacent to grazed meadow 
and heavily trampled by cattle. 

Table 4.1: Sites selected to compare hand-collected samples and pitfall trap samples in 1992. 

Average Body Length (mm.) Individual Species Score 

<1 0 

1-2 1 

2-4 2 

4-8 3 

8-16 4 

>16 5 

Table 4.2: Derivation of individual species scores used to calculate size indices. Average body 
lengths are taken from Lindroth (1974) and Freude, Harde & Lohse (1964, 1974). 

F ossorial species Cursorial species 

Clivina spp. Nebria spp. 
Dyschirius spp. Elaphrus spp. 

Bledius spp. Bembidion dentellum 
Carpelimus spp. Bembidion genei 
Lathrobium spp. Agonum marginatum 
Xantholinus spp. Chlaenius vestitus 

Stenus (subgenus Stenus s. str.) 
Tachyusa spp. 

Chloporata longitarsis 

Table 4.3: Taxa selected to calculate proportion offossorial and cursorial indices of each 
sample. 
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4.1.3 Results 

The respective abundances of each species in pitfall trap samples and hand-collected samples 

are listed in tables 4.4 to 4.11. The full distribution of species between samples is given in 

appendices 1 and 2. Large variations in efficiency between the two sampling methods are 

apparent for individual species. 

Heavy rain caused flooding of pitfall trap sites by main channels in 1992. Pitfall traps at site 4 

were rescued and reset after water levels had subsided. There was insufficient tUne to rescue 

the traps at site 13 and the results were lost. The traps at site 23 were destroyed by the 

trampling of cattle and, again, the results were lost. In 1994 several traps at site 11 were 

affected by human interference in June and July. The traps at site 9 were destroyed by an 

influx of cattle in May and subsequently trapping was discontinued. The results for these sites 

were discarded and analysis was restricted to sites 4, 13 and 18. 

Figure 4.1 shows the ordination diagram for the 1994 results. Hand-coUected samples and 

pitfall trap samples from the same site and month are linked by a line. The overwhelming 

majority of lines are vertical indicating very little difference in species composition along axis 1, 

the major axis of variation. Even along axis 2, the differences between pitfall trap samples and 

hand-conected samples are smaller than those between sites and months. Consequently it can 

be concluded that differences in species composition due to these sampling methods arc small 

compared to those caused by other factors. 

The values of indices for samples collected in 1992 are shown in table 4.12. The Daily 

Activity Index, which is based exclusively on ground beetle aUributes, was not calculated for 

the 1992 samples because of the small number of grOlmd beetle species recorded at site Sc. 

Values of the differences between hand-collected and pitfall trap samples at each site arc 

shown in table 4.13, together with the mean difference for each index. Positive values indicate 

a higher value for pitfall trap samples and negative values indicate a higher value for 

hand-collected samples. Species richness, mean species size and mean specimen size were all 

significantly higher in pitfall trap samples. No significant differences were found for the 

proportions of species from different families. When abundances were used in the analysis, it 

was found that ground beetles were caught in higher numbers in most pitfall traps, while rove 
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beetles were recorded in higher numbers by hand-collecting. However, the level of 

significance was just outside the nonnally accepted confidence limits of 95%. 

The results from April to July, 1994 are similar to those for 1992. Table 4.15 shows that a 

significantly larger number of species was recorded by pitfall trapping, although table 4.14 

shows that higher number of individual specimens usually caught in pitfall traps was not 

significant. There was no significant difference between the proportions of species belonging 

to the two main families but gr01Uld beetles were recorded in significantly higher abundances in 

pitfall traps (see tables 4.16 to 4.19). Rove beetles belonging to the subfamily, Steninae, were 

recorded in lower numbers in pitfall traps (see tables 4.20 and 4.21). Tables 4.22 and 4.23 

show the values of various indices derived from the two sampling methods. Significantly larger 

species and larger specimens were recorded in pitfall traps. However, the expected higher 

numbers of noctwnal species in pitfall traps were not significant. Furthennore the distribution 

of the most abundant nocturnal species, Agonum albipes, was not significantly biased toward 

pitfall trap samples (see table 4.24). Similarly, the expected poorer representation of fossorial 

species in pitfall traps was not significant. Cursorial species tended to be slightly more 

abundant in hand-collected samples, a result contrary to expectations. 

Table 4.25 shows the numbers of specimens and species recorded in September, 1994. In 

contrast to the results from other months, pitfall trap samples were very poor in numbers. This 

is probably due to the low levels of activity at this season of spring breeders which constitute 

the major proportion of species assemblages in these biotopes. 

4.1.4 Discussion 

Despite the large differences in sampling efficiency for individual species, many of the 

expected differences in assemblage parameters between pitfall trap samples and hand-collected 

samples were found to be of no or lesser significance. Both sampling methods give equivalent 

species compositions when comparing samples from different sites and different seasons. 

Expected biases of hand-collecting away from nocturnal species and cW'Sorial species were not 

confinned, despite the finding of Andersen (1995) that nocturnal species were better 

represented in pitfall trap samples. Any bias toward larger species in hand-collected samples 

was masked by an even larger bias toward larger species in pitfall trap samples. 
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The higher number of specimens recorded in pitfall traps is not an inherent property of pitfall 

traps, but reflects the relative sampling efforts represented by the sampling protocols employed 

in this project. The catch numbers could easily be adjusted by either aggregating repeated 

hand-collected samples or changing the pitfall trap design to reduce its efficiency. However the 

raw figures for numbers of specimens and numbers of species in 1992 show huge variations 

for pitfall trap samples compared to hand-collected samples (see table 4.4). There are two 

factors which could lead to such a result. Firstly, because the hand-collecting method is 

standardised by time rather than area, samples from a sparsely populated site will cover a wider 

area leading to a reduction in variation of numbers of individuals between densely and sparsely 

populated sites. Quadrat sampling would presumably show much wider variations in catch 

totals. Secondly, the relatively low numbers of specimens and species traps at site 5c may be 

due to the lower trapping efficiency of pitfall traps in this biotope. Site 5c contains a floating 

mat of tall marsh vegetation with a permanently high water level. Beetles present at the site are 

adapted for climbing plants and coping with floods. They should be able to avoid entrapment 

by the preservative and climb up the sides of the trap. Beetles in other biotopes may be able to 

avoid entrapment by the preseIVative, but are less likely to be able to climb the sides of the trap. 

Therefore, it should be expected that beetles at site 5c will have a higher escape rate from traps 

than beetles at sites in other biotopes. 

The results from the River Soar support the findings of Andersen (1995) that pitfall traps yield 

higher values of species richness and higher numbers of larger species. They also differ from. 

hand-collected samples in the relative abundances of some families and subfamilies. However, 

whatever their merits or drawbacks, the use of pitfall traps for this project was found to be 

impractical because of problems connected with flooding, human interference and trampling by 

cattle. In contrast, the expected deficiencies of hand-collecting with regard to noctwnal species 

and cW'Sorial species were not detected. 
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Abundance Abundance Abundance Abundance 
Species in in pitfall Species m in pitfall 

hand-coUec trap hand-coUec trap 
ted samples samples ted samples samples 

Agonum albipes 3 54 B. tetracolum 4 19 
A. fuliginosum 6 14 Clivina col/aris 1 
A. livens 2 171 C. fossor 1 
A. marg;natum 1 Dyschirius aeneus 1 
A. micans 2 18 D.luedersi 3 
A. moestum 2 Elaphrus cupreus 8 3 
A. thoreyi 13 10 E. riparius 4 13 
AmMa communis 1 Loricera pilicornis 1 15 
A. familiaris 8 Nebria brev;collis 6 
Badister' bip~tulatus 2 Notiophilus biguttatus 4 5 
Bembidion aeneum 1 Plerostichus cupreus 1 
B. articu/atum 2 11 P. macer 1 
B. biguttatum 49 92 P. minor 6 15 
B. c/arki 112 187 P. nigrita 6 177 
B. dentellum 21 19 P.strenuus 1 11 
B. genei 2 P. vernalis 1 
B. gilv;pes 2 19 P. versicolor 2 
B. guttula 2 6 Stenolophus mixtus 1 9 
B. harpaJoides 1 Stomis pumicatus 1 3 
B. Junulatum 2 Tachys parvulus 12 
B. obtusum 11 28 Trechus obtusus 1 
B. properans 1 1 

Table 4.4: Species of Carabidae recorded in samples collected in 1992 in order to compare 
sampling methods. 
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Abundance Abundance Abundance Abundance 
Species m in pitfall Species in in pitfall 

hand-collec trap hand-collect trap 
ted samples samples ed samples samples 

Anoty/us insecetus 1 2 P. /aminatus 8 
A. rugosus 3 4 P. sordidus 1 

A. scu/pturatus 26 P. verius 1 
A. tetracarinatus 5 P/atystethus cornutus 3 6 
Carpelimus bi/ineatus 3 Proteinus ovaJis 1 

C. corticinus 2 Quedius curiipennis 3 
C. e/ongatulus 1 Q. maurorufus 3 1 
C. gracilis 1 Q. scintillans 2 
C. impress us 23 1 Sepedophilus 1 

mershami 

C. rivu/aris 36 4 Staphylinus 2 
melanarius 

C. subtilicornis 3 S.o/ens 4 
Gabrius pennatus 3 Stenus bimaculatus 6 5 

Lathrobium brunnipes 21 6 S. boops 8 9 
L. fulvipenne 4 11 S.juno 23 10 
L. geminum 1 S. solutus 2 

Lesteva heeri 6 Tachinus corticinus 4 
L. Iongoe/ytrata 5 3 T. /aticollis 1 

L.pubescens 2 T. signatus 85 
Neobisnius villosulus 3 1 Tachyporus dispar 1 1 
Omalium caesum 21 T. hypnorum 1 10 

0. rivu/are 12 T. nitidulus 2 

othius /aeviuscu/us 4 T.obtusus 3 3 

O. punctu/atum 1 T. pallidus 2 7 

Oxytelus fu/vipes 1 Xantho/inus /inearis 8 13 

Philonthus cognatus 2 X. /ongiventris 3 29 

Table 4.5: Species of Staphylinidae (subfamilies Proteininae to Tachyporinae) recorded in 
samples collected in 1992 in order to compare sampling methods. 
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Abundance Abundance Abundance Abundance 
Species m in pitfall Species m in pitfall 

hand-collec trap hand-collec trap 
ted samples samples ted samples samples 

Aleochara bipustulata 1 Deinopsis erosa 1 

A. lanuginosa 1 Deube/ia picina 5 6 

A/oconota gregaria 1 5 Dinaraea angustu/a 6 . 
A. sulcifrons 1 Dochmonota c/ancu/a 4 

Amischa ana/is 3 2 Geostiba circellaris 5 

A. decipiens 1 Gnypeta carbonaria 21 1 

Atheta debi!is 1 G. velata 6 

A. elongatula 11 2 Hygronoma dimidiata 1 3 
A. fungi agg. 8 9 Ilyobates propinquus 1 

A. graminicola 19 33 Liogluta nitidula 1 128 
A. hygrobia 8 Myllaena dubia 30 2 
A. luteipes 4 M. infuscata 2 

A. malleus 23 2 Oxypoda brachyptera 1 

A. vi/is 1 1 O. elongatula 11 

A. volans 1 O. Jentu/a 19 2 
Callicerus obscurus 9 O. opaca 1 

C. rigidicornis 61 O. umbrata 3 
Calodera aethiops 1 3 Pachnida nigel/a 15 1 
C. ripens 1 Tachyusa atre 1 
ChiJoporata longitarsis 5 9 T. coarctata 1 

Table 4.6: Species of Staphylinidae (subfamily Aleocharinae) recorded in samples collected in 
1992 in order to compare sampling methods. 

Abundance Abundance Abundance Abundance 
Species in in pitfall Species m in pitfall 

hand-collect trap hand-collect trap 
ed samples samples cd samples samples 

Bryax;s bulbifer 1 H. marginatus 1 2 
Rybaxis longicornis 1 Agriotes obscurus 1 

Heterocerus fenestratus 13 4 

Table 4.7: Species ofHeteroceridae and Elateridae recorded in samples collected in 1992 in 
order to compare sampling methods. 
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Abundance Abundance Abundance Abundance 
Species in in pitfall Species m in pitfall 

hand-collect trap samples hand-collec trap 
ed samples ted samples samples 

Agonum a/bipes 114 190 Carabus granulatus 1 39 
A. assimile 11 28 Ch/aenius nigricornis 4 

A. dorsale 1 4 C. vestitus 1 

A. fu/iginosum 9 19 Clivine collaris 5 7 
A. micans 64 107 C. fossor 5 
A. moestum 4 E/aphrus cupreus 14 
A. muelleri 1 E. riparius 10 32 
A. obscurum 3 Harpa/us latus 1 
A. thoreyi 1 1 H. rufipes 1 
Amare simi/ata 1 Loricera pilicornis 7 168 
Asaphidion stierlieni 2 Nebria brevicol/is 2 1 
Bembidion aeneum 3 2 Notiophi/us biguttatus 1 

B. erticuletum 1 N. substriatus 1 

B. biguttatum 42 32 Patrobus atrorufus 12 

B. dente/lum 59 60 ptet'O$tichus cupreus 1 

B. gilvipes 14 32 P. me/enerius 3 

B. guttu/a 50 40 P. minor 6 
B. /unu/atum 41 5 P. nigrita 3 29 
B.obtusum 33 26 P. strenuus 2 11 
B. proper ens 1 P. varna/is 12 30 
B. qua(1rimacu/atum 1 Trechus discus 4 

B. tetracolum 30 52 

Table 4.8: Species of Carabidae recorded in samples collected from main channel sites in 1994 
in order to compare sampling methods. 
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I Abundance Abundance Abundance Abundanc 
Species m in pitfall Species m e in pitfall 

hand-collec trap hand-collec trap 
ted samples samples ted samples samples 

Anotylus insecatus 1 P. varians 1 
A. rugosus 37 115 P. varius 1 

A. sculpturatus 1 3 Platystethus cornutus 1 

Carpelimus bilineatus 9 1 Proteinus macropterus 45 

C. corticinus 3 Quedius curtipennis 1 

C. gracilis 2 Q. maurorufus 1 

C. impress us 5 4 S. bifoveolatus 1 

C. rivularis 128 40 S. bimaculatus 3 

C. subtilicornis 131 176 S.boops 74 51 
C. subtilis 2 S. cicindeloides 2 

De/easter dichrous 1 S. formicetorum 2 

Gabrius bishop; 4 S.juno 24 11 

G. pennatus 1 S.pubescens 1 

Lathrobium brunnipes 2 4 S. pusillus 1 

L. fu/vipenne 1 19 S. solutus 1 

L. geminum 8 7 S. tarsa/is 2 7 
L. pallidum 1 Sunius propinquus 2 

L. quadratum 1 1 Tachinus signatus 7 111 
Lesteva longoelytrata 12 2 Tachyporus hypnorum 1 1 
Micropeplus porcatus 1 T. obtusum 17 15 

Neobisnius villosulus 1 2 T. pallidum 3 

Philonthus cognatus 2 T. solutus 1 

P /aminatus 4 Xantho/inus linearis 2 

P quisquiliarius 3 2 X. /ongiventris 1 6 
P. umbrati/is 2 

Ta ble 4.9: Species of S taphylinidae (subfamilies Micropeplinae to T achyporinae) recorded in 
samples collected from main channel sites in 1994 in order to compare sampling methods. 
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Abundance Abundance Abundance Abundance 
Species in in pitfall Species in in pitfall 

hand-collect trap hand-collect trap 
ed samples samples ed samples samples 

Alianta incana 1 Chi/oporata /ongitarsis 52 16 

A/oconota gregaria 4 5 Dinaraea angustuJa 1 5 

Amischa ana/is 1 Geostiba circellaris 4 167 

A. cavifrons 2 15 Gnypeta carbonaria 5 

Atheta crassicornis 2 G. ripico/a 2 

A. eIongatu/a 265 124 G. ve/ata 2 

A. fungi agg. 20 79 Gyrophaena angustata 2 

A. graminico/a 120 108 Hygronoma dimidiata 1 

A. hygrotopora 1 1 Oxypoda brachyptera 4 

A. laticollis 10 52 O. e/ongatuJa 1 

A. luteipes 3 O. exo/eta 1 

A. malleus 12 O. umbrata 1 

A. obfuscata 1 Tachyusa atra 2 2 

A. vo/ans 3 T. coarctata 2 

Callicerus rigidicornis 1 T. leucopus 1 

Table 4.10: Species of Staphylinidae (subfamily Aleocharinae) recorded in samples collected 
from main channel sites in 1994 in order to compare sampling methods. 

Abundance Abundance Abundance Abundance 
Species in in pitfall Species in in pitfall 

hand-collect trap hand-collecte trap 
ed samples samples d samples samples 

Rybaxis /ongicornis 1 Adrastus pal/ens 1 1 

Tychus niger 1 Hypnoides riparius 9 

Heterocerus fenestratus 1 Se/atosomus 1 
incanus 

Table 4.11: Species ofPselaphidae, Heteroceridae and Elateridae recorded in samples 
collected from main channel sites in 1994 in order to compare sampling methods. 
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Proportion of species Proportion of specimens 

Sample No. No. Species Specimen Carabidae Staphylinidae Carabidae Staphylinidae 
specimens species Size Index Size Index 

SH04{1) 110 29 2.55 2.38 0.38 0.55 0.29 0.66 

~04(2) 87 27 2.37 2.18 0.41 0.56 0.24 0.66 

SH5c{1) 100 21 2.33 2.41 0.1 0.9 0.1 0.89 

SH5c(2) 56 21 2.67 2.63 0.33 0.67 0.3 0.7 

SH8w(1) 179 25 2.64 2.43 0.44 0.52 0.76 0.23 

SH8w(2) 133 32 2.56 2.5 0.28 0.72 0.42 0.57 

SP04 258 64 2.64 2.8 0.39 0.58 0.59 0.38 

SP5c 61 22 2.n 2.84 0.32 0.68 0.41 0.59 

SPSW 1239 75 2.71 3 0.31 0.69 0.61 0.39 
-

Table 4.12: Values ofvaQous indices for pitfall trap samples and corresponding hand-collected samples taken in 1992. 

Proportion of species Proportion of specimens 

Sample No. No. Species Specimen Carabidae Staphylinidae Carabidae Staphylinidae 
specimens species Size Index Size Index 

SH04(1} 148 35 0.09 0.42 0.01 0.03 0.3 -0.28 

SH04(2) 171 37 0.27 0.62 -0.02 0.02 0.35 -0.27 

SH5c(1) -39 1 0.44 0.43 0.22 -0.22 0.31 -0.3 

SH5c(2) 5 1 0.11 0.21 -0.02 0.02 0.11 -0.11 

SH8w(1} 1060 50 0.07 0.57 -0.13 0.17 -0.15 0.16 

SH8w(2) 1106 43 0.14 0.5 0.03 -0.03 0.19 -0.18 

mean 408.5 27.83 0.19 0.46 0.02 0 0.18 -0.16 
difference 

p ns « 0.1) < 0.05 <0.05 < 0.05 ns ns ns « 0.1) ns «O'L_ 

Table 4.13: Differences in index values between pitfall trap and hand-collected samples in 1992 and significance of departure 
from zero for mean difference according to Wilcoxon's test for paired comparisons. 
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Month Site pitfall trap hand- difference 
samples collected 

samples 

4 4 110 63 47 

4 13 141 27 114 

4 18 65 55 10 

5 4 107 127 -20 

5 13 113 120 -7 

5 18 71 176 -105 

6 4 166 64 102 

6 13 112 72 40 

6 18 186 71 115 

7 4 387 139 248 

7 13 220 232 -12 

7 18 506 188 318 

mean 182 111.17 70.83 

P ns « 0.1) 

Table 4.14: Numbers of specimens taken in samples collected in 1994. 

Month Site hand- pitfall trap difference 
collected samples 
samples 

4 4 14 24 10 

4 13 14 32 18 

4 18 20 20 0 

5 4 20 25 5 

5 13 25 29 4 

5 18 24 26 2 

6 4 22 17 -5 

6 13 17 30 13 

6 18 18 40 22 

7 4 19 39 20 

7 13 20 29 9 

7 18 21 44 23 

mean 19.5 29.58 10.08 

P < 0.01 

Table 4.15: Numbers of species taken in samples collected in 1994. 
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Sample Carabidae Staphylinidae Heteroceridae Elateridae 
(inc. Pselaphidae) 

SH0404 0.57 0.43 0.00 0.00 

SH0413 0.57 0.43 0.00 0.00 

SH0418 0.65 0.35 0.00 0.00 

SH0504 0.30 0.65 0.05 0.00 

SH0513 0.40 0.60 0.00 0.00 

SH0518 0.54 0.46 0.00 0.00 

SH0604 0.45 0.55 0.00 0.00 

SH0613 0.47 0.53 0.00 0.00 

SH0618 0.33 0.67 0.00 0.00 

SH0704 0.37 0.58 0.00 0.05 

SH0713 0.30 0.70 0.00 0.00 

SH0718 0.24 0.76 0.00 0.00 

SP0404 0.46 0.50 0.00 0.04 

SP0413 0.53 0.47 0.00 0.00 

SP0418 0.65 0.35 0.00 0.00 

SP0504 0.44 0.56 0.00 0.00 

SP0513 0.66 0.34 0.00 0.00 

SP0518 0.62 0.38 0.00 0.00 

SP0604 0.35 0.65 0.00 0.00 

SPQ613 0.47 0.53 0.00 0.00 

SP0618 0.60 0.40 0.00 0.00 

SP0704 0.44 0.51 0.00 0.05 

SP0713 0.41 0.59 0.00 0.00 

SP0718 0.41 0.57 0.00 0.02 

Table 4.16: Proportion of species belonging to different families in 1994 samples. 
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Sample Carabidae Staphylinidae 

SP0404 -0.11 0.07 

SP0413 -0.04 0.04 

SP0418 0.00 0.00 

SP0504 0.14 -0.09 

SP0513 0.26 -0.26 

SP0518 0.07 -0.07 

SP0604 -0.10 0.10 

SP0613 0.00 0.00 

SP0618 0.27 -0.27 

SP0704 0.07 -0.07 

SP0713 0.11 -0.11 

SP0718 0.17 -0.19 

mean ditto 0.07 -0.07 

P ns ns 

Table 4.17: Differences in proportions of species belonging to different families between pitfall 
trap and hand-collected samples in 1994 and significance of departure from zero for mean 
difference according to Wilcoxon's test for paired comparisons. 
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Sample Carabidae Staphylinidae Heteroceridae Elateridae 
(inc. Pselaphidae) 

SH0404 0.70 0.30 0.00 0.00 

SH0413 0.67 0.33 0.00 0.00 

SH0418 0.65 0.35 0.00 0.00 

SH0504 0.20 0.80 0.01 0.00 

SH0513 0.38 0.62 0.00 0.00 

SH0518 0.49 0.51 0.00 0.00 

SH0604 0.28 0.72 0.00 0.00 

SH0613 0.61 0.39 0.00 0.00 

SH0618 0.31 0.69 0.00 0.00 

SH0704 0.29 0.70 0.00 0.01 

SH0713 0.05 0.95 0.00 0.00 

SH0718 0.20 0.80 0.00 0.00 

SP0404 0.73 0.20 0.00 0.07 

SP0413 0.62 0.38 0.00 0.00 

SPQ418 0.72 0.28 0.00 0.00 

SPOS04 0.64 0.36 0.00 0.00 

SP0513 0.69 0.31 0.00 0.00 

SP0518 0.72 0.28 0.00 0.00 

SP0604 0.08 0.92 0.00 0.00 

SP0613 0.69 0.31 0.00 0.00 

SP0618 0.77 0.23 0.00 0.00 

SP0704 0.26 0.73 0.00 0.01 

SP0713 0.19 0.81 0.00 0.00 

SP0718 0.35 0.65 0.00 0.00 

Table 4.18: Proportion of specimens belonging to different families in 1994 samples. 
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Sample Carabidae Staphylinidae 

SP0404 0.03 -0.10 

SP0413 -0.05 0.05 

SP0418 0.07 -0.07 

SP0504 0.45 -0.44 

SP0513 0.31 -0.31 

SP0518 0.23 -0.23 

SP0604 -0.20 0.20 

SP0613 0.08 -0.08 

SP0618 0.46 -0.46 

SP0704 -0.03 0.04 

SP0713 0.13 -0.13 

SP0718 0.15 -0.15 

mean diff. 0.14 -0.14 

P < 0.05 < 0.05 

Table 4.19: Differences in proportions of specimens belonging to different families between 
pitfall trap and hand-collected samples in 1994 and significance of departure from zero for 
mean difference according to Wilcoxon's test for paired comparisons. 
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Sample Oxytelinae Steninae Aleocharinae 

SH0404 0.13 0.08 0.03 

SH0413 0.11 0.07 0.07 

SH0418 0.05 0.16 0.13 

SH0504 0.39 0.02 0.35 

SH0513 0.38 0.03 0.13 

SH0518 0.15 0.20 0.10 

SH0604 0.48 0.03 0.19 

SH0613 0.03 0.08 0.17 

SH0618 0.06 0.07 0.54 

SH0704 0.31 0.04 0.30 

SH0713 0.04 0.02 0.86 

SH0718 0.44 0.07 0.28 

SP0404 0.08 0.02 0.02 

SP0413 0.27 0.01 0.06 

SP0418 0.02 0.11 0.15 

SP0504 0.04 0.03 0.18 

SP0513 0.20 0.03 0.04 

SP0518 0.10 0.08 0.04 

SP0604 0.07 0.01 0.80 

SP0613 0.06 0.06 0.13 

SP0618 0.05 0.05 0.09 

SP0704 0.27 0.03 0.21 

SP0713 0.24 0.02 0.38 

SP0718 0.15 0.04 0.37 

Table 4.20: Proportion of specimens belonging to the main subfamilies of Staphylinidae in 
1994 samples. 

103 



Chapter 4: Evaluation of sampling methods 

Sample Oxytelinae Steninae Aleocharinae 

SP0404 -0.05 -0.06 -0.01 

SP0413 0.16 -0.06 -0.01 

SP0418 -0.04 -0.06 0.03 

SP0504 -0.35 0.01 -0.17 

SP0513 -0.17 -0.01 -0.10 

SP0518 -O.OS -0.12 -0.06 

SP0604 -0.41 -0.03 0.61 

SP0613 0.03 -0.02 -0.04 

SP0618 -0.01 -0.02 -0.45 

SP0704 -0.04 -0.01 -0.09 

SP0713 0.20 0.00 -0.48 

SP0718 -0.28 -0.04 0.09 

mean diff. -0.08 -0.03 -0.06 

P ns < 0.01 ns 

Table 4.21: Differences in proportions of specimens belonging to the main subfamilies of 
Staphylinidae between pitfall trap and hand-collected samples in 1994 and significance of 
departure from zero for mean difference according to Wilcoxon's test for paired comparisons. 
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Month Site pitfall trap hand-collected difference 
samples samples 

4 4 0.4 0.13 0.27 

4 13 0.23 0.22 0.01 

4 18 0.08 0.05 0.02 

5 4 0.25 0.03 0.22 

5 13 0.12 0.16 -0.03 

5 18 0.13 0.13 0 

6 4 0.04 0.03 0 

6 13 0.22 0.28 -0.05 

6 18 0.07 0.11 -0.04 

7 4 0.03 0.02 0.01 

7 13 0 0.01 -0.01 

7 18 0 0.01 0 

mean 0.13 0.1 0.03 

P ns 

Table 4.24: Numbers of Agonum albipes expressed as proportion of 1994 samples. 

