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Abstract 

ABB, who is the sponsoring company for this research work, is a global leader in power and 

automation technologies based in St. Neots, Cambridgeshire. The thesis discusses the work 

carried out on a portfolio of projects as a part of the Engineering Doctorate programme. 

Application of multivariate statistical process control was central to the successful 

implementation of the projects.  

The first project focussed on a Process Analytical Technology (PAT) software solution 

developed by ABB. The US Food and Drug Administration (FDA) have defined PAT as a 

process for designing, analysing and controlling manufacturing through timely measurements 

of Critical Quality Attributes (CQAs) of raw and in-process materials in order to achieve final 

product quality. The project’s overall objective was to enable seamless roll out and 

maintenance of chemometric models for at-line testing across multiple worldwide locations. 

The work presented in the thesis discusses a solution that allows global maintenance of at-line 

analyser measurement stations whilst providing ‘real time’ quality data at the right business 

level to enable more efficient business decisions. This required optimising the software during 

the preliminary stages which included developing hierarchical Partial Least Square (PLS) 

Models, maintaining a process within control and exporting data using the Model Data 

Exporter plug-in. Likewise the project involved development of a combination of test sets that 

could assess and improve the robustness of the product. Following the Factory Acceptance 

Test (FAT) and Site Acceptance Test the product was successfully commissioned at customer 

site. 

The second project investigated a recurring uncharacteristic event in the polymerisation 

process. This unusual phenomenon led to downgrading of the batch further causing a loss of 

revenue. Previous investigations indicated that the most likely reason for this unusual 

behaviour was due to the occurrence of crystallisation in the polymerisation reactor. These 

batches were identified by monitoring a ‘kink’ in the heat up profile during the polymerisation 

process. The root cause of this crystallisation was initially examined by monitoring the rate of 

reaction and analysing the behaviour of one variable at a time. However, these approaches 

were unsuccessful to identify the underlying issue with the crystallised batches. This body of 

work illustrates a series of steps developed using multivariate analysis techniques to identify 

unusual batches in the polymer reactor. Exploratory data analysis using Principal Component 

Analysis (PCA) and Multi-way Principal Component Analysis (MPCA) was performed on the 

historic batch data (quality, process and Overall Equipment Effectiveness (OEE)) to identify 
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the root cause of the problem and develop a well defined method that can be used by the 

operators to identify abnormal batches. 
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1  Introduction 

1.1 Motivation and Objectives 

Background 

The work reported in the thesis discusses two projects with novel application of Multivariate 

Statistical Process Control (MSPC) methods. For the first project MSPC method has been 

utilised for the implementation of Process Analytical Technology (PAT) within industry.  

This concept of PAT is in line with the FDA’s Quality by Design (QbD) approach which aims 

to move pharmaceutical manufacturing processes from a rigid regulatory approach to a more 

flexible science and risk based approach. The Analyser Device Integration (ADI) software 

solution addresses the data management challenges associated with the industrial 

implementation of PAT. ADI software allows integration of quality management systems 

such as System Applications and Products (SAP) software with process control system and 

third party chemometric softwares. This thesis mainly focused on three aspects of the ADI 

product: 1) the integration of existing hierarchical Partial Least Squares (PLS) models within 

the novel software solution, 2) developing a method or a recipe to take successful at-line 

measurements and ensuring method compatibility across various measurement stations and 3) 

optimising the Model Data Exporter (MDE) tool to introduce selection methods or filters in 

order to access the right information at the right time for process improvement activities. 

For the second project Principal Component Analysis (PCA), an MSPC technique was used to 

identify the source of an unusual crystallisation problem in polymer reactors. While the 

primary aim of this project was to identify the root cause of crystallisation in the reactors, the 

work carried out in the thesis also attempts to identify correlation between a quality variable 

and a crystallised batch. One of early works in monitoring batch polymerisation process using 

MSPC was introduced by Nomikos and MacGregor (1994). Following this a number of other 

publications such Kourti and MacGregor (1995), Nomikos and MacGregor (1995) Martin et 

al. (1996), Dong and McAvoy (1996) and Wold et al. (2009) have also discussed novel MSPC 

methods to monitor batch processes. Most of this work discussed in literature has been around 

the application of MSPC methods to monitor and control the polymerisation process. 

However, to the best of author’s knowledge application of MSPC to identify this unusual 

crystallisation problem in a polymerisation process is novel and has not been reported in 

literature. 
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Project 1 – Business Productivity Improvement through the Application of Analyser 

Device Integration 

The ADI software aims to implement the concept of PAT introduced by the US FDA by 

finding a solution to data managing and data integration issues. Increasing number of 

pharmaceutical, biotechnology and food & beverages companies have adopted PAT for better 

understanding of QbD approach and real time release. Typically in batch processes the 

product quality is measured at the end of the process thus any deviation in the final quality of 

the product cannot be rectified and a batch has to be discarded. PAT encouraged the 

utilisation of analytical devices such as NIR probes that could monitor the quality of the 

product during the process operation. Thus PAT encouraged to move away from the typical 

Quality by Testing (QbT) approach to QbD approach. PAT aimed to revolutionise these 

industries by increasing the manufacturing efficiency, reducing cost and product rejects, and 

providing opportunities for continuous improvement.  

Most of the work reported in literature has focussed on developing analytical methods to 

monitor product quality using advanced spectroscopic techniques. For example Chavez et al. 

(2015) have explored the application of NIR methods to quantify the API content in non-

coated tablets and Schaefer et al. (2013) have utilised NIR spectroscopy to control API 

crystallisation in manufacturing synthesis process. Also Cárdenas et al. (2015) have 

developed an innovative tool to prepare calibration sets based on process spectrum and 

establishment of model space by Hotelling’s T
2
 and Q-residual statistics.  

The successful implementation of PAT requires tackling the data management issues that 

arise from large sets of data generated from the analytical instruments, handling the models, 

process parameters and the associated meta-data. The next step for PAT is to integrate these 

data sets in a synchronised manner to the business systems such as SAP software to enable 

traceability and continuous improvement of processes. The work covered in this thesis gives a 

brief overview of the unique solution that addresses the data handling issues with emphasis 

placed on deploying method, model development and data export tool within ABB’s 800xA 

control environment to successfully implement PAT solution at the customer site. 
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Project 2 – Using Multivariate Analysis to Monitor Crystallisation Issue in 

Polymerisation Reactors 

The second part of the thesis looks at a unique problem encountered by the customer 

manufacturing speciality polymers. The manufacturing process for polymerisation reaction is 

controlled by monitoring the contents temperature in the reactor using a cascade control loop. 

An unusual ‘kink’ in the contents temperature profile is considered as an indication of a 

crystallised batch. The customer has tried mitigating this problem by studying the chemistry 

and monitoring the rate of reaction in the process and also by univariately investigating 

variation in process and quality variables. The work done in this thesis aims to identify the 

crystallisation problem using multivariate statistical methods. Most of the work reported in 

literature revolves around the application of multivariate statistical process control to control a 

polymerisation reactor. However, this thesis reports the novel application of MSPC methods 

used to investigate an unusual crystallisation problem that is particular to this manufacturing 

process.  

1.2 Thesis Contribution 

For the first project the following contributions have been reported in the thesis: 

Method configuration and deployment for successful implementation of ADI  

The author was responsible for the configuration of a ‘Method’ which includes analyser 

settings, prediction and background models as well as other inputs such as constants, 

variables and process values. A number of tests were devised by the author for the purpose of 

this project to successfully implement the ADI solution. With multiple measurement stations 

used all over the world a method was required to be compatible in order to acquire 

measurements across multiple analysers. The author was involved in the development of a 

novel solution to allow method flexibility across various locations while also addressing 

background validity issues associated with it. 

Model deployment and generation of respective model and process alarms 

A number of existing hierarchical prediction and background models were successfully 

integrated with the ADI product. This required the author to be in a unique position to 

understand chemometric model development as well as the working functionality of the ADI 

software. While developing unique test scenarios to ensure efficient performance of the 

models, the author was also involved in generating various process and model alarms. This 

was carried out by setting the limits within the model such that they would generate the 
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respective alarms with the simulated spectral data. The simulated spectra were set up to 

resemble the actual spectral data that would be collected during measurement of at-line 

samples on the plant.  

The work also focussed on optimising the software so that it would appropriately handle Not 

a Number (NaN) within the system. The contribution was crucial for understanding of the 

ADI system and chemometrics for successful model deployment.  

Two key contributions during the model development and implementation phase have been 

summarised below: 

1) Savitzky-Golay pre-treatment was applied on the data set as a pre-processing method 

to smooth the data. Savitzky-Golay smoothing and differentiation filter is used to 

increase the signal-to-noise ratio. The filter optimally fits a set of data points to a 

polynomial to minimise the least squares error.  Once the pre-treatment was applied on 

the measured data the number of columns in the raw spectral data was reduced and 

less number of columns were available to project the PLS model. Since the number of 

columns in a ‘Method’ was hardcoded into the 800xA control environment the author 

suggested enabling more flexibility within the system. The modified solution would 

take into consideration the pre-treatment of the spectra with reduced number of 

spectral columns following the application of Savitzky-Golay filter. 

2) Large size of PLS models were being imported into the system in order to take at-line 

measurements. However the system was unable to handle the large amounts of data 

within the model which resulted in the system to crash every time a model was 

imported within the 800xA environment. The author’s contribution to this problem 

included identifying the reason for the system crash and requesting a solution to 

reduce the size of the model without affecting its predictive capabilities. 

Optimising the data export tool 

The Model Data Exporter (MDE) was the most important tool for the customer to access their 

historical data in order to improve their processes. The thesis discusses the development of 

various selection methods that enabled the chemometricians to access the right data for 

process improvement through data mining. The work reported in the thesis also looks at the 

various tests scenarios that were developed in order to enhance the functionality of the data 

export tool. 
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For the second project the following contributions have been reported in the thesis: 

Identifying a possible co-relation between crystallised batches and quality variables  

1) Identify a co-relation between crystallised batches and quality variables using 

exploratory data analysis.  

a. PCA was used to establish a possible co-relation between contamcount 

variable and/or initial raw material charge of Diphenyl Sulphone (DPS) with 

the crystallised batch. Contamcount is currently used to measure the amount of 

black residue that scours of the sides of the vessel and it is believed that high 

amount of black residue could result in a crystallised batch. Insufficient 

amount of DPS is also believed to be a reason for unusual behaviour of a bad 

batch. Both these variables in addition to the remaining quality variables were 

analysed to determine a possible relationship. 

2) Identify co-relation between crystallised batches and particle size of raw material. 

a. Smaller particle size of the raw material could increase the rate of reaction in 

the polymerisation process. This in turn could result in sudden increase in 

temperature that is associated with the occurrence of crystallisation. The work 

reported in the thesis analyses the particles size distribution of the raw material 

and attempts to identify a co-relation with the crystallised batches using PCA.  

Examining the correlation between crystallised batches and process variables and 

further investigating the root cause of crystallisation 

The work carried out in this thesis investigates a deviation in the process data that is particular 

to a crystallised batch. With process data being three dimensional in nature (Batches x 

Variables x Time) the data was unfolded into two dimensions using two different approaches. 

In the first approach that data was unfolded using the Nomikos and Macgregor (N&M) 

approach (Nomikos and Macgregor, 1994) or batch-wise unfolding approach to allow batch to 

batch comparison and in the second approach the data was unfolded using the Wold’s 

Approach or variable-wise approach to monitor the trajectory as a batch progresses. In 

addition to contents temperature profile the study also establishes co-relation between sudden 

increase in KwRise after hold point 1 and/or out of control level after hold point 1 with 

occurrence of crystallisation after hold point 2. 
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Developing a method to fingerprint a typical crystallised batch 

This thesis examines the work carried out for the development of a new method to identify 

crystallised batches using exploratory data analysis on the process data. The current 

fingerprinting method has been developed for one of the six reactors. This novel method 

would remove operator dependability on identifying the ‘kink’ in the temperature profile. The 

well defined technique would identify the crystallised batches analysing the process data and 

monitoring the statistics. 

1.3 Publications and Conferences 

Journal Publication 

Raut, V., E, Hobbs D.,C. “Analyser Device Integration – the power of Analytical Data”, 

Planned submission to Journal of Process Control in August 2016 

Conference Talks 

Hobbs, D., C, Raut, V., E. “Analyser Device Integration – the power of Analytical Data” 

ACHEMA 2015, June 15- 19 in Frankfurt 

Raut, V., E, Hobbs, D., C. “Business Productivity Improvement through the application of 

Analyser Device Integration”, EuroPACT 2014 conference, May 6-9, 2014 Barcelona 

Conference Posters 

Raut, V., E, Martin, B., E, Hobbs, D., C. “Application of Multivariate Analysis to identify the 

crystallisation issue in polymerisation reactors”, BIOPRO Worlds Talent Campus, 2014, 

Denmark 

Raut, V., E, Hobbs, D., C. “Business Productivity Improvement through the application of 

Analyser Device Integration”, EuroPACT 2014 conference, May 6-9, 2014 Barcelona 

Raut, V., E, Hobbs, D., C. “Business Productivity Improvement through the application of 

Analyser Device Integration”, ChemEngDayUK, 7-8 April 2014, The University of 

Manchester 
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1.4 Layout of the Thesis 

Chapter 2 outlines the introduction to multivariate statistical methods that are applicable for 

both the projects studied in this thesis. 

Chapter 3 explores the concept of PAT and application of PAT tools within ABB’s ADI 

product 

Chapter 4 discusses in depth the working of Analyser Device Integration product and the 

contribution of the author in the successful implementation of the novel product. 

Chapter 5 discusses the background knowledge of the crystallisation problem in the 

polymerisation reactors particular to the customer. 

Chapter 6 looks at the exploratory data analysis performed on the various sets of  data 

provided to identify the root cause of crystallisation. 

Chapter 7 concludes the thesis and discusses the suggested future works with respect to both 

the projects. 
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2 Chapter 2 - Introduction to Multivariate Statistical Methods  

2.1 Chapter Overview 

This chapter discusses the literature review that would be applicable for both the projects that 

are a part of this thesis. 

Section 2.2 gives an overview of Multivariate Statistical Process Control (MSPC) techniques 

and growing application of these techniques within the industry. 

Section 2.3 describes in detail the Principal Component Analysis (PCA) method and Section 

2.4 explains the Partial Least Squares (PLS) method. 

Section 2.5 discusses the various pre-treatment methods applied prior to developing 

multivariate models. 

Section 2.6 describes the various observation diagnostic tools that are used for analysing 

multivariate data. 

Section 2.7 explains multi-way techniques used to unfold three dimensional data into two 

dimensions to further carry out MSPC. 
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2.2 Introduction of Multivariate Statistical Process Control 

Statistical Process Control (SPC) is traditionally a univariate method used to predict the 

product quality by monitoring variables one at a time. However since most industrial 

processes are multivariate in nature they have more than one variable affecting the process 

behaviour at a given time. Moreover it is the interaction and correlation between these 

variables that causes deviation in a process. Thus looking at only one variable at a time by 

performing univariate analysis could misrepresent the underlying real behaviour of the 

process. 

In order to tackle these limitations SPC further evolved into Multivariate Statistical Process 

Control (MSPC). In the recent years with the advance in computers almost every process 

variable on a manufacturing plant is measured and historised. The acquired data could be 

extremely valuable if used to optimise processes, improve safety and reduce environmental 

risks. This concept and method has been popular with the manufacturing industry to maintain 

a process within a state of SPC. A system is said to be in state of SPC if certain process 

variables remain close to their expected values and with ‘common cause variation’ being the 

only source of variation present in the process (Kourti and MacGregor, 1995). Unlike 

automatic feedback process control where unusual or new event is addressed by simply 

continuing the process by compensating for the deviation, SPC aims to identify the cause for 

process variation and implement long term improvements. Traditional SPC utilises historical 

data to monitor batch processes. However most of these methods tend to utilise SPC charts 

such as the Shewart (X (bar) and Range Charts), Cumulative Sum (CUSUM) and 

Exponentially Weighted Moving Average (EWMA) to monitor and control process variables. 

These charts were deemed to be inadequate for most modern processes where large amount of 

data is being collected with variables highly correlated with each other. 

MPSC techniques, such as PCA and PLS as well as their associated control charts were 

developed to overcome these issues by using reduced number of latent variables than the 

apparent dimension of the process represented by the number of measured variables. These 

techniques take into account the inter-relationship between variables. Both PCA and PLS are 

suitable for analysing large sets of correlated data. PCA mainly explains the variation in the X 

data matrix while PLS analyses both X data matrix and Y data matrix (Martin et al., 1996). 

Batch and semi-batch processes constitute a large number of chemical and pharmaceutical 

industries manufacturing speciality chemicals and high value added products. With rise in 

competition these companies are under increasing pressure to get the production right at the 
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first time. This was evident in the projects further discussed in this thesis with the primary 

purpose of both these projects being continuous improvement and optimisation of industrial 

processes. The first project focused on the application of PAT in food and chemical industry 

while the second project attempts to address the crystallisation issue in polymerisation reactor 

using MSPC.  

Traditionally the quality of the product in a batch process is verified once it has reached the 

end of manufacturing process. Process steps are successfully operated in a repeatable manner 

and validated after three consecutive successful batches (Boudreau and McMillan, 2007). 

Most of the pharmaceutical industries keep to this conventional recipe driven approach 

followed by offline lab based analysis of the products to ensure it is within the required 

specification. For a long time the US FDA believed that quality cannot be tested into products 

but has to be built into the process. Recently there have been significant advances to improve 

pharmaceutical development and manufacturing and enhance the product quality through 

advanced process control and process development. However rigid manufacturing procedures 

and requirement for a number of regulatory approvals for the introduction of a process change 

hindered the application of these innovative approaches. In 2004 realising this need to 

encourage innovation the US FDA introduced the PAT initiative which states that “Process 

Analytical Technology (PAT) is a system for designing, analyzing and controlling 

manufacturing through timely measurements (i.e. during processing) of critical quality and 

performance attributes of raw and in-process materials and processes with a goal of ensuring 

final product quality”(FDA, 2004). One of the most important tools used in PAT has been the 

application of multivariate techniques which have been further discussed in this chapter.   

2.3 Principal Component Analysis 

2.3.1 Introduction 

Given a data matrix X, consisting of n rows (observations/samples/batches) and p columns 

(variables) PCA provides an approximation of the data table in terms of k new variables or 

principal components. These k new variables will account for variation in the p original 

variables. PCA is one of the oldest multivariate techniques first introduced by Karl Pearson in 

1901. He formulated the analysis as finding “lines and planes of closest fit to systems of 

points in space” (Pearson, 1901). It was then transformed to its current form by Hotelling in 

1933. The advent in powerful computers gave this technique a much needed boost so it could 

be applied in diverse fields such as chemistry, engineering, geology and sociology.  
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As mentioned earlier PCA generates new set of data consisting of principal components 

which are linear transformation of the original variables that are mutually orthogonal to each 

other. PCA decomposes the data set into certain number of Principal Components (PCs) and 

each PC is described by a scores vector (tr) and loadings vector (Pr). The score is the distance 

from the origin of the plane along each PC and is calculated as the product of the loading 

vector and observation. The first PC explains the greatest amount of variation in dataset while 

the second PC explains the next greatest variation and so on. Highly correlated variables 

usually require lower number of principal components to explain the total variance in the data 

(Nomikos and MacGregor, 1994). For example a highly correlated spectral data set analysed 

using PCA would typically require 2 or 3 PCs to explain most of the variation in the captured 

data as compared to another set of process data which could need up to 6 PCs to explain the 

maximum variation in the data set. In theory as many  principal components as original 

variables can be calculated however in practice one rarely needs to compute all the PCs since 

the major source of variability in the data set can be captured by a  small number of principal 

components. Quite often the lower PCs explain subtle process variation otherwise not 

observed in the higher PCs. The number of PCs required and selected to explain the sufficient 

amount of variation in the data set is described further in Section 2.3.1.2. For PCA the linear 

combination of the dataset X can be written as shown in Equation 2-1 where X denotes the 

matrix of PCs whose columns are the scores vector (Tr) and loadings vector (Pr). 

       
  

       Equation 2-1 

 

where R is the total number of PCs retained in the model which is less than or equal to the 

number of variables (or observations if the number of observations is less than the number of 

variables) in the original data and E contains the residual matrix. If all the PCs are retained in 

the model the residual matrix would be equal to zero. The orientation of every 

sample/observation is explained by loadings vector Pr which defines the greatest variability 

while the score vector Tr represents the projection of each object on loading vector. 

The calculations of the various components of the PCA model such as scores, loadings and 

residuals have been explained in Section 2.3.1.1. 
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2.3.1.1 Geometrical and Algebraic Interpretation of PCA 

For a data matrix X, with n observations and k variables there can be as many dimensions as 

there are variables. Each co-ordinate axis would represent each variable. As seen in Figure 

2-1 the three axes (X1, X2 and X3) represent three variables. The data would usually be 

standardised by scaling it to mean zero unit variance. The first principal component is the line 

in the K-dimensional space that captures the main source of variation in the data in the least 

squares sense. The original variable observations are then projected onto this line to represent 

the new co-ordinate PC1. The second PC is also represented by a line in K dimensional space 

however it is orthogonal to the first PC and explains next greatest amount of variation in the 

data matrix. The co-ordinate value of each observation on the principal component space is 

called as a score. By plotting this projected configuration one is able to identify the 

relationship between observations on a lower dimensional space. Loading vector defines the 

orientation of the model plane hence direction of the PCs in the K variable space. In summary 

the location of each observation is explained by a score while the positioning of the principal 

components is defined by the loadings.  

 

 

 

 

 

 

 

 

 

 

A number of methods can be found in literature to derive principal components. However the 

most common methods used in practice are the Non-Iterative Partial Least Square (NIPALS) 

an iterative algorithm and the Singular Value Decomposition (SVD), a non-iterative 

algorithm. The NIPALS algorithm is normally applied to data with missing values. The 

X1 

X2 

X3 

PC1 

PC2 

Figure 2-1:  Geometrical Interpretation of PCA 
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NIPALS tends to be faster than SVD if the number of rows and columns are large 

(Unscrambler, 2014).   

Since data used in both the projects discussed in thesis consisted of large data matrices the 

NIPALS algorithm was utilised to develop the multivariate models. 

Principal components can be used to provide approximation of data matrix X using Equation 

2-1. Once a raw data set has been acquired it is then normalised by mean centring or auto-

scaling. The normalised data set is then used to derive the covariance matrix as shown in 

Equation 2-2. 

       
     

      

   
  

       

   
       

  

Equation 2-2 

 

where cij denotes the covariance between the i
th

 and j
th

 variable. 

The eigenvectors i.e. the loading vectors are calculated from the covariance matrix and the 

corresponding eigenvalues denote the variance of the principal components (MacGregor and 

Kourti, 1995).  

Once the loading vectors have been estimated they can now be used for calculating the score 

vectors as seen in Equation 2-3. 

      
Equation 2-3 

 

Thus using the estimated scores vector the predicted data matrix    is calculated by     . 

The residual matrix E  is the difference between   and    as seen in Equation 2-4. 

        Equation 2-4 

 

The data matrix   can also be written in terms of its vector components as show in                    

Equation 2-5. 

      
      

       
                       Equation 2-5 

 

 

 
 



14 

 

2.3.1.2 Selecting the number of principal components 

Once the total number of principal component’s (R) are calculated it is important to determine 

the maximum number of principal components (r) to be retained in the model that could 

capture the major source of variation in the data. Including more number of PCs in the model 

than required could affect the sensitivity of the model since the lower order principal 

components with eigenvalues less than 1 may be representing the noise in the process. One of 

the methods to determine the number of principal components to be retained is to consider the 

cumulative percentage of variance explained by studying the eigenvalues or plotting the 

values against the principal component number. On mapping the eigenvalues any sudden drop 

in the plot indicates the number of principal components needed to explain the major source 

of variation in the data set.  

Cross validation is another technique for determination of principal components described by 

Wold (1978). In this method each row from the data set is omitted once and PCA model is 

developed using the remaining data set. A predictive model for the omitted row is then 

developed using the calculated PCA model. Predictive Error Sum of Squares (PRESS) is then 

calculated for the omitted row and number of principal components to be retained is 

determined as that which gives the minimum residual error. Often when the number of 

samples is large they are split in groups. Each group is excluded when the PCA model is built. 

The PRESS is calculated for each excluded group and then are summed up to give the total 

PRESS.  

2.4 Partial Least Squares 

2.4.1 Overview 

Partial Least Squares also known as Projection to Latent Structures (PLS) is a regression 

technique which can be applied when variables can be divided into cause/measured variables 

X and effect/quality variables Y. It can be used to model one effect variable or multiple effect 

variables at the same time. PLS method maximises the covariance between X and Y. Unlike 

PCA, PLS model uses both X and Y matrices to find the latent variables in X in order to 

predict the latent variables in Y. It is often used as an alternative technique to Multiple Linear 

Regression (MLR) since it is able to produce more robust models on addition of calibration 

samples from new population. The PLS model also tends to be more accurate than other 

algorithms when there is high correlation between cause variables (Geladi and Kowalski, 

1986). The fundamental regression equation used for all the regression modelling approaches 

such as MLR, Principal Component Regression (PCR) and PLS is given by Equation 2-6. 
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       Equation 2-6 

 

where   is the quality or predicted variable,   is the measured or predictor variable and   is 

the regression co-efficient. 

Thus by creating a new set of latent variables PLS models show the correlation between 

measured variables ( ) and quality variables ( ) where each latent variable is linear 

combination of  . The Non-linear Iterative Partial Least Squares (NIPALS) is the most 

commonly used algorithm to model PLS. The NIPALS algorithm can handle any missing 

values and is more suited to calculate a few latent variables.  

2.4.2 Geometrical and Algebraic Interpretation of Partial Least Squares 

As seen in Figure 2-2, J is the number of process variables in data set X and K is the number 

of variables in effect data set Y. The number of samples/observations for both the X and Y data 

set is given by I.  

  

 

 

 

 

 

 

 

Each variable has one co-ordinate axis with its length defined by scaling it to mean zero unit 

variance. Once the data sets have been auto-scaled the first latent variable is calculated such 

that this factor is a line in the X space which provides a good correlation with the y vector. 

The score for the observations are obtained similar to PCA where the samples are projected 

on this line to obtain score t1. The score vector t1 can now be used to calculate the y estimate y1 

by multiplying ti with weight of vector y.  

The second principal component is calculated by projecting a line in the k-dimensional space 

orthogonal to the first PC. The second PC usually explains less percentage of data variation in 
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the data set as compared to the first PC. However if second PC indicates more correlation than 

first PC then according to Eriksson et al. (2006) this would indicate a strong structure in X 

which is not visible in the effect variable Y. 

In terms of the mathematical representation for given independent data set X (with I samples 

and J process variables, Xj) and effect variable or dependent variable Y (with I samples and k 

cause variable Yk ) the factor of the cause data th (length I) and effect data uh (length K) can be 

calculated using Equation 2-7 and Equation 2-8. Both these equations define outer 

relationship between data sets. E and F are the residual matrices for the X and Y data sets. An 

ideal model would be the one with zero residuals. Thus smaller residual is an indication of a 

good predictive model.  

       
 

   

   
 

Equation 2-7 

 

       
 

   

   

 

Equation 2-8 

 

An inner relationship can be produced by performing linear regression between the th and the 

uh vectors as shown in Equation 2-9. 

           Equation 2-9 

 

The NIPALS algorithm is the most commonly used algorithm to estimate the PLS model. As 

seen before the PLS model is given by the Equation 2-6. However unlike PCA        but 

is calculated using the NIPALS algorithm as discussed below that was introduced by Wold et 

al. (1984).  

1) Centre and scale X and Y data 

2) Start with calculating vector u that is normally one of the columns of Y.  

3) The x weights given by w:            

4) Normalise w to unit length:   
 

   
     

5) Calculate X-scores, t:      

6) Calculate the y weights denoted by u:           

7) Normalise c to unit length:   
 

   
     

8) Calculate the updated set of u vector:          
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9) Check if the output vector u has converged. This is tested in t i.e. if 
           

      
   

where   is small e.g. 10
-6

 or 10
-8

. If converged then go to next step otherwise return to 

step 2. Incase of only one y-variable the algorithm converges in a single iteration 

(Wold et al., 2001). 

10)  Calculate the X loadings:           

11)  Calculate Xnew = X – tp’
 

12)  Calculate Ynew = Y – t’c 

Calculate the next component until the maximum number of variables have been calculated. 

The cross validation method explained in Section 2.3.1.2 can be used to indicate maximum 

number of principal components that would be required to explain maximum information 

about X in Y. 

2.5 Pre-treatment 

Data has to be pre-treated depending on what type of data is available and what method will 

be used to analyse the data set. Pre-treatment, although a minor part of data analysis it is an 

extremely crucial step that determines if a model is useful or not. Data can be pre-processed in 

a number of ways such as 1) outlier removal if a particular measurement is outside its limits 

due to human or measurement error, 2) transformation which is applied to normalise and 

linearise the data or 3) filtering the data which is normally applied to smooth the data by 

removing the noise (Candolfi et al., 1999). Outlier removal in combination with filtering the 

data using the Savitzky-Golay method was used in the ADI project discussed in Chapter 3 and 

Chapter 4.  

With the advancement in analysers a number of different types of data such as process data, 

spectroscopic data and quality measurements can be collected with variables having different 

numerical ranges. Sections 2.5.1 and 2.5.2 mainly look into the basic pre-processing steps 

often applied to process data in order to transform it to a suitable form to carry out the 

analysis. Advanced pre-processing techniques required by the spectroscopic data have been 

discussed in detail in Section 2.5.3. 

