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Abstract 

Remediation of metal-rich discharges from abandoned mines entails capture of metals 

within a treatment system and, typically, disposal of the waste.  A preferable option 

would be to recover the metals for reuse.  For many long-abandoned mines metal loads 

are often relatively small, albeit they often cause significant environmental pollution.  

Low-cost passive treatment systems, in which metals are retained in some form of 

treatment substrate, such as compost, are often preferred.  This thesis investigates the 

amenability of such treatment systems to resource recovery.  Two down-flow compost 

bioreactors, treating zinc-rich discharges, were the focus of the research: a pilot-scale 

unit at Nenthead, and a full-scale system at Force Crag, both in Cumbria, England.  

Laboratory investigations of the Nenthead substrate identified 7,900mg/kg zinc in the 

upper horizons of the substrate, and 2,400mg/kg in the lower horizons, after two years 

of operation.  Acid leaching tests effectively de-contaminated the substrate with respect 

to zinc and cadmium.  Complete recovery of zinc was observed after ≤30 hours across a 

range of acid leach tests, although 23-37 days were required before equivalent recovery 

was achieved by biological leaching.  The Force Crag system removed >95% zinc over 

the first year of operation and, removal rates suggest that after 10 years of operation 

>20,000mg/kg zinc will have accumulated in the substrate.  Substrate de-contamination 

could offer substantial life-cycle cost savings at passive treatment sites, especially by 

limiting volumes of material for disposal to landfill.  Furthermore, recovery of metals 

has important implications for resource sustainability and circular economics.  Other 

resource recovery options may exist at abandoned mine sites.  At Force Crag 1.6kW of 

kinetic energy exists in flowing mine water, in addition to thermal energy which could 

be recovered for space heating applications.  Recovering this energy would convert this 

site into a net-generator of power.  Because of their often remote locations, renewable 

energy may be of particular value to off-grid facilities at some mine sites. 
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Foreword 

In the intervening period following first submission of this thesis for examination, the 

United Kingdom (UK) held a landmark referendum on membership of the European 

Union (EU).  The result, ‘Brexit’, was a shock to many and bitter blow to UK science, 

in which the EU heavily invests.  Furthermore, in the context of this thesis, the 

environmental agenda in Great Britain relies upon EU directives – specifically clean-up 

of pollution from abandoned metal mines (Water Framework Directive) and managing 

wastes (Waste Framework Directive).  The EU is also promoting the Circular Economy, 

with the central aim of closing the loop on product life-cycles through greater re-cycling 

and re-use. 

Immediately following the Brexit result, a new UK Prime Minister was appointed 

(Theresa May – Conservative Party) and with this a substantial shake up of the Cabinet 

occurred, including the abolition of the Department of Energy and Climate Change.  

This Department had been central to supporting the clean-up of pollution from 

abandoned mines through its funding of The Coal Authority and, had supported the 

development of de-centralised renewable energy. 

As a consequence of these factors, there is now a great deal of uncertainty surrounding 

the UK Governments environmental commitments.  Nevertheless, protecting water 

resources, managing wastes effectively and recovering materials and energy are 

important factors in a sustainable economy, and will no doubt be high priorities for 

progressive governments throughout the world.  In these respects, Brexit has little 

implication on the fundamental principles of the research presented in this thesis. 
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Chapter 1. Introduction 

1.1 Background and scope 

In England and Wales, drainage from abandoned mines represents the single greatest 

source of metal pollution affecting the water environment.  A greater quantity of lead, 

and similar quantities of cadmium and zinc are discharged from metal mines compared 

to the total of all other permitted discharges (Mayes et al., 2010). 

Unfortunately, the owners of abandoned metal mines are often untraceable given the 

elapsed time since abandonment, and the burden for clean-up consequently falls on the 

state.  In Great Britain, The Coal Authority has been dealing with pollution from 

abandoned coal mines for more than twenty years, and in the last five years has been 

tasked with delivering a programme of remediation at the most polluting metal mine 

sites in England (The Coal Authority, 2015a; The Coal Authority, 2015c).  This entails 

both strict budgetary challenges and complex stakeholder management issues in often 

highly sensitive and remote settings, such as national parks and areas of outstanding 

natural beauty (e.g. Harris et al., 2014).  As a result of these factors, passive treatment 

systems are typically preferred, which can act to enhance, rather than harm the 

landscape and environment (Parker, 2003).  Unlike conventional active treatment 

systems, passive systems do not require a supply of chemicals or power, rather 

harnessing natural processes for treatment (PIRAMID Consortium, 2003; Hedin et al., 

1994a).  Despite representing a relatively low-cost option, there remains an increasing 

desire to identify areas where passive treatment system life cycle costs may be reduced 

or offset.  For example, these systems often produce voluminous metalliferous wastes, 

which require periodic and wholesale disposal at a significant cost.  In fact, disposal of 

passive treatment wastes has been identified as one of the most substantial life cycle 

costs associated with systems tackling metal mine drainage, particularly since these 

materials can constitute hazardous wastes (Atkins, 2014b; Gusek et al., 2006). 

This thesis explores ways in which the cost of passive mine water treatment might be 

reduced or offset, by extending system life-times and recovering resources.   

 



Chapter 1.  Introduction 

2 

 

In order to achieve this, data have been collected by field and laboratory investigations 

at two pioneering passive treatment systems in England.  In particular, this research 

focused upon the amenability of passive treatment system wastes to resource recovery.  

Findings are discussed in the context of reduced life-cycle cost scenarios, considering 

both recovery of resources from system wastes and also the potential for renewable 

energy generation.  This research may not only have important commercial implications 

for system operators and funding bodies, but also upon wider environmental issues of 

responsible resource management and low-carbon economics. 

This introductory chapter firstly presents the thesis aims and objectives and then 

discusses the legislation and issues associated with mine water pollution.  Distinction is 

made between iron rich and more metalliferous waters which entail different strategies 

for remediation.  Subsequently, study sites at Nenthead and Force Crag are introduced, 

and the thesis structure is outlined. 

1.2 Aims and objectives 

The overarching aim of this thesis is to examine the potential for recovering resources 

from metal mine waters in order to minimise the full life-cycle costs of passive 

treatment systems.  The objectives of this thesis are to: 

1. Review the resource potential of metal mine waters nationally and identify ways 

in which resources can be recovered. 

2. Characterise the distribution of metals within passive metal mine water 

treatment system substrates. 

3. Assess the options for metal recovery from passive treatment system substrates 

and undertake lab-scale proof-of-principle metal recovery tests. 

4. Monitor the performance of a passive treatment system to gain an understanding 

of the rates of metal accumulation and thereby forecast future metal 

concentrations in the substrate. 

5. Estimate life-cycle costs associated with an operational metal mine water 

treatment system and determine how resource recovery from the mine water 

might offer a mechanism for offsetting these costs.  
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1.3 UK legislation driving mine water remediation 

Metal mining in Great Britain was once a vast industry with a peak in mining output 

occurring in the mid to late 19
th

 Century (Hudson-Edwards et al., 2008).  Slightly later, 

coal mining peaked, with 250 million tonnes extracted in 1910, before widespread 

closure of entire coalfields in the late 20
th

 Century following nationalisation (Parker, 

2003).  This nationalisation, however, did not apply to non-coal mines such as those 

which extracted base metals (Johnston et al., 2008).  Upon re-privatisation of the 

industry in 1994, The Coal Authority was formed, which is now statutorily responsible 

for coal reserves in Great Britain along with many tens of thousands of coal mines 

which were abandoned before the Coal Industry Act (1994).  Upon formation, The Coal 

Authority was specifically tasked with managing mine water emissions, as set out by 

Lord Strathclyde, and, as such, it has developed a successful programme of remediation 

(Parker, 2003).  This is of particular importance since no responsibility exists for 

polluting water discharging from mines abandoned before Lord Strathclyde’s 

assurances on the 1994 Bill: Section 89.3 of the Water Resources Act 1991 as originally 

enacted, stated that ‘A person is not guilty of the offence of causing or knowingly 

permitting the pollution of controlled waters if he is merely permitting a discharge from 

an abandoned mine’.  This loophole applied to both coal and metal mines until 31 

December 1999 (McGuinness, 1999); although, by this time, a programme of 

remediation had been addressing pollution from abandoned coal mines for more than 

fifteen years. 

Mayes et al. (2009a) identified 464 ‘waterbody
1
’ river catchments throughout England 

and Wales which are either known to be, or thought to be, impacted by non-coal 

(largely base metal) mine water discharges, out of a total of 7,815
2
 waterbodies.  Yet, 

until recently, there has been no statutory organisation provided with a remit to deal 

with the legacy of abandoned non-coal mines.  Over recent years, however, and 

principally driven by introduction of the EU Water Framework Directive (2000/60/EC), 

political pressure for The Coal Authority to deal with pollution from non-coal mine 

waters has heightened. 

                                                 
1
 Waterbodies are defined management units (typically river catchments) under the EU Water Framework 

Directive (EEC, 2000) 
2
 Changes in the River Basin Plans boundaries mean that there are less waterbodies at the time of writing 

(pers comm. Dr A. P. Jarvis, Reader in Environmental Engineering, Newcastle University 2015) 
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The Energy Bill received Royal Assent on the 18 October 2011, extending The Coal 

Authority’s remit to work associated with non-coal mines (Energy Act, 2011) and, 

subsequently, government funding was granted to deliver a programme of remediation 

in England.  Since initiation of this programme, feasibility studies have been conducted 

and two treatment systems installed at abandoned metal mine sites (The Coal Authority, 

2015b).  Concurrently, research efforts have increased in order to tackle the many 

technical issues associated with this ground breaking programme (The Coal Authority, 

2015b).  Specifically, in the case of this thesis, investigations into resource recovery to 

reduce or offset system life-cycle costs have been conducted. 

1.4 Mine water pollution 

Mine waters range widely in quality depending upon the strata through which they pass 

(Banks et al., 1997).  Often, iron minerals exposed within the mine workings can lead to 

generation of waters characterised by elevated iron concentrations, which may also be 

known as ferruginous mine waters (Banks et al., 1997).  These are typical of both 

discharges from coal mines, and some metal mines (Parker, 2003; Younger, 2002).  

This thesis makes the distinction between waters which are dominated by high iron 

loadings (ferruginous), and metalliferous waters which suffer elevated concentrations of 

other metals such as zinc and cadmium.  Ferruginous waters are typical of coal mine 

waters in Britain (although not exclusively) and waters where iron is not the dominant 

pollutant are characteristic of many metal mines; specifically in Britain, these metal 

mine sites pose particular problems due to zinc, amongst other metal loads (Mayes et 

al., 2013; Johnston et al., 2008; Younger, 2000).  Figure 1.1 illustrates a ferruginous 

mine water discharge from an abandoned coal mine, and a non-ferruginous discharge 

from a metal mine with elevated zinc concentrations (for information on discharges see: 

Jarvis, 2006; Nuttall and Younger, 1999). 
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Figure 1.1  Ferruginous discharge at Handbank Colliery, Yorkshire, UK (left); and a metalliferous mine 
discharge with low iron concentrations, Nentsberry Haggs Pb-Zn Mine, Cumbria, UK (right) (photographs 
courtesy of The Coal Authority). 

This distinction has important implications for treatment process and waste generation, 

which are discussed in Chapter 2.  In particular, aerobic passive treatment processes 

which have been widely established for the treatment of net alkaline coal mine waters, 

both in Britain and overseas, would not be effective at treating metalliferous mine 

waters (Jarvis et al., 2012b).  The reason for this is that iron removal is normally 

achieved by hydroxide precipitation, forming an iron hydroxide solid which settles from 

solution to form hydrous ferric oxide or ‘ochre’ sludge (Younger et al., 2002).  Metals 

such as zinc have much higher hydroxide solubilities than iron and, therefore, are not 

removed easily under these conditions (Jarvis et al., 2012b).  As a consequence, 

alternative passive treatment approaches are required, such as removal of metals as 

sulphides within organic matrices; yet these approaches are likely to generate more 

complex wastes requiring costly disposal (Gray et al., 2012). 

This thesis investigates the characteristics of wastes generated by passive metal mine 

water treatment systems, and their amenability to metal recovery, using data collected 

from two candidate sites: the Nenthead pilot scale system and the Force Crag full-scale 

system.  Wider resource recovery options are also considered, in conjunction with 

system life-time optimisation, as a means of reducing or offsetting long-term treatment 

costs. 
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1.5 Study site – Nenthead 

Drainage from abandoned metal mines severely impacts the water quality of the upland 

River Nent in Cumbria, which is ranked 3
rd

 in the Northumbria region for its severity of 

mining related pollution (Mayes et al., 2012).  One significant discharge arises from the 

Rampgill Horse Level located at Nenthead (Figure 1.2), which drains the Rampgill 

Mine Complex and Smallcleugh Mine (Gandy and Jarvis, 2012; Nuttall and Younger, 

1999).  The Rampgill discharge has characteristically low iron concentrations, is net-

alkaline and circum-neutral in pH, yet contains elevated concentrations of zinc 

(typically between 2 – 2.5mg/L) (Gandy and Jarvis, 2012; Nuttall and Younger, 2000; 

Nuttall and Younger, 1999).  This pollution is typical of other metal mine-impacted 

catchments of the area, known as the North Pennine Orefield, which was mined 

intensively for lead and zinc until the early 20
th

 century (Jarvis et al., 2014; Gozzard et 

al., 2011). 

 

Figure 1.2  Rampgill Horse Level mine water discharge, Nenthead (Digimap 2014) 

1.5.1 Pilot treatment system 

Between 2010 and 2012, a pilot scale system treating a small flow of the Rampgill mine 

water was operated at Nenthead by Newcastle University (Jarvis et al., 2014).  Funding 

for the treatment system was provided by the Department for Food and Rural Affairs 

(Defra) (Jarvis et al., 2014).  Figure 1.3 shows the pilot treatment system in operation. 



Chapter 1.  Introduction 

7 

 

The treatment system comprised a tank 2.5m x 1.5m x 1.0m (height) configured so that 

mine water passed vertically down through a substrate of mixed PAS100 municipal 

waste compost (45% v/v); wood chips (45%v/v) and digested sewage sludge (10%) 

(Jarvis et al., 2014).  PAS100 certified municipal waste compost conforms to a range of 

stringent parameters, including source control and limits on metal content (BSI, 2011).  