No. specimens No. species 

Site Pitfall Trap Hand-collected Pitfall Trap Hand-collected 
Samples Samples Samples Samples 

4 11 58 6 19 

13 27 39 5 12 

18 8 88 4 28 

Table 4.25: Numbers of specimens and species recorded in September, 1994. 
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Sample Species Size Specimen Size Daily Activity Fossorial Index Cursoriallndex 
Index Index Index 

SH0404 2.50 2.43 1.33 0.17 0.02 

SH0413 2.71 2.74 1.43 0.19 0.07 

SH0418 2.75 2.84 1.00 0.02 0.13 

SH0504 2.45 2.43 1.00 0.43 0.30 

SH0513 2.64 2.48 1.41 0.40 0.16 

SH0518 2.71 2.65 1.18 0.15 0.11 

SH0604 2.36 2.27 1.75 0.47 0.16 

SH0613 2.76 2.85 1.00 0.03 0.17 

SH0618 2.72 2.85 1.00 0.06 0.13 

SH0704 2.47 2.19 2.50 0.23 0.04 

SH0713 2.70 2.14 1.00 0.03 0.02 

SH0718 2.38 2.14 1.00 0.36 0.02 

SP0404 2.75 2.85 1.14 0.12 0.01 

SP0413 2.72 2.91 1.40 0.26 0.04 

SP0418 3.05 3.46 1.38 0.03 0.09 

SP0504 2.76 2.70 1.44 0.13 0.21 

SP0513 2.97 2.81 1.58 0.22 0.09 

SP0518 3.08 3.15 1.41 0.06 0.14 

SP0604 2.59 2.14 1.55 0.09 0.02 

SP0613 2.70 2.83 1.31 0.09 0.10 

SP0618 2.98 3.00 1.40 0.04 0.12 

SP0704 2.69 2.49 1.66 0.18 0.06 

SP0713 2.62 2.30 1.20 0.11 0.02 

SP0718 2.68 2.58 1.16 0.10 0.05 

Table 4.22: Values of various indices for samples taken in 1994. 
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Sample Species Size Specimen Size Daily Activity Fossorial Index Cursorial Index 
Index Index Index 

SP0404 0.25 0.43 ·0.19 ·0.06 ·0.01 

SP0413 0.00 0.17 ·0.03 0.08 ·0.03 

SP0418 0.30 0.63 0.38 0.01 ·0.04 

SP0504 0.31 0.28 0.44 ·0.29 ·0.09 

SP0513 0.33 0.33 0.17 -0.18 -0.07 

SP0518 0.37 0.51 0.23 -0.09 0.03 

SP0604 0.22 -0.12 -0.20 -0.38 -0.14 

SP0613 -0.06 -0.02 0.31 0.06 -0.07 

SP0618 0.25 0.15 0.40 -0.01 -0.01 

SP0704 0.22 0.30 -0.84 -0.05 0.02 

SP0713 -0.08 0.16 0.20 0.08 0.01 

SP0718 0.30 0.44 0.16 -0.25 0.03 

mean diff. 0.20 0.27 0.08 -0.09 -0.03 

P < 0.01 < 0.01 ns ns ns « 0.1) 

Table 4.23: Differences in index values between pitfall trap and hand-coUected samples in 
1994 and significance of departure from zero for mean difference according to Wilcoxon's test 
for paired comparisons. 
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Month Site pitfall trap hand-collected difference 
samples samples 

4 4 0.4 0.13 0.27 

4 13 0.23 0.22 0.01 

4 18 0.08 0.05 0.02 

5 4 0.25 0.03 0.22 

5 13 0.12 0.16 -0.03 

5 18 0.13 0.13 0 

6 4 0.04 0.03 0 

6 13 0.22 0.28 -0.05 

6 18 0.07 0.11 -0.04 

7 4 0.03 0.02 0.01 

7 13 0 0.01 -0.01 

7 18 0 0.01 0 

mean 0.13 0.1 0.03 
P ns 

Table 4.24: Numbers of Agonum albipes expressed as proportion of 1994 samples. 

No. specimens No. species 

Site Pitfall Trap Hand-collected Pitfall Trap Hand-collected 
Samples Samples Samples Samples 

4 11 58 6 19 
13 27 39 5 12 

18 8 88 4 28 

Table 4.25: Numbers of specimens and species recorded in September, 1994. 
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Seasonal and annual variations 

4.2.1 Introduction 

Before using the various species assemblage indices described in 3.2. to ordinate samples for 

comparison with ordinations based on environmental and management factors, it is necessary 

to investigate the robustness of these indices against Wlwanted variations. In particular, the 

seasonality of activity in riparian species has been highlighted by several authors (e.g. Krogerus 

1948, Lehmann 1965) and the domination of all types of wetland groWld beetle assemblages 

by spring breeders (Murdoch 1967) might be expected to lead to markedly different results 

between the spring breeding season and other times of the year. Furthennore, at anyone site, 

annual fluctuations in weather and commWlity dynamics might be expected to lead both to 

gross annual variations and to annual variations in seasonal effects. 

4.2.2 Methods 

30 sites were selected for sampling by hand-conection during 1991 in each of the fonowing 

seasons: late March to April, May, June, July and September to October. The abWldances of 

species in target families were recorded for each monthly sample. Samples from fifteen sites 

with full data sets were then ordinated using DCA. Eight main channel sites and seven 

floodplain wetland sites were selected as reference sites and resampled in April, May and June, 

1994. They were also sampled at least once in 1992 and 1993. However, because of changes 

in site selection procedures, the seven floodplain wetland sites sampled from 1992 onwards 

were not equivalent to those used for analysis in 1991. All the samples used in the analysis are 

listed in table 4.26. 

In order to investigate the seasonal robustness of various parameters, April, May and JWle 

samples from reference sites were divided into four sets defined by year and whether they were 

from main channel or floodplain wetland sites. Each set was then ordinated using DCA. The 

indices described in section 3.2. were calculated for each sample. Within each sample set, sites 

were ranked for each month and W, Kendall's coefficient of concordance (Kendall & Gibbons 

1990), was calculated in order to measure the consistency of rankings. This procedure was 

then repeated for rankings of monthly samples from each site. Rankings of sites obtained from 

DCA ordinations of separate monthly sample sets were also compared. 
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Sites 1991 1992 1993 1994 

4 13.5 13.6 21.6 31.5 

9 11.4 9.5 30.6 22.6 24.6 24.4 30.5 14.6 

11 10.5 6.5 24.6 12.6 

mam 13 26.4 15.5 8.6 14.6 24.6 26.4 1.5 12.6 

channel 17 29.3 9.5 30.6 28.5 23.6 26.4 27.5 14.6 

18 28.3 9.5 30.6 26.5 23.6 26.4 27.5 14.6 

23 28.4 12.5 29.6 12.6 24.6 29.4 31.5 13.6 

30 27.4 19.5 29.6 28.5 27.6 29.4 29.5 13.6 

1 11.4 7.S 14.6 

le 3.5 28.6 28.4 30.5 28.6 

le 3.5 28.6 28.4 30.S 28.6 

1w 3.5 29.6 28.4 31.5 28.6 

S 3.4 8.S 10.6 

flood-
Se 11.4 8.5 20.4 30.S 30.6 

plain Sw 11.4 8.5 20.4 30.5 30.6 

8 3.4 8.S 10.6 

8e 9.4 4.5 22.4 28.5 30.6 

8w 9.4 4.S 21.4 28.5 28.6 

16 29.3 8.S 8.6 

21 10.4 19.5 26.6 

25 28.4 18.5 8.6 

Table 4.26: Sampling dates of reference sites used for evaluation of seasonal and annual 
variations. 
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In order to measure the robustness of parameters against purely annual fluctuations, sets of one 

sample per site from each year were analysed in a similar fashion for main channel and 

floodplain wetland sites separately. The samples chosen for analysis from each year were those 

collected at the date closest to May 31 st. It was possible to analyse main channel sites over 

four years between 1991 and 1994 and floodplain wetland sites over three years between 1992 

and 1994. 

4.2.3 Results 

For various reasons it was not possible to obtain a full set of monthly samples for every site in 

1991. In June, site 10 was destroyed by unscheduled engineering works. In the same month, 

heavy flooding severely disrupted sampling and no sample was taken from site 4, because it 

was under water on each occasion that it was visited. Sites 6, 7 and 22 are shallow tloodplain 

sites which dried out dwing the summer and became impossible to sample using standard 

hand-collecting techniques. Floodplain sites 8, 16, 20, 21 and 25 also lost all their open water, 

but retained sufficient moisture in their peaty substrates to remain viable for sampling 

throughout the year. Heavy flooding returned toward the end of September and main channel 

sites 23 and 29 which were visited after that date yielded samples containing species 

characteristic of flood refuse rather than of riparian sites. 

Full lists of species recorded at each site are included in appendix 2. Table 4.27 gives the 

seasonal abWldances of ground beetles recorded in 1991. Nearly all the most abundant species 

reach peak numbers in April or, more usually, May as would be expected for spring breeders. 

Clivina collaris and Bembidion gilvipes decreased in numbers relatively early in the season, 

while Elaphrus riparius peaked in June which was late compared with other spring breeders. 

These results were repeated in 1994 as shown by table 4.28. The main difference in 1994 Was 

that, with the exception of two species associated with intensive agriculture, namely Bembidion 

guttula and B. lunulatum, numbers of spring breeders dropped off rapidly before July. The 

other big difference in 1994, was that no summer breeders were recorded. This may be due to 

the smaller number of sites sampled in 1994, because swnmer breeders are much less abundant 

in the study sites than spring breeders. Of the summer breeders recorded in 1991, Patrobus 

atrorufus and Trechus discus reached peaked numbers in June, while Trechus secalis was 

present in equal numbers in June and July. These peaks overlapped with late spring breeders 

and were slightly earlier than expected. The flooding in June 1991 may have caused these 
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species to become more easily caught and led to the other observed differences between the 

two years. 

Tables 4.29 and 4.30 show the seasonal abundances of rove beetles in 1991 and 1994 

respectively. The dominance of species with peak abundances in the spring is not as evident as 

in the ground beetles, although Aloconota gregaria, Lathrobium julvipenne, Oxypoda /entula, 

Pachnida nige//a and to a lesser extent, Carpelimus bilineatus and C. impressus were all 

captured more frequently in the spring. Caution should be exercised in labelling these species 

as spring breeders, because Lesteva longoelytrata, which shows a marked peak of abundance 

in May in both years, was categorised by Steel (1970) as an autumn breeder with overwintering 

larvae. Other species peaked in either summer or autumn. In 1991, a few species exhibited 

two peaks of abundance separated by a marked drop in numbers in June. For Stenus boops 

and S. juno. this may have been connected with the June floods of that year, because they 

showed a unimodal peak of abundance in spring 1994. However, for Carpelimus rivu/aris 

and C. subtilicornis. the low June abundances were repeated in 1994. Tables 4.31 and 4.32 

show seasonal abundances for other target families, but these are too poor in numbers of 

species to exhibit any patterns. 

Annual fluctuations in spring abundances are shown in tables 4.33 to 4.40. There appear to be 

larger fluctuations at main-channel sites than floodplain sites. Similarly, there appear to be 

larger fluctuations for rove beetles than ground beetles. 

Figure 4.2 shows the ordination diagram of monthly samples from fifteen sites sampled in 

1991. Sampling date dominates axis 2 with late season samples scoring highly, but it also has 

an influence on axis 1, with late season samples tending to score higher. Clearly, there are 

difficulties in comparing the species compositions of samples collected in July or September 

with those from spring unless seasonal variations are removed using partial correlation. This is 

especially true when looking at variation along axis 2. 

Figures 4.3 to 4. S show the ordination plots for each of the seasonal sample sets from 

reference sites. Figures 4.3 and 4.4 show main channel and tloodplain samples from April to 

June 1991 ordinated separately. Figure 4.5 shows main channel and floodplain samples from 

1994 ordinated together in order to show the greater variation between floodplain sites (1,5,8) 
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than main channel sites (9,13,17,18,23,30). Two main channel sites had to be removed from 

the analysis. Site 4 lacked a sample for June 1991 because of flooding. The numbers of 

specimens taken in early 1994 at site 11 were so low that they could not be meaningfully 

interpreted. When restricted to samples taken in spring, seasonal variation became much less 

important than differences between sites except for two samples taken at sites 9 and 18 in June 

1991 which were probably affected by previous flooding. Figures 4.6 and 4.7 show the 

ordination diagrams for the yearly sample sets from reference sites. For the seven floodplain 

sites, annual variations were much less important than between-site differences. However, 

annual fluctuations in species composition at the eight main channel sites were more important 

and annual variation may lead to difficulties when comparing samples taken from similar main 

channel sites in different years. 

Tables 4.41 and 4.42 list the coefficients of concordance for rankings of various indices 

between months and different years. The high figures for DCA axis 1 scores indicate a highly 

significant consistency of rankings of sites between months and demonstrate the robustncss of 

coupling DCA to the hand collecting methods used in this project. The concordance of 

rankings based on species richness, S, and evenness, E, was more variable. Seasonal 

concordance of rankings was higher in 1991 than 1994. Concordance of rankings based on 

species richness between different years was significant at the 5% level for main channel sites. 

However, whenever a high concordance of rankings of sites was achieved, this was coupled 

with high variability between months or years. Consequently, if a meaningful ranking of sites 

based on species richness can be achieved, it can only be done from samples taken during the 

same month and in the same year. Evenness produced slightly less consistent site rankings than 

species richness, but tended to be less affected by seasonal and annual variations. 

Rankings of sites based on local rarity, ~ showed significant levels of concordance for 

floodplain sites, but not for main channel sites. However, rankings of main channel sites 

showed higher levels of concordance than rankings of months or years. Consequently, 

approximate rankings of main-channel sites can be achieved which are relatively independent 

of the month or year in which they were sampled. The abundance-weighted index did not 

perfonn consistently better than the raw index and, if anything, tended to suffer from higher 

seasonal and annual fluctuations. National rarity indices, ~ also gave consistent rankings, but 
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the small proportions of species with national scores tended to yield many tied rankings, leading 

to difficulties in discriminating between sites below the top echelon. 

A surprisingly good concordance of site rankings was achieved from some indices based on 

ground beetle wing length. Very low numbers of brachypterous species were caught and an 

index based on brachypterous species, W b' was unworkable in the present study. htdices based 

on rarely dimorphic species, Wc, (i.e. species which are normally brachypterous) produced 

significantly consistent rankings of floodplain sites between different months. However, the 

low proportion of these species in main channel sites led to many tied rankings and poor 

discrimination. Furthermore, low numbers of these species in 1992 and 1993 meant that the 

robustness of this index against annual fluctuations could not be tested. Indices based on 

constantly rumorphic species, W d' were more useful for main channel sites, although, as in 

rarity indices, the concordance of rankings was not significantly high. Moreover, because of 

the low numbers of ground beetles recorded in 1993, these samples had to be omitted from the 

analysis in order to investigate the concordance of ranldngs between different years. htdices 

based on macropterous species, W m' were more generally applicable, because they were based 

on a larger number of species. However, they tended to have a lower degree of seasonal 

robustness than indices based on dimorphic species. Abundance-weighted wing-length indices 

did not give a consistently better perfonnance in tenns of robustness, but were more widely 

applicable, because they led to fewer tied rankings and, thus, better discrimination. 

The perfonnance of land use indices was highly variable. In 1994, river and wetland indices, 

L"" gave consistent monthly ranlcings of floodplain sites, whereas grassland indices, L
I
, gave 

consistent monthly rankings of main channel sites. However, this was not reflected in the 1991 

results. In general, these indices were not very robust against annual fluctuations, although the 

disturbed grO\U1d indices, L., gave consistent rankings of floodplain sites. Abundance-weighted 

land use indices perfonned only marginally better in terms of site ranking concordance and 

tended to be more affected by seasonal and annual variations. 

An evaluation of the performance of the various indices is given in table 4.43. Indices which 

perfonn wen in terms of robustness will yield representative site rankings. htdices, where the 

relative importance of seasonal and annual variations are low, can be used to compare samples 

from different months and years. 

113 



Chapter 4: Evaluation of sampling methods 

4.2.4 Discussion 

The variations in species composition between samples taken later in the season in July and 

September and those taken in the spring are not surprising. The seasonal pattern of riparian 

and wetland beetle life histories dictates that comparable results can best be achieved by 

concentrating sampling during the spring months of April, May and Jooe. This period 

coincides with the main activity periods of spring-breeding adults (Krogerus 1948). Exclusion 

of later samples will lead to under-representation of late summer and autumn breeders. 

However, these constitute a small minority of species along the River Soar. Among the groood 

beetles, Patrobus atrorufus, Trechus discus and T. secalis are the only autumn breeders with a 

particular association with riparian and wetland sites. Late season samples contain many 

wetland and riparian rove beetles belonging to the subfamily Aleocharinae, but a high 

proportion of these species are also found in samples taken in the spring. 

Results from samples taken in April were generally comparable with those taken in May, even 

though some species would not have anived on site from their hibernation sites. However, in 

1994, the dominant groood beetle at site 11, Bembidion punctulatum, did not anive on site 

until well into May and this contributed to the vet)' low numbers of beetles recorded there in 

April. 

The DCA axis 1 score proved to be the most powerful discriminant of both main channel and 

wetland sites. The only sample set which did not yield significantly consistent rankings of axis 

I scores was the yearly set from main channel sites. All other indices exhibited properties 

which could lead to difficulties when used to compare sites. In particular, it was difficult to 

achieve consistent rankings of main channel sites. There are a number of possible causes. The 

main channel sites exhibited less between-site variation in the species composition of their 

beetle assemblages (see figure 4.5) and so any temporal variations will be relatively large. 

Indeed large variations between years are to be expected at main channel sites because of the 

severe disturbance effects of winter flooding or the fast rate of vegetational succession in their 

absence. Consequently, the annual variations in site rankings may reflect fluid population 

dynamics in a variable environment, rather than an inherent lack of robustness in the indices 

used. Temporal variations can also be caused by unseasonal flooding such as occurred during 

June, 1991. Some temporal variations may be artefacts caused by varying weather conditions 
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during the sampling programme. Unwanted temporal variations may be reduced by 

aggregating samples taken at different times. 

Despite these problems with main channel sites, Ru , the Local Species Rarity Index has 

potential for use with floodplain sites and its applicability to main channel sites might be 

improved by aggregating repeated samples. As a measure of conservation value, it proved to 

be more robust at ranking sites than species richness, especially when applied to samples 

collected in different months and years. National rarity, as defined in chapter 3, cannot be 

used along the River Soar, because of the low proportion of nationally rare species. 

Although the indices based on wing length appear to have potential in relating dispersal ability 

to environmental factors, they suffer from a lack of discrimination power, because of the low 

numbers of ground beetles apportioned to the various categories. In order to maximise their 

discrimination power, it is necessary to use the abundance-weighted indices, W Cp' W cia and 

W fDIl' For all other indices there is little to be gained by using abundance-weighted versions. 

The above evaluation of the perfonnances of various indices used site rankings and so is highly 

dependent on the level of real between-site variation. Indices which failed to achieve a 

statistically significant concordance of site rankings using the reference sample sets might 

perfonn better on samples from a different set of sites, especially if these sites covered a wider 

range of environmental variables. 
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Abundance Abundance 
Species Apr May Jun Jul Sep Species Apr May Jun Jul Sep 

!Acupslpus consputus 1 B. punctu/atum 5 5 5 14 1 
Agonum albipes 106 118 101 75 66 B. qusdrimsculatum 7 3 1 
A. assimile 2 2 4 1 2 B. tetracolum 104 72 23 11 13 
A. dorsa/e 2 1 11 1 B. vsrium 1 
A. fuliginosum 20 50 12 12 4 Csrabus granulatus 2 2 
A. livens 3 1 9 Chlaenius nigricornis 1 
A. marginatum 6 9 8 5 Clivina col/aris 8 10 
~. micans 55 105 53 34 22 C. fossor 4 24 11 3 
A. moestum 2 2 1 Dernetrias atricapil/us 8 3 2 5 
A. obscurum 2 8 8 3 1 Dromius linearis 2 3 1 1 
A. thoreyi 27 18 4 1 3 D. melanocephalus 4 
A. viduum 7 4 1 1 1 Dyschirius aeneus 1 
Amaraaenea 1 1 2 D.luedersi 2 1 
A. communis 2 Elaphrus cupreus 6 14 6 5 14 
A. familiaris 3 14 1 E.riparius 2 9 10 8 1 
A. plebeja 1 4 2 2 Harps/us rufipes 3 
A. similsta 2 5 2 Loricera pilicornis 6 2 6 14 
Asaphidion curtum 4 2 2 1 1 Microlestes maurus 1 
A. stierlieni 1 1 1 Nebria brevicollis 1 15 4 3 
Badister bipustulatus 1 Notiophilus biguttatus 5 5 1 
Bembidion aeneum 275 204 47 51 14 Patrobus atrorufus 1 15 2 
B. srticulatum 2 3 1 3 Plerostichus cupreus 5 5 1 
B. biguttatum 276 222 99 56 63 P. melanarius 1 1 
B. bruxellense 1 P. minor a 20 10 2 
B. c/arki 66 49 24 6 4 pterostichus nigrita 10 31 18 7 a 
B. dentellum 38 112 51 42 36 P.strenuus 70 49 21 11 7 
B. fumigatum 1 P. vernalis 20 25 10 3 4 
B. genei 1 P. versicolor 1 9 
B. gilvipes 85 93 9 4 5 Stenolophus mixtus 1 3 
B. guttula 84 53 9 22 105 Stomis pumicatus 5 
B. harps/oides 7 3 1 Trechus discus 10 2 
B.lampros 2 8 5 2 T. micros 1 
B. lunulstum 73 88 23 51 42 T. qUadristriatus 2 4 7 1 3 
B. obliquum 1 T. secali$ 5 5 
B.obtusum 7 8 7 1 Trichocellus placidus 3 1 1 
B.properans 12 5 1 1 

Table 4.27: Total abundances of Carabidae per monthly sample recorded in 1991. 
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AbWldance AbWldance 
Species Apr May Jun Jut Species Apr May Jun Jul 

Acupalpus meridian us 1 B.obtusum 3 1 

Agonum albipes 40 100 60 4 B. properans 1 2 
A. assimile 3 8 1 B. tetraco/um 9 7 10 1 
A. dorsa/e 1 1 1 Chlaenius vestitus 1 
A. fUfiginosum 7 24 9 Clivina collar is 1 4 

A. livens 7 5 4 C.fossor 1 

A. marginatum 5 1 4 Oyschirius /uedersi 2 

A. m;cans 18 56 10 1 E/aphrus cupreu$ 5 5 2 
A. thoreyi 47 55 11 E. riparius 4 14 5 
A. viduum 1 Harpa/us rufipes 1 
IAsaphidion stierlien; 2 Loricera pi/icornis 3 2 1 
Bernbidion aeneum 6 4 10 Nebria brevicollis 2 3 
Bembidion assimi/e 1 Notiophilus biguttatus 1 

B. biguttatum 58 51 48 3 Patrobus atrorufu$ 3 
B. c/ark; 29 24 20 pterostichus anthracinus 1 
B. dentel/um 11 37 19 3 P. minor 17 5 
B. genei 1 pterostichus nigrita 3 3 3 

B. gilvipes 21 8 2 P. strenuus 4 3 2 
B. guttu/a 5 5 4 15 P. verna/is 4 5 2 
B. harpa/oides 1 Sten%phus mixtus 2 
B./ampros 1 1 Tachys parvulus 2 
B. lunulatum 7 5 25 23 

Table 4.28: Total abundances of Carabidae per monthly sample recorded in 1994. 
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Abundance Abundance 
Species Apr May Jun Jul Sep Species Apr May Jun Jul Sep 

A/eochara /anuginosa 1 C. corlicinus 3 15 2 2 1 
A/oconota gregaria 22 13 4 2 C. elongatu/us 4 

A insecta 1 C. impress us 14 126 109 51 39 
A sulclfrons 1 C.Obesus 1 1 
Amischa analis 14 21 2 3 2 C. rlvu/aris 65 90 40 62 47 
A cavifrons 2 C. similis 13 1 

A decipiens 1 1 1 1 1 C. subti/icomis 57 91 8 52 19 
A forcipata 1 2 ChiJoporata /ongitarsis 24 9 1 
A soror 4 Deinopsis erosa 4 2 4 1 3 
~noty/us rugosus 18 9 1 8 15 Deubelia picina 14 10 6 9 7 
A sculptuf8tus 3 2 Dochmonota clancula 1 1 1 

A tetracarinatus 1 1 Gabrius bishopi 1 5 15 
Atheta celata 1 G. pennatus 5 2 3 

A elOngatula 13 12 6 155 36 G. trossulus 1 1 
A fungi 10 19 10 85 46 Geostiba circellaris 1 1 
A graminico/a 86 116 62 77 230 Gnypeta carbonaria 12 1 4 9 8 
A gyllenhali 1 1 G. ripico/a 6 5 41 32 

~. hygrobia 1 1 1 2 1 G. rubrior 1 19 7 15 24 
A hygrotopora 2 17 G. ve/ata 1 1 11 

A indubia 1 Hygronoma dimidiata 2 4 3 7 
A latJcollis 27 Lathrobium brunnipes 10 17 18 14 9 
Aluridipennis 1 1 L. eIOngatum 1 1 2 
Aluteipes 1 2 2 L. fulvipenne 21 37 4 5 
A malleus 12 11 4 19 18 L. geminum 3 1 1 
A melanocera 1 1 L. impressum 1 

A nigra 1 2 L. Iongulum 1 1 

A obfuscata 1 L. quadratum 2 2 
A paNulus 1 L. terminatum 1 
A volans 5 3 3 5 4 Lesteva heeri 7 8 8 1 10 
Brachyusa concolor 2 1 2 3 L.longoelytrata 9 98 6 
Callicerus rigidicomis 1 Megarthrus sinuaticollis 1 
Calodera aethiops 3 Mycetoporus splendldus 1 
C. uliginosa 6 5 Myllaena dubia 2 7 2 22 21 
Carpelimus bilineatus 16 13 4 2 11 M. e/ongata 1 1 

Table 4.29: Total abundances of Staphylinidae per monthly sample recorded in 1991. 
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Abundance Abundance 
Species Apr May Jun Jul Sep Species Apr May Jun Jul Sep 

M. intermedia 1 SfaphyJinus melanarius 1 

Neobisnius vil/osulus 2 3 2 1 Stenus argus 2 1 

Omalium caesum 2 S. bifoveolatus 4 

O. excavatum 1 S. bimacufatus 2 6 2 12 10 

o. oxyacanthae 1 S.boops 29 47 19 29 42 

O. rivufare 3 S. canaliculatus 2 

Oxypoda brachyptera 1 1 1 S. cicindeloides 1 1 2 1 

Oxypoda elongatula 4 5 2 6 S. clavicomis 1 

o. exo/eta 9 1 1 S. fulvicomis 1 

O.lentula 3 43 17 4 1 S.juno 29 49 15 47 69 
O. umbrata 1 2 S. me/anopus 3 6 6 1 

Oxyte/us laqueatus 1 S. nanus 1 

Pachnida nigella 3 16 19 4 3 S. nitidiusculus 2 1 2 4 1 
Philonthus cognatus 1 S. pallitarsis 1 

P. fimetarius 1 10 S. piclpes 1 

P. lam/natus 2 1 1 1 S.pubescens 1 11 

P. marginatus 1 1 S. pusillus 2 1 2 

P. micantoides 2 1 S. solutus 1 2 1 1 2 

P. quisquiliarius 1 4 4 9 S. tarsalis 9 7 6 6 22 

P. umbratllis 1 4 Tachinus laticol/is 1 

P. varius 1 1 1 T. signatus 2 3 1 6 6 

Platystethus comutus ~ 8 16 3 4 Tachyporus atriceps 1 

P. nitens 2 1 1 T. chrysomelinus 1 6 3 1 

P. nodifrons 3 1 1 3 T. dispar 9 8 15 1 8 

Protein us ovalis 2 T.hypnorum 17 8 17 9 17 

Quedius fuliginosus 1 T. nitidulus 4 7 2 1 3 

Q. maurorufus 4 2 3 2 4 T.obtusus 2 3 14 35 56 
Q. molochinus 2 T. pallidus 3 19 9 23 22 
Q. nitJpennis 1 T. pusillus 6 2 1 

Q. schatzmayri 1 T. solutus 9 8 10 4 

Q. tristis 1 Tachyusa atra 5 2 1 13 8 

Rugilus orblculetus 1 1 1 1 T. coerctatus 1 

R.rufipes 1 Xantholinus linearis 4 6 

SepedOphllus 3 1 1 X. Iongiventris 10 10 7 2 4 
marshaml 

Table 4.29 (cont): Total abundances of Staphylinidae per monthly sample recorded in 1991. 
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Abundance Abundance 
Species Apr May Jun Jut Species Apr May 

Aliant~ incana 4 1 G. rubrior 

A/oconota gregaria 13 5 G. ve/ata 1 
Amischa ana/is 2 Gyrohypnus fracticornis 1 
Anoty/us rugosus 9 4 10 20 Lathrobium brunn;pes 1 11 
A. sculpturatus 1 L. fulvipenne 

A. tetracarinatus 4 1 L. geminum 1 2 
Atheta elongatula 2 2 237 224 L. quadratum 1 
~. fungi 7 11 17 8 Lesteva heeri 2 27 
A. graminicola 63 73 98 15 L. Iongoe/ytrata 3 75 
A. hygrobia 1 26 Myllaena dubia 17 11 
A. hygrotopora 1 3 3 Nehemitropia sordida 1 
A. indubia 4 Omalium caesum 1 
A. /aticollis 4 1 O. rivu/are 1 
A. /uteipes 1 Oxypoda e/ongatula 8 5 
A. malleus 27 6 15 3 O./entula 1 
A. vi/is 2 21 5 O. opaca 

A. volans 3 1 O. umbrata 1 
Brachyusa conco/or 6 Oxyte/us fu/vipes 2 
Carpelimus bilineatus 10 4 2 5 O. laqueatus 1 
C. corticinus 2 1 1 Pachnida nigella 5 13 
C. elongatulus 1 1 Phi/onthus cognatus 

C. gracilis 1 P. quisqui/iarius 1 4 
C. impress us 15 30 16 4 P. umbratilis 2 
C. rivu/aris 64 69 11 55 P. varians 

C. subtilicornis 5 42 4 7 P. varius 

Chiloporata /ongitarsis 1 13 14 2 PJatystethus cornutus 

Deinopsis erosa 3 Quedius maurorufus 3 4 
Dinaraea angustula 17 17 12 Q. schatzmayri 

Deubelia picina 1 Stenus bifoveolatus 11 9 
Dochmonota clancula 5 1 S. bimacu/atus 3 4 
Gabrius bishopi 1 2 1 S.boops 68 73 
G. pennatus 4 S. cicindeloides 7 6 
Gnypeta carbonaria 60 11 37 S. formicetorum 7 5 

G. ripico/a 4 2 1 S.juno 47 56 

Table 4.30: Total abundances of Staphylinidae per monthly sample recorded in 1994. 
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Chapter 4: Evaluation of sampting methods 

Abundance Abundance 
Species Apr May Jun Jul Species Apr May Jun Jut 

S. melanopus 4 2 T. hypnorum 2 2 

S. picipes 1 T. nitidulus 1 

S.pubescens 26 2 13 T. obtusus 2 6 1 

S. solutus 9 12 1 T. pallidus 2 4 

S. tarsalis 2 1 1 Tachyusa atrs 1 1 2 

Tachinus signatus 2 3 1 2 Thinodromus arcuatus 1 

Tschyporus dispsr 1 Xantholinus longiventris 1 1 1 

Table 4.30 (cont.): Total abundances of StaphyJinidae per monthly sample recorded in 1994. 

