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ABSTRACT 

Fuels such as hydrogen, produced from renewable resources and efficiently 

utilized in environment friendly fuel cells are crucial to long term energy 

security. However, the lack of cost-effective catalysts, with a performance 

similar to that of platinum, is a major obstacle to the development of the fuel 

cell technology. This work researched cheap and environmental friendly 

oxygen reduction catalysts, based on carbon, which can replace platinum for 

oxygen reduction reaction (ORR) in the cathode of alkaline and microbial fuel 

cells. Nitrogen doped mesoporous carbon was prepared by pyrolyzing 1,2-

diaminobenzene  in a template of highly ordered mesoporous silica (KIT-6) at 

700, 800 and 900 oC.  Manganese oxides are active catalysts for ORR and as 

they are an earth abundant metal with widespread availability, this offsets a 

key drawback of the platinum group metals (PGM). A simple chemical 

deposition method (using KMnO4) and physical deposition followed by heat 

treatment (using Mn(NO3)2) was used to prepare amorphous and crystalline 

manganese oxides which were separately deposited on ordered mesoporous 

nitrogen doped carbon (OMNC) and on ordered mesoporous carbon (OMC) 

without nitrogen doping respectively. The catalysts were characterized by 

Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), 

Raman Spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and nitrogen 

adsorption-desorption.  

Cyclic voltammetry and linear sweep voltammetry (LSV) with a rotating-ring 

disk electrode (RRDE) were used for electrochemical characterisation of the 
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oxygen reduction reaction (ORR). They were also tested as cathode catalysts 

in a microbial fuel cell. The best catalysts in alkaline media (0.1 M KOH) 

were amorphous manganese oxide on OMNC and OMC. They had onset 

potentials of 1.04 V and 1.05 V (RHE); half-wave potentials of 0.83 V and 0.82 

V (RHE) respectively. This behaviour may be because the amorphous oxide 

maintained the ordered pore structure of the catalysts by depositing a thin 

coating of nanoparticle catalysts within them, thus causing a fast three phase 

reaction and excellent catalyst utilization. In the microbial fuel cell, the best 

catalysts were the amorphous MnO2 on OMC and on nitrogen doped carbon 

pyrolyzed at 900oC with equal power densities of. 
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 Introduction 

The environment, man’s principal asset, is at risk. Much of the harm comes 

from the use of fossil fuels in internal combustion engines and power plants. 

Therefore, environment friendly fuels like hydrogen, ethanol and methanol 

are being developed. However, these would require the technology of fuel cells 

if they are to replace fossil fuels for power generation at different levels. The 

emergence of market ready fuel cells is being hindered by unavailability of 

inexpensive and widely available oxygen reduction catalysts amongst other 

reasons. This is because platinum being the catalyst of choice at the moment 

is not only very expensive, it is available only in a few countries. Hence, much 

effort is going into developing alternative non-platinum group metal 

catalysts. The setbacks encountered include poor activity, expensive precursor 

materials and complex procedures that do not lend themselves to widespread 

applicability. These were addressed in the course of this work. 

The fuel cell is an electrochemical device that converts the chemical energy in 

a variety of fuels (and corresponding oxidant) directly into electricity, with 

negligible impact on the environment.  There are different types and these 

include polymer electrolyte membrane fuel cells (PEMFC), solid oxide fuel 

cells (SOFC), molten carbonate fuel cells (MCFC), and phosphoric acid fuel 

cells (PAFC)(Mugikura and Asano, 2002). The PEMFC is the most researched 

because it has the highest number of potential applications. It can be divided 

into those that use acid or alkaline electrolytes. This work would be focused 

on alkaline electrolyte PEMFCs. To produce electricity PEMFCs use 

electrocatalysts like platinum at the anode and cathode. Despite having been 

around for decades, there remains much to be improved in them especially 

with respect to costs.  A good proportion of this can be ascribed to the price of 

platinum which is used much more at the cathode than at the anode. Price 

aside, platinum is relatively very scarce, being available in limited amounts 

in a few nations. Hence, much research has gone into reducing the amount of 

platinum being used in fuel cells. However, as  rightly pointed out by James 
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et al (2011) catalyst loading reductions with platinum and platinum group 

metals (PGM) are approaching a plateau and significant cost reduction in 

catalysis must be geared toward non-PGM catalysts. Good judgment will 

require, that alternatives, which though are less active but are also less 

expensive and more abundant, be used in solving the challenges posed by the 

cost and scarcity of platinum group metals (PGM). Carbon based catalysts 

can help (Gasteiger et al., 2005). 

Carbon based catalysts lend themselves as ready alternatives being more 

abundant, more durable than and not as expensive as PGM (Kobayashi et al., 

2011). Another advantage of carbon based catalyst is their selectivity for 

oxygen reduction at the cathode. This is vital in methanol fuel cells where 

there is the tendency for methanol to cross over from the anode to the 

cathode(Janarthanan et al., 2015). The first set of carbon based catalysts 

considered prior to this time were the transition metal macrocyclic 

compounds specifically the phthalocyanines (Sen et al., 1977), non-precious 

metal chalcogenides (Feng and Alonso-Vante, 2008) non-Precious metal based 

nitrides (Charreteur et al., 2008) and electro-conductive polymers (Martínez 

Millán et al., 2009; Othman et al., 2012). It is interesting to note that most of 

these proposed alternatives contain nitrogen in one form or another. Indeed, 

the specific nature of the active sites of these alternatives has been a subject 

of debate. Nevertheless, recent findings by researchers like Kobayashi et al 

(2011), Liu et al (2011a) and Lyth et al  (2011) point to the fact that their 

oxygen reduction capability is derived from nitrogen functional groups and 

perhaps carbon.  

Therefore, recent efforts towards finding non-PGM catalysts for ORR tend to 

focus on nitrogen-doped carbons of different morphologies like carbon 

nanotubes, graphenes and ordered mesoporous carbon. Ordered mesoporous 

carbons (OMC) with high surface area and ordered pore structure would 

afford easy access of reactant molecules to active sites in addition to facile 

diffusion into and out of the pores. This is more so with the unique three-
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dimensional network of pores present in KIT-6 template used in this work 

(Maiyalagan et al., 2012a). 

Much work has been done towards producing non-PGM catalysts for ORR in 

fuel cells (Faubert et al., 1996; Xia and Mokaya, 2004; Kurak and Anderson, 

2009; Wang et al., 2010; Li et al., 2012b). However, while some fall short in 

terms of activity others are simply too expensive to implement. Two examples 

are the works of Kim et al (2011b) and Wu et al(2011). Kim and co-workers 

made use of 5,9,14,18,23,27,32,36-octabutoxy-2,3-naphthalocyanine that costs 

£125.50/100 mg, while Wu’s group used graphene oxide sheets that costs 

£260.5/g (sigma-aldrich UK; 13/03/16). 20 wt% platinum on Vulcan XC72 

costs £98.40/g (sigma-aldrich UK; 13/03/16). Some others are too laborious, 

requiring several synthesis steps to obtain the final catalyst. An example 

being the work of Bikkarolla et al (2014) who deposited manganese oxide on 

nitrogenated graphene.  

Hence, the need to develop non-PGM based catalysts which are active for 

ORR, low cost and easy to synthesize is the motivation for this research. 

The aims of this work are  

1. To develop a nitrogen doped carbon with the potential to replace 

platinum as an oxygen reduction reaction catalyst in alkaline and 

neutral media. 

2. To use this nitrogen doped carbon as a support for manganese oxide 

thus harnessing the ORR activity of these two entities. This composite 

would also be tested for ORR activity in alkaline and neutral media. 

Objectives 

1. To use KIT-6 mesoporous silica for nanocasting nitrogen doped ordered 

mesoporous carbon using different reagents as simultaneous nitrogen 

and carbon source.  Also, to optimize the pyrolysis temperature used.  
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2. To reduce the number of steps used to produce nitrogen doped carbon 

by eliminating the use of a template i.e.to employ a direct synthesis 

procedure. This should make the process less laborious and cheaper. 

3. To optimize the deposition of manganese oxides on the best nitrogen 

doped carbons using different reagents and procedures. 

4. Physical and chemical characterization of the catalysts synthesized. 

5. To test the catalysts for oxygen reduction activity and stability in 

alkaline and neutral media. 

 

The thesis is divided into the following chapters 

Chapter One – Introduction to the work 

Chapter Two – Literature Review  

Chapter Three – Methodology  

Chapter Four – Physical and Electrochemical Characterization of Ordered 

Mesoporous Nitrogen Doped Carbons used as ORR catalysts in Alkaline 

Media 

Chapter Five - Physical and Electrochemical Characterization of Manganese 

Oxides Supported on Nitrogen-Doped Ordered Mesoporous Carbons  

Chapter Six - Ordered Mesoporous Nitrogen doped carbon as catalyst and 

catalyst support in neutral media and their application in microbial fuel cells 

Chapter Seven - Conclusions  
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 Review of Literature 

2.1 Introduction   

This chapter presents a review of literature that underpins the aims and 

objective of this research. Areas covered include the theoretical aspects of the 

oxygen reduction reaction (ORR), fuel cells and the challenge of durability 

and cost, the latter being largely dependent on the cost and amount of 

platinum. Also in the chapter, ORR activity of carbon based non-platinum 

group metal (PGM) catalysts is discussed along with the progress made 

hitherto. This is followed by an explanation of nitrogen doped carbon catalyst 

and the nature of their active sites. A justification for why highly ordered 

mesoporous carbon may make a difference is thereafter presented. At the end 

of the chapter, a review is presented on the application of carbon based 

catalysts and manganese oxide catalyst in microbial fuel cells. To conclude, a 

case is made based on literature, on why this work is worth doing. 

2.2 Oxygen Reduction Reaction 

 In aqueous solutions, oxygen reduction reaction (ORR) occurs via two 

pathways. In acid electrolytes, one is the four-electron pathway from oxygen 

to water, while the other is the two-electron pathway from oxygen to 

hydrogen peroxide.  

𝑶𝟐 + 𝟒𝒆
− + 𝟒𝑯+  ↔ 𝟐𝑯𝟐𝑶          𝑬

𝒐 = 𝟏.𝟐𝟑𝑽                 eqn 2.1 

𝑶𝟐 + 𝟐𝒆
− + 𝟐𝑯+  ↔ 𝑯𝟐𝑶𝟐          𝑬

𝒐 = 𝟎. 𝟔𝟕𝑽                 eqn 2.2 

The four-electron pathway is preferred in fuel cells that use oxygen as the 

oxidant. However, because of the very high O=O bond strength (498 kJ/mol) 

its activation requires a very large overpotential. The ORR is crucial not only 

to the overall fuel cell efficiency but also to cost. According to Gasteiger et al 

(2005), sluggish ORR kinetics is the major contributor to the overpotential 

experienced in fuel cells (Figure 2-1). This ultimately leads to a reduction in 
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efficiency and increase in cost due to the higher catalyst loading employed to 

generate appreciable current.  

 

 

Figure 2-1 Effect of different voltage loss contributions on the output 

voltage of a H2/O2 fuel cell (Gasteiger et al., 2005) 

 (a) Circular symbols: 50 cm2 single-cell H2/air performance at Tcell = 80 oC (80 oC dew points, i.e., 100% 

RH) at a total pressure of 150 kPaabs and stoichiometric flows of s = 2.0/2.0. Catalyst-coated membrane 

(CCM) based on a ca. 25-mm low-EW membrane (ca. 900 EW) coated with electrodes consisting of ca. 50 

wt.% Pt/carbon (0.4/0.4 mgPt/cm2 (anode/cathode)) and a low-EW ionomer (ca. 900 EW; ionomer/carbon 

ratio = 0.8/1). 

         iR free and ƞ tx-free Ecell 

ƞ tx-free Ecell 

 Measured Ecell(Gasteiger et al., 2005) 

 50% ƞ tx-free Ecell 

 

2.3 ORR Catalysts  

So far, platinum and other platinum group metals (PGM) have proven to be 

the best catalysts for hydrogen oxidation and oxygen reduction in fuel cells.  

Therefore, much research efforts have gone into increasing their activity 

(A/mgpt) while reducing the loading (mgpt/cm2) of membrane electrode 

assembly (MEA)). The end is to reduce the cost of fuel cells especially the 
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PEMFCs because the catalyst cost contributes significantly to its not being 

market competitive. However, regarding how much activity can be extracted 

out of the PGM, researchers seem to be approaching an asymptote. This is 

well documented  in a report prepared  by James et al (2011) to track the 

advances in fuel cell technology and corresponding cost of the car fuel cell 

system. The trends observed in Figure 2-2 and Figure 2-3 are pointers to the 

fact that there is a need to explore other options. 

 

Figure 2-2 Reductions in total catalyst loading for automotive fuel cell 

systems from 2006 - 2011Source (James et al., 2011; James et al., 2012; James et al., 2014; James et al., 

2015) 

At the end of 2014, the optimized loading of platinum in automotive fuel cells 

remained at 0.153 mgPt/cm2. The amount of platinum required to produce a 

KW of power did not improve either, increasing to 0.22 gPt/KWnet at the end 

of 2014(James et al., 2015). This further confirms the fact that the reduction 

of platinum loading in fuel cell systems has peaked and further cost reduction 

measures might need to be sought with non-PGM catalysts.  

Hitherto, a means of increasing the mass activity of platinum catalysts was to 

increase its dispersion i.e. reducing particle size and increasing surface area. 
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Figure 2-3  Reduction in total platinum usage for automotive fuel cell systems from 

2006 - 2011Source (James et al., 2011) 

However, it was established by Gasteiger  (2005) that the mass activity would 

peak at a specific surface area of ca 90 m2/mgpt (Figure 2-4) which has already 

been attained.   

 

Figure 2-4  Variation in ORR mass activity, im (0.9V) with specific surface area of 

PtApt,cat 

    

 (polycrystalline Pt, Pt-black and Pt/C catalysts at 0.9 V and 60 oC determined via RDE measurements in O2 

saturated 0.1M HClO4. (20mV/s going from 0 to 1.0V)) 



9 
 

This is because the adsorption strength of OHads (which blocks active sites) 

increases as the specific surface area increases (Mayrhofer et al., 2005). 

Table 2-1 gives an appreciation of the gap that needs to be filled. 

Table 2-1 Technical targets: Electrocatalyst for transport applications 

Characteristic  Unit 2015 Status  2020 target 

Platinum group 
metal (PGM) 

total loading  

 

mg PGM /cm2 
electrode area  

 

0.13 0.125 

Mass activity A / mg Pt @ 
900 mVIR-free  

 

>0.5 0.44 

PGM free 
catalyst activity 

 

A/cm2 @ 900 
mVIR-free  

 

0.024 

  

>0.044 

Source ('Multi-Year Research, Development, and Demonstration Plan - Fuel Cells,' 2016) 

According to a US Department of Energy Report report (James et al., 2011), 

the hope for possible significant improvements lies in improving the power 

density or switching to non-platinum catalysts.  

2.4 Non-platinum ORR catalysts 

Good judgment will require, that alternatives, which though are less active 

are also less expensive and more abundant, be used in solving the challenges 

posed by the cost of platinum group metals (PGM). This is because being 

much cheaper than the platinum group metals, a larger amount can be 

applied to the electrode to make up for their reduced activity. The upper limit 

of how much can be loaded will be guided by mass transfer constraints. The 

understanding that the increased loading can make up for reduced activity 

has led to the use of transition metal containing compounds like 

phthalocyanines, porphyrins, chalcogenides and metal nitrides as ORR 

catalysts.   
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Another advantage of non-PGM catalysts is their specificity for oxygen 

reduction which is important in direct methanol fuel cells. Direct methanol 

fuel cells suffer from the challenge of methanol cross-over from the anode to 

the cathode (Yu and Scott, 2004). When platinum is used at the cathode, 

methanol cross-over can lead to a decrease in OCV of as much as 0.1V 

(Bunazawa and Yamazaki, 2009). However, non-PGM catalysts have been 

shown to demonstrate exceptional tolerance to methanol cross over 

(Janarthanan et al., 2015). Hence they would perform better than platinum in 

direct methanol fuel cells.  

Phthalocyanines and porphyrins are macrocyclic transition metal complexes 

with pyrrole as the building block. Phthalocyanines have a benzene ring fused 

to the pyrrole group to form isoindoles, as shown in Figure 2-5 and Figure 

2-6 

 

Figure 2-5  Basic structure of phthalocyanine 
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Jasinski (1964) carried out the first reported oxygen reduction in a fuel cell 

using phthalocyanines. Interestingly,  this was performed with an alkaline 

electrolyte which generally affords a more facile kinetics compared with acid 

electrolytes (Ramaswamy and Mukerjee, 2011).  Zagal (1992) Chen et al 

(2009) and Morozan et al, (2011) are amongst several researchers who have 

investigated the use of phthalocyanines and porphyrins for ORR. Most of 

them proposed that the ORR activity is a function of the conjugated transition 

metals like Fe and Co present within the macrocycle.  

 

 

Figure 2-6 Basic structure of porphyrin 

However, a number of researchers have also proposed that the nitrogen 

present in the macrocyle and not the metals are responsible for ORR activity. 

Among them is Kobayashi et al (2011)who in a well-structured experiment 

probed the electronic structure and coordination number of cobalt in 

pyrolyzed CoPc both before and after acid washing. The acid washing helped 

to remove ca 40% of the total quantity of cobalt which ironically gave rise to a 

slight improvement in the electrochemical properties of the catalyst. In 

addition, analysis revealed that the cobalt in the pyrolized CoPc consisted of 

metallic and not oxidized cobalt, which do not contribute significantly to ORR 
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activity.  Hence, they concluded that the ORR activity of the catalysts comes 

from carbon and nitrogen, not the residual Co atoms in pyrolyzed CoPc. The 

group also carried out a similar research on FePc (Kobayashi et al., 2012) 

which threw up the same conclusion, namely that the conjugated metals were 

converted to the metallic states after pyrolysis. According to Toda et al (1999)  

and Bashyam and Zelany (2006), metals in their metallic states do not exhibit 

significant ORR activity. Remarkably, the conversion of the conjugated 

metals to their metallic state was also confirmed in the work carried out by 

Faubert et al (Faubert et al., 1996). Their XRD analysis confirmed that the Fe 

and Co in the catalysts (porphyrins being starting material) were present in 

their metallic state. The TEM analysis also revealed that most of the metals 

were coated in a graphitic layer exactly as was shown by Kobayashi et al.  

These two references establish that Fe and Co in porphyrins and 

phthalocyanine are converted to the metallic state after pyrolysis. Therefore, 

nitrogen and carbon are responsible for the ORR activity exhibited by 

macrocyclic compounds like phthalocyanines and porphyrins after pyrolysis.  

Much of the argument for or against the metal centre being the active site 

seems to revolve around the nature of the metal after pyrolysis. Nevertheless, 

the fact remains that without the metal centres, nitrogen doped carbons have 

proven to be active for oxygen reduction reactions. 

2.5 Nitrogen Doped Carbon as ORR Catalysts 

The possibility of replacing carbon atoms in a sp2 structure with nitrogen 

atoms (Figure 2-7) has opened up many areas of application for nitrogen-

doped carbons.  
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Figure 2-7  Schematic of various nitrogen moieties in N-doped 

graphene(Niwa et al., 2011) 

(Blue- N2; white-H2; red-O2; grey-C) 

This includes the possibility of modifying their mechanical, electronic and 

chemical properties (Terrones et al., 2004). The ORR activity of N-doped 

carbons is one of such.  Two major methods used in preparing nitrogen doped 

carbon materials are  

i. The pyrolysis of nitrogen containing carbon precursors like 

phenylenediamine (Lu et al., 2003; Xia and Mokaya, 2004; Liu et al., 

2010a). Nitrogen containing carbon precursors are heated at 

temperatures between 600 and 1050 oC under an inert atmosphere. 

This results in conversion into ORR active nitrogen moieties (Figure 

2-7) specifically the pyridinic and quaternary structures. Stanczyk et al  

(1995) with the aid of X-ray Photoelectron Spectroscopy (XPS) analysis 

elucidated the transformation of nitrogen functionalities during 

carbonization of nitrogen containing carbon materials between 400 – 

800 oC. They discovered that pyridinic structures possess a greater 

stability than pyrrolic ones with an increasing ratio of pyridinic to 

pyrrolic nitrogen as temperature increases.  As the calcination 

temperature is increased further (ca 800 oC) both are converted to 
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quaternary or graphitic nitrogen. A significant outcome from their 

work is that similar nitrogen structures are obtained (although in 

different ratios) after calcination at 800 oC, irrespective of nitrogen 

functionality of the starting material.   

ii. The second means of preparing n-doped carbon involves treatment of 

carbon or carbon precursors with gaseous ammonia at elevated 

temperatures (Wang et al., 2010).This method has also proven effective 

in producing ORR active pyridinic and quaternary structures. During 

pyrolysis, ammonia decomposes to form free radicals like NH2 and NH, 

which are capable of attacking carbon structures. This can lead to 

gasification as well as the inclusion of nitrogenous functional groups 

within the structure (Stöhr et al., 1991; Rahinov et al., 2003).   Mangun 

et al (2001) carried out an investigation to find out the type of 

functional groups introduced during ammonia treatment of carbon. 

They also studied how the amount and type of functional groups 

change with treatment temperature and time.  Their results revealed 

that the treatment successfully incorporated pyridinic, quaternary and 

amide groups into the carbon structure.  A probable mechanism set 

forth was that of oxygen functional groups decomposing, thus leaving 

behind vacant sites that are attacked by the radicals. They concluded 

that substantial etching does not take place below 700 oC even though 

results from other researchers seem to contradict this (Wang et al., 

2010), perhaps this very aspect of their conclusion is specific to the type 

of carbon that was used.  

2.6 Ordered Mesoporous Carbon 

The nature of pores within any carbon material often determines its transport 

properties and structural functions. Pore sizes are categorised into three 

namely; micropores (pore dia < 2 nm), mesopores (2 nm <pore dia> 50 nm) 

and macropores (pore dia>50 nm). While micropores are known for 

maximizing surface area, they also suffer from pore blockage in the presence 

of bulky molecules. Macropores on the other hand are good for the transport 
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of bulky molecules but do not afford large surface areas. Mesopores therefore 

create a middle ground where significantly large surface areas are obtainable 

without undue pore blockage when bulky molecules are used (Shrestha and 

Mustain, 2010). Mesoporous materials have found applications in catalysis 

(Liu et al., 2010c; Salgado et al., 2010; Shresthaa and Mustaina, 2010; Slanac 

et al., 2010; Su et al., 2010; Calvillo et al., 2011; Guo et al., 2011; Li et al., 

2011; Liu et al., 2011b; Maiyalagan et al., 2012b) being that it is a surface 

phenomenon that requires the facile transport of reactants and products to 

and from active sites.  

Ordered mesoporous carbon (OMC) have an array of periodically ordered 

pores, which is dependent on the structure of the ordered mesoporous silica 

template. Generally, they also possess a large surface area, large tuneable 

pores and narrow pore size distribution (Lee et al., 2006). The periodically 

ordered array of mesopores results in a reduction in tortuosity. This enhances 

diffusion in OMCs compared with ordered microporous materials or even 

disordered mesoporous materials. 

CMK-8 is a type of OMC that is synthesized by using the ordered mesoporous 

silica (OMS) KIT-6 as template. KIT-6 consists of a system of two continuous, 

interconnected and interwoven cylindrical chiral channels (Figure 2.8).   

 Effect of pore structure on electrochemical activity  

Many researchers have investigated the effect of pore structure on the 

electrochemical performance of catalysts and fuel cells. Maruyama and Abe 

(Maruyama and Abe, 2007b; Maruyama and Abe, 2007a) in two separate 

investigations looked into the effect of catalysts/support structure on ORR in 

fuel cells. 
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Figure 2-8 Sketch of ordered mesoporous  KIT-6 template source (Almar et 

al., 2013) 

 

In the first, they synthesized three non-noble metal-based catalysts for ORR 

whose structure ranged between a graphene-layered structure and a very 

porous amorphous structure. The latter displayed a better output in half-cell 

rotating disks experiment (RDE) as well as in the fuel cell. In the second, they 

carried out ORR in a fuel cell using Pt supported on four different types of 

activated carbon, the main difference being in their pore structure and 

surface area. Here, the catalysts support with the largest mean pore diameter 

gave the best output at low voltages. Along the same line, Maiyalagan et al 

(Maiyalagan et al., 2012b) carried out a study using two types of highly 

ordered mesoporous carbon (OMC) of different pore sizes as support for Pd in 

formic acid oxidation. The OMC with the larger pore size exhibited a higher 

specific mass activity of 486 mA/mgPd compared to 470.3 mA/mgPd for the 

smaller. Interestingly, they claimed that these performed better than Pd 

supported on carbon materials like CNT and graphene whose reported output 

from other researchers were 200 mA/mgPd and 210 mA/mgPd respectively. 

These findings underscore the importance of ordered mesoporous carbons as 

catalysts/support in electrochemical reactions. You and co-workers (You et al., 

2009) also developed glucose biosensors using OMC with different spatial 
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dimensions to immobilize glucose oxidase. Results showed that the CMK-8 

(with an Ia3d symmetry) based biosensor had a better output than the CMK-

3 (with p6mm symmetry) based biosensor and then earlier reported CNT 

biosensors.  

2.7 Nitrogen doped ordered mesoporous carbon: State-of-the-art 

OMCs with ordered pore structure and larger pore diameters compared with 

conventional carbon supports like Vulcan XC-72, graphene and CNT can 

facilitate easy molecular transport of products and reactants in ORR.  

A large and increasing body of researchers have investigated the synthesis of 

doped OMC. One of such is Liu et al (2010a). They synthesized N-doped OMC 

with diaminobenezene (DAB) as both carbon and nitrogen precursor and 

ammonium peroxydisulfate (APDS) as oxidant. The synthesis was carried out 

in a template of highly ordered mesoporous silica SBA-15 at temperatures 

between 70oC and 100oC while the final product was pyrolyzed at 600oC.  

TEM, SEM and small angle XRD showed that the N-doped carbons were a 

faithful replica of the SBA-15 template. XPS analysis also confirmed the 

presence of pyridinic and nitrile groups in the carbon. Peaks which 

correspond with the presence graphitic or quaternary (Q3) nitrogen were 

absent. While they obtained one of the highest overall nitrogen content 

reported in literature i.e. 26 wt%, same might not be said of the “quality” or 

chemical states of the nitrogen species vis their ability to catalyse ORR. This 

is because the ORR activity of N-doped carbon does not depend on the total 

amount of nitrogen present but rather on the type of nitrogen functional 

groups.  

An analysis of the chemical states of the N2 would have shed more light on 

the usefulness or otherwise of these results. Optimization of carbonization 

temperature could also have improved the outcome. This is because the 

percentage of pyridinic and quaternary groups that enhance ORR activity 

increases with temperature of pyrolysis (Stańczyk et al., 1995). In addition, 

the authors did not use the catalyst in any typical ORR application.  Thus, 
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investigating the effect of carbonization temperature on the type of N2 

functional groups and using the N-doped catalysts for ORR will enhance the 

applicability of results from this study.  

 Liu et al (2010b) also employed the nanocasting technology to prepare N-

doped OMC. They impregnated the pores of SBA-15 with an aromatic dye 

N,N’-bis(2,6-diisopropyphenyl)-3,4,9,10-perylenetetracarboxylic diimide (PDI) 

dissolved in tetrahydrofuran (THF). The composite was dried at 60oC and 

pyrolyzed at 600, 700 and 900oC respectively.  TEM analysis confirmed the 

highly ordered structure of the carbon obtained after removal of the template. 

Also, the XPS analysis revealed in Table 2-2 that while there was a reduction 

in total nitrogen content with increasing pyrolysis temperature, the 

percentage of graphitic (or quaternary) nitrogen increased.  

Table 2-2 Total nitrogen and chemical states of PDI prepared at different 

pyrolysis temperatures (source (Liu et al., 2010b)) 

  Total N2 (wt%) Pyridinic Quarternary 

PDI-600       3.5 36.0 52.3 

PDI-750       2.8 31.4 62.4 

PDI-900       2.7 28.1 70.9 

 

The N-doped catalysts were used in ORR experiments where their 

performance was compared with that of 20 wt% Pt/C in 0.1M KOH solution. 