Below the substrate, a layer of limestone gravel facilitated under draining (Jarvis et al., 

2014).  1.1L/minute of mine water was fed into the top of the treatment system using a 

Watson Marlow peristaltic pump to achieve a residence time of approximately 19 hours 

(Jarvis et al., 2014).  The compost substrate was completely submerged in water, with 

the water level controlled by the invert height of the raised outlet pipe (Jarvis et al., 

2014; Gandy and Jarvis, 2012).  This pilot system was designed to operate 

anaerobically, harnessing microbial sulphate reduction in order to remove metals as 

their sulphides (Gandy and Jarvis, 2012). 

 

Figure 1.3  Nenthead compost-based pilot treatment system, note inlet pipes to right (photograph taken 
during spring 2012) 

Decommissioning of the pilot treatment system at Nenthead took place in August 2012, 

and a large number of substrate samples were taken and stored at Newcastle University.  

Data collection from the Nenthead site is limited to laboratory investigations on these 
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substrate samples, encompassing geochemical characterisation and metal recovery tests.  

These investigations are presented in Chapters 3 and 4. 

1.6 Study site – Force Crag 

Installation and commissioning of a full-scale passive metal mine water treatment 

system at Force Crag Mine coincided with this PhD research, a coincidence which 

allowed detailed study of a system of this type during its first year of operation.  In 

particular, it was possible to review the resource recovery possibilities at this remote 

site by collection of field data.  Accordingly, a more in-depth description of the site is 

provided, compared to Nenthead. 

Located in an upland area at the head of the Coledale Valley near Braithwaite in 

Cumbria, the Force Crag Mine is one of a number of metal mines within the English 

Lake District National Park  (Figure 1.4 shows the site location).  Operating 

intermittently for c.150 years, the mine was finally abandoned in 1991 following 

collapse of the Level 0 mine entrance.  The principal ore mined at Force Crag was 

baryte (BaSO4), but sphalerite (ZnS) and galena (PbS) were also abundant and were 

commercially exploited (Dumpleton et al., 1996). 

1.6.1 Mine water discharges 

In addition to catalysing its closure in 1991, collapse of Level 0 (one of eight levels 

accessing the mine and draining water) also altered the hydraulic regime of the mine 

(Dumpleton et al., 1996).  A driving hydraulic head is believed to exist behind the 

blockage in Level 0, with the main drainage for the mine exiting from Level 1 which is 

located higher in the valley (Dumpleton et al., 1996).  Very small flows discharge from 

Level 0 as shown in Table 1.1, although the metal load is of little consequence (Jarvis et 

al., 2012a).  Flows from Level 1, however, represented a substantial source of pollution 

to the Coledale Beck and downstream waterbodies prior to installation of a treatment 

system (Jarvis et al., 2012a).  The Newlands Beck, to which the Coledale Beck drains, 

and River Derwent both failed Environmental Quality Standards (EQS) for zinc and 

cadmium under the Water Framework Directive as a result of pollution from Force Crag 

Mine; although an additional pollutant load from the Threlkeld Mine (also known as 

Gate Gill, located some 14km WNW of Force Crag) is known to contribute to the 

pollution of Bassenthwaite Lake and the River Derwent (The Coal Authority, 2014).  
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Bassenthwaite Lake has received recent attention due to rediscovery of the rare vendace 

fish in 2014 which were believed to have been extinct from the area due, in part, to 

pollution (Winfield, 2014; Winfield et al., 2013). 

Table 1.1  Force Crag Mine discharge water flow data from various sources 

Discharge Flow data source/ date 
collected 

Flow range during dry 
conditions (L/s) 

Flow range 
during wet 
conditions 

(L/s) 

Storm event 
flows (L/s) 

Level 0  BGS, 1996 (Dumpleton 
et al., 1996) 

4   

Entec, 2006 – 2010 
(Pomfret et al., 2009) 

0.5 – 2 3 - 9 >15 

Newcastle University 
2012 (Jarvis et al., 
2012a) 

1.2 – 3.9 
(across a range of flow conditions) 

Level 1 BGS, 1996 (Dumpleton 
et al., 1996) 

6   

Entec, 2006 – 2010 
(Pomfret et al., 2009) 

7 – 11 15 - 30 >50 

Newcastle University 
2012 (Jarvis et al., 
2012a) 

8.5 19.0  

 

 
Figure 1.4  Force Crag Mine location (Digimap 2014) 
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1.6.2 Force Crag mine water treatment system installation 

Installation of a large pilot scale treatment system based around a pair of Vertical Flow 

Ponds (VFPs) was completed in March 2014.  A total flow of 6L/s from Level 1 is 

directed into the treatment system, with any excess discharging untreated to the 

Coledale Beck via an engineered overflow.  No treatment is provided for water 

emanating from Level 0. 

Force Crag mine water treatment scheme was a collaborative project involving The 

Coal Authority, Environment Agency, National Trust (which owns the mine) and 

Newcastle University, with Defra funding (Harris et al., 2014).  System design was led 

by Dr Adam Jarvis (Principal Investigator at Newcastle University) with engineering 

provided by Atkins Ltd. and construction undertaken by J N Bentley Ltd. (Moorhouse et 

al., 2015).  The Coal Authority was responsible for managing the design and build of 

the system, and is responsible for its ongoing operation (Moorhouse et al., 2015). 

1.6.3 Vertical flow ponds 

The main treatment units consist of a pair of earthworks-formed VFPs.  These contain a 

500mm layer of compost comprising 10% digested sewage sludge, 45% wood chips and 

45% municipal waste compost (PAS100 specification) (Jarvis et al., 2014).  This is 

underlain by a 200mm coarse limestone gravel drainage layer and a network of 

perforated drainage pipes.  Mine water flows into the VFPs, before passing vertically 

through the compost substrate and collecting in the basal pipe network, where it leaves 

the treatment system as shown in Figure 1.5.  In each VFP, there are four isolated 

drainage pipe networks, each draining one quartile of the treatment system (Atkins, 

2014a).  This is in part to test for, and guard against, the formation of preferential flow 

paths through the substrate (pers comm. Dr A. P. Jarvis, Newcastle University, 2014).  

VFP effluents pass through a swan-neck arrangement, the key objective of which is to 

control the water level within the VFPs: the water level is maintained at 350mm above 

the substrate to ensure the system operates anaerobically (Jarvis et al., 2015).  This 

design, similarly to Nenthead, promotes bacterial sulphate reduction (BSR) for removal 

of dissolved metals and sulphate as insoluble metal sulphides (Jarvis et al., 2015; Jarvis 

et al., 2014). 
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Figure 1.5  Schematic drawing of Force Crag VFP configuration 

System size was designed to achieve a residence time of 19 hours, based upon scaling 

of empirical data from the Nenthead pilot system (Jarvis et al., 2014) to the 6L/s flow 

rate.  On the basis of the designed residence time and flow rate, the system has a total 

substrate volume of 840m
3 

(Jarvis et al., 2014).  Flow is carefully controlled via an 

arrangement of penstocks and gate valves to ensure each VFP receives a constant flow 

of 3 L/s (Jarvis et al., 2014). 

1.6.4 Wetland 

The VFP effluent water passes through an aerobic wetland before final discharge to the 

Coledale Beck (Jarvis et al., 2014).  The aerobic wetland consists of an unlined shallow 

earthworks lagoon, planted with indigenous soft rush (Juncus effusus) to facilitate 

oxygenation and removal of suspended particles (Moorhouse et al., 2015).  

Additionally, it has been suggested that wetlands act to remove residual metals within 

effluents by direct uptake into plants, and formation of plaque deposits around roots and 

rhizomes (Batty, 2003).  However, given the small size of the wetland (Atkins, 2014a), 

it is likely that this effect will be minimal.  The layout of the treatment system is shown 

in Figure 1.6 after Atkins (2014a). 
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Figure 1.6  Force Crag mine water treatment system in plan, gravity main flows shown in purple 
(modified from Atkins, 2014a) 

1.6.5 Resource recovery potential 

The Force Crag treatment system case study provided a unique opportunity for this 

research to study, in real time, metal accumulation rates at a passive metal mine water 

treatment system, given that at the time of writing it was the only system of its kind in 

the UK.  It is passive in the truest sense: water is diverted from the mine and through the 

treatment system by gravity, and metal removal is achieved by passive processes within 

vertical flow ponds and a wetland (Jarvis et al., 2015).  Minimal operational 

intervention should be required to keep the system operational, given its passive nature; 

however, there will become a time at which the substrate of the vertical flow ponds will 

require replacing (Gray et al., 2012; Gusek and Clarke-Whistler, 2005).  Analysis of a 

substrate taken from the Nenthead pilot system (on which the full-scale Force Crag 

system was based) identified that the material constituted hazardous waste due to zinc 

content, which would entail very high disposal costs (Atkins, 2014b).  Yet, it has been 

suggested that the metals which accumulate in these systems may represent a resource 

(Gusek et al., 2006; Gusek and Clarke-Whistler, 2005).  This raises the possibility that 

recovery of metals from passive compost-based treatment substrates could be used to 

a. Mine adit (not shown) 

b. Flow distribution chamber 

c. VFP inlets 

d. VFP swan neck outlets 

e. Aerobic wetland 

f. Final effluent 

 

VFP1 

VFP2 a. 

d. 

c. 

b. 

f. 

c. 

d. 

e. 
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offset life-cycle costs.  Additionally, other resources may exist in mine waters that may 

be amenable to recovery, either to be used beneficially at site or to generate revenue.  

These scenarios are explored in Chapter 5, supported by data obtained by 

experimentation with the Nenthead substrate, in addition to measurements at Force Crag 

and data sourced from the literature. 

1.7 Thesis structure 

In accordance with the first objective, Chapter 2 discusses metal mine water treatment 

processes, and provides a broad inventory of the resource potential associated with mine 

waters in Great Britain, based upon published and grey literature.  It considers methods 

of recovering resources, in particular those relating to passive metal mine water 

treatment systems which is a key focus of this work. 

Experimental methods to investigate the resource potential at the two case study sites, 

Nenthead and Force Crag, are presented in Chapter 3. 

Chapter 4 documents the main phase of experimental work, which comprises a detailed 

geochemical analysis of mine water treatment substrates from the Nenthead pilot 

treatment system.  Metal recovery from these wastes is trialled, using inorganic acid 

leaching and biological leaching. 

Treatment system performance and potential for resource recovery at Force Crag is 

evaluated in Chapter 5.  Metal accumulation rates are calculated, based upon data 

collected in the field, compared to other examples in the literature.  Life-cycle cost 

scenarios are presented, with and without resource recovery.  This is then compared 

directly to the estimated life-cycle costs of active treatment. 

Chapter 6 concludes the thesis, summarising its main findings, positioning them in the 

current knowledge landscape and stating this thesis’ claims to an original contribution.  

Recommendations for further research are also provided.
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Chapter 2. Assessment of the resource potential of metal mine 

waters 

2.1 Introduction and chapter contents 

The resource potential of abandoned metal mine waters forms the key focus of this 

chapter, considering data from both the published literature and grey literature available 

to the author.  By understanding the potential for, and viability of, resource recovery, 

strategies may be developed to exploit this as a means of offsetting the life-cycle costs 

of mine water treatment systems.  On the other hand, extending treatment system life-

time may provide a mechanism to reduce these costs.  Both of these strategies are 

reviewed and discussed in this chapter in order to address the first objective of this 

thesis: 

 Review the resource potential of metal mine waters nationally and identify ways 

in which resources can be recovered (Objective 1, Chapter 1). 

Firstly, energy resources are outlined with a focus on potential and thermal energies of 

mine waters and a selection of data are presented that detail power that may be 

recoverable.  Metal mine waters are identified to contain significant quantities of 

valuable metals, yet disposal of metal laden wastes from passive treatment systems 

represents a substantial cost.  This review, therefore, explores ways in which metals 

might be recovered as a resource, instead of disposed of as waste.  While this is an 

investigation into the resources associated with abandoned metal mines, reference will 

be made to both metal and coal mine case studies since useful information on resource 

recovery can be gained from both.  The chapter concludes with a summary of the 

resource potential at abandoned metal mine sites, identifying knowledge gaps which 

require further investigation to facilitate its exploitation.
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2.2 Realising the resource potential from mine abandonment 

Mine closures are brought about for any number of reasons; however, the driver is often 

financial, where the economics of extracting the resource(s) becomes unprofitable (e.g. 

Laurence, 2006).  By its very nature, the mine has completed its life as a provider of 

capital resource and may thus be considered exhausted, particularly once flooding and 

collapse of workings has occurred to render any remaining capital resources 

inaccessible (Younger et al., 2002).  Upon abandonment, mines sites can often remain 

as unsightly derelict areas of land, host to numerous liabilities such as mine entries, land 

contamination and instability, derelict buildings and gas and water emissions 

(Fernández-Caliani et al., 2009; Yu et al., 2009; Holmes, 2008).  From this perspective, 

the abandoned mine might therefore pose risks to human health and the environment 

(Holmes, 2008; Johnston et al., 2008). 

Coal mine methane, for example, has been previously documented as an environmental 

and health and safety liability at coal mine sites (Jackson and Kershaw, 1996).  In the 

years following the widespread abandonment of the coalfields of Britain, this liability 

has been managed through careful predictive modelling and venting.  In some instances, 

the resource potential of coal mine methane has been realised (see: Flores, 1998).  

Methane is not the only hazard associated with abandoned mines that may also be 

viewed as a potential resource.  To date, there has been little consideration of the 

resource potential of mine waters, yet by recovering resources, the cost of managing this 

liability might be offset.  The following sections identify characteristics of metal mine 

waters which may be amenable to resource recovery. 

2.2.1 Mine water characteristics which might offer recoverable resources 

A mine water discharge is where water emanates, directly or indirectly, from 

underground mine workings, and can be at locations distant from mine sites (Watson, 

2007; Younger et al., 2002; Younger, 1993).  Depending upon the hydrogeology and 

mine workings, the water quality can vary considerably between locations, from good 

quality groundwater to poor quality metalliferous, saline and acidic waters (see: Banks 

et al., 1997).  Mine water discharges were sometimes purposefully engineered during 

development of a mine to provide free drainage of workings.  These drainage levels, 

sometimes known as soughs, form shallow gradient tunnels that can de-water 

significant proportions of orefields and are thus characteristically high in volumetric 
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flow rate (Younger et al., 2002).  Conversely, where topography or other factors do not 

allow free-drainage, active pumping must be employed to keep workings dry during 

mine operation (Younger et al., 2002).  Upon mine closure, however, mine water levels 

can recover and flow out in uncontrolled discharges at surface (e.g. Bailey et al., 2011; 

Younger, 2002).  In many of these cases, mine waters are sourced from deep voids, little 

affected by surface temperature fluctuations, yet are warmed by geothermal heat (Banks 

et al., 2003).  This water may represent a resource if used for the extraction of heat for 

space heating, for example.  Table 2.1 provides a summary of some key features of 

mine waters and an outline of the potential resources associated with them. 