Abundance Abundance 
Species Apr May Jun Jul Sep Species Apr May Jun Jul 

Rybaxis Iongicomis 2 Agriofes /ineatus 1 

Heferocerus fenestratus 2 4 3 7 A. obscurus 1 1 

H. msrglnstus 2 1 2 2 Se/atosomus nlgrlcorni$ 1 

Table 4.31: Total abundances ofPselaphidae, Heteroceridae and Elateridae per monthly 
sample recorded in 1991. 

Sep 

Abundance Abundance 
Species Apr May Jun Jut Species Apr May Jun 

Rybaxis /ongicornis 1 1 Heterocerus marginatus 1 1 

Table 4.32: Total abundances ofPselaphidae, Heteroceridae and Elateridae per monthly 
sample recorded in 1994. 
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Abundance Abundance 
Species 1992 1993 1994 Species 1992 1993 1994 

Acupalpus consputus 1 B./ampros 1 

Agonum albipes 13 6 6 B. lunulatum 3 4 

A. dorsale 1 1 B.obtusum 6 2 1 
A. fuliginosum 10 6 20 B. properans 1 1 
A. livens 4 2 5 B. tetracolum 1 1 

A. micans 7 8 6 Demetrias atricapil/us 1 2 
A. moestum 1 Dromius linear is 1 

A. thOreyi 26 41 55 Oyschirius luedersi 2 
A. viduum 1 Elaphrus cupreus 5 6 5 
A. obscurum 1 £. riparius 14 3 5 
Bembidion aenum 1 4 1 Loricera pilicornis 1 
B. articulatum 5 Notiophilus biguttatus 5 2 

B. assimi/e 3 Patrobus atrorufus 1 

B. biguffatum 91 33 21 Pterostichus minor 9 3 17 
B. c/arki 148 108 24 P. nigrita 4 3 1 
B. dentel/um 5 3 8 P. strenuus 4 1 

B. gi/vipes 7 5 P. verna/is 1 

B. guttula 2 1 Sfenolophus mixtus 4 

B. harpa/oides 1 

Table 4.33: Annual abundances of species of Carabidae recorded in samples collected from 
floodplain reference sites in May. 
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Abundance Abundance 
Species 1992 1993 1994 Species 1992 1993 1994 

Anoty/us rugosus 5 2 P. nitens 1 

A. tetracarinatus 1 4 Proteinus ovalis 1 

Anthobium atrocepha/um 2 Quedius maurorufus 3 1 4 
Carpelimus bilineatus 1 1 1 Stenus bifoveo/atus 5 4 9 
C. corticinus 3 1 S. bimaculatus 3 2 4 

C. elongatu/us 2 1 1 S. boops 25 36 35 
C. impress us 7 46 30 S. canaliculatus 1 

C. rivu/aris 6 9 37 S. cicindeloides 1 3 6 
C. subtilicornis 1 S. formicetorum 1 5 
Gabrius pen natus 1 S. fulvicornis 1 
Habrocerus capillaricornis 1 S.juno 80 27 45 
Lathrobium brunnipes 18 4 7 S. me/anopus 3 2 

L. fulvipenne 2 3 S.pubescens 2 
L. geminum 1 S. solutus 4 6 12 

L.longulum 1 Tschyporus chrysomelinus 2 

L. heeri 11 11 T. dispar 4 1 

L. longoelytrata 22 18 34 T. hypnorum 1 1 
Omalium caesum 1 1 T nitidu/um 1 1 
O. rivulare 2 1 T. obtusum 1 2 
0. /aeviusculus 1 T. pal/idum 2 
Oxytelus fulvipes 2 2 Tachinus signatus 2 
Philonthus quisquiliarius 7 1 Xantholinus linearis 2 

P. umbratilis 2 X. longiventris 3 

Platystethus cornutus 3 

Table 4.34: Annual abundances in May of species of Staphylinidae (subfamilies Micropeplinac 
to Tachyporinae) recorded in samples conected from tloodplain reference sites. 
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Abundance Abundance 
Species 1992 1993 1994 Species 1992 1993 1994 

Aleochara lanuginosa 1 Deinopsis erosa 1 1 
Alianta incana 4 Deubelia picina 13 25 17 
Aloconota gregaria 1 Dochmonota clancula 9 5 
Amischa analis 4 1 Geostiba circellaris 4 

A. decip;ens 1 Gnypeta carbonaria 2 4 10 

Atheta elongatula 5 2 G. rubrior 1 
A. fungi agg. 10 6 11 Hygronoma dimidiats 3 5 
A. graminicola 54 23 47 Liogluta nitidula 8 4 

A. gyllenhali 1 1 Myllaena dubia 29 20 11 
A. hygrobia 14 2 M. infuscata 2 2 
A. hygrotopora 1 3 Nehemitropia sordida 1 
A. laticollis 1 Oxypoda e/ongatula 15 11 5 
A. luteipes 1 1 O. exo/eta 1 1 

A. malleus 9 8 2 O./entula 19 3 1 
A. vilis 39 21 o. umbrata 4 1 

A. vo/ans 2 1 Pachnida nigel/a 9 14 13 
Chiloporata longitarsis 1 9 Tachyusa atra 2 

Table 4.35: Annual abundances in May of species of Staphylinidae (subfamily Aleocharinae) 
recorded in samples collected from floodplain reference sites. 

Abundance Abundance 
Species 1992 1993 1994 Species 1992 1993 1994 

Bryax;s bulbifer 1 Heterocerus fenestratus 1 1 
Rybaxis longicornis 1 H. marginatus 

Table 4.36: Annual abundances of species ofPselaphidae and Hcteroceridae recorded in 
samples collected from floodplain reference sites in May. 
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Abundance Abundance 
Species 1991 1992 1993 1994 Species 1991 1992 1993 1994 

Acupa/pus meridianus 1 B. /unulatum 43 20 3 7 
Agonum a/bipes 26 13 30 103 B.ob/iquum 1 
A. assimile 3 8 B. obtusum 3 3 4 13 
A. dorsa/e 1 B. properans 1 1 
A. fuliginosum 3 1 4 B. punctu/atum 5 10 5 3 
A. marginatum 6 4 2 1 B. quadrimaculatum 1 1 
A. micans 32 13 7 52 B. tetracolum 12 7 5 10 
A. moestum 1 Carabus granulatus 1 

A. obscurum 1 1 Clivina col/aris 7 2 2 2 
A. viduum 1 C. fossor 2 

Amaraaenea 1 1 Drom;us 1 1 
me/anocephalus 

A. communis 2 Dyschirius aeneus 3 
A. plebeja 1 D.luedersi 2 7 
A. similata 1 E/aphrus cupreus 1 4 

Asaphidion curtum 1 E. riparius 7 18 4 6 
A. stierlieni 2 Harpalus rufibarbis 1 
Bembidion aeneum 110 6 5 H. rufipes 2 

B. articulatum 6 1 Loricera pilicornis 2 1 1 4 
B. assimile 1 Nebria brevicollis 2 4 
B. biguttatum 41 22 6 34 Notiophilus biguttatus 1 
B. clark; 1 pterostichus minor 1 

B. dentellum 38 21 9 29 P. nigrita 9 5 2 
B. fumigatum 1 P.strenuus 8 2 3 

B. genei 8 P. vefnalis 11 ~ 5 " 
B. gilvipes 18 14 1 6 Stenolophus mixtus 1 12 2 
B. guttula 23 14 1 8 Stomis pumicatus 1 

B. /ampros 1 1 Tschys parvulus 1 2 

Table 4.37: Annual abundances of species of Carabidae recorded in samples collected from 
main-channel reference sites in May. 
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Abundance Abundance 
Species 1991 1992 1993 1994 Species 1991 1992 1993 

Anoty/us rugosus 3 3 2 P. /aminatus 1 

A. scu/pturatus 1 P. quisquiliarius 12 1 
Bledius ga/licus 2 P. umbratilis 1 

Carpelimus bilineatus 6 5 3 3 P. varians 1 

C. corlicinus 5 6 Platystethus cornutus 5 12 2 

C. impress us 2 1 P. nitens 1 

C. obesus 1 P. nodifrons 2 

C. rivularis 49 65 13 25 Stenus bimaculatus 2 4 1 

C. similis 1 S. boops 25 19 5 

C. subtilicornis 30 11 57 S. cicinde/oides 1 

Gabrius bishopi 4 6 S.juno 15 14 3 

G. pennatus 1 13 S. me/anopus 1 5 
Lathrobium brunnipes 3 11 4 S. pusillus 1 

L. fulvipenne 1 3 4 S. solutus 1 
L. geminum 2 2 6 S. tarsalis 4 4 

L. pallidum 1 Tachinus signatus 4 

L. quadratum 1 Tachyporus dispar 1 3 

L. terminatum 1 T. hypnorum 1 

Lesteva heeri 8 3 16 T. nitidulus 4 

L. longoe/ytrata 40 2 35 T.obtusus 1 3 3 
Mycetoporus 1 T. pallidus 3 3 1 
splendidus 

Neobisnius villosulus 3 4 1 1 T. solutus 1 

Omalium rivulare 1 Xantholinus linear is 1 

Oxytelus laqueatus 1 X. /ongiventris 3 2 

Phi/onthus fimetarius 1 

Table 4.38: Annual abundances of species of Staphylinidae (subfamilies Omaliinae to 
Tachyporinae) recorded in samples collected from main-channel reference sites in May. 
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Chapter 4: Evaluation of sampling methods 

Abundance Abundance 
Species 1991 1992 1993 1994 Species 1991 1992 1993 1994 

Alianta incana 1 CaJlicerus rigidicornis 1 

Aloconota gregaria 4 1 2 Chi/oporata /ongitarsis 133 1 42 
A. insecta 1 Deinopsis erosa 1 8 2 
Amischa cavifrons 1 2 Geostiba circelJaris 1 
Atheta elongatula 4 41 15 3 Gnypeta carbon aria 8 4 

A. fungi agg. 3 4 9 1 G. ripico/a 1 1 2 
lA. graminico/a 26 2 28 G. rubrior 16 1 1 
A. hygrotopora 12 1 G. velata 8 
A. indubia 1 Hygronoma dimidiata 1 2 
A. laticollis 2 4 MyJlaena inter media 3 

A. luridipennis 1 Oxypoda brachyptera 1 

A. luteipes 7 O. exoleta 1 

A. malleus 4 15 3 2 Tachyusa etra 1 9 1 
A. obfuscata 1 T. coarctata 1 1 1 
A. volans 2 1 T. Jeucopus 1 

Table 4.39: Annual abundances of species of StaphyJinidae (subfamily Aleocharinae) recorded 
in samples collected from main-channel reference sites in May. 

Abundance Abundance 
Species 1991 1992 1993 1994 Species 1991 1992 1993 1994 

Heteroceru$ fenestratus 2 18 1 H. marginatus 2 

Table 4.40: Annual abundances of species ofHeteroceridae recorded in samples collected 
from main-channel reference sites in May. 
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Figure 4.2: DCA ordination plot of monthly samples taken from 15 sites during 1994 (square 
= April, diamond = May, triangle = June, + = July, X = September). 
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Figure 4.3: DCA ordination plot of monthly samples taken from main-channel reference sites 
in spring, 1991. Points from each site.are enclosed within polygons and labelled by site number. 
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Figure 4.4: DCA ordination plot of monthly samples taken from floodplainreference sites in 
spring. 1991. Points from each site are enclosed within polygons and labelled by site number. 
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Figure 4.5: DCA ordination plot of monthly samples taken from main-channel and flood plain reference 
sites in spring, 1994. Points from each site are enclosed within polygons and labelled by site number. 
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Figure 4.6: DCA ordination plot of yearly samples taken from main-channel reference sites from 
1991 to 1994. Points from each site are enclosed within polygons and labelled by site number. 
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Figure 4.7: DCA ordination plot of yearly samples taken from floodplain reference sites from. 
1992 to 1994. Points from each site are enclosed within polygons and labelled by site number. 
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Chapter 4: Evaluation of sampling methods 

0.71 0.93 <0.01 0.98 

0.64 0.69 0.34 0.03 0.13 0.19 

NA 

NA 0.83 0.04 <0.01 

0.85 0.27 <0.01 NA 0.79 0.60 <0.01 

0.63 0.36 0.45 0.40 0.52 0.27 NA 

0.61 0.53 0.21 0.11 0.58 0.25 NA 

0.46 0.43 0.51 

Table 4.41: Values of Kendall's coefficient of concordance for samples ranked according to 
various indices, where W Situ is based on rankings of sites in each month between April and 
June and Ws is based on rankings of monthly samples for each site. Sig. = level of 

CHon 
significance of W Sites based on the sum of squares of average ranking minus the mean ranking. 
Ax. 1 = axis 1 score derived from DCA ordination of sites within each monthly set. NA 
denotes more than three tied rankings. 
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0.66 < 0.05 

0.52 0.01 

NA 

NA 

NA 

NA NA 

(0.45) (0.27) NA 

Table 4.42: Values ofKendall's coefficient of concordance for samples ranked according to 
various indices, where W Sites is based on rankings of sites in each year and W Year is based on 
rankings of annual samples for each site. Sig. = level of significance of W Sit •• based on the 
sum of squares of average ranking minus the mean ranking. NA denotes more than three tied 
rankings. Values in brackets were calculated after exclusion of samples taken in 1993. 
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Index Seasonal Annual Relative Relative Relative 
robustness of robustness of importance of importance of performance of 
site ranking site ranking seasonal annual abundance-

variation variation weighted index: 
Ax.l very good moderate for low low except for 

main channel similar main 
sites; good for channel sites 
floodplain sites 

S variable moderate high high for main 
channel sites; 

low for 
floodplain sites 

E variable moderate low high for main 
channel sites; 

low for 
floodplain sites 

~ moderate for moderate for low low similar 
main channel main channel 
sites; good for sites; good for 
floodplain sites floodplain sites 

R... good for unknOMl due low for unknown similar 
floodplain sites to poor floodplain sites 

but poor discrimination 
discrimination 

Wbt poor poor 
discrimination discrimination 

WCt 
good for WlknoMl due low? unknown more affected by 

floodplain sites; to poor seasonal variation 
discrimination discrimination but better 
poor for main discrimination 
channel sites 

W. moderate for moderate? for high high? better 
main channel main channel discrimination 

sites sites 

WDIJ moderate moderate to high moderate better 
good discrimination 

L ... variable poor low low similar 

LRS moderate to high poor mostly low low similar 
L. poor good for low low similar 

floodplain sites 

Table 4.43: Evaluation ofperfonnance of various indices against seasonal and annual 
variations. For details of indices and their codes, sec section 3.2. 
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5 Relation of variation in species composition to environmental and 
management factors 

5.1 Variation in species composition at different scales 

5.1.1 Introduction 

Despite the recognition that environmental factors in river systems operate at a particular spatial 

scale (Nairnan et al. 1992), there have been few attempts to compare the distributions of 

riparian and wetland beetles at different spatial scales. Landry (1994) found that some species 

of Agonum in Canadian marshes were restricted to a particular habitat structure which he 

termed macrohabitat, but fairly catholic in their microhabitat occupancy, whereas other species 

specialised in a particular microhabitat (e.g. tussocks) but were found over a wider range of 

habitat structures. On the basis of quadrat and time-catch samples, Andersen (1983) reported 

that Norwegian species of riparian Bembidion species often had a restricted microhabitat 

distribution, especially among egg-laying females. However, the habitat requirements of a 

riparian or wetland beetle may include several different microhabitats over its complete life 

cycle (see section 1.3.4). The presence of species at a microsite may reflect the preference of 

active adults for that microhabitat, but the nearby availability of a microhabitat connected with 

a different stage in the life history may be more important. If so, we might expect that species 

composition at anyone microsite would be more dependent on the characteristics of the whole 

site rather than the microsite. 

It was decided to investigate the relative importance of factors operating at microhabitat and 

macrohabitat scales along the River Soar by comparing the distribution of species between 

whole sites with the distribution of species between sampling stations within sites. 

5.1.2 Methods 

The investigation was carried out on samples from 180 sampling stations in 30 sites studied in 

May 1991. Samples were collected by hand using methods descn"bed in section 3.1. 

Environmental measurements were made as described in section 3.3. The DCA plot, obtained 

by ordinating 180 sub-samples was compared with the plot, obtained by ordinating aggregated 

samples from each of the 30 sites. 

The axis 1 sample scores from the ordination of 180 sub-samples were compared with values 

for the following environmental measurements at each sampling station: the proportion of sand, 
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silt and undecayed organic matter in the substrate, the proportion of bare ground, the amount 

of dead vegetable matter on the surface and the surface moisture. Interset correlations of these 

environmental variables with axes 1 and 2, were calculated using the computer programme, 

CANOCO (ter Braak 1987-1992). They were also similarly compared with two environmental 

measurements calculated for the site as a whole, namely the amount of bare ground 

(BAREGRD) and the amount of dead vegetable matter (LITTER). Interset correlation 

coefficients cannot be used to derive the statistical significance of any correlations, because 

they are clearly not based on values with normal distributions (Bailey 1995), However, they 

can be used in an exploratory sense to investigate the relative importance of the relationship 

between measured environmental variables and the latent environmental variables represented 

by the ordination axes (Jongman et al. 1995). Furthermore, they have the advantage over 

multiple regression coefficients that they are unaffected by multicolinearity in the 

environmental variables (ter Braak 1986). 

5.1.3 Results 

The species recorded in May 1991, are listed in appendix 2B. Values for environmental 

variables at each sampling site are given in appendix 3A. 

Figure 5.1 shows the ordination plot for 180 sub-samples. As is often necessary in data sets 

with species-poor samples (Jongman et al. 1995), it was necessary to use downweighting of 

rare species in order to reduce the influence of outliers. It was found that this gave better 

correlations with environmental variables along axis 1. As well as using downweighting of rare 

species, it was necessary to render three sub-samples passive to reduce their influence on the 

ordination. Two of these subsamples contained only one species. The third was dominated by 

a species which did not occur in any other sample. The eigenvalues of the first three axes at 

0.59, 0.46 and 0.38 indicate a large amount of variation. The arrangement of sub-samples 

from microsites is very similar to that in the ordination plot of aggregated samples from sites, 

shown in figure S. 2. The eigenvalues of the first three axes of the ordination plot of aggregated 

samples are lower at 0.43, 0.34 and 0.15, but this is to be expected because of the larger 

number of species in each sample and the consequent increase of overlap in species 

composition. 
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In figure 5.1 the sub-samples from four sites are represented by symbols designated for those 

sites, in order to illustrate their separation in ordination space. Although there is overlap 

between sites, sub-samples from anyone site are localised in a relatively small area of 

ordination space. If one outlying subsample containing a single species is excluded, the average 

range of scores along axis 1 from one site is 1.4 compared to a total axis length of 4.47. Only 

four sites have a range greater than 2, the highest range being 2.63, whereas the lowest range is 

0.82. 

Table 5.1 contains the interset correlations of environmental variables with axes 1 and 2. The 

small scale factors which most closely affected species composition at microhabitat scale 

appeared to be the amount of dead vegetation, which is negatively correlated with axis 1, and 

the proportion of bare ground which is positively correlated with axis 1. However, both of 

these factors were slightly less important than the equivalent factors operating at site scale, 

UTTER and BAREGRD. There was less correlation with axis 2 for all cnvirorunental 

variables except surface moisture, but even here the correlation coefficient was relatively small. 

5.1.4 Discussion 

The similarity of sample distributions along axis 1 in the two ordination plots indicate that the 

most important environmental factors affecting species composition operate at both 

microhabitat and site scale. The grouping of subsamples in figure 5.1 and the slightly higher 

correlation coefficients for environmental variables measured over the whole site, suggest that 

the total microhabitat resource at a site is at least as important and possibly more important for 

most species in the Soar Valley than the microhabitat from which the species is sampled. 

This result is expected from a consideration of the different rnicrohabitats that are required by a 

species throughout its life history. An alternative explanation is suggested by the temporal 

instability of microhabitats along the River Soar. Fluctuating water levels and the rapid growth 

of vegetation on fertile sediments lead to marked seasonal changes in many of the 

environmental variables at anyone microsite. Any species which require a particular 

microhabitat over an extended period would need to move about over the site as conditions 

change. 
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Results indicate that analysis at the whole-site scale is preferred for the interpretation of the 

effect of environmental factors. Analysis at this scale also allows the collection of larger 

samples with a consequent increase in robustness of assemblage parameters. 
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Figure 5.1: DCA ordination plot of 180 sub-samples collected in May 1991 (square = site 5, 
triangle = site 8, asterisk = site 13, diamond = site 23). 
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Figure 5.2: DCA ordination plot of30 aggregated samples collected in May 1991 (square = 
site 5, triangle = site 8, asterisk = site 13, diamond = site 23). 
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Chapter 5: Variation in species composition 

Envirorunental variable Axis 1 Axis 2 Axis 3 
(eigenvalue = 0.59) (e = 0.46) (e = 0.38) 

Surface moisture -0.22 0.25 0.34 

Sand 0.16 0.14 0.15 

Silt 0.36 0.22 -0.28 

Litter in substrate -0.49 -0.27 0.05 

Surface litter (microsite) -0.58 -0.2 0.14 

Surface litter (whole site) -0.6 -0.29 0.09 

Bare ground (microsite) 0.53 0.48 0.00 

Bare ground (whole site) 0.56 0.47 0.15 

Table 5.1: Interset correlation coefficients between environmental variables and sample scores 
on the :first three axes of variation produced by a DCA ordination of 180 subsamples taken in 
May, 1991. 
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5.2 Variation in species composition across all habitat structures 

5.2.1 Introduction 

Having established an appropriate spatial scale of investigation, it is now feasible to investigate 

associations between the species composition of assemblages and environmental factors. This 

can be carned out at a range of functional levels. At one leve~ species composition is often 

directly related to the physical resources present at a site (see section 1.3.4). These resources 

include substrate, moisture, undecayed organic matter etc. Section 1.3.2. reported several 

interpretations of species' adaptations for using these resources. At another leve~ species 

composition is indirectly related to wider scale processes which regulate these resources. It is 

these indirect associations that are of use to conservationists in understanding the effects of 

land use and management on species assemblages. 

This section attempts to associate trends in species composition to environmental and 

management factors operating within the study area at different fimctionallevels. It attempts to 

use associations with physical resources to interpret the relationship of species composition to 

more indirect factors. A general theory linking these factors to species composition could then 

be fonnulated for the Soar valley. 

5.2.2 Methods 

Samples collected from 30 sites in April and May 1991, were pooled and ordinated using 

DCA. Pooling of samples was carried out in order to reduce the problems with seasonal 

robustness of species parameters that were identified in chapter 4. Sites from June, 1991, were 

not included because of problems associated with missing samples and suspected distortion of 

the results due to flooding. In order to achieve a more general interpretation of the DCA 

ordination, it was necessary to reduce the influence of sites 5 and 8 by downweighting rare 

species. Both these sites contained a high proportion of species unrecorded elsewhere in 1991. 

Coefficients were calculated for interset correlations between sample scores on the first three 

axes of ordination and the following environmental variables: SHINGLE, SAND, Sn.T, 

CPOM, I1TTE~ SHADE, BAREGRD, HIBSITES, DWATE~ CONNECT, NATDIST, 

GRAZING, RECR, ll\.fPOUND. 

The same sample set was then subjected to Canonical Correspondence Analysis (CCA) using 

NA TDIST, CONNECT and GRAZING as constraining environmental variables. These 
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variables are considered to be larger scale causative factors for the other smaller scale variables 

which were measured. Monte Carlo pennutation routines were used to test the significance of 

variation along the resulting ordination axes by comparing their eigenvalues with those from 99 

random pennutations of samples. This gives a resolution down to p = 0.01. Tests were canied 

out on both axis 1 and the trace which is the sum of the eigenvalues of all constrained axes. 

5.2.3 Results 

4,681 specimens belonging to 167 species were collected. The species are listed in tables 5.2 

to 5.5 together with the number of sites from which they were recorded and the total number 

of specimens for each species. A complete table of abundances of each species at each site is 

given in appendices 2A and 2B. Values of environmental variables at each site are given in 

appendix 3B. 

Figure 5.3 shows the ordination plot for the 1991 samples from 30 sites. Also included are the 

centroids of samples belonging to classes of the following variables: SHINGLE, SAND, 

IDBSITES and CONNECT. The co-ordinates of the HlBSITES and CONNECT centroids 

are calculated from the average scores along the species axes of all the samples from sites in 

class zero of each variable. The co-ordinates of the other centroids are weighted averages of 

sample SCOl"es along the species axes. The use of centroids in ordination diagrams is 

reconunended for nominal variables (ter Braak 1986). Ter Braak (1987-1992) also notes the 

potential utility of centroids for quantitative variables that can be absent. This is certainly the 

case for variables such as SIflNGLE, which score zero for most sites and, so correlate poorly 

with species axes over the whole sample set. 