Variable with a large numerical range is expected to have more variance as compared to a 

variable having a smaller range. Taking this point into consideration it can be noted that pre-

treatment is an extremely important step for PCA which is maximum variance projection 

method. Inappropriate data pre-processing would mean a variable with smaller variance 

would not be as expressed in the analysis as a variable with a larger variance.  
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2.5.1 Mean centering  

Mean centering is one of the commonly used pre-processing techniques where the average 

value of each observation is calculated and then subtracted from each data observation. The 

goal of this method is to shift the variable trajectories to a common baseline. In other words 

Miller (2005) explains that this operation enhances the focus on response variation by 

eliminating the absolute intensity information from each of the variables. The author also 

indicates that not all data matrices would require mean centering and sometimes there can be 

unknown information hidden in the mean that could be critically relevant to develop a reliable 

model. 

The general equation used to calculate mean centered data is given by  

         Equation 2-10 

 

Where X = original data  

    = mean centered data 

   = mean response values 

2.5.2 Auto-scaling 

Scaling is normally the next step used in standard pre-processing method once the data has 

been mean centered. Auto-scaling procedure is mainly mean centering data followed by 

dividing by the standard deviation as shown in Equation 2-11 

                Equation 2-11 

 

    = standard deviation for individual variables 

    = auto scaled data 

This pre-processing method ensures that each variable has equal footing in the analysis and 

that each variable would exhibit similar level of variability. Auto-scaling is very much 

essential when unit of measurement is different for each variable or when different types of 

instruments have been used to capture data. If auto-scaling in not applied in these scenarios 

and data is analysed using variance maximisation techniques such as PCA then there is 

possibility of developing an inconsistent model. Sometimes no scaling is needed at all for 

example in the FTIR spectra where all the variables are expressed in the same unit and it 

might be important to retain the variance information to yield relative sensitivities of different 

wave numbers. 
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2.5.3 Advanced Pre-processing 

Advanced pre-processing techniques are commonly applied on data collected from 

spectroscopic analysers such as NIR and Raman. Recent advancement in analytical chemistry 

has resulted in increasing amount of complex data. This raw complex data that is generated by 

the analysers needs to be transformed into ‘clean’ data by removing unwanted variation 

present in the data set and improving the linear relationship between spectra and analyte 

concentration (Engel et al., 2013). A number of experimental and instrumental phenomena 

such as scatter from particulates, molecular interactions, missing values, changes in sample 

size/path length etc., can cause deviation from the linear relationship established in Beer 

Lambert’s law which states that absorbance is directly proportional to the concentration. A 

number of pre-processing methods that have been developed recently are broadly classified 

into two groups: scatter correction methods and derivative methods. The scatter correction 

methods include Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV), 

Normalisation and Baseline Correction while derivative methods include Savitsky-Golay and 

Norris-Williams techniques (Rinnan et al., 2009b). Selecting an incorrect pre-processing 

method can have a detrimental effect on the final results of the data analysis. Engel et al. 

(2013) has reported three types of pre-processing selection methods namely, trial and error 

where a number pre-processing techniques are applied and the one with the best outcome is 

chosen, visual inspection and assessing the pre-processed data by quantifying the effect of 

quality parameters on the final outcome.  

MSC and SNV methods have been used to counter the light scattering effects introduced by 

the presence of particles in the samples. Both the methods have similar equations and produce 

comparable outputs for the pre-treated spectra. 

 MSC was introduced by Martens et al. (1983) who developed this method to eliminate 

optical interference. MSC pre-treatment is a two-step process described in the following 

equations: 

                       Equation 2-12 

 

       
       

      
 

Equation 2-13 

 

Equation 2-12 is used to estimate the correction co-efficient and the corrected spectra are 

calculated using Equation 2-13. In the equations  s’ are the correction co-efficient,   is the 

unmodeled part, and xorg, xref and xcorr are the original, reference and the corrected spectra 
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respectively. The MSC technique was further expanded by Martens and Stark (1991) into 

extended MSC that included wavelength correction. 

The basic equation of SNV correction introduced by Barnes et al. (1989) and normalisation 

has the same form as Equation 2-12. The difference between MSC and SNV corrections is 

that a reference spectrum is not required in SNV correction. 

      
       

  
 

Equation 2-14 

 

For normalisation    is always zero while    depends on the type of normalisation that has 

been used. 

Savitsky-Golay and Norris-Williams are the most commonly used derivative methods for pre-

processing. Both the methods smooth the data so that signal to noise ratio is not reduced 

extensively in the corrected spectra (Rinnan et al., 2009a). Application of derivative pre-

processing has the ability to remove the additive as well as the multiplicative effects in the 

spectra. Savitzky and Golay (1964) first suggested this method that smoothed the value for 

each data point by performing a polynomial regression. On comparing the Savitsky-Golay 

method with Norris-Williams, Rinnan et al. (2009a) suggests that the NW is a two-step 

process with derivations similar to finite difference method. These derivative methods do not 

generate similar results but aim to maintain acceptable signal-to-noise ratio. 

In the first project further discussed in Chapters 3 and 4 the customer extensively used second 

order Savitsky-Golay pre-processing technique before developing the PLS models.  
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2.6 Observation Diagnostics  

Chemometric tools such as PCA and PLS discussed in Section 2.3 and Section 2.4 can be 

used to extract information by converting a data matrix to a few plots. These tools identify 

unusual samples in a population by discovering them as outliers. Depending on the how 

extreme these outliers are they can be categorised as serious outliers or moderate outliers. 

Outliers can be identified in most of the process performance representation such as scores, 

loadings, residuals etc. that have been discussed in detail in the following sections. 

This section looks into various graphical model parameters that can be used to optimise and 

improve processes. These model parameters enable better understanding of the underlying 

behaviour of variables and establish relationship within samples as well as between samples 

and variables.   

2.6.1 Principal component scores and loadings 

Scores plot are used to interpret the relationship between various observations or samples. It 

is the projection of data on subspace that reflects the sample location along the principal 

component. Thus each sample has a score on every PC. Plots could either be univariate where 

every score is plotted along the sample on the x-axis or a bivariate plot with PC1 and PC2 

defining the co-ordinate axes. Figure 2-3 and Figure 2-4 shows a typical univariate and 

bivariate scores plot for wine production in various countries. This model was generated using 

an example data set in PLS_Toolbox software. A total of 10 samples and 5 variables were 

used for the analysis. The first two principal components capture approximately 78% of 

variation in the data set. In a bivariate scores plot samples close to each other would indicate 

similarity between the observations while the ones which are far away from one another 

would indicate difference between those samples.  
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Figure 2-3:  Univariate scores plot 

 

Figure 2-4: Bivariate scores plot 

The loadings can be used to further investigate which variables determine the positioning of 

these samples in the principal component space. Every variable in the data matrix projects a 

loading on PC which explains the variation contained in the variable. A bivariate loadings 

plot for dominant PCs can detect correlation between X-variables.  In a typical bivariate 
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loadings plot samples which lie in same quadrant would be positively correlated while the 

ones lying in diagonally opposite quadrant would be negatively correlated. For example 

Figure 2-5 shows that Beer and Liquor are negatively correlated to each other while a slight 

positive correlation between Wine and Life Expectancy can be observed. This behaviour must 

however be consistent across all the PCs in order to conclude a particular finding. Also 

variables close to the origin in a bivariate loadings plot have a lesser impact on the model as 

compared to variables that rest further away from the origin.  

 

Figure 2-5:  Bivariate loadings plot 

Loadings and scores are complimentary to each other and have to be interpreted together 

when analysing a data set. A bi-plot which is 2 dimensional scatter plot superimposes scores 

and loadings data on the same graph. This allows for simultaneous interpretation of sample 

behaviour and variable relationship. An example of bi-plot can be seen in Figure 2-6. 
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Figure 2-6: Biplot of scores and loadings 

2.6.2 Residuals 

A Chemometric model is developed using the optimal number of PCs in order to describe 

maximum amount of process variation in the data set. Thus the remaining nature of the 

unmodeled information is explained in the form of Residuals Q-statistic or Squared Prediction 

Error. In other words it is used to determine how well the new samples and variables fit the 

model. The Q statistic is defined as the sum of squares of the residual values at each variable 

in each sample of the data set. Keithley et al. (2009) have mentioned a number of advantages 

of using the Q-statistics for analyses such as monitoring quality control, interferent 

identification and outlier detection. Using the residual statistics one is able to analyse 

goodness of fit of the training dataset used to develop a calibration model. Samples with high 

residuals indicate that the sample may be not extreme however it does not fit the model well. 

This statistic can be used to identify a new behaviour in the process that is not explained in 

the reference data used to develop in control model. Such new observation can be identified 

using SPE as seen in Equation 2-15 for a PCA model and Equation 2-16 and Equation 2-17 

for a PLS model. The SPE for the i
th

 sample from the PCA model is calculated as shown in 

Equation 2-15. 

                
 

 

   

 Equation 2-15 

 

where p is the number of variables,     and      (the i
th

 sample on the j
th

 variable) are the 

elements of X  (Original Data Matrix) and    (Estimated Data Matrix). 

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

PC 1 (46.03%)

P
C

 2
 (

3
2
.1

1
%

)

 France

 Italy

 Switz

 Austra
 Brit

 U.S.A.

 Russia

 Czech

 Japan

 Mexico

 Liquor

 Wine

 Beer

 LifeEx
 HeartD

Biplot of Wine,Variable

 

 

Calibration sample scores

X-Block Loadings



25 

 

For a PLS model however the SPE can be calculated for the dependent variables (SPEy) as 

seen in Equation 2-16 as well as for independent variables (SPEx) as seen in Equation 2-17. 

                      
 

 

   

 Equation 2-16 

 

 

where   is the number of variables in   data matrix,        are actual values and          are 

the model predicted values. 

                      
 

 

   

 
Equation 2-17 

 

where   is the number of variables in   data matrix and         is estimated from reference 

PLS model. 

For a normally distributed data set the control limits for SPE are given as follows (Jackson 

and Mudholkar, 1979): 

     

 

 
        

 

  
 
          

  
  

  

 

 

 
  

 

Equation 2-18 

 

where,  

      
                                      

 

     

 Equation 2-19 

 

and 

     
     

   
  

 

Equation 2-20 

 

Za is the standard normal deviate corresponding to the upper (1-α) percentile, α is the 

confidence interval, λk is the eigenvalue of the residuals, R is the number of principal 

components retained in the model.  

2.6.3 Hotelling’s T
2
  

The Hotelling’s T
2
 test is centered around the concept of Mahalanobis Distance (MD) which 

is based on the measurement of distances between observations. The MD can be calculated in 
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the original variable space as well as in the PC space. In the original variable space the MD 

can be calculated using the equation as follows: 

              
           

 

Equation 2-21 

 

Sx is the covariance matrix. 

The Hotelling’s T
2
 statistics is used to measure if for retained PCs in a model the variation in 

the quality variables is greater than the common cause variation. In the PC space The 

Hotelling’s T
2 

can be calculated for R number of retained PCs using the Equation 2-22. 

 

  
   

  
   

   
 

 

   

 
  
 

   
  Equation 2-22 

 

where Sti
2
 is the estimated variance of ti. 

The Hotelling’s T
2 

once computed using Equation 2-22  is then compared to the Chi-squared 

table with (p-1) degrees of freedom. The Upper Control Limit (UCL) for Hotelling’s T
2
 is 

calculated using the Equation 2-23 (De Maesschalck et al., 2000). 

 

    
   

      

 
 
    

 
 
 
     

 
 
 Equation 2-23 

 

2.6.4 Leverage 

Leverage is another statistic similar to Hotelling’s T
2
 that has a large influence on parameters 

such as response, regression co-efficient and standard error (Davies, 1995).  Equation 2-24 is 

used to compute the leverage calculations which is similar to MD equation. 

   
 

 
 

     
 

   
 Equation 2-24 

 

It can be seen from Equation 2-24 that leverage (hi) is directly proportional to Hotelling’s T
2
 

statistics. A sample with high leverage would be significantly influential on the model and 

could be likely outlier. Such samples need to be further assessed by analysing the raw data 

and if necessary remove from the model. 
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2.6.5 Influence Plot 

This is a plot of Q-residual versus Hotelling’s T
2
 or Leverage and represents two different 

types of outliers. With the residual statistics on the y-axis it describes the distance of the 

sample from the model while Hotelling’s T
2
 or Leverage on the x-axis describes how well 

does the sample fit this model. For example in Figure 2-7 batches with high residuals such as 

B38, B40 and B39 are not very well described by the model while batches lying to the right of 

plot such as B30 and B50 are described well by the model however they are more influential. 

A sample with high residual and high Hotelling’s T
2
 is a dangerous outlier as it is not 

described by the model as well as is influential in the model for example B35 in Figure 2-7. 

 

Figure 2-7: Example Influence Plot 

2.6.6 Contribution plots 

With the advancement and abundance of online sensors in the market there is a wealth of 

historical data available to engineers. Successful application of multivariate statistical 

methods such as PCA and PLS have simplified fault detection by reducing the heavily 

correlated data available from the sensors to a smaller set of uncorrelated variables (Kherkhof 

et al., 2013). Multivariate charts are able to identify process deviation but they are not able to 

detect the cause of process disturbance once it has been detected using the MSPC techniques. 

Thus further analysis into the model to analyse a particular variable or set of variables that 

may be responsible for a process deviation is performed using the contribution plot. 

Contribution plots are different to the loadings since loadings represent the variability across 

the data set being analysed while contributions look at unusual causes in the underlying data 

which may be  particular to process variables that were peculiar for the process behaviour 
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(Martin, 2014). A high contribution for the process variables is indicative of problem with 

those variables.  

The principle component scores can be written as a weighted sum of the process variables 

given by Equation 2-25. 





k

j

jdijid pxt
1

 Equation 2-25 

 

where jdp  is the loading for variable jth
 variable at time instant k. 

Contribution plots of process variables are also measured for D-statistic or Hotelling’s T
2
 and 

the Q-statistic when there is process disturbance. The D-statistic explains the systematic part 

of the process variation while the Q-statistic the residual part of the process variation. In case 

of process deviation one of these statistics will be out of the pre-defined confidence limits 

although the model could still be valid. Contribution of variables to these statistics should be 

investigated to identify the cause of process deviation. 

Out of control Q-statistics would mean an unknown event has been found in the process. The 

contribution of process variable jth
 at time period k to this event is calculated using Equation 

2-26. 

   
             

 
                   

  

 

Equation 2-26 

 

where         and          are the actual and predicted values of j variables. Plotting all the 

contributions for    
    one is able to identify which time in a batch and for which variables 

process deviation occurred (Westerhuis et al., 2000).  

The contribution to D-statistic for each process variable have been summarised by Nomikos 

(1996): 

   
  

      
                    

 

 

   

 Equation 2-27 

 

Equation 2-27 calculates the contribution of every element         to the Hotelling’s T
2
 

statistic which is summed over the retained PCs.    
  is a diagonal matrix,         is the vector 

of new observation,       is the loading vector for j variable and       
  is the score vector for 
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the new observations. A diagonal matrix is a square matrix where all the non-diagonal 

elements are zeros.  

The control limits for contribution plots of D-statistic cannot be calculated using the F 

distribution but have to be obtained using the jack knife method (Westerhuis et al., 2000). 

Since only high contribution force the D-statistics out of confidence bounds only the upper 

control limit needs to be calculated. The UCL for contribution of every process variable is 

calculated as the mean of the contribution plus three times standard deviation of the 

contributions at each time. 

Contribution plots aim to address one of the major weaknesses in the MSPC projection 

method where once an abnormal batch is identified there is no information available for the 

cause of a new event or disturbance once the process is out of control limits. By plotting the 

contributions for the scores or the statistics one is able to diagnose the special event which can 

allow operators to track and control the process variables leading to disturbance in the 

process.  
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2.7 Multiway Techniques – Data Unfolding 

The advent of computers led to vast amounts of process data being collected and stored for 

purpose of process improvement and optimisation. The concept and methods of SPC gave an 

excellent opportunity to use this data to monitor processes such that process performance 

would remain in a state of SPC. SPC charts mentioned in Section 2.6 further allowed 

detection of any event that could cause process disturbance thus enabling long term process 

improvements to the final product quality. However the application of SPC was limited to 

univariate monitoring of process variable. Least squares regression technique such as PLS 

provided the much needed answer to analyse multiple variables at a time. Nomikos and 

MacGregor (1994) attribute the success of PCA in number of different areas due to the 

NIPALS algorithm (Geladi and Kowalski, 1986) which facilitated simple, fast and effective 

way to extract principal components in a sequential manner. PCA has been adopted in a 

number of scientific application such as chemistry, biology, geology, process and quality 

control, image analysis to name a few. In many cases such as image analysis and batch 

processes the data is available in the form of three way arrays. For e.g. in a typical batch 

process the data consists of j variables measured for k interval times which is collected for i 

number of batches.  

The monitoring of batch processes using the classic PCA and PLS is difficult due to three 

dimensional nature of the process data. Data from a batch process consists of I batches 

measuring J variables over K intervals of time. In order to monitor such a three dimensional 

process the data matrix has to be converted to lower dimensional by unfolding the data 

matrix. The three dimensional data matrix can be unfolded in three possible ways: 1) Time 

wise 2) Batch wise and 3) Variable wise unfolding. Time wise unfolding analyses the 

variability among the samples, batch wise unfolding looks at variability in batches and 

variable wise unfolding analyses the variability among batch variables (Lee et al., 2004). 

MPCA encompasses all the information about the batches onto a lower dimensional space. 

Like PCA, MPCA decomposes the matrix X as the sum of the product of scores vectors and 

loading vector plus the error or residual E as shown in Equation 2-1. Thus using historical 

batch data MPCA can monitor progress of the current batch and detect any deviation from 

expected trajectory. 
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For some other exceptional situation other multiway methods have been discussed such as the 

Tucker model (Geladi, 1989), PARAFAC model (Harshman and Lundy, 1994, Bro, 1997), 

the canonical decomposition (Carroll and Chang, 1970), three mode factor analysis and the 

tensor rank method (Sanchez and Kowalski, 1990). These methods are tri-linear approaches to 

monitor three-way matrices with the intention to retain the original dimension of the data 

matrix. 
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2.7.1 Batch-Wise Unfolding Approach 

Nomikos and MacGregor (1994) unfolded the three way matrix in such a way that the vertical 

slices (I and J) are placed side by side to form a two dimensional matrix of the form I x JK. 

Each horizontal slice (J x K) represent the time history/trajectories for all variables of a single 

batch (I) and every vertical slice ( I x J ) is a matrix representing all the variables of all the 

batches at a particular time interval (k).  

 

 

 

 

 

 

 

Figure 2-8:  Batch-Wise Unfolding Approach  

Multiway-PCA (MPCA) can be used for the analysis of historical batch data to understand the 

major source of batch to batch variation. Good quality batches can be used for nominal model 

development and any future batches could be monitored by analysing the correlation structure 

and to see if they lie within the defined limits. 

2.7.1.1 Analysing historical batches - Offline and Online 

A MPCA model is developed using a set of historical good batches. A good batch can be 

defined as one which follows expected process trajectory without indicating possible 

deviation that would in turn affect the final product quality. The loadings matrix obtained 

from the model developed can then be used to test for any unusual event by predicting the t-

scores and residuals for the new batch.  

Once a historical set of three-way batch data is obtained it is first unfolded to form a 2 

dimensional matrix. Pre-processing such as centering and scaling is then applied to remove 

nonlinear and dynamics elements thus eliminating time trajectory of each variable present in 

the data set. A nominal PCA model is developed with control limits defined for control charts. 

For new batch projected on this model if the t-scores are closer to the origin with small 
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residual it would mean the operation of new batch is similar to the reference model 

developed.  

However if a process variation is observed in the new batch it would be more helpful if the 

deviation is identified online than offline using historical data base. In order to test the data 

sequentially in time one needs to have access to the entire batch history. But for online 

monitoring this is not possible as the batch is still incomplete and data is only available from 

the start of the batch to the current time. Nomikos and MacGregor (1995) have discussed 

three methods to be able to estimate unknown data      between the current time and the end 

of batch.  

The first method assumes that the batch would continue operating at the desired level and the 

future observation would be in line with the mean trajectories of the reference data base. Thus 

the unknown data      is filled with zeroes assuming that the batch will operate normally for 

the remaining duration. The major disadvantage of this approach is predictive ability at the 

start of batch run. The second approach presumes that the batch will continue to deviate in a 

similar manner as present and retain similar SPE for the rest of the batch. A rather pessimistic 

approach as compared to the first method as the unknown part of      is filled with the offset 

values at time point  . The third and final approach utilises the ability of PCA to handle 

missing data by regarding the future unknown observations of the batch as missing values. 

The loadings data matrix that is available up to time k can be used to predict scores and 

residuals given by Equation 2-28 

        
    

    
        

 

Equation 2-28 

 

where Pk is the loadings matrix for all the retained PCs upto time point k and      is the 

vector containing measurement known up to time point k. The orthogonal property of the 

loadings vectors make the term    
    

   an identity matrix. Although this method has been 

reported to perform better than the other methods mentioned previously it could predict 

unusually large scores with limited information available at the start of a batch. Depending on 

the nature of the process operation one can use either one of the methods or even combination 

of methods in order to achieve the desired predictive capabilities with the MPCA model.  

Once the scores and SPE have been predicted using either of the methods the batch will be 

monitored using the t-scores chart and SPE charts. The Hotelling’s T
2
 for a new batch is 

calculated using the Equation 2.29.  
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               Equation 2-29 

 

where        is the scores of the new batch up to time point k,     is the means of the columns 

of the score matrix Tk and Sk is the covariance matrix of Tk. The control limit of Hotelling’s 

T
2
 for independent t scores is derived under the assumption of normality given by Equation 

2-30 

    
  

       

      
         Equation 2-30 

 

where I is the number of nominal batches,   is the number PCs retained in the model and 

         is the critical value of the F-distribution with   and I-   degrees of freedom for a 

significance level α.  

The SPE for new batch is calculated using the Equation 2-31. 

         
 

 

   

 Equation 2-31 

 

where ejk is the prediction error at time point  . Box (1954) calculated the control limits for 

SPE given by Equation 2-32. 

        
  Equation 2-32 

 

Although the weight   and the degrees of freedom h can be estimated quickly equating the 

mean and variance of    
  to the sample mean ( ) and variance ( ) of the SPE sample at each 

time k. The control limit at significance level α for time interval k are given by:  

      
 

  
     

 
  

  
Equation 2-33 

 

where X2m
2
/ν,α is the critical value of the chi-squared variable with 

   

 
   df at significance 

level α. 

2.7.2 Variable-Wise Unfolding Approach 

The N&M approach or the batch wise unfolding approach discussed in Section 2.7.1 has a 

few drawbacks especially when a batch has to be monitored in real time. This is because in 

the batch-wise unfolding approach data is available only upto the current time and for online 
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monitoring the test data should be completed until the end of a batch (Lee et al., 2003). Also 

the batch-wise unfolding approach requires the batches to be of equal lengths which is not 

always possible within industry. A number of ways have been discussed in Section 2.7.1.1  

which can estimate the trajectory till the end of a batch. This section looks into another 

approach introduced by Wold et al. (1998) which aims to preserve the direction of variables 

when unfolding a three-way matrix. 

The data is unfolded as shown in Figure 2-9 where each row consists of data for all variables 

for an individual batch at a particular time point.  The data is then auto-scaled to mean zero 

unit variance where scores matrix describes the mean trajectory of the evolving batch. The 

model equation for the unfolded data is similar to PCA. 

        
   

 

   

 Equation 2-34 

 

Once the scores matrix is obtained they are re-arranged variable wise as shown in Figure 2-9. 

Confidence limits of +/- 2 and 3 standard deviation are then calculated for each time point.  

 

 

 

 

 

 

 

 

  

 

Thus MPCA is a technique which is statistically and algorithmically consistent with PCA 

achieves the same goals and benefits as the latter. It overcomes the drawbacks poised by PCA 

method for dealing with three-dimensional batch process datasets. 
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2.7.3 Multiway Partial Least Squares 

Batch processes are non-linear in nature which limits the application of PLS which is a linear 

regression method (Marjanovic et al., 2006). The technique of Multi-way Partial Least 

Squares (MPLS) is similar to MPCA but MPLS includes the quality or effect variables Y. The 

Y block is two way matrix I x 1 and does not require unfolding. Once the data matrix X is 

unfolded both the X and Y blocks are then normalised to remove any trajectories that they 

follow. PLS is then applied on the data to develop a regression model predicting the quality 

variables based on the measured variables from the available batches.  

2.8 Chapter Summary 

This chapter introduces various methods and techniques that are parts of MSPC. These 

methods form the basis for the research work that has been undertaken in the two projects 

discussed further in the thesis. PLS regressions methods have been applied in Chapter 3 and 

Chapter 4 which discuss PAT software solution developed by ABB. The PCA and MPCA 

methods have been used in the second project to analyse crystallisation issue in the 

polymerisation reactors in Chapters 5 and 6.  
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Project 1: Business Productivity Improvement 

through the Application of Analyser Device 

Integration 
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3 Chapter 3 - Process Analytical Technology – a tool for continuous 

improvement 

3.1 Chapter Overview  

This chapter looks at the concept of PAT introduced by the FDA in 2004 in order to 

encourage continuous improvement especially within the pharmaceutical industry. A number 

of tools were introduced to encourage the application of this concept within the industry. This 

chapter looks at how these tools have been used with respect to the ADI software.  

Section 3.2 gives a brief introduction about the PAT initiative and its application to current 

date in various industries.  

Section 3.3 discusses the PAT tools that were introduced by the FDA and how these tools 

have been used as the basis for the developing the unique software solution for 

implementation of PAT. 

Section 3.4 addresses the data management challenges faced by the industry that need to be 

addressed to make the concept of PAT into a practical solution.  

Section 3.5 gives the summary of the chapter. 

3.2 The concept of Process Analytical Technology 

The concept of PAT evolved from the older concept of Process Analytical Chemistry (PAC) 

that has existed for many years in the chemical and food and beverage industry. The main 

objective of PAC was to enable better process understanding in order to discover cost 

effective, traceable and environment friendly ways to achieve the required final end product 

quality. The ultimate goal of PAC was to improve the production efficiency, improve safety, 

reduce waste and achieve consistent production. Baughman (2005) has described the 

successful implementation of the PAC within the petrochemical industry. The author claims 

that many of the process analytical instruments that are currently used in various industries 

were originally developed in the oil and petrochemical industries to enable high throughput by 

on-line measurements.  

The US FDA popularised the concept of PAT to increase process understanding to enhance 

control and enable continuous improvement of the manufacturing process. 
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The FDA defines PAT as: 

1. A system for the analysis and control of manufacturing processes based on timely 

measurement of critical quality parameters and performance attributes of raw 

materials and in-process materials 

2. A process to ensure acceptable end-product quality at the end of the process (CDER, 

2013). 

 

The FDA also states that PAT involves: 

1. The optimal application of process analytical chemistry (PAC) 

2. Feedback process control strategies 

3. Information management tools and/or product-process optimization strategies for the 

manufacture of pharmaceuticals (CDER, 2013) 

This concept of PAT was in line with the FDA’s Quality by Design (QbD) approach which 

aimed to move pharmaceutical manufacturing processes from a rigid regulatory approach to a 

more flexible science and risk based approach. The QbD approach aimed to build quality in 

the process by defining a flexible and acceptable design space for process operation by 

monitoring the CQAs and Critical Process Parameters (CPP’s). A CQA is defined by the US 

FDA as physical, chemical or microbiological property that should be controlled within the 

defined limits to ensure the quality target product profile is achieved. Quality risk assessment 

(ICH Q9) can aid in linking the quality attributes of a product to CPP’s that can have an 

impact on the product quality. As stated in the ICH-Q8 (2009) guideline this understanding in 

processes can be obtained by formal experimental designs, prior knowledge of the process 

and PAT. The successful implementation of PAT would require tools that can provide 

effective and efficient means of gathering data to allow for continuous improvement and 

development of risk mitigation strategies. Rathore (2014) has indicated that although the 

application of QbD has been somewhat successful within the target industry the adoption of 

PAT has not met the required expectation. This may be attributed to the fact that cost and risk 

involved in the successful implementation of PAT is too high and needs to be addressed by 

academia and industry to enable real time decisions for better quality control.  
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According to van den Berg et al. (2013) the food industry also faces strict regulatory demands 

in terms of quality, safety and traceability. The author deems this to be major challenge 

considering the high level of variation that exists in biological processes and believes that 

PAT would also revolutionise industrial quality control in food processing. Thus, the concept 

of PAT encourages shifting process control operations from a typical post-problem or 

feedback control strategies to during-process or model predictive control strategies as seen in 

Figure 3-1. 

 

 

 

 

 

 

 

 

 

Figure 3-1: Schematic View of Process Control Strategies in manufacturing (van den Berg et al., 2013) 

In order to ensure successful implementation of the PAT, the FDA introduced a number of 

principles and tools. These tools provide means to control 1) CQAs which are the product 

properties that define a good product and 2) CPP’s which are product parameters having 

critical effect on the final product quality for example; monitoring the concentration of sugar 

at the start of fermentation for alcohol would be the CPP that would affect the final alcohol 

content which is a CQA. The PAT tools which enable the process understanding of 

pharmaceutical manufacturing and quality assurance are explained in Section 3.3 

The application of PAT within industry is a four stage process: 

1. LEARN – Gather data from analysers and process instruments to better 

understand the process 

Input (Raw 

Material) 

Process Output (Product) 

Feed-back 

control post 

process 

Control 
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Feed Forward 

Control pre-
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Model Predictive 
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2. PREDICT – Create models to predict Product Quality Attributes. Use the predicted 

value to advise operators when quality deviation occurs or when a process is complete. 

Validate with lab tests 

3. CONTROL – Develop feedback, feed forward models for controlling the process to 

achieve the desired quality. 