Table 2.1  Features of mine water discharges which may have resources associated with them 

Feature Potential resource 

Waters cascading from mine entries and within 
treatment system pipe ranges 

Potential energy in pipe ranges may be 
harnessed by hydroelectric devices (McNabola et 
al., 2014) 

Heat contained within mine waters flowing from 
or within mines; capacity of waters to store heat 

Large volumes of water with perennially stable 
temperatures may be used for heating or cooling 
(Verhoeven et al., 2014; Banks et al., 2009; 
Watzlaf and Ackman, 2006; Jessop, 1995) 

Mine water passing through treatment systems Waste substrates and sludges from treatment 
process, particularly the metals contained within 
them (Gray et al., 2012; Zinck, 2005).   

Treated or untreated water of good quality may 
be suitable for potable supplies.  In some cases, 
poorer quality waters could be used in industrial 
applications such as water treatment (Banks et 
al., 1996) and hydraulic fracturing (Macy et al., 
2015). 

 

Other resources may be recoverable from metal mine waters, for example 

electrochemical potential of ferric iron oxidisation (Cheng et al., 2007) or entropic 

potential of mixing of saline and fresh waters (Skilhagen et al., 2008; Aaberg, 2003).  

These are only emerging technologies, however, and will not be considered further in 

this thesis. 

Remnant infrastructure, whilst not necessarily representing a resource itself, should be 

considered for its potential in facilitating the adoption of resource recovery schemes.  

Typically, mine sites demanded good transport and power connections to operate 

effectively, and often such infrastructure remains at the site (USEPA, 2011).  An 
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example of this would be a connection to the National Grid which might be adapted to 

allow feed in of electricity generated by a hydroelectric turbine at a site (USEPA, 2011). 

2.3 Potential energy of mine waters 

Many abandoned metal mine sites are located within upland areas of Britain.  For 

example the orefields of Llanrwst-Harlech, Mynydd Parys and Halkyn-Minera in 

western and northern Wales, and in England the North Pennines and Lake District, as 

defined by Mayes et al. (2009a).  Additionally, the location of mine water discharges is 

often within steep-sided valleys, typically engineered in these locations during mine 

development in order to drain workings (Younger et al., 2002).  Consequently, it is not 

unusual for there to be a close proximity of high energy upland watercourses to 

polluting mine water discharges and possible treatment sites.  Potential energy from 

upland watercourses could be harnessed using small-scale hydroelectric systems (Gray 

et al., 2012).  Additionally, unregulated outflows from long-abandoned mines exist, 

which cascade from mine entrances, or where treatment systems exist, flow down 

gravity pipelines (e.g. Moorhouse et al., 2015; Nuttall and Younger, 1999). 

Potential energy from cascading and flowing water can be calculated using Equation 2.1 

after Harvey et al. (1993): 

(2.1)  𝑃 = 𝜌𝑄𝑔ℎ 

Where P = power in watts (W); ρ = density of water (1 kg/L); Q = flow in L/s; g = 

gravitational acceleration (9.8m/s
2
) and h = hydraulic head in m. 

Thus, as power is a product of flow and hydraulic head, a reasonably accurate 

estimation of these two variables can yield the potential energy at a given site.  Few data 

are known to exist for hydraulic head at mine water discharges and therefore potential 

power generation capacity cannot be calculated even where flows are known.  While 

this information could be approximated from map contours, significant errors would be 

present (Harvey et al., 1993).  As a result, it would be necessary to undertake both a 

desk study of mine plans and a site survey in order to accurately gauge the potential 

energy at a mine water discharge site. 
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2.3.1 Mine water discharge flows 

Reliable flow data for metal mine water discharges are limited, in period at least, due to 

the lack of legal responsibility of mine owners after mine abandonment prior to 1999 

(McGuinness, 1999) and lack of government intervention before changes to legislation 

(Energy Act, 2011).  Efforts were made by the Environment Agency and academic 

colleagues to collate metal mine pollutant flux data for the entirety of England and 

Wales, largely for the NoCAM Project (Jarvis et al., 2010b) and subsequent catchment 

scale investigations (Jarvis et al., 2012c).  Out of 365 sites for which data are available, 

126 have flow readings for mine discharges attributed to them (unpublished data 

courtesy of Dr H. A. B. Potter, Environment Agency, 2015).  Figure 2.1 provides an 

illustrative overview of discharge flow rates from abandoned metal mines in England 

and Wales, showing that the vast number of flows are below 100L/s (n=149/159), with 

more than half of all measured flows below 10L/s (n=84/159).  Further data collection 

to determine hydraulic heads would be required before the potential energy at these sites 

could be determined. 

 

Figure 2.1  Spot readings of metal mine water discharge flows across England and Wales (unpublished 
Environment Agency data, 2015). 

Roberts (2011) conducted a series of scoping investigations for hydroelectric potential 

of metal mine sites in northern England and mid Wales.  A summary of the data is 

provided in Table 2.2, which shows that the two greatest flows (in terms of combined 

head and flow rate) are streams, rather than mine water discharges.  Because hydraulic 

head was determined by Roberts (2011), it was possible to calculate the potential power 

(in kW) available.  This shows that there is a modest amount of power which might be 
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recoverable from mine water flows/streams at these abandoned metal mine sites.  The 

individual locations of these sites, in addition to others in England and Wales discussed 

in this review, are displayed in Figure 2.2. 

Table 2.2  Flow and head data for flows at abandoned mine sites, taken from Roberts (2011) 

 

 

Figure 2.2  Location of metal mine discharges in England and Wales discussed in review (Digimap 2016) 
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Site name No.
Rampgill Horse Level, Nenthead 1
Force Crag Level 1 2
Low Force 3
Scraithole Mine 4
Cae Coch Mine 5
Barney Craig Adit 6
Sharnberry Mine 7
South Caradon, Jopes Adit 8
Saltburn Gill 9
County Adit 10
Parys Mountain Joint Level 11
Hayle Adit (mid 1) 12
Frongoch Adit 13
Nant y Mwyn Lower Boat Adit 14
Pughs Adit 15
Pugh’s Adit Stream 16
Hayle Adit (lower) 17
Meerbrook Sough 18
Bridford Mine Adit 19
Woodend Low Level 20
Collacombe Down Adit 21
Kingside Adit 22
Cwm Rheidol Adit 6 23
Cwm Rheidol Level 9 24
Dolcoath Adit   25
Yatestoop Sough 26
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Site Site type NGR Mean Flow 
(L/s) 

Available 
head (m) 

Potential 
Power (kW) 

Pugh’s Adit Mine discharge 280100, 274400 7.41 2 0.145 

Pugh’s Adit Stream 280100, 274400 31 80 24.33 

Frongoch Adit Mine discharge 271237, 274259 55 12 6.48 

Cwm Rheidol Level 6 Mine discharge 273022, 278330 8.4 80 6.59 

Cwm Rheidol Level 9 Mine discharge 272936, 278239 0.87 60 0.512 

Force Crag Level 1 Mine discharge 319921, 521623 10.6 25 2.6 

Low Force Stream 319920, 521524 25 80 19.62 
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2.4 Micro-hydropower for potential energy recovery 

Cascading waters have the potential to yield power by Equation 2.1, which can be 

harnessed by hydropower systems.  Often, hydropower systems are coupled to 

electricity generators in hydroelectric systems, but equally can be directly coupled to 

machinery to undertake mechanical work (Meier and Baumer, 1985).  Classification of 

small-scale hydropower into mini-hydro, micro-hydro and pico-hydro (in descending 

order) depending upon power capacity is commonplace in the literature, yet there is 

incomplete agreement between authors on the boundaries between the classes.  For 

example, Ashok (2007) defines micro-hydro as >100kW; whereas Harvey et al. (1993) 

suggests micro-hydro applies to systems between 200W and 300kW.  Paish (2002), on 

the other hand, claims that micro-hydropower is generally accepted to range between 

10kW and 500kW, with pico-scale systems defined as below 10kW; and mini-hydro 

from 500kW to 2MW.  Small scale hydropower systems are generally installed to 

harness the power of rivers and streams (Gallagher et al., 2015a; Paish, 2002); and 

whilst there have been some investigations into potential for use in the water industry 

more widely (Gallagher et al., 2015b; McNabola et al., 2014), there is little evidence of 

consideration for use with mine waters. 

2.4.1 Hydroelectricity generation 

Use of hydropower systems coupled to electricity generators can provide a versatile 

source of power which may be either used for a process within a mine water treatment 

system, to supply a nearby property or to be fed into the electricity grid for revenue 

generation (Gray et al., 2012).  Hydroelectric system efficiencies are affected by a 

number of factors as defined by Harvey et al. (1993), expressed by Equation 2.2. 

(𝟐. 𝟐)  𝑒0 = 𝑒(𝑐𝑖𝑣𝑖𝑙𝑠 𝑤𝑜𝑟𝑘𝑠) 𝑥 𝑒(𝑝𝑒𝑛𝑠𝑡𝑜𝑐𝑘)𝑥 𝑒(𝑡𝑢𝑟𝑏𝑖𝑛𝑒) 𝑥 𝑒(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) 𝑥 𝑒(𝑝𝑜𝑤𝑒𝑟 𝑙𝑖𝑛𝑒𝑠) 

e0 is the net system efficiency, a product of the efficiencies, e, of various system 

components. 

Determination of these factors would be required before a realistic electrical power 

output of a hydropower system could be determined for a given site. 
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2.4.2 Types of turbine 

Turbines vary in design based upon the driving head and flow rate of water source and 

can be subdivided into two categories: impulse turbines, such as Pelton/Turgo wheels or 

crossflow turbines, or reaction turbines such as Francis, Propeller or Kaplan types 

(Harvey et al., 1993).  Figure 2.3 shows how these different turbine types suit different 

hydraulic conditions. 

 

Figure 2.3  Suitability of hydropower turbines for a range of heads and flows, after Paish (2002) 

Considering typical abandoned metal mine sites flows (Table 2.2) generally offer 

<25kW of power (or <7kW for mine water flows), yet generally with high driving heads 

>12m (excepting Pugh’s Adit), it is anticipated that crossflow or Pelton/Turgo type 

wheels or crossflow turbines would be suitable.  The Pelton wheel system consists of 

split buckets attached to a wheel which capture almost all of the energy from a high-

pressure jet of water, allowing it to then spill into a discharge channel at the base, as 

shown in Figure 2.4 (Paish, 2002).  Pelton systems operate efficiently with small heads 

only where power generation is fairly modest, for example <20m for 1kW capacity 

(Harvey et al., 1993).  The Turgo turbine is similar in design, but the water jet is angled 

to avoid interaction with the spill water (Paish, 2002).  Crossflow turbines consist of a 

drum runner with radially curved blades attached (Harvey et al., 1993).  The water is 

injected in a parallel stream across the full width of the runner before falling through the 

drum, and providing an additional strike of the blades on its exit, as shown in Figure 2.4 

after Paish (2002). 
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Figure 2.4  Pelton turbine (left) and crossflow turbine (right) after Paish (2002) 

2.4.3 Applications of hydropower systems in mine water environments 

Geochemical analysis by Rose (2015) of the Level 1 mine water at Force Crag Mine in 

Cumbria indicate that several minerals are oversaturated.  As a consequence, there is a 

risk that these minerals may precipitate within a hydropower system at this site causing 

operational difficulties (Rose, 2015).  Technical issues of corrosion of turbines have 

also been identified from acid mine water impacted flows (Sharma et al., 2010), and 

consequently further technical assessment of turbine applicability would be required at 

any specific site.  In the favour of harnessing mine water flows, however, it appears 

unlikely that normal regulatory obstacles would apply (for example, see Environment 

Agency, 2013a), because mine waters do not have the same environmental sensitivities 

as rivers. 

2.5 Thermal capacity of mine waters 

Deep coal mine waters often have a perennially consistent temperature throughout 

extensive mine networks and thus can provide either a useful source or sink of heat 

(Preene and Younger, 2014; Banks et al., 2003).  Calculations suggest that a resource of 

approximately 3,000MWt exists in abandoned coal mines throughout Europe (Díez and 

Díaz-Aguado, 2014).  It is likely that a similar situation exists at abandoned metal mine 

sites, albeit that in Great Britain, metal mines are generally shallower than some coal 

mines thereby receiving a reduced effect from deep geothermal heat (Gray et al., 2012).  

Mine water discharges (i.e. where water discharges by gravity) may also represent 

significant sources of heat and, without the need for active abstraction from workings, a 

heat recovery system would have improved overall efficiency. 
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Mine water sourced heat pumps for space heating and cooling are discussed by Banks et 

al. (2003) and examples of full scale systems exist at former mine sites in Scotland 

(Banks et al., 2009), Spain (Loredo et al., 2011), Canada (Jessop, 1995) Germany, 

Norway and the USA (Hall et al., 2011), and in the Netherlands  (Verhoeven et al., 

2014; Roijen, 2011). 

Potential power from individual mine water sources can be estimated using the 

following simple Equation 2.3 (after: Banks et al., 2003): 

(𝟐. 𝟑) 𝑃 = 𝑄𝑐∆𝑇 

Where Q = flow in litres per second; c = specific heat capacity in kJ/L/°C (assumed as 

4.2); ΔT = temperature change of source in °C and P = power is in kW. 