The position of the centroids in the ordination plot show that samples from sites with shingle 

and, to a lesser extent, sand score highly on axis 1. Sites with no hibernation sites also score 

highly on axis 1, whereas sites with little connection to the main channel have low scores on 

this axis. 

Table 5.6 contains the interset correlation coefficients between environmental variables and 

sample scores along the species axes. As in section 5.1, these coefficients have an exploratory 

value. They indicate that several physical features at a site may have an important effect on its 

species composition. Axis 1 in the ordination plot is negatively correlated with surface litter, 

the presence of hibernation sites, substrate litter and shade, and positively correlated with the 
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presence of bare ground. These physical features often occur together at sites. Sites 

containing large quantities of surface litter are usually shaded and the litter is often incorporated 

into the substrate. Hibernation sites are provided by rotten wood. Litter is rarely present in 

quantity at sites containing large areas of bare ground and shingle. Correlations between all 

these physical features are probably due to their similar dependence on disturbance. 

Disturbance from flooding reduces the amount of litter at a site and produces bare ground. 

The strong correlations of the natural disturbance factor, NATDIST, and the connectivity of a 

site to the main channe~ CONNECT, with axis 1 are, therefore, probably connected with their 

effects on these physical features. Grazing pressure is another important ~ of disturbance. 

It also produces bare ground through trampling and feeding and the removal of vegetation 

prevents the build up of litter. Hibernation sites are reduced through the removal of grass 

tussocks. GRAZING is also strongly correlated with axis 1 and its influence is indistinguishable 

from the influence of flooding within the DCA ordination. 

The only environmental variable which is even moderately correlated with axis 2 is DW A TER, 

a measure of fluctuations in water levels. Variation along axis 2 is mainly confined to samples 

with low scores on axis 1. Consequently DW ATER is probably a more important factor in 

undisturbed sites than in disturbed sites. 

Figures 5.4 and 5.5 show the species - environmental biplots obtained from performing CCA. 

The relationship between species composition and linear combinations of CONNECT, 

NAIDIST and GRAZING was found to be significant at p = 0.01 both for axis 1 and the swn 

of the three constrained axes. Uke the DCA ordination, axis 1 is related to disturbance and an 

three environmental variables are positively correlated with it. Unlike the DCA ordination, the 

gradients associated with GRAZING and CONNECT are well separated along axis 2. 

GRAZING and NAIDIST are separated along axis 3. However, the eigenvalues of axes 2 and 

3 are only 0.14 and 0.13 respectively. Variation along these axes is much less important than 

along axis 1 (eigenvalue == 0.38). Figure 5.4 indicates that species scoring low on axis 1 such 

as Bembidion clarki and Carpelimus impressus are sensitive to at least two of the 

environmental factors, whereas species scoring high on axis 1, such as Bembidion tetracolum 

and B. lunulatum are tolerant of these factors. Species scoring high on axis 2, such as Agonum 

viduum and Elaphrus cupreus appear to be relatively sensitive to connectivity with the main 

channel and tolerant of grazing, whereas species scoring low on axis 2, such as Neobisnius 
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villosulus, are sensitive to grazing, but tolerant of connectivity to the main channel. Species 

responses to the different environmental variables, as opposed to the general disturbance factor, 

are best seen in a plot of axis 2 against axis 3 (figure 5.5). Several species appear to be more 

intolerant of grazing than other forms of disturbance. These include Agonum obscurum, 

Clivina collaris and Carpelimus similis. Species which are intolerant of CONNECT, relative 

to other variables, tend to be grassland specie$ such as Bembidion lunulatum, Clivina fossor 

and Amischa analis. However, some wetland species, such as Agonum viduum and Elaphrus 

cupreus fall into this category. Fewer species, such as Agonum marginatum, are more 

sensitive to NA mIST. 

5.2.4 Discussion 

Meaningful environmental interpretations of the ordinations were possible despite the rather 

coarse, ordinal quantification of many of the environmental variables. In both ordinations, the 

main variation in species composition can be related to a general disturbance factor. Two types 

of disturbance appeared to have similar effects. Trampling and grazing by cattle (GRAZING) 

and flooding (CONNECT + NAIDIST) both result in bare ground. They also reverse 

vegetational succession (Bravard et al. 1992) which gives rise to litter and shade. However, 

some species appear to be more sensitive to one type of disturbance than others. The strong 

association of some species with NAIDIST is probably connected with their requirement for 

coarse substrates, which are found on sites with high values for NATDIST, but not necessarily 

high values for GRAZING. These species include Bembidion punctulatum which requires 

shingle (Meissner 1984) and Oxypoda exoleta which requires sand (Hyman 1994). 

Flooding has long been known to have an important influence on semi-aquatic beetle species 

both in the riparian zone (e.g. Andersen 1968, Lehmann 1965) and in floodplain wetlands (e.g. 

Zulka 1994). The importance of grazing have been less well recognised, although Drake 

(1995) found differences in the species composition of two-winged fly assemblages along the 

banks of a lowland river between sites that were fenced off against grumg stock and unfenced 

sites. 

Discerning differences between the effects of the two types of disturbance along the River Soar 

required examination of the second and third species axes of CCA ordination. There was 

much less variation in species composition between grazed sites and flood-disturbed sites than 
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between undisturbed sites and sites subject to either fonn of disturbance. However, several 

species with asymmetric responses were identified including Bembidion punctulatum, Agonum 

viduum, Gnypeta carbonaria, Neobisnius villosulus and other species which are found away 

from the origin in figure 5.5. The two types of disturbance are therefore not entirely 

equivalent. Intensive grazing will tend to remove lubemation sites and refuges from flooding 

on the adjacent bank. Consequently, we can expect species which have strict requirements for 

these resources to be more sensitive to grazing pressure than to flooding. Many species which 

require bare ground benefit from both grazing and flooding disturbances, but species which 

require coarse substrates are found exclusively at sites with high severity of flooding. 

The two variables used to describe disturbance by flooding are CONNECT, an ordinal 

measure of connectMty with the main channeL and NAIDIST, an estimate of flow during 

floods. These can be approximated to two of the descriptors which Sousa (1984) 

recommended for characterising disturbances. NATDIST can be approximated to the severity 

of the disturbance. CONNECT can be approximated to the frequency of disturbance, if we 

assume that sites with a closer connectivity to the main channel flood more frequently. During 

flooding in June, 1991, many of the sites in CONNECT class 1 were unaffected. It is possible 

that they are vel)' rarely disturbed by flooding during the main breeding season. Some 

grassland and wetland species which appeared to be sensitive to high values of CONNECT 

may wen be vulnerable to flooding during the breeding season. However, although some 

asymmetric species responses to NATDIST and CONNECT were detected, the high 

correlation in nature between severity of flooding and frequency of flooding will always make 

separation difficult in field studies. Furthennore, the coarse ordinal measure used for 

CONNECT is difficult to relate to both flooding frequency and the 1ime scale of species life 

cycles and so of limited use in testing theories of life history strategies. 

The small variation in species responses between these different types of disturbance is 

reflected in their lack of influence on axis 2 of the DCA ordination. Variation between samples 

along axis 2 was concentrated in those from less disturbed sites with low scores on axis 1. 

Further investigation of species - environment relationships in undisturbed sites is described in 

section 5.4 using a sample set taken from floodplain sites only. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

Acupa/pus consputus 1 1 B.obtusum 7 15 
Agonum a/bipes 26 224 B. properans 8 17 
A. assimile 2 4 B. punctu/atum 1 10 
A. dorsa/e 3 3 B. quadrimacu/atum 7 10 
A. fuJiginosum 16 70 B. tetracofum 17 176 
A. livens 2 3 Carabus granu/atus 2 2 
A. marginatum 10 15 Clivina col/aris 8 18 
lA. micans 18 160 C. fossor 10 28 
A. moestum 2 4 Demetrias atricapil/us 4 11 
A. obscurum 5 10 Dromius linearis 4 5 
lA. thoreyi 2 45 D. me/anocephafus 4 4 
A. viduum 4 11 Dyschirius aeneus 1 1 
Amara aenea 2 2 D.luedersi 2 2 
A. communis 1 2 Elaphrus cupreus 8 20 
A. familiaris 4 17 E. riparius 6 11 
A. plebeja 4 5 Harpa/us rufipes 2 3 
A. similata 4 7 Loricera piJicornis 6 8 
Asaphidion curtum 5 6 Microlestes maurus 1 1 
A. stierlieni 1 1 Nebria brevicolJis 2 16 
Badister bipustu/atus 1 1 Notiophi/us biguttatus 3 5 
Bembidion aeneum 26 479 Patrobus atrorufus 1 1 
B. srticulatum 2 2 Pterostichus cupreus 6 10 
B. biguttatum 29 498 P. melanarius 1 1 
B. bruxe/lense 1 1 P. minor 5 26 
B. c/erki 6 115 P. nigrits 19 41 
B. dentellum 22 150 P.strenuus 22 119 
B. genei 1 1 P. vernalis 15 45 
B. gi/vipes 25 178 P. versico/or 2 10 
B. guttula 27 137 StenolophU8 mixtus 1 1 
B. harps/oides 4 10 Stomis pumicatus 3 5 
B.Jampros 5 10 Trechus quadristriatus 6 6 
B. lunuJatum 21 161 Trichocellus pJacidus 1 3 

Table 5.2: Species of Carabidae recorded in pooled samples from 30 sites visited in April and 
May, 1991. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

Anoty/us rugosus 15 27 P. nodifrons 2 3 
A. tetracarinatus 2 2 Proteinus ova/is 2 2 
Carpelimus bilineatus 8 29 Quedius maurorufus 2 6 
C. corlicinus 6 18 Rugilus orbiculatus 2 2 
C. e/ongatulus 3 4 R. rufipes 1 1 
C. impress us 8 140 Sepedophilus marshami 3 3 
C. obesus 2 2 Stenus bimaculatus 8 8 
C. rivularis 19 155 S. boops 18 76 
C. similis 4 13 S. cicinde/oides 1 1 
C. subtl1icornis 15 148 S. c/avicornis 1 1 
Gabrius bishop; 5 6 S.juno 20 78 
G. pennatus 3 5 S. me/anopus 2 3 
G. trossu/us 1 1 S. nitidiuscu/us 1 3 
Lathrobium brunnipes 10 27 S. pallitarsis 1 1 
L. elongatum 1 1 S.pubescens 1 1 
L. fulvipenne 11 58 S. pusillus 3 3 
L. geminum 2 3 S. solutus 1 3 
L. impressum 1 1 S. tarsalis 7 16 
L. longulum 2 2 Tachinus signatus 4 5 
Lesteva heeri 5 15 Tachyporus chrysomelinus 1 1 
L. longoelytrata 22 107 T. dispar 10 17 
Neobisnius villosulus 2 5 T. hypnorum 12 25 
Omalium rivulare 3 3 T. nitidiusculus 6 11 
Philonthus cognatus 1 1 T. obscurus 5 5 
P. /aminetus 2 2 T. pallidus 10 22 
P. micantoides 2 3 T. pusi/lus 5 8 
P. quisquiliarius 1 1 T. solutus 4 9 
P. varius 2 2 Xantho/inus linear is 2 4 
Platystethus cornutus 7 13 X. longiventris 12 20 
P. nitens 2 2 

Table 5.3: Species of Staphylinidae (subfamilies Proteininae to Tachyporinae) recorded in 
pooled samples from 30 sites visited in April and May, 1991. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

Aleochara lanuginosa 1 1 Calodera aethiops 1 3 
A/oconota gregaria 16 35 C. uliginosa 2 11 
A. insecta 1 1 Oeinopsis erosa 3 6 
Amischa analis 13 35 Oeube/ia picina 1 24 
A. cavifrons 2 2 Dochmonota c/ancula 1 1 
A. decipiens 2 2 Geostibus circellaris 2 2 
A. forcipata 2 3 Gnypeta carbonaria 7 13 
A. soror 1 4 G. ripicola 3 6 
Atheta ee/ats 1 1 G. rubrior 5 20 
A. e/ongatu/a 12 25 G. velata 1 1 
A. fungi agg. 13 29 Hygronoma dimidiats 5 6 
A. graminico/a 26 202 Myllsens dubia 1 9 
A. hygrobis 1 2 M. elongate 1 1 
A. luridipennis 1 1 Oxypoda brachyptera 2 2 
A. /uteipes 1 1 O. e/ongatuls 4 9 
A. malleus 14 23 O. exo/eta 2 10 
A. obfuscsta 1 1 O. /entu/a 3 46 
A. volans 5 8 O. umbrata 1 1 
Brachyusa coneolor 3 3 Pachnida nigella 1 19 
Callicerus rigidicornis 1 1 Tachyusa atra 5 7 

Table 5.4: Species of Staphylinidae (subfamily Aleocharinae) recorded in pooled samples from 
30 sites visited in April and l\1ay, 1991. 

Total Total 
Species No. sites abundance Species No. sites abwuiance 

Heterocerus fenestratus 2 2 Agriotes lineatus 1 1 
Heterocerus marginatus 2 2 Agriotes obscurus 1 1 

Table 5.5: Species of Heteroceridae and Elateridae recorded in pooled samples from 30 sites 
visited in April and l\1ay, 1991. 
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Chapter 5: Variation in species composition 

Environmental Axis I Axis 2 Axis 3 
variable (eigenvalue = 0.43) (e:: 0.34) (e = 0.15) 

SIDNGLE 0.34 -0.04 0.07 

SAND 0.37 -0.19 -0.4 

SaT 0.35 0.29 0.01 

CPOM -0.7 -0.01 0.32 

UTTER -0.78 -0.18 0.07 

SHADE -0.62 0.25 -0.06 

BAREGRD 0.64 0.06 -0.63 

lDBSITES -0.72 -0.03 -0.17 

DWATER -0.14 0.50 0.36 

CONNECT 0.63 -0.01 -0.32 

NATDIST 0.63 -0.04 -0.39 

GRAZING 0.59 -0.09 0.02 

RECR 0.1 0.01 -0.14 

IMPOUND -0.06 -0.1 0.28 

Table 5.6: Interset correlation coefficients between environmental varaiables and sample scores 
on the first three axes of variation produced by a DCA ordination of pooled samples from 30 
sites visited in April and May, 1991. 
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Site Group \Vb Wc Wd Wm 

SI G 0 0.02 0.4 0.57 

S2 G 0 0.02 0.2 0.77 

S3 CG 0 0.03 0.33 0.65 

S4 C 0.01 0.1 0.27 0.62 

SS 0 0 0.26 0.08 0.66 

S6 G 0.02 0.07 0.18 0.73 

S7 0 0.01 0.01 0.75 0.22 

S8 0 0 0.13 0.57 0.31 

S9 - 0 0 0.28 0.73 

S10 CG 0 0.08 0.23 0.69 

Sl1 C 0.01 0.13 0.14 0.73 

S12 G 0 0 0.53 0.47 

S13 C 0.01 0.12 0.28 0.59 

S14 - 0 0.08 0.14 0.78 

S15 C 0 0.13 0.48 0.38 

S16 0 0 0.54 0.16 0.3 

S17 C 0.05 0.07 0.37 0.5 

S18 C 0 0.02 0.13 0.85 

S19 0 0 0.12 0.44 0.44 

S20 0 0 0.43 0.17 0.4 

S21 0 0 0 0.65 0.35 

S22 G 0 0 0.4S 0.52 

S23 CG 0 0.13 0.43 0.44 

S24 CG 0 0.36 0.21 0.43 

S25 G 0 0.14 0.27 0.59 

S26 - 0.01 0.22 0.56 0.21 

S27 - 0.02 0.07 0.39 0.53 

S28 C 0 0.05 0.53 0.42 

S29 CG 0 0.02 0.55 0.43 

S30 CG 0 0 0.66 0.34 

Table 5.7: Values of species indices based on wing length for sites sampled in April and May, 
1991. 
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5.3 Variation in Species Composition according to Wing-length 

5.3.1 Introduction 

In section 5.2, variation in species composition was used to identify important envirorunental 

and management factors operating within the study area and concluded that disturbance from 

two distinct sources had a major influence. In order to understand how environmental factors 

affect species composition, it would be useful to investigate how species characteristics vary 

between sites subject to different levels of disturbance. Dispersal has often been assumed to be 

an important mechanism for ground beetles in recolonising areas after flooding (Holeski 1984). 

In particular, dispersal by flight onto riparian breeding grounds can occur in the spring 

(Lindroth 1949, Lehmann 1965). Consequently, we might expect the proportion of 

macropterous species in assemblages to increase with the frequency of flooding disturbance, 

though not necessarily grazing distw"bance. 

5.3.2 Methods 

The abundance-weighted indices, W b' Wc, W d and W m' were calculated according to the 

method descnbed in section 3.2.4, for the 30 pooled samples collected in April and May, 1991. 

These indices are based on the proportion of ground beetle species with particular wing-length 

characteristics. 26 of these samples were divided into four groups on the basis of grazing 

pressure and connectivity with the main channel. Seven samples from sites in CONNECT 

classes 1 and 2 and GRAZING class 0 were placed in the group O. Six samples in CONNECT 

classes 1 and 2 and GRAZING classes 1 and 2 were placed in the group G. Seven samples in 

CONNECT class 4 and GRAZING class 0 were placed in the group C and six samples from 

CONNECT class 4 and GRAZING class 2 were placed in the group CG. Four samples from 

the intennediate CONNECT class 3 were excluded from the analysis. The mean of each 

wing-length index was calculated for each group. The significance of the differences in means 

was tested using a two-sample rank test, the Mann-Whitney test, available on the MINIT AB 

computer programme. 

5.3.3 Results 

The values of wing-length indices for each sample are shown in table 5.7. Very few 

exclusively brachypterous species were recorded and the index, W b' was not investigated 

further. Figure 5.6 shows the means of each index for each sample group. Also shown for 

comparison are the means of the axis 1 DCA score, calculated in section 5.2. This score can 
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be interpreted as a latent environmental variable related to a general disturbance factor. No 

significant differences were found between the means of Wc from different sample groups, nor 

between the means of W d' However, values of W m' the proportion of macropterous species, 

was significantly lower at sites with both low connectivity to the main channel and no access to 

grazing stock. 

The results for ungrazed sites seem to fit the prediction that the proportion of exclusively 

macropterous species increases with frequency of flooding, but the results for grazed 

backwaters also suggest that the proportion of macropterous species is simiJarly affected by 

grazing pressure. No significant increase was fOWld between grazed backwaters and grazed 

main channel sites. Indeed the mean value of grazed main channel sites was slightly lower. 

Because of the low abwl(iances of exclusively brachypterous species, variations in W fa are 

closely linked with variations in the abundances of wing-dimorphic species. A suite of 

widespread permanently wing-dimorphic species including Clivina fossor, Bembidion aeneum, 

B. gilvipes, B. guttu/a, Pterostichus strenuus and P. vernalis, occWTed in a wide range of 

samples and gave rise to increases in W d and reductions in W m across all site groups. LufI 

(1998) lists grassland as a habitat for all of these species except B. gilvipes. All of them have 

been recorded from grassland in Leicestershire including B. gilvipes which has been recorded 

from alluvial meadows. The presence of these species in sites subject to flooding could be due 

to vagrancy or recruitment from adjacent biotopes. However, three wing-dimorphic species 

were fOlmd almost exclusively in backwater sites with no access to grazing stock. Pterostichus 

minor is pennanently dimorphic while Bembidion clark; and Agonum juliginosum are usually 

brachypterous and only rarely macropterous. These species are rarely recorded away from 

wetlands in Leicestershire and are regarded as marsh or freshwater margin species by Luff 

(1998). It is possible that their restricted distribution between samples is connected with a 

sensitivity to disturbance by flooding or grazing. Bembidion tetracolum is also a 

wing-dimorphic species with a restricted distribution between samples. Luff (1998) includes 

arable land amongst its habitats, but it has rarely been recorded away from riverbanks in 

Leicestershire. In contrast to the other wing-dimorphic species, mentioned above, it was 

restricted to samples from sites with higher levels of disturbance. and would seem to contradict 
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any argument that exclusively macropterous populations are a necessary adaptation for coping 

with disturbance by flooding. 

5.3.4 Discussion 

A significantly higher proportion of exclusively macropterous species occurred at sites away 

from Wldisturbed backwaters, but it should not be assumed that species occwring in more 

disturbed sites are better at dispersing. Den Boer (1977) found that not all specimens with 

apparently full wing lengths are capable of flight. Also, full-winged morphs of dimorphic 

species can be very effective dispersers, as demonstrated by den Boer (1977) for Agonum 

fuliginosum. However, populations of permanently dimorphic species cannot rely on an 

arutual winged re colonisation of sites which have been disturbed by flooding without 

large-scale mortality to flightless morphs. Flightless morphs of Bembidion tetracolum and 

grassland species probably colonise breeding groWlds on the main channel sites by walking 

from neighbouring hibernation sites. It is possible that dimorphic species that are restricted to 

ungrazed backwaters, are unable to breed regularly in sites which are subject to grazing, 

because of a lack of suitable hibernation sites near to the breeding habitat. 

Despite the observed differences between undisturbed backwaters and other types of site, the 

apparent relationship between the proportion of dimorphic species and levels of disturbance 

depends on just three wetland species. Furthennore, the observed distribution of another 

species, Bembidion tetracolum, conflicts with this relationship. The possibility of a relationship 

between the proportion of wing-dimorphic species and levels of disturbance remains tenuous. 

However, the virtuaI absence of exclusively brachypterous species suggests that at least 

occasional dispersal by flight is probably a necessary mechanism for long-term survival of 

populations in the floodplain wetland environment of the Soar Valley. 
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DISTURBANCE -
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Figure 6.6: The means of DCA axis 1 scores and species indices based on 
wing length for groups of sites classified by grazing pressure and connectivity 
to the main channel CVJc = Rarely Dimorphic Species Index, Wd = Dimorphic 
Species Index, Wm = Macropter Species Index). Also given are the 
significances of differences in mean according to a Mann-Whitney test. 
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5.4 Variation in species composition at floodplain sites 

5.4.1 Introduction 

The DCA ordination of species assemblages described in section 5.2, identified various 

disturbance factors as having an important effect on species composition. However, the 

second axis of variation was more difficult to interpret. Fluctuations in water levels, quantified 

as D W A 'fER, produced the most significant correlations with axis 2 scores, but interpretation 

was handicapped by the fact that variation along axis 2 was concentrated in samples from 

undisturbed sites which scored low on axis 1. It was decided to cany out an investigation 

confined to floodplain sites with low levels of natural disturbance by flooding, in order to 

clarify any relationship between species composition and water level fluctuations or other 

environmental factors. 

Section 1.2.3 described how floodplain habitat structures can be produced by an equilibrium 

between vegetational succession and periodic disturbance by flooding similar to that found in 

the Rhone valley by Bravard et al. (1992) (see figure 1.5). Section 1.2.4 includes descriptions 

of changes in floodplain habitat structures arising from hydrological changes following river 

management operations (Bravard et al. 1986, Bornette & Heiler 1994). The equilibrium 

model has some potential in predicting the effects of river management on habitat structures 

through shifts in the equilibrium position. Investigation of environmental factors such as 

DW A 'fER may yield some insight into how such changes in habitat structures may affect 

species assemblages. 

5.4.2 Methods 

From 1991 to 1994, 27 floodplain sites were sampled by hand for beetles using the methods 

described in section 3.1. Six of the samples were collected in 1991 and formed part of the data 

set used for the analysis in sections 5.2 and 5.3, although, unlike in that investigation, samples 

were not pooled from more than one visit. The sites chosen consisted of pools in abandoned 

channels and old ditches and drains. They were mostly well-established with no known recent, 

major disturbances. Recently excavated sites were avoided. The most recently disturbed site 

was site 45, a fishpond dug in a fonner marsh about six years pre\-i.ously. Sites Se and 8e 

contained materials such as hard core which had obviously been tipped there at some time in 

the past, but they were at least partially covered by vegetation and litter. 

161 



Chapter 5: Variation in species composition 

The resulting species lists were subjected to CCA using DW A TER, GRAZING, SHADE and 

Th1POUND as constraining environmental variables. IMPOUND, the nominal variable 

describing the presence or absence of weirs, was derived from the status of the main channel 

close to the floodplain site. Monte Carlo pennutation routines were used to test the 

significance of variation along the resulting ordination axes. 

5.4.3 Results 

3,263 specimens belonging to 147 species were collected. The species are listed in tables 5.8 

to 5.11 together with the number of sites from which they were recorded and the total 

abundance of each species across all sites. A complete table of abundances of each species at 

each site is included in appendix 2. Appendix 3C contains the management scores for each 

site. 

Figure 5.7 shows the CCA species - environmental biplot. The relationship between species 

composition and linear combinations of the chosen environmental variables was fmmd to be 

significant at p = 0.01 both for axis 1 and the sum of the four constrained axes. DWATER is 

strongly correlated with the main axis of variation, axis 1 which has a high eigenvalue (0.53). 

Axis 2 also has a high eigenvalue (0.41) and is correlated positively with GRAZING and 

negatively with SHADE. IMPOUND is of lesser importance on the two main axes of 

variation. Axis 3 and axis 4 have much lower eigenvalues (0.26 and 0.25) and are not 

considered further. 

Only species with a minimum weight of 7% and a minimwn fit of 10% are included in the 

biplot. Species which were confined to sites with stable water levels included Agonum thoreyi. 

Stenus solutus. Myllaena dubia. Pachnida nigella and Deubelia picina. Species associated 

with sites with the largest fluctuations in water leve~ included Clivina fossor. Bembidion 

aeneum. B. guttula. B. lunulatum and Lathrobium fulvipenne. all spec~s widely collected in 

pitfall traps in grassland in Leicestershire. Species associated with grazed, unshaded sites 

included Bembidion aeneum, B. guttula. B. lunulatum and Gnypeta carbonaria. A 

characteristic assemblage including several rarer species such as Bembidion clarki, Carpelimus 

impressus and Dilacra vilis, were found in undisturbed, shaded sites with moderate 

fluctuations in water level. 
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5.4.4 Discussion 

The results show that DWATER is an important factor affecting species distribution between 

floodplain sites. In ordination plots (see table 5.6 and figure 5.7), it is associated with axes that 

are orthogonal to those associated with a general disturbance factor and so its effects on the 

composition of species assemblages are quite different to those of disturbance. DW A TER was 

designed to represent the amplitude in seasonal fluctuations in swface water levels which is 

inversely related to hydroperiod. However, it is an ordinal classiftcation rather than a direct 

numerical measurement and so requires some further scrutiny. 

Sites allocated to DW A TER class I include floating mats of Glyceria maxima and Typha 

latifolia at lc, 5c and Sw. le has formed on a recently abandoned oxbow close to the main 

channel and is probably regularly flooded. 5c and Sw are separated from the main channel by 

a railway embankment. The high water levels at these two sites have resulted from the 

blockage of a culvert by silt and the consequent ponding of water. It is likely that these sites 

are rarely flooded by surface water and they are probably at a transitional fen stage and 

succeeding to carr. Sites allocated to DWATER class 2 include sites lw, 40, 43 and 45 which 

are often close to the main channel and regularly flooded by high water. Sites 57, 95 and 96 

permanently receive water from drainage of areas elsewhere on the floodplain. All of these 

class 2 sites normally retain surface water all year round and are characterised by a lush growth 

of tall monocotyledonous plants such as Glyceria maxima. Persistent high water at these sites 

probably plays an important role in retarding the influx of trees and succession to can. 

DWATER class 2 also includes sites at le and 96 whose vegetational cover is severely reduced 

by the activities of grazing cattle. DW A TER classes 3 and 4 include sites that are regularly 

flooded by overtopping of the main channel. However, they dry out to varying extents in the 

summer, because they are either shallow, dominated by trees which take up a lot of swface 

moisture, or subject to greater fluctuations in ground water levels. 