Looking at Figure 2-9, PDI-900 had the best performance for oxygen 

reduction. This was attributed to the highly graphitic nature of the carbon as 

well as the increased amount of quaternary nitrogen atoms.  It is obvious 

from this result that ORR activity does not depend on total nitrogen content. 

A major setback for this otherwise very good result is that the chemical used 

i.e. PDI is very expensive, perhaps more expensive than platinum (PDI costs 

142GBP/100 mg while 20 wt% Pt costs 80 GBP/1000 mg (Sigma Aldrich)). 

Therefore, it is not likely to address the challenge of bringing down the cost of 

fuel cells. It would be worthwhile to find cheaper precursors with similar 

configuration as a means of reducing the final cost of ORR catalysts.  
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The positive side notwithstanding, the platinum polarisation curve raises a 

pertinent question on the validity of these results. Platinum is very active 

and has been known to achieve limiting current in 0.1 M KOH. This result 

contradicts that. The platinum used does not attain the diffusion limiting 

current. 

 

Figure 2-9  RDE voltammogramms of the series of PDI-NOMGAS and Pt/C 

supported on GC electrode at a rotation rate of 1600 rpm in an O2 saturated 

0.1M KOH, scan rate 10 mVs-1Source (Liu et al., 2010b) 

 

Yang et al (2010) also investigated the synthesis of N-doped carbon and their 

use as ORR catalysts.  Using nucleobases as simultaneous carbon and 

nitrogen source and spherical silica nanoparticles as template, they 

carbonized the composite at 1000 oC for 1hr before removal of the template. 

The investigation made use of four different nucleobases namely adenine (A), 

guanine (G), cytosine (C), thymine (T), and uracil (U). The total nitrogen 

content varied from 10.1 wt% for mesoEmC to 13.2 wt% for meso-EmU. As 

seen in Figure 2-10, the onset potential for all the N-doped catalysts in alkaline 

media was very close i.e. ca -35 mV with an overpotential of about 35 mV 

compared to that of 20 wt% Pt/C. However, the limiting current of  Meso-EmT 

and Meso-EmU exceeded that of platinum. Using Koutecky-Levich analysis, 
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the number of electrons transferred was determined to be 4.1 for Meso-EmU, 

which is similar to that for platinum.  

The authors also used the catalyst for ORR in an acid electrolyte (Figure 2-11) 

where the 20 wt% Pt/C performed much better. Meso-EmG that was used had 

an overpotential of 197 mV (Ag/AgCl) compared with 20 wt% Pt/C which also 

had a higher limiting current. This confirms the fact that N-doped carbon 

materials are more active in alkaline solutions than in acid electrolytes.  

 

 
Figure 2-10  Polarization curves on a glassy carbon RDE for N-doped carbons, as compared 

with 20 wt% Pt/C in O2 saturated 0.1M KOH; 10mVs-1, 1600rpm 

            Source (Yang et al., 2010) 

The scheme looks promising considering that the nucleobases used are much 

cheaper than Pt and have a performance that is relatively close to that of 

platinum in alkaline medium. However, the result would have been more 

explicit had the researchers performed an analysis to determine the chemical 

state of nitrogen groups present on each catalyst. Also an optimization of the 

carbonization temperature might have been useful because the nitrogen 

functional groups are converted into more ORR active forms with increasing 

temperature (Stöhr et al., 1991).  
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Figure 2-11  Polarization curves for oxygen reduction in O2 saturated 0.1M HClO4 at 10 

mVs-1 and 1600 rpm source(Yang et al., 2010)  

 

The possibility of producing N-doped catalysts by treating carbon with 

ammonia at elevated temperatures was explored by Wang et al  (Wang et al., 

2010).  Ordered mesoporous carbon (OMC) was heated in a quartz tube under 

flowing NH3 for 1hr at target temperatures of 950, 1000 and 1050oC 

respectively. Table 2-3 shows the structural and textural properties of the N-

doped OMC. It also shows the RDE performance relative to 20 wt% Pt/C. 

 

Though not as good as 20 wt% P/C, the authors claim that  N-OMC-1050 

performed better in acidic media than the other N-doped metal free ORR 

catalysts reported earlier. 

 

 

 

 

 

20 wt% Pt/C 
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Table 2-3 Textural properties of surface-etched mesoporous carbon 

membranes  Source (Wang et al., 2010) 

  yield SBET w 
N 
content Percentage (%) Eonset   

materials % (m2/g)a (nm)b (%)d pyridinic graphitic (mV)e nf 

C-ORNL-1   658 6.9 0         

N-OMC-950 37.4 1681 6.5 6.0±0.3 44.0 8.6 669.0 3.5 

N-OMC-1000 23.4 2121 6.6 3.6±0.3 45.2 9.0 703.0 3.7 

N-OMC-1050 4.0 1923 4.0 4.6±0.4 46.9 10.0 720.0 3.4 
aSBET: BET surface area. w: BJH mesopore diameter d-determined by XPS; eonset potential (vs NHE) 

point of 5% increase in current. fN electron transfer number.  

 

 

 
Figure 2-12  Polarization curves of oxygen reduction on N-OMC-X (X=950, 

1000, 1050 oC) source(Wang et al., 2010) 

          

(ORR tests were carried out in oxygen-saturated 0.05M H2SO4, the rotation rate of RDE was 1600 rpm, 

and the potential scan rate was 10mV/s. Non-faradaic currents obtained in N2 saturated electrolyte 

under identical conditions were subtracted. Catalysts loading for Pt-20 and N-OMC-x were 352 and 312 

μg/cm2, respectively.) 

The authors identified the pyridinic and quaternary types of N2 as being 

responsible for the ORR activity. It is worth noting, that the trend of ORR 

activity was at variance with that of increasing nitrogen content. This 

emphasizes the fact that ORR activity is not dependent on total nitrogen 

content but rather on the chemical states of the nitrogen moieties.  

Considering that N-doped carbons are known to perform poorly in acidic 

media, the results are commendable. Notwithstanding, the treatment time 

under ammonia at high temperature could be increased. Perhaps this may 

lead to an increase of the N2 content and subsequently enhance its 

performance to make it as good as or even better than Pt/C.  
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 Shrestha and Mustain (2010) using SBA-15 as template and pyrrole as the 

nitrogen containing carbon precursor,  developed an N-doped ordered 

mesoporous carbon catalysts that showed ORR activity. The monomers were 

polymerized in the presence of FeCl3 over 24  h after which the FeCl3 was 

washed out and the sample carbonized at 800 oC for 3  h.  

 

The results of the RDE confirmed the ORR activity of the carbon material. 

However, the onset potential of ca 350 mV (NHE) in acidic medium was quite 

low compared to that of 20 wt% Pt/C which occurs around 900 mV (NHE). The 

study might have been more insightful if the authors had performed further 

electrochemical analysis especially the Koutecky-Levich and Tafel plot. As it 

is, the key parameters needed to assess an electrocatalysts of this sort are 

missing. It might also be possible to improve the obtainable activity by 

carbonizing at a higher temperature where ORR active groups like the 

pyridinic and quaternary N2 bonds are dominant. 

Kim et al (2008) synthesized N-doped carbon by heat treating with ammonia. 

This was used as an electrode in electrochemical double layer capacitor.  The 

authors performed polymerization of the carbon source, sucrose, in ordered 

mesoporous silica (SBA-15) template. Two methods were employed for the 

ammonia treatment. In the first, the polymerized sucrose was heat treated 

with NH3 at 300 oC before carbonization at 850 oC denoted as NC. The second 

method entailed carbonization at 850oC after polymerization; this was 

followed by NH3 treatment at 300 oC and denoted as CN.  

It is evident from Tables 2.6 and 2.7 that the amount and functionality of the 

nitrogen depends on the sequence of NH3 treatment 

 Table 2-4 Elemental composition of carbon and N-doped carbon materials 

obtained by ammonia treatment Source (Kim et al., 2008) 

sample C(wt %) H (wt%) N (wt%) 

AC 92.0 1.0 0 

MC 95.0 0.8 0 

CN 91.0 1.0 1.6 

NC 74.0 1.6 8.0 
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AC-activated carbon, MC- mesoporous carbon   

 

Table 2-5 Chemical states of nitrogen in N-doped carbon materials obtained 

by ammonia treatment. source (Kim et al., 2008) 

SAMPLE NQuaternary(%) Npyrrolic (%) Npyridinic (%) 

AC 0 0 0 

MC 0 0 0 

CN 9.5 61.9 28.6 

NC 31.1 35.6 33.3 

 

The higher nitrogen content of NC was ascribed to the ammonia treatment 

which took place when the carbon bonds were relatively weak. Considering 

the high wt% of nitrogen and the proportion of the chemical states of nitrogen 

which are said to be ORR active it will be worth replicating this for use as an 

ORR catalysts. The chemical states better suited for ORR applications are 

obtained at higher temperatures (above 850 oC). Therefore, it might also be 

worth exploring the effects of carbonization at temperatures above 850 oC. It 

may be interesting to study the effect on nitrogen content should the 

polymerization step be carried out under flowing NH3. Table 2-6 is a 

summary of critical parameters from past research involving the use N-doped 

OMC for ORR.  

Li et al (Li et al., 2015) using Pluronic F127 as a soft-template, phenol resin 

as carbon source and dicyandiamide as nitrogen source synthesized nitrogen 

doped ordered mesoporous carbon spheres. These were confirmed to have 

good catalytic activity and stability. The activity was ascribed to the ordered 

mesoporous design of the pores, the amount of graphite and the different 

nitrogen functional groups present.    

By employing a two-step nanocasting technique with SBA-15 as the hard 

template, Sheng and co-workers (Sheng et al., 2015) synthesized nitrogen 

doped ordered mesoporous carbon catalysts. These were only capable of 

catalysing the reduction of oxygen to hydrogen peroxide. 



Table 2-6 Summary of parameters from past research involving the use N-doped mesoporous carbon for ORR 

 

Synthesis method Types of N2 Groups Onset 
potential(Eons) 

J mA/cm2  Ne- Contrast With 
20wt% Pt 

ref 

Pyrolysis of  N,N’-bis(2,6-
diisopropyphenyl)-3,4,9,10-
perylenetetracarboxylic diimide 

(PDI-900) 

Nitrogen 
at % 1.93 

Pyridinic 28.90% 

Quaternary 
% 70.10% 

 

0.89 V RHE  
0.1 M KOH ;  

6.2 

 

3.9 Ca 130 mV over 

potential 

 

(Liu et al., 
2010b) 

Heat treatment of OMC under 
flowing NH3 at 1050  oC 

Nitrogen at 
% 5.00 

Pyridinic 46.90% 

Quaternary 10.00% 
 

720mV (NHE) 

0.05M H2SO4,  

 

4.2 3.4 Ca 180mV over 
potential 

(Wang et al., 
2010) 

Pyrolysis of Nucleobases in SBA-
15 template 

meso-EmT     12.1  Nitrogen wt% 

meso-EmU    13.2  Nitrogen wt% 
0.99 V RHE 
0.1 M KOH ;  

ca 6.2 4.1 
Meso-EmU 

Ca 30 mV Over 
potential 

(Yang et al., 
2010) 

Pyrolysis of polypyrrole in an 
SBA-15 template 

Nitrogen at 
% 8.30 

Pyridinic 36.00% 

Quaternary 39.00% 
 

ca 0.4 mV 
(NHE) 

0.5 M H2SO4 

    

Not 
Stated  

NS Ca 500 mV 

Over potential 

 

(Shrestha and 
Mustain, 

2010) 

one pot hydrothermal route 
using resol and dicyandiamide 

(DCDA) as the carbon and 
nitrogen source 

Nitrogen at 
% N-OMCS-1.5-900 2.16 

Pyridinic 40.40% 

Quaternary 16.50% 

Others 43.10% 
 

0.91 V RHE 

0.1 M KOH 

Not 
Stated  

3.76 (at -0.3V) 

N-OMCS-1.5-900 

 

Not Stated (Li et al., 
2015) 

Aniline and 
dihydroxynaphthalene were 
polymerised inside the pores of 
SBA-15 

Nitrogen 
wt % NOMC-L 3.4 

Pyridinic 1.00% 

Quaternary 1.60% 

Others 0.8% 
 

0.92  V RHE 

0.1 M KOH (NOMC-L) 

16.0 

NOMC-L 

2.3 

NOMC-L 

Not Stated (Sheng et al., 
2015) 
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Table 2-7 Summary of parameters from past research involving the use N-doped mesoporous carbon for ORR (continued) 

 

 

Synthesis method Types of N2 Groups Onset 
potential(Eons) 

JmA/cm2  Ne- Contrast With 
20wt% Pt 

ref 

Prepared a mixture of 
graphene oxide, colloidal silica 
nanoparticle, melamine and 
benzyl disulphide which was 
heated under argon at 900 oC 
after which the silica was 

removed.  

They confirmed the 
presence of pyridinic, 
pyrolic and graphitic 
nitrogen but the 

composition was not stated. 

0.964 V RHE 

0.1 M KOH 

15 (-0.4 
V)(Ag/AgCl) 

3.6 (-0.6V) 

(Ag/AgCl) 

30 mV Over 
potential 

(Liang et al., 
2012a) 

Nanotube mesoporous carbon 
doped with nitrogen and 
sulphur was prepared using 
nano-CaCO3 as hard template, 
and binuclear cobalt 
phthalocyanine hexasulfonate 
as simultaneous nitrogen, 
sulfur, carbon source. This 
same reagent served as 

catalyst for the growth of CNT. 

Nitrogen  

at %  4.97 

Pyridinic 2.38% 

Quaternary 1.29% 

Pyrolic 1.30% 
 

0.953 V RHE 

0.1 M KOH 

Not stated 3.56 

 (-0.4V) 

(Ag/AgCl) 

10 mV Over 
potential 

(Nie et al., 
2014) 

Mixing of amino acids with SBA-
15 mesoporous silica followed 

by heat treatment at 900 oC 

They confirmed the 
presence of pyridinic, 
pyrrolic, graphitic and 
oxidized nitrogen but the 
composition was not stated. 

0.964 V RHE 

0.1 M KOH 

Not stated Not stated 30 mV Over 
potential 

(Gao et al., 
2016) 



The two step technique help to ensure that the pores were completely filled 

thus resulting in a very uniform distribution of pores when the template was 

removed. 

2.8 Nature of the Active Site in N-Doped Catalysts 

The chemical state of nitrogen that is responsible for oxygen reduction has 

been an issue of controversy. Some authors (Matter et al., 2007; Kundu et al., 

2009; Rao et al., 2010) have argued that the pyridinic nitrogen  is the active 

site for ORR. Others (Liu et al., 2010b; Kim et al., 2011a; Niwa et al., 2011) 

say it is the graphitic or quaternary state where nitrogen is bonded to three 

carbon atoms. Both parties have a similar approach in predicting the active 

site.  They carry out ORR with a range of N-doped carbon materials and try to 

correlate the performance with the trend of chemical states as evidenced in 

physico-chemical analysis. 

An example is Rao et al (2010) whose data is shown in Table 2-8. 

Table 2-8 XPS results and ORR onset potential obtained by using undoped 

CNTs and N-doped CNTs in acid electrolyte  Source (Rao et al., 2010) 

  Surface Concentration at%  

Catalysts Total Surface 
nitrogen 

content 

N1 N2 N3 Onset 
Potential for 
ORR (V) 
Ag/AgCl 

CNTPPA 0 0 0 0 0.05 

CNTP4VP 4.3 1.7 0.4 2.2 0.20 

CNTPMPY 5.6 2.8 0.5 2.5 0.31 

CNTPMM 8.4 5.2 0.4 2.8 0.46 

CNTPPP 10.7 4.3 0.7 5.7 0.39 

 

For them, the fourth catalyst, which had the best performance in terms of 

onset potential, also had the highest ratio of pyridinic nitrogen (N1). 

Therefore, pyridinic nitrogen must be responsible for ORR activity.  

On the other hand, for Liu and co-workers (2010b)  PDI-900 showed the 

highest ORR activity and from the analysis, it had the highest proportion of 
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quaternary nitrogen. Therefore, quaternary nitrogen must have influenced 

the exceptional activity.  

Others still, believe that though the pyridinic site is active, it is only capable 

of a two-electron transfer and not the whole four as observed in very good 

ORR catalysts. In an excellent investigation carried out by Luo et al (2011) 

they  prepared N-doped graphene made up of only pyridinic nitrogen moieties, 

i.e. without quaternary nitrogen bonds. Hence, any observed activity, could 

only be due to the pyridinic nitrogen specie. Their results showed that 

pyridinic species though active for ORR are only capable of the two electron 

reaction that produces peroxide.   

A better perspective is acquired when the theory is considered (Robertson and 

Davis, 1995; Terrones et al., 2004; Dommele, 2008). Looking at Figure 2-13, for 

the nitrogen in pyridine, there are three sp2 orbitals having four electrons 

 

Figure 2-13  Electron structure of nitrogen in pyridinic and quaternary formations 

Source (Dommele, 2008) 

and a p-orbital with an electron. It uses two to form σ bonds with two carbon 

atoms while the electron in the p-orbital forms a π-bond with one of the two 

carbon atoms. This leaves a localized lone pair of π electrons (from the sp2 

orbital), which can be electron donating.  For the quaternary or graphitic 

nitrogen, it has three electrons in the sp2-hybridized orbital and two in the 

third p-orbital. The three electrons are used to form σ-bonds with three 

adjacent carbon atoms while one of those from the p-π orbitals forms a π-bond 

with one of the carbon atoms. The fifth cannot remain in the same orbital 

according to rules guiding electron orbitals. Therefore it occupies a π* state 
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which has a higher energy than the π state and becomes delocalized. It is this 

delocalized π* electron that actually “dopes” the carbon structure.  

Another view that corroborates this considers the band gap between the 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) as an indicator of chemical activity (Zhang and Xia, 2011). 

According to (Zhang et al., 2012) the band gap calculated for NCNT 

containing quaternary nitrogen sites is 0.39 eV, which is smaller than 0.48 eV 

for pyridinic nitrogen sites. The value for pure CNT is 0.61 eV.  Therefore the 

quaternary nitrogen is energetically most favoured to add an electron to a 

higher lying LUMO.  

An additional reason that has been proposed for the enhanced activity 

through nitrogen doping is the ability of nitrogen dopants to increase the 

Fermi energy level of the carbon hosts (Czerw et al., 2001; Carvalho and Dos 

Santos, 2006). This will follow from the previous theory of HOMO and LUMO 

considering that the Fermi energy level can be considered as that state closest 

to the conduction band where electrons can be found. Hence nitrogen doping 

which places electrons closer to the conduction band increases the metallic 

character of the carbons.  

 Mechanism of ORR on Nitrogen Doped Carbon Catalysts 

Combining computational techniques with experimental observations 

enhances the possibility of arriving at a general description of the ORR 

mechanism on carbon alloy catalysts. There are two general pathways for the 

ORR mechanism, which are depicted in scheme 1 and 2 (Figure 2-14) adapted 

from (Ruvinskiy et al., 2011). Both are similar in almost all respects, the 

difference being in the 2*2 pathway where water is formed from hydrogen 

peroxide. It is worth noting that along the entire pathways are many high 

energy and short-lived intermediates which can appear or be used via several 

different mechanisms.  



 

 

Figure 2-14 Oxygen reduction pathway on nitrogen doped carbon catalysts (in scheme 1,the 2x2 pathway has water being 

formed from the reduction of hydroxides produced after the dissociation of H2O2 i.e. steps 6 and 7; in scheme two, the 2x2 

pathway has water being formed from the direct reduction of H2O2, step 7) (Ruvinskiy et al., 2011)



The first step is commonly believed to be the adsorption of molecular oxygen 

(Feng et al., 2011b) which preferentially occurs in a chemisorbed non-

dissociated form as confirmed by simulations of the ORR on carbon catalysts. 

This is followed by the formation of HO2ads (Ikeda et al., 2008; Okamoto, 2009) 

through the addition of a proton and an electron. From the simulations of 

Okamoto(2009) on nitrogen doped graphene and Zhang and Xia (2011) on 

nitrogen doped carbon nanotubes, there is a likelihood of two different 

pathways proceeding concurrently from the HO2ads.  

The first is the breaking of the O-OH bond to produce Oads + OHads from 

where two molecules of water are generated by the addition of 3 protons and 3 

electrons. This is the direct 4 electron pathway. The second pathway from 

HO2ads is the formation of HOOH by the addition of an electron and a proton. 

This is the two electron pathway. The peroxide can accept two hydrogen ions 

to form water i.e. scheme two or can dissociate into 2OH which proceeds to 

form water through the addition of two electrons and two protons, i.e. scheme 

one. The last two steps in both schemes would represent the termination of 

the 2 * 2 pathway to a four electron transfer. Going by the argument put 

forward by Ramaswany et al  (2012), provided that there exists an active site 

that further reduces the intermediate peroxide product to water, this 

mechanism will likely be the same in both alkaline and acidic media. 

Occasionally on some non-noble metal catalysts in acidic media, the active 

site necessary for the reduction of the peroxide intermediate is not present. 

This gives rise to the high percentage of peroxides observed when a rotating 

ring disc electrode (RRDE) is used to investigate their ORR in acidic media.  

2.9 Carbon based ORR catalysts-Preparation and Performance in 

MFCs 

The upsurge of interest in microbial fuel cells has been driven chiefly by the 

need to improve the overall energy efficiency of water treatment plants. As 

humanity is becoming more urban, this will reduce the cost of water through 

making water treatment systems cost effective. It will also boost the 

possibility of designing rural water treatment plants. Generally, a 
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breakthrough in the development of MFCs will increase access to sanitation 

and reduce water pollution thus helping to address pertinent global water 

challenges. Although called fuel cells. MFCs are essentially “energy recovery 

devices” as in most applications they are not used for power generation 

because their power densities are very low. Figure 2-15 is a schematic 

diagram of a microbial fuel cell. 

 

Figure 2-15 Schematic of a Microbial Fuel Cell 

 

For a more logical discussion, the carbon based catalysts used in neutral 

media have been grouped into two classes; nitrogen doped carbon and 

manganese oxide catalysts. 

 Nitrogen Doped Carbons in MFC’s 

Feng et al (Feng et al., 2012) reasoned that due to the benefits of low cost, 

relatively good electrical conductivity and strong oxidation resistance, 



33 
 

nitrogen-doped carbons are likely substitutes for noble metals in microbial 

fuel cells (MFCs) for wastewater treatment. Table 2-9 summarises the 

preparation routes and performances of nitrogen doped carbons in MFCs. 

While high activity is desirable in a potential commercial catalyst, other 

factors like stability and reproducibility on a large scale are equally 

important. Furthermore, the cost of reactants and their widespread 

availability must be also considered.  

While the high activity exhibited by the nitrogen doped graphene, produced 

by  Feng et al (2011a) is desirable, same may not be said for the preparation 

method; detonation of reactants. This is a procedure which may not be easily 

reproducible on a large scale. In addition as argued by Li et al (2012a) the 

reactants are toxic or highly explosive which makes them unsafe for 

manufacturing purposes. Furthermore, Jeon and co-workers(2013),argued  

that the CVD used to produce CNTs and Hummers method used to prepare 

graphene oxide though common place in laboratories, are likely to be 

expensive and perhaps hazardous on an industrial scale. 

Sulfate is a common component of waste water and when acted upon by 

microbes in MFCs produces sulphides which are detrimental to the operation 

of MFCs (Zhao et al., 2008). Hence the good performance of nitrogen doped 

carbon powders prepared by Feng et al (2012) in the presence of hydrogen 

sulphide is commendable. However nitric acid used in preparing the n-doped 

powders is very corrosive and extremely hazardous and boiling it will also 

produce harmful vapour. This could be a set-back for commercial scale 

production of the catalyst.  
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Table 2-9 Synopsis of results from using nitrogen doped carbon in MFCs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Catalyst and 
Ref 

Nitrogen 
Doped 
Graphene  

(Feng et al., 

2011a) 

N-doped 
carbon 
nanofibre 
grown on 
stainless 
steel mesh 
(Chen et 

al., 2012) 

Nitrogen 
doped 
graphene 
sheets (Ci 
et al., 

2012) 

 Nitrogen 
doped CNT  

(Feng et al., 
2011b) 

Preparation 
and 
reactants 

Detonation 
of reactants 
at 
momentary 
pressure of 
60 MPa  and 
equilibrium 
pressure of 
30MPa temp 

of 320 oC; 

 

Cyanuric 
Chloride and 
tri-

nitrophenol 

Chemical 
treatment 
of substrate 
Stainless 
steel mesh 
(SSM)  
followed by 
CVD of 
pyridine at 

750oC; 

 

Stainless 
steel mesh 
and pyridine 

vapour 

Graphene 
oxide likely 
to have 
been 
prepared 
by 
hummer’s 
method. 
Pyrolysis of 
reactants 
at 750 – 

900oC.  

 

Cyanamide 
and 
graphene 
oxide 
solution 

 CVD (800oC) 
using Fe-
containing 

SBA-15 

molecular 
sieve as 

catalyst. 

 

 

Etheylene 

Diamine 

Anode 
Medium 

Acetate 
synthetic 
waste water 

Secondary 
artificial 

wastewater 
with 10 mM 
sodium 
acetate as 
substrate  
medium in 
the anode 

chamber 

Phosphate 
buffer 
(PBS, pH 
7.0) with 

Acetate  

 PBM were 
inoculated 
with 20% 
domestic 
wastewater 
collected 
from a 
municipal 
wastewater 
treatment 

plant 

Max power 
density in a 

MFC 

N-G                  
1350 

mW/m2  

Pt/C                
1420 
mW/m2  

N-CNF     Ca 
960 mW m2  
in air  &  
1900 mW 

m2  

in O2  

NGNSs-900          
4.06 W/m3  

Pt/C                       

3.77 W/m3  

(oxygen) 

 

 N-CNT           
1600 

mW/m2 

Pt/C              

1393 mW m2  

(air 
cathode) 

Cost and 
performance 

comparisons  

Proved more 
stable than 

Pt. 

Cost much 
less than 20 
wt% 
Platinum on 
a reagent 
basis.  

The 
performance 
was close to 
that of 
Pt/SSM. The 

authors  

claimed it is 
cheaper 
than Pt/SSM 

NS. But 
claims it 
will 
produce 
cheaper 

catalysts.  

NGNSs-900 
performed 
better than 

platinum 

 Cost analysis 
was not 

stated. 

 

N-CNT 
performed 
better than 

platinum 
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Table 2-10 Synopsis of results from using nitrogen doped carbon in MFCs 

(continued) 

 
Catalyst and 
Ref 

Nitrogen doped 
carbon powders 
(NDCP) 

 

 

(Feng et al., 
2012) 

Mesoporous 
graphitic carbon 
nitride implanted 
with N2 active 

sites (I-NG) 

(Feng et al., 

2013) 

Activated 
nitrogen 
doped carbon 
nanofiber 

(ANCNF) 

(Yang et al., 

2014) 

Nitrogen doped 
carbon derived 
from rice straw 

(NC). 

 

(Liu et al., 

2015b) 

Preparation 
and 

reactants 

A three-step 
procedure of 
heat treatment 
followed by acid 
treatment and 
finally refluxing 
in HNO3 at 120 
oC.; 

 

Carbon powder, 
HCl and HNO3. 

N-doped 
graphene and 
graphitic carbon 
nitride were 
sonicated in HNO3 
followed by 

drying at 80 oC; 

 

Graphite, NaNO3, 
KMnO4, H2SO4, 
NH4 solution, 

cyanamide, HNO3 

ANCNF was 
prepared 
through a 
modified 
oxidative 
assembly 
route and 
activated with 

KOH; 

 

CTAB, pyrrole, 

HCl, and KOH 

The rice straw 
was converted 
via 
hydrothermal 
carbonization, 
freeze drying 
and heat 
treating in NH3. 

 

Rice straw, NH3, 

HF and HCl 

Anode 
Medium 

A mixture of 
domestic 

wastewater and 
phosphate-

buffered medium 

Suspended 
bacteria from an 
acetate fed MFC 
in synthetic 
waste water 
laden with 

acetate. 