4. CONTINUOUS IMPROVEMENT – Optimise process based on the data collected 

3.3 PAT Tools 

The FDA has defined four PAT tools such as 1) Multivariate Methods 2) Process Analysers 

3) Process Control and 4) Continuous Improvement that can be used for the successful 

application of this technology within industry. This section of the report looks into how each 

of these tools were used within the scope of the ADI project with the customer. 

3.3.1 Multivariate Tools for Design and Analysis 

Industrial quality control has changed over the past few years with the advancement in sensor 

technology and its integration with the data analysis technology which is more commonly 

known as chemometrics. Chemometric tools establish relationship between different variables 

through the application of mathematical or statistical methods. Industrial processes and 

products are multi-factorial in nature and traditional methods of analysing one variable at a 

time are gradually progressing towards multivariate analysis to establish correlations between 

the product and the process. A number of these multivariate methods used in industry to 

monitor and control processes were explained in detail in Chapter 2. 

Multivariate methods are used to analyse large amounts of data sets by extracting meaningful 

information. This is normally done by plotting the data and enabling visual interpretation of 

hidden information within the data sets. Multivariate analysis in conjunction with Design of 

Experiments, Response Surface Methodologies, Process Simulation and Pattern Recognition 

tools can be used to enable real time release of products. The next section of the report 

describes the multivariate tools used in the ADI project. 

3.3.1.1 Hierarchical Modelling  

For the ADI project an extension of PLS model which is a Hierarchical PLS model was 

applied using CAMO’s Unscrambler software. Hierarchical modelling is not a method of 

analysis but a combination of multivariate models joined together using logic statement in 

order to arrive at a single unique result. These models can be used for projection, 

classification as well as regression methods. A hierarchical model can be developed to 
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classify samples in a stepwise manner or when developing non-linear models over large 

concentration range (CAMO, 2013). A more detailed explanation of the Hierarchical PLS 

modelling method that was used in the project is explained in the next section. 

Overall Workflow 

In order to use a prediction model for at-line testing a user was required to develop and 

validate a set of classification or regression rules so as to understand the 

boundaries/ambiguities. The following steps are involved in developing a final hierarchical 

model. 

1. Develop a global multivariate model to understand if there are any ambiguities or non-

linearities in the system.  

2. If ambiguities or non-linearities exist, develop sub-models that can handle these. If 

there are subclasses, also develop and validate models to handle such situations.  

3. Validate all models against a suitable validation set to ensure that the results 

project/predict/classify as expected.  

4. Develop the hierarchies as determined by the results of the individual models during 

the training stage and enter the logic required to take the model to the next level. Also 

define the conditions that will result in a premature termination of the hierarchy. These 

will be defined as alarm conditions.  

5. Alarm conditions will be defined as, a. Primary: These will result in termination of the 

method b. Secondary: These will allow the hierarchy to proceed however, the results 

that do not meet some predefined criteria will be marked for investigation.  

3.3.1.2 Setup 

HM set up within Unscrambler environment works as a cascading tree of decision making. It 

is expected that all projection, prediction and classification models generated in the 

Unscrambler can be used for HM development. The HM module supports up to 10 levels of 

hierarchy and multiple models could be included at each level. 

Based on the output from the previous level one or more models could be defined within each 

level. Alternatively, if the output is satisfactory and reported, or it may be ambiguous or out 

of limits, in which case a warning can be displayed or the HM be told to exit. This behaviour 

is completely at the hands of the user, who has to make sure that the provided sequence of 

steps and the limits used are sensible. 
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Also, for each model within each level, an ordered list of logical conditions are specified by 

the user and executed in an IF-ELSE manner. This means that if the first condition is satisfied, 

any remaining conditions will not be executed. It follows that the order of the conditions is 

important. If for instance condition 1 finds that the predicted response is out of limits, a 

condition 2 testing for e.g. leverage of the predicted sample will never be executed. 

3.3.1.3 HM Prediction 

The Unscrambler software has another feature called the ‘HM Predict’ which allows applying 

the hierarchical model with a complete sequence of multivariate model and reporting of the 

results. This enabled for testing the model in Unscrambler before it is imported into ADI. The 

detailed report and example situations of the models developed for the ADI project have been 

discussed further in Chapter 4 Section 4.4.1. 

3.3.2 Process Analysers  

Predominantly process analysers were mainly involved in taking univariate measurements of 

physical variables such as pH, temperature, pressure etc. However over the past few decades 

an increased appreciation for the value of collecting data to measure quality of the product 

during the process has led to ground breaking development in this area. Bakeev (2010) 

defines process analysis as a field deployable instrumentation for real time analytics and 

chemometrics for monitoring the CQAs. Process analyser measurements that contain the 

information related to the biological, physical or chemical attributes could either be at-line, 

online or in-line measurements  

The difference between these measurement techniques is described as follows: 

At-line: Measurements where sample is removed, isolated, and analysed in close proximity to 

the process stream 

On-line: Measurements where the sample is diverted from the manufacturing process, and 

may be returned to the process stream 

In-line: Measurement where the sample is not removed from the process stream and can be 

invasive or non-invasive 

Spectroscopic sensors have been popular in the industries adopting the PAT approach. They 

allow establishing a statistical relationship between the measured signals and reference 

analysis on a number of factors which affect the final product quality.  
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3.3.2.1 Types of Spectroscopic Analysers 

van den Berg et al. (2013) suggests the most commonly used spectroscopic techniques for 

process monitoring are the Ultraviolet-Visible (UV-VIS) absorption, Near Infrared (NIR), 

Infrared (IR) absorption, Raman scatter and Excitation Emission Matrix (EEM). Out of these 

five the application of UV-VIS and EEM are somewhat limited as it can be only used to 

analyse a smaller select group of molecules. The main difference between NIR and MIR 

spectra is the difference in wave numbers that causes the molecules to respond differently. 

NIR spectroscopy involves the studying of absorption of compounds usually O-H, C-H and S-

H bonds in the NIR range which lies in the electromagnetic spectrum ranging from 10000 – 

4000 cm
-1

. Broad overlapping peaks and large baseline variations make the interpretation of 

NIR spectrum very complex. Since NIR spectra penetrate the sample more than MIR spectra 

the NIR bands are 10-100 times less intense that MIR bands. This allows for direct analysis of 

highly absorbing material and porous samples with no need for sample preparation. It is 

difficult to identify IR frequencies with a specific chemical group in NIR range. Robust 

calibration and statistical techniques are therefore required for precise analysis of NIR spectra. 

Multivariate statistical techniques such as PCA and PLS previously discussed in Chapter 2 

can be used for spectral analysis making it simple and easier to interpret and draw meaningful 

conclusion to a complex spectra. The PAT desired requirements for a spectroscopic sensor are 

1) the sensor should be able to measure/predict critical control parameter of interest, 2) the 

measurement frequency of the sensor should be high in order to be able to analyse the rapidly 

changing process and 3) ideally the sensor should be non-invasive and guarantee product 

quality and integrity.  

Presently only NIR spectroscopy is able to satisfy all of these requirements. It is also 

affordable and off the shelf technology making it the predominant sensor technology used in 

the manufacturing industry. As discussed in Chapter 4, the customer uses FTIR analysers 

coupled with ATR sampling technique for at-line sample testing. The next section looks more 

into detail in the working of FTIR analysers. 

FTIR Analysers 

The simplicity, sensitivity, versatility, speed of analysis and high throughput has led to FTIR 

spectroscopy being applicable not only to chemists and spectroscopists but also a number of 

specialists and non-specialists from various backgrounds. FTIR analysers are single beam and 

collect background and sample measurements at two different times. The actual spectrum of 

the sample is a ratio between the single beam spectrum and the background spectrum that is 
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obtained without the sample. Figure 3-2 illustrates the sequence of steps involved in obtaining 

a sample spectrum. Despite of a number of advantages showcased by FTIR spectroscopy its 

application is limited due to its other inadequacies. Subramanian and Rodriguez-Saona, 2009 

have reported some of the shortcomings with the FTIR spectroscopy method such as 1) its 

inability to detect atoms and monoatomic ions, elements and inert gases, 2) complications due 

to overlapping peaks in biological samples and 3) signal masking important signals especially 

for biological samples that contain water which has a strong absorption band for FTIR method 

thus requiring extensive sample preparation to reduce the water effect.  

 

 

Figure 3-2: Illustration of how MIR spectrum is obtained from InterferogramSampling Techniques (Subramanian 

and Rodriguez-Saona, 2009) 

The customer has been using two types of at-line FTIR analysers namely Thermo Nicolet 

iS10 and Thermo Nicolet 350. Figure 3-3 illustrates a typical Thermo Nicolet iS10 analyser 

used by the customer for at-line measurements. The standard applications of this type of 

analyser have been to analyse biodiesel blending, polymers, plastics pharmaceuticals and food 

industry. Samples are measured directly through vials and materials are characterized quickly 

and easily. 
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Figure 3-3: Thermo Nicolet iS10 (Thermo Fisher Scientific, 2015) 

A number of sampling techniques such as transmittance, reflectance, Attenuated Total 

Reflectance (ATR) and diffuse reflectance exist for FTIR spectroscopy (Thermo Fisher 

Scientific, 2015). Figure 3-4 shows a schematic diagram of various FTIR sampling techniques 

currently used in industry. The ATR sampling technique used by the customer has been 

further discussed. 

 

Figure 3-4: Schematic diagram of various FTIR sampling techniques: (a)transmission, (b) attenuated total 

reflectance. (c) diffuse reflectance in an integrating sphere, and (d) specular reflectance (Subramanian and 

Rodriguez-Saona, 2009) 

 

Attenuated Total Reflectance (ATR) 

ATR is one of the most common sampling techniques with little or no sample preparation 

required for speeding up the process of sample analysis. In order that the technique is 

successful the sample should be in direct contact with the ATR crystal and the refractive 

index of the crystal must be significantly greater than that of the sample in order for the light 

to be internally reflected in the crystal. As described by PerkinElmer (2005) the ATR 
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accessory functions by measuring the changes that occur in a totally internally reflected 

infrared beam when the beam comes in contact with a sample (Figure 3-5). As the infrared 

beam is directed onto the dense crystal with a high refractive index the internal reflectance 

creates an evanescent wave that extends beyond the surface of the crystal only a few microns 

onto the sample. In the region of infrared spectrum where the sample absorbs the energy the 

evanescent wave is attenuated or altered which is then passed back to the IR beam which 

exists at the opposite end of the crystal and is passed to the detector in the IR spectrometer. 

Some of the usual crystals used for ATR analysis include ZnSe, Ge and diamond. Compared 

to ZnSe with spectral range down to 550 cm
-1

 and Ge with spectral range down to 650 cm
-1

 

diamond has wider spectral range down to 200 cm
-1

 or less. However the high cost associated 

with the use of diamond has limited its use within the industry.(Thermo Fisher Scientific, 

2015) 

 

Figure 3-5: Multiple reflection ATR system ATR-FTIR (PerkinElmer, 2005) 

The Thermo Nicolet iS10 analyser with the ATR accessory can be seen in Figure 3-6. This 

accessory has a durable, high performance diamond ATR that provides high quality spectral 

data used to verify materials. 

 

Figure 3-6: Nicolet iS10 ATR accessory (Thermo Fisher Scientific, 2015) 
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3.3.3 Process Control  

Process monitoring and control strategies which intend to monitor the process in order to 

maintain it to desired state should be able to accommodate attributes of input materials, the 

ability and reliability of process analysers to measure critical attributes, and the achievement 

of process end points to ensure consistent quality of the output materials and the final product 

(FDA, 2004). Ganguly and Vogel (2006) indicate the importance of monitoring, controlling 

and reporting of CQAs so as to implement the concept of PAT successfully. Whether the 

measurements are taken online, inline or at-line integration with process control and 

automation is necessary to ensure so that right data is in the right place at the right time to 

facilitate manufacturing decision making.  

The automation pyramid as seen in Figure 3-7 describes the various layers and functions of 

automation starting from plant floor and actuators that can extend all the way upto 

Manufacturing Execution Systems, (MES) and Enterprise Resource Planning (ERP) level that 

have been described in Sections 3.4.2 and 3.4.3. 

 

Figure 3-7: Automation Pyramid (Ganguly and Vogel, 2006) 

3.3.4 Continuous Improvement through Data Management 

FDA encourages continuous improvement of processes through the collection and analysis of 

data that can justify the post approval changes. They believe data acquisition should be further 

supported by information technology systems which are valuable for the manufacturers. Once 

the data has been collected a number of opportunities could then be identified to improve the 

usefulness of the available product and process knowledge. This available knowledge is most 

beneficial only when there is better understanding of the relevant multifactorial relationships 
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and there are means to evaluate these relationships. FDA believes that today’s information 

technology infrastructure makes development and maintenance of this knowledge base 

practical. 

ADI platform providing PAT and automation solution is based on ABB’s 800xA control 

system. It provides an integrated environment for ease of engineering, data and process 

visualisation, data management, multivariate advanced SPC and enterprise connectivity. 

Figure 3-8 illustrates ABB’s integrated PAT solution based on the backbone of 800xA control 

system. 

 

Figure 3-8: ABB's Integrated PAT solution 

3.4 Data Management Challenges 

The FDA’s PAT initiative encourages chemical and pharmaceutical industries to adopt a risk 

based approach by promoting real time release of quality in process and final product based 

on process data. For real time release the CQAs as well as the CPP’s for products can be 

monitored and controlled using direct or indirect process analytical methods. The FDA 

considers real time release of product comparable to alternative analytical procedure for the 

final release of products.  

However with the ability to measure PAT data online comes an increase in real time 

measurements being made which in turn can lead to data overload. This coupled with the fact 
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that the data sources often produce differently formatted data using a variety of data export 

tools makes it a major challenge for those interpreting the data. Once collected the data is 

often comprised of large arrays which must be further processed to access the beneficial or 

useful data within. This enables a better understanding of the inter-relationship of process 

parameters affecting the final product quality which provides the opportunity to control the 

quality around variations in the process.  

The ability to access the right information at the right time is imperative to enable real time 

release, the setting of product specification based on variability observed in the process, 

investigating out of specification product and further validation of the process. A cost 

estimate of inefficient use of the available data has been pointed out by Bakeev (2010). For a 

single product the annual costs are estimated as follows: 

Capacity underutilization – US$25-50M 

Lost batches – US$24-28M 

Delayed market entry – US$10-20M 

Supply chain overburden – US$4-8M 

Regulatory actions - >US$500M 

These cost estimates are mainly associated with the manufacture of pharmaceutical products 

which are high value goods. 

Data collected from an analyser could be discrete, intermittent or continuous. Irrespective of 

the dimensionality of the data if it is easily accessible it can then be utilised to optimise and 

improve our understanding of the process and potentially lead to fewer non conforming 

products. There may be further benefits in the supply chain by being able to use varying 

qualities of raw materials. Global standardisation of plant design and collection of data 

provides a richer data source and a better pay back time for the investment made which in turn 

facilitates more timely and accurate corporate decisions.  

Over the last few years there have been number of questions around how to manage multiple 

analytical platforms predicting different quality parameters to control, lab, quality and 

enterprise level systems? How to manage the prediction models needed to predict the quality 

parameter and for checking the integrity of the analytical device? And how to do all of this in 

a joined up approach over multiple geographical locations? 
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A good start is to have standards which define how analytical device will communicate their 

data and how they will communicate with model prediction packages such as CAMO Insights 

or Umetrics Simca-Q. In 2013 the OPC foundation released its ADI (ADI) standard through 

the collaboration of global automation, hardware and software suppliers. The standard defines 

a single model for analyser vendors to standardise their interface to other software packages.  

‘The OPC foundation is dedicated to ensuring interoperability in automation by creating and 

maintaining open specifications that standardise the communication of the acquired process 

data, alarm and event records, historical data and batch data to multi-vendor enterprise 

systems and between production devices’ (Foundation, 2013). To see how this data is fully 

integrated with other higher level systems it is necessary to look at a specific implementation 

of the OPC ADI standard and analyser technology. 

3.4.1 ISA95 – Enterprise Control Systems 

ISA-95 is the international standard for the integration of enterprise and control systems. ISA-

95 consists of models and terminology that can be used to determine which information has to 

be exchanged between systems for sales, finance and logistics and systems for production, 

maintenance and quality (ISA, 2010). Thus, the benefit of integration of enterprise and control 

systems is to improve communication between various departments within an organisation. 

With advances in technology, exchange of this information is being automated making 

important information available at the right place and time with enterprise having access to 

real time information such as information about raw materials enabling optimum usage of 

storage capacity. Thus there are a lot of advantages with an automated interface between the 

office and the shop floor (ISA, 2010).  

The international standard ISA-95 has been developed to address the problems encountered 

during the development of automated interfaces between enterprise and control systems. This 

standard can be used in manufacturing environments all over the world and can also be 

applied in all sort of industries and processes whether batch or continuous.  

3.4.2 Manufacturing Execution System (MES) 

Manufacturing automation has faced a significant change over past 20 years with the 

emerging internet society addressing new enterprise control and management integration for 

agile business to manufacturing purposes. According to Morel et al. (2003) automation 

engineering would soon have to adopt the system engineering approach in order to deal with 

the increasing complexity of integrating intelligence/information manufacturing automation 
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with networked manufacturing enterprise. MES and ERP are couple of enterprise systems 

amongst host other systems as seen in Figure 3-9 that aim to facilitate manufacturing chain 

with networked enterprise in order to manage goods and services as desired by the internet 

society.  

 

Figure 3-9: Manufacturing Enterprise Control and Mangement Systems (Morel et al., 2003) 

According to Morel et al. (2003) a form of technical intelligence that has been embedded in 

the manufacturing systems and the products themselves that makes it possible to address the 

concept of agile business to manufacturing (B2M).  

The primary goal of a number of industries using MES is for managing factory floor activities 

such as resource allocation, dispatching production units, quality management, operation 

planning, detailed scheduling, labour management, product tracking and keeping records for 

product genealogy. This information could then be used to optimise the production activities 

by:  

 Improving communication inside a production facility 

 Improving the communication capability between production and other activities in 

manufacturing enterprise such as product design, process planning, resource planning, 

supply chain management, service and sales and equipment control 

 Monitor production to control important process parameters 

 To better manage the production related data 
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MES is defined by Feng (2000) as “A system that consists of a set of integrated software and 

hardware components that provide functions for managing production activities from job 

order launch to finished products. Using current and accurate data, MES initiates, guides, 

responds to, and reports on production activities as they occur. MES provides production 

activity information to other engineering and business activities in the enterprise and its 

supply chain via bidirectional communications”.  

3.4.3 Enterprise Resource Planning (ERP) 

Manufacturing systems have evolved from inventory control in the 1960’s to material 

requirements planning (MRP) in the 1970’s where a computer was used to calculate gross 

material requirements: from MRP II in the 1980’s which incorporated the financial 

accounting system and financial management system along with manufacturing and materials 

management systems. In the early 1990’s where MRP II was further expanded to include 

product design, information warehousing, materials planning, capacity, finance, and project 

management and given the term Enterprise Resource Planning (ERP) (Umble et al., 2003). 

Globalisation and revolution in information technology has pressurised companies to lower 

costs, improve the quality of products and provide realistic and reliable delivery dates through 

effective and efficient coordination of production and distribution activities. The ERP systems 

assure the means of integrating business functions under one database, one application and a 

unified and integrated interface across the business process. There have been a number of 

publicized failures with the implementation of ERP as this system does have moderate chance 

of hurting the business because of potential implementation problem (Umble et al., 2003). Out 

of the various number of problems that have been mentioned by Umble et al., 2003 poor 

management, change in business objectives during the project and lack of management 

support have been cited as the top three reasons associated with the implementation issues of 

the software. Within the ERP industry SAP and PeopleSoft are the most popular standardised 

solutions adopted by industry. However one of drawbacks with adopting these software 

solutions is that they impose their own logic on a company’s strategy. As a result 50-75% of 

US firms have experienced failure to implement advanced manufacturing technology. There 

have been other occasions where for example Dell Computer Corporation initially started 

SAP implementation but later withdrew their interest in standardised software and designed a 

bespoke solution more suited to their organisation.  

It is therefore extremely important for businesses to examine variety of critical factors for 

ERP implementation to be a success. 
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Important factors for ERP implementation would include: 

1. Clear understanding of strategic goals 

2. Commitment by top managements 

3. Excellent Project Management 

4. Organisational change management 

5. A great implementation team 

6. Data Accuracy 

7. Extensive education and training 

8. Focussed performance measures 

With ERP systems imposing their own logic on company’s strategy it is very important to 

select the most appropriate ERP system. The four most commonly used ERP systems are 

SAP, Oracle, PeopleSoft and Baan with each of these systems having 60-70% feature overlap 

making it difficult to accurately differentiate between the systems (Gupta and Kohli, 2006). 

SAP mainly dominates the ERP market with more sales than its three closest competitors.  

The customer in this case uses SAP to manage not only their logistics and supply chain but 

also maintain quality control of their products. ABB’s Enterprise Connectivity Software 

(ECS) that is an MES solution serves as the link between SAP and ADI.  
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3.5 Chapter Summary 

The successful implementation of PAT solution will require a combination of all the tools 

discussed in this section. The ADI software aims to provide a complete package for PAT 

solution to meet the customers’ process improvement and automation needs. With the ADI 

platform being both open and secure it enables tight integration with ABB’s 800xA control 

system or any other third party control system as well. ADI would give the user the flexibility 

to use various analysers in conjunction with third party chemometric packages to build and 

develop predictive models for online, inline and at-line measurements. The model data 

exporter tool would further make it easy to access the data thus significantly reducing time 

consuming activities such as analyser integration and data synchronisation. Immediate 

benefits of QbD approach can be attained through appropriate quality management and 

implementation of risk based approaches. Validation being one of the key concepts for 

ensuring the success of QbD and PAT dedicated workflows can be configured to control 

operator interaction for at-line measurement taken for verification purposes. 

The customer in this project also used SAP as their ERP system along with ABB’s ECS as an 

MES solution. The MES solution bridges the vertical integration gap between the business 

and manufacturing systems by providing intelligent data access and viewing for different 

level within an organisation. Thus integrating data is of importance when analytical model is 

also being used to control a process using at-line measurements. The ADI system provided 

the customer with a single integrated data platform that simplified the integration of quality 

management systems, analyser integrations and process control for real time release of 

products. The next chapter discusses the working functionality of various components of the 

ADI solution. 
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4 Chapter 4 – Analyser Device Integration – ABB’s PAT solution 

4.1 Chapter Overview 

This chapter looks at the various components of the ADI software that have been developed 

as per the customer requirements. This project required the combined resources of a project 

delivery team and a product development team as ADI product needed to be extended to 

deliver all of the customer’s requirements.  

With a PAT solution already pre-existing with the customer, Section 4.2 discusses the 

motivation for developing the ADI solution.  

Section 4.3 briefly describes the PAT solution and explains the functionality of the various 

components of the solution.  

Section 4.4 explains in detail various tests that were devised around certain components of the 

product in order to successfully commission the project.  

Section 4.5 summarises the chapter. 

4.2 Introduction 

This project looks into the application of ADI software which is a scalable product meeting 

many of the requirements of a fully integrated PAT solution. ADI product has a flexible open 

architecture that is designed to integrate analytical devices and predictive modelling 

(Chemometric) software with process control and other higher level systems. One of the 

challenges to date as mentioned in Chapter 3 has been the wide information technology gap 

and lack of standards. Analysers and chemometric packages do not share a common user 

interface and data format and they do not offer the connectivity required to efficiently 

exchange data with plant and business system such as SAP. The first steps in overcoming this 

challenge were met by the introduction of the OPC Foundation standard for analytical device 

integration (OPC ADI). This standard introduced a common architecture through which 

analytical devices may exchange data with ‘data users’. The standard also made allowances 

for integration with model development packages such as Unscrambler and Simca. 

One of the unique features of ADI is its capability to integrate data from different analytical 

devices with quality and higher level servers. ADI bridges the gap between the businesses 

(ERP) and manufacturing systems (DCS) as it records, processes, manages, monitors, reports 

and stores the at-line spectral and predicted data along with the associated meta data.  
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The thesis mainly discusses the novel application of model integration within ADI, method 

deployment while enabling method compatibility by assessing the background validity issues 

and improving the model data exporter tool by implementing advanced selection methods to 

access data to optimise a model. 

4.2.1 ADI and the Customer  

The customer has been using the principles of PAT for more than 15 years. They currently 

have multiple plants worldwide using their proprietary PAT system. This system was ahead of 

its time but difficulties with bespoke design, continued support and the desire to add 

additional sites encouraged them to look for a system which was off the shelf and globally 

supportable. The overall objective was to enable seamless roll out of PAT worldwide by 

capturing and sharing best practices, thus allowing them to leverage the economic benefits of 

real time process analytics. The customer decided to work with ABB to extend ABB’s 

existing PAT solution and hence enabling the customer to have an enhanced globally 

supportable platform. 

4.2.2 Customers proprietary at-line system  

The previous system managed the analytical and modelling components associated with at-

line material tests. It was a centralised system with a dedicated network connection for PAT 

data to each of the sites involved. The majority of PAT test undertaken by the customer are 

quality driven and performed using at-line Nicolet FTIR analysers. There are some seventy 

plus tests that can be run as a part of the production process. Quality checks to be applied to a 

particular production batch are managed by a central SAP system. This system is responsible 

for the management of quality tests and their data and generate unique bar coded labels that 

identify individual samples. Each at-line analyser station has a barcode reader which uses the 

sample number from the barcode to execute the correct test method. The test method contains 

the necessary predictive models or equations necessary to perform the test. The spectral data 

from the analyser is passed to the ‘PAT system’ server where it is analysed using 

chemometric models. The results of the analysis are passed from the PAT system to the SAP 

server where they form part of a material inspection characteristic within the SAP quality 

module. The original spectral data are stored with the system server. The measurement is 

manual and involves sample preparation which is performed by an operator following a 

workflow on a dedicated screen locally beside the analyser.  

While this system worked well it was necessary for the customer to standardise on a particular 

analyser type (Nicolet) and maintain a bespoke software driver. In addition, the lack of 
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integration with SAP meant that separate screens and spreadsheets were required to link the 

at-line lab with quality system. The collection of model development followed a specific fixed 

process and was not flexible. 

4.3 ABB and Solution 

The ABB solution facilitated to take a more open approach using the new OPC ADI standard 

providing an open platform to use different analytical platforms with tight integration to the 

quality and model development systems. As the customer has a global team responsible for 

model development and distribution it was important for them to maintain the ability to work 

centrally. ABB therefore implemented an architecture comprising of centrally based corporate 

level servers with a local site based client for each at-line analyser measurement location. The 

central servers manage model development, deployment and interaction with the SAP 

business and quality system whilst the local server and clients manage operator measurement 

workflows, analyser integration and data collection tasks. In keeping with the customer 

requirements only one central server communicated with the customers’ business and quality 

systems (SAP). The sample number is scanned at the analyser station. ABB‘s Enterprise 

Connectivity Server (ECS) uses the sample number to interrogate SAP for the material 

number and test parameters required for that sample. The material number determines which 

method is selected to manage the test. The ADI method manages all the analyser settings, 

predictive and diagnostic models necessary to take measurement. Once a measurement is 

taken it is sent to a third party prediction engine (in this case CAMO) which provides the 

predicted value and associated statistics. These values can be visualised on the operator 

interface and also sent to central storage along with the sample and background spectral data. 

All of this data can be retrieved at a later date using the Model Data Exporter (MDE) tool. 

This report will look into detail about the various components of the system such as the ADI 

server, ECS server, Data Exporter, Information Manager (Historical Storage), Prediction 

server and Model development using hierarchical models that make up the system. Figure 4-1 

gives the overview of the entire system and links between the various components of the 

software.  
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Figure 4-1: ADI System Overview 

4.3.1 Analyser Device Integration (ADI) Component 

The ADI Connectivity server is an ‘add on’ to ABB’s 800xA control technologies platform. 

When used for online measurements it can be part of ABB’s 800xA process control system or 

integrated through standard OPC interfaces to third party control systems. This project was 

concerned with at-line measurements only so there was no need to integrate it to the control 

systems. The ADI server manages the configuration and runtime for components associated 

with configuring and executing a method. When instructed by ECS it will co-ordinate the 

calling of the correct prediction model and manage the collection of spectral and predicted 

data. Model alarms and event handling is also managed by this component.  

In order to take a successful measurement a method has to be configured within the ADI 

server. A method comprises of sample and background settings of the analyser, prediction 

models both for the background and sample measurements and other inputs such a constants 

and variables that are essential for the measurements. In order to manage at-line methods it is 

important to have control over the parts which can be edited which in this case is the method 

and the model. The Method is version controlled within the ADI server and the Model is 

version controlled by Subversion in repositories located in disk storage on the model 

development system.  

4.3.1.1 ADI Method 

An ADI method brings together all the parameters including models and analyser settings 

required to make a measurement. Configurations such as analyser settings, background age, 

sample models, background models, variables (batchID, materialID, etc) and constants (eg: 

co-efficient of variance as these are calculated previously and added to the method) are 
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attached here. ADI uniquely allows for parameterised setting of the analyser to be included in 

the method keeping fixed parameters such as analyser name and IP address separate. This 

allows all the parameters that affect the measurement to be managed and version controlled in 

one place.  

 Method Execution 

Once a method has been created as part of the version control process, it then has to be 

approved before execution. A method can be executed from method runtime aspect faceplate 

in the ADI as well from operator interface i.e. from the ECS.  