The qualitative, ordinal nature of DW A TER makes it a rather imprecise measurement of water 

level fluctuation, but it can be related to the successional processes operating in the floodplain, 

at least for ungrazed sites. Figure 5.8 shows the expected variation of DWATER with 

vegetational succession. This diagram could be used as a model to predict how a change in the 

equilibrium between vegetational succession and natural disturbance due to flooding would 
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affect seasonal fluctuations m water levels and hence the species composition of beetle 

assemblages. 

The estimated current equilibrium position of ungrazed sites in the study area are shown in 

figure 5.8. It is noticeable that habitat structures characteristic of early stages of succession are 

rare in the Soar floodplain. Although, historically, the Soar has frequently flooded, it probably 

has insufficient power to maintain an equilibrium at the marsh stage in the floodplain. Indeed, 

site 95 which is at the earliest stage of succession, is close to the confluence with the River 

Trent and may be influenced by the larger discharge in that river. However, main channel sites 

could be considered to be at the marsh stage, because they are characterised by mineral 

substrates and more frequent and severe flooding. Section 5.2 showed that DWATER would 

not make a good predictor of species assemblages for main channel sites and that disturbance 

factors would be more appropriate to use in this area. 

The almost opposite correlations of GRAZING and SHADE with axis 2 might be thought to 

reflect colinearity in the data set, in that grazed sites are likely to be less shaded than ungrazed 

sites. Table 5.12 shows the weighted correlation matrix (weight = sample total) and this is 

clearly not the case. In fact, SHADE is more closely correlated in the data set with DWATER, 

although these environmental factors are wen separated by the ordination. The opposite 

response of species to SHADE and GRAZING is independent of any bias in site selection and 

may be connected to the response to a general disturbance factor identified in section 5.2. 

SHADE can be related to the successional. model in figure 5.8, because the tree cover will 

increase during the later successional. stages as fen succeeds to carr. GRAZING is likely to 

affect vegetational succession through the reduction of litter, but its effects are difficult to 

interpret using the model in figure 5.8, because it does not reverse sites to an earlier natural 

stage of succession. It is best considered as a disturbance factor which affects species 

assemblages along a disturbance gradient. 

The samples were conected in four different years, but annual fluctuations in populations and 

weather conditions were assumed to be unimportant. In section 4.2, it was found that DCA 

ordination scores in a set of reference floodplain sites were both robust and comparable 

between different years during the period of study. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

Agonum albipes 13 81 B./ampros 2 2 
A. assimile 2 4 B. lunulatum 3 13 
A. dorsale 1 1 B.obtusum 4 5 
A. fuliginosum 16 59 B. properans 1 1 
A. livens 3 5 B. quadrimaculatum 1 1 
A. marginatum 2 7 B. tatracolum 4 4 
A. micans 16 56 Clivina col/aris 1 1 
A. moestum 2 3 C. fossor 6 29 
A. obscurum 4 5 Demetrias atricapillus 2 3 
A. thoreyi 12 68 Dromius linearis 1 1 
A. viduum 2 2 Elaphrus cupreus 11 19 
Amara communis 1 1 E. riparius 3 10 
A. familiaris 1 2 Loricera pi/icornis 2 2 
A. similata 1 2 Nebria brevicollis 1 1 
Asaphidion curtum 1 1 Patrobus atrorufus 1 1 
Bembidion seneum 8 30 Pterostichus anthracinus 2 2 
B. articulatum 1 2 P. gracilis 3 5 
B. assimi/e 4 10 P. minor 8 18 
B. biguttatum 20 177 P. nigrits 10 19 
B. clarki 7 117 P. strenuus 11 33 
B. dantel/um 13 61 P. vernalis 8 12 
B. fumigstum 1 1 Stenolophus mixtus 1 4 
B. gilvipes 12 34 Stomis pumicatus 1 2 
B. guttu/a 5 16 Trichocel/us placidus 1 7 
B. harpa/oides 2 2 

Table 5.8: Species of Carabidae recorded in samples from 27 floodplain sites. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

Anoty/us rugosus 7 10 Q. maurorufus 1 1 
A. sculpturatus 2 3 Q. mo/ochinus 1 1 
A. tetracarinatus 1 1 Q. nemoralis 1 1 
Carpelimus bilineatus 5 11 Q. nitipennis 1 1 
C. corticinus 3 8 Rugilus orbicu/atus 1 1 
C. e/ongatulus 2 6 Sfenus bifoveo/atus 2 4 
C. impress us 14 165 S. bimaculatus 9 15 
C. rivu/are 14 63 S. boops 17 76 
C. simi/is 1 1 S. canalicu/atus 1 1 
C. subti/icornis 3 7 S. cicindeloides 3 4 
Gabrlus pennatus 9 22 S. clavicornis 1 1 
Lathrobium brunnipes 12 47 S. formicetorum 2 6 
L. e/ongatum 1 2 S. fulvicornis 1 1 
L. fu/vipenne 6 27 S.juno 24 118 
L. geminum 2 4 S. me/anopus 2 2 
L. Jongulum 1 1 S. pallifarsis 3 3 
L. quadratum 1 1 S.pubescens 2 3 
L. terminatum 1 2 S. pusil/us 1 2 
Lesteva heeri 10 40 S. solutus 4 14 
L. /ongoelytrata 15 57 S. tarsalis 1 2 
Mycetoporus splendidus 1 1 Tachinus signatus 1 1 
Omalium caesum 2 2 Tachyporus chrysomelinus 2 3 
Philonthus micans 1 1 T. dispar 2 2 
P. micantoides 1 1 T. hypnorum 2 2 
P. quisquiliarius 3 5 T. nitidulus 3 4 
P. umbratilis 2 2 T. obtusus 8 16 
P. varius 1 1 T. pallidus 4 5 
Platystethus cornutus 4 7 Thinodromus arcuatus 1 2 
P. nitens 2 2 Xantholinus longiventris 6 11 
Quedius curtipennis 1 1 

Table 5.9: Species of Staphylinidae (subfamilies Omallinae to Tachyporinae) recorded in 
samples from 27 tloodplain sites. 
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Total Total 
Species No. sites abundance Species No. sites abundance 

A/oconota gregaria 2 2 Dochmonota e/aneu/a 4 12 
Amiseha ana/is 6 14 Geostiba eircellaris 2 3 
A. eavifrons 1 1 Gnypeta carbonaria 3 15 
Atheta e/ongatu/a 6 7 G. ripico/a 2 2 
A. fungi agg. 15 24 G. velata 1 1 
A. graminieo/a 22 146 Hygronoma dimidiata 6 9 
A. hygrobia 1 2 Liogluta nitidu/a 2 4 
A. hygrotopora 2 3 Myl/aena dubia 6 33 
Aluteipes 2 2 M. infusesta 2 2 
A. malleus 13 25 M. intermedia 1 1 
A. vi/is 2 39 Oxypoda elongatula 2 12 
A. vo/ans 3 3 O. exoleta 1 1 
Calodera uliginosa 1 3 O./entula 5 12 
Chi/oporata /ongitarsis 7 22 O. umbrata 1 1 
Deinopsis erosa 5 8 Paehnida nigel/a 2 14 
Deubelia picina 2 25 Tachyusa atra 1 1 
Dinaraea angustula 1 1 T./eueopus 1 1 

Table 5.10: Species of StaphyJinidae (subfamily Aleocharlnae) recorded in samples from 27 
floodplain sites. 

Total Total 
Species No. sites abundance Species No. sites abundance 

Rybaxis longicornis 1 1 Agriotes lineatus 1 1 
Heterocerus fenestratus 1 1 Agriotes obseurus 2 2 
H. marginatu$ 1 1 

Table 5.11: Species ofPselaphidae, Heteroceridae and Elateridae recorded in samples from 27 
fIoodplain sites. 
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Figure 5.7: CCA axis 1 / axis 2 biplot of species and environmental variables derived from 
samples collected from 27 floodplain sites. 
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Figure 5.8: Relation of DWA TER to the position of the equilibrium between 
vegetational succession and disturbance by flooding together with estimates 
of the position of ungrazed sites in the Soar fIoodplain. 
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SHADE 1 

GRAZING -0.26 1 

Th1POUND 0.03 -0.02 1 

DWATER 0.4 0.09 0.2 1 

SHADE GRAZING IMPOUND DWATER 

Table 5.12: Weighted correlation matrix (weight =sample total) ofenwonmental factors used 
in CCA ordination of floodplain wetland sites. 
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5.5 Variation in species composition at main channel sites 

5.5.1 Introduction 

River engineering and other management operations produce modifications of river 

morphology which have considerable ecological impact on the riparian zone (Brooker 1985, 

Brookes 1988). Lehmann (1965) found differences in ground beetle species assemblages 

between artificial and natural banks along the Rhine. However, no other detailed investigations 

on this theme have been published, although it has been implied that river management has had 

an impact on the riparian ground-beetle fauna (plachter 1986). 

The investigation described in section 5.2, indicated that types of disturbance due to flooding 

and gruing pressure were the major environmental factors affecting the composition of species 

assemblages in main"Channel sites along the River Soar. Consequently, it may be possible to 

predict the effect of river management operations on riparian beetle assemblages from a 

consideration of the amoWlt of disturbance that they cause. 

OVer half of the River Soar flowing through the study area, is impoWlded for navigation. This 

has had the effect of reducing flows at both normal and flood flows and so has reduced the 

severity of disturbance due to flooding over long stretches of river. We might, therefore expect 

to find assemblages more characteristic of less disturbed sites along navigable stretches than 

along unirnpounded stretches. However, it should be noted that, although impoundment 

reduces the severity of disturbance by flooding, it should not reduce the frequency of flooding 

and may even slightly increase it. Therefore, the effects of impoundment should be more 

evident at main channel sites rather than at floodplain sites where the severity of disturbance by 

flooding is already low. 

As part of the flood alleviation scheme described in section 2, many banks have been regraded. 

This has had a more direct impact on riparian habitat structures through removal of exposed 

sedimentary deposits and replacement of natural banks by a 45° slope cut out of the 

predominantly clay bank material. The initial impact of this work is likely to represent a major 

disturbance event, but the longer-term effects are more difficult to predict. 

5.5.2 Methods 

30 main channel sites were sampled by band using the methods described in section 3.1. The 

sites selected included banks which had been regraded as part of the River Soar flood 
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alleviation scheme. Using infonnation supplied by engineers in the National Rivers Authority, 

regraded and untouched banks were identified and the year in which their stretch of river had 

been engineered was established. One section between Cotes Bridge and Zouch had been 

engineered one year before fieldwork. The section between Zouch and the confluence with the 

Trent had been engineered at various times between five and eight years previous to fieldwork. 

The section upstream from Cotes Bridge had been unaffected by recent works. 

The resulting species lists were subjected to CCA using five nominal variables as constraining 

environmental variables. IMPOUND and GRAZING are management factors described in 

section 3. REGRADO, REGRADl and REGRAD5 scored 1 respectively for sites that had 

never been regraded, sites regraded the previous year and sites regraded more than four years 

previously. NAIDIST was not measured, because the substrate particle size on which it is 

based is a product of engineering works rather than natural deposition during floods and so 

does not describe the severity of disturbance by flooding. All sites were situated on the main 

channel and so had equal scores for CONNECT, the environmental variable devised to 

describe periodicity of flooding. 

Monte Carlo permutation routines were used to test the significance of variation along the CCA 

ordination axes. 

5.5.3 Results 

2,128 specimens belonging to 126 species were collected. The species are listed in tables 5.13 

to 5.15 together with the number of sites from which they were recorded and the total 

abundance of each species across all sites. A complete table of abundances of each species at 

each site is given in appendix 2F. Appendix 3D contains the management scores for each site. 

Figures 5.9 and S.10 show the CCA species - environmental biplots for the three most 

important axes of variation. The relationship between species composition and linear 

combinations of the chosen environmental variables was found to be significant at p = 0.01 

both for axis 1 and the sum of the four constrained axes. However, the eigenvalues for the 

three main axes at 0.33, 0.22 and 0.16 are much lower than those for CCA ordination of 

floodplain sites. The constrained axes only account for 200A> of the total variance in the data set 

and the variation in species assemblages between main channel sites may be heavily influenced 
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by stochastic factors. Certainly, variation along the second axis of the DCA ordination of the 

whole range of sites sampled in 1991 (see section 5.2) was largely confined to floodplain sites. 

Axis 1 separates recently regraded sites and, to a lesser extent, impounded and grazed sites 

from sites with no recent impact from management. This axis seems to be equivalent to a 

gradient related to naturalness. Axis 2 separates impounded sites from recently regraded sites 

and seems to be equivalent to a disturbance gradient, similar to that identified in section 5.2. 

Ordination of species along this axis separates Elaphrus riparius, Bembidion tetracolum and 

B. punctulatum which are characteristic of open sites subject to disturbance, from Lathrobium 

brunnipes and Gabrius pen natus which are characteristic of more vegetated sites and which 

are often found on the floodplain. Axis 3 separates sites regraded more than five years 

previously . 

Several species were recorded from a large number of sites and showed no marked sensitivity 

to regrading. These included Elaphrus riparius, Bembidion tetracolum, Agonum albipes and 

Stenus juno. However, other species were more uneven in their distribution between sites of 

different regrading classes. Figure 5.10 shows axis 1 plotted against axis 3 and identifies 

associations between individual species and site management history. Several species were 

found to favour recently regraded sites. They include Bembidion aeneum, B. lunulatum and 

Nebria brevico/lis which are characteristic of intensively managed grassland in Leicestershire. 

In 1991, the first two species were found to be associated with sites trampled by grazing stock. 

They also include a contingent of riparian specialists such as Bembidion articuiatum, Stenus 

comma and Heterocerus marginatus which are often found in gravel pits. Tachyporus 

hypnorum is a ubiquitous aphid predator whose recorded abundance at some recently regraded 

sites may be related to swarnting behaviour. Similar aggregations of this species have also been 

observed at local quarries. 

By contrast, a larger number of species tended to avoid recently regraded sites. Bembidion 

punctulatum. Carpeiimus subtilicornis. Neobisnius villosulus and Gnypeta carbonaria were 

found to favour sites which had never been regraded. Many species, including Atheta malleus. 

Agonum micans. Clivina collaris. Carpelimus rivuiaris, Bembidion biguttatum, Philonthus 

quisquiliarius. Bembidion dentellum. Carpelimus bilinealus and Pterostichus nigrita were 

found not only on ungraded sites, but also to varying degrees on sites which had been regraded 
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more than four years previously. Hypnoidus riparius, Dyschirius aeneus, Bembidion obtusum 

and Xantholinus /ongiventris exhibited a preference for sites which had been regraded more 

than five years previously. 

5.5.4 Discussion 

The results indicate that along the River Soar, bank regrading has had an immediate impact on 

the riparian beetle fauna which outweighs the effects of grazing and impoundment. 

Assemblages on sites which had been regraded in the previous year were well separated from 

other sites on the two most important axes of variation. Although many of the species on 

recently regraded sites were fmmd to be associated with disturbed sites in 1991, other species 

characteristic of sites disturbed by grazing and flooding, such as Bembidion punctulatum and 

Agonum marginatum, were found to be absent or rare. The immediate impact of regrading 

appears to be different in character to the impact of other disturbance factors. 

The lack of separation along axes 1 and 2 of ungraded sites and sites regraded more than four 

years previously, suggests that the initial impact of bank regrading is only temporary and does 

not last beyond five years. Many old regraded sites were found to have acquired a vegetation 

cover which at some sites included plants such as sedges and this may account for the observed 

rarity of species strongly associated with recently regraded sites. However, these species were 

also rare at sites where bare ground was maintained by erosion or fresh sedimentary deposition. 

Separation of old regraded sites along axis 3 suggests that there has been a long-term impact of 

regrading along the Soar. However, this has been less important than the initial impact and 

quite different in character. Although the variation along axis 3 was not very large, some 

interesting patterns of distribution could be observed. Sites on regraded banks which were 

similar to ungraded banks in tenns of slope and substrate also tended to be similar in the beetle 

assemblages that they supported. Species such as Agonum micans, Clivina collaris and 

Atheta malleus which were found in both ungraded and old regraded sites, were, in fact, 

confined to or most abundant at sites 31, 32 and 39 amongst old regraded sites. Sites 31 and 

32 were characterised by exposed deposits of fresh sediment which produced a much shallower 

slope than other regraded sites. They could have been taken for natural, ungraded riverbanks 

were it not for the engineering records. Site 39 was the remains of a huge silt-bank, whose 

width had been approximately halved during engineering works. Consequently, it had never 
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been converted to the standard 45° profile. On the other hand, banks which retained their 

steep profile shared fewer species with ungraded sites. Therefore, the long-tenn effects of 

bank regrading may be related to the steepness of slope. Unfortunately, this hypothesis is 

impossible to test along the Soar, where natural 45° banks are very rare and associated with 

sloughing due to springs or, more frequently, trampling by cattle. Natural riverbanks are either 

shallow or more or less perpendicular, in which case they do not support beetle assemblages. 

However, along steep river banks on Karelian rivers, Pahnen & Platanoff (1943) reported that 

the riparian fauna contained more xerophilic species. 

The predominantly clay substrate in regraded banks along the Soar may also be an important 

factor affecting species composition. Bembidion punctulatum appears to favour sand and 

shingle substrates and was not found on the regraded banks along the Soar. However, it has 

been recorded on the Trent on regraded banks composed of shingle. 

If changes of slope and substrate are responsible for the long term impact of regrading on 

riparian beetle assemblages, then this has implications for minimising the ecological effects of 

river engineering schemes. The construction of new banks with more natural profiles and 

substrates may lessen the long-term effects of bank regrading. 

The separation of impounded sites along axis 2 supports the prediction that they will support 

assemblages more sensitive to disturbance. As predicted, the effects of impoWldment are more 

important than those found in the investigation on floodplain sites in section 5.4. This result 

also implies that the severity of disturbance by flooding can affect species assemblages 

independently of its periodicity. The mechanism for the relationship between severity of 

flooding and species composition is probably connected to substrate particle size which is a 

product of flooding severity. 
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Total Total 
Species No. sites abundance Species No. sites abWldance 

Acupa/pus consputus 1 1 B. proper-ans 7 14 
A. meridian us 2 2 B. punctulatum 4 26 
Agonum albipes 27 155 B. quadrimaculatum 1 1 
A. fuliginosum 1 2 B. tetracolum 23 88 
A. msrginatum 7 10 Clivina collaris 6 6 
A. micans 8 28 C. fossor 2 2 
A. muelleri 1 1 Demetrias atricapillus 2 2 
A. obscurum 1 1 Dromius linearis 3 4 
Amara similata 2 3 Dyschirius aeneus 6 16 
Badister bipustulatus 1 1 D.luedersi 4 8 
8embidion aeneum 15 44 Elaphrus cupreus 4 4 
B. articulatum 10 38 E. ripsrius 18 62 
B. assimile 2 3 Loricera pilicornis 1 1 
B. biguttatum 17 58 Nebris brevicornis 5 13 
B. clarki 1 1 N. salins 1 1 
B. dentel/um 19 81 Notiophilus biguttatus 2 6 
B. femoratum 3 3 Pterostichus cupreus 1 1 
B. genei 5 18 P. gracilis 1 1 
B. gilvipes 12 28 P. minor 1 1 
B. guttula 17 33 P. nigrits 12 22 
B. harpaloides 1 1 P. strenuus 7 9 
B./ampros 6 6 P. vernalis 6 8 
B. lunulatum 17 48 Stenolophus mixtus 6 14 
B. obliquum 1 1 Trechus quadristriatus 2 3 
B. obtusum 5 11 

Table 5.13: Species of Carabidae recorded in 1992 in samples from 30 main channel sites. 

ToW Total 
Species No. sites abundance Species No. sites abundance 

Heterocerus fenestratus Q 18 Hypnoidus riparius 2 6 
H. marginatus 4 11 

Table 5.14: Species of Heteroceridae and Elateridae recorded in 1992 in samples from 30 
main channel sites. 
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Total Total 
Species No. sites abundance Species No. sites abWldance 

Aloconota cambrica 2 2 L. terminatum 1 1 
A. gregaria 4 5 Lesteva heeri 5 10 
A. sulcifrons 1 1 L. longoelytrata 18 47 
Amischa cavifrons 1 1 Myllaena elongate 3 7 
Anotylus insecatus 1 1 M. intermedia 3 5 
A. rugosus 7 11 Neobisnius vHlosulus 4 7 
A. sculpturatus 2 2 Oxypoda brachyptera 1 1 
Athete cJebilis 1 1 O. exo/eta 2 2 
A. fungi agg. 3 4 O. /ongipes 1 1 
A. graminicola 7 24 Oxytelus laqueatus 1 1 
A. elongatula 5 7 Philonthus quisquiliarius 9 29 
A. hygrotopora 1 1 P. umbratilis 2 2 
A. luteipes 5 12 P. varians 1 1 
A. malleus 14 68 Platystethus cornutus 10 36 
A. volans 4 4 RugiJus rufipes 2 2 
Bledius gallicus 1 2 Stenus bimaculatus 3 7 
Carpelimus bilineatus 14 27 S.boops 18 70 
C. corticinus 2 4 S. canaliculatus 1 2 
C. impressus 1 1 S. cicindeloides 1 1 
C. rivularis 20 150 S. comma 6 11 
C. similis 5 11 S.juno 12 36 
C. subtilicornis 11 62 S. melanopus 1 5 
Chiloporata longitarsis 13 259 S. pubescens 1 1 
Deinopsis erosa 8 18 S. pusi/Jus 3 3 
Dochmonota clancula 1 1 S. tersalis 3 5 
DrusiJIa canaliculata 1 1 Tachinus signatus 4 5 
Gabrius bishopi 1 5 Tachyporus chrysomelinus 1 1 
G. pennatus 3 9 T. dispar 1 1 
Geostiba circellaris 1 1 T. hypnorum 10 24 
Gnypeta carbonaria 11 41 T. nitidulus 1 1 
G. ripicola 1 2 T. obtusus 3 7 
G. velata 3 6 T. pallidus 9 13 
Hygronoma dimidiata 2 3 T. solUtU8 1 1 
Lathrobium brunnipes 4 13 Tachyus8 atra 4 14 
L. fulvipenne 13 33 Thinodromus arcuatus 1 2 
L. geminum 3 4 Xantholinus linearis 4 4 
L. pallidum 1 1 X. Iongiventris 15 38 

Table 5.15: Species of Staphylinidae recorded in 1992 in samples from 30 main channel sites. 
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Figure 5.9: CCA axis 1 / axis 2 biplot of species and environmental variables derived from 
samples collected from main channel sites studied in 1992. 
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Figure 5.10: CCA axis 1 / axis 3 biplot of species and environmental variables derived from 
samples collected from main channel sites studied in 1992. 
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6 Relation of nature conservation evaluation criteria to 
environmental and management factors 

6.1 Variation of nature conservation evaluation criteria with levels of 
disturbance 

6.1.1 Introduction 

Diversity indices and rarity scores are widely used for conservation evaluation (see section 

1.4.3), but they can only be applied appropriately, if their responses to environmental variables 

are Wlderstood. Magurran (1988) pointed out that naturally species-poor assemblages would 

be WldeIValued by comparison with naturally species-rich assemblages, if a diversity index were 

used as the sole criterion. Similar arguments could be used against the exclusive use of rarity 

indices. 

The intennediate disturbance hypothesis predicts changes of species diversity with different 

levels of disturbance (see section 1.3.6). Therefore, we might expect to see species riclmess 

and evenness varying both with frequency and severity of flooding and with grazing pressure. 

Although there are theories on the relationship between diversity and disturbance, little work 

has been done on rarity. However, if the species adapted to disturbance were more widespread 

than average, as suggested by Turin & den Boer (1988), we might expect to see significant 

variations in rarity indices. Furthermore, the proportion of specialist riverine and wetland 

species should be lower in more highly disturbed sites, where they should be replaced by more 

eurytopic species. 

6.1.2 Methods 

The species richness (S), evenness (E), local rarity index (~) and land use association indices 

for wetland (Lw)' grassland (Lg) and highly disturbed sites (Ld) were calculated for the 30 

pooled samples collected in April and May, 1991. Two methods were used to relate these 

indices to levels of disturbance. 

Firstly, the axis 1 scores of the CCA ordination performed in section 5.2 were used to 

represent a general disturbance gradient for comparison with species assemblage parameters. 

Spearman's rank cOlTelation coefficient (rs) between each axis score and each species 

assemblage parameter was calculated using MINIT AB. 
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Secondly, 26 of the samples were divided into four groups (Iahelled 0, C. n and Cn) on the 

basis of grazing pressure and connectivity with the main channel 18 delAiJed in Kction S .. l2. 

The mean of each species index was calculated for each group. The significance of the 

differences in means was tested using the Mann-Whitncy tesl. 

6.1.3 Results 

The values of specie..CJ indices for each site are shown in table 6.1. Table 6.2 shows values of 

the rank correlation coefficients. Highly significant negative com:lation.'I were found between 

disturbance and the two diversity indices. Figure 6. 1 shows the meAM of divenity and rarity 

indices for each sample group. Significant differences in the means of divcrRity indice" (lpeciCII 

richness and evenness) were confined to those between sitCII subject to disturbance by both 

graling and frequent flooding (group CO) and all other sitCII. No significant ditlercncca were 

detected between other sample groups. This would suggest that the rclatiomhip between lite 

disturbance and species diversity is most marked at higher levels of disturbance. 

Table 6.2 shows no significant rclation'lhip between dislW'bance and rarity index. By contrast, 

figure 6. I shows that the mean rarity index in samplcs from Rites Rubject to dilturbance by both 

grazing and frequent flooding (group CG) wu significantly less than the mcan rarity indices of 

all other sample groups. As with diversity indiccm, there were no significant diftCrcnCCA 

between other sample groups. 

No significant differences were found between sample groups for any mean land lL\C indices. 

However, table 6.2 shows a positive correlation between disturbance and I. .. the proportion of 

species associated with wetlands. This result is contrary to what wp predicted and i.'I due to 

large values of L., the proportion of grassland species, in samplef4 trom undisturbed sitcs. 

Unexpectedly, L .. , the proportion of species aMOCiated with highly diAturbcd lritCII, did not vary 

consistently along the disturbance gradient represented in this sample Kt. 

6.1 .4 Discussion 

The two methods of relating species indices to levels of distw'bance gave "lightly ditlercnt 

re8u1t~. Correlation with a general diAturhance factor yielded relationllhipA for divenlity and 

land-use indices with higher levels of confidence. However, additional in1ormation was gained 

by comparing the means of diversity indices in sample: groups from siles subject to different 
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types of disturbance. Comparison of means also detected a relationship for the rarity index 

which was not identified using correlation over the whole disturbance gradient. 

The low diversity indices measured at grazed main channel sites are consistent with the 

decrease of diversity at high levels of disturbance predicted by the intermediate disturbance 

hypothesis (Huston 1979). However, sites with low levels of disturbance and low diversity 

were not detected. ff the model behind the intermediate disturbance hypothesis is applied to 

this data set, sites with low levels of disturbance would be lacking. They are unrepresented in 

the data set. Most sites would be categorised as having intermediate levels of disturbance. 

This is consistent with their position in the floodplain and vulnerability to flooding, even if this 

is relatively infrequent. Sites with high levels of disturbance would be represented by main 

channel sites with access to grazing stock. In France and Sweden, variations in riparian plant 

species richness have also been interpreted as a product of intermediate disturbance (Nilsson et 

al. 1991, Decamps & Tabacchi 1992), together with habitat heterogeneity and other factors 

related to their larger scale of study. 

