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Abstract 

There is an increasing uptake of Natural Flood Management (NFM) and land use 

management (LUM) schemes to tackle excessive, rapid runoff in rural catchments. At 

the local scale, there is a growing knowledge base regarding the impacts of NFM and 

LUM. However, evidence and understanding of how these local impacts manifest at a 

larger catchment scale is less well understood. 

There are many types of model that have been used for investigating NFM and LUM 

impacts at larger scales (>10 km2), ranging from the comparatively simple lumped 

conceptual approaches to more complex, physically-based, distributed models. How 

best to represent NFM and LUM impacts in models is ambiguous. This thesis presents 

research into impact modelling of flood mitigation measures from the hillslope to the 

catchment scale, using the lumped FEH rainfall-runoff model and a novel physically-

based, distributed model, Juke. A Flood Impact Modelling (FIM) methodology is 

proposed for rapid impact assessment using the FEH approach; FEH hydrographs are 

generated for sub-catchments and routed to the outlet. The impact of changes in timing 

and runoff generation in specific sub-catchments on the downstream hydrograph can be 

investigated to inform catchment planning. The Juke methodology is designed to make 

best use of field observations and existing GIS datasets for parameterising the runoff 

and routing components. Juke uses some of the knowledge embedded in the FEH 

approach regarding the timing and runoff generation and applies it spatially. Juke is 

capable of emulating the FEH, but also allows consideration of spatial changes in LUM. 

Two catchments in the north of England have been instrumented to characterise the 

rainfall-runoff behaviour and understand what causes the largest flood events, where 

NFM and LUM have taken place. This knowledge informs the LUM and NFM 

scenarios explored as well as for model parametrisation. Results from the lumped FEH 

modelling suggest that the mitigation of flood flow by managing the volume and timing 

of fast runoff will have the greatest impact on floods caused by short duration, high 

intensity rainfall events. The Juke modelling also suggests that the impact of NFM and 

LUM is likely to be minimal (<10 % flood peak reduction for 12 % coverage of riparian 

woodland) and depends on the duration and intensity of rainfall events and the internal 

synchronisation of the component sub-catchments. The flood peaks for some events 
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may increase due to the effects of timing and synchronisation of flows from the 

landscape elements.  

The outcomes of this thesis recommends flood managers make field observations to 

better understand the causes of flooding within a catchment. Schemes using NFM and 

LUM are likely to be most beneficial for comparatively small catchments (<10 km2) 

that suffer from frequent flooding from short duration, high intensity rainfall. 
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Chapter 1. Introduction 

1.1 Background 

Recent flooding in the UK has brought to the fore a debate about the way in which 

flood hazard is managed. There is a growing interest, especially within the media, for 

greener, nature-based solutions as an alternative to the traditional use of hard-

engineered walls and embankments (Monbiot, 2015a; Monbiot, 2015c). Interest in 

alternative methods had been roused prior to this as a result of many locations, such as 

Keswick and Carlisle in Cumbria, having had formal engineered defences overwhelmed 

in December 2015 (BBC, 2014; BBC, 2015; Monbiot, 2015b). There is also a growing 

appreciation from Government Agencies (e.g. EA) that they cannot keep building ever 

bigger defences. Nature-based flood management options include Land Use 

Management Change (LUMC) and the use of landscape interventions termed Runoff 

Attenuation Features (RAFs), both of which fall under the wider banner of Natural 

Flood Management (NFM). It is widely accepted that increased agricultural intensity in 

the UK has led to increased volumes of fast flows contributing to flooding (O’Connell 

et al., 2004; O’Connell et al., 2007). Flood risk and catchment managers also have to 

contend with the potential for flood risk increasing in the future due to climate change 

(Kendon et al., 2014).  

The potential for land use impacts to increase flood hazard has been demonstrated 

through numerous plot and field scale studies. Soil compaction due to heavy machinery 

and repeat trafficking, as well as heavier and greater stocking densities of livestock, 

have been demonstrated to reduce infiltration and increase soil bulk density (Bilotta et 

al., 2007). As the dominant land use in the UK, agriculture (accounting for c.a. 70 % of 

the land cover) has the potential to play a significant role in the mitigation of flood 

hazard. This could be through more hydrologically sensitive farming, for example 

reducing compaction and providing cover crops over winter. These types of 

intervention have been proven to increase the infiltration and storage capacity of the 

soil, therefore potentially reducing the volumes of both saturation and infiltration excess 

runoff.  

Detecting and identifying land use impacts in historic runoff records has not been 

possible for numerous reasons, including; (1) non-stationarity of the climate and 

antecedent conditions; (2) data errors and uncertainty due to the limited length of 
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observed records; (3) additional unknown and uncontrollable factors within the 

catchment (e.g. dredging, straightening or construction and urbanisation). Each of these 

factors makes attributing any changes in the hydrological response to LUMC very 

difficult. 

One method for investigating how LUMC impacts on flood risk at larger scales is to 

make use of computational models, where the modeller has direct influence over the 

changes made, thus making the link between cause and effect more transparent. There 

are numerous considerations to be made, however, when selecting the use of models. 

For example, what complexity of model to use? Comparatively simple, lumped rainfall 

runoff models, with a limited number of parameters or more complex, distributed 

physics-based models. There is limited evidence regarding LUMC impacts at spatial 

scales larger than field or plot, so there is significant uncertainty as to what level of 

manipulation to apply to lumped catchment scale models. Distributed, physics-based 

models may be more appropriate as the parameter manipulations applied to reflect 

LUMC impacts can be undertaken at scales closer to the field observations. Distributed 

physics-based models, however, have a large number of parameters. This can lead to 

the potential for multiple acceptable parameter sets in calibration. The uncertainty in the 

most appropriate parameter set means there is uncertainty in the modelled output and 

therefore impacts (Brazier et al., 2000; Beven and Freer, 2001; Ewen et al., 2006). 

This thesis will make use of two modelling approaches to investigate the potential for 

LUMC and NFM approaches for mitigating flood hazard. The first modelling approach 

is the lumped Flood Estimation Handbook (FEH) rainfall-runoff model. The FEH 

model has previously been used to investigate LUMC scenarios and provides a 

knowledge base derived from expert opinion as to the likely catchment scale, 

hydrological impacts of soil degradation (Packman et al., 2004). The second model 

used is a novel, distributed model, Juke (Beven et al., 2008), which has been 

specifically developed for investigating LUMC and NFM impacts. Juke makes use of 

available GIS datasets and observed hydrological data to parametrise the runoff 

generation and routing components of the model in a transparent and physically 

reasonable way. The physically based parametrisation of Juke enables LUMC and NFM 

impacts to be applied in a transparent and unambiguous way. As Juke is distributed it 

enables the investigation of routing effects on the field scale impacts and how they 

manifest at a larger catchment scale. 
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The modelling results are used to populate the Floods and Agriculture Risk Matrix 

(FARM) tool (Wilkinson et al. (2013). The FARM tool has previously been used as a 

means of communicating the likely flood hazard impacts of LUMC decisions, however, 

with no quantification as to the level of LUMC and associated hazard. The outputs from 

this thesis aim to provide some level of quantification of the potential flood hazard 

reductions. This is being done to address several questions commonly asked by 

stakeholders and policy makers including: how much intervention of a given type is 

required and where are they best located? What are the potential downstream impacts of 

changing the synchronicity of flows from multiple sub catchments? 

The thesis will make use of the latest expert knowledge and opinion combined with 

field observations to achieve the following aim, by fulfilling seven objectives, as 

described in section 1.2 

1.2 Aim 

The aim of this thesis is to demonstrate the potential effectiveness of NFM 

interventions in reducing flood hazard at the small catchment scale (≤ 30 km2) using 

modelling techniques of increasing complexity supported by field observations. 

1.2.1 Objectives	

1. Carry out a comprehensive literature review of the current understanding and 

quantification of the impacts of NFM interventions and agricultural practices on 

flood generation. This will support objectives 4 and 6. 

2. Collect high quality hydrological data from two catchments in which NFM 

interventions are either planned or have been implemented. Great Ayton (River 

Leven) and Morland (Newby Beck) have been chosen as the study catchments, 

as these provide a good contrast in term of spatial scale and interventions 

proposed.  

3. Characterise the study catchments to understand how floods develop and along 

which hydrological pathways the water is being transferred.  

4. Develop suitable scenarios for potential LUMC and NFM adoption, designed to 

reduce flood hazard within catchments, based on expert knowledge and field 

data. 

5. Explore the limitations of a widely used ‘traditional’ modelling approach, the 

FEH method, which is widely used by practitioners. 
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6. Use a novel modelling technique (Juke) to test potential catchment management

scenarios including land use change and NFM on the catchment flood response.

This approach differs from the FEH, in that expert knowledge can be directly

used to change the catchment functioning in a transparent fashion.

7. The outcomes of 5 and 6 will be used to populate a series of risk matrices based

on the Floods and Agriculture Risk Matrix (FARM) tool (Wilkinson et al.,

2013). The tool helps to synthesise and convey both the limitations of traditional

modelling structures for land use change scenario modelling and the

implications of land use management decisions on flood risk. The results will

provide guidance to practitioners, the scientific community and others with an

interest in NFM and land use management as a means of reducing flood risk.

1.3 Thesis outline 

Chapter 2 (Objective 1) – Provides an overview of the literature relevant to this thesis, 

including a description of the hydrological processes that control the generation and 

routing of flood flows. The impact that agricultural practices can have on these 

hydrological processes is then investigated along with the role of government policy in 

managing this impact. An overview is then provided of the different modelling 

approaches used within flood impact studies and an assessment of their strengths and 

weaknesses is provided. 

Chapter 3 – Outlines the methodological approaches used to achieve the objectives of 

this thesis. The research catchments and their experimental design are described along 

with the hydrometeorological instruments used. The way in which the rainfall-runoff 

data are analysed and used to inform the modelling is then discussed; two modelling 

approaches are used to investigate land use impacts; (1) the widely used, lumped, FEH 

rainfall-runoff model; and (2) the novel, distributed, Juke rainfall-runoff model. 

Chapter 4 (Objective 2 & 3) – Presents the characterisation of the Morland catchment 

(12.5 km2) including the physical and hydrological characteristics. The physical 

characterisation provides an overview of the flood risk, the soils, geology and land 

cover. The hydrological characterisation details the hydrometeorological data including 

the development of the stage-discharge rating curves, followed by an analysis of the 

rainfall-runoff dynamics of the catchment and how these may be of use in modelling the 

catchment. 
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Chapter 5 (Objective 2 & 3) – Provides a hydrological and physical characterisation 

of the Great Ayton catchment (30 km2), North Yorkshire. As in Chapter 4 this is to help 

understand the hydrological characteristics that cause the largest flood peaks. 

Understanding the physical characteristics, such as soils, that are susceptible to land use 

change is important when considering potential mitigation measures.  

Chapter 6 (Objective 5 & 7) – Uses the lumped FEH rainfall-runoff model to 

investigate land use impacts on flood peaks. This chapter explores how the impacts 

affect different magnitude and duration storms, as well as investigating how the impacts 

change with spatial scale. The development of a simple Flood Impact Model is 

discussed and a series of potential mitigation scenarios are considered and mapped to 

the FARM tool. 

Chapter 7 (Objective 5) – Describes the validation of the Juke model to show that it is 

consistent with the FEH rainfall-runoff model and therefore a sufficient emulator. This 

is important as the FEH and Hydrology Of Soil Types (HOST) provides a well-

established and accepted level of expert knowledge, including methods that can be used 

for exploring LUMC impacts. The parameters associated with runoff generation and 

routing are sensitivity tested to examine their likely impact in mitigation scenarios. 

Chapter 8 (Objective 4, 6 & 7) – Explores a number of future potential LUMC and 

NFM scenarios, using Juke, that could be adopted in the Great Ayton and Morland 

catchments. Where possible the scenarios used knowledge of land use impacts from the 

literature to investigate where in each catchment was best suited for intervention as well 

as what proportion of each catchment needs to undergo mitigation to have a meaningful 

impact at the downstream point of interest. 

Chapter 9 – The final chapter concludes the thesis by evaluating the findings against 

the aims and objectives set out in section 1.2 and provides recommendations for further 

work. 
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Chapter 2. Literature review 

2.1 Introduction 

In recent decades there have been numerous significant flood events across northern 

and central Europe (Barredo, 2007; Barredo, 2009). In the UK large-scale flooding has 

been experienced across many parts of the country; North Yorkshire in 2000 (Marsh, 

2001), River Eden, Cumbria in 2005 and 2015 (Roberts et al., 2009), Yorkshire in 2007 

(Blackburn et al., 2008), Cumbria (R. Derwent) in 2009 (Met-Office, 2009), many parts 

of the UK in 2012, and Somerset in early 2014.  

The costs associated with flooding are increasing. Insurance companies spent £4.5 

billion on flood damage to households and businesses from 2000 – 2010, 200 % more 

than the £1.5 billion spent in the previous decade (ABI, 2010). This trend has been 

observed across much of Europe with the increase partially attributed to upstream land 

use change and loss of natural attenuation, as well as increased populations and wealth 

in flood prone areas (Barredo, 2009; Feyen et al., 2012). Notwithstanding changes in 

land use, many experts predict that the impacts of climate change will lead to increased 

flood risk both in the UK and across Europe (Hall et al., 2005; Feyen et al., 2012). 

Moreover, Kendon et al. (2014) suggests that an increase in high intensity summer 

events will have greatest effects on smaller catchments (<35 km2). 

This chapter provides an overview of the literature relevant to this thesis, specifically 

with regard to the evidence base and modelling of the impacts of rural land 

management on flooding. The first section describes the dominant hydrological 

processes that generate local flood flows. Next the implications of rural land use 

management practices are considered, particularly how practices impact on catchment 

hydrological functioning and how they can increase the flood hazard at the larger 

catchment scale. Spatial and temporal scales are then considered. Understanding the 

role of spatial scale, such as the impact of local-scale overland flow generation 

downstream at the larger catchment scale, is necessary to underpin effective catchment 

planning and policy. Natural flood management as a means of reducing flood risk is 

then introduced, with examples of the different approaches given. The next section 

provides a synthesis of relevant modelling approaches and examples in which they have 

been used for land use management change impact studies. Finally, the questions that 

need to be addressed with regards to policy are considered. 
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2.2 Hillslope scale flood generation and routing 

The following sections consider what is known about land use impacts on flood 

generation and routing. The rationale is that there is understanding of the impacts at the 

small, ‘local’, i.e. the point or hillslope/field scale but how these manifest at a larger 

scale is unclear. 

2.2.1 Local	scale	runoff	generation	‐	storage	
Rainfall has a number of potential flow paths when it hits the ground. It can infiltrate 

into the soil and be taken up by plants, infiltrate to become groundwater, or it can 

follow a hydraulic gradient, generally in a downslope direction, as subsurface flow. 

Rainfall can also move across the land surface as overland flow, which is generated by 

two principal mechanisms: Saturation excess, where the soil matrix is full and cannot 

store any additional water (Dunne and Black, 1970), or infiltration excess (also known 

as Hortonian overland flow), where the rainfall rate exceeds the infiltration capacity of 

the soil (Horton, 1933). The storage and infiltration capacity of the soil is determined by 

its physical characteristics including the pore space and size. The total pore space 

available will affect the amount of water a soil can hold whilst the pore size affects the 

rate at which water can move through and into the soil, the conductivity (Mualem, 

1976), all of which are sensitive to land use change and land management. 

2.2.2 Local	scale	routing	and	connectivity	
An important controlling factor in the generation of flood flows is the speed at which 

water moves through or across the landscape to the stream network. At the small spatial 

scale, soil storage and infiltration are important, with increasing scale the connectivity 

and routing of flows becomes more important. Different soil types have different 

structures, hence different capacities for storing and conducting water. For example, a 

clay soil has a relatively large (total) pore space but has very small pores, resulting in a 

low conductivity, while a sandy soil has larger pores allowing water to move more 

readily into and through its matrix (Van Genuchten, 1980). This is of significance when 

studying flooding within a catchment, as different areas underlain by different soils will 

have different propensities to propagate subsurface flow and generate overland flow. 

Topography and land cover also play important roles, particularly for overland flow as 

they can directly affect the speed at which water can move. Hence, the soil plays a 

crucial role in generating runoff and is sensitive to degradation (Heathwaite and Dils, 

2000). 
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The rate at which flows reach the main channel also affects the propagation of a flood. 

Subsurface and overland flows that can readily enter the channel network to contribute 

to the flood hydrograph are said to have a high level of ‘connectivity’ (Bracken and 

Croke, 2007). The connectivity of the landscape has been enhanced in most 

anthropogenic landscapes, particularly for agriculture, where subsurface drains and 

field boundary ditches have been incorporated. Conversely, landscapes with soils of 

high infiltration and storage capacity, low relief and obstructions to flow are described 

as having a low level of connectivity. Generally there has been a loss of natural 

saturated zones and straightening of channels which increases connectivity in 

agricultural landscapes (O’Connell et al., 2007) 

2.2.3 Scaling	up		
Generally, the hydrological processes at the point scale are well understood due to the 

ease at which the measurements can be made; it must be noted that agriculturalists have 

long studied point scale processes in a quest to increase agricultural productivity. Our 

understanding of how changes to these small scale processes propagate to the catchment 

scale to impact on downstream flood hazard is less well known. The implications of 

temporal and spatial scale effects on routing and travel times is less well known 

(Blöschl et al., 2007).  

When considering flooding it is important to have an understanding of both the spatial 

and temporal scales that operate within a catchment. At the small scale (0.01 m – 100 

m), infiltration or saturation excess overland flow can take minutes; at the very large 

scale (tens of thousands of square kilometres) flood flows can take days and weeks to 

develop. Solving the flooding issues at these varying scales will require different 

approaches because of the relevance of different processes, i.e. the relative importance 

of the hillslope and channel network. The variability in response at the small scale is 

driven by variable topography and soil type whilst rainfall patterns and river processes 

are more important at large catchment scales (Mesa and Mifflin, 1986; Bloschl et al., 

1995). 

2.3 Land Use Management and flood hazard 

In the UK 17.19 million hectares of land was in use for agricultural production in 2012 

(Defra, 2013). Of that 6.26 million ha was under crop, 9.73 million ha was under 

permanent grass (incl. rough grazing) and the remaining 1.17 million ha is of other use 



9 
 

such as woodland or outdoor pigs (Defra, 2013). The post-World War Two (WWII) 

intensification of agricultural practices led to dramatic changes in the landscape, as 

summarised by O’Connell et al. (2007) (Figure 2-1) : 

 accelerated loss of hedgerows and subsequent creation of larger fields; 

 cultivation practises causing deeper compacted soils; 

 land drains connecting the hill to the channel; 

 cracks and mole drains feeding overland flow to drains and ditches; 

 unchecked wash-off from bare soil, due to loss of field boundaries as 

mentioned above and the sowing of winter crops leaving limited canopy 

coverage over the wettest time of the year; 

 plough lines, ditches and tyre tracks concentrating overland flow; 

 tramlines and farm tracks increasing hydrologic connectivity and 

compacting soil; 

 channelised river with no riparian buffer zone. 

 

 

Figure 2-1 Pre-war (a) and recent (b) agricultural landscapes at the hillslope scale (O’Connell et al., 2007)  
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The following section discusses national and European policies that have influenced 

land use management decisions in the UK. The hydrological impact of different land 

use management approaches is then discussed with an overview of case studies and 

experiments. 

2.3.1 Policy	
Much of the rural landscape of the UK is heavily managed, with just over 70 % used for 

agriculture (Defra, 2013). There is growing concern that land management practices 

may impact on flood hazard through the deterioration of soil structure and loss of 

natural buffers (O’Connell et al., 2004; O’Connell et al., 2007; Hannaford and Marsh, 

2008).  

Post-war government policy at the national level through the 1947 Agriculture Act and 

the Common Agricultural Policy (CAP) at the European level supported the 

intensification of agriculture to ensure self-sufficiency in food production (Robinson 

and Sutherland, 2002; O’Connell et al., 2007). To increase the availability of productive 

agricultural land, drainage was subsidised through policy and was ongoing until the late 

1970s (Tunstall et al., 2004; Penning-Rowsell et al., 2006). Land drainage policy 

encouraged draining less favourable land such as coastal and river wetlands and the 

straightening and dredging of rivers, the aim being to remove water as fast as possible 

(Tunstall et al., 2004; Penning-Rowsell et al., 2006). Arable land cover rose by 50 % 

over 5 years from the beginning to the end of the Second World War, from its lowest 

recorded coverage of 5.8 million hectares to its largest at 7.8 million hectares (Keep, 

2009), thereafter there has been a steady decline to 6.26 million hectares in 2012 

(Defra, 2013), still 8 % greater than the pre-war coverage. The decrease in area has also 

coincided with a shift to both autumn and spring sown crops rather than just traditional 

spring sown. This has largely been made possible through technological advancement 

and heavier, more powerful, machinery. 

There has also been a significant increase in the livestock densities reared on British 

farms. There was a significant increase in cattle numbers from 6 million cattle in 1864 

to 15.2 million in 1974 (Keep, 2009). A number of factors have led to a steady decline 

since the peak in the 1970s including the European Union (EU) milk quota introduction 

and some effect from BSE (late 1980s early 1990s) and foot and mouth disease (2007) 

(Keep, 2009).  
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It is now argued that land use management practices could, and should, play a role in 

flood hazard reduction planning, as part of the solution and not simply the problem. The 

Pitt Review (Pitt, 2008) of the summer 2007 flood events notes: 

‘It is now widely accepted that flood risk cannot be managed by simply building 

ever bigger hard defences. Softer approaches, such as flood storage and land 

management, can offer more sustainable ways of managing the risk, and can 

complement and extend the lifetime of more traditional defences.’ 

 

This recommendation can be seen as being especially pertinent now, considering the 

economic constraints being placed upon many government departments. Making use of 

agri-environment schemes (e.g., Countryside Stewardship, Catchment Sensitive 

Farming) where there is a monetary incentive for farmers to adopt certain management 

regimes may prove a plausible flood mitigation option but there are long-term 

management issues. Currently, however, any features built on productive land that take 

that land out of production would have be designated as Permanently Ineligible 

Features (PIF) which cannot be claimed for. The most recent legislation are promoting 

more holistic approaches to tackle excess runoff, for example the European Flood 

Directive (2007/60/EC) and in the UK the Flood and Water Management Act (2010) as 

well as the Catchment Based Approach (CaBA; 2013). 

2.3.2 Livestock	farming	

Implications	for	runoff	generation	

Pastoral livestock rearing degrades the soil structure, often referred to as poaching, with 

increased bulk density (soil mass per unit volume) and decreased macroporosity (loss of 

soil structure and pore space) (Houlbrooke et al., 2011). This leads to a reduction in 

infiltration rate and consequently an increased tendency to produce overland flow 

(Sansom, 1999; Carroll et al., 2004; Wheater et al., 2008). The impact of heavy animals 

on soils especially when wet is detrimental to soil structure (Bilotta et al., 2007; Bilotta 

et al., 2008). 

Field	evidence	

A number of national and international studies have investigated the impact of livestock 

rearing and its hydrological impact on soil in temperate climates, relevant to the UK. 

Sansom (1999) argues that the incentivisation of sheep rearing has led to less desirable 
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land being farmed. This includes upland areas with poor soils and high rainfall, which 

has led to increased runoff, soil erosion and river bank erosion rates (Sansom, 1999). 

The Pontbren catchment located in the headwaters of the River Severn catchment, mid-

Wales, has been studied to investigate the impact of upland management on flood risk 

by the Flood Risk Management Research Consortium (FRMRC Wheater et al. (2008)). 

Infiltration rates of ~0-30 cm/h for grazed improved pasture, compared with ~60-70 

cm/h for adjacent areas under trees with the same soil type, are reported (Carroll et al., 

2004).  

Studies in New Zealand have shown the hydrological impact of farming dairy cattle to 

be significantly greater than for sheep grazing. Drewry et al. (2000) measured saturated 

hydraulic conductivities of 1 to 3.2 cm/h for soil under dairy cattle compared to 2.6 to 

8.6 cm/h for the same soil type under sheep. Drewry et al. (2000) also note that 

macroporosity was higher and bulk density lower under sheep. It was also demonstrated 

that the impacts are not uniform over the landscape as cattle tend to congregate in 

certain areas causing localised poaching and degradation. Pathways developed by 

livestock movement create preferential flow pathways and increased soil erosion 

(Pietola et al., 2005; Drewry, 2006). Pietola et al. (2005) observed that infiltration rates 

at livestock drinking sites were 20 % lower than those at un-trampled pasture, and 

tended to be worse on soils with high clay content with infiltration rates at 10-15 % of 

adjacent pasture. The practice of sheep fattening, where sheep are put out onto bare soil 

in Autumn and early Winter to feed on the greens left after beet harvesting, can have a 

significant impact on soil structure and exposure (Holman et al., 2003). 

Management	options	

The effects of soil compaction can be reversed or partly mitigated for using mechanical, 

aeration/loosening techniques (Burgess et al., 2000). Aeration of the soil is performed 

by dragging a sled fitted with a series of cutters/spikes behind a tractor to break up the 

compacted layer. Natural processes can also improve soil compaction if allowed 

through reduced stocking for example, through earthworm and root activity, freeze 

thaw heave and wetting and drying cycles (Dexter, 1991; Whalley et al., 1995; Drewry 

and Paton, 2000).  
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2.3.3 Arable	farming	

Implications	for	runoff	generation	

Arable farming practices can lead to increased surface and near-surface (fast) runoff 

generation which coupled with activities that have increased levels of landscape 

connectivity can ultimately lead to greater flood hazard. Such practices include: 

 Moving from spring to winter sown cereal to increase yields, creating extended 

periods of bare or near bare soil (Boardman, 1995). 

 Late harvesting of crops such as maize, sugar beet and main crop potatoes, 

during Autumn and early Winter (Holman et al., 2002). 

 Use of heavier machinery, as well as machinery accessing land at sub-optimum 

times of the year, compacting the soil. 

 Removal of hedgerows, which inhibited overland flows and encouraged 

infiltration. 

 The introduction of under drainage and field perimeter ditching to rapidly 

remove water from cultivated land. 

 Introduction of wheeling’s (Silgram et al., 2010). 

Field	evidence	

Localised surface water floods associated with arable land are often known as ‘muddy 

floods’ and are experienced in many regions of north western Europe; including 

Belgium (Verstraeten and Poesen, 1999), the Netherlands, France and the South Downs 

in England (Boardman et al., 1994). The term ‘muddy’ is due to the significant volumes 

of soil that can be transported in the overland flows. Over time this surface runoff can 

concentrate into gullies as opposed to sheet wash, which can exacerbate the problem as 

water velocity increases along with the potential for soil erosion (Poesen et al., 2003). 

Vehicle tracks, or ‘wheelings’ can also act as preferential flow pathways that can 

connect distant parts of the catchment to the watercourse (Boardman et al., 1994). 

Wheelings have also been shown to have a significant impact on the compaction of 

soils, reducing the structure and increasing the bulk density by up to 28 % to depths of 

~40 cm (Horn et al., 2003; Pereira et al., 2007). 

There is evidence that at the larger scale, significant increases in the sediment yield of a 

river can reduce the conveyance of channels and flood plains by 40 %, potentially 

exacerbating floods (Walling, 1999). Increased sediment yields can also have 
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undesirable ecological impacts through eutrophication and clogging of gravel beds used 

by spawning fish (Greig et al., 2005; Owen et al., 2012).  

Management	options	

Potential management options include: ensuring that there are over winter cover crops 

would likely reduce the volume of soil eroded (Boardman, 1995); not maintaining the 

drainage and ditch network is likely to lead to them accumulating sediment and 

reducing the rate at which the water leaves the land, therefore reintroducing some of the 

lost attenuation; and not using heavy machinery during unfavourable wet conditions 

will also reduce levels of compaction and wheeling’s (Silgram et al., 2010). 

Sedimentation ponds can be strategically placed to capture sediment rich overland 

flows to reduce the energy within flow and encourage sediment deposition (Deasy et 

al., 2010; Barber and Quinn, 2012). 

2.3.4 Forest/woodland	

Implications	for	runoff	generation	

Forestry and woodland is viewed as having a largely beneficial impact on flood 

hydrology as evidence shows that there is increased levels of infiltration, brought about 

through improved soil structure, e.g. through reduced bulk density (Wheater et al., 

2008). There are also greater rates of evapotranspiration and interception losses 

associated with woodland through increased biomass and landscape roughness when 

compared to open moorland and grazed pasture, hence lowering the water table. The 

additional storage will reduce the flood hazard for catchments where antecedent 

conditions are important, especially where a storage deficit must be satisfied before 

flooding can occur.  

Field	evidence	

Woodlands and forests have long been the subject of investigations into their influence 

on the hydrological response of catchments. One of the longest running studies is the 

Coalburn catchment in Northumberland (Robinson, 1986; Robinson and Sutherland, 

2002). The study was set up to investigate the effects of afforestation on the 

hydrological response, however, the instrumentation has remained in place to monitor 

the catchment response from young growth right through to fully grown and subsequent 

harvesting. The Coalburn study showed that for the first five years post tree planting, 

flood peaks increased by 18 % and time to peak decreased (Robinson, 1986). This 
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counterintuitive finding was attributed to the effect of new forest roads and drainage 

ditches (McCulloch and Robinson, 1993). However, within 20 years peak discharge had 

decreased by 5 % and the time to peak was returning to the pre-afforestation rates. The 

methods of draining and ditching for afforestation used in the Coalburn are no longer 

representative of modern practices (Nisbet, 2015, per. comm.)  

The impacts of ‘shelter belts’ on catchment hydrological response were studied as part 

of the Pontbren Flood Risk Management Research Consortium (FRMRC) study 

(Wheater et al., 2008). Shelter belts are strips of land that are fenced off and planted 

with trees to provide a form of wind protection for livestock (Wheater et al., 2008). Soil 

infiltration rates were found to be up to 60 times greater under wooded areas than open 

grazed pasture (Carroll et al., 2004). Grazed land within close proximity (<5 m) to the 

woodland also demonstrated increased infiltration rates but the effect diminished with 

distance (Carroll et al., 2004; Marshall et al., 2009). The increase in infiltration was 

found to occur within 2 years of the conversion of pasture to trees with a continued 

increase in infiltration rates to around 6-7 years when it then began to stabilise. 

Woodland is also seen as having higher losses through evapotranspiration and 

interception losses than moorland and grassland as it has a greater surface area and 

increases the roughness of the landscape it therefore dries out quicker building up the 

potential soil storage (Calder, 1990).  

Riparian tree planting and in channel leaky barriers can be used to increase roughness 

and attenuate the flood flows.  

Management	Options	

The effects of woodland have been shown to be beneficial in reducing runoff generation 

in a number of ways and may prove useful if used in a strategic approach such as 

shelter belts rather than blanket coverage of trees which would take land out of farming. 

The positive effects of shelter belts are: 

 Increased infiltration rates within forested areas as well as locally within grazed 

areas. 

 Many shelter belts distributed in the landscape, including on or at the foot of 

slopes, could potentially reduce the rate at which overland flow generated 

upslope on grazed areas can travel. 
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Issues that must be considered are for upland areas plant tree species must be 

appropriate for the soil type and require little drainage; they must also prove to be 

economically viable, not taking too much agricultural land out of production. Forest can 

also lower the total runoff yield which may have impacts on water resources (Robinson, 

1998). 

Increased channel and riparian roughness can be used to attenuate flood flows as has 

been demonstrated in the Pickering ‘Slowing the flow’ project and for the river Parrett. 

(Thomas and Nisbet, 2012; Nisbet et al., 2015). 

2.3.5 Drainage	

Implications	for	runoff	generation	

A common method for increasing the agricultural potential of land is to artificially drain 

it. The aim is to allow animals and heavy machinery to use the land for longer periods 

of the year and prevents crops from being water logged (Robinson and Armstrong, 

1988). Drainage is undertaken through a number of different ways, including ‘mole’ 

and ‘tile’ drains under arable and pastoral land, and open drainage ditches along field 

boundaries (Armstrong and Garwood, 1991; Bilotta et al., 2008). These open drains 

often collect the discharge from a number of drains and transport runoff to the existing 

stream network. The ultimate effect is that of increased connectivity and bypassing of 

the soils’ natural buffering capacity (O’Connell et al., 2007). 

Artificial drainage is not restricted to lowland agriculture - significant peat areas of the 

British uplands have been drained using open ditches known as ‘grips’. This has been 

carried out for a number of reasons including afforestation of the uplands, expanding 

sheep grazing in the uplands, freeing up land in the lowlands and the rearing of game 

birds (Holden et al., 2004; Lane and Milledge, 2013).  

Field	evidence	

Robinson (1990) carried out a detailed investigation of a number of plot sites before and 

after the introduction of underdrainage. The results were shown to be slightly mixed 

with peak flows for most sites being reduced, but the overall flow volumes appearing 

largely unchanged. It was shown for most sites the time-to-peak reduced, however this 

varied depending on the type of soil drained. The ‘peakyness’ of mineral soils such as 
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clays, was shown to have been reduced, whilst organic, peaty, soils were made peakier, 

with larger peaks occurring faster. 

As the experiment was performed at a very small spatial scale there is limited 

understanding of downstream impacts at the larger catchment scale. It is largely 

accepted though that by increasing the rate at which water can reach the main channel 

should increase the flood peaks and reduce the time to peak at the larger scale 

(O’Connell et al., 2007).  

Management	Options	

If it is generally accepted that reducing local time-to-peak is a negative thing then an 

obvious option would be not to clear or maintain drainage and ditch networks but this 

may not be realistic in intense agricultural areas. Another option may be to consider 

methods for reintroducing attenuation, discussed below under novel methods. 

2.3.6 Summary	
The sections above have provided an overview of the multiple factors affecting 

catchments and the way in which land use impacts upon flood hazard. 

The table below (Table 2-1) summarises a number of research studies that have 

examined the impacts of land use on flood hazard. The studies provide both direct 

evidence, observations in the field, and indirect evidence gleaned from modelling. They 

have also provide an evidence base for modelling land use impacts on flood generation.  
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Catchment/NFM 

approach 

Evidence 

type 

Results and comments References 

Pastoral farming    

Multiple catchments, 

New Zealand 

Monitoring  Animal trampling reduced soil structure, increasing the bulk density and reduced 

infiltration.  

(Drewry et al., 2000; 

Drewry and Paton, 

2000; Pietola et al., 

2005; Drewry, 2006) 

Field scale (x4), Ireland Monitoring  Presence of cattle changed physical properties of soil, leading to increased overland 

flow and reduced water quality with increases in nutrients. 

(Kurz et al., 2006) 

Forestry    

Plynlimon, Wales.  

(37.5 km2 and 10 km2)  

Monitoring  Paired catchment experiment examining the hydrological differences of forested 

and rough pasture catchments. Concluded that a fully forested, 37.5 km2, catchment 

would reduce water yield by 42 %. No mention of effects on flood peaks (Qp). 

(Kirby et al., 1991) 

Coalburn, England. 

(1.5 km2) 

Monitoring  Frequency of smaller peak flows increased, linked to land drainage for forestry, the 

effect diminished over time. Annual maximum flood increased by 15 % but due to 

annual variations was statistically insignificant. Catchment response time was 

quicker, again linked to drainage and diminished over time. 

(Robinson, 1998; 

Archer et al., 2010) 

Pontbren, Wales. 

(10 km2) 

Monitoring/ 

Modelling  

Infiltration rates of grazed areas found to be ~0-30cm/h compared to ~60-70cm/h 

under adjacent treed shelter belts. No catchment scale change to runoff detectable. 

Modelling suggested a 60 % reduction in Qp for a fully forested catchment against a 

baseline for low return interval storms but reduced impact with increased return 

interval. 

(Carroll et al., 2004; 

Wheater et al., 2008) 



19 
 

Balquhidder, Scotland. 

  

Monitoring  Paired catchment study comparing forested and moorland catchments and the 

effects of afforestation. No effect on annual water balance detectable, no mention of 

effect on Qp. 

(Gustard and 

Wesselink, 1993; 

Jakeman et al., 1993) 

River Cary, England. 

(82 km2) 

Modelled Modelling outputs showed positive effects in using floodplain tree planting for 

attenuating flood flows. Increased local storage, no quantification of reduced 

downstream Qp. 

(Thomas and Nisbet, 

2007) 

Multiple Options    

Hodder, England. 

(260 km2) 

Monitoring  Results from a short term study identified the impact of grip blocking at the micro-

scale (0.5 km2) on the rate of hydrograph response. However, no impact could be 

detected at any catchment larger where grip blocking, tree planting and reduced 

stocking densities were used alone or together. The total area of land undergoing 

management change was 28 km2. 

(Ewen et al., 2010; 

Geris, 2012) 

Drainage    

Moor House, England. 

(>20 km2) 

Monitoring  Compared intact and drained peat; found <1 % of runoff from undrained peat was 

matrix through flow, but was about 23 % in drained peat. No mention of effect on 

Qp. 

(Conway and Millar, 

1960; Robinson, 

1985; Holden et al., 

2006) 

6 UK plot scale sites 

(0.00005 – 0.135 km2) 

Monitoring 

and 

modelling  

Qp for drained loamy soil was increased but not clay soils. Plot experiments of 

drained against non-drained soils showed antecedent conditions were important. 

When dry, Qp was higher in drained soils but the recession was longer; the reverse 

was true when the plot was wet (autumn/winter). 

(Robinson, 1990) 

Table 2-1 Summary table of land use /NFM studies investigating flood hazard and mitigation
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2.4 Novel flood hazard mitigation methods 

A number of different novel flood mitigation methods have been trialled by research 

projects across the UK. They are often termed as Natural Flood Management (NFM) 

schemes, which was defined in a Parliamentary Office of Science and Technology note 

(Pescott and Wentworth, 2011) as: 

‘alteration, restoration or use of landscape features … as a novel way of reducing flood 

risk.’ 

The relative scale at which different NFM options are implemented and an assessment 

of their known effectiveness is succinctly captured in Figure 2-2. Different flood 

mitigation options are categorised along two axes in Figure 2-2; the y-axis being where 

in the catchment they are generally located, from source to downstream; the x-axis 

describing the spatial concentration from spatially distributed, meaning there are likely 

to be many features, to the spatially concentrated. Figure 2-2 also indicates that there is 

increasing scientific certainty and response reliability for options that are further 

downstream and spatially concentrated. It is easier to monitor the local impact of 

spatially concentrated features compared to distributed changes which require 

consideration of how the distributed impacts propagate and aggregate with scale.  

 

Figure 2-2 Catchment-scale classification of NFM strategies (Pescott and Wentworth, 2011)  
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The ‘Proactive’ group at Newcastle University pioneered the use of Runoff Attenuation 

Features (RAFs), soft engineered features designed to intercept and attenuate fast flows 

(Wilkinson and Quinn, 2010; Nicholson et al., 2012; Quinn et al., 2013). The key 

concept of RAFs is to slow the rate at which overland flow reaches and travels along 

the watercourse in order to reduce the downstream peak magnitude as well as 

increasing the time to peak (Wilkinson and Quinn, 2010). 

There are three types of RAF; (1) those intercepting surface runoff before it reaches the 

channel (known as offline features); (2) In-channel features such as woody debris dams 

are designed to impede the flows and increase the interaction between the channel and 

flood plain during high flow events (online features); (3) Offline storage on floodplains 

of flows diverted from the channel. Other research groups and environmental bodies 

have used similar concepts for mitigating flood hazard (See Table 2-2). Landscape 

interventions including RAFs have also been used to improve water quality by reducing 

losses of suspended sediment and nutrients, such as phosphorus and nitrate (Deasy et 

al., 2010; Barber and Quinn, 2012; Ockenden et al., 2014).  

Hydrological	impact	

 Offline features attenuate overland flows, increasing the time taken for flows 

generated on land to reach the channel. 

 Online pond features attenuate flows and have the potential to remove sediments 

and their associated nutrient load. 

 Woody debris dams can retard the in-stream channel velocities, increasing the 

water levels locally and more readily connect the channel to the flood plain. 

Management	considerations	

 Each feature has a relatively local effect. There would need to be a significant 

number installed as a network to alter the hydrological regime at a larger scale 

as demonstrated in Figure 2-3. 

 Best suited for targeting specific issues regarding overland flows with the added 

benefit of sediment removal and habitat creation. 

 Potentially suitable as a means of future proofing existing schemes and 

mitigating for potential climate change impacts. 

 There are wider issues regarding ownership and maintenance. 
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Figure 2-3 Hypothetical design of a RAF/NFM network (Quinn et al., 2013) 
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Table 2-2 NFM studies and results 

Study location Mitigation and results Reference 

Belford, 

England. 

(6 km2) 

Evidence of impact on Qp and Tp caused by 

attenuating overland flows in leaky dams. 

Scaled using models. Estimated reduction in 

Qp of 8 % for 1 in 5 year event. 

(Wilkinson et 

al., 2010; 

Nicholson et al., 

2012) 

Holnicote, 

England          

(22 km2) 

Wide range of options adopted, including: 

- Moorland restoration 

- Woody debris dams 

- Flood meadows 

Modelling indicates a 7 % reduction in Qp, 

with 1 hour increase in Tp locally for a 1.5 km 

stretch of river and adjacent flood meadows.  

(Rose et al., 

2010; Rose et 

al., 2011) 

Pickering, 

England. 

 (69 km2) 

Modelled reduction in Qp of up to 8 %, locally, 

through use of in-stream wooden debris dams 

and riparian tree planting. 

(Odoni and 

Lane, 2010) 

 

2.5 Detecting land use change signals 

A number of methodologies have been used to investigate if the impacts of land use 

management change can be detected at catchment scales including paired catchment 

studies and statistically identify trends and changes within historical data.  

There are differences in the hydrological feature of interest and the methodology by 

which the data are analysed. There are those that investigate the impacts on water yield 

from a resource point of view, whilst others are specifically interested in flood peaks 

and the trends (Robson et al., 1998). 

2.5.1 Paired	catchment	studies	
Studies examining the impact of land use change have traditionally used paired 

catchments, some of which have been discussed above e.g. Coalburn (Robinson, 1986) 

and Plynlimon (Robinson et al., 2013). Typically two hydrologically similar catchments 

or plots in close proximity are monitored, with the assumption being that if treated the 

same they would behave in a hydrologically similar fashion. One of the catchments then 

typically undergoes change such underdrainage or land cover from grass to forestry for 
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example and the change in runoff response are compared to the control catchment that 

has not undergone any change. Land use impacts have been identified from these types 

of experiments, particularly those concerned with water yield. Typically at least 20 % 

of a catchment must undergo land use change such as afforestation to have any 

discernible effect on yield (Bosch and Hewlett, 1982). 

These studies are obviously useful, however, they are usually implemented in relatively 

small catchments (<40 km2) with typically less than 10 years’ worth of data (Brown et 

al., 2005). How larger catchments respond, where the vegetation change is distributed 

and generally less than the 20 % of total catchment area is unclear (Brown et al., 2005). 

There is limited evidence from paired catchment studies of the effect on peak flows as 

the studies have largely concentrated on the effect of woodland on water yield. 

2.5.2 Analysis	of	historical	datasets	
Historical data sets have been used in two key ways, one is statistical approach to 

identify changes or trends in flow records that can be attributed to land use management 

practices as explanation. Secondly through modelling to identify whether a suitable 

parameter sets exist for pre- and post- land use change and again if any differences can 

be attributed to the land use (Beven et al., 2008; Birkinshaw et al., 2014). If this change 

in parameterisation can be linked conceptually to change in the catchment this may 

provide an evidence base. 

Statistical	approach	

Kundzewicz and Robson (2004) provide a thorough review of statistical methodologies 

available for identifying step changes and ‘gradual’ trends. One of the most significant 

factors that needs to be considered is the length of data records available for analysis 

and modelling. It is possible in short records for climate variability to appear as a trend, 

however, due to more variability these trends are less obvious as more data are 

collected (Kundzewicz and Robson, 2004). It has also been argued that to truly 

understand if the catchment hydrology has been changed a shift in the flood frequency 

curve must be shown rather than just large events (O’Connell et al., 2004). This is 

ideally how change would be demonstrated and quantified, however, a more pragmatic 

approach would be to monitor for decades to build the evidence base. 
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Modelling	approach	

Models have been used to study whether changes in response can be identified from 

historic datasets. The methodology used by Beven et al. (2008) involved using a Data-

Based Mechanistic (DBM) modelling approach to identify change in hydrographs. 

Firstly, this approach looked for steady change in parametrisation over time. The 

second approach split the series by event type based on antecedent rainfall and flow 

peak magnitude. Some relationships were identified, however, due to inconsistencies in 

the data these were discounted. A similar investigation for the Pontbren study in which 

the DBM model was used failed to find any trends over time, however, changes linked 

to seasonality were found (McIntyre and Marshall, 2010).  

2.5.3 Detection	methods	summary	
As discussed in the preceding sections, using observed catchment records to identify 

direct cause and effects between land management and flood hazard is problematic due 

to the underlying uncertainties and non-stationarity of land use, climate, antecedent 

conditions and data errors (Burt and Slattery, 1996; Beven et al., 2008) 

To do any form of meaningful statistical analysis requires significant amounts of data or 

the use of statistical methods such as the Flood Estimation Handbook (FEH), which 

have significant uncertainties (O’Connell et al., 2004). The FEH methodology for 

estimating an event with an N-year return interval requires at least 5 x N-years of data; 

which means only a limited assessment can be made using data at a single site due to 

record lengths. The peaks available for a single site can be complemented by peaks 

from other similar sites to create a pooled group of peaks, as recommended by FEH for 

short records. However, this introduces significant uncertainties associated with 

regionalisation, specifically extrapolating data from other catchments. 

2.6 Modelling land use change and flood mitigation 

Models offer a means of studying land use management change and NFM scenarios 

with a clearer identification of cause and effect. They can also be used in an attempt to 

scale the known local scale impacts to the larger catchment, as will be discussed in the 

following sections. However, there are significant issues regarding what structure 

should they take; e.g. are lumped rainfall-runoff models adequate or are fully physical, 

distributed approaches more appropriate? The strengths and weaknesses of different 

model types and structures will be discussed below. As well as considering some of the 
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modelling parameter and input data uncertainty (Brazier et al., 2000; Vázquez et al., 

2008). 

There are a number of model types, each with their own strengths and weaknesses for 

certain applications. Wheater et al. (2012) provide a useful classification of 

hydrological (rainfall-runoff) models using three broad groups: 1. Metric models are 

simple models, calibrated to optimise statistical relationships between input (rainfall) 

and outflow (Q), an example of which includes the widely used unit hydrograph as used 

within the Flood Estimation Handbook (FEH) (Houghton-Carr, 1999); 2. Physics-Based 

models where the physical processes are explicitly defined using point scale physics 

equations such as SHETRAN (Ewen et al., 2000); 3. Conceptual models, where 

representations have been made for the perceived key hydrological storages, losses and 

routing components of the hydrological cycle, for example the Probability Distributed 

Model (PDM) model (Moore, 2007). A fourth type is considered here, the 

hydrodynamic models; which can be used to understand how water moves in a more 

detailed way than hydrological models. Traditionally they are used for inundation 

modelling and flood mapping but have also been used in flood mitigation studies. 

The sections below summarise some of these models and case studies where they have 

been used. It also highlights some of the strengths and weaknesses of these approaches. 

2.6.1 Statistical	modelling	(Metric)	
Metric models are largely event based and used for examining the direct impacts on Qp 

caused by change rather than modelling a time-series of data. One such model that is 

widely used is the FEH rainfall-runoff model which is a simple event based model. Two 

principal components of the FEH model are the Unit-Hydrograph (UH) and the loss 

model; The UH hydrograph determines the shape of the resulting hydrograph where the 

loss model provides the effective rainfall. From the Hydrology Of Soil Type (HOST) 

classification and the FEH catchment descriptors the Standard Percentage Runoff (SPR) 

and time-to-peak (Tp) parameters are used to calculate the shape of the unit hydrograph 

in the FEH approach. The Tp parameter is calculated from the catchment descriptors 

provided with the FEH CD-ROM and provides the time base of the unit hydrograph. 

The FEH CD-ROM provides catchment descriptors for any catchment in the UK (>0.5 

km2) through a regionalisation approach. The HOST dataset was designed to provide 

the parameters for the FEH rainfall-runoff model. 
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Within the UK the FEH rainfall runoff model has been proposed and used for 

investigating land use change impacts on Qp (Packman et al., 2004). A methodology 

was developed making best use expert knowledge and widely available datasets. The 

process provided a methodology for using the national HOST dataset, which categorises 

the soils of the UK into 29 classes that are based on the physical descriptions of the soil 

profile (Boorman et al., 1995). This means that a model can be set up and land use 

change impacts be investigated for ungauged catchments. 

The HOST classification is based upon 11 conceptual models (A – K) that describe the 

dominant flow pathways through the soil and subsurface (Boorman et al., 1995). There 

are three key base models that form the physical settings from which the others are 

derived; these are highlighted in green in Table 2-4 and are associated with absence or 

presence of and depth of groundwater. The additional columns within Table 2-4 

represent the different depth at which the gleyed layer can be found and the rows are 

related to infiltration. The values in the table cells refer to the classes and the number in 

the brackets are the SPR values which is an event based statistic that provides the 

typical runoff as a percentage of rainfall. 

A method for moving from one HOST class to an alternate, to reflect changes in SPR, 

based on expert opinion of soil degradation has been provided by Packman et al. (2004) 

as well as proposing changes to Tp of: 

 Forest drainage could reduce local Tp by 2-3 hours; 

 Agricultural drainage in low SPR soils could reduce local Tp by 1-2 

hours, but in high SPR soils increase Tp by 1-2hours. 

How applicable these adjustments are at all spatial scales and for all catchments is a 

matter of debate. For example, is the 2-3 hour delay in Tp for a forested catchment true 

at both the 10 km2 and 100 km2 scales? This seems a considerable delay and much 

larger than those described in the literature. The longest delay found in the literature is 

from the modelling work of Thomas and Nisbet (2007) who suggested that the 

introduction of a 2.2 km reach of riparian woodland to a tributary of the River Parrett 

could increase the Tp by 2.3 hours. How representative this catchment/river and 

associated result is in a wider UK context is debateable. 
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Table 2-3 Summary of statistical modelling project investigating potential land use change impact 

Catchment Model Modelled results Reference 

4 UK 

Catchments 

(4 -72 km2) 

FEH 

Rainfall-

runoff 

Modelled a number of scenarios for 2-100 

year return interval floods. Moving from 

the original catchment SPRHOST and 

reducing Tp by 1 hour to the alternate 

discussed above led 23-28 % increase for 

all events across all catchments. 

Manipulating SPR led to a percentage 

change in Qp very close to the 

manipulation of SPR applied. 

(Packman et al., 

2004) 
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SUBSTRATE HYDROGEOLGY 

MINERAL SOILS 

PEAT SOILS Groundwater or 
aquifer 

No impermeable/ 
gleyed layer within 

1m 

Impermeable layer within 1m 
or gleyed layer at 0.4 to 1m 

Gleyed layer within 0.4m 

Weakly consolidated, 
microporous, by-pass flow 
uncommon (Chalk) 

Normally 
present and at 

>2m 

1 (2) 

13 (3) 14 (25) 15 (48) 

Weakly consolidated, 
microporous, by-pass flow 
uncommon (Limestone) 

2 (2) 

Weakly consolidated, 
microporous, by-pass flow 
uncommon 

3 (15) 

Strongly consolidated, non/ 
slightly porous, by-pass flow 
common 

4 (2) 

Unconsolidated, macroporous, 
by-pass flow very uncommon 

5 (15) 

Unconsolidated, macroporous, 
by-pass flow very common 

6 (34) 

Unconsolidated, macroporous, 
by-pass flow very uncommon Normally 

present and at 
≤2m 

7 (44) 
IAC* <12.5 
[<1m day-1] 

IAC* ≥12.5 
[≥1m day-1] 

Drained Undrained 

Unconsolidated, macroporous, 
by-pass flow very common 

8 (44) 9 (25) 10 (25) 11 (2) 12 (60) 

Slowly permeable 
No significant 
groundwater or 

aquifer 

16 (29) 
IAC* > 7.5  IAC* ≤ 7.5 

24 (40) 26 (59) 
18 (47) 21 (47) 

Impermeable (hard) 17 (29) 19 (60) 22 (60)  27 (60) 
Impermeable (soft)  20 (60) 23 (60) 25 (50)  
Eroded Peat 

 
28 (60) 

Raw Peat 29 (60) 
Table 2-4 HOST classification numbers. Numbers in brackets are HOST SPR values (* IAC used to index lateral saturated conductivity) (Boorman et al., 1995)
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Soil	Conservation	Service	Curve	Number		

An alternative regionalised dataset to the FEH that has been used for land use change 

modelling is the Soil Conservation Service Curve Number (SCS-CN) (USDA, 1986). 

The SCS-CN approach categorises soils into 4 broad hydrological soil groups (A, B, C, 

D) that can then be further tailored to reflect the dominant land cover and the soil 

condition (Table 2-5). The equations used to calculate discharge using the SCS-CN 

methodology are described in Equation 2-1 and Equation 2-2 below. 

Equation 2-1 

	
0.2
0.8

 

where S is calculated from Equation 2-2, Q is event runoff, P is event rainfall (mm). 

Equation 2-2 

	
1000

10 

Table 2-5 Excerpt from a USDA curve number table for land use and hydrologic soil groups (USDA, 1986) 

Cover description CN for hydrologic soil group 

Cover type Hydrologic 

condition 
A B C D 

Pasture, grassland, or range—continuous 

forage for grazing.  

Poor 68 79 86 89 

Fair 49 69 79 84 

Good 39 61 74 80 

Meadow—continuous grass, protected from 

grazing and generally mowed for hay. 

— 
30 58 71 78 

Brush—brush-weed-grass mixture with 

brush the major element.  

Poor 48 67 77 83 

Fair 35 56 70 77 

Good 30 48 65 73 

 

Although developed from a database of American soils, a number of British studies 

provide a method categorising British soils onto the curve numbers. The method for 

mapping HOST classes on to the SCS-CN classification was used by Bulygina et al. 

(2011) and is shown in Table 2-6; it was used within a meta-modelling study described 

in section 2.6.3. 
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Table 2-6 Mappings of U.S Department of Agriculture (USDA) and Hydrology of Soil Types (HOST) soil 
classifications (Bulygina et al., 2011a) 

USDA Hydrologic soil group HOST Class 

A 1, 2, 3, 5, 11, 13 

A, B 4, 7 

B 6, 8, 9, 10, 16 

B, C 17 

C 18, 19, 20 

C,D 14, 15, 18 

D 12, 21 – 27, 29 

Strengths	

 The model is simple and easy to understand. 

 Expert knowledge of hydrological impact of soils can be incorporated 

transparently. 

Weaknesses	

 The lumped structure may possibly mean the model is too simple for such a 

complicated, distributed problem. 

 As it is not distributed it cannot account for the location and travel time of likely 

impact. 

 Not enough observed evidence of catchment scale impacts to make sound 

catchment scale, lumped changes to Tp. Tp changes may be scale dependant. 

2.6.2 Spatially	distributed‐physically	and	semi‐physical	models	
Physically based model use small scale physics based mathematical equations to 

describe the processes that occur on and within the land surface. These include 

processes such as infiltration (described using the Richard’s equation), overland flow 

(Manning’s equation), and interception loses, amongst many others – all accounting for 

the movement and loss of water across a land unit. Theoretically as the equations used 

are point scale, model parameters could be measured in the field, but as the parameters 

are applied to grid cells, they tend to be scale dependant with models requiring effective 

parameters as they reflect a different scale. Due to the significant number of processes 

involved in physically based modelling and the detailed spatial description the 

associated number of parameters can introduce equally significant amounts of 
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uncertainty, and the possibility of multiple optimal parameter sets in calibration, i.e. 

many parameter sets can achieve an adequate objective function such as Nash-Sutcliffe 

efficiencies (NSE); a phenomena described as equifinality (Beven, 2011). A key 

limiting factor in the evaluation of models for performance in modelling land use and 

NFM scenarios is a lack of reliable distributed validation data for catchments that have 

undergone change. This needs to be addressed through long field campaigns and the 

establishment of catchment laboratories. However, O’Connell et al. (2004), 

recommended that spatially distributed and at least partially physical models are 

necessary for modelling land use management change. 

‘so that the physical properties of local landscapes, soils and vegetation can be 

represented, and it should include detailed modelling of surface water flow so 

that the effects of changes can be tracked downstream. A considerable amount 

of high-quality field data on impacts will be needed to support the development 

of robust methods for predicting impacts’ 

O’Connell et al. (2004) also provide a comprehensive list of models used in 

investigating land use change impacts. Some of these models and a summary of the 

results are shown below in Table 2-7 

Table 2-7 Summary of modelling projects investigating potential land use change impacts using distributed 
physical models [Spatial resolution of model in square brackets] 

Catchment Model Modelled results Reference 

Draix (0.86 

km2) 

SHETRAN 

[50m] 

Model blind calibrated (i.e. without knowledge 

of hydrological response data), with significant 

uncertainty in final parameterisation. Fully 

forested catchment reduced annual runoff by 

36 %, no mention of impact on flood peaks. 

Lukey et al. 

(2000) 

Meuse and 

Oder 

(32457 

km2,  

59162 km2) 

LISFLOOD 

[1 km] 

For both catchments land cover information 

for 1975 and 1992 were used to parameterise 

the models and compare the hydrologic 

response for each period. For the Oder there 

were no significant land cover changes no 

change in hydrological response. The Meuse 

showed some increase in flood peaks linked to 

urbanisation, however, parameter uncertainty 

gives limited weight to results.  

(De Roo et 

al., 2001) 
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Dietzhölze 

(82 km2) 

SWATmod 

[N/A] 

A 9 % increase in water yield was modelled 

for a 35 % increase in grassland. It is noted 

that flood peaks increased but was not 

quantified. 

(Fohrer et 

al., 2001) 

Thames to 

Kingston 

(10000 

km2) 

CLASSIC 

[20 km] 

A small change in flood frequency was 

mentioned but not quantified for the 30 year 

modelling period, 1961-1930. 

(Crooks and 

Davies, 

2001) 

Coalburn 

(1.5 km2) 

SHETRAN 

[50m] 

Reduced annual yield from catchment due to 

increased interception and evaporative losses. 