2.5.1 Metal mine water temperatures 

Temperature monitoring data for metal mine water flows have been obtained for several 

metal mine sites from the literature and provided by the Environment Agency, as 

detailed in Table 2.3 and shown in Figure 2.2.  Average temperatures are presented 

where data cover the majority of a full year or more.  As can be seen, there is significant 

variability between sites.  One possible reason for this is differences in subsurface 

hydrogeology which may lead to waters arising from differing depths where 

temperature varies due to geothermal gradients (Jessop, 1995).   
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Table 2.3  Gravity discharge temperature and flow data for free draining metal mines in England and 
Wales 

Site NGR Temp 
(°C) 

Temp 
Range/date 

Flow, 
(L/s) 

Power 
(kWt) 

Source 

Scraithole Mine 380300, 
546900 

7.3 Feb 2006 - 
Dec 2006 

2.1 35 (Mayes et al., 2009b) 

Cae Coch Mine 277523, 
365326 

9 May 1988 – 
May 1990 

N.D. - (McGuinness and 
Johnson, 1993) 

Parys Mountain 
Joint Level 

243800, 
389950 

9  10 168 (Johnson, 2003); 
Environment Agency 
unpublished data** 

Threlkeld Mine, 
Woodend Low 
Level 

332514, 
526142 

14.28 April 2012 - 
April 2014 

10.6 178 Environment Agency 
unpublished data** 

Barney Craig 
Adit 

380400, 
546700 

9.57 Jan 2014 - 
Dec 2014 

18.1 304 Environment Agency 
unpublished data** 

Sharnberry 
Mine 

401325, 
530804 

7.95 Oct 2011 - 
Sept 2012 

19.3 324 Environment Agency 
unpublished data** 

South Caradon, 
Jopes Adit 

226555, 
069817 

12.4 July 2012 - 
Jan 2013 

N.D. - Environment Agency 
unpublished data** 

*Assuming ΔT of 4°C after Banks et al. (2003)  **Data courtesy of Dr H. A. B. Potter, Environment Agency 
2015 

The Woodend Low Level of Threlkeld Mine was visited by this Author during the 

winter of 2015 and field measurements taken using a calibrated Myron 6P Ultrameter.  

At the time of the visit, the temperature of the discharge from the mine was 13.6°C 

which is close to the annual average of 14.3°C, measured over two years by the 

Environment Agency (S.D. 0.2, n=20).  At the time of the visit the ground had a light 

coating of snow and the air temperature was <5°C, yet through nitrile gloves the mine 

water was appreciably warm to the touch (Figure 2.5). 
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Figure 2.5  Woodend Low Level discharge, Threlkeld Mine, emanating from the foot of Blencathra 
Mountain in the English Lake District National Park 

Regular temperature measurements at the Threlkeld Woodend Low Level discharge are 

presented in Figure 2.6.  Similarly stable temperatures have been observed at other sites 

such as Barney Craig Mine in Northumberland (Figure 2.7), albeit temperatures are on 

average lower at 9.6°C (S.D. 0.2, n=12) (unpublished data courtesy of Dr H. A. B. 

Potter, Environment Agency, 2015).  Pumped flows from the Cleveland Orefield (NGR 

467370, 519835) are on average 16.9°C (S.D. 2.3, n=179), albeit with a decreasing 

trend in temperature from the start of pumping (Figure 2.8).  Stable temperatures seen in 

waters from deep mines are of particular use for heat extraction during winter, as they 

are generally warmer than the air in the winter (Banks et al., 2003).  On the other hand, 

it has been suggested that during summer months, the mine waters may offer a means of 

disposing of heat energy to keep buildings cool  (Preene and Younger, 2014; Banks et 

al., 2003). 
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Figure 2.6  Threlkeld Mine Woodend Low Level discharge water temperatures, January 2012 – July 2014 
(unpublished Environment Agency data, 2015) 

 

Figure 2.7  Barney Craig Mine water temperatures, November 2013 – February 2015 (unpublished 
Environment Agency data, 2015) 

 

Figure 2.8  Pumped mine water temperature in the Cleveland Orefield, June 2013 – February 2014 
(unpublished Coal Authority data, 2014)  
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2.6 Exploitation of mine waters for heating and cooling 

Vast void spaces left by mining activities provide a considerable advantage for open-

loop mine water sourced heating and cooling systems, for the following reasons (after: 

Wieber and Pohl, 2008; Banks et al., 2003; Watzlaf et al., 2002): 

 Mined voids provide excellent heat exchange with surrounding bedrock. 

 Significant depths can be readily accessed from mine entries. 

 Substantial volumes of water are accessible and abstractions can be highly 

productive. 

 High flow discharges often pre-exist, or mine water pumping takes place for 

operational or environmental reasons. 

Despite these factors, there has been a certain reluctance to adopt mine water sourced 

heating schemes over conventional ground sourced systems, potentially attributable to 

high capital costs (Preene and Younger, 2014; Hall et al., 2011). 

2.6.1 Principles of pumping heat 

Shallow subsurface strata have the potential to store large quantities of thermal energy.  

Ground sourced heating and cooling is a relatively well established practice (e.g. Yang 

et al., 2010; Lund et al., 2004; Sanner et al., 2003) where heat energy can either be 

extracted or deposited within soils, rocks or groundwater; or from mine waters (Preene 

and Younger, 2014).  While it is feasible to extract heat from these sources by 

circulating fluid through pipes within workings or a heat exchanger where mine water is 

at the surface, the relatively low temperature heat is of little use for practical 

applications (Banks, 2008).  It is likely, therefore, that heat pumps will be required to 

pump heat against the thermal gradient, thus enhancing the heating or cooling available 

by passive methods (Banks, 2008; Banks et al., 2003). 

Sadi Carnot proposed an ideal thermodynamic cycle which can create a temperature 

difference (between θ1 and θ2) by doing a given amount of work.  This cycle is ideal due 

to its reversibility and is described by Equation 2.4: changes in entropy and losses from 

mechanical inefficiencies are not considered (Banks, 2008). 

(𝟐. 𝟒)  𝐸𝑚𝑎𝑥 = 
𝑊

𝐻𝑖𝑛
= 
(𝜃1 − 𝜃2)

𝜃1
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The maximum efficiency of an ideal (Carnot) cycle (Emax) can be defined as the ratio 

between the work (W) and the high temperature heat (Hin); whether that be temperature 

change to deliver work, in the case of a heat engine, or in reverse for work undertaken 

to deliver a temperature change, as in a heat pump (Sumner, 1948). 

2.6.2 Coefficient of performance 

Efficiency of a heat pump system can be measured by the Coefficient Of Performance 

(COP), that is, the ratio of work undertaken to the heat energy output.  Considering the 

reverse of Carnot’s ideal heat engine, the theoretical maximum efficiency or COP can 

be expressed by Equation 2.5. 

(𝟐. 𝟓)  𝐶𝑂𝑃𝑐𝑎𝑟𝑛𝑜𝑡 =  
𝜃1

𝜃1 − 𝜃2
 

Where θ1 is the low temperature feed, and θ2 is the heat output, in degrees Kelvin, K  

(Banks, 2008). 

As an example, a low temperature ground water sourced feed of 5°C (278K) is used to 

provide an output of 50°C (328K) for a conventional domestic heating system: 

(𝟐. 𝟔)   
278

323 − 278
=  6.2 

As explained by Equation 2.6, an input of 1 joule of energy (work) in the heat pump can 

theoretically produce 6.2 joules of energy (heat) from a low temperature source, where 

1 joule of the output comes from the work undertaken.  By reducing the target 

temperature, θ2, or by increasing the source temperature θ1, a higher theoretical COP is 

achievable. 

In reality, however, the Carnot Cycle model provides an upper limit COP that is not 

normally achieved in practice (Banks, 2008).  Most commonly, heat pumps employ a 

vapour-compression system, known as a ‘Rankine Cycle’ which has a lower efficiency 

than the ideal Carnot Cycle but can be employed in the real world. (Banks, 2008).  

Table 2.4 provides a summary of heat pump performance based on EN14511 testing of 

a range of commercial heat pumps. 
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Table 2.4  Heat pump performance (COP) data (Heat Pump Test Centre WPZ Switzerland, 2012) 

  35°C output   50°C output 

Source °C 5 0 -5 

 

5 0 -5 

COP min 4.5 4.0 3.4 3.1 2.7 2.3 

COP mean 5.1 4.4 3.8 3.5 3.0 2.6 

COP max 5.9 5.0 4.3 4.1 3.5 3.1 

 

Compared to the calculated ideal Carnot Cycle COP of 6.2, it can be seen that the 

highest COP achieved by the Swiss Heat Pump Test Centre is just 4.1, with an average 

of 3.5.  It is also clear to see that, as stated by the COP equation, higher source 

temperatures and lower output temperatures both increase the COP.  Consequently, heat 

pump systems are designed to operate at a minimal temperature differential (ΔT) in 

order to maximise the COP. 

2.6.3 Mechanics of a Rankine cycle heat pump 

Conventional heat pumps utilise the Rankine cycle, comprising a condensation-

evaporation cycle of a fluid with a suitably low boiling point. 

 

Figure 2.9  Ground sourced heat pump schematic (Banks and Robins, 2002) 
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A compressor forces the fluid to condense, giving up heat energy as it changes state.  

The now condensed fluid flows through an expansion valve, before collecting heat 

energy in the evaporator (a heat exchanger interfaced with the heat source).  This 

vapour now passes back into the compressor to complete the cycle, as depicted in 

Figure 2.9 (Banks and Robins, 2002).  In effect, low grade heat energy from the ground 

source is ‘pumped’ up-gradient in order to provide thermal energy at a useable 

temperature. 

2.6.4 Applications of heat pumps in mine water environments 

Mine waters are typified by poor water quality, where pH can be supressed, and 

supersaturation with metals and other species.  Concerns of corrosion of heat pump 

components, accretion and blockage of heat exchangers with precipitates may be 

reasons why installations fall from favour (Watzlaf and Ackman, 2006; Banks et al., 

2003).  A specific concern for mine waters rich in hydrogen sulphide is the corrosion of 

copper and cupro-nickel heat exchangers, where concentrations over 0.25mg/L can 

cause premature failure (Rafferty, 2003).  Geochemical modelling can be undertaken in 

order to assess the risk of scaling within heat exchanger units (Rafferty, 1999), and was 

undertaken by Banks et al. (2009) for the two Scottish open-loop mine water sourced 

heat pump installations, where it was identified that exclusion of atmospheric oxygen 

was crucial to prevent the formation of troublesome precipitates.  It may be possible to 

use closed-loop systems at mine water treatment systems, installing large heat 

exchangers within treatment systems.  For example, units such as ‘blade’ type as shown 

in Figure 2.10, to recover heat flowing through the system while minimising the impacts 

of poor water quality (pers comm., Prof. P. L. Younger, Glasgow University, 2015). 
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Figure 2.10  Installation of a 'blade' type heat exchanger at Caphouse coal mine water treatment system, 
Yorkshire, UK (photograph courtesy of Prof. Paul Younger).  Note black lines which circulate glycol heat 
carrier to and from a heat pump. 

Generally, however, there is a paucity of investigations in the literature which consider 

the impacts of mine water quality on heat pump installations.  This poor quality might, 

however, be a resource in itself, in particular if the metals present could be recovered. 

2.7 The metal content of metal mine waters in England and Wales 

Mayes et al. (2013) provide an inventory of problematic metal fluxes through river 

basins in England and Wales, resulting from discharges from (typically long) 

abandoned non-coal (largely metal) mines.  Given the typical length of time since mine 

abandonment, and the fact that just two treatment systems have been installed since the 

study at the time of writing, it is considered that these figures are still relevant.   

Table 2.5 documents average flows and metal concentrations in the top 15 point source 

discharges in England and Wales ranked by zinc load, plus data for the two case studies 

investigated in this thesis: Nenthead and Force Crag (unpublished data courtesy of Dr 

H. A. B. Potter, Environment Agency, 2015). 
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Table 2.5  High ranking polluting metal mines in England and Wales, ordered by zinc load (unpublished Environment Agency data, (2015) after Mayes et al. (2013); Jarvis et al. 
(2010a)) 

Rank by 
Zn load 

Discharge name 
Grid reference 

 
Metal concentrations (mg/L) 

Load 
(t/year) 

Easting Northing 
Flow 
(L/s) 

Cd Cu Fe Mn Ni Pb Zn Zn 

             

1 County Adit 176199 041875 454 0.004 0.06 9.8 0.77 0.08 0.005 2.4 33.9 

2 Parys Mountain Joint Level 243807 391218 10 0.17 43.1 599 19.42 0.19 0.04 71.4 22.5 

3 Hayle Adit (mid 1) 159398 032416 644 0.002 0.39 3.8 
  

0.02 0.91 18.5 

4 Frongoch Adit 271237 274259 60 
     

6.25 5.6 10.5 

5 Nant y Mwyn Lower Boat Adit 278234 243796 30 0.03 
    

0.09 10.6 10.1 

6 Pughs Adit 280109 274407 13 0.03 0.007 0.9 
  

0.58 22.4 9.2 

7 Hayle Adit (lower) 155692 033128 213 0.002 0.22 0.40 
  

0.002 1.3 8.5 

8 Meerbrook Sough 429250 354350 740 0.002 0.0009 0 
  

0.02 0.36 8.4 

9 Bridford mine adit 283035 086504 20 0.04 0.019 57.2 
  

2.7 12.3 7.8 

10 Woodend Low Level 332514 526142 5.5 0.08 0.006 4.2 3.93 0.27 0.44 36.7 6.4 

11 Collacombe Down Adit 243017 077032 35 0.01 0.08 29 
  

0.01 5.0 5.5 

12 Kingside Adit 280400 274500 18 0.03 0.006 
   

0.74 9.2 5.2 

13 Cwm Rheidol Adit 6 273022 278330 10 0.04 
 

9.6 
  

0.78 14.6 4.6 

14 Dolcoath Adit    164850 041880 150 0.002 0.0001 8.0 2.25 0.02 0.002 0.9 4.3 

15 Yatestoop Sough 426400 362600 172 0.008 
   

0.007 0.02 0.71 3.9 

27 Rampgill Horse Level, Nenthead 378120 543500 17 0.006 0.001 0.64 0.1 0.01 0.07 4.3 2.3 

33 Force Crag Mine Level 1* 319921 521632 16 0.02 0.007 0.66 0.52 0.016 0.05 3.1 1.5 

*Load now reduced by treatment system installation (Jarvis et al., 2015) 
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Out of ~180 of the most polluting metal mine waters in England and Wales, the total 

load discharged per annum for several key metals has been summarised in Table 2.6, 

alongside the 2015 market value of the respective metals based upon values available 

from the London Metal Exchange (LME, 2015). 

Table 2.6  Summary of combined metal fluxes in England and Wales from abandoned metal mines, and 
indicative market value of some metals 

Metal 

Load (t/annum) 
from point mine 
water discharges 
(unpublished 
Environment 
Agency data 2015) 

Market value for native metal 
(£/t) 
(*London Metal Exchange, 
www.lme.com 29/9/15 
(exchange rate of $0.65US to £1) 

Potential 
aggregate value 
of metals 
(£) 

Nickel 1.8 6,766.50* 12,179.70 

Lead 21.2 1,086.82* 23,040.58 

Zinc 252.9 1,061.32* 268,407.83 

Copper 38.6 3,321.90* 128,225.34 

 

It has been noted that a significant proportion of this national flux is concentrated in a 

relatively small number of discharges; e.g. 67% zinc is attributable to the 10 most 

polluting discharges (Mayes et al., 2010).  The majority of these sites (6/10) are located 

in Western Wales (Mayes et al., 2010). 