In practical consetvation terms, the species diversity of main channel sites along the Soar is 

reduced by grazing, but there is no significant difference in species diversity between floodplain 

sites which are grazed and ungrazed. Although as many rare species occW" at grazed sites as at 

ungrazed sites on the floodplain, species which occur at grazed main channel sites tend to be 

less rare in Leicestershire than species occuning at ungrazed main channel sites or floodplain 

sites. These results are in broad agreement with the findings of Hodgson (1986b) for plants 

and Turin and den Boer (1988) for beetles that disturbed sites contain a high proportion of 

common species. 

Application of these conservation measures to species assemblages along the Soar suggests that 

access of grazing stock to main channel sites reduces their conservation value both in terms of 

diversity and the presence of rare species. However, they do not reflect the changes in species 

composition between grazed and ungrazed floodplain sites which were identified by direct 

ordination. 

The lack of any relationship between levels of disturbance and the proportion of species 

associated with highly disturbed sites away from river floodplains suggests that the forms of 

disturbance due to flooding and gralfug along the River Soar require different adaptations from 
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fonns of disturbance operating in quarries and urban sites. Consequently, they attract different 

species assemblages. The higher proportion of grassland species in less disturbed sites means 

that assemblages in disturbed sites contain a higher proportion of specialist wetIand and riverine 

species. 
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Site Group S E R Lw LR Ld 
SI G 26 7.31 2.04 81.22 10.19 4.01 

S2 G 43 17.88 2.14 75.05 14.07 4.48 

S3 CG 21 5.86 1.76 79.44 11.01 6.76 

S4 C 44 13.13 3.16 79.25 11.32 4.91 

S5 0 39 9.46 2.54 73.01 14.18 5.57 

S6 G 23 6.49 3.04 71.02 17.79 5.32 

S7 0 29 7.71 3.24 67.42 19.67 5.71 

S8 0 41 11.74 4.15 77.96 12.54 4.26 

S9 - 26 7.51 2.08 80.58 13.29 2.57 

S10 CG 23 5.66 1.74 72.59 17.16 5.19 

Sl1 C 20 4.83 3.05 80.19 11.39 3.5 

S12 G 45 11.17 1.98 79.24 12.58 3.53 

S13 C 42 11.55 2.93 81.98 10.22 2.27 

S14 - 45 13.72 2 77.74 13 3.87 

S15 C 32 8.17 1.66 78.8 11.82 4.51 

S16 0 44 12.64 2.75 71.84 17.1 4.45 

S17 C 42 13.43 2.45 86.8 8.27 1.58 

S18 C 41 11.33 1.93 77.09 14.28 4.36 

S19 0 34 9.78 1.68 81.07 11.54 2.3 

S20 0 34 9.34 2.5 79.37 13.28 2.6 

S21 0 43 12.27 2.07 76.64 12.7 4.65 

S22 G 25 9.58 2.36 69.78 18.54 3.65 

S23 CG 23 6.66 1.61 81.15 11.79 3.38 

S24 CG 14 3.93 2.64 80.08 11.47 3.69 

S25 G 35 11.16 1.8 78.02 13.89 3.09 

S26 - 22 6.14 1.45 72.97 16.71 5.12 

S27 - 34 10.18 1.91 75.46 14.88 4.31 

S28 C 27 7.44 2.78 77.22 12.81 4.47 

S29 CG 16 3.39 1.31 83.99 9.96 2.61 

S30 CG 22 5.76 1.77 80.72 11.7 3.4 

Table 6.1: Values of species indices for sites sampled in April and May, 1991. 
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Species index r. P 

S -0.63 <0.001 

E -0.65 <0.001 

R -0.27 ns 

Lw 0.34 <0.05 

Lit -0.31 <0.05 

Ld 0 ns 

Table 6.2: Speannan's Rank Correlation Coefficients for associations between species indices 
and axis 1 scores derived from the CCA ordination of sites sampled in April and May, 1991. 
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Figure 6.1: The means of evaluation criteria for nature conservation for 
sites classified by grazing pressure and connectivity to the main channel. 
Also given are the significances of differences in mean according to the 
Mann-Whitney test. 

186 



Chapter 6: Variation in nature conservation criteria 

6.2 Variation in nature conservation evaluation criteria at flood plain sites 

6.2.1 Introduction 

The above findings predict little variation in species diversity for the floodplain data set used in 

section 5.4. All floodplain sites in the 1991 data set were thought to receive intennediate levels 

of disturbance with no identifiable trends in species diversity. Similarly, no significant variation 

in rarity was found between floodplain sites in section 5.4. However, the removal of 

main-channel sites from the analysis and concentration on a larger number of floodplain sites 

may allow more subtle trends within floodplain sites to be detected. The higher proportion of 

common ground beetle species in disturbed Dutch sites (Turin & den Boer 1988) may be 

mirrored in a lower rarity index for grazed sites in the Soar floodplain. If so, these more 

widespread species should be eurytopic species with lower associations with wetland and higher 

associations with grassland or highly disturbed sites. 

6.2.2 Methods 

The species richness (S), evenness (E), local rarity index (R) and land use association indices 

for wetland {LvJ, grassland (Le) and highly disturbed sites (Ld) were calculated for samples 

from a1l27 sites investigated in section 5.4. 

The axis scores of the CCA ordination performed in section 5.4 were used to represent 

environmental variables for comparison with species assemblage parameters in the same way as 

they were used to represent a general disturbance gradient in section 6.1. These axis scores can 

be viewed as linear combinations of environmental variables constrained to give maximum 

variation in species composition along two independent axes. They are more difficult to 

interpret than the pure values of environmental variables, but are more likely to uncover 

relationships between environment and species traits because they are related to maximal 

variations in composition of species assemblages. Also, the coarse ordinal values ofDWATER 

and GRAZING are unsuitable for rank correlation because of tied rankings. Spearman's rank 

correlation coefficient (rl ) between each axis score and each species assemblage parameter was 

calculated using MINIT AB. 

6.2.3 Results 

The values of all species assemblage parameters are shown in table 6.3. Values of the rank 

correlation coefficients are shown in table 6.4. Highly significant correlations were found 
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between all the land use association indices and axis 1, which is closely related to DWATER 

(see figure 5.7). The lower proportion of specialist wetland species and the higher proportion 

of grassland species at sites which score highly on axis 1, may reflect environmental conditions 

which are closer to grassland. The higher proportion of species associated with high levels of 

disturbance at sites with high axis 1 scores, is more difficult to explain. Such a relationship 

would be more expected for axis 2, which can be more easily related to disturbance. However 

there are no significant relationships between any of the land use association indices and axis 2. 

These results reinforce the suggestion made in section 6.1 that there is little equivalence 

between the forms of disturbance operating in the Soar floodplain and those operating on 

industrial and urban sites. 

No significant correlations were found for either species richness or evenness, as expected. 

Rarity was negatively correlated with axis 2. However, because there was no correlation 

between axis 2 and land use association indices, low rarity scores for sites which score highly 

on axis 2, were not caused by high numbers of eurytopic species as might have been expected. 

6.2.4 Discussion 

The apparent association of low rarity scores with grazing disturbance is unconnected with the 

similar relationship with agricultural disturbance observed in the Netherlands (Turin & den 

Boer 1988), because no significant increase in ewytopic species was observed in samples from 

grazed sites. Instead, the correlation observed in the Soar floodplain, appears to have been 

caused by rare species recorded at shady, ungrazed sites with moderate fluctuations in water 

levels. One possible explanation for the concentration of rare species at shady, ungrazed sites 

is provided by an inherent weakness in rarity indices. Gaston (1994) suggested that 

inappropriate sampling techniques can result in species appearing to be rarer than they actually 

are. It may be that the Leicestershire data base upon which species rarity scores are based, is 

biased against species occuning in certain habitat structures which have not been frequently 

sampled. However, sites in wet woodland and undisturbed floodplain wetland are well 

represented in the Leicestershire database and species associated with such habitat structures 

are unlikely to suffer from spurious designations of rarity. It appears that there is a genuinely 

high proportion of rare species in shady, undisturbed floodplain wetlands in the Soar Valley, 

either connected to a high beta-diversity or low population levels. The high rarity indices for 

these sites indicates that they are important for nature conservation in the Soar valley. 
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Unfortunately, their value is apt to be overlooked, because they are often shaded, temporary 

water bodies. This type of habitat stJUcture is poorly regarded by many conservationists, 

despite the fact that Biggs et al. (1994) pointed out that both shaded and temporary ponds can 

contain rare aquatic plants and animals. 

The observed variation in rarity scores is difficult to put into any functional context, although it 

is of value in fonnulating conseIVation priorities within the Soar valley when combined with the 

tloodplain equilibrium model. Assemblages associated with ungrazed sites at the ca" stage are 

likely to contain a higher than average proportion of rarer species. Sites which dry out 

completely on the swface in the summer have assemblages containing fewer specialist wetland 

species. Access by grazing stock disturbs succession and alters the species composition of 

assemblages. 
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Site S E R Lw La Ld 

SIc 21 5.63 2.9 84.91 7.87 1.4 

Sle 13 3.28 1.85 87.1 7.22 3.04 

Slw 23 6.45 2 91.19 5.27 1.35 

S5c 21 5.79 3.1 90.07 5.38 1.59 

S5e 21 6.54 2.57 90.72 5.02 1.87 

S5w 23 6.75 2.91 87.45 6.72 1.44 

S6 13 6.49 3.15 61.68 23.48 7.16 

S7 21 7.71 4.05 68.05 19.96 5.67 

S8e 23 5.9 5.7 88.01 6.84 1.48 

S8w 22 5.7 5.73 82.14 6.47 2.34 

S16 23 8.6 2.78 87.64 6.78 1.53 

S20 22 9.34 2.77 80.12 12.83 2.09 

S21 34 12.27 2.09 80.41 10.97 3.36 

S22 15 9.58 2.73 65.11 22.53 3.89 

S25 23 11.16 1.57 81.18 12.38 2.15 

S40 31 11.48 2.13 84.46 9.64 1.55 

S43 32 11.51 2.5 91.31 5.61 0.74 

S45 21 9.13 2 87.49 8.26 1.59 

S47 23 5.81 2.52 88.79 7.58 1.67 

S57 21 6.56 2.43 90.22 6.35 0.89 

S66 25 9.98 2.64 79.28 9.72 2.41 

S67 16 4.79 2.19 71.7 14.09 3.24 

S72 26 10.98 3.81 86.67 7.77 1.54 

S73 20 7.65 1.55 80.73 10.85 3.1 

S91 26 6.13 2.23 83.28 7.66 1.78 

S95 22 6.83 2.91 89.97 6.81 0.68 

S96 31 13.77 2 76.25 11.44 2.87 

Table 6.3: Values of species indices for floodplain sites. 
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Axis 1 Axis 2 
Species index rs p r. P 

S -0.25 n.s. -0.3 n.s. 

E 0.08 n.s. -0.06 n.s. 

R -0.08 n.s. -0.36 <0.05 

Lw -0.73 < 0.001 0 n.s. 

La 0.76 < 0.001 0.12 n.s. 

Ld 0.76 < 0.001 0.01 n.s. 

Table 6.4: Speannan's Rank Correlation Coefficients for associations between species indices 
and axis scores derived from CCA ordination of floodplain sites. 
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6.3 Variation in nature conservation evaluation criteria at main channel sites 

6.3.1 Introduction 

The investigations described in section 5.5 found that there was much less variation in species 

composition between main-channel sites than floodplain sites, but that management operations 

still had a significant effect on species assemblages at main-channel sites. Management 

operations which alter or resemble the natural disturbance of flooding could be expected to 

affect diversity indices in a fashion similar to that found in section 6.1. However, the 

management operation with the biggest impact on species composition was bank regrading and 

this type of disturbance was expressed differently to the general disturbance gradient identified 

in earlier investigations. Some species which preferred recently regraded sites are characteristic 

of intensively managed grassland. In contrast to naturally disturbed sites, it is possible that 

recently regraded sites support assemblages of ewytopic species similar to those which Turin 

and den Boer (1988) found to be associated with disturbed sites in the Netherlands. 

Consequently, we might expect to find that recently regraded sites have relatively low rarity 

scores and scores for Lw , the index of association with wetlands and relatively high scores for 

L and Ld , the indices of association with grassland and disturbed sites respectively. We might 
g 

also expect that according to the intermediate disturbance hypothesis, these sites have a lower 

species diversity, because of the disturbance involved in regrading. 

In section 5.5 the long term effects of bank regrading were found to be smaller and different in 

character from the short term effects and it was suggested that differences in slope and 

substrate of regraded banks may be responsible for long term changes in species composition. 

Lehmann (1965) found that artificial banks along the Rhine contained species more 

characteristic of adjacent land than the natural riverbank. Palmen & Platanoff (1943) found 

that steeper banks on K.arelian rivers tended to support a higher proportion of xeropbilic 

species. Because regraded banks tend to be steeper and therefore drier than natural banks, we 

might expect them to support species assemblages which contain a smaller proportion of 

wetland specialists. 
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6.3.2 Methods 

The species richness (S), evenness (E), local rarity index (R) and land use association indices 

for wetland (Lw)' grassland (Lg) and highly disturbed sites (Ld) were calculated for samples 

from all 30 sites investigated in section 5.5. 

The axis scores of the CCA ordination performed in section 5.5 were used to represent 

environmental variables for comparison with species assemblage parameters as in sections 6.1 

and 6.2. Speannan's rank correlation coefficient (rs) between each axis score and each species 

assemblage parameter was calculated using :MINITAB. 

fu addition, the means of each parameter were calculated for the sets of samples from each 

regrading class (REGRADO, REGRADl and REGRAD5). The significance of the differences 

in means was tested using the Mann-Whitney test. 

6.3.3 Resu~ts 

The values of all species assemblage parameters are shown in table 6.5. Values of the rank 

correlation coefficients are shown in table 6.6. In section 5.5, axis 1 was related to 

management and, in particular, the immediate impact of regrading. No significant correlations 

were found with species diversity or rarity index, but highly managed sites had a lower 

proportion of wetland species and a higher proportion of grassland and post-industrial species. 

Axis 2 was related to the general disturbance factor associated with flooding and grazing. 

Highly significant decreases in both measures of species diversity were found in more highly 

disturbed sites, but no correlations were found for indices of rarity or association with land use. 

Axis 3 was related to the long term effects of bank regrading. Correlations with species indices 

were very similar to axis 1 with a lower proportion of wetland species being found at regraded 

sites. Thus the observed differences in species composition between old and recently regraded 

sites were not reflected in conservation evaluation criteria. Although there tended to be fewer 

rare species at older regraded sites, the results were not significant at the 95% level of 

confidence. 

The mean values of species indices in each regrading class are shown in table 6.7. The 

significance of any differences according to the Mann-Whitney test are shown in table 6.8. 

The two diversity indices behaved differently. Species richness separated recently regraded 

sites from ungraded sites whereas evenness separated recently regraded sites from old regraded 
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sites. The most significant differences found were for land use association indices between 

recently regraded sites and ungraded sites. A lower proportion of wetland species and a higher 

proportion of grassland and post-industrial species were found in recently regraded sites. 

However, no significant difference was found for old regraded sites, preswnably because of the 

influence of the three sites which were mentioned in section 5.5 and which had acquired the 

physical characteristics of natural sites. 

6.3.4 Discussion 

These results combined with those from section S. 5 indicate that the disturbance caused by 

bank regrading has completely separate effects on riparian beetle assemblages from those 

caused by flooding. Correlation of the two species indices with scores on each CCA axis 

clearly shows that they respond to disturbance by flooding and grazing, but that they are 

affected neither in the short nor the long term by bank regrading. This would seem to 

contradict predictions made according to the intennediate disturbance hypothesis that highly 

disturbed sites should have a lower species diversity. The lack of response of species diversity 

indices to bank regrading contrasts with the findings of Nilsson et al. (1991), who fOlmd that 

riparian plant species richness in Sweden was lower along a regulated river than a natural river. 

By contrast, the land use association indices responded as expected to bank regrading and 

remained unaffected by other fonns of disturbance. The higher proportion of grassland species 

associated with undisturbed sites which was found in section 6.1, was not detected in this data 

set confined to main-channel sites. 

The higher proportion of post-industrial species on recently regraded sites is not unexpected 

given the similarity of the massive artificial disturbance of bank regrading to post-industrial 

demolition. However, their presence at old regraded sites is less easy to explain than the high 

proportion of grassland species at all regraded sites which is probably connected to steeper 

slopes, drier conditions and less vulnerability to flooding. These non-wetland species may be 

equivalent to the eurytopic species identified by Turin and den Doer (1988), but this was not 

reflected in significantly lower rarity scores, possibly because the higher recording effort 

expended on wetland sites in Leicestershire has resulted in low rarity scores for wetland species 

and, in consequence, relatively high rarity scores for eurytopic species. 

194 



Chapter 6: Variation in nature conservation criteria 

Site S E R Lw LR Ld 
4 29 8.14 4.17 85.71 8.7 3 

9 18 5.95 1.33 85.7 9.3 1.64 

11 11 3.01 4.91 89.13 5.1 2.72 

13 31 9.04 2.81 89.62 6.86 1.19 

17 36 12.1 2.67 87.63 8.19 1.25 

18 39 12.88 4.46 87.42 8.76 1.38 

23 24 9.88 1.88 87.3 7.41 2.56 

30 28 8.7 2.21 83.96 9.81 2.15 

31 25 8.36 2.4 89.55 6.67 1.42 

32 I 36 13.15 2.92 91.38 5.53 1.29 

33 14 5.34 1.29 87.49 7.03 1.97 

35 18 5.38 2.33 70.28 15.74 7.23 

36 23 8.92 2.3 83.71 10.42 2.88 

38 16 4.59 3.13 88.87 7.43 1.46 

39 32 12.08 2.5 82.08 10.4 3.93 

42 19 7.08 1.47 78.49 13.51 5.06 

44 11 7.93 3.27 89.63 6.62 1.41 

46 26 9.73 1.5 81.75 10.5 2.93 

48 18 7.26 1.61 69.48 18.78 6.98 

49 27 12.56 2.11 83.69 8.85 2.61 

50 23 10.93 3.39 78.55 11.62 4.41 

51 15 4.82 2 76.74 11.99 6.17 

52 14 4.01 2.5 68.64 13.91 10.39 

53 27 10.26 4.81 81.15 10.64 3.48 

54 25 8.13 2.04 88.84 7.47 1.02 

55 18 6.17 5.83 86.13 8.53 2.64 

58 24 7.38 2.04 83.82 7.68 4.21 

60 17 5.33 2.18 86.96 7.43 3.18 

62 14 4.87 1.93 84.18 10.95 1.94 

63 8 2.5 1.13 82.62 9.85 3.46 

Table 6. S: Values of species indices for main-channel sites sampled in 1992. 
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Axis 1 Axis 2 Axis 3 
Species index rs p r. P r. P 

S -0.2 n.s. -0.47 <0.01 -0.12 n.s. 

E -0.21 n.s. -0.S8 <0.001 0.08 n.s. 

R -0.1 n.s. -0.1 n.s. -0.26 n.s. 

Lw -0.42 <0.05 0 n.s. -0.39 <O.OS 

Lg 0.4 <0.05 -0.05 n.s. 0.42 <0.05 

Ld 0.33 <0.05 0.14 n.s. 0.36 <0.05 

Table 6.6: Speannan's Rank Correlation Coefficients for associations between species indices 
and axis scores derived from CCA ordination of main-channel sites sampled in 1992. 

REGRAD class 
Species index 0 1 5 

S 25.08 17.14 22.27 

E 8.36 5.72 8.74 

R 2.83 2.89 2.27 

Lw 87.07 80.47 82.03 

L, 7.94 10.51 10.62 

Ld 2.01 4.61 3.59 

Table 6.7: Mean values of species indices for samples within each class of site defined by 
history of bank regrading where 0 = never regraded, 1 = regraded the previous year,S::::: 
regraded between five and eight years previously. 

null hypothesis 
Species index Xo = Xl Xo=~ Xl =~ 

S <0.05 n.s. n.s. 

E n.s. n.s. <0.05 

R n.s. n.s. n.s. 

Lw <0.01 n.s. n.s. 

LIl <0.01 n.s. n.s. 

Ld <0.01 n.s. n.s. 

Table 6.8: Significances of differences in mean values of species indices between class of site 
defined by history of bank regrading, according to the Mann-Whitney test, where Xo ::: mean 
value of samples from sites which have never been regraded, Xl = mean value of samples from 
sites which were regraded in the prcM.OUS year, ~ = mean value of samples from sites which 
were regraded between five and eight years previously. 
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7 General Discussion 

The introduction to this thesis concluded with four questions concerning the measurement of 

the conservation interest of semi-aquatic beetle assemblages and the influence of river 

management practices. The following discussion now seeks to address these questions. 

7.1 Are there robust measurable attributes that we can use to describe beetle 
assemblages found on semi-aquatic habitat structures in a typical lowland 
river floodplain segment? 

7.1.1 Species composition 

As expected, a large number of species within the target families were recorded along the River 

Soar. The total of 281 species falls below the 300 to 500 species suggested by Foster (1987) 

for groups of value for site quality assessment, but Foster's recommendation was for use at a 

national scale rather than the landscape scale adopted by this investigation. 

Table 7.1 shows that 96% of the species belonged to two families, the Carabidae (ground 

beetles) and the Staphylinidae (rove beetles) with the Pselaphidae, Heteroceridae and Elateridae 

providing only a few species, most of which were not taken in large numbers. Even though the 

largest contingent of species are rove beetles, ground beetles form a comparatively large 

proportion of the most abundant species. Table 7.2 lists the twenty most abundant species. 

Over half are ground beetles. It can be argued that abundant, well-established species are most 

likely to be of practical use in the investigation of the effects of changes in environment, 

because they are more easily sampled, a criterion listed by Luff & Woiwod (1995) for selecting 

indicators of land use change. Also their presence is more likely to be linked to real 

environmental factors rather than stochastic factors such as vagrancy. Consequently, although 

more rove beetle species were recorded in the investigation, ground beetles are probably of 

equal value in interpreting the influence of environmental and management factors. Neither 

family could be said to be redundant, because ground beetles tended to be more diverse at 

disturbed main-channe1 sites and rove beetles more diverse at undisturbed floodplain sites. 

small numbers of species from non-target families were collected during sampling. The largest 

contingent of specimens from non-target species belonged to the Hydropbitidae. The species 

most often encountered were Helophorus aequa/is, H. brevipalpis, H. grand is, H. obscurus, 

Cercyon convexiusculus. C. marinus. C. tristis and C. ustulatus. A single specimen of the 
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No. of species in each abundance class Total no. 
Family 1 2 -10 11-100 101-1000 >1000 of species 

Carabidae 11 22 33 18 2 86 

Staphylinidae 32 67 59 25 1 184 

Pselaphidae 2 1 3 

Heteroceridae 2 2 

Elateridae 3 2 1 6 

Total 48 92 95 43 3 281 

Table 7.1: Numbers of species recorded in the investigation. 

Family Species Total abundance 

Carabidae Bembidion biguttatum 1,279 

Carabidae Agonum albipes 1,207 

Staphylinidae A theta graminicola 1,147 

Staphylinidae Atheta elongatula 887 

Staphylinidae Carpelimus rivularis 780 

Carabidae Bembidion aeneum 681 

Carabidae Bembidion clarki 671 

Staphylinidae Carpelimus subtilicornis 609 

Staphylinidae Stenus boops 601 

Staphylinidae Stenusjuno 591 

Carabidae Bembidion dentel/um 566 

Carabidae Agonum micans 563 

Staphylinidae Carpelimus impressus 507 

Carabidae Bembidion tetracolum 434 

Carabidae Bembidion guttula 426 

Carabidae Bembidion lunulatum 419 

Staphylinidae Chiloporata longitarsis 405 

Staphylinidae A theta fungi agg. 345 

Carabidae Bembidion gilvipes 339 

Carabidae Pterostichus nigrita 327 

Table 7.2: The twenty most abundant species in samples collected during the investigation. 
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riparian specialist, Cercyon bifenestratus was also collected. Specimens of Ptiliidae were also 

present in many samples and included two wetland species, Acrotrichis henrici and A. 

sitkaensis which were identified by Mr Colin Johnson from a small number of specimens sent 

to him. Samples also contained other wetland species in non-target families including the 

ladybirds, Anisostictus novemdecimpunctatus, Coccidula ru/a and C. scutellata, the weevils, 

Notaris aethiops. N. bimaculatus and N. scirpi and a variety of leaf beetles which feed on 

riparian plants. Samples from sites with large quantities of liUer sometimes contained s~eral 

ubiquitous species of Cryptophagidae and Lathridiidae. However, in all samples, both the 

numbers of specimens and the numbers of species from non-target families were small 

compared with ground beetles and rove beetles. 

The precise ranking of the most abundant target species listed in table 7.2 is affected by the 

selection of sites for sampling and the availability of habitat within those sites. However, all the 

species in the list can be said to be well established and thriving in semi-aquatic environments in 

the Soar Valley. Some such as Bembidion aeneum. B. lunulatum and Pterostichus nigrita, are 

also widespread in grassland, but others, such as Bembidion clarki, Agonum micans, 

Carpelimus impressus and C. subtilicornis appear to have more restrictive riverine or wetland 

habitats, at least within Leicestershire. 

48 species were represented in the samples by only one specimen. Many of these are not 

normally associated with semi-aquatic habitats and their occurrence in samples may be due to 

vagrancy. The list also includes Bembidion varium. Chlaenius vestitus, Deleaster dichrous, 

Stenus picipennis. Lathrobium impressum, Philonthus micans and Aloconota insecta, all of 

which are usually associated with riparian or wetland environments. They are unlikely to have 

maintained viable breeding populations at the sampling sites during the period of investigation, 

because these species are easily caught by the sampling methods used. The single specimens 

collected may well have been vagrants. However, other species recorded as single specimens 

may have been under-recorded because they are difficult to sample. Records held by the 

Leicestershire Biological Records Centre (LBRC) show that Trechus micros was recorded 

several times during the 1980s in flood refuse in the area of investigation. The subterranean 

habits of this species (Lindroth 1985) may have led to its absence from hand-collected samples. 

The single specimen of Selatosomus nigricornis was recorded from site 7 within the 

Loughborough Big Meadow SSSI, where, according to LBRC records, further specimens have 
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been collected from drier areas using pitfall traps. This suggests that there is an established 

population in the area. Selatosomus nigricornis has either been under-recorded in this 

investigation, possibly because of a short adult emergence period, or it has a drier habitat at 

Loughborough Big Meadow than would be expected from Hyman (1992) who reported that 

the larvae of this species develop in waterlogged soil. 

In addition to the 48 species represented by a single specimen, 92 species were represented by 

10 or fewer specimens. This class includes probable vagrants unassociated with semi-aquatic 

habitatc;. It also includes riparian and wetland species such as Lesteva pubescens, Bledius 

gallicus and T achyusa leucopus which are probably genuinely rare or ephemeral in the Soar 

Valley and further species which are possibly under-recorded. Carpelimus subtilis, 

Lathrobium pallidum and Atheta debilis ate all species whose partly subterranean habits may 

have affected their recorded abundance. 

Good separation of samples using species composition was achieved by DCA ordination as has 

been done by Desender et al. (1994) for ground beetles on Belgian riverbank sites and by 

numerous other workers for ground beetles in other habitats. The investigations described 

here, however, are the flfSt to use multivariate analysis on both ground beetles and rove beetles 

together in a riverine environment. The inclusion of rove beetles in the analysis has 

undoubtedly enhanced the analyses of undisturbed floodplain habitat structures, which tended 

to yield samples with a relatively low diversity of ground beetles. 

Significant relationships were found between species composition and environmental and 

management factors measured at the sampling site. Both indirect gradient analysis using DCA 

coupled with inter set correlation and direct gradient analysis using CCA appeared to be 

successful. However, any conclusions on relationships between environmental factors and 

species composition make assumptions about lack of sampling bias and these assumptions need 

some examination. 