Some discussion of increased Qp for young 

trees, however, this was linked to outdated 

planting procedures. Impact of forestry on Qp 

reduces with increasing flood magnitude.  

(Birkinshaw 

et al., 2014) 

Strengths	

 The model can theoretically be parametrised from field measured values. 

 There is a strong scientific understanding of land use change impacts at the plot 

scale and field; a scale at which they can be modelled. 

 The models are distributed so the change in land use can be applied in a 

distributed way and then routed to understand the impact at a larger scale. 

Weaknesses	

 The large number of parameters always leads to multiple suitable parameter sets 

 Although measurements of model parameters can be taken in the field, there is 

difference between the scale of measurement and the modelling resolution. 

Typically to account for the heterogeneity within a given cell a scale dependant 

‘effective parameter’ will be calibrated (Vázquez et al., 2002). 

 Can be computationally demanding depending on size of area modelled, 

resolution of model and the number of scenarios to be modelled. 

 Formal uncertainty analysis such a Generalized Likelihood Uncertainty 

Estimation (GLUE) particularly shows the problems of reliance on physically-

based distributed modelling and the dangers of calibration to observations such 

as flow time series (Brazier et al., 2000; Ewen et al., 2006; Vázquez et al., 

2008). 



34 
 

2.6.3 Meta‐modelling	
Meta-models are simplified versions of a more complex model, trained to mimic the 

behaviour of the more complex model. Due to their relative computational efficiency 

they can be favoured for allowing more scenarios and greater uncertainty testing to be 

carried out within a given time frame (Barton, 1998; Fraser et al., 2013). 

The Pontbren study used a meta-modelling approach to extrapolate from local-scale 

effects to the larger catchment scale. Physically based distributed, Soil-Plant-Water 

(SPW; Jackson et al. (2008)), models were created and calibrated for a number of 

different hillslopes to capture the heterogeneity in both soil and land use. The catchment 

scale model was ‘trained’ using the detailed physics-based simulations, so that it 

encapsulated the dominant responses of the more detailed model (Wheater et al., 2008). 

This was achieved by linking the model parameters in a consistent manner. 

 

Figure 2-4 Meta-modelling: changing complex small-scale models into field-scale simple models (Wheater et 
al., 2008) 

A summary of some modelling methodologies that have been adopted for investigating 

land use change impacts are summarised in Table 2-8. 

Strengths	

 Theoretically behave like physically based models meaning parameter changes 

made to reflect land use change is transparent; i.e. there is a link between the 

simple conceptual parameters and physical attributes, as represented in the 

physically based models. 

 Are simpler and faster to run than fully physical, distributed models, meaning 

more scenarios sensitivity and uncertainty studies could be done in a given time 

frame. 
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Weaknesses	

 Moving from one model to another may be cumulatively increasing the 

uncertainties in the outputs. 

 Over simplified hydrology. 
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Catchment Model Model results Reference 

Pontbren 

(10 km2) 

Modular 

RRMTSD 

Fully wooded catchment increased Tp by 45mins, median reduction in Qp of 50 %. Strategically 

placed shelter belts increased Tp by 15mins, median reduction in Qp of 30 %. Significant 

uncertainties noted. 

(Wheater et al., 

2008) 

Oughtershaw 

Beck (13.8 

km2) 

(?) Coupled 4, 1D models to represent hillslope flow in 3D using a simplified physical approach. 

Developed to model the water table and drain flow interaction in blanket peats. No land use 

scenarios modelled as such but channel and surface roughness found to be important factors in 

controlling peak flows. 

(Ballard et al., 

2011) 

Plynlimon 

 

PDM Developed a method for calibrating a Probability Distributed Model (PDM) for ungauged 

catchments using a Bayesian approach. The regionalised BFIHOST and the curve number (CN) of 

the U.S. Department of Agriculture’s Soil Conservation Service classification were used to provide 

information regarding the soil type and land use effects. The approach was tested on the paired 

catchments at Plynlimon with uncertainty reduced in results when compared to only using only 

BFIHOST conditioning. The CN incorporation provides a methodology for investigating land use 

and soil condition change. 

(Bulygina et 

al., 2009; 

Bulygina et al., 

2011b) 

Hodder 

(261 km2) 

Catchment 

Moisture 

Deficit 

model 

The physical model is based on 200 x 200 m square runoff response units that capture HOST soil 

type, land use, soil condition, and flow direction and are used to condition the conceptual model 

using a Bayesian approach as mentioned above. Four scenarios tested to upscale known local scale 

impacts for tree planting and pastoral farming. Both tree planting scenarios (plantation and riparian 

woodland) both reduced flood peaks. Generally it was found that land use effects reduced with 

increasing flood peak magnitude. 

(Bulygina et 

al., 2012) 
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Hodder sub-

catchment 

(25 km2 ) 

Catchment 

Moisture 

Deficit 

model 

Similar to above, smaller area modelled but it was deemed that the metamodeling procedure 

adopted introduced significant modelling uncertainties, with 60 % of the uncertainty in land use 

change scenarios deemed to have come from the meta-modelling procedure when compared to the 

same scenario modelled with the original physical model.  

(Fraser et al., 

2013) 

Table 2-8 Summary of some meta-modelling approaches used for land use change impact assessment
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2.6.4 Conceptual	modelling	
Conceptual hydrological models are widely used within hydrology for a number of 

different purposes. Principally they are designed to quantify runoff from rainfall using 

representations of the process deemed important from the modellers conceptual 

understanding of the catchments behaviour. An example of a conceptual model is the 

PDM model which is widely used within the UK and Europe (Cabus, 2008; Poelmans 

et al., 2011). The range of soil depths within a catchment are represented as a 

probability distribution function (i.e. a range of potential soil depths and the likely 

distribution of the depths) which can be calibrated. The rainfall is then applied to the 

statistical distribution of stores, the losses such as evaporation, subsurface flow, are 

accounted for and the excess water is then routed as routed as fast flow. The combined 

fast and slow flows produce the modelled output. Table 2-9 provides examples of 

conceptual models used for land use impact assessment. 

Table 2-9 Summary of conceptual rainfall-runoff models used for modelling land use change impacts 

Catchment Model Modelled results Reference 

Molenbeek, 

Belgium. 

(48 km2) 

PDM Modelled the likely impacts of climate change 

and urban expansion for 2050 high and low 

emissions scenarios. Found the climate change 

scenarios to be of more significance than likely 

land use impacts with peaks increasing by 30 % in 

a wet scenario and reducing by 18 % for drier 

scenario (developed from IPCC AR4 database) 

with an increase in urban area of 70–200 %, from 

19 %, increasing peak flows by 6–16 %. 

(Poelmans et 

al., 2011) 

Kishwaukee, 

USA (3258 

km2) 

HSPF Investigated impacts of urbanisation on the flow 

regime of a catchment. No significant changes to 

the flood frequency curve were detected. 

(Choi and Deal, 

2008) 

 

Strengths	

 The expert knowledge based on impacts to soil response to land use has been 

incorporated through statistical approaches. 

 The models are relatively simple and easy to understand. 
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Weaknesses	

 Known local land use change impacts can’t be applied in a clear and 

unambiguous way at the lumped catchment scale. 

 The models are lumped so the distributed nature of change is not accounted for. 

 There are potentially numerous suitable parameter combinations, due to the 

interaction of parameters in calibration, the more parameters there are, 

potentially the greater the uncertainty. Therefore uncertainty in the potential 

impacts. 

 Developed for purposes other than modelling land use change impacts. 

2.6.5 Hydro‐dynamic	modelling	
Hydrodynamic modelling is used to simulate in more detail the local physical effects as 

well as downstream impacts caused by physical features such as riparian woodland 

planting, debris dams and both on- or off-line ponds. This type of modelling is widely 

used in UK consultancies for inundation and flood mapping. One-dimensional models 

enable likely flood extents to be mapped whilst the two-dimensional approach enables 

the complexity of floodplains to be better accounted for by having features and 

buildings explicitly represented in the model where, in the 1D model this would have to 

be accounted for by changing a roughness parameter. The approach of modifying 

overbank roughness values has been used to investigate the impact of riparian woodland 

on flood wave propagation (Thomas and Nisbet, 2007). 

A Multi-objective flood management demonstration project based in the Holnicote 

catchment, Exmoor, England, used a coupled 1D-2D hydrodynamic model (JFLOW) to 

investigate the potential for enhancing floodplain inundation through the construction of 

levees on a floodplain, perpendicular to the channel (Figure 2-5; (Rose et al., 2011). For 

the 2 km length of reach modelled in Figure 2-5, the flood peaks for the 5 and 20 year 

return interval floods were locally reduced by 7 % and 2.5 % and delayed by 1 and 0.8 

hours, respectively (Rose  et al., No date). 
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Figure 2-5 Model output from JFLOW of floodplain inundation; taken from (Rose  et al., No date) 

There are still difficulties, however, in capturing the complexities and impacts of NFM 

approaches such as woody debris dams in hydraulic models. These currently have to be 

included in the model by increasing roughness or adding a weir feature. 

Some examples of hydrodynamic models being used for studying impact of flood 

mitigation options are shown in Table 2-10. 
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Table 2-10 Examples of NFM and land use scenarios modelled using hydrodynamic models 

Catchment Model Modelled results Reference 

Belford    

(6 km2) 

Pond 

model 

(1D) 

Used observed water level data to 

forensically understand the local impact of a 

storage pond (RAF) with a maximum 

volume of 550m3. The result was then 

extrapolated using simple hydraulic based 

approach to represent a network of ponds in 

series. It was found that the peak of 

discharge attenuated to by 5, 10 and 20 

RAFs; approximately 10 %, 15 % and 25 %, 

respectively 

(Nicholson et 

al., 2012; 

Nicholson, 

2014) 

River Cary, 

England. 

(82 km2) 

1D-2D 

coupled 

HECRAS- 

River2D 

Show the positive effects of using 

floodplain tree planting for attenuating 

flood flows, which was modelled by 

increasing floodplain roughness. Increased 

local storage, no quantification of reduced 

downstream Qp. Significant increase in Tp. 

(Thomas and 

Nisbet, 2007) 

Pickering, 

England. 

(69 km2) 

Overflow Roughness of flood plains increased using 

Manning’s ‘n’ to represent riparian 

woodland as was done to represent in 

stream debris dams. Reduction in Qp of up 

to 11 %, at the catchment outlet, through 

use of in-stream wooden debris dams and 

riparian tree planting. Found that mitigating 

in the sub-catchments with the greatest 

travel distance to the outlet had the greatest 

impact on the outlet flood hydrograph.  

(Odoni and 

Lane, 2010) 

Holnicote, 

England. 

(22 km2) 

JFLOW 

1D-2D 

coupled 

Multiple options for flood hazard reduction 

implemented including moorland drainage 

management and attenuation features. Qp 

for the 5 and 20 year return interval floods 

were locally reduced by 7 % and 2.5 % and 

delayed by 1 and 0.8 hours, respectively 

(Rose et al., 

2011; Rose  et 

al., No date) 
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Strengths	

 Model features such as attenuation ponds and riparian features designed for 

attenuating overbank flows in a more robust way than rainfall runoff models. 

 Structures and NFM features can be modelled as part of a network, therefore the 

effects happen in a distributed manner with the upstream effect routed 

downstream to investigate the impact at a larger scale. 

 Structures such as bridges, culverts or pipes can be represented in detail and the 

impact locally and downstream of trash build up at the entrances to bridges and 

culverts can be investigated.  

Weaknesses	

 Do not have a runoff generation or infiltration component so are only useful for 

modelling instream or riparian mitigation options. 

 Riparian features such as woodland are represented by manipulating a roughness 

coefficient such as Manning’s ‘n’. 

 Cannot explicitly represent woody debris and leaky features. 

2.6.6 A	 true	 (verified)	 model	 versus	 an	 acceptable	 (confirmed/validated)	
model	

Models will always be simplifications of the natural environment and the processes that 

occur within. The philosophical argument is that it is not, and never will be possible to 

demonstrate that a model is ‘verified’, i.e. representative of the ‘truth’ (Oreskes et al., 

1994). Validation is used to affirm the acceptability of a models performance and 

behaviour. Model validation is performed in a number of ways, including split and 

blind testing. Split testing involves splitting an observed series in two, one part is used 

for calibration whilst the second part is used to validate the model parameterisation by 

checking the model still provides an adequate fit. It has been argued, however, that this 

process leads to adjustments being made to the parameterisation to make sure a better 

fit to both the calibration and validation period; it is therefore just an extension of the 

calibration process and in no way is the model validated (Oreskes et al., 1994; Beven, 

2001). However, Beven (2001) argues that this is inappropriate as no real complex 

system can expected to be fully represented by a model in it its totality, but it could be 

argued that the key features can be adequately included modelling at larger scales. 
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In a review of testing methods Klemes (1986), found the split testing approach to be 

weak, an alternative was proposed, ‘the differential split test’, and identified as 

particularly important if a model is to be used for predicting future climate scenarios. 

The model is calibrated against a dry period and tested against a wet period or vice-a-

versa, to test how well it performs for conditions it was not calibrated against. It has 

been argued, however, that that calibrating to the extremes of a series does not mean the 

model will adequately capture the future stable wetter or drier behaviour (Ewen and 

Parkin, 1996). Ewen and Parkin (1996) suggest that blind validation may be more 

suitable particularly for physically based models. In this method the modeller does not 

have access to any observed hydrological flux time series; as the test is to investigate 

whether available data regarding soil and vegetation can parameterise a model 

adequately to reproduce observed hydrological fluxes. It can then be tested against the 

observed flow for a number of pre-defined conditions depending on the purpose of 

model. For example for water resources purposes it may be important that annual yield 

is successfully modelled or storm hydrographs that the modelled output is within 90 % 

confidence intervals (Ewen and Parkin, 1996). To truly validate a model, reliable, high 

quality hydrological data at multiple spatial scales will be required to provide the 

evidence against which the models can be fully evaluated. There are also questions 

regarding how distributed information can be directly used to parameterise models, 

especially those with a physical basis (e.g. the effective parameter problem, in which 

the field measurement scale differs from the model grid scale). Lamb et al. (1998) 

demonstrate the usefulness of distributed data, including water tables, in improving 

simulation for discharges. 

2.7 Communicating flood risk 

There is a need to communicate flood risk effectively to stakeholder and decision 

makers, especially when considering the uncertainty and complications of 

heterogeneous catchments (Wilkinson et al., 2013; Wilkinson et al., 2015). Being able 

to illustrate how land use management options have the potential to affect flood risk 

may help stakeholders consider the potential impacts of their actions. It is argued that 

managing flood risk will often require a number of different solutions and increasingly 

require a ‘portfolio of flood risk management measures’ (Hall and Solomatine, 2008). 

Hall and Solomatine (2008) go on to show that it is likely to require action by a number 

of governmental and non-governmental stakeholders. ‘This places an increasing 
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emphasis upon effective communication and mechanisms to reach consensus.’ (Hall and 

Solomatine, 2008). 

A tool for communicating the LUM hazards and risks, is the Floods and Agriculture 

Risk Matrix (FARM) tool (Packman et al., 2004; Wilkinson et al., 2013). The tool was 

originally developed for a Defra study, FD2114, investigating land use impacts on flood 

risk (Packman et al., 2004). The approach was originally inspired by the work of 

(Brazier et al., 2001) who showed the power of visualising sediment loss rates when 

mapped against key model parameters. Brazier et al. (2001) proposed a methodology 

using a Minimum Information Requirement model (MIRSED), which was based upon a 

more physical model that enabled a soil erodibility index to be derived that could be 

mapped against the soil properties such as percentage sand and clay content (Figure 2-6, 

the greater the sand content the higher the erodibility). 

 

Figure 2-6 MIRSED matrix for soils in the Great Ouse catchment (taken from (Brazier et al., 2001)) 

This gave rise to the concept of a Decision support matrix where nutrient losses were 

mapped against key underlying drivers (Hewett et al., 2004). The current version of the 

FARM tool was developed for the Environment Agency (EA) as part of the Making 

Space for Water project (Wilkinson et al., 2013). 

The FARM tool has two key factors that represent runoff rates, firstly, the loss of 

storage in catchment brought about by the degradation of the soil; secondly, increased 

connectivity through artificial drainage and channel straightening. Thus the FARM tool 

has two axes: soil condition (infiltration, storage and tillage regime) and flow 
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connectivity (Figure 2-7). This complements the hydrological concepts of SPR and Tp; 

SPR can be used to reflect changes in soil condition and a change in connectivity will 

become evident in Tp (where high connectivity equates to lower Tp). The stakeholder, 

in this case a farmer, answers a series of questions, from drop down menus. The 

questions cover: 

1. Increased runoff due to reduced soil infiltration, storage and tillage. i.e. the key 

attributes relating to: 

 Soil exposure 

 Slope of field 

 Soil degradation 

 Crop and tillage regime 

 Soil management practices 

2. Risk of increased runoff due to flow connectivity 

 Land drains and ditches 

 Hillslope form 

 Tramlines, tyre tracks, roads and trafficking 

 Presence of hedgerows, buffer zones, wetlands and water-logged zones, 

ponds and flood storage ponds 

As the stakeholder provides information for each of the above, the highlighted square in 

Figure 2-7 moves around the matrix so that an understanding of factors and 

corresponding risk or hazard is established. Once the questions are complete and the 

risk score for a farm is plotted, the stakeholder is asked to go back through the 

questions to see what could feasibly be done to reduce the risk score of the farm. 
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Figure 2-7 The FARM tool – Highest risk of flooding, top right (taken from Wilkinson et al., 2013) 

The tool is purely qualitative, with no quantification to help the stakeholder understand 

what would be required to achieve the outcomes. The scale at which the tool applies is 

quite generalised, with examples provided at the field-scale.  

The FARM tool has recently been demonstrated to stakeholders in the Morland 

catchment, Cumbria, and the Belford catchment in Northumberland, through a series of 

public and farmer meetings (Wilkinson et al., 2013). It is noted that the FARM tool has 

helped stakeholders understand runoff generation problems (Wilkinson et al., 2013). 

Using the FARM tool with a farmer led to the construction of two overland flow 

attenuation features. The tool was also used in the NERC pilot Environmental Virtual 

Observatory (EVO) project which was reported in Wilkinson et al. (2015). 

2.8 Summary 

There is a significant and growing wealth of information from field experiments that 

land use management decisions have potentially significant hydrological consequences. 

Examples in the literature provide strong field based evidence of the effects of 

compaction due to cattle on soil bulk density and conductivity as well as the increased 

infiltration rates under woodland versus pasture (Wheater et al., 2008). The 

observations of hydrological impact are however, only well understood at the point of 

observation, generally the point or plot scale. From a catchment management and flood 

prevention point of view an understanding of how these land use impacts affect flood 

hazard at the larger, catchment scale is needed, and this however, is not well 

understood. It has proved difficult to detect the impacts of land use change within 
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historical data sets due to a number of complicating factors such as climate variability, 

data errors and the limited length of data records. 

Modelling offers the potential for scaling local impacts to the catchment scale. There 

are, however, a number of implications with regards to the suitably of different models 

for investigating land use management impacts. These implications include the level of 

complexity and structure required for adequately capturing the observed land use 

impacts. Intuitively it would seem the most practical model for investigating land use 

impacts would be the distributed, physically based models, in which the hydrological 

and hydraulic behaviour of the landscape are parameterised in great detail using 

mathematical, physics based equations. Theoretically these models can be 

parameterised from field measurements such as infiltration and conductivity. However, 

the scale of measurement is often much smaller than the scale at which distributed 

models run. They therefore require calibrating to find an effective parameter set that 

adequately reproduces the catchment outflow and with the large number of parameters 

there may be more than one suitable parameter set (Vázquez et al., 2002).  

Simply using field based measurements or best available information regarding soil and 

land cover to parameterise the SHETRAN model during a blind validation test was 

found to be inadequate at recreating the catchment outflow (Ewen and Parkin, 1996). 

Even when an upper and lower bound of acceptable values was placed on the observed 

values the range of model outputs still did not adequately capture the catchment 

response. 

The implication of calibrating effective parameter values for physically based models is 

that attempting to apply any field based observations of land use impacts may be invalid 

as the sensitivities of the model may differ from the point at which the observation was 

made. 

Alternative methods have used expert knowledge regarding the impact on the 

hydrological response of soil due land use impact. These methods include the use of 

regionalised datasets such as HOST or Curve Numbers where parameters regarding soil 

rainfall-runoff response are changed to reflect likely increased runoff due to soil 

degradation (Packman et al., 2004). 
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This leads to the need of this thesis to address these key points. This thesis will make 

best use of existing data and observations. To produce model structures that are 

sensitive to uncertainties and to make the most of process understanding but not to over 

use that understanding so that models become too complex. It is also important that any 

suggested model structure can be used by end users to assess the potential of land use 

management change and NFM on Qp and Tp across scale. Hence, how the likely impact 

of any decisions are communicated regarding flood impact is important. 
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Chapter 3. Methodology 

3.1 Introduction 

This chapter describes the methodological approaches adopted in this thesis. Two 

catchment-based field experiments are introduced and described, followed by a 

discussion of the experimental design and instrumentation used therein. The two 

catchments are in the north of England and are undergoing land management changes 

related to modifying hydrological flow pathways in order to mitigate for flood flows 

and address water quality issues; the River Leven catchment to Great Ayton (30 km2), 

North Yorkshire, and the River Morland Demonstration Test catchment (12.5 km2) in 

Cumbria.  

The analysis methods used in characterising the catchment and understanding the 

rainfall-runoff response are then described. Of particular interest are the rainfall 

characteristics that lead to the largest flood peaks, the rate of response of different sub-

catchments, and the synchronisation of sub-catchment contributions. 

This study will compare two different modelling approaches. The first is the FEH 

rainfall-runoff model, which uses an event based unit hydrograph approach. The 

second, a novel model named Juke, uses a distributed, semi-physical approach, 

designed specifically for land use management (LUM) impact investigation. The 

conceptual design of Juke is presented to familiarise the reader with its novel design 

aspects, while a detailed breakdown of its parameterisation is covered in Chapter 7. 

Finally, the Floods and Agriculture Risk Matrix (FARM) tool is discussed. The matrix 

will be populated with the simulated results from the two models to help stakeholders 

understand in an intuitive way the potential impacts of LUM practises and mitigation 

methods. 

3.2 Research catchments 

The Great Ayton catchment forms the core of the data analysis and modelling for this 

study, as it has the longest available data sets and is a larger spatial scale. The Morland 

catchment is used to compare the impacts from the modelling of the Great Ayton 

catchment for a catchment of a smaller spatial scale. 
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3.2.1 Great	Ayton	
The Environment Agency (EA) has undertaken a flood management scheme in the 

Leven catchment, to Great Ayton (30 km2; Figure 3-1), using two approaches: (1) the 

flood proofing of at-risk properties; (2) upstream works in the catchment designed to 

attenuate flood flows. The upstream features include woody debris in the headwaters 

and offline storage ponds (which receive water from the stream in high flow events); a 

detailed summary of the features is provided in Chapter 5. 

Newcastle University were commissioned by the EA to carry out stream monitoring for 

the period January 2012 to December 2014. Seven water-level gauges were installed in 

the catchment - six in the stream network and an additional one within an offline 

storage feature located at Little Ayton. This augments the EA’s current hydrometric 

monitoring network, which comprises two stream gauges, an event (tipping bucket) rain 

gauge and a daily rain gauge.  

 

 

Figure 3-1 Monitoring locations in Great Ayton Map 
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3.2.2 Morland	
The Demonstration Test Catchments (DTC) programme aims to test and monitor a 

multitude of methods for mitigating Diffuse Water Pollution from Agricultural 

(DWPA) (Owen et al., 2012). It is jointly funded by the Department for Environment, 

Food and Rural Affairs (Defra), the EA and the Welsh Assembly Government (WAG). 

The Eden DTC, based in the River Eden catchment (2288 km2) in Cumbria, northwest 

England, is one of three national demonstration catchments, along with the Avon in 

Hampshire and the Wensum in Norfolk. The Eden DTC is monitoring three tributaries 

of the Eden (~10 km2 sub-catchments), chosen to represent the different farming 

practices and land uses found in upland areas of Northern England. This study will 

focus on the Morland catchment (Figure 3-2; 12.5 km2).  

 

Figure 3-2 Monitoring locations in Morland 

3.2.3 Catchment	summaries	
A summary of the land use and management found in the 2 research catchments, as well 

as the local flooding issues is provided in Table 3-1. 
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Table 3-1 Summary of land use, land management and climate of the two research catchments 

 Great Ayton Morland 

Region 
North Yorkshire, north-east 

England 
Cumbria, north-west England 

Watercourse River Leven Newby Beck 

Major catchment Tees Eden 

Area 30 km2 12.5 km2 

Elevation (AOD) 

range 
84 m to 395 m 144 m to 348 m 

Annual average 
rainfall 

805 mm 1167 mm 

Soils 

Predominantly slowly permeable 

and seasonally wet clayey soils. 

Peats in the upper areas. 

Dominated by slowly 

permeable and seasonally wet 

glacial tills. 

Geology 

Predominantly mudstone, sandstone 

and siltstone. Steeper hillslope faces 

interbedded Sandstone and 

Ironstone 

Interbedded limestone, 

mudstone and sandstone of the 

Carboniferous Yoredale group 

Hydrology and 

geomorphology 

The catchment can be sluggish to 

respond after a prolonged dry 

period. Antecedent conditions 

important must be saturated to 

generate medium to events. 

Flashy response to rainfall. The 

headwaters can become very 

dry during the summer months 

due to losses to limestone. 

Land cover and 

use 

Predominantly pasture for sheep 

and cattle. Game rearing on the 

upland moors with some arable. 

Some woodland on slopes. 

Predominantly pasture for 

sheep and cattle with some 

arable. 

Land 

management 

Almost half the catchment is 

improved grassland for livestock. 

The upper catchment is moorland 

with sheep and game rearing. 

Significantly improved (70 %) 

for animal rearing. Small 

amount of arable and woodland.

Local land 

management and 

flooding issues 

Number of locations prone to 

flooding. Exacerbated by local 

constrictions such bridges and 

culverts. NFM uptake to attenuate 

flows. 

Local flooding to farmland and 

roads and a small caravan park. 

Water quality an issue which is 

being mitigated for with 

attenuation features. 
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3.3 Experimental design 

The monitoring network in each of the two research catchments uses a nested structure 

with an outlet gauge and internally located gauges. The nested approach is taken to 

understand how each catchment responds to rainfall, not only at the outlet but at 

multiple scales, to better understand how floods develop. Of most interest are the 

factors that drive the largest events; which areas contribute to flood peaks? What is the 

role of rainfall intensity and duration in generating the largest peaks? What is the 

importance of seasonality and antecedent conditions? And then, how does the flood 

wave propagate through the system? These questions will be answered through 

achieving objective three, catchment characterisation, and will contribute to 

parameterising the models used to achieve objectives five and six (lumped and 

distributed modelling, respectively). 

Despite both employing a nested monitoring structure, the design of the networks 

differs between the two catchments. The DTC Morland catchment uses a paired 

catchment approach, with a gauge at the outlet and two separate sub-catchment outlets; 

one sub-catchment is being mitigated with features for reducing DWPA, whilst the 

other is a control catchment. The Great Ayton network was designed more specifically 

for the spatial understanding of flood generation. Figure 3-3 is a schematic of the Great 

Ayton monitoring network which illustrates the data observations that enables sub-

catchment synchronisation and flow contributions to be quantified. The detailed design 

specific to each catchment is described in more detail in their respective 

characterisation chapters (4 and 5). 

 

Figure 3-3 Schematic of monitoring network design for Great Ayton 
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3.4 Instrumentation 

This section describes the instruments used in the experimental catchments for 

monitoring hydrometeorological parameters (rainfall, flow and evaporation) needed to 

quantify various parts of the water cycle and to calculate a water balance. The author of 

this thesis was responsible for all hydrometeorological instrumentation, specifically, 

installation, maintenance, data collection and quality control thereof on behalf of 

Newcastle University and the DTC programme. 

3.4.1 Automatic	Weather	Station	(AWS)	
The AWS used in the Morland catchment is manufactured by Environmental 

Measurements Limited and consists of multiple instruments for monitoring the 

parameters required to calculate potential evaporation on a 15 minute time step (EML, 

2015), including: 

 Air temperature (oC) 

 Humidity (%) 

 Net radiation (Watts/m2) 

 Wind speed (average, minimum and maximum; m/s) 

 Wind direction (o) 

 Rainfall (mm) 

AWS data for the Great Ayton catchment are collected at RAF Fylingdales, in an 

adjacent catchment (Centre for Environmental Data Archive; Station 358). 

3.4.2 Rainfall	
Rainfall data are collected using 0.2 mm tipping bucket rain gauges (Figure 3-4). The 

gauges record on an event basis which means they record a timestamp for every tip. The 

logged tips can then be resampled to produce a cumulative rainfall record for any time 

step, which in this study is 15 minutes. 
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Figure 3-4 Casella tipping bucket rain gauge 

3.4.3 Stage	
Three different methods are used for monitoring stream stage data in these studies. The 

method employed at the two EA sites in the Great Ayton catchment uses a weir with a 

stilling well and float system as shown in Figure 3-5.  

 

Figure 3-5 Weir at EA Easby level monitoring location 

Sites monitored by the author in Morland and Great Ayton use two types of pressure 

transducer located in natural channels. Pressure transducers record the head above the 

instrument. This can be done in two ways: (1) by measuring the ‘raw’ pressure, which 

is both the pressure of the water head and the ambient atmospheric pressure. This 

requires the additional measurement of atmospheric pressure by a barometer against 

which the raw, instream pressure can be compensated. (2) Using a ‘vented’ pressure 
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transducer; automatically accounts for the atmospheric pressure by having a tube that 

runs from the device to the atmosphere, therefore only affected by the head of water. 

Each of the methods has their own merits. A weir with a stilling well is a highly 

accurate method of measuring river stage, especially at low flows. For water resource 

projects where accounting for low flows is important the use of a control structure is 

recommended. However, structures are expensive to install and cannot be economically 

justified. If the study is not concerned with the accurate quantification of low flows then 

pressure transducers offer a rapid to install and comparatively cheap method of 

monitoring stream stage.  

It has been observed that the pressure transducers that require compensating can be 

affected by temperature, especially where there is a difference in temperature between 

the instream instrument and the barometer (Ewen et al., 2010). The effect is most 

noticeable during warm periods when there is little flow. A method was developed by 

Ewen et al. (2010) that involves taking manual stage measurements at the instrument 

for a range of temperatures and depths. A relationship is established for the temperature 

dependency of stage that is then applied to the compensated level series as a multiplier 

for the observed temperature at the instream gauge. The corrected water level series 

provides an accurate record of level as is shown in Figure 3-6, where a vented pressure 

was situated alongside a non-vented gauge to confirm their accuracy. 

 

Figure 3-6 Comparison of water levels recorded by 'vented' and 'compensated' pressure transducers at Little 
Ayton in the Great Ayton catchment 
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3.4.4 Morland	instrument	locations	and	data	availability	
The locations of each of the monitoring instruments can be seen in Figure 3-2, with the 

location details summarised in Table 3-2. 

Table 3-2 Morland catchment and sub-catchment instrumentation summary 

Site Easting Northing 
Elevation 

(m.a.o.d) 

Area 

(km2) 

% of 

catchment 

Water level 

Mor_out 360057 521315 144 12.51 100 

Mor_subM 358127 519614 209 1.55 12.4 

Mor_subC 359719 519221 195 3.64 29 

Meteorological 
Thiessen 

area 

Thiessen 

weight (%) 

AWS 358482 519341 216 3.43 27.4 

Telemetered 359317 516289 288 6.72 53.7 

Non-telemetered 360310 519499 192 2.37 18.9 

 

The analysis for Morland makes use of data for the three hydrological years from 

October 2011 to September 2014. This period contains events of varying magnitude 

with a mixture of antecedent conditions, as will be analysed and discussed in this 

chapter. Dataset completeness is summarised in Table 3-3 - short gaps in some of the 

records are due to logger failure and/or rain gauge blockage.  

Table 3-3 Morland data availability  

 

The analysis in Chapter 4 uses an aerially weighted, composite rain series created using 

Theissen polygons, clipped to the catchment boundary (Figure 3-7). The Theissen 

weights reflect the proportion of the catchment that lies closest to a particular rain 

gauge. 
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Figure 3-7 Theissen polygons for Morland rainfall weightings used in modelling 

3.4.5 Great	Ayton	instrument	locations	and	data	availability	
A nested, multi-scale, monitoring network consisting of eight level gauges has been 

implemented by the author across the stream network, supplementing the two existing 

EA flood warning level gauges. There is an additional level gauge within an offline 

flood storage pond that has been used to monitor its response and behaviour. 

Environment	Agency	gauge	

The Environment Agency has a several level gauges along the River Leven for use in 

flood forecasting and warning, three of which are being used in the data analysis in 

Chapter 5 (Table 3-4). They are located Easby (15 km2), Great Ayton (30 km2), and 

Foxton Bridge (168 km2), which will allow analysis of catchment response at a range of 

spatial scales. Data from Foxton Bridge are being used to examine the effect of spatial 

and temporal scale on the hydrograph. Spatial and travel time analyses are being carried 

out to provide an understanding of the formation of floods; the attributes of the 

locations to be used in the scaling and analyses of travel time are listed in Table 3-4. 
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Table 3-4 The EA instrumentation being used in the Great Ayton analysis and modelling 

Gauge Easting Northing Elevation (m.a.o.d) Distance to Foxton (km) 

Water Level 

Easby  458503 508660 110 25.3 

Great Ayton  455952 510723 84 20.0 

Foxton Bridge  445578 509372 18 - 

Rain gauge 

Easby  461724 510188 174 - 
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Newcastle	University	gauges	

The availability of data from the eight level gauges installed by the university are listed in Table 3-5 below. 

 

Table 3-5 Newcastle university installed gauges data availability 

 

Grey - Data available 

White  - Data unavailable 

Black - Data-logger corrupted/no data 
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Table 3-6 Location and other attributes of the Newcastle university sites 

Site Easting Northing 
Elevation 

(m.a.o.d) 

Area 

(km2) 

% of 

catchment 

Lt Ayton 456686 510331 89 25.9 86 

Lt Ayton P 456820 510259 90 - - 

Leven vale 461656 509963 169 5.0 17 

Lonsdale 461409 510321 168 4.0 13 

Pilly Hill 457930 508458 110 5.2 17 

Woodhouse 457125 510401 95 1.4 5 

Dikes Beck 456852 510682 94 2.9 10 

Farm Ditch 457345 510335 99 0.5 1.7 

3.5 Rating curve development 

A rating curve or a stage-discharge relationship is required to convert the recorded stage 

to a discharge. The traditional approach is to measure the velocity and cross sectional 

area that correspond to a range of the depths, often referred to as ‘gaugings’ or ‘flow 

gaugings’. There are methods for in-situ discharge monitoring, on a continuous basis, 

by measuring the velocity (e.g. using an Acoustic Doppler system) and the water level, 

which is used to lookup a cross-sectional area from a stage-area curve. However, 

Doppler systems are expensive and are difficult to operate in natural, non-geometrical 

channels that are prone to changes in cross-sectional area. No formal uncertainty 

assessment has been made however, the field observations are taken as the best 

information available. The major source of the uncertainty lies in extrapolating the 

ratings beyond the highest gauged flows. Using hydrological judgement rating curves 

have been extrapolated to ensure they are physically reasonable, through consideration 

of the long term water balance. The volume of water leaving the catchment, derived 

from the flow data obtained from the stage measurements and rating curve, was 

compared to the rainfall and evaporation over the period of interest. GLUE analysis of 

the Morland outlet rating curve showed it to be a robust relationship (Beven et al., 

2015). 

3.5.1 Flow	gauging	
The manual gauged flows were collected using a number of different instruments. In 

medium to low flows where it was safe to enter the stream a Valeport model 801 

electromagnetic flow (EM) gauge was used to take point velocity measurements 
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(Valeport, 2011). The velocity-area method (Shaw et al., 2010) was used to attain the 

cross sectional discharge, by splitting the channel in to at least 10 panels, with no panels 

having a width greater than 0.3 m; the velocity was measured at 0.6 of the depth for 

each point. The EM gauge has a stated velocity measurement accuracy of ±0.5 %. Each 

velocity measurement is taken as the average over a 40 second recording interval and is 

only accepted if the standard deviation in the measurement interval is less than 10 % of 

the final value to eliminate erroneous values caused by turbulence. 

Gaugings made during higher flows used the Teledyne ‘StreamPro’ Acoustic Doppler 

Channel Profiler (ADCP) (Teledyne, 2013). This method requires two operators to pull 

a float across the channel to record the required area and velocity measurements. The 

system builds a picture of the channel and avoids double counting by tracking its 

progress against fixed objects in the bed. It automatically adjusts the resolution at which 

it scans the channel from 2-20 cm depending on the depth and complexity of the flow 

regime. The ADCP has a stated accuracy ±1 % of water velocity relative to the ADCP 

and measurement accuracy of ±2 mm/s. The discharge recorded is an average of at least 

three measurements taken on separate tracks across the channel, where each 

measurement is within 5 % of the average discharge. 

3.5.2 Modelling	Flow	
Opportunities to gauge the largest flows are infrequent and often missed due to their 

limit length. As a means of producing stage-discharge rating curves with limited gauged 

data, a method is proposed for modelling a rating curve using a surveyed channel cross-

section, observed water levels and the available flow measurements. Beven (1979), 

found that in a river system the stream velocities asymptote to a maximum value with 

increasing discharge and it is this understanding that underpins the Velocity-Area 

Rating Extension (VARE) model, where the stage-velocity relationship is fitted by a 

sigmoid function, Figure 3-8 (Ewen et al., 2010); every stage height is associated with a 

cross-sectional area, derived from field survey. The velocity value is applied to the 

stage-area relationship to derive discharge. VARE is used to produce rating curves that 

can be constrained in two ways. Firstly, the maximum in-channel velocity can be 

limited, meaning the extrapolation of the rating curve is likely to be physically realistic 

(Illustrated in Figure 3-8). Secondly, and in combination with the velocity capping, is 

the ability to calibrate the rating curve over a long period to achieve a physically 

realistic water balance. This is done by treating the hydrological cycle as a closed 
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system in which the flow record, the output, can be calibrated against the known input, 

rainfall and calculated potential evaporative losses from the weather station data. There 

may be additional losses from the system via abstraction and to groundwater, which can 

also be accounted for if quantities are known. 

 

Figure 3-8 VARE output showing stage-discharge curve (blue), gauged data (blue dots) and stage-velocity 
curve (red) 

VARE has been used in a number research projects at Newcastle University to generate 

rating curves, including the Hodder project studying the effects of the Sustainable 

Catchment Management Programme (SCaMP) (Ewen et al., 2010; Geris, 2012), and the 

PhD work carried out in Belford (Nicholson et al., 2012). A detailed description of the 

model can be found in the Hodder project reports (Ewen et al., 2010; Geris, 2012). 

3.6 Storm analysis 

To fully understand how a catchment behaves, the hydrometeorological parameters 

need to be quantitatively analysed against each other to understand how the catchment 

responds to rainfall, especially what causes the largest events. This analysis is discussed 

below. 

3.6.1 Rainfall	runoff	
There are a number of factors that contribute to flood peak magnitude, including 

catchment antecedent wetness conditions and the space-time characteristics of the 

rainfall event driving it. In order to understand the conditions that cause the largest flow 

peaks in the catchment a number of algorithms have been developed to compare flood 

peaks against a number of rainfall statistics (total storm rainfall, mean storm intensity, 

maximum storm intensity and storm rainfall Duration). The start and end of the rainfall 
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event is selected for each discharge peak by identifying a window of 4 hours in which 

there was no rainfall at the beginning and end of the rainfall event. This simple 

approach has been used in numerous published papers as summarised in Dunkerley 

(2008). The 4 hour window provided a good selection of peaks of differing magnitudes, 

with few double peaked events. The events selected have also been split into two 

seasonal categories of ‘autumn/winter’ and ‘spring/summer’ to give an indication as to 

the likely antecedent conditions, i.e. wet and dry, respectively. 

3.6.2 Celerity	
Celerity relates to the flood wave speed which is the catchment response to rainfall, 

including the hillslope and channel network. The interaction of different sub-

catchments, and their relative timings are highly significant factors as they may 

influence the management options considered when designing a flood mitigation 

scheme. One specific goal of such schemes is to attenuate the flood peak, i.e. increase 

the time-to-peak (Tp) and lower the flood peak and rate of recession as demonstrated in 

Figure 3-9. Understanding a catchment’s response can be performed in a number of 

ways, including analysing the lag time between the centroid of rainfall events and the 

corresponding flood peaks in the river. An alternative approach is to examine the flood 

wave celerity - how the flood propagates through the river network by comparing the 

timing of flood peaks for gauges within a nested catchment.   

Celerity is calculated using the distance between two monitoring points on a river and 

the lag time of peak values between those points. A relationship can be established 

between Qp and celerity by analysing the celerity for a range of flood peak magnitudes. 

This is crucial to understanding the flood response for the current catchment being 

studied 
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Figure 3-9 Schematic illustrating the desired impact of increasing the time to peak of a catchment 

3.7 Flood Impact Modelling (FIM) 

To illustrate the potential for LUM as a means of mitigating flood flows, two models 

with different structures are to be used for mitigation impact assessment. The models 

have both been selected as they are relatively simple to understand and the changes 

made to model parametrisation to reflect LUM impacts can be done in a transparent 

fashion. The first model is based on the FEH rainfall runoff model; widely used by UK 

consultancies for generating design flood events for flood risk assessment. The second 

is the Juke model, developed as a novel approach specifically for modelling LUM 

impacts based on physically based assumptions. 

The modelling approaches adopted in this study aim to make best use of expert 

knowledge regarding LUM impacts on the generation and propagation of flood flows 

and apply them in a transparent and physically unambiguous way. This is done by 

making best use of: 

 Expert knowledge and judgement of likely changes based on the findings and 

observations from field and modelling work as discussed in the literature 

review, Chapter 2. 

 Take as much value as possible from field measurements for example 

analysing local measurements of flow propagation to the local catchment outfall 

and throughout the flow network 

 Spatial catchment data from GIS including DEM, HOST and land cover. As 

was highlighted by O’Connell et al. (2007) ‘Risk is likely to be catchment 
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specific, and dependent upon the natural catchment characteristics (topography, 

soils, etc.) as well as on land management practices.’ 

Expert	Knowledge	‐	How	do	landscapes	respond	to	change?	

It has been illustrated in Chapter 2 that there are numerous plot and hillslope scale 

studies that have determined the impact of different land uses on runoff generation. 

Much of the existing evidence on the impacts of LUM has concerned detailed 

measurement of soil properties, for example reduced 1D infiltration rates through 

compaction brought about by increased bulk density and reduced pore space, leading to 

both infiltration excess and storage excess overland flow (Sansom, 1999; Carroll et al., 

2004; Wheater et al., 2008). Typically the spatio-temporal resolution at which rainfall-

runoff models operate is greater than the resolution of the parameter measurement, 

therefore the model needs to be calibrated to find an ‘effective parameter’ (Vázquez et 

al., 2002). This makes the model sensitivities uncertain when trying to implement LUM 

impact changes to parameter values based on field observations. 

Field	measurements	

Aim to use the observed rainfall and runoff records to understand as fully as possible 

the factors that contribute to the largest flood peaks and how large events propagate 

through the catchment network. Then use this data and understanding from observations 

to parameterise the impact model. 

Catchment	data	

The most significant regionalised, spatial hydrological dataset available in the UK is the 

Hydrology of Soil Types (HOST). The dataset provides a GIS of the Baseflow Index 

(BFI) and Standard Percentage Runoff (SPR) values for 29 soil classes. The data set 

was classified based upon the physical characteristics of the soil and regression analysis 

of rainfall-runoff records for a number of catchments (Boorman et al., 1995). The data 

and results from these catchments were then extrapolated to provide a regionalised, 

national dataset of the hydrological properties of soil. HOST therefore provides a 

dataset based on observed data that is representative of catchment response at larger 

scale. This dataset has been used in a number of hydrological modelling projects, 

including LUM change scenarios. 

The SPR associated with each of the HOST classes are provided in Table 3-7. The SPR 

values represent the standard lumped catchment rainfall-runoff response and we use it 
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to parametrise information for historical data sets; then make changes to the SPR values 

to represent a proposed impact due to LUM change. The Defra funded FD2114 

proposed such a methodology for switching from a current HOST class to a revised 

class based on the potential effect of soil degradation caused through intensive land 

management practises. These ‘revised’ worst case classes for the soils found in Morland 

and Great Ayton are shown in Table 3-7 (Packman et al., 2004). 

Table 3-7 HOST classes and their revised, degraded reclassification (* indicates some uncertainty in the 
reclassification; Lettering next to class number signifies the catchment in which they are found M = Morland, 

G= Great Ayton; Packman et al. (2004) 

Class Description 
Revised

Class 

Original 

SPR 

Revised

SPR 

4M 

Free draining permeable  soils on hard but  fissured  rocks 

with  high  permeability  but  low  to  moderate  storage 

capacity 

6* 2 15 

5G 

Free draining permeable soils  in unconsolidated sands or 

gravels with relatively high permeability and high storage 

capacity 

7* 15 27 

6 
Free draining permeable soils  in unconsolidated  loams or 

clays with low permeability and storage capacity 
8 34 44 

7 

Free draining permeable soils  in unconsolidated sands or 

gravels  with  groundwater  at  less  than  2m  from  the 

surface 

7* 44 44 

15G 
Permanently  wet,  peaty  topped  upland  soils  over 

relatively free draining permeable rocks 
15 48 48 

20 G 

Slowly permeable  soils with  slight  seasonal waterlogging 

and  moderate  storage  capacity  over  impermeable  clay 

substrates with no storage capacity 

20 60 60 

24 M,G 

Slowly  permeable,  seasonally  waterlogged  soils  over 

slowly  permeable  substrates  with  negligible  storage 

capacity 

25 40 49 

25 
Slowly  permeable,  seasonally  waterlogged  soils  over 

impermeable clay substrates with no storage capacity 
25* 50 60 

26 
Permanently wet, peaty  topped upland  soils over  slowly 

permeable substrates with negligible storage capacity 
26 59 59 

 

To illustrate the revision of HOST classes and emphasise the change in flow pathway 

and the increased runoff rate, consider the soil originally classified as belonging to 

HOST class 5, being reclassified to the alternate class 7. This requires a shift in the 

original base model from that of the aquifer or groundwater being found at greater than 

2 m, to being found within 2 m (Figure 3-10). This may be due to the development of a 

plough layer in the upper layers of the soil which impedes the vertical flow of water; it 
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may also be that some of the macro-porosity is lost through compaction. The key 

difference in response between the two models is that there is reduced storage within 

the soil profile; it will therefore reach saturation and the onset of overland flow more 

rapidly. 

 

Figure 3-10 Illustrating shift in HOST model from A to E for change in class 5 to 7 (Boorman et al., 1995) 

3.7.1 FEH	rainfall‐runoff	model	
The FEH rainfall-runoff model is a widely used UK industry standard model. The 

rainfall-runoff model is based on the unit hydrograph. It is predominantly used for 

generating specific design flood hydrographs using regionalised statistics, including 

HOST, and more specifically SPR, which controls the magnitude of the unit 

hydrograph. The model design and parametrisation will not be discussed in significant 

detail here (please refer to Chapter 6, where the parameters are discussed and tested in 

full). The model is being used in this study due to its wide use and the fact that the 

SPRHOST value is integral to the model’s design; the aforementioned reclassification 

of HOST by Packman et al. (2004) to represent soil degradation can be done in clear 

and intuitive way. 

3.7.2 Juke	rainfall‐runoff	model	
The Juke model is a distributed conceptual rainfall-runoff model, specifically designed 

for modelling the local impacts of LUM and NFM and how these impacts propagate to 

a downstream point of interest. The model is novel in that the modeller has full control 

of mathematical structure of the model. The mathematical structure is defined through a 

set of “pattern equations” which describe the runoff generation and routing processes in 
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a spatial manner. These equations are defined in a model script which is a model input, 

the control file. This mathematical capability enables patterns of LUM flood mitigation 

scenarios to be created without the need to pre-process the patterns in traditional GIS 

packages. 

Impact here is defined as the difference between two modelled hydrographs, for 

example, pre and post change. Structural errors in the process representation within 

traditional rainfall runoff models that lead to consistent errors in the modelled response, 

such as the recession rates, or the over or underestimation of peaks, etcetera, are carried 

forward into the impact assessment. An additional form of error incurred in rainfall 

runoff modelling is associated with the observed data and the variability and 

inconsistencies that lie within. One way to overcome these modelling errors is to force 

the modelled calibration (M) to match the observed hydrograph (O), i.e. achieve the 

perfect calibration in which the residuals are zero (Equation 3-1).  

Equation 3-1 

M(t) = O(t) 

Therefore, any modifications made to the model parametrisation to reflect a LUM or 

NFM scenarios can be directly ‘injected’ into the hydrograph. Any impact is then a 

direct directly attributed to the modification (δ; Equation 3-2). 

Equation 3-2 

M(t) = O(t) + δ(t,O) 

The model design is discussed in some detail here as the approach taken is quite 

different from traditional rainfall-runoff models. However, the Juke model does have a 

number of features in common with many traditional rainfall-runoff models including 

lumped and distributed elements; the use of gridded maps to provide distributed 

information regarding topography, soil type and land use, as well as the 

conceptualisation of fast and slow flow pathways. The specific details regarding 

parameterisation are discussed in Chapter 7, together with sensitivity testing. 

Key aspects of the model to highlight are: 

1. The model has been specifically designed for modelling flood events and 

changes to event runoff due to distributed changes in local runoff generation. 
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2. The model is distributed, using GIS datasets regarding topography, land use and 

soil type that are used in customising how runoff is generated across the 

catchment.  

3. The model is programmable, with a GIS based language allowing the definition 

of the mathematical structure generation. Distributed modifications in runoff 

generation delta, resulting from changes in the landscape 

4. The model is forced by the observed hydrograph O to create a “perfect” 

calibration for pre-change conditions (i.e. zero residuals) M. 

5. Routing is based on information obtained from the observed flow records. 

6. There is no explicit representation of evaporation losses. The matching element, 

as will be described takes care of this, however it is assumed that event based 

evaporative loses are negligible. 

7.  The model is simple and physically interpretable with elements based upon 

runoff generation and propagation with units that are easily understood. 

Juke is depicted in Figure 3-11, with the gridded and lumped elements highlighted by 

the boxes. The thin arrows represent the ‘fast information flows’ during the calibration 

process, whilst the larger arrows are the fast information flows during the modified 

(post-change) model run. The fast information flows are associated with the passage of 

information in attaining the observed hydrograph in calibration and then any 

information regarding change in a modelled scenario. The model is run twice, firstly a 

calibration process in which the scripts and data provided recreate the observed 

hydrograph. The second run of the model applies the modifications incorporated in 

scripts to reflect LUM options. The dotted lines indicate where the observed 

hydrograph is used within the model during the calibration process, specifically the 

modelling elements associated with network routing, latching and matching. 
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Figure 3-11 Schematic of the Juke model processes (Beven et al., 2008) 

The observed rainfall time series are used to create a distributed rainfall grid, with the 

grid squares receiving the rainfall value from the nearest gauge. The outlet hydrograph, 

q* is assumed to have a fast (q*fast) and slow (q*slow) component, which sum to give the 

observed outlet hydrograph; a concept widely used in hydrological models. This study 

is looking at changes in flashy event runoff so any change will come from the 

distributed modelling and will be seen in qfast. 

How	a	perfect	calibration	is	achieved	

This section describes the two lumped components latching and matching and how they 

ensure that the perfect calibration is achieved. 

Latching	

With Juke we are only concerned with modelling the flood hydrograph, i.e. the fast 

response and not the long term base flow. The term ‘latching’ refers to the process by 

which the model hydrograph matches the observed hydrograph during drier periods 

below a threshold (qthreshold). Simply, the method for hydrograph separation is: 
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Equation 3-3 

qslow = MIN(q*, qthreshold) 

Matching	

The role of the matching element is to ensure that the integrated (combined flows from 

the distributed modelling components) modelled fast response q*fast_sim from the 

distributed modelling matches and is equal to the observed hydrograph to produce the 

q*fast (Figure 3-11). The model achieves this during the calibration procedure by 

calculating a time series of the ratio q*fast/ q*fast_sim called the matching gain (Lgam). 

The time varying matching gain is similar to a rainfall-runoff ratio. If no information is 

provided regarding the distributed nature of runoff generation and 100 % of rainfall is 

routed from the cell to the outlet for all storms and all antecedent conditions, there will 

be too much water to recreate the hydrograph. Therefore, the matching ratio can be 

interpreted as similar to a rainfall-runoff ratio. The matching gain (Lgam) is illustrated 

in Figure 3-12, this element behaves in a similar way to a rainfall-runoff ratio, i.e. 

runoff increases as a storm progresses. Matching is also carried out for the nested flow 

gauge to allow the impact at different scales to be assessed. 

 

Figure 3-12 Great Ayton hydrograph illustrating the task of the matching element (Observed hydrograph in 
black, qfastsim in red and the matching gain in blue) 

Distributed	elements	

Traditionally in rainfall-runoff modelling the observed hydrograph is used for visual 

inspection of goodness of fit and quantitatively in an objective function. In the Juke 

calibration process, the observed hydrograph is used internally to achieve an exact 

match by disaggregating the outlet hydrograph in a physically reasonable way to 
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establish where the water came from and how fast it travelled from source. This is done 

by making use of the information in the observed rainfall and flow records, from 

different spatial scales, combined with distributed physical information regarding 

topography, soil type and land use. 

Network	routing	

The observed hydrographs and rainfall, combined with a Digital Elevation Model 

(DEM), are used to parameterise the flow routing components. The DEM is used to 

create the network routing element, in which each cell is connected to the outlet. The 

celerity of the network is parameterised as a function of the outlet hydrograph to ensure 

that the travel times are correct. The function is parameterised through the travel time 

relationship for multiple storms between the rainfall grid and the nested gauges, of 

which there must be at least two to allow the tracking of flow peak timings (Figure 

3-13). A detailed description of the parameterisation of this function is provided in 

Chapter 7, along with a description of how it can be manipulated to reflect LUM 

change. Figure 3-13 is an overview of the actual data used in the calibration of the 

celerity function for the Great Ayton model used in Chapter 8; the green and red data 

lines represent the average travel time from the individual cell to the flow gauges used 

in the model calibration. The scatter within the observed points is due to the space time 

patterns within the rainfall. 

 

Figure 3-13 Showing the actual (points) and estimated (line) for three spatial scales; BLUE are results of the 
travel time from the nested flow gauge to the outlet, RED are the travel times calculated for the average flow 

path length from the cell to the nested gauge and GREEN from the cell to the outlet 
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Runoff	generation	

The modeller is able to control how the distributed runoff is generated, specifically how 

much rainfall is converted to fast runoff and how much goes into the slower storage. In 

this study the runoff generation element is given the distributed SPR data from HOST, 

which is based on the national soil maps and is calculated through Equation 3-4. This 

provides a scalar multiplier that can be applied to the rainfall. This distributed dataset 

provides the model with information regarding the propensity of different soils to 

generate different amounts of runoff. This is then routed to the matching element where 

the matching gain is applied to achieve the observed hydrograph.  

As previously mentioned Juke has its own GIS based language which can be used to 

describe how runoff is generated in a distributed manner. A script for generating the 

rainfall partitioning factor (gam;  ɣ) from a HOST GIS file, with each grid cell assigned 

a parameter as is shown in Equation 3-4. Equation 3-4 creates a distributed rainfall 

partitioning factor (gam) by calling the ‘host’ GIS layer (grid) and populating the ‘gam’ 

layer with the appropriate ‘spr’ values (meta data for HOST). The resultant layer 

calculated from Equation 3-4 has an average cell value of 1 as it is divided by the 

average SPR value for the whole of the catchment domain ( host . spr AV no_c).  

Equation 3-4 

gam = (host . spr)/( host . spr AV no_c) 

Changes to LUM or land cover can be applied in the runoff generation element to 

reflect a change in SPR based on expert knowledge (as in Packman et al. (2004). For 

example, the alternative HOST classes discussed in section 3.7 to reflect degradation 

can be applied through Equation 3-5. These changes are applied in a distributed way to 

affect runoff generation at the cell scale on the grid. The runoff is then routed and 

passed to the matching element where the calibrated matching gain is applied. 

Equation 3-5 

gam = (host . spr + host . spr_inc)/( host . spr AV no_c) 

This runoff element is illustrated in Figure 3-14 where the distributed rainfall multiplier 

calculated by Equation 3-4 in the calibration run is mapped (A) alongside a modified 

pattern of LUMC where areas under improved grassland have had runoff reduced by 20 

%. (B) The pattern of reduced runoff is produced using Equation 3-6, where 
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‘improved_grass’ is a binary layer created from the land cover map containing a 1 

where improved grassland is present. 

Equation 3-6 

gam = (( host . spr ) - gammod) / ( ( host . spr ) AV no_c ) 

where: gammod = (host. spr) x improved_grass x 0.2 

 

Figure 3-14 A. gam as calculated from HOST (Equation 3-4). B. Modified pattern of gam, where SPR/gam has 
been reduced for areas within the improved grassland pattern (Equation 3-5) 

Extra	dynamics	

Storage effects must be accounted for somewhere in the model as the fast routing 

response alone would make the Juke estimation of fast runoff too responsive. For most 

storms, a surface storage deficit has to be satisfied when generating fast runoff and the 

shallow subsurface processes. Each cell on the grid has its own store with a constant 

linear parameter, tix, which controls the outflow. The role of tix is to provide the delay 

in the hydrograph response. Juke is provided with the rainfall (input) and calculates the 

network travel times from the observed flow records provided. Juke then uses both the 

input rainfall and travel time information to calculate the fast runoff. The fast runoff 

generated by the rainfall and travel time goes into a leaky bucket and the rate of 

discharge from the bucket depends on tix as illustrated in Figure 3-15. There is interplay 

between tix and the celerity function as they both affect the speed at which the flood 

wave reaches the outlet. The greater the tix value, the longer the water is held in storage 

and the faster the maximum celerity requiered to achieve the observed hydrograph (q*). 