Data for non-coal mine water pollutant fluxes within Scotland has received little recent 

attention in the published literature, despite large areas of abandoned base-metal mines, 

such as Leadhills in the Scottish Borders (Rowan et al., 1995).  Specifically, the 

Glengonnar Water and Wanlock Water in this mining area suffer chronic EQS failures 

for zinc, lead and cadmium but loadings from individual sources have yet to be 

characterised in detail (SEPA, 2011). 

2.8 Mine water treatment systems 

Metals contained within waters discharging from abandoned metal mines can cause 

widespread pollution (Mayes et al., 2009a).  As a consequence, in Great Britain, there 

have been efforts to install treatment systems to remove metals from mine waters before 

they discharge into the environment (Moorhouse et al., 2015; Hamilton et al., 1999).  

http://www.lme.com/
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By design, metals accumulate within substrates or form waste sludge which requires 

management (Gray et al., 2012; Zinck, 2005).  By understanding treatment process, the 

opportunities for recovering metals from these wastes might be assessed. 

Mine water treatment technology is separated into two sections, ferruginous waters, 

where iron is a major contaminant targeted for removal, and metalliferous, where other 

metals are the foci of remediation. 

2.8.1 Treatment of ferruginous mine drainage 

Treatment systems vary along a scale in terms of operational input, from fully active 

(high energy, chemical process based systems) to fully passive (gravity-fed systems 

relying upon natural process for treatment) (Younger et al., 2002).  The method of 

treatment adopted at any given site has implications on the physical and chemical 

properties of wastes and substrates produced by the system. 

Aerobic treatment systems (both active and passive) oxidise and hydrolyse dissolved 

ferrous iron to form a hydrous ferric oxide precipitate that can settle out from solution 

within the treatment system (Hedin et al., 1994a).  Figure 2.11 shows a passive mine 

water treatment system at Saltburn, treating water from the Cleveland Ironstone 

Orefield, England relying upon passive processes to oxidise and settle iron precipitates 

(NGR 467370, 519835).  Pumped water at Saltburn is net alkaline (pH 6.7) with total 

iron concentrations of 125mg/L (unpublished Coal Authority data, 2014).  At other sites 

where the alkalinity of the mine water is insufficient to buffer hydrolysis reactions, 

alkali addition can be made during treatment to raise pH (Hedin et al., 1994b). 
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Figure 2.11  Saltburn passive treatment system tackling ferruginous mine water from ironstone workings 
(photograph courtesy of The Coal Authority) 

Less commonly, sulphate reduction processes are employed to remove iron as a 

sulphide (Younger, 2000; Tuttle et al., 1969), a process by which acidity is consumed 

rather than produced.  Just a few examples exist in Britain, notably Tan-y-Garn in 

Carmarthenshire, and Bowden Close in Northumberland (Geroni and Sapsford, 2011; 

Matthies et al., 2010). 

2.8.2 Ferruginous drainage treatment waste 

Aerobic treatment systems removing iron produce large volumes of predominantly 

Hydrous Ferric Oxide (HFO) sludge.  Approximately 4,500 tonnes of HFO is produced 

annually in treatment systems operated by The Coal Authority in Great Britain 

(Sapsford et al., 2015). 

Dudeney et al. (2003) reported that the former British Coal Corporation (pre 1997) had 

established a market for mine water treatment HFO as a pigment within the brick and 

concrete industry, although to-date this is the only known successful commercial 

venture for the material in Britain.  Bailey et al. (2013a) concluded that while a 

spectrum of possible uses exists, restrictive legislation and cheap alternatives provide 

obstacles to full-scale applications.  More recently, studies have investigated the use of 

HFO in the development of phosphorous adsorbing buffer strips in agricultural land 

(Habibiandehkordi et al., 2014), development of a pre-catalyst for the cracking of 
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methane (Alharthi et al., 2014) and for the removal of phosphorus and zinc from waste 

water streams (Sapsford et al., 2015). 

2.8.3 Treatment of metalliferous mine drainage 

Understandably, the clean-up of pollution is often the focus of metal removal from mine 

waters.  Due to the nature of metal pollutants, in that they do not degrade like many 

organic compounds, remediation strategies focus on immobilisation of metals within 

treatment systems (Gray et al., 2012).  A wide range of approaches have been developed 

in order to achieve metal retention, each of which may be more or less amenable to 

metal recovery.  The following sections provide an outline of the main treatment 

technologies available, and include examples from pilot and laboratory scale treatment 

trials as well as full-scale systems.  Distinction is made between active and passive 

systems where active, in this case, implies that input of power and/or chemical reagents 

is required.  A critical review of treatment approaches is provided in this section in 

order to evaluate the performance of passive systems harnessing bacterial sulphate 

reduction (which are investigated in this thesis) against alternatives. 

2.8.4 Active treatment 

Active treatment using the ‘ODAS’ (Oxidation, Dosing with Alkali and Settlement) 

approach effectively removes metals as solid hydroxide species (Younger et al., 2002).  

Although given the hydroxide solubility products of most pollutant metals (including 

lead, zinc, cadmium, nickel, copper, manganese) a higher pH and therefore requirement 

for alkali would be required for their removal, compared to iron (Jarvis et al., 2012b). 

Desalination technologies such as electro-dialysis and reverse osmosis offer an 

alternative active treatment approach, as they represent a highly effective method of 

removing solutes from solution (Turek, 2004; Harries, 1985).  Indeed high quality 

potable waters can be recovered from polluted mine waters using reverse osmosis, and 

consequently this approach may be favourable in water stressed areas (Holman, 2009).  

Clarke (1995) (after Younger et al., 2002) reports on the economic extraction of salt 

from saline mine waters in Katowice, Poland using reverse osmosis.  Generally, 

however, the cost of membranes and power to generate high hydrostatic pressures rule 

out reverse osmosis when considering treatment options at most sites (Younger et al., 

2002).  In a global study of treatment systems, Zinck and Griffith (2013) found that 
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membrane based desalination technologies were the most expensive treatment 

technology, with passive treatment offering the lowest cost alternative. 

Active sulfidogenic bioreactors can allow selective removal of metals from mine 

drainage, by dosing with sulphide and controlling pH.  Off-line systems are often 

adopted, where the hydrogen sulphide is generated by sulphate reducing bacteria in a 

vessel isolated from the mine water (Johnson et al., 2009; Johnson and Hallberg, 2005a; 

Boonstra et al., 1999).  Active ‘on-line’ bioreactors incorporating different populations 

of acidophilic, acid tolerant sulphate reducing bacteria to facilitate selective removal of 

metals in-stream from mine drainage has been proposed by Johnson et al. (2004).  

Laboratory trials by Jameson et al. (2010) showed that selective precipitation of copper 

from a copper-zinc synthetic acid mine water occurred through an online bioreactor 

system, demonstrating potential for the technology.  Examples of active sulphate 

reducing bioreactors deploying the Thiopaq™ process (www.paques.nl) have been used 

for the economic recovery of metals: Boonstra et al. (1999) presents case studies of zinc 

recovery from a contaminated acid groundwater (Budelco Zinc Refinery, Netherlands) 

and copper recovery at a copper mine in Utah, USA. 

Johnson et al. (2006) argue that active systems employing sulphate reduction are 

favourable over ODAS approaches or passive compost-based systems, due to the ability 

to recover metals for resale.  Younger et al. (2005), on the other hand, determine that 

even at Wheal Jane (probably the most severe of all metal mine waters in the Great 

Britain) ODAS offers a more economically attractive package than biochemical 

sulphide precipitation with recovery of metals for resale.  Paques Ltd suggest that the 

metal concentrations required to make the prospect of economic metal recovery 

attractive are between 50 – 5,000mg/L (Paques, 2015), far higher than seen in the 

majority of polluting mine waters in England and Wales (see Table 2.5).  On this basis, 

the adoption of passive treatment systems in Britain probably offer a lower cost and 

lower impact approach to treatment, where sufficient land areas permit (Jarvis et al., 

2006; PIRAMID Consortium, 2003; Hedin et al., 1994a). 

  

http://www.paques.nl/
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2.8.5 Passive treatment systems 

Passive treatment offers an alternative approach to remediation and can be defined as:  

‘…the improvement of water quality using only naturally-available energy sources, in 

gravity-flow treatment systems (such as wetlands or subsurface-flow bioreactors) which 

are designed to require only infrequent (albeit regular) maintenance to operate 

successfully over their design lives.’ (PIRAMID Consortium, 2003) 

As these systems typically offer low-impact and low-cost methods of treating mine 

drainage, they are normally preferred over active treatment methods where feasible 

(Ziemkiewicz et al., 2003; Younger, 2000).  Life-cycle assessment by Hengen et al. 

(2014) demonstrated that passive treatment using locally source materials offered the 

lowest impact approach, compared to six alternative treatment scenarios which included 

active treatment with powdered limestone and hydrated lime. 

Nuttall and Younger (2000) present data from laboratory and field trials of a Closed-

Bed Limestone (CBL) reactor designed to remove zinc from hard circum-neutral mine 

waters by elevating alkalinity, and increasing pH to approx. 8.5.  This was achieved by 

a closed loop design that prevented atmospheric CO2 entering the system and lowering 

pH.  This ensured the pH remained high, causing zinc to precipitate as a carbonate, 

smithsonite (Nuttall and Younger, 2000).  Removal efficiencies of up to 50%, for an 

influent concentration of 5.5mg/L zinc, and 22% for an influent concentration of 

7.3mg/L zinc, in the laboratory and field were achieved, respectively for a 14 hour 

residence time (Nuttall and Younger, 2000).  Alternative approaches have been trialled 

where Dispersed Alkaline Substrates (DAS) are used as an alternative to limestone 

gravel/blocks (Rötting et al., 2008; 2007).  By using a fine grained ‘dispersed’ alkali, 

within a larger particle size matrix to generate porosity, complete dissolution can occur 

before the alkali is armoured by precipitates (Rötting et al., 2008).  In preference to 

calcite, magnesium hydroxide can generate sufficient alkalinity to buffer pH to 8.5-10, 

at which point the solubility of divalent metals is typically low (Rotting et al., 2007; 

Rötting et al., 2006).  Throughout a 12 month laboratory trial, zinc concentrations were 

reduced from 300mg/L influent, to below generic ICP-OES (Inductively Coupled 

Plasma - Optical Emission Spectrometry) detection limits in the effluent (Rotting et al., 

2007).  Field scale trials, however, yielded far lower removal rates (5% reduction in 

zinc over a minimum residence time of 24 hours (Rötting et al., 2008)), potentially 
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explicable due to the use of calcite over magnesium hydroxide, although the importance 

of scale in this instance (field vs. lab) is difficult to ascertain.  None of these authors 

make reference to the amenability of waste substrate to metal recovery or 

decontamination (Rötting et al., 2008; Rotting et al., 2007; Rötting et al., 2006). 

A study by Motsi et al. (2009) employed natural zeolite to remove metals from synthetic 

mine drainage containing metal concentrations of 400, 120, 20 and 20mg/L of iron, 

zinc, copper and manganese, respectively.  Removal rates achieved a 67.8% reduction 

in dissolved zinc over the 6 hour trial, most of which was removed during the first 40 

minutes (Motsi et al., 2009).  It was noted that adsorption to the zeolite surface was not 

the sole removal mechanism, as the precipitation of metal hydroxides within the 

reaction vessel occurred.  This was thought to result from H
+
 ion sorption, allowing pH 

to rise (Motsi et al., 2009).  Zeolites could well provide effective metal removal from 

metalliferous waters, particularly those which are zinc rich due to preferential sorption 

of this metal compared to others (Motsi et al., 2009).  Competing H
+
 ions and iron are 

often documented as problematic in sorption based systems (Wingenfelder et al., 2005).  

Deorkar and Tavlarides (1998) present data from lab-scale trials of Inorganically 

Chemically Active Adsorbents (ICAAs) for the selective removal of iron, copper, zinc, 

cadmium and lead from mine waters.  ICAAs are formed from chelating agents 

immobilised on a ceramic support that provided stable adsorption for 20 cycles and 

could subsequently be stripped with sulphuric acid, which would allow recovery of 

metals (Deorkar and Tavlarides, 1998).  Almost full selective removal of individual 

metals was seen for a 7 – 8 minute residence time, although the size of system was not 

presented (Deorkar and Tavlarides, 1998). 

Hydrous Ferric Oxide (HFO), a waste product from coal mine water treatment, was 

formed into pellets and trialled as a sorbent for the removal of zinc from hard-circum 

neutral mine waters (Mayes et al., 2009b).  Removal efficiencies in the pilot unit were 

relatively high (32%) for an influent concentration of 1.5mg/L zinc, considering the low 

residence time of the field based system of 49 minutes (Mayes et al., 2009b).  

Unfortunately, however, an effluent pH of up to 11.8 was seen due to dissolution of the 

portlandite cement binder that released hydroxide ions.  The formation of calcite crusts 

on the pellets and the inside of the tank (as a product of portlandite dissolution) and 

algae growth provided additional removal mechanisms for zinc; however, upon die-

back of the algae in autumn, the system became a net-exporter of zinc (Mayes et al., 
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2009b).  Further investigations into coupled metal removal from mine waters and bio-

oil production has been investigated by Raikova et al. (2016), albeit that the cited article 

focuses on the process of oil recovery, rather than mine water treatment (Raikova et al., 

2016).  Another sorption approach using HFO has been investigated in a pilot scale 

study by Cui et al. (2012).  A stirred tank reactor with settling tank and sand filter was 

successfully employed to remove metals from aqueous solutions, achieving removal 

rates of 99.8% zinc over 60 days (Cui et al., 2012).  While high removal rates were also 

seen (~45g/m
3
/d for zinc), the mechanisation of the process places this system within 

the active treatment category (Cui et al., 2012).  Furthermore, substrate life-time was 

just 70 days, meaning that frequent substrate replenishment and disposal of wastes is 

likely to be required (Cui et al., 2012). 