Mixed culture, 
carbon 
granules and 
sodium 
acetate 
culture 

medium 

Secondary 
inoculum 
initially from 
wastewater 
treatment plant 
and acetate 
nutrient 

medium 

Max power 
density in a 

MFC 

N-CP            ca 
215 mW/m2(from 

plot) 

Pt/C  254.8 ± 8 

mW/m2 

In presence of 

sulfide 

N-CP   222.5 ± 8 

mW/m2  

Pt/C  199.7± 4 
mW /m2 

I-NG – 1618 + 50  
mW /m2 

 

Pt-C – 1423 + 25  

mW/m2 

 

ANCNF-900  
1377 + 46  

mW/m2 

 

Pt-C 1307 + 43  

mW/m2 

H-NC-900 2300  
mW/m2 

 

Pt-C 1634  

mW/m2 

 

Cost and 
performance 

comparisons  

  The cost of 
NDCP preparation 
was ca 1%  that 
of Pt/C. 20% 
when cost of 
Nafion and 
carbon cloth 
were factored. 

The N-doped 
powder had a 
better 
performance in 
the presence of 
H2S.  

 

I-NG is expected 
to be much 
cheaper than 
platinum. 

I-NG performed 
better than 20 
wt% Pt-C in a 

MFC. 

The reactants 
for the 
catalysts are 
cheaper than 
platinum and 
more 

accessible.  

 

ANCNF-900 
displayed a 
slightly better 
activity in an 
MFC when 
compared with 
platinum 

Evidently, the 
rice straw 
would be far 
cheaper than 
Platinum 
although the 
processing may 
increase overall 

cost slightly.  

 

H-NC-900 had a 
better 
performance 
relative to 
platinum 
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Moreover because of the strong oxidative influence of nitric acid, the carbon 

powder is very likely to be oxidized in the boiling acid. This piece of research 

would have carried more weight if the authors had characterized the catalysts 

using such tools as elemental analysis, XPS or EDX to confirm the presence 

and extent of doping of nitrogen atoms within the carbon structure 

2.10 Manganese Oxide Catalysts in MFC’s 

For many years, manganese oxide has been known to catalyse the 

decomposition of hydrogen peroxide into water and oxygen (Dolhun, 2014). It 

is believed that it accelerates the decomposition more than 1000 times 

compared with the uncatalyzed reaction. This perhaps has influenced its 

choice as an oxygen reduction catalysts often used to shore-up the catalytic 

activity of carbon catalysts well known for peroxide production during ORR. A 

notable study of the ORR of manganese oxides in neutral media is that of 

Roche et al (Roche and Scott, 2009). Although they claimed that the MnO2 

deposited on the carbon catalysts acted mainly to bring about a four electron 

transfer with an addition role of decomposing the peroxide produced by the 

carbon, not much improvement was observed in the number of electrons 

transferred during the ORR. The number transferred when only carbon 

(Vulcan and monarch) was used was ca 1.7 and when MnO2 was deposited the 

number rose marginally to ca 2.3 at -0.1 V (vs SHE). The onset potential with 

the oxides deposited was +0.25 on Monarch and +0.29 (vs SHE) on Vulcan. 

This seems to be a poor performance compared with that of other carbon 

catalyst like nitrogen doped CNT (Feng et al., 2011b) which have shown close 

to four electron transfer in neutral media. One is quick to note however that 

the support in both cases might be what makes a difference considering that 

CNTs are known to be more active compared with Vulcan and Monarch 

carbon.  

A number of investigations have been carried out on the performance of 

manganese oxides in microbial fuel cells, some of which are summarized in 

Table 2-1111.  
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Table 2-11 Preparation routes and performances of manganese oxide catalysts in MFCs 

Catalyst and 

Ref 

Manganese Oxide (Roche et 

al., 2010) 

CNT supported MNO2 (Lu et al., 

2011) 

Graphite supported α, β, and 

ɣ MnO2 (Zhang et al., 2009) 

Carbon cloth supported MnOx 

(Liu et al., 2010d) 

Preparation 
and reactants 

Chemical oxidation of 
manganese sulphate by 
permanganate in the 
presence of carbon 

 

Carbon black Monarch, 
MnSO4, KMnO4 

Chemical oxidation of 
manganese sulphate by 

permanganate –α-MnO2 

Chemical oxidation of 
MnSO4·H2O by (NH4)2S2O8 – β-

MnO2 

Chemical oxidation of 
MnSO4·H2O by (NH4)2S2O8 – ɣ-

MnO2 

β and ɣ were prepared under 

different reaction conditions 

Catalysts were prepared by 
mixing MnO2, CNT and PVDF 
binder. 

Chemical Reaction between  

MnSO4·H2O, (NH)2S2O8 and 

(NH4)2SO4  –α-MnO2 

Reaction between KMnO4 

and ethanol - β-MnO2 

Chemical oxidation of 
MnSO4·H2O by (NH4)2S2O8 – ɣ-
MnO2 

Catalysts were prepared by 
mixing MnO2, graphite and 

PVDF binder. 

Carbon cloth was kept in an 
electrolyte made up of 0.1M 
Mn(CH3COO)2 and 0.1M Na2SO4 
at pH 6 and the voltage cycled 
btw +0.6 and +0.1V (vs SCE) at 
400, 500, and 600 mV/s to 
deposit MnOx 
electrochemically.   

Anode Medium anaerobically digested 
sewage sludge from an 
anaerobic digester at a local 

municipal 

sewage treatment in 
Synthetic waste water 

containing acetate  

Mixed culture in Domestic waste 
water 

K.pneumoniae strain L17 
(CCTCC AB 208106) with 
3.0g/L glucose as electron 

donor 

Diverse anaerobic sludge in 
acetate laden synthetic waste 
water. 

Max power 
density in a 

MFC 

At pH 7  

MnOx/C 161 mW/m2 

Pt/C 193 mW/m2 

α-MnO2 – 22.1  mW/m2 

β-MnO2  - 97.8 mW/m2 

ɣ-MnO2 – 82.6 mW/m2 

Pt/Carbon – 152.7 mW/m2 

α-MnO2 – 125+11 mW/m2 

β-MnO2  -   172+7mW/m2 

ɣ-MnO2 –  88+8mW/m2 

Pt/Carbon – 268+7 mW/m2 

CV-400–  772.8 mW/m3 

CV-500 -   548.5 mW/m3 

CV-600 –  393.1 mW/m3 

 

Cost and 
performance 

comparisons  

The cost of manganese is at 
least 100 times cheaper than 
that of Platinum(Roche and 

Scott, 2009) 

Not stated, but it is expected 
the cost of CNT may 
significantly increase overall 

cost. 

Not Stated Not Stated but it is expected 
that the reactants used would 

be much cheaper than Pt. 
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Table 2-12 Preparation routes and performances of manganese oxide catalysts in MFCs (continued) 

Catalyst and 

Ref 

Manganese oxide 

functionalized CNT 

(Liew et al., 2015) 

MnO2 modified activated 

carbon (Zhang et al., 2014) 

α-MnO2 nanotubes on 

graphene (Khilari et al., 

2013) 

MnO2-graphene hybrid 

(Wen et al., 2012) 

Preparation 

and reactants 

MWCNT was functionalized 
with hydroxyl and carboxyl 
functional groups and 
reacted with KMnO4 to 
obtain MnO2/Functionalized 

CNT. 

 

 

 

HNO3, H2SO4, HCl, MWCNT, 

KMnO4 

MnO2 was electrodeposited on 
the activated carbon electrode 
using Na2SO4 and Mn(CH3COO)2 

as electrolyte. 

 

 

 

 

 

Activated carbon, Na2SO4 and 
Mn(CH3COO)2 

α-MnO2 was synthesized by 
reacting KMnO4 with HCl in 
an autoclave at 150 oC for 12 
hours. The precipitate was 

dried at 70 oC for 6 h.  

 

 

 

 

KMnO4 and HCl 

Graphene nanosheets (GNS) 
were synthesized by reducing 
graphite oxide (obtained from 
natural graphite) with 
hydrazine. MnO2/GNS 
nanocomposite was obtained 
by reacting GNS with KMnO4 

under microwave irradiation. 

 

Natural graphite, hydrazine, 

KMnO4,  

 

Anode Medium Modified Geobacter medium 
with municipal waste water 
anaerobic sludge as inoculum 

Enriched nutrient medium in 50 
mM PBS with sodium acetate as 
carbon source.  

Anaerobic sludge from a 
septic tank was added to 
synthetic acetate waste 

water. 

Inoculum was anaerobic sludge 
from another MFC. This was 
added into acetate laden 

nutrient buffer solution 

Max power 
density in a 

MFC 

MnO2/f-CNT 520 mW/m2 MnO2 modified activated carbon 
– 1554 mW/m2 

α-MnO2/graphene 4.68 W/m3 

Pt/C –                   5.67 W/m3 

MnO2/GNS    2084 mW/m2 

Pt/C             1714 mW/m2 

Cost and 
performance 
comparisons  

Not stated The cost is expected to be 
lower than that of platinum. 
Though the power density of 
platinum was not stated, this 

was said to compare favourably.  

It had a better cost-to-
performance ratio compared 
with 10 wt% platinum 

MnO2/GNS had a better 
performance but it also had a 
loading that was 10 times that 
of platinum, i.e. 5 mg/cm2 
compared with 0.5 mg/cm2 for 

platinum. 
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Compared with other MFCs using carbon catalysts, the average power density 

obtained from the use of MnOx catalysts seems rather low. It is worth 

mentioning though that so many factors like cell architecture and nature of 

anode also contribute to the maximum power and hence making a direct 

comparison difficult. Worthy of commendation is the fact that with the exception 

of (Lu et al., 2011) who used CNT, the other catalysts were synthesized using 

reactants that are much cheaper than Pt and therefore hold a promise of being 

able to generate power at a relatively affordable rate. Paralleled with other 

carbon catalysts in terms of cost and nearness to the market, MnOx catalysts 

will compete favourably due to the relative ease of synthesis and cost of 

materials. 

2.11 Summary of Literature Review 

Considering the finite nature of fossil fuels as well as the grave environmental 

damage that results from its use in internal combustion engines and power 

plants, there is an urgent need to develop alternatives. This is true both for the 

fuel as well as for the fuel conversion technology and fuel cells readily lend 

themselves to meet this need. A gap exists between the present state-of-the-art 

with respect to ORR catalyst and the target catalyst loading that is expected to 

make fuel cells market competitive. Considering that researchers are getting to a 

plateau with respect to platinum loading, expectations are high that sufficiently 

active non-PGM ORR catalysts will help bridge this gap and one of such is 

nitrogen-doped carbon catalysts.  

From the literature review, it can be concluded that the synthesis of nitrogen-

doped carbon catalysts has recorded significant progress but there is room for 

improvement. The first, is in selecting the right material; in addition to 

considering the chemical state of nitrogen in the precursor; cost should also be a 

key criteria. Hence, this research will be looking at selecting less expensive 

precursors with the right nitrogen functional groups. Considering past 

investigations, it is obvious that the pore structure of catalyst/support plays an 

important role in the activity of the catalyst. Therefore, the periodically ordered 

pore structure of ordered mesoporous carbons can help improve the activity of N-
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doped carbons especially in the diffusion-controlled regions of oxygen reduction 

reactions.   

Furthermore, there are investigations, which have been carried out to develop n-

doped carbons whose results though good have not been applied in ORR. This 

research will be replicating as well as optimizing them for use as ORR catalysts. 

Carbon based catalysts have the potential to replace platinum in neutral media 

generally and MFC’s specifically. However, a number of issues need to be 

addressed for this to be done in a cost effective manner, reproducible on a 

commercial scale. In the search for better catalysts, this research would adopt 

procedures that make use of reactants which are readily available and affordable 

on a commercial scale. Otherwise there might be the need to wait for another 

generation to perfect the science required to produce such reactants at an 

affordable scale. The world needs an urgent solution. Therefore, the use of 

reactants or supports or catalysts which are still at the development stage in 

terms of commercial exploitation will not result in an attainment of the goal 

within the shortest time possible. Hence in the course of this work, thought 

would be given to ease of scaling up the procedures used to synthesize the 

catalysts. Hence this work would make use of reactants that are relatively 

inexpensive and readily accessible. The procedures used would also be such as 

can be easily scaled-up for commercial purposes.  
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 Methodology 

3.1 Introduction 

3.1 Introduction 

In this chapter, the method and the materials used to achieve the stated 

objectives are described. Procedures adopted for synthesizing the catalysts are 

presented followed by the techniques used for electrochemical analysis. How the 

microbial fuel cell experiments were approached and the materials used are 

detailed next.  Subsequently, an explanation of the parameters and equipment 

used for physical and chemical characterization of the catalysts is presented. 

Finally, the chapter gives an appraisal of the methods of analysis. 

3.2 Procedures used for synthesis of the catalysts 

i. Ordered mesoporous Silica (OMS) KIT-6 

This was prepared using the procedure adapted from Kim et al (Kim et 

al., 2005). Typically 4 g of P123 (MW 5800 – Aldrich) was added to 144 g 

of deionized water under stirring at a temperature of ca 32 oC.  After the 

dissolution of the P123, 6.4 ml HCl (37wt%- Sigma Aldrich) was added 

followed by the addition of 4 g of N-Butanol (99.4%, Sigma Aldrich). After 

one hour, 8.6 g of TEOS (98%- Aldrich) was added at once to the 

homogenous solution. This was left stirring for 24 hours. Thereafter the 

hydrothermal treatment was performed in an oven at 100 oC for 24 h. The 

next step entailed washing and drying the precipitate. To remove the 

template, the dried precipitate was stirred in ethanolic-HCl for ca 3 h. 

This was followed by heating in an oven at 550 oC for 5 h. The entire 

reaction was carried out in a closed polypropylene bottle (250 ml). 

ii. Ordered mesoporous Carbon (OMC) CMK-8 

This was prepared using a procedure adapted from Jun et al (Jun et al., 

2000). Typically, to a solution of 0.162 mg of H2SO4 and 5 ml of water was 

added 1.25 g of sucrose (Fisher Scientific UK) and 1 g KIT-6. The mixture 

was heated to 100 oC at a ramp rate of 1 oC/min in an oven.  After 6 h, it 

was heated to 160 oC at the same ramp rate and left for another 6 h. To 
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the partially polymerised sucrose was added a solution of 5 ml H2O, 0.77 g 

sucrose and ca 6 drops H2SO4. The heating at 100 oC and 160 oC was then 

repeated. Thereafter, the composite was heated up to 900 oC with a ramp 

rate of 2 oC/min under flowing nitrogen and left for 4 h. To remove the 

silica template, the product from the furnace was dissolved in a warm 

solution of 200 ml 1 M ethanolic NaOH (50% water/ethanol v/v) and left to 

stir over night. Thereafter, the precipitate was centrifuged and washed 

repeatedly with ethanol. The final product was dried overnight at ca 80 

oC. 

iii. Nitrogen doped carbon prepared from O-phenylene diamine (NDAB) 

 

Figure 3-1 O-Phenylene diamine 

 

The procedure was adapted with modifications from the work of Liu et al  

(Liu et al., 2010a). Typically 0.5 g calcined KIT-6 together with 1.62 g  of 

O-phenylenediamine (Sigma Aldrich) and 2.3 g ammonium persulfate, 

APDS (Sigma Aldrich) were added to 20 ml toluene solution AnalaR 

NORMAPUR® ACS (VWR), with the aid of ultrasonication for 15 min, 

the resultant mixture was refluxed at 80 oC for 14-16 h. The solution 

obtained was left overnight during which it solidified.  The solid samples 

were carbonized at 750, 950 and 1050 oC in a nitrogen flow of 100 

mL/min with a ramp rate of 2.0 oC/min and kept under these conditions 

for 5 h. The silica framework was removed by dissolving the composite in 

1M ethanolic NaOH (50 wt% water-50 wt.% ethanol) and leaving to stir 

overnight at a slightly elevated temperature of ca 45 oC. Thereafter the 

precipitate was centrifuged and washed several times with ethanol. The 

final samples were dried overnight at ca 80 oC. 

http://upload.wikimedia.org/wikipedia/commons/8/81/O-phenylenediamine.png


43 
 

iv. Nitrogen doped carbon prepared from 1,3,5-Tris(diphenylamino)benzene 

(NTDAB).  

 

 

This was adapted from the work of Liu et al (Liu et al., 2010b) though 

they used a different precursor. Typically 500 mg KIT-6 is mixed with 750 

mg 1,3,5-tris(diphenylamino)benzene (Sigma Aldrich) in 30 ml  

tetrahydrofuran (THF) (Sigma Aldrich) at room temperature under 

stirring in an open beaker. After evaporation of the THF, the obtained 

TDAB/KIT-6 composite is dried overnight at 60 oC in an oven and 

subsequently calcined at 900 and 1050 oC for 5 h, respectively. The silica 

template is removed by dissolving the composite in 200 ml of warm 1M 

ethanolic-sodium hydroxide overnight. Thereafter the precipitate was 

centrifuged, washed severally with ethanol and dried overnight to obtain 

the N-doped carbon. 

v. Direct Synthesis of Nitrogen-Doped Ordered Mesoporous Carbon (adapted 

from (Yu et al., 2014)) 

Typically, 4.4 g Pluronic F127 (Sigma), 2.2 g resorcinol (Sigma Aldrich), 

1.4 g hexamethylenetetramine (Sigma-Aldrich) and 4 ml ammonium 

hydroxide solution (ACS reagent 28-30% NH3 -Fluka) is added into 108 ml 

of DI water.  This was stirred for 1 hour at ca 25 oC. Thereafter, 1.2g urea 

(Sigma) was added after ca 10 mins, 0.7g hexamethylenetetramine  was 

added. This gave a very dark green solution. This mixture was stirred for 

Figure 3-2 1,3,5-Tris(diphenylamino)benzene 
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24 hours at ca 80oC. The reddish brown precipitate was cooled and 

collected by centrifugation at 5000 g. The particles were then washed 

copiously with water until the supernatant from centrifuging had a near 

neutral pH.  The reddish brown precipitate was air-dry at room 

temperature in a fume cupboard. Total weight of sample recovered after 

drying was 3.1 g. The sample was divided into five batches to be pyrolyzed 

at 600 oC, 700 oC, 800 oC and 900 oC  all for 3 hours under nitrogen with a 

ramp rate of 1 oC/min. 

vi. Manganese oxide from Mn(NO3)2 

The procedure is modified from that Lin and Kuo  (2013). Typically 40 mg 

of NDAB-900  was poured into aqueous Mn(NO3)2 (Purum; Sigma Aldrich) 

solution (2500mg in 5ml) and sonicated for ca 2 hours. This was 

centrifuged and the carbon/ Mn(NO3)2 composite recovered. The wet 

composite was placed in the oven at ca 80 oC to cure. This was left 

overnight i.e. ca 14 hours.  Finally, the product was carbonized at 250 oC 

and 350 oC for 2h, with a heating rate of 1 oCmin-1under nitrogen gas. 

This was repeated for CMK-8 with heat treatment at only 350 oC for 2h. 

𝑴𝒏(𝑵𝑶𝟑)𝟐 → 𝑴𝒏𝑶𝟐 + 𝟐𝑵𝑶𝟐              eqn 3.1 (Stern, 1972) 

 

vii. Manganese oxide from KMnO4  

This was adapted (and modified) from (Ma et al., 2006; Fischer et al., 

2007; Huang et al., 2007). The chemical oxidation method was adopted 

here because of the desire to maintain the ordered mesoporous structure 

of the support. 

Typically to 35 ml of DI water was added 23 mg of KMnO4 (AnalaR BDH 

Prolabo); 24.5 mg of K2SO4 AnalaR 99.5 % (BDH) and 68 mg of NDAB-

900. The KMnO4 and K2SO4 were in a mole ratio of 1:1. This mixture was 

stirred at a temperature of ca 80 oC. The mixture turned colourless or 

almost colourless after ca an hour indicating the completion of the 

oxidation reaction or rather the total depletion of KMnO4. The solution 
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was centrifuged to recover the solid (the supernatant had a golden yellow 

colour). The precipitate was washed twice with DI water. The 

supernatant or filtrate from these was colourless.  

The final precipitate was dried overnight (ca 20 hours) at ca 53 oC. This 

was used without any modification for ORR analysis.  

The exact amount of reagents will vary depending on the amount of 

manganese oxide to be deposited. The calculation is done on the 

assumption that the final amount of manganese oxide would be 20 wt% 

(or 10 or 35wt%) of the final mass of carbon (without nitrogen)after 

oxidation by KMnO4. This was repeated for CMK-8 and Vulcan XC72R 

using the quantities calculated for 20 wt%. This is because it gave the 

best activity of the three different classes i.e. the 10 wt%, 20 wt% and 35 

wt%.  

3.3 Procedures for Electrochemical Analysis 

I. Tests for the oxygen reduction activity of catalysts 

With the exception of the tests for methanol stability, all the electrochemical 

analysis were performed using a half-cell within a rotating ring-disc electrode 

(RRDE) system. The system was an RRDE-3A manufactured by ALS co. The 

electrode had a Pt ring combined with a glassy carbon disc also from ALS co. In 

alkaline solution, the ring was set to a potential of 0.35 V. The potentiostat used 

was an AUTOLAB PGSTAT302N, made by Echochemie. The LSV was performed 

by sweeping from 0.05 V to -0.8 V except for platinum that started from 0.2 V.  

A platinum wire was used as the counter electrode and Ag/AgCl (saturated KCl) 

was used as the reference electrode.  

Except otherwise stated, the ink was prepared by dissolving 5 mg of catalysts in  

0.8 ml of ethanol, 165 ml of DI water and 0.035 ml of Nafion. This was mixed 

ultrasonically. Thereafter a 5 µl drop was placed on the disc section of the RRDE. 
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Figure 3-3 Dimensions of RRDE ring and disc 

The electrolyte solution was purged prior to the tests with pure oxygen for at 

least twenty minutes. In alkaline solution, the ring was set to a potential 0.35 V. 

A 5 mV/s scan rate was used for all the RRDE experiments. A typical half-cell 

RRDE half-cell is shown  

3.4 Accelerated degradation test (ADT) 

This was performed by running cyclic voltammetry at 100 mV/s between 0.05 V 

and -0.5 V (vs Ag/AgCl) for ca 1000 cycles in 0.1 M KOH (85%, Aldrich). This 

range was chosen because it covered the region where the catalysts had the best 

activity. 

Though the electrolyte was purged with oxygen at the onset, it was necessary 

that it be sparged lightly with oxygen as the test progressed. 
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Figure 3-4 A typical RRDE half-cell 

LSV in an RRDE system was performed at a rotation rate of 1600 rpm before 

and after the ADT. The plots of the LSV before and after were compared. 

3.5 Chronoamperometry  

This was performed in 0.1 M KOH at a fixed voltage, selected to be the voltage at 

which the catalyst attains limiting current density (ca 0.30 V for NDAB-900 and 

ca 0.32 V for DNOMC-900). 900 rpm was used for the rotation rate. Data was 

collected in 2 seconds interval. The electrolyte was also sparged lightly with 

oxygen as the test progressed. 

3.6 Methanol stability tests using a rotating disc electrode (RDE) 

The catalyst ink was prepared by mixing 5 mg of catalysts with a 1 ml solution 

consisting of 800 µl ethanol (absolute, Fisher-Scientific), 165 µl water and 35 µl 

Nafion (5 wt % in a mixture of lower aliphatic alcohols and water- Aldrich). This 

was sonicated to obtain a homogenous mixture (20 -30 minutes of sonication 

seem ideal). 6 µl of the catalyst ink was pippeted onto a glassy carbon electrode 

and dried under a lamp. 
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Oxygen was sparged through 75 ml of 0.1 M KOH (85 % ACS reagent -Sigma 

Aldrich) in a flask for ca 30 minutes. The electrode with the catalyst was then 

dipped in the solution and the open circuit voltage of the system measured. A 

test CV of 200 mV/s was performed for ten cycles. This was followed by three 

cycles of cyclic voltammetry  at 100 mV/s (used the third), an LSV of 5 mV/s and 

RDE of 2500, 1600, 900, 400, and 100 rotations per minute (rpm) (sometimes it 

was the other way from 100 increased to 2500). The solution was sparged with 

oxygen for ca 5 minutes in between the rotating disk experiment (RDE) runs.  

After running through the stated rotation speeds, the solution was sparged with 

oxygen again and 300 µl of methanol (Fisher Specified Laboratory Grade (SLR) 

grade) was added to make up a 0.1 M methanol (Absolute; Fisher Scientific-

Specified Laboratory Reagent) concentration in the electrolyte. A RDE 

experiment was performed at 1600 rpm and a CV at 100 mV/s. This was 

repeated after each addition of an appropriate amount of methanol to make up a 

methanol concentration of 0.3 M, 0.5 M and 1 M respectively. 

3.7 Methodology for Microbial Fuel Cell Experiments 

 Structure of the microbial fuel cells 

A 50 cm3 single chamber cell was used. The anode was separated from the 

cathode by a Nafion membrane.  

Structure of anode  

Carbon cloth was placed directly against the wall, with platinised titania wire 

inserted into the cloth and curved into a spiral to improve contact with the cloth.  

The anode medium was made of a secondary inoculum from an MFC that was 

initially inoculated with waste water from a water treatment plant and acetate 

laden nutrient media. 

Structure of cathode  

The current collector (stainless steel) was placed on the air facing side, next to 

this was the catalyst on carbon paper which was hot pressed with Nafion 117. 
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The back of the carbon paper was in contact with the stainless steel, while the 

Nafion face of the composite was in contact with the anode medium. The titania 

wire (carrying current from the stainless steel to the electrode clips) was 

connected to the stainless steel mesh. 

The reference electrode was adapted in a 5 ml pippete filled with agar- 3 M NaCl 

gel up to three quarter level and topped with 3M NaCl solution. The actual 

electrode was dipped into the top via a rubber bung (so that it stayed in the NaCl 

solution above the gel). The pippete was then dipped into the cell through the 

bigger hole at the top.  

The anode medium used was made of 250 mg of sodium acetate, 250 µl of a 

1ml/litre vitamin solution, 500 µl of a 2 ml/litre micro nutrients solution, 2.5 ml 

macro nutrients solution, 12.5 ml of 1 M PBS pH 7 and 50 ml of fresh inoculum. 

This was topped up with DI water up to and slightly above 250 ml. 

 

Figure 3-5 MFC cell, a,c; cathode components, b and membrane electrode 

assembly, d 
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This mixture was sparged with nitrogen for ca 30 minutes. A 500 ohm resistor 

was connected across all the four cells for building up the biofilm. The substrate 

in the cells were changed whenever the voltage was ca 0 V. To do this the old 

substrate was drawn out using a syringe and the new was introduced also using 

a different syringe. The data logger continued logging. After about two weeks, a 

temperature controller was added to the set up with temperature fixed at ca 35 

oC. For the duplicate cells a 100 ohm resistor was used in the process of building 

up the biofilm.  

 Treatment of Nafion membrane 

Typically the Nafion 117 membrane was boiled in 3% H2O2 for 1 hour at 90 ºC 

(allowed to cool normally). It was then submerged in deionized water for 15 

minutes at room temperature. Thereafter, the membrane was boiled in 0.5 M 

sulphuric acid for 1 hour at 90 ºC (allowed to cool). It was again submerged in 

deionized water for 15 minutes at room temperature. This was followed by 

boiling in deionized water for 1 hour at 90 ºC. Finally it was kept in deionized 

water for 15 minutes at room temperature. 

 Preparation of ink to be used in air-brushing (spray gun) 

electrodes (carbon paper) 

10 ml ethanol for every 100 mg of catalysts and 33 wt% actual Nafion and not 

the Nafion solution (wt % of the catalyst) was used. 16.5 vol% water i.e the 

ethanol constitutes 80 % was added. This was used because that is the 

formulation being used for the inks in the half-cell experiments. 2.5 times the 

actual amount of ink need was prepared, i.e. 2.5 times the mass of catalyst 

actually required was used. This covers for wastage during spraying.  

The actual diameter of the exposed region of the catalyst when inserted into the 

acrylic cell is 4 cm which gives an area of 12.56 cm2. Carbon paper with 

dimensions of 5*5 cm was used. 5*10 cm piece was used so that two squares can 

be sprayed at the same time. A loading of 0.5 mg/cm2 was aimed for. Due to 

inexperience with spraying, it was not possible to get this exact loading 

calculated for.  
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 Polarization tests 

When all the cells attained their maximum capacity shown by the regular height 

reached by the cell voltage plot cycle after cycle, the polarization tests were 

performed.  