4.3.1.2 Analyser settings and third party systems compatibility 

In a traditional set up each individual analyser is managed by its own dedicated client 

software which makes no distinction between parameters used for measurement (e.g. aperture 

size and number of scans) and parameters used to define the analyser (e.g. analyser name and 

network address). With ADI, parameters for measurement belong to the method object and 

parameters that define the analyser belong to the analyser object. This was a decision taken 

early on to allow the system to be model centric providing flexibility in how models can be 

used and transported between sites. As long as an analyser is compliant with OPC UA 

standards ADI allows for vendor independent integration of all the devices with centralised 

management and execution of models and methods using the aspect object technology. The 

user has complete control of the analyser settings and actions through the common user 

interface while having full transparency of all raw, processed and diagnostic information. ADI 

also allows for concurrent integration of analyser from multiple vendors and it is scalable 

from 1 to 25 devices in single system.  

In the past, due to the constraints imposed by technology standards, the customer had limited 

themselves to one analyser manufacturer and one analyser type (FTIR). Implementing the 

new OPC ADI standard using an ABB driver enabled the customer to consider the use of 

other analyser platforms. In future they now have the flexibility to consider different analyser 

vendors provided that the vendors have adopted the ADI standard. 

4.3.1.3 ECS Server 

The Enterprise Connectivity Software bridges the vertical integration gap between business 

and manufacturing systems and delivering significant new opportunities to increase 

productivity by providing tighter integration with the customers business and quality systems. 

The use of this system allows, for example, the operator to view both quality and 
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measurement parameters integrated on to one screen. Previously multiple screens connected 

to different systems would have been required. 

The ECS solution belonging to the ABB cpmPlus family comprises of ISA-95 model based 

platform which performs: 

 as a storage model for keeping the states of all connected systems, 

 as a definition template for specification of process workflows and data mappings and 

 as a definition paradigm used for structuring and maintenance of communication 

channels towards external systems. 

 

The integrated model-based approach uses object oriented software to define and maintain the 

manufacturing processes linking it with associated data stored in external systems. 

In runtime, the user interface is provided by an ECS Client. The ECS Client is built on top of 

the ECS Client Framework, which provides an event based platform for development of the 

user interfaces for different environments (e.g. mobile devices, windows forms, web-based). 

The cpmPlus ECS contains several modules responsible for different aspects of an MES 

solution. Each module is designed to plug into a central core allowing for a flexible 

configuration and cost. The following modules are utilized in this project. 

 Execution module providing list of tasks, workflow management and traceability for 

execution and required information for operators 

 Administration tool giving the ability to reconfigure the system (quality data, users, 

manufacturing instructions on particular work centres, workflows, etc.) 

 Barcodes module providing integration with barcode scanners and printers 

 Reporting for delivering required information from all system’s modules to plant 

management 

4.3.1.3.1 Operator Workflow Description 

A barcode scanner is connected to measurement station computer via a USB port. Users are 

authenticated by the system using login and domain authentication. Depending on which 

group in the Active Directory (AD) the user belongs to, defines the access rights assigned. 

(e.g. the right to perform measurements on a particular analyser and privileges to execute 



62 

 

particular methods.) . This allowed the customer to use existing IT infrastructure and existing 

user accounts.  

In order to perform at-line measurements it is necessary to know the relationship between the 

SAP material number of the scanned sample and the method which is to be executed.  The 

barcode determines which type of type test has to be carried out. This can be Q (quality), ‘P’ 

production or ‘X’ (experiment – used for model checking and development).  

 Q-Type: A formal quality measurement where the results are reported to SAP. The barcode 

provides the sample number which enables the system to retrieve the material number from 

SAP. The material number determines which ADI method will be executed. 

P-Type: A production measurement where results are reported locally. The barcode is a 

‘dummy’ number which tells the system to skip the material number look up from SAP 

allowing the operator to select it from a predefined list instead. The material number 

determines which ADI method will be executed. 

X-Type: An experimental measurement used during model development. This is a specialist 

menu driven measurement available to a limited number of users. The user will enter in the 

sample identification (e.g. sample number) and select the ADI method to be executed from a 

list. 

Once the correct method is determined the operator will be taken through a workflow (step by 

step instructions) until two measurements have been made that pass a statistical t-test which is 

used to ensure that both samples have been prepared correctly. The average of the two 

measurements is then used as the result.  

The method defines which data is to be collected and saved in the Information Manager and if 

a Q – type measurement reported to SAP. Figure 4-2 explains the various workflows used as a 

part of the ADI solution. 
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Figure 4-2: Workflow of at-line measurment 

4.3.1.4 Storage - ADI Information Manager (Historian) Description 

In order to continuously improve process and material understanding it is necessary to store as 

much information, as possible, about the measurement. Data must be stored in such a way that 

it can be extracted and presented to different users with different requirements at a future date. 

History services are therefore an integral part of the solution. For this project they are 

responsible for the storage of spectral, numerical, lab, process, alarm & events and method 

meta data. 

Spectral data is a large data-array which in the case of NIR analyser represents the 

measurement and background interferogram. Each measurement spectra is stored in a ‘Profile 
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Logs’ (array storage) located on the ABB 800xA Information Manager (IM) server. Spectral 

data is stored on event i.e. as a measurement occurs. Numerical data (vector data) is a single 

value time stamped data such as predicted value or associated statistic. Numerical data is 

stored on event (change) within a ‘Property Log’. 

Lab data is the data result from the empirical lab test used to verify that the analyser is 

predicting correctly. This data is stored in a special type of ‘Property Log’ called as ‘Lab 

Log’. The main difference between the two types is that the ‘Lab Log’ requires a manual 

entry for the time stamp where as the ‘Property Log’ picks up the time the event occurred 

automatically from the system. The lab data is time stamped (with the time the sample was 

taken) and is retrospectively stored alongside the at-line measurement data. A lab log may be 

populated from external third party products such as MS Excel or LIMS. For the purposes of 

this project lab logs formed a part of the lab system interface. 

Alarm and Event data is captured and stored within a message log located on the IM. In 

general terms ‘alarms’ are events that are used to indicate a problem that needs to be brought 

to the operators attention such as in instrument failure or model deviation whereas ‘events’ 

such as audit trail events are also recorded here. Methods ‘meta’ data is the data that describes 

the circumstances under the method ran. It contains for example the location, type and 

settings of the analyser as well as user and model information. It is directly related to the data 

storage described above. This data is stored into a Production Data Log (PDL). The PDL, in 

addition to meta data, contains links to spectral, numerical, lab and alarm/event data 

associated with a measurement.  

The archive function allows for offline storage of all data held within the system. The 

customer required that measurement data be archived periodically to network drives for 

secure storage. This was achieved by archiving PDL logs along with their linked data. As seen 

in Figure 4-3 measurement data (eg: spectra) is stored as Profile Logs while the predicted 

properties and process data are stored under Numeric Logs. The alarm and event data is 

recorded as Message logs. All of the data stored under PDL can be accessed offline at any 

time in the future from the archived PDL. 
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Figure 4-3: Data storage structure in ADI 

 

4.3.1.5 Model Prediction Engine 

For this project the prediction server was CAMO’s Insight prediction server which is the 

online prediction engine associated with CAMO’s Unscrambler model development software. 

The server is tightly integrated with ABB’s 800xA ADI technology. 

Models are developed within CAMO’s Unscrambler environment. The run time model is 

imported into ABB ADI server where they are then downloaded to CAMO’s Insight 

prediction engine. Measurement spectra is passed to the prediction engine which  returns the 

predicted value, associated stats and any model alarms which may have occurred. At any one 

time there are a number of different models waiting to be called. The diagram in Figure 4-4 

describes the relationship of the ADI Insight server with the complete 800xA configuration 

and Figure 4-5 defines how the ADI Insight server works. 
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Figure 4-4: Information flow from ADI Connect Server to CAMO Software’s ADI Insight Server 

 

Figure 4-5: Workflow within The Unscrambler X ADI Insight Server 

The data returned by The Unscrambler ADI Insight server during process 2 is: 

1. The prediction of the property 

2. Statistics 

3. Hi / Lo  alarms (property and/or stats) 

4. Hi / Lo warnings (property and/or stats) 

5. General Alarm (based on logical condition) 

6. Normal (No Alarm) 

4.3.1.6 Model Data Exporter 

Once the measurements have been taken and properties have been predicted and sent to 

historical storage they can be accessed anytime in the future using the ABB’s Model Data 

Exporter (MDE). Lab data along with spectral data and predicted values can be exported 
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using the MDE which can then be used by Chemometricians to develop new calibration 

models.  

The MDE for ADI has adopted a model centric data export unlike its legacy xPAT which 

performed a batch centric data export. The filter applied on the MDE depend primarily on the 

model that has been initially chosen following which other filters can be applied such as:  

 Model and Method Version 

 Methods 

 Method Instance ID 

 Variables using expressions 

 Measurement Locations 

 Analysis Time 

 Model Alarms 

 Lab Value and Tolerances  

 Property  Values 

Default as well as customised template can be used to select columns and ordering and 

constructors for row labels and array headers. Also the data can either be exported to standard 

files such as MS excel or directly to the supported chemometric package. One of other 

important features of the MDE is that data exported from different time zones is time aligned.  
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4.4 Development of test scenarios for Method and Model Deployment, 

Model Import and Model Data Exporter (MDE) within ADI method 

As a part of this project various unique test scenarios were to be developed in order to ensure 

that the model development and model data exporter side of the project was successfully 

commissioned. This section of the report describes the tests developed for Factory Acceptance 

Test (FAT) of the product. Although there were various other tests conducted during the FAT 

this section will look in detail at the tests developed by the author for successful working of 

the ADI method and the MDE component. The report also details the critical analysis of 

various problems encountered during the testing stages of the product and discusses the novel 

methods that were developed in order to overcome the challenges to develop an integrated 

novel solution. 

This section of the thesis has been divided into four parts: 1) Model development 2) Method 

configuration 3) ADI Alarms and 4) Data Export. For each of these sections the criteria for 

each test, the preparation required, the tests carried out and the outcome/result has been 

discussed. The detailed steps carried out in each test can be found in ABB’s internal AT-Line 

FAT specification document. 

4.4.1 Model Development and Model Import 

The customer provided a list of PLS models (Table 4-1) to be developed within The 

Unscrambler version 10.2 environment. The original names of the properties have not been 

disclosed due to confidentiality reasons. The calibration models were developed as per 

customer requirements and prediction models were tested using simulated csv files containing 

spectral data. The models were developed to include model alarms that could be generated 

and visualised on an ADI method faceplate. The test scenario detailing the working of this 

application and outcome of the tests has been further discussed in this section.   
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Table 4-1: List of FAT models 

Model Name Model Type 

Property 1 PLS model 

Property 2 PLS model 

Property 3 PLS model 

Property 4 PLS model 

Property 5 PLS model 

Property 6 PLS model 

Property 7 v17 Hierarchical PLS model 

Property7 v17_low Hierarchical PLS model 

Property7 v17_high Hierarchical PLS Model 

 

Figure 4-6 is a screenshot of the heirarchical Property 7 model used in the FAT testing of the 

ADI system. As seen in the Figure 4.6 the Global Property 7 model is applied for the 1
st
 level. 

If a model warning (in orange) or model alarm (in red) is generated at this level then values 

are sent to the ADI server which can be visualised on the 800xA faceplate. However if 

predicted values are normal (green) at the 1
st
 level then depending on the range of value either 

a low Property 7 or high Property 7 model is applied and the predicted values are displayed at 

the 2
nd

 level. The values generated at this level are then sent to the ADI method faceplate for 

the operators to view it. 

The screenshot of three other models mentioned in Table 4-1 has been attached in the 

Appendix A. 
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Figure 4-6: Screenshot of Hierarchical Property 7 model 

In order to run and develop the model further it then has to be imported within the 800xA 

ADI environment. The FAT test for determining the successful import of a model is described 

in Section 4.4.1.1. 

4.4.1.1 Sample Model Import FAT test 

Purpose of the Test 

To verify that available CAMO Unscrambler 10.2 prediction models can be imported to the 

ADI server. Successful import of models into the ADI system is one of first steps to be carried 

out  

Test Method 

CAMO Unscrambler 10.2 prediction models were imported into the system by navigating to 

the functional structure Root/ADIConnectObjects/ 

ADIConnectConfigurationObjects/ADIConnectModels/ADIModels/ 

TestCollection/ADIModelCollection and selecting the ADIConnectModelImporter aspect. 

Using the browse option the test models were then uploaded into ADI system. Once a model 

is successfully imported into the system it will appear as new object type in the ADI system. 

 

 

 

Property 7 Global Property 7 v17 Low Property 7 v17 High 
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Result 

The models initially failed due to the problem described further in section 4.4.1.2 which was 

overcome and models were then successfully imported in the functional structure and could 

be verified under TestCollection/ADIModelCollection 

4.4.1.2 Model import issue and solution 

The problem: Initially while importing the models in the ADI environment the entire PLS 

model including the spectral data set that used to generate the model was imported into the 

system. However during optimization of the MDE it was identified that the large size of the 

model resulted in slowing down the system. In extreme cases it would also cause the import 

to crash the ADI system resulting in unsuccessful model import.  

Solution: This problem was resolved in collaboration with CAMO. The author suggested to 

reduce the original size of the model so as to include only those components of the model that 

are required for the prediction of properties The solution therefore facilitated to only import 

the ‘short’ model’ and to remove additional data that was not required for a run time 

prediction such as the raw spectra used for calibration and various other parameters used for 

model development. The result was a ‘run time’ or short HM model that enabled successful 

import of the models.  

4.4.1.3 Validating Not a Number (NaN) within the test environment 

It is possible under certain conditions for empty or bad data (defined as NaN by the customer) 

to be returned to the system. From earlier learning the customer required for the system to 

handle the NaN for two scenarios: 1) for wave numbers in the spectra for which the predicted 

values remained undefined and 2) for the system to handle unexpected missing values in the 

spectra. If either of these situations occurred the system was required to populate the data 

fields with NaN.  In line with this requirement the ADI system was modified in order to deal 

with NaN. CAMO too made a number of changes to the way Unscrambler and its prediction 

engine performed when missing values or NaN values were present in the data set. CAMO 

reported the following changes to the Unscrambler and its prediction engines: 

1. Modification of the Savitzky-Golay Derivative functionality to handle missing values 

in the calculation 

2. Modification of the Predict functionality to process predicted values as non-

predictions when a missing value is present at a significant regression co-efficient. 
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Following the changes models were developed and the simulated spectra were chosen 

such that it would demonstrate the working of the NaN functionality.  

The PLS models developed for the testing are detailed below: 

1. Global Property 7: Spans the range of 10 to 65% Property 7 

2. High Property 7: Spans the range of 40 to 65% Property 7 

3. Low Property 7: Spans the range of 10 to 35 % Property 7 

As it can be seen from the above property ranges 35% to 45% is an undefined range. If the 

prediction property is within this undefined range then an alarm is generated by the 

prediction engine and the outcome of the result is reported to the ADI system. 

The three major wave numbers selected for testing the missing values are listed in Table 

4-2. 

Table 4-2: Wave numbers to test NaN 

Model Global High Low 

Wave number 

(cm-1) 

836.996 1078.07 1020.21 

 

The test scenarios listed in Table 4-3 were carried out and the pass/fail status of the tests was 

recorded. All the samples contained missing values at the start of the spectra and therefore 

acted as test cases for this system. 
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Table 4-3: Various test scenarios for HM Property 7 model 

Sample 

ID 

Test Definition Expected Result Acceptance 

(Yes/No) 

7 

Normal sample, Low 

Property 7 

Sample will pass both Global and Low 

Property 7 Prediction with no warnings 

Yes 

7a 

Fail sample at Global 

Property 7, (missing 

value at 836.996 cm-

1) 

Sample will fail at the Global Property 7 

level 1 with no prediction possible. 

Yes 

7b 

Fail sample at Low 

Property 7, (missing 

value at 1020.21 cm-

1) 

Sample will fail at the Low Property 7 level 2 

with no prediction possible. 

Yes 

7c 

Fail sample at Low 

Property 7, (missing 

value at 1018 cm-1) 

Sample will fail at the Low Property 7 level 2 

with no prediction possible. The missing 

value does not occur at a significant 

regression coefficient , but in a segment 

where the derivative converts it to a missing 

value at the significant coefficient 

Yes 

7d 

Normal sample, Low 

Property 7 (missing 

value at 1029 cm-1) 

Missing value close to a significant 

regression coefficient but in a segment that 

does not encapsulate the significant 

regression coefficient. 

Yes 

36 

Fail sample, OOS 

low Property 7. 

Sample will fail due to the predicted value 

being less that that expected for a Low 

Property 7 sample. 

Yes 

39 

Fail sample, No 

Evaluation 

This sample will fail since the predicted value 

lies within the No Evaluation region between 

35 and 40% Property 7. 

Yes 

42 Fail sample, No This sample will fail since the predicted value Yes 
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Evaluation lies within the No Evaluation region between 

35 and 40% Property 7. 

52 

Fail sample at High 

Property 7 level 2. 

This sample will pass the prediction value 

limits for Global Property 7 at level 1, but fail 

prediction for High Property 7 at level 2. 

Yes 

54 

Pass sample, High 

Property 7 

Sample will pass both Global and High 

Property 7 Prediction with no warnings 

Yes 

 

4.4.1.3.1 FAT to verify NaN is handled correctly within the system 

This test has been devised to verify if the NaN was handled correctly within the Unscrambler 

environment.  

Purpose of the Test 

To verify that the NaN are handled correctly 

Test Method 

The test data is described in Table 4-4: 

Table 4-4: Test Data for NaN Test 

Test Configuration Value 

CSV Data File Name TestSetMissingValues.csv 

Method Name ODProperty 7 Method 

Material Code 111 111 111 3 

Location Name Location 1 

Unscrambler Project File Name NewTestProject with Missing 

 

Following are the steps executed for the tests: 

1. Log into the Aspect Server and open the ADIServer configuration application and confirm 

that the TestSetMissing.csv appears as connection string. 
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2. Open this CSV file and confirm that the NaN value is present in some row(s) of the file. 

3. Log onto the Unscrambler Server and open Unscrambler. Load the 

<NewtestProjectwithMissing> model and create a new matrix. Populate the matrix with 

the csv file values. Select the created matrix and apply the HM prediction.  

The screenshot in Figure 4-7 are the results generated from the test. The NaN appeared as an 

empty cell within the Unscrambler environment however within the 800 xA system it would 

appear as NaN. 

The remaining part of the test that further confirmed the generation of model alarms on the 

faceplate by taking measurements in the ADI system can be found in the FAT internal 

documents. 

 

Figure 4-7: Screenshot of predicted Property 7 model results to test missing values 

4.4.1.4 ADI Background Tests 

Purpose of the Test 

To verify that the background acquisition functions is as specified in the SDS.  

  

Property 7 Global Property 7 v17 Low Property 7 v17 High 
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Test Method 

The test data used to perform the FAT tests are described in Table 4-5: 

Table 4-5: Test data for background tests 

Method Runtime Configuration Value 

Material ID 3562100940 

User ID U_ID_123456 

Method Name Property 7 

Batch ID PB_ID_123456 

Model Name Background 

Physical Stream/Analyser Name AKX1001779 

Location Name Location2 

Analyser Group NicoletiS10 

CSV file Background.csv 

 

A validated background is necessary to ensure that any background changes are accounted for 

in the sample measurement. For the analyser used in this project it was necessary to acquire a 

new background every 30 minutes into the process. The HM predict functionality was used on 

the background models to visualise the expected results which should appear within ADI. 

These results were used to visualise expected results for the test before they were used to 

acquire measurements. Figure 4-8 is an example of typical background model with the 

HMPredict functionality used to test its prediction capabilities. The alarms generated within 

model were visible to the operators on the 800xA faceplate. 

 

Figure 4-8: HM predict on Background diagnostic model 
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Results 

For the purpose of this test the variables were populated in the Method Runtime Aspect 

(MRA) of the Location object. Following this the successful import of background models 

was confirmed in the prediction server. The model was configured to the ‘Property 7’ method 

and measurements were taken using the Main Faceplate. The background diagnostics was 

confirmed by looking at the extended faceplate to ensure the background measurements were 

acquired. The method was then stopped and the test was passed once the faceplate returned to 

its original idle state. 

4.4.2 Method Configuration and Method Execution 

A method for the ADI system is an Object type that allows a user to define the offline 

configuration of a recipe which will be executed by the ADI system. The configuration of a 

method would include analyser settings, prediction and background models as well as other 

inputs such as constants, variables and process values. The configurations are saved in method 

configuration aspect in 800xA system. The method configuration aspect supports versioning 

of the methods and the most appropriate configuration would be approved and utilized for at-

line measurements.  

4.4.2.1 ADI Method configuration Test  

Purpose of the Test 

To verify that a method can be configured using the ADI system as specified in the System 

Design Specification (SDS) 

Test Method 

The test data used for FAT testing can be seen in Table 4-6 

Table 4-6: Test Data for Method configuration Test 

Method Name Property 7 Method 

Analyzer group FAT Analyzer 

Measurement Location Group Atline 

Sample Model FAT Model Test 

Background Model FAT Background Model Test 
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Results 

The detailed steps for executing method configuration in FAT and results of the tests 

conducted can be found in at-Line FAT specification document. The ADI method 

configuration test was successful with the method being approved and ready for taking at-line 

measurements. 

Figure 4-9 is a screenshot of a typical ‘ADIMethodConfig’ Aspect. Within this aspect the tabs 

for Analyser Settings, Inputs which would include the constants and process values and the 

Models tab which would consist of Sample model and Background model can be clearly seen. 

Once a method has been configured it then has to be Approved in order to be able use them to 

take at-line measurements. The Approved Method aspect can also be seen in the figure on the 

following page. 
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Figure 4-9: Screenshot of method configuration aspect 
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4.4.2.2 ADI Method Execution Test 

Purpose of the Test 

To verify that ADI method can be executed within the 800xA At-line ADI system as specified 

in the SDS. 

Test Method 

Table 4-7: ADI Method Execution Test Data 

Method Runtime Configuration Value 

Material ID 3562100940 

UserID U_ID_123456 

Method Name ABBINMethodTest1 

Batch ID PB_ID_123456 

Model Name Property 7 

Physical Stream/Analyser Name Analyser1 

Location Name Location 2 

Analyser Group Nicolet 380 

 

The Batch ID, User ID and Material ID were populated in the Method runtime aspect window 

which is opened by selecting the main faceplate aspect under the Location 2 aspect. After 

confirming the necessary configurations such as successful model import in the CAMO 

insight server, successful log configuration and if the correct version of method has been 

approved, the ‘ABBINMethodTest1’ method was executed using Main Faceplate for Location 

2 object.  

Results 

The test was passed after taking successful at-line measurements from the faceplate as per test 

procedure and was deemed completed when faceplate finally returned to its original ‘Idle’ 

state. 
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4.4.3 Method Compatibility Issue 

The customer has been using two different makes of Nicolet analyser: Nicolet iS10 and 

Nicolet 380 for at-line measurements and wanted the flexibility to use any of the two 

analysers’ with any method no matter which measurement location or analyser group the 

method belonged to. This situation turned out to be critical since one particular analyser group 

(either iS10 or 380) needed to be configured in order to approve a method.  

This problem was addressed by adding an additional setting for the analysers in the method 

and introduction of two separate analyser drivers for iS10 and 380. The FAT test carried out 

to ensure successful implementation of the change can be seen further in Section 4.4.3.1. 

Also with one method now being used across more than one analyser, ADI also had to tackle 

background validity issue. The customer had specific requirements for the background expiry 

settings such as if the background on one of analysers expired this should not affect the 

background of the other analyser: with both analysers being used across the same method. 

Section 4.4.3.1 also describes the tests that were designed in order to verify the background 

validity across methods and analysers.  

4.4.3.1 Method Compatibility Test with iS10 and 380 Analysers 

Purpose of the Test 

1. To verify that the same method can be used for both iS10 and 380 analyser instance. 

2. Review measurement to confirm that correct instrument settings are used on each 

instrument. 

3. Also confirm that the background is not shared with another measurement location. 

Test Method 

Table 4-8: ADI Method Compatibility Test Data 

Test Configuration Value 

Method Name ODProperty 6 Method 

Material Code 5555555551 

First Location Location 1 

Second Location Location 2 
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Prediction Property Name Property 3 

Property 7 

Property 1 

Property 2 

CSV file name NewTestSet.csv 

 

In order to be able to verify the method compatibility across analysers at different locations 

tests were performed to verify the analyser settings by monitoring the factory settings for each 

analyser. For Location 1 the factory setting were confirmed at 

C:\ProgramFiles(x86)\ABBIndustrialIT\ADIConnect\AnalyzerDriver\NicoletAdapter\config\. 

In the xml file the factory settings on the analyzer were confirmed by verifying that the Initial 

Value for parameter “Model” is set to “2” for analyzer 380. This would confirm that analyzer 

380 has been assigned to Location 1. The same parameter for analyzer iS10 is set to a value of 

“4” to assign it to Location 2.  

Results 

The measurements were initiated from the ECS server. Prior to the initiation of measurement 

the aperture setting on the each of the analyzer was recorded by navigating to 

[FunctionalStructure]Root/ADiConnectConfigObjects/ADIMethods/TestMethodCollection/<

Method Name>.  The aperture setting can be found out under the approved method tab and 

expanding the analyser radio button. The recorded aperture setting is seen Table 4-9. 

Table 4-9: Aperture size for analysers’ iS10 and 380 

Parameter Value 

Aperture_iS10 150 

Aperture_380 100 

 

In the ECS client the material code is assigned to the method to be executed as previously 

defined in Table 4-8. On selecting Location 1 to take measurement the sample barcode is 

inserted manually. A new background is taken for Location 1 with analyser 380 followed by 2 
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replicates of sample measurements. On completing this measurement cycle Location 2 is 

selected and the barcode inserted manually. On the next screen the background for this 

location was still invalid thus confirming that although same method is used for both the 

locations the background is not shared between the 2 locations. 

4.4.4 To demonstrate that Separate Background for Methods with the same Analyser 

settings are not required 

Following the initial FAT test it was observed that a new background was required for every 

method although the analysers used for both the methods were same. This phenomenon was 

raised as an observation deviation (OD). This issue was rectified for the next FAT and test 

specific to approve the functionality of the required background has been discussed further. 

Purpose of the Test 

To verify that methods sharing the same Analyser settings can have the same background on a 

particular instrument. 

Test Method 

The test data is described in Table 4-10: 

Table 4-10: Test method to verify background validity 

Test Configuration Value 

Method1 Name ODProperty 4 Method 

Method2 Name ODProperty 7 Method 

Material Code 1 1111111112 

Material Code 2 1111111113 

Physical Stream/Analyzer Name AGL0500230 

Background Age Method1 30 min 

Background Age Method2 30 min 

Prediction Property Method1 Property 5 

Property 2 

Prediction Property Method2 Property 7 
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Test Configuration Value 

Location Name Location 1 

 

The tests were carried out in a number of steps to ensure both the methods have the same 

analyser configurations and same background age. Initial steps designed to carry satisfactory 

working of this functionality have been discussed here. 

1. Log into the Aspect Server) as User1, navigate to [Functional 

Structure]Root/ADiConnectConfigObjects/ADIMethods/TestMethodCollection/

<Method1 Name>, click on the Approved Method aspect and under the analyzer 

radio button expand analyzer setting icon and click on stream. 

2. Confirm that the Background Age is set to <Background Age Method1>. 

3. Click on the sample radio button and record the configuration of the <Method1 

Name> in Table 4-11: 

Table 4-11: Test method to verify background validity: Method 1 configuration 

Parameter Value 

Velocity Type VELOCITY_TGS_6329 

Resolution Type RESOLUTION_4 

Low Frequency 650 

High Frequency 4000 

Numbers of Scans 4 

Allowable Out of Range Scans 1 

Gain Type GAIN_1 

Aperture 150 

Aperture 380 100 

Apodization Type APODIZATION_BEER_STRONG 
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Phase Method Type PHASEMETHOD_MERTZ 

Auto Set Filter FALSE 

Low Pass Filter Type LOWPASS_11000 

High Pass Filter Type HIGHPASS_20 

Interferogram Maximum 9.8 

Interferogram Minimum 2 

Peak Minimum 10 

Absorbance Peak Minimum -0.50 

Absorbance Peak Maximum 3.00 

 

4. Navigate to [Functional 

Structure]Root/ADiConnectConfigObjects/ADIMethods/TestMethodCollection/

<Method2 Name>, click on the ApprovedMethod aspect, under the analyzer 

radio button expand analyzer setting icon and click on stream. 

5. Confirm that the Background Age is set to <Background Age Method2>. 

6. Click on the sample radio button and record the configuration of the <Method2 

Name> in Table 4-12. 

Table 4-12: Test method to verify background validity: Method 2 configuration 

Parameter Value 

Velocity Type VELOCITY_TGS_6329 

Resolution Type RESOLUTION_4 

Low Frequency 650 

High Frequency 4000 

Numbers of Scans 4 

Allowable Out of Range Scans 1 
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Gain Type GAIN_1 

Aperture 150 

Aperture 380 100 

Apodization Type APODIZATION_BEER_STRONG 

Phase Method Type PHASEMETHOD_MERTZ 

Auto Set Filter FALSE 

Low Pass Filter Type LOWPASS_11000 

High Pass Filter Type HIGHPASS_20 

Interferogram Maximum 9.8 

Interferogram Minimum 2 

Peak Minimum 10 

Absorbance Peak Minimum -0.50 

Absorbance Peak Maximum 3.00 

 

Results 

Once the analyser settings are confirmed on both the methods, Method 1 is then initiated 

through ECS server. A valid background is taken using Method 1 on Location1 making sure 

the new background is valid for 30 minutes as set in the initial configurations with no further 

sample measurements taken.  