Bacterial oxidation processes are somewhat ineffective at removing many metals at 

circum-neutral pH (Kleinmann, 1990), yet bacterially mediated sulphate reduction is a 

well cited removal mechanism within passive compost treatment systems (Jarvis et al., 

2006; Hallberg and Johnson, 2005; Younger et al., 2003; Chang et al., 2000a; Hamilton 

et al., 1999; Hedin et al., 1994a).  Furthermore, its application in the management of 

mine water pollution is not a new concept and was first explored more than four 

decades ago (Tuttle et al., 1969).  Bacterial sulphate reduction is commonly harnessed 

by compost based treatment systems in Vertical Flow Pond (VFP) configurations, 

where compost substrates are submerged to maintain anaerobic conditions essential for 

sulphate reducing bacteria (Jarvis et al., 2015; Cheong et al., 2012; Rose, 2006; Gusek, 

2002).  Both alkalinity generation and sulphide production within compost systems are 

critical microbially mediated processes in the treatment of acidic and metalliferous mine 

drainage (Johnson and Hallberg, 2005a; 2005b).  Sulphate Reducing Bacteria (SRB) 

oxidise short chain organic molecules, derived from the microbial breakdown of organic 

matter within the substrate, in a dissimilatory process reducing sulphate to sulphide 

(Postgate, 1979).  Consequently, the availability of a suitable organic carbon source and 

sulphate are key rate limiting factors (Kleinmann, 1990).  In the simplified Equation 2.7 

after Hedin et al. (1994a), sulphates are reduced to hydrogen sulphide: 

(𝟐. 𝟕) 2𝐶𝐻2𝑂 + 𝑆𝑂4
2−  → 𝐻2𝑆 + 2𝐻𝐶𝑂3

−  

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 + 𝑆𝑢𝑙𝑝ℎ𝑎𝑡𝑒 → 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑠𝑢𝑙𝑝ℎ𝑖𝑑𝑒 + 𝐵𝑖𝑐𝑎𝑟𝑏𝑜𝑛𝑎𝑡𝑒 
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Hydrogen sulphide then rapidly reacts with dissolved metals by Equation 2.8: 

(𝟐. 𝟖) 𝐻2𝑆 + 𝑀
2+  → 𝑀𝑆 + 2𝐻+ 

Activity of SRB occurs below an Eh of -100mV and therefore exclusion of oxygen is 

insufficient: reducing conditions must be achieved and maintained within the system 

(Postgate, 1979).  Removal is consistent with metal sulphide solubility products, with 

copper, lead zinc, and cadmium removed first (in order) over nickel, iron and 

manganese.  Table 2.7 provides  solubility products after Hedin et al. (1994a): 

Table 2.7  Solubility products of metal sulphides (from Hedin et al., 1994) 

CuS 4 x 10
-38

 < Removed first 

PbS 1 x 10
-29

 

 

ZnS 4.5 x 10
-24

 

CdS 1.4 x 10
-23

 

NiS 3 x 10
-21

 

FeS 1 x 10
-19

 

MnS 5.6 x 10
-16

 < Removed last 

 

Mayes et al. (2011) present data from a laboratory scale trial of a low-residence 

bioreactor, that includes methanol dosing as a supplementary carbon source.  A net-acid 

synthetic mine water with a zinc concentration of 15mg/L was passed through a 

treatment column with a 12-14 hour residence time, for a period of 422 days (Mayes et 

al., 2011).  For the first 4 months the system removed 99% of the dissolved zinc and, for 

the duration of the trial, >99% of the copper and lead were removed (Mayes et al., 

2011).  It was found by this study and others that metals were associated with non-

sulphide bearing phases, suggesting that additional removal mechanisms such as 

adsorption and carbonate formation are important (Mayes et al., 2011; Matthies et al., 

2009; Neculita et al., 2008b).  There has been some discussion of the amenability of 

wastes from compost bioreactors to metal recovery (Gusek et al., 2006; Gusek and 

Clarke-Whistler, 2005) but, other than very preliminary work undertaken by Jarvis et al. 

(2014), there is no evidence of this having been investigated experimentally. 

Pilot scale compost bioreactors installed under the MAGIC Research Project in 2010 

have shown significant success in removing zinc in the field (Jarvis et al., 2014).  The 
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pilot units were installed at two sites in Great Britain using Vertical Flow Pond (VFP) 

configurations.  Mean removal efficiencies were 68% and 63% total zinc at Nenthead, 

England and Cwm Rheidol, Wales, respectively (Jarvis et al., 2014).  Residence times 

were designed to be 19 hours at Nenthead and 14 hours at Cwm Rheidol, although 

tracer tests and variable flow rate caused substantial variability at the latter site in 

particular (Jarvis et al., 2014).  Gandy and Jarvis (2012) use data from the system at 

Nenthead to demonstrate the importance of engineering scale when assessing removal 

rates, where lab-scale columns far outperform larger field based versions.  It was 

suggested that preferential flow rates may have played a significant part in the lower 

performance of the pilot system compared to the laboratory scale column (Gandy and 

Jarvis, 2012).  Subsequently, a full-scale system utilising compost bioreactors in a VFP 

configuration were installed at the Force Crag Mine in Cumbria, England based upon 

empirical data gathered at Nenthead (Jarvis et al., 2014).  A detailed assessment of 

treatment performance at Force Crag is provided in Chapter 5. 

2.8.6 Summary of treatment technology and potential for metal recovery 

From the review of the literature, active treatment of mine waters using sulphate 

reduction to form a metal sulphide product is the only process effectively demonstrating 

metal recovery (although other technologies may be amenable).  Yet active sulphide 

treatment plants require a substantial investment both for construction and operation 

(Younger et al., 2005).  Consequently, such systems are best suited to discharges with 

very high metal loadings and flows which would mean passive treatment systems would 

be too large (Younger, 2000).  Furthermore, there are a lack of mineral processing 

facilities in Britain which would be able to deal with a stream of metal sulphides 

recovered by active sulphide plants (Gray et al., 2012).  Passive treatment, therefore, 

appears to be better suited to sites where metal loads are relatively modest and funds for 

remediation limited, such as is the case in Britain.  Table 2.8 provides a summary of 

passive metal mine water treatment technologies which have been discussed, noting 

specifically their performance for zinc removal and information on substrates and zinc 

accumulation.  Where volumetric removal rates and metal accumulation rates are not 

shown in the literature, they have been calculated where sufficient data are available.  
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Table 2.8  Performance for a range of experimental metal mine water treatment systems tackling zinc 

System 
name/loci 

Removal 
mechanism:  

Zinc Vol. 
removal 
rate 
(g/m

3
/d) 

Efficiency 
(%) 

Monitoring 
period 
(months) / 
scale* 

Zinc 
accumulation 
details. 

Nenthead, 
England, CBL  
(Nuttall and 
Younger, 
2000; Nuttall, 
1999) 

Zinc carbonate 
precipitation 
 

0.9 22 3 P 

Smithonsite 
precipitation in 
tank  (0.01% 
w/w calc.) 

DAS (SW 
Spain) 
(Rötting et al., 
2008) 

Fine grained alkali 
within larger 
porous matrix 

968 5 12 P 

6.8kg Zn 
retained in 
1.8m

3
 substrate  

(0.05% v/v calc.) 

Natural 
zeolite (Motsi 
et al., 2009) 

Zeolite mineral 
within column for 
sorption 

325 
(equivalent) 

67.8 
L (Batch – 
6 hr 
exposure) 

Various metals 
Retained on 
zeolite 

ICAA (Deorkar 
and 
Tavlarides, 
1998) 

Immobilised 
ligands on ceramic 
supports providing 
selective sorption 
sites 

?? ~100 

L (7 – 8 
min 
residence 
time) 

Selectively 
sorbed metals 
can be stripped 
with H2SO4 

Pelletized 
HFO, 
Scraithole, 
England  
(Mayes et al., 
2009b) 

Sorption to 
hydrous ferric 
oxide 

8.1 32 10 P 

Algae and 
secondary 
minerals a 
significant sink  
(0.23% w/w) 

Bioreactors 
(Mayes et al., 
2011) 

Bioreactors with 
shells/limestone 
and methanol 
dosing 

9.9 – 11.4 90 - 99 13 L 

~0.1 – 0.8% 
measured in 
substrate; 
largely Fe-Mn 
oxide bound 

Nenthead 
VFP, England 
(Jarvis et al., 
2014) 

Sulphate reduction 0.89 67 7.5 – 14 P 

Metal sulphides 
in substrate  
(<0.67% w/w 
measured) 

Constructed 
wetland (Song 
et al., 2001) 

Various suggested 0.01 72 10 L 
Metals retained 
in substrate 

Dealginated 
seaweed, mid 
Wales 
(Hartley, 
2009; Pearce 
et al., 2007) 

Seaweed matrix in 
tank for sorption 
 

705 

97 (for first 
12hrs; Zn 
export after 
5 days) 

1 P 

Metals sorbed 
to seaweed (up 
to 3.2%w/w; 
1.3%w/w 
average) 

*L = Lab; P = Pilot; F = Full 

Closed bed limestone and DAS systems show relatively poor removal efficiencies, 

accumulating relatively low concentrations of zinc over experimental periods and with 

no discussion in respective papers of the amenability of wastes to metal recovery 

(Rötting et al., 2008; Nuttall and Younger, 2000).  Data from lab-scale trials of zeolites 
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and ICAAs suggest that techniques adopting adsorption mechanics could potentially 

provide both high efficiencies and removal rates (several orders of magnitude higher 

than alternatives) but the long-term effectiveness (sorption capacity) of these materials 

are undemonstrated in the field (Motsi et al., 2009; Deorkar and Tavlarides, 1998).  

However, acid washing may offer a mechanism of recovering metal salts from sorbents 

(Deorkar and Tavlarides, 1998).  Longer term field trials by Mayes et al. (2009b) using 

recovered HFO from coal mine discharges suffered a series of problems, relating to a 

cement binder and algae growth in the pilot unit.  Alternative methods for sorption 

media are presented by Perkins et al. (2007); Vaclav and Gulikova (2007); Warrender 

and Pearce (2007) showing proof of principle tests conducted at laboratory scale which 

demonstrate high removal rates and accumulations of significant levels of zinc in 

substrates over short duration studies.  Over longer time periods, however, sorption 

capacity can be readily reached within short retention time systems (Warrender et al., 

2011).  Furthermore, Gandy and Jarvis (2012) demonstrate that system scale has a 

significant bearing upon performance, with significantly lower removal rates seen in 

parallel pilot scale systems compared to laboratory columns operated in the field.  It was 

suggested that the formation of preferential flow paths in the pilot unit reduced the 

effective residence time, and consequently the removal efficiency, compared to the 

laboratory scale version (Gandy and Jarvis, 2012).  Passive treatment using compost 

bioreactors is demonstrably effective at treatment (Jarvis et al., 2014; Mayes et al., 

2011), and has shown great potential for wider implementation to treat metalliferous 

mine waters due to combined high volumetric removal rates and efficiencies coupled 

with long duration field trials.  It was for these reasons, among others, that this 

treatment technology was selected for implementation at the Force Crag Mine in 

Cumbria, which is a case study investigated in this thesis (Jarvis et al., 2015; 

Moorhouse et al., 2015). 

2.9 Passive treatment system lifetime 

Passive treatment systems constructed from earthworks and minor engineered 

structures, such as capture chambers and transfer pipelines, require little regular 

maintenance; only occasional intervention is required, for example to keep channels 

clear and control vegetation (PIRAMID Consortium, 2003).  Regardless, over time 

accumulation of metals either within settlement lagoons or within substrates reaches a 

point at which the system is no longer operating effectively and major intervention is 
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required to deal with wastes generated (Gray et al., 2012; Jarvis et al., 2007).  Reducing 

the frequency of this activity by extending system lifetime offers a mechanism to offset 

the costs of treatment. 

Given the absence of published long-term monitoring data, forecasting compost 

bioreactor treatment system life times is a challenging task.  The limitations on system 

longevity are complex and may relate to a range of site specific factors.  Whilst a 

notional 10 year life-time has been assigned to the Force Crag case study system by its 

operator (The Coal Authority, 2014), there is little certainty around this figure. 

2.9.1 Database of known systems tackling zinc 

During the course of this research, a database was compiled for all known passive 

bioreactor type treatment systems which tackle zinc as a major contaminant.  This 

database was produced using data sourced from scientific articles where available, but 

also grey literature such as conference presentations and government documents (e.g. 

ITRC, 2013).  Passive treatment systems based around the compost bioreactor approach 

(typically in VFP configurations) are not uncommon, and are typically employed to 

remove aggressive acidity and metals such as iron and aluminium (numerous examples 

from Korea and USA in: Cheong et al., 2012; Rose, 2006 respectively).  Systems for 

removal of metals such as zinc are, however, less common; the database produced here 

includes all known field-scale systems, although some pertinent laboratory scale 

examples are also included.  13 full-scale systems have been identified along with a 

further 12 pilot units.  5 laboratory-scale systems are also included, although more are 

documented in the literature.  The database is included in full as Appendix A and was 

developed to understand rates of accumulation of metals across a range of sites.  This 

will help to contextualise the Force Crag system in terms of performance and suggest 

factors which may limit system lifetimes. 

2.9.2 Limits on system lifetime and estimates from the literature 

Treatment system failure can be characterised by a breakthrough event which, for the 

purposes of this thesis, means where sustained treatment performance ends and metal 

loadings in effluents increase significantly and permanently, independent from external 

factors such as influent water quality (for examples, see Song et al., 2012; Mayes et al., 

2011; Warrender and Pearce, 2007; Cortina et al., 2003; Dvorak et al., 1992).  

Breakthrough may occur due to any number of factors causing the treatment process to 
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fail, but there is a significant lack of long-term monitoring data characterising these 

events, or analyses of failed systems.  This is particularly the case for systems dealing 

with divalent metals such as zinc in circum-neutral waters, perhaps largely due to the 

low number in existence.  Nevertheless, given the relatively high abundance of VFPs 

tackling acidic waters rich in iron and aluminium, these systems still offer some useful 

lessons. 