Increasing tix dampens the flood wave response. 
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Figure 3-15 Schematic of Juke 

Integration	

This simply adds together the flows from each of the cells to produce the outlet 

hydrograph. 

Juke	summary	

The lumped and distributed structure of Juke have been detailed and the way in which 

the observed data are used more directly in calibration than traditional rainfall-runoff 

models has been described to illustrate the novel aspects of Juke. The three key 

elements that allow LUM scenarios to be run in a transparent way are the runoff 

generation, extra dynamics and network routing. Once these have been calibrated using 

observed data, distributed changes can be applied in a physically reasonable way based 

upon expert knowledge and observations as highlighted in Chapter 2. 

3.8 Decision support tool 

Decision support tools offer catchment managers the potential to make informed 

decisions on the most appropriate type of flood mitigation option to use, and where best 

in the catchment to focus efforts to gain maximum benefits, given limited resources. 

The decision makers may not necessarily be hydrologists with an understanding of 

hydrological processes and the complexities of catchments. However, it is possible to 
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get some of the key concepts across, for example, how management of soil can affect 

runoff volumes and the speed at which that runoff is propagated through the catchment.  

One such way is through the FARM tool (Wilkinson et al., 2013) which is illustrated in 

Figure 3-16. It is a risk matrix on to which differing LUM practices can be mapped to 

illustrate their potential impact on runoff generation, and hence flood risk. The axes 

have clear relationships with the key components of the FEH model. Soil condition is 

most appropriately linked with SPR, the assumption being that any improvement in soil 

condition will reduce SPR and vice versa. The connectivity axes relates to the Tp, the 

better connected the landscape is to the river network the lower the Tp. 

The risk matrix will be populated with the percentage change in Qp from the baseline, 

as now, SPR and Tp model result. The colours used in Figure 3-16 are to highlight the 

direction in which Qp has changed, with green being a decrease, red an increase and 

yellow somewhere in the middle. 

The modelling results of LUM and NFM scenarios will be mapped onto the FARM 

matrix to show end users what they can do to affect Qp. The aim being to encourage the 

uptake of interventions in local areas that will have a catchment scale impact in 

reducing flood hazard. 
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Figure 3-16 FARM tool illustration, lowest flood risk bottom left (green), highest flood risk top right (red) 

3.9 Summary 

3.9.1 Catchments	and	data	
Two catchments in the north of England have been instrumented in a nested structure to 

develop a distributed understanding of the generation and propagation of floods in the 

respective catchments. The catchments have been chosen as they are at different spatial 

scales, Great Ayton at 30 km2 and Morland at 12.5 km2 and have different physical and 

hydrological characteristics. Analysis of GIS data will provide an overview of the 

topography, soil, geology and land cover to establish an understanding of the 

hydrological regime and potential flood hazards. 

The storm data for both catchments is to be analysed to investigate what rainfall 

characteristics lead to the largest flood peaks and how different magnitude storms 

develop. This will aid in suggesting potential mitigation measures that can be adopted 

in the catchment. The data will also form the parametrisation of the modelling 

approaches adopted. 
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3.9.2 Rainfall‐runoff	modelling	
Two model types have been selected for investigating LUM and NFM impacts on 

catchment flood risk. One is the lumped FEH rainfall-runoff model and the second, 

Juke, is a physically based distributed GIS model. The two models have been chosen as 

they offer contrasting structures but can both make good use of available GIS and 

hydrometric data for parameterisation for flow generation and propagation. 

Parameterisation of the models in this way provides a more transparent and tangible 

link to the physical processes such as propagation of the flood wave and the generation 

of runoff. This provides a basis for studying flood management impacts despite the 

uncertainties regarding the parameterisation and in the data being modelled. 
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Chapter 4. Morland catchment characterisation 

4.1 Introduction 

This chapter provides an overview of the physical and hydrological characteristics of the 

Morland catchment. The physical assessment is performed by analysing the patterns of 

geology, soils, and land cover and is given to provide an understanding of the way in 

which the catchment is likely to respond to rainfall. The physical assessment also 

provides an insight into potential land use impacts on runoff generation. A hydrological 

assessment of observed rainfall and flows for three hydrological years (October 2011 - 

September 2014), which investigates the link between event rainfall characteristics and 

flood magnitude is performed. Understanding the rainfall runoff characteristics is of 

paramount importance for ensuring subsequent modelling is carried out in a suitable 

fashion as well as potentially identifying the mitigation strategies best suited to the 

catchment. 

The Morland catchment has been instrumented as part of the Eden Demonstration Test 

Catchments (DTC) project (Owen et al., 2012), a research platform for investigating 

strategies for mitigating Diffuse Water Pollution from Agricultural (DWPA). Many of 

the mitigation strategies being trialled will have benefits in terms of flood generation and 

propagation as they are largely associated with attenuation of overland flows to 

encourage the deposition of sediment and associated pollutants; including in ditches, on 

buffer strips and small flood plains. 

4.2 Catchment overview 

The Morland catchment is located approximately 10 km south west of Penrith and is 

drained by Newby Beck. An outlet monitoring station (Mor_out) with an upstream area 

of 12.5 km2 is located next to a small caravan park, Figure 4-1. The catchment ultimately 

drains in to the River Eden, via the River Lyvennet and to the Irish Sea via the Solway 

Firth. The Eden catchment rainfall ranges from 650 mm in the lowland valleys to 2000 

mm in the uplands (Mayes et al., 2006). The long term Seasonal Annual Average Rainfall 

(SAAR) for Morland, according to the Flood Estimation Handbook (FEH), is 1167mm 

(see Table 4-1), towards the middle of the range for the Eden catchment. 
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Figure 4-1 Morland catchment elevations with the outlet and substation locations identified 

 

4.2.1 General	hydrological	statistics	
The FEH regionalised statistics provide a summary of both the physical and hydrological 

attributes of the catchment, Table 4-1. They show that the catchment is predominantly 

rural with only 0.38 % of the catchment classified as urban. 

Standard Percentage Runoff (SPR) is an event-based statistic that describes the typical 

percentage of rainfall that directly contributes fast runoff to the hydrograph derived from 

historical events; with a value of 36 %, this is indicative of a high permeability catchment. 

BFI is a statistic calculated from long-term records and indicates the proportion of the 

total flow that is made up of baseflow (BFI); a BFI of 39 % suggests that groundwater is 

a significant hydrological component. Limestone underlies much of the catchment and in 

many reaches forms the bed of the river channel. The groundwater component is not well 

understood but hydrological analysis carried out below does provide some insight. The 

soils in the catchment are generally quite wet with PROPWET of 0.68 indicating that the 

soils have a low soil moisture deficit 68 % of the time. 
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Table 4-1 FEH statistics for Morland 

Parameter Description Value 

AREA FEH catchment area (km2) 12.38 

ALTBAR Catchment average altitude (m) 233 

DPSBAR Catchment average slope (m/km) 69.1 

URBEXT2000 Urbanised fraction of the catchment 0.0038 

FPEXT Fraction of catchment as floodplain 0.0471 

BFIHOST Baseflow index derived from HOST soil classifications 0.394 

PROPWET Proportion of time when soil moisture deficit is less than 

or equal to 6mm 

0.68 

RMED-1H Median annual maximum 1 hour rainfall (mm) 10.7 

RMED-1D Median annual maximum 1 day rainfall (mm) 39.3 

RMED-2D Median annual maximum 2 day rainfall (mm) 53.1 

SAAR Seasonal annual average rainfall (mm) 1167 

SPRHOST Standard Percentage Runoff derived from HOST soil 

classifications (%) 

35.72 

 

4.2.2 Flood	risk	
There are no properties close to the catchment outlet at risk of flooding. However, the 

road can become impassable to most vehicles during moderate flows and the caravan 

park, situated on the right hand bank, is in the area with ‘medium flood risk’ (Extent of 

the 1:100-year event on the EA flood map). 
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Figure 4-2 The EA risk of flooding from rivers and sea map for the Morland catchment outlet (EA, 2014). 
(Red dot indicates Morland outlet location) 

4.3 Physical catchment characterisation 

The stream network is being monitored, under DTC, at three key locations, the outlet and 

two internal sub-catchments. One sub-catchment, the ‘mitigation’ sub-catchment 

(Mor_subM - 1.55 km2), is undergoing land management changes and interventions to 

mitigate for diffuse pollution, with the other, (Mor_subC - 3.4 km2) acting as a control, 

i.e. no intervention (Figure 4-1). This type of monitoring design is a traditional paired 

catchment approach, which has been discussed previously.  

4.3.1 Geology	and	Soils	
At the commencement of the DTC project the British Geological Society (BGS) were 

commissioned to undertake an assessment of the geology and hydrogeology of all the 

DTC catchments. The aim of the assessment was to understand the groundwater flow 

paths and the potential transit times of these flow paths. This section provides an 

overview of their findings. 

The bedrock of the catchment is predominantly interbedded limestone, mudstone and 

sandstone of the Carboniferous Yoredale group (Figure 4-3). The bedrock has a 

significant impact on the geomorphology as the bedrock dips to the northeast in the same 

Flow 
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direction as drainage an there are a number of dip slopes and scarps created by the more 

resistant limestone (Allen et al., 2010). 

Figure 4-3 Morland bedrock geology 

There is a near continuous covering of glacial till across the catchment (Diamicton; 

Figure 4-4), which is described as slowly permeable and seasonally wet, with the main 

risks from agriculture being compaction and poaching from machinery and livestock 

(Soilscapes, 2015). Whaleback drumlins are evident in the northeast of the catchment, 

just outside the control catchment (Allen et al., 2010). 

There are potentially aquifers in the more permeable bedrock units, although it is noted 

that they are likely to be local to the catchment and unlikely to be losses to regional 

aquifers. 
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Figure 4-4 Morland superficial deposits 

4.3.2 Land	use	and	vegetation	
The dominant farming types in the catchment are pastoral with sheep and dairy cattle 

rearing. This is reflected in the land cover (Figure 4-5), with 87 % of the catchment being 

grassland of which 71 % is improved (Table 4-2). There is only a small amount of arable 

farming and woodland in the catchment, accounting for 6 % and 5 %, respectively. The 

mitigation catchment has a greater area of arable, which may mean more potential for 

fast runoff from bare soil, particularly if used for autumn sown crops. 
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Table 4-2 Morland land cover 2007 breakdown 

Landover Full 

catchment 

Mitigation Control 

Improved grassland 70.7 % 65.4 % 82.9 % 

Acid grassland  11.0 %  17.9 %  12.5 % 

Rough  low‐productivity 

grassland 

5.3 % 

Arable and horticulture  6.2 %  9.7 %  1.3 % 

Woodland  4.7 %  4.7 %  2.7 % 

Other  2.2 % 

Figure 4-5 Land cover map (derived from the LCM2007 (Centre for Ecology and Hydrology, 2007)) 
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As was discussed in Chapter 2 pastoral farming can potentially increase the onset of 

runoff generation through compaction and poaching by animals. There is evidence of soil 

degradation within the catchment (Figure 4-6), where seasonally waterlogged soils have 

been damaged by dairy cattle. This ‘soft’ data provided by the photographic evidence can 

be used to validate the behaviour of the distributed models, i.e. are the flow paths and wet 

areas represented in the right place at the right time (Seibert and McDonnell, 2002). 

 

Figure 4-6 Evidence of poaching cause by dairy cattle in the Morland catchment 

 

Figure 4-7 Increased catchment connectivity with flow on tracks 
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4.4 Hydrological characterisation 

This section provides an overview of the hydrometeorological instrumentation installed 

and maintained in Morland and a hydrological assessment of the data collected. This is 

performed to provide an understanding of what rainfall characteristics drive floods and 

subsequently to provide an insight in to what mitigation methods may be best suited for 

reducing flood hazard. The installation, maintenance, data archiving and quality control 

of the hydrometeorological equipment and data was carried out by the author of this thesis 

as part of the DTC consortium. 

4.4.1 Rating	curve	development	
A rating curve is required to convert the observed water level series into flow. The rating 

curves have been developed through the collection of manual stream gauge 

measurements and the application of VARE (At one site a power function was used due 

to recording gaps at low flows preventing the required mass balance analysis). One site 

with no low flow data was fitted a power function. The VARE procedure converts the 

flows to a volume over the duration of the record (Ewen et al., 2010; Geris, 2012). This 

volume is then used to evaluate the storage-discharge relationship i.e. whether a 

reasonable water balance has been achieved for a given timer period, normally a 

hydrological year. The VARE modelling methodology is used for Mor_out and 

Mor_subC. 

The rating curve for Mor_subM has been created by fitting a power function to the 

manually gauged flow points. During low flow periods the water level at this location is 

too low to be recorded by the Diver, hence a mass balance cannot be calculated and 

therefore a polynomial was fitted. There is a significant groundwater component to this 

sub-catchment. Only 47 % of the calculated flows for Mor_subM are within the gauged 

range as shown in Table 4-3, 52 % of the time the flows are below the minimum gauged 

flow. 

Table 4-3 Summary of rating curve quality 

Site No. of 

Gaugings 

Min. gauged 

Flow (m3/s) 

Max. gauged 

Flow (m3/s) 

In gauged 

range (%) 

Max. rated 

Flow (m3/s) 

Mor_out 14 0.053 3.44 88 % 8.37 

Mor_subM 9 0.0064 1.102 47 % 1.736 

Mor_subC 7 0.026 1.025 98 % 4.58 

 



89 

The rating curve developed for the outlet is plotted in Figure 4-8; it shows the rating curve 

against the cross-section (XS) along with the gauged flows. The maximum observed 

water level is indicated by the solid blue line, whilst the broken blue line indicates the 

highest manually gauged flow. 

Figure 4-8 Morland outlet rating curve plotted against the cross section 

The flow exceedance curves for the Morland gauges are plotted in Figure 4-9; data have 

been normalised by area to mm/hr to allow comparison between sites. The control 

catchment generates larger flows than the outlet and mitigation for the top 10 % of the 

exceedance curves. The outlet and control catchment exhibit similar trends, but the outlet 

has higher flows in the middle ranges, which may be an indication of the re-emergence 

of ground water flows. The mitigation catchment shows a much more rapid drop off in 

the middle ranges of flows and negligible if not zero flow for approximately 17 % of the 

time. During the driest parts of summer it has personally been observed that there is 

virtually no flow from the mitigation catchment. 
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Figure 4-9 Flow exceedance curves for the three Morland gauges 

4.4.2 Rainfall	runoff	
The rating curves that have been developed were applied to the level time series to 

generate a time series of flows that can be used for rainfall-runoff analysis. Water 

balances are calculated for data quality assurance purposes and provide further validation 

of the rating curves. This is performed using Equation 4-1, where S is the catchment 

storage (mm), P is catchment rainfall total (mm) and E is the actual evaporation (mm). 

The potential evaporation series is calculated by the VARE model using the Penman-

Monteith equation as defined in Food and Agriculture Organisation of the United Nations 

(FAO) guidelines of (Allen et al., 1998). It is assumed that over a hydrological year the 

change in storage is low. The results of this analysis are shown in Table 4-4, and illustrate 

reasonable balance with 4-5 % losses compared to rainfall input in the final two years, 

with a good balance in the first year. The BFI calculated in the final column was 

performed using the Institute of Hydrology (IH (Gustard et al., 1992) approach of finding 

the minimum daily mean flow in a 5 day window which are used to perform the base 

flow separation. 

Equation 4-1 

∆  

where: S = storage, P = precipitation, E = evaporation and Q = discharge (all in mm) 



91 

Table 4-4 Rainfall-runoff statistics for Morland outlet for the three hydrological years 2011-2014 

Year P (mm) Q (mm) E (mm) ΔS(mm) rainfall:runoff  BFI 
2011 - 
2012 

1207.4 762.1 444.1 1.2 0.63 0.44 

2012 - 
2013 

1184.8 776.3 461.2 ‐52.7 0.66 0.39 

2013 - 
2014 

1468.7 1070.8 478.4 ‐80.5 0.73 0.40 

The annual rainfall-runoff totals for the first two years of monitoring are very similar; 

however, the temporal distribution of rainfall differs. The cumulative annual total rainfall 

(solid line) and discharge (broken line) are illustrated in Figure 4-10. The winter of 

2012/13 was wetter than that of 2011/12 while the 2011/12 summer (June-September) 

was wetter (Figure 4-10). The hydrological year 2013/14 was much wetter, largely due 

to a significant volume of rainfall at the beginning of 2014. Much of the UK experienced 

a wetter than average January and February in 2014 (Metoffice, 2015). 

Figure 4-10 Cumulative rainfall and runoff from Morland outlet plots for three hydrological years 

Flood	peaks	and	rainfall	characteristics	

The following analyses examine how rainfall event characteristics affect the flood peak 

magnitude; it includes examining the relationships between flood peaks and total storm 

rainfall, mean storm intensity, maximum storm intensity and finally the storm duration 
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and total storm length with the circle size corresponding to flood peak magnitude (Figure 

4-11).  

An algorithm was developed to select event peaks for Morland outlet above a threshold 

of 0.5m3/s, as described in the methodology chapter. The start and end time of a rainfall 

event was selected by identifying a window of 4 hours in which there was no rainfall at 

the beginning and end of a rainfall period. The events selected have also been split into 

two seasonal categories of ‘autumn/winter’ (blue) and ‘spring/summer’ (red) to provide 

some indication as to the antecedent conditions. The algorithm selected 150 peaks, with 

33 spring/summer and 117 autumn/winter events. 

The first plot (top left panel in Figure 4-11) shows that higher storm rainfall leads to a 

greater flood peak (qp), as expected. The largest peaks coincide with rainfall totals greater 

than the RMED-1D total of 39.3 mm as detailed in Table 4-1. There does not appear to 

be any significant seasonal pattern in the plot. However, the role of antecedent conditions 

is evident with rainfall totals of 30 – 40 mm producing flood peaks between 0.8 mm and 

the largest event at 2.4 mm. 

The top right plot depicts mean storm intensity against flood magnitude and shows that 

higher mean storm intensity leads to larger magnitude events. Generally, the maximum 

storm intensities are higher than the average intensity associated with the RMED-1D, 

1.64 mm/hr.  

In the bottom left plot there also appears to be some seasonal variation with the 

spring/summer events tending to be of greater intensity. However, there is a weak positive 

relationship between the peak storm intensity; some of the highest intensity events are of 

very short duration and therefore do not lead to significant increases in river flow. The 

rainfall associated with the largest summer runoff event of 2.3 mm/hr has an intensive 

rainfall component of 38.7 mm/hr (compared to RMED-1H 10.7 mm).  

The bottom right plot shows the relationship between total storm rainfall and storm 

duration, with the circle size reflecting the peak flow magnitude. The pattern is very 

similar to the intensity versus qp plots, but the seasonal separation is slightly more 

distinguishable, with the winter events generally being of a longer duration at a lower 

intensity. 
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Figure 4-11 Rainfall-runoff relationship, blue indicates winter events whilst the red are summer. Circle size (bottom right) indicates the relative size of the flood peak (qp)
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The data plotted in Figure 4-12 illustrates the relationship between runoff as percenatge 

of rainfall against flood peaks. Generally, there is an increase in the amount of runoff as 

a percenatge of rainfall with event magnitude but it is non-linear with the 5 largest events 

having runoff ratios of around 50 %. There is significant scatter in Figure 4-12, to some 

extent this is due to the rainfall measurement under estimating the catchment average 

rainfall for those above the general trend and over estimating for those below the trend; 

although antecedent conditions are highly likely to be a factor.  

Figure 4-12 Percentage rainfall as runoff for events to Morland outlet, blue indicates winter events whilst the 
red are summer 

To demonstrate the effect of antecedent conditions the API5 for each peak has been 

calculated and plotted in Figure 4-13. The scatter is considerable, especially for the 

smaller peaks where API5 values range from 4 to 22 mm can causing equal sized peaks. 

Figure 4-13 Flood peaks versus the API5, antecedent index, for Morland outlet 
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A set of hydrographs for a large autumn event are plotted in Figure 4-14. They illustrate 

that the smaller spatial scales have a higher propensity to generate runoff than the larger 

outlet, with the flood peaks at the sub catchments being close to the peak rainfall intensity 

of approximately 4 mm. The sub-catchments have peaks similar to the peak rainfall 

intensity, but the outlet is dampened. 

 

Figure 4-14 A set of hydrographs for the three monitoring points in Morland illustrating the difference in 
response with spatial scale 

Network	routing	–	Travel	time	and	celerity	investigation	

There are a number of ways in which the speed of flood wave propagation in a catchment 

can be assessed. A common method is to investigate the catchment lag, which is the time 

between the centroid of the rainfall and the peak flow. The FEH method for estimating 

time-to-peak (Tp), is performed by analysing the lag between the centroid of a rain event 

and the flood peak and calculated using Equation 4-2. This is being highlighted here as it 

will be used in later modelling chapters. 

Equation 4-2 

Tp(0) = 0.879 lag0.951 

 

The analysis of lag times is shown in Figure 4-16. There is a difference in lag for summer 

and winter events, with the winter having a mean lag time of 6.25 hours and the summer 

being quicker at 4.8 hours. This is likely to be due to the longer duration rainfall events 
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observed during the winter as illustrated in Figure 4-15, where two events, a summer and 

winter have been plotted so that the rainfall starts at the same time. The different 

characteristics of the summer and winter rainfall are evident in the duration and maximum 

intensity and what effect this has on the corresponding time to peak. The overall average 

lag time is 6 hours which when calculated gives a time to peak of 4.75 hours. This analysis 

is useful in lumped modelling such as the FEH rainfall-runoff model which is used in 

chapter 5. The Tp of a catchment is an integral part of the unit hydrograph calculation. 

Figure 4-15 A summer (18/05/2012) and winter (20/12/2012) event, illustrating the difference in rainfall 
duration and intensity and what effect this has on the corresponding time to peak and flood hydrograph 

The data in Figure 4-16 indicates that the catchment does not always respond in a 

synchronised manner. If the catchment were always well synchronised it would be 

expected that the lag time would be similar for events. However, as is indicated in Figure 

4-18 not all regions of the catchment are equally as active in all storms, which is largely 

due to the spatial-temporal variability in the rainfall. 
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Figure 4-16 Storm peak against the lag from rainfall to flood peak; red dots are spring/summer, blue dot 
autumn/winter 

For modelling floods in a distributed way it is important to understand how floods are 

generated and propagate through the stream network. Using observed data this can be 

performed by carrying out a peak-to-peak analysis of the outlet versus upstream gauges 

to understand the flood wave celerity for different magnitude storms. Celerity is the speed 

of the flood wave as it moves through the catchment and is not the same as the instream 

water velocity, meaning it cannot be measured at a single location; here it is inferred from 

peak to peak analysis between the outlet and nested gauges. The celerity relationships for 

the sub-catchments to Morland outlet are shown in Figure 4-17, with the larger events 

appearing to have similar celerities of between 1-2 m/s. These findings are similar to 

those found for other upland catchments in the UK of similar area where celerity was 

found to asymptote to 1-1.5m/s (Beven, 1979).  

Figure 4-17 Celerity relationships between the two Morland sub-catchments and Morland outlet 
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Figure 4-17 displays considerable scatter, particularly for the smaller events, likely due 

to spatial and temporal distribution of the rainfall across the catchment. Events with a 

negative celerity are those where the outlet peaked before the sub-catchment. This result 

shows a low level of synchronisation between different parts of the catchment. This is 

illustrated in Figure 4-18, which shows the relative ranking of the sub-catchment peaks 

against the outlet and is a measurement of activity, with the dots above the 1:1 line 

indicating the sub-catchment was more active (wetter) than the catchment as a whole and 

below the line less so (drier). If the catchment behaved in a completely homogeneous 

way with all parts contributing the same amounts of flow at the same rate the relationship 

would be 1:1. However, this is not the case and spatial and temporal rainfall heterogeneity 

effects the sub-catchment contributions.  

As event magnitude increases the rank of the sub-catchment peak magnitude matches 

much better with the outlet rank. This indicates that the two sub-catchments are behaving 

in a similar way. As discussed earlier (and shown by Figure 4-11), these larger events 

tend to be of longer duration with greater volumes of rainfall, the results in this section 

also indicate that they are catchment wide. 

Figure 4-18 Ranking of sub-catchment peak magnitudes against the outlet ranking 

4.5 Mitigation approaches 

The Eden DTC is predominantly concerned with reducing DWPA and the mitigation 

options adopted reflect that. This section discusses the mitigation features adopted in the 

catchment and some of the land management options being trialled. The mitigation 

options include: 
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1. Management of farm yard runoff to separate clean and dirty water (i.e. rainfall

that falls on roofs compared to that, that falls on the yard.)

2. Runoff attenuation features as sediment traps

3. Aeration of the soil to improve the physical status of the soil and reduce

compaction

4. Reduce connectivity by managing track flows

The options listed at 2 and 3 will be discussed below. The option of separating clean and 

dirty water is likely to have negligible effects on runoff volume and speed but point 

sources are important for tackling pollution. The clean water is routed directly to the 

channel via a land drain. The reduced runoff from the farmyard is routed to a ditch that 

joins the main channel but has an online barrier to encourage sedimentation, through 

attenuating the flow. 

4.5.1 Runoff	Attenuation	Features	(RAFs)	
As was discussed in Chapter 2, RAFs are designed to attenuate flows by either; storing 

water in channel (on line) or intercepting overland flows (off line) and reducing the 

connectivity to the channel. Examples of two different types of offline features are shown 

in Figure 4-19 and Figure 4-20. The feature shown in Figure 4-19 collects flow from an 

agricultural track, shown in Figure 4-7 and diverts it into an off line feature that consists 

of three consecutive retention ponds for sediment removal that eventually discharge to a 

ditch (Plotted as ‘a’ in Figure 4-21).  

Figure 4-19 Photo of track runoff diversion in to a RAF 
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The feature in Figure 4-20 captures overland flow from several fields and attenuates the 

flow before discharging to a ditch (Plotted as ‘b’ in Figure 4-21). 

Figure 4-20 Photo of a RAF capturing overland flow 

These features have been constructed in the headwaters to deal with ephemeral, overland 

flows. The locations of the features are plotted in Figure 4-21 on the topographic wetness 

index (TWI) map which highlights the flow pathways. 

Figure 4-21 Morland mitigation features plotted on the topographic wetness index map (The higher the TWI 
the greater the concentration of upstream flows). 

T
W

I 
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No data are yet available regarding the hydraulic behaviour of the ponds, however it will 

be in the near future as they being fitted with flumes at the inlets and outlets to quantify 

flow rates accurately. 

There are a total of six offline leaky features in the mitigation catchment which provide 

an estimated total storage of 561 m3, which is equivalent to a rainfall depth of 0.04 mm 

when compared to the total catchment area. The dams are leaky in that water is discharged 

at a slower rate than it flows in from the stream during an event and they draw down once 

the event subsides.. 

4.5.2 Sward	lifting	(aeration)	‐	Land	use	management	
A trial has been carried out to investigate the potential for reducing soil compaction 

through a soil aeration process called sward lifting Figure 4-22. The aim of this process 

is to improve the soil structure by reducing the bulk density (mass per unit volume) and 

therefore increase the pore space. The hydrological benefit of this process is increased 

storage within the soil and potentially improved infiltration, therefore less, fast overland 

flow generated. The process involves pulling the sward lifter behind a tractor which 

creates three incisions into the soil with the objective being to fracture the soil  

 

Figure 4-22 Photo of the sward lifting hardware used on the Morland catchment 

Two plots used for silage production were used in the DTC study, one underwent the 

sward lifting procedure and the other remained untreated to act as a control. The plots 

were assessed for the soil bulk density which showed a reduction of on average 1 g/cm3 

within the top 15 cm of the soil in the sward lifted areas but it was not deemed significant 
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when compared to a similar result in the control plot. Significantly greater yields of silage 

were, however, harvested from the plots that had undergone sward lifting. This may 

anecdotally indicate increased nutrient uptake due improved soil moisture conditions 

including larger and more connected pore spaces (Lipiec and Stpniewski, 1995; Hamza 

and Anderson, 2005). 

4.6 Discussion 

The Morland catchment has been instrumented with a hydrometeorological monitoring 

network to understand the rainfall-runoff dynamics. This is required for the purpose of 

quantifying the potential change in the rainfall-runoff regime and the associated 

pollutants caused by mitigating for DWPA in the Morland catchment.  

4.6.1 Rainfall‐runoff	response		
The mitigation catchment has significant losses to ground water during the flow periods 

when compared to the outlet and control catchment as shown in the flow exceedance 

curves (Figure 4-9). The physical characterisation section highlighted that there is a 

considerable groundwater component to the hydrology of the catchment with a BFI of 

0.39.  

Analysis of the rainfall runoff records have shown that key drivers of the large flood 

events is the total rainfall volume and the mean storm intensity (Figure 4-11). The largest 

events tend to have a mean storm intensity of 1.5 to 2 mm/hr and the two largest events 

have a high maximum intensity above the annual average as estimated from the FEH of 

10 mm/hr. The second largest summer event had a peak rainfall intensity of 72 mm/hr. 

The catchment has been shown to be flashy, i.e. there is a rapid runoff response, 

especially at the smaller sub catchment scale (Figure 4-14). As has been demonstrated 

the rainfall intensity is a key driving factor in the magnitude of the flood peaks.  

There is evidence of seasonal effects, with winter events tending to be longer duration 

and less intense. This tends to mean that these events have longer lag to the flood peak 

(Figure 4-16). Higher mean rainfall intensities are observed for the larger events (Figure 

4-11) and the summer tends to have more intense, shorter duration storms. The fact long 

duration, low intensity events are capable of producing the same magnitude flood peaks 

as high intensity, short duration events, fast, overland, runoff may be generated by both 

infiltration and saturation excess mechanisms. 
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It has been demonstrated that within even a modest sized catchment that there can be 

considerable variability in the generation of runoff, due to geology and soils. Figure 4-18 

shows that the largest events happen when the whole of the catchment is similarly active, 

i.e. all parts of the catchment are generating equally large volumes of runoff, as the 

ranking of the flood events are increasingly similar at the outlet and nested gauges. The 

largest events at the outlet correspond to the largest events at both the sub-catchments. 

The scatter in the relative ranking of event between the sub catchments and the outlets 

can be linked to local antecedent conditions (ground water effects in the mitigation), and 

spatial and temporal patterns of the rainfall. 

4.6.2 Flood	risk	
The caravan park on the right hand bank have not report issues of flooding, however, the 

road close to the park is impassable during moderate events (~3 m3/s) which can be an 

inconvenience. This type of event occurs several times a year and may benefit from NFM 

or LUMC in reducing the frequency.  

4.7 What next? 

The length of data records make statistical appraisal of change unfeasible. Understanding 

the likely impacts of any mitigation work will require modelling. Key modelling 

parameters such as the time to peak and flood wave celerity relationships have been 

derived from observed data and will be used to inform the modelling. The modelling to 

be undertaken will explore a number of potential future LUM and NFM scenarios 

including the use of RAFs and the management of track flows for attenuating overland 

flows. 

Key data and results from this chapter that are used in the following chapters for model 

calibration and parametrisation are: 

 Calculated time to peak value used to parametrise the FEH rainfall-runoff model

in Chapter 6.

 Observed flow series for Morland outlet (Mor_out) and the control catchment

outlet (Mor_subC) to be used in the calibration and parameterisation of the

celerity function within the Juke rainfall-runoff model (Chapters 8).
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Chapter 5. Great Ayton catchment characterisation 

5.1 Introduction 

The town of Great Ayton, North Yorkshire, has suffered a number of flood events from 

the River Leven in recent decades. Since 2012 the EA has implemented a flood 

mitigation scheme that involves a combination of flood proofing properties and 

constructing features within the upstream catchment, designed to attenuate and reduce 

peak flows. Newcastle University is monitoring the catchment at a number of locations, 

to characterise the catchment response and to understand the impact of small scale 

features at the catchment scale. 

This chapter provides an overview of the physical and hydrological characteristics of 

the Great Ayton catchment. A description of the geology, soils, vegetation and land use 

is given to provide an understanding of the way in which the catchment is likely to 

respond to rainfall. This is supplemented by a hydrological assessment of observed 

rainfall and river flow, which examines the link between rainfall characteristics and 

flood magnitude. Rainfall-runoff data are available from two sources for this catchment. 

The EA have two river level gauges at Easby and Great Ayton, and two rain gauges 

used for flood warning and forecasting purposes (Figure 5-1). This is complemented by 

7 in-stream level gauges, at various scales, maintained by Newcastle University. The 

EA also have data available for downstream locations which are used for a discussion 

regarding the effects on catchment scale and hydrological response. 

5.2 Catchment overview 

Great Ayton lies within the River Leven catchment. The catchment to the EA level 

gauge in Great Ayton (henceforth referred to as the Great Ayton catchment) is 30 km2, 

which occupies approximately 18 % of the 168 km2 Leven catchment. The river rises 

on Warren Moor to the south east of Kildale and enters the Tees between Yarm and 

Ingleby Barwick. The elevation of the Great Ayton catchment ranges from 395 m on 

Battersby Moor in the south, to 84 m at the outlet (Figure 5-1). 

The catchment is naturally divided into two tiers with a step running through the middle 

where the relief is slightly steeper. This steeper section coincides with the interbedded 

sandstone and ironstone geology, whilst the flatter areas are largely mudstone (Figure 

5-3). 
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Figure 5-1 Elevation map for the Leven catchment to Great Ayton (© Crown Copyright/database right 2016. 
An Ordnance Survey/EDINA supplied service) 

5.2.1 General	hydrology	statistics	
The long term Seasonal Annual Average Rainfall (SAAR) for Great Ayton, according 

to the Flood Estimation Handbook (FEH), is 805 mm (Table 5-1). The majority of 

weather in the UK is driven by North Atlantic frontal depressions, with associated 

westerly and south-westerly winds, meaning that western parts of the country tend to 

receive greater rainfall totals , with less in the east due to a rain shadow effect caused by 

the Pennine Hills (Sweeney and O'Hare, 1992). 

A Baseflow Index (BFI) of 44 % suggests that groundwater is a significant hydrological 

component of long term flows of the River Leven. The SPRHOST values are also 

relatively high, with a value of 41 %; 5 % greater than the Morland catchment (Chapter 

4).  
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Table 5-1 FEH statistics for Great Ayton 

Parameter Description Value 

AREA FEH catchment area (km2) 30.17 

ALTBAR Catchment average altitude (m) 195 

DPSBAR Catchment average slope (m/km) 123 

URBEXT2000 Urbanised fraction of the catchment 0.0123 

FPEXT Fraction of catchment as floodplain 0.0301 

BFIHOST Baseflow index derived from HOST soil classifications 

(%) 

0.443 

PROPWET Proportion of time when soil moisture deficit is less 

than or equal to 6mm (mm) 

0.36 

RMED-1H Median annual maximum 1 hour rainfall (mm) 10.4 

RMED-1D Median annual maximum 1 day rainfall (mm) 37.2 

RMED-2D Median annual maximum 2 day rainfall (mm) 50.9 

SAAR Seasonal annual average rainfall (mm) 805 

SPRHOST Standard Percentage Runoff derived from HOST soil 

classifications (%) 

40.68 

 

5.2.2 Flood	risk	
There are three main sources of flooding in Great Ayton (see Figure 5-2). Primarily the 

properties within the Great Ayton catchment affected by flooding are in the village 

itself. The other two sources are both tributaries that join the River Leven within the 

village of Great Ayton, which can also overtop and affect properties. Dikes Beck over-

tops and spills on to Station Road when the culvert is surcharged; the flood water runs 

down Station Road affecting properties at the bottom of the slope as well as School 

Lane and Old Mill Wynd. A second small stream just to the north affects properties on 

High Street, again due to the surcharging of a culvert.  

Flooding in September 2000 affected 70 properties. The most recent flood event 

occurred on the 16th November 2009 when 5 properties were affected. From personal 

communication with consultants at Jeremy Benn Associates (JBA), it is suggested that 

the return interval of events that cause inundation to properties is between 5 and 10 

years, estimated from an FEH, pooled, flood frequency analysis. 
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Figure 5-2 EA Flood Map for the Leven at Great Ayton (Contains public sector information licensed under 
the Open Government Licence v3.0; © Crown Copyright/database right 2016. An Ordnance Survey/EDINA 

supplied service) 

5.3 Physical catchment characterisation 

This Section provides an overview of the physical characteristics of the Great Ayton 

catchment, including the geology, soils and land covers. 

5.3.1 Geology		
The geology of the Great Ayton catchment is shown in Figure 5-3. The upper part of 

the catchment is a mixture of mudstone, sandstone and siltstone, whilst the lower parts, 

and those of lower relief, are predominantly mudstone (green). The steeper, hillslope 

faces are interbedded sandstone and ironstone (orange and red). There is a small 

outcrop of the igneous, basaltic-andesite running from northwest to east (purple strip). 

The mudstones and ironstones are described as having some but not significant amounts 

of groundwater (Jones et al., 2000). The sandstones, however, are described as having 

some potential as aquifers (Jones et al., 2000).  

 

Legend

EA - Flood Warning
EA - Flood Alert

Station road

School 

High Street 
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Figure 5-3 Geology of the Great Ayton catchment (Crown Copyright/database right 2016. A British 
Geological Survey/EDINA supplied service) 

Superficial geology is shown in Figure 5-4, with Devensian glacial deposits accounting 

for the majority of the coverage, particularly in the valley bottoms and sides. There are 

also Alluvium deposits in the riparian zones of the lower half of the catchment (there 

are no superficial deposits in the white areas of Figure 5-15). 
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Figure 5-4 Superficial deposits (Crown Copyright/database right 2016. A British Geological Survey/EDINA 
supplied service) 

5.3.2 Soils	
A summary of the soil associations found in the Great Ayton catchment is provided in 

Figure 5-5 and Table 5-2. There is a marked difference in the soil found in the lower 

part of the catchment, predominantly Dunkeswick, which overlays much of the 

mudstone that lies beneath (Figure 5-3); whereas the upper parts of the catchment 

consist of a mixture of glaciofluvial deposits and organic peaty soil, which overlies the 

sandstone, mudstone and siltstone. 

The information provided in Table 5-2 is taken directly from the National Soil Maps 

and associated data tables. There are 6 soil types that fall into two broad categories of 

slowly permeable clayey soils, making up 71% of the catchment. These clayey soils are 

found largely in the valley bottoms whilst the acidic organic soils, which make up the 

remaining 29 % are found on the higher and peripheral parts of the catchment. As a 

result of the slowly permeable nature of the soils, it is likely that land used for the 

rearing of livestock will require underdrainage or improving, this discussed further in 

this chapter. 
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Figure 5-5 Soil Associations (Soil data © Cranfield University (NSRI) and for the Controller of HMSO 2013) 
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Soil Description Geology Hydrological description Crop and Land use % Area HOST 

Ellerbeck 
Stony loam over 

gravel 
Glaciofluvial drift 

Very stony well drained loamy 

soils locally on hummocky 

ground. 

Stock rearing on permanent 

grassland in moist lowlands; some 

cereals, sugar beet in drier lowlands. 

16 % 5 

Maw 
Peat to loam over 

sandstone 

Carboniferous and 

Jurassic sandstone 

Loamy very acid upland soils 

over sandstone with a wet peaty 

surface horizon, often with thin 

iron pan. 

Wet moorland habitats of poor and 

moderate grazing value; stock 

rearing and dairying on improved 

ground; coniferous woodland. 

13 % 15 

Stow Deep clay 
Jurassic mudstone 

and siltstone 

Slowly permeable clayey soils, 

mainly on steep slopes. 

Permanent and short term grassland 

with dairying and stock rearing: 

some cereals; coniferous woodland. 

19 % 20 

Dale 

Seasonally wet 

deep clay over 

shale 

Carboniferous and 

Jurassic clay and 

shale 

Slowly permeable seasonally 

waterlogged clayey, fine loamy 

over clayey and fine silty soils.  

Dairying on permanent and short 

term grassland; some cereals; 

coniferous woodland. 

8 % 24 

Dunkeswick 
Seasonally wet 

deep loam to clay 

Till from Palaeozoic 

and Mesozoic 

sandstone and shale 

Slowly permeable seasonally 

waterlogged fine loamy and fine 

loamy over clayey soils 

Grassland in moist lowlands, some 

arable cropping in drier lowlands. 
36 % 24 

Onecote 

Seasonally wet 

deep peat to loam 

over shale 

Carboniferous and 

Jurassic mudstone 

Slowly permeable seasonally 

waterlogged clayey and loamy 

upland soils with a peaty surface 

Wet moorland habitats of poor and 

moderate grazing value; dairying on 

improved ground; coniferous 

woodland. 

8 % 26 

Table 5-2 Soil type descriptions provide by national soil dataset (Soil data © Cranfield University (NSRI) and for the Controller of HMSO 2013) 
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5.3.3 Land	use	and	vegetation	
The dominant land uses within the catchment are grazing for sheep and cattle on 

improved and rough pasture. The upper parts of the catchment are dominated by heather 

and heather grassland, mostly used for game bird rearing and sheep grazing. A full 

breakdown of the land cover types as categorised by the 2007 CEH land cover maps, 

can be seen in Table 5-3. The catchment is rural with only 1 % classified as suburban. 

Just under 15 % of the catchment is woodland, largely found on the steeper slopes and 

less desirable, waterlogged soils in the valley bottoms of the upper reaches of the 

catchment. 

 

 

Figure 5-6 Land Cover Map 2007 (Centre for Ecology and Hydrology, 2007) 
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Table 5-3 Great Ayton land cover 2007 breakdown 

Landover Percentage 

covered 

Broadleaved woodland  8 % 

Coniferous woodland  6 % 

Arable and Horticulture  11 % 

Improved grassland  43 % 

Rough Grassland  8 % 

Acid or Neutral Grassland  2 % 

Heather  21 % 

Suburban  1 % 

 

Potential	hydrological	impacts	of	farming	

Many of the soils have been described as having low permeability (Table 5-2), meaning 

rapid runoff as overland flow is likely, especially during the largest and more intense 

rainfall events. This will only be exacerbated by the introduction of drainage for the 

improvement of soils for rearing of livestock as is evident in Figure 5-7 with improved 

grassland adjacent to heather and heather grassland. There is also evidence of soil 

degradation due to overuse with large stocks of sheep in fields (Figure 5-8) and 

wheelings caused by driving on the land in wet conditions (Figure 5-9). This can lead to 

both extensive and localised soil compaction along with the creation of preferential 

flow pathways that concentrate flows and can accelerate soil erosion. 



114 
 

 

Figure 5-7 Improved grassland adjacent to heather grassland (potentially under-drained) 

 

Figure 5-8 Evidence of soil degradation on the Dunkeswick soils, with wheelings and erosion at gateways 

The largest event observed during the monitoring period provided evidence of 

undesirable farming practices as shown in Figure 5-9. Bare soil during the wetter 

months is seen as both a water quality and flooding problem; ideally there would be a 

cover crop that reduces the losses of soil, which is a significant pollutant source and 

also impacts on the conveyance capacity of channels. The wheelings that are evident in 

Figure 5-9 are also undesirable as they act as conduits to rapidly move overland flow 

downstream which in turn exacerbates the erosion problem. 
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Figure 5-9 Wheelings delivering sediment rich overland flow directly to the stream (taken 26/11/2012) 

Figure 5-10 shows the locations that the three images above were taken against the TWI 

map. Point ‘a’ is the improved grassland in Figure 5-7, point ‘b’ is the degraded soil, 

which is shown as potentially well connected to the river network and point ‘c’ is that 

of the wheelings, in which sediment rich overland flow was connected to the river 

network. 

 

Figure 5-10 Topographic wetness index map showing the locations of the photographic evidence of 
degradation  
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5.4 Hydrological characterisation 

This section provides an overview of the hydro-meteorological instrumentation used in 

the Great Ayton catchment and an assessment of the collected data. The characteristics 

of rainfall during large storm events are examined to provide an understanding of the 

processes and causes of flooding. This will provide an insight in to what mitigation 

methods may be best suited for reducing the flood hazard in the Great Ayton catchment.  

5.4.1 Rating	curve	development	
As has previously been discussed a rating curve is required to convert water level 

values to discharge. I have established rating curves for four of the sites monitored by 

Newcastle University and are summarised in Table 5-4. The rating curves were 

developed using the VARE modelling methodology (see Chapter 3). The VARE 

procedure converts the stages to flows to a volume over the duration of the record 

(Ewen et al., 2010; Geris, 2012). This volume is then used to evaluate the catchment 

storage-discharge relationship i.e. whether a reasonable water balance has been 

achieved for a given time period, normally a hydrological year. If the water balance is 

not reasonable the parameters controlling the velocity-stage relationship are modified; 

constrained by the manual gauging observations. The monitored flows are reasonably 

well contained within the gauged range, especially for Little Ayton and the Farm ditch, 

which are in the lower parts of the catchment. However, flooding of some roads makes 

access to sites in the upper reaches of the catchment impossible. 

The rating curves for the two EA gauges were taken from the National Flood 

Forecasting System (NFFS) and were developed using hydrodynamic modelling 

calibrated to fit observed stream gaugings. 

Table 5-4 Great Ayton flow record information 

Site No. of 

Gaugings 

Min. 

gauged 

Flow (m3/s) 

Max. 

gauged 

Flow (m3/s) 

In gauged 

range (%) 

Max. rated 

Flow (m3/s) 

Lt. Ayton 12 0.095 5.6 96 % 14.42 

Lonsdale 10 0.014 0.75 64 % 5.14 

Leven vale 9 0.039 1.53 53 % 4.69 

Farm ditch 6 0.0002 0.006 80 % 0.57 
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Exceedance curves for the four Newcastle University sites and two EA gauges are 

displayed in Figure 5-11. Each location has very similar high flow values in the top 20 

% of flows but there are some differences in the mid- and low-flow sections of the 

curves. The two sites from the upper part of the catchment, Lonsdale and Leven Vale, 

drain predominantly peaty moorland; their respective flow duration curves are quite 

similar but differ to other regions of the catchment, especially for the flows exceeded 40 

% or more of the time. The Farm Ditch site is an artificial field boundary drain that 

connects sub-surface agricultural drains to the main stream network; this is the likely 

reason for greater flow values for 95 % of the time.  

 

Figure 5-11 Flow exceedance curves for both the EA and Newcastle gauges in Great Ayton  

5.4.2 Flood	frequency	
The Great Ayton gauge has been in place since August 2003, which provides a limited 

amount of information for producing a meaningful flood frequency curve. The Easby 

gauge, however, has been in operation since April 1971, with 37 Annual Maximum 

Flows (AMAX) values compared to the ten for Great Ayton. Of the ten Great Ayton 

AMAX values shown in Table 5-5, five appear in the top ten ranked events for Easby, 

including the second ranked event, which would indicate a reasonable level of 

synchronisation, which isn’t surprising given the flows to Easby drain 50 % of the total 

catchment area.  
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Table 5-5 Relative ranking of events at Great Ayton and Easby 

Great 

Ayton rank 

Great Ayton 

Peak (m3/s) 

Date of 

flood peak 

Easby rank  Easby Peak 

(m3/s) 

1  25.86  16/04/2005  2  18.88 

2  17.05  29/11/2009  5  10.32 

3  15.5  27/11/2012  6  9.93 

4  14.07  25/06/2007  7  9.41 

5  11.85  19/04/2004  12  7.45 

6  11.64  17/07/2009  9  8.7 

7  9.93  06/09/2008  22  4.88 

8  8.28  27/04/2012  23  4.86 

9  8.01  22/05/2006  21  4.92 

10  7.12  16/12/2010  30  3.84 

 

The Flood Frequency Curve (FFC) derived for Great Ayton using the FEH pooled 

analysis method is shown in Figure 5-12. The FFC development is carried out using the 

WINFAP-FEH software, which is an UK industry standard method of flood defence 

design. Pooled analysis involves using the AMAX series for the site of interest which 

are ‘pooled’ with the AMAX values for catchments with similar FEH catchment 

descriptors. To create a flood frequency curve of ‘N’ years it is recommended in the 

FEH methodology that a pooled AMAX set of at least ‘5N’ is used. In this analysis 520 

years have been used and assessed using a Generalised Logistics L-moments (GL-

LMOM) statistics. The largest event observed at Great Ayton is classified as having a 

26 year return interval.  
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Figure 5-12 Flood frequency curve developed using FEH pooled analysis 

5.4.3 Rainfall	runoff	
This section will discuss some of the rainfall-runoff dynamics observed within the 

Great Ayton catchment as well as presenting some analysis to illustrate the impact of 

spatial scale on flood flows. 

Rainfall	characteristics	

Figure 5-13 illustrates how rainfall characteristics affect the magnitude of flood peaks 

(Qp) over 0.5 m3/s; the red dots represent summer events (April to September), blue are 

winter. It illustrates that the total rainfall is a key controlling factor over Qp, with more 

rainfall leading to larger events (top left panel); the scatter within plot illustrates the 

importance of antecedent conditions, e.g. with rainfall events ranging from 20 mm to 30 

mm in total rainfall, producing flood peaks producing a significant range of the 

observed peaks at 0.1 mm to 3 mm, in the top left panel. Although not unsurprising, it is 

the temporal distribution of rainfall that is the most insightful, as it suggests that the 

larger events are often caused by long duration medium to low intensity storms.  

There is some distinction between the summer and winter events, where winter events 

are those classified as occurring between October and March (Blue) and summer events 

between April and September (Red). The largest flow event observed occurred in April 

2005. The summer events tend to have the greatest amount of rainfall relative to similar 

sized winter peaks (e.g. peaks between 0.1 and 1mm, top left panel); this could largely 
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be attributed to the drier antecedent conditions, see Figure 5-14 where two events of 

similar magnitude but in different seasons are plotted. On average, the summer rainfall 

events have a higher mean intensity (top right panel) with higher maximum intensities 

within (bottom left panel), which are indicative of convective rainfall events that are 

more prevalent in the summer. The winter events are of a lower intensity and of a 

longer duration, typical of the weather patterns for this time of year.  
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Figure 5-13 Analysis of flood peaks and the rainfall that generates them for Great Ayton; circle size (bottom right), indicates qp magnitude. Red = summer event (April to 
September), Blue = winter (October to March)
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Figure 5-14 Hydrographs and corresponding event rainfall for a summer (17/07/2009) and a winter event 
(16/01/2010) 

The relationship between runoff as percentage of rainfall volume and flood peaks is 

shown in Figure 5-15 for a range of events. There is significant scatter in the winter 

events. This may be due to rainfall falling on a saturated catchment or potentially due to 

under-estimation of the rainfall totals for those events.  

 

Figure 5-15 Runoff as a percentage of rainfall for a range of flood peaks. Red = summer event (April to 
September), Blue = winter (October to March Timing and celerity 

The lumped catchment response to rainfall can be calculated through analysing the 

catchment lag (the time between rain centroid and Qp; Figure 5-16). This lag can then 
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be used to calculate the time to peak of the unit hydrograph in the FEH rainfall-runoff 

model as it will be in Chapter 6.  

 

Figure 5-16 Lag time analysis for the Great Ayton catchment. Red = summer event (April to September), Blue 
= winter (October to March 

Examination of the relative timings of sub-catchment flood peaks, compared with the 

timing of the flood peak at the catchment outlet, provides a useful insight into how 

flood waves propagate through the system. The relative timings can be used to produce 

an indicative celerity by dividing the travel time by the distance between the two 

gauges. The distances between each of the nested gauges and the outlets are provided in 

Table 5-6. This type of analysis is useful as an understanding of the different rates of 

response from different parts of the catchment is built up, which prove useful for 

identifying suitable sub catchments to target for mitigation. 

Table 5-6 Relative distance of the Great Ayton sub-catchment gauges to the outlet 

Location Distance to Great Ayton (km) 

Easby 5.3 

Lonsdale 11.2 

Leven Vale 10.0 

Woodhouse 1.6 

Dikes Beck 1.1 

Pilly Hall 5.0 
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Figure 5-17 provides the travel times for a number of events for three sub-catchments to 

the outlet. The travel time can be converted to celerity by dividing the distance from 

each of the monitoring points by the travel time to give the wave speed. The calculation 

of celerity in this way assumes that the peaks observed at the sub-catchment outlets are 

well synchronised with the outlet at Great Ayton. There is a lot of scatter within Figure 

5-17, which has been produced for the catchments from Easby to the headwaters. The 

catchments with the farthest travel distance, Lonsdale and Leven Vale, have the greatest 

travel times. The scatter within Figure 5-17 is likely due to the spatial and temporal 

variability of the rainfall leading to the catchment response not being synchronised. 

 

Figure 5-17 Travel time plot the catchments upstream of Easby to Great Ayton 

It is clear, however, from Figure 5-18 that the peaks are not very well synchronised, 

especially during the smaller events. The overall trend is that celerity increases with 

increasing scale and there is less scatter, illustrating that celerity is a function of 

discharge. 
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Figure 5-18 Celerity plot for the catchments upstream of Easby to Great Ayton 

The celerity-discharge relationships for the remaining catchments in the lower part of 

the catchment are shown in Figure 5-19. The trend shown in Figure 5-19 is similar to 

that shown in Figure 5-18, that with increasing discharge there is an increased celerity; 

again celerity demonstrated as a function of discharge. However, celerity values for the 

least distal sub-catchment to the outlet, Dikes Beck, are consistently lower than the 

other, more distal locations in the catchment.  

 

Figure 5-19 Celerity plot the catchments downstream of Easby to Great Ayton 

Scale	effects	to	Foxton	

To further investigate the effects of flood propagation to larger scales flow data from 

the downstream Foxton (168 km2) are used to examine the effects on flood magnitude 

and hydrograph shape. Peaks were selected from the Foxton Bridge flow series over a 



126 
 

threshold of 1.5 m3/s for the period 01/12/2005 to 03/07/2013. This provided 266 peaks 

at a range of flows from 1.5 m3/s to 64.5 m3/s. For each of these peaks the 

corresponding upstream peaks at Great Ayton and Easby were selected.  

Figure 5-20 shows the relationship between peak flows at Foxton Bridge and Easby as 

specific discharges (flow per unit area). It shows that for the larger events specific 

discharges are greatest at the smaller catchment scale than they are at the larger scale. 

This is due to a number of factors, including the temporal and spatial variability of 

rainfall and also the effects of geomorphological and hydrodynamic dispersion within 

the network, whereby the flood response is dampened as the catchment scale increases 

due to attenuation of the flood wave (Wolff and Burges, 1994).  

 

Figure 5-20 Comparison of peak discharges at Foxton Bridge and Easby as specific discharges (mm/hr) 

It is evident from Figure 5-21 that at the smaller scale the hydrographs for Easby and 

Great Ayton rise and falls much more rapidly than those at the larger-scale, Foxton 

Bridge site. The event at the end of November 2009 (Figure 5-17) is the largest 

observed flood event to have occurred at Foxton Bridge. The attenuation of the wave is 

evident from Easby to Great Ayton but less dramatically so. How this attenuation 

affects the mitigation impacts as they are routed to the larger catchment scale will be of 

interest during the modelling. 
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Figure 5-21 Leven event of November 2009. Foxton at 168 km2, Great Ayton at 30 km2 and Easby at 15 km2 

It was discussed in Chapter 4 how spatial and temporal rainfall heterogeneity can create 

relatively different magnitude peaks, for the outlet versus sub-catchment, depending on 

where rainfall is highest concentrated. The flood peaks have been selected for Foxton, 

the location at the greatest scale, along with the corresponding peaks at Easby and Great 

Ayton. The flood peaks are then ranked from zero, the smallest, to the largest at 258 for 

this sample. The downstream locations of Foxton or Great Ayton are plotted against an 

upstream location. For the largest events the relative magnitude of the peaks in the sub-

catchments and the outlets become more closely correlated, as illustrated in Figure 

5-22.  
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Figure 5-22 Peak event rankings for Foxton and Great Ayton (RED) and Great Ayton and Easby (GREEN) 
(High rank equals high flow) 

It is evident from Figure 5-22 that the events of the two locations with the shortest 

travel distance between them and most similar catchment areas, Great Ayton and Easby 

(Green) are better correlated (R2 =0.94) than those with a greatest travel distance Great 

Ayton to Foxton (Red; R2 = 0.78). However, the relationships between the magnitude of 

events become increasingly well correlated with increasing event rank, hence 

magnitude. As was shown in Figure 5-13, the larger events tend to be of a longer 

duration, with the largest rainfall totals; it is clear from Figure 5-22 that these events 

must be catchment wide as the events are equally ranked at all scales. 

5.5 Flood mitigation approaches 

This section provides an overview of the flood mitigation approaches adopted in the 

Great Ayton flood mitigation scheme and the locations in which they have been 

installed. A discussion of how the mitigation could be enhanced and what forms of 

mitigation may be best suited to the catchment based upon the analysis of the rainfall 

runoff records is discussed. The mitigation approaches are categorised as either 

spatially diffuse or concentrated, based on the classification discussed in the UK 

governments POST note as was highlighted in Chapter 2 (Pescott and Wentworth, 

2011), and the relationship between these mitigation approaches and the expectant 

catchment-scale level of mitigation is discussed. 

The flood mitigation scheme has involved a combination of property level flood 

proofing and the construction of attenuation features upstream. The upstream features 

fall in to two categories of online and offline attenuation features. Online features are 
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designed to impede the in channel and increase interaction with the floodplain; offline 

features attenuate overland flows to increase the time taken for flow to reach the 

channel. The seven locations in which features have been installed are shown in Figure 

5-23. 

 

Figure 5-23 Catchment map and mitigation features are numbered for the following discussion (© Crown 
Copyright/database right 2016. An Ordnance Survey/EDINA supplied service) 

5.5.1 Property	level	protection	
Property level protection work was carried out in conjunction with Redcar and 

Cleveland council with £90,000 spent installing flood gates and flood proof air bricks to 

approximately 70 properties. Properties at three locations around the village have been 

targeted for flood proofing as identified in Figure 5-24 by the red squares. This type of 

mitigation is categorised as spatially concentrated as it is at the downstream point of 

impact and is designed to provide a certain level of protection with a high level of 

confidence in its ability. Property level protection offers a comparatively cheap option, 

when compared to traditional defences.  
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Figure 5-24 Flood proofing locations within Great Ayton highlighted by red squares  (© Crown 
Copyright/database right 2016. An Ordnance Survey/EDINA supplied service) 

5.5.2 Online	‐	Woody	debris	features	
The features 1, 2 and 7 (Figure 5-23) are constructed of felled trees lain across and in 

the channel. These features are operational in medium to high flows with lower, 

residual flows passing without hindrance. Two of the five in-stream features at location 

1, in the headwaters of the Leven Vale sub-catchment, are shown in Figure 5-25. These 

wooden features are designed to attenuate the flows within the channel and spill higher 

flows on to the flood plain. The use of floodplains, especially where there is riparian 

woodland, offers increased storage and roughness on the floodplain. 