The 500 Ω resistor on which the biomass had been grown was removed from all 

the cells thus allowing them to get to their OCP over time. This took about three 

hours. Thereafter different sizes of resistors were introduced and the cell voltage 

was monitored to know when it had attained a stable value. The first resistor 52 

500 Ω was left on for about one hour it did not attain a stable value as rapidly as 

the subsequent ones. On the average, each resistor was left for at least 20 

minutes. 52500, 25600, 10000, 5100, 1000, 500, 300, 200, 100, 52, 10 ohms 

resistors were used. For the duplicate, the 5100 ohms resistor was omitted 

during polarization tests. 

3.8 Physical and Chemical Analysis 

 X-ray photoelectron spectroscopy analysis 

When x-ray photons impinge on a sample, photoelectrons are emitted. The 

kinetic energy as well as binding energy of this photoelectron can be calculated. 

These are typical not only of the element but also of the atomic level from which 

the photoelectron was ejected (Watts, 1994). Hence they can be used to identify 

the chemical state of elements on the surface of a sample. Catalysis being a 

surface phenomenon, it was important that the chemical species on the surface 

of catalysts synthesized in this work be determined. The Equipment used was a 

K-Alpha manufactured by Thermo Scientific, East Grinstead, UK. The X-ray was 

Microfocused monochromatic AlKα with an X-ray Energy of 1486.6 eV, spot size 

of 400 x 800 microns (Emission angle:  take-off angle of 90 degrees) and pass 

energy: surveys 200 eV, High resolution regions 40 eV. Charge neutralisation 

was on during the characterization. 



52 
 

 X-ray powder diffraction analysis (XRD) 

The equipment used was PANalytical X'Pert Pro Multipurpose Diffractometer 

The anode material was copper, K-Alpha1 wavelength was 1.540598 nm, K-

Alpha2 wavelength was 1.544426 nm and ratio K-Alpha2/K-Alpha1 was 0.5. The 

divergence slit (fixed) was 0.38 mm, generator voltage was 40 kV and tube 

current 40 mA. No monochromator was used. 

 Transmission Electron Microscopy (TEM) 

The transmission electron microscope is much like the visible light microscope in 

that they both depend on the wavelength of the incident electrons/light. The 

former depends on the wavelength of accelerated electrons and the latter on the 

wavelength of light. TEM functions by generating electrons that are accelerated 

and focused by electromagnetic lenses. Being focused, the electrons are directed 

on to the specimen. Similar to light waves and depending on the density of the 

specimen some will be absorbed, diffracted and others will pass through the 

sample. Those that pass through create an image on a detector. The image is 

viewed photographically on a screen capable of converting electron intensity to 

light intensity and is called the Transmission Electron Micrograph (Williams 

and Carter, 2009). The TEM was used in this work to ascertain the highly 

ordered pore structure of the template and the ordered mesoporous carbon. 

The specific microscope used was a Philips CM200 FEGTEM operated at 200kV. 

Typically the samples were dispersed in acetone and placed in an ultrasonicator. 

After they were thoroughly homogenised, a drop was placed on the carbon grid 

and the grid placed in the microscope.  

 Nitrogen adsorption-desorption (BET analysis) 

This was used to determine the surface area and pore structure i.e. pore size, 

pore volume and surface area of pores. Typically the samples were heated to 120 

oC and vacuumed down to about 10x-2 torr then the nitrogen was passed in.  
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 Raman Analysis 

The machine used was a  Horiba LabRam HR Evolution. The wavelength of the 

laser was 532 nm with a power of 500 mW, set to 90 % and a laser power at the 

sample of about 170 mW. Acquisition time was 60 second and 2 acquisitions were 

made. The pinhole opened up 200 µm (no confocality) and the focus was adjusted 

for maximum intensity on the surface. Spectral center of 1400 cm-1 and a 600 

gr/mm grating. 

3.9 Methods of Analysis 

 Voltammetry  

Cyclic and linear voltammetry are widely used to acquire qualitative information 

in the study of electrochemical reactions. Their main objective is to obtain a 

current output that corresponds to the concentration of the target analyte.  This 

is obtained by studying the rate and quantity of electron transferred throughout 

the redox process and can be represented by  

𝑶+ 𝒏𝒆− ↔ 𝑹                eqn 3.2 

O is the oxidized state and R the reduced state of the analyte of interest. The 

concentrations of these species during an electrochemical process is governed by 

the Nernst equation i.e. eqn 3.3 (Wang, 2006) 

𝑬 = 𝑬𝒐 +
𝟐.𝟑𝑹𝑻

𝒏𝑭
𝒍𝒐𝒈

𝑪𝒐 (𝟎,𝒕)

𝑪𝑹 (𝟎,𝒕)
                                         eqn 3.3 

Eo is standard potential for the redox reaction, T the Kelvin temperature, R the 

universal gas constant, n the number of electrons transferred and F is the 

Faraday constant.  CO(0,t) represents the concentration of oxidant and CR (0,t) 

the concentration of the reductant at the surface of the electrode respectively. 

The usefulness of voltammetric techniques lies in their ability to give rapid 

information on the thermodynamics of oxidation-reduction processes as well as 

on the kinetics of heterogeneous electrochemical processes.     

Voltammetry entails increasing (or decreasing) at a constant rate the potential of 

a stationary working electrode in a quiescent solution and monitoring the 
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corresponding change in electron density. In such a system, the concentration 

gradient is given by eqn 3.4 (Wang, 2006) 

𝝏𝒄(𝒙,𝒕)

𝝏𝒙
=
(𝑪𝑶 (𝒃,𝒕)−𝑪𝑶 (𝟎,𝒕)

𝜹
           eqn 3.4 

CO(b,t) represents the concentration of O in the bulk solution and δ the thickness 

of the diffusion layer. The concentration gradient determines the flux of oxidant, 

which in turn determines the quantity of current. As the peak potential is 

approached, concentration of oxidant on the surface tends to zero. Therefore, the 

only force on the flux is the increasing thickness of the diffusion layer that serves 

to lessen it. Just before this point, a peak current is attained and the current 

gradually diminishes afterwards.  

As scan rate is increased, the peak current increases but the voltage at which the 

peak occurs remains the same. This is characteristic of fast or reversible 

processes. For a quasi-reversible electron transfer reactions or slow process  the 

same phenomenon of increasing peak currents occur with increasing scan rates 

but the voltage at which it occurs changes. 

Linear sweep voltammetry (LSV) entails scanning the potential in one direction 

only while cyclic voltammetry entails scanning the potential in forward and 

reverse direction. Cyclic voltammetry can involve repeated scans depending on 

the property under investigation. 

In this work, the LSV was used to compare the limiting current for the 

synthesized catalyst and 20 wt% Pt/Carbon commercial catalyst.  

 Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrode 

(RRDE) 

Voltammetry with the aid of a rotating disk electrode (RDE) allows for a well-

defined diffusion layer with constant thickness  and a mass transfer process 

whose theoretical basis is well investigated and the equations related to relevant 

electrocatalytic parameters (Town et al., 1991).  
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The electrode rotates at a constant angular velocity ω=2πf about this axis (f is 

rotation speed in revolution per second). Some equations used to extract 

electrocatalytic oxygen reduction relevant parameters from the RDE data 

include: 

 The Levich equation  

This relates the limiting current il to the square root of the angular velocity, ω in 

a reversible system. 

𝒊𝒍 = 𝟎. 𝟔𝟐𝒏𝑭𝑨𝑫
𝟐 𝟑⁄ 𝝎𝟏 𝟐⁄ 𝒗−𝟏 𝟔⁄ 𝑪𝒃             eqn 3.5 

 

n is the number of electrons transferred ; F is Faraday’s constant ; A is the 

geometrical surface area of electrode; D is the diffusion coefficient of the analyte, 

v is the kinematic viscosity and Cb is the concentration of the analyte in bulk 

solution. This equation was developed with an assumption that the 

concentration of the analyte is zero at the electrode-solution interface. It 

therefore implies a mass transfer controlled process. A plot of il vs v-1/2 is used to 

determine n, the number of electrons transferred as well as D, the diffusion 

coefficient; a kinetic limitation exists when it does not pass through the origin. 

 The Koutecky-Levich equation 

Similar to the Levich equation is the Koutecky-Levich. This was developed to 

accommodate quasi-reversible systems that are controlled by mass-transfer and 

kinetic limitations. The cathode current Ic is represented by equation 3.6 

𝟏

𝑰𝒄
=

𝟏

𝟎.𝟔𝟐𝒏𝑭𝑨𝑫𝟐 𝟑⁄ 𝒗−𝟏 𝟔⁄ 𝝎𝟏 𝟐⁄ 𝑪𝒃
+

𝟏

𝒏𝑭𝑨𝒌𝒉𝑪
𝒃
                       eqn 3.6 

kh  with units of cm/s is the heterogeneous reaction rate constant or charge 

transfer constant that typifies the ease of electron transfer between the catalysts 

material and oxygen, the larger the value of kh the faster the kinetics. From the 

equation, a plot of 1/Ic vs 1/ω1/2 should be a straight line. Equation 3.6 can also be 

represented as  
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𝟏

𝑰𝒄
=

𝟏

𝒋𝒎
+
𝟏

𝒋𝒌
                                eqn 3.7 

with jm being the mass transfer limiting current while jk is the kinetic current. 

The Koutecky-Levich equation is used to determine the number of electrons 

transferred n, which also defines if the ORR is proceeding to form water, 

terminates in the formation of hydrogen peroxide or combines both. 

The uniqueness of the RRDE lies in the presence of a concentric ring around the 

disc, both being separated by an insulating non-catalytic material. Its principal 

benefit during ORR is its ability to detect peroxide, the ORR intermediate. This 

is achieved by setting the ring at a voltage that is sufficient to oxidize peroxide 

as it is swept outwards by the rotating motion of the disc. Hence the RRDE is 

useful for clarifying the predominant mechanism during oxygen reduction. Two 

key equations for the RRDE are the number of electrons transferred eqn 3.8 and 

the mole fraction of peroxide formed eqn 3.9, 

𝒏 =
𝟒𝑰𝑫

𝑰𝑫+𝑰𝑹 𝑵⁄
                              eqn 3.8 

Where n is the average number of electrons transferred per molecule of oxygen, 

ID is the disk current, IR the ring current generated as a result of the oxidation of 

hydrogen peroxide and N is the collection efficiency which captures the ratio of 

the amount of peroxide reduced to the total which was produced at the disc. 

Using data from RRDE, the mole fraction of peroxide can also be calculated from 

the equation 3.9 

𝑿𝑯𝟐𝑶𝟐 =
𝟐𝑰𝑹/𝑵

𝑰𝑫+𝑰𝑹/𝑵
                           eqn 3.9 

XH2O2 is the mole fraction of peroxide which is an indication of catalytic efficiency in terms 

of how much of the ORR proceeds to complete four electron reduction.  

 

 Butler-Volmer Analysis 

For the reaction represented by  
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𝑶+ 𝒏𝒆− ↔ 𝑹                eqn 3.10 

When the ORR current is controlled by the rate at which electrons are being 

transferred (charge transfer of electrons is sufficiently fast), the rate of the 

forward reaction is represented by a first order equation with respect O   

𝑽𝒇 = 𝒌𝒇𝑪𝒐(𝟎, 𝒕)                eqn 3.11 

and that of the backward reaction by a first order equation with respect to R    
𝑽𝒃 = 𝒌𝒃𝑪𝑹(𝟎, 𝒕)                               eqn 3.12 

kf and kb tell the speed of the reactions and are known as the forward and 

backward heterogeneous rate constants respectively. The unit of the 

heterogeneous rate constant for first order reactions is cms-1.They depend on the 

overpotential and are represented as  

𝒌𝒇 = 𝒌
𝒐 𝐞𝐱𝐩 [

𝜶𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
]                                         eqn 3.13 

 

𝒌𝒃 = 𝒌
𝒐 𝐞𝐱𝐩 [−

(𝟏−𝜶)𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
]                              eqn 3.14 

Where ko is the standard heterogeneous rate constant and α the transfer 

coefficient. The net reaction rate can be represented by  

𝑽𝒏𝒆𝒕 = 𝑽𝒇 − 𝑽𝒃 = 𝒌𝒇𝑪𝒐(𝟎, 𝒕) − 𝒌𝒃𝑪𝑹(𝟎, 𝒕)                               eqn 3.15 

The current output is proportional to the rate of reaction and can be represented 

as  

𝒊𝒇 = 𝒊𝒄 = 𝒏𝑨𝑭𝑽𝒇 = 𝒏𝑨𝑭𝑪𝒐 𝒌
𝒐 𝐞𝐱𝐩 [

𝜶𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
] eqn 3.16 

𝒊𝒃 = 𝒊𝒂 = 𝒏𝑨𝑭𝑽𝒃 = 𝒏𝑨𝑭𝑪𝑹𝒌
𝒐 𝐞𝐱𝐩 [−

(𝟏−𝜶)𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
]       eqn 3.17 

𝒊𝒏𝒆𝒕 = 𝒊𝒇 − 𝒊𝒃 = 𝒏𝑭𝑨[𝒌𝒇𝑪𝒐(𝟎, 𝒕) − 𝒌𝒃𝑪𝑹(𝟎, 𝒕)]  eqn 3.18 

Substituting for the heterogeneous rate constants in eqn 3.18 gives 
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𝒊𝒏𝒆𝒕 = 𝒏𝑭𝑨𝒌
𝒐 (𝐞𝐱𝐩 [

𝜶𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
] 𝑪𝒐(𝟎, 𝒕) − 𝐞𝐱𝐩 [−

(𝟏−𝜶)𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
] 𝑪𝑹(𝟎, 𝒕))eqn 3.19 

This is the Butler-Volmer equation and is used to represent a purely kinetic 

faradaic current. That is a Faradaic current that is controlled wholly by the rate 

of chemical reaction or charge transfer. Such a current is a function of the 

overpotential (E – Eo) which is the additional potential beyond the equilibrium 

potential that is required for the movement of electrons.  

At equilibrium 𝐸 − 𝐸𝑜 =  𝜂 = 0 and Co = CR = C, and eqns 3.16 and 3.17 simplify 

to 

𝒊𝒐 = 𝒊𝒇 = 𝒊𝒃 = 𝒏𝑭𝑨𝒌
𝒐𝑪           eqn 3.20 

io is called the exchange current density.  

Also at large negative overpotential, ic >>ia  therefore eqn 3.19 becomes 

𝒊𝒏𝒆𝒕 = 𝒊𝒄 = 𝒏𝑨𝑭𝑪𝒐𝒌
𝒐 𝐞𝐱𝐩 [−

𝜶𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
]    eqn 3.21 

 

𝒊𝒄 = 𝒊𝒐 𝐞𝐱𝐩 [−
𝜶𝒏𝑭(𝑬−𝑬𝒐)

𝑹𝑻
]                          eqn 3.22 

Equation 3.22 is referred to as the Tafel equation and can be represented 

alternatively as  

𝒍𝒏𝒊𝒄 = 𝒍𝒏𝒊𝒐 −
𝜶𝒏𝑭

𝑹𝑻
𝜼                                             eqn 3.23 

io is referred to as the exchange current density. It is the current which flows at 

dynamic equilibrium and also characterizes the activity of an electrocatalysts.  

 Half-Wave Potential 

The half-wave potential can be defined as the voltage at which the reduction 

current attains half of its value at the limiting current region. It serves as a good 

measure of the charge transfer kinetics particularly when differences in onset 

can be ambiguous. In essence, it gives information on the relative closeness to 
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thermodynamic predictions of the electrochemical activity in question. Therefore, 

for two or more catalyst being tested on the same reaction, the one with the 

smaller half-wave potential is closer to the thermodynamically predicted 

performance and adjudged to be better. 

 Coulombic Efficiency (CE) 

This calculation was done for the microbial fuel cells. CE is defined as the 

amount of electrons that goes to produce current divided by the theoretical 

amount of electrons available for producing current (Logan et al., 2006) 

expressed in percentage. It is calculated thus (HaoYu et al., 2007) 

𝑪𝑬 =
𝑪𝑬𝒆𝒙𝒑

𝑪𝑬𝒕𝒉𝒆𝒐𝒓𝒆𝒕𝒊𝒄𝒂𝒍
𝒙𝟏𝟎𝟎                  eqn 3.24 

CEexp  is the experimental value of the total charge gotten from the substrate 

used. This was calculated by multiplying the current at a particular time by the 

time interval at which data is logged. The values were then summed up over a 

particular cycle common to all the catalysts. CEtheoretical is the theoretical amount  

of charge obtainable from the substrate if it were completely consumed over the 

cycle being considered.  
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  Physical and Electrochemical Characterization of  

Nitrogen Doped Carbons 

In this chapter, the use of nitrogen doped ordered mesoporous carbons as 

alternatives catalysts to platinum for oxygen reduction reactions in fuel cells is 

explored. Nitrogen doped ordered mesoporous carbon was synthesized using two 

methods. In the first method, O-phenylenediamine was polymerized and then 

carbonized using highly ordered mesoporous silica (KIT-6) as template. The 

template was removed after the carbonization step. For the purpose of attaining 

an optimal material property nitrogen doped carbon, carbonization was 

performed at three different temperatures of 700 oC, 800 oC and 900 oC to give 

NDAB-700, NDAB-800 and NDAB-900 respectively.  In the second experiment, a 

reduction in the number of steps and materials involved in the production of 

ordered nitrogen doped carbon was explored through a direct synthesis approach 

that made use of a soft template instead of a hard one (i.e. KIT-6 silica) was 

adopted; here also the materials were carbonized at three different temperatures 

of 700 oC, 800 oC and 900  oC to give DNOMC-700, DNOMC-800 and DNOMC-

900 respectively. For a proper understanding of what was responsible for 

catalysis, characterization was carried out. These include, X-ray photoelectron 

spectroscopy (XPS), transmission electron microscopy (TEM), Raman 

spectroscopy, nitrogen adsorption-desorption analysis and x-ray powder 

diffraction. The two groups of catalysts revealed average activity but good 

stability. 

4.1 Introduction 

Nitrogen doped carbons have been known to possess ORR activity. However 

certain issues are preventing their use on a large scale. This include the poor 

activity compared with platinum, expensive precursors that make the final 

product not to be market competitive, stability and complex synthesis procedures 

being used. 

One promising work was that of Yang et al (2010). They synthesized N-doped 

catalysts that were used in alkaline media. The onset potentials were very close 
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i.e. ca -35 mV with an overpotential of about 35 mV compared to that of 20wt% 

Pt/C. Using Koutecky-Levich analysis, the number of electrons transferred was 

determined to be 4.1 for the best catalyst, which is similar to that for platinum.  

Why the choice of O-phenylenediamine in this work? It was used by Liu et al  

(2010a) to produce the highest nitrogen content of N-doped carbon reported in 

literature, i.e. 26.5 wt% at 600 oC. However, this high nitrogen content 

mesoporous carbon was not put to any practical use. Hence the need to 

investigate the possible advantages of nitrogen doped carbons obtained from this 

procedure. Furthermore, though many non-platinum catalysts have been 

synthesized the challenge of tedious synthesis procedures and expensive 

materials remains. 

4.2 Physical and Chemical Characterization 

 XPS Analysis 

To understand the chemical components responsible for the activity of these 

catalysts, they were analysed using high resolution X-ray photoelectron 

spectroscopy.  

XPS analysis of nitrogen doped carbon prepared by carbonizing poly-o-
phenylenediamine in ordered mesoporous silica template 

The survey spectra in Figure 4-1Error! Reference source not found. are 

summarized in Table 4 -1 

Table 4 -1 Chemical composition of NDAB catalysts obtained from XPS analysis 

(atomic %) 

 Atomic % 

  C 1s N 1s O 1s S 2p Si 2p Na 1s 

NDAB-
900 85.47 5.31 6.98 0.84 1.23 0.17 

NDAB- 
800 79.49 8.15 8.59 1.67 1.31 0.78 

NDAB-
700 74.95 11.79 8.96 1.37 1.91 1.01 
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The presence of the desired elements carbon and nitrogen is confirmed, albeit 

with some impurities like sulphur, sodium and silica.  These i.e. sulphur, sodium 

and silica are likely artefacts from the synthesis process. Silica and sodium are 

from the silica template and the NaOH used to etch the silica respectively. They 

are not expected to have any oxygen reduction activity either A common trend in 

the carbonization of nitrogen containing compounds is the reduction in total 

nitrogen content as temperature of carbonization increases (Stańczyk et al., 

1995). This is evidenced here as the synthesis temperature is increased from 700 

to 900 oC and agrees with the works of Nagaiah et al and Wang et al (2010; 

2012). Expectedly, the total amount of carbon increases with the carbonization 

temperature. It is worth mentioning that the C/N at% ratio obtained here 6.4 – 

16.9 was lower than that claimed to have been obtained in the literature (Liu et 

al., 2010a) 3.25–3.65.  

In making use of binding energies for the identification of elements, there is 

often the need to have a charge reference otherwise referred to as calibration of 

the energy scale. The binding energy of adventitious carbon at 284.8 eV or near 

285 eV is mostly used as the charge reference (Miller et al., 2002; Biesinger et al., 

2010) . In this analysis, the main peak of the C1s spectrum for each row of 

elements were duly calibrated by adding a few eV to bring them to 248.8eV. The 

binding energy (BE) of the other elements in the row were adjusted accordingly.    

Sulphur can be potentially doped into carbon with a concomitant oxygen 

reduction activity. However, the sulphur quantified in this work as S-2p 

(electrons from the 2p shell were used for quantification) at a binding energy 

(BE) of 164.08 eV is expected to be elemental sulphur or sulphur existing as a 

thiol physisorbed on the catalyst. (XPS simplified; (Fabianowski et al., 1989). 

This is as opposed to sulphur that is doped into the carbon structure and is 

capable of possessing catalytic activity. This would have been identified as a C-S-

C configuration appearing at 283.4-283.7 eV (Wan et al., 2010) (Liang et al., 

2012a; Li et al., 2014). Deconvolution of the respective spectra’s yields more 

useful information as to the functionality of the species present.  
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Each C1s carbon was deconvoluted into six separate components, with the 

exception of NDAB-700. The Full width at Half Maximum (FWHM) was 

constrained to 1.4+0.2 eV (Gelius et al., 1970). The first component occurs at a 

binding energy of 284.8 eV in all three samples. It corresponds to pure carbon C-

C or C-H (Bhattacharyya et al., 1998). The second component occurs at 286+1 eV 

and is assigned to the C-N sp2 bond. The third major component which is 

assigned to C-N sp3 bond occurs at a BE of 287+3 eV (Boyd et al., 1995; 

Bhattacharyya et al., 1998). Surface oxidized carbon species like carboxyl and 

carbonyl functional groups were also identified as being present on the surface of 

pyrolyzed NDAB (Song et al., 2014) . This occurred at binding energies of 

288.4+3 eV and 289.5+2 eV (Gelius et al., 1970; Buchwalter and Czornyj, 1990) 

for the carbonyl and carboxyl groups respectively. For NDAB-700, at 290.5 eV is 

the carbonate functional group (Gardner et al., 1995). The shift in BE suggest 

variations in the chemical composition of the surface oxidized carbon species. A 

pi to pi* transition of valence electrons is captured as a shake-up peak within the 

NDAB-900 and 800 samples at BE of 291.3+1 eV (Gardella et al., 1986; Doren et 

al., 1994; Brena et al., 2004).  

N-1s nitrogen spectrum was also deconvoluted into four components; graphitic or 

substitutionary nitrogen, pyridinic nitrogen, pyrolic nitrogen and nitrogen-

oxides.  

The binding energy of graphitic nitrogen is somewhat controversial. A nitrogen 

containing carbon molecule that typifies this structure is fullerene C59N.  

Fullerene has only one substituted nitrogen atom having a binding energy of 

400.7 eV (Pichler et al., 1997; Schulte et al., 2007). Hence components in the 

synthesized materials with BE of ca 400.7 eV have been identified as substituted 

nitrogen. There seems to be a consensus about the BE of pyridinic nitrogen 

occurring at 398.3 + 0.3 eV (Liu et al., 2010a; Susi et al., 2015). Hence the 

components occurring at 398.2 – 398.4 eV are labelled as pyridinic nitrogen. It is 

expected, that as carbonization temperature increases, the pathway for the 

transformation of nitrogen structures shifts from pyrrolic to pyridinic to 
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graphitic (Stańczyk et al., 1995) with graphitic nitrogen considered as the most 

stable.
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Figure 4-1 Survey and deconvoluted spectra of nitrogen doped carbon obtained 

from O-phenylenediamine 

Here, nitrogen functional group with a BE 400.1 + 0.3 and 402 – 403.5 eV (Susi 

et al., 2015) are labelled as having the pyrrolic and nitrogen oxide functionality 

respectively. A summary of the types of nitrogen functional groups present in 

each sample and their percentages is shown in Table 4-2. 

Table 4-2 Chemical composition and nitrogen functional groups of N-doped 

carbon from o-phenylenediamine using KIT-6 as template 

Catalysts  Carbon (%) Nitrogen 
(%) 

Oxygen (%) Nitrogen (%) 

Pyridinic Graphitic  Nitrogen 
oxides 

NDAB-900 85.47 5.31 6.98 29.6 60.6 9.8  

NDAB-800 79.49 8.15 8.59 38.6 52.1 9.3 

NDAB-700 74.95 11.79 8.96 44.4  48.6 7.0  

 

XPS analysis of direct nitrogen doped carbon prepared using a surfactant as 
soft template  

For the direct nitrogen doped mesoporous carbon (DNOMC) the main C1s peak 

was calibrated to 284.8 eV and used for charge referencing. Other components 

and compound were adjusted accordingly. A predominance of the C-C single bond 
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is highlighted by the fact that C1s with a BE of 284.8 eV constitutes ca 69 % of 

all forms of carbon present. The possibility of overlaps within XPS spectra is 

common place (Artyushkova et al., 2007; Lewin et al., 2008). Hence the BE of 

285.8 eV can be assigned to carbon species combined with oxygen in an ether 

configuration (Jordan et al., 1987) as well as to carbon joined to nitrogen in an 

sp2 configuration (Boyd et al., 1995) the aliphatic  ether configuration is 

confirmed by the O1s binding energy of 532.2 eV (Ackeret and Ratner, 1992). 

Carbon bound to nitrogen in an sp3 configuration can be identified via the BE 

287eV (Boyd et al., 1995). An obvious left-shoulder peak is present in the spectra 

of the three DNOMC samples. Occurring at a BE of ca 288.9 eV the closest 

relevant match would be a carbonyl group of a ketone or ester, this confirms the 

presence of oxygen functional groups (Hantsche, 1993).  

Oxygen was deconvoluted into 3 components. The BE at 532.2 eV represents the 

oxygen bound to two carbon atoms in an ether configuration (Ackeret and 

Ratner, 1992) , that at 533.6 eV characterizes oxidized carbon species namely 

carbonyl (Lhoest et al., 1995) and ether (Jordan et al., 1987). The likely presence 

of water or other hydroxides is suggested by the BE at 529.9 eV (Jin and Atrens, 

1987). 

From the survey spectrum, it is evident that the overall amount of nitrogen 

doped into the DNOMCs is relatively small. This, notwithstanding the work of 

Niwa et al (2011) shows that nitrogen doped carbon catalysts have been known 

to show oxygen reduction activity even at compositions as low 0.4 at%. Due to 

the very low amount of nitrogen present, the XPS peaks were noisy and did not 

yield fine distinctions of nitrogen functionalities.  The N1s core level spectrum 

was deconvoluted into four components.  The BE of 398.3+0.3 eV can be ascribed 

to pyridinic nitrogen (Susi et al., 2015). Pyrolic nitrogen is amongst the first 

product in the pyrolysis of nitrogen containing carbon compounds. Here, they are 

confirmed to be present in all the DNOMC samples by the BE of 399.6-400.4 eV 

(Artyushkova et al., 2007; Susi et al., 2015). Substituted nitrogen, which is 

nitrogen combined with three carbon atoms in a sp2 hybridized configuration is 

seen in DNOMC-800 and DNOMC-900 at a binding energy of 400.8-401.1 eV. 
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The component represented by the BE of 401.5 eV is somewhat equivocal falling 

between values often referenced for substituted nitrogen at the lower end 400.7-

401.5 eV (Pichler et al., 1997; Raymundo-Piñero et al., 2002) and those for 

oxidized nitrogen species at the upper end 402-405 eV (Susi et al., 2015). 

However, there is an obvious presence of the oxides of nitrogen represented by 

the BE of 402.5 – 403.9 eV. Temperature of pyrolysis was also a factor that 

influenced overall activity though it did not produce a trend in the amount of 

nitrogen functional groups present (Table 4-3). 