Rose (2006) discusses a review of 40 VFP treatment systems (apparently located in 

Pennsylvania, USA).  Approximately half of these systems were more than 7 years old, 

with the oldest having been operating for 14 years (as of 2006).  System operating life is 

assumed to be around 20 years by Rose (2006).  Frequent system failure within this 

period was documented, however, with significant issues revolving around iron oxy-

hydroxide precipitation on substrate surfaces and aluminium precipitates 

plugging/armouring limestone drainage layers (Rose, 2006).  Considering the high loads 

of contaminants (for example, 23mg/L aluminium in the Jennings system which failed 

after 7 years) it is perhaps no surprise that a catastrophic build-up of oxy-hydroxide 

precipitates occurred.  Rose (2006) notes that higher contaminant loadings are more 

difficult to treat and blockage due to iron and manganese oxy-hydroxide precipitates are 

the leading causes of system failure.  Neculita et al. (2008a) finds that hydraulic 

residence time also has a significant bearing on substrate porosity and permeability, 

decreasing significantly with higher residence times in laboratory scale tests (10d 

compared to 7.3d).  Interestingly, VFP performance has been successfully restored by 

thorough mixing of the substrate, which is believed to have increased its permeability 

(Rose, 2006) although the effects on effluent quality were not reported.  Nordwick et al. 

(2006) document the use of a geotextile to form a cellular structure in a compost 

bioreactor substrate (horizontal flow) preventing settlement of organic matter and 

regulating flow across the system cross-section.  It is also suggested that increasing 

substrate (labile) organic matter may act to decrease permeability, a problem of 

substrates with high organic matter content from sources such as manure (Nordwick et 

al., 2006; Amos and Younger, 2003). 

In a study by Cheong et al. (2012) of VFPs operating in Korea, organic carbon and 

nutrients (phosphate, nitrate) were measured in treatment system substrates comprising 

mushroom compost.  The 15 systems investigated were between 3 and 8 years old, 

treating low flows of acid mine drainage (Cheong et al., 2012).  Data relating to water 
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quality are inherently lacking although digestions undertaken on substrates report data 

for aluminium, manganese and iron, suggesting that these might be key metal 

contaminants (Cheong et al., 2012).  Data indicate that significant (if variable) decreases 

in total organic carbon occurs in VFP systems over time.  Projections by Cheong et al. 

(2012) based upon statistical analysis of data presented conclude that typical system 

life-times may be between 15 and 20 years, which agreees with estimates by Rose 

(2006). 

Bench scale microbiological investigations by Logan et al. (2005) identified that 

downstream bacterial communities were reliant upon products of cellulose hydrolysis 

(recalcitrant element of substrate), and consequently this represents a long-term limiting 

factor on the performance of communities within sulphate reducing bioreactors.  To 

overcome this, pre-treatment of substrates to reduce cellulose crystallinity, particle size 

or lignification is suggested (Logan et al., 2005).  Additionally, the study found that 

lactate is a preferable supplement to sulphate reducing bacteria over alternatives such as 

acetate, which it was suggested may be responsible for promoting other competing 

microorganisms (Logan et al., 2005).  Typically, systems which perform well over long 

periods contain a mixture of recalcitrant material and more labile carbon sources 

(Neculita et al., 2007). 

Neculita et al. (2008a) assessed the impacts of hydraulic retention time on laboratory 

scale compost bioreactors, finding that increased retention times resulted in a loss of 

porosity and permeability.  This suggests that higher mine water through-put may act to 

counteract reductions in system permeability which might otherwise occur over time.  

But even in a low-residence pilot scale bioreactor, Jarvis et al. (2014) found that 

substrate porosity decreased from 62% at the time of commissioning to 40% and 32% in 

upper and lower substrate layers, respectively, after 2 years.  These studies suggest that 

compaction of substrates is unavoidable but might be lessened in systems with lower 

residence times.  Additional factors relating to metal accumulation and inhibition have 

been investigated by Utgikar et al. (2002).  Serum bottle and batch reactor experiments 

found that, after 50 hours, sulphate reduction rates had decreased significantly, 

attributable to metal sulphide formation providing a physical barrier between the 

bacterial cell/enzyme and the electron donor-acceptor pair (Utgikar et al., 2002).  

Scanning electron microscopy provided further evidence, confirming that the formation 

of metal sulphides in the close vicinity of sulphate reducing bacteria can act to hinder 
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the sulphate reduction process (Utgikar et al., 2002).  These findings imply that, over 

time, the accumulation of metal sulphides within treatment system substrates may act to 

inhibit sulphate reduction, thereby leading to loss of system performance. 

Since commencement of this review, monitoring at the Force Crag treatment system by 

this Author and others identified that water levels had risen in the VFP units, attributed 

to loss of permeability of the substrate.  Investigations identified a jelly-like algae layer 

several millimetres thick which had developed on the substrate surface, impeding 

infiltration of mine water (pers comm., J. Byrom, The Coal Authority 2015).  This was 

manually removed and normal flow was restored. 

To summarise, system failure has been known to result from: 

 Plugging due to iron and aluminium precipitates. 

 Loss of porosity and permeability due to compaction over time or due to high 

residence times, or due to algae growth on substrate surfaces. 

 High cellulose crystallinity limiting microbial hydrolysis of recalcitrant 

fractions. 

 Physical hindrance of SRB by metal sulphide formation. 

2.10 Possibilities for extending passive treatment system life-times 

Overcoming the modes of failure described above may offer a way to extend system 

life-times, prolonging the duration between costly refurbishments and waste disposal.  

The activities discussed in this section may offer means of restoring system operation 

without entailing substantial cost. 

2.10.1 Increasing labile carbon 

Findings by Logan et al. (2005) show that crystalline cellulose may limit bacterial 

sulphate reduction over time.  One possible mechanism to overcome this may be by 

dosing with enzymes to target and break down some of the highly recalcitrant cellulose 

material.  This may be conducted later in the system’s life, when labile carbon fractions 

such as sugars are depleted but cellulose remains.  There are a vast range of cellulosic 

enzymes available used in bio-technological processes to break cellulose down into 

simple sugars (Teeri, 1997).  This approach would need to be tested. 



Chapter 2.  Assessment of the resource potential of metal mine waters 

50 

 

Alternatively, labile carbon sources may be added later in system life by dosing with a 

liquid carbon source.  Mayes et al. (2011) and Costa et al. (2009) demonstrated at lab-

scale the effectiveness of methanol and ethanol, respectively (the latter in the form of 

wine waste), in driving microbially mediated bacterial sulphate reduction for treatment 

of mine waters.  Sodium lactate and biodiesel waste (64% glycerol) have also been 

successfully employed by other authors (Zamzow et al., 2007; Jong and Parry, 2003).  

By using waste materials as a nutrient source, costs of restoring treatment performance 

may be very low.  Further investigations by Jarvis et al. (2014) with brewery waste as a 

carbon source had little success in achieving improved zinc removal rates in a pilot-

scale bioreactor, although why this was the case is not clear (Jarvis et al., 2014).  At the 

time of writing, further investigations are underway at Newcastle University trialling 

untreated sewage, propionic acid, methanol and glycerol as carbon sources to improve 

treatment performance of aged substrates. 

In an alternative approach, Su et al. (2012) demonstrated that, under controlled 

laboratory conditions, microbial catalysed sulphate reduction can be achieved using a 

polarised electrode as the sole electron donor.  72% coulombic efficiency was achieved, 

indicating very efficient use of electrical charge by bacteria (Su et al., 2012).  While 

demonstrating proof of principle, it is unknown whether this approach might be 

successful in stimulating sulphate reducing bacteria in somewhat more complex 

compost based treatment systems. 

2.10.2 Selective harvesting and replenishment of substrates 

Where metal accumulation is identified as a factor restricting system performance, 

selective removal may be used to restore the treatment process, given that metals 

preferentially accumulate in substrate layers closer to inlets (e.g. Rötting et al., 2008; 

Knox et al., 2006; Gibert et al., 2003).  However, a detailed analysis of a down-flow 

pilot-scale column identified that while zinc, nickel and cadmium preferentially 

increased to very high levels in upper substrate layers, the inverse was the case for 

manganese and iron which was measured at greatest concentrations in lower layers 

(Neculita et al., 2008b). 

2.10.3 Overcoming reduction in porosity and permeability 

Several factors have been identified which, over time, will act to decrease the porosity 

and permeability of substrates themselves.  Realistically, the only means of restoring 
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these properties would involve disturbing the substrate.  Rose (2006) documents the 

successful restoration of treatment performance in a VFP system, which was achieved 

by excavation/mixing of the substrate.  Any temporary impact upon the effluent of the 

treatment system is, however, not discussed. 

It is evident that there are many mechanisms for system failure, but also potential for 

overcoming these to some degree to extend system life-times.   There will, however, 

come a time at which treatment performance cannot be restored by minor interventions, 

and thus a full refurbishment is required to remove and replace the substrate (Gusek and 

Clarke-Whistler, 2005). 

2.11 Management of spent passive treatment system wastes 

2.11.1 Landfill disposal 

European waste classification and waste acceptance criteria testing (a leach test used for 

assessment of waste classification (BSI, 2002)) of samples from the Nenthead pilot-

scale compost bioreactor determined that the substrates were a hazardous waste (NRW 

et al., 2015; ESG, 2013).  Furthermore, due to a high organic content, pre-treatment by 

high temperature incineration was deemed necessary before disposal (Atkins, 2014b).  

Assuming spent substrates from the full scale system at Force Crag would be similarly 

classified (they have the same specification as those from Nenthead and are also used 

for zinc removal), Atkins (2014b) has determined the cost of disposal to be between 

£580,250 and £1,846,250 from three waste management company quotations.  This 

equates to £400 - £1,750 per tonne, which is substantially greater than the disposal cost 

of HFO produced by aerobic treatment of ferruginous waters, which has been quoted as 

£79 - £129 per tonne (Sapsford et al., 2015).  On the basis of financial considerations 

alone, there is a strong case for exploring decontamination and re-cycling of this 

material. 

2.11.2 Micro-fertiliser applications 

Zinc deficient soils limit crop yields in many parts of the world, and can lead to severe 

health impacts upon humans where zinc intake is limited (Cakmak, 2008; Hacisalihoglu 

and Kochian, 2003; Salgueiro et al., 2000).  Whysner et al. (2012) suggests that where 

zinc deficiency exists in agricultural soils, wastes from mine water treatment may be 

used as a low-cost nutrient source, provided that other potentially harmful substances 



Chapter 2.  Assessment of the resource potential of metal mine waters 

52 

 

are at sufficiently low concentrations.  Industrial waste products such as these may be 

used to improve zinc deficient soils; however, potentially toxic elements such as arsenic 

and cadmium contained in wastes may be problematic if not minimised (Alloway, 

2008).  Assuming mine water treatment wastes have a favourable composition, fertiliser 

applications in zinc deficient areas may offer a beneficial disposal route for these 

materials (Whysner et al., 2012); albeit that the likely markets for such a material would 

be overseas from Great Britain, given the global distribution of soil types associated 

with zinc deficiency (Figure 2.12). 

 

Figure 2.12  Soil types associated with zinc deficiency, shaded brown (Alloway, 2008) 

2.11.3 Recovery of metals from passive treatment wastes 

It may be that metals could be recovered from treatment system wastes for use in 

metallurgical applications, as a substitute for mined ores.  Typical ore cut-off grades for 

zinc and lead of <1% are suggested by Gray et al. (2012).  While this figure will clearly 

differ between facilities, dictated by economic and other factors, it provides a useful 

yardstick for the typical volumes dealt with by the mineral processing industry.  

Davenport et al. (2002) suggest that for copper, typical cut-off grades of between <0.5 – 

2% are applicable for financially viable extraction from open pit to deep mines, 

respectively.  This corroborates broadly with Rosenqvist (2004. p.178) who suggests 

that copper cut-off grades are often of the order >0.5% due to modern processing 

techniques.  Nevertheless, there are a multitude of variables, such as commodity price, 

processing cost and capacity which affect cut-off grades (Asad, 2007).  To complicate 

matters further, cut-off grades require careful calculation where multiple minerals are to 

be extracted (e.g. Ataei and Osanloo, 2004; Osanloo and Ataei, 2003), or where ore 
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bearing rocks may have other useful applications (Rosenqvist, 2004).  Before the ore 

can be exported to smelting facilities, processing is required (normally involving 

crushing and flotation processes on-site) to increase the metal concentrate to 20 – 30% 

(Rosenqvist, 2004). 

Sampling data by Jarvis et al. (2012b); Hartley et al. (2007); Pearce et al. (2007), 

indicate that metals in some parts of pilot units accumulate to levels close to and in 

excess of ore cut-off grades, respectively (Table 2.8).  Field scale trials of de-alginated 

seaweed as a sorbent demonstrated very high volumetric removal rates and efficiencies 

(Hartley, 2009; Hartley et al., 2007; Pearce et al., 2007; Perkins et al., 2007).  Analysis 

of substrates found that zinc concentrations up to 2.4% dry w/w accumulated within de-

alginated seaweed (Hartley et al., 2007).  At these concentrations, the substrate product 

is above typical ore cut-off grades.  The principal problem with this pilot unit was, 

however, that sorption capacity for zinc and cadmium was rapidly reached and the 

treatment system efficiency had dramatically decreased after a period of several days 

(Pearce et al., 2007).  Clearly the short-term performance of the system shows great 

promise, but if rudimentary scaling were to be applied to increase the longevity of a 

system operating at high efficiency for a period of say 5 years, then a system volume of 

144m
3
 (48m

3
 substrate) would be required to deal with zinc within the experimental 

flow rate.  This, in effect, decreases the volumetric removal rate to 0.19g/m
3
/d for the 

whole system (compared to 0.89g/m
3
/d from long-term operation of a pilot compost 

bioreactor at Nenthead, Cumbria (Jarvis et al., 2014).  Nonetheless, with the high levels 

of metal accumulation reported by Hartley et al. (2007), the outlook for metal recovery 

from passive systems is rather positive. 

2.11.4 Characterisation of mine water treatment wastes 

Zinck (2005) suggests that one of the most significant knowledge gaps in the 

management of mine water treatment waste is accurate characterisation.  In Britain, 

some efforts have been made to characterise sludge from coal mine water treatment 

systems in some detail (Hancock, 2005; Dudeney et al., 2003).  At the time of writing, 

there are no mature compost-based metal mine water treatment systems within Britain 

requiring disposal of wastes.  Consequently, it is somewhat difficult to accurately 

characterise the wastes generated by this type of system, although it is likely that this 

situation will change in the future.  Costa et al. (2009) provide an example of an 

analysis of material from a laboratory scale treatment system which employed 
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bacterially mediated sulphate reduction to remove metals.  No crystalline sulphide 

minerals were identified, but sulphides were present as amorphous phases in addition to 

the presence of carbonate and hydroxide metal precipitates (Costa et al., 2009).  Other 

examples of uncertainty over metal retention mechanisms can be cited within the 

literature, particularly where biological processes are involved (Mayes et al., 2009b; 

Rötting et al., 2008; Hamilton et al., 1999).  This can be attributed to heterogeneity 

within passive treatment systems resulting in a range of removal processes, and 

therefore a range of different solid metal phases consequently impacting upon 

designation of materials for disposal (Gray et al., 2012). 