New set of measurements are then initiated using Method 2 on Location 1. A valid 

background is taken with expiry time of 30 minutes. The measurements are then aborted and 

aperture setting on analyser for sample and background measurements is changed from 100 to 

80. On initiating a measurement using Method 2 on Location 1 it could be seen that the 

background was now invalid as expected. To further verify if the changes on analyser setting 

for Method 2 affected Method 1 a new set of measurements was initiated using Method 1. It 

was observed that the background on Method 1 which was set to expire after 30 minutes was 
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still valid. This test confirmed that a separate background for analyser with same settings is 

not required.  

4.4.5 ADI Alarms  

Alarms and Events are used to inform the operator of the status of the system. Events give 

information regarding changes in the process and other operational occurrences. Events do not 

normally need immediate operator attention. Alarms are messages that alert an operator to an 

abnormal process or system state. Alarms generally need operator attention or actions. All 

alarms are events but not all events are alarms.  

Alarms can be split in two groups ‘model alarms’ and ‘process alarms’. Model alarms are 

configured and triggered (during method execution) within the prediction model and 

specifically reflect model deviations. Process alarms are configured and triggered within the 

ADI server and are used to reflect process deviations. Both model and process alarms are 

generated and time stamped within the ADI server.  

4.4.5.1 Prediction Alarms 

Prediction alarms are triggered in the run time model when the measurement values for the 

predicted properties and statistics are outside the Alarm and Warning Limits that are 

configured within the model. It is also possible to apply a separate process alarm to the 

predicted value which is configured within the method. This would be used where the process 

requires different limits of alarm from the model. In both cases the following limits are 

available as shown in Table 4-13. 

Table 4-13: Alarm Descriptions 

No. Alarm Model Alarm Description Process Alarm 

Description 

1 Warning Lo, Warning Hi, 

Alarm Lo, Alarm Hi 

A model tag with a 

defined alarm will go into 

alarm when predicted 

properties or statistics 

drift outside of the 

operating parameters for 

the model. 

A process tag with a 

defined alarm will 

go into alarm when 

the value of the tag 

moves outside the 

limits defined for 

process operation. 
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4.4.5.2 Sample Diagnostic Alarms 

Sample diagnostic alarms are triggered in the run time model when the measurement values 

for the Predicted Properties and Statistics are outside the Alarm & Warning Limits configured 

in the current model instance. 

4.4.5.3 Background Spectral Diagnostics Alarms 

Background spectral diagnostic alarms are generated in the ADI server when the background 

diagnostic checks are outside the Alarm and Warning Limits configured in the current model 

instance. 

4.4.5.4 ADI Alarm Test 

In order to be able to carry out alarm test models were developed such that would be able to 

demonstrate the functionality of the model alarms. It was also required to configure csv. files 

in a manner that various levels of alarms would be generated in order to successfully complete 

the defined test. 

Purpose of Test 

To verify both model and process alarms are generated and displayed correctly with an alarm 

list in the ADI server. 

Test Method 

Table 4-14: ADI Alarm Test set 

Test Configuration Value 

Method Property 7 

Location  Location 2 

CSV file HM_TestforAllAlarms 

 

For the purpose of this test ABBH.csv file was loaded into the measurement Location 2. On 

executing the selected method each simulated row in the csv file was arranged so that it would 

generate model alarms as designed within the model. To generate the process alarms the 

method was configured by setting the alarm limits under Input tab. The alarm limits were 

defined in a Method and depending on the predicted value the alarm would be classified as 
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either Warning Low (<10), Alarm Low (<0), Warning High (>30<40) or Alarm High (>40) 

The resulting process values have been recorded in Table 4-15. 

Table 4-15: Process Alarm 

Alarm Type Predicted Value Alarm Setting 

Warning Low 4.08 <10 

Alarm Low -17.84 <0 

Warning High 38.61 >30 <40 

Alarm High 60.8 > 40 

 

4.4.6 Model Data Export 

As previously explained in Section 4.3.1.6 the MDE is an important tool for chemometricians 

to access the spectral data along with relevant predicted values and lab values. Being able to 

access the right data at the right time is crucial to continuously improve and optimise the 

process operations. The FAT’s were planned such that it would cover the various 

combinations of data export as per customer requirements. The following screen shots (Figure 

4-10 to Figure 4-17) give an overview into the various filters that can be applied while 

exporting the data. The names of the models, methods, locations and property have been 

blanked out for confidentiality reasons. 
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The first step as seen in Figure 4-10 ensures that only the authenticated users may use the data 

exporter. 

 

Figure 4-10: Data export screenshot – User Authentication 

The next step allows the user to either load a saved query or start a new query to begin the 

data filtering process.  

 

Figure 4-11: Data export screenshot – New Query or Saved Query 
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Selecting start a new query brings up the first filter which allows the user to select a model. 

 

Figure 4-12: Data export screenshot – Model Selection 

The next screen shows all the available methods and method versions. The user can select one 

or more methods or method versions that have used the selected model. 

 

Figure 4-13: Data export screenshot – Method Selection 

 

HM Property 7 HM Property 7 Ver 1 
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The next two screens have various options to apply filters on number of variables such as 

location, time window, alarms, lab values etc. 

 

Figure 4-14: Data export screenshot – Variable Filter 

 

 

Figure 4-15: Data export screenshot – Variable Filters 



93 

 

The final filters are then applied on selecting templates for data export and also for generating 

the data either based on the predicted values or spectral data. 

 

Figure 4-16: Data export screenshot – Template Selection 

The last screen of the data export tool indicates if data has been successfully exported.  

 

Figure 4-17: Data export screenshot – Data Export Outcome 
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3.1.1.1 FAT for Data Export 

A number of tests were carried out to test the robustness of the MDE and optimise the tool for customer use. A number of issues were identified 

at the testing stages associated with model selection, method association, time filter, template layout etc. that were addressed and resolved prior 

to FAT. 

Table 4-16 lists the various tests performed and the purpose of various test scenarios. The first two tests were standard export of sample data and 

background data while the latter case studies looked at various combinations of test sets developed to verify the robustness and capability of the 

MDE for various data export scenarios. 

Table 4-16: Data Export Test List 

Type of Test  Purpose of Test Result 

Data export of Sample 

Measurement 

To verify that method data can be exported from ADI server 

into Unscrambler 10.2 by use of filters 

Data successfully exported using filters on 

Models, Method, Method Instance ID and 

Measurement locations.  

Export Background Data To verify Background data can be exported Data successfully exported for filter applied 

on the background models. 
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Export Lab Data To verify that the lab data can be exported in Unscrambler.  

Confirm that lab data can be assigned to a spectrum 

Confirm that data can be extracted and sorted according to 

presence or absence of lab data. 

Data successfully exported to Excel file and 

Unscrambler. 

Case Study 1 To verify that it is possible to export only data with lab 

results.  

To confirm if it possible to filter data according to an interval 

of sample number and that the filtered data may be exported 

from the ADI server into Unscrambler 10.2 by use of filters 

against test data supplied by the customer. 

 

Data was successfully exported for the 

interval sample number and lab results as 

supplied by the customer 
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Cast Study 2 To verify that model property position in ADI has no 

influence on the filtering. 

Verify that only lab results can be exported 

Verify that the measurements are tagged correctly according 

to ECS and that it is possible to filter data according to an 

interval of sample number. 

Verify that data may be exported from ADI server to 

Unscrambler 10.2 using filters against test data supplied by 

the customer 

The property position in every model is 

verified followed by taking new set of 

measurements. For the data export the filters 

were applied to sample number, lab data 

which successfully exported as per the test 

data supplied by the customer. 
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Case Study 3 To verify that it is possible to filter data on different 

parameters such as material number, UserID and batch 

numbers and that the data may be exported from the ADI 

server into Unscrambler 10.2 by use of the filters against test 

data supplied by the customer.  

The purpose is also to verify that only data with lab results are 

exported and that these are tagged correctly according to 

following parameters: 

 Sample Number (ECS) 

 Material number (ECS) 

 UserID (ECS) 

 Date/time (replicates) (ADI) 

 Instrument  (Measurement Location) (ADI) 

 Model versions (ADI) 

 MethodID’s  (ADI) 

 

Data successfully exported applying various 

filters as per customer requirements. 
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Case Study 4 To verify that method data may be exported from the ADI 

server into Unscrambler 10.2 by use of filters against test data 

supplied by the customer 

The purpose of this test is to verify that stat alarms/warnings 

are correctly regenerated in Unscrambler (by the HM 

Predictor) after export of spectra with alarm summaries of 

alarm or warning and compare with specific values in ECS. 

The data was successfully exported applying 

the relevant filters and the generation of 

alarms was verified by comparing using the 

HM Predict functionality in Unscrambler 

10.2 for HM Property 7 model  

Case Study 5 To verify that it is possible to use saved queries.  

 

For this test a new query was created in the 

data exported with selection on various 

filters such sample number, Location, Model 

alarms and Lab data. This Query was saved 

and exporter tool closed. To confirm the 

functionality of the saved query a new 

instance of data export was started by 

loading the saved query and exporting the 

data within Unscrambler. The data was 

successfully exported using the saved query. 
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Case Study 6 To verify that it is possible to trace instrument settings (e.g. 

numbers of scans, aperture size, gain, accessory ID etc.) 

The purpose of this test was to be able to 

trace instrument settings using the exported 

data. The data was exported using the filters 

on the model and the model version as well. 

The subsequent methods used with those 

models were then selected with further 

filters applied on the data export. As the data 

is exported with the method version it can be 

used to trace the instrument settings 

configured in the ADI server.  
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4.5 Chapter Summary 

This chapter looked at the PAT solution that was developed by ABB as per the customer 

requirements. With various components of the software such as the third party analysers and 

the Chemometric packages having OPC interface this product can be considered as the next 

step towards the successful implementation of the PAT concept within the pharmaceutical, 

bio-pharmaceutical, chemical and food & beverages industry.  

The chapter also discusses the in-depth scenarios of the various tests that were specifically 

designed by the author as a part of this project for the successful completion of the FAT’s. 

Since the product was novel in the market the system was configured and test sets were 

developed to showcase the working functionality of the product. The authors contribution to 

the ADI software involved integrating the existing chemometric models with the ADI system, 

generating the alarms within the ADI server using a simulated csv file and further being able 

to export the data to be accessible for continuous improvement and process optimisation. This 

not only required the understanding of chemometric model development but also the 

functioning of the ADI software. The work discussed in the thesis focussed on developing 

solutions to a number of issues that were resolved prior to conducting the FAT.  

This included:  

 addressing the method compatibility issue, 

  validation of background for various settings on the analysers and methods,  

 identifying the problem associated with the size of the model and suggesting 

modification of the imported models into ADI by stripping out passive data not 

required for property prediction,  

 generating required alarms within the system by manipulating the csv files and  

 ensuring successful export of data using the MDE. 

 After completing the FAT’s the product was successfully commissioned on site and has been 

taking regular at-line measurements from various parts of the world from a central location.  
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Project 2: Using Multivariate Analysis Techniques to 

Identify Crystallisation Problem in Polymerisation 

Reactor 
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5 Chapter 5 – Background information to the crystallisation problem 

5.1 Chapter Overview 

This chapter gives an overview of the project undertaken with an ABB customer who 

manufacture speciality polymers and have been facing an unknown crystallisation problem in 

their polymerisation reactors.  

Section 5.2 elaborates about the crystallisation problem addressed by the customer and 

possible multivariate solution that could be used to solve the issue. 

Section 5.3 further introduces to the problem in detail. 

Section 5.4 looks at the measurement and control for the polymerisation reactors reported in 

literature and looks at the actual control of polymer reactors at the customer site. 

Section 5.5 discusses how multivariate analysis could be used to solve the problem. 

Section 5.6 is the chapter summary. 

5.2 Introduction  

This project looks into a real industry problem in polymerisation process due to the 

occurrence of unexpected crystallisation in the reactor. Polymerisation is a process where 

polymers (plastics) are formed when monomer molecules react together to form linear chains 

or three dimensional network of polymer chains. There are two main kinds of polymerisation 

reactions: 1) addition polymerisation where monomer molecules add on to a growing chain 

one at a time with the process taking place over three steps which are initiation, propagation 

and termination and 2) condensation polymerisation where single monomer molecules are 

joined together to form polymer chains while forming by-product such as water. Polymers 

such as thermoplastics are formed through addition polymerisation.  

In addition polymerisation monomer x gets converted to polymer x with no by product 

formed during the reaction. In condensation polymerisation two or more monomers form a 

polymer plus a by-product is formed which is usually water. Condensation polymerisation can 

either form thermosetting polymers or thermoplastics. Thermoplastics are class of plastic that 

can be re-shaped and remoulded a number of times by heating and consecutive cooling of the 

polymers. Thermosets on the other hand cannot be reheated or reshaped once they are formed 

(McArthur and Spalding, 2004). 
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The customer is the world’s leading manufacturer of high performance Poly-ether-ether-

ketone (PEEK) polymer, a type of Thermoplastic that is used in aerospace, automotive, 

electronics, energy, medical and semiconductor industry. According to Zalaznik et al. (2015) 

the high performance polymer is becoming increasingly popular due to its excellent 

mechanical and thermal properties and are replacing metal in number of industries.  

At the customer site polymerisation takes place in a vessel containing 4 monomers and a 

solvent. The weights/proportions of the monomers are critical to the viscosity of the final 

polymer produced. With processing temperature of PEEK polymers extremely critical on the 

tribological properties of PEEK material Zalaznik et al. (2015) has reported significant impact 

of varying temperatures on the final polymer product and identified the importance of 

temperature on the final polymer product. The temperature control of the reactor is crucial to 

the process and in this case is controlled by means of a cascade control loop with contents 

temperature as the master loop and jacket temperature as the slave loop. The vessel contents 

are heated following a temperature profile which allows for reaction gases to be released in a 

controlled manner. The temperature profile is critical to the process as the product can 

crystallise/precipitate if sufficient heat is not applied. The temperature profile contains two 

holding points where the temperature is maintained at a constant level to allow gas evolution 

whilst mitigating the risk of crystallisation. The reaction is ultimately controlled by agitator 

power, the aim being to produce a polymer of a particular Molecular Weight (MW). 

The variability in MW gives them product quality issues, as does crystallisation (the engineers 

believe this could be leading to an increase in black spec as the crystals can scour off residue 

from the polymer vessel wall) and increase in level of foaming (leading to contamination 

from residue off the top of the vessel).  

The customer currently record the following online process values: jacket temperature, 

contents temperature, agitator power, agitator power rise, gas evolution (on some vessels), 

agitator speed and level (for foaming) and the following lab measurements: contamcount, 

moisture, precipitation, and molecular weight. Additional single point measurements taken for 

OEE purposes are: DPS, Hold 1, Hold2, Heat_250, DPSCharge, BDFDIFF, HQDIFF, 

SCDIFF, PolymerConcentration, H2LZ, Heat_Poly and BxDelay. The detailed explanation of 

the measured variables can be seen in Chapter 6 Section 6.2. 

Currently a crystallised batch is identified by a ‘kink’ in the contents temperature profile with 

no other quality variable able to further verify this unusual behaviour that may have an effect 

on the final product. However the work reported in the thesis established the fact that the 
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batches classified as crystallised (identified by monitoring the kink) did have an underlying 

unusual process behaviour that was different to a normal batch. Thus, although currently no 

quality variable is co-related to the crystallised batch, the unknown process deviation that 

manifests itself as a kink in the contents temperature profile is associated with the 

crystallisation problem reported by the customer. 

 The primary objective of MSPC that would be performed out on the dataset would be to 

provide early warning of changes in process behaviour which might be leading to 

crystallisation during polymerisation. The customer has attempted to identify the 

crystallisation issue by monitoring variables independently. However univariate SPC 

technique (the relationship between temperature profiles and crystallisation in this case) only 

considers the deviations from the target value and does not take into account the inter-

relationships that occur between variables. Valuable process information concerning the 

behaviour of the process may thus be ignored. Analysing the data using PCA method enabled 

to perform a multivariate analysis of the variables that will take into account the correlation 

between variables. 

Initially PCA models were developed from existing data gathered from ‘good’ batches – to 

understand why a good batch is successful. The developed models will then be superimposed 

onto the ‘bad’ batches - the purpose of this was to identify correlation between variables and 

the differences between good and bad batches. 

If the verification stage is successful and the root cause for crystallisation is identified using 

the PCA technique, the models can be further developed to handle a range of polymer 

reactors, products, grades or recipes. This would be an extension to PCA which would allow a 

number of grades to be monitored through a single generic model. 

Upon the successful creation of a prediction model capable of predicting ‘bad’ batches across 

all grades and reactors the project could further aim to propose an online solution which will 

provide process operators with early warning of batch deviation so that action can be taken to 

save the batch either manually or if possible by automated process control. Figure 5-1 is a 

workflow of the possible automated solution that would be suggested to predict crystallisation 

in the reactors. 
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Figure 5-1: Automated solution to predict crystallisation 

5.3 The problem 

The customer is the leading global manufacturer of high performance polyaryletherketones, 

including the versatile PEEK polymer. They have two operational powder plants with a total 

of six polymer reactors. A third plant is currently being built which will bring the total 

number of polymer reactors to ten. 

For some time now polymer reactors periodically exhibit an unexplained behaviour where 

process upset during the polymerization reaction leads to a phenomenon described as 

‘crystallisation’. This manifests itself as a ‘kink’ in the temperature profile after hold point 2 

during the heating cycle of the polymer reactors. If this kink occurs it is widely believed that 

crystals will be formed which will directly affect the quality of some product grades. This 

leads to the down grading or in the worst case total loss of a batch which in turn leads to loss 

of revenue.  

The customer has identified a number of theories as to why ‘crystallisation’ occurs during 

polymerisation. It has however been difficult to verify these theories as it takes a considerable 

amount of time to align the relevant data in order to look at the problem and even when this 

has been done there is no obvious single cause that has yet been identified. 

Polymerisation takes place in a vessel containing 4 monomers and a solvent. Weights and 

proportions of the monomers are critical to the final product quality. Figure 5-2 shows a 

typical sequence for the addition of monomers to the reactors. Hydroquinone (HQ) and 
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Diflurobenzophenone (BDF) that are the raw materials are first blended in Pre-Melt Vessel 1 

(PMV 1) and Na2CO3 followed by K2CO3 is then added to the Pre-Melt Vessel 2 (PMV 2). 

PMV 1, PMV 2 along with Diphenyl Sulphone (DPS) is then added to the polymerisation 

reactor. There is a cascade control loop around the jacket where the contents temperature 

controller is the master loop while the jacket temperature controller is the slave loop. The heat 

up profile, raw material quality and proportions are considered to be critical to crystallisation.  

 

Figure 5-2: Polymer Reactor 

Possible crystallisation reasons that have already been identified by the customer are: 

 Insufficient DPS 

 Faster than normal reaction rate  

 when incorrect polymerisation temperature profile is used (hold 1 temp to 

high)  

 Na2CO3 with a smaller particle size distribution 

 Insufficient heat input to the contents of poly vessel. 

 Holding polymerisation at contents temperature greater than 160°C 

 Sudden increase in KW rise at the end of hold 2  

PMV1 PMV2 
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 Sudden increase in contents temperature during heat up to polymerisation ( i.e. hold 2 

to end of polymerisation) 

The customer has been unable to identify one particular variable which defines crystallisation 

but have instead defined a batch as likely to be crystallised if there is a kink in the temperature 

profile after hold 2 in the contents temperature. This study will focus on the identifying 

possible variable deviation which could lead to the ‘kink’ in the profile. The heat up profile of 

typical batch can be seen in Table 5-1. 

 

Table 5-1: Typical heat up profile of polymerisation reactor 

Process  Temperature Duration 

Poly charge  135°C 40 minutes 

Heat to Hold one 135°C to 180°C 30 minutes 

Hold one 180°C 100 minutes 

Hold two 180°C to 200°C 40 minutes 

Heat to Poly 200°C to 302°C 120 minutes 

Polymerisation 305°C 120 minutes + 

‘cooking’ 

Endcap 305°C 30 minutes 

 

Figure 5-3 shows the heat up profile of good and a bad batch. The process usually starts at 

around 150 °C after which it is heated to hold 1 up to 180°C where it is held for about 100 

minutes. It is then further heated to hold 2 till 200°C and held there for another 40 min 

following heat up to polymerisation temperature of 302°C and final endcap up to 305°C. As 

in the figure unlike a good batch a bad or crystallised batch has a kink just after hold 2 

temperature of 200°C. This distinctive temperature rise in the profile has been observed in 

every batch that has been classified as crystallised batch. 
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Figure 5-3: Heat up profile of a typical Good and Bad batch 

Chapter 6 further discussed in the thesis looks in the application of multivariate methods to 

identify the cause of the problem using historical data that was provided by the customer.  
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5.4 Measurement and control of polymerisation reactors 

Batch reactors are more commonly used in polymerisation processes as they allow flexibility 

to process multiple products according to its own recipe with variable operating conditions. 

These reactors are also appropriate for low volume product and products with multiple grades 

which is commonly observed in speciality polymer production. Thus with variability between 

batches process control of the batch reactor is an important factor in order to be able to 

produce polymer with consistent properties in its final shape and form, for the intended 

application. Fundamental control models play an important role for the control of 

polymerisation reactors due to a number of reasons such as the lack of available online 

sensors, the complex polymerisation process and the non-linear operating space of batch and 

semi-batch reactors (MacGregor, 1988). Richards and Congalidis (2006) have discussed the 

measurement and control techniques based on their hierarchical approach framework as seen 

in Figure 5-4.  

 

Figure 5-4: The process control hierarchy (Richards and Congalidis, 2006) 

Traditionally in the polymer industries the variables measured in order to ensure robust 

control are process variables such as pressure, temperature, level, flow (PTLF), density, 

viscosity and quality variables such as composition of raw materials and final products, 

surface tension, molecular weight distribution and particle size distribution. The PTLF 

measurements are the fundamental measurements required for regulatory and advanced 

control strategies. In the case study discussed further in this report the temperature control 

around the reactor is maintained using a cascade control loop. A number of chemical 



110 

 

processes with non-linear behaviour have adapted the cascade control loop since it addresses 

the drawback of feedback control where deviation of controlled variable from a setpoint is the 

only time a control action occurs. With polymer properties being very sensitive to temperature 

changes cascade control resolved the hindrance in feedback and feed forward control by the 

addition of temperature on the reactor feed. Figure 5-5 illustrates the cascade control loop that 

is typically used in industry. The actual control for the reactor at the customer has been further 

discussed in Section 5.1.1. 

 

Figure 5-5: Conventional cascade control of polymerisation reactor (Richards and Congalidis, 2006) 

For composition measurement of raw material and finished product samples are normally 

send to the lab for analysis. However sampling and analysis in labs is time consuming and by 

the time the results arrive it is too late to make any control changes to optimise the process. 

Recently a number of advances have been made in sensor technology to allow online 

measurement of quality variables. Fibre optic linked devices such as Raman and NIR along 

with advancement in chemometrics have expanded the capabilities of these devices. Ohshima 

and Tanigaki (2000) have also looked into the modelling of inferential systems for 

polymerisation processes which can predict the quality of variables such as molecular weight, 

conversion, melt index, density etc. from process variables such as temperature and 

concentration in the reactors. The models developed have been categorised into three groups 

which is phenomenological model based on the models developed from first principles, 

empirical models derived from laboratory data and multivariate statistical models such as the 

PCA and PLS. 
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Final polymer quality depends on the molecular weight averages of the product during the 

polymerisation process. Gel permeation chromatography (GPC) has been used traditionally to 

monitor this variable.  

Particle size of raw material is another important variable which is a critical parameter for 

process performance and final product quality. A number of particle size measurement 

techniques are used in the industry such as optical imaging, electron imaging, optical 

diffraction and scattering, electrical resistance changes, sieving, sedimentation and ultrasonic 

attenuation. Measuring only the average particle is not always enough with the presence of 

different sizes in the population that could result in multimodal distribution. For the purpose 

of identifying the crystallisation problem the customer have monitored the raw material 

particle size of Na2CO3 for a short period of time using three different sizes of sieve. The 

purpose of this experiment was to be able to identify if variation in particle size of the raw 

material affects crystallisation in the polymerisation reactors. The particle size data was used 

to analyse the crystallisation problem and the results have been discussed in Chapter 6. 

5.1.1 Polymer reactor control at customer site 

The customer uses a cascade control loop to maintain the polymer reactors at the required 

temperatures. The reactor is under jacket control which is the slave loop during the initial 

monomer addition at the start of the polymerisation reaction. Once the set point temperature 

of 145°C is achieved control is then switched to the contents control which is the master loop. 

The contents temperature control is a split range control. Once the control is switched to 

contents temperature the set point ramps up to hold point 1 with rise in a degree every minute. 

The temperature probes used to monitor the temperature of the reactor have an accuracy of 

0.1% and are calibrated once a month.  

Figure 5-6 looks at the Hot Oil Service for polymer reactor 5 and polymer reactor 6 that is 

used to control the jacket temperature as well the contents temperature.  The hot oil services 

supply the hot oil to the jacket of the reactor. Depending on the set point the hot oil either 

passes through the cooler before entering the jacket or by-passes the cooler completely before 

being recycled into the reactor. Figure 5-7 is the screenshot of the faceplate used to control the 

reactor temperature for Poly 5 (Faceplate no – TIC40606) and Poly 6 (Faceplate no – TIC 

40607). 
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Figure 5-6: Screenshot for hot oil services 

 

Figure 5-7: Screenshot faceplate of the cascade control 
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5.5 Current Applications of MSPC Methods Reported in Literature 

There are a number of techniques to monitor/control the processes in real time: however this 

report will explore MSPC techniques applied in industry. In recent years SPC has gained 

importance in manufacturing industries with the need to monitor and control the processes in 

real time. As mentioned previously traditional SPC techniques which use SPC charts such as 

Shewart, CUSUM and EWMA to monitor and control the process variables are no longer 

satisfactory in modern process industries where large amounts of process data are collected 

containing variables with complex relationships. SPC which aims to identify cause for 

process deviation is different from a typical feedback control loop which functions by 

compensating for the process disturbances. Traditional SPC was based on monitoring only a 

few variables using univariate control charts. With the advent of computers and advanced 

measurement techniques, large amount of process and product quality data are being collected 

for reporting and continuous improvement of processes. Process measurements such as 

pressure and temperature are measured almost every second while quality data such as 

polymer molecular weight or viscosity are measured less frequently. However monitoring this 

data univariately or independently might be of little use since a number of variables in the 

process are correlated and need to be interpreted relative to each other. Multivariate methods 

analyse the variables simultaneously and also make it easy to detect an event otherwise 

unnoticed due to low signal to noise ratio in each variable.  

Monitoring a process using univariate control charts further developed into multivariate 

process control using the traditional monitoring charts such as Shewhart, CUSUM and 

EWMA. The use of these charts was practical in situations where less number of process and 

quality variables were monitored. These days most of the process operations measure and 

store large number of variables to monitor their processes. However with the highly correlated 

data and low signal to noise ratio the historical data is not utilised to its full potential to 

identify the key issues in a process. Multivariate statistical projection techniques such as PCA 

and PLS previously discussed in Chapter 2 tackle these issues by reducing the dimensionality 

of the variables in the principal component space. While PCA develops a predictive model for 

the process data (i.e. in the X data set) PLS is used to model two matrices such as process data 

(X) and the corresponding quality data (i.e. in the Y data set). Thus PLS analysis enables the 

prediction of quality attributes of the final product in future batches based on the model 

developed using historical batches. Any unusual event that would affect the final product 

quality would have its fingerprints in the process behaviour. In order to diagnose the 

occurrence of a special event multivariate control charts such as SPE and Hotelling’s T
2 
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provide a good indication of an out of control batch process. By further investigating the PCA 

model, the contribution plot for the scores and the monitoring statistics such as the SPE and 

Hotelling’s T
2
 multivariate analysis enables the diagnosis of the underlying problem in the 

process.  

A number of examples explaining the monitoring of polymerisation using multivariate 

projection techniques have been reported in literature. MacGregor and Kourti (1995) have 

described an example situation where the application of MSPC method to monitor a 

polymerisation process has been investigated. In the work published the data was unfolded 

batch wise and with the available process and quality data a reference model was developed. 

This calibrated or reference model was then used to classify a new batch as good or bad by 

monitoring the Hotelling’s T
2
 and SPE at each time interval. In another example of 

polymerisation control Ohshima and Tanigaki (2000) have proposed an integrated solution 

that focuses on on-line sensing and optimal grade changeover control. One of the major issues 

discussed in the paper is the plant wide control of polymer quality not only in the reactors but 

also in the blending and extruding operations. Lack of on-line sensors has been one of the 

major obstacles to ensure the quality control of polymer properties. Developing an inferential 

model using the process data to determine the polymer quality has been suggested in a 

number of publications. For example Khatibisepehr et al. (2013) have discussed the 

application of inferential models using three design procedures: 1) knowledge driven model 

based on first principle model, 2) data driven model also known as black box model and 3) 

gray box model that is a combination of first principle model and black box model. Fevotte et 

al. (1996) have highlighted the application of calorimetric sensors to perform an inferential 

estimation of unpredicted variation in a batch polymerisation process and Sharmin et al. 

(2006) have demonstrated the application of inferential PLS models to predict polymer 

conversion using measured process variables. Not only would these models enable online 

monitoring of product quality but also allows continuous process improvement. The 

application of the first principle models however can be complex due to the simultaneous 

estimation of kinetic parameters. At the same time calorimetric sensors can be prone to error 

due to noise in the temperature measurement and variations to heat transfer estimation 

parameters which are dependent on polymer conversion rate in the reactor. For the successful 

implementation of inferential models detailed knowledge of process variables would be 

helpful to design control systems to monitor and improve process operations. Figure 5-8 

describes the typical inferential model that can be used to determine the polymer quality 

based in the process data. Thus every time quality variable is available from the lab it is 
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updated by taking the difference between the predicted and the actual quality value. The 

updated model is then used to predict to the quality of the variable on-line until the next 

measurement is available from the laboratory. Faggian et al. (2009) has reported the 

application of MSPC technique to not only predict the product quality in batch process but 

also estimate the batch length in real time thus allowing the scheduling of manual 

intervention, optimisation of manpower and the forecasting of production time which in turn 

enables the optimal utilisation of plant equipment.  