Table 4-3 Chemical composition and nitrogen functional groups of N-doped 

carbon from the direct synthesis procedure (atomic %) 

Catalysts Carbon Nitrogen Oxygen 

Nitrogen 

Pyridinic Graphitic 
Nitrogen 

oxides 
Pyrrolic  

DNOMC-
900 92.44 0.62 6.95 17.11 28.32 13.69 40.88 

DNOMC-
800 92.48 0.78 6.75 14.52 36.1 14.46 34.93 

DNOMC-
700 91.04 0.78 8.19 22.89 23.04 9.22 44.84 

 

 BET Analysis 

According to the IUPAC classification, most physisorption isotherms can be 

classed into six types (Sing, 1985) with type IV being typical of mesoporous 

materials. Following this, the three physisorption isotherms Figure 4-2 a, c, and 

e are type IV, thus confirming their mesoporous nature. KIT-6 the hard template 

used to synthesize NDAB-900 was itself made from a so-called soft-template 

Pluronic 123. The sharp and vertical nature of the adsorption and desorption 

isotherms (H1 hysteresis) is a validation of the very narrow pore size 

distribution. This is corroborated by the pore size distribution (PSD) in Figure 

4-2b.  

 



68 
 

 

Figure 4-2 Physisorption Isotherm and Pore Size Distribution for a, b KIT-6 

silica; c, d NDAB-900; e, f DNOMC-900 

The area of the hysteresis also points to a relatively large mesopore volume. 

Though the isotherm of NDAB-900 is also a type IV, its H3 hysteresis loop is a 

departure from that of the parent template. This might be a pointer to the need 

to improve on the impregnation procedure as well as the template dissolution 

step. NDAB-900 further exhibits a low pressure hysteresis (thin portion after 

p/po<0.4); an indication of micro-porosity within the catalyst. Its PSD reveals 

that most pores have a diameter of 5 nm with a small fraction of ca 16 nm. This 
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bimodal pore size distribution is similarly captured in the isotherm which shows 

two hysteresis, the smaller occurring at a higher p/po (P/Po=0.8 – 1.0) indicating 

that it comes from pores with larger diameters. The presence of pores with 

diameter of ca 16 nm shows that some pores in the template KIT-6 were unfilled 

(Wu et al., 2012).  

When the template was removed, these pores collapsed to produce larger ones in 

the carbon. DNOMC-900 is the nitrogen doped carbon catalyst synthesized 

directly from a soft-template as against NDAB-900. It has an H4 hysteresis loop. 

Its very broad PSD with most being in the macropore range is marked in Figure 

4-2e,f. DNOMC-900 was synthesized with the hope of obtaining a facile 

procedure for nitrogen doped ordered mesoporous carbons. From the point of 

structure, we may say that this was not fully achieved. This indicates that this 

method may not be efficient for producing uniform highly ordered mesoporous 

nitrogen doped materials. Table 4-4 presents a summary of the textural and 

structural properties of the three mesoporous materials. The total surface area is 

612 m2/g, 558 m2/g and 404 m2/g for KIT-6 mesoporous silica template, NDAB-

900 and DNOMC-900 respectively. Values for the pore volume are DNOMC-900-

0.19 cm3/g , NDAB-900-0.38 cm3/g  and KIT-6 - 0.80 cm3/g 

Table 4-4 Textural and structural properties of KIT-6, NDAB-900 and DNOMC-

900 
 

Total Surface 
area (m2/g) 

External Surface 
area (m2/g) 

Micropore 
Area 
(m2/g) 

Pore 
Volume 
(cm3/g) 

Pore Size 
(nm) 

KIT-6 612 465 147 0.80 6.00 

NDAB-900 558 245 313 0.38 4.86 

DNOMC-900 404 127 278 0.19 5.58 

 

 Transmission Electron Microscopy (TEM) 

 Figure 4-3 shows the transmission electron microscopy micrographs for KIT-6, 

NDAB-900 and DNOMC-900. A unique and somewhat unexpected feature can be 

seen in the high resolution transmission electron microscope (HRTEM) 

micrograph of NDAB-900 Figure 4-3d, i.e the crystalline nature of the pore walls 
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(Bojdys et al., 2008). This is a pointer that the material is highly graphitic (Wu et 

al., 2012) while still maintaining the structural order. This is notable considering 

that conventionally, graphitized carbon materials are produced via high 

temperature treatment of up to 2200 oC (Chai et al., 2012b). For ordered 

mesoporous materials, this could lead to a breakdown of the structural order 

(Gierszal et al., 2008). A generality of the methods that preserve mesopore order 

and structure while producing a highly graphitized carbon are either complicated 

or costly (Wang et al., 2011). Hence obtaining highly graphitic pore walls 

combined with extensive structural order at 900 oC is commendable. That 

NDAB-900 contains some measure of crystallinity is further confirmed by wide-

angle XRD shown in Figure 4-4 

This data shows two characteristic peaks occurring at around 25o and 44o 2 theta. 

These peaks are indexed to the (002) and (101) planes of graphitic carbon. The 

calculated d-spacing based on the 2 theta value of 25o is 0.356 nm. This is close to 

the value for crystalline graphite i.e. 0.355 nm (Howe et al., 2003).  

The benefits of this are numerous. The highly graphitic pore walls enhances the 

attachment of metal catalysts like platinum, rhodium and titanium oxide, thus 

making them ideal carbon supports (Cui et al., 2009; Wang et al., 2011; Chai et 

al., 2012b). Contrary to what may be deduced from the nitrogen physisorption 

data for DNOMC-900, its TEM micrographs in Figure 4-3e, f reveal large areas 

of periodically ordered meso-channels. 
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Figure 4-3 TEM of a, b KIT-6; c, d NDAB-900; e, f DNOMC-900 
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Figure 4-4 Low-angle XRD of NDAB-900 

The uniform pores are also visible on the upper-centre of Figure 4-3e. This may 

mean that the direct synthesis procedure did succeed in producing some degree 

of order within the nitrogen doped carbon. 

 Characterization of CMK-8 carbon and Vulcan XC-72  

For comparison, two other carbons were tested. One is highly ordered 

mesoporous carbon (CMK-8) which should highlight the effect of the presence or 

absence of nitrogen doping. This was prepared with the same ordered 

mesoporous silica (KIT-6) template used for the NDAB group but with sucrose as 

carbon source and no nitrogen. The other was commercial Vulcan, expected to 

highlight the effect of the absence of both nitrogen doping and an ordered 

structure. This could not be nitrogen doped due to the nature of the procedure 

used; carbon and nitrogen would need to be available in the same material. It 

would have been insightful to compare the ORR capacity of nitrogen doped non-

mesoporous carbon but this was not possible due to time constraints.  The XPS 

spectra for each of these carbon is shown in Figure 4-5.  The data from the 

survey spectra is summarized in Table 4-5. From the survey spectra it is 

apparent that while Vulcan is made up of almost 100% carbon, CMK-8 has a 
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significant amount of oxygen functional groups as revealed by the ca 14 % 

oxygen in addition to the ca 80  % carbon by atomic weight. This is expected to 

contribute significantly to its oxygen reduction capability (Gilbertson et al., 2014; 

Wu et al., 2014). Comparing the deconvoluted spectra, it can be said that the two 

carbons contain similar carbon functional groups. However, the intensities reveal 

that the quantity in CMK-8 far exceed that in Vulcan.  

 

Figure 4-5 Survey and Deconvoluted Spectra of CMK-8 and Vulcan Carbon 

Table 4-5 XPS identified elemental composition of CMK-8 and Vulcan carbons 

 

 

 

 

 

Catalysts CMK-8 VULCAN 

Carbon 79.64 99.00 

Oxygen 14.54 0.65 

Nitrogen 0.00 0.00 
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Table 4-6 Identification of functional groups present in CMK-8 

Name Position FWHM % Concentration Reference  

C-C, C-H 284.8 1.24 62.96 

 

(Bhattacharyya et al., 
1998) 

C-O 286.2 1.45 15.96 

 

(Delpeux et al., 1998) 

C=O 287.6 1.46 7.82 

 

(Delpeux et al., 1998) 

carboxyl groups 289.1 1.46 5.46 

 

(Gelius et al., 1970; 
Buchwalter and Czornyj, 

1990) 

carbonate 
functional group 

290.5 1.45 4.44 

 

(Gardner et al., 1995) 

pi to pi* 
transition 

291.9 1.46 3.36 

 

(Gardella et al., 1986; 
Doren et al., 1994; 

Brena et al., 2004) 

 

TEM of CMK-8  

The TEM micrograph of CMK-8 carbon (Figure 4-6) shows its ordered 

mesoporous structure. Figure 4.6a shows the pores as seen from the top with a 

pore size of ca 6nm. The narrow PSD and high degree of order is evident. Figure 

4.6b gives a lateral view, showing uniformly arranged mesochannels.  Such 

uniformly arranged channels are known to enhance mass transfer both of 

substrates and products within highly ordered mesoporous catalysts. This 

contributes to an overall better catalytic performance vis a vis porous but not 

highly ordered catalysts.  

 

Figure 4-6 TEM micrographs of CMK-8 
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4.3 Electrochemical Analysis 

 NDAB Carbon Catalysts 

The electrochemical analyses of the NDAB catalysts were performed using linear 

sweep voltammetry in combination with a rotating ring disc electrode (RRDE). 

This result is often presented in the form of plots of disc (and ring) currents 

versus voltage (Ag/AgCl). A typical plot is that of the NDAB-900 catalyst which 

was synthesized at a pyrolysis temperatures of 900 oC (Figure 4-7).  

It is pertinent to know that during oxygen reduction reactions, electrons are 

consumed on a whole number, stoichiometric basis at the electrode. Hence the 

rate of reaction rate is exactly mirrored by the flow of electrons; the two being 

directly proportional (Faulkner, 1983) 

The following regions can be observed on the plot  

a) A region where the charge transfer kinetics is rate limiting. This region 

starts at the onset potential which here is -0.09 V (Ag/AgCl). Here the rate at 

which the reactant is being transferred from the bulk as a result of rotation is 

faster than the rate at which they are reacting at the electrode. Hence the 

intrinsic rate determines the overall reaction rate. The catalysts being the same 

(this plot is for the same catalysts i.e. NDAB-900 at different rotation rates) all 

have the same reaction rate and the lines coincide.  

b) The second region is where the charge transfer rate begins to increase as 

the voltage becomes more negative. The rate of reaction rate competes with the 

rate of mass transfer and a region where both are limiting is observed. For the 

slower sweeps, the charge transfer rate quickly surpasses the rate at which the 

reactant is reaching the surface of the catalysts, making mass transfer rate 

limiting much earlier on. For the faster rotation rates, because of the more rapid 

sweep rates, the charge transfer rate does not catch up with the mass transfer 

rate early on, hence it continues to increase until such a point where it 

eventually surpasses the mass transfer rate; henceforth, the mass transfer rate 

becomes limiting and the curve hits a plateau. 
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Figure 4-7 Disc and ring current plots for NDAB-900 in 0.1 M KOH from a scan 

rate of 5 mV/s and a ring potential of 0.35 V; pH 13 and RT 

c) The third region is where the reaction is strictly limited by mass transfer 

and the polarisation plot forms a plateau. The fact that the plateau is inclined 

rather than flat could be an indication of low intrinsic rate (Jiang and Anson, 

1991). It may also mean a change in the number of electrons for the ORR with 

potential in this region. 

The theoretical background to this can be seen from the hydrodynamics of the 

rotating disc electrode. As the sweep rate increases, the diffusion layer 
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separating the surface of the electrode from the bulk solution becomes thinner, 

thus enhancing the rate of mass transfer to the electrode surface. The faster the 

sweep rate, the thinner the diffusion layer, the faster the mass transfer and 

longer it takes for the charge transfer rate to catch up. 

Nitrogen doped carbon obtained by using o-phenylenediamine in a mesoporous 

silica template NDAB, was prepared at three different pyrolysis temperatures 

(700oC, 800oC and 900oC). The investigation carried out helped to examine the 

relationship between ORR activity and pyrolysis temperature, total nitrogen 

content, nitrogen functional groups, oxygen functional groups and structural 

properties. Figure 4-8 shows the disc and ring currents, number of electrons and 

Tafel slopes obtained from the electrochemical analysis. The variation of activity, 

specifically the activation controlled current, with physico-chemical properties is 

depicted in Figure 4-9.   

Due to the low sweep rate of 5 mV/s, capacitive currents are not expected to have 

a significant impact on the polarisation plots (Gasteiger et al., 2005). 

The charge transfer region of the disc current plainly shows that the NDAB 

catalyst pyrolyzed at 900 oC has a better onset potential (-0.09V) and by 

inference superior catalytic activity. From visual inspection, the diffusion limited 

region is inclined. This is characteristic of most carbon based non-platinum 

group metal catalysts (Subramanian et al., 2006; Liu et al., 2007). From the 

concepts explained earlier, a likely reason is low ORR activity. As a result, when 

the voltage is being polarised in the negative direction, the rate of the charge 

transfer does not become large enough to surpass the mass transfer rate. Hence 

mass transfer does not becoming limiting and the flat plateau that characterizes 

it is not seen.  

The ring current shown in the upper part of Figure 4-8a should be directly 

proportional to the amount of hydrogen peroxide generated by the catalysts. The 

amount of peroxide produced increases with the disc current, i.e. the catalysts 

with the higher disc current also have a higher ring current (this changes for 

NDAB-900 beyond -0.40 V (Ag/AgCl)). However, this is not sufficient to obliterate 
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the superior overall performance of NDAB-900 as captured in the plot of n-

numbers, Figure 4-8b which shows the number of electrons transferred. This 

was calculated from the disc and ring currents (Equation 3.8) and ranges from 

approx. 3 – 3.4 within both the low and high polarization areas. Thus indicating 

that a mixed 2 and 4 electron mechanism is being followed. The values are in 

close agreement with those obtained using the Koutecky-Levich equation which 

ranges from 2.54 – 2.94. 

Tafel slopes were obtained from the charge transfer region of the plots -0.25< V > 

-0.15. Because the polarization plots did not exhibit a well-defined limiting 

current plateau, the value of the current at -0.8 V vs Ag/AgCl was used. The 

slopes are 86 mV/dec, 101 mV/dec and 103 mV/dec for NDAB-900, NDAB-800 

and NDAB-700 respectively.  

The history of Tafel slopes not falling within well-defined values of 60 mV/dec or 

120 mV/dec started with Tafel. He obtained a slope of 107 mV/dec which was a 

departure from the expected value of 118 mV/dec. This he assumed to be a result 

of experimental errors or temperature variation. When the physical significance 

of β, the symmetry factor was discovered, it was realised that the slopes are 

likely to vary when β is not 0.5 (Conway et al., 1989; Gabe, 2005). In line with 

this, the Tafel slopes of 101 mV/dec and 103 mV/dec obtained here can be said to 

indicate a slow first electron transfer step being rate determining. Other workers 

have also obtained Tafel slopes which cannot be readily classed in the well-

defined range of 60 and 120 mV/dec. Tammeveski et al (1999) working with Pt–

TiO2 in alkaline solution obtained a Tafel slope of 80 mV/dec within the first 

Tafel region. In the second region, they obtained Tafel slopes from -260 to -490 

mV/dec. The slopes were observed to increase with Pt film thickness. Also 

Banham and co-workers (2009) in a well-designed experiment, varied catalyst 

layer properties in order to see the effect on Tafel slopes. They increased the pore 

length, decreased the pore diameter and increased the catalyst layer resistance 

of 5 – 40 wt% Pt. 
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Figure 4-8 Electrochemical analysis of NDAB catalysts in 0.1 M KOH. a) Disc and ring currents at 1600 rpm and 5 mV/s b) 

number of electrons transferred and c) Tafel plots; all performed at pH 13 and RT
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Typical Tafel slopes obtained in the work include 77+3, 84+3 and 97+3 mV/dec 

which were larger compared with the mechanistically expected values.  

One other reason why the Tafel slopes do not fall into the defined regions may be 

because of the ill-defined limiting currents (Ye and Vijh, 2005). 

Figure 4-9 captures how the physico-chemical properties vary with kinetic 

current.  In Figure 4-9a, the total amount of nitrogen and atomic percentage of 

pyridinic nitrogen are observed to decrease as temperature of pyrolysis is 

increased from 700 oC to 900 oC.  

Conversely, the atomic percentage of graphitic nitrogen present within the 

catalysts increases with increasing pyrolysis temperature showing a similar 

trend with the amount of nitrogen oxides present. 

In Figure 4.9b, NDAB-700 displayed a slightly higher amount of total oxygen 

content and atomic percent of carbonyl functional group compared with NDAB-

800.  However, a significant decline in both properties is seen as the pyrolysis 

temperature is increased to 900 oC. For reasons not immediately clear, the 

surface area of the nitrogen doped carbons increases very significantly as 

pyrolysis temperature goes from 700 oCto 900 oC. This is shown in Figure 4-9c. 

The trend in the ID/IG ratio which captures the relative amounts of disordered 

and graphitic carbon can be seen in Figure 4-9d. It reduces with increasing 

pyrolysis temperature. 

From Figure 4-9a, kinetic current increases with the amount of graphitic 

nitrogen present albeit not at the same rate. Conversely, it increases even as the 

amount of pyridinic nitrogen is decreasing. Much has been said about which of 

pyridinic or graphitic (quaternary) nitrogen actually influences oxygen reduction 

(Liu et al., 2010b; Wang et al., 2010). 



81 
 

 

 

Figure 4-9 Variations in activity of NDAB catalysts with a) nitrogen and nitrogen functional groups, b) Oxygen and the 

carbonyl functional group, c) BET surface area and d) ID/IG ratio from Raman analysis
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Based on the results here it is observed that quaternary nitrogen content 

increases with increasing activity while the converse is true for pyridinic. 

Hence it can be concluded that ORR activity is dependent on quaternary 

nitrogen content. This agrees with explanations drawn from first principles 

(Dommele, 2008). It is known that the nitrogen oxides do not contribute to 

oxygen reduction. 

Though carbon materials have been used as catalyst supports over many 

years, they also possess some measure of catalytic activity (Su et al., 2013). 

Depending on the carbonization or pyrolysis temperature, carbon materials 

often contain different total amount and varied composition of surface 

oxygen functional groups. While some like the carboxylic group are inimical 

to ORR, others like the carbonyl group enhance it (Gilbertson et al., 2014; 

Wu et al., 2014).  This has been ascribed to their electron donating potential 

(Montes-Morán et al., 2004). The total amount of oxygen reduces with 

increasing temperature. The percentage of carbonyl groups seems to be 

equal for NDAB-800 and NDAB-700 while it reduces in NDAB-900. This is 

not unexpected. Oxygen functional groups are known to break down easily 

as pyrolysis temperature increases. The order of their lability being 

carboxylic (ca 300 - 400oC), hydroxides (ca 600 – 700 oC) and carbonyl (ca 

700 - 900 oC) (Figueiredo et al., 1999; Szymański et al., 2002).  Hence the 

results obtained are in line with literature values. It is interesting to note 

that the higher carbonyl content of NDAB-700 and NDAB-800 in Figure 

4-9b was not sufficient to change the trend of catalytic activity. Hence it can 

be concluded that carbonyl functional groups in themselves are not critical 

factors in determining the ORR.  

Catalysis is a surface phenomenon, hence the third parameter considered 

was BET surface area shown in Figure 4-9c. This increased very 

appreciably as pyrolysis temperature changed from 700 oC to 800 oC and 

then to 900 oC. Considering the relationship between the trend of changing 

surface area and that of ORR activity it can be safely said that within this 

context, the former plays a critical role in determining ORR activity. Wang 
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et al (2015b) in their work with nitrogen doped CNTs also showed that the 

ORR activity improved in direct proportion to the BET surface area.  

Two key parameters obtained from Raman analysis are the intensity of the 

D-band (ID) and the intensity of the G-band (IG). While the former indicates 

the amount of disorder present within the structure, the latter gives an 

indication of the extent of graphitization of the material. Disorder within a 

carbon structure may be due to the presence of nitrogen within it or the 

existence of edge site defects (Banks et al., 2005). The ID/IG ratio indicates 

the relative amount of these two present in any material. Raman analysis 

was performed to better understand how the graphitic structure of the 

NDAB catalysts impact on their ORR activity. The spectra are presented in 

Figure 4-10. The results are better appreciated when it is understood that 

there are two separate processes occurring with nitrogen doping. On the one 

hand, an extra electron is being introduced into the π system and on the 

other there is an accompanying disorder within the lattice of the graphite. 

Two bands are typical of the spectra of carbon based materials. First is the 

D or disorder band that appears at ca 1350 cm-1. This indicates the presence 

of disorders and/or defects within the graphitic structure. The other band is 

known as the G or graphitic band which characterizes ordered graphitic 

carbon and appears at ca 1600 cm-1 (Dresselhaus et al., 2005). Hence the 

ratio of the intensities of these bands referred to as the ID/IG gives an 

indication of the relative amount of graphitic order or crystallinity present 

or conversely the relative amount of defects and disorders existing within 

the structure.  

In Figure 4-9d the ID/IG ratio decreases from 1.44 to 1.35 to 1.2 

corresponding with NDAB-700, NDAB-800 and NDAB-900 respectively. 

This is not surprising given that the total amount of nitrogen also reduces in 

the same direction. The presence of nitrogen introduces disorder; the 

smaller the amount, the lesser the expected intensity of the D-band. How 

does this affect the ORR activity? It was noted with the XPS analysis that 

the total amount of nitrogen does not have a direct impact on activity. This 

is confirmed here. 
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Figure 4-10 Raman spectra of NDAB 700, 800 and 900 

A school of thought worth considering on this issue is that of Compton 

(Banks et al., 2005). They argued that edge plane sites contribute 

significantly to catalytic activity in carbon materials. Edge planes, if 

abundant, would produce a high intensity of the defect band and a 

concomitant comparatively higher ID/IG ratio. If indeed they contribute to 

ORR, ID/IG ratio would increase with activity. This is not the case here. 

Hence it can be concluded that edge plane sites do not contribute to ORR in 

this scheme. A plausible inference from Figure 4-9d is that as the order of 

the graphitic structure increases, activity also increases.   

A summary of the most important parameters for the NDAB prepared at 

different temperatures is presented in Table 4-7. Pragmatically, direct 

electrocatalytic parameters can be compared by two methods viz, a) 

comparing the value of the currents at a particular voltage given that for all 

the electrocatalysts in question this voltage falls within the kinetic region. 

b) comparing the onset potential. This ideally should be the voltage at which 

the departure from zero current is visually distinct (Gasteiger et al., 2005; 

Thorum et al., 2009). In some instances it might be possible to apply both. 
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Table 4-7 Summary of activity parameters for NDAB carbon catalysts 

Catalysts  Eonset/V 
vs 

Ag/AgCl 

Kinetic 
current at 
-0.18V (mA 

cm-2) 

ik/mA cm-2 
Activation controlled 
current at infinite 
rotation -0.40 V 

N-number 

(ring & disc) 

at -0.18 V 

N-number 

(Koutecky-
Levich) at 

-0.40 V 

% 
peroxide 

b(V dec-1) 

NDAB-900 -0.09 -0.44 10.7 3.4 2.94 29 86 

NDAB-800 -0.13 -0.19 4.64 3.1 2.82 46 101 

NDAB-700 -0.19 -0.06 3.26 2.9 2.54 61 103 

 

The onset potential in this context is defined as the voltage when the 

current gets to -80 µA; a visually distinct region on all the plots. It is evident 

that NDAB-900 showed the best ORR activity having the highest onset at    

-0.09 V.  

 DNOMC carbon catalysts 

Because of the expensive materials or complicated procedures involved, 

most of the new methods for developing non PGM catalysts might best be 

described as pyrrhic. Hence the facile synthesis procedure for the Direct 

Nitrogen Doped Ordered Mesoporous Carbon (DNOMC) catalysts. The 

synthesis is unique because it does not require the use of ordered 

mesoporous silica as hard template. Hence it excludes the procedure and 

materials for synthesizing ordered mesoporous silica. Rather it uses 

Pluronic F127, a surfactant, as soft-template. This helps to guide the 

formation of the nitrogen doped mesoporous carbon.  The results of the ORR 

activity of DNOMC catalysts in 0.1 M KOH are displayed in Figure 4-11 

and how their activity relates with physico-chemical properties in Figure 

4-12.  

In Figure 4-11a, the charge transfer controlled region shows that DNOMC-

700 is the least active while DNOMC-800 and 900 have the same onset 

potential and  likely the same activity.
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Figure 4-11 Electrochemical analysis of DNOMC catalysts in 0.1 M KOH. 

a) Disc and ring currents at 1600 rpm b) number of electrons transferred 

and c) Tafel plots; all performed at pH 13 and RT 

This trend continues into the combined mass transfer and charge transfer 

controlled region. It is interesting to note that the three DNOMC catalysts 

tend to have a flat plateau within the mass transfer controlled region. This 

is rare among carbon based catalysts and is a pointer to a relatively good 

activity. 

The same trend is repeated in the upper half Figure 4-11 , where the ring 

current (directly proportional to amount of H2O2) is shown. At approx. -0.6 

V, the plots for the three catalysts exhibit an upward swing indicating a 

marked increase in the amount of H2O2 being produced. 
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Figure 4-12 Variations in activity of DNOMC catalysts with a) nitrogen and nitrogen functional groups, b) Oxygen and the 

carbonyl functional group, c) BET surface area and d) ID/IG ratio from Raman analysis
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A look at a possible mechanism would help to adduce a reason for this.  

 

Figure 4-13 Possible mechanism for oxygen reduction (Ruvinskiy et al., 

2011) 

Figure 4-13 shows the different pathway that could be followed for ORR. 

The path on the left (circled) would be more common for ORR on carbon 

based catalysts. In the case of DNOMC catalysts, as the voltage became 

more negative, it is likely that the amount of H2O2 increased greatly such 

that its previous rate of dissociation through path k6 could not meet up and 

the excess was desorbed into the solution. This resulted in the increased 

ring current.  

The variation of the number of electrons transferred, (also known as n-

number) with increasing voltage is shown in Figure 4-11b. From the 
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voltage that corresponds to their onset potential, the catalysts have an n-

number of approx. 3-3.2. This also confirms a combined 2 and 4 electron 

pathway, probably with the 2-electron pathway being dominant.  

The current values used for the Tafel slopes were obtained from the charge 

transfer limiting region. The slopes are 73 and 95 mV/dec for DNOMC-900 

(same as DNOMC-800) and DNOMC-700 respectively. Similar to what was 

obtained for the NDAB catalysts, this also does not fall within the well-

defined values and would indicate a mixed mechanism for the rate 

determining step.  

For nitrogen doped catalyst such as the DNOMC range, it is expected that 

the primary agent of oxygen reduction would be the nitrogen functional 

groups embedded within the carbon structure. Figure 4-12a displays the 

various percentages of nitrogen functional groups present and how they 

vary with the kinetic current at -0.24 V. The percentage of total nitrogen 

content in the catalysts is quite small with values of 0.62 for DNOMC-900 

and 0.78 for DNOMC-700 and 800. The key nitrogen functional group 

responsible for ORR has been identified as the graphitic or substitutionary 

one (Niwa et al., 2011). The percentage of graphitic nitrogen present in each 

sample increases as the pyrolysis temperature increases going from 23.04 % 

for DNOMC-700 to 28.8 % and 29.3 % for DNOMC-800 and 900 respectively. 

The activity also follows a similar trend leading to the conclusion that this 

factor indeed contributes to ORR activity. Another component known to 

influence ORR reaction is the carbonyl functional group. Figure 4-12b 

shows the variations in total oxygen and percentage carbonyl content with 

each catalyst. Carbonyl groups generally begin to decompose around 700 oC. 

Hence it is not surprising that DNOMC-700 has the highest percentage of 

carbonyl groups. But there does not seem to be a correlation between this 

and the ORR activity. Consequently it can be said that this is not a decisive 

factor in the determination of activity in DNOMC’s.  

The surface areas of each catalyst is depicted in Figure 4-12c. As these 

increase with temperature, the activity also increases, hence it can be 
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suggested that the surface area plays a key role in the determination of 

ORR activity. 