 

Figure 5-25 Woody debris features in Leven Vale (Site 1) 

The wooden features at locations 2 and 7 are quite similar to those at Leven Vale shown 

in Figure 5-25, however, the channel is not as well incised. At site 2, live Willow has 

been used to stabilise banks and reduce erosion, as well as being used to roughen the 
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river bed downstream to reduce velocities both for erosion reduction and flood 

attenuation purposes. At site 7 there are a sequence of three woody features for 

attenuating flows in stream, and deflecting a portion of higher flows on to the 

floodplain. 

5.5.3 Offline	–	Wooden	attenuation	features	
The features at location 3 (Figure 5-23) have been placed on an ephemeral channel, so 

have been designed to attenuated rapid overland flow when it has been generated. These 

features are designed to operate only in the largest events when the sub-surface in 

saturated. Visual inspection of these features show a significant build-up of soil and 

debris on the upstream side, thus suggesting that they do operate to intercept and 

temporarily store flood flows  

 

Figure 5-26 Looking upslope at a wooden barrier feature at site 4 for attenuating overland flows 

These attenuation features are categorised as spatially diffuse as they distributed in the 

headwaters of the catchment, furthest from the point of impact. There is very little in 

the literature regarding the catchment scale impact of these types of features, however 

the local scale impact in increasing Tp has been modelled (Odoni and Lane, 2010; 

Thomas and Nisbet, 2012). The impact of these features at a larger catchment scale 

requires further investigation. 

5.5.4 Offline	storage	feature	
The features in Figure 5-23 numbered 3, 5 and 6 are offline and designed to operate in 

the largest of events. Feature 5 is shown in Figure 5-27 is constructed a short distance 

upstream of the Little Ayton level gauge (25 km2). It is designed to be operational 

during high flows when the river level reaches an inlet pipe. A large concrete pipe has 
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been placed in the river bank to reduce the erosion and pressure placed on the river 

embankment. The inlet pipe to the offline storage feature is shown in Figure 5-27 along 

with the bund and willow outlet, designed to release the flow at a slower rate than it 

enters. The storage volume at 350 m3, relative to the upstream catchment area of 25 km2 

provides a relative storage volume of 0.0126 mm. 

 

Figure 5-27 Little Ayton offline storage pond and oxbow feature; a. concrete inlet pipe to the offline storage 
pond; b. view of offline storage pond and oxbow in the background 

The feature located at location 3 is a duck pond that has been modified with the addition 

of an embankment constructed on the downslope side to increase storage capacity. The 

feature at site 3 is maintained by the water table and by capturing overland flows. 

A large feature has been constructed at location 6 (Figure 5-28), with an estimated 

storage capacity of 5000-6000 m3; based on an aerial coverage of 6000 m2 calculated 

from GIS, and an approximate water depth of one metre. An inlet has been cut in the 

levy to allow water to enter the playing field during high flows; in addition there is a 

pair of pipes through the levy allowing water to leave the river. At the end of the 

playing field a bund has been constructed to store the water and there are a series of 

pipes to drain the field as the river level recedes. 

 

Figure 5-28 Old Mill pond playing field feature upstream of Great Ayton 
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The offline features discussed above fall into both the spatially diffuse and spatially 

concentrated categories due to the location, scale of the features and potential impact. 

The features at locations 3 and 5 are spatially diffuse as they are a distance from the 

downstream point of impact. The feature at location 6 is close to the point of impact and 

has the potential to take a large volume of water, equivalent to 14.5 times the storage of 

the features at location 5. This based upon a storage volume of 5500 m3, equivalent to 

0.18mm catchment wide rainfall held in storage. The inlet height at feature 6 can also 

be modified if it is thought to operate too frequently, i.e. for events that would not cause 

flooding regardless of the feature. The closer a feature is built to the point of impact and 

as long as it is scale appropriate, the more confidence can be had in its effectiveness. Of 

course, knowing if a feature is scale appropriate will depend on the magnitude of the 

flood peak and require analysis of the rainfall-runoff records.  

5.5.5 Potential	additional	features	
There may be scope for increasing the number of both ‘on’ and ‘offline’ attenuation 

features. The features located on ephemeral overland flow pathways would seem a type 

of option that has not been overly exploited in this project. These features would appear 

to be beneficial in a number of ways number of ways as they will only operate during 

the largest events in which overland flows are generated and the disconnect flow paths 

and add attenuation which has been shown to reduce the flood peak. The main limiting 

factor on the possible number of features is a financial one. Newcastle recommended 

that many sites were available and that many more RAFs would be needed if there was 

to be confidence in reducing the flooding at Great Ayton.  

5.6 Discussion 

This section summarises the characterisation outputs in this chapter. 

5.6.1 Catchment	characteristics	and	data	
The Great Ayton catchment has been shown to have a number of different soil types 

and underlying geology, which have been shown to affect the rainfall-runoff response 

from different parts of the catchment. The higher SPR soils are the organic peats found 

underlying the heather moorland/grassland used for sheep and game rearing.  

The instrumentation network to Great Ayton has been described, which comprises of a 

number of level gauges maintained by the EA and Newcastle University. Analysis of 

the flow duration curves for all sites have shown that for the largest events the flow 
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duration curves are relatively similar for the flows exceeded 20 % of the time. 

However, for flows exceeded 20 to 100 % of the time, and especially during the drier 

periods the two Newcastle University sites in the headwaters above Easby have much 

lower flows. This is likely due to the local soil and geology as they are draining the 

majority of the peaty soils and may be losing water to the sandstone beneath. During 

large runoff events  

5.6.2 Rainfall‐runoff	response	and	flood	risk	
During the largest events comparatively similar volumes of runoff are being generated 

by all parts of the catchment. Figure 5-13 showed that the largest events coincide with 

the greatest rainfall volumes, as would be expected; however, there is significant scatter 

in the plot, which demonstrates the importance of antecedent conditions in determining 

Qp with similar rainfall volume producing significantly different flood peaks. It is 

particularly clear from Figure 5-13 that the large summer events require the greatest 

rainfall volumes falling over a long period to overcome the soil moisture deficit. The 

summer rainfall events seem to typically be of a greater intensity but this, however, is 

not a major driver of the largest flood peaks. The largest floods events typically have a 

have a mean rainfall intensity of 1 mm/hr and are 10 to 30 hour in length. 

5.6.3 Mitigating	flood	hazard	
The attenuation and diffusion of flood waves was shown to have a considerable impact 

on the flood peak by broadening the flood wavelength (Figure 5-21), so increasing 

flood wave attenuation, therefore reducing flood wave celerity with mitigation features 

would intuitively be a positive approach for flood hazard reduction. To what spatial 

scale land use management and NFM features are effective at reducing flood hazard 

needs to be considered. The fact that the flood wave becomes attenuated as it travels 

downstream means that any flood reduction noticed locally from mitigation, will also 

potentially be attenuated and have a reduced impact with increasing catchment scale.  

5.6.4 What	next?	
The next three chapters will use the understanding gained from rainfall runoff analysis 

to explore a number of land use management and NFM options for mitigating flood 

flows. The FEH rainfall runoff modelling in Chapter 6 makes use of the lag time 

analysis, whilst the celerity analysis is used in Chapter 6 by the FEH-FIM tool and 

Chapters 7 and 8 in the Juke modelling. The analysis has shown that the largest flood 

peaks tend to be driven by long duration rainfall events that likely cause saturation 
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excess runoff. The most suitable mitigation for these types of events will increase the 

amount of temporary storage and attenuation of flood flows, both overland and in 

riparian areas where possible. 

Questions regarding the spatial scale at which different forms of mitigation are adopted 

and the scale at which impact is felt will need to be addressed with modelling. 

Distributed modelling is likely to be best suited in order to gain an understating of the 

flood reduction impacts brought about by the scale of mitigation and the scale at which 

mitigation is adopted. As was illustrated in the activity diagram (Figure 5-22), all parts 

of the catchment are not equally active and generating large volumes of water in all 

events. Only by modelling the distributed mitigation interventions, including the travel 

distance to the point of impact, will it be possible to understand the cumulative effect of 

these approaches.  

Key data and results from this chapter that are used in the following chapters for model 

calibration and parametrisation are: 

 Calculated time to peak value used to parameterise the FEH rainfall-runoff

model in Chapter 6.

 Observed flow series for Great Ayton and Easby to be used in the calibration

and parameterisation of the celerity function within the Juke rainfall-runoff

model (Chapters 8).
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Chapter 6. Lumped Conceptual Modelling - FEH 

6.1 Introduction 

This chapter investigates the suitability of the Flood Estimation Handbook (FEH) 

rainfall-runoff model for use in modelling land use management (LUM) change 

scenarios. Its use for LUM change modelling has been considered in a number of 

research projects as a means for developing a methodology for practitioners and 

catchment managers; most notably the Modelling and Decision Support Framework 

(MDSF) and the DEFRA funded FD2114 (Packman et al., 2004). These methodologies 

will be explored for the Great Ayton and Morland catchments in the north of England 

and the results used to populate a decision support risk matrix. The risk matrix helps 

depict the potential impacts of LUM change and management decisions on flood peaks 

(Qp). 

The FEH was designed for generating design storm events for any catchment, 

regardless of data availability using regionalised statistics, rather than impact 

assessments. The FEH has been used in the creation of Catchment Flood Management 

Plans (CFMPs) and has been described as a screening method for testing a catchment’s 

sensitivity to change. Where sensitivity is identified a more detailed approach should be 

considered (CIRIA, 2013). A number of scenarios and tests are carried out using the 

model to investigate the flood mitigation impacts.  

An alternative approach to the FEH modelling is demonstrated through the Flood 

Impact Modelling tool (FIM). It uses a more spatially distributed approach by allowing 

users to manipulate the hydrographs of sub-catchments, with simple routing rules and 

superposition of their hydrographs, to potentially identify the sub-catchments most 

suitable for targeting mitigation efforts. 

6.2 Modelling approaches 

The FEH model was originally developed as the Flood Studies Report (FSR) rainfall-

runoff model, as described in Volume 4 of the Flood Estimation Handbook Houghton-

Carr (1999). It was developed as a means of estimating flood hydrographs for any 

catchment, gauged or ungauged, in the UK using regionalised statistics. The FEH 

model and its updated ‘Revitalised Flood Hydrograph’ (ReFH) version are described 

below and then tested to identify any differences in outputs between the two. 
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6.2.1 FEH	
The FEH model is based upon a unit hydrograph and has two key model parameters, 

Time to peak and (Tp) and Standard Percentage Runoff (SPR). The Tp is the lag 

between the centroid of the rainfall and the peak of the flow hydrograph; within the 

FEH the Tp is used to calculate the unit hydrograph time-to-peak. The typical 

percentage of rainfall that leaves the catchment as fast runoff is captured by the SPR 

statistic; i.e. it reflects the response hydrograph rather than the slower sub-surface 

component that makes up the baseflow.  

6.2.2 ReFH	modelling	
The FEH rainfall-runoff model has been updated and launched as the ReFH (Kjeldsen, 

2007). It was developed to ‘improve the way that observed flood events are modelled 

and has a number of advantages over the FSR/FEH unit hydrograph and losses model’ 

(Kjeldsen, 2007). The key differences between the two models as noted by Kjeldsen 

(2007) include: 

 a loss model based on the uniform Probability Distributed Model (PDM) model 

of Moore (1985); 

 a more flexible unit hydrograph shape; and 

 improved handling of antecedent soil moisture conditions. 

The 100-year, 12 hour design unit-hydrograph and resultant hydrographs, generated 

using the FEH and ReFH are shown in Figure 6-1. The ReFH unit-hydrograph has a 

lower peak but longer recession, there is also an additional baseflow component to the 

ReFH model.  
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Figure 6-1 FEH and ReFH for the 100-year, 12 hour design storm to Great Ayton 

The differences in the unit hydrograph are clear, with the ReFH having a lower 

magnitude peak and a two-step recession rate. The FEH has a constant Baseflow value, 

whilst the ReFH is more dynamic. 

6.2.3 Model	parameterisation‐	Great	Ayton	
All FEH model parameters can be calculated from FEH catchment descriptors using a 

number of methods as set out in volume 4 of the FEH. The Tp, BFI and SPR parameters 

can be obtained from regionalised datasets, however, it is preferable to analyse 

observed data when available to get the parameter values. The sections below describe 

the approaches adopted within the FEH and compares the parameters as calculated from 

descriptors and from observed data. 

SPR	

The SPRHOST (henceforth referred to as SPR) value for the Great Ayton catchment as 

provided by the FEH catchment descriptors is 40.68. This comparable to Figure 5-14, 

Chapter 5. 

Unit	hydrograph	time‐to‐peak	

Where records are available, the Tp of the Instantaneous Unit Hydrograph (IUH), 

Tp(0), is estimated from the catchment lag (time from the centroid of rain to runoff 

peak), using Equation 6-1. Where observed data are not available Tp(0) can be 
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calculated using FEH catchment descriptors as obtained from the FEH volume 3 CD-

ROM. 

Equation 6-1  

Tp(0) = 0.879 lag0.951 

 

Analysis of the 28 largest single peaked events (Chapter 5, Figure 5-13) to Great Ayton 

gave a mean Tp of 6.41 hours, which compares to the Tp calculated using catchment 

descriptors at 5.08 hours. The observed time-to-peaks ranged from 3.3 hours to 12.3 

hours with a standard deviation of 2.3 hours. 

Storm	duration	

The critical design storm duration (i.e. the rainfall event duration that generates the 

largest flood peak) is estimated form the catchment Tp and the catchment Standard 

Average Annual Rainfall (SAAR), which is a 30 year annual average rainfall described 

by FEH statistics, using Equation 6-2. The critical design storm duration provides a 

storm profile to give the largest Qp. Using the observed Tp of 6.4 produces a design 

storm duration of 11.6 hours. 

Equation 6-2  

D	 	Tp	 1
SAAR
1000

 

6.2.4 FARM	decision	support	tool	
The FARM tool was developed to support decision makers and to help communicate 

ideas to wider stakeholders (refer to Chapter 2 for details). Land use and catchment 

management scenarios can be mapped on to the risk matrix to better understand the 

effect of land management scenarios on flood risk. The matrix axes are designed to be 

as intuitive as possible and convey the ideas of soil storage and conveyance of water. 

The management of soil is linked to the SPR axis, with overuse of the land through 

increasing stocking densities or year round cropping seen to degrade the soil structure 

and increase fast runoff. The Tp axis is linked to the attenuation within the catchment 

and can be affected by the implementation of field drainage for example, which would 

reduce the Tp. The removal or addition of natural buffers or ‘roughness’, such as 

hedgerows or riparian woodland, can also affect the Tp. The results from the FEH 
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modelling in this chapter will be mapped to the FARM matrix as depicted in Figure 6-2, 

in which the values are percentage change from the base value. 

6.2.1 Land	use	change	
A number of studies have looked at ways of incorporating the effects of LUM into 

models to study the likely impacts. The Modelling and Decision Support Framework 

(MDSF - HR.Wallingford et al. (2002) was developed for use in Catchment Flood 

Management Plans (CFMPs), as a requirement of the EU Floods Directive (2007). One 

objective of CFMPs is to assess the impact of long-term future LUM plans on flood 

hydrology. The MDSF study and its recommendations were then used within a Defra 

funded study which reviewed the impacts of rural LUM on flood generation. Within the 

report (FD2114, 2004) a methodology was developed for using the FEH rainfall-runoff 

model for LUM change impact assessment. The key recommendations were that the Tp 

and SPR parameters within the FEH rainfall-runoff model could be manipulated to 

reflect the impact of LUM change on the hydrograph. 

FD2114‐FEH	recommendations	

Within the FD2114 project, short-term improvements to the FEH study (hereafter 

referred to FD2114-FEH) were made, including the impact of soil degradation due to 

agricultural practices on runoff generation. The impact of soil degradation is thought of 

in terms of the increase in fast runoff, and to make this applicable to the FEH the impact 

on the HOST classification were considered (Boorman et al., 1995). The HOST 

classification provides the SPR values necessary for parameterising the FEH model. 

The method of reclassifying HOST categories was discussed in Chapter 2. 

Likely changes to SPR using the FD2114 approach are shown in Table 6-1. There is a 

14 % increase in SPR by moving from the baseline catchment to a degraded catchment. 

Table 6-1 is populated from GIS analysis of the national soil dataset for the Leven 

catchment (Packman et al., 2004).  
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Table 6-1 Changes in SPR suggested by Packman et.al (2004) for the soil types found in the Leven catchment 

Original 
HOST class 

Alternate 
HOST class 

Original SPR 
Alternate 

SPR 
0 - - - 
5 7 15 27 
15 15 48 48 
20 20 60 60 
24 25 40 49 
26 26 59 59 

Weighted catchment SPR: 42.46 48.34 
 

Packman et al. (2004) modelled four catchments, making changes to parameters as 

described above. The Tp and SPR scenarios tested for two catchments, chosen for the 

difference in the magnitude of SPR manipulation, can be seen in Table 6-2 with the 

results shown for a number return interval storms in Table 6-3. The impact on SPR is 

only considered for a worsening scenario, in which it is increased, whilst Tp is 

manipulated to become shorter (worsening) and longer (improving).  

Table 6-2 Tp and SPR values modelled by Packman et al. (2004) 

Catchment 
Tp0= 

FEH eqn 
(base case) 

Tp1= 
Tp0 – 1h 

 

Tp2= 
Tp0 + 1h 

 

SPR0= 
SPRHOST 
(base case) 

SPR1= 
Alternate 

W. Glen 
 (4.4 km2) 

5.14 4.14 6.14 41.3 45.9 (+11 %) 

Tud 
(72 km2) 

13.40 12.40 11.40 32.6 38.3(+17.5 %) 

 

It is clear from Table 6-3 that the scenario in which only the SPR is altered (Tp0 and 

SPR1) that the magnitude increase in Qp is very close to the percentage increase in SPR 

shown in Table 6-2, especially for the larger, higher return interval events. 
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Table 6-3 Percentage change in Qp taken from Packman et al. (2004) for a range of different return interval 
events 

Tp option 
SPR option 

Tp0 
SPR0 
(base 
case) 

Tp0 
SPR1 

Tp1 
SPR0 

Tp1 
SPR1 

Tp2 
SPR0 

Tp2 
SPR1 

Catchment (Percentage increase in flood peak relative to base case)  
W. Glen       

T=2 1.33 14 % 13 % 29 % -10 % 2 % 
T=10 2.62 13 % 13 % 28 % -10 % 2 % 
T=25 3.47 12 % 14 % 28 % -10 % 1 % 
T=100 5.05 11 % 15 % 28 % -11 % -1 % 
Tud       
T=2 7.99 21 % 5 % 26 % -4 % 15 % 
T=10 15.49 19 % 5 % 25 % -4 % 14 % 
T=25 20.22 18 % 5 % 24 % -5 % 13 % 
T=100 28.94 17 % 5 % 23 % -5 % 11 % 

 

The results of the FD2114 modelling indicate that changes to both Tp and SPR can 

have significant impacts on the outlet Qp. The scenario in which Tp is reduced (Tp2) 

and SPR remains the same (SPR0) would indicate that the addition of attenuation to a 

catchment could potentially prove a means by which Qp could be reduced. No 

methodologies are offered for increasing Tp, however, this could be done through 

planting riparian woodland, hedgerows or implementing Runoff Attenuation Features 

(RAFs) - anything that essentially reduces the connectivity within the landscape and 

impedes the propagation of the flood wave. As shown above (Figure 6-3) the Tp change 

should result in a proportional change in Qp.  

The analysis of Tp has highlighted the differences in the values obtained from the FEH 

regionalised approach and those obtained from observed data. The SPRHOST values 

also differ when obtained from the FEH catchment descriptors (40.68; Section 6.2.3) 

and derived from GIS analysis (42.46; Table 6-1) of the soil map, due to the differing 

type and resolution of data used. These differences indicate that there are uncertainties 

in model parameterisation and therefore modelled outputs and impacts.  

This section suggests that the FEH, HOST and likely changes to Qp and Tp from 

LUMC and NFM are a reasonable starting position for flood impact management and 

may be useful screening and understanding tool for catchment and flood managers. 
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6.2.2 FEH	or	ReFH	
The FEH rainfall runoff model has been updated and is now known as the ReFH model, 

as discussed above. Packman et al. (2004) used the FEH model, as the ReFH was still 

under development, when the FD2114 project was undertaken. It was acknowledged 

that the ReFH model was under development and that the FD2114 methods would 

apply equally to the ReFH procedure. The purpose of this section is to perform a 

sensitivity analysis for Great Ayton using both models to identify any difference in the 

model outputs and what this would mean for impact assessment. 

The time base of both models is controlled in much the same way through the 

calculation of Tp. The magnitude of the unit hydrograph, however, is calculated in 

slightly different ways. The FEH model requires that that an observed SPR or 

SPRHOST are given to dictate the fast response of the catchment. The ReFH model 

requires that an observed Baseflow Index (BFI) or BFIHOST are used to parameterise 

the baseflow model and calculate an SPR through Equation 6-3: 

Equation 6-3  

SPR = 72.0 – 66.5BFI 

Both models were used to populate the decision support matrix to examine what impact 

the differing structures would have for practitioners using these models for catchment 

planning. The values plotted within the matrix represent the percentage change in Qp 

for a given SPR/Tp scenario. Packman et al. (2004) considered a change in SPR of ± 20 

% and a Tp adjustment of ± 2 hours as extreme, and provide the practical limits on any 

future potential impacts from LUM and NFM. The bottom left corners of the matrices 

(Figure 6-2) represent the most improved scenario, where SPR is reduced by 20 % and 

Tp increased by 2 hours, give similar reductions in Qp of 32 % (FEH) and 38 % (ReFH) 

for the 100-year, 12 hour event. The differences are likely to be associated with the 

additional losses incorporated in the ReFH model. The degraded catchment scenarios 

give significantly less comparable results, with the FEH model indicating a 48 % 

increase in Qp and the ReFH an increase of 59 %. They do, however, give different Qp 

values for the baseline, i.e. current catchment values, 100-year event; the FEH peak is 

33.88 m3/s, whilst the ReFH model is 19.31 m3/s. A pooled flood frequency analysis 

using the 10 years of available flow series provide a Qp of 40 m3/s for the 100-year 

flood event.  
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The modelled impacts of manipulating SPR/BFI and Tp on flood peaks for both models 

are similar. It is only at the most extreme degraded catchment scenario that there is a 

large difference between the impacts.  

 

Figure 6-2 Matrices produced for Great Ayton using the (a) FEH and (b) ReFH models for the 100-
year, 12 hour event 

The similarity of the modelled output is illustrated in Figure 6-3. The top, middle and 

bottom rows of the matrices in Figure 6-2 are plotted in Figure 6-3, but instead of the 

percentage differences in Qp, the actual Qp values are plotted. Each coloured line 

a.

8.32 7.68 7.04 6.4 5.76 5.12 4.48

49 (+20%) ‐3.67 2.51 9.58 17.46 26.59 36.71 48.34

47 (+15%) ‐7.24 ‐1.29 5.51 13.10 21.88 31.61 42.80

45 (+10%) ‐10.81 ‐5.09 1.44 8.73 17.17 26.52 37.27

43 (+5%) ‐14.38 ‐8.89 ‐2.63 4.37 12.46 21.43 31.74

41(Baseline) ‐17.94 ‐12.69 ‐6.69 0.00 7.75 16.34 26.20

39 (‐5%) ‐21.51 ‐16.50 ‐10.76 ‐4.37 3.04 11.24 20.67

37 (‐10%) ‐25.08 ‐20.30 ‐14.83 ‐8.73 ‐1.68 6.15 15.14

35 (‐15%) ‐28.65 ‐24.10 ‐18.90 ‐13.10 ‐6.39 1.06 9.61

33 (‐20%) ‐32.21 ‐27.90 ‐22.97 ‐17.46 ‐11.10 ‐4.04 4.07

SP
R

Tp

b.

8.32 7.68 7.04 6.4 5.76 5.12 4.48

49 (+20%) 5.33 11.59 18.66 26.76 36.04 46.71 59.18
0.349

47 (+15%) ‐0.60 5.24 11.85 19.40 28.05 38.02 49.65
0.379

45 (+10%) ‐5.93 ‐0.47 5.74 12.82 20.92 30.28 41.17
0.410

43 (+5%) ‐11.07 ‐5.95 ‐0.12 6.51 14.09 22.88 33.08
0.440

41(Baseline) ‐16.39 ‐11.60 ‐6.16 0.00 7.07 15.28 32.27
0.471

39 (‐5%) ‐21.73 ‐17.27 ‐12.23 ‐6.50 0.06 7.70 16.52
0.502

37 (‐10%) ‐26.95 ‐22.81 ‐18.15 ‐12.84 ‐6.74 0.35 8.51
0.532

35 (‐15%) ‐32.40 ‐28.60 ‐24.32 ‐19.44 ‐13.81 ‐7.30 0.21
0.563

33 (‐20%) ‐37.76 ‐34.29 ‐30.36 ‐25.89 ‐20.71 ‐14.75 ‐7.87
0.593

B
FI

SP
R

Tp
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represents a different SPR scenario; the solid lines being the output from the FEH 

model and the broken lines being the output from the ReFH model. The middle blue 

lines in Figure 6-3 represent the SPR value ascribed to the Great Ayton catchment in 

the FEH. Although the Qp values differ between each of the models, the shape and 

magnitude difference between the lines is similar. 

 

Figure 6-3 Peak discharge values for the 100-year flood for multiple SPR and Tp scenarios as modelled with 
FEH (Solid line) and ReFH (Broken line) 

The FEH baseline scenario gives a Qp for the 100-year event in Great Ayton, closer to 

the value estimated in the flood frequency analysis than the ReFH. It is for these 

reasons that the model taken forward for the following study is the FSR FEH rainfall-

runoff model. 

6.3 FEH modelling to Great Ayton 

The FEH model will now be used to test a number of LUM scenarios to investigate the 

potential impacts on Qp and the results will be shown using the FARM tool. The 

scenarios will show what effect the design storm characteristics have on the modelled 

outputs and therefore impacts; including modelling different return interval events and 

different storm durations. All modelling is done using a 15 minute data interval. 

6.3.1 Impact	of	change	on	different	return	interval	floods	
Impacts of changes in SPR and Tp on the 100 and 25 year return interval, 12 hour 

duration flood events are displayed in Table 6-4 and the matrices for these events 
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shown in Figure 6-2(a) and Figure 6-4. The matrices show similar percentage increases 

and decreases for both events with the impact on Qp being almost uniform regardless of 

return interval. 

Table 6-4 Flood peak discharges for different magnitude storms under different catchment conditions 

Flood Return 

Interval 

Qp Catchment 

improved (m3/s) 

Qp Catchment 

baseline (m3/s) 

Qp Catchment 

degraded (m3/s) 

100-year 22.87 (-32 %) 33.73 50.04 (+48 %) 

50-year 19.62 (-32 %) 29.05 43.20 (+49 %) 

25-year 16.40 (-33 %) 24.38 36.36 (+49 %) 

 

 

Figure 6-4 Risk matrix for the 25-year, 12 hour FEH model run to Great Ayton 

 

The implications of these patterns are that regardless of the event magnitude, the 

modelled Qp change is the same. Whether this is realistic is debateable as with 

increasing event size the percentage of runoff is likely to increase as catchment storage 

is exhausted, therefore the level of impact is likely to be different but this is not 

captured by the model. 

6.3.2 Impact	of	storm	duration	
To investigate the impacts of manipulating Tp and SPR on different storm durations, 

the matrices have been populated for the 100-year flood event with different rainfall 

storm durations (Figure 6-5). The duration and intensity of a rainfall event were 

demonstrated as being influential characteristics in determining Qp (Chapter 5, Figure 

c.

8.32 7.68 7.04 6.4 5.76 5.12 4.48

49 (+20%) ‐2.89 3.30 10.37 18.26 27.39 37.51 49.14

47 (+15%) ‐6.62 ‐0.68 6.11 13.69 22.46 32.19 43.36

45 (+10%) ‐10.35 ‐4.65 1.86 9.13 17.54 26.86 37.58

43 (+5%) ‐14.08 ‐8.62 ‐2.39 4.57 12.61 21.54 31.79

41(Baseline) ‐17.81 ‐12.60 ‐6.65 0.00 7.69 16.21 26.01

39 (‐5%) ‐21.54 ‐16.57 ‐10.90 ‐4.56 2.77 10.89 20.22

37 (‐10%) ‐25.27 ‐20.54 ‐15.15 ‐9.13 ‐2.16 5.56 14.44

35 (‐15%) ‐29.00 ‐24.52 ‐19.40 ‐13.69 ‐7.08 0.24 8.66

33 (‐20%) ‐32.72 ‐28.49 ‐23.65 ‐18.26 ‐12.01 ‐5.08 2.88

Tp

SP
R
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5-12. This is an important consideration as the types of mitigation suited to certain 

storms may differ. Table 6-5 shows that changing the rainfall storm duration leads to a 

difference in peak rainfall intensity and total rainfall depth for a given return interval 

flood.  

Qp for the current SPRHOST value differ for each of the storm durations, with the most 

significant difference being between the short duration storm (2.75 hours) and the 

critical storm duration event (11.25 hours). It is interesting to note that the maximum 

rainfall intensity is 59 % greater for the short duration storm but the total design storm 

depth is 59 % less. 

Table 6-5 Rainfall characteristics for different duration storms that produce a 1-in100-year flood  

Storm 
Duration 

(hrs) 

Max rainfall intensity 
(mm/hr) 

Design storm depth 
(mm/hr) 

Qp for current 
SPR value 

(m3/s) 
2.75 12.81 55.85 23.58 
11.25 5.31 88.89 33.73 
23.75 3.37 118.76 35.03 

 

The patterns of the matrices (Figure 6-5) show that changing SPR and Tp have a greater 

impact on the shorter, higher intensity storms (a) than they do on the longer, less intense 

storms (b). 
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Figure 6-5 Risk matrices for FEH model runs to Great Ayton using different storm durations. a) 2.75hrs, 
b) 23.75hrs 

These results suggest that the impacts of LUMC on Qp are more significant during 

short duration, high intensity rainfall events (indicative of convective events in the 

summer months), than they are during longer duration storms. Once storm duration is 

greater than or equal to the critical storm duration (as calculated from the FEH) the 

modelled Qp and impacts are very similar. The critical storm duration is intended to 

provide the largest flood peak. It is shown in Table 6-5 that longer duration storms will 

lead to limited increases in Qp and therefore insignificant changes to the modelled 

scenarios and matrices produced. 

6.3.3 Spatial	scale	and	LUM	scenario	impacts	
As a simple test to investigate the impacts of SPR manipulation on catchments of 

different scales and average SPRs, two sub-catchments within the Great Ayton 

catchment have been modelled separately. The sub-catchments modelled are Dikes 

a.

8.32 7.68 7.04 6.4 5.76 5.12 4.48

49 (+20%) ‐6.82 0.41 8.80 18.86 30.92 45.86 64.75

47 (+15%) ‐10.49 ‐3.56 4.50 14.14 25.72 40.05 58.16

45 (+10%) ‐14.16 ‐7.53 0.19 9.43 20.52 34.24 51.59

43 (+5%) ‐17.83 ‐11.49 ‐4.12 4.71 15.31 28.43 45.01

41(Baseline) ‐21.51 ‐15.46 ‐8.43 0.00 10.11 22.62 38.43

39 (‐5%) ‐25.18 ‐19.42 ‐12.73 ‐4.72 4.90 16.80 31.85

37 (‐10%) ‐28.85 ‐23.39 ‐17.04 ‐9.43 ‐0.31 10.99 25.28

35 (‐15%) ‐32.52 ‐27.35 ‐21.34 ‐14.15 ‐5.51 5.18 18.70

33 (‐20%) ‐36.20 ‐31.32 ‐25.65 ‐18.86 ‐10.71 ‐0.63 12.12

Tp

SP
R

c.

8.32 7.68 7.04 6.4 5.76 5.12 4.48

49 (+20%) 2.64 6.94 11.57 16.50 21.83 27.52 33.72

47 (+15%) ‐0.99 3.16 7.62 12.37 17.51 23.00 28.98

45 (+10%) ‐4.61 ‐0.62 3.67 8.25 13.20 18.48 24.24

43 (+5%) ‐8.24 ‐4.40 ‐0.27 4.12 8.88 13.96 19.49

41(Baseline) ‐11.87 ‐8.18 ‐4.22 0.00 4.56 9.44 14.75

39 (‐5%) ‐15.49 ‐11.96 ‐8.17 ‐4.13 0.25 4.92 10.00

37 (‐10%) ‐19.12 ‐15.74 ‐12.11 ‐8.25 ‐4.07 0.40 5.26

35 (‐15%) ‐22.74 ‐19.52 ‐16.06 ‐12.37 ‐8.38 ‐4.12 0.52

33 (‐20%) ‐26.37 ‐23.30 ‐20.01 ‐16.50 ‐12.70 ‐8.64 ‐4.23

Tp

SP
R

a. 

b. 
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Beck, with an area of 3 km2 and a SPRHOST value of 43.89; and Lonsdale, with 

upstream area of 4 km2 and a SPRHOST value of 45.09 (Figure 6-8). Each catchment 

has been modelled using critical storm durations as calculated from FEH catchment 

descriptors.  

Table 6-6 shows that regardless of the catchment size, the resultant Qp change (+/- %) 

similar for any catchment scenario or change in SPR, which is due to the linearity of the 

unit hydrograph. 

Table 6-6 The impact on QP for each of the sub catchments of applying the degradation and improved 
catchment scenarios outlined in the FEH improvements study. 

Catchment (Area) 
Qp Improved 

Catchment (m3/s) 

Qp Baseline 

Catchment (m3/s) 

Qp Degraded 

Catchment (m3/s) 

Dikes beck (3 km2) 3.7 (-34 %) 5.61 8.42 (+50 %) 

Lonsdale (4 km2) 5.82 (-33 %) 8.69 13.00 (+50 %) 

Great Ayton (30 

km2) 
22.87 (-32 %) 33.73 50.04 (+50 %) 

 

6.3.4 Knowledge	gained	from	Great	Ayton	and	application	to	Morland	
Taking the knowledge and understanding gained from the various scenarios modelled 

for Great Ayton, this section will attempt to populate a FARM matrix for the Morland 

catchment using a limited number of modelled runs. 

The patterns in each of the matrices above indicate a linear relationship with changes in 

SPR and Tp. The individual rows of the matrix are plotted in Figure 6-6, but instead of 

the percentage differences in Qp, the Qp values are plotted. Each coloured line 

represents a certain SPR scenario, with the middle blue line representing the SPRHOST 

value ascribed to the Great Ayton catchment in the FEH. The x-axis is the Tp multiplier 

applied to the original, which for Great Ayton is 6.4 hours. 
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Figure 6-6 Peak discharge values for the 100-year flood for multiple SPR (colour of line) and Tp scenarios (x-
axis). 

The difference between each of the SPR scenarios, as reflected in the colour of their 

lines (Figure 6-6), is a 5 % increment from the catchment original of 40.68. The 

difference between each of the SPR lines is equal for a given Tp value which indicates a 

purely linear scalar effect of changing SPR and Qp magnitude and can be linked to the 

underlying assumptions of linearity in the Unit Hydrograph (UH) approach. The effect 

of changing Tp is, however, not so linear with slight differences in the shape of the 

lines. Yet by modelling any two rows on the matrix it is possible to complete the 

matrix, as is demonstrated below for the Morland catchment in Cumbria. 

FEH	modelling	of	Morland	

The FEH model has been parameterised using the FEH descriptors, which give a Tp of 

2.9 hours and the catchment SPRHOST is 35.72. The two rows in bold shown in Figure 

6-7 were populated completely with Qp values generated by the FEH model. Any two 

rows could have been populated but it was decided that populating the top and bottom 

rows, with SPR values of plus or minus 20 % would make it clearer how the rest of the 

matrix was populated. For each alternative Tp scenarios, i.e. the different columns the 

incremental change from row to row was calculated by subtracting the bottom row from 

the top row and dividing by the number of empty rows plus one.  
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The Qp matrix completed using the simple formulation described above is shown in 

Figure 6-7. The numbers in red are those that have been verified with the FEH model to 

ensure that the formulation worked in all instances. 

 

Figure 6-7 Completed Qp matrix using interpolation and verified values in red, for the 100-year, 8 hour event 
to Morland 

The implications of this result are that the modelling FEH-FARM procedure is by no 

means a way of carrying out a detailed flood mitigation study. It can certainly be useful 

as a thinking tool for the likely implications of land management decisions within a 

catchment. The matrices produced, however, do not change a great deal in terms of 

percentage Qp impact and the pattern of change is the same. 

A more bespoke methodology is required that takes into consideration the distributed 

nature of catchment characteristics, such as soils and the channel network, as well as the 

way in which LUMC is applied. Such a methodology is described and developed 

below. 

6.4 Flood Impact Modelling tool (FIM) 

The location within a catchment that undergoes flood hazard mitigation is likely to play 

an import role in the level of impact that is experienced at the outlet. The reasons for 

this are twofold; (1) different regions of the catchment generate different amounts of 

runoff, and (2) there are travel time and synchronicity effects as flood waves propagate 

the system and combine with additional sub-catchment contributions. These types of 

Original Time to Peak

SPR 1.3 1.2 1.1 2.9 0.9 0.8 0.7

SPR +20% 42.864 19.6 20.7 21.9 23.2 24.7 26.4 28.2

SPR +15% 41.078 18.8 19.9 21.1 22.4 23.8 25.4 27.2

SPR +10% 39.292 18.1 19.2 20.3 21.5 22.9 24.4 26.1

SPR +5% 37.506 17.4 18.4 19.5 20.7 22.0 23.4 25.1

Original 35.72 16.7 17.7 18.7 19.8 21.1 22.5 24.1

SPR ‐5% 33.934 16.0 16.9 17.9 19.0 20.1 21.5 23.0

SPR ‐10% 32.148 15.3 16.1 17.1 18.1 19.2 20.5 22.0

SPR ‐15% 30.362 14.5 15.4 16.3 17.3 18.3 19.6 20.9

SPR ‐20% 28.576 13.8 14.6 15.5 16.4 17.4 18.6 19.9
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effects cannot be considered with the lumped FEH rainfall-runoff model, the changes 

applied are an effective catchment averaged effect. 

In order to begin to investigate the effects of travel time and location of mitigation with 

the FEH rainfall-runoff model the Flood Impact Model tool (FIM) was created. The tool 

has been developed within Microsoft Excel and is designed to be simple and intuitive. 

6.4.1 FIM	description	
For the catchment outlet at Great Ayton and 5 key sub-catchments the FEH 100-year 

flood events have been created using the critical storm durations specific to each of the 

individual catchments (Figure 6-8). The outlet hydrograph has then been disaggregated 

using the sub-catchment hydrographs. A constant wave celerity of 1 m/s has been used 

to route each of the sub-catchment contributions to the outlet (Figure 6-8). The wave 

celerity is based on the average speed observed in the analysis in Chapter 5, section 

5.4.3, Figure 5-17. The contributions of each sub-catchment are summed as in 

superposition. The sub-catchment contributions are not sufficient to create the outlet 

hydrograph so unaccounted for flow is added to ensure the outlet hydrograph equals the 

modelled 1 in 100-year event. This missing flow is kept at a constant as changes are 

made to the sub-catchments. The model user can then manipulate the sub-catchment Qp 

and Tp to investigate the impact at the outlet.  

The tool has been used as a teaching aid both on the MSc course at Newcastle 

University and externally at Natural Flood Management (NFM) workshops. There is 

interest from the Environment Agency (EA) and the Scottish Environment Protection 

Agency (SEPA) to develop the tool for other catchments to aid engagement and 

understanding and consultancies are now beginning to develop similar models for 

catchments where NFM is being considered.  

The assumptions listed below are thought to be acceptable for modelling in a simple, 

semi-lumped manner, the sub-catchments and network to Great Ayton. However, it is 

thought that as the catchment scale increases it is likely that they will become less 

acceptable due to the spatial and temporal variation in rainfall, and what this means for 

the relative rates of activity and timing of peaks in the sub-catchments as was discussed 

in section 5.5 of Chapter 5. The key assumptions are: 
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 The 1 in 100-year flood event at the catchment outlet can be disaggregated by 

assuming that it is made up of the 1 in 100-year events in the sub-catchments 

 The catchment outlet hydrograph can be re-created through superposition of the 

constituent sub-catchment hydrographs having been routed to the outlet. 

 No channel and floodplain attenuation effects on the flood wave as it moves 

through the network 

 A fixed wave speed or celerity of 1 m/s is used as a representative speed for a 

large event in which all sub-catchments are active, based on the analysis of the 

observed hydrographs in Chapter 5 section 5.4.3, page 123, Figure 5-17.  

 Tp adjustment, shifts the full hydrograph by the resultant adjustment value 

 Qp changes affect the full hydrograph not just the peak and there is no 

reallocation of mass. 

6.4.2 Scenarios	of	changes	modelled	
To investigate the potential role that the proximity of mitigation to the outlet has in the 

overall Qp reduction and the relative role of SPR and Tp manipulation have on outlet 

the following scenarios will be tested: 

1. Impact of reducing Qp by 20 % and increasing Tp by 1.5 hours for the Dyke’s 

Beck sub-catchment in closest proximity to the outlet (Figure 6-9) 

2. Impact of reducing Qp by 20 % and increasing Tp by 1.5 hours for the Lonsdale 

sub-catchment with longest travel distance to the outlet. 

3. Impact of changing both the near and distal sub-catchments, as above (1 and 2), 

on the outlet hydrographs (Figure 6-10) 

4. Repeat scenario 3 but manipulate Qp (4a) and Tp (4b) separately to investigate 

their relative role on the outlet Qp impact. 
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Figure 6-8 The FIM tool interface for the Great Ayton Catchment (parameter manipulations can be made to sub-catchments and the impact at the outlet immediately observed). 
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Figure 6-9 Results of increasing the TP and reducing the runoff (through Qp) for the Dikes Beck catchment within the FIM tool. 
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Figure 6-10 Results of increasing the TP and reducing the runoff (through Qp) for the Dikes Beck and Kildale catchments within the FIM tool.
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Intuitively, it would be assumed that reducing Qp and increasing Tp of any of the sub-

catchments would have a beneficial impact in reducing the outlet peak. However, 

targeting the sub-catchment closest to the outlet, Dikes Beck, is shown to increase the 

outlet hydrograph due to the way in which the sub-catchments are synchronised (Figure 

6-9, Table 6-7 scenario 1). However, targeting multiple sub-catchments has a beneficial 

impact (Figure 6-10, Table 6-7 scenario 3).  

Table 6-7 FIM scenario results 

Scenario Outlet Qp Impact 

(% change) 

1 – Dyke Beck (Qp -20 %, Tp +1.5 hrs) +1 % 

2 – Lonsdale (Qp -20 %, Tp +1.5 hrs) -11 % 

3 – Both Dyke Beck and Lonsdale -10 %  

4a – As scenario 3 with only Qp -20 % -6 % 

4b – As scenario 3 with only Tp +1.5 hrs -4 % 

 

The modelling of the scenarios with FIM has highlighted the importance of 

understanding how the catchment and its constituent sub-catchments behave. Mitigating 

different sub-catchments will have different impacts at the outlet due the relative travel 

times and therefore synchronicities with the outlet peak, meaning they potentially have 

different levels of impact on the outlet peak. The overall concept of flow generation and 

propagation allows a number of scenarios to be considered, despite the assumptions 

made. Questions about synchronisation and the degree of intervention can be evaluated 

and a flood mitigation plan that is relevant to the catchment can be made, which in turn 

could encourage a more strategic investment. Through the scenarios modelled here, 

investment in flood mitigation infrastructure such as RAFs would have the greatest 

impact at reducing catchment flood hazard if implemented in the catchments with the 

furthest travel distance to the outlet. The coincidence of the of the sub-catchment peaks 

with the outlet peak is greatest for the upstream Lonsdale catchment, therefore any 

change in the synchronization of this catchment has a more significant impact than for 

the other sub-catchments’. 

6.5 Discussion 

This section summarises the finding from the modelling outputs in this chapter. 
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6.5.1 FEH	rainfall‐runoff	
The FEH and ReFH models were setup and used to populate a FARM matrix in order to 

identify if there were any differences between the modelled outputs and hence impacts 

for Great Ayton. There were differences in the Qp results from each of the models, 

however, the trend and differences between each of the SPR and Tp scenarios was 

shown to be similar (Figure 6-3). The resulting impact matrices for Great Ayton using 

either model are therefore likely to be very similar and any conclusions drawn equally 

comparable. The FEH rainfall-runoff model was used as it modelled the Qp of the 100-

year return interval event closest to that obtained from the flood frequency analysis. As 

the FEH rainfall-runoff model is lumped it is not possible to consider the spatial aspects 

of mitigation in a clear way, which require a more distributed approach. 

Event	magnitude	(return	interval)	

There was very little difference in the impact of adjusting Tp and SPR on the modelled 

Qp regardless of return interval. The similarities in modelled impacts are likely due to 

each return interval events being modelled with a 12 hour duration event, which is 

slightly larger than the critical storm duration of 11.6 hours. The critical storm duration 

(as calculated from the FEH methodology) is described as being the duration that will 

produce the greatest flood peaks, therefore increasing the return interval does not 

significantly increase the peak discharge.  

Event	duration	

The design storm duration was found to have the greatest impact on the modelled Qp 

results and hence the impact of changing SPR and Tp. The model indicated that short 

duration, high intensity rainfall will be impacted to a greater extent by LUMC than the 

longer duration storms. In reality what this means that moving mass within a flashy 

short duration event has the greater impact than longer duration less intensive events. 

Two hydrographs and the corresponding hyetographs are illustrated in Figure 6-11. A 

percentage decrease in the amount of effective rainfall will have the greatest impact in 

terms of volume of runoff on the shorter duration, higher intensity event. Once the 

storm duration is greater than or equal to the critical storm duration, the modelled 

impacts are very similar as the critical storm duration is intended to provide the largest 

flood peak.  



159 
 

 

Figure 6-11 The 2.75 hours and 23.75 hours hydrograph and hyetographs generated using the FEH model 

This effect was illustrated in the scenarios that investigated the effects of SPR and Tp 

manipulation on different magnitude events and different spatial scales. As these 

scenarios were all modelled using the critical storm duration, specific to each of the 

catchments and the linear nature of the impact in adjusting SPR and Tp, the modelled 

results and impacts were all very similar (as shown in Table 6-6). 

FARM	tool	

The FEH modelling procedure offers a way of investigating the likely impacts of LUM 

decisions in a semi-physical and transparent way. Presenting the modelling results 

within the FARM tool offers a tangible means of conveying the potential LUMC 

impacts to non-hydrologists, such as farmers and land managers. Such groups often 

understand the impact of their decisions at the local scale but may not have considered 

the implications at the wider catchment scale. 

The results in terms of Qp adjustments are likely to be very uncertain due to the 

ambiguity of the initial parametrisation (SPRHOST and Tp). It is also difficult to put a 
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value on SPR reduction or Tp increase for a given form of mitigation. The FD2114-

FEH procedure offers recommendations based on expert knowledge as to the worst 

possible case of soil degradation (Packman et al., 2004). The HOST reclassification is 

relatively uncomplicated and applicable at all scales, however, no spatial scale is 

provided for the adjustment of Tp by 2-3 hours, however it is unlikely to be valid at 

multiple scales from 2 km2 to 30 km2 and bigger.  

6.5.1 What	has	Morland	shown?	
The modelling of Morland demonstrated that the FEH rainfall-runoff is likely to 

produce very similar impact responses for all catchments (Table 6-6). The matrix 

produced to demonstrate the potential LUMC impacts was similar in terms of 

percentage Qp impact and the pattern of as that produced for the Great Ayton 

catchment. 

It highlights the need for a modelling methodology that accounts for the distributed 

nature of catchment characteristics. These include the soils, the channel network and 

size and shape of the catchment, as well the location in which LUMC is applied. These 

complexities cannot be captured by a lumped model and led to the development of the 

semi-lumped FIM tool.  

6.5.2 FIM	tool	
An alternative use of the FEH has been demonstrated through the FIM tool which 

proposes a more distributed approach to the way in which LUMC scenarios are applied 

and routed to the outlet. This was done by disaggregating the outlet hydrograph, 

through superposition of the waves, to five sub-catchments with a fixed wave speed of 

1 m/s. The impact of manipulating individual sub-catchments was then tested and a 

simple sensitivity carried out.  

This process highlighted that the catchment scale impact of mitigation may be sensitive 

to the location within a catchment that undergoes mitigation. It was found that delaying 

the peak of the sub-catchment in closest proximity to the outlet, Dykes Beck, could 

potentially increase flood peaks, even if the volume of runoff was reduced. The increase 

in outlet Qp was due to the increased synchronisation of the sub-catchment peaks. 

Mitigating the sub-catchment with the greatest travel distance, Lonsdale, was found to 

have the greatest positive impact on reducing downstream peaks as this reduced the 
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synchronicity of the component sub-catchments and effectively flattening the outlet 

peak. 

Although mitigating the Lonsdale catchment alone has a greater impact on the outlet Qp 

than combined with Dykes Beck, the Dykes Beck catchment causes flooding locally 

and is therefore in need of mitigation. 

6.5.3 What	next?	
The modelled outcomes are indicative of the likely impacts of LUM and attempts to be 

transparent about the residual uncertainty via clearly stated assumptions. However, the 

model in its current form is too simple to perform detailed LUM change analyses. The 

most important conclusions that can be drawn from this modelling are that LUMC and 

NFM have the greatest chance of impacting short duration, high intensity events, and 

that with increasing duration it becomes more difficult to have a mitigating effect. This 

is due to any additional storage gained being exhausted before the arrival of the main 

peak. 

As the FEH is widely used by consultants and in the establishment of the Catchment 

flood management plans (CFMP) it has been demonstrated as a method that is useful 

for thinking about potential implications. However, it cannot be used to give a 

definitive level of hazard reduction due to the significant uncertainties in the model 

inputs as well a lack of understanding and knowledge of how the local impacts of 

LUMC and NFM manifest at the catchment scale. The tool could be useful for basic 

flood management plans and its performance can be improved by understanding the 

catchment response through instrumentation of the network. 

Land use change and NFM uptake are always carried out in a distributed fashion and it 

is unlikely that the whole of the catchment will be mitigated. The way and location in 

which the distributed changes to runoff are made, and the way in which they 

synchronise with other parts of the catchment, is unlikely to be captured by a lumped 

change to Tp, and certainly unlikely to be as linear as the results shown in this chapter. 

It is not simply the distributed nature of catchment change that cannot be captured with 

this model; it is the physical characteristics such as the soil type and topography across 

the catchment.  
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As the shortcomings of using the FEH method have been identified in this chapter, it is 

important to investigate LUMC modelling in a distributed way in order to account for 

the distributed characteristics of the catchment as well as the distributed nature of 

change. This is the most appropriate way in which known local-scale LUM change 

impacts can be propagated to the larger catchment scale. The analysis has shown that 

the manipulation of travel times (Tp) of the distal parts of the catchments need to be 

captured as they have the most significant impact on catchment outlet Qp. 

The two subsequent chapters will introduce and use a novel model, Juke, that has been 

specifically designed to model LUMC and NFM impacts. It is a spatially distributed 

physically-based model that allows changes to be made to the runoff volume and speed 

(celerity) at the small-scale (50 m x 50 m), in order to investigate how that manifests at 

the larger catchment scale. 
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Chapter 7. Introduction to Juke 

7.1 Introduction 

The aim of this chapter is to demonstrate Juke as a suitable emulator of the FEH 

rainfall-runoff model; this will mean the expert knowledge regarding runoff 

(SPRHOST) and land use impacts that underpin the FEH rainfall-runoff model can be 

used to investigate flood mitigation in a distributed model structure and is consistent 

with the FEH. A series of FEH ‘design hydrographs and hyetographs’ generated using 

the FEH rainfall-runoff model (Chapter 6) are setup within the distributed Juke model. 

Juke – a distributed, GIS-based, rainfall-runoff model is being used, firstly to show it as 

a suitable emulator, consistent with the lumped catchment models shown earlier and 

then to demonstrate the importance of distributed physical information for impact 

modelling. Demonstrating Juke to be a suitable emulator is important as it is also 

consistent with the multi-regression analysis that was used to underpin the FEH 

analysis. 

Juke is shown to be a suitable emulator of the FEH using a simple test of reducing SPR 

for an area of the catchment in order to show that it produces the expected level of 

reduction in discharge (i.e. agrees with the previously discussed expert knowledge). 

Three celerity parameters are sensitivity tested to investigate the impact on the 

hydrograph to understand their potential for use in LUM and NFM scenarios. 

The importance of using a distributed model will also be demonstrated through the use 

of SPRHOST (henceforth referred to as SPR) data for describing the propensity of 

different soils to generate different amounts of runoff. It will be shown that the impact 

of changes made to SPR is non-linear and should be considered. 

There are a number of assumptions made; primarily, that the FEH events can be 

disaggregated and that the spatial pattern of SPR is important. From a physical 

perspective these assumptions seem valid. Whilst there is some uncertainty in the SPR 

values calculated, the study will demonstrate the potential of the new approach to flood 

impact modelling. 
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7.2 Juke parameterisation and testing 

This section sets out the data requirements and approach taken for parameterising and 

calibrating Juke to model a series of different return interval FEH hydrographs, 

generated for a range of storm durations. To calibrate Juke, the required data sets are: 

 Hydrometric data – At least two flow gauges and a rain gauge are required to 

develop scaling relationships regarding the celerity of the flood wave.  

 Topography – A Digital Elevation Model (DEM) for stream network 

delineation and calculating the upstream areas of each grid cell for the scale 

relationships. The Juke modelling for the Great Ayton catchment will use a 

50m grid resolution. 

 Baseflow threshold – The value of 2 m3/s was selected for the Great Ayton 

outlet based on analysis of the flow duration curve. 

 Pattern equations – A set of pattern equations is required to describe how the 

runoff generation element (ɣ) and celerity functions are to be parameterised and 

calculated. 

Many different data sets can be used to create the spatial patterns that describe the 

distributed properties of the catchment. For example soil maps that incorporate the 

HOST information can be provided to identify areas of the catchment that have a 

propensity to generate more runoff than others. HOST is possibly the most widely used 

dataset within hydrological models in the UK, both in industry and in academia 

(Bulygina et al., 2009; CIRIA, 2013). It is based on observations that provides a direct 

link between the rainfall-runoff relationships of soils. They can also be used in the 

development of patterns of change that identify the areas undergoing LUMC. Data sets 

that are useful for the development of patterns include but is not limited to: 

 HOST – To describe the relative runoff contributions of soil types or classes 

 Land cover – National-scale maps can be used to manipulate parameter values 

for certain soil and land use combinations by using them as a mask to which 

changes can be made. 

 Topographic wetness index – Topographic wetness index (TWI) is produced 

during calibration and can be used to identify potentially the wet and dry regions 

of the catchment (Beven and Kirkby, 1979). It is calculated for every cell in the 
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model domain grid, using Equation 7-1, from a combination of the upstream 

area (a) of the cell and the local slope (b).  

 Topographic wetness ranking – Ranking based on the topographic index (1 for 

the wettest cell). 

Equation 7-1 

	
tan

 

7.2.1 FEH	input	data	
Design storm hydrographs have been generated using the FEH rainfall-runoff model for 

Great Ayton and Easby. A number events of different return intervals (100, 50, 25 and 5 

years) and four different storm durations (4, 8 12 and 24 hours) were generated to 

reflect rain storms with different rainfall totals and intensities (Table 7-1), to investigate 

what impact the type of rainfall event has on the magnitude of change in hydrograph 

peaks (Qp) when the model parametrisation is changed to reflect flood mitigation.  

Table 7-1 Summary table of the FEH rainfall event characteristics used to generate the design hydrographs 

Storm  
Flood Return Interval (years) 

100 50 25 5 

Duration      

24 Hr 

Total rain (mm) 118.76 105.34 91.43 62.79 

Max intensity 

(mm/hr) 
13.48 11.96 10.37 7.13 

12 Hr 

Total rain (mm) 90.14 79.32 68.18 45.65 

Max intensity 

(mm/hr) 
20.66 18.17 15.62 10.46 

8 Hr 

Total rain (mm) 78.78 69.99 58.96 38.89 

Max intensity 

(mm/hr) 
27.168 23.79 20.33 13.41 

4Hr 

Total rain (mm) 62.01 53.84 45.57 29.27 

Max intensity 

(mm/hr) 
42.81 37.18 31.46 20.21 
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The generated storms and storm hydrographs differ significantly from the observed 

hyetograph and hydrographs but are being used for emulating the FEH. It can be seen 

from the example storms in Figure 7-1, that the hyetographs are a triangular pulse of 

rainfall which is then routed through a triangular unit-hydrograph, this results in simple 

hydrographs. 

 

Figure 7-1 The 8 hour, 100 and 50 year return interval events for Great Ayton and Easby 

The flood frequency curves associated with different storm durations can be seen in 

Figure 7-2. The critical storm duration, as calculated by the FEH for Great Ayton is 

11.5 hours. The critical storm duration provides a storm profile to give the largest Qp; 

any storm greater in duration than this does not have a significantly greater peak, but 

does have a greater volume leading to a longer recession. 