 

 

 

 

 

 

 

 

 

 

5.6 Chapter Summary 

Extensive work has been reported in literature studying the application of MSPC techniques 

to monitor and control industrial polymerisation reactors. This project aims to identify an 

unusual crystallisation issue in the polymerisation reactors using the techniques reported in 

literature. What makes this problem unique is the missing link between process variables and 

quality variable or laboratory measurement to identify the root cause of crystallised batches.  

Exploratory data analysis has been performed on the historical process and quality data 

provided by the customer that have been further explored in Chapters 6. Crystallised or bad 

batches have been projected on the calibrated model to examine how the bad batches behave 

differently from the good batches and if crystallised batches cluster out separately as outliers. 

The next chapter investigates the various types of data (process and quality) that are used to 

identify the problem in the reactors using multivariate methods.  

Figure 5-8:  Inferential model to predict product quality 
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6 Chapter 6 – Application of Multivariate Analysis Methods to 

Identify the Crystallisation issue 

6.1 Chapter Overview 

This chapter carries out an analysis on the data provided to determine a relationship between 

the crystallised batches and the measured variables. The aim of the study was to identify the 

root cause of crystallisation using the MSPC.  

Section 6.2 explains how the crystallisation problem will be addressed using MSPC 

techniques within the scope of this project. 

Section 6.3 analyses the Quality and ‘Static’ process variables by developing a single PCA 

model for two reactors. 

Section 6.4 investigates only the quality data for Polymerisation Reactor 5 and Polymerisation 

Reactor 6.   

Section 6.5 further looks into the analysing the problem using the process data. This required 

unfolding the three dimensional process data to two dimensional data prior to applying the 

PCA model. 

Section 6.6 investigates the effect of particle size on the crystallised batches. 

Section 6.7 further investigates the additional process data provided by the customer and 

using the knowledge obtained from the previous process data analysis this section outlines the 

fingerprinting technique for identifying a typical bad batch. 

Section 6.8 summarises the chapter. 
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6.2 Introduction 

The problem will initially be looked at by applying PCA on the quality data, process data and 

particle size data. The quality data was available from the years 2008 to 2014 on all the six 

reactors for all the grades. With a typical batch time of approximately 8 hrs each reactor 

processed around 2 batches per day. Initially the process data was provided by the customer 

for Polymerisation Reactor 5 (Poly 5 or P5) and Polymerisation Reactor (Poly 6 or P6) from 

December 2012 to February 2014. For the process data analysis Section 6.5 uses the data that 

was provided for the first part of the project. Section 6.7 analyses the additional process data 

provided on Poly 5 reactor along with the data that has been used in section 6.4. With the 

initial analysis consisting of 19 quality variables and 9 process variables it is expected that 

these variables would be highly correlated with each other. 

Process data at the start of the project on Poly 5 and Poly 6 was obtained for around 1804 

batches which consisted of 8 crystallised batches on Poly 5 and 12 crystallised batches on 

Poly 6. For the analysis a total of 70 good and bad batches on Poly 5 and Poly 6 were 

selected. This included 50 randomly chosen good batches (24 good batches on Poly 6 and 26 

good batches on P5) and 20 crystallised batches (12 bad batches on Poly 6 and 8 bad batches 

on Poly 5). Also it was reported by the customer that batches producing Grade 450 

crystallised more than the other remaining Grades such as Grade150 and Grade 380. Thus it 

must be noted that only Grade 450 batches were selected for the analysis on both the reactors.  

Table 6-1 explains more in detail the genealogy of all the batches used in the analysis. 

Table 6-1: Genealogy of batches used for the analysis 

Batch Number Good Crystallised Poly 5 Poly 6 

B1-B12          
 

 
 

B13-B20  
  

 

B21-B44 
 

  
 

B45-B70 
 

 
 

 

 

Data analysis is divided in four parts depending on the type of data used in the study. In the 

first instance static process points at critical stages in the temperature profile were selected 

which were then combined with the quality data. A single PCA model was developed for both 
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Poly 5 and Poly 6 as seen in Section 6.3. Studying the results obtained using the static process 

data and quality data, individual models for each reactor were developed using only the 

quality data [Refer section 6.4]. Static process data can be described as measurements of 

process variables at specific instant during batch progression. The selection of static process 

points has been explained further in Section 6.3. Process data was investigated for Poly 6 and 

results have been discussed in Section 6.5. The three dimensional process data (Batches x 

Variables x Time) was unfolded using the batch-wise unfolding approach to enable batch to 

batch comparison. Additionally particle size data of Na2CO3 which is one of the raw materials 

added to the reactors was also provided with the corresponding quality data for the reactors. 

The particle size data however was provided only for Poly1, Poly 2, Poly3 and Poly 4.  

Section 6.5 in this report looks at exploratory data analysis that was performed on the particle 

size data provided and the results have been discussed further in this chapter.  

Table 6-2 lists the quality variables, Table 6-3 lists the process variables and Table 6-4 lists 

the static process variables that have been used for investigating the defined problem.  

In the following table DPS, HQ, BDF and SC are the raw materials used for the 

polymerisation process. 

Table 6-2: Quality variables description 

Variable name Type of Data Description 

Contamcount Quality Amount of blackspec measured in 

laboratory at the end of a batch 

Precip Quality Amount of precipitation in the 

product at the end of batch 

Moisture Quality Amount of moisture in the product 

at the end of the batch 

MW Quality Molecular weight 

DPS Quality Amount of DPS in the product at 

the end of the batch 

Hold 1 OEE (Quality) The time for which a batch is held 

at 180°C in the temperature profile 
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Hold 2 OEE (Quality) The time for which a batch is held 

at 200°C in the contents 

temperature profile. 

Heat_250 OEE(Quality) The time required for a batch to 

reach 250°C from hold point 2 

Heat_poly OEE (Quality) The time required for a batch to 

reach polymerisation temperature 

from heat_poly 

BxDelay OEE (Quality) Overall delay in a batch 

DPSChrg OEE (Quality) DPS input start of the batch 

BDFDIFF Quality BDF input start of the batch 

HQDIFF Quality HQ input start of the batch 

SCDIFF Quality SC input start of the batch 

H2LZ OEE (Quality) High level alarm 

Polymer concentration Quality Polymer concentration  

 

Table 6-3: List of process variables 

Variable Description 

Jacket Temperature Temperature of jacket around the 

reactor 

Contents temperature Temperature inside the reactor 

KwRise Energy input into the agitator 

Gas Flow Flow rate of gas 

Oil Temperature Temperature of oil into the jacket of 

the reactor 
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Pressure Pressure of the reactor vessel 

Condenser Temperature of the condenser 

Level Contents level in the reactor 

Agitator Speed of the agitator 

 

Table 6-4: List of 'Static' Process Variables 

Process Variables Description 

Initial Content Temperature Starting contents temp 

Initial Jacket Temperature Starting jacket temperature 

Temp 1 Contents Temperature at 

Hold point 1 

Jack 1 Contents Temperature at 

Hold point 1 

KwRise 1 KwRise at Hold point 1 

Gas Flow 1 Gas Flow rate at Hold point 

1 

Pressure 1 Vessel Pressure at Hold 

point 1 

Condenser 1 Condenser temperature at 

Hold point 1 

Level 1 Level in the reactor at Hold 

point 1 

Temp 2 Contents Temperature at 

Hold point 2 

Jack 2 Contents Temperature at 

Hold point 2 
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KwRise 2 KwRise at Hold point 2 

Gas Flow 2 Gas Flow rate at Hold point 

2 

Pressure 2 Vessel Pressure at Hold 

point 2 

Condenser 2 Condenser temperature at 

Hold point 2 

Level 2 Level in the reactor at Hold 

point 2 

Temp 3 End cap contents 

temperature 

Jack 2 End Cap Jacket 

Temperature 

KwRise 3 Endcap KwRise  

Gas Flow 3 Endcap gas flow 

Pressure 3 Endcap vessel pressure 

Condenser 3 Endcap condenser 

Temperature 

Level 3 Endcap Level in the reactor 

 

6.3 Quality + Static Process data analysis 

6.3.1 Materials and Methods 

In order to examine the process and quality data together an initial analysis was performed by 

merging these two sets of data. Four significant temperature points in the polymerisation 

process which are the Start Temperature of the reactor, Hold 1, Hold 2 and the Endcap 

Temperature were chosen. The relevant values for the variables were selected for the analysis 

at these four temperature points in the process. 



122 

 

‘Static’ points for process variables were selected for every batch which was then combined 

together with the quality variables. The main purpose of carrying out the analysis in this 

unique way was to be able to merge the process behaviour of batches with the product quality 

variables and carry out the analysis. This would also enable identifying the impact of process 

variables on the product quality variables and thus indicate possible reasons behind 

crystallisation in the reactor. PCA was performed on this data and the results of which have 

been discussed in Section 6.3.2. 

PLS regression method would have been an ideal way to establish the relationship between 

quality and process variables. However since no quality variable had a direct correlation to the 

crystallisation problem, it restricted the application of PLS regression technique.  

The heat map or correlation map in Figure 6-1 highlights inter-relationship amongst the 

various variables related to the process. An expected positive correlation is observed along the 

diagonal axis on the correlation map. Level 3 which is the level in the reactor at time point 3 

is negatively correlated with DPS and the Start Temperature in the reactor. A negative 

correlation is observed in KwRise 2 and H2LZ which would indicate that high KwRise 2 at 

time point 2 would result in low level in the reactor at hold 2.  PCA on the data set will further 

investigate the underlying behaviour of these variables influencing the process operation. 

 

Figure 6-1: Correlation map for Static Process and Quality Variables 

6.3.2 Results and Analysis 

PCA was performed on the good batches with a total of 41 variables using the PLS_Toolbox 

in the Matlab software. The scores plot for PC1 vs. PC2 is shown in Figure 6-2. PC1 only 

explains 28.72% variation in the data set and PC2 explains 12.78%. The lower percentage of 
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variance captured by the first few PCs may not only be due to the large number of variables 

used in the analysis but also due to the lack of strong cross-correlation in the dataset. An 

important observation detected in the scores plot is a clear separation between reactors Poly 5 

and Poly 6 is observed in PC1 [Figure 6-2]. This separation indicated a difference in variance 

for the two reactors suggesting that each reactor is controlled differently for the same product.  

 

Figure 6-2: Scores plot of P5 and P6 for quality and static process variables – PC1 vs. PC2 

This was further verified by looking at the univariate scores plot for PC1 as seen in Figure 

6-3. The batches produced by Poly 6 have a positive orientation while the ones on Poly 5 have 

a negative orientation indicating an obvious difference in the operation of the two reactors. In 

order to identify the variables that may be responsible for the orientation of the scores it was 

necessary to analyse the loadings plot as seen in Figure 6-4 and Figure 6-5. However due a 

random distribution of the variables in the loadings plot it was not possible to establish a 

consistent relationship between the batches and the variables 

 

Figure 6-3: Univariate scores plot for PC1 
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Following this analysis B44 that was good batch was identified as an outlier in PC1 vs. PC2 

scores plot. This batch was removed from the analysis and a new model was developed. Bad 

batches on both the reactors were projected on the new PCA model. Except for B64 all the 

bad batches clustered along with the respective reactor with all the batches lying within 95% 

confidence bounds as seen in Figure 6-6. 

 

Figure 6-6: Projecting bad batches on PCA model 
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Figure 6-4: Loadings plot of P5 and P6 for quality 

and static process variables PC1 vs. PC2 

 

Figure 6-5: Loadings plot of P5 and P6 for quality 

and static process variables PC3 vs. PC4 
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6.3.3 Conclusions 

The results indicated that both the reactors behave differently and therefore it would be ideal 

to model each reactor separately. On projecting the bad batches on the calibrated models, 

none of the crystallised batches separated out as outliers but instead clustered along with the 

good batches with the respective reactors. It can therefore be concluded that analysing the 

data by merging the quality and static process data was not able to identify the source of 

crystallisation or identify any correlation between variables. Modelling the quality data and 

process data separately for each reactor was therefore considered as more viable option to 

analyse the root cause of crystallisation. 

6.4 Analysis of Quality Data 

This section of the thesis discusses the Materials and Methods used to analyse Quality data on 

both of the Polymer reactors. Section 6.4.1.1 discusses the results obtained for Poly 5 and 

section 6.4.1.2 discusses the results for Poly 6. 

A total of 19 quality variables listed in Table 6-2 were used for this analysis. Most of these 

variables were quality measurements acquired in the lab at the end of the process except for 

Hold 1, Hold 2, Heat_poly and Heat_250 which are time measuring variables collected for the 

purpose of Overall Equipment Effectiveness (OEE). OEE is a best practice tool that is used 

within industry that enables monitoring and improving the efficiency of manufacturing 

processes. OEE is calculated by multiplying three data sources from machines which are 

Availability, Performance and Quality. OEE variables have been included in the analysis as 

they were eventually used to monitor the quality of the product. The central objective of doing 

a PCA on the quality data was to look for relationships within the quality variables and 

investigate if any of these variables might have a direct correlation to crystallised batches.  

A correlation map or heat map was generated using The Unscrambler software V.10.3 which 

gives an overview of existing relationship between quality variables in the raw data. Figure 

6-7 indicates a positive correlation between Hold1, Hold 2 and Heat_250 and a negative 

correlation between molecular weight & BDFDiff. Also the high level alarm (H2LZ) was 

negatively correlated to the time variables such as Hold1, Hold 2 and Heat_250. These 

correlations will be further investigated to identify the effect these variables have on the 

product quality. 
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Figure 6-7: Correlation map quality variable 

6.4.1 PCA on Quality data 

6.4.1.1 Poly 6 

PCA was performed initially on the good batches and bad batches were later projected on the 

PCA model developed for all of the 15 quality variables on Poly 6. The data was primarily 

auto-scaled to zero mean unit variance. By performing a PCA on quality data it was expected 

to identify if crystallised batches had correlation with measured quality variables. This would 

be evident in the scores plot if the bad batches clustered out separately from the good batches 

or if they are detected as outliers in the monitoring statistics. Table 6.5 details the variance 

captured by each PC and also the cumulative variance for retained PCs. The model explains 

71.88% of the variance contained in the data set.  
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Table 6-5: PCA model for Quality data on P6 

PC 

Number 

Eigenvalue of 

Cov(X) 

% variance captured 

by this PC 

% cumulative variance 

1 5.93 31.19 31.19 

2 2.70 14.23 45.42 

3 1.99 10.47 55.89 

4 1.63 8.57 64.46 

5 1.41 7.42 71.88 

 

From the bivariate scores plot for PC1 vs. PC2 in Figure 6-8 B30 was identified as an outlier. 

The remaining good batches lie within the 95% confidence bounds. However further 

investigating the model by analysing the influence plot in Figure 6-9 it was observed that 

along with Batch 30 being an outlier in Hotelling’s T
2
, Batch 19 and Batch 44 were outliers in 

Q-residual.  

 

Figure 6-8: PC1 vs. PC2 P6 Quality data 

 

 

Figure 6-9: Influence plot PCA model for P6 

 

To further look into the variables that may be responsible for the outlying batches the Q-

residual contributions for Batch 19 and Batch 44 and the Hotelling’s T
2
 contributions for 

Batch 30 were investigated. Figure 6-10 indicates that the contamcount variable in Batch 19 

has the highest contribution to the Q-residuals making it an outlier. Comparing the actual 

value of this variable with the remaining batches as seen in Figure 6-11  it further verifies the 

high contamcount contribution to the outlying behaviour of Batch 19.  
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Figure 6-10: Batch 19 variable contribution to Q-

residual contribution 

 

Figure 6-11: Contamcount comparison of all the 

batches 

Examining Batch 30 which indicated a high value in the Hotelling’s T
2
 contribution it can be 

seen that MW and BxDelay have a higher contribution to this batch [Figure 6-12]. Comparing 

the actual values of MW and BxDelay with the remaining batches in Figure 6-13 and Figure 

6-14 it can be seen that MW for Batch 30 is the lowest while the BxDelay is the highest as 

compared to the remaining good batches.  

 

Figure 6-12: Batch 30 Hotelling's T2 contribution 
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Figure 6-13: MW comparison for all the batches 

 

Figure 6-14: BxDelay comparison of all batches 

The influence plot in Figure 6-9 also indicated that B44 does have higher Q-residual statistic 

compared to the other batches. Analysing the Q-residual contribution for B44 in Figure 6-15, 

Hold1, DPS, Min_L and BxDelay were high contributors to the Q-residual statistic with Hold 

1 having the highest Q-residual value. Comparing the Hold 1 values for Batch 44 with the 

remaining batches that were used to develop the calibration model it can be seen that the 

actual value of Hold 1 for B44 is extremely high (Figure 6-16). 

 

Figure 6-15: Q-residual contribution for B44 

 

 

Figure 6-16: Comparing Hold 1 values 
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model redeveloped without B19, B30 and B44. The redeveloped model is a good calibrated 

model for the selected batches with all the batches lying within the 95% confidence interval. 

The crystallised/bad batches were then projected on this calibrated model. The scores plot for 

PC1 against PC2 in Figure 6-19 indicated that most of bad batches seem to fit the calibrated 
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model well. However B9 and B12 have been detected as outliers in the influence plot with 

high Q-residual statistic. Interrogating the contribution plots for these two bad batches a high 

value for BxDelay for B9 (Figure 6-21) and high value of moisture content was observed for 

B12 (Figure 6-22). The remaining bad batches remained within control with regards to quality 

variables. 

Also another important observation in the scores plot (Figure 6-17) indicated that all the 

batches were separating in two distinguishable groups. The first group roughly rests in the 2
nd

 

and 3
rd

 quadrant while the second group in the 1
st
 and 4

th
 quadrant. Tracing the batches back 

to the raw data indicated that the reason for the distinct separation in the batches was 

determined by the time of the year these batches were processed. The first group on the left 

hand side of the scores plot are the batches that were processed in the month of 

October/November 2013 while the ones on the right hand side were processed in the month of 

January 2014. The projected bad batches (Figure 6-19) which lie within the 95% confidence 

interval also distinguish themselves into the respective groups depending on when these 

batches were processed.  

 

Figure 6-17: PCA model without B19, 30 and 44 

 

Figure 6-18: Influence plot for PCA model without B19, 

30 and 44 
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Figure 6-19: Projected bad batches on PCA model 

 

 

Figure 6-20: Influence plot with the projected bad 

batches 

 

 

Figure 6-21: B9 Q-residual contribution 

 

Figure 6-22: B12 Q-residual contribution 
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6.4.1.2 Poly 5 

PCA was performed for randomly selected good batches on Poly 5. A PCA model with 26 

good batches that included 19 quality variables was developed retaining 5 PCs explaining a 

total of 72.56% variance in the data set as seen in Table 6-6. 

Table 6-6: PCA model for Quality data on Poly 5 

PC 

Number 

Eigenvalue 

of Cov(X) 

% variance captured 

by this PC 

%  cumulative variance 

1 4.91 25.82 25.82 

2 3.18 16.76 42.58 

3 2.36 16.76 55 

4 1.84 9.67 64.67 

5 1.50 7.89 72.56 

  

The scores plot for the first 2 PCs and the influence plot indicated that there are no outliers in 

the calibration set. After developing the calibration model 9 crystallised batches were 

projected on it. The scores plot for PC1 vs. PC2 (Figure 6-23) does not suggest any bad 

batches as outlying or extreme with respect to the calibration model. However studying the 

Influence plot in Figure 6-24, B49, B47 and B50 have Q-residuals higher than the remaining 

bad batches and lie outside the 95% confidence bounds.  

Figure 6-23: PC1 vs. PC2 for P5 PCA model Figure 6-24: Influence plot P5 

Investigating the contribution plot for B49 as seen Figure 6-25 it was noted that Heat_250 
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comparing the actual values of these variables with the other bad batches it was observed that 

Heat_250 and Contamcount were the main contributors to the outlying batch. 

B47 was an outlier due to low value of HQDiff when compared to the other batches as seen in 

Figure 6-30 and Figure 6-31. An unusual high value for SCDiff and H2LZ seems to be the 

reason for making B50 an outlier in the influence plot. 

 

Figure 6-25: B49 Q-residual contribution plot 
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Figure 6-26: Comparing the Heat_250 for bad batches 

on P5 

 

Figure 6-27: Comparing contamcount for bad batches 

on P5 
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Figure 6-32: B50 Q-residual contribution 

 

Figure 6-33: Comparing SCDiff for bad batches on P5 
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Figure 6-28 - Comparing the Hold 2 for bad batches on 

P5 

 

Figure 6-29 - Comparing DPSCharge for bad batches 

on P5 

 

Figure 6-30: Q-residual contribution plot for B47 

 

Figure 6-31: Comparing the HQDiff for bad batches on 

P5 
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6.4.2 Conclusion 

As mentioned previously in the introduction the customer has not been able to identify a 

quality variable that would indicate a direct correlation to a crystallised batch. They have 

contemplated a possible direct correlation of the contamcount variable with the crystallised 

batches. This is because as crystallisation occurs in the reactors it scours off the inside of the 

reactor which possibly increases the amount black spec in the reactors. The amount of black 

spec in the final product is measured in the contamcount variable and customer speculates that 

this variable might have a direct correlation to the crystallised batch. One of the purposes of 

carrying out multivariate analysis was to identify one or more variables that would establish a 

direct relationship to crystallised batches. 

The quality data analysis on both the reactors has explored the option of establishing this 

relationship between contamcount and crystallised batch. An unusually high contamcount was 

observed on B19, a good batch used as test set to develop the calibration model. However 

none of the other bad batches on Poly 6 exhibited an out of specification value for the 

contamcount variable. B49 which is a bad batch on Poly 5 did showcase a high contribution 

for the contamcount variable and could be a possible cause of making it an outlier in the 

Influence plot. However this observation was only seen in B49 and was not consistent with 

any of the other crystallised batches. The two other outlying bad batches on Poly 6 were out 

of limit due to high moisture content and a longer batch delay. On the other hand variables 

such as HQDiff, SCDiff and H2LZ (High level alarm at Hold 2) were responsible for the 

outlying bad batches on Poly 5. Looking at the results from the MPCA analysis it can be 

concluded that none of quality variables used in the investigation were able to identify the 

root cause of crystallisation. 
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6.5 Polymerisation Reactor 6 - Process Data Analysis 

Following the analysis of quality data it was decided to carry on investigating the problem 

using only the process data. Initially for the process data analysis the model was developed 

only for Poly 6 since it consisted of greater number of crystallised batches than Poly 5. The 

results obtained were presented to the customer following which additional process data was 

provided to further carry out the investigation discussed in Section 6.7. 

6.5.1 Materials and Methods  

The same set of 36 batches used in the quality data analysis that included 12 bad batches and 

24 good batches on Poly 6 were selected for the current investigation. The data was unfolded 

from three dimensions to two dimensions such that the batch direction would be preserved 

and allow batch to batch comparison. 

6.5.1.1 Pre-processing 

Prior to unfolding the bad batches they were all plotted together to examine if they are time 

aligned and if the kinks followed a similar pattern. As can be seen in Figure 6-34 all the 

batches seem to start and end at the same time. This is because the data provided by the 

customer had same number of total time points for every batch which was averaged over six 

seconds for the entire batch. Also the pattern of the kinks seems to be following a similar 

trend but occurring at different time points as well as at varying temperatures. As seen in 

Figure 6-35 Batch 12 kinks around time points 2555 which is at a temperature of 241°C and 

Batch 4 kinks at 225 ° C which is at time point 2273  

 

Figure 6-34: Heat up profile of bad batches on P6 
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Figure 6-35: Contents temperature profile for B4 and B12 

To perform MPCA using batch-wise unfolding method a total of 1081 time points were 

selected for each batch to ensure equal length of batches. The data was selected so as to 

incorporate the kink in the contents temperature profile. Since the position of kink varied 

between batches as seen previously in Figure 6-35 these data points were selected after the 

hold point 2 which was +/- 1700 to the endcap temperature time point of +/-2800 (Figure 

6-36).  

The data was unfolded in Matlab version R2012a by applying reshape and concatenate 

commands. Once the data was unfolded (for the 36 batches) it was pre-treated by auto scaling 

the matrix to mean zero unit variance. Auto-scaling the matrix removed the mean trajectory in 

the data set.  

 

Figure 6-36: Time point selection for MPCA 
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6.5.2 Results and Analysis 

The unfolded data (36 x 9729) for 1081 time points and 9 variables was auto-scaled followed 

by cross validation using the random subsets with 10 splits and 5 iterations. PCA model was 

developed retaining 6 principal components explaining 71.10% cumulative variance. B30 and 

B44 were identified as outliers in the Hotelling’s T
2
 while B31 and B39 were high in residuals 

in the influence plot seen in Figure 6-37. 

 

Figure 6-37: PCA model Process Data 

The PCA model was re-developed without the outlying batches and retaining 6 PCs. The bad 

batches were then projected on this model. Table 6-7 shows the final PCA model developed 

for the process data on Poly 6. 

Table 6-7: PCA model for Process data on Poly 6 

PC Number Eigenvalue of 

Cov(X) 

% variance captured 

by this PC 

% Cumulative Variance 

1 3.86 e003 39.72 39.72 

2 1.54 e003 15.85 55.57 

3 7.89e002 8.11 63.68 

4 5.17e002 5.31 69 

5 4.67e002 4.80 73.80 

6 3.81e002 3.92 77.72 
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Whilst the scores plot illustrates the relationship between different batches only one batch is 

detected as an outlier in the PC1 vs. PC2 scores plot shown in Figure 6-38. The influence plot 

however indicates three bad batches which are B6, B9 and B12 as extreme outliers while B5 

and B8 are just outside the 95% confidence bounds for Q-residuals.  

 

Figure 6-38: PC1 vs. PC2 PCA model for process data 

on P6 

 

Figure 6-39: Influence plot for process data model 

Investigation of the Q-residual contribution plot for B6 and B9 indicated that the agitator 

speed and KwRise were the problem variables for the outlying batches. The raw data showed 

that Agitator speed and KwRise for both these batches was lower than all the other batches at 

time point 2208 as captured in Figure 6-40 and Figure 6-41. B12 on the other hand is an 

outlier due to high level in KwRise as seen in Figure 6-42. However unlike B6 and B9 the 

KwRise for B12 is much higher than for the other batches at a time point 39 which is after 

hold 2. 

 

Figure 6-40: Comparing agitator rise at time point 

2205 

 

Figure 6-41: Comparing KwRise at time point 2208 
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Figure 6-42: Comparing KwRise at time point 39 

6.5.3 Conclusion 
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From this analysis it was concluded that there was no clear link between crystallised batches 
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6.6 Particle size analysis 

The particle size of Sodium Carbonate (Na2CO3) is crucial for the rate of reaction in the 

polymerisation reactors. However with much smaller quantities of the Na2CO3 required for 

the polymerisation reaction the customer is unable to obtain the exact particle size required 

for their process and have to accept the raw material size as provided by the suppliers. To 

analyse if particle size might be having an impact on crystallisation the customer monitored 

the particle size of raw material on reactors 1, 2, 3, and 4 for a limited period of time. These 

measurements for raw material particle size were carried out using three different sizes. This 

section of the report analyses the effect of particle size of Na2CO3 on the quality data.  

6.6.1 Materials and Methods 

The core objective of doing PCA with quality and particle size data was to characterise any 

correlation between the crystallised batches and particle size. The particle size data was 

provided for Poly 1, Poly 2, Poly 3 and Poly 4 from 30
th

 January 2014 to 9
th

 February 2014. 

This is the time period when the experimental trials to measure to particle size were carried 

out on site. The particle size data measured for the experiments was 1) total charge weight, 

particles size 2) >106, 3) between 106-53 and 4) <63. In addition a total of 14 quality 

variables were also included in the analysis. The genealogy of the batches used in the analysis 

can be seen in Table 6-8. The good batches were randomly selected around a similar time to 

the bad batches. 

Table 6-8: Genealogy of Batches used Particle size analysis 

Batch Number Reactor Type 

B1-B4 Poly 1 Bad 

B5 Poly 2 Bad 

B6-B8 Poly 3 Bad 

B7-B12 Poly 4 Bad 

B13-B21 Poly 1 Good 

B22-B30 Poly 2  Good 

B31-B42 Poly 3 Good 

B44-B49 Poly 4 Good 
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6.6.2 Results and Analysis 

A PCA model was developed for good batches, and the bad batches were projected on the 

model. The model was developed retaining 5 PCs explaining total of 72.01% cumulative 

variance as seen in Table 6-9. 

Table 6-9: PCA model for Particle Size Analysis 

PC Number Eigenvalue 

of Cov(X) 

% variance captured 

by this PC 

% cumulative variance 

1 7.16 26.53 26.53 

2 4.85 17.98 44.51 

3 3.03 11.24 55.75 

4 2.34 8.67 64.41 

5 2.05 7.60 72.01 

 

Figure 6-43 that looks at scores plot indicates that the batches on Poly 4 have clustered out on 

the right hand side of the plot as compared to the batches from the remaining reactors. This 

observation was consistent for both the calibrated and the projected data.  

 

Figure 6-43: Scores plot PC1 vs. PC2: Particle size 

data 

 

Figure 6-44: Loadings plot PC1 vs. PC2: Particle size 

data 
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for this reactor and this can be attributed to the fact that the size of Poly 4 is larger than the 

rest of the three reactors thus requiring larger amounts of raw material. 