Lastly is the nature of defect or disorder as well as the graphitic order 

within the materials synthesized. Aptly captured in the Id/Ig ratio derived 

from Raman analysis in Figure 4-12d. The Id/Ig ratios are 0.95, 1.07 and 

1.06 for DNOMC-700, 800 and 900 respectively. Thus activity intensifies 

with the degree of graphitic order. The importance of the sp2 carbon 

network for oxygen reduction was emphasized by the work of Niwa et 

al.(2011). Considering that the Id/Ig ratio only increased by ca 10 % and the 

activity by ca 50 % it must be noted that this factor works with other 

parameters like the graphitic nitrogen content and the total surface area to 

determine the overall activity of each DNOMC catalyst.  

A summary of the activity parameters of the DNOMC catalysts is given in 

Table 4-8. The n-values obtained are in agreement with what was 

calculated using the Koutecky-Levich equation.  

Table 4-8 Summary of activity parameters for DNOMC carbon catalysts 

Catalysts  Eonset/V 
vs 

Ag/AgCl 

Kinetic 
current at -
0.22V      (mA 

cm-2) 

 

ik/mA cm-2 
Activation controlled 
current at infinite 
rotation -0.40 V 

Number of 
electrons 

at -0.22 V 

Number of 
electrons 

at -0.40 V 

(Koutecky 
Levich) 

% 
peroxide 

b (V dec-

1 

DNOMC-
900 

-0.16 -0.25 11.7 3.0 2.9 45 72.7 

DNOMC-
800 

-0.17 -0.23 13.19 3.2 3.0 43 72.7 

DNOMC-
700 

-0.20 -0.10 4.72 3.0 2.6 47 94.46 

 

 Methanol Tolerance of NDAB-900 

The good activity of platinum catalysts becomes a set-back in the presence 

of methanol.  This is due to its ability to catalyse oxygen reduction and 

methanol oxidation, hence both are in competition for the active site. This 

results in a mixed potential which degrades the ORR potential (Yang et al., 

2005). NDAB-900 was tested in the presence of methanol and its activity 

compared with that of 20 wt% Pt. Figure 4-14a and b show the LSV of 20 
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wt% Pt and NDAB-900 respectively in the presence of increasing 

concentrations of methanol. The onset potential of ORR on platinum is 

observed to shift towards more negative values. In addition, an oxidation 

hump is seen that gets bigger with increasing methanol concentration. This 

can be explained by the fact that in the competition for the active site, the 

increasing concentration of methanol upturns the contest in their favour. 

This results in the intensifying of the oxidation peak. On the contrary, the 

plot for NDAB-900 remains very consistent even with increasing amounts of 

methanol. 

 

Figure 4-14 Methanol tolerance of NDAB-900 and 20 wt%Pt; a and b at 

RDE 1600 rpm and 5 mV/s for 20 wt%Pt and NDAB-900 respectively; c and 

d CV 100 mV/s for 20 wt%Pt and NDAB-900 respectively. 1-oxygen 

reduction peak; 2-methanol oxidation peak; all performed at RT 

 

A similar trend is observed with the cyclic voltammograms in Figure 4-14c 

and d. The conclusion is that the active sites of NDAB-900 are not capable of 
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oxidizing methanol. Hence they would be ideal for ORR that would involve 

methanol cross-over. 

 Stability  

The stability of NDAB-900 and DNOMC-900 were tested with 

chronoamperometry. Figure 4-15 presents the results obtained. The two 

catalysts experienced a gradual decline in activity over time. NDAB-900 

retained ca 88% of the initial activity while DNOMC-900 retained ca 90% 

after two hours. 

 

Figure 4-15 Chronoamperometry plots for NDAB-900 and DNOMC-900 at 

a rotation rate of 900 rpm while bubbling with a small quantity of oxygen; 

carried out at pH 13 and RT 

The two catalysts showed a good stability. This can be ascribed to the fact 

that the nature of their active sites makes them less susceptible to carbon 

corrosion and degradation mechanisms that plague platinum/carbon. 

4.4 Comparison of Electrochemical Properties of NDAB-900, 

DNOMC-800, CMK-8 AND Vulcan XC-72 

For completeness, the activity of the best in the class of NDAB and DNOMC 

were compared with ordered mesoporous carbon (CMK-8) made from the 
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same template (KIT-6 mesoporous silica) but without any form of nitrogen 

doping. Another useful comparison was with commercial Vulcan XC-72 that 

was neither ordered nor nitrogen doped. These are shown in Figure 4-16. 

Table 4-9 sets out the important electrochemical parameters that 

characterize the four carbon based catalysts being compared.  

The onset potential is taken to be the voltage when ORR current gets to -80 

µA. Surprisingly, NDAB-900 and CMK-8 had very similar values. The order 

of superiority was NDAB-900>CMK-8>DNOMC-800>Vulcan XC-72.  

The number of electrons transferred at -0.25V were also compared. These 

was determined from the disc and ring currents of the rotating-ring-disc 

electrode. Here all the catalysts had a similar value of 3.2 with the exception 

of Vulcan-XC72 that had 2.9. The tafel slopes were also calculated by fitting 

the Tafel equation to a portion on the kinetic region of the catalysts. CMK-8 

had the lowest with a value of 60 mV/dec implying that the rate determining 

step here was a chemical step following a fast one electron transfer. Vulcan 

carbon had the highest with 110 mV/dec an indicator that the first electron 

transfer step is probably rate determining here.   

The activation controlled current density captures the actual value of the 

ORR current when there is no mass transfer limitation. It gives a good 

estimate of the inherent catalytic capability of any catalyst. Traditionally, it 

is determined from the intercept of the Koutecky-Levich at a particular 

voltage. However, due to the irregular trends of the i-V plots obtained from 

polarization in this experiment, the activation controlled current density 

obtained from Koutecky-Levich plots was misleading. Hence, a different 

approach was devised. 

 Considering Typical divisions on a polarization curve Figure 4-17 (Gileadi 

and Gileadi, 2011). The first section is activation controlled. Here the rate of 

reaction is determined by the inherent kinetic activity of the catalyst. Curve 

a shows the likely path the current would have followed as the voltage is 

increased, if mass transport limitation does not set in. 
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Figure 4-16 a) Disc and Ring Currents for NDAB-900, DNOMC-800, CMK-8 and Vulcan XC-72 in 0.1 M KOH at 1600 rpm and 5 mV/s; b) number of 

electrons transferred for each catalyst; all experiments were performed at pH 13 and RT
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Figure 4-17 Typical divisions on a polarization curve 

This mass transport free path can be predicted, if it was possible to develop 

a model that fits the activation controlled section. Using voltage as the 

independent variable, this can be extrapolated beyond the apparent 

activation controlled section. Hence the mass transport free current density 

can be determined at a given voltage. With aid of the MATLAB software, a 

model was developed to fit the activation controlled section of each of the 

catalyst. From this the activation controlled current was then determined at 

-0.25 V (a region that extends beyond the apparent activation controlled 

region). 

 Figure 4-18 shows a typical fitted plot for NDAB-900 MnO2 20 wt% 

KMnO4 with the model parameters. The model equation obtained and the 

constants are  

𝑖𝑘(𝑥) = 𝑎 ∗ exp(𝑏 ∗ 𝑥) + 𝑐 ∗ exp (𝑑 ∗ 𝑥) 

 a= -0.01783; b = -28.25; c = -0.07893; d = 13.63 R2 = 0.9997 and x is voltage 
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 It is worth noting that the model equations obtained have two exponential 

terms. This has a resemblance with the Butler-Volmer equation which 

governs this region. Values obtained for each catalyst are stated in Table 

4-9. Seeing that the activation controlled current is an intrinsic property, 

and that the values here are obtained using experimental data, this scan be 

said to be the best measure of the inherent capacity of any of the catalysts 

for ORR. Therefore the ORR activity of the catalysts compared here increase 

in the order Vulcan-XC72<DNOMC-800<NDAB-900<CMK-8.  

 

Figure 4-18 Fitted activation controlled current and actual Current for 

NDAB-900 MnO2 20 wt% KMnO4  

 

Table 4-9 Electrochemical parameters that characterize NDAB-900, 

DNOMC-800, CMK-8 and Vulcan XC-72 as catalysts for ORR in 0.1 M KOH 

Catalysts  Eonset/V 
vs 

Ag/AgCl 

Eonset/V vs 
RHE 

ik/mA cm-2 
Activation 
controlled 
current at -0.25V 

Number of 
electrons 

at -0.25 V 

b (V dec-1 

NDAB-900 -0.09 0.93 -10.00 3.2 86 

DNOMC-800 -0.17 0.85 -1.21 3.2 73 

CMK-8 -0.10 0.92 -73.14 3.2 61 

Vulcan -0.21 0.81 -0.27 2.9 110 
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Three factors that contribute to the activity of OMCs are a high 

concentration of edge plane defective sites, large amount of oxygen 

functional groups and high surface area (Ndamanisha and Guo, 2012) 

According to Banks et al(2005) almost all the electron transfer and catalytic 

activity of graphitic carbon materials occurs at edge-plane like defect sites. 

Ordered mesoporous carbons are known to possess a significant amount of 

these (Inagaki et al., 2013; Zhou et al., 2014). The Id/Ig ratio obtained from 

Raman analysis also testifies to this. For CMK-8 it was 1.04 compared with 

Vulcan (which also consists of pure carbon) that had a value of 1.01. 

Carbonyl functional groups are known to play a significant role in ORR. 

Figure 4-19 shows the carbonyl and oxygen composition for the carbon 

catalysts considered. CMK-8 had the highest total oxygen content and also a 

high carbonyl composition. Though the percentage of carbonyl in Vulcan is 

very high, it has a total oxygen of only 0.65%. Hence the carbonyl content 

pales into insignificance.  

 

Figure 4-19 Total oxygen and carbonyl composition for NDAB-900, 

DNOMC-800, CMK-8 and Vulcan XC-72 

The carbon source used to prepare a templated OMC adds a different 

perspective to why CMK-8 may also have a catalytic activity comparable to 

NDAB-900. You and co-workers (2011) in a well-designed experiment used 

CMK-8 from KIT-6 mesoporous silica to immobilize redox proteins. The 
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CMK-8 was derived from two carbon sources namely sucrose and phenyl 

formaldehyde and results obtained led to the conclusion that CMK-8 from 

sucrose had a higher electrical conductivity and electro-catalytic activity.  

4.5 Comparison with other published works.  

In Table 4-10 an attempt is made to compare the activity obtained here 

with that of other researchers. However, there is the need to point out the 

blind spots in this. A parameter that is often compared is the onset 

potential. However there is no generally accepted standard for what 

constitutes this. For example Ma et al  (2015) defined their onset potential 

as the point at which the current density goes below 0 mA/cm2. Other 

researchers might choose -10 µA/cm2. In this work we have chosen -80 

µA/cm2 as the threshold for onset potential. The baseline for this being 

shrouded in secrecy or left to individual interpretations creates ambiguities.  

Table 4-10 Comparison with other published works on nitrogen doped 

carbons and pure carbon catalysts used for ORR 

Catalysts Onset Potential in 
0.1M KOH 

VS Ag/AgCl 

Onset Potential in 
0.1M KOH 

VS RHE 

Reference 

NDAB-900 -0.09 0.93 This work 

CMK-8 -0.10 0.92 This work 

Graphene 
Nanosheets 

-0.13 0.89 (Benson et al., 2014) 

Ordered mesoporous 
carbon (OMC) 

-0.195 0.83 

 

(Momčilović et al., 
2014) 

Phosphorus doped 
OMC 

-0.125 0.90 

 

(Pašti et al., 2015) 

Boron Doped OMC -0.130 0.89 (Pašti et al., 2015) 

Nitrogen doped OMC -0.165 0.86 (Pašti et al., 2015) 

Sulphur and nitrogen 
co-doped OMC 

-0.11 0.91 (Song et al., 2015) 

Nitrogen doped OMC -0.11 0.91 (Li et al., 2015) 

Nitrogen doped OMC -0.10 0.92 (Sheng et al., 2015) 

OMC -0.19 0.83 (Wang et al., 2015a) 

Sulfur and Nitrogen 
Dual-Doped 
Mesoporous 
Graphene, N-doped 
graphene 

-0.06, -0.18 0.96, 0.84 

 

(Liang et al., 2012a) 
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If there is going to be any meaningful progress in this area, activity 

standards as well as their  measurement methodologies need to be 

established and adhered to (Gasteiger et al., 2005). This would ensure that 

all catalysts being developed can be compared with a common baseline. 

Comparing with some other nitrogen doped catalysts reported in literature, 

the ORR activity obtained exceeds that of some that were synthesized with 

more expensive precursors e.g. (Song et al., 2015). With regards to 

procedures, the method adopted here can be used for large scale production 

compared with processes like evaporation induced self-assembly (EISA) 

used by Pasti et al(Pašti et al., 2015)  

4.6 Summary 

N-doped carbons were synthesized using o-phenylenediamine as 

simultaneous nitrogen and carbon source and KIT-6 mesoporous silica as 

template. A template free method was also attempted with promising 

results that compared favourably with the templated method.  

Looking at the correlation between the ORR activity and nitrogen functional 

groups, it is seen that quaternary nitrogen content increases with increasing 

activity while the converse is true for pyridinic. This was found to be true 

for the NDAB as well as the DNOMC catalysts. Hence it can be concluded 

that ORR activity is dependent on quaternary nitrogen content. 

The surface area of the NDAB catalysts increase as pyrolysis temperature 

changed from 700 oC to 800 oC and then to 900 oC while ORR kinetic current 

(at -0.18 V) improved from -0.06 mA cm-2 to -0.19 mA cm-2 to -0.44 mA cm-2 

respectively. Hence, it can be safely said that within this context, surface 

area plays a critical role in determining ORR activity. The same trend was 

observed with the DNOMC catalysts. Furthermore, from the Raman 

analysis, it was detected, that contrary to some schools of thought, edge 

plane defects do not have a direct bearing on the ORR activity of the NDAB 

catalysts. 
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CMK-8 carbon (no nitrogen doping) made from the same template as NDAB 

catalysts was used for ORR. Interestingly, its onset potential of 0.92 V vs 

RHE , was somewhat similar to that of NDAB-900 (0.93 V vs RHE ) with 

nitrogen doping. Some factors that contribute to the activity of OMCs are a 

high concentration of edge plane defective sites, large amount of oxygen 

functional groups and high surface area. 

While the NDAB catalysts did not measure up to platinum activity wise, 

their methanol tolerance and long term stability stands out as advantages. 

Another obvious advantage of this work compared with many before it, is 

that the procedures and materials used are such as can be easily scaled up.  
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 Physical and Electrochemical Characterization of 

Manganese Oxides Supported on Nitrogen-Doped Ordered 

Mesoporous Carbons  

This chapter presents the results from investigation carried out to 

understand the physical and chemical characteristics of the nitrogen doped 

carbon-manganese oxide composite catalyst. It also contains detailed 

information on the oxygen reduction activity of the catalysts as 

demonstrated by results from electrochemical analysis in 0.1 M KOH. 

Finally, it presents the stability of the manganese oxide catalysts and their 

performance relative to platinum and similar catalysts synthesized prior to 

this time. Physical characterization was done with the aid of x-ray 

photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), nitrogen 

adsorption-desorption (BET analysis) and transmission electron microscopy 

(TEM). Linear sweep voltammetry using a rotating ring-disc electrode was 

used for electrochemical analysis.  

5.1 Introduction 

Metals like iron, nickel, manganese and cobalt are some of the most 

bountiful elements within the earth’s crust; hence the name earth abundant 

metals. Their widespread availability helps to overcome a key drawback of 

the platinum group metals (PGM). Also, they are cheaper compared with 

elements like platinum and palladium. In addition, some, like manganese 

are biocompatible. Thus, any negative impact on health and environment 

would be minimal relative to the platinum group metals. Hence they have a 

lot of potential applications as catalyst.  

Manganese oxides have been used as catalysts in a number of settings. 

Amongst many other applications, they have been used as anode and 

cathode materials in batteries (Oh et al., 2015; Sumboja et al., 2015) for 

supercapacitor applications (Ali et al., 2015; Mendoza-Sánchez et al., 2015) 

and as oxygen reduction reaction (ORR) catalysts (Kenko et al., 2013; Gao et 

al., 2014; Ma et al., 2015). During ORR they are known to exhibit both 4 and 

2 e- reduction depending on the oxidation state (or its combination) of the 
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manganese (Stoerzinger et al., 2015). The synergy derived from their 

combination with ORR active nitrogen doped carbon can be harnessed for 

practical applications. 

Combining the activity of nitrogen doped carbon with that of manganese 

oxides by means of a facile synthesis route is one of the major benefits of the 

first synthesis route used in this chapter. The other is the possibility of 

preserving the highly ordered mesoporous nitrogen doped carbon 

nanostructure and combining this with high surface area MnO2. Hence 

KMnO4 was reduced through the sacrificial oxidation of the ordered 

nitrogen doped carbon and ordered mesoporous carbon without nitrogen 

doping separately. The second route used entails the deposition and heat 

treatment of Mn(NO3)2  on nitrogen doped carbon and ordered mesoporous 

carbon without nitrogen doping. The expected end was also MnO2. Thermal 

decomposition was performed at 250oC, 350oC and 450oC with the aim of 

finding a treatment temperature that gives optimal ORR activity. It is 

pertinent to note, that the procedures adapted here do not require any high 

end technology and are also easily scalable.   

 

5.2 Catalyst Characterization  

 XPS analysis 

X-ray photoelectron spectroscopy was used to understand the chemical 

composition of the surface of the catalyst and support. Figure 5-1Error! 

Reference source not found. shows the XPS survey, manganese spectra 

and nitrogen spectra for NDAB-900/MnOx catalysts. These were obtained by 

reacting NDAB-900 with 10, 20 and 35 wt% KMnO4 to give NDAB-900 (10 

wt% KM), NDAB-900 (20 wt% KM) and NDAB-900 (35 wt% KM) 

respectively. Table 5-1 gives an analysis of the chemical composition for all 

the manganese oxide catalysts. Catalyst obtained from 20 wt% Mn(NO3)2 

(wet deposition followed by heat treating) have the prefix MN-250 and MN-

350 to show the heat treatment temperature. Some important features of 

the variations in chemical composition can be noticed. 
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Figure 5-1 XPS survey, manganese spectra and nitrogen spectra for NDAB-MnO2 obtained using - 10 wt% KMnO4 (first row); 20 

wt% KMnO4(second row); 35 wt% KMnO4(third row) 
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Table 5-1 Chemical composition of the catalysts obtained from XPS 

analysis 

Catalysts  Carbon Nitrogen Oxygen Manganese Nitrogen 

Graphitic Pyridinic N-
oxides 

NDAB-900 85.47 5.31 6.98 0.00 60.6 29.6 9.8 

NDAB-
900(10%KM)  

55.63 

 

1.96 

 

30.59 

 

11.22 56.16 30.18 13.65 

NDAB-
900(20%KM) 

48.94 

 

1.53 

 

35.51 

 

13.84 47.92 42.56 9.52 

NDAB-
900(35%KM)  

64.37 

 

2.35 

 

24.93 

 

7.71 59.18 35.93 4.89 

        

NDAB-
900(20 wt% 
MN-350) 

49.33 

 

1.92 

 

33.89 

 

14.69 63.53 

 

29.88 6.58 

 

NDAB-
900(20 wt% 
MN-250) 

42.47 

 

1.50 

 

40.39 

 

14.96 39.79 

 

26.1 0.00 

        

CMK-8 79.64 0.00 14.54 0.00 0.00 0.00 0.00 

CMK-
8(20%KM) 

70.61 

 

0.00 22.36 

 

6.73 0.00 0.00 0.00 

CMK-8(20 
wt% MN-

350) 

78.98 

 

0.00 15.39 2.12 0.00 0.00 0.00 

        

Vulcan  99.00 0.00 0.65 0.00 0.00 0.00 0.00 

Vulcan 
(20%KM) 

85.79 

 

0.00 12.11 

 

1.89 0.00 0.00 0.00 

 

CMK-8 is the ordered mesoporous carbon prepared with sucrose as carbon 

precursor and having no nitrogen within it. Generally, the nitrogen doped 

carbons possessed a higher amount of manganese relative to the undoped 

CMK-8. This endorses what was mentioned in chapter 4 that the highly 

graphitic pore walls of NDAB-900 (confirmed through TEM and XRD 

analysis) would enhance the attachment of metal catalysts (Cui et al., 2009; 

Chai et al., 2012a). In addition, the nitrogen-doped active sites can also 

serve as anchoring points for metal deposition (Lee et al., 2014). It would be 
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worthwhile to further exploit these property of NDAB-900 in other areas of 

catalysis. 

For the catalysts obtained by reducing KMnO4 with NDAB-900(first three 

rows Table 5-1), there is a correlation between the amount of carbon 

remaining and the amount of Mn deposited. As Mn increases, amount of 

carbon reduces. Thus confirming that the Mn deposited is as a result of 

carbon oxidation. Another useful observation here is that the amount of 

graphitic nitrogen is inversely proportional to the amount of manganese 

deposited. This shows that in addition to the pure carbon, the sites where 

nitrogen is doped in the substitutionary form are also likely to be reactive 

centres for KMnO4 reduction. Theory wise (Dommele, 2008), it is the 

substitutionary nitrogen sites that contribute the electrons for oxygen 

reduction. Hence it follows that they are also active enough to donate 

electrons to KMnO4. 

In the second block of catalysts obtained from decomposing Mn(NO3)2 on 

NDAB-900, the compositions are close (14.69 and 14.96 at% of Mn). Thus it 

can be inferred, that heat treatment would be mainly responsible for any 

difference in ORR activity. 

The third block contains the catalysts derived from CMK-8 carbon. Here, 

the Mn obtained from electroless deposition (6.73 at%) is much higher than 

that obtained from Mn(NO3)2 decomposition (2.12 at%). A first hand 

conclusion is that for ordered mesoporous materials a more effective way to 

obtain manganese oxides is the electroless deposition. This is justified given 

that the well-ordered channels in CMK-8 allow for easy diffusion of the 

KMnO4 solution into the pores of the carbon. As opposed to the deposition of 

Mn(NO3)2 that would likely remain a surface phenomenon due to the large 

particles of the salt. Of note is the high amount of good quality carbon in the 

CMK-8 group relative to the others i.e. small particle size and excellent 3D 

morphology. These can also contribute to improved ORR activity. Lastly, 

much higher amount of Mn on CMK-8 relative to VC-72 can also be ascribed 

to its ordered mesoporous structure that enhances the diffusion of the 

permanganate solution into its pores 
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 The valence of manganese within the oxides can be deduced from 

interpreting the XPS in the light of the XRD analysis. A characteristic 

feature of manganese in XPS analysis being the doublet separation between 

the Mn2p1/2 and the Mn2p3/2 peak. This can be used to differentiate between 

the various oxidation states. However, the challenge here is that the doublet 

separations for each valence state are very close and often overlap. An 

example can be taken from the work of Strohmeier et al. (1984). Here the 

separation for α-MnO2 was 11.6 eV, same as that for MnO. Except some 

extra features such as the core level XPS peaks of K 2p are noticeable, 

further analysis with tools like XRD would be needed before a conclusion 

can be reached.  

Table 5-2 shows the doublet separation for the manganese oxide catalysts. 

For the block of catalysts where NDAB-900 was reacted with different 

amount of KMnO4, the doublet separation confirms that MnO2 was 

deposited. Further information about the nature of the Mn in this group can 

be gained from their K 2p XPS spectra shown in Figure 5-2.  

Table 5-2 Mn doublet separation and identification of type of oxide for all 

catalysts 

Catalysts  Mn2p1/2 
peak (eV) 

Mn2p3/2 
peak (eV) 

Doublet  

Separation (eV) 

Type of 
Oxide 

Reference 

NDAB-900 
(10%KM)  

653.98 642.29 11.69 MnO2 (Strohmeier and 
Hercules, 1984) 

NDAB-900 
(20%KM) 

653.87 642.28 11.59  MnO2 (Strohmeier and 
Hercules, 1984) 

NDAB-900 
(35%KM)  

654.09 642.61 11.71 MnO2 (Strohmeier and 
Hercules, 1984) 

      

NDAB-900 
(20 wt% 

MN-350) 

653.27 641.55 11.72 Mn3O4 (Oku et al., 1975; 
Strohmeier and 

Hercules, 1984) 

NDAB-900 
(20 wt% 

MN-250) 

653.56  641.96 11.6 γ-MnOOH 

Mn3O4 

 

 

      

CMK-8 
(20%KM) 

653.66 642.04 11.62 MnO2 (Strohmeier and 
Hercules, 1984) 

CMK-8 (20 
wt% MN-
350) 

653.39 641.68 11.71 Mn3O4 

MnO(XRD) 

 

(Strohmeier and 
Hercules, 1984) 

VC-72 
(20%KM) 

653.86 642.02 11.84 MnO2 

MnOOH 
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When core electrons signal generate peaks at around 292.7 eV and 295.5 eV, 

it indicates the formation of K-birnessite, a type of MnO2 (Zhang et al., 

2013). This is also confirmed by the XRD analysis of NDAB-900 (20%KM). 

Hence it can be said for certain that this group of catalysts contain K-

birnessite Mn with an oxidation state of 4+. 

The other catalysts obtained from KMnO4 are CMK-8 (20%KM) and VC-72 

(20%KM). While the doublet separation from CMK-8 (20%KM) was 11.62 eV 

and correlates directly with the literature value, which of the latter was 

11.84 eV, a bit distant from the literature value; however, the XRD analysis 

confirms the presence of MnO2. Weak and broad K2p peaks can be observed 

for CMK-8 (20%KM). An indication that it also contains a small amount of 

K-birnessite Mn.  

 

Figure 5-2 XPS K 2p peaks for NDAB-900 10, 20, 35 %KM respectively 

 

When the decision was taken to decompose Mn(NO3)2 the expected outcome 

based on literature (De Bruijn et al., 1981; Nohman et al., 1995) was MnO2.  

                                     𝑀𝑛(𝑁𝑂3)2
2𝑛𝑑 𝑠𝑡𝑒𝑝
→      𝑀𝑛𝑂2 

𝑀𝑛(𝑁𝑂3)2𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 → 𝑀𝑛(𝑁𝑂3)2 ∙ 𝐻2𝑂𝑙   

 𝑀𝑛𝑂2 

However the doublet separation for manganese oxides supported on NDAB-

900 and heated to 350 oC falls within the range obtained in literature for 

Mn3O4. A further confirmation of this are the very distinct tetragonal 

hausmannite Mn3O4 peaks seen in the XRD pattern (JDCDS: 04 004 864 

Figure 5-3b. For that heated at 250 oC, the separation is a bit vague, 

notwithstanding the XRD patterns in Figure 5-3d confirm the presence of 
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Mn3O4 (JDCDS: 04 004 8640). The peaks here are however not as many and 

as sharp as those for the sample heat treated at 350 oC. Worthy of note is 

the presence of MnOOH –Manganite (JCPDS: 04-010-4788) in addition to 

Mn3O4. 

The other carbons used as support were CMK-8 and VC-72. XPS analysis 

showed that Mn3O4 was formed on CMK-8 (based on doublet separation of 

11.71 eV) this was confirmed by the XRD pattern in Figure 5-3. The XRD 

pattern also showed that cubic manganosite MnO was present (JCPDS: 04-

004-3408). It was corroborated by the BE of oxygen at 530.0 eV  (Tan et al., 

1991). This requires further investigation seeing that MnO should normally 

evolve from MnO2 after two or three intermediates at ca 1300oC (Liu et al., 

2004).  

The answer to the question of why Mn3O4 instead of MnO2 throws up some 

very useful observations.  Mn(NO3)2  would normally decompose at 

temperatures above 200oC to give MnO2.  Increasing the temperature 

further would result in the reduction of MnO2 to Mn2O3 at a temperature of 

ca 550oC. Mn3O4 would usually be produced around 900oC (Nohman et al., 

1995; Liu et al., 2004). As a result, researchers have developed various 

synthetic procedures for producing Mn3O4 at a low temperature. However 

with NDAB-900 as a support Mn3O4 was produced at ca 350 oC. A difference 

of around 600oC. A first guess would be that the procedure was catalysed by 

the presence of nitrogen-doped active sites.  

 X-ray Diffraction Analysis 

X-ray Diffraction was used to determine the bulk crystalline phase present 

in the samples. The results are presented in Figure 5-3. Much of these has 

already been discussed in line with the XPS analysis.  