167 
 

 

Figure 7-2 Flood frequency curves for Great Ayton generated from the flood peaks for different storm 
durations by the FEH rainfall-runoff model 

7.2.2 Runoff	generation	

Uniform	rainfall	runoff	pattern	

This section will investigate the impacts of manipulating the partitioning factor (ɣ) of 

the runoff generation element within JUKE. This parameter is a multiplier applied to 

the rainfall to convert the total rainfall to an effective amount for routing; it is a 

distributed element. When the modelling moves to the detailed scenario testing, the 

model will be given the SPR information to provide the indicative propensities of 

different soils to generate runoff at different rates. However, in the first simple tests it is 

assumed that ɣ is uniform across the catchment, to replicate the lumped structure of the 

FEH rainfall-runoff model and will be calculated as the catchment average rainfall-

runoff ratio required to produce the outlet hydrograph. An analogue for the catchment 

average rainfall runoff ratio is the matching gain (Lgam) calculated by the matching 

element in order to achieve the perfect calibration. The matching element calculates a 

time series of the ratio of distributed modelled flows reaching the matching element and 

the observed discharge at that time. The Lgam series is simply a multiplier applied to 

the integrated, distributed, flows arriving at the matching element. The matching gain 

time series (Lgam) is illustrated in Figure 7-3 against the corresponding hydrograph. 
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Figure 7-3 Illustration of the behaviour of the matching gain (Lgam; red) for an FEH 100 year calibrated 
event (black) 

It is assumed that once the partitioning factor (ɣ) has been calculated to achieve the 

perfect calibration, it can be manipulated to reflect potential changes to runoff volumes; 

the volume of the simulated hydrographs should change simply in relation to the area 

modified and the degree of change in the ɣ parameter values. Given the simplicity of 

these representations, it would be possible to obtain an approximate solution using a 

simple calculation, whereby any reduction or increase in Qp is proportional to the area 

affected and the magnitude of SPR manipulation.  

So for 20 % reduction in ɣ across the whole of the catchment we would expect close to 

a 20 % reduction in Qp. For a 20 % reduction in ɣ over 40 % of the catchment, it would 

be expected approximately an 8 % (0.2 x 0.4) reduction in Qp. 

Table 7-2 Percentage change in Qp for range of design storms modelled with Juke and the FEH 

SPR 

Change 

Juke 

100yr 8hr 

FEH  

100yr 8hr 

Juke 

100yr 

24hr 

FEH  

100yr 

24hr 

Juke  

25yr 8hr 

FEH    

25yr 8hr 

+20 % 18.74 17.84 18.86 16.50 18.24 18.67 

+10 % 9.37 8.92 9.43 8.25 9.12 9.33 

-10 % -9.37 -8.92 -9.43 -8.25 -9.12 -9.32 

-20 % -18.74 -17.84 -18.86 -16.50 -18.24 -18.65 
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The change in Qp is consistent for each of the scenarios shown in Table 7-2. There isn’t 

exactly a 1 % reduction in Qp for a 1 % reduction in SPR, however, it is very close and 

the relationship is consistent with a uniform change in Qp for a change in SPR. This is 

also consistent between Juke and the FEH, although the percentage change in Qp are 

not identical, they are similar in magnitude and the relationships are linear; the 

matching element within Juke is similar to the losses model in the FEH rainfall-runoff 

model. The differences are likely linked to the distributed nature of Juke with the travel 

time effects included. The implication of the routing impacts will be discussed in more 

detail later in this chapter. 

The studies with SPR, although simple, do perform a form of model verification, i.e. the 

model does what is intended, and the sensitivities match what are anticipated. Thus, the 

expert knowledge has been adequately represented. There will be some uncertainty in 

the source SPR data, but perhaps a greater degree of uncertainty is understanding how, 

when this study moves on to scenario modelling, land use change impacts on runoff 

generation.  

Distributed	rainfall	runoff	pattern	–	HOST	

This section will demonstrate the distributed runoff generation element and why it is 

considered important to use distributed models for impact modelling over a lumped 

approach. It has been illustrated that Juke responds in a way that demonstrates it is a 

suitable emulator of the lumped FEH rainfall runoff model. Juke is here provided with 

additional distributed information regarding runoff generation through the incorporation 

of SPR data. The dataset is derived from the 1:250,000 national soil map held by 

Cranfield University and is shown for the Great Ayton catchment in Figure 7-4 below. 
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Figure 7-4 Soils map for Great Ayton showing the HOST attributes (Soil data © Cranfield University (NSRI) 
and for the Controller of HMSO 2015) 

These data do not provide a fixed SPR but provide the model with information 

regarding the relative propensities of different soils to generate varying levels of runoff 

for the same rainfall input. For example, a soil with a SPR of 0.4 will generate twice the 

amount of runoff compared with a soil of 0.2, for the same rainfall (runoff is limited to 

100 % of rainfall). It is a form of distribution function based on the HOST pattern. 

Having the partitioning factor based on SPR makes the manipulation of it to reflect land 

use scenarios transparent. 

Some results for manipulating SPR are shown in Figure 7-5. This figure shows the 

change in Qp for catchment wide changes to the distributed partitioning factor (ɣ) for 

the uniform and SPR calibration of ɣ. As the HOST pattern provides a non-uniform 

distribution of SPR values, when a modification to the pattern values is made as a 

percentage increase or decrease, different parts of the catchment will change by a 

different amount. This leads to a non-linear response in the impact on hydrograph peaks 

(Figure 7-5), as was demonstrated with the FEH-FIM tool in chapter 6.  

The magnitude of Qp changes are not as great for variable SPR version of the ɣ pattern 

as they are for the uniform ɣ (Figure 7-5). The response is also non-linear and different 

for different return interval and duration events, where the response from the uniform ɣ 

pattern is almost the same and linear; this is the same result that was demonstrated from 

the lumped FEH rainfall-runoff model in Chapter 6. The non-linear response in the 

changes to Qp for the smaller changes in ɣ is attributed to the celerity function and will 

be discussed in more detail later in this chapter. The shorter duration events, using the 
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variable SPR pattern, produces a greater increase and decrease to the flood peaks than 

for the longer duration events (Compare the Variable ɣ 24hr and 8hr lines). 

 

Figure 7-5 Results illustrating the changes in Qp when manipulating uniform and distributed patterns of ɣ 

 

7.3 Celerity – flow routing 

This section describes the celerity function and the way in which it is parametrised. The 

parameters within the function are sensitivity tested to demonstrate their potential for 

use within land use change and flood mitigation scenarios. 

Every cell in the catchment has a celerity function, which is assumed to be a function of 

the hydrograph and the cell’s spatial scale (defined as the upstream area of a cell as a 

fraction of the catchment total). A single cell at the head of the catchment has a scale of 

1/N, where N is the number of cells in the catchment, the outlet cell therefore has a 

scale of 1. 

Peak rates of flow for an event tend to increase systematically with scale. Therefore it 

was assumed Equation 7-2 was a valid representation of flow scaling. 

Equation 7-2 

q=baq* 
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Where q is the peak flow at all locations with scale a, and q* is the corresponding 

catchment outlet peak discharge. The value of b is calibrated against the full set of 

peaks in the flow and rainfall records. It is assumed that a value for b can be calculated 

for any scale between the calibrated values using linear interpolation. The calibrated 

values for b can be seen in Table 7-3. 

Table 7-3 Peak scaling parameters 

 a b 

Cell 8.533 x10-4 24.795 

Sub-catchment 0.475 1.046 

Outlet 1 1 

 

The celerity of the flow network is governed by Equation 7-3.There are three 

parameters that can be changed to alter the celerity for a given flow at a given scale. 

The qp parameter is the expected local flow rate (m3/s) that corresponds to the current 

peak discharge at the outlet. Delta (  is associated with the larger scales and higher 

celerity (e.g. flood plains); eta ( ) is associated with small scales and lower celerity 

(e.g. for subsurface drainage) and is the limit for celerity as scale goes to zero; and phi 

(∅) controls how the celerity varies with scale. 

Equation 7-3 

| | 	 	
∅

∅  

The celerity function is plotted for three different scales in Figure 7-6. It shows that as 

scale increases celerity increases, as expected. The plot has three lines representing the 

different scales used in the model calibration. There are many cells at the single scale 

cell whilst there is only a single cell (i.e. with no upstream contributing area) at the 

outlet scale, illustrated in Figure 7-7. Cells between the headwaters and the outlet will 

have celerity relationship somewhere in-between e.g. the sub-catchment scale (Figure 

7-6).  
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Figure 7-6 Celerity function plotted for three different scales, where q* is the flow at a particular scale 

The peak discharge observed at Great Ayton outlet is 16.85m3/s on 30/11/2009, and is 

plotted as a blue triangle in Figure 7-6, with a celerity of 1.92m/s. The calculated peak 

flow, as calculated by Equation 7-2, at the sub-catchment scale is 8.38 m3/s, with a 

celerity of 1.63m/s and plotted as the green triangle in Figure 7-6. The higher celerity’s 

will never be reached at the single pixel scale (50 x 50m, 0.0025 km2); these values will 

only ever be very small and therefore have comparatively low celerity. Relationships of 

this type and form have been observed in the field and are found to asymptote to 

constant velocity with increasing discharge (Beven, 1979; Bates and Pilgrim, 1983). A 

plot of the distribution of the number cells with a given upstream area is provided in 

Figure 7-7. 
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Figure 7-7 Illustration of the number of cells with a given upstream area 

Sensitivity analysis of the parameters that make up the function have shown that  and 

∅	are the most sensitive parameters. The maximum celerity to which the function 

asymptotes is controlled by , and ∅  controls the shape of the function.  is only 

sensitive at the small scale, with increasing scale the impact becomes less but does 

marginally change the peak celerity to which the function asymptotes. 

In the following sections sensitivity tests of the celerity function parameters are 

performed to demonstrate their potential for flood mitigation scenarios in which 

attenuation features are incorporated. The results plotted in each of the following graphs 

are for impact to the flood peaks, for the range of return interval events (100, 50, 25 and 

5 years) with an 8 hour duration. 

Delta	( )	

A decrease in , reduces the celerity, therefore increasing the Tp of the outlet 

hydrograph, as can be seen in Figure 7-8 (a). It also reduces Qp by shifting the mass 

within the hydrograph from the peak and rising limb to the recession (Figure 7-9). 

When only small reductions are made to  the change in Tp is greatest for the smaller 

events, whilst the opposite happens when it is halved.  

(km2) 
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The impact of reducing  for the 8 hour, 100-year event is shown in Figure 7-9. 

Reducing  leads to slower rate of rise towards the peak and slower recession. The  

parameter is identified as that representing the high scales of celerity, e.g. for 

floodplains, and will therefore be used in the modelling of a number of potential LUMC 

scenarios in which floodplains are modified e.g. through riparian woodland. 

Figure 7-8 Impact of manipulating δ  plots; a. Change in Tp (positive t = increase) b. Change in Qp form the
modelled FEH hydrographs 

Figure 7-9 Impact of changing δ on the FEH 100-year, 8 hours duration event
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Phi	(∅)	

The impact of changing ∅ is much the same as for , however, it is an increase in ∅ that 

leads to a reduction in celerity and thus an increase in Tp.  

Figure 7-10 Impact of manipulating ø plots; a. Change in Tp (positive t = increase) b. Change in Qp form the 
modelled FEH hydrographs 

Figure 7-11 Impact of changing ø  on the FEH 100-year, 8 hours duration event 
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Eta	( )	

This parameter is associated with the small scales of celerity and is the minimum limit 

for celerity as the scale tends to zero. This parameter will not be used in the land 

management scenarios as the celerity function (through qp) itself takes care of land 

management scenarios that affect the small scale, such as reduced SPR through 

improved soil condition. A reduction in SPR leads to reduced runoff and therefore 

discharge, which leads to a reduction in celerity as it is a function of discharge. 

Figure 7-12 Impact of manipulating  plots; a. Change in Tp (positive t = increase) b. Change in Qp form 
observed 

Figure 7-13 Impact of changing η on the FEH 100-year, 8 hours duration event
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7.4 Conclusions 

Juke has been shown to be more advanced for impact assessment over the lumped FEH 

rainfall runoff model; primarily the travel time and runoff patterns create nonlinear 

responses in the reduction of Qp. This becomes especially true when spatially 

distributed HOST data is included in the runoff parametrisation. As different areas of 

the catchment generate different volumes of water throughout an event, a percentage 

increase or decrease will have different impacts on different areas of the catchment 

depending on the location of change. 

An interesting and notable characteristic of the Juke model is that as the celerity at any 

scale is a function of discharge, as flow is reduced though a reduction in SPR the 

celerity changes accordingly to match the change in discharge, as is illustrated in Figure 

7-14. 

Figure 7-14 Observed and modified hydrographs with their corresponding outlet celerity plots 

It has been demonstrated that the celerity parameters can be used in the modelling of 

attenuation type features, which physically restrict the movement of water. For this, , 

has been identified as the most appropriate parameter. 

It should be noted that the modelling in this Chapter has been carried out using FEH 

design hydrographs, which have been shown to be different to observed hydrographs 

(Chapter 4), with each storm having the same uniform shape. Observed storms vary in 
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multiple ways, including the spatial and temporal variations in the rainfall. These 

differences mean that the hydrographs have different shapes and rates of response and 

that in turn alters the celerity parameters and therefore the sensitivity.  

The next chapter will use the Juke model that incorporates the distributed HOST data to 

simulate a series of scenarios. These scenarios investigate the potential for LUMC and 

NFM as a means of reducing flood hazard for observed rainfall and runoff records.  
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Chapter 8. Juke: Impact Scenarios 

8.1 Introduction 

This chapter explores the impact, using the Juke hydrological model of different 

management scenarios on flood peaks for the Leven catchment to Great Ayton. A similar 

set of scenarios are performed for the Morland catchment to provide a contrast in terms 

of catchment scale and hydrological response. The changes reflect expert knowledge 

regarding the impacts of land use management change (LUMC) and Natural Flood 

Management (NFM) on flood generation, as embedded within the mathematical structure 

of Juke rainfall runoff model. The use of LUMC and NFM as flood mitigation options 

will be considered, with an investigation of which approaches are most beneficial as well 

as where they are best located in the landscape and what proportion of the catchment is 

likely to need to undergo change to have discernible flood hazard reduction. 

The scenarios aim to make best use of the GIS capabilities embedded in the Juke model, 

in that the scenarios target different land uses through the inclusion of land cover maps. 

Specific sub-catchments can also be targeted to investigate their impact, taking in to 

account the relative travel time and hence contribution to flood formation. Different 

regions of the landscape can be targeted through for example the use of the topographic 

wetness index (TWI), which is calculated by Juke. This can be used to identify the wetter 

and drier parts of the catchment which can be used to identify hillslopes, riparian areas 

and floodplains, and appropriate mitigation options. 

8.2 Flood mitigation scenarios 

This section describes the scenarios to be modelled, why they were chosen and the way 

in which they will be implemented. 

8.2.1 Scenarios		
Table 7-1 provides an overview of the LUMC and NFM scenarios to be investigated. 

They have been designed to consider the portioning of the catchment for flood mitigation 

in two ways: (1) as a network with sub-catchments and (2) as a landscape, with hillslopes, 

riparian area and floodplains. This is with the aim of potentially identifying the most 

effective way of targeting runoff; whether it would be more beneficial to implement a 

lumped approach in certain sub-catchments or a more targeted, landscape based form of 

mitigation. The first, baseline scenario is not a LUMC scenario but the calibration and 
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parameterisation run which represents the ‘as now’ scenario. This scenario will provide 

the starting parameterisation which will be altered to reflect the LUMC impacts being 

modelled. 

The quantity of fast runoff generated, i.e. the effective rainfall that contributes directly to 

the response hydrograph, will be manipulated through changes to the distributed 

partitioning factor (ɣ), as described in Chapter 7, is parameterised to reflect the propensity 

of different soils to generate different amounts of runoff through the SPRHOST pattern. 

The partitioning factor can then be manipulated to account for expert knowledge of land 

use impacts on runoff generation. Any form of mitigation that involves physical 

attenuation of flood waters can be implemented by manipulating the asymptotic limit (δ) 

of the celerity function. This effect was demonstrated in the previous chapter and is 

associated with the larger scale features such as floodplains.  

As the model is distributed, it can be provided with any gridded GIS data deemed useful 

for parameterising the runoff components or specifying the spatial extent of LUMC 

scenarios. Each grid square in the data set is referred to as a cell. These gridded data can 

be used to create the ‘patterns’ within Juke. Patterns reflect the natural landscape 

elements such soil distribution or land cover. Patterns are also used as way of applying 

specific LUMC scenarios. A binary pattern of locations can be used to identify the cells 

that will undergo change and can be established form a number of base GIS layers e.g. 

TWI, land covers or specific sub-catchments. The manipulation of the parameters for the 

cells within it can be changed through a ‘pattern equation.’  

The scale at which mitigation is implemented in proportion to the overall catchment will 

have an important bearing on overall flood reduction impact. As was illustrated in the 

characterisation of the Great Ayton catchment, Chapter 5, the shape and ‘flashiness’ of 

the hydrograph changes as the wave propagates downstream. As discussed in Chapter 3 

(Section 3.7.2), the changes to the hydrograph are caused by both hydrodynamic and 

geomorphological dispersion; hydrodynamic dispersion being the effects of the travel 

path length; geomorphological being the addition of other sub-catchments and how they 

synchronise at confluences and eventually at the outlet (Rinaldo et al., 1991). The 

hydrograph becomes more spread out, with a reduced peak when examined as a 

normalised, specific discharge, and reduced rate of rise and recession.  
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The Morland catchment will be parameterised and have a similar but less extensive series 

of scenarios run to compare the relative modelled impact of LUMC and NFM. The results 

are of interest as the catchments are of different spatial scales with Morland, 12.5 km2 

compared to Great Ayton at 30 km2. As will be discussed below, the Morland peaks are 

generally caused by shorter, higher intensity rainfall events.  

Table 7-1 Overview of LUMC and NFM scenarios 

SCENARIO COMMENT 

Baseline scenario 

(Scenario 0) 

The ‘as now’ scenario, calibration run which parameterise 

the model to represent our best understanding of runoff 

generation and celerity for current land use and cover. 

Degraded catchment 

(100 % degradation) 

(Scenario 1) 

The future ‘worst case’ scenario in which the maximum 

level of soil degradation is applied for comparison. Uses 

the Hollis (Packman et al., 2004) recommendations for 

SPR manipulation.  

Riparian woodland 

(Scenario 2) 

Previous modelling studies have shown the potential for 

significant attenuation of flood flows on floodplains with 

riparian tree planting e.g. Thomas and Nisbet (2007). A 

series of scenarios explore the potential for wet woodland 

through the manipulation of celerity.  

NFM 

(Scenario 3) 

Field evidence and modelling has demonstrated the 

potential for leaky bund features to attenuate flood flows 

at the local scale (Nicholson et al., 2012; Nicholson, 

2014). 

Sub-catchment sensitivity 

(Scenario 4) 

To investigate if individual sub catchments may be more 

suitable for targeting interventions. This could be an 

important consideration for catchment managers with 

limited funds for mitigation. 

Catchment scale effects 

on mitigation impact. 

(Scenario 5) 

This scenario investigates how flood mitigation impacts 

propagate and change with increasing scale.  
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The local impact of riparian woodland and more engineered features is illustrated in 

Figure 7-1. An NFM feature that completely obstructs the flow path, but drains through 

an outlet pipe, potentially offers the greatest attenuation through temporary storage. The 

riparian woodland offers increased floodplain roughness that will reduce flow speed and 

increase flow depth when compared to a grassed, less rough, floodplain. 

 

Figure 7-1 Relative effects of LUM and NFM on flood flows 

Scenarios that require the effect of reduced flow velocity will be performed the 

manipulation of celerity. As has previously been discussed the flood wave celerity does 

not equal the bulk instream velocity of the water, it is the speed of the pressure wave as 

it propagates through system and cannot be measured in-situ at a single site. The 

Manning’s equations provide an approximation for converting celerity to velocity and 

vice-versa (Equation 7-1). The relationship is linear, with celerity calculated using 

Manning’s equation as being two-thirds greater than velocity; therefore, halving the 

celerity theoretically halves the velocity. As stated, the relationship is an approximation 

as they represent different things; celerity is the speed of the pressure wave, whilst the 

velocity represents the speed of water particles as they move along the channel reach 

(Equation 7-1). 
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Equation 7-1 

	
5
3
	  

The results will concentrate on the scenario impacts for events greater than the median 

annual flood, defined as QMED in the FEH and is taken to be the 2 year return interval 

flow from the Flood Frequency Curve (FFC), which is 11.4 m3/s as calculated in Chapter 

5. The 2 year interval flood is also widely accepted as being indicative of the bank full 

flow, therefore important for identifying out of bank flows (Dunne and Leopold, 1978). 

Using this threshold, 4 peaks are selected within the modelled period as list in Table 7-2; 

the results from the rainfall event characterisation (Chapter 5, Figure 5-12) are also listed. 

Table 7-2 Hydrological characteristics of the four largest flood peaks modelled to Great Ayton 

Rank 
Qp 

(m3/s) 
Date 

Qp 

Return 

interval 

(years) 

Total 

event 

rain 

(mm) 

Mean 

intensity 

(mm/hr)

Max 

intensity 

(mm/hr) 

Duration 

(hours) 

1 16.86 29/11/2009 6 61.40 1.95 14.40 31.50 

2 15.23 27/11/2012 5 76.80 1.15 6.40 66.50 

3 12.44 16/01/2010 4 16.40 1.53 6.40 10.75 

4 11.54 17/07/2009 3 79.00 1.87 25.60 42.25 

 

The three largest events are winter events, with a single summer event also selected 

(Table 7-2). The summer event has the greatest rainfall total as well as the greatest 

maximum storm intensity embedded within, typical of convective summer events. All 

four events have comparatively high mean rainfall intensity when compared to the 

analysis in Figure 5-12, Chapter 5. The second largest peak has the greatest rainfall but 

is the longest duration at 76 hours (over 3 days of continuous rain) which is over 24 hours 

longer than any other event. The third largest event in January 2010, is the shortest 

duration but comes after a prolonged wet period as can be seen in Figure 7-2. 
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Figure 7-2 Great Ayton observed hydrograph, highlighting the four largest modelled events 

8.3 Great Ayton scenario results 

8.3.1 Scenario	0	–	Baseline	Parameterisation	

To parameterise both the celerity and partitioning factor (ɣ), Juke requires observed time 

series for flow and rainfall and physical characteristics from a DEM; the distributed 

runoff dynamics (i.e. ɣ) are provided by the HOST classification.  

The routing of rainfall to the outlet is controlled by the hillslope bucket (local storage), 

which is controlled by tix (linear out flow parameter) and the channel routing (celerity; 

Chapter 3, Figure 3 14). If the hillslope is too sluggish, the routing parameters will 

compensate, leading to unrealistically high values (and vice versa). Also the effects will 

be seen in the matching element, through the time series of Lgam. Lgam will have high 

values at the onset of storms to compensate for the fact there is insufficient runoff being 

generated. 

The model was calibrated for a number of different tix values assessing whether the 

routing celerity parameters and the matching gain (Lgam), analogous for the catchment 

average rainfall runoff ratio, were physically reasonable. Physically reasonable was 

deemed as the outlet celerity asymptotes towards a value between 1.5 and 2 m/s, which 

is based on the literature, e.g. Beven et al. (1988) and the peak to peak analysis in Chapter 

5 and the lumped catchment, Lgam, not reaching 1, i.e. 100 % runoff too readily. There 

is interplay between tix and celerity as the higher the tix value the greater the maximum 

celerity. Increasing Tix dampens the response of the storage outflow. 
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For the Great Ayton catchment a tix value of 8 hours was found to be suitable. This 

provided the celerity parameters listed in Table 7-3. Delta (  is associated with the large 

scales and celerity (e.g. floodplains); eta ( ) is associated with small scales and celerity 

(e.g. for subsurface drainage) and is the limit for celerity as scale goes to the single cell; 

and phi (∅) controls how the celerity varies with scale, i.e. the shape of the relationship.  

Table 7-3 Celerity parameters for the Leven to Great Ayton 

Delta ( Phi (∅) Eta ( )

2.017 2.191 0.026 

 

As was discussed in Chapter 7, the celerity function is scale dependant, with the upstream 

area of an individual cell being a parameter in the calculation of the celerity (Chapter 7, 

Equation 7-2). The maximum celerity, based on the largest event in the modelled period, 

for three different spatial scales, full catchment, sub-catchment and individual cell are 

plotted as triangles in Figure 7-7 (originally shown in Chapter 7, Figure 7-7). It is likely 

that the values plotted represent the largest that will be experienced due to the asymptotic 

nature of the relationship; the red triangle can therefore represents the effective speed of 

sheet wash on a hillslope. 

The matching gain series (Lgam) is plotted in Figure 7-3 and illustrates that it behaves in 

a natural way, increasing as the event progresses, reflecting the increased level of 

saturation. The matching element calculates Lgam to create the perfect calibration and it 

is clear from Figure 7-3 that element is not simply a black box that cancels out noise in 

the modelled output, as the trace is smooth and reflects the rainfall input. 

The runoff generation element is distributed with each cell having its own value (ɣ). The 

ɣ values can be based on known information such as the different rates at which different 

soils tend to generate runoff, i.e. the combination of soil maps and the HOST 

classification system. The ɣ value is multiplier applied to the rainfall, it can be best 

thought of as a partitioning factor applied to the rainfall and is calculated so that the 

catchment average is 1 (Chapter 3, Equation 3-4). 
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Figure 7-3 Hydrograph for a large event in November 2012 and the corresponding Lgam  

Implementation	

The model was setup with a 50 metre grid resolution running with a data resolution of 15 

minutes. The DEM resolution of 50 meter was chosen as it gave the best delineation of 

the river network and sub-catchments, compared to higher resolution data sets (5 m, 10 

m) during GIS analysis. It was also identified by O’Connell et al. (2007) as an appropriate 

scale for tracking the development of floods from source to point of impact. The DEM 

data provided by Edina and the National Soil Resource Institute (NSRI), NATMAP 

vector, data at a scale of 1:250,000 for the soil and SPRHOST classification. 

8.3.2 Scenario	1	–	Degraded	catchment	
This is the “worst case” scenario, where there is severe degradation to mineral soils from 

intense agriculture. The parameterisation of SPR is based upon the expert knowledge 

provide by Packman et al. (2004). 

Details	and	Evidence	

As described in the Chapter 2, recommendations were made in FD2114 regarding the 

reclassification of HOST classes to an alternate class to reflect potential future worst case 

scenario of degradation. A map of the HOST classifications was shown in chapter 7 and 

the ‘current’ (pre degradation) and ‘alternate’ (post degradation) SPRs for Great Ayton 

are provided in Table 7-4. This scenario represents a future in which all environmental 
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considerations are ignored to maximise the short term economic potential of the land 

through greater stocking densities of animals and year round cropping. The scenario 

involves an increase of 7 % to SPR, fast runoff, for two HOST classes that account for 

61 % of the catchment area (Figure 7-4).  

Table 7-4 HOST classification and alternate SPRs as recommended by (Packman et al., 2004) 

HOST Class Fractional area 
(‐) 

SPR (%) 
Alternate SPR 

(%) 
ΔSPR (%) 

5  0.16  15  22  +7 

15  0.13  48  48  ‐ 

20  0.19  60  60  ‐ 

24  0.45  40  47  +7 

26  0.08  59  59  ‐ 

Weighted catchment SPR 42.76  47.03  +4.27 

 

Overview	of	scenario	implementation	

The partitioning function (ɣ) can be changed by is manipulating the pattern equation as 

shown in Equation 7-2. The SPR layer is manipulated using values from Table 7-4in 

Equation 7-2 (where n is the total number of cells). 

Equation 7-2 

ɣ
∆

1 	∑
 

This scenario represents a change in management; therefore, there is no explicit change 

in land cover that requires a manipulation of celerity to be calculated; if overland 

resistance was envisaged as changing this could be implemented by manipulating the 

celerity parameters. Celerity is not explicitly changed in the scenario, but celerity is a 

function of runoff, hence increased runoff will implicitly lead to greater celerity. It is 

clear in Figure 7-7 that as discharge decreases the celerity does likewise; initially the 

changes will only be small for the largest event due to the asymptotic relationship but 

significant reductions in flow could potentially impact significantly on celerity.  

The areas where HOST will change are illustrated in grey in Figure 7-4 and closely 

correspond to the areas in which superficial glacial deposits are found (Chapter 5, Figure 
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5-4). These areas are located in the valley sides and bottoms and coincide with the mineral 

soils, as was discussed in the characterisations. The organic peat soils, which have 

relatively high SPR (60 %), are not envisaged as generating any extra fast runoff through 

degradation due to the fact that during the largest events these soils will be saturated and 

generating close to 100 % runoff (Holden and Burt, 2003). 

 

Figure 7-4 Map of the areas where SPRs are changed to an alternate, grey, and remain the same, black 

Results	

The results of the degradation scenario are shown in Figure 7-5. The figure shows the 

difference between the observed peaks and those modelled with the alternate HOSTSPR 

values.  

 

Figure 7-5 Result for worst-case scenario showing change in peak magnitude 
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In Figure 7-5 the general trend is that there is a greater percentage change in Qp for the 

larger flood peaks. However, the third largest event does not fit this trend; this is the 

shortest duration (Table 7-2), i.e. the flashiest. It is clear that the peak has increased as 

has the rate of recession (Figure 7-6). 

 

Figure 7-6 Plots of the observed versus the modelled hydrograph for scenario 1 for the rank 3 event 

 

8.3.3 Scenario	2	‐	Riparian	woodland	
This scenario investigates the potential for flood peak reduction through woodland 

planting in the riparian areas of targeted sub-catchments. 

Details	and	Evidence	

The establishment of woodland on floodplains and riparian areas can be beneficial for 

mitigating flood flows in a number of ways. Firstly, infiltration rates are greater under 

wooded areas than pasture on the same soil type, as observed on hill slopes in the 

Pontbren research catchment (Wheater et al., 2008; Marshall et al., 2009). Secondly, two 

UK based modelling projects have shown the potential for attenuating flood waves using 

riparian woodland and wooden debris dams, in contrasting catchments as described 

below. 
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Thomas and Nisbet (2007) used a coupled 1D-2D hydraulic model to investigate the 

impact of the addition of riparian woodland to a 2.2 km reach by increasing the floodplain 

roughness of the adjacent banks. The 2.2 km reach was approximately 300 m upstream 

of the catchment outlet at Somerton on the River Cary, a tributary of the River Parrett, 

with an upstream catchment area of 82.4 km2. The gradient of the channel is very low 

with a drop of 1 m along the 2.2 km reach. The celerity along the reach is low when 

compared to the values obtained for the analysis of Great Ayton; the unmitigated model 

run had a celerity of 0.204 m/s (Qp travel time of 3 hours along the reach) for the 1 in 

100 year event of 15 m3/s; where the addition of the 2.2 km of riparian woodland reduced 

the celerity to 0.114 m/s, a reduction of 44 % (Qp travel time of 5 hours 20 minutes along 

the reach; Thomas and Nisbet (2007)). When compared to the Great Ayton celerity 

function, Figure 7-7, these celerity values are very low and would be expected at much 

smaller spatial scales. 

Modelling carried out to identifying the most suitable locations for riparian woodland 

and wooden debris dams on Pickering Beck (69 km2), had mixed results (Odoni and Lane, 

2010). The modelling suggested that features in certain locations may exacerbate the 

flooding problem due to the synchronicity of the catchment flows as a whole. The 

modelling results also suggest that mitigating on the main stream had greater impact, 

reducing the flood peak by 9.5 %, compared to 3.4 % when only mitigating on the than 

smaller streams (Odoni and Lane, 2010). No return interval was provided for the event 

being modelled, but it did cause flooding to properties. 

A methodology proposed for identifying potential wet woodland locations was developed 

by the Forest Habitat Networks Scotland (FHNS; (Moseley and Ray, 2007). The 

methodology proposes identifying areas that have TWI that ranks them in the wettest 50 

% and have a local slope of less than 0.5°. The TWI is calculated through a GIS analysis 

that includes the upstream area and the local slope of a cell (Beven and Kirkby, 1979). 

Cells with larger upstream areas and lower local slope have higher wetness index values. 

These higher values tend to coincide with valley bottoms, i.e. riparian areas. 

Overview	of	implementation	

For this scenario potential wet woodland areas were identified through a number of GIS 

layers. The TWI is used to identify the wettest 25 % of the catchment; the FHNS 

methodology described above selects the wettest 50 % of cells, however, this identified 
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too many cells away from the channel. As local slope is accounted for within the 

calculation of the TWI, it was not additionally factored in here. It was decided that the 

riparian woodland would only be placed in sub-catchments and not on or adjacent to the 

main channel due to the increasing stream power and energy that may potentially provide 

an increased risk of trees being uprooted and transported downstream where they may 

increase flood hazard due to being trapped behind structures such as culverts or bridges. 

Only cells with an upstream area of less than 4 km2 were included. A binary pattern was 

created with a 1 for areas deemed suitable and 0 for areas not.  

The binary pattern layer can then be used as multiplier for reducing celerity through the 

upper asymptotic limit (δ) for all upstream cells. In Chapter 7, the asymptotic limit of 

celerity (δ) was described as the celerity parameter associated with larger scales and can 

be manipulated to represent the impact of attenuation on flood mitigation features on the 

floodplains. The impact of reducing δ by half on the celerity function, at three spatial 

scales is shown in Figure 7-7, the blue lines represent the celerity functions at the outlet 

and the triangles represent the maximum modelled celerity achieved in the largest event 

as described in Chapter 7. The broken blue line effectively represents the celerity function 

for the outlet if the whole of the catchment were planted with trees and it is assumed that 

all regions were impacted equally. The green line in Figure 7-7 represents the celerity 

function for the Easby sub-catchment with an upstream area of 15 km2, 50 % of the total 

catchment area; within this catchment lie the Lonsdale and Leven Vale sub-catchments 

which will be affected in this scenario. The celerity functions for the Lonsdale and Leven 

vale sub-catchments lie somewhere between the green and red lines. 
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Figure 7-7 The effect of reducing δ by half on the celerity function; broken line modified 

Versions	of	scenario	2	

Due to uncertainty in the hydrological and hydraulic impacts of riparian woodland a 

number of versions of the scenario were conducted to explore the potential outcomes. 

These include: 

2.1 Use the modelling outcomes of Thomas and Nisbet (2007) and reduce the 

asymptotic upper limit (δ) of celerity by 50 % and also model a 25 % reduction 

as personal judgement being that the likely impact will lie between 50 and 25 %. 

2.2 A scenario that includes an increase in infiltration expected under woodland, 

represented as a 20 % reduction in SPR and with a reduction of 50 % to upper 

asymptotic upper limit (δ) of celerity for all cells that flow through the riparian 

area. 

2.3 A hypothetical extreme scenario in which the asymptotic upper limit of 

celerity (δ) is reduced by 50 and 75 % for all cells to represent riparian woodland 

on the wettest 25 % of the catchment as identified from the TWI including the 

main channel. 

Pattern	

The pattern shown in Figure 7-8 is derived using the following GIS rules: 
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GIS	rule	base	for	establishing	mitigation	pattern	

1. Select the wettest 25 % of cells as identified by the TWI 

2. From 1 select cells with an upstream area of 4 km2 or less and that lie within one 

of four sub-catchments; Lonsdale, Leven vale, Pilly Hall or Dyke Beck (Figure 

7-16). 

The grey areas within Figure 7-8 are those identified as being suitable for wet woodland 

and have a value of 1, whilst the black, unsuitable, areas have a value of 0. This means 

the pattern can be applied as a multiplier in a pattern equation to modify only the areas 

valued 1. The total area identified as suitable is 3.56 km2, approximately 12 % of the 

catchment. 

 

Figure 7-8 Pattern showing areas suitable for wet woodland identified in grey 

Results	

The results for the two wet woodland scenarios are shown in Figure 7-9, the red diamonds 

represent the results for the 25 % reduction in the asymptotic limit of celerity (δ) 

parameter so the upper celerity for flood flows is equivalent to 75 % of the original. The 

blue diamonds are for the 50 % reduction results. There is a higher increase in Tp for the 

large flood peaks, i.e. the larger flows are being slowed the most. 
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Figure 7-9 Riparian woodland results; change in Tp and % change in Qp 

The changes in Tp are not as high as those presented by Thomas and Nisbet (2007); 

however the two catchments are very different with the River Parrett having very low 

relief. The modelled impact of celerity reducing by 50 % was estimated immediately after 

the stand of trees, where in this study the mitigation is more dispersed and there is a 

sizeable amount of catchment downstream that has not been mitigated. 

The model outputs are shown against the observed flow hydrographs for two versions of 

the scenario in Figure 7-10 for an event in November 2009. The flows have been 

attenuated with the hydrograph rate of rise having reduced along with the flood peaks 

and the reduced rate of recession. 
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Figure 7-10 Hydrographs of wet woodland having beneficial impact on the downstream hydrograph 

The fourth largest event modelled was negatively impacted (i.e. the peak increased) and 

is plotted in Figure 7-11 to show the effect on the hydrograph. The rate of rise of the 

hydrograph has been decreased in both scenarios; however, the mass has not been moved 

to the recession as would be hoped, some now coincides with the peak causing an increase 

in Qp. 

 

Figure 7-11 Hydrographs of riparian woodland having a negative impact on the downstream hydrograph 

It has been noted that the soil beneath trees have an increased infiltration rate when 

compared to adjacent pasture (Wheater et al., 2008; Marshall et al., 2014). An increase 

in infiltartion will reduce the catchment SPR, by how much is unclear however, as we 
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have no field evidence. A scenario has been modelled in which the celerity has been 

reduced by 50 % for all cells within and upstream of the wet woodland and the SPR has 

been reduced by 20 % for the cells within the wet woodland pattern. The results for the 

effect on Qp are shown in Figure 7-12, the modelled results show that the 20 % reduction 

in SPR has provided a additional 0.5-1 % of Qp reduction. 

 

Figure 7-12 Riparian woodland scenarios; δ reduced by 50 %, * indicates SPR reduced by 20 %  

The two examples provided in the evidence for this scenario implemented riparian 

woodland at the larger scale main rivers and therefore impacting larger flows originating 

from a considerably larger area of the catchment. A further scenario was run in which the 

wettest 25 % of cells in the Great Ayton catchment, including the main channel, were 

identified and all upstream cells impacted by running both the 25 % and 50 % reduction 

in the asymptotic limit of celerity (δ) scenarios. The results are shown in Figure 7-13 and 

are plotted against the original scenario in which only the sub-catchments were impacted 

(triangles; 25 % δ reduction, red and 50 % δ reduction blue).  

The fourth largest event, in Figure 7-13, is made worse in both versions of the scenario. 

This event is comparatively long; it has the greatest volume of rainfall as well as having 

a very high intensity peak embedded within it. Due to length of the event and the 

significant rainfall intensity within the event there are likely complicated timing issues 

which increase the flood peak. Generally, the results suggest that this form of mitigation 

works best for higher intensity ‘flashier’ events.  
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Figure 7-13 Riparian woodland results for sub catchment mitigation (Scenario 2.1; triangles) and main 
channel sub catchment mitigation (Scenario 2.3; circle; *)  

8.3.4 Scenario	3	–	NFM	
This scenario investigates the potential for flood peak reduction through significant 

attenuation of flood flows through the implementation of RAF features. 

Details	and	Evidence	

To reflect significant attenuation of flows behind RAFs the asymptotic limit of celerity 

(δ) is reduced by 75 % for cells within and upstream of the NFM feature locations. No 

transparent way of implementing the observed attenuation from the field monitoring 

studies discussed in Chapter 2; the rationale for this scenario is that RAF features offer 

the most considerable form of attenuation as illustrated in Figure 7-1; a sensitivity 

approach is therefore adopted to reduce celerity by a greater amount than in Scenario 2. 

As the routing in Juke is directly from the cell to the outlet, all upstream cells must be 

impacted. 

Pattern	

The pattern used is the same as that for Scenario 2 in which the wettest 25 % of cells 

within the target sub-catchments were identified from the TWI (Figure 7-8). This pattern 

is being used as RAFs are typically constructed in headwater catchments where the 

energy regime of flows is typically smaller than the main channel at larger scales; the 

features are therefore less likely to be washed away. 
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Results	

The resultant modelled hydrographs are shown in Figure 7-14 for the same December 

2009 events shown in Figure 7-11. Significantly more mass is removed from the rising 

limb in this scenario and redistributed to the recession. However, the reduction of celerity 

to this magnitude is not thought physically reasonable without a significant form of 

storage being introduced. 

 

Figure 7-14 Hydrographs of NFM scenario where δ is reduced by 75 % 

The results for the effects on timing and magnitude on the flood peaks for scenario 3 are 

shown in Figure 7-15. There is a significant increase in the time to peak for most events, 

with all events having shifted by at least 15 minutes. The peak discharges have also been 

significantly impacted, however, two of the smaller events see an increase in Qp. An 

interesting observation for the two events in which Qp increases is that reducing the 

asymptotic limit of celerity (δ) by 75 % causes a significant increase in Qp for one of the 

events but has a reduced impact for the other when compared to the 50 % reduction 

scenario. These different responses highlight the complexity of timing and synchronicity 

in catchments.  
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Figure 7-15 Wet woodland scenarios; δ reduced by 50 % and 75 % 

8.3.5 Scenario	4	‐	Sub	catchment	suitability	
This scenario will take a sensitivity analysis approach to investigate the impact of 

changing runoff production and celerity rates of different sub catchments. The aim of this 

scenario is to determine if certain sub catchments may be better suited to mitigation due 

local factors such as soil and travel distance to the outlet.  

Details	

This scenario is being considered in attempt to identify whether certain sub-catchments 

may have a greater impact on the reduction of the outlet Qp due to the local HOST classes 

as well as the relative travel time and superposition of flows. It was demonstrated in 

chapter 7 with the FIM tool that attenuating the flows of sub-catchments with the shortest 

routing distance to the outlet may exacerbate flooding through delaying the flows and 

increasing synchronicity. The FIM tool was very simple in that the contributions of each 

sub-catchment were added together through superposition to produce the outlet 

hydrograph; any change to the timing of flows through manipulation of the time-to-peak 

(Tp) caused the translation of the hydrograph by the same amount, not just a gradual 

response as would be expected in a natural system with added attenuation. Reproducing 

this scenario with Juke should prove more robust as the manipulation of the wave speed 

through celerity will have a more gradual impact, becoming larger as the flow increases, 

as illustrated in Figure 7-7. Juke is also distributed so the effects have to be routed and 

combined with flows from other parts of the catchment not undergoing mitigation.  
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No particular mitigation options are offered as suitable for achieving the desired runoff 

reductions and increases in Tp. These simulations can be seen as a form of spatial 

sensitivity analysis, with the potential to identify where mitigation may be most 

beneficial, for example if given a limited financial resource. 

Implementation	

For four sub-catchments (Leven Vale, Lonsdale, Pilly Hall and Dikes Beck; Figure 7-16) 

an SPR reduction of 20 % was applied as a 20 % reduction to the baseline ɣ parameter 

and a reduction of the asymptotic limit of the celerity function (δ) of 50 %. These 

magnitudes of reduction to runoff and celerity may potentially be achieved by a 

combination of land use management, such as reduced stocking densities, and the 

construction of RAFs. To ensure that any differences modelled between the sub-

catchments are due to travel distance and not the total of the mitigated area, a rule will be 

applied that ~ 3 km2, 10 % of the total catchment, will be modified. 

Patterns	

	GIS	rule	base	for	establishing	mitigation	pattern	

 To be included in the pattern, cells must lie within one of the respective sub 

catchments (Leven Vale, Lonsdale, Pilly Hall and Dikes Beck. 

 Cells included in the pattern must drain less than 1200 upstream cells (3 km2, 

determined by the smallest catchment Dyke Beck; 400 cells = 1 km2) to ensure 

that mitigated areas are equal. 
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(a) Lonsdale (1161 Cells) 

  

(b) Leven Vale (1092 Cells) 

 

(c) Pilly Hall (1179 Cells) 

 

(d) Dyke Beck (1173 Cells) 

Figure 7-16 Patterns used in Scenario 4; Grey indicate cells within the pattern, Black are not. 

Results	

The modelling indicates that generally the changes made to the two catchments with 

longest travel distance but also higher SPR soils, Lonsdale and Leven Vale, marginally 

have the greatest impacts in reducing Qp, Figure 7-17. Although the greatest percentage 

Qp reduction is seen for the shortest duration event (Rank 3) in which mitigating the 

catchment with the shortest travel distance to the outlet. Only 10 % of the catchment has 

been modelled as undergoing change in each version of the scenario, so a significant area 

of the catchment remains unchanged. It is the relative timing of the contributions from 

the changed and unchanged parts of the catchment combined with the temporal patterns 

of the rain, embedded within the disparate contributions that produce the scatter. 
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Figure 7-17 Sub-catchment investigation results; change in Tp and percentage Qp change 

The Rank 3 (Table 7-2) event which has the greatest modelled percentage reduction in 

Qp is shown in Figure 7-18. All four versions of the scenario reduce Qp to some extent. 

The red hydrograph in Figure 7-18 represents the scenario in which the Dikes Beck sub-

catchment is mitigated; Dikes Beck is the sub catchment with the shortest travel distance 

to the outlet (Figure 7-16). Mitigating the Dikes Beck sub catchment has the greatest 

impact on the rate of rise as the delay in its contribution has the most significant effect in 

the synchronicity of the flows.  

 

Figure 7-18 Event with the greatest reduction in Qp for each version of the scenario 
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To understand the relative impact of the SPR and celerity manipulations, Juke has been 

re-run twice carrying out the respective manipulations to celerity and then SPR in turn 

(Figure 7-19). The overall reductions in Qp are greatest for the SPR scenario and all peaks 

are reduced. Where affecting the timing and synchronicity through the celerity is again 

shown to make the fourth largest event worse.  

 

Figure 7-19 Results of changing SPR and Celerity independently and together (both) for Lonsdale 

8.3.6 Scenario	5	–	Scale	effects	
The aim of this scenario is to understand how changes made at one scale propagate 

through the system and manifest with increasing catchment scale. 

Details	

For this scenario two of the sub-catchments, Lonsdale and Leven Vale, both upstream of 

Easby have had their SPR data reduced by 10 % and 20 %, for both of the catchments 

together and separately. It possible to get model results for Easby, the nested flow location 

provided for the parameterisation of the celerity function. Easby represents nearly half 

the total catchment area to the outlet at Great Ayton. The areas of the component 

catchments to Great Ayton are provided in Table 7-5; the areas listed in are as they are 

delineated in Juke and differ slightly to those described in the characterisation chapter 

due to the resolution of the DEM from which they are derived. The ‘Proportion of 

catchment to’ column in Table 7-5 is the proportion of the total catchment area 

undergoing change at those respective locations. 
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Table 7-5 Areas of the component catchments and the proportion of total catchment they represent 

undergoing modification 

 
Area (km2) 

Proportion of catchment to 
Easby Gt. Ayton 

Leven vale 4.8 0.34 0.16 
Lonsdale 3.9 0.28 0.13 
Leven and 
Lonsdale 

8.7 0.58 0.30 

Easby 13.9 1.00 0.47 
Gt. Ayton 29.3 - 1.00 

Implementation	

A total of six results are produced from this scenario, two for each of the sub-catchments 

individually and then together, with SPR reductions of 10 and 20 %. 

Pattern	

Three patterns to be used, one for each of the sub catchments individually and a third that 

contains both the Lonsdale and Leven Vale catchments together. 

GIS	rule	base	for	establishing	mitigation	pattern	

 Mitigate areas that lie in either or both of the sub-catchments, Leven Vale and 

Lonsdale, depending on the scenario being run (Figure 7-20) 

  

Figure 7-20 Pattern of the two sub-catchments being used in this scenario, Leven Vale (green) and Lonsdale 
(grey) 
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Results	

The results showing the impact on Qp and the timing of the peak to both Easby and Great 

Ayton, where both sub-catchments are modified by a reduction in SPR by 10 and 20 % 

are shown in Figure 7-21. There is clear difference in the level of impact distinguished 

with less percentage Qp reduction at the outlet where there is a greater proportion of 

unmitigated flows. 

 

Figure 7-21 Impact of reducing SPR in both Leven Vale and Lonsdale at Easby and Great Ayton 

The average percentage reduction for each of the six scenarios is plotted in Figure 7-22, 

against the proportion of the catchment having undergone mitigation. The different 

colours in Figure 7-22 represent the level of mitigation implemented, red being a 20 % 

reduction in SPR and blue 10 %; the broken line represents the impact as measured at 

Great Ayton and the solid line is the impact measured at Easby. It is clear from these 

results that, as would be expected, as the amount of mitigation increases both as a 

proportion of catchment area and SPR reduction, the impact increases. The interesting 

observation to note in Figure 7-22 is where the scale of the mitigation as a proportion of 

total catchment area overlap, roughly 0.3, they do not intersect; this again is due to the 

geomorphological dispersion effect, where the impact is greatest, closest to the mitigation 

area.  
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Figure 7-22 Impact as the average percentage reduction on local Qp, at Great Ayton (broken line) and Easby 
(Solid line) for the two SPR reduction scenarios of 10 % (blue) and 20 % (red) 

8.3.7 Morland	
Two scenarios are modelled for the Morland catchment to investigate the potential impact 

of the mitigation work being carried out under the DTC project and secondly a riparian 

woodland scenario for comparison with Great Ayton. 

Scenarios	

Table 7-6 Scenarios modelled for Morland 

SCENARIO COMMENT 

NFM in the mitigation 

catchment 

(Scenario 1) 

Identify the channel and riparian areas in the mitigation 

catchment using the TWI. For cells that flow those 

identified reduce the asymptotic limit of celerity by 75 % 

to reflect a series of RAFs designed for the attenuation of 

flood flows and the removal sediment. 

Riparian woodland 

throughout the catchment 

(Scenario 2) 

Identify the channel and riparian areas using the TWI. For 

cells that flow those identified reduce the asymptotic limit 

of celerity by 50 %. These results can be compared to the 

same scenario for the Great Ayton catchment. 

 

The largest four events in Morland each have return interval of between 3 to 4 years and 

will be used for comparison to the Great Ayton peaks (Table 7-7). Generally the Morland 
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rainfall events are of a higher mean intensity (1.9 mm/hr compared to 1.6 mm/hr for Great 

Ayton) and shorter in duration on average 17 hours compared to 37 hours at Great Ayton. 

The contrasting rainfall characteristics for the largest flood peaks in each of the 

catchments provide a useful comparison of mitigation options. 

Table 7-7 Rainfall characteristic of the four largest flood peaks modelled to Morland 

Rank 
Qp 

(m3/s) 
Date 

Total rain 

(mm) 

Mean 

intensity 

(mm/hr) 

Max 

intensity 

(mm/hr) 

Duration 

(hours) 

1 8.37 22/11/2012 40.03 1.70 15.89 23.00 

2 8.04 28/06/2012 27.63 2.35 38.73 11.00 

3 7.54 20/12/2013 34.93 1.72 7.29 20.00 

4 7.38 23/12/2013 29.15 1.98 8.08 14.00 

Pattern	

Two patterns are used, one for each of the scenarios. The first pattern identifies the 

channel and riparian areas within the mitigation sub-catchment using the wettest 25 % of 

cells from the TWI. 

GIS	rule	base	for	establishing	mitigation	pattern	

Scenario 1: Cells selected if they are within the wettest 25 % of cells as identified by 

the TWI and in the mitigation catchment. 

Scenario 2:  Cells selected if they are within the wettest 25 % of the catchment as 

identified from the TWI. 
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Scenario 1 
 

Scenario 2 

Figure 7-23 Patterns used for the Morland scenarios (Scenario 1: Grey area in the mitigation pattern, black 

and green not in the pattern, green indicates the mitigation catchment. Scenario 2: Grey area in the mitigation 

pattern, black excluded) 

Results	‐	Scenario	1	

The impact on Qp from this scenario is minimal and the signal is mixed, as shown in 

Figure 7-24  

 

Figure 7-24 Morland Scenario 1 results showing change to Tp and Qp 
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For the fourth ranked event the Tp appears to have been reduced, which is 

counterintuitive as reducing celerity would be expected to increase the Tp. However, on 

examining the peak it is evident that the result is due to noise within the hydrograph peak, 

as shown in Figure 7-25. The peak has been reduced by a greater amount than the point 

previous in the hydrograph so that the earlier point is larger in the mitigated hydrograph, 

which causes the reduction in Tp. The hydrograph shows that the mitigation scenario is 

doing as is hoped by removing mass from the peak and rising limb and displacing it to 

the recession 

 

Figure 7-25 Noisy in the hydrograph peak (Rank 4 event) makes it appear the that Tp has been reduced under 
mitigation 

Although impact is minimal in Figure 7-26, the peak has been increased, with mass being 

move from the rising limb but now coinciding with the peak to increase it marginally. 
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Figure 7-26 Increased Qp due to attenuation of flows but cause coincidence with the peak (Rank 2) 

Results	‐	Scenario	2	

The results for the modelled impact of riparian woodland uptake in both the Morland and 

Great Ayton catchments are similar, as illustrated in Figure 7-27. There is mixed impact 

modelled in both catchments with some improvement as well as some increases of the 

peaks.  

 

Figure 7-27 Impact on flood peaks for the Morland and Great Ayton catchments with catchment wide 
riparian woodland implemented 
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8.4 Measurement errors and model parametrisation uncertainty on Qp 

impacts 

As an investigation in to the effects of data measurement errors and model 

parametrisation uncertainty on Qp impacts, a series of scenarios have been run for the 

Morland catchment. 

Uncertainty	in	rating	curves	

Two alternative rating curves have been calibrated using the VARE model, with the 

observed rainfall increased and decreased by 10 %, respectively. Note that a given error 

in the rainfall series must be applied to both Juke and the VARE model, which calibrates 

a rating curve constrained by the mass balance given by the resultant flow series, rainfall 

and evaporation. 

The changes in runoff and evaporation for a +/- 10 % change in rainfall calculated using 

VARE are shown in Table 7-8, noting that it is assumed that the change in catchment 

storage over the 2 year period is zero (i.e. rainfall – evaporation – runoff = 0). Due to the 

effects of changes in rainfall on evaporation (calculated by VARE using the FAO Penman 

equation) a +/- 10 % change in rainfall is not associated with a +/- 10 % change in runoff. 

For example, during the winter period when evaporation is energy limited it is not 

expected that increased rainfall will be associated with increased evaporation losses.   

Table 7-8 Rainfall-runoff totals for the three derivations of the Morland outlet rating curves (The values in 
brackets are the percentage equivalent of the original, two year period. 

 Rain (mm) Evap (mm) Q (mm) 

Increases (10 % up) 4223 (110 %) 1061 (107 %) 3161 (111 %) 

Original 3847 992 2855 

Increases (10 % down) 3476 (90 %) 869 (88 %) 2606 (91 %) 

 

To investigate the QP impact for each of the rating curves, Juke was recalibrated for the 

baseline case (Scenario 0) twice using the new flow series and the corresponding rainfall 

series. Simulations were then performed for Scenario 1, which reflects a worst case, 

future state, of the catchment. 

Figure 7-28 shows the percentage change in Qp for the five largest events for the two 

new flow series plus the original model run. The average Qp impact of degrading the 

catchment from the original model was an average increase of 18.5 % with a standard 
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deviation of 2.9 %. The decreased and increased rainfall models have mean Qp increases 

of 17.1% and 19.4 %, respectively. These correspond to average absolute differences of 

-1.4 % and +1 % compared to the original Scenario 1 flood peaks for differences of -/+ 

10 % in the rainfall, respectively. 

 

Figure 7-28 Rating curve uncertainty impact on the modelled flood peaks for the degradation scenario 

Juke	parameter	uncertainty	and	uncertainty	in	rating	curves	

This set of scenarios considers both uncertainty in the rating curves and in the current 

state of the catchment with regard to soil condition. To reflect the uncertainty in soil 

condition, the HOST values used in the parameterisation of the partitioning factor (γ) 

used to generate runoff, a set of scenarios have been performed in which the catchment 

was assumed to be in an initially partially degraded state. Using the three rating curves 

from the above, a revised baseline current state was calibrated in which the HOST values 

were assigned 50 % of the SPR increases suggested by Packman et al. (2004) to represent 

an initial level of degradation. Scenario 1 (fully degraded catchment) was then performed, 

with the impact results provided in Figure 7-29. As expected, the resultant impacts from 

a partially to fully degraded catchment on Qp are less than were shown previously for an 

initially undegraded catchment in Figure 7-28. Taking the five modelled peaks for the 

three rating curves, there is a mean increase in Qp of 7.9 % (Std. dev. 1.2 %) if it is 

assumed the catchment is already partially degraded versus 18.3 % (Std. dev. 2.9 %) for 

the undegraded HOST values. 



214 
 

 

Figure 7-29 Modelling results for the experiment to investigate the uncertainties associated with the rating 
curves and runoff parameterisation. 

8.5 FARM tool 

Key modelling components of Juke are those that generate runoff and the rate at which 

the runoff propagates through the system, making it straightforward to map the scenarios 

to a FARM matrix. The runoff generation element within Juke has been parameterised 

using the SPRHOST patterns, therefore any changes to this element to reflect greater or 

less runoff can easily be mapped to the y-axis; the y-axis on the FARM matrix reflects 

soil condition, which in the FEH modelling (Chapter 6) was reflected in scenarios by 

manipulating SPR, which is also being performed with Juke. The x-axis of the FARM 

matrix represents connectivity, which in the FEH modelling (Chapter 6) was linked to 

the Tp parameter, which is not manipulated in such a direct way using Juke. The 

propagation of runoff in Juke has been manipulated through the celerity function which 

affects Tp indirectly.  

The ‘as now’ scenario (0) is mapped to the middle of the matrix. There is an acceptance 

that there is already some level of degradation, although uncertain of the extent, but it is 

accepted that there are both better and worse scenarios. All scenarios are mapped and 

identified as higher or lower risk against the as now situation. Three matrices are plotted 

to reflect the different types of scenarios modelled and to convey important messages 

regarding the type and scaler of intervention required and also a simple message 

regarding the uncertainty in the impact. 
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8.5.1 Catchment	wide	‐	ɣ	(SPR)	modification	
To provide a comparison with matrices produced in Chapter 6, a series of scenarios have 

been modelled where the partitioning factors (ɣ) for the whole catchment have undergone 

incremental changes of 5 %, both as an increase and decrease. These changes reflect the 

percentage change in SPR as per the FEH in Chapter 6 and relate to soil condition. Results 

for the changes to Tp and Qp for the top four ranked events (Table 7-2) are plotted in 

Figure 7-30. The results show consistent increases or decrease that reflects the 

manipulation of ɣ. 