The suspicion that the observed rarity of some species is due to sampling bias implies that there 

is a wider problem of variation in sampling efficiency between species. The dependence of 

observed species abundances on their catchability as well as real population levels is 

demonstrated by the differences in results gained by pitfall-trapping and hand-collecting (see 
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section 4.1). However, as long as the sampling bias remains constant along an environmental 

gradient, then it will not affect any correlation between that gradient and an axis of variation in 

species composition. Sampling bias influences observations of changes in species composition 

along an environmental gradient, only if the catchability of a species varies along that gradient. 

Therefore the observed relationships between species composition and environmental or 

management factors hold true if we assume that variation in sampling bias between sites is 

unimportant for any species. This assumption can probably be made with more justification 

for hand-collecting than for pitfall-trapping which relies on the activity of target species. The 

activity patterns of anyone species can clearly be affected by environmental gradients such as 

vegetation structure (Refseth 1980). Nevertheless, even for hand-collecting, this assumption 

cannot hold perfectly. The same species might occupy different microhabitats on different 

substrates and so vary in the ease with which it can be seen and captured along gradients 

related to substrate particle size and quantity of litter. 

A further bias may arise from site selection. The importance of random sampling for 

ecological investigation is stressed in many texts (Southwood 1978, Jongman et al. 1995). 

However, although the six sampling stations within each site were not selected randomly, the 

adopted stratified selection approach maximised within-site variation in prescribed 

environmental factors and so minimised any spurious between-site variation due to bias in 

selection of within-site sampling stations. Of more concern is the selection of whole sites. In 

the floodplain, small sites which dried out quickly in the summer were undoubtedly 

Wlder-represented in the data set. In fact the smaller sites which were visited in 1991 were 

fOWld to be WlSuitable for sampling after June using the adopted methods. However, the larger 

sampling sites represented a high proportion all the available sites in the study area. Ungraded 

stretches of the main-channel riverbank were found to be largely vertical, eroded structures, 

interspersed with occasional shallower slopes. The vertical banks were impossible to sample, 

both because of lack of area to sample and because of difficulty of access. This left a limited 

number of discrete sites for sampling which consisted of exposed sedimentary deposits and 

banks which had collapsed due to the trampling of cattle. Logistic considerations led to a bias 

in favour of easily accessible sites. This bias would have important consequences for any 

analysis, if it led to an environmental gradient being poorly represented in the sites used to 

collect the sample set, because such a gradient would not be expressed in any identifiable axis 

of variation in species composition. Consequently, the conclusions of this investigation assume 
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that an important environmental gradients are covered in the range of sites which were 

sampled. 

Despite the observed variation in seasonal and annual fluctuations in the abundances of 

individual species, the DCA ordinations described in section 4.2 were found to yield consistent 

ordinations of sites between April and July and from year to year. The only exception was for 

main-channel sites between years and this may reflect genuine annual fluctuations in species 

composition due to the dynamic nature of the main-channel environment. The robustness of 

these ordinations suggests that methods based on weighted averages can provide a powerful, 

cost-effective tool for classifying sites as a preliminaty stage in site evaluation as recommended 

by Margules (1986). Classification and quality scoring of sites at this scale has some 

application in the detailed design of river management schemes, where individual sites have to 

be prioritised for protection or enhancement. It is also be useful for designating floodplain sites 

for protection under local planning processes. However, individual sites are subject to 

modification by natural or human-induced fluvial processes and so the validity of an individual 

site classification and quality assessment has a limited lifespan. For most pwposes, rivers are 

nonnally classified and evaluated for conservation priority at a larger scale because of the 

ecological integrity of the whole system (Boon 1992). 

7.1 .2 Species diversity indices 

The evenness, E, for unpooled samples collected in the spring by hand, ranged from 2.50 to 

13.77. Although the value of E would not be expected to vary with sampling effort, it was 

found that the value of E increased in the pooled samples used in section 5.2 to a range of 3.39 

to 17.88. In fact, this increase may be unconnected with sampling effort. The pooled samples 

were collected in different months and so species with peaks of abundance at different seasons 

were all included in the same samples. This could have led to lower proportional species 

abundances in the aggregated species lists and, consequently, higher values of E. Therefore, 

the apparent sensitivity of E to sampling effort, may, in fact, be caused by pooling samples 

from different times of the season. By the same argument, E may be sensitive to the length of 

trapping period in pitfall trap studies. 

The species richness, S, ranged from 7 to 39 for unpooled, hand-collected samples. The 

dependence of S on sampling effort is well known (Southwood 1978) and the similar 
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arguments to those used for E can be applied to S with regard to repeat visits. Therefore, it is 

no surprise that values of S increased to between 14 and 45 for the pooled samples used in 

section 5.2. 

E and S perfonned in a very similar fashion in nearly all investigations. Figure 7.1 shows the 

graph of the square root of evenness (E) plotted against species richness (S) for the sample set 

used in the investigation descnbed in section 5.2. These two quantities are clearly related and 

can be expected to give similar responses to enviromnental variables. The obselVed close 

relationship is probably connected with the sampling method employed. At densely populated 

sites, most of the sampling time is taken up by collecting rather than searching. Approximately 

equal nmnbers of specimens were collected at each of these sites, because an equal amount of 

time was spent at all sites. 

In section 3.2.1, E was related to the slope of the graph of log species abundance plotted 

against species rank abtmdance using the equation: 

E = -1/ r (3.1) 

where r is the regression coefficient. If all samples contain equal nwnbers of individuals, then 

the area tmder the graph becomes a constant and E becomes proportional to Sl for a linear 

plot. 

Deviations from this relationship will occur 

1) where there is a non-linear relationship between log species abundance and rank abundance, 

2) in samples from sparsely populated sites where the number of recorded specimens is 

relatively small. 

3) in samples containing species which are easier or more difficult to catch. 

If sampling had been conducted by unit area rather than unit time, it is likely that this 

relationship would not have been observed. At sites with low population densities and high 

evenness, far fewer specimens would have been collected and the measured value of S would 

have been lower, although E would have remained relatively unaffected. 
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Figure 7.1: Plot showing relationship between Species Richness, S and the square 
root of Evenness, E for pooled samples from April and May 1991. 

203a 

SQRT E 



Chapter 7: General discussion 

Both E and S failed to provide consistent ranking of sites between different months and years 

(see tables 4.18 and 4.19). The only exception was for ranking of sites between years which 

was unexpected, because the equivalent lack of robustness of DCA axis scores and the large 

annual variations in values of S for main-channel sites both suggest a large annual turnover of 

species. In any case, the large annual fluctuations make impossible the comparison of 

main-channel sites sampled in different years. The lack of robuc;tness of these indices 

disqualifies their use for evaluating sites. Consequently, the general recommendation by Usher 

(1986) for using species richness as a conservation criterion, cannot be applied to beetle 

assemblages on semi-aquatic habitat structures in the Soar valley. However, species diversity 

indices may be more useful for conservation evaluation at a larger scale. 

One reason for the poor performance of species diversity indices at the site scale may be 

connected with the vagrant species identified in the previous section. These form Shrnida and 

Wilson's (1985) mass effects component of species diversity, but for the putposes of site 

evaluation or functional analysis, they lead to noisy data (Gauch 1982) by stochastically 

inflating values. Beetle assemblages may be more unsuitable for deriving species diversity 

indices than some other groups, because of the dispersive capabilities of many species. This is 

particularly the case for rove beetles. Bauer (1989b) estimated that 59% of rove beetle species 

recorded in a study of moorland were vagrants from other biotopes. In the present study, 54% 

of all recorded rove beetle species were represented by 10 or fewer specimens compared with 

38% of ground beetle species (see table 7.1), although not all of these species were vagrants. 

7.1.3 Rarity 

Of the 281 target species recorded, 34 are currently designated as of national significance on 

grounds of rarity (Hyman 1992, 1994). They are listed in table 7.3. They tended to be less 

frequently recorded than other species with 62% of them being ranked below the median rank 

of total abundance. 

The use of national rarity scores has several inherent theoretical advantages over the use of 

local rarity scores. Firstly, on a national scale, individual species rarities are derived from a 

wider information base and, therefore, less likely to suffer from any bias in the base line data 

used to calculate individual species rarities. Secondly, locally rare species are, by definition, 

unlikely to be regularly recorded and useful for comparing a large number of sites. By 
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Total Rank ConselVation 

Family Species Abundance AbWldance Status 

Carabidae Bembidion c1arlci 671 7 n 

Carabidae Bembidion gilvipes 339 19 n 

Carabidae Agonum livens 208 29 n 

Staphylinidae Gnypeta ripicola 97 49 n 

Staphylinidae Atheta hygrobia 49 69.5 n 

Staphylinidae Gabrius bishopi 30 94 n 

Staphylinidae Carpelimus similis 25 101 n 

Staphylinidae Dochmonota clancula 23 105.5 n 

Staphylinidae Gnypeta velata 22 108.5 n 

Carabidae Trechus discus 16 119 n 

Staphyl inidae Oxypoda exoleta 16 119 n 

Staphylinidae Brachyusa concolor 14 129.5 n 

Staphylinidae C alodera uliginosa 11 139.5 r 

Staphylinidae Myllaena elongata 9 148 n 

Staphylinidae Platystethus nodifrons 8 151.5 n 

Carabidae Pterostichus gracilis 6 161 n 

Carabidae Chlaenius nigricornis 5 169 n 

Staphylinidae Anotylus insecatus 4 182.5 n 

Staphylinidae Oxytelus fulvipes 4 182.5 n 

Staphylinidae Tachyusa coarctata 4 182.5 n 

Carabidae Acupalpus consputus 3 200.5 n 

Carabidae Pterostichus anthracinus 3 200.5 n 

Staphylinidae Stenus argus 3 200.5 n 

Carabidae Bembidion fumigatum 2 221.5 n 

Carabidae Bembidion obliquum 2 221.5 n 

Carabidae T achys parvulus 2 221.5 n 

Staphylinidae Carpelimus obesus 2 221.5 n 

Staphylinidae Carpelimus subtilis 2 221.5 n 

Staphylinidae Lathrobium paJlidum 2 221.5 r 

Elateridae Selatosomus nigricornis 1 258 r 

Staphylinidae Aloconota planifrons 1 258 r 

Staphylinidae Calodera riparia 1 258 n 

Staphylinidae Deleaster dichrous 1 258 n 

Staphylinidae Ilyobates propinquus 1 258 n 

Table 7.3: Species of national conselVation significance in samples collected during the 
investigation. Conservation status taken from Hyman (1992, 1994) where n = notable and r = 
provisional red data book status. 
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contrast, nationally scarce species which are locally widespread and easily sampled would make 

vel)' good quality indicators. It was, therefore, unfortunate that rarity indices based on national 

rarity did not give enough separation of samples to be useful over the whole range of sites. 

This was because there were insufficient classes of national rarity. All except the richest sites 

supported insufficient numbers of nationally rare species. fu. order to solve this problem, 

national rarity criteria could be extended to cover a wider range of sites by adding more rarity 

classes, as done by Archer (1996) who introduced classes of nationally restricted species, 

nationally Widespread species and nationally universal species for aculeate bees and wasps. 

Alternatively, regional rarity scores could be appended below the national scores to give a 

hybrid system as proposed by Falk (1996). 

Local rarity indices achieved good separation of samples because of the fine classification 

which separated relatively widespread species. Moreover, they produced consistent rankings of 

floodplain sites against seasonal and annual fluctuations which were generally small over the 

whole range of sites. Where they could be calculated, national rarity indices also proved to be 

robust for floodplain sites. Significantly consistent rankings of main-channel sites were not 

achieved using rarity indices. However, there was much more concordance in the ranking of 

sites than in the ranking of either months or years and further experimentation with different 

methods of calculation or sampling protocols might achieve better results. 

Because of their robustness, rarity indices have much more potential for conservation 

evaluation in the study sites than species diversity. They are possibly less affected by stochastic 

movements, because many vagrant species score low for rarity and have less influence on index 

values than resident rare species due to the geometric scoring system. 

7.1 .4 Land use indices 

Apart from odd cases, the land use indices investigated did not produce significantly consistent 

rankings of sites. They were primarily designed to investigate sampling bias and environmental 

gradients within the context of this study, but they could have some theoretical potential for 

conservation evaluation as a measure of typicalness, if the land use categories were converted 

to a finer classification based on habitat structures. Essentially, they would be a weighted 

average of the fidelities of each recorded species to a particular habitat structure with stenotopic 

species contributing high scores and eurytopic species contributing low scores. 
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Unfortunately the fidelity of a species to a habitat structure varies regionally and measures of 

fidelity are likely to be skewed by the baseline data used in their calculation (see section 1.3.4). 

Nevertheless, such an index may prove useful in predicting the effects of habitat structure 

management, if the index is based on data of local relevance. 

7.2 How are these descriptors affected by natural fluvial and successional 
processes? 

7.2.1 Species composition 

Species composition, as interpreted by multivariate analysis of weighted averages of species 

abundances, proved to be far more responsive to a wider range of environmental gradients than 

any other species assemblage parameter investigated. The observed importance of substrate 

particle size and percentage vegetation cover is in agreement with the results of previous work 

carried out on the microhabitat preferences of riparian grOlUld beetles (e.g. Palmen & Platanoff 

1943, Andersen 1969, 1983, Reid & E)Te 1985, Plachter 1986, Gerken et al. 1991). These 

preferences can be linked to the morphological adaptations of some riparian, adult ground 

beetles for a cursoriallifestyle (Evans 1990) or for hiding under coarse particles (Andersen 

1985a, Desender 1989). The importance of litter and shade has been less often mentioned and 

their observed importance in this study may be due to the inclusion of rove beetles in the 

analysis, the inclusion of floodplain sites in the study area, the sluggish, lowland nature of the 

River Soar, or a combination of these factors. However, in this study, the whole range of 

physical features at a site was found to be as important and possibly more important for species 

abundance than the features present at the microsite sampled (see section 5.1), even though 

previous studies have tended to concentrate on microhabitat preferences. 

All these physical features can be related to more fundamental environmental variables which 

can be related to the dynamics of natural fluvial processes. CCA was used to relate species 

composition directly to linear combinations of these environmental variables. Several 

important environmental factors were detected despite the coarse, ordinal values assigned to 

these variables at each site. A general disturbance factor related to both frequency and severity 

of flooding was found to operate across the whole range of sites and its effects could be 

detected in all the three sample sets analysed. These results agree with those of Sustek (1994) 

and Zulka (1994), who cited frequency of flooding as an important factor influencing ground 

beetle species composition in floodplain sites in two areas of central Europe. Sustek 
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interpreted differences between sites flooded by fast-flowing water and sites flooded by 

stagnant water as a response to a productivity gradient between oligotrophic and eutrophic 

poles, but functionally this gradient would appear to be related to severity of flooding. In 

studies on main-channel sites, many authors have described the habitats of individual groWld 

beetle species (Lindroth 1945, Andersen 1969, 1983, Reid & Eyre 1985, Plachter 1986, 

Desender 1989, Gerken et al. 1991) or assemblages (Desender et al. 1994) in tenns of 

substrate particle size and vegetation cover, but these parameters are both fimctions of the 

Wlderlying disturbance factor cOIUlected with flows during floods. 

A hydrological factor related to water level stability was fOWld to be the most important f;ictor 

in the floodplain sample set. There are very few published studies of beetle assemblages which 

attempt to identify important environmental variables away from main-channel sites. No 

influence of water level fluctuations on floodplain groWld beetle assemblages was identified by 

Sustek (1994), although it is possible that the major axis of variation which he associated with 

frequency of flooding was more related to hydroperiod than disturbance by flooding. Away 

from river systems, studies of peatland groWld beetle assemblages have shown the degree of 

saturation in the substrate to be an important influence (Butterfield & Coulson 1983, Holmes et 

al. 1993), while Landry (1994) characterised the habitats of marshland Agonum species by 

vegetation characters and these could be related to hydrological factors. Essentially, however, 

the conclusions in these works relate to a static hydrological model. In summary, the degree of 

instability in water levels has not previously been identified as important for semi-aquatic beetle 

assemblages, although pennanence or temporary nature of open water can be an important 

factor for aquatic beetles assemblages (Eyre et al. 1992) and in a literature review, Jeffries 

(1991) cited 12 references which fOWld that variations in physical stability (by which he meant 

drying out and flooding) had a significant effect on aquatic plants and animals in temperate 

ponds. The detection of its influence in the Soar valley may be a consequence of including 

rove beetles in the analysis. Ground beetles alone might exhibit a poor response to this variable 

because of their lower species diversity in floodplain habitat structures. 

Both the general disturbance factor and the degree of water level stability can be related to the 

equilibrium model wherein habitat structures are produced by the opposing forces of 

vegetational succession and disturbance by flooding. Figure 5.8 shows that the degree of water 

level stability has a non-linear relationship with the position of this equilibrium. Kangas (1990) 
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regarded fluctuations in water level as a type of disturbance which regulated succession. 

However, its effects on species composition are unrelated to those of the general disturbance 

factor. 

As well as the detection of influential combinations of environmental factors, CCA axis scores 

were also used to represent values of these factors and often achieved more significant results 

in the investigation of responses of other species assemblage parameters, than using raw 

environmental measW"ements. This may be because the CCA axis scores have the practical 

benefit of being based on gradients which maximise variation in species composition. A 

possible further reason lies in the coarse and ordinal measures used for raw environmental data. 

7.2.2 Species diversity 

Despite the lack of robustness of species diversity indices, they were found to be responsive to 

environmental gradients. However, they were vet)' selective, in that they were almost 

exclusively sensitive to gradients connected with the general disturbance factor even when the 

gradient was associated with less important axes of variation in species composition. Their 

response to the general disturbance factor appeared to fit predictions made from the 

intermediate disturbance theoty (Huston 1979) (see section 6.1). 

7.2.3 Rarity 

Despite the robustness of rarity indices, they were found to be much less responsive to 

environmental gradients than diversity indices. Undisturbed floodplain sites with fluctuating 

water levels were found to produce relatively high rarity scores, but, because they occupied 

intermediate positions along the main axis of ordination of tloodplain samples, they did not 

exhibit a linear relationship with the associated environmental gradient (see section 6.2). 

7.2.4 Land use indices 

As with species diversity indices, land use indices generally lacked robustness, but were 

responsive to some environmental variables. However, in direct conlTast to species diversity 

indices, land use indices were affected by stability of the water level in the floodplain and not 

by the general disturbance factor. Of course, this may be a function of the particular categories 

used to derive the indices used in this study. 
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7.3 Are these descriptors sensitive to management operations along the river 
and on adjacent land? 

All of the assemblage parameters exhibited sensitivity to at least one management factor, 

although, in the case of rarity, it proved difficult to detect. Regular access of cattle and bank 

regrading were both found to strongly affect the species composition of semi-aquatic beetle 

assemblages at a site, while species diversity indices varied with grazing pressure. The effects 

of impoundment were less marked, but still detectable. As with other environmental factors, 

land use indices exhibited a response to management operations which had a significant effect 

on species composition. The responses of species composition and species diversity to grazing 

were found to be very similar to their responses to the general disturbance factor, while the 

effects of impoundment on species composition were correlated with those of the general 

disturbance factor. 

7.4 Can we predict the impact of management operations from the response 
patterns of assemblages to natural processes? 

The observed responses of species assemblage parameters to management factors within the 

Soar valley suggest that, within the conceptual model of how fluvial and successional processes 

affect habitat structures, management operations influence beetle assemblages in three different 

ways: 

1) they directly affect fluvial and successional processes and so modifY 

habitat structures; 

2) they mimic fluvial and successional processes in the way that they 

affect habitat structures; 

3) they affect beetle assemblages in ways that are not predicted in the 

model. 

7.4.1 Management which affects fluvial and successional processes 

In section 5.5, the observed influence of impoundment for navigation was explained in terms of 

reduction of severity of disturbance and consequent modification of habitat structures, 

particularly through the deposition of fine sediment and the creation of conditions suitable for 

dense vegetation cover. 
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Similarly, the altered disturbance regime and consequent modifications of geomorphic 

structures produced by rechanneUing works (Brooker 1985, Brookes 1985, 1988, Bravard et 

al. 1986) and changes in catchment land use (Walling & Gregory 1970, Park 1977) can be 

expected to produce predictable changes in beetle assemblages. Floodplain assemblages may 

be particularly sensitive to changes. in the equilibrium between flooding disturbances and 

successional processes which influence water level stability (Bravard et al. 1986). In the Soar 

valley, the flood alleviation scheme will probably affect beetle assemblages outside the 

embankment through an acceleration of vegetational succession leading to terrestrialisation of 

carr and destabilisation of water levels in fen. Unfortunately, this prediction could not be tested 

within the timescale of this study. 

A reliable model of how fluvial processes modify habitat structures has considerable application 

in plarming the restoration of engineered rivers. Engineered rivers whose maintenance is 

subsequently neglected only have limited powers of natural recovery in the short tenn, 

depending on their stream-power (Brookes 1992). Consequently, active intelVention may be 

necessary to restore river channels and floodplains to a natural state which can support a full 

range of biodiversity. Many river management techniques have been developed for creating 

habitat structures as part of normal maintenance work (RSPB et al. 1994). Although these 

techniques are rarely designed for terrestrial invertebrates. the creation of meanders may result 

in the fonnation of point bars suitable for occupation by riparian beetles, the creation of 

floodplain pools may result in sites suitable for occupation by floodplain species and the 

creation of buffer strips to intercept agricultural run-off may provide suitable hibernation sites. 

Driver (1997) describes several schemes which have restored sections of English rivers and 

their floodplain. However, Brookes (1992) stressed the importance of assessing long term 

channel stability in the planning of such works. 

7.4.2 Management which mimics the effects of fluvial and successional processes 

Section 5.2.4 gives possible explanations for why regular access of cattle to a site affects 

species composition and species diversity along the Soar in a similar fashion to the general 

disturbance factor. Favoured wetland management practices not infrequently include at least 

low intensity grazing (e.g. Kirby 1992, Fojt 1994, Chatters 1995, Drake 1995). Grazing by 

wild animals would have been a natural phenomenon before the advent of agriculture. 

However, for the conseIVation of riparian and floodplain beetles, it is doubtful that grazing can 
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be successfully used to replace natural disturbance by flooding, because some species appear to 

be differentially sensitive to grazjng pressure, at least within the Soar valley. 

The long tenn effects of regrading can be seen as the result of artificially setting the steepness 

of the bank profile. Along the Soar, grassland species have replaced more specialist riparian 

species on older regraded banks which have subsequently been unaffected by natural fluvial 

processes (see section 5.5). Better design of bank profiles might encourage a more appropriate 

riparian fauna. An even better approach would be the imaginative \!Se of natural fluvial 

processes to produce replacement natural structures which did not interfere with the drainage 

function of the watercourse. 

The presence of riparian beetles at recently excavated gravel pits (Koch 1977, Plachter 1986) 

suggests that gravel extraction can also mimic fluvial processes by reproducing riparian habitat 

structures in the floodplain. However, Plachter's claim that pits can serve as refuges for 

endangered species associated with plant-free habitat structures takes no account of the long 

tenn vegetational succession that floodplain biotopes undergo. Gravel pits probably have more 

conservation value as artificial analogues of floodplain wetlands. 

7.4.3 Management whose effects are not predicted by the present model 

The failure of the current model to predict the short tenn responses of beetle assemblages to 

bank regrading (see sections 5.5 and 6.3) can be attributed to the false equation of rcgrading 

disturbance to the general disturbance factor. Regrading disturbance differs from flooding and 

grazing disturbance in three of Sousa's (1984) descriptors of disturbance. 

1) It is more severe, because it results in greater modification of the 

habitat. 

2) It occurs at a much lower frequency. 

3) It is much less predictable. 

It is now necessary to examine how these differences might find expression in the species traits 

of assemblages affected by each type of disturbance. 

212 



Chapter 7: General discussion 

Southwood (1977) viewed disturbance as the disruption of favourableness of the environment 

in time and space. He characterised environments according to the length of time between 

periods suitable for breeding in comparison with the time required to complete a life cycle. He 

also characterised environments according to the predictability of the disturbance. According 

to habitat templet theory, frequency and predictability of flooding are therefore critical in 

selecting species traits in the riparian and floodplain environment. Table 7.4 shows how the 

temporal scale of flooding may result in the selection of different species traits. 

On an annual timescale, flooding in the Soar valley occurs according to a predictable seasonal 

pattern which includes a high frequency of flooding during the winter. Superimposed on the 

seasonal pattern is a much more Wlpredictable high frequency pattern of flooding, often termed 

spates. Because spates happen on a much shorter timescale than the riparian beetle life cycle, a 

strategy based on investment in reproduction would be unsuccessful. Of course such a strategy 

would be possible if the life cycle was shortened, but known riparian beetle life cycles appear to 

be almost exclusively univolti.ne perhaps because of phylogenetic constraints. Instead there is 

evidence that riparian species are selected for a variety of morphological and behavioural traits 

which are used to escape the deleterious effects of spates. These traits include swimming 

ability (Joy 1910, Jenkins 1959, Andersen 1968, Zulka 1994), running or flying away from 

rising water (Andersen 1968) and survival of inWldation (Joy 1910, Palrnen 1945, 1949, 

Andersen 1968). The various hibernation strategies adopted by riparian beetles (palmen 1945, 

1949, Krogerus 1948, Andersen 1968) can be seen as a behavioural trait of advantage in 

surviving predictable annual disturbances. In life history terms these strategies represent an 

investment in survivorship, tenned A-strategy (Greenslade 1983), appropriate for adversity and 

environmental stress which varies along the second templet axis of Southwood (1988) rather 

than the r-strategy considered to be the usual selection for disturbed habitats. Riparian beetles 

view sub annual (=subgenerational) flooding as an environmental stress rather than a 

disturbance. Similar conclusions were reached by Richoux (1994) for floodplain water beetles 

which he considered to be closer to K -strategists than r-strategists. 

If there is any r-selection of life-history traits within the natural riparian environment, we can 

expect it to operate through unpredictable disturbances that occur on average at frequencies 

greater than or equal to one year. Consequently we might expect to find r-strategists along 

active rivers where new habitat structures are created or severely modified by floods which 
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Type of noodlng spates seasonal pattern channel-forming 
floods 

Frequency daily I weekly annual usually superannual 

Predictability unpredictable predictable unpredictable 

Timescale compared subgenerational equigenerational sUpeTgeneratio~ 

with life cycle 

Severity low to moderate low to moderate high 

Species traits allocation of resources allocation of resources allocation of resOW'Ces 
favoured to survivorship to survivorship during to dispersal and 

through morphological winter flooding by reproductive effort 
and behavioural traits hibernation (r-selection) ? 
(A-selection) (A-selection) 

Table 7.4. Predicted selection of species traits by flooding in riparian and floodplain 
environments 
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occur at superannual (= supergenerational) frequencies. Suitable structures for r-strategists 

should occur on rivers with high stream power or on sandy substrates and within river systems 

on unstable medial bars rather than more stable point bars. These conditions are not fOWld 

along the River Soar, but were present in the past and may still be locally present on the nearby 

Trent (Petts et al. 1992, Salisbury 1995). 

A lack of knowledge about lifespans and fecWldity makes it difficult to identify r-strategists 

among riparian beetles, although r-strategists would be expected to be good dispersers and 

colonisers. Very few brachypterous species were recorded along the Soar and this made it 

difficult to differentiate between dispersive abilities as responses to disturbance factors. Holeski 

(1984) characterised the beetle fauna on the banks of channelised rivers in Ohio as r-strategists, 

but gave no data on either the reproductive strategies or the dispersal abilities of the beetles as 

evidence for his assertions. Furthennore he claimed that all shore beetles are r-strategists, 

because they are frequently required to recolonise their sites after flooding. This assertion does 

not necessarily stand scrutiny from a comparison of the timescale of riparian disturbances with 

that of the beetles' generation time as recommended by Southwood (1977). Similarly, the 

discussions of Lehmann (1965) and Rehfeldt (1984) are based on assumptions which may 

have placed too much emphasis on recolonisation by flight as opposed to survival of floods in 

situ. 