 
 

Figure 6-45: DPSCharge Good Batches 

 
 

Figure 6-46: DPSCharge Bad Batches 

Further investigation of the influence plot for the good and bad batches shows that Batch 12 is 

an extreme outlier in terms of Hotelling’s T
2
 and Q-residuals (Figure 6-47). The Q-residual 

contribution for this batch indicates unusually high PMVCharge as the reason for the batch 

being an outlier. Zooming in on the remaining batches in the influence plot (Figure 6-49) 

indicated five other batches with high Q-residual indicating the presence of a new behaviour 

present in the abnormal batches. 

 

Figure 6-47: Influence plot Particle size data 

 

 

Figure 6-48: Q-residual contribution of B12 Particle size 

data 
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Figure 6-49: Influence plot for Particle size data zoom in 

Investigating the contribution plot for these batches indicated a number of different variables 

responsible for the outlying batches. For example Batch 11 was an outlier due to high 

contribution of particle size 106-63. While for batch 7 there were two variables 1) Jackmax 

and 2)106-63 that were higher than the remaining batches. A high contribution in CDV charge 

and CDV delay made Batch 3 an outlier in the Q-residuals plot and a high contamcount made 

Batch 9 an outlier in the influence plot. B6 was just outside the 95% confidence bounds for 

the Q-residuals because of high value of Heat_250 and moisture as compared to the remaining 

bad and good batches. Thus it can be said that 50% of the bad batches did cluster out from the 

calibrated model however only couple were identified as outliers due to the particle size. Also 

no particular variable was identified to be responsible for the outlying batches in the Q-

residuals. 

 

Figure 6-50: Batch 7 106-63 particle size 

contribution 

 

Figure 6-51: Batch 7 Jackmax contribution plot 
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Figure 6-52: Batch 3 CDVDelay particle size analysis 

 

Figure 6-53: Batch 3 CDVCharge particle size 

analysis 

 

 

Figure 6-54: Batch 9 Contamcount Particle size 

analysis 

 

Figure 6-55: Batch 6 Heat_250 Particle size analysis 

 

6.6.3 Conclusion 

An initial analysis on the data did not indicate any significant correlation between the 

crystallised batches and the particle size of Na2CO3. Although two of the bad batches (B7 and 

B11) behaved differently due to particle size, this behaviour was not consistent across the 

majority of crystallised batches. Batches on Poly 4 clustered out from the batches on 

remaining reactors due to larger quantities of raw material added to this reactor. This was due 

to larger size of Poly 4 in comparison to the other reactors.  
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6.7 Polymerisation Reactor 5 – Process Data Analysis 

Following an initial analysis on the Process and Quality data for reactors additional process 

data was provided from April 2014 to June 2014. The data was made available for the Poly 5 

reactor with additional crystallised batches identified on the new data set. For the analysis 

currently studied in this section the first set of data provided at the beginning of the project 

and the new data set were merged together. Unlike process data analysis for Poly 6 discussed 

in Section 6.5 where data was unfolded using only the batch-wise unfolding method, this 

section analyses the process data for Poly 5 using batch-wise unfolding method as well as 

variable-wise unfolding method. Through the application of the both these unfolding methods 

combined with the analysis of other statistics such as Hotelling’s T
2
 and Residuals, it was 

possible to develop the fingerprinting method discussed further in Section 6.7.4.  

For Poly 5 a total of 69 batches were used for the investigation that included 23 bad batches. 

An exploratory data analysis was carried out using the MPCA technique with the aim to 

observe 1) if bad batches clustered out from the good due to unexplained behaviour in the 

process data indicating the reason for crystallisation in the reactor and 2) if it is possible to 

fingerprint a bad batch using the process data. 

With the crystallisation occurring after hold point 2 the customer believed that analysing the 

data in the process after hold point 1 through to the endcap temperature would be important. 

A total of 1000 time points were selected for every variable based on the contents temperature 

(in order to include the kink) starting from time points 1500 (which was generally after hold 

point 1) to around samples 2500 which is just before the polymerisation temperature as seen 

in Figure 6-56. 

 

Figure 6-56: Variable Selection based on Contents Temperature Profile 
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6.7.1 Unfolding, Pre-treatment and Analysis 

Following the process data analysis discussed in Section 6.5 it was decided to include only 

four variables out of nine that were initially utilised. Thus, jacket temperature (Variable 1 or 

V1), contents temperature (Variable 2 or V2), KwRise (Variable 3 or V3) and level (Variable 

4 orV4) were the four variables included in this analysis. The results from the previous 

analysis indicated that Contents temperature and KwRise were crucial to the unusual 

behaviour of crystallised batches which justified their inclusion in the analysis. Also since 

Jacket temperature controls the contents temperature it was important to include this variable 

as well. The level control was included in the analysis since crystallisation in the reactor 

results in foaming which increases the level in the reactor. The data was unfolded in two ways 

1) batch wise and 2) variable wise using the Matlab version R2012a software and the models 

developed have been discussed further. The Matlab code used to unfold the matrices has been 

attached in Appendix B. The batch-wise  unfolding method allows batch to batch comparison 

while variable-wise unfolding unfolding analyses variables across the batch time.  

6.7.2 Material and Methods 

Table 6-10 shows a list of the batches on Polymer reactor 5 selected to perform the analysis. 

A total of 69 batches that included 23 bad batches and randomly selected good batches are 

used in this thesis.  

Table 6-10: P5 Batches used for analysis 

 

This sub-section looks into MPCA model that has been developed for Poly 5. PCA models 

were developed using two different unfolding methods. The results obtained from both 

methods were compared along with control charts and raw process data to identify the root 

cause of crystallisation.  

Batches Type Time period 

B1-B7 Bad Oct 2013-Jan 2014 

B8-B23 Bad April 2014 – June2014 

B24-B40 Good Oct 2013 – Jan 2014 

B41-B69 Good April 2014 – Jan 2014 
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6.7.2.1 Nomikos and Macgregor Approach 

An MPCA model was developed using only the good batches and retaining 6 principal 

components to explain around 85% variation in the data set [Table 6-11]. Figure 6-57 and 

Figure 6-58  looks at the influence plot for PCA model with 95% confidence bound and 99% 

confidence bound respectively. Both the figures indicate B35 as an extreme batch with high 

values for both the statistics. B30 and B50 were detected as outliers with a higher Hotelling’s 

T
2
 statistic. Although B38 and B40 were outliers in the Q-residuals they were still retained in 

the model to avoid over fitting the model by removing too many calibration samples. It was 

therefore decided to exclude B30, B35, and B50 and re-model the data. The bad batches were 

then validated against this model to identify how well they fitted the calibrated model. The 

obtained results have been further discussed in detail in this section.  

Table 6-11: PCA model Poly 5 Batch wise unfolded 

PC number Eigenvalue of 

Cov(X) 

% variance captured 

by this PC 

% cumulative variance 

1 1.84e+03 45.88 45.88 

2 6.03e+02 15.07 60.95 

3 4.04e+02 10.10 71.06 

4 2.39e+02 5.97 77.02 

5 1.67e+02 4.17 81.19 

6 1.21e+02 3.02 84.21 

 

 

Figure 6-57: PCA model on P5 Good batches with 95% 

confidence bounds 

 

 

Figure 6-58: PCA model on P5 Good batches with 99% 

confidence bounds 
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The Hotelling’s T
2
 analysis as seen in Figure 6-59 which looks at the good and bad batches 

and Figure 6-60 which only looks at the bad batches distinctly identifies the abnormal 

crystallised batches. The Q-residuals plot in Figure 6-61 and Figure 6-62 indicates most of the 

bad batches as being abnormal. This plot indicates a new behaviour in the bad batches not 

explained in the PCA model developed using the good batches. 

 

Figure 6-59:  Hotelling’s T2 Good and bad batches 

 

 

Figure 6-60: Hotelling’s T2 Bad batches on P5 

 

 

Figure 6-61: Q-Residuals Good and Bad batches 

 

Figure 6-62: Q-residuals Bad batches on P5 
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Figure 6-63: P5 Influence plot Good and Bad batches with 95% confidence bounds 

Further analysing the outlying batches in the influence plot [Figure 6-63] it can be seen that 

B11 is extremely located as compared to the remaining bad batches. B1, B5, B9, B10, B12, 

B16 and B23 are also outside the 95% confidence limits in Q-residuals as well as the 

Hotelling’s T
2
 statistic. Figure 6-64 looks at the influence plot for good and bad batches but 

with 99% confidence bounds. The plot indicates B5 as the only abnormal bad batch. In order 

to take into consideration the worst case scenario influence plot with 95% confidence bounds 

has been used for the analysis. 

 

Figure 6-64: P5 Influence Plot – Good and Bad batches with 99% confidence bounds 
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In order to further examine the abnormal batches and identify the variables leading to the 

variation in these batches contribution of individual variables were studied which are 

discussed further in Section 6.7.3. 

6.7.2.2 Variable-Wise Unfolding Approach 

For the data set unfolded using the variable-wise unfolding approach, a PCA model was 

developed retaining 2 PCs explaining about 89% variance in the data set. It is observed that 

the percentage variance explained in the model by retaining just 2 PCs is significantly higher. 

This is because of the high correlation between the variables when the data is monitored using 

the variable-wise unfolding approach than when it is analysed using the batch-wise unfolding 

approach.  

Table 6-12: PCA model Poly 5 Variable wise unfolded data  

PC Number Eigenvalue of 

Cov(X) 

% variance captured 

by this PC 

% cumulative variance 

1 2.37 59.35 59.35 

2 1.20 30.00 89.35 

 

The model was developed using the same set of batches as used in the batch-wise unfolding 

approach. The scores plot for the model developed using the good batches is seen in Figure 

6-65. 

 

Figure 6-65- Calibration model developed using 46 batches measured across 1000 time points 
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The outlying points in the scores plot that followed the trend with the normal points were 

retained however the individual outliers from the above model were removed and model was 

redeveloped. The bad batches were then projected to develop a predictive model. In order to 

analyse the scores plot the scores matrix was re-arranged as previously explained in Chapter 

2, Section 2.7.2, so as to explain the trajectory of the variables as the batch evolves. The re-

arranged scores matrix for every batch has been compared with the contribution plots 

obtained from batch-wise unfolding analysis to identify the crystallisation problem in the next 

section. 

6.7.3 Results and Analysis 

This part of the report looks into the results obtained from unfolding the data using the batch-

wise unfolding approach and the variable-wise unfolding approach followed by the analysis 

of various other plots to identify the crystallisation issue. Unfolding the data set using the 

batch-wise unfolding approach looks into batch to batch variation in the process data while 

the variable-wise unfolding approach tracks the behaviour of variables across time. By 

comparing the results from both methods followed by analysing other statistical and raw data 

plots the report aims to narrow down the reasons for crystallization solely based on anomaly 

in the process data. The influence plot in Figure 6-63  emphasises the bad batches as outliers 

in either Hotelling’s T
2
 or Q-residuals or both. Batches that are outliers in both of the statistics 

can be considered to be more extreme than the rest. The following analysis starts with the 

discussion around the most extreme batch on the influence plot (Batch 11), followed by the 

analysis of the remaining batches lying outside the confidence bounds. 

B11 is the most extreme batch in both the monitoring statistics. In order to identify the 

problem variables the contribution plots for the Q-residuals were analysed as seen in Figure 

6-66. The extreme behaviour in B11 can be attributed to high contribution of variables at the 

end of the plot. This behaviour of Q-residual contributions is different from a typical good 

batch as seen in Figure 6-67 and Figure 6-68. Also both the good batches have a lower total 

value of Q-contributions at 490.8 and 308.1 as compared to B11.  Figure 6-69 and Figure 

6-70 look at the contribution of variable 1 which is the jacket temperature of all the bad 

batches at time points 3883 and 3845 (With 1000 points analysed for the four variables 

retained in this analysis, the x-axis has a total of 4000 variables in the contribution plot). It 

can be clearly observed that B11 has the lowest value for the jacket temperature as compared 

to the remaining bad batches.  
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The variable-wise unfolding approach analysis of the batch as seen in Figure 6-71 indicates a 

normal trajectory within the defined statistical limits of +/- 2 and 3 standard deviation for 

most of the batch. A small blip in the profile at the end of batch can be attributed to the low 

value of jacket temperature as observed in the batch-wise analysis. The location of the drop in 

jacket temperature coincides with the kink in the temperature profile (Figure 6-72). No other 

process deviation can be observed across the time and between variables for the batch. 

 

Figure 6-66: Q-residual contribution plot - Batch 11 

 

 

Figure 6-67: Q-residual contribution of good batch - B25 

 

Figure 6-68: Q-residual contribution of good batch B46 
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Figure 6-69: Batch 11 Q-residual contribution at 

time point 3833 for Variable 1 

 

Figure 6-70: P5 B11 Q-residual contribution at time 

point 3845 for Variable 1 

 

Figure 6-71: Wolds approach unfolding for Batch 11 – Scores 1 

Control limits: 1) UCL3 and LCL3 are upper control limits of + and – 3 standard deviation 2) UCL2 and LCL2 are 

the lower control limits of + and – 2 standard deviation 
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Figure 6-72: B11- V2 Contents Temperature profile 

Most of the other bad batches further inspected in this thesis either indicate an unusual 

increase in the KwRise (V3) and/or uncontrolled level (V4) before the occurrence of kink in 

the temperature profile. Also for batches outside the 95% confidence limit in the influence 

plot a high contribution of Q-residuals with either contents temperature (V2) or KwRise (V3) 

or both has also been observed. An unusual high value for the Jacket Temperature (V1) was 

observed for B16 and B23. 

B1, B2 and B3 although not very extreme in the influence plot have Hotelling’s T
2
 and Q-

residual statistic outside the confidence bounds as seen in Figure 6-60 and Figure 6-62. (All 

the other relevant figures further discussed for batches B1, B2 and B3 are attached in 

Appendix B2, Fig 8.7 to Figure 8.26) B1 and B3 do not have a significant kink in the 

temperature profile either as compared to B2 and could possibly qualify as a good batches if 

the characterisation is solely based on the ‘kink’ in the profile. With a total Hotelling’s T
2
 

value of about +/- 18, B1, B2 and B3 have a high contribution of variable 3 which is KwRise 

in the Hotelling’s T
2
 plot just after hold point 1. Also for the contribution plots for Q-residuals 

a high contribution of variable 3 midway through the batch was identified. Looking at the raw 

data scatter plot for variable 2 vs variable 3 it was seen that the KwRise for all these three 

crystallised batches reaches above 0.4 at around 200°C. At the same time the KwRise for a 

normal batch usually varies around 0.35 at the same temperature of 200°C. The scatter plot 

for a good batch (B42) and bad batch (B1) is seen in Figure 6-73 and Figure 6-74. 
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Figure 6-73: B42 Good Batch Contents Temperature 

vs KwRise 

 

Figure 6-74: B1 Bad Batch Contents Temperature  vs 

KwRise 

 

It must also be noted that B35, B36 and B38 which were outlying good batches were 

processed around the same time as B1, B2 and B3. Thus although batches 35, 36 and 38 were 

not classified as bad batches they do suggest a behaviour more close to the crystallised 

batches.  

Looking at the variable wise unfolded scores data for B35, B36 and B38 it could be clearly 

seen that the batches were outside the normal limits for scores 1 and scores 2 plots in Figure 

6-75 and Figure 6-76. 

 

Figure 6-75: Variable-Wise analysis for t1 B35, B36 and B38  

Control limits: 1) UCL3 and LCL3 are upper control limits of + and – 3 standard deviation 2) UCL2 and LCL2 are 

the lower control limits of + and – 2 standard deviation 

 

Time Points 
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Figure 6-76: Variable-Wise analysis for t2 B35, B36 and B38  

Control limits: 1) UCL3 and LCL3 are upper and lower control limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the upper and lower control limits of + and – 2 standard deviation 

Batches 4, 5, 6 and 7 which have been characterised as bad batches and processed in the 

month of October and November 2013 have been discussed further (Refer Appendix 2 Figure 

8.27 to Figure 8.33 and Figure 8.42 to Figure 8.53). Looking at the results predicted by the 

PCA model for Batch 4, 6 and 7, these batches seem to resemble behaviour similar to a good 

batch. They have a lower Q-residual and Hotelling’s T
2
 values as seen Figure 6-60 and Figure 

6-62 and do not highlight any unusual behaviour in terms of other process variables. Also 

studying the contents temperature profile of these batches it was observed that they do not 

have significant kink in the temperature profile either. 

Batch 5 on the other hand is a definite abnormal batch with a high value for Q-residual and 

Hotelling’s T
2
 statistic. Further studying the contribution plot for Q-residuals (Figure 6-77 

and Figure 6-78) it was observed that contents temperature and KwRise have high values as 

compared to the remaining bad batches. The raw data scatter plot for contents temperature 

against the KwRise in Figure 6-79 also reveals the unusual behaviour observed in the 

monitoring statistics with the KwRise increasing above 0.5 at around 200°C. The variable 

wise analysis plot for score 1 in Figure 6-80 also indicates an unusual behaviour between time 

points 300 and 450. As seen in the figure the batch is out of the upper control limits from time 

point 300 until it is back within the control limits around time point 450. 

Time Points 
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Figure 6-77: Batch 5 - V2 contribution to Q-

residuals at time point 99 

   

Figure 6-78 - Batch 5: V3 contribution to Q-residuals 

at time point 99 

 

 

Figure 6-79: Batch 5 variable 2 vs. Variable 3 Scatter Plot 

 

Figure 6-80: Batch 5 Variable-Wise unfolding approach unfolding analysis Scores 1 

Control limits: 1) UCL3 and LCL3 are upper and lower control limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the upper and lower control limits of + and – 2 standard deviation  
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Batch 8 although an outlier only in the Q-residuals plot does seem to show all the symptoms 

of a typical bad batch based on the contribution plot, KwRise or the kink in the temperature 

profile (Refer Appendix B2 Figure 8.54 to Figure 8.60). Batch 9 does not have a significant 

kink in the contents temperature profile however unusual behaviour in KwRise is observed 

after Hold point 1. Also examining the variable-wise unfolding approach unfolded data 

indicated out of control behaviour of the B9 between time point 350 and 500 in Scores 1 and 

Scores 2 plot (Refer Appendix B2 Figure 8.61 to Figure 8.67). Batch 10 on the other hand 

showcases behaviour closer to a typical good batch (Refer Appendix B2 Figure 8.68 to Figure 

8.75). Batches 12, 13 and 14 are well within control in the variable-wise unfolding analysis 

plots and do not have a significant kink in the contents temperature profile as well. However 

all the three batches have a high value of KwRise after hold point 1 along with high 

contribution of variable 4 i.e. level control in the Hotelling’s T
2
 statistic (Refer Appendix B2 

Figure 8.83 to Figure 8.102).  

Batches 15 to 23 that have been processed in April and May 2014 show a different trend for 

the level control in the reactor as compared to the remaining bad batches processed in 2013 

(Refer Appendix B2 Figure 8.103 to Figure 8.155). This trend is observed in all the batches 

that were processed during the similar period of time. Scores 2 for the variable-wise unfolding 

approach unfolded data resemble the behaviour in level control. It can be seen from Figure 

6-82 and Figure 6-84 that this trend in the scores plot is within control for B57 which is good 

batch but is out of the limits for B15 i.e. bad batch  

 

Figure 6-81: B15 Level Control 

 

Figure 6-82: B15 Bad Batch Variable Wise 

unfolded Scores 2 Control limits: 1) UCL3 and 

LCL3 are upper and lower control limits of + and – 

3 standard deviation 2) UCL2 and LCL2 are the  

upper and lower control limits of + and – 2 

standard deviation 

 

 

Time Points 
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Figure 6-83: B57 Level Control 

 

Figure 6-84: B57 Good Batch Variable Wise 

Unfolded Scores 2 Control limits: 1) UCL3 and 

LCL3 are upper and lower control limits of + and 

– 3 standard deviation 2) UCL2 and LCL2 are the 

upper and lower control limits of + and – 2 

standard deviation 

 

 

Thus for most of the bad batches an increase in KwRise above 0.35 at 200°C is evident along 

with the kink in the temperature profile. For the batches produced in 2014, the trajectory of 

the KwRise and Level is different to the ones produced in 2013. Also for the 2014 batches 

along with the unusual increase in KwRise an out of control level in the Scores 2 plot is also 

identified mid-way through the batch.  

  

Time Points 
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6.7.4 Fingerprinting a crystallised batch and Conclusion 

The PCA model which performs an exploratory data analysis on the process data for 

polymerisation reactor has been able to fingerprint the bad batches by: 

1) Examining influence plot for the model developed using the batch-wise unfolding 

approach  

2) Investigating the contribution of variables to the Q-residuals and Hotelling’sT
2
 

statistic. 

3) Identifying one of two possible scenarios: 

a. High contribution of KwRise in Q-residual after Hold point 1 in addition to 

the ‘kink’ in the contents temperature profile 

b. High contribution of KwRise in Q-residual after Hold point 1 in addition to 

high contribution of Level after hold point 1 

4) Monitoring the batch evolution for unfolding the data using variable-wise unfolding 

approach and identifying time points outside the limits.  

5) Relating the observed statistics to possible evidence in raw data 

Once the data has been pre-treated examining the influence plot for the batch-wise unfolded 

data is the first step that is clearly indicative of a ‘bad’ or ‘crystallised’ batch. Thus in addition 

to the current method of univariately identifying a bad batch for e.g.: monitoring the kink in 

the temperature profile, exploratory data analysis takes into consideration the effect of 

multiple variables on a batch that could lead to a particular batch being an outlier i.e. making 

it a bad or crystallised batch. 

Extreme batches having high Q-residual and high Hotelling’sT
2
 statistics are easily identified 

from the influence plot [Figure 6-63]. Investigating the Q-residuals and Hotelling’s T
2
 plot for 

the bad batches it was seen that most of the crystallised batches have high residuals and some 

of these batches also have a high Hotelling’s T
2
. Out of limit residuals indicate that these 

batches have an underlying behaviour not observed in the good batches used to develop the 

calibration model. While out of limit Hotelling’s T
2
 would entail that these batches fit the 

model well but have variables that are influential in determining the orientation of the model. 

Except for batches 4, 7, 18 and 20 (which also are close to the confidence bounds) all the 

other bad batches have value high for the total Q-residual statistic. For batches with high 

value of Q-residuals the KwRise variable has a high contribution to this statistic either after 
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hold point 1 or mid-way through the batch. While the investigation of contribution plots for 

Hotelling’s T
2
 indicates a high value in either contents temperature or jacket temperature or 

both after hold point 1.  

The next step would consist of monitoring how a batch develops across time by unfolding the 

data variable wise for all the retained variables. With this analysis one can follow how a batch 

is evolved with time and also detect the time point at which the deviation occurred.  

Following the identification of unusual variables using the monitoring statistics and 

examining the batch trajectory using variable-wise unfolding approach the batches are further 

investigated by analysing the raw data. Consistent with the investigation of the contribution 

plots the raw data analysis for a bad batch indicated that the KwRise was above 0.35 at 

200°C. For the batches produced in 2014 this unexpected increase in KwRise also coincided 

with uncontrolled level in the reactor.  Typically the KwRise of a normal batch is below 0.35 

at 200°C. By relating the results from the MSPC method to the evidence in raw data the 

customer was easily able to understand the working of multivariate analysis.  

Out of the 23 bad batches classified as crystallised based on the kink in the temperature 

profile, some of these batches  have demonstrated a behaviour more close to good batches. 

For example batches 4, 6 and 7 although classified as bad batches have a low value for 

Hotelling’s T
2
 and Q-residual statistic. Also the KwRise for these batches is not exceptionally 

high in the contribution plot for Q-statistics and Hotelling’s T
2
 and when monitored variable 

wise the batches seem to be within the control limits. Batch 38 on the other hand is a good 

batch however based on the MPCA model developed it was identified an outlying batch for 

the Hotelling’s T
2
 statistics. The scatter plot for contents temperature against KwRise 

indicated a higher than usual KwRise at 200°C, a characteristics observed in a typical 

crystallised batch. The contents temperature profile for B38 indicates a normal behaviour 

except for tiny ‘kink’ after hold 2 that would have made it difficult for the operators to 

identify this batch as an outlier. 

Thus it is observed that MSPC is a very powerful method of clustering that takes into account 

the correlation between the variables. Although the root cause of the problem has not been 

clearly identified in this thesis the technique enables the operator/engineer to easily categorise 

a crystallised batch rather than simply identify the kink in the contents temperature profile. 

The investigation has also indicated that the problem may lie just after hold point 1 due to 

high contents temperature or KwRise for some batches and high jacket temperature for the 
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others. An observation that is consistent for most of the bad batches is the increase in KwRise 

value above 0.35 at 200°C which occurs before the kink appears in the contents temperature 

profile before the end cap temperature in the reactor. 
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6.8 Chapter Summary 

The aim of this study is to identify the crystallisation issue by monitoring unexpected 

deviation in the quality and process data. This unusual phenomenon of crystallisation is 

observed on all of the six polymer reactors currently operating at the customer site. However 

for this study data was provided for two of the reactors to demonstrate the proof of concept of 

MSPC to the customer.  

The first attempt to merge the quality and static process variable points indicated a distinct 

difference between the performances of the two reactors. Since the variance on each reactor 

was different the analysis suggested modelling each reactor separately. Two separate models 

were created for reactors Poly 5 and Poly 6 to perform the quality data analysis. The results 

from the investigation did not indicate a strong correlation of any particular quality variable to 

the crystallised batches. Also most of the bad batches exhibited behaviour close to the good 

batches making it difficult to narrow down the root cause of crystallisation by studying the 

quality variables only. Process data analysis was carried out on Poly 6 by unfolding the three 

dimensional data to lower dimensions and developing a MPCA model. The analysis clearly 

identified three bad batches as outliers in the model. A more than normal increase in KwRise 

and agitator speed was the main reason for these outlying batches. The analysis proposed that 

KwRise and Level must have an impact that could lead to process deviation in the reactor. 

With contents temperature being critical to the reaction which is then controlled by the jacket 

temperature, it was concluded that for further analysis it might be ideal to include contents 

temperature, jacket temperature, KwRise and level in the analysis instead of including all the 

nine variables measured during the process operation. 

The particle size analysis on four other polymer reactors (Poly 1 to Poly 4) was also unable to 

establish a relationship between the particle size of the raw material and the crystallised 

batches. However few of the bad batches did cluster out separately but due to unusual 

observation in variables other than the particle size. For this analysis it might have been 

beneficial if the particle size data was also provided for the same reactors that were used for 

the quality and process data analysis. This would have allowed a direct comparison between 

the quality data, process data and particle size data. 

Overall the initial study indicated that there is hidden information in the data with a few 

crystallised batches branching out from the cluster of good batches. This indicated that the 

unusual behaviour occurring in the crystallised batches eventually affects the final product 

quality. The customer was keen to identify the issue further and also look for a possible online 
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solution. This would enable the customer to identify the problem while the batch is being 

processed and allow the batch to be controlled before it crystallises.  

The final section looked at additional process data for Poly 5 along with the process data used 

that was initially provided by the customer to fingerprint a crystallised batch. The 

fingerprinting technique discussed previously in the thesis provides a temporary solution to 

identify a crystallised batch and remove operator dependability for identifying the kink in the 

reactor.  
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7 Conclusions and Recommendations for Future Works 

7.1 Conclusions 

Project 1 

ADI delivers a unique solution for business improvement by integrating the business systems 

such as SAP and the manufacturing systems. It was developed in line with the OPC UA 

standards providing an open platform and ensuring interoperability between different systems. 

The work presented in the thesis focussed on various problems that were addressed during 

product development stage of the software and the exclusive solutions developed by the 

author to allow successful model integration, method deployment and optimising the data 

exporter tool. The work discussed in the thesis facilitated the development of robust and 

flexible software. The method and model deployment allowed successful acquisition of at-line 

measurements. The process and model alarms generated during the testing would maintain a 

process within control and deviation with the quality of product would be monitored rapidly 

through at-line measurement. While optimising the MDE plug-in to include additional 

selection methods would facilitate the access and visualisation of measurement and meta data 

thus enabling process optimisation and improvement through new model development and 

calibration.  

Project 2 

Performing multivariate analysis to identify the crystallisation issue was extremely beneficial 

to the customer. Prior to the work discussed in this thesis there was lack of understanding of 

the relationships that exist between multiple variables as the data was only analysed 

univariately. Multivariate analysis carried out in this thesis enabled the customer to further 

enhance their knowledge of unknown process variations and identify possible co-relations 

between variables.  

Analysis of the quality data concluded that contamcount variable as well as insufficient DPS 

did not have a correlation to a crystallised batch as previously believed by the customer. Also 

with the limited amount of data provided for the particle size analysis it could be concluded 

that raw material did not have a direct effect on the rogue batches. From the process data 

analysis, unfolding the batches using batch-wise unfolding approach and variable-wise 

unfolding approach indicated a different behaviour of contents temperature and/or level 

and/or KwRise just after hold point 1 especially with the crystallised batches. This unusual 
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behaviour of variables after hold point 1 could be the root cause of crystallisation that occurs 

after hold point 2.  

A method was developed to fingerprint a typical crystallised batch. Previously the abnormal 

batch identification was solely dependent on the operator observing a ‘kink’ in the contents 

temperature profile with no definite method for identifying the crystallised batches. The 

fingerprinting method developed will provide the customer with a statistical based method of 

segregating the rogue batches and remove operator dependency on the ‘kink’. 

7.2 Future work 

Project 1  

The next step for ADI will be the implementation of an online solution. An online solution 

would enable the customer to monitor the process in real time, improve manufacturing 

efficiency and reduce product waste. Managing the quantity of data produced while 

interfacing to batch packages and associating measurement data with the relevant batch would 

be some of the major challenges to be addressed. The software will also in the future 

accommodate up to 15 statistics that could be used by chemometricians to monitor process 

operations. Also while currently the software has built interface for NIR spectrometer further 

work will also be carried out to include Raman spectroscopic measurements within the 

software. 