 

Figure 7-30 Modelling results showing the changes in Qp and Tp for a range of ɣ manipulation scenarios 

Results are shown in Figure 7-31 for the rank 1 event, where the values plotted on the 

matrix are the percentage change in Qp compared to Scenario 0 (‘as now’ ɣ and Tp 

[celerity] values). This matrix highlights the advantage of Juke over the FEH for 

modelling impact – there are nonlinear changes in Qp due to the spatial patterns of SPR 

and the variability in travel path lengths. 

No explicit changes were made to the travel times/celerity parameterisation; this 

however, again highlights the advantage Juke provides over the FEH and FEH-FIM for 

impact assessment as celerity is a function of discharge, it therefore changes accordingly 

to alterations in runoff production (Figure 7-31). A limitation of the original FARM tool 

is also demonstrated as the catchment response is not as simple as illustrated in Chapter 

6, impact differs from event to event and changes to SPR should not be made 

independently of Tp/connectivity. 
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Figure 7-31 A farm matrix showing the percentage change in Qp and change in Tp for the rank 1 event  

It should be noted that the change in Tp does not necessarily move in the direction 

intuitively expected. The rank 2 event, which is the longest by 24 hours, shows a 

reduction of 30 minute in Tp for two of the scenarios in which ɣ is reduced. However, as 

shown in Figure 7-32 this event has multiple peaks and the reduction in Tp is a related to 

the synchronicity of the impacted flows. 

 

Figure 7-32 Multiple peaked, rank 2 event, with a reduced Tp for less runoff 
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8.5.2 LUM	and	NFM	scenarios	
An extension of the existing FARM tool is to provide a storyboard with specific land use 

scenarios mapped onto the matrix, with an indication of potential impact, Figure 7-33. 

This should instill greater confidence of the potential of NFM and LUM as historical 

events, experienced by the community, have been simulated to identify opportunities for 

the reduction of flood peaks. 

 

Figure 7-33 FARM matrix showing the results for the rank 1 event for the scenarios modelled 

Table 7-9 provides a summary of the scenarios mapped in Figure 7-33 with the associated 

parameter manipulations and the percentage of the catchment affected. 

Scenario Name 
Celerity 

change (δ) 

Change to 
Fast runoff 

(γ) 

Percentage of 
catchment 

affected 

1 Worst case 0 Approx. +5 % 61 % 

2.1 
Riparian 
wood - 1 

-50 % 0 53 % 

2.1* 
Riparian 
wood - 2 

-25 % 0 53 % 

2.2 
Riparian 
wood - 3 

-50 % -20 % 53 % 

2.3* 
Riparian 
wood - 4 

-50 % 0 100 % 

3.0 NFM -75 % 0 53 % 
Table 7-9 Summary of the scenarios, parameter manipulation made and the percentage of catchment affected 
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8.5.3 Scale	effects		
The results from Scenario 5 in which the γ parmeter was reduced by 20 % for two 

headwater catchments, representing a mitigated area of 8.7 km2, are illustrated in Figure 

7-34. Each points represents one of the ranked events (Table 7-2) and the size of the 

enclosing circle reflects the variability in the impact on the event peaks, hence potential 

uncertainty. At Easby (13.9 km2), the reduction in peak flows are 11 to 15 %, but 

downstream at Great Ayton (29.3 km2) the corresponding reductions are 2 to 3 %. This 

reflects the relative proportion of the area upstream of the gauge under going change, but 

also geomorphological dispersion due to the relative timings of contributions. 

The points with the largest percentage reductions in Qp are at the nested Easby gauge, 

whilst the points closer to the centre (‘as now’) represent the same events and scenarios, 

but illustrating the level of impact detected at Great Ayton. 

 

Figure 7-34 FARM matrix illustrating the effects of the spatial extent of mitigation and the scatter/uncertainty 
in the magnitude of reduction magnitude 

8.6 Discussion and conclusions  

This section summarises the findings from the modelling of scenarios using Juke. 
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8.6.1 Degradation	impacts	
Using the Packman et al. (2004) recommendations for representing a deteriorated 

catchment through the reclassification of HOST classes demonstrated that an increase of 

7 % in SPR and therefore fast runoff to 61 % of the catchment could potentially result in 

up a 12 % increase in flood peaks. The trend in the percentage increase in Qp has shown 

that the impact may increase with increasing event magnitude.  

8.6.2 Flood	mitigation	
The investigation into which parts off the catchment may have a greater impact on outlet 

flood peaks showed that it may be more beneficial to work in the sub-catchments with 

the greatest travel distance to the outlet. This may not be the case for other catchments, it 

may be due to these catchments having higher SPR organic soils, where a percentage 

reduction will have greater impact than for lower SPR soils. However, if we were to 

consider the contributions of each sub-catchments and the way they are likely to 

synchronize as was demonstrated with the FIM too, the distal sub-catchments 

contributions were shown to synchronize closely with the outlet peak. There is potentially 

greater dispersion of the outlet hydrograph, especially the peak when affecting the 

catchments further way, where the closer sub-catchments will to a lesser extent. 

It was also found that changing just the SPR had a greater impact than just affecting the 

travel time through celerity as shown in Figure 7-19. Reducing the amount of fast runoff 

is beneficial in two ways; firstly there is less water available to contribute to the flood 

peak; secondly, as the discharge is reduced so is the celerity as they are intrinsically 

linked, although the results shown in this Chapter demonstrate only small shifts in Tp.  

The result of mitigating the sub-catchments most distal from the outlet having the greatest 

impact was partially contradicted by the final analysis which looked at the scale of 

mitigation relative to the overall catchment area. The analysis showed for two monitoring 

points at different scales, 29 km2 and 14 km2, that had the same proportional area 

mitigated, the impact was greatest where the travel distance from point of mitigation to 

point of impact was least. This is put down to the level of attenuation caused by the 

dispersion of the flood wave and hence the impact as it propagates the network. 

Although mitigating runoff through manipulating SPR in Juke has shown to be a positive 

means for mitigating flood flows, how achievable this is in reality is likely to be a harder 

proposition. Field measurements have shown that infiltration rates can be increased 
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through reduced compaction brought about by reduced stocking densities and alternative 

land covers such as woodland, no clear link as to what this means in changes to catchment 

runoff rates could be found. This does not mean however, that catchment scale impacts 

did not and do not occur. There is also the consideration of how the observed effects of 

increased infiltration scale with magnitude of event as the modeling results show, the 

relative Qp reductions reduce with increasing event magnitude. It is highly likely that 

significant parts of the catchment will be producing close to 100 % runoff regardless of 

the SPR and infiltration, purely because they will be saturated.  

Although attenuating the flows through manipulating celerity were shown to have lesser 

impact than SPR, it is likely that this will be more achievable means of mitigation. It can 

also be designed to target and become operational during the very largest events. This 

was demonstrated in the Belford catchment where inlets to offline storage features were 

raised as it was thought they operated too regularly and therefore for too low a flow, 

meaning there was less storage for bigger events (Nicholson et al., 2012). 

Obviously this type of modeling cannot take into consideration all factors that contribute 

to flooding. For example hydraulic controls such as bridges and culverts. These factors 

are known to exacerbate if not cause flooding locally, for example the Dyke Beck 

tributary causes flooding locally when a culvert surcharges and spills on to the road.  

8.6.3 FARM	tool	
Three versions of the FARM tool are demonstrated to illustrate a number of points 

regarding the strengths and weaknesses of both Juke and the Farm tool; and the way in 

which they can potentially be used to convey complicated ideas regarding scale and 

uncertainty of NFM and LUM schemes, whilst at the same time provide confidence of 

the flood mitigating potential. The first matrix in Figure 7-31 demonstrated the strengths 

of Juke over the FEH rainfall runoff and FEH-FIM models as celerity is a function of 

discharge, the reduction in flow, feeds back to reduce celerity. A limitation of the original 

FARM tool is also demonstrated as the catchment response is not as straightforward as 

illustrated in Chapter 6, it differs from event to event to event and changes to SPR should 

not be made independently of Tp/connectivity. 

Two further examples of the FARM were illustrated to demonstrate the potential building 

confidence in stakeholders that LUM and NFM are viable flood mitigation methods; 

additionally they can be used for conveying more complex messages such as; (1) 
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uncertainty in the mitigation of different types of events as well as the data and model 

uncertainty if known and it is being conveyed to a suitable audience; (2) scale effects. 

8.6.4 Model	and	data	uncertainty	
Section 8.4 has demonstrated the effect that data errors have on the modelled impact. The 

greatest uncertainty lies in the runoff (HOST) parameterisation regarding the current state 

of the soil in the catchment. For the scenarios modelled, the uncertainty associated with 

the partitioning factor (γ) parameterisation, was twice that of the rating curve uncertainty. 

Local data, for example obtained by walk over surveys, should be performed to reduce 

this type of uncertainty. 

8.6.5 Juke	‐	Flood	Impact	Modelling	
This modelling has highlighted the importance of routing and especially the importance 

of the location of the mitigation and how that the impact at the local scale will be different 

to that at the larger catchment scale. This suggests that the FEH-FIM procedure described 

in Chapter 6 may be improved through the incorporation of a simple kinematic wave, 

routing component. 

The modelling in this chapter has shown that NFM and land use management are 

potentially viable options for mitigation flood flows; allowing the modeler to consider 

how much intervention is likely required and what location may potentially offer the 

greatest impact. Table 7-10 shows the mean impact of each of the scenarios on Qp and 

Tp. The NFM scenario (Scenario 3) has been shown to have the greatest flood hazard 

reducing impact, when compared to against the wet woodland scenarios (2.1, 2.2, 2.3). 

Table 7-10 Summary statistics of the scenario impacts on Qp and Tp 

Scenario 

Qp Tp 

Mean % 

change 

Std. Dev. Mean change 

(mins) 

Std. Dev. 

1 8.5 2.8 0.0 0.0 

2.1 -1.9 5.0 22.5 17.9 

2.2 -2.7 5.3 30.0 12.2 

2.3 -2.7 5.1 52.5 46.1 

3 -10.4 7.6 101.3 41.3 
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A key finding of the Juke scenarios has been to demonstrate that the synchronicity of 

different sub-catchments and the mitigated and non-mitigated flows within a catchment 

can have an impact on the level of Qp change. Through strategic planning and 

understanding what causes the largest events in catchments, mitigation schemes can be 

tailored to catchments to have the greatest impacts.
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Chapter 9. Conclusions and recommendations 

9.1 Introduction 

This chapter will summarise the findings of this thesis and evaluate how successfully the 

objectives were met. Recommendations and suggestions for further work are provided. 

Finally, considerations as to whether the findings of this thesis have helped to address 

key policy making issues relating to the potential of NFM are provided, e.g.; where 

should NFM be deployed and how can local synchronisation issues be addressed; and do 

the tools developed help build confidence in NFM approaches at this scale (≤30 km2)? 

9.2 Research summary 

The aim of the study as stated in Chapter 1 was ‘to demonstrate the potential effectiveness 

of NFM interventions in reducing flood hazard at the small catchment scale (≤30 km2) 

using modelling techniques of increasing complexity supported by field observations.’ 

The thesis has provided an insight into the potential for land use management (LUM) and 

Natural Flood Management (NFM) through data collection and modelling. Two 

catchments in Northern England were monitored with hydrological instrumentation to 

understand the rainfall runoff dynamics, including the generation and propagation. The 

analysis of these hydrological data was used to inform and parameterise the rainfall-

runoff models. The modelling contributes evidence that LUM and NFM can reduce flood 

hazard within the catchments modelled. There is, however, uncertainty as to the extent of 

the likely impact and a number of complicating factors were highlighted, such as the 

importance of antecedent conditions and type of rainfall event in determining the 

magnitude of the flood hazard reduction. 

The outcomes of the thesis suggest the need for a set of tools that help flood managers 

understand and mitigate the flood hazard within their catchment. Firstly, there is a need 

to understand the flooding issue within a given catchment which is best done through 

field measurements at multiple scales to understand catchment functioning. Secondly, a 

set of modelling tools are required of differing complexity depending on the level detail 

required; from a broad-brush of appraisal of different catchments to a more detailed study 

of where in a catchment to put the features. As will be discussed below, the more detailed 

and novel the modelling, the greater the technical expertise required to conduct it; 

however, the development of the FEH-Flood Impact Modelling Tool (FIM) provides a 
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comparatively simple approach that can be setup for any catchment in the UK, due to the 

use of national datasets. 

Several objectives were set for achieving the thesis aim; these are listed below with a 

summary of the conclusions drawn against each. 

9.3 Conclusions 

The conclusions of this thesis relevant to the objectives listed in Chapter 1 are: 

1. Carry out a comprehensive literature review of the current understanding and 

quantification of the impacts of NFM interventions and agricultural practices on flood 

generation. 

A review of the literature was carried out in Chapter 2. Good examples of field studies 

that demonstrated the potential for LUM and NFM for mitigating flood generation and 

propagation have been found. However, generally the impacts have only been 

demonstrated at the local scale, with the impact at larger scales difficult to attribute or 

detect due to a number of factors such as climate variability, data errors and the limited 

length of data records for statistically significant results. These factors are also what make 

attributing any increase in flood frequency within historical data records specifically to 

land use impacts difficult if not impossible. 

One approach to relate change to impact is to use a mathematical model. When using a 

model for LUM or NFM impact assessment a number of considerations as to the type and 

structure of model used need to be made. The model structure and parameterisation affect 

the transparency, sensitivity and uncertainty of the modelled output. Lumped models 

offer a relatively simple option with few parameters, where physically based distributed 

models offer a more complex and potentially more detailed method but with a large 

number of parameters. A key benefit of lumped models is that they are comparatively 

quick to run and can be used to rapidly build up an idea as to the potential LUM and NFM 

flood mitigation impacts. The weakness with the lumped models, however, is that the 

parameter manipulations are lumped and there is no transparent way of accounting for 

the travel time effects and synchronicity of the mitigated and unmitigated flows. 

Distributed models offer this capability of testing distributed LUM and NFM flood 

reduction schemes. A significant contributor to the uncertainty in physically based, 

distributed models (PBDM) is the large number of parameters. There is a potential for 
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multiple parameter sets to offer equally adequate performance during calibration of 

PBDM. This uncertainty in parameter sets then affects the confidence of modelled impact 

results in NFM and LUM scenario testing. 

The outcome of this objective is that the onus is on the modeller to understand the local 

impacts of LUM and NFM how these may be incorporated within a model. The type and 

complexity of the model may depend on the question being asked; a broad brush appraisal 

of the potential of LUM and NFM may require a simple and lumped approach, whilst a 

detailed study, with interest in where to locate features or have LUM restrictions within 

catchment, may use a more distributed model.  

2. Collect high quality hydrological data from two catchments in which NFM 

interventions are either planned or have been implemented. Great Ayton (River Leven) 

and Morland (Newby Beck) have been chosen as the study catchments, as these provide 

a good contrast in term of spatial scale and interventions proposed.  

I have collected data for the Great Ayton and Morland catchments in northern England. 

The stream network in the Morland catchment, Cumbria, was instrumented at three 

locations with upstream areas from 1.5 km2 to 12.5 km2. The Great Ayton catchment, 

North Yorkshire, is larger than Morland and is instrumented at seven locations at spatial 

scales from 0.5 km2 to 30 km2. Both catchments were instrumented in a nested design to 

collect data at multiple spatial scales; this was done as understanding the spatial and 

temporal development of flood events was deemed important to this study. The value of 

local data for an individual catchment is paramount as all catchments differ in bio-

geophysical characteristics and have local issues (Uniqueness of place; (Beven, 1999)). 

The data, although subject to some uncertainty, was invaluable for understanding the flow 

rates and travel times. Equally the cost of the instruments are low enough to suggest that 

future flood studies would benefit from this type of data. 

3. Characterise the study catchments to understand how floods develop and along which 

hydrological pathways the water is being transferred.  

The physical and hydrological characteristics of the two catchments were examined to 

analyse what causes the largest flood peaks. Generally, the summer rainfall events (April 

to September) were found to be of shorter duration and higher intensity than the winter. 

In the Great Ayton catchment in particular, the rainfall totals for summer events were 
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comparatively higher than winter events that produced similar sized flood peaks; this is 

due to a storage deficit needing to be satisfied before the onset of rapid runoff. 

The Morland catchment is underlain by limestone and this has a significant impact in one 

of the monitored sub-catchments during low flows. For approximately 18 % of the time 

little if not zero flow passes the monitoring station of the catchment undergoing 

mitigation. However, a geological appraisal of the catchment stated that it was unlikely 

there were losses to regional aquifers, the flow therefore re-emerging in the catchment. 

Activity diagrams for both the Morland and Great Ayton catchments illustrate that for the 

largest events all sub-catchments are equally active, i.e. are similarly contributing to the 

flood peak. This was found to be true for the mitigation catchment in Morland, which 

means that the groundwater component is not as important for the largest events; near 

surface processes are. 

Analysis of catchment response times through lag time analysis and flood wave travel 

times has shown that there can be considerable scatter in the response, particularly during 

the small and medium events. This is largely due to the antecedent conditions and the 

characteristics of the rainfall event. However, the scatter reduces with increasing event 

magnitude which again can be linked to the catchment activity. Studying local GIS and 

hydrological time series data is important for understanding the local catchment issues. 

Furthermore, it is important to gain local insight to the problems through frequent site 

visits and meeting local regulators and farmers. Hence readily available data, supported 

by campaigns to collect data and visits to site are fundamental to characterising sites that 

need to be managed. 

4. Develop suitable scenarios for potential LUMC and NFM adoption, designed to reduce 

flood hazard within catchments, based on expert knowledge and field data. 

A number of potential LUM and NFM scenarios were drawn up and modelled in different 

ways using lumped and distributed approaches. The FEH model was used to populate a 

number of FARM risk matrices with a series of scenarios in which the SPR and Tp 

parameters were manipulated to reflect both degraded and improved catchment flood 

response. Degradation was implemented as an increase in the SPR (Standard Percentage 

Runoff; an event based hydrological statistic that describes the typical percentage of 

rainfall that leaves the catchment as fast runoff) and a reduction in Tp (Time-to-peak; 
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event based statistic that describes the typical time from the centroid of rainfall event to 

flood peak). The impacts of these scenarios for events of different return intervals and 

durations were investigated. 

The Flood Impact Modelling (FIM) tool was proposed to use the FEH rainfall-runoff 

model in a more distributed way. A series of scenarios were implemented to investigate 

the impact of changing Qp and Tp within different sub-catchments and assess 

downstream impacts. The scenarios investigated as a sensitivity test the impact of 

mitigating flows within catchments with varying travel times (distances) to the outlet. 

This helped in the understanding of catchment synchronicity and the possible effects of 

mitigating in certain parts of the catchment which can be used for strategic planning of 

schemes within the Great Ayton catchment. 

The Juke modelling considered five scenarios, including one representing a degraded 

catchment, parameterised using the expert opinion of Packman et al. (2004) that specified 

alternative HOST classes to reflect a worst possible case of soil degradation from 

agriculture. Two of the scenarios incorporated the effects of riparian wood land and 

attenuation ponds. The final two scenarios involved a spatial sensitivity test in which the 

location and scale/area of the mitigation was investigate to establish whether certain sub-

catchments are more suited to interventions. Also considered was the extent of mitigation 

required for a meaningful reduction in flood hazard. 

The process of relating field information to changes in model parameters is difficult. The 

impact assessment focussed on the key parameters of Qp and Tp. Conversations with 

local flood impacted communities and Environment Agency (EA) flood managers during 

catchment walk over surveys, were useful for identifying possible scenarios that needed 

to be addressed. The chosen scenarios cover a broad range of possible interventions as it 

was important to demonstrate hazard reduction impacts both locally and at the larger 

catchment scale.  

5. Explore the limitations of a widely used ‘traditional’ modelling approach. The FEH 

method, which is widely used by practitioners. 

The FEH rainfall-runoff model was run for several different scenarios that involved 

manipulating the SPR and Tp parameters. Results were used to populate the FARM risk 

matrix with percentage changes to flood peaks. The response, as expected given the 
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assumptions of the unit hydrograph, was shown to be linear for changes made to both the 

SPR and Tp parameters. Knowing only a few modelled results, one would have enough 

information to predict any scenario required, in terms of changes to SPR and Tp. An 

important result that the FEH modelling did show was that mitigation was most effective 

for short duration, high intensity rainfall events. 

A key limiting factor of the FEH rainfall runoff model for LUM and NFM impact 

assessment is that it is not distributed. The location within a catchment that mitigation 

takes place is of importance due to the way in which flows from various parts of the 

catchment are synchronised. The FIM methodology was proposed using the FEH rainfall-

runoff model to generate sub-catchment contributions separately and route these to the 

outlet using superposition. Manipulations of the Qp and Tp of sub-catchments can then 

be made to investigate the impact when routed to the outlet and combined with the flows 

from the non-mitigated catchments. A key result from the FIM modelling was to show 

that mitigating catchments in closest proximity to the outlet by delaying their contribution 

may potentially exacerbate the flooding problem due to the synchronicity of the 

contributions. It was also shown that these effects could be offset by introducing 

attenuation elsewhere in the catchment. Even though the assumptions of the FIM 

approaches and the FEH are relatively simple, it is still possible to use the tool to explore 

realistic flood management issues. Moreover, the tool is readily usable by flood 

management professionals who are competent using the tools and methods presented 

here. The FIM tool has been used to train a number of consultants and representatives of 

Non-Governmental Organisations [NGO] as part of a Continuing Professional 

Development [CPD] course. The model does lack detail and hence the simplifying 

assumptions need to be backed up by more detailed studies such as the Juke study 

(Simplifying assumptions include fixed wave speed/celerity and simple scaling of the 

hydrograph to reflect reduced runoff volume.). 

6. Use a novel modelling (Juke) technique to test potential catchment management 

scenarios including land use change and NFM on the catchment flood response.  

The scenario representing a ‘fully’ degraded Great Ayton catchment indicates that poor 

soil condition could potentially increase flood peaks up to 12 %. Section 8.4 in Chapter 

8 showed that with considerable uncertainty in the rating curve and model 

parameterisation the soil degradation may to lead to Qp increases between 6 and 12 %. 
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The trend in the percentage increase in Qp showed that the impact would increase with 

increasing event magnitude. 

As there is uncertainty as to what level of impact NFM and LUM will have, a range of 

scenarios were tested as a form sensitivity analysis. It is thought that the scenarios will 

envelope the potential impact. The riparian woodland scenario showed that a riparian 

zone accounting for 25 % of the total catchment area has the potential for Qp reductions 

of up to 11 %. There is, however, variability in the modelled impact, with Qp increasing 

for some events and decreasing for others. This is linked to the temporal patterns within 

the rainfall and the way the runoff generated is synchronised for disparate parts of the 

catchment. 

NFM in the form of Runoff Attenuation Features (RAF’s) was found to have a significant 

impact on the flood hydrograph, reducing flood peaks for all four largest events. For one 

event the flood peak was reduced by 22 % but for the three other large events the 

reductions were 5 to 10 %. 

The outcomes from all the scenarios modelled with Juke demonstrated how complicated 

an issue flood mitigation through distributed LUM and NFM measures is. There were 

mixed results in terms of the level of reduction achieved and this was linked to the rainfall 

characteristics of individual events. Generally, it is has been demonstrated that NFM and 

LUM can reduce flood peaks and this impact will be greatest for the shorter duration 

higher intensity events. 

Juke enables a modeller to investigate what level of intervention and how much NFM 

and LUM is needed and where in a catchment it could be placed to get the most significant 

impact. As was shown in the scenario that represented the current level of intervention in 

the Morland catchment, it was demonstrated that targeting a specific sub catchment was 

less effective than implementing distributed measures across the catchment. 

Juke may not be readily deployable in its current form to flood risk management 

professionals, but the results have shown a number of key phenomena that help build our 

knowledge of flood generation, NFM modification and flow propagation across scale. It 

underpins many of the assumptions made in the FEH-FIM models, for example, that 

NFM has a local impact and that the local NFM needs to have a significant impact on 

local flow before downstream benefits accrue.  
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The uncertainty associated with some of the scenarios and the demonstration that in some 

instances Qp can occasionally increase should not be dismissed. These findings suggest 

that flood managers need to substantially intervene in order to be confident of not 

exacerbating the flood problem. Users of the FEH-FIM can reflect the uncertainties in 

the level of intervention and parameterisation by allowing a greater range in the Qp and 

Tp change parameters. As a sensitivity approach has been employed in the RAF scenario 

(based on literature), the exact number of features required is not known. 

7. The outcomes of 5 and 6 will be used to populate a series of risk matrices based on the 

Floods and Agriculture Risk Matrix (FARM) tool (Wilkinson et al., 2013). The tool helps 

to synthesise and convey both the limitations of traditional modelling structures for land 

use change scenario modelling and the implications of land use management decisions 

on flood risk. The results will provide guidance to practitioners, the scientific community 

and others with an interest in NFM and land use management as a means of reducing 

flood risk. 

A series of FARM risk matrices were populated with results from the both the FEH and 

Juke model scenarios. The FARM tool provides a clear and simple visualisation to 

understand ways of conveying the principles of LUM and NFM and the potential impacts 

on flood peaks. 

The matrices populated with result from the FEH model help to illustrate the principle 

weakness of the FEH model for impact assessment as the results were linear and the 

matrices did not differ significantly from catchment to catchment or for the type of event 

being modelled. This is due to the underlying assumptions of linearity in the Unit 

Hydrograph (UH) approach.  

A FARM matrix was populated with results from the Juke modelling to show the 

potential impact on the largest observed event. Putting numbers for Qp reduction on the 

matrix that represents potential real scenarios tailored and tested for a catchment provides 

more confidence in LUM and NFM to stakeholders and flood managers. 

9.4 Recommendations and future work 

There is still a need to produce the evidence of the efficacy of LUM and NFM in reducing 

flood hazard at scales larger than the field. The evidence base is increasing, but currently 

limited to an unsatisfactorily small number of studies. 
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9.4.1 Catchment	observations	
There is certainly still a need to build upon the field evidence of LUM and NFM impacts 

at both the local and point/feature/field scale and the larger catchment scale (>10 km2). 

To fully understand the forms of intervention best suited to a given catchment, examples 

need to be found or implemented in catchments of different types, i.e. different soils, 

topography and land use. This will strengthen the arguments for their uptake and build a 

portfolio of potential options for different catchment types. 

9.4.2 Modelling	
The Juke model has been demonstrated as a novel form of distributed rainfall-runoff 

model capable of testing a range of LUM and NFM scenarios in a transparent manner. 

The link between the observations of change in infiltration and runoff volumes (SPR) and 

propagation have been difficult to quantify. Progress is needed to relate changes in soil 

condition and field scale runoff. 

Hydrodynamic modelling may be an option that has been under used in examining 

LUM/NFM impacts. The Pond Model developed for a reach of the Belford Burn 

catchment demonstrated the potential local impact of attenuation ponds (Nicholson et al., 

2012; Nicholson, 2014). However, it should be possible to run models for larger spatial 

scales and longer river reaches that include detailed representation of these types of 

feature. The impact of riparian or wet woodland could be investigated using 1-D or more 

detailed 2-D models that can investigate floodplain flows. The limiting factor of these 

models is the need for detailed, accurate surveyed data. One such study was highlighted 

for the River Parrett and showed the potential for significant attenuation of the flood 

wave. However, the Parrett catchment is not representative of most catchments due to 

low velocities, typically less than 0.2 m/s (Thomas and Nisbet, 2007).  

There is potential for the FEH-FIM modelling approach developed in this thesis to be 

further developed to include a more robust and transparent method of reducing Qp in the 

sub-catchment contributions. At present the model simply scales the whole sub-

catchment hydrograph, meaning there is no conservation of mass. The Tp adjustment also 

shifts the whole hydrograph in a lumped linear way rather than a more transitional, 

nonlinear and physical response. This could be performed by running the FEH for a range 

of SPR and Tp values to provide a lookup library of hydrographs. The routing of the sub-

catchment flows could be done in a more realistic and sophisticated manner rather than a 

fixed wave speed that doesn’t consider the nonlinear relationship between flow volume 
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and wave celerity. One method for nonlinear routing is a Muskingham approach which 

can also make use of the analysed travel time/celerity values, which underpin the Juke 

parameterisation. 

9.4.3 What	next	for	policy?	
This thesis has addressed questions commonly asked by policy makers and other 

stakeholders regarding the potential for NFM and LUM in catchments. The combination 

of field observations, the FEH-FIM tool and Juke have been demonstrated as a method 

for investigating these types of questions and could help underpin investment strategies 

in catchments. The FEH-FIM tool has been used in local studies by the EA and SEPA in 

recent months where NFM approaches have been proposed; it has helped users to think 

about synchronisation issues and the spatial location of features. The users were guided 

to explore a range of Qp and Tp change scenarios, studying as many sub catchments as 

possible.  

During the winter of 2015/16 there were a series of large events, including Storm 

Desmond in Cumbria. During storm Desmond traditional engineered defences were 

overtopped. There is a growing appreciation that formal defences cannot continue getting 

larger and catchment management and more novel methods may have a role to play. 

Irrespective of the measurement and modelling uncertainty, we know that we can manage 

runoff volumes and timing at the local scale from existing examples in the literature. Juke 

has demonstrated that it may be feasible at larger scales also, but a better understanding 

of the way field observations of the impacts can be incorporated in to models is needed. 

Although the tools shown here do not provide conclusive evidence for the benefits of 

NFM compared to other management strategies, they enable the user to explore the 

degree of impact needed at local and wider catchment scales for NFM schemes to be 

successful. The models use enough physical process representation and key observed 

data, to hopefully provide enough confidence to policy makers that positive benefits can 

be achieved through NFM at scales up to 30 km2. 

It is suggested that policy makers continue to invest in combined field and modelling 

research to increase the number of catchments in which NFM and LUM are studied, 

improving the evidence base. There is also a need for alternative and novel modelling 

approaches, designed specifically for impact assessment. It is hoped that new research 

studies, such as the EA Working with Natural Processes project, will allow larger 
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catchments to be instrumented and modelled across scale and include large scale trials of 

LUMC and NFM. 
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The water quality of our rivers and lakes is a reflection of the landscape over and through which it travels.
The UK government, along with all European Union member states, are obliged under the Water
Framework Directive (WFD) to aim for good ecological status of fresh water bodies by 2015. In order
to evaluate the effectiveness of potential mitigation measures in reducing diffuse water pollution from
agriculture at the catchment scale, the Demonstration Test Catchment (DTC) project was developed.
The project is jointly funded by Defra, the Environment Agency (EA) and the Welsh Assembly Govern-
ment (WAG). There are three DTCs across the country: the Eden catchment, Cumbria; the Wensum
catchment, Norfolk and the Hampshire Avon catchment. The Eden DTC has established three ~10 km2

focus catchments, chosen to reflect different farming practices, geologies, elevations and hydrological
characteristics. Within each focus catchment, two sub-catchments have been selected, one control and
one mitigated, in which numerous existing and novel mitigation measures will be tested. It is hoped that
the mitigation features will be multi-purpose, having positive effects on pollutant retention, flooding,
carbon sequestration, habitat creation and biodiversity. The effectiveness of these measures is assessed
through networks of hydro-meteorological and water-quality instrumentation, most of which will provide
data in near real time, with sub-hourly time steps.

Key words: River Eden, diffuse pollution, hydrological monitoring, water quality

Introduction
Agricultural activity is a major source of nitrogen (N),
phosphorous (P), fine sediment and organic wastes in
watercourses throughout the UK. In rural areas, the major-
ity of N and P transfer occurs as a result of mobilisation of
N- and P-based fertilisers and manure. Although current
application rates are lower than during the previous
century, rates remain high, averaging 128 kg ha a-1 and
36 kg ha a-1, respectively (Petry et al. 2002). It has also
been observed that significant contributions of fine sedi-
ment (<2 mm) in rivers may be derived from agricultural
land, such as topsoil from pasture, cultivated land and land
drains (Walling and Woodward 1992; Foster et al. 2002;
Walling et al. 2006). The quality of the mobilised sediment

is also of paramount importance, given that agricultural
pollutants and contaminants may be readily adsorbed to its
surface and transferred through the river system (Barling
and Moore 1994; Nguyen and Sukias 2002).

Many rivers across the UK are showing evidence of
increasingly high concentrations of nutrients and fine sus-
pended sediment, often exceeding the established guide-
lines on nutrient status and sediment quality (Owens et al.
2005). These elevated concentrations must be reduced in
order to meet the requirements of the European Union
Water Framework Directive (WFD, Directive 2000/60/
EC). In some cases, reductions may need to be as much as
50–80% by 2015 if good chemical status is to be achieved
(Defra 2004). However, these demands are contradicted
by the requirement of increasing farming intensity due to
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demand for food security in the coming years, which may
cause an increase in the application of fertilisers as well as
manure from livestock (Tilman et al. 2002). Future climate
change may also exacerbate water quality problems (IPCC
2007).

The Demonstration Test Catchments (DTC) programme
aims to achieve a better understanding of the way in
which farming activity affects the quality of the aquatic
environment. The DTC is a research initiative jointly
funded by the Department for Environment, Food and
Rural Affairs (Defra), the Environment Agency (EA) and the
Welsh Assembly Government (WAG). The scope of the
project is to gather evidence to test the hypothesis pro-
posed by Defra that

It is possible to cost-effectively reduce the impact of agri-
cultural diffuse water pollution on ecological function,
while maintaining food security through the implementa-
tion of multiple on-farm mitigation measures. (Demon-
strating Catchment Management 2012)

There are three national DTCs across England: the
Wensum (Norfolk; Wensum 2011), the Avon (Hampshire;
Avon 2011) and the Eden (Cumbria; Eden 2011). The
catchments were selected because of their variable geo-
graphical, geological, climatic and land use features
(Figure 1). This paper focuses on the ways in which the
Eden DTC is testing this hypothesis.

Study area
The area drained by the River Eden contains a wide
variety of landscapes, land uses and farming types. It
covers an area of 2288 km2, draining the uplands of the
Pennines and Lake District into the Irish Sea, via the
Solway Firth. Annual rainfall totals range from less than
650 mm in the lowland valley to more than 2000 mm in
the uplands (Mayes et al. 2006). The Eden catchment has
previously been studied through the Catchment Hydrol-
ogy and Sustainable Management (CHASM) project
(O’Connell et al. 2007). In this project, parts of the catch-
ment were densely monitored with rain-gauges and
water-level gauges, many of which are still in operation.
CHASM and numerous other localised studies provide a
strong insight into the hydrological characteristics to be
expected.

Experimental design
The approach taken by the Eden DTC has been to estab-
lish three ~10 km2 focus catchments at Pow, Dacre and
Morland, chosen to reflect the different farming practices
and geologies observed across the Eden (Figure 1). There
is a fourth demonstration catchment, which has a con-
tributing area of 1 km2 and is located at Sewborwens
Farm, at the Newton Rigg campus of Askham Bryan
College, Penrith. This catchment has been instrumented

Figure 1 Location of the DTC research areas and the location of the Pow, Dacre and Morland focus catchments within
the Eden DTC catchment

Source: © Crown Copyright/database rights 2011. An Ordnance Survey/EDINA supplied service
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to demonstrate the types of data that are freely available
to stakeholders and other interested parties.

In the west of the Eden catchment, less than 5 km from
Ullswater, lies the Dacre catchment, which was selected
to represent the uplands, and is the only upland-
dominated catchment represented across all three
national DTCs (Figure 1). This is a hardrock catchment
dominated by the volcanic andesite sheets of the Borrow-
dale Volcanic Group (Allen et al. 2010). The main
farming land types are improved grassland (41%), which
is grazed by both sheep and cattle, and unimproved
grassland/rough grazing (46%), which is predominantly
grazed by sheep. Key diffuse pollution pressures in this
catchment have been identified as fine sediment and
phosphorus.

The Pow catchment, located approximately 4 km south
of Carlisle, is underlain by complex geology consisting of
sandstone, siltstone and mudstone bedrock units. It is the
most intensively farmed of the three catchments with a
patchwork of intensive dairy, beef, sheep, pig and poultry
farming, in a landscape made up of 71 per cent improved
grassland, 14 per cent arable land and just 4 per cent
rough grazing. The catchment also contains a waste recy-
cling facility and landfill site. It is hypothesised that the
key diffuse pollution elements are fine sediment, nitrates
and phosphorus, making this catchment one of the most
polluted water courses in the Eden, where the water
quality is defined as poor.

The Morland catchment contains a large proportion of
improved grassland (83%), with just 10 per cent rough
grazing and 3 per cent arable land. The predominant
farming types encompass a mixture of dairy and meat
production, and the dominant pollution pressure is from

sediment and phosphorus. Over 99 per cent of the catch-
ment area is underlain by carboniferous limestone, shales
and sandstones. This means there is likely to be a signifi-
cant groundwater component to the diffuse pollution
issue. Data have been collected through borehole explo-
ration and geophysical studies to better understand the
intricacies of the groundwater movement.

Within each of the 10 km2 focus catchments, two sub-
catchments have been selected – one control and one
mitigated – in which a number of existing and novel
mitigation measures will be tested. This catchment instru-
mentation is illustrated in Figure 2.

The mitigated catchments are to have waste manage-
ment plans produced to mitigate against diffuse water
pollution from agriculture (DWPA) at all stages within the
farming landscape. An example of an adopted waste man-
agement strategy is the collection and storage of dirty
water in runoff attenuation features (RAFs; cf. Barber and
Quinn forthcoming). These features provide an area of
deposition where pollutants such as fine sediment and
phosphorus may be stored. A specific example of RAFs is
the Mitigation Options for Phosphorus and Sediment
(MOPS) ponds (Deasy et al. 2009), which collect and filter
overland flow. The sediments and associated nutrients can
then be recycled back to the land by the farmer. These
types of features are dual purpose, with benefits for both
mitigating diffuse pollution and reducing flood risk. By
disrupting and attenuating the overland flow, the time
taken for the water to reach the channel is increased,
potentially reducing the flood peak (Wilkinson et al.
2010). Positive impacts should also include carbon
sequestration, habitat creation and improved biodiversity
(Wilkinson and Quinn 2010).

Figure 2 Schematic of the experimental design
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Hydro-meteorological monitoring
Each catchment has been installed with an Automatic
Weather Station (AWS), which logs rainfall, air tempera-
ture, radiation, wind speed and wind direction every 15
minutes. Two additional 0.2-mm tipping bucket rain-
gauges log on an event basis. Additional EA and Met
Office rain-gauges and weather stations are present within
the focus catchments, which complement the dense
monitoring network. Using the data collected, the calcu-
lation of evapo-transpirational losses is possible (Penman
1948), which is particularly important for calculating
water balances, and will be used in catchment rainfall
runoff models. Each water-quality monitoring station is
equipped with a pressure transducer to record the water
level. The water-level series is then converted into a flow
hydrograph through the establishment of a rating curve
based on spot measurements of flow. Flow, velocity and
water level are also continuously monitored at the outfall
stations using Sontek Argonaut-SW Doppler instruments.
Level and velocity are measured to within �0.03 cm and
�0.5 cm s-1 respectively.

Water quality monitoring
Each of the focus catchments has an outfall station, of
which there are two types. The Dacre focus catchment is
equipped with a YSI 6600 V2 sonde, enabling the simul-
taneous measurement of conductivity (0–100 mS cm-1 �

0.5%), temperature (-5 to + 50°C � 0.15°C), pH (0–14
units � 0.2 units), dissolved oxygen (0–500% � 2%),
turbidity (0–1000 nephelometric turbidity units (NTU) �

2%) and chlorophyll-a (0–400 mg L-1). The YSI optical
probes are equipped with self-cleaning sensors in order to
minimise bio-fouling, which is further reduced by housing
the sonde in a flow-through cell.

The Pow and Morland outfall stations have the same
model YSI sonde as described above, and are in addition
equipped with an ammonium (NH4) and nitrate (NO3)
probe, and wet chemistry analysers that test for soluble
reactive phosphorus (SRP) and total phosphorus (TP)
content. The ammonium sensor uses an ion-selective
electrode with automatic potassium compensation to
detect ammonium ions (NH4

+) directly as ammonium
nitrogen and has an operating range of 0.2–1000 mg L-1

(�5%) (NH4
-N; Hach Lange 2011a). The nitrate measure-

ments are collected by a Hach Lange Nitratax SC 1000
sensor. This probe provides an immediate measurement of
nitrate (NO3

-N) in water, which is turbidity compensated
through reference measurement, and has an operating
range of 0.1–100 mg L-1 (�3%; Hach Lange 2011b). The
operating range for both TP and SRP (measured as PO4

-P)
is 0.01–5.0 mg L-1 (Hach Lange 2011c), and analysis is
based on the DIN-equivalent molybdenum blue method.

At the 2–5 km2 scale in each focus catchment there are
two or three sub-stations, which provide a continuous
record of turbidity and water level. Turbidity is a measure
of the decrease in the transparency of a solution due to the
presence of sediment particles, coloured organic matter
and the water itself, which causes incident light to be
scattered, reflected and attenuated (Ziegler 2002). The
McVan Analite 390 series probes used measure the
degree of scattering at an angle of 90° to the incident light
beam, operating in the range of 0–1000 NTUs, with �1%
precision.

Turbidity is the most widely used surrogate for mea-
suring suspended sediment concentrations (SSCs; Gray
and Gartner 2009; Pruitt 2002). Relationships between
turbidity and SSC are established through spot samples
and storm event sampling, whereby lab results of SSC
are cross referenced with the turbidity reading taken in
situ (Minella et al. 2007; Pavanelli and Bigi 2005; Teix-
eira and Caliari 2005). Turbidity has also been demon-
strated to be a predictor of TP content (Nairn and Mitsch
1999), especially in environments where the most sig-
nificant P losses are in particulate form (Haygarth et al.
2000). These stations may therefore have the dual
benefit of quantifying both the fine suspended sediment
and TP flux (Jones et al. 2011).

All data are collected and stored using state of the art
hydro-meteorological logging systems. Most parameters
are collected at a frequency of 15 minutes, providing more
detailed information than traditional spot-sampling and/or
storm-event based sampling regimes. This is imperative
given that spot sampling can lead to underestimation of up
to 60% for annual P loads, when compared with hourly or
sub-hourly time series (Cassidy and Jordan 2011). Infre-
quent sampling may fail to capture temporal variability in
constituent export behaviour, resulting in poor precision of
load estimates (Johnes 2007). Only near continuous moni-
toring can capture rapid temporal changes in constituent
concentrations (Cassidy and Jordan 2011).

Communication technology
The data collected from the Eden DTC are open access:
near real-time data are freely available on the internet
from the majority of the stations at www.edendtc.org.uk.
GPRS mobile phone technologies have been adopted as
the means for telemetry. This allows for near real-time
connection to the instruments, and also provides the
capability for setting alarms on sensors. For example, a
rain-gauge can alert interested users (via text message or
e-mail) when a certain rain intensity threshold has been
crossed. The ISCO automatic water samplers can also be
triggered remotely using these technologies, providing
flexibility in sampling campaigns. It is, however, impor-
tant to note that these are raw data with a time delay
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before the quality-assured data are realised. The live data
on the Eden DTC website allows stakeholders to engage
interactively with the project. For example, the farming
community has shown great interest in the near live rain-
fall data from across the catchment.

Example of monitoring outputs
This section demonstrates some of the early data from a
range of instruments installed in the Morland focus catch-
ment and highlights its potential applications. The spatial
distribution of the instrumentation in this catchment is
demonstrated in Figure 3.

The YSI sonde installed at the 10 km2 outfall station
produces raw data in the format shown in Figure 4. This
time series spans 10 days from 6 to 16 October. Two storm
events were observed on 9 and 12 October, which led to
the simultaneous rise in TP, SRP, NO3, NH4 (Figure 4b),
turbidity and chlorophyll (Figure 4c), with a drop in con-
ductivity and pH (Figure 4d).

Nested within the Morland 10 km2 catchment are the
control and mitigation catchments, which have contribut-
ing areas of 3.63 km2 and 1.55 km2 respectively. Figure 5
presents the rainfall, water level and turbidity measure-
ments during an event between 17 and 18 October 2011
measured in the mitigation catchment. There is a clear

Figure 3 Diagram providing detail of the catchment layout and locations of instrumentation in the Morland catchment
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response in the observed water level to rainfall inputs, with
a lag time of 120 minutes between peak precipitation
intensity and peak flow.There is also an advanced response
of 30 minutes in turbidity in relation to the maximum flow,
resulting in clockwise hysteresis (Williams 1989).

Using the data presented in Figure 5, regression analy-
sis between the two series can be carried out to describe
the relationship mathematically, as a power function

(Figure 6). Although these are raw data which are yet to
undergo quality control, there is relatively strong correla-
tion between increasing water level and increasing
turbidity.

During this event, the effects of the storm are transmitted
downstream and measured at the Morland outfall station.
This is demonstrated by the time-series of turbidity data
in Figure 7. There is a clear increase in turbidity, the

Figure 5 Half-hourly rainfall data from the Morland AWS plotted against the water level measured at the Morland
outfall station, along with points representing a hypothetical ISCO sampling regime based on a trigger level of 0.45 m

and sampling interval of 30 minutes

Figure 6 Relationship between water level (m) and turbidity (NTU) during an event on 16–17 October 2011 in the
Morland mitigation catchment
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maximum of which precedes the maximum river level by
30 minutes, which is comparable to that documented in
the mitigation catchment. TP and SRP concentrations are
also elevated during this storm, peaking at 0.67 mg L-1 and
0.17 mg L-1 respectively, compared with the pre-event
concentrations of 0.06 mg L-1 and 0.04 mg L-1. A decline
in the TP concentration occurs following reductions in
turbidity; this can be attributed to a drop in particulate P,
which is mobilised with sediments (Gburek et al. 2005).
The SRP peak occurs after both turbidity and TP, due to the
pathway/transport mechanism being slower, as it is leach-
ing from the soil in solution (Gburek et al. 2005).

Empirical relationships between river flow, turbidity
and a range of determinants (e.g. SSC and TP) will be
developed at the outfall and sub-stations through sam-
pling campaigns using the ISCO automatic water sam-
plers. The Eden DTC samplers are triggered once a
predefined water-level threshold has been crossed, and
samples are delivered within 24 hours of the end of the
event to EA Laboratories for analysis. A total of 17 param-
eters are analysed, including SSC, SRP, TP, metals and
boron, the latter being an indicator of leaking or overflow-
ing septic tanks, which requires separate mitigation. The
empirical relationship can then be applied to the full time
series, which in turn can be used to estimate annual
loadings. By collecting turbidity data at each site, it will
be possible to quantify the changes to SS and TP loadings
within the stream, across scales.

As the project progresses and sufficient data accumu-
late, it will become possible to establish further relation-
ships and strengthen those that are illustrated here.
Figure 8 illustrates some of these additional relationships
and data types.

Figure 7 Observed turbidity and phosphorous response during a storm event captured at the Morland outfall station
between 17 and 18 October 2011

Figure 8 Example analysis demonstrating (a) the
relationship between river level and soluble reactive

phosphorous and (b) river level and total phosphorous
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Further monitoring
ISCO samplers are also to be used to bracket mitigation
features, e.g. there will be one upstream and one down-
stream of any mitigation feature. Both will be triggered
from a simple float switch that will initiate the sampling,
making it straightforward to quantify the direct effect of the
mitigation feature on the various parameters, but most
importantly SS andTP.This type of sampling was used in the
RAFs and MOPS research projects (Barber and Quinn this
issue).

Time Integrated Mass-flux samplers (TIMs), designed by
Phillips et al. (2000), are distributed throughout the river
networks of the research catchment. The TIMs are subject
to the full range of flow conditions and sediment fluxes
over the sampling period, providing a continuous record
of fine sediment flux that may be representative of all
events (Walling 2005). The fine suspended samples
obtained from this device may be used for sediment fin-
gerprinting (e.g. Fox and Papanicolaou 2007; Collins et al.
2010; Fukuyama et al. 2010; Martínez-Carreras et al.
2010) and estimating the relative suspended sediment
yield of the river (e.g. Bolland et al. 2010).

In addition to the water-quality sampling stations, differ-
ent types of camera have been deployed. Cameras located
at the catchment outlets provide qualitative information on
flow dynamics as well as the river level and water colour.
These outlet cameras take an image every 10 minutes and
post it to an ftp site via a GPRS mobile phone SIM card.
Motion sensor cameras are to be used at strategic locations
to capture in-stream activity of livestock, in order to assess
their impact on turbidity levels in the water course.

An Unmanned Arial Vehicle (UAV) is also being used
for capturing land cover change, management practices
and other seasonal activity that may affect mobilisation of
pollutants. This is being done by regularly flying the same
routes within the catchment and monitoring any changes.

Conclusions
The aim of this research is to produce an abundance
of high-quality, multi-scale continuous data provided in
near real time, which is readily accessible to the public.
Initial measurements have produced high-quality, high-
frequency data that have the potential for developing more
accurate assessments of nutrient loadings than traditional
monitoring schemes. The project faces a number of poten-
tial challenges related to the size, scale and potential
implications of the project. The wealth of information
being gathered at a number of different scales will enhance
knowledge and improve the effectiveness and efficiency of
waste management and mitigation methods. Most impor-
tantly, concepts can be tested, models can be made more
robust and ultimately policy will be better informed.
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Recent advances inmonitoring technology have enabled high frequency, in-situmeasurements of total phospho-
rus and total reactive phosphorus to be undertakenwith high precision, whilst turbidity can provide an excellent
surrogate for suspended sediment. Despite these measurements being fundamental to understanding the
mechanisms and flow paths that deliver these constituents to river networks, there is a paucity of such data
for headwater agricultural catchments. The aim of this paper is to deduce the dominant mechanisms for the
delivery of fine sediment and phosphorus to an upland river network in the UK through characterisation of the
temporal variability of hydrological fluxes, and associated soluble and particulate concentrations for the period
spanningMarch 2012–February 2013. An assessment of the factors producing constituent hysteresis is undertak-
en following factor analysis (FA) on a suite of measured environmental variables representing the fluvial and
wider catchment conditions prior to, and during catchment-wide hydrological events. Analysis indicates that
suspended sediment is delivered to the fluvial system predominantly via rapidly responding pathways driven
by event hydrology. However, evidence of complex, figure-of-eight hysteresis is observed following periods of
hydrological quiescence, highlighting the importance of preparatory processes. Sediment delivery via a slow
moving, probably sub-surface pathway does occur, albeit infrequently and during low magnitude events at the
catchment outlet. Phosphorus is revealed to have a distinct hysteretic response to that of suspended sediment,
with sub-surface pathways dominating. However, high magnitude events were observed to exhibit threshold-
like behaviour, whereby activation and connection of usually disconnected depositional zones to the fluvial
networks results in the movement of vast phosphorus fluxes. Multiple pathways are observed for particulate
and soluble constituents, highlighting the challenges faced in mitigating the delivery of contaminant fluxes to
headwater river systems.

Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.
.
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1. Introduction

Understanding the hydrological and pollutant dynamics of headwa-
ter catchments, and the implicit connections between the land and the
river is of great importance (Bishop et al., 2008). These rivers account
for 60 to 80% of the entire river network (Benda et al., 2005), providing
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potable drinking water (Sturdee et al., 2007), buffering capacity for
flood risk (Posthumus et al., 2008), dilution of nutrient rich waters
downstream (Bowes et al., 2003) and ecological habitats fundamental
to the health of the aquatic ecosystems (Meyer et al., 2007). Maintain-
ing the quality of headwater resources is thus essential for the sustain-
ability of thewater environment (Soulsby et al., 2002). A significant risk
to the systems' functional integrity is the presence of surface sediment
sources that are enrichedwith phosphorus (P) following years of exces-
sive fertiliser inputs (Heathwaite et al., 2006; Withers et al., 2001,
2007), which may be exacerbated by land-use conflicts (Pacheco
et al., 2014; Valle Junior et al., 2014) and accelerating rates of terrestrial
erosion (Mainstone et al., 2008; McHugh, 2007). The delivery of these
materials to hydrological networks is augmented by the relatively low
filter resistance and restricted potential for temporary storage in these
small catchments. Resultantly, the catchment export of sediment and
P may be closely related to themagnitude of erosion and land degrada-
tion (Kovacs et al., 2012), with adverse impacts on the aquatic habitats
ensuing (Collins and Walling, 2004; Haygarth et al., 2005a,b; Holden
et al., 2007; Valle Junior et al., 2015).

To moderate the number of watercourses failing to produce ecolog-
ically sustainable habitats as a result of enhanced erosion anddelivery of
pollutants to sensitive headwater fluvial networks, identification of the
fine sediment and nutrient sources, and the pathways of delivery is
firstly required (Jarvie et al., 2008), with management efforts subse-
quently focussing on restoring natural attenuation within catchments
and disconnecting the identified Critical Source Areas (CSAs), or hot-
spots from the fluvial networks (Heathwaite et al., 2005; Kovacs et al.,
2012; Newson, 2010; Pionke et al., 1996). Manywell established factors
act to define the CSAs of fine sediment and P, however, our understand-
ing of how and when these areas are connected to the fluvial networks
is limited by the heterogeneity of factors governing process rates (Dean
et al., 2009). These factors include antecedent moisture conditions,
runoff mechanisms, spatial variation of rainfall intensity, and landman-
agement operations. These process controls influence the mechanisms
of mobilisation, pathways of transfer, and the complex biogeochemical
processes occurring along the land–water continuum, yet, they are
diffuse, difficult to quantify at the catchment-scale, and vary on an
event basis. Understanding of how pollutant transmission varies in
response to temporal and spatial constraints may however provide
key information about connectivity of pollutant sources, pathways of
delivery and pollutant transfer in a catchment (Lexartza-Artza and
Wainwright, 2009).

A large amount of research has been conducted to improve our
understanding of the timing and mechanisms responsible for the
transport of aquatic pollutants in surface and sub-surface runoff
from agricultural land, with investigations into the fluvial export
of suspended sediment from small agricultural catchments enabling
exploration of the processes responsible for its delivery (e.g.,
Glendell and Brazier, 2014; Steegen et al., 2000; Thompson et al.,
2013). Likewise, studies have sought to characterise the nature of P
losses from headwater agricultural catchments (e.g., Haygarth
et al., 2005b; Hodgkinson and Withers, 2007; Pionke et al., 1996;
Soulsby et al., 2002; Stutter et al., 2008). However, there is currently
a dearth of continuous, high-temporal resolution hydro-chemical
and suspended sediment monitoring datasets available for rivers
draining sensitive headwater catchments. Such high-frequency
datasets of discharge, suspended sediment (SS), total phosphorous
(TP) and total reactive phosphorus (TRP) enable characterisation of
the complex non-linear responses of the monitored determinands
at sub-hourly timescales.

Non-linear concentration–discharge relationships have been
widely acknowledged for many contaminants, with assessment of
this hysteresis being used as a means of interpreting probable pollut-
ant pathways and origins (e.g., Lefrançois et al., 2007; Naden, 2010;
Outram et al., 2014; Smith and Dragovich, 2009). Small scale exper-
iments, in which the pollutant transport processes are controlled,
have successfully produced the expected hysteresis dynamics, offer-
ing support for this indirect approach (e.g., Chanat et al., 2002; Eder
et al., 2014). Analysis of the process dynamics of multiple contami-
nants using this hysteresis framework enables commonalities in
transport systems to be assessed, and maximum information to be
extracted about pollutant and catchment response to hydrological
events (e.g., Halliday et al., 2014; Mellander et al., 2012; Outram
et al., 2014; Owen et al., 2012; Wade et al., 2012). Specifically, this
framework enables an assessment of the complicating factors and in-
fluences on SS and P transfer at multiple scales (e.g., Haygarth et al.,
2012); and, the interaction between catchment structure, connectiv-
ity, and pathway dominance under varying environmental condi-
tions (Bilotta et al., 2007, 2010; Bracken et al., 2014).

Such information is valuable and necessary to inform mitigation
strategies for reducing diffuse water pollution from agriculture
(DWPA) in the UK (McGonigle et al., 2014). The development of a
solid evidence base prior to the implementation of mitigation mea-
sures is required to: a) determine the effectiveness of control mea-
sures (e.g., Wilkinson et al., 2014); b) assess the cost-effectiveness
of resource allocation (e.g., Posthumus et al., 2013); and c) enable re-
liable and transparent decisions to be made about future catchment
operations (Collins et al., 2012).

In this present study, high resolution hydro-meteorological, SS
and P data collected during a range of low and moderate magnitude
runoff events over one year are analysed to determine the intra-
storm hysteresis dynamics of SS, TP and TRP concentrations. Analysis
of the environmental factors associated with observed pollutant dy-
namics is conducted using factor analysis (FA) which incorporates a
suite of environmental variables representing the event storm condi-
tions and antecedent hydro-meteorological conditions. The aim of
this analysis is to extract fundamental information describing the
transport pathways and pollutant dynamics of the system, providing
the basis for examining the key components driving the transfer of
SS and P at multiple scales across a small agricultural catchment in
the UK.
2. Materials and methods

2.1. Study area

This research was conducted in the upper reaches of the Newby
Beck sub-catchment of the River Eden, NW England, UK (Fig. 1).
Newby Beck is a predominantly upland catchment with moderate
slopes (7.4%) and a mean elevation of 234 m. The catchment is un-
derlain by steeply dipping, fractured limestone and sandstone units
with interbedded siliciclastic argillaceous rock of the Carboniferous
period. The soils draining the headwaters in the south of the catch-
ment are well drained, locally deep, fine loamy soils with slowly per-
meable and seasonally wet acid loamy and clayey soils through the
middle reaches, moving towards slowly permeable, seasonally wa-
terlogged reddish fine and coarse loamy soils in the north of the
catchment (Cranfield University, 2014). The catchment was desig-
nated as a priority under the England Catchment Sensitive Farming
Delivery Initiative (ECSFDI) to reduce diffuse water pollution
resulting from farming activity. Improved grassland dominates the
catchment (76% by area), along with acid grassland (10%) and arable
land (6%), with 2.88 livestock units (LU) ha−1 (cattle and sheep).
The average Olsen P concentration from across 38 fields (14%
of catchment) is 23.6 mg kg−1 (σ = 9.9 mg kg−1) with a range of
8–46 mg kg−1. The climate of this region is cool temperate maritime
with a long-term average rainfall of 1187 mm (σ = 184 mm) (Met
Office, 2009). The catchment responds relatively rapidly with a
time-to-peak of 3 h (Houghton-Carr, 1999) and the standard per-
centage runoff (SPR) is estimated to be 35% based on the Hydrology
of Soil Types (HOST) classification.