The severity of grazing disturbance is of a similar order of magnitude to the subgenerational 

flooding disturbances that predominate along the Soar. Grazing disturbance occurs at higher 

frequencies than flooding disturbances, but its subgenerational periodicity may be the factor 

that produces similar species assemblage responses and favours A-strategists. On the other 

hand, bank regrading is an Wlpredictable, supergenerational and relatively severe disturbance. 

Habitat templet theory predicts that it should favour r-strategists. Support for this prediction 

comes from the higher values of the post-industrial land use index at regraded sites along the 

Soar. This index is based on the proportion in the assemblage of species which colonise highly 

disturbed demolition sites. 

Disturbance from bank regrading does not appear to have a natural analogue along the Soar in 

the same way that grazing disturbance mimics subgenerational flooding disturbance. However, 

a natural analogue may be present on more powerful rivers than the Soar. Indeed, the Trent 
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may have been an immigration source of some of the r-strategist colonisers of regraded banks 

on the Soar. ~10re likely sources, however, can be found in artificial biotopes such as arable 

land. 

The characterisation of subgenerational flooding and grazing disturbances as environmental 

stresses throws an interesting slant on the intermediate disturbance hypothesis. The responses 

of species diversity indices observed in section 6.1 must now be interpreted as responses to 

environmental stress. By contrast their lack of response to regrading disturbance, which is 

much closer to Huston's (1979) concept of disturbance, must be interpreted as a contradiction 

of the intermediate disturbance hypothesis. 

In addition to the problem of regrading, it must be acknowledged that the present model does 

not predict assemblage responses to several potentially important factors involving nutrient 

enrichment. \Vhile the model deals with the transport of Coarse Particulate Organic Matter to 

and from floodplain wetlands, Dissolved Organic Matter remains uncovered. However, there 

are indications (Hammond 1971, Green 1983, HoImes et al. 1993) that agricultural run-off and 

sewage discharge are all likely to have important effects on beetle assemblages. 

7.5 Practical applications 

7.5.1 Evaluation and management of fine exposed riverine sediments in the main 
channel 

This investigation has established the conservation value associated with fine sediments along 

the River Soar. This interest is probably repeated in other lowland river systems and the 

maintenance of these structures should be considered when drawing up catchment management 

plans. Proposed developments which cause changes in channel morphology and sediment 

load, need to be assessed for their impact on these sediments. The reduction of interest 

associated with intensive grazing suggests that influence over adjacent land use is a necessary 

supplement to positive river management. 

7.5.2 Design of rechannelling works 

The investigation also detected a long-term loss of characteristic riparian species from regraded 

banks, but there are indications that this can be redressed by creating more natural profiles and 

allowing sediments to build up naturally within the river channel. 
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7.5.3 Evaluation and protection of flood plain wetlands 

The high level of interest associated with undisturbed floodplain wetlands suggests either that 

Environment Agency river habitat surveys need to be extended into the floodplain, or that a 

parallel habitat survey is required for the floodplain. The evaluation of such features in the 

Soar floodplain has been combined with that of other features of existing or potential 

conselVation interest in a new rapid assessment system for the Soar valley which uses just four 

main criteria: stages of vegetational succession represented, size of feature, estimated age of 

feature and recent management history. Sites of potential interest for beetles are identified as 

those which meet the following criteria: 

a) carr, transitional fen or grassland, 

b) any size, 

c) over fifty years old, 

d) not subject to intensive grazing. 

It is likely that this system could be adapted to cover a wide range of lowland rivers. 

Identification of these sites for protection is a priority in lowland river systems, because they are 

often small-scale features which are vulnerable to changes in land use. The equilibrium model 

developed in this investigation demonstrates that they are also sensitive to hydrological changes 

caused by drainage and flood alleviation schemes. 

7.5.4 Gravel pit restoration 

Disused gravel pits are often managed for amenity purposes or as bird resetves. This 

management often involves the maintenance of open water bodies. In the absence of frequent 

flooding, the coarse sediments on the banks of these water bodies would quickly become 

clogged up with silt and overgrown with vegetation making them unsuitable for main channel 

beetles without regular mechanical disturbance. This would be costly and difficult to sustain. 

However, there is potential in reserving small pools for a minimum-intelVention style of 

management which would lead to the establishment of fen or carr. 
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7.5.5 River restoration 

The variation in species composition associated with different types of distw"bance has 

implications for river restoration design. Habitat diversity, and therefore species diversity, can 

be maximised by building in a variety of flow regimes both in the main channel and in 

associated floodplain wetlands. 
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8 Summary 

(1) A conceptual model for river floodplains was developed to postulate how fluvial 

and successional processes produce a variety of geomorphic and vegetational structures which 

serve as semi-aquatic habitats for terrestrial beetle assemblages exhibiting appropriate species 

traits. Distw"bance by flooding was regarded as an important process which interacts with 

vegetational succession to produce a dynamic equilibrium. It was argued that this model could 

be used to predict the effects of land use changes and river management operations. 

(2) 281 species from five target ground-living families were recorded from 69 sites 

m the floodplain of the lower Soar, a lowland river in an agricultural landscape in 

Leicestershire. 33 species were of national conservation significance, indicating that terrestrial 

beetles with semi-aquatic habitats form a major component of biodiversity within the riverine 

ecosystem. 

(3) Two methods of sampling ground-living beetles in semi-aquatic habitat 

structures were evaluated using multivariate analysis and non-parametric paired comparisons. 

Differences in species composition between timed hand-collected samples and pitfall trap 

samples were smaller than those produced by environmental and seasonal factors. Ground 

beetles were more abundant and rove beetles less abundant in pitfall trap samples. Smaller 

species were less likely to be captured by pitfall traps, but no significant differences in sampling 

efficiency were found for nocturnal, fossorial and cursorial species. Pitfall traps were found to 

be vulnerable to flooding during spates and interference by humans and grazing stock and 

failed to collect a representative sample from a floating mat of Glyceria maxima or from any 

site during September. Timed hand collected samples were used for all investigations of 

variations in species assemblage parameters. 

(4) DCA was found to give significantly consistent rankings of sites between April 

and June in each of two years, despite heavy flooding of sites in June of one of those years. 

Significantly consistent ranking of sites between years was only achieved for floodplain sites 

away from the main channel. 

(5) DCA was used to examine within-site variations in species composition at the 

microhabitat scale. Correlation of DCA scores with the two most important environmental 
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variables was found to be slightly better at the ecohabitat scale (c sOm long sampling sites) than 

at the microhabitat scale as might be expected from a consideration of an organism's 

requirement for several microhabitats during its whole life cycle. 

(6) Correlation of DCA ordination scores with environmental variables from 30 

sites showed the important influence on species composition of several physical resources 

which could be related to the more ftmdamental fluvial process of disturbance by flooding. 

The severity of disturbance was represented by an index derived from substrate particle size. 

The frequency of disturbance was represented by an index derived from hydrological 

continuity with the main channel. An additional index of grazing pressure was also calculated 

and all three indices were shown to have similar effects on species composition using CCA. 

Brachypterous species were found to be rare at all study sites. Wing-dimorphic species were 

found to favour less disturbed sites away from the main channe~ but no comprehensive 

relationship could be derived between disturbance and dispersive ability. 

(7) Frequency of flooding and grazing pressure also influenced species composition 

according to a CCA ordination of samples from 27 floodplain sites, but were found to be less 

important than an index related to water level stability which varied in a non-linear fashion with 

vegetational succession. 

(8) In a sample set of 30 main channel sites which included engineered sites, CCA 

found that bank regrading had a major effect on species composition which lasted for less than 

five years. The long term effects of bank regrading were less important and were possibly 

connected with the steeper profile of artificial banks. Impoundment for navigation also had a 

less important effect which could be explained by its influence on the disturbance regime. 

(9) In order to evaluate the suitability of various species assemblage parameters for 

comparing sites, their robustness against seasonal and yearly factors was tested using Kendall's 

coefficient of concordance. Seasonal variations in site rankings of species diversity indices 

indicated a lack of robustness. Significant rankings of sites between years was achieved for 

species richness, but consistent variations of each yearly set indicated potential problems for 

comparison of sites sampled in different years. Rank correlation of CCA axis scores and 

species assemblage parameters was found to be an effective method of detecting relationships. 

Species diversity indices proved to be exclusively sensitive to disturbance by flooding and 
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grazing among the environmental variables investigated. These results could not be fitted to 

predictions of the intennediate disturbance hypothesis, because the frequency of these 

disturbances does not match the concept of disturbance used in the hypothesis. The recorded 

species richness and evenness of sites were found to be closely related, probably as a result of 

using timed hand collecting as the sampling method. 

(10) A rarity index based on local species rarity was found to be robust for 

floodplain sites away from the main channel and insensitive to most environmental variables. 

It, therefore, has potential in conservation for evaluating site quality. Undisturbed floodplain 

wetlands with fluctuating water levels were frequently found to have high rarity indices, despite 

their lack of recognition for conservation interest in other taxonomic groups. 

(11) F or each sample, land use indices were calculated from the average of the 

proportion of local records of each species which were associated with wetlands, grasslands 

and highly disturbed post-industrial sites. They were not robust against seasonal and yearly 

factors, but were sensitive to a number of environmental variables. They were used to interpret 

variations in rarity indices and species composition, but they could be adapted as a measure of 

typicalness for conservation purposes. 

(12) The effects of impoundment could be explained by the conceptual model in 

tenns of modification of the severity of flooding disturbance. The effects of grazing pressure 

could be explained in tenns of a disturbance which mimics disturbance by flooding. The short 

tenn effects of bank regrading could not be explained by the model without distinguishing 

between two types of disturbance based on differences in severity, predictability and frequency 

compared to the generational timespan of beetles. Further work on a larger river than the Soar 

is required to study a natural analogue of this type of disturbance. 
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6 7 P. vernalis 1 Gabrius bishopi 

1 StaphyHnidae Geostiba circellaris 1 

1 11 Alianta incana 1 Phi/onthus cognatus 

3 2 Anotylus rugosus 2 stenus boops 1 1 

7 15 Atheta fungi agg. 2 2 S.juno 

1 1 A. graminico/a 19 9 18 S.pubescens 1 

2 A. Jaticollis 5 s. solutus 

3 A. malleus 2 Sunius propinquus 1 

A. vo/ans 1 Tachinus signatus 

2 Carpelimus bilineatus 2 Tachyporus obtusus 3 4 

1 C. corlicinus 2 T. pallidus 1 

1 C. rivularis 1 1 T. solutus 1 

3 c. subtilicornis 1 Tachyusa atra 1 
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Appendix 3A 

Values of environmental measurements at sampling stations in May 1991 

Sampling Substrate composition Surface Bare ground Surface litter 
Station silt sand litter moisture sub-sample whole site sub-sample whole site 

SIA 1 0 9 3 0 2.7 2 0.8 

SIB 6 0 4 1 1 2.7 0 0.8 

SIC 6 0 4 1 6 2.7 1 0.8 

SID 10 0 0 1 0 2.7 0 0.8 

SlE 10 0 0 1 9 2.7 0 0.8 

SlF 0 0 10 3 0 2.7 2 0.8 

S2A 0 10 0 1 3 3.8 0 0.2 

S2B 4 4 2 2 8 3.8 0 0.2 

S2C 0 8 2 1 5 3.8 1 0.2 

S2D I 2 2 6 2 1 3.8 0 0.2 

S2E 6 2 2 1 3 3.8 0 0.2 

S2F 6 0 4 2 3 3.8 0 0.2 

S3A , 0 4 0 0 7 6.3 0 0 

S3B 8 2 0 0 10 6.3 0 0 

S3C 10 0 0 0 5 6.3 0 0 

S3D 8 0 2 0 6 6.3 0 0 
I S3E 8 0 2 0 5 6.3 0 0 

S3F I 8 0 2 1 5 6.3 0 0 

S4A ! 4 2 4 1 8 7 1 0.8 

S4B 4 2 4 2 9 7 1 0.8 

S4C 2 6 2 1 6 7 1 0.8 

S4D 4 2 4 1 9 7 1 0.8 

S4E 2 4 4 1 5 7 1 0.8 

S4F 2 6 2 1 5 7 0 0.8 

S5A 0 0 10 2 0 0 3 2.7 

S5B 0 0 10 I 0 0 3 2.7 

S5C 0 0 10 2 0 0 3 2.7 

S5D 0 0 10 2 0 0 3 2.7 

S5E 2 0 2 1 0 0 2 2.7 

S5F 2 0 4 1 0 0 2 2.7 

S6A 8 0 2 0 0 0.5 1 0.5 

S6B 4 0 6 1 1 0.5 0 0.5 
I S6C 6 

I 
0 4 1 0 0.5 0 0.5 I 

r--~--~ 

8 0 2 2 2 0.5 0 0.5 : S6D c ___ ~ 
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S6E 8 0 2 0 0 0.5 I 0.5 

S6F 6 0 4 1 0 0.5 1 0.5 

S7A I 0 9 0 0 0.2 2 I.S 

sm 0 0 10 1 0 0.2 2 1.5 

S7C 2 0 8 1 0 0.2 2 1.5 

S7D 4 0 6 0 1 0.2 1 1.5 

S7E 4 0 6 0 0 0.2 I 1.5 

S7F 4 0 6 0 0 0.2 1 1.5 

S8A 2 0 8 1 0 0.8 2 1.2 

S8B 2 0 8 I 2 0.8 1 1.2 

S8C 6 0 4 1 2 0.8 1 1.2 

S8D 6 0 4 I 3 0.8 1 1.2 

S8E 6 0 4 1 0 0.8 0 1.2 

S8F 6 0 4 I 0 0.8 2 1.2 

S9A 8 2 0 1 6 3.2 0 0.3 

S9B 4 6 0 I 6 3.2 0 0.3 

S9C 2 8 0 1 6 3.2 0 0.3 

S9D 8 0 2 1 7 3.2 1 0.3 

S9E 2 8 0 0 2 3.2 I 0.3 

S9F 4 6 0 1 2 3.2 0 0.3 

S10A 8 0 2 1 10 5.7 0 0.5 

SlOB 0 10 0 1 9 5.7 1 0.5 

SlOC 0 10 0 1 3 5.7 1 0.5 

SIOD 0 10 0 0 0 5.7 0 0.5 

SlOE 0 10 0 1 2 5.7 1 0.5 

SlOF 10 0 0 1 10 5.7 0 0.5 

SllA 2 4 0 I 8 6.5 0 0 

SllB 8 0 2 1 3 6.S 0 0 

Slle 8 0 2 1 7 6.S 0 0 

SllD 8 0 2 1 2 6.5 0 0 

SllE 0 0 0 I 10 6.5 0 0 

SllF 2 2 0 1 9 6.5 0 0 

S12A 8 0 2 1 9 5.7 0 0.8 

S12B 4 0 6 2 6 5.7 1 0.8 

S12C 4 0 6 1 8 5.7 2 0.8 

SI2D 6 0 4 2 0 5.7 2 0.8 

SI2E 6 0 4 1 4 5.7 0 0.8 
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S12F 8 0 2 1 7 5.7 2 0.8 

S13A 6 0 4 2 7 4.5 1 1.1 

S13B 4 0 6 1 1 4.5 2 1.1 

S13C 4 0 6 1 7 4.5 1 1.1 

S13D 2 6 2 1 3 4.5 1 1.1 

S13E 2 6 2 1 1 4.5 1 1.1 

S13F 8 0 2 2 8 4.5 1 1.1 

S14A 2 2 0 1 9 5 0 0.3 

S14B 2 2 2 2 6 5 1 0.3 

S14C 2 4 0 1 9 5 0 0.3 

S14D 2 6 0 1 1 5 0 0.3 

S14E 4 2 0 1 2 5 1 0.3 

S14F 0 10 0 1 3 5 0 0.3 

S15A 4 0 6 1 0 3.2 2 1.7 

S15B 4 0 6 2 0 3.2 3 1.7 

S15C 6 0 4 1 1 3.2 2 1.7 

S15D 6 0 4 1 4 3.2 1 1.7 

S15E 6 0 4 1 7 3.2 1 1.7 

S15F 6 0 4 1 7 3.2 I 1.7 

S16A 4 0 6 1 0 0.8 I 1.2 

SI6B 2 0 8 1 0 0.8 1 1.2 

SI6C 2 0 8 2 1 0.8 1 1.2 

SI6D 2 0 8 1 1 0.8 1 1.2 

SI6E 2 0 8 1 3 0.8 1 1.2 

S16F 2 0 8 I 0 0.8 2 1.2 

S17A 6 0 4 1 7 2.3 1 1.2 

SI7B 6 0 4 1 2 2.3 2 1.2 

S17C 6 0 4 1 0 2.3 0 1.2 

SlID 6 0 4 1 1 2.3 1 1.2 

SI1E 8 0 2 1 3 2.3 1 1.2 

S17F 8 0 2 1 1 2.3 2 1.2 

S18A 4 0 6 1 0 4 3 1.2 

SI8B 8 0 2 1 7 4 0 1.2 

S18C 0 0 10 2 0 4 3 1.2 

S18D 8 2 0 2 7 4 0 1.2 

S18E 4 6 0 1 6 4 0 1.2 

S18F 2 8 0 1 4 4 1 1.2 
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S19A 4 0 6 2 8 3.8 1 1 

S19B 8 0 2 1 0 3.8 1 1 

S19C 2 0 8 2 4 3.8 1 1 

S19D 6 0 4 1 2 3.8 1 1 

SI9E 8 0 6 2 0 3.8 2 1 

S19F 2 8 0 1 9 3.8 0 1 

S20A 6 0 4 1 5 2 1 1.8 

S20B 6 0 4 1 0 2 2 1.8 

S20C 4 0 6 2 4 2 2 1.8 

S20D 4 0 6 1 3 2 2 1.8 

S20E 4 0 6 1 0 2 2 1.8 

S20F 4 0 6 1 0 2 2 1.8 

S21A 8 0 2 2 4 2.3 1 1.3 

S21B 8 0 2 1 2 2.3 0 1.3 

S21C 6 0 4 2 0 2.3 3 1.3 

S21D 2 0 8 2 3 2.3 2 1.3 

S21E 6 0 4 1 0 2.3 1 1.3 

S21F 2 0 8 2 S 2.3 1 1.3 

S22A 8 0 2 1 0 0 2 1.3 

S22B 10 0 0 0 0 0 0 1.3 

S22C 8 0 2 0 0 0 2 1.3 

S22D 8 0 2 1 0 0 2 1.3 

S22E 8 0 2 1 0 0 1 1.3 

S22F 8 0 2 0 0 0 1 1.3 

S23A 8 0 2 2 7 3.7 1 0.8 

S23B 8 0 2 1 3 3.7 1 0.8 

S23C 8 0 2 2 8 3.7 0 0.8 

S23D 8 0 2 1 8 3.7 1 0.8 

S23E 8 0 2 2 9 3.7 1 0.8 

S23F 8 0 2 2 5 3.7 1 0.8 

S24A 10 0 0 2 9 7.3 0 0 

S24B 8 0 2 1 7 7.3 0 0 

S24C 10 0 0 1 8 7.3 0 0 

S24D 10 0 0 1 8 7.3 0 0 

S24E 10 0 0 1 9 7.3 0 0 

S24F 10 0 0 0 3 7.3 0 0 

S25A 8 0 2 1 7 1.8 0 1 
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S25B 4 0 6 2 0 1.8 2 1 

S25C 4 0 6 2 0 1.8 1 1 

S25D 8 0 2 2 1 1.8 0 1 

S25£ 8 0 2 2 3 1.8 0 1 

S25F 2 0 8 1 0 1.8 3 1 

S26A 8 0 2 1 6 4.8 2 0 

S26B 8 0 2 1 3 4.8 1 0 

S26C 10 0 0 1 6 4.8 0 0 

S26D 8 0 2 1 4 4.8 1 0 

S26E 8 0 2 1 3 4.8 0 0 

S26F 8 0 2 1 5 4.8 1 0 

S27A 2 2 6 1 0 3.3 3 0.8 

S27B 2 6 2 0 6 3.3 0 0.8 

S27C 4 4 2 0 4 3.3 0 0.8 

S27D 8 0 2 0 2 3.3 2 0.8 

S27E 8 0 2 0 6 3.3 0 0.8 

S27F 8 0 2 0 2 3.3 0 0.8 

S28A 0 6 4 2 4 6.3 1 1 

S28B 0 4 6 1 8 6.3 1 1 

S28C 1 7 2 1 8 6.3 0 1 

S28D 2 2 6 1 9 6.3 1 1 

S28E 8 0 2 1 8 6.3 1 1 

S28F 2 6 2 0 0 6.3 2 1 

S29A 6 2 2 2 1 3 0 0.7 

S29B 10 0 0 1 1 3 1 0.7 

S29C 8 0 2 1 1 3 1 0.7 

S29D 6 2 2 1 3 3 1 0.7 

S29E 10 0 0 1 7 3 0 0.7 

S29F 10 0 0 1 5 3 1 0.7 

S30A 8 2 0 1 6 4.5 0 0.5 

S30B 8 2 0 2 9 4.5 0 0.5 

S30C 2 0 8 2 0 4.5 2 0.5 

S30D 6 0 4 1 2 4.5 0 0.5 

S30£ 6 0 4 1 5 4.5 0 0.5 

S30F 6 0 4 2 7 4.5 1 0.5 
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Site Grid Dates 
no. ref visited SIUNGLE 

SI 525219 11147/5 0 

S2 534221 25/410/5 0 

S3 535220 22'410/5 1 

S4 539220 221413/5 0 

S5 541220 3/48/5 0 

S6 537217 22'413/5 0 

S7 539215 3/48/5 0 

S8 541216 3/48/5 0 

S9 543216 11149/5 0 
w 
~ 810 544215 9/49/5 0 

811 553206 1214 10/5 3.3 

812 553203 1214 10/5 0 

S13 565183 26141515 0 

814 565182 261414/5 2.3 

815 566179 2813 9/5 0 

816 567178 29/38/5 0 

817 568177 29/39/5 0 

S18 571174 2813 9/5 0 

819 568170 10/4 19/5 0 

S20 568169 10/4 19/5 0 

S21 567168 10/4 19/5 0 

Environmental and management scores for sites sampled in April and May 1991 

Values for environmental and managemement factors 

SAND SILT CPOM Ll1TER SHADE BAREGRD HIBSITES DWATER CONNECT NAlDIST GRAZING 

0.5 5 4.5 1.1 2 3.2 1 1 2 0.8 1 

4.5 3 2.5 0.2 3 4.1 1 1 1 1.3 2 

6.3 1.4 1 0.1 3 6 1 2 4 1.4 2 

3.2 3.3 3.5 0.9 0 6.4 1 2 4 1.3 0 

0 1.1 7.6 2.7 4 0 1 1 1 0.2 0 

0 6.8 3.2 0.3 0 0.3 0 4 1 0.9 2 

0 2 8 1.6 0 0.1 1 4 1 0 0 

0 4.7 5.3 1.4 9 0.9 1 3 1 0.7 0 

4.2 5.5 0.3 0.3 0 4.8 0 2 3 1.4 2 

5.8 3.7 0.5 0.5 0 5.8 0 2 4 1.6 2 

1.8 4.2 0.7 0 0 6.8 0 2 4 2 0 

0 6 4 0.8 6 5.8 1 2 2 0.8 1 

2 4.8 3.2 1.2 0 4.3 1 2 4 1.2 0 

4.1 3.3 0.3 0.6 2 5 1 2 3 1.8 0 

0 5.8 4.2 1.3 0 3.2 1 1 4 0.7 0 

0 2.5 7.5 0.9 9 0.5 1 3 1 0 0 

0 6.7 3.3 1.5 1 1.8 1 1 4 1 0 

2.5 3.8 3.7 1.3 2 3.3 1 1 4 1 0 

1.3 3.8 4.8 1.1 9 3.3 1 2 2 0.5 0 

0 4.2 5.8 1.9 7 1.6 1 3 1 0.2 0 

0 5 5 1.3 9 4.1 1 3 1 0.6 0 
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IN -o 

S22 566165 1014 19/5 

S23 575163 281419/5 

S24 577165 15/4 13/5 

S25 578166 28/41815 

S26 576167 20/41215 

S27 577167 14/4 13/5 

S28 578167 26/413/5 

S29 578167 27/415/5 

S30 582168 27/4 19/5 
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0 
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0 8.3 

0 8 

0 9.8 

0 6 

0 8.2 

2 5.3 

4.4 2.8 

0.7 8.2 

1 6.7 

1.7 1.5 3 

2 0.6 0 

0.2 0 3 

4 0.8 7 

1.8 0.3 3 

2.7 1.1 0 

2.8 0.8 5 

1.2 0.4 1 

2.3 0.6 0 

0.2 1 4 1 

7 0 2 4 

7.4 0 2 4 

1.4 1 3 1 

4.3 1 2 3 

2.8 1 2 3 

6.1 1 2 4 

3.3 0 2 4 

4.6 0 1 4 

1 2 

1 2 

1 2 
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Appendix3C 

Environmental and management scores for floodplain sites 

Site Grid Date Values for environmental and managemement factors 
no. ref. visited SHADE GRAZING IMPOUND DWATER 
SIc 525219 30/05194 1 1 0 1 
Sle 525219 30/05/94 0 2 0 2 
Slw 525219 31105/94 6 2 0 2 
S5c 541220 8/5/93 4 0 0 1 
S5e 541219 8/5/93 2 0 0 2 
S5w 540220 8/5/93 5 0 0 1 
S6 537217 13/5/91 0 2 0 4 
S7 539215 8/5/91 0 0 0 4 
S8e 542216 4/5/93 8 0 0 3 
S8w 541216 4/5/93 9 0 0 3 
S16 567178 19/5/93 9 0 1 3 
S20 568169 19/5/91 7 0 0 3 
S21 567168 19/5/91 9 0 0 3 
S22 566165 19/5191 3 2 0 4 
S25 578166 18/5/91 7 1 0 3 
S40 492281 1115/92 3 0 1 2 
S43 492278 23/5/92 1 0 1 2 
S45 491261 14/5/92 0 0 1 2 
S47 498249 13/5/92 8 1 1 4 
S57 534217 2214/92 0 0 0 2 
S66 586153 7/6/92 9 1 1 3 
S67 588153 10/4/92 2 2 1 4 
S72 570175 19/5/93 9 0 1 3 
S73 569176 19/5/93 8 0 1 4 
S91 569175 10/5/94 8 0 1 3 
S95 488298 19/5/92 0 0 1 2 
S96 483294 11/6/91 0 2 1 2 
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Enviromnental and management scores for main charmel sites sampled in 1992 

Site Grid Date Values for managemement factors 
no. ref. visited REGRADO REGRADl REGRAD5 GRAZING IMPOUND 
4 539220 2214 1 0 0 0 0 
9 543216 23/4 1 0 0 1 0 
11 553206 20/5 1 0 0 0 0 
13 565183 7/5 1 0 0 0 0 
17 568177 26/5 1 0 0 0 1 
18 571174 26/5 1 0 0 0 1 
23 575163 7/5 1 0 0 1 0 
30 582168 26/5 1 0 0 I 1 
31 491306 19/5 0 0 1 1 1 
32 491305 19/5 0 0 1 1 1 
33 491302 19/5 0 0 1 0 1 
35 488294 19/5 0 0 1 1 1 
36 495293 23/5 0 0 1 0 0 
38 494290 14/5 1 0- 0 0 0 
39 491285 14/5 0 0 1 0 1 
42 491279 23/5 0 0 1 1 1 
44 491262 14/5 0 0 1 0 1 
46 496250 13/5 0 0 1 0 1 
48 497244 13/5 0 0 1 1 1 
49 497241 13/5 1 0 0 0 1 
50 498241 13/5 0 0 1 I 1 
51 510233 26/5 0 1 0 1 1 
52 519221 17/5 0 1 0 0 1 
53 523219 3/5 0 1 0 0 1 
54 524218 3/5 1 0 0 1 0 
55 526219 3/5 0 1 0 1 0 
58 544215 26/5 0 1 0 1 0 
60 550208 20/5 1 0 0 0 0 
62 550208 4/5 0 1 0 0 0 
63 553207 4/5 0 1 0 1 0 
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