Project 2 

Following the results of the analysis the customer are keen to roll out the fingerprinting 

method across all of their reactors and have expressed an interest to monitor the process 

variation online. They would also like to develop a method to achieve targeted molecular 

weight for each grade. This will involve some basic data analysis to model development 

followed by automation of the models.  

In order to get to the above the following data needs to be provided by the customer: 

1. Known reasons of why molecular weight varies from batch to batch. 

2. Is there one grade that varies more than others? 

3. Can the customer provide a list of ‘good’ batches by grade and Poly? (where good 

means MW close to or on target)  

4. Can the customer provide a list of ‘bad’ batches by grade and reactor? 
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The following steps would need to be worked through to provide the solution: 

1. Identify and collect data for a specific grade and reactors 

2. Pre-process the data (Unfolding, auto scaling etc) 

3. Perform Regression Analysis (Determine the main contributors to fluctuating MW) 

4. Build a model 

5. Automate the model 

6. Roll out to other reactors this will require validating other reactor data against the 

model. 

In summary once a model has been automated for an online solution any process deviation 

that would affect the final polymer quality i.e. molecular weight can be identified as the 

process is going on. This would allow the flexibility to manipulate certain process variables 

so that the target molecular weight is achieved in spite of the process deviations. 

7.3 Industry benefit 

This thesis focused on the application of multivariate analysis techniques within industry to 

improve and optimise industrial processes. For the first project the author acted as bridge 

between the software developers and customer while also developing a robust product for the 

end user. Along with model development and deployment the author also contributed towards 

method configuration and optimising MDE tool thus enabling successful implementation of 

the software. As a part of a bigger team the author was responsible for successfully carrying 

out the FAT’s which further facilitated carrying out the SAT’s. The work presented at various 

conferences attracted a number of potential future customers for the further application of the 

novel product in industry. The prospect of the application/utilisation of the software with 

various customers will allow for further research and development of the ADI software.  

For the second project the author was responsible for introducing multivariate analysis 

techniques to the customer to identify the root cause of problem batches that were originally 

identified by monitoring a kink in the temperature profile. Application of multivariate analysis 

enabled the customer to look at various co-relations between variables and establish 

relationships that were previously unknown such as the increase in KwRise just after hold 

point 1 was observed for most of bad batches. The developed method has allowed the 

customer to have a well defined method to identify the crystallised batches.  
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8 Appendices 

Appendix A: Chapter 4 

The following screenshots are the models that were developed within Unscrambler V10.3 and 

further imported within the ADI system for the FAT’s  

 

Figure 8-1: Property 6   

 

Figure 8-2: Property1 model 

 

 

Property 6 

Property 1 
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Figure 8-3: Property 2 model 

Spectral Diagnostic model 

 

Figure 8-4: Spectral Diagnostic Model 

 

 

 

 

 

  

Property 2 
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Appendix B: Chapter 6  

Appendix B1: Matlab Code for Unfolding 

The following Matlab code was used for unfolding the data using the N&M approach and 

ariable-Wise unfolding Approach 

Batch wise unfolded Matlab code 

x=B1:  

transpose_x=x': 

reshape_x=reshape(transpose_x,1,6000): 

% 6000- this is because the matrix 1500x4 is being reshaped to 1 row to 

% unfold the matrix. 

B_1=reshape_x: 

%this is the reshaped matrix to have 

%b1[t1(v1,v2...vn),t2(v1,v2...vn),....tn(v1 to vn)] 

UNFOLD_P6_1500=vertcat(B_1,B_2,B_3,B_4,B_5,B_6,B_7,B_8,B_9,B_10,B_11,B_12,B_

13,B_14,B_15,B_16,B_17,B_18,B_19,B_20,B_21,B_22,B_23,B_24,B_25,B_26,B_27,B_28,

B_29,B_30,B_31,B_32,B_33,B_34,B_35,B_36,B_37,B_38,B_39,B_40,B_41,B_42,B_43,B_

44,B_45,B_46,B_47,B_48,B_49,B_50,B_51,B_52,B_53,B_54,B_55,B_56,B_57,B_58,B_59,

B_60,B_61,B_62,B_63,B_64,B_65,B_66,B_67,B_68,B_69): 

%Put all the unfolded batches one after the other 

Variable-Wise Unfolded Matlab Code 

The following code unfolds the good batches according to Variable-Wise unfolding approach 

X = 

horzcat(B22,B23,B24,B25,B26,B27,B28,B29,B30,B31,B32,B33,B34,B35,B36,B37,B38,B39,

B40,B41,B42,B43,B44,B45,B46,B47,B48,B49,B50,B51,B52,B53,B54,B55,B56,B57,B58,B5

9,B60): 

X1 = X': 
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X2=reshape (X1,4,39000): 

GoodW=X2': 

The following code unfolds the bad batches according to Wolds Approach 

BadX = 

horzcat(B1,B2,B3,B4,B5,B6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B

21): 

BadX1=BadX': 

BadX2=reshape(BadX1,4,21000): 

BadW=BadX2': 

The following code was used in Matlab to reshape the scores matrix to monitor the batch as it 

progressed with time. The calculation of upper control limit and lower control limit for the 

refolded scores matrix have also been included in this code. 

x1 = t1(1:46,:): 

y1=t1(47:69,:): 

t1=reshape(scores1,69,1000): 

t1_1=reshape(scores1,1000,69): 

aa=t1_1': 

plot(aa(47,:),'DisplayName','aa(47,:)','YDataSource','aa(47,:)'):figure(gcf) 

plot(aa(44,:),'DisplayName','aa(44,:)','YDataSource','aa(44,:)'):figure(gcf) 

goodt1 = scores1(1:46000,:): 

goodt2=scores2(1:46000,:): 

badt1=scores1(46001:69000,:): 

badt2=scores2(46001:69000,:): 

t1g=reshape(goodt1,46,1000): 

t2g=reshape(goodt2,46,1000): 
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t1b=reshape(badt1,23,1000): 

t2b=reshape(badt2,23,1000): 

plot(t1b(1,:),'DisplayName','t1b(1,:)','YDataSource','t1b(1,:)'):figure(gcf) 

plot(t1g(4,:),'DisplayName','t1g(4,:)','YDataSource','t1g(4,:)'):figure(gcf) 

Meant1g=mean(goodt1): 

stdvt1=std(goodt1): 

Meant1g=mean(goodt1,1): 

Meant1g=mean(goodt1): 

Meant1g=mean(t1g): 

stdvt1=std(t1g): 

UCL=(Meant1g+2*stdvt1): 

UCL=(Meant1g+3*stdvt1): 

UCL3=(Meant1g+3*stdvt1): 

UCL2=(Meant1g+2*stdvt1): 

LCL2=(Meant1g-2*stdvt1): 

LCL3=(Meant1g-3*stdvt1): 

Meant2g=mean(t2g): 

stdvt2=std(t2g): 

UCL2_2=Meant2g+2*stdvt2): 

UCL2_2=(Meant2g+2*stdvt2): 

LCL2_2=(Meant2g-2*stdvt2): 

LCL3_2=(Meant2g-3*stdvt2): 

UCL3_2=(Meant2g+3*stdvt2): 
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Appendix B2: Crystallised batch plots used for investigating rogue batches 

The following plots for the crystallised batches were used to investigate additional process 

data analysis on Polymer 5 

Batch 1 

 

Figure 8-5: Batch 1 Q residual contribution 

 

Figure 8-6: Batch 1 Hotelling's T2 contribution 

 

 

Figure 8-7: Batch 1 KwRise value at time point 1963 
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Figure 8-8: B1 Contents Temperature Profile 

 
Figure 8-9: B1 Variable-Wise unfolding approach 

unfolded Scores 1  

Control limits: 1) UCL3 and LCL3 are upper control 

limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 
Figure 8-10: B1 Variable-Wise unfolding approach 

unfolded Scores 2  

Control limits: 1) UCL3 and LCL3 are upper control 

limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 

 

Figure 8-11: B1 Contents temperature vs. KwRise 
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Batch 2 

 
Figure 8-12: P5 B2 Q-residual contribution 

 
 

Figure 8-13: P5 B2 Hotelling’s T2 contribution 

 

 

Figure 8-14: B2 KwRise contribution at time point 1891 

 

Figure 8-15: B2 Contents Temperature Profile 
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Figure 8-16: B2 Variable-Wise unfolding approach 

unfolded Scores 1 

Control limits: 1) UCL3 and LCL3 are upper control 

limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 
Figure 8-17: B2 Variable-Wise unfolding approach 

unfolded Scores 2 

Control limits: 1) UCL3 and LCL3 are upper control 

limits of + and – 3 standard deviation 2) UCL2 and 

LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 

 

Figure 8-18: B2 Contents Temperature vs. KwRise 

Batch 3 

 

Figure 8-19: P5 B3 Q-residual contribution 

 

Figure 8-20: P5 B3 Hotelling's T2 contribution 
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Figure 8-21: P5 B3 V1 contribution at time point 

2045 

  
Figure 8-22: P5 B3 V3 contribution at time point 

2223 

 

 

Figure 8-23: B3 Contents Temperature Profile 

 
Figure 8-24: B3 Variable-Wise unfolding approach 

unfolded Scores 1 

Control limits: 1) UCL3 and LCL3 are upper 

control limits of + and – 3 standard deviation 2) 

UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 
Figure 8-25: Variable-Wise unfolding approach 

unfolded Scores 2 

Control limits: 1) UCL3 and LCL3 are upper 

control limits of + and – 3 standard deviation 2) 

UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 
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Figure 8-26: B3 Contents temperature vs. KwRise 
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Batch 4 

 
Figure 8-27: P5 B4 Q-residual contribution 

 
Figure 8-28: P5 B4 Hotelling's T2 contribution 

 

 

Figure 8-29: P5 B4 Q residual contribution V1 at time 1409 

 

Figure 8-30: B4 Contents Temperature Profile 
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Figure 8-31: Batch 4 Variable-Wise unfolding 

approach unfolded Scores 1 Control limits: 1) UCL3 

and LCL3 are upper control limits of + and – 3 

standard deviation 2) UCL2 and LCL2 are the lower 

control limits of + and – 2 standard deviation 

 

 

Figure 8-32: Batch 4 Variable-Wise unfolding approach 

unfolded Scores 2 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + and 

– 2 standard deviation 

 

 

 

Figure 8-33: B4 Contents Temperature Vs KwRise 

Batch 5 

 

Figure 8-34: B5 Hotelling’s T2 contribution plot 

 

Figure 8-35: B5 Q-residuals contribution plot 
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Figure 8-36: P5 B5 Q residual contribution of V2 

at time point 98 

 
Figure 8-37: P5 B5 Q residual contribution of V3 at 

time point 98 

 

 

Figure 8-38: B5 Contents Temperature Profile 

 

 

Figure 8-39: B5 Variable-Wise unfolding approach 

unfolded Scores 1 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 

 

 

 

Figure 8-40: B5 Variable-Wise unfolding approach 

unfolded Scores 2 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 
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Figure 8-41: B5 Contents temperature profile vs KwRise 

 

Batch 6 

 

Figure 8-42: P5 B6 Hotelling's T2 contribution 

 

Figure 8-43: P5 B6 Q-residuals contribution 

 

 

Figure 8-44: B6 Contents Temperature Profile 
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Figure 8-45: P5 B6 Variable-Wise unfolding approach 

unfolded Scores 1 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 

 

 

Figure 8-46: P5 B6 Variable-Wise unfolding approach 

unfolded Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 2) 

UCL2 and LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 

 

Figure 8-47: B6 Contents Temperature vs KwRise 

 

Batch 7 

 

Figure 8-48: P5 B7 Q-residual contribution plot 

 

Figure 8-49: P5 B7 Hotelling's T2 contribution 

plot 
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Figure 8-50: B7 Contents Temperature Profile 

 

Figure 8-51: B7 Variable-Wise unfolding approach 

unfolded Scores 1 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 

 

 

Figure 8-52: B7 Variable-Wise unfolding approach 

unfolded Scores 2 Control limits: 1) UCL3 and 

LCL3 are upper control limits of + and – 3 

standard deviation 2) UCL2 and LCL2 are the 

lower control limits of + and – 2 standard deviation 

 

 

 

Figure 8-53: B7 Contents Temperature profile vs KwRise 
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Batch 8 

 

Figure 8-54: B8 Q-residual contribution plot 

 

Figure 8-55: B8 Hotelling's T2 contribution plot 

 

 

Figure 8-56: B8 KwRise contribution at time point 2579 

 

Figure 8-57: B8 Contents Temperature Profile 
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Figure 8-58: B8 Variable-Wise unfolding approach 

unfolded Scores 1 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 

 

 

Figure 8-59: B8 Variable-Wise unfolding approach 

unfolded Scores 2 Control limits: 1) UCL3 and LCL3 

are upper control limits of + and – 3 standard 

deviation 2) UCL2 and LCL2 are the lower control 

limits of + and – 2 standard deviation 

 

 

 

Figure 8-60: B8 Contents Temperature profile vs KwRise 

Batch 9 

 

Figure 8-61: B9 Q-residual contribution 

 

Figure 8-62: B9 Hotelling's T2 contribution plot 
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Figure 8-63: B9 Level at time point 1844 

 

 

Figure 8-64: B9 Contents Temperature profile 

 

Figure 8-65: B9 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-66: B9 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 
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Figure 8-67: B9 Contents temperature vs KwRise 

Batch 10 

 

Figure 8-68: B10 Q-residual contribution plot 

 

Figure 8-69: B10 Hotelling's T2 contribution plot 

 

 

Figure 8-70: B10 V1 value at time point 2085 

 

Figure 8-71: B10 V4 value at time point1876 
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Figure 8-72: B10 Contents Temperature Profile 

 

Figure 8-73: B10 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-74: B10 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-75: B10 Contents Temperature profile vs KwRise 
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Batch 11 

 

Figure 8-76: B11 Q-residual contribution 

plot 

 

 

Figure 8-77: B11 Hotelling's T2 Contribution plot 

 

Figure 8-78: B11 V1 value at time point 3833 

 

 

Figure 8-79: B11 Contents Temperature profile 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-35

-30

-25

-20

-15

-10

-5

0

5

Variable

B
1
1

 V
1

 V
4

 V
2

 V
1

 V
4

 V
3

 V
2  V

4
 V

3
 V

2
 V

1
 V

4
 V

2
 V

1
 V

4
 V

2  
V

4
 V

3
 V

4
 V

1
 V

4
 V

3
 V

2
 V

1
 V

3
 V

2
 V

1
 V

4
 V

3
 V

1  V
4

 V
3

 V
4

Test Sample 11 B11 Q Residual = 2.73e+04

Decluttered

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Variable

T
e
s
t 

S
a
m

p
le

 1
1
 B

1
1
 H

o
te

lli
n
g
 T

^2
 =

 2
0
.5

4

 V
2  

V
2  
V

2
 V

3
 V

2
 V

1
 V

3
 V

2
 V

2
 V

3
 V

1
 V

2
 V

2
 V

2
 V

2
 V

3
 V

2
 V

1
 V

2
 V

3
 V

4
 V

4
 V

1
 V

3
 V

1  
V

3
 V

2
 V

3
 V

3  
V

3
 V

4
 V

3
 V

1
 V

3
 V

4
 V

3
 V

1
 V

3
 V

2
 V

3
 V

4
 V

3
 V

1
 V

2
 V

3
 V

4  
V

4
 V

3
 V

2
 V

1
 V

4
 V

4
 V

2
 V

1
 V

4
 V

1
 V

4
 V

1
 V

2
 V

1
 V

2
 V

4  
V

4
 V

1
 V

4
 V

1
 V

4  
V

4
 V

3
 V

2
 V

1
 V

3
 V

2  
V

4
 V

1
 V

3  
V

3
 V

4
 V

3
 V

2
 V

3
 V

3
 V

1
 V

3
 V

4
 V

3
 V

2
 V

3
 V

3
 V

4

Test Sample 11 B11 Hotelling T 2̂ = 20.54

Decluttered

2 4 6 8 10 12 14 16 18 20 22
270

280

290

300

310

320

330

340

Sample

V
1
 (

3
8
3
3
)



198 

 

 

Figure 8-80: B11 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-81: B11 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-82: B11 Contents Temperature profile vs KwRise 

 

 

Batch 12 

 

Figure 8-83: B12 Q-residual contribution plot 

 

Figure 8-84: B12 Hotelling's T2 contribution plot 
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Figure 8-85: B12 Contents Temperature Profile 

 

Figure 8-86: B12 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-87: Variable-Wise unfolding Approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-88: Contents temperature profile vs KwRise 
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Figure 8-89: B13 Q-residual contribution plot 

 

Figure 8-90: B13 Hotelling's T2 contribution plot 

 

 

Figure 8-91: B13 KwRise value at time point 1907 

 

Figure 8-92: B13 Jacket temperature value at time 

point 3997 

 

 

Figure 8-93: B13 Contents Temperature Profile 
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Figure 8-94: B13 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-95: B13 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-96: B13 Contents Temperature profile vs KwRise 

 

Batch 14 

 

Figure 8-97: B14 Q-residual contribution plot 

 

Figure 8-98: B14 Hotelling's T2 contribution plot 
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Figure 8-99: B14 Contents Temperature Profile 

 

Figure 8-100: B14 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-101: B14 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-102: B14 Contents temperature profile vs KwRise 
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Batch 15 

 

Figure 8-103: B15 Q-residual contribution plot 

 

Figure 8-104: B15 Hotelling's T2 contribution plot 

 

 

Figure 8-105: B15 Contents Temperature Profile 

 

Figure 8-106: B15 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are upper 

control limits of + and – 3 standard deviation 2) UCL2 

and LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 

Figure 8-107: Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Variable

B
1
5

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
4

 V
1

 V
2

 V
1

 V
1

 V
1

 V
1

 V
1

 V
4

 V
2  V

2
 V

1
 V

2
 V

1
 V

2
 V

3
 V

4  
V

4
 V

2
 V

4
 V

4
 V

4
 V

4
 V

1
 V

4
 V

4
 V

4
 V

4
 V

4
 V

2
 V

4
 V

4
 V

4
 V

4
 V

4
 V

3
 V

4  V
4

 V
2

 V
4

 V
4

 V
4

 V
1

 V
4

 V
4

 V
2

 V
4

 V
4

 V
4

 V
1

 V
3

 V
3  V

3
 V

1  V
3  V

3
 V

4  V
3

 V
1  V

3
 V

2
 V

3
 V

3
 V

1
 V

1 
V

1
 V

1
 V

4
 V

1
 V

2
 V

1
 V

3
 V

1
 V

3
 V

1
 V

1
 V

2
 V

4
 V

1
 V

3
 V

4
 V

1
 V

4
 V

3
 V

1
 V

2
 V

1 V
4

 V
3

 V
2

 V
4

 V
4

 V
4

 V
1

 V
3

 V
4

 V
2  

V
1

 V
3

 V
4

 V
2

 V
1

 V
2

 V
3

 V
3

 V
4

 V
2

 V
3  V

3
 V

1  V
3

 V
4

 V
4  V

3
 V

2  V
4

 V
3

 V
4  V

4
 V

2
 V

4
 V

4
 V

3
 V

4
 V

1
 V

3
 V

4
 V

2
 V

3
 V

2
 V

3
 V

1
 V

3
 V

2
 V

3
 V

3
 V

2 V
3

 V
1

 V
4

 V
3

 V
4
 V

2  
V

1
 V

1
 V

2
 V

3
 V

1
 V

1
 V

1
 V

2
 V

4
 V

1
 V

1
 V

1
 V

4
 V

1
 V

2
 V

1
 V

1
 V

1
 V

2
 V

3
 V

1
 V

1
 V

4
 V

2
 V

3
 V

4  V
4

 V
2

 V
3

 V
4

Test Sample 15 B15 Q Residual =  1436

Decluttered

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.1

-0.05

0

0.05

0.1

0.15

Variable

T
e
s
t 

S
a
m

p
le

 1
5
 B

1
5
 H

o
te

lli
n
g
 T

^2
 =

  
6
.7

3

 V
1

 V
2

 V
3
 V

4
 V

1
 V

2
 V

3 
V

4
 V

1
 V

2
 V

3 
V

4
 V

1
 V

2
 V

3 
V

4
 V

1
 V

2
 V

3
 V

4
 V

1
 V

2
 V

3
 V

4
 V

1
 V

2
 V

3
 V

4
 V

1
 V

2
 V

3
 V

3
 V

2
 V

4
 V

1
 V

2
 V

3
 V

2
 V

4  V
4 V

4  V
4

 V
3

 V
4

 V
3

 V
1  V

1
 V

4
 V

3
 V

3
 V

1
 V

4
 V

2
 V

3
 V

1
 V

4
 V

1
 V

3  
V

2
 V

3
 V

4  V
4

 V
1

 V
1

 V
1

 V
2

 V
4

 V
2

 V
3

 V
4

 V
2

 V
1

 V
4

 V
1

 V
2

 V
4

 V
4

 V
2

 V
3

 V
4

 V
2

 V
1

 V
4

 V
4

 V
4

 V
4

 V
1

 V
2

 V
4

 V
1

 V
2

 V
4

 V
4

 V
4

 V
4

 V
2

 V
1

 V
1

 V
2

 V
2

 V
4

 V
3

 V
2

 V
1

 V
3

 V
2

 V
1

 V
4

 V
2

 V
3

 V
2

 V
2

 V
1

 V
3

 V
2

 V
3

 V
1

 V
3

 V
2

 V
3

 V
2

 V
3

 V
1

 V
3  V

3  V
3

 V
1

 V
2

 V
3

 V
1

 V
2

 V
3

 V
4 

V
1

 V
3

 V
1

 V
2

 V
3

 V
2

 V
3

 V
3

 V
3

 V
1

 V
3

 V
4

 V
3

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
3

 V
2

 V
3

 V
1

 V
2

 V
3

 V
1

 V
4

 V
1  V

1  V
1

 V
3

 V
2

 V
1

 V
3

 V
1

 V
2

 V
1

 V
3  V

1
 V

4
 V

1
 V

1
 V

2
 V

4
 V

2 
V

3  
V

4
 V

2 
V

3  
V

4
 V

2
 V

3
 V

4

Test Sample 15 B15 Hotelling T 2̂ =  6.73



204 

 

 

Figure 8-108: B15 Contents Temperature vs KwRise 

Batch 16 

 

Figure 8-109: B16 Q-residuals contribution plot 

 

Figure 8-110: B16 Hotelling's T2 contribution plot 

 

 

Figure 8-111: Contents Temperature profile 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Variable

B
1
5

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
4

 V
1

 V
2

 V
1

 V
1

 V
1

 V
1

 V
1

 V
4

 V
2  V

2
 V

1
 V

2
 V

1
 V

2
 V

3
 V

4  
V

4
 V

2
 V

4
 V

4
 V

4
 V

4
 V

1
 V

4
 V

4
 V

4
 V

4
 V

4
 V

2
 V

4
 V

4
 V

4
 V

4
 V

4
 V

3
 V

4  V
4

 V
2

 V
4

 V
4

 V
4

 V
1

 V
4

 V
4

 V
2

 V
4

 V
4

 V
4

 V
1

 V
3

 V
3  V

3
 V

1  V
3  V

3
 V

4  V
3

 V
1  V

3
 V

2
 V

3
 V

3
 V

1
 V

1 
V

1
 V

1
 V

4
 V

1
 V

2
 V

1
 V

3
 V

1
 V

3
 V

1
 V

1
 V

2
 V

4
 V

1
 V

3
 V

4
 V

1
 V

4
 V

3
 V

1
 V

2
 V

1 V
4

 V
3

 V
2

 V
4

 V
4

 V
4

 V
1

 V
3

 V
4

 V
2  

V
1

 V
3

 V
4

 V
2

 V
1

 V
2

 V
3

 V
3

 V
4

 V
2

 V
3  V

3
 V

1  V
3

 V
4

 V
4  V

3
 V

2  V
4

 V
3

 V
4  V

4
 V

2
 V

4
 V

4
 V

3
 V

4
 V

1
 V

3
 V

4
 V

2
 V

3
 V

2
 V

3
 V

1
 V

3
 V

2
 V

3
 V

3
 V

2 V
3

 V
1

 V
4

 V
3

 V
4
 V

2  
V

1
 V

1
 V

2
 V

3
 V

1
 V

1
 V

1
 V

2
 V

4
 V

1
 V

1
 V

1
 V

4
 V

1
 V

2
 V

1
 V

1
 V

1
 V

2
 V

3
 V

1
 V

1
 V

4
 V

2
 V

3
 V

4  V
4

 V
2

 V
3

 V
4

Test Sample 15 B15 Q Residual =  1436

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Variable

T
e
s
t 

S
a
m

p
le

 1
6
 B

1
6
 H

o
te

lli
n
g
 T

^2
 =

 2
0
.0

6

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
4 
V

1 V
2

 V
3

 V
4

 V
1

 V
2

 V
3

 V
3

 V
2

 V
1

 V
2  V

2  V
2  V

2
 V

3
 V

3
 V

3
 V

2
 V

2
 V

1
 V

4  
V

1 V
1

 V
1

 V
1

 V
3

 V
2

 V
3

 V
1

 V
3

 V
1

 V
2

 V
1  V

1
 V

4
 V

1  V
1

 V
2

 V
4

 V
1

 V
1

 V
1

 V
2

 V
1

 V
1

 V
3

 V
1

 V
1
 V

2
 V

1
 V

4
 V

2
 V

1
 V

3
 V

1
 V

2
 V

1  
V

3
 V

2
 V

4
 V

3
 V

2
 V

3
 V

4  V
4

 V
2

 V
1  V

1
 V

3
 V

2
 V

4  V
3

 V
4

 V
4  V

2
 V

4  V
4

 V
2

 V
1

 V
4

 V
2

 V
1

 V
3

 V
4

 V
2

 V
4

 V
1

 V
2

 V
3

 V
2

 V
2

 V
1

 V
4

 V
2

 V
3

 V
1

 V
4

 V
2

 V
3

 V
1

 V
2

 V
3

 V
4  V

4
 V

3
 V

4
 V

2
 V

1
 V

4
 V

3
 V

2
 V

3
 V

4
 V

4
 V

1  V
3

 V
4

 V
4

 V
1

 V
3

 V
4

 V
3

 V
2

 V
1

 V
4

 V
3

 V
2

 V
4

 V
4

 V
3

 V
1

 V
3  V

3
 V

2
 V

3
 V

2
 V

3
 V

4
 V

1
 V

3
 V

4
 V

3
 V

2
 V

3
 V

2
 V

3
 V

1
 V

3  V
3  V

3
 V

2
 V

3
 V

2
 V

3
 V

1
 V

3
 V

2
 V

3
 V

2
 V

3
 V

3
 V

4
 V

3
 V

3  V
3  V

3
 V

4

Test Sample 16 B16 Hotelling T 2̂ = 20.06



205 

 

 

Figure 8-112: B16 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-113: B16 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-114: B16 Contents temperature vs KwRise 

 

Batch 17 

 

Figure 8-115: B17 Q-residual contribution plot 

 

Figure 8-116: Hotelling's T2 contribution plot 
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Figure 8-117:B17 Contents Temperature Profile 

 

Figure 8-118: B17 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-119: B17 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-120: B17 Contents temperature vs KwRise 
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Batch 18 

 

Figure 8-121: B18 Q-residual contribution plot 

 

Figure 8-122: B18 Hotelling:s T2 contribution plot 

 

 

Figure 8-123: B18 Contents Temperature Profile 
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Figure 8-124: B18 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-125: B18 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-126: B18 Contents Temperature vs KwRise 
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Figure 8-127: B19 Q-residual contribution plot 

 

Figure 8-128: B19 Hotelling's T2 contribution plot 

  

 

 

Figure 8-129: B19 Jacket temperature value at time point 853 

 

Figure 8-130: B19 Contents temperature profile 
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Figure 8-131: B19 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-132: B19 Variable-Wise unfolding approach  

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-133: B19 Contents Temperature vs KwRise 

Batch 20 

 

Figure 8-134: B20 Q-residual contribution plot 

 

Figure 8-135: B20 Hotelling's T2 contribution plot 
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Figure 8-136: B20 Contents Temperature Profile 

 

Figure 8-137: B20 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-138: Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-139: B20 Contents Temperature vs KwRise 
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Figure 8-140: B21 Q-residual contribution plot 

 

Figure 8-141: B21 Hotelling's T2 contribution plot 

 

 

 

Figure 8-142: B21 Level value at time point 

 

 

Figure 8-143: B21 Contents Temperature Profile 
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Figure 8-144: B21 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-145: B21 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-146: B21 Contents Temperature vs KwRise 

Batch 22 

 

Figure 8-147: B22 Q-residual contribution plot 

 

Figure 8-148: B22 Hotelling's T2 contribution plot 
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Figure 8-149: B22 Contents Temperature Profile 

 

Figure 8-150: B22 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are upper 

control limits of + and – 3 standard deviation 2) UCL2 

and LCL2 are the lower control limits of + and – 2 

standard deviation 

 

 

Figure 8-151: B22 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

 

Figure 8-152: B22 Contents temperature vs KwRise 
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Figure 8-153: B23 Q-residual contribution plot 

 

Figure 8-154: B23 Hotelling's T2 contribution plot 

 

 

Figure 8-155: B23 Contents Temperature profile 

 

Figure 8-156: B23 Variable-Wise unfolding approach 

Scores 1 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 

 

 

Figure 8-157: B23 Variable-Wise unfolding approach 

Scores 2 Control limits: 1) UCL3 and LCL3 are 

upper control limits of + and – 3 standard deviation 

2) UCL2 and LCL2 are the lower control limits of + 

and – 2 standard deviation 
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Figure 8-158: B23 Contents Temperature vs KwRise 
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