Fig. 1. a) Regional map showing the location of the Eden and Newby Beck catchments, coloured green and blue respectively. b) Detailed map of the Newby Beck catchment. Locations of
rain gauges are represented by red points, the weather station is coloured purple and in-stream water quality stations are coloured green. Contour intervals are 20 m.
© Crown Copyright/database right 2014. An Ordnance Survey/EDINA supplied service.
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2.2. Research design

This study utilises the River Eden Demonstration Test Catchment
(DTC) research platform (cf. Owen et al., 2012). The DTC programme
was implemented to inform policy and practical approaches for the
Table 1
Description of the characteristics for each of the monitored sub-catchments of the Newby Beck

Sub-catchment A

Monitoring location (WGS 1984) 54°34′13.5″N 2°38′54.2″W

Catchment area (km2) 2.2
Mean elevation (m AOD) 261.03
Catchment average slope (m m−1) 0.0600
Geology (as % of area)

Limestone 51.43
Limestone + shales 48.47
Sandstone + shales 0.00

Soil drainage (as % of area)
Well drained 25.47
Seasonally wet 74.53
Seasonally waterlogged 0.00

Major land-use units (as % of area)
Improved grassland 65.35
Acid grassland 17.88
Arable 9.66
Woodland 4.69
Other 2.42

Average Olsen P (mg kg−1) –

Standard percent runoff (%) –

Time to peak (hours) –
reduction of DWPA and the improvement of ecological status in fresh-
waters, whilst maintaining economically viable food production
(McGonigle et al., 2014). The Newby Beck catchment consists of three
hydro-meteorological monitoring stations distributed across the catch-
ment (Table 1), with in-stream monitoring stations located at strategic
catchment.

Sub-catchment B Outlet (C)

54°34′00.2″N 2°37′29.0″W 54°35′07.3″N 2°37′12.2″W

3.8 12.5
275.49 234.22
0.0825 0.0746

54.15 50.80
45.85 49.00
0.00 0.20

69.02 20.12
30.98 65.69
0.00 14.19

82.89 76.42
12.53 9.84
1.25 6.16
2.70 2.36
0.63 5.22
– 23.6
– 35
– 3
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points to effectively partition the catchment into two sub-catchments:
(A) 2.2 km2, and (B) 3.8 km2, with the outlet monitoring station
(C) draining an area of 12.5 km2.

2.3. Instrumentation and sampling

2.3.1. Hydrometeorology
The catchment was equipped with an Environmental Measurement

Limited (EML) Automatic Weather Station (AWS), logging rainfall
(mm), air temperature (°C) and net radiation (W m−2) every 15 min.
Two additional Casella 0.2 mm tipping bucket rain gauges log on an
event basis (Fig. 1). Each in-stream monitoring station was equipped
with a non-vented SWS Mini-Diver, which when corrected for atmo-
spheric pressure, recordwater level (±0.005m; i.e., b0.5% ofmaximum
gauged level) at 5minute intervals. Site specific rating-curveswere pro-
duced using river level data and the collection of flow measurements.
Velocity measurements were taken using a Valeport electromagnetic
current meter at low flows and a Teledyne RD Instruments StreamPro
ADCP during high-flows. Discharge values were calculated using the
Area–Velocity method. At peak flows, extrapolation of the rating curves
beyond the maximum gauged discharge was necessary for 2.96, 0.67
and 0.61% of the time for Stations A, B and C, respectively. This was
achieved using the Velocity Area Rating Extension (VARE) approach
(Ewen et al., 2010).

2.3.2. Water quality parameters
Turbidity probes were deployed at all three in-stream monitoring

stations to provide high-frequency surrogate measurements of
suspended sediment concentrations. Measurements were made at
fifteen minute intervals using McVan Analite 395 nephelometers
(Stations A and B) and a YSI 6600 multi-parameter sonde (Station C).
These probes were equipped with wipers, programmed to clean the
sensor at sub-hourly intervals. At Station C, P concentrationsweremea-
sured using a Hach Lange combined Sigmatax sampling module and
Phosphax Sigma analyser. The system was subjected to a weekly
cleaning cycle, with automatic calibration with a 2 mg L−1 standard
solution being performed daily. TP is determined colourimetrically
followingheating of the sample to 140 °C under pressure and being sub-
jected to persulfate digestion, whilst molybdate-reactive phosphorus
(TRP) concentrations are determined colourimetrically on an unfiltered
sample (Elisenreich et al., 1975;Wade et al., 2012). TRP is an operation-
ally definedmeasurement predominantly comprised of orthophosphate
(PO4; SRP), although readily hydrolysable P species in the sample may
also be present within this TRP fraction (Halliday et al., 2014). TP and
TRP measurements were made alternately every 15 min.

2.4. Quality control & data treatment

2.4.1. Hydrometeorology
Data from the three rain gauges across the catchment were visually

compared to detect events that were not registered by individual
stations due to malfunction. Following assurance of the data quality,
precipitation from the available stations was interpolated using an
Inverse Distance Weighting function (Ahrens, 2006). River level was
visually inspected for artificial anomalies. For short-lived erroneous
events, anomalies were removed through linear interpolation of
adjacent values (cf. Horsburgh et al., 2010).
Table 2
Comparisons made between the in-situ measurements and the laboratory derived reference sa
conducted.

Turbidity versus SSC

Station A X
Station B X
Station C X
2.4.2. Water quality
The limits of detection of the Hach Lange Sigmatax/Phosphax

systems were assessed by analysing replicate blank samples consisting
of deionised water. These ‘blanks’ were pumped through the entire
system and analysed by the Phosphax analyser. Average concentrations
of 0.009 mg L−1 for TRP and 0.02 mg L−1 for TP were observed. These
concentrations were assigned as the limits of detection for the method,
with measurements below these values being removed from the
dataset. In-situ measurements of turbidity, TP and TRP were regularly
compared with laboratory derived referencemeasurements (as defined
in Table 2). River samples were obtained for these tests using an ISCO
3700 automatic sampler. Suspended sediment concentration (SSC)
was determined using the gravimetric method (American Society for
Testing and Materials, 2000). SRP and TP concentrations were analysed
by a Konelab Discrete and a Skalar Continuous Flow analyser respectively
at the UKAS accredited National Laboratory Service. This laboratory
follows standard methodology and both instruments have a limit of
detection of 0.001 mg L−1. Preparation of the sample for SRP analysis in-
volvedpassing the sample through a0.45 μmcellulose acetatemembrane
filter to remove solids.

A linear regression model was adopted to best describe the fit
between the in-situ and reference measurements for all determi-
nants. A condition specifically imposed for the turbidity-SSC model
was that the intercept had to pass through the origin. This was cho-
sen to prevent negative prediction of SSC values at very low turbidity
levels (Perks et al., 2014). For each of the developed linear models,
the uncertainty of the regression coefficients was evaluated by
bootstrapping the residuals 10,000 times, replacing the original sam-
ple and providing detailed information about the characteristics of
the population.

2.5. Event classification and extraction

The initiation of a hydrologically significant event was defined
following partitioning of the hydrograph into base and storm flow
components based on the Hydrograph Separation Program (HYSEP)
local minimum method (Sloto and Crouse, 1996). Initial classification
of events was undertaken at the outlet, Station C. Only high flows that
were observed at both the sub-catchments were selected for analysis.
This resulted in a total of 55 events being retained, which occurred
between the 10th of May 2012 and the 14th of February 2013 (Fig. 2).
At each site, and for events with available data, an assessment of the
TP/TRP/SSC hysteresis dynamics was conducted based on the compre-
hensive account of hysteresis patterns provided by Williams (1989).

2.6. Factor analysis

The compilation of hydrochemistry and meteorology for periods
immediately prior to and during the storm events, collected across
three water quality and three meteorology monitoring stations, re-
sulted in the production of a complex, multi-dimensional dataset,
parameters, units and measurement intervals of which are provided
in Table 3. Multivariate statistical treatment of the data was used to
extract the underlying information (Singh et al., 2004). Factor analy-
sis (FA) was chosen to provide a structured and transparent method
of analysing the complex dataset. To examine the suitability of the
data for FA, the Kaiser–Meyer–Olkin (KMO) and Bartlett's sphericity
mples for eachmonitoring station. X indicates that a test between the two parameters was

In-situ TP versus lab TP In-situ TRP versus lab SRP

X X



Fig. 2.Discharge data generated fromduring themonitoring period (March 2012 toMarch 2013) at the catchment outlet (Station C). Hydrologically significant events selected for analysis
with suspended sediment and phosphorus data available are highlighted.
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tests were performed. Following calculation of the KMO measure of
sampling adequacy (MSA), individual variables with unacceptable
MSA values (b0.60) were removed following the recommendations
of Kaiser (1974). Bartlett's test of sphericity on each of the three z-
scale transformed experimental datasets produced a significance
level of zero, indicating significant relationships amongst variables.
This indicates an adequate degree of common variance, indicating
that the matrixes are factorable (Shrestha and Kazama, 2007). A
varimax rotation scheme was employed and a three-factor model
determined (Kaiser, 1958).
Table 3
Abbreviations, names and units for the variables entered into the factor analysis.

Variables Description

Antecedent conditions
P1d Precipitation total for 1 day p
P5d Precipitation total for the 5 da
P7d Precipitation total for the 7 da
P21d Precipitation total for the 21 d
Q1d Median discharge for the 1 da
Q5d Median discharge for the 5 da
Q7d Median discharge for the 7 da
Q21d Median discharge for the 21 d
Qb Base-flow discharge immedia
T1d Median air temperature for 1
T5d Median air temperature for 5
T7d Median air temperature for 7
T21d Median air temperature for 2

Event hydrology
Pt Event precipitation total
Imax Maximum precipitation inten
Qmax Maximum event discharge
Qmean Mean event discharge
QRmax Maximum rise in discharge
QRmean Mean rise in discharge
Wt Water yield

Soluble and particulate transport
SSCmax Maximum suspended sedime
SSCmedian Median suspended sediment
Sediment flux Suspended sediment flux
TP flux Total phosphorus flux
TPmax Maximum total phosphorus c
TPmedian Median total phosphorus con
TRP flux Total reactive phosphorus flu
TRPmax Maximum total reactive phos
TRPmedian Median total reactive phosph
3. Results

3.1. Performance of in-situ and surrogate measurements

The performance metrics of each of the in-situ (TRP/TP) and surro-
gate (turbidity) measurements used in this study are provided in
Table 4. These include the uncertainty of the regression coefficients for
each developed model, along with the number of calibration samples
(n) and summary statistics. It is demonstrated that turbidity is an excel-
lent surrogate for SSC, with each of the developed linear models being
Units

rior to the event mm
ys prior to the event mm
ys prior to the event mm
ays prior to the event mm
y prior to the event m3 s−1

ys prior to the event m3 s−1

ys prior to the event m3 s−1

ays prior to the event m3 s−1

tely before the event m3 s−1

day prior to the event °C
days prior to the event °C
days prior to the event °C
1 days prior to the event °C

mm
sity mm 15 min−1

m3 s−1

m3 s−1

m3

m3

hm3

nt concentration mg L−1

concentration mg L−1

tonnes
kg

oncentration mg L−1

centration mg L−1

x kg
phorus concentration mg L−1

orus concentration mg L−1



Table 4
Summary statistics of field calibrations for measurements made by turbidity probes and Phosphax analyser. Confidence intervals (CI) of themodel coefficients (a and b) are provided fol-
lowing bootstrapping of the residuals, where n = 10,000. Relationships that are significant at the 99.9% level are italicised.

Regression equation
(y = ax or y = a + bx)

Range
(mg L−1)

a
[95% CI]

b
[95% CI]

R2

Station A
Turbidity versus SSC (n = 76) y = 1.5386x 4.9–815.0 1.448–1.629 – 0.92

Station B
Turbidity versus SSC (n = 89) y = 1.1645x 3.0–778.0 0.991–1.254 – 0.72

Station C
Turbidity versus SSC (n = 108) y = 1.5655x 3.0–386.0 1.418–1.625 – 0.83
In-situ TP versus lab TP (n = 128) y = −0.0103 + 0.8649x 0.02–0.51 −0.017 to −0.004 0.838–0.89 0.97
In-situ TRP versus lab SRP (n = 129) y = −0.0055 + 0.8629x 0.07–0.20 −0.013–0.002 0.783–0.934 0.80
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highly statistically significant (P b 0.001). These site specific models
were used for calibration, with turbidity being converted to SSC. The re-
lationship between the in-situ and laboratory derived TP concentrations
is also highly significant (R2 = 0.97; P b 0.001) although the field mea-
surements typically overestimate the reference (laboratory derived)
concentrations. This is likely an artefact of different analytical
procedures and the reagents used during the in-situ analysis. However,
this does provide assurance that the Hach Lange apparatus is operating
in a stable and precise manner. An additional comparison was made
between the in-situ TRP and lab-based orthophosphate (SRP)
concentrations. Although these are essentially different determinands,
a relationship between the two may be expected given that TRP
includes SRP plus any easily hydrolysable P species. Linear regression
between the two results in a statistically significant relationship
(R2 = 0.80; P b 0.001), with the field measurements of TRP exceeding
orthophosphate concentration as expected. Interpretation of the
model coefficients suggests that the vast majority of TRP found within
this headwater catchment is of soluble reactive form (Table 4).
Table 5
Summary of factor loadings for all variables accepted for use in FA for Newby Beckmonitoring S
bold.

Variables Factor loadings for Station A F

Factor 1 Factor 2 Factor 3 F

P1d
P5d 0.92
P7d 0.94
Q1d 0.58
Q5d 0.99
Q7d 0.99
Q21d 0.57
Qb
Pt 0.71
Qmax 0.97
Qmean

QRmax 0.82
QRmean 0.88
SSCmax 0.74
Imax 0.74
Wt
Sediment flux 0.95
TP flux
TRPmax

TRPmedian

T1d 0.94
T5d 0.99
T7d 0.99
T21d 0.94
Explained variance (%) 39.62 23.23 19.90 3
Cumulative explained variance (%) 39.62 62.85 82.75 3
3.2. Factor analysis

Taking samples and variables into account, three factors explained
82.75%, 72.61%, and 74.71% of the variance for monitoring Stations A,
B and C, respectively. In order to determine the dominant variables of
each factor, loadings were computed. ‘Strong’, ‘moderate’ and ‘weak’
loadings are defined as N0.75, 0.75–0.50 and 0.50–0.30, respectively
(Shrestha and Kazama, 2007). For each of the stations, the factor
which explains the greatest variance in the dataset (i.e., factor
one) is characterised by high positive factor loadings (N0.75) for
the event storm conditions. These include variables such as the
mean and maximum discharge, rate of discharge rise, precipitation
total and the mass of suspended sediment transported during the
event (Table 5). Factor two is characterised by high positive factor
loadings for variables describing the antecedent hydrological condi-
tions prior to the commencement of the storm event. These include
the amount of precipitation over the preceding 1/5/7/21 days and
the discharge associated with these antecedent periods. The third
tations A, B and C. Only factor loadings≥0.5 are provided, with values≥0.75 presented in

actor loadings for Station B Factor loadings for Station C

actor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

0.58 0.59
0.91 0.92
0.87 0.87
0.64 0.71
0.91 0.93
0.90 0.90

0.56
0.82

1.00 0.96
0.83 0.82
0.88 0.73
0.92 0.87
0.68 0.87

0.72
0.64
0.93 0.95

0.86
0.56

0.91 0.90
0.99 0.93
0.99 0.98
0.93 0.99

0.18 25.03 17.40 34.80 25.42 14.48
0.18 55.21 72.61 34.80 60.23 74.71



Fig. 3.Distribution of events in the I–III factorial plane according to hysteresis classification for a) suspended sediment at Station A (n=29); b) suspended sediment at Station B (n=53);
c) suspended sediment at Station C (n = 45); d) total reactive phosphorus at Station C (n = 42); and e) total phosphorus at Station C (n = 45).
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factor is characterised by high positive factor loadings for variables
describing the ambient temperature over the preceding 1/5/7/
21 days. These three factors which were retained for varimax rota-
tional analysis and utilised to understand the necessary conditions
for the production of distinct hysteresis loops therefore represent:
1) event magnitude; 2) antecedent wetness; and 3) temperature.
3.3. Suspended sediment

At monitoring Station A, hysteresis patterns are almost entirely
dominated by clockwise hysteresis (86.2%; Fig. 3a). These events
are the dominant behaviour of the system and occur across the
full range of factor conditions, represented by the large standard
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deviation (σ) of factor (F) scores (s) (F1 s=0.11, σ=1.03; F2 s=0.10,
σ = 1.04; F3 s = −0.15, σ = 0.99). For 10.4% of events, figure-of-
eight with an anti-clockwise loop (A8) hysteresis is observed.
These events are characterised by negative factor one and factor
two scores (F1 s = −0.55, σ = 0.51; F2 s = −0.53, σ = 0.37),
and high factor three scores (F3 s= 0.89, σ= 0.38), demonstrating
their predisposition to occur following warm, dry periods during
low magnitude events. Anti-clockwise events are also observed
(3.4% of events) under similar conditions to that of A8 events
(F1 s = −1.20, F2 s =−0.79; F3 s = 1.29).

At monitoring Station B, within-storm sediment dynamics are again
dominated by clockwise hysteresis (86.8%; Fig. 3b), occurring across the
full range of factor score conditions (F1 s=0.10, σ=1.04; F2 s=0.01,
σ = 1.01; F3 s = −0.16, σ = 0.96). A8 events are again found to
occur infrequently (9.4%). These occur under similar conditions
to those observed at monitoring Station A; i.e., low factor one scores
(F1 s = −0.71, σ = 0.24), low factor two scores (F2 s = −0.66, σ =
0.29) andhigh factor three scores (F3s=1.26,σ=0.41). The remaining
events (3.8%) are described as having no discernible hysteresis pattern
and are characterised as having low factor one scores (F1 s =
−0.51, σ= 0.16), high factor two scores (F2 s= 1.46, σ= 1.03) and
high factor three scores (F3 s = 0.61, σ = 0.29).

Atmonitoring Station C, hysteresis patterns are varied despite clock-
wise hysteresis events being most prominent (Fig. 3c). 42.2% of events
can be described as exhibiting clockwise hysteresis, which occurs across
the spectrum of factor score conditions (F1 s = 0.59, σ = 1.10; F2 s =
0.04, σ = 1.01; F3 s = −0.14, σ = 0.98). Both A8 and anti-clockwise
events also occur in significant numbers at the outlet station, contribut-
ing to 20% and 22.2% of the total, respectively. Similarly to monitoring
Stations A and B, A8 events occur when factor one scores are negative
(s = −0.25, σ = 0.45) i.e., during low-moderate magnitude events.
However, these are also characterised by high factor three and low fac-
tor two scores, or the inverse (F2 s = 0.54, σ = 0.92; F3 s = 0.29 σ =
0.94). Anti-clockwise events predominately occur during events
characterised as having highly negative factor one and factor two scores
(F1s=−0.75,σ=0.19; F2s=−0.64,σ=0.70). The remaining events
may be characterised as exhibitingfigure-of-eightwith a clockwise loop
(C8) hysteresis (4.4%) and no discernible hysteresis pattern (11.1%).

3.4. Total reactive phosphorus

Atmonitoring Station C, thewithin-storm dynamics associatedwith
TRP are dominated by anti-clockwise hysteresis (62.2%; Fig. 3d). These
events occur across the full range of varifactor conditions with the ex-
ception of events that are characterised by a combination of high VF1
and VF2 conditions (VF1 s = −0.20, σ = 0.66; VF2 s = −0.02, σ =
0.99; VF3 s=−0.13, σ=1.01). C8 events are also frequently observed
(17.8%) and these events are characterised by high VF1 scores, although
they do occur across the full range of VF conditions (VF1 s = 0.68, σ=
1.42; VF2 s = 0.17, σ = 1.07; VF3 s = 0.19, σ = 0.90). The remaining
events are characterised as exhibiting clockwise (6.7%) or nodiscernible
hysteresis (13.3%).

3.5. Total phosphorus

Atmonitoring Station C, thewithin-storm dynamics associatedwith
TP are almost entirely dominated by anti-clockwise hysteresis (73.3%;
Fig. 3e). This is the dominant behaviour of the system and occurs across
the full range of varifactor conditions with the exception of events
which are characterised by a combination of high VF1 scores and
negative VF3 scores (VF1 s = −0.18, σ = 0.80; VF2 s = 0. 14, σ =
0.99; VF3 s = −0.01, σ = 1.03). C8 type events account for a further
13.3%, which are also not limited to specific conditions, although they
do dominate when VF1 is high (s = 0.80, σ = 1.19) and when VF3
is low (s = −0.26, σ = 0.53) i.e., moderate–high magnitude events
periods of low ambient temperature. Remaining events may be
characterised as exhibiting A8 (4.4%), clockwise (2.2%), and no
discernible hysteresis (6.7%).

4. Discussion

4.1. Suspended sediment transfer in response to temporal and spatial
constraints

Clockwise hysteresis events dominate, accounting for 86% and 89%
of events and for 96% and 99% of the sediment flux generated during
storm periods at Stations A and B, respectively. The incidence of these
events is consistent between sub-catchments, with comparable hyster-
esis responses occurring on 93% of occasions. The rapid response of SSC
to hydrological forcing implies that the SS sources are readily accessible
with the majority of SS being generated from areas proximal to the
channel (Bača, 2008; Lefrançois et al., 2007; Rodríguez-Blanco et al.,
2013). These sediment sources include: bed material (Arnborg et al.,
1967; Bogen, 1980), bank material (Langlois et al., 2005; Seeger et al.,
2004; Smith and Dragovich, 2009) and hydrologically connected areas
close to the channel which respond rapidly at the onset of a storm
(Mano et al., 2009; Reid et al., 2007). Factor analysis has illustrated
that these event dynamics have no threshold of initiation and may
occur across the full range of environmental conditions observed.

A secondary response at the sub-catchment scale, which is infre-
quently observed, is figure-of-eight hysteresis with an anti-clockwise
loop (A8). This is a result of temporary elevated SSCs on the rising
limb, followed by a period of enhanced transfer following peak
discharge. The processes producing A8 events are difficult to decipher,
although the enhanced SSC at low discharges on the rising limb of the
hydrograph is likely a result of event water prominence and more spe-
cifically, within-channel sediment sources that are readily mobilised
during the initial stages of the event (Eder et al., 2014). Such event
characteristics are likely a result of rapid remobilisation of material
deposited during the recession period of the previous event (Bull,
1997; Eder et al., 2014). Factor analysis has indicated that the occur-
rence of these events at Stations A and B is preceded by a combination
of fluvial quiescence and relatively high air temperatures. These ante-
cedent hydro-meteorological characteristics will be a principal control
of the preparatory processes operating during the relaxation period
between events, and they may govern the rate of sediment generation
and condition the system response (Bracken et al., 2014; Lexartza-Artza
and Wainwright, 2009). For example, an extended recession period
may result in the relative abundance of easily accessible within-channel
sources being present due to a lack of depletive flows (Carling, 1983;
Stutter et al., 2008; VanSickle and Beschta, 1983). Meanwhile, elevated
temperatures and high net radiation would enhance the presence of in-
stream vegetation producing a stabilising effect and efficiently trapping
fine grained material within the channel at base-flow (Cotton et al.,
2006). These characteristics may act to increase the within-channel
availability of fine sediment throughout the relaxation period, with the
subsequent storm mobilising this accumulated and easily accessible
sediment stock, triggering the initial elevated SSCs; the initial phase of
the A8 hysteresis pattern. The continued transfer of sediment through
the system on the falling limb of the hydrograph is however indicative
of a delayed contribution from an additional significant sediment source
(Eder et al., 2010).

At the catchment scale (Station C), clockwise hysteresis is still
highly important in the export of SS from the Newby Beck catch-
ment. Despite accounting for only 42% of events, they account for
75% of total flux generated during storms. Events classified as clock-
wise at Stations A and B are, however, only replicated at the outlet on
47% and 56% of occasions respectively, with an increased incidence of
A8 and anti-clockwise hysteresis at this catchment-scale. This lack of
uniformity between sub-catchments and the catchment outlet re-
flects between-scale variations in dominant processes and may re-
flect inconsistencies in sediment sources (Smith and Dragovich,



Fig. 4. An example of the divergent suspended sediment hysteresis dynamics with increasing scale over the course of a catchment-wide storm beginning on the 18th of November 2012.
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2009). An example of the between scale divergent response is pro-
vided in Fig. 4. In this instance, a storm producing 11.8 mm of rainfall
results in a catchment-wide hydrological response and the creation
of broad, clockwise SS hysteresis loops at both Stations A and B.
However, at Station C, these dynamics are not replicated, and an A8
loop is produced. This is a commonly observed variant response
throughout the time-series, representing 20% of events at the outlet
and producing 9% of the storm generated flux. Similar to Stations A
and B, these events occur during low–moderate magnitude run-off
events with their occurrence across a gradient of antecedent condi-
tions and ambient temperature (Fig. 3c).

More striking inconsistencies in the SS hysteresis patterns be-
tween scales are observed when the occurrence of anti-clockwise
hysteresis is examined. These event dynamics are extremely infre-
quently reported at Stations A and B. However, at Station C these ac-
count for 22% of the events, and 2% of the storm generated sediment
flux. The generation of these sediment dynamics is likely the result of
the dominant sediment delivery pathway being a) extensive with a
source distal to the main channel (Eder et al., 2010; Marttila and
Kløve, 2010), or b) slow-moving (Sadeghi et al., 2008). Given that
these dynamics are observed at the outlet station only, during low
magnitude events and following relatively dry antecedent condi-
tions, it is highly unlikely that contributing area expansion, the cap-
turing of headwater zones andwidespread hydrological connectivity
would result in significant contributions from distal sources (Bača,
2008; Giménez et al., 2012; Marttila and Kløve, 2010; Webb and
Walling, 1982). Rather, given the event characteristics, sub-surface
flow is anticipated to be a significant contributor to both the storm-
water discharge and, potentially, the material flux (e.g., Deasy
et al., 2009; Russell et al., 2001). Sub-surface particulate fluxes are
likely to occur following soil pipe erosion (Verachtert et al., 2011),
or detachment at the surface by raindrop impact which is subsequent-
ly delivered through soil macro-pores or sub-surface drains (Pilgrim and
Huff, 1983). Although these sub-surface processesmay be important dur-
ing low magnitude events, as storm intensity increases, additional path-
ways of sediment movement become progressively important (Sayer
et al., 2006), limiting the occurrence of anti-clockwise hysteresis events
to low magnitude runoff events.

These findings highlight the importance of spatial constraints on
controlling the dynamics of sediment transfer. As scale increases, SS
transmission is complicated by the dominance and variability of erosive
processes and connected pathways in the catchment (de Vente and
Poesen, 2005; Lexartza-Artza and Wainwright, 2011). In Newby Beck,
this spatial dependency is likely a consequence of the transition from
the relatively freely draining soils of the elevated sub-catchments to
the lower-lying, slowly permeable soils of the wider catchment, which
necessitates the increased presence of under-drainage for sustainable
agricultural production (cf. Table 1). The manifestation of this is a
small reduction in surface driven sediment transfer at the catchment
scale, and conversely, a greater incidence of slow-moving pathways,
as a result of disconnection between the surface supply–delivery
system. Furthermore, although surface pathways dominate in terms of
SS delivery at each spatial scale, there is a temporal dependency that in-
fluences the dominance of a particular pathway, especially at increasing



Fig. 5.Anexample of the anti-clockwise hysteresis dynamics exhibited for total phosphorus (TP) and total reactive phosphorus (TRP) at Station C. Fig. 5a illustrates thedelay in both TP and
TRP fluxes in the catchment, with TRP becoming less dominant during times of peak flux. Fig. 5b illustrates the magnitude of anti-clockwise hysteresis observed for TP and TRP
concentrations.
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spatial scales where catchment linkages become more complex. It is
clear that key environmental drivers alter the distribution of pollutant
pathways, with delivery of SS through shallow sub-surface pathways
during low magnitude events becoming increasingly frequent despite
transferring relatively little in terms of total flux.
Fig. 6. An example of the figure-of-eight (clockwise loop) hysteresis dynamics exhibited for to
nitude events. Fig. 6a illustrates the synchronicity of both TP and TRP fluxes in the catchment, w
concentration pulses which lead to the production of the figure-of-eight (clockwise loop) hyst
4.2. Dominant pathways of phosphorus transfer

Monitoring of TRP and TP at Newby Beck has provided new insights
into the processes responsible for their delivery in a headwater agricul-
tural catchment. In catchments dominated by ‘natural sources’, P is
tal phosphorus (TP) and total reactive phosphorus (TRP) during infrequent but high mag-
ith TRP becoming less dominant as runoff increases rapidly. Fig. 6b illustrates the timing of
eresis.
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mobilised by physical processes of erosion, with themajority of transfer
typically taking place in particulate form (Jarvie et al., 2008; Withers
and Jarvie, 2008). In Newby Beck, this particulate contribution is
secondary to the predominantly soluble TRP fraction, with a median
event ratio between TRP and TP of 0.57:1. This suggests the importance
of anthropogenically derived sources, with excess fertiliser application
possibly leading to a potential surplus of nutrient stock that is not
exhausted (Römer, 2009).

This analysis has revealed that the dominant pathways of P delivery
to the fluvial system are largely distinct to the pathways responsible for
delivering SS, with anti-clockwise hysteresis dominating both the TRP
and TP time-series of events (Fig. 3). Previous studies have inferred
these dynamics to be a consequence of point sources such as septic
tanks and dairy shed retention ponds, which continue to contribute
following the hydrograph peak (McKee et al., 2000). However, in this in-
stance, the positive relationship between discharge and P concentrations
on a seasonal and event-basis and the lack of dilution-effects does not
support this interpretation (Jarvie et al., 2008). Rather, the dominance
of anti-clockwise hysteresis provides support for a non-channel source,
with soil water being the dominant pathway (Bowes et al., 2005;
Chanat et al., 2002; Hatch et al., 1999). Although this may not be typical
of agricultural catchments (e.g., Harrington and Harrington, 2014;
Sharpley et al., 1992; Siwek et al., 2013), near-surface runoff as a conduit
for effective P transfer has been highlighted in other headwater catch-
ments, with the presence of field drains producing preferential hydrolog-
ical pathways (Dils and Heathwaite, 1999; Hatch et al., 1999; Heathwaite
et al., 2006; Heathwaite and Dils, 2000; Rhea et al., 1996; Sims et al.,
1998). This sub-surface pathway will not only enable the movement of
soluble P within the soil matrix, but also very fine colloidal material,
which may contribute significantly to the export of TP and TRP (Foster
et al., 2003; Heathwaite and Dils, 2000). Given the potential for both
particulate and soluble fractions to be effectively transported by these
sub-surface connections, a great deal of synchronicity in TP and TRP
hysteresis dynamics is observed, with 82% of the events producing
anti-clockwise hysteresis for TRP resulting in a comparable TP response
(e.g., Fig. 5). It is this shallow sub-surface component that is dominant
in over 73%of the events analysed for TP and62% for TRP. Thesepathways
are also responsible for a significant proportion of the event P flux, with
anti-clockwise hysteresis events accounting for 49% of the storm driven
P flux.

The alternate C8 hysteresis dynamics may only account for 13% of
events but they represent 25% of the storm driven P flux. The C8 pattern
is the result of P concentrations respondingmoderately at the beginning
of the event, prior to a surge in concentrations towards peak discharge
on the rising limb of the hydrograph (e.g., Fig. 6). These dynamics are
mainly observed during moderate and high magnitude events for both
TRP and TP. The threshold type behaviour observed during the rising-
limb is indicative that the factor(s) constraining the transfer of
mobilised particulate material have been overcome. In this instance,
usually disconnected depositional zones may become linked to the
fluvial networks as a result of intense rainfall across the catchment. In
these usually disconnected depositional zones, sediment can be an
important source of P (Quinton et al., 2010), which, when activated
and connected to the wider catchment can result in the transfer of
vast fluxes of P in surface water (cf. Haygarth et al., 1999). Upon rainfall
subsiding, concentrations rapidly decline as surface runoff ceases
(Siwek et al., 2013), with a secondary pulse being observed on the
falling limb of the hydrograph as P enters the river via shallow
through-flow pathways.

4.3. Implications for catchment management

This analysis provides a behavioural understanding that has im-
portant implications for reducing P and fine sediment exports within
predominantly grassland headwater catchments, with divergent de-
livery mechanisms being identified between contaminants and
across the catchment-unit. The dominant clockwise hysteresis dy-
namics for suspended sediment highlights fast, surface-water driven
delivery from areas proximal to the channel. In these agricultural
catchments, transfer of pollutants as a result of infiltration-excess
flow should be rare, however, land management practices common-
ly used in food production increase compaction and soil degradation,
enhancing its occurrence (Heathwaite et al., 2005). Where soil struc-
ture is compromised, soil resistance and function could be restored
through the use of soil aeration and sward lifters to improve soil in-
filtration. Where surface runoff pathways are driven by topographic,
or man-made features such as tracks and tractor wheelings, physical
interception is required to prevent potential sediment source areas
becoming CSAs. Decoupling of the hillslope–channel system may
be achieved by proactively disconnecting these linkages through
the creation of within field, or field edge detention areas through
the use of soil bunds, woodland buffer zones, or offline storage
ponds. These features slow and temporarily store runoff, enabling
mobilised sediment to be recaptured in strategic locations (Burt,
2001; Jordan et al., 2003; Wilkinson et al., 2014). Accessible sedi-
ment and P sources from the channel networks could also be further
reduced by fencing channels to reduce livestock access. The slow-
moving, near surface dominant pathway identified for TP and TRP
can only be addressed through a combination of improving soil con-
dition and structure to reduce the occurrence of dry cracked soils and
macro-pores; fertiliser management to reduce the source and; pro-
active interception of land-drains at their outfall within the farm
ditch system. The issue of disconnecting depositional zones that be-
come active during infrequent high magnitude events is somewhat
more troublesome and requires whole-farm planning and careful
nutrient budgeting.
5. Conclusion

Assessment of the intra-event hysteresis dynamics and factor
analysis of hydro-chemical and suspended sediment datasets for a
small agricultural catchment has provided indirect evidence of the
dominant mechanisms and pathways of SS and P transfer. At both
the sub-catchment (2.2–3.8 km2) and catchment scale (12.5 km2)
and across the complete range of antecedent and hydrological condi-
tions observed, SS is delivered to the fluvial systems predominantly
via a rapidly responding pathway close to the drainage network. At
the sub-catchment scale, figure-of-eight hysteresis with an anti-
clockwise loop is infrequently evidenced; however these are not
controlled by the event hydrology, but rather the antecedent condi-
tions and ambient temperature. This highlights the importance of
preparatory processes during the relaxation period. SS is also ob-
served to be delivered via a slow moving pathway during 22% of
events at the catchment outlet. These are low magnitude events,
during which SS is delivered to the fluvial network predominantly
via sub-surface pathways. Remarkably, P has been revealed to exhib-
it a distinct hysteresis response to that of SS. Anti-clockwise hyster-
esis dominates, accounting for 73% and 62% of events for TP and TRP.
This slow moving pathway may be atypical of agricultural catch-
ments, but represents the importance of near-surface runoff as a
conduit for P transfer. During high magnitude events however,
figure-of-eight hysteresis with a clockwise loop is observed. This
threshold-like behaviour is likely the result of the activation and
connection of usually disconnected depositional zones to the fluvial
networks which results in the transfer of vast P fluxes. The divergent
dynamics observed between contaminants across this small agricul-
tural catchment exemplifies the complexity and variability of fine
sediment and P transfer processes, highlighting the need to understand
dominant pollutant pathways and for the development of contaminant
specificmanagement plans to ensure that controlmeasures aremost ef-
fective at the catchment scale.
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High frequency variability of environmental drivers
determining benthic community dynamics in
headwater streams

M. A. Snell,*a P. A. Barker,a B. W. J. Surridge,a A. R. G. Large,b J. Jonczyk,c

C. McW. H. Benskin,a S. Reaney,d M. T. Perks,b G. J. Owen,d W. Cleasby,e C. Deasy,ad

S. Burkef and P. M. Haygartha

Headwater streams are an important feature of the landscape, with their diversity in structure and associated

ecological function providing a potential natural buffer against downstream nutrient export. Phytobenthic

communities, dominated in many headwaters by diatoms, must respond to physical and chemical

parameters that can vary in magnitude within hours, whereas the ecological regeneration times are much

longer. How diatom communities develop in the fluctuating, dynamic environments characteristic of

headwaters is poorly understood. Deployment of near-continuous monitoring technology in sub-

catchments of the River Eden, NW England, provides the opportunity for measurement of temporal

variability in stream discharge and nutrient resource supply to benthic communities, as represented by

monthly diatom samples collected over two years. Our data suggest that the diatom communities and the

derived Trophic Diatom Index, best reflect stream discharge conditions over the preceding 18–21 days

and Total Phosphorus concentrations over a wider antecedent window of 7–21 days. This is one of the

first quantitative assessments of long-term diatom community development in response to continuously-

measured stream nutrient concentration and discharge fluctuations. The data reveal the sensitivity of

these headwater communities to mean conditions prior to sampling, with flow as the dominant variable.

With sufficient understanding of the role of antecedent conditions, these methods can be used to inform

interpretation of monitoring data, including those collected under the European Water Framework

Directive and related mitigation efforts.
Environmental impact

Headwater streams are a central feature of the landscape, with their diversity in structure and associated ecological function providing a potential natural buffer
against downstream nutrient export. Assessment of these systems through their dominant biota, the phytobenthos, is critical given the key role of headwaters
within catchments. By understanding the responses of benthic diatoms to antecedent conditions we can begin to determine key physical and chemical drivers of
these communities, which could then be used to inform stream and wider catchment mitigation and monitoring efforts.
Introduction

Headwater streams, of rst and second order, drain up to 80% of
catchments yet pose daunting challenges to the assessment of
ecological status using indicator organisms,1–3 necessary for
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meeting the objectives of the European Water Framework
Directive (WFD).4 The dynamic nature of discharge in many
headwater catchments is attributed to their small catchment
areas and therefore short residence times of precipitation. This
results in frequent disturbance and resetting of community
structure by high discharge events and episodic nutrient uxes.5

To understand the biodiversity and ecology of headwater
systems it is important to recognise that the natural ow regime
of headwaters is dynamic6 and that this dynamism plays a
central role in determining and maintaining ecosystem integ-
rity.7–11 Traditional biomonitoring approaches are typically
based on single season sampling of relatively long-lived organ-
isms such as sh or macrophytes, or multi-season sampling of
invertebrates,12–15 providing only snap-shots of a community and
not capturing the natural variability that denes headwaters.
Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636 | 1629
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Fig. 1 Morland (Newby Beck) and Pow Beck catchments of the River
Eden, NW England. Black circles indicate sampling locations for
discharge, water quality and diatom communities. ©Crown Copyright/
database right 2014. An Ordnance Survey/EDINA supplied service.
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Headwater ecosystems are oen dominated by benthic
communities16 forming biolms comprising a mixture of algae
and microbial components.17,18 Foremost amongst the algae in
terms of biomass are diatoms; siliceous unicellular algae with
strong environmental affinities, which are widely used in
monitoring.19–23 Benthic diatoms have the most rapid turnover
of organisms used in stream monitoring and readily respond to
changes in discharge and nutrient availablity,24–27 making them
useful proxies of temporally-rapid ecosystem change and one of
the few that can capture the dynamics of headwaters. Under-
standing ecological sensitivities is important if adequate base-
lines are to be established from which to assess attempts to
mitigate diffuse pollution, in headwaters specically and within
wider river systems more generally.

The dynamic hydrological environment of headwaters ensures
that nutrient resources are also highly temporally variable.28,29 In
small headwater catchments, nutrients enter streams through
varied hydrological pathways,30–32 where event-driven processes
predominate, rather than the damped, baseow-inuenced
hydrological regime within larger, lowland catchments.33 This
generates considerable variability across diverse temporal scales
in nutrient concentration and nutrient availability to the benthic
community in these systems.34,35 Community structural variability
can be captured using nutrient-sensitive metrics such as the
Trophic Diatom Index (TDI).36 The TDI is an index used for clas-
sifying ecological status in the UK37 based on the ecological
sensitivity of diatoms to water quality, and especially to total
phosphorus (TP) concentration.36,38 Therefore, event-driven
discharge patterns and nutrient delivery processes are particularly
important in understanding benthic diatom community
dynamics,39 which are in a continuous mode of re-set and
response. It has long been established through temporal studies
that benthic diatom communities are a function of not only the
nutrient loading on the system but also the hydrological regime.40

Further studies41 conducted over 15 months in 12 New Zealand
gravel-bed streams have demonstrated through monthly
sampling that diatom taxonomic richness is inuenced by inter-
action between annual ood frequency and nutrient concentra-
tions. Despite these observations, understanding of the temporal
impacts of ow-nutrient transfer relationships on community
dynamics in headwaters over an extended period of time remains
limited. However, advances in monitoring technology have led to
the opportunity for near-continuous measurements of environ-
mental variables such as water chemistry and discharge42–47 to
better determine the salient drivers of ecological communities
and crucially their response period.

This paper aims to evaluate the inuence of temporal vari-
ability in discharge and TP concentration on benthic headwater
communities, and therefore the reliability of ecological status
assessments based on infrequent sampling of these organisms.
Twenty ve months of diatom community data from two
headwater streams in the River Eden catchment, England, were
investigated to address the hypothesis that, at any given point in
time, the benthic diatom community will reect the accumu-
lated effect of a critical period of antecedent temporal dynamics
in discharge and nutrient conditions. Hence, the calculated
metrics used in ecological assessments will be skewed toward
1630 | Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636
these antecedent conditions, rather than reecting the spot
water samples oen collected as part of monitoring. For the rst
time, we attempt to dene the duration of diatom community
representivity and response periods in headwater streams. This
evaluation will contribute to the interpretation of the ecological
monitoring of water quality in headwater ecosystems, and give
greater insights into diversity and species interactions that
condition the resilience and dynamics of headwater phytoben-
thos and, ultimately, down-stream function.48–50
Methods
Study area

Data were collected from two small rivers, Newby Beck (54�350N,
02�9620W) which drains the headwaters of the Morland catch-
ment, and Pow Beck (54�500N, 02�570W) which drains the Pow
catchment, with areas of 12.5 and 10.5 km2 respectively, within
the wider River Eden catchment, NW England. These sub-
catchments (Fig. 1) form part of the Defra (Department for the
Environment and Rural Affairs)-funded Demonstration Test
Catchments (DTC) programme, a catchment-scale research
platform testing measures for addressing the effects of diffuse
pollution from agriculture on stream ecosystems.42,43,47,51–54

Automatic weather stations in each catchment measure
rainfall at intervals of 15 minutes.45 Fixed monitoring stations,
designed by NWQIS and built by AT Engineering,55 are located
no more than 3 m from stream channels, adjacent to biological
This journal is © The Royal Society of Chemistry 2014
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Table 1 Rainfall and discharge characteristics for Morland and Pow
catchments over the hydrological years 2011–12 and 2012–13

Catchment Morland Pow Morland Pow

Hydrological year 2011–2012 2011–2012 2012–2013 2012–2013
Rainfall (mm) 1205 1014 1190 801
Discharge (mm) 707 498 708 500
Rainfall : runoff ratio 0.59 0.49 0.59 0.62
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sampling areas providing in situ water quality measurements. A
Hach Lange combined Sigmatax SC sampling and homogeni-
sation unit and Phosphax Sigma wet chemistry analyser, is used
to measure phosphorus concentration. A sample is taken from
the watercourse using an intake pipe located mid-stream, via a
peristaltic pump, which lls a ow cell located inside the
monitoring station. The pump runs for ve minutes every 30
minutes, allowing the ow cell to overow with stream water.
The Sigmatax draws a sample from the ow cell into a glass
chamber, where it is homogenised by ultrasonication for 3
minutes. A 10 ml aliquot of the homogenised sample is deliv-
ered to a glass cuvette inside the Phosphax Sigma. Therefore,
within the 30 minute sampling time, a single measurement of
TP is made before the ow cell is re-lled. Due to asynchrony
between pump timing and Sigmatax sampling frequency, the
Hach Lange data is reported at hourly frequency.42,44,47

Discharge measurements are derived by applying stage–
discharge relationship to 15 minute water level readings
recorded by a pressure transducer. The stage–discharge rela-
tionship was developed through the collection of manual
current metering measurements and extrapolated beyond the
gauged range using assumptions for the stage–velocity rela-
tionship and the hydrological water balance.56 To identify major
errors in the high-resolution rainfall, discharge and TP time
series, each dataset was visually assessed to identify anomalies.
Evident outliers for periods where the readings clearly demon-
strated instrument dri were removed. Missing value replace-
ment, based on averaging of neighbouring values, was
undertaken when three days or less of missing data were
observed, gaps greater than three days were le blank.

From March 2011 to March 2013 mid-monthly diatom
samples were taken from submerged stones in riffle areas (10–
15 cm water depth).57 Clean frustule suspensions were obtained
by oxidizing organic matter with hot hydrogen peroxide (30%
v/v). Permanent slides were then prepared using Naphrax high
resolution diatom mountant. Three hundred diatom valves
were identied and counted along transects at 1000� magni-
cation, under oil immersion, with a Zeiss Axioskop microscope.
Valves were identied using standard oras (primarily Kram-
mer and Lange-Bertalot, 1986, 1988 and 1991).58 Margalef Index
of community diversity was calculated for each monthly diatom
assemblage. Calculation and interpretation of TDI v3 and
Ecological Quality Ratio (EQR) followed the WFD protocol
under the classication tool DARLEQ (Diatom Assessment of
River and Lake Ecological Status).59,60 The TDI developed by
Kelly and Whitton36 and subsequently revised,61 is based on the
weighted average equation:

Xn

j¼1

aj � sj

Xn

j¼1

aj

where aj ¼ abundance of valves of species j in sample, sj ¼
pollution sensitivity of species j. Values of diatom sensitivity
range from 1 (indicating low nutrient conditions) to 5 (indi-
cating very high nutrient conditions). This equation provides
This journal is © The Royal Society of Chemistry 2014
the weighted mean sensitivity (WMS) of taxa present in a given
sample. TDI is the WMS expressed on a scale of 0–100, with
0 indicating low nutrient condition and 100 indicating high
nutrient condition. TDI is calculated as (WMS*25)-25. EQR is
calculated based on the observed TDI value for a particular river
system and that expected under reference conditions (see WFD
UK TAG (2008) for specic details).59

Daily average rainfall, discharge and TP data were used to
explore relationships with TDI and chlorophyll-a. Monthly TDI
values are based on scrapes from 5 cobbles taken from riffles
which are pooled to form a composite sample. Benthic chloro-
phyll-a measurements were taken using in situ uorometry (ISF),
through a hand-held probe, the BenthoTorch©.62 Three cobbles
were taken at random from the same riffle zones and benthic
chlorophyll-a of each was measured. Results were then averaged.
Calculations of antecedent forcing periods of TDI and ISF chlo-
rophyll-a to rainfall were based on daily averaged data over 18
months for Pow, and 25 months for Newby Beck. Daily averages
for discharge and TP for Newby Beck are based over 23 and 16
months, and for Pow 18 and 10 months, respectively. Pearson's r
statistic was calculated between monthly TDI and chlorophyll-a
againstmean discharge for Pow Beck andNewby Beck, and TP for
Newby Beck. The quasi-continuously sampled discharge and TP
data were averaged over periods from zero to 21 days.
Results

High temporal variability in the benthic communities of the two
River Eden sub-catchments was anticipated as an ecological
response to rainfall and associated discharge characteristics
(Table 1) and nutrient transfer processes. The ashy hydrolog-
ical regime is clearly revealed by the tight coupling between
daily precipitation and discharge over a 24 month period for
Newby Beck, and over a 20 month period for Pow Beck (Fig. 3).
Correlations between rainfall and discharge are signicantly
positively correlated (Newby Beck: r ¼ 0.74, p < 0.01; Pow Beck:
r ¼ 0.63, p < 0.01). TP concentrations are also signicantly
positively correlated with discharge (Newby Beck: r ¼ 0.74,
p < 0.01; Pow Beck: r¼ 0.54, p < 0.01). In Pow Beck, high TDI and
low biomass periods are generally associated with high
discharge events and corresponding peaks in TP concentration
(Fig. 3). During these periods fast growing pioneer diatom
species, such as Achnanthidium minutissimum and Amphora
pediculus, which have optimal colonisation rates on the scoured
cobble substrate, are seen to dominate up to 68% of the diatom
assemblage (Fig. 2). In spring of both years Achnanthidium
minutissimum is particularly dominant comprising more than
Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636 | 1631
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Fig. 2 Percentage assemblage dominance for (a) Morland (Newby
Beck) and (b) Pow Beck of Achnanthidium minutissimum and
Amphora pediculus and assemblage richness as calculated byMargalef
species richness. Values calculated from March 2011 to March 2013.
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50% of the diatom assemblage. Amphora pediculus becomes
dominant throughout autumn and winter. In 2011 Amphora
pediculus reaches a maximum of 27% in September, while in
2012 a maximum of 48% is reached in December (Fig. 2b).

Periods of higher biomass are generally associated with an
increase in abundance of Achnanthidium minutissimum, as
observed in May 2012, and Cocconeis placentula var euglypta, as
typied in October 2011 and September 2012. In Newby Beck,
key pioneer species also dominate community structure on an
annual cycle with Achnanthidium minutissimum dominating the
species assemblage in spring and early summer. Amphora ped-
iculus becomes dominant from September to February, reach-
ing maximum percentage abundance in December of both years
(Fig. 2a). In Pow Beck, values of Margalef species richness
demonstrated greater variation in species and assemblage
heterogeneity, ranging from 1.92 to 5.08, than Newby Beck
which ranged from 2.63 to 4.2 (Fig. 2).

Fig. 3 illustrates the monthly development of two measures
related to the headwater diatom communities, namely the
calculated TDI water quality measure and the ISF benthic
chlorophyll-a. For Newby Beck (Fig. 3a), two distinct quasi-cyclic
periods can be distinguished in the diatom community struc-
ture. TDI values, used here as a proxy for community structure,
1632 | Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636
are higher between September and February than March to
August (t (10df) ¼ �16.07, p < 0.05), with a peak in December in
both years, indicating a higher level of nutrient-tolerant taxa
and thus, more nutrient-enriched conditions. This is supported
by generally higher TP concentrations during these months.
These patterns in TDI are partly tracked by benthic chlorophyll-
a, which is used as a surrogate for benthic productivity. Within
relatively quiescent hydrological periods, e.g. January to May
2012, broadly positive relationships between benthic produc-
tivity and community structure are observed, where lower TP
concentrations and improved water quality, as inferred from
the TDI, is matched by an increase in benthic chlorophyll-a.
However, Fig. 3a demonstrates near anti-phasing of chloro-
phyll-a with TDI during high discharge episodes, such as
December 2012 and January 2013. Considerable resilience of
these diatom communities is highlighted by the stability of the
inter-monthly TDI scores against the highly variable hydrolog-
ical regime, and even the benthic chlorophyll-a. However, the
annual range of TDI values is high, spanning ‘high’ to ‘poor’
EQR status and chlorophyll-a values from 1.73 to 10.35 mg cm�2.

Similar quasi-cyclic periods are observed in the Pow catch-
ment for TDI (Fig. 3b) with TDI values indicative of poorer water
conditions from September to March in both years. While
monthly values of TDI across both Morland and Pow catch-
ments are correlated over the study periods (r ¼ 0.72, p < 0.05),
the range of TDI values in Pow (41 to 79) is less than that
observed in Morland (32 to 83). Inter-monthly variations are
again relatively small in Pow, but as in Newby Beck, the range is
signicant in terms of classication, spanning ‘high’ to ‘poor’
EQR classes. However, chlorophyll-a values range from 0.14 to
7.92 mg cm�2 in Pow Beck, which is generally lower than in
Newby Beck. Unlike in Newby Beck, there is usually an inverse
relationship between the TDI and benthic chlorophyll-a. When
values of TDI are high in Pow from October to March in both
years, benthic chlorophyll-a was seen to be less than 1 mg cm�2,
which is lower than chlorophyll-a in the Morland catchment.
Similar to Newby Beck, there is a non-signicant relationship
between water temperature and chlorophyll-a (Newby Beck:
r ¼ 0.24, p > 0.05; Pow Beck: r ¼ 0.18, p > 0.05). Clusters of high
rainfall events and associated high stream discharges correlate
with high TDI values and low chlorophyll-a, suggesting that
unlike in Newby Beck, physical rather than nutrient factors
dominate. Extreme examples of this inverse response in the
ecological community structure and function to high discharge
occurred in December 2011 and October 2012. Similarly to the
case study at Newby Beck in the Morland catchment, the resil-
ience of the communities in the Pow is evidenced by their
overall stability in key species Achnanthidium minutissimum,
Amphora pediculus and Cocconeis placentula var euglypta, and
associated productivity.

Discussion

Increases in discharge in these study catchments can occur
rapidly with timescales of hours to days, and recovery from
peaks to baseline conditions also occurs quickly (Fig. 3). Within
the Morland catchment, these ashy hydrographs are due to the
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Monitoring data from River Eden Demonstration Test Catchment outflow stations (a) Morland (Newby Beck) (b) Pow Beck for the period
2011–2013. Precipitation, discharge and TP values presented as daily averages. Monthly ecological sampling has been used to calculate the
trophic diatom index (TDI) and in situ fluorometric chlorophyll-a (and fitted with spline curve).
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steepness of the terrain and shallow soils overlying bedrock. As
clay-rich glacial till is widespread in the Pow catchment, surface
runoff can quickly be generated following rainfall. Similarly in
other catchments this ashy hydrological response has been
shown to contribute to extremely variable nutrient concentra-
tions,46,63,64 which benthic communities, with longer regenera-
tion times, must respond to. Key questions in in-stream
ecological assessment are how these benthic communities
respond and recover from event-driven disturbances, and how
sensitive they are to antecedent nutrient and discharge
conditions.

Despite the dynamic nature of the physical environment,
strong similarities in the overall structural and functional
benthic ecosystem changes in these two headwater streams are
observed. The primary control appears to be rainfall and asso-
ciated discharge, which is coherent between these geographi-
cally related sites. For both Newby Beck and Pow Beck, TDI
increases as discharge increases, indicating delivery of nutrients
to the streams during high rainfall and associated discharge
events. Conversely, chlorophyll-a values tend to be lower during
high discharge events. This is most likely a combination of high
bed shear stress scouring the biolms, probably enhanced by
sediment abrasion, and lower light levels restricting photosyn-
thesis under deep water with high turbidity levels.65–67 Our
data suggest that yearly biomass of the community can change
10-fold, whereas month-on-month community composition
This journal is © The Royal Society of Chemistry 2014
remains relatively stable within the annual cycle. The TDI does
mask some internal variation in assemblage diversity of more
specialist species, but the value is largely controlled by the ratio
of aforementioned key pioneer species that are both present and
abundant all year round in the benthic assemblage, and have the
ability to withstand changes in their habitat associated with
discharge including shear stress, light and nutrient concentra-
tion. From a community perspective, these ow related habitat
characteristics can be signicant in terms of succession
stage,68–70 with successional state having a direct result onmetric
scores and WFD classication.71

This lends to the hypothesis that at any point in time the
benthic diatom community will represent a critical time period
which reects the cumulative impact of antecedent temporal
dynamics in discharge–nutrient conditions. The continuous
water chemistry, rainfall, and discharge data collected by the
EdenDTC project enables the critical antecedent period deter-
mining the diatom community structure (using TDI as a
surrogate) and biomass (ISF benthic chlorophyll-a) to be
investigated. Fig. 4 shows that the TDI is positively correlated
with mean discharge and the strength of the correlation
increases according to the antecedent period. For Newby Beck
an initial correlation is found between TDI and mean discharge
on the day of diatom sampling (p < 0.05, r ¼ 0.54), which
strengthens to a maximum aer 18 days (p < 0.05, r ¼ 0.7).
Signicant correlations are also observed between TDI and TP
Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636 | 1633
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Fig. 4 Antecedent forcing periods of TDI. Pearson’s r is calculated
between TDI and mean discharge and TP for Pow and Newby Beck.
The continuously sampled environmental data is averaged over
periods from zero to 21 days. Curves are 3rd order polynomial
regressions. The TDI data are collected monthly over 25 months for
Newby Beck (n ¼ 25) and 18 months for Pow Beck (n ¼ 18).
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aer 15 days (p < 0.05, r ¼ 0.53), but this increases further to a
maximum aer 21 days (p < 0.05, r ¼ 0.66). A similar correlation
with discharge is observed in Pow Beck, although with lower
coefficients and a maximum is reached later (21 days; p < 0.05;
r ¼ 0.63). For Pow Beck, signicant correlations are observed
between TDI and TP between 7 and 12 days (p < 0.05, r ¼ -0.6).
Overall, this indicates that at-a-point community composition is
a product of factors related to discharge over the preceding 15–
21 days. Given the positive relationship between discharge and
TP in the Morland catchment, it is possible the relationship
between TDI and discharge is partly mediated by nutrient
concentration.