The pattern for the oxides obtained by reduction of KMnO4 display a weak 

peak at ca 2θ of 37o which according to JCPDS 00-053-0633 is tetragonal 

manganese oxide. The peaks at 37o and 66o are characteristic of amorphous 

manganese oxides (Lee et al., 2011).  Comparing the patterns for NDAB-900 

(20 wt% MN-350) and NDAB-900 (20 wt% MN-250) as the heat treatment 
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temperature is increased there is an intensification of the peaks signifying 

better crystallization.  

 

Figure 5-3 XRD Patterns for a) NDAB-900(20%KM) b) NDAB-900(20% 

MN-350) c) CMK-8(20%KM) d) NDAB-900(20% MN-250) e) VC-72(20% KM) 

f) CMK-8(20% MN-350) 

 Transmission Electron Microscopy (TEM) Analysis 

The TEM micrographs in Figure 5-4 show the morphologies of the 

manganese oxides deposited. Figure 5-4a, b show the lattice fringes of 

NDAB-900(20% MN-350). It is evident that a three dimensional high quality 

Mn3O4 was deposited on the nitrogen doped carbon. This is expected to be 

active not only for oxygen reduction but also for energy storage applications 

like the lithium-ion battery (Alfaruqi et al., 2016). Figure 5-4 a, c captures 

the single crystals that make up the oxides deposited on NDAB-900 and 

heat treated at 250 oC. The rod like crystals have a diameter of ca 20 nm 

and length of ca 300 nm. 
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Figure 5-4 TEM of a,b) NDAB-900 (20 wt% MN-350); c,d) NDAB-900 (20 

wt% MN-250); e,f) NDAB-900 (20%KM); g,h) CMK-8 (20%KM) 
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Figure 5-4 e,f and Figure 5-4 g, h are for the oxides obtained by reducing 

20 wt% KMnO4 with NDAB-900 and CMK-8 respectively.  

These were expected to be amorphous hence it not surprising that there are 

no distinct crystal structures observed. However, they still show a faint level 

of order, which indicates they could contain a small percentage of crystals. 

The diameter of the rod like structure for CMK-8 is ca 10 nm. It is worth 

noting that CMK-8 maintained its ordered mesoporous structure as can be 

seen in Figure 5-4g. The same can be said of NDAB-900 with Mn3O4 

produced at 350 oC (not shown here). 

 Surface area and pore size analysis  

The surface area analysis was performed using the nitrogen 

adsorption/desorption method. Table 5-3 presents the data obtained and 

the trends are captured in Figure 5-5. 

Table 5-3 Surface area and pore parameters for NDAB-900 and CMK-8 

supported manganese oxide catalysts 
 

NDAB-

900  

NDAB-900 
(20wt% MN 
250) 

NDAB-900 
(20wt% MN 
350) 

NDAB-900 
20wt% 
KMnO4 

CMK-8 
(20wt% MN 
350) 

BET Surface 
area (m²/g) 

558 283 290 399 677 

Cumulative 
volume of 
pores 

(cm³/g) 

0.38 0.10 0.09 0.22 0.72 

Pore size 
(nm)  

4.86 5.21 3.92 4.43 4.80 

Micropore 
Volume: 

(cm³/g) 

0.13 0.08 0.08 0.09 0.07 

Micropore 
Area (m²/g) 

313 163 175 223 276 

External 
Surface Area 
(m²/g) 

245 119 116 176 401 

 

It is worth noting how the catalysts were prepared. NDAB-900-250 and 350 

were prepared by mixing NDAB-900 with 20 wt% aqueous Mn(NO3)2, drying 

and heat treating at 250 oC and 350 oC respectively. NDAB-900 20wt% 
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KMnO4 was produced by oxidizing NDAB-900 in a neutral solution of 

KMnO4 at ca 80 oC, centrifuging and drying.  

 

Figure 5-5 Comparison of surface and pore characteristics of NDAB-900 

supported manganese oxide catalysts; c, d and e are pore size distribution of 

NDAB-900, NDAB-900 20wt%KMnO4 and NDAB-900 MnO2 350 

respectively 

It can be deduced from Figure 5-5a-e that the KMnO4 process preserves the 

structural integrity of the ordered mesoporous carbon more than the 

Mn(NO3)2 process. Figure 5-5a shows that the nitrate derived catalysts lost 

almost half of the initial pore surface area while the ones from KMnO4 lost 

about a third. A similar trend is seen with the external surface area. In 

Figure 5-5b change in pore volume after manganese oxide deposition is 

captured. There is a very significant reduction of the pore volume after 

deposition of Mn(NO3)2 and heat treating, with the oxide catalysts losing 

about 70% of the initial pore volume. The KMnO4 process resulted in the 

loss of about 40% initial pore volume. 

Considering Figure 5-5c, d and e, it is evident that the pore size 

distribution (PSD) of the catalysts from the KMnO4 process i.e. Figure 5-5d 
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is almost the same as that of the starting NDAB-900 Figure 5-5c. 

Conversely, the PSD of the catalyst from Mn(NO3)2 is distorted.  

A reasonable inference is that while the oxides from Mn(NO3)2 are deposited 

on the surface of the NDAB-900 and possibly block the pores, those from 

KMnO4 are able to diffuse into the pores and get deposited on the pore walls, 

creating a thin layer of oxide catalyst. Thus, while the pore volume is 

reduced, the PSD remains much the same. This follows from the fact that 

the manganese oxides from KMnO4 are amorphous and are easily 

spreadable within the pore network. 

Interestingly and contrary to what was observed before, the catalyst formed 

by depositing manganese oxide on CMK-8 using Mn(NO3)2 had a narrow 

PSD. It may be deduced (Table 5-3 row 2) from the large cumulative pore 

volume (almost seven times that of the NDAB catalysts from Mn(NO3)2) 

that the particles of the oxides could not block the pores.  

5.3 Electrochemical Analysis 

 Manganese Oxide Catalysts from KMnO4 

These catalysts were prepared by reacting the carbon with a neutral 

solution of 10, 20 or 35 wt% KMnO4. The ones with CMK-8 and Vulcan were 

prepared after it was determined that 20 wt% gave the optimal ORR 

activity. Table 5-4 shows the summary of results from the rotating-ring-

disk electrochemical analysis carried out in 0.1 M KOH at 1600 rpm.  

NDAB-900 was the starting material for the first three catalysts with an 

onset potential of -0.09 V. Comparing with the best catalyst in this group i.e.  

NDAB-900 (20%KM), there was a 110 mV improvement in the onset 

potential after MnO2 was deposited.  
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Table 5-4 Electrochemical Performance Indices for catalysts derived from 

reduction of KMnO4 

 onset 
potential 

(V) 

Ag/AgCl 

onset 
potential 

(V) RHE 

half-wave 
Potential 

(V) 

Activation 
controlled 
current 

(mA/cm2) 

Tafel 
slope 

Number 
of 

electrons 

NDAB-900 
(10%KM)  

-0.08 0.94 -0.27 -3.55 100 3.5 

NDAB-900 
(20%KM) 

0.02 1.04 -0.19 -20.8 86 3.4 

NDAB-900 
(35%KM)  

-0.07 0.95 -0.25 -4.61 106 3.5 

CMK-8 
(20%KM) 

0.03 1.05 -0.20 -19.71 88 3.5 

Vulcan 

(20%KM) 

-0.08 

 
0.94 -0.26  73 3.8 

 

Figure 5-6a shows the disc and ring current obtained by oxidizing NDAB-

900 with different amounts of KMnO4. NDAB-900(20 wt% KM) showed the 

best onset potential of 0.02 V (Ag/AgCl). The onset potential of NDAB-

900(35 wt% KM) at -0.07 V was slightly better than that of NDAB-900(10 

wt% KM) at -0.08 V. The order of superiority with respect to disc current 

was reversed when the amount of peroxide produced was considered. Hence, 

NDAB-900(20 wt% KM) with the highest disc current also seemed to 

produce the highest amount of peroxide going by the ring currents. 

However, it can be argued that within the voltage range that may be most 

relevant for practical applications viz. 0.00 - -0.20 V there was no significant 

difference in peroxide production. The limiting current density of the three 

catalyst were close. The chemical composition obtained from XPS analysis 

(Table 5-1), helps to explain some of the variations observed. The activity of 

manganese oxides is determined not only by the chemical composition but 

also by other factors like morphology, crystallographic phase and nature of 

support.   

Based on XPS analysis the three catalyst (i.e. NDAB-900 reacted with 10, 20 

and 35 wt% KMnO4 respectively) contain MnO2. In addition, from the 

presence of very strong K 2p peaks, they are known to exist in the birnessite 

phase also known as δ-MnO2. 
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Figure 5-6 Disc and ring current for a) NDAB-900 oxidized with 10, 20, 35 

wt% KMnO4 b) NDAB-900, CMK-8 and Vulcan all oxidized with 20 wt% 

KMnO4; experiments were performed at pH 13 and RT 

In δ-MnO2, the edge-shared MnO6 octahedra are disconnected as a result of 

the presence of guest cations in-between them. The guest cations are usually 

hydrated ions like K+ and Na+ (Zhang et al., 2013). In this work, it can be 

inferred that the presence of potassium from KMnO4 facilitated the 

formation of this birnessite phase.  With respect to ORR activity, δ-MnO2 on 

its own is not very active, with the number of electrons transferred close to 

two and a poor onset potential (Meng et al., 2014). However the presence of 

N-doped nitrogen in the graphitic form and the mesoporous nature of the 

support creates a synergistic effect. This effect is similar to that obtained by 

Lee et al (2011) when they deposited amorphous manganese oxide on 

Ketjenblack.  

NDAB-900 (20%KM) had the highest amount of manganese and the best 

activity. This is not surprising considering that all the other factors that 

could affect activity are common to all the three catalysts (i.e. NDAB-900 

reacted with 10, 20 and 35 wt% KMnO4) in this category. However, 

considering the trend of ring currents, it also produced the highest amount 

of peroxide. Having established that δ-MnO2 produces peroxide on its own 
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and seeing NDAB-900 (20%KM) had the highest amount of manganese 

oxide, it may be inferred that this is a likely reason for the relatively higher 

amount of peroxide. In terms of onset potential and disc current, the best 

ORR activity is obtained when 20 wt% KMnO4 is used. This much was 

confirmed by another experiment that was performed in the course of this 

work though not reported here. 

In Figure 5-6b, disc and ring currents from manganese oxide supported on 

Vulcan XC-72, CMK-8 and NDAB-900 (i.e. by reacting each of these with 20 

wt% KMnO4) are shown. CMK-8 (20 wt% KM) showed the best onset 

potential of 0.03 V (Ag/AgCl) (1.05 V RHE) followed very closely by NDAB-

900(20 wt% KM) with 0.02 V(Ag/AgCl) (1.04 V RHE). Not surprisingly 

Vulcan (20 wt% KM) displayed the worst onset of -0.08 V (Ag/AgCl) (0.94 

RHE).  The gain in onset potential after manganese oxide deposition is 

depicted in Figure 5-7. 

 

Figure 5-7 Gain in onset potential after manganese oxide deposition using 

20 wt% KMnO4 

 

Vulcan-XC72 and CMK-8 (the ordered mesoporous carbon with sucrose as 

carbon source and no nitrogen doping) demonstrated the greatest 

improvement after deposition of MnOx using KMnO4.  

Considering the limiting current in Figure 5-6b, CMK-8 (20 wt% KM) 

maintained its superiority with a value of ca 5 mA/cm2, however the limiting 

current of Vulcan (20 wt% KM), 4.7 mA/cm2 surpassed that of NDAB-900 
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(20 wt% KM), 4.2 mA/cm2. Analysing the ring currents, Vulcan-MnOx had a 

much lower value compared with CMK-8-MnOx and NDAB-900-MnOx. The 

pattern for the latter two being very close. It is evident that there is a 

synergy between the supports and manganese oxide.  The amount of 

manganese deposited was 13.84, 6.73 and 1.89 at% for NDAB-900 (20 wt% 

KM), CMK-8 (20 wt% KM) and VC 72 (20 wt% KM) respectively and the 

onset potentials do not follow the same trend. Hence, it is clear that the 

catalyst with the best activity did not have the highest amount of 

manganese oxide. Thus confirming that the activity of the catalyst depends 

on the interplay between chemical composition, crystalline phase of the 

oxide, oxidation state of the oxide, morphology of oxide and nature of the 

support.  

Two important features of Figure 5-6b cannot go unnoticed. One is that 

though the onset potential of VC 72 (20 wt% KM) was the lowest, it had an 

impressive limiting current. This may be ascribed to the fact that Vulcan-

XC 72R is specially designed to have a very good conductivity. The second is 

the relatively very low peroxide production (evidenced by the low ring 

current). The answer to this can be found in the nature of the manganese 

oxide formed on it. XRD analysis shows a peak at 2θ of ca 65.7 that 

corresponds with that of tetragonal MnOOH in the vernadite phase (JCPDS 

00-015-0604). According to Giovanoli (1980) the vernadite phase bears a 

similarity to the birnessite phase, in that it is a random stacking of the 

latter. In a well-designed experiment, Mao et al (2003), used Mn2O3, Mn3O4, 

Mn5O8 and MnOOH for oxygen reduction. They were able to conclude that 

while not being able to improve reduction potential, MnOOH had the 

greatest catalytic activity for disproportioning peroxide. This is replicated in 

Figure 5-6b. For future work, considering the widespread availability of 

Vulcan, it might be worth exploring the possibility of combining two 

supports. Vulcan XC72R and CMK-8 (that improves reduction potential) 

mixed as supports for manganese oxide may yet take us another step closer 

to the ideal alternative ORR catalyst. 
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One interesting finding is that the very strong K 2p peaks that were in the 

XPS plots of the manganese oxide supported on NDAB-900 (Figure 5-2) 

were very weak and broad in the XPS of CMK-8 (20 wt% KM). Figure 5-8 

shows the comparisons of the K 2p peaks. A safe inference is that other 

forms of MnO2 likely the α-MnO2 (considering the very good activity) may be 

present.  

 

Figure 5-8 XPS K 2p peaks for a) CMK-8 (20 wt% KM) and b) NDAB-900 

(20 wt% KM) 

 Electrochemical analysis for manganese oxide catalysts from 

heat treated Mn(NO3)2 

These set of catalysts were prepared by stirring the carbon in a solution of 

20 wt% Mn(NO3)2, drying and heat treating at 250 oC or 350 oC. 

The catalysts were tested in 0.1 M KOH using a rotating ring-disc electrode 

(RRDE). The most important results are shown in Figure 5.9. The trend of 

the ring current shows that around the charge transfer limiting region, 

CMK-8 (20% MN350) and NDAB-900 (20% MN250) had the same ring 

current and by inference generated the same amount of peroxide. In the 

mass transfer limiting region the order of increasing peroxide generation 

was CMK-8 (20% MN350) < NDAB-900 (20% MN250) < NDAB-900 (20% 

MN350). Looking at  Figure 5 9b it may be concluded that there is no 

significant difference in the amount of peroxide produced by each of the 

catalsyts.The onset potential can be defined as the potential when a 

catalysts starts to produce Faradaic current arising from oxygen reduction 

(here -80µA was used). From Figure 5-9a, the manganese oxide supported 
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on CMK-8 and heat treated at 350oC had the best onset potential (1.05 V 

RHE) closely followed by that on NDAB-900 treated at 250oC (1.03 V RHE) 

and lastly that deposited on NDAB-900 and heat treated at 350oC (1.02 V 

RHE). NDAB-900 (20% MN350) had the highest limiting current of 

4.47mA/cm2, closely followed by that of CMK-8 (20% MN350) with 4.35 

mA/cm2, NDAB-900 (20% MN250) displayed the least limiting current of 

3.93 mA/cm2.  

The trend of the ring current shows that around the charge transfer limiting 

region, CMK-8 (20% MN350) and NDAB-900 (20% MN250) had the same 

ring current and by inference generated the same amount of peroxide. In the 

mass transfer limiting region the order of increasing peroxide generation 

was CMK-8 (20% MN350) < NDAB-900 (20% MN250) < NDAB-900 (20% 

MN350). Looking at the Figure 5-9b it may be concluded that there is no 

significant difference in the amount of peroxide produced by each of the 

catalsyts. 

Table 5-5 shows how important parameters compareError! Reference 

source not found. while Figure 5-9 displays the trend of these 

parameters with changing voltage.  
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Figure 5-9 Results obtained from electrochemical characterization of catalysts made by depositing Mn(NO3)2 and heat treating a) 

Disc and ring currents, b)number of electrons transferred and percentage of peroxide produced and c) Tafel slopes. The data were 

obtained in 0.1 M KOH at a rotation rate of 1600 rpm, pH 13 and RT
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The onset potential can be defined as the potential when a catalysts starts 

to produce Faradaic current arising from oxygen reduction (here -80µA was 

used). From Figure 5-9a, the manganese oxide supported on CMK-8 and 

heat treated at 350oC had the best onset potential (1.05 V RHE) closely 

followed by that on NDAB-900 treated at 250oC (1.03 V RHE) and lastly 

that deposited on NDAB-900 and heat treated at 350oC (1.02 V RHE). 

NDAB-900 (20% MN350) had the highest limiting current of 4.47mA/cm2, 

closely followed by that of CMK-8 (20% MN350) with 4.35 mA/cm2, NDAB-

900 (20% MN250) displayed the least limiting current of 3.93 mA/cm2.  

The trend of the ring current shows that around the charge transfer limiting 

region, CMK-8 (20% MN350) and NDAB-900 (20% MN250) had the same 

ring current and by inference generated the same amount of peroxide. In the 

mass transfer limiting region the order of increasing peroxide generation 

was CMK-8 (20% MN350) < NDAB-900 (20% MN250) < NDAB-900 (20% 

MN350). Looking at the Figure 5-9b it may be concluded that there is no 

significant difference in the amount of peroxide produced by each of the 

catalsyts. 

Table 5-5 Electrochemical activity indices for catalysts obtained by 

depositing Mn(NO3)2 followed by heat treatment 

 onset 
potential 

(V) RHE 

onset 
potential 

(V) 100µA 

Ag/AgCl 

half-wave 
Potential 

(V) RHE 

Activation 
controlled 
current 
(mA/cm2) 

Tafel 
slope 

(mV/dec I)  

Number 
of 

electrons 

NDAB-900 
(20% MN 

350)  

1.02 -0.06 0.81 -12.41 82 3.7 

NDAB-900 
(20% MN 

250 

1.03 0.00 0.79 -13.89 98 3.7 

CMK-8 (20% 
MN 350) 

1.05 0.02 0.82  90 3.7 

 

However, the half-wave potential, does not follow a similar trend. The order 

of increase is NDAB-900 (20%MN250)<NDAB-900 (20%MN350)<CMK-8 (20 

%MN350). It can be said that the foregoing results are a product of the 

chemical composition of the oxide, morphology, oxidation state and more 

importantly the synergy between the support and oxide. It is surprising 
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though, that CMK-8 (20 wt%MN350) with only 2.12 at% of manganese 

performed better than NDAB-900 (20 wt%MN350) with 14.69 at% and 

NDAB-900 (20 wt%MN250) having 14.96 at%. This strongly emphasizes the 

critical role that supports play. 

When the onset potential of the supports are considered it is apparent that 

the improved activity is an outcome of the synergy between the support and 

manganese oxide. It can be seen from Figure 5-10 that CMK-8 (20 wt%MN 

350) had the greatest improvement of 140 mV having moved from 920 mV 

(RHE) to 1060 mV (RHE). The onset potential of NDAB-900 (20 wt% MN 

350) and NDAB-900 (20% MN 250) increased by 90 and 100 mV respectively 

both of them having an initial onset of 930 mV (RHE). The onset potential of 

the two catalysts from NDAB-900 are very close. A similar trend was 

reported by El-sawy et al  (2014) when they pyrolyzed amorphous 

manganese oxide at 400, 500, 700 oC and obtained onset potentials of 0.12, 

0.10 and 0.11 V (RHE) respectively. 

 

Figure 5-10 Gain in onset potential after deposition of manganese oxide 

using Mn(NO3)2 

 Mn3O4 is an oxide with a regular spinel construction. At room temperature, 

the stable phase is the hausmannite having a tetragonal structure. This has 

trivalent Mn3
+ and divalent Mn2

+ ions occupying the two octahedral and one 
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tetrahedral positions of the spinel structure, respectively. (Lee and Jung, 

2012). The three catalysts made by depositing Mn(NO3)2 contain Mn3O4 as 

confirmed from XRD analysis (JCPDS 04-004-8640). Generally they have 

not been known to be very active for ORR i.e. in terms of good onset 

potential. Research carried out with Mn3O4 (Gorlin and Jaramillo, 2010; 

Gorlin et al., 2012) obtained catalysts that had limiting current densities 

almost equal to that of platinum, but with onset potentials of ca 0.8 V RHE. 

This seems to explain why NDAB-900 (20 wt%MN350) that has only Mn3O4 

displayed a low onset potential and high limiting current relative to the 

other two catalysts. One reason for the high limiting current might be the 

fact that it is usually produced at temperatures of around 350 – 500oC thus 

obtaining a crystalline structure that may enhance conductivity. From XRD 

analysis, NDAB-900 (20 wt%MN250) also contains MnOOH while CMK-8 

(20 wt%MN350) has some amount of MnO. Considering that MnO only 

shows moderate activity compared with MnOOH (Chen et al., 2015; Liu et 

al., 2015a) and that CMK-8 had earlier in this work demonstrated very good 

ORR activity, it is highly probable that much of the good activity showed by 

CMK-8 (20 wt%MN350) is a function of the interaction between the oxide 

and highly ordered mesoporous carbon support (CMK-8).  

A good reason why the support might play a defining role is the relatively 

large surface area it bestowed on the final CMK-8 (20 wt%MN350) i.e. 

676.51 m2/g. This is more than twice that of NDAB-900 (20 wt%MN250) at 

282.62 m2/g and NDAB-900 (20 wt%MN350) at 290.28 m2/g. This may 

explain why despite the small amount deposited i.e. 2.12 at% CMK-8 (20 

wt%MN350) yet showed comparatively better activity in terms of onset 

potential.  

The upper region of Figure 5-9a shows the ring current for each of the 

three catalysts. This can be better appreciated when explained along with 

the percent peroxide production shown in Figure 5-9b. Within the kinetic 

region ca -0.05< V > -0.2, CMK-8 (20 wt%MN350) produced the least 

amount of peroxide specifically ca 5 % peroxide. It is followed by NDAB-900 
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(20 wt%MN250), while NDAB-900 (20 wt%MN350) produced the highest 

amount (between 10 and 20%) within this region.  

The values of Tafel slope obtained here were 82 mV/dec, 98m V/dec and 90 

mV/dec for NDAB-900 (20 wt%MN350), CMK-8 (20 wt%MN350) and NDAB-

900 (20 wt%MN250) respectively. These do not fall within the range of what 

can be interpreted as specific rate determining steps i.e. the 60 and 120 

mV/dec.  Tafel slopes not being 60 or 120 mV/dec are not unusual. Gao and 

co-workers  (2015) found that the Tafel slope of sulphur doped managanese 

oxide and sulphur doped manganese oxide-graphitized carbon composite in 

0.1 M KOH were 81 and 112 mV/dec respectively.  

 Comparison with 20 wt% platinum. 

20 wt% platinum remains the benchmark catalyst for oxygen reduction. 

Hence the best of the manganese oxide catalysts obtained in this work were 

compared with it. The summary of results is presented in Figure 5-11. The 

manganese oxide catalysts compare well with platinum in terms of disc 

current. The best of them, CMK-8 (20 wt% KM) with amorphous manganese 

oxide has a limiting current of 5.0 mA/cm2 compared with platinum’s 5.7 

mA/cm2. The ring current in Figure 5-11a is explained along with the 

amount of peroxide produced Figure 5-11b.  

Within the kinetic region -0.20<V>-0.05, the peroxide of the manganese 

oxide catalysts also comes close to that of platinum. CMK-8 (20 wt%MN350) 

for example produced peroxide of only ca 5% while CMK-8 (20 wt% KM) has 

peroxide values between 10 and 15%.  

The difference in onset potential is not pronounced. However, the half-wave 

potential of platinum is only about half that of the manganese oxides. This 

affirms the kinetic superiority of the 20 wt% platinum catalyst. 
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Figure 5-11 Comparison of results from electrochemical analysis performed 

for 20 wt% platinum, CMK-8 (20% KM), CMK-8 (20% MN350) and NDAB-

900 (20% MN350); a) Disc and ring current b) percent peroxide produced 

and n-number c) half-wave potential with onset potential; analysis were 

carried out at pH 13 and RT 

 

Amongst all the manganese oxide catalysts, CMK-8 (20 wt% KM) with 

amorphous MnO2 has the best activity even when compared with the 

crystalline ones. Chemical composition aside, amorphous manganese oxide 

catalysts have been proved to have superior ORR activity compared with 

their crystalline companions. In a study involving an amorphous MnOx 

catalyst and crystalline Mn3O4 for ORR, Lee et al (2011) discovered that the 

amorphous catalyst performed better. They postulated that the amorphous 

catalyst had a higher concentration of surface defects and thus made 

available more active sites for adsorbing oxygen. Xu and co-workers (Yang 

and Xu, 2003) also argued that a distorted structure is advantageous for 

catalysis since it comprises of more active sites. They therefore inferred that 

because amorphous manganese oxides contain a greater amount of 



   

 126 

structural distortion relative to the crystalline ones, they would be more 

active.  

In furtherance of this line of argument, Sumboja et al (2015) grew 

manganese oxide on carbon paper with an accompanying excellent 

performance in a rechargeable zinc-air battery. One reason they gave was 

the very even distribution of amorphous manganese oxide within the pores. 

They claimed this enhances the three phase interaction between oxygen, 

electrolyte and catalysts. As a further evidence that this principle of 

amorphous catalysts doing better than crystalline ones is a general 

phenomenon, Indra et al (2014) prepared amorphous and crystalline cobalt 

iron oxides which were used for water oxidation and ORR. The amorphous 

one had a superior catalytic activity in both areas of application especially 

within the kinetic region.  

 Stability 

The stability of the catalysts were tested using chronoamperometry and 

accelerated degradation tests (ADT). The results are presented in Figure 

5-12. Fig. 5.12a shows the Chronoamperometry plots of NDAB-900(20 wt% 

MN)350 and NDAB-900(20 wt% KM). They both exhibit a gradual decline in 

current relative to the initial current. However, after ca 10 mins, NDAB-900 

(20wt% KM) showed a greater level of depreciation in its current. It ended 

with a final current that was 82% of the initial while NDAB-900(20 

wt%MN) maintained 84% of the initial current after about 2 hours.  

Looking at the before ADT and after ADT plots, the three catalysts display a 

moderate negative displacement after the degradation tests.  
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Figure 5-12 a) Chronoamperometry b, c, and d accelerated degradation 

tests (ADT) for NDAB-900 (20%MN 350), NDAB-900 (20% KM) and CMK-8 

(20% KM) respectively; these were done at ph 13 and RT 

5.4 Comparison with other works in Literature  

This is most prominent in NDAB-900 (20 wt% KM) and least in CMK-8 (20 

wt% KM). When the accelerated degradation tests are considered, CMK-8 

(20 wt% KM) seems to be the most stable. Its onset potential remained the 

same, while that of NDAB-900 (20 wt% MN 350) shifted negatively by 20 

mV and that of NDAB-900 (20 wt% KM) by 70 mV after degradation.  