2.12 Methods for metal recovery from passive treatment substrates  

Accurate characterisation of substrates or wastes for effective metal extraction will 

undoubtedly be necessary prior to design and implementation of any recovery system.  

It has been previously reported that no metal recovery or decontamination processes 

have been applied to wastes from passive metal mine water treatment systems (Gray et 

al., 2012; Gusek and Clarke-Whistler, 2005); this apparently continues to be the case 

from in-depth review of the literature undertaken during this study and discussions with 

industry specialists (pers comm., J. Gusek, Sovereign Consulting 2015).  A preliminary 

overview of techniques available for metal recovery from other wastes is provided in 

the following sections and which may be applicable to passive treatment system wastes. 

2.12.1 Physical separation 

Separation of materials on the basis of physical characteristics is a fundamental 

principle adopted by the mining and minerals industry.  Mineral processing activities 

require the separation of ores from gangue (non-ore minerals).  This process, known as 

‘ore dressing’, involves an initial phase of crushing and grinding to liberate individual 

grains.  The following processes, detailed by Rosenqvist (2004) and Wills (2006), 

separate the valuable ore grains from the gangue which is discarded. 

Following crushing and grinding of the ore to typically <0.1mm by a series of 

machines, the fine grained material is screened from larger particles, which are re-

circulated or given special grinding treatment.  A technique known as classification can 

also be used, where the settling velocity of the particles determines if they are retained 

in the classifier or taken away in the flow of fluid (often water) (Wills, 2006; 
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Rosenqvist, 2004).  Classification separates mineral grains on both particle size and 

density. 

Concentration of the ore separates the ore mineral from the gangue, to produce a high 

grade concentrate.  A number of techniques can be adopted at the concentration stage 

after Wills (2006) and Rosenqvist (2004): 

 Sorting; either manual or computerised selection of ore from other rock on a 

conveyor. 

 Gravity separation; this can handle a large particle size distribution and operates 

more effectively when there is a wide density range between mineral particles. 

 Flotation; where air bubbles are passed through a tank of water containing the 

mineral grains, the hydrophobic nature of sulphide minerals allow them to be 

lifted by the air where they can be skimmed off the surface.  The addition of 

‘frothers’ helps to generate bubbles on the surface to aid recovery.  Complex 

sulphide minerals can be selectively separated by the phased use of various 

additives. 

Finally, the wet concentrate is separated by thickening (settling and flocculation) and/or 

filtration (Wills, 2006; Rosenqvist, 2004). 

Pressure for the remediation of contaminated land has led to the development of 

industry specific pollutant recovery technologies (CL:AIRE, 2007).  Largely based 

upon methods used by the mining industry, remediation equipment may be particularly 

applicable to the recovery of metals from mine water treatment substrates, considering, 

for example, the broad physical similarity of compost materials used by bioreactors to 

some soils.  For example, it has been suggested that given the nature of VFP substrates, 

crushing and grinding processes would not be required to reduce mineral size fractions 

or liberate the ore from the substrate although classification processes may be useful 

(Gusek et al., 2006).  Such methods include hydrocyclones, fluid bed separation and 

flotation allow smaller, typically more contaminated soil particles to be separated from 

larger, cleaner particles (Mulligan et al., 2001).  A list of techniques is provided in 

Table 2.9. 
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Table 2.9  A range of techniques used by the contaminated land industry for soil washing adapted from 
CL:AIRE (2007) 

Exploitable feature Process Equipment 

Size  Vibratory screens (sieves), sieve bends, trommel (rotary) screens 

Hydraulic size (settling velocity) Classifiers, hydrosizers, hydrocyclones, specific gravity jigs, 
sluices 

Dense media separators Spirals, shaking tables 

Surface chemistry Froth flotation systems 

Magnetic susceptibility Low intensity magnetic drums, induced magnetic separators, 
high intensity magnetic separators 

 

2.12.2 Pyrometallurgy 

Upon recovery of zinc concentrate from an ore, for example, the following processes 

are commonly adopted to convert this into a pure metal product.  Sphalerite (ZnS) 

dissolution in acid is relatively slow (Rosenqvist, 2004): pyrometallurgical processes of 

calcining of the ore to convert ZnS to zinc oxide (ZnO) are undertaken before acid 

leaching.  The leach liquor concentrate is then subject to electrolysis, converting the 

dissolved zinc to zinc metal (Zn) and sulphuric acid (H2SO4) according to Equation 2.9 

after Rosenqvist (2004). 

(𝟐. 𝟗)  𝑍𝑛𝑆
𝑐𝑎𝑙𝑐𝑖𝑛𝑖𝑛𝑔
→      𝑍𝑛𝑂

𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔
→      𝑍𝑛𝑆𝑂4

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑠𝑖𝑠
→        𝑍𝑛𝑠𝑜𝑙𝑖𝑑 + 𝐻2𝑆𝑂4 

Drying and calcining processes involve the liberation of physically and chemically 

bound substances, respectively from the ore (Rosenqvist, 2004).  Drying is typically a 

low temperature activity to achieve evaporation of water, whereas decomposition of 

some hydrated minerals can be more excessive, such as Al2O3 which requires over 

1,000°C to remove the last traces of chemically bound water (Rosenqvist, 2004).  At 

this temperature, combustion of organic matter would also occur. 

Combustion of mine water treatment substrates with high organic matter content may be 

a suitable mechanism for concentrating materials, and may take the form of the 

‘roasting’ step in conventional metallurgy (Gusek et al., 2006).  Other authors have, 

however, suggested that incineration of wastes with low metal content, to provide 

drying and loss of organic matter by burning, may increase the subsequent success of 

hydrometallurgical extraction of metals from the bottom ash (e.g. Gray et al., 2012; 
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Morper, 1986)  Alternatively, if metal concentrations are sufficiently elevated in the 

bottom ash, it may be exported directly to a smelter (Gusek and Clarke-Whistler, 2005).  

On face value, these approaches appear to offer an effective way of dealing with waste 

materials from passive metal mine water treatment systems; the difficulty being that the 

material would require transport to a specialised processing facility, and large quantities 

of energy would be used in the recovery process.  Lower impact techniques, which 

might be feasibly undertaken at the treatment site, would therefore be preferable. 

2.12.3 Hydrometallurgy and soil washing 

The use of chemical processes in the extraction of metals is a well-established practice 

covering a wide range of approaches, including those which can be applied to low grade 

ores and wastes.  Low-grade mined metalliferous ores are commonly in the form of 

metal sulphide minerals, principally excepting gold ores that occur as native metal in 

very small grains within host rock (Gribble and Hall, 1992).  Metal sulphide minerals 

may well be present in waste materials from sulphate reducing bioreactors (Jong and 

Parry, 2004).  In the case of industrial mineral processing applications, the following 

steps normally follow, after Rosenqvist (2004): 

 Leaching (acid, caustic or complex forming solvent to form pregnant solution) 

 Purification (either precipitation or solvent extraction of unwanted products) 

 Precipitation of wanted product (chemical or electrochemical methods) 

Alternatively, approaches used by the contaminated land industry may be suitable for 

recovering metals from mine water treatment wastes.  Table 2.10 outlines a range of 

lixiviants used for metal recovery from contaminated soils. 
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Table 2.10  Metal removal efficiencies from contaminated soils by soil washing. 

Soil 
Washing 
method 

Agents Metal 
Concentration 
(mg/kg) 

Removal 
(%) 

Reference 

Artificially 
contaminated 

Column Na2S2O5 
Pb 
Zn 

204 
79 

61 
94 

(Abumaizar 
and Khan, 

1996) 

Artificially 
contaminated 

Column 
HCl  
EDTA 
CaCl2 

Pb 500–600 
85 
100 
78 

(Reed et al., 
1996) 

Contaminated 
soil 

Batch 

EDTA, NTA and citric 
acid plus reducing 
reagents: sodium 
borohydride, Na2S2O5 
and thiourea dioxide 

Pb 
Cu 
Zn 

21,560 
1241 
3729 

99 
99 
97 

(Peters et al., 
1989) 

Artificially 
contaminated 

Column 

NaOCl  
Diethylenetriamine 
pentaacetic acid 
(ADTPA) 
Tetrasodium EDTA 

Zn 4450 38–81 
(Davis and 

Singh, 1993) 

Contaminated 
soil 

Batch 

S-carboxymethyl-
cysteine (SCMC)  
N-2-
acetamidiomindiacetic 
acid (ADA) 
Pyridine-2,6-
dicarboxylic acid (PDA) 

Cd  
Cu 
Pb 
Ni 
Zn 

2 
5 
100 
6 
290 

80–100 (for 
all metals) 

(Chen et al., 
1995) 

Bank sediment Batch Na2EDTA 
Cu  
Zn 

970 
2500 

55 
32 

(Yu and Klarup, 
1994) 

Contaminated 
soil 

Batch EDTA Pb 350 95 
(Allen and 

Chen, 1993) 

Contaminated 
soil 

Batch 
HCl  
EDTA 

Pb 1000 90 
(Cline et al., 

1993) 

Spiked soils Batch Saponin biosurfactant 
Cu 
Cd 
Zn 

50-1000 

39-62 (silty 
clay), 82-90 
(loamy 
sand), 67-
88 (loam) 

(Gusiatin and 
Klimiuk, 2012) 

Mining 
contaminated 
soils 

Batch, 
stirred 

HCl 
HNO3 

H2SO4 
EDTA 

Cu 
Zn 
Mn 
Pb 

4100 
55900 
6500 
64195 

10-46 
38-97 
42-93 
6-83 

(Moutsatsou et 
al., 2006) 

Contaminated 
soil 

Batch Dissolved Organic 
Carbon 

Zn 992 
36 (pH3) 
44 (pH2) 

(Chiang et al., 
2016) 
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Generally, the data presented show high extraction efficiencies for a range of 

contaminated materials, using a number of different lixiviants in predominantly batch 

experiments.  Abumaizar and Smith (1999) found that a lixiviant solution comprising a 

combination of EDTA (ethylenediaminetetraacetic acid – 0.01 molar) and Na2S2O5 

(sodium metabisulphite - 0.1 molar) was highly effective at recovering zinc.  It was 

suggested that the reducing agent (Na2S2O5) served to weaken the soil-metal bond, 

making the metal more amenable to complexation with the ligand (EDTA).  It was 

noted, however, that the effectiveness of the lixiviants was markedly reduced in column 

experiments over batch (Abumaizar and Smith, 1999), an issue also encountered by 

Jarvis et al. (2014) when conducting preliminary leaching of a mine water treatment 

substrate. 

Metal recovery tests from a mining contaminated soil undertaken by Moutsatsou et al. 

(2006) found both hydrochloric acid and sulphuric acid were the most effective reagents 

for zinc recovery, achieving ≥78% recovery.  Tichy et al. (1996) provide an additional 

example demonstrating the potential for extraction of zinc from contaminated soil using 

sulphuric acid.  Zinc solubilisation was shown to peak above pH 3, however aluminium 

solubilisation only increased substantially below this pH (Tichy et al., 1996).  

Consequently, careful optimisation of pH during acid extractions can recover zinc but 

minimise damage to key aluminium soil forming minerals (Tichy et al., 1996). 

In practice, acid leaching of metal sulphides is often driven by microbially-mediated 

reactions and can be an unwanted process, such as in the generation of polluting acid 

mine or rock drainage (Keith and Vaughan, 2000).  This process can be harnessed to 

extract metals from low grade ore in a method known as biomining or bioleaching, 

which falls under the heading of hydrometallurgical techniques (Johnson, 2013).  This 

practice is relatively well established in the metals industry (Johnson, 2013; Renman et 

al., 2006; Lizama, 2001) often undertaken within rudimentary heaps (heap leaching) or 

occasionally stirred tank reactors (Morin et al., 2006; Brierley and Brierley, 2001) 

2.12.4 Biohydrometallurgy 

Biomining might be used where it is either technically infeasible or prohibitively 

expensive to utilise chemical or pyrometallurgical processes (Brierley and Brierley, 

2001).  Heap leaching is a commonly adopted biomining process used by the mining 

industry due to the volumes of material dealt with (Johnson, 2013), although the same 
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biotechnology can be applied to industrial wastes and contaminated residues for both 

decontamination and economic recovery of metals (Morin et al., 2006).  Here, studies 

are also discussed that operate, or simulate, bioleaching within stirred tank reactors. 

Three organisms are widely cited in bioleaching studies: Autotrophic bacteria (e.g. 

Acidithiobacilli spp); heterotrophic bacteria (e.g. Pseudomonas spp., Bacillus spp) and 

heterotrophic fungi (e.g. Aspergillus spp., Penicillium spp)  (Wu and Ting, 2006).  

Pathak et al. (2009b) suggested that Acidithiobacillus thiooxidans and Acidithiobacillus 

ferrooxidans are the most widely used organisms in heap leaching due to their ability to 

survive in acidic environments and oxidise insoluble iron and sulphur compounds.  It 

has been claimed that direct bioleaching processes solubilise sulphides such as ZnS; 

NiS; CuS during cellular contact with micro-organisms (Pathak et al., 2009b; Liu et al., 

2008). However, there is evidence to suggest that only indirect mechanisms are at work 

(Sand et al., 2001). 

During indirect bacterial leaching, sulphur oxidising bacteria convert elemental sulphur 

or reduced sulphur compounds into sulphuric acid by oxidation.  This is expressed as 

follows for At. thiooxidans (Equation 2.10) and At. ferrooxidans (Equation 2.11), 

respectively, where Me represents a metal.  (Pathak et al., 2009b; Waksman and Joffe, 

1922) 

(𝟐. 𝟏𝟎) 2𝑆 + 2𝐻2𝑂 + 3𝑂2
𝐴𝑡.𝑡ℎ𝑖𝑜𝑜𝑥𝑖𝑑𝑎𝑛𝑠
→            2𝐻2𝑆𝑂4 

 

(𝟐. 𝟏𝟏) 4𝐹𝑒𝑆𝑂4 + 𝑂2 + 2𝐻2 𝑆𝑂4 
𝐴𝑡.𝑓𝑒𝑟𝑟𝑜𝑜𝑥𝑖𝑑𝑎𝑛𝑠
→             2𝐹𝑒2(𝑆𝑂4)3 + 2