In Newby Beck and Pow Beck, a non-signicant relationship is
found between benthic chlorophyll-a and antecedent discharge–
TP conditions, thus indicating that antecedent conditions over
the preceding 21 days are not key determinands of benthic
productivity, which may be due to disturbance frequency.5 While
non-signicant relationships are observed between benthic
productivity and antecedent discharge–TP conditions, a clear
response to high discharge conditions is evident in Fig. 3. This is
consistent with community structure being dened by nutrient
supply and retention within benthic biolms,72 whereas physical
controls on productivity, especially damage to biolms through
scouring, may be expected to have a more immediate inuence.40

This analysis demonstrates that aspects of community structure
and ecological functional processes, such as chlorophyll-a
production, respond differently to antecedent discharge and
nutrient conditions, and that this may be dependent on catch-
ment specic factors such as geology and land use which may be
equally important determinands of these benthic communities
as climate.73–75

Our results conrm temporal coupling between benthic algal
biomass and nutrient concentrations in the two streams through
the monthly sampling period, although the relationship between
1634 | Environ. Sci.: Processes Impacts, 2014, 16, 1629–1636
these variables differs in its strength and direction. The near-
cyclical patterns observed in the two years of ecological data from
both Eden sub-catchments suggest that variability linked to
rainfall patterns on an almost seasonal basis is an inherent part
of these systems. Note, these are not true seasonal cycles, but
rather are linked to clusters in the incidence of precipitation and
nutrient delivery. The ability of the community to recover from
event-driven disturbances to their underlying equilibrium with
water quality implies considerable resilience.76 Moreover, sus-
tained differences in the magnitude of the TDI and chlorophyll-a
levels between Newby Beck and Pow Beck highlights the impor-
tance of catchment specic factors, as well as temporal changes
in physical and chemical variables. The two similarly sized
catchments have comparable rainfall and discharge character-
istics, yet local inuences on the stream ecology are likely,
including geology, water ow paths, residence times and most
importantly, farming practices.77–80

Due to the inherent variability of headwater streams it is
important that ecological monitoring is conducted at an
appropriate temporal resolution, and employs appropriate
community measures.81 These data imply that a single season
monitoring frequency, such as those suggested under the WFD,
is inadequate and is unlikely to give results representative of the
full annual cycle. At the other extreme, the benthic diatom
community structure will not reect single events, but rather an
accumulated average of the preceding two to three weeks of
stream physical and chemical condition. This nding is bene-
cial to studies of baseline water quality conditions and high-
lights the time-integrating property of water quality assessments
based on benthic community structure.82

Conclusion

The opportunities provided by near-continuous environmental
measurements within the DTC programme, have revealed the
time-scale of response and sensitivities of benthic ecosystems
in headwaters. The data indicate that assessment tools and
metrics developed under the WFD for lower order rivers can be
applied to headwater streams despite their dynamic nature, and
that they can discriminate nutrient pressures between catch-
ments. Nevertheless, it is essential to understand the impor-
tance of the impact of precipitation on these streams, and
therefore both climate change83 and land use management84

have to be considered in parallel when planning for the future.
Both of these factors can only be evaluated against long term
data sets and an understanding of catchment processes across
all seasons for several years. An appropriate temporal approach
of multi-annual duration that encompasses both short term
events and seasonal variability would provide particular value in
terms of informing mitigation efforts to reduce diffuse pollu-
tion. Future research should be focused on improving under-
standing of benthic community composition and productivity
in appropriate temporal frameworks, and environmental deci-
sion-making must accommodate event-driven physical and
chemical processes, as only by understanding the real-time
dynamics of headwaters can we fully understand the ecology of
these streams.
This journal is © The Royal Society of Chemistry 2014
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• The Catchment Runoff Attenuation Flux
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High resolution water quality data has recently become widely available from numerous catchment based mon-
itoring schemes. However, the models that can reproduce time series of concentrations or fluxes have not kept
pace with the advances inmonitoring data. Model performance at predicting phosphorus (P) and sediment con-
centrations has frequently been poor with models not fit for purpose except for predicting annual losses. Here,
the data from the EdenDemonstration Test Catchments (DTC) project have been used to calibrate the Catchment
Runoff Attenuation Flux Tool (CRAFT), a new, parsimoniousmodel developedwith the aim ofmodelling both the
generation and attenuation of nutrients and sediments in small to medium sized catchments. The CRAFT has the
ability to run on an hourly timestep and can calculate the mass of sediments and nutrients transported by three
flow pathways representing rapid surface runoff, fast subsurface drainage and slow groundwater flow
(baseflow). The attenuation feature of the model is introduced here; this enables surface runoff and contami-
nants transported via this pathway to be delayed in reaching the catchment outlet. It was used to investigate
some hypotheses of nutrient and sediment transport in the Newby Beck Catchment (NBC) Model performance
was assessed using a suite of metrics including visual best fit and the Nash-Sutcliffe efficiency. It was found
that this approach forwater qualitymodelsmay be the best assessmentmethod as opposed to using a singlemet-
ric. Furthermore, it was found that, when the aim of the simulations was to reproduce the time series of total P
(TP) or total reactive P (TRP) to get the best visual fit, that attenuation was required. The model will be used in
the future to explore the impacts onwater quality of different mitigation options in the catchment; these will in-
clude attenuation of surface runoff.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Catchment modelling
Diffuse pollution
Nutrient pollution
Phosphorus
Sediment transport
High resolution data
s).

ulating high frequencywater
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1. Introduction

Much research has been carried out at the field scale particularly to
investigate the cycling of phosphorus (P) and fine sediments during
qualitymonitoring data using a catchment runoff attenuation flux tool
16.01.045
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storm events and to identify generation and transformation processes
that can be deduced from observations (e.g. hysteresis patterns and
the connectivity of the riparian zone to the hillslope during runoff
events) (e.g. Halliday et al., 2014; Mellander et al., 2012; Outram et al.,
2014; Perks et al., 2015). These have been studied at different scales
from plot to catchment (b1 ha to 100+ km2) (e.g. Haygarth et al.,
2005; Bowes et al., 2003) and in different climatic conditions to attempt
to identify the transient, yet important drivers for high fluxes (e.g. ante-
cedent conditions)without usingmodels (e.g. Bilotta et al., 2007, 2010).
Models are however necessary where predictions of the effects of land
use and climate change on water quality are required (Wellen et al.,
2015).

Water qualitymodels however, have not kept pacewith the prolifer-
ation of high resolution water quality monitoring networks in the past
decade. The most widely used such as INCA, AGNPS/AnnAGNPS and
SWAT (Wade et al., 2002; Binger et al., 2011; Gassman et al., 2007) op-
erate on a daily or monthly timestep whereas observations of nutrient
concentrations are now available at intervals as short as 30 min.
Physically-based models such as SHETRAN and complex, lumped
models like HSPF (Bicknell et al., 1996) are capable of simulating sub-
daily fluxes of nutrients (e.g. from SHETRAN the Slapton nitrate study
of Birkinshaw and Ewen, 2000; and the P modelling study in Ireland
of Nasr et al., 2007)) but their data requirements are onerous in terms
of parameterizing both the physical catchment (e.g. gridded elevation
and soil property data) and the nutrient cycle (e.g. a complete represen-
tation of the nitrogen (N) and P cycles). Wellen et al. (2015) have
reviewed the performance of all the models listed above at predicting
nutrients and sediments, emphasising poor performance both in
terms of inaccurate predictions of concentrations and/or loads and sub-
standardmodelling practices (e.g. not performing a sensitivity analysis)
evenwhen running at a daily timestep. Jackson-Blake et al. (2015) have
critiqued both the performance of the INCA-P model and the methods
commonly used to assess performance (e.g. the Nash–Sutcliffe efficien-
cyNSE) as being inadequate for water qualitymodels. Beven (2009) has
also critiqued the methods commonly used to evaluate hydrological
models as not being appropriate in many cases and has encouraged a
full evaluation of model uncertainties to bemade, using the limits of ac-
ceptability as pre-defined by the modeller (e.g. Hollaway et al., this
issue).

In the European Union the Water Framework Directive (WFD)
(2000/60/EC) has prioritised the reduction of diffuse pollution of fresh-
waters from agricultural catchments (McGonigle et al., 2014). Barber
and Quinn (2012) have suggested that tackling ‘incidental’ sources of
N and P should be a priority in order to prevent high loads and concen-
trations of these agricultural pollutants entering surface water courses
unchecked. In the Eden catchment, the 2012 WFD classification data
(http://data.gov.uk/dataset/wfd-surface-water-classification-status-
and-objectives) identified that 46% of the area had achieved this status,
41% was classified as “good” and 13% as “poor” or “bad”.

Severalmitigation options have been studied in detail in terms of ei-
ther spatially targeted (engineered) features (e.g. Barber and Quinn,
2012; Wilkinson et al., 2014) to remediate hotspots and Contributing
Source Areas (CSAs; as identified by Heathwaite et al., 2005; Pionke
et al., 2000), or policies such as seasonally-implemented management
measures including winter breaks in slurry and fertiliser applications
(e.g. the closedwinter periods implemented under theNutrients Action
Programme (NAP) in Ireland, Jordan et al., 2012). An assessment has
been made of the improvements caused by these options. In terms of
the NAP this was made by soil P status testing and measuring of in-
stream water quality using bankside analysers (Jordan et al., 2012).
However, one conclusion of their study was that the “flashiness” of
the hydrology was a better predictor of the P loss during the closed pe-
riods than other more traditional measures such as soil P status and
fertiliser application rates. In terms of engineered features, preliminary
studies have identified that concentrations of NO3, P and SS have been
reduced based on observations of concentrations by constructed runoff
Please cite this article as: Adams, R., et al., Simulating high frequencywater
(CRAFT), Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.20
attenuation features: e.g. the Lady's Well feature at Belford (Barber and
Quinn, 2012; Wilkinson et al., 2014). However, further research is ur-
gently required to quantify the benefits of mitigation projects in terms
of reducing loads and fluxes at the catchment scale, although obtaining
flowmeasurements and pollutant concentrations can be problematic in
the field (Lloyd et al., 2015).

More information from models is required in order to assess their
impacts on different nutrient fluxes and pathways and to better target
mitigation strategies for nutrient and sediment reduction in the UK/
EU and elsewhere in the world. If newly developed models are capable
of successfully predicting changes to pollutant dynamics, modelling
could add value to these studies and assist in their design and imple-
mentation by predicting the number and density of mitigation features
that need to be constructed. It should then be possible to quantify the
benefits of these improvements in terms of specific land management
practices, required in order to meet specific water quality improve-
ments (e.g. WFD) at the catchment scale by reducing diffuse pollution
(McGonigle et al., 2014).

Jackson-Blake et al. (2015) have questioned how models lacking
parameter values relating to different land uses (i.e. spatially lumped)
can be applied to mitigation measures, especially given a lack of addi-
tional spatial monitoring data to assess model performance at a sub-
catchment level. The Catchment Runoff Attenuation Flux Tool (CRAFT
model; Adams et al., 2015) can explore the key concept of attenuation
(and thus buffering rates) and its impact on water quality dynamics.
Therefore, it can be used to assess the importance of attenuation on
firstly catchment fluxes, then secondly potential management options,
a feature not incorporated into the models reviewed above. The model
can then be run to test different runoff hypotheses and management
scenarios. Hypotheses testing against the robustness of time series of
data can help to indicate both the dynamics and reproducibility of pro-
cesses by a model (Jakeman et al., 2006). The model can also help to
test the data information content, perhaps leading on to further im-
provements in order to incorporate management options such as mit-
igation measures (e.g. Runoff Attenuation Features — RAFs). Lastly, the
model can indicate how these observations and impacts may be scaled
up from the plot scale (where features are installed) to the catchment
scale.

This study aims to model the delivery of fine/suspended sediment
and phosphorus concentrations in a small, intensively monitored head-
water catchment over a period of one year. This will enable: (i) the
identification of pathway(s) that contribute the major sources of TRP,
TP and SS exported from the catchment; and (ii) an examination of
the potential for land management or mitigation to reduce fine sedi-
ment and nutrient exports through pollution-swapping (cf. Adams
et al., 2015). The CRAFT model has been used in this study since:
(i) its use allows hypotheses surrounding the major flow pathways in
the catchment to be investigated; (ii) it can run on an hourly timestep
thereby capturing within-storm processes (unlike INCA-P and SWAT
which can only run on a daily timestep); and (iii) it enables the catch-
ment exports of nutrients and sediments to be disaggregated into the
amounts exported through each flow pathway (Adams et al., 2015).
Modelling flow, nutrients and sediment is a challenge at this high fre-
quency and many questions may arise from a detailed analysis of the
data. Having a model that can simulate all the flux processes simulta-
neously, using a common set of soil and hydrological parameters, is
also revealing in terms of model accuracy and structure. Both calibra-
tion and validation were performed using the continuous monitoring
dataset. The modelling will be discussed in more detail in Section 2.2.

2. Methodology

2.1. Description of case study

Weused data collected from the Newby Beck catchment in Cumbria,
NW England (the NBC) as described by Perks et al. (2015). The NBC
qualitymonitoring data using a catchment runoff attenuation flux tool
16.01.045
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forms a subcatchment of the much larger Eden catchment. The 2012
WFD classification data indicated that the NBC catchment had achieved
“moderate” ecological status and the intention is for it to achieve “good”
ecological status by 2027. It is 125 km2 in area and has continuousmon-
itoring of flow (Q) andwater quality at the catchment outlet since 2011
(Fig. 1). In addition there are two tipping bucket raingauges and one
weather station in the catchment also shown on Fig. 1 and the rainfall
data used in the study is the average of the three values from these.
Fig. 1. Base map of Newby Beck catchment showing land use, raingauges and contours (m A

Please cite this article as: Adams, R., et al., Simulating high frequencywater
(CRAFT), Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.20
Firstly in terms of land use, the catchment is 90% improved grassland
supporting intensive grazing by livestock, a mixture of dairy and beef
cattle (Outram et al., 2014), see Fig. 1. There are also areas of farmland
that are being reseeded or with feed (fodder) crops. The NBC consists
of three categories of soils. In the headwaters to the south of the catch-
ment are locally deep and well drained fine loamy soils. In the middle
reaches of the catchment there are slowly permeable and seasonally
waterlogged acid loamy to clay soils, exhibiting some degradation in
OD). Catchment outlet indicated by black star. Inset shows Eden catchment (shaded).

qualitymonitoring data using a catchment runoff attenuation flux tool
16.01.045
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structure. Finally, in the north of the catchment near the outlet there are
reddish fine and coarse loamy soils (Cranfield University, 2014). Bed-
rock consists of a mixture of steeply dipping fractured limestone and
sandstone units of the Carboniferous Yoredale group interbedded with
argillaceous rocks (shales and mudstones) of lower permeability
(Allen et al., 2010). This is overlain over most of the NBC by glacial till
deposits. The long term average annual rainfall recorded in the NBC is
1187 mm (Met Office, 2009), and the regional climate is described as
cool temperate maritime.

The continuous monitoring station at the catchment outlet mea-
sured TRP (total reactive phosphorus) and TP (total phosphorus)
using Hach Lange combined Sigmatax sampling module and Phosphax
Sigma analyser analysers at 30-min intervals (Owen et al., 2012; Perks
et al., 2015). TP incorporates all phosphorus species, whilst TRP is an op-
erationally defined measurement predominantly comprising of ortho-
phosphate (PO4; SRP) in the NBC catchment (Perks et al., 2015),
although readily hydrolysable P species in the sample may also be pres-
ent within this TRP fraction (Halliday et al., 2014).

Turbidity was measured at 15-min intervals using a YSI 6600 multi-
parameter sonde. A strong relationship (from regression analysis) be-
tween turbidity and SS (suspended sediments; collected by an
autosampler at the NBC outlet during events) was identified by Perks
et al. (2015), enabling turbidity to act as a proxy for SSCs. These data
are used for the calculation of an “observed” yield from the catchment
formodelling purposes. Loads and yields for the NBCwere also calculat-
ed from the observed TRP and TP data and are shown in Table 1. During
2011–2 themean annual TRP concentrationwas 0.041mgL−1 P and the
mean TP concentration 0.076mg L−1 P. Themean annual SS concentra-
tion calculated through regression of SS against turbidity data was
10.1 mg L−1. Perks et al. (2015) also regressed TRP against SRP concen-
trations (obtained frommanual and automatic sampling) and estimated
SRP to constitute 89% of the observed TRP concentrations. Inspection of
the observed hourly time series of TRP and TP indicated that many
peaks in concentration coincided with peaks in flow, and these events
will subsequently be termed “Type 1” and “behavioural”. Perks et al.
(2015) indicated that near streammobilisation of P would have gener-
ated these high concentrations of P during events. The information from
the hourly data will be lost if aggregated to daily mean values.

2.1.1. Hydrology
The first year of the continuous monitoring dataset commencing on

1st October 2011 was chosen over which to calibrate and run model
simulations. Analysis of the observed flows identified both dry and
wet periods during the twelve months, including runoff events in all
four seasons. Runoff (specific discharge) Q was calculated by dividing
the hourly flows by the catchment area. The total precipitation for
2011–2 was 1207 mm generating 709.5 mm of runoff (a runoff coeffi-
cient of 0.59). During the winter of 2011–2 most of this precipitation
fell as rainfall and snowwas uncommon and thewinter and early spring
were unusually dry (see Table 1 for thewater balance), so subsequently
it is referred to as “rain”. A second period of data was available for vali-
dating the model from late 2012 to early 2013. Unfortunately due to
gaps in the continuousmonitoring dataset itwasnot possible to validate
the model using a year of P concentration data. Table 1 also shows the
observed rainfall and runoff over this period which was also fairly wet
with a high runoff coefficient.
Table 1
Rainfall, flows and yields from observed data and default model (calibration and validation pe

Dataset Time period Rain (mm) Q (mm) T

Observed (2011–2) 1/10/2011–30/9/2012 1207 709.5 1
Observed (2012–3) 1/11/2012–25/2/2013b 517.1 412.0 A
Modelled (default — calibration) 1/10/2011–30/9/2012 1207 717.8 1
Modelled (default — validation) 1/11/2012–25/2/2013b 517.1 432.0 A

a SS analysis ended on 24/5/2012 due to a period of questionable observed turbidity data in
b Phosphorus analysis and modelling commenced on 1/12/2012 due to missing data in Nov
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2.2. Description of CRAFT model and scenarios

The CRAFT model is used in this study to simulate three different
runoff pathways and the associated export of sediment and nutrients
(N and P) via each. The model has been developed with the concept of
runoff attenuation (pollution mitigation) in mind enabling the effects
of altering one or multiple water/pollutant pathways on the export of
sediment and nutrients (N and P) to be determined. A schematic dia-
gram of themodel is shown in Fig. 2. There are three stores each associ-
ated with a flow pathway (see Section 2.2.1 and Fig. 2). Rainfall is the
principal factor generating surface runoff from the Dynamic Surface
store when the drainage capacity of this store (SDMAX) is exceeded by
the rainfall rate. Therefore, (i) selecting an appropriate value for this pa-
rameter and (ii) the choice of timestep (daily vs. hourly) are very impor-
tant as both of these will influence the model's performance in terms of
generating surface runoff.

Readers are directed to Adams et al. (2015) for amore detailed over-
view of the CRAFTmodel including equations for the runoff component.
A full description of themodel with equations has also been included in
Appendix A1 in the Supplementarymaterial and a description of the pa-
rameters can be found in Table 3. In this application, observed TRP
(C) data were available for comparison with the model results. Loads
are summed at the catchment outlet according to Eq. (1a), firstly for
TRP (LTRP)

LTRP ¼ QSS � CSS TRPð Þ þ QGW � CGW TRPð Þ þ KSR TRPð Þ � QSR: ð1aÞ

Secondly, the TP load (LTP) is calculated using Eq. (1b), where the
particulate P (PP) load transported by surface runoff is added to the
TRP load calculated above (here the assumption is made that the PP is
unreactive, insoluble P)

LTP ¼ LTRP þ KSR PPð Þ � QSR ð1bÞ

where QSS and CSS(TRP) are theflow and concentration of TRP in the fast
subsurface pathway respectively and QGW and CGW(TRP) are the flow
and concentration of TRP in the slow groundwater pathway
respectively.

KSR(PP) and KSR(TRP) are coefficients relating the concentration of
PP and TRP respectively in surface runoff to the instantaneous surface
runoff (QSR) assuming that a linear concentration vs. discharge relation-
ship applies. Suspended sediment (SS) loads are also calculated using
Eq. (1a) but in this case with the KSR coefficient and the concentrations
in the deep groundwater CGW and fast subsurface CSS taking calibrated
values for SS rather than P.

The CRAFT runs within a MS Excel™ interface (allowing the user to
calibrate the model manually and investigate different model struc-
tures; i.e. an “Expert” mode). The NBC was not delineated into smaller
units e.g. sub-catchments for modelling purposes, since the land use
was dominated by improved grassland (Fig. 1) and it was assumed
that a spatially lumped representation would be adequate, as has been
the case in previous applications of this model to the Frome catchment.
In the Frome application the model simulated runoff and pollutant con-
centrations at a daily time-step, thereby precluding the need to employ
a delay function with it being assumed that the flood peaks reached the
outlet (where the gauging station was located) within one day (Adams
riods), NBC 2011–3.

P yield (kg ha−1 year−1) TRP yield (kg ha−1 year−1) SS yielda (t km−2 year−1)

.41 0.52 38.2
nnual data Not Available
.27 0.54 34.9
nnual data Not Available

summer 2012.
ember 2012.

qualitymonitoring data using a catchment runoff attenuation flux tool
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Fig. 2. Schematic diagram of CRAFT model with SR attenuation store added.
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et al., 2015). For this application however, pollutants are measured at
30-min intervals and themodel was run on an hourly time step (the in-
terval of the rainfall and flow data) therefore channel routing effects
could not be ignored even in this small 12.5 km2 catchment.

2.2.1. Attenuation features of the CRAFT model
The attenuation features of themodel are associatedwith each of the

three flow pathways and are key to the performance of CRAFT. Attenu-
ation can be adjusted by themodeller in the three flow pathways by the
following:

(i) Surface Runoff — Increasing the maximum drainage rate from
the surface store SDMAX to permit more drainage to the two sub-
surface stores, and decreasing KSURF to reduce the magnitude of
the peakflows. This can represent bettermanagement of the cul-
tivated layer of the soil.

(ii) Fast Subsurface flow — Decreasing the time constant KSS to re-
duce the peak value of this flow. This can represent adding atten-
uation to the field drainage network.

(iii) Slow Groundwater flow — Decreasing the time constant KGW to
lengthen recession periods in order to store water in the subsur-
face for a longer period of time.

It was imperative that the issue associated with routing flow
through the drainage network was appropriately tackled, due to the
Please cite this article as: Adams, R., et al., Simulating high frequencywater
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potential for an incorrect choice of timestep introducing timing errors
depending on the speed of propagation of the flood wave down the
river system. It was necessary therefore to introduce an additional com-
ponent that could attenuate surface runoff (as this was identified as the
most important of the three flow pathways in terms of controlling the
runoff dynamics during events and floods).

2.2.2. Surface runoff attenuation component
Surface runoff (SR) attenuation has been achieved through the addi-

tion of a SR attenuation store, which uses a simple linear storage func-
tion to delay the surface runoff in reaching the catchment outlet based
on that used by the AWBMmodel (Boughton, 2004). Nutrients and sed-
iments that travel via the surface runoff pathway are also subject to at-
tenuation, and here the assumption is made that the same delay (i.e.
time lag) applies. The lagged surface runoff QSRLAG is calculated from
the storage in the SR attenuation store (SATT) by Eq. (2)

QSRLAG ¼ SATT � 1−KLAGð Þ ð2Þ

where KLAG is the time coefficient, representing the fraction of the SR at-
tenuation store that drains at each timestep. Clearly, a value of unitywill
never permit any surface runoff, whereas a value of zero will not gener-
ate any lag (by draining the attenuation store in one timestep which is
the model's default mode for a daily timestep e.g. Adams et al., 2015).
The store is assumed to have infinite capacity and is empty at the start
qualitymonitoring data using a catchment runoff attenuation flux tool
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of the simulation. A mass balance updates the value of SATT at the cur-
rent times (t) from the value at the previous one (t− 1)

SATT tð Þ ¼ SATT t−1ð Þ þ QSR−QSRLAG: ð3Þ

To simulate the attenuation of sediments and nutrients the same
procedure is adopted where flows are replaced by loads, e.g. LSR(PP)
representing the load of particulate P transported by surface runoff
which is defined by Eqs (1a) and (1b) (see above). The attenuation pa-
rameter KLAG can either be calibrated using the samemethod (e.g. using
a criteria such as maximising the Nash–Sutcliffe efficiency (NSE)) as the
other runoff parameters, or alternatively by visually comparing the
shapes of peaks in the observed andmodelled water quality concentra-
tion time series (i.e. “chemigraphs” and “sedigraphs”) and their timing,
as KLAG has a negligible effect on total runoff volumes or nutrient loads.
The hypotheses that firstly a lag is required and secondly that different
lagsmay apply to runoff and the differentwater quality variables will be
explored further through a series of hypothetical model simulations.

2.2.3. Runoff attenuation features
The attenuation capability of CRAFT can also beused to simulate run-

off attenuation features (e.g. swales and wetlands) that are constructed
in the catchment as part of mitigation schemes (e.g. Wilkinson et al.,
2014, Barber, 2013; Barber and Quinn, 2012; Ockenden et al., 2012).
In this case a removal (or trapping) efficiency e (for surface runoff)
has to be specified by the user based on data collected in the field
from monitoring flow and transport through mitigation features
(Barber, 2013;Ockenden et al., 2012). Fast subsurfaceflowcan be atten-
uated by decreasing the value of the KSS parameter to reduce the flash-
iness of the flow, and the flow rate can be reduced by decreasing KSPLIT,
to represent improved soil management and potentially pollution
swapping. It is assumed for modelling purposes that the surface runoff
attenuation factor KLAG is the same forflow and themodelled sediments
and nutrients, however the efficiency may vary (e.g. be higher for par-
ticulate nutrients than dissolved nutrients) if the user has sufficient in-
formation for this. The basic form of the removal rate equation where
LSR(ATT) is the load of sediment or nutrient transported by the surface
runoff pathway into the attenuation store is thus written as

LSR ATTð Þ ¼ LSR � 1−eð Þ: ð4Þ

A further publication will investigate how the field data can be used
to parameterize the values of efficiencies for N, P and sediment removal
from different types of mitigation features based on data collected from
field studies (e.g. Ockenden et al., 2012; Barber, 2013).

2.2.4. Model calibration and validation
For the manual calibration procedure used here there are 6 parame-

ters (described in Table 3) for the runoff component that require calibrat-
ing plus KLAG. These 6 are KSURF, SDMAX, SRMAX, KSPLIT, KGW and KSS (cf.
Adams et al., 2015). The water quality component uses Eqs. (1a) and
(1b) with the related parameters for P and SS described above and in
Table 3 to calculate loads, then concentrations are simply calculated by
dividing the loads by the totalflow. To simplify themodel calibration pro-
cess the ratios between KSR(TRP), KSR(PP) and KSR(SS) were assumed to
be fixed, thus reducing by two the number that require calibration. Evi-
dence from the observed concentration time series at Newby Beck outlet
of TRP, TP and SS was used to verify that this interdependence was plau-
sible (R2 values between these time series N0.7 were calculated). Perks
et al. (2015) observed that peak event concentrations of TP were gener-
ally double that of TRP as measured at the catchment outlet.

The performance metrics used to assess the simulations were as fol-
lows: (i) for runoff: mass balance error (MBE) and Nash–Sutcliffe effi-
ciency (NSE); (ii) for water quality: load error (LE), NSE (SS only);
normalised 1/RMSE; (iii) visual fit (by eye) for runoff andwater quality.
These metrics were calculated on each model time series of flow and
Please cite this article as: Adams, R., et al., Simulating high frequencywater
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concentration by the MS Excel™ interface, and the multi-criteria ap-
proach proposed by Jackson-Blake et al. (2015) was used rather than
merely depending on a single metric to discriminate between different
model runs.

Model validation was carried out using the observed data (see
Section 2.1.1). The same suite of performancemetrics was used to eval-
uate themodel as were used in the calibration procedure but themodel
parameters themselves were not adjusted.

2.2.5. Alternative model structure hypotheses
The CRAFT model was developed using the Minimum Information

Required (MIR) philosophy (Quinn et al., 2008). In principleMIRmodels
are based on the amount of information which is obtained from local-
ised and experimental studies on nutrient and sediment losses, so that
the most pertinent process components can be retained in the model.
A series of simulations were first carried out to determine single, opti-
mal parameter sets for the default structure plus each of the options
discussed below. These structures were:

(1) The default with no SR attenuation component, i.e. KLAG was set
to zero. The parameter values were optimised to give the best
fit visually to flows whilst achieving the maximum possible
NSE and smallest MBE values for flows.

(2) Using the SR attenuation component to apply a lag to the default
model simulation, and calibrating an optimumvalue of the param-
eterKLAG for predicting runoff and concentration. This is referred to
as the “lagged”model structure and the resulting simulation as the
“lagged” simulation. A sensitivity analysis on the effects of varying
KLAG on the NSE for each model output (flow and concentrations)
was carried out as part of the calibration procedure.

(3) Testing the laggedmodelwith the KSURF, KSR(PP) andKSR(TRP) pa-
rameter values set to values intended to maximise the generation
of PP and TRP in surface runoff, with the performance assessment
being primarily made visually by inspecting the time series plots
for goodness of fit (possibly at the expense of poorer NSE and
MBE/LEs). Employing the SR attenuation component was consid-
ered to be important here to “lump and route” P to the outlet,
hence this model simulation will be referred to as “LR”.

The 1/RMSEmetric was used in this study following the findings of a
full uncertainty analysis of the INCA-Pmodel by Dean et al. (2009). They
found it difficult to obtain positive NSE values for TP when simulating
the Lugg catchment, leading to the requirement for an alternativemeth-
od to the NSE metric to assess water quality model performance. This
metric has a positive value for all simulations, and its value increases
as the model error decreases (i.e. for a “best fit” a high value is desir-
able). Here it is normalised by first dividing the RMSE by the observed
mean concentration of the nutrient or sediment. Wellen et al. (2015)
also noted, from a review of several hundred modelling studies, that
the NSEs were usually lower for water quality simulations than for run-
off alone, and furthermore that the 25th percentile NSE values were
lower for TP simulations than for phosphate (SRP).

The loads of SS, TRP and TPwere also broken down by flow pathway
(surface runoff, fast subsurface and deep groundwater) to enable the
different model structures to be compared to see if there were any dif-
ferences between theflowpathways and for comparison against the ob-
served load.

3. Results

3.1. Different model structures

3.1.1. Calibration of default model
The results obtained using the default model are shown firstly for

the entire 2011–12 calibration period in Fig. 3 as time series plots of
qualitymonitoring data using a catchment runoff attenuation flux tool
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modelled and observed runoff with rainfall also shown by the blue line.
Secondly, in Fig. 4a–d the runoff (Q — 4a) and modelled and observed
concentrations (TRP — 4b, TP — 4c and SS — 4d) at the NBC outlet are
shown for August 2012 only (since this month had some interesting
events which will be further discussed below). In Fig. 3, the time series
plot of modelled and observed runoff indicates a good model fit over
most of the year with a NSE value of 0.82 (Table 2). At higher flows,
some of the peaks were under or over estimated by the model and
this can be seen more readily in Fig. 4a along with a timing error of 1–
2 h between the modelled and observed flow peaks, which generally
occur shortly after rainfall events. There was also a tendency for the
model to generate runoff after every rainfall event, where peaks were
not necessarily observed, particularly in the summer months. Perks
et al. (2015) reported that a time-to-peak of three hours had been esti-
mated from the observed runoff Surface runoff (SR) accounted for 16%
of the total runoff over the year according to the default model. The
baseflow index (BFI) according to the gauged flow record was 0.39 ac-
cording to Ockenden et al. (this issue) which is in broad agreement
with the partitioning of flows by the model (deep groundwater
accounted for 50% of the total runoff). Fig. 4 also shows daily mean
flows and concentrations for comparison with the hourly observed
data, at a daily interval most of the information is lost from the dataset
by averaging.

3.1.2. Validation of default model
The model results for the validation period are summarised in

Table 2. Additional time series plots of the modelled and observed Q,
TRP, TP and SS concentrations can be found in the Supplementarymate-
rial (Fig. 9). In summary, the results for the validation period for runoff
were almost as good as for the calibration period with only a small de-
crease in the NSE (to 0.78) and an increase in the MBE indicating that
the model was overpredicting runoff depth by nearly 5%. The perfor-
mance in terms of reproducing the observed nutrient and SS concentra-
tions (the NRMSE and NSE metrics for TRP and SS) was still acceptable,
although the load errors (for TP and SS) were higher than desirable. The
NSE values for both TRP and SS concentrations did not reduce signifi-
cantly either from those obtained during the calibration period. Inter-
estingly the NRMSE metric indicated (for Q and P) a slightly better fit
over the validation period than over the calibration period.

3.1.3. Results from alternative model structures
In order to assess visually the results obtained from the different

model structures, some additional results from these runs are shown
in Fig. 4a–d for Q, TRP, TP and SS. The parameter values, determined
by manual calibration (evaluating both the default and the alternative
model structures) are listed in Table 3. In the “LR” simulation the
KSURF parameter was increased so that SR accounted for 20% of the
total runoff. However, it was not possible to distinguish any major dif-
ferences in the runoff predictions compared to the default structure
Fig. 3.Time series plot of hourlymodelled andobserved runoff (Q) and rainfall (Rain) for entirem
references to colour in this figure, the reader is referred to the web version of this article.)
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over a 1 year period by using a graphical method alone, although
there were clear differences in the timing of the runoff peaks in the
lagged and “LR” simulations (later than in the default simulation)
which can be seen in Fig. 4a. Therefore, the performances of these alter-
native model structures (at predicting runoff) were compared against
the default CRAFT model using the metrics MBE and NSE, which are
also shown in Table 2.

The time series plots of flows, nutrient and sediment concentrations
covering August 2012 illustrate several issues with the observed data
and the different model structures. The plots in Fig. 4b and c show
that most of peaks in TRP and TP coincided with the peaks in surface
runoff (in Fig. 4a) and are thus classed as Type 1 (“behavioural”) events.
This finding supports the hypothesis that surface runoff is the major
flow pathway for P export in the NBC also proposed by Perks et al.
(2015). Visually, the simulations with a lag term applied have fitted
the observed time series of TRP and TP better than the default with no
lag, although there was still a tendency to underpredict or overpredict
some of the observed event concentrations.

In summer 2012 in particular some peaks were observed in TRP and
TP concentrations thatwere outside the predictive range of the calibrat-
ed model, thus these can be termed “non-behavioural” Type 2 events.
One Type 2 event in particular is highlighted a by red circle (in early Au-
gust 2012) in Fig. 4b and c. In this period the observed peaks in TRP and
TP concentrations were not associated with correspondingly high ob-
served runoff (and also the modelled runoff from the SR component
in the CRAFT). The “LR” simulation, which in Fig. 4b and c is shown to
generate higher concentrations of both TRP and TP, was not able to re-
produce this observed peak either. These results may also have implica-
tions for modelling the catchment in general terms and identifying the
significant flow and transport pathways. This will be discussed further
below in Section 4.2.

3.2. Load breakdown

In order to evaluate the modelled flow pathways the loads
transported by each pathway were calculated (i.e. from the time series
of flow and concentrations). These are converted to annual exports
(i.e. loads per unit area per year) to enable comparison to be made
with other studies and the observed values (shown in the top left
pane of Fig. 5 by the green bars). The observed SRP load was estimated
to be 89% of the TRP load based on data analysed by Perks et al. (2015),
and the dashed black line indicates this value. The observed total ex-
ports of TP, TRP and SS and the modelled exports from the default sim-
ulation over the calibration period are shown in Table 1. The yields of
TRP and TP exported via the three model pathways are shown in
Fig. 5 by bar charts, one from each of the different model structures.
Note that the yields from the lagged and default models were identical
so only twopanes of results are shown. Themodelled PP yields exported
by the surface runoff (SR) pathway were the largest of the three flow
odelled period 1/10/2011–30/9/2012, defaultmodel simulation. (For interpretation of the
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Fig. 4. Time series plots of Q (4a), TRP (4b), TP (4c) and SS (4d) during August 2012 indicating model predictions (red line) and observed hourly values (solid black line) from different
model structures/simulations. Red ovals on TP and TRP panes indicate Type 2, i.e. “non-behavioural” events Hourly rainfall is also shown in subpanel a by the blue line. The dashed black
lines indicate observed daily mean data (denoted by the suffix “D” in the legends). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article).
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pathways transporting P (at around 60–70% in all three simulations),
with the “LR” having the largest of all the simulations. The modelled
SS yields broken down by flow pathway from all three simulations are
not shown graphically, since the fraction transported by the SR pathway
accounted for around 70–75% of the total export from all three of the
simulations.

4. Discussion

The choice of the CRAFTmodel to simulate runoff, sediment and nu-
trient generation in theNBC has been justified by themodel results after
calibration, in this case using an hourly timestep. The MBEs of less than
±2% andNSE values of at least 0.7 in terms of predicting runoff, indicat-
ed that the performance of the model was satisfactory. In terms of
predicting P and SS concentrations, positive NSE values and LEs of less
than ±10% were also obtained from the default model structure for
SS, TP and TRP. The model is therefore suitable for assessing future sce-
narios relating to the effects of mitigation measures in the NBC catch-
ment. The model performance compares favourably with other
distributed and physically based models widely used by the nutrient
and sediment modelling community (Wellen et al., 2015). Jackson-
Blake et al. (2015) have discussed the issue of assessing water quality
model performance (specifically INCA-P) and suggested that a “weight
of evidence” approach is used that includes a visual comparison of
modelled and observed time series. They have also pointed out that per-
formance that is considered acceptable in terms of predicting flows (e.g.
a NSE N 0.65 being considered as “good”) may be difficult to achieve
when predicting P concentrations from agricultural catchments where
a much lower NSE may suffice. This study has achieved NSE values of
Please cite this article as: Adams, R., et al., Simulating high frequencywater
(CRAFT), Sci Total Environ (2016), http://dx.doi.org/10.1016/j.scitotenv.20
N0.2 for TRP and TP, N0.3 for SS vs. a NSE value of circa 0.8 for runoff,
which fits neatly into their evaluation of model performance at simulat-
ing flow, nutrients and sediments.

In terms of model validation, over a short period in winter 2012–3
the model results were evaluated and model predictions were still
very good for runoff and acceptable for P and SS. It must be stressed
that there may be unknown issues with using such a short time period
to validate the water quality component of the model. Also, there may
have been step changes in the concentration and turbidity data obtain-
ed by the bankside analysers which have not been picked up by the QA/
QC procedure. Therefore, both the observed P concentrations and tur-
bidity values (used to obtain the observed SS timeseries) may have
shifted upwards and downwards respectively. In general, validation
must be viewed cautiously when usedwith high-frequency water qual-
ity monitoring data due to these limitations and issues.

In terms of resolving the uncertainty issue, it is assumed here that
expert judgement onwhat constitutes a “best fit”model is more impor-
tant when simulating sediments and nutrients than attempting to
quantify uncertainty directly as was attempted by Hollaway et al. (this
issue) using SWAT without fully resolving the issue.

4.1. Comparison of different model structures

In terms of predicting runoff, Table 2 shows that there was little dif-
ference in the NSE and MBE values from the lagged and default model
structures and that these metrics alone do not really discriminate be-
tween these. This reflected that it was relatively straightforward to cal-
ibrate the CRAFT model to the hourly flow data and achieve NSE values
circa 0.75–0.8 bothwith andwithout a lag term.Higher NSE valueswere
qualitymonitoring data using a catchment runoff attenuation flux tool
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achievable in the default simulation (up to 0.83) at the expense of a
poorer visual fit to the hydrographs, with a tendency to underpredict
the peak runoff during events. In terms of the modelled outputs (P
and SS), Fig. 6 shows that the default model structure generally per-
formed the best out of all the model structures in terms of achieving
the best NSE and LE values with one or two exceptions that will be
discussed in Section 4.1.1.
4.1.1. Introduction of SR attenuation component
The introduction of a SR attenuation (lag) component in the CRAFT

has improved (according to the NSE values shown in Fig. 6) the predic-
tion of flow and P but has had a detrimental effect on the model's pre-
diction of SS (the NSE decreased from 0.37 to 0.3 as shown in Fig. 6).
Fig. 7 explores the attenuation feature of the model further by varying
Table 2
Performance metrics achieved by different CRAFT simulations.

Metric Modelled
variable

Modelled
(default —
calibration)

Modelled
(default —
validation)

Modelled
(lagged)

Modelled
(LR)

NSE (−) Q 0.82 0.78 0.79 0.81
TP 0.19 0.09 0.25 −1.4
TRP 0.25 0.20 0.28 −0.12
SS 0.42 0.20 0.26 0.13

NRMSE (−) TP 0.95 1.0 0.99 0.56
TRP 1.5 1.6 1.5 1.2
SS 0.44 0.43 0.39 0.36

MBE (%) Q −1.1 −4.9 −1.1 −3.8
LE (%) TP 9.7 32.7 9.7 −56

TRP −3.8 10.4 −3.8 −38
SS 6.5 −53.1 6.5 −10
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KLAG between 0.25 and 0.8 for eachmodelled variable in turn and calcu-
lating the increase or decrease in theNSE (an increase resulting in a pos-
itive y-axis value) relative to the default simulation with a zero lag. It
can be seen through the shape of the 4 different curves that each of
these variables would benefit from different optimal values of KLAG

and that TP benefitted most from a high value of KLAG with an optimal
value of 0.75 (the value chosen for the lagged model simulation).
Perks et al. (2015) analysed a series of events over 2012–3 that included
the second half of the twelve month period analysed in our study. They
found that there were different hysteresis patterns in the observed
event SS and P dynamics SS was mobilised by events with clockwise
hysteresis indicating that there were near-stream sources of sediment
that were readily mobilised by surface runoff during storms. The evi-
dence from both Fig. 4d, which shows that visually the peaks in late-Au-
gust 2012were in fact best predicted by the defaultmodel (compared to
both the lagged and “LR” models), and Fig. 7, which shows that setting
KLAG to less than 0.25 produced the highest NSE value for SS, supports
this finding and is in agreement with the findings of Perks et al. (2015).

Visually, (Fig. 4b and c respectively) the results from the “LR” simu-
lation also indicated that the transport of TP and TRP by the SR pathway
can be better modelled using this method of lumping a large load of P
into this pathway, then attenuating its transport to the outlet, rather
than restricting the routing of both TP and TRP to the outlet to take
place over a single hour. The purpose of examining the “LR” version of
the lagged model structure has also been to illustrate that the model
can better reproduce some of the “Type 1 behavioural” peaks of P exhib-
ited by the NBC using this technique. In terms of the visual fit to the TP
and TRP observed concentrations during events in summer 2012, the
“LR” simulation performed the best of the three Fig. 4b and c shows
that in August 2012 this model was able to fit the observations reason-
ably well except for one “non-behavioural” Type 2 event at the start of
the month. These results were however obtained at the expense of a
qualitymonitoring data using a catchment runoff attenuation flux tool
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Table 3
Parameter values from each CRAFT simulation “LR” denotes lumped and route model simulation.

Parameter (units) Description Default Lagged LR

SDMAX (mm h−1) Maximum drainage rate from dynamic surface store (DSS) 1.4 1.4 1.4
SRMAX (mm) Maximum storage in root zone of DSS 55 55 55
KSURF (h−1) Time constant of surface runoff from DSS 0.092 0.092 0.11
KSPLIT (−) Partitioning coefficient to determine recharge to the two subsurface stores (fraction draining from dynamic soil store) 0.4 0.4 0.4
KGW (h−1) Time constant of discharge from dynamic groundwater store 14 × 10−4 14 × 10−4 14 × 10−4

KSS (h−1) Time constant of discharge from dynamic soil store 0.06 0.06 0.06
KLAG (h−1) Time constant of discharge from surface attenuation store 0 0.75 0.75
KSR(TRP)a Slope of TRP C vs. QSR relationship used to determine CSR (TRP) 0.22 0.22 0.37
CSS(TRP) (mg L−1 P) Concentration of TRP in dynamic subsurface store 0.125 0.125 0.125
CGW(TRP) (mg L−1 P) Concentration of TRP in dynamic GW store 0.015 0.015 0.015
KSR(PP)a Slope of PP C vs. QSR relationship used to determine CSR (PP) 0.9 0.9 1.5
KSR(SS)a Slope of SS C vs. QSR relationship used to determine CSR (SS) 520 520 520
CSS(SS) (mg L−1) Concentration of SS in dynamic subsurface store 30 30 30
CGW(SS) (mg L−1) Concentration of SS in dynamic GW store 5 5 5

a Units (mg h mm−4).
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higher LE (i.e. model overprediction) compared to the default model
structure. There may be an issue here in terms of the “fitness for pur-
pose” of themodel, and the best way of obtaining a “good fit” to the ob-
served data.

Both simulations incorporating attenuation (lagged and “LR”) gener-
ated a significant delay in the time to peak (of the time series shown in
Fig. 4b–d) of several hours compared to the default simulation (where
runoff and nutrient peak concentrations were predicted to occur 1 h
after the rainfall peak). The importance of this behaviour may be that
Fig. 5. Breakdown of modelled TRP and TP yields from 2011 to 2 by different flow and transport
TP yields (top pane) for comparison. (For interpretation of the references to colour in this figu
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without any attenuation the modelled peaks in concentration are sim-
ply too “spiky” and also have been predicted to occur several hours be-
fore the observed peaks. Again, Fig. 7 shows that using the attenuation
term with KLAG N 0.25 improved the goodness of fit compared to the
“default” simulation for both TP and TRP. This delay may be due to the
anti-clockwise hysteresis patterns identified by Perks et al. (2015)
from the observed flow and concentration patterns, whichwas attribut-
ed to soil water being the dominant flow pathway (equivalent to the
fast subsurface flow pathway in the CRAFT).
pathways for eachmodel structure/simulation (bottom pane), and observed TRP, SRP and
re, the reader is referred to the web version of this article).

qualitymonitoring data using a catchment runoff attenuation flux tool
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Fig. 6. Results of comparing different model structures as assessed by (a top) load error LE (b bottom) NSE performance metrics for TRP, TP and SS predictions.
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The SR attenuation component does lower the concentrations but
does not affect the load exported. The observed SS concentrations do
not demonstrate the influence of attenuation and hence the predicted
SS concentrations do not benefit from the SR attenuation component.
The SS appears to be more dominated by ‘on–off’ dynamics that are
very sensitive to the rainfall and surface runoff rates. Suspended sedi-
ment concentrations may well be reducing in surface runoff whilst P
Fig. 7. Graph showing the effect of varying the degree of SR attenuation (KLAG) for flow (Q),
achieved by the default simulation with KLAG = 0.
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concentrations are still high in the near surface of the soil and in land
drains, as stated by Perks et al. (2015).

4.1.2. Conceptual model of P and SS dynamics
It is postulated here that surface runoff also entrains high concentra-

tions of P through runoff entering and leaving the upper soil layers that
are heavily disturbed and compacted by agricultural activities (i.e.
TP, TRP and SS. Positive values indicate an improvement in the NSE relative to the value

qualitymonitoring data using a catchment runoff attenuation flux tool
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intensive grazing and ploughing). The overall impact on catchment load
or yield of these different patterns and the model's ability to capture
them is probably less important, so calibrating the model to fit the
peak concentrations is probably the key here if it is to be a useful tool
for examining mitigation options.

Fig. 8 below shows a conceptual sketch of fluxes (flow, P and SS) ob-
served at the NBC outlet during an event. Evidence from the observed
data (TP and TRP flux time series) suggests that a peak in TRP is ob-
served after a peak in TP at the catchment outlet and it is assumed
that the flow pathways that transport TRP and SRP are identical given
no evidence to support a more complex mechanism (TRP flux is
shown by the red line). The flux timeseries of PP is also shown by the
dashed blue line and this peak is coincident with the peaks in both sur-
face runoff (QSR) (top pane) and suspended sediment (bottom pane).
The TP flux (green line) is thus the sum of the PP and TRP fluxes.

We are thus implying (in Fig. 8) that the SS dynamics are sensitive to
short bursts of fully connected surface runoff, however the P dynamics
Fig. 8. Conceptual sketch showing fluxes during an event in NBC (top: flow; middle: P;
bottom; SS). (For interpretation of the references to colour in this figure, the reader is
referred to the web version of this article).
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are not dominated by this flow pathway alone and a fast subsurface
flow pathway including land drains or grips could account for the atten-
uation shown in the TRP time series (Dils and Heathwaite, 1999) appar-
ent both in Fig. 8 and in the observed time series of concentration in
Fig. 4 from which the conceptual model shown in Fig. 8 is derived.
This “on–off” effect, generating and transporting PP and SS via surface
runoff, is sensitive to rainfall rates and generates rapid, connected sur-
face runoff (often termed “overland flow”) that may switch off and re-
infiltrate when the rainfall rate declines, hence the surface runoff be-
comes rapidly disconnected from the watercourses. Conversely should
the rainfall rates increase, near-surface flow could lead to surface runoff
restabilising and generating increased SS losses. There is assumed to be
a secondary peak in suspended sediment flux from the fast subsurface
pathway (i.e. in conjunctionwith QSS) whichmay be due to rapid drain-
age of SS through the field drainage network. Suspended sediment
fluxes via the slow groundwater pathway are assumed to be negligible.

Hence a model is needed that can capture both the “on–off” spiky
nature of surface runoff and the more attenuated subsurface pathways
for P. The data information content and current analysis do not reveal
if the P losses are occurring in the near surface of the soil or through in-
teractions with the land drains (or both). However, the soils in the area
are prone to water logging and land drains are installed to alleviate this
problem (see Dils and Heathwaite (1999) for an overview of the role of
drains in transporting P in agricultural catchment) so the two processes
are probably closely linked. The attenuation term is useful and the im-
pact on attenuation on flow concentration is strong, and may be rele-
vant to policy makers.

4.1.3. Using a suite of metrics to assess model performance
In comparing the two different metrics NSE and normalised 1/RMSE

to assess model performance, it was clear that in this study that the use
of a NSE was able to distinguish reasonably well between the perfor-
mance of the different model structures at predicting both P and SS.
The normalised 1/RMSE metric, as used by Dean et al. (2009), was less
discriminatory for TRP than the NSE metric (values were within ±16%
for TRP from the three simulations). The normalised 1/RMSE metric
could be useful though where the NSE values from all runs are negative
(aswas reported by Dean et al. (2009)), however anymodel predictions
made (using these parameter sets with NSE values below zero) will be
worse than using the observedmean as the predictor of flow or concen-
tration. Visual methods of assessing model performance at predicting
concentrations of P were also deemed acceptable alongside using met-
rics such as NSE, correlation and bias by Jackson-Blake et al. (2015),
and evidence from the results of this study suggests that using a suite
ofmodel assessmentmetricsmay be thebestmethod in theNBC aswell.

4.2. Load breakdown by pathway

The default model can generate high fluxes of P immediately follow-
ing events via the SS component (by employinghigh values of CSS(TRP))
and high concentrations and fluxes during events in surface runoff (by
employinghigh values of KSR(PP)). In “behavioural” events it is assumed
that peak Cs were positively correlated with peak flows and occurred at
approximately the same time, as was observed in the other Eden
subcatchments by Barber (2013), Mills and Bathurst (2015) and
Ockenden et al. (this issue). Both mechanisms have a plausible physical
basis in representing the wet areas of the catchment that become con-
nected to the stream channel network during and after runoff events
and have a readily mobilised source of TRP and PP (e.g. from farmyards
and hardstandings) (Outram et al., 2014). A second source of P includes
the drainage of enriched soil water via a subsurface field drain system
(i.e. a fast subsurface pathway) (Perks et al., 2015) and the entrainment
of particulate and colloidal sources of P from the degraded soil surface
and tracks (Outram et al., 2014), which is classified as a surface runoff
pathway.
qualitymonitoring data using a catchment runoff attenuation flux tool
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The modelled load breakdown (in the default simulation) of P
shown in Fig. 5 also indicated that the surface runoff pathway accounted
for 64% of the modelled TP export and 72% of the modelled SS export.
Perks et al. (2015) suggested that physical runoff interception would
be the best method of targeting the surface runoff pathway that is by
far the largest source of SS according to the model Observed TRP and
TP yields (Fig. 5 top pane) indicated that reactive P only constituted ap-
proximately 40% of the TP yield from the NBC. This indicates that there
must be a large source of unreactive P, e.g. organic P being mobilised in
the catchment which may be either particulate or soluble. Moreover,
the lag observed in the observed TRP concentration due to attenuation
could have implications when selecting mitigation options for this
catchment
4.3. Seasonality and non-behavioural events

Rainfall and runoff were fairly uniformly distributed during the
12 months in 2011–2 except for a dry spell in late winter and early
spring, with the runoff coefficient for the entire period being high
(0.59). Any seasonality in the year analysed (2011–2)wasnot especially
pronounced in terms of runoff generation. The dry spell in between
these periods may have reduced the runoff ratio somewhat in late
spring–early summer as later on during summer 2012 it was above
0.7 due to the wet conditions. There were also at least two Type 2
non-behavioural events observed during summer 2012. These events
were not significant in terms of TRP and TP export as the flows during
the events were fairly low. The relatively high observed P concentra-
tions (TP: 1.0 mg L−1 P, TRP: 0.35mg L−1 P) were likely a result of ran-
domagricultural activities in the catchment, which could be either point
sources e.g. wash-down operations at dairy farms and piggeries, or dif-
fuse sources such as badly-timed applications of slurry to the fields, and
as such are almost impossible to model. Suspended sediment also ex-
hibited a correspondingly high C peak in early August (Fig. 4d) that
was not reproduced by the model, which supports the hypothesis that
slurry applications may have been the cause (Ockenden et al., this
issue).
4.4. Comparison with other studies

A previous study of sediment export in the Eden catchment by
Mills and Bathurst (2015) found that the subcatchments monitored
by the CHASM project exported between 4 and 73 t km−2 y−1 of SS
with no clear relationship between size and yield. In comparison
with their findings, the SS export of 38.2 t km−2 y−1 (for the entire
12 month period) from the NBC (calculated from this study) was
similar, when compared to a subcatchment of a similar size to
Newby Beck (Helm Beck; 18 km2: 46 t km−2 y−1), but higher than
the export from Swindale Beck (16 km2: 26 t km−2 y−1). The authors
suggested that sediment yield varied considerably between the
smaller subcatchments in the Eden due to heterogeneity in the
rates of both sediment supply and transport.

Barber (2013) analysed a dataset comprising both TP and SRP sam-
ples collected by grab and automatic sampling (autosamplers) from
the same Eden subcatchments monitored by the CHASM project. The
mean export of TP from the upper Eden catchment was
42.4 kg km−2 y−1, and the export of SRP was 14.5 kg km−2 y−1.
These totals were calculated for the period 2010–2011. The export
rates from the 9 km2 Blind Beck subcatchment were the highest out of
all the subcatchments, with the 2011 totals being higher than 2010
(precipitation was higher at 1429 mm versus 779 mm in 2010). The
NBC was not included within the nested CHASM subcatchments, how-
ever it has exported similar amounts of TP, TRP and SS for the period
analysed here (Table 1) probably due to having similar land uses, soils
and climate.
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5. Conclusions

The NBC catchment in the upper Eden, NW England has been inten-
sively monitored since 2011 with the objective of understanding nutri-
ent and sediment pathways and transfer, with the ultimate aim of
developing and field testing strategies to reduce diffuse pollution via
mitigation. Export rates of P and sediments (SS) over the 12 months
fromOctober 2011were not especially high compared to previous stud-
ies in the upper Eden catchment, where land use and climate are similar
to this one, a dry spell in late winter may have contributed to this.

Modelling of this dataset is important in order to assess the impact of
future mitigation plans on sediment and nutrient export. For this pur-
pose the CRAFT model has been evaluated. The hypothesis testing re-
ported above indicated that the default CRAFT model structure is
appropriate at simulating both flow and water quality in the NBC for
most applications, but with some drawbacks in terms of phosphorus
(P) simulation in particular due to in-stream routing effects. Water
quality models are often assessed in terms of their performance at
predicting loads, and also over a daily or even longer time period rather
than by using hourly concentration data. In this study we showed that
concentration data could also be acceptably reproduced by the CRAFT
model using an hourly timestep, which has rarely been reported else-
where by modelling studies.

Any seasonality over the 12 month period assessed in the NBC was
not particularly evident as runoff was generated at all times of the
year. The continuous monitoring of nutrients using bankside analysers
has identified that there was probablymore than one occasion (in sum-
mer 2012) when farming activities may have generated peak P concen-
trations that appear to be outside the predictive range of the default
CRAFT model structure. This assumes that high concentrations of P
and SS are generated from high surface runoff rates using a linear rela-
tionship between Q and C which may not always hold true, and this
could be enhanced in future versions of the model if the observations
support a more complex relationship.

We assessed a revised version of theCRAFTmodel structure incorpo-
rating a surface runoff attenuation component (i.e. lag) to delay the
peaks in flow and concentrations (of P and SS) in reaching the outlet.
These results were interesting. The revised model structure produced
better results for flow than the default model in terms of the visual fit
to the data (assessed via time series plots) since timing errors were ad-
dressed, however the NSE reduced slightly. In terms of modelling both
TP and TRP, a better fit was achieved by adding attenuation to the
model. A further model simulation, including attenuation, termed LR
(standing for “lump and route”) generated much higher concentrations
of both PP and TRP during runoff events and then routed these to the
outlet using the attenuation component. The results obtained from
this simulation were acceptable in terms of matching the peak TP and
TRP concentrations visually, but as a result overpredicted the TP export
from the NBC by 56%.

For simulating the future effects of mitigation features however, the
attenuation capabilities of the CRAFT model will be highly useful and
should be testedwith awide range ofmodel parameter values including
those obtained from the LR simulation. The attenuation of both surface
runoff and fast subsurface flow should be considered as a result of these
features introducing a lag to the system and also if improved farming
practices have resulted in a decrease in surface runoff due to improved
soil conditions. These measures will be required if the catchment is to
achieve “Good” ecological status by 2027 as targeted. A conceptual un-
derstanding of both hydrology and diffuse pollution (sources and path-
ways) points towards improved management regimes. It is important
that water quality models are transparent to end users and can be ap-
plied to the assessment of mitigation measures and the effect of pollu-
tion swapping (changing the dominant flow pathways) in the
catchment. The breakdown by (modelled) load pathways in theNBC in-
dicated that surface runoff will transport up to 90% of SS and 60% of P
making this the key pathway that needs to be targeted by mitigation
qualitymonitoring data using a catchment runoff attenuation flux tool
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measures in this particular catchment. A further study will examine the
use of the extended attenuation capabilities of the CRAFTmodel to sim-
ulate the behaviour of these mitigation features in the NBC.
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