Looking at Table 5-6 it is evident that the synergy between the MnOx 

catalysts and the support used resulted in ORR catalysts with very good 

activity relative to other catalyst of similar composition.  
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Table 5-6 Comparison with other reports that used manganese oxides in 

alkaline media 

Catalyst  Support  Onset 
potential (V) 

Ag/AgCl 

Half-wave 
potential (V) 

Ag/AgCl 

Reference  

CMK-8 20wt% 
KMnO4  

(MnO2) 

CMK-8 OMC 0.03 

 

-0.20 

 

This work 

CMK-8 (20% 
MN350) 

(Mn3O4) 

N-doped OMC 0.03 

 

-0.20 

 

This work 

NDAB-900 
(20%MN350) 

(Mn3O4 & MnO) 

N-doped OMC 0.00 -0.21 This work 

3D-Mn3O4 nitrogenated 
graphene 

NS -0.20 (Bikkarolla et 
al., 2014) 

mesoporous 
manganese 

oxide/sulfur 

graphitized 
carbon 

-0.08 -0.20 (Gao et al., 
2015) 

Manganese Oxide 
Molecular Sieve 

Mixed with 
activated 

carbon 

-0.07 NS (El-Sawy et al., 
2014) 

MnOx nanowires nitrogen-doped 
graphene 

-0.09 NS (Lee et al., 
2014) 

Ag on MnOx Graphene -0.12 -0.30 (Shypunov et 
al., 2015) 

Ag on MnO2 Reduced 
graphene oxide 

-0.12 NS (Lee et al., 
2015) 

Shewanella-
mediated 
biosynthesis of 

Mn2O3 

No support 0.07 -0.24 (Jiang et al., 
2015) 

CaMnO3 No Support -0.06 -0.26 (Han et al., 
2013) 

MnO containing 
mesoporous 
nitrogen doped 

carbon 

No Support NS -0.21 (Tan et al., 

2012) 

Spinel 
Manganese−Cobalt 

Oxide 

Nitrogen-doped 
reduced 

graphene oxide 

-0.07 NS (Liang et al., 
2012b) 

 

The onset potential from the catalysts in this work is the best with the 

exception of the oxide made from shawanella (Jiang et al., 2015)which may 

not be classed in the same group with others listed. Considering scalability, 

it is obvious that the shawanella process would be hindered with many 

obstacles. Despite the complexity of some of the procedures listed, the very 

simple approach adopted in this work still produced better catalysts. This 

lends weight to the drive for easy commercialization of the catalysts that 

would serve as alternative to platinum.  
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5.5 Summary 

In the course of depositing manganese oxides on NDAB-900 and CMK-8, the 

N-doped catalysts were found to be capable of retaining a higher amount of 

the oxides. This was ascribed to the highly graphitic pore walls of NDAB-

900 as well as to the presence of N-doped active sites which can serve as 

anchoring points for metals. It was also discovered, that for undoped 

ordered mesoporous carbon, the electroless deposition proved to be more 

effective with a greater amount of manganese (6.73 at%) compared with 

that obtained from the deposition method (2.12 at%). With respect to the 

pore structure after deposition, the BET analysis showed that physical 

deposition followed by heat treatment leads to a loss of up to 70 % of pore 

volume. This is very high compared with the loss of up to 40 % which 

occurred when the electroless deposition was used. 

Significant improvements in ORR activity were achieved by depositing 

manganese oxide on NDAB-900 and ordered mesoporous carbon (CMK-8) 

respectively. This is reflected in an enhancement of up to ca 0.13 V in the 

onset potential. Thus, this justifies the adoption of this approach and 

presents it as one that can help bridge the activity gap between non-

platinum-group-metal catalysts and Pt/C.  

 Most importantly, very active manganese oxide catalysts that compare with 

the very best reported in literature have been prepared. The value of these 

synthesis procedures lie in their simplicity and scalability. For the first 

time, the exceptional activity of amorphous manganese oxide and the 

excellent structural capabilities of highly ordered mesoporous carbon have 

been harnessed to produce catalysts with good onset potential of 1.05 V vs 

RHE (compared with platinum/carbon with onset of 1.06 V vs RHE) and 

high limiting currents.  

Considering the very good Mn3O4 synthesized, it would be worthwhile to use 

them in other areas, especially those involving metal deposition. 
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 Nitrogen doped carbon as catalyst and catalyst 

support in neutral media and their application in 

microbial fuel cells 

In this chapter a nitrogen doped carbon (NDAB-900) synthesized in the 

course of this work was tested as an oxygen reduction catalyst in 50 mM 

phosphate buffer solution of pH 7. Electrochemical activity was investigated 

with the aid of linear sweep voltammetry (LSV) in a rotating ring-disc 

electrode system. An attempt was also made to expound the mechanism by 

which the oxygen reduction reaction (ORR) occurs. Thereafter, three of the 

catalysts synthesized earlier, were used along with 20 wt% platinum for 

ORR catalyst in the cathode of a microbial fuel cell. The catalysts used were  

nitrogen doped carbon pyrolyzed at 900oC (NDAB-900), highly ordered 

mesoporous carbon (CMK-8) and highly ordered mesoporous carbon-

manganese oxide composite, obtained by reacting CMK-8 with 20 wt% 

KMnO4 (CMK-8 (20 wt% KM))  

6.1 Introduction 

Over the years, platinum has carved a niche as the best ORR catalysts even 

in microbial fuel cells. However, as with other applications, issues of cost 

and availability continued to cast doubts on its economic as well as long 

term sustainability. Feng et al (2012) reasoned that due to the benefits of 

low cost, relatively good electrical conductivity and strong oxidation 

resistance, nitrogen-doped carbons are likely substitutes for noble metals in 

microbial fuel cells (MFCs) for wastewater treatment. Surprisingly, Liu and 

co-workers (2013) claimed to have synthesized nitrogen doped carbon that 

outperformed platinum in a microbial fuel cell. The nitrogen doped carbon 

cathode had a power output of 776 ± 12 mW/m2 compared with platinum’s 

750 ± 19 mW/m2. In the same vein, Gnana Kumar et al (2014) anchored α-

MnO2 on graphene oxide and used it in a microbial fuel cell. They reported a 

maximum power density of 3359 mW/m2 which according to them was 

comparable to that of platinum. Thus this work seeks to improve on what is 
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already obtainable in the area of carbon based catalysts for ORR in 

microbial fuel cells. 

6.2 Electrochemical Analysis 

The electrochemical activity of nitrogen doped carbon (NDAB) pyrolyzed at 

900 oC, NDAB-900 was tested in 50 mM solution of pH 7 phosphate buffer. 

Figure 6-1 displays the most important results obtained. Figure 6-1a 

combines the disc and ring current obtained from the oxygen reduction 

reaction. Expectedly, the highest values of disc and ring currents occur at 

the highest rotation rate. Though the disc current increases as potential 

becomes more negative, it does not attain the plateau that signifies mass 

transfer limitation has been reached. The ring currents get to a peak at a 

voltage which varies with rotation rate, after which they experience a slight 

dip that continues until the end of the scan. Figure 6-1b presents the 

number of electrons transferred and the percentage of peroxide produced. 

Figure 6-1c is the Koutecky-Levich plot showing the variation of the 

inverse of current density with the inverse square root of the rotation rate 

expressed in radians. The plots are parallel which is said to be an indication 

of first order kinetics (Ye and Vijh, 2005).  

The onset potential taken to be the voltage when the current gets to 80µA 

was -0.01 V. This is quite distant from that of platinum which was 0.35 V. 

The number of electrons transferred calculated using the ring and disc 

currents was 3.4 at -0.4 V and is the same as that calculated from the 

Koutecky-Levich equation i.e. 3.4. The heterogeneous rate constant showing 

the intrinsic rate capability of the catalyst was 0.10 cms-1about a fifth of the 

value for platinum i.e. 0.56 cms-1. Table 6-1 gives a summary of these 

parameters. 

6.3 Mechanism of Oxygen Reduction on Templated N-Doped Carbon 

from O-phenylenediamine 

An attempt was made to clarify the mechanism by which NDAB-900 

performs ORR in neutral media..
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Figure 6-1  Electrochemical analysis of NDAB-900 in 50 mM PBS, pH 7 and RT. a) Disc and ring current b) number of electrons 

transferred and peroxide produced in percentage (obtained at 1600 rpm) c) Koutecky levich plots
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Table 6-1 Electrochemical activity parameters for NDAB-900 in 50 mM 

PBS of pH 7 

 Onset 
potential (V) 

Vs Ag/AgCl 

kh 

 heterogenous 
rate constant 

(cms-1) 

N-number N-number 

Koutecky 
Levich 

NDAB-900 -0.01 0.10 3.4 3.4 

20 wt% Pt 0.35 0.56 4.0 4.0 

 

 To this end, the intrinsic changes in catalysis were tracked by analysing the 

ring current, disc current and combining these with 

theoretical/computational studies on the ORR activity of platinum. 

Figure 6-2 shows how the ring current, disc current and the number of 

electrons transferred changed with voltage.  

At potentials more negative than -100 mV, the disc current intensifies 

showing that the catalyst is enhancing the transfer of electrons to oxygen. 

The simultaneous rapid increase in ring current (with increase in disc 

current) indicates that the dominant pathway here is that of hydrogen 

peroxide. For some carbon catalysts, the trend at this point is that the 

number of electrons would remain at 2 as the voltage is increased, shifting 

to 3 or greater at higher voltage. However the variation of number of 

electrons with voltage shows that while the ring current was yet increasing 

at ca -100 mV, the number of electrons was approximately 3. This is a 

pointer to the fact that this is not strictly a two electron transfer. Hence it is 

more likely that a direct 4 electron transfer is also happening 

simultaneously, albeit on a smaller scale. In summary it is a combined two 

and four electrons transfer with the two electron transfer being dominant. 

The justification for this lies in the fact that, it is sometimes assumed that 

catalysts with a high amount of peroxide follow the 4-electron pathway only 

after a considerable increase in voltage. By combining RRDE plots with that 

of number of electrons, it has been shown that the four electron pathway 

can be combined with the peroxide pathway from the onset of the ORR 

reaction. 
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An attempt was also made to propose a mechanism at the molecular level. 

The knowledge of this mechanism would be very useful if a mathematical 

model of the oxygen reduction process on this catalyst were to be developed. 

According to Feng et al  (Feng et al., 2011b) the first step is the adsorption of 

molecular oxygen which preferentially occurs in a chemisorbed non-

dissociated form as confirmed by simulations of the ORR on carbon 

catalysts.  

 

Figure 6-2 Ring current (top), Disc current at 1600 rpm (middle) and 

number of electrons transferred (bottom) for the ORR activity of NDAB-900 

in 50 mM, PBS of pH 7 carried out at RT 

Furthermore, there seems to be a consensus (Ikeda et al., 2008; Okamoto, 

2009) that peroxide production proceeds from OOH hence the O2ads accepts 
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an electron and a proton to form OOHads. This can either accept an electron 

and a proton to form hydrogen peroxide or dissociate into oxygen and a 

hydroxide. The oxygen and hydroxide go to form a molecule of water each by 

different pathways (Figure 6-3).   

From the plot of number of electrons transferred in Figure 6-2, it follows 

that both the path leading to peroxide and that leading to oxygen and 

hydroxide occur simultaneously. This agrees with literature (Su, 2012). One 

possible reason why the peroxide pathway could be dominant here is that 

the conversion of HO2ads to H2O2 is potential-driven as opposed to its 

dissociation into O + OH. Hence as we increase the voltage, the formation of 

peroxide proceeds more rapidly than the dissociation of HO2ads.  

A debatable aspect of this mechanism is whether the peroxide formed 

proceeds to water via a direct reduction (Figure 6-3 scheme 2-step7) or first 

dissociates into two OH molecules which are then reduced to water (Figure 

6-3 scheme 1-step 6 and 7). An examination of the disc current plot in 

conjunction with the ring current and comparing with computational 

studies helps to explain this. 

Were it to be that peroxide was being reduced directly; the ring current 

curve would have experienced a rapid downward slope(Ruvinskiy et al., 

2011). This is because according to Figure 6-3 scheme 2, while diffusion of 

peroxide to the ring remains constant (step 5), due to a constant rotation 

rate, its reduction would be accelerated as the voltage is swept in the 

negative direction. Within a short time, the rate of reduction will likely  

surpass the diffusion rate and the ring current should become negligible. 

The ring current curve does not depict this.
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Figure 6-3 Oxygen reduction pathway on nitrogen doped carbon catalysts (in scheme 1 along the 2x2 pathway, water is being 

formed from the reduction of hydroxides produced after the dissociation of H2O2 i.e. steps 6 and 7; in scheme 2 along the 2x2 

pathway, water is formed directly from the reduction of  H2O2
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Allowing for the peroxide to undergo dissociation implies that while the rate 

at which the peroxide is being formed (step 3, Scheme 1) is accelerating with 

the sweeping voltage, the rate at which dissociation occurs is likely to 

remain relatively the same. This gives room for peroxide to accumulate and 

diffuse towards the ring (scheme 1, step 5). Step 7 however is also potential 

driven and the rate goes faster with increasing voltage. Normally, this 

would speed up step 6 (the dissociation of peroxide) moderately. This is 

reflected in the gradual downslope of the ring current, depicting the slow 

increase in the reduction of peroxide via the hydroxide intermediate. 

Yet another plausible reason for the decrease of the peroxide detection 

current on the forward scan could be that the peroxide was undergoing a 

catalytic rather than a chemical decomposition to form oxygen and 

hydroxide. However nitrogen doped carbons have not been known to be 

active for peroxide decomposition. 

The summary of the mechanism of ORR on our nitrogen doped carbon 

catalyst can thus be described as a dominant two electron transfer 

accompanied by a minor direct four electron transport at the onset. The 

peroxide produced here is later converted to hydroxide and then to water 

which results in a further increase in the number of electrons transferred. 

This is scheme 1 in Figure 6.3 

6.4 Microbial Fuel Cells 

Three of the catalysts synthesized were tested in microbial fuel cells.  These 

are nitrogen doped carbon NDAB-900; highly ordered mesoporous carbon, 

CMK-8 and CMK-8 with manganese oxide deposited by reaction with 20 

wt% KMnO4 i.e. CMK-8 (20 wt% KMnO4). To put their performance in 

perspective 20 wt% platinum was also used.  The experiments were 

performed in duplicates one after another; however, at the first run the cell 

with 20 wt% Pt did not produce current. Hence while the average for the 

three synthesized catalysts were obtained, only a set of values was obtained 

for 20 wt% Pt. This may likely skew the overall data. Hence the plots 
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presented in Figure 6.4 are for the three catalysts, the value for platinum 

would be stated for comparison.  

Figure 6.4 shows the polarization curves. The x-axis is common to both 

Figure 6-4 a and b i.e. current density in mA/m2. The primary axis also 

compares the same parameter i.e. power density in mW/m2. However the 

secondary axis for Figure 6-4a has the cell potential such that it depicts 

how the power output is changing with cell potential. On the other hand the 

secondary axis of Figure 6.4b captures the change in anode potential of each 

cell. Hence, Figure 6.4b seeks to clarify the relationship between power 

output and anode potential.  

From Figure 6.4a and b, it is evident that power output from all the cells are 

almost equal within the low current region 43 mA/m2 <I>480 mA/m2, though 

the cell with NDAB-900 is slightly superior. Within the higher current 

region 506 mA/m2 <I>1146 mA/m2, the air-cathode microbial fuel cell with 

CMK-8(20 wt% KMnO4) has the best power output followed by that of CMK-

8 while that of NDAB-900 was least. From past experiments, it is known 

that very high resistances in the range of 5000 Ω to 52000 Ω (used here) 

tend to supress the difference in ORR activity of catalysts in the microbial 

fuel cell. Hence it can be concluded that CMK-8(20 wt% KMnO4) that 

displayed the best performance at lower resistances is actually the best at 

all current range. 

With respect to the cell potential, Figure 6-4a shows that the cell with 

NDAB-900 had a slightly higher potential within the low current region 

compared with the other two. However, this trend seems to be reversed as 

current increased such that at the high current region, it now had the least 

cell potential, while the cell with CMK-8(20wt% KMnO4) displayed the best.  
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Figure 6-4 Polarization curves obtained from the air-cathode microbial fuel 

cells a) Power density and cell Potential b) Power density and anode 

potential. Anode medium was Acetate laden secondary inoculum. 

Experiments were carried out at pH 7 and RT. 
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According to Figure 6-4b, the best anode potential was shown by the cell 

with highly ordered mesoporous carbon CMK-8 as the cathode catalyst. Its 

superiority lasting through the entire current range. The other two catalysts 

had equal anode potentials within the current range 43 mA/m2 <I>281 

mA/cm2. Beyond this, the cell with CMK-8(20wt% KMnO4) had the better 

anode potential.  

Expectedly, the trend of changing power output corresponds with that of cell 

potential in Figure 6-4a. The fact that the cells showed very similar cell 

voltage and power output within the region controlled by activation 

overpotential, typically V>150 mV (Lepage et al., 2012) might indicate that 

in this setting the catalysts have the same inherent activity. The superiority 

of CMK-8(20wt% KMnO4) is displayed only within the ohmic resistance 

controlled region. The possibilities are that either its superiority was 

previously supressed by the high resistors used or this may not be ascribed 

to its greater catalytic activity.  On a positive note, CMK-8(20wt% KMnO4) 

with the best performance in the high current region might be suited for 

applications that require significant current output. An example is the 

desalination of sea water using a microbial desalination cell (Jacobson et al., 

2011). 

From Figure 6-4b the correlation between the anode potential and power 

output is a bit equivocal. Within the ohmic resistance controlled region 

CMK-8 with the best anode potential, did not have the best power output 

but NDAB-900 with the worst anode potential also had the worst power 

output. Considering that the differences in the anode potential is very small, 

ca 50 mV at most, it may be that the anode potential does not in any way 

limit the power output of the cell. 

For comparison, the maximum power output obtained from the single 

experimental run with 20 wt% platinum was 205 mW/m2 compared with the 

average maximum of 61 mW/m2 obtained for CMK-8 and CMK-8(20wt% 

KMnO4). 
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That the CMK-8 with MnO2 deposited on it turned out to be the best is not 

surprising seeing that it was also the best within the alkaline system. This 

can be ascribed to the presence of manganese oxide combined with the 

excellent structural properties of highly ordered mesoporous carbon.   

Chemical composition aside, amorphous manganese oxide catalysts have 

been proved to have very good ORR activity (Yang and Xu, 2003); Lee et al. 

(2011). One reason is that they are able to form a thin layer of manganese 

oxide on pores. This not only preserves the integrity of the structure to 

permit easy diffusion of substrate and product, but also allows for a fast 

three phase reaction and excellent catalyst utilization. 

The possibility of increasing power density with increase in loading holds 

promise. Because the catalyst produced here are very cheap compared with 

platinum, a much higher loading can be used. This would have to be 

optimized though because of mass transfer limitations. Yuan et al (2010) 

used polypyrrole/carbon black composite for ORR in a microbial fuel with 

increasing catalysts loading and concluded that this led to an improved 

power output.  

 Coulombic Efficiency  

One factor that can help advance the use of microbial fuel cells for waste 

water treatment and energy recovery is the coulombic efficiency (CE) of the 

cell (Fan et al., 2007). This is defined as the amount of electrons that goes to 

produce current divided by the theoretical amount of electrons available for 

producing current (Logan et al., 2006), expressed in percentage. CE was 

calculated for each of the cells and the results are presented along with the 

power density in Figure 6-5. 

The MFC with CMK-8 carbon as cathode catalysts had the highest CE of 

53%. The cell with NDAB-900 was next with 39%, closely followed by that 

with CMK-MnO2 (20 wt% KMnO4) 35%. CMK-8 had a slightly lower 

maximum power density of 59 mW/m2. The other two cells had the same 

value of 61 mW/m2.  
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Figure 6-5 Coulombic efficiency and maximum power density of MFC's 

That the CE is not directly proportional to maximum power density is not 

strange. Devasahayam and Masih (2012) carried out research using first E. 

coli and then water from a river (the substrate being glucose or sucrose) in a 

MFC. In both instances the CE and power density were calculated and there 

cell with the best power density also did not have the highest coulombic 

efficiency (CE).  

It is observed in Figure 6-4 that the cell with CMK-8 as cathode catalyst 

had an anode potential that was slightly higher than the other two. This 

might be a first-hand cause for the improved CE. Otherwise, all the cells 

had the same design and substrate and it might be possible that the 

difference in CE was a function of the cathode catalysts. The specifics of this 

cannot be explained at the moment.   

It is encouraging however, that the cells here, especially that with CMK-8 

carbon displayed a relatively high capability to recover electrons from 

substrates. This evidently puts them forward as candidates for use in waste 

water treatment and energy recovery. Of note is also the fact that this was 

achieved without any special treatment of the electrode materials or cell. 
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 Comparison with other MFCs 

Because of lack of common characteristics, making comparisons between 

microbial fuel cell from different sources is very difficult. This 

characteristics include exposed electrode surface area, type of electrolyte, 

nature of waste water, temperature and the gap between anode and cathode 

((Roche et al., 2010). However a comparison has been presented in Table 6.2. 

For a better perspective, the power densities obtained with platinum from 

the different sources are also included. This helps to emphasize the point 

that the performance shown might be due to other factors like cell 

architecture and not necessarily the cathode catalyst.  

6.5 Summary   

The nitrogen doped carbon catalysts synthesized in this work were tested in 

neutral media with a view to their application in microbial fuel cells. The 

onset potential was 0.60 V vs RHE as compared with platinum/carbon that 

had 0.96 V vs RHE. This would need to be improved on if the catalysts are 

to replace platinum in neutral media.  

The synthesized catalysts namely NDAB-900, CMK-8 and CMK-8/MnO2, 

were tested as cathode catalysts in a dissolved oxygen microbial fuel cell. 

The maximum power output of 61 mW/m2 was generated by NDAB-900 and 

CMK-8/MnO2. However, CMK-8 had the highest coulombic efficiency of 53%. 

Though the coulombic efficiency ranked very high, same cannot be said of 

the power density. This may be as a result of the architecture of the MFC, 

hence an improved architecture that maximises power output should be 

adopted for future work.   
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Table 6-2 Comparison of the MFC power density from this work, with those from literature 

 

Catalyst and 
Ref 

Nitrogen doped carbon 
powders (NDCP) 

 

 

(Feng et al., 2012) 

Mesoporous graphitic 
carbon nitride implanted 
with N2 active sites (I-
NG) 

(Feng et al., 2013) 

Activated nitrogen 
doped carbon 
nanofiber (ANCNF) 

(Yang et al., 2014) 

Nitrogen doped 
carbon derived from 
rice straw (NC). 

 

(Liu et al., 2015b) 

Manganese oxide 
functionalized CNT 
(Liew et al., 2015) 

Max power 
density in a 
MFC 

In presence of sulfide 

222.5 ± 8 mW/m2  

 

 

Pt-C  199.7± 4 mW /m2 

1618 + 50  mW /m2 

 

 

 

Pt-C  1423 + 25  mW/m2 

 

ANCNF-900  1377 + 46  
mW/m2 

 

 

Pt-C 1307 + 43  
mW/m2 

H-NC-900 2300  
mW/m2 

 

 

Pt-C 1634  mW/m2 

 

520 mW/m2 

Catalyst and 
Ref 

MnO2-graphene hybrid 

 

(Wen et al., 2012) 

Nitrogen doped carbon 
(NDAB-900) 

 

 

 

This work 

Ordered mesoporous 
carbon ( CMK-8) 

 

 

 

This work  

Manganese oxide 
functionalized 
Ordered mesoporous 
carbon ( CMK-8) 

 

This work 

 

Platinum/carbon 

 

 

 

 

This work 

Max power 
density in a 
MFC 

2084 mW/m2 

 

 

Pt/C             1714 
mW/m2 

59 mW/m2 61 mW/m2 61 mW/m2 205 mW/m2 
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 Conclusion  

Using highly ordered mesoporous silica as template and o-phenylenediamine as 

carbon and nitrogen source, ordered mesoporous nitrogen doped carbon (NDAB) 

was prepared at pyrolysis temperatures of 700 oC, 800 oC and 900 oC. NDAB-900 

showed the best activity. From physical and chemical analysis this can be 

ascribed to its superior surface area, higher proportion of graphitic nitrogen and 

the fact that it retained its ordered mesoporous structure. NDAB-900 had an 

onset potential of 0.93 RHE in 0.1 M KOH. The number of electrons transferred 

(calculated from disc and ring current) at 0.84 V RHE was 3.4. Though not better 

than platinum, the onset potential for this nitrogen doped carbon is one of the 

best compared with those reported in literature.  

One of the most interesting findings of this work was the relatively good ORR 

activity of undoped highly ordered mesoporous carbon (OMC) CMK-8. This was 

not an objective at the onset. Synthesized using a surfactant as soft-template, it 

had an onset potential of 0.92 V RHE in 0.1 M KOH. This is the best ORR 

activity reported in literature for OMC in alkaline solution. It opens a new vista 

for the use of highly ordered mesoporous carbons as catalysts and catalyst 

supports for ORR in alkaline media.  

Manganese oxides are known to be very abundant and environmentally benign. 

The synergy between them and the previously synthesized carbon catalysts 

namely nitrogen doped carbon and highly ordered mesoporous carbon was 

investigated. Two methods were used to deposit manganese oxide, namely the 

reduction of KMnO4 in a neutral solution and the deposition followed by heat 

treatment of Mn(NO3)2 at 250 oC and 350 oC. The best onset potential of 1.05 V 

RHE in 0.1 M KOH was demonstrated by CMK-8/MnO2 prepared by chemical 

oxidation using 20 wt% KMnO4. To the best of our knowledge, this is the best 

onset potential amongst all credible sources cited in literature for inorganically 

synthesized manganese oxide catalysts.  



   

 146 

This work has further strengthened the existing understanding that amorphous 

oxides when deposited or grown on porous structures yield very good activity 

(Yang and Xu, 2003; Lee et al., 2011). Secondly, it is opening up the hitherto 

unexploited area of using the very simple procedure of chemical oxidation to 

produce highly active manganese oxide-ordered mesoporous carbon composites 

for ORR in alkaline media. This would further the objective of developing ORR 

catalysts that are easily produced on a large scale. The ease of the production 

process and availability of the materials would also drive down the final cost of 

the catalyst, while ensuring that it can be produced wherever it is needed.  

The mechanism by which NDAB-900 carries out ORR in neutral media was 

studied. NDAB-900 reduces oxygen via a two and four electron pathway with the 

two electron reaction dominating. On a molecular level, along the four electron 

series pathway (as opposed to the direct four electron pathway), the peroxide is 

first converted to hydroxide which is then reduced to form water.  

The use of these catalyst for waste water treatment and energy recovery was 

also explored.  Though the power output was low with a maximum density of 61 

mW/m2, the coulombic efficiency (CE) of 53% for CMK-8 was impressive. Losses 

of coulombic can arise from secondary reactions. The high CE offers hope of 

future applications in waste water treatment given that the catalytic activity can 

be improved upon.  

7.1 Future Work 

No doubt much still needs to be done if these catalysts must be developed to the 

point where they can be commercialised. Hence for future work the following are 

recommended, 

I. Testing the catalysts in complete alkaline fuel cells.  

II. Durability is critical to the commercialization of catalysts. Hence tests 

need to be conducted on how to improve the stability of the best catalysts 

obtained. Mild heat treatment readily comes to mind for this, other 

options would also be explored. 
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III. Investigation of the surface chemistry of the supports and how they 

interact with the manganese oxide precursors to yield the final oxide. 

Techniques like X-ray photoelectron spectroscopy and Fourier transform 

infra-red (FTIR) would be employed. This would lead to a directional 

design of specific manganese oxide catalysts.  

IV. There still exists some gap between the best catalyst in this work and 

platinum. Thus there is the need to investigate what can be done to shrink 

this gap. Possible options would be combining the OMC support with more 

conductive ones and investigating the possibility of depositing other forms 

of manganese oxide. 

V. The cost analysis should be done both on a cost of reactant basis as well as 

on an overall process cost basis. This may help to discover intrinsic costs 

attached to each catalyst. 

VI. At present, most researchers report that they have synthesized 

exceptional catalysts without a common benchmark with which it can be 

assessed independently. Also, it is difficult to compare the work done by 

different researchers, because of cogent differences in their approach. Yet 

this is necessary in order to clearly identify the existing boundaries and 

what still needs to be done. There is therefore an urgent need for 

uniformity of standards of testing that will make factual progress obvious 

to all players in the field and not only to the researcher in question. 

Without widely available and affordable oxygen reduction catalysts, market 

ready fuel cells may continue to be elusive; the promises the fuel cells hold for 

widespread and efficient use of environment friendly fuels like hydrogen may 

also not materialize and lastly the dream of saving our world from the 

environmental threat of fossil fuels.  This work has brought us yet another step 

closer to the actualization of these dreams. ORR catalysts have been developed 

that have an activity much better than most already known and close to that of 

platinum in an alkaline system. This was achieved using highly ordered 

mesoporous carbon and manganese oxides that were synthesized from cheap and 

very widely available materials. Many complex procedures have been used 

previously in pursuant of this same goal but with lesser results. In contrast with 
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these, simple scalable processes which do not require high-end technology have 

been employed. This gives opportunity for widespread reproduction, even in 

countries with not too advanced technology. Hence, the days of expensive and 

scarcely available platinum as the only option for oxygen reduction in fuel cells 

are numbered.  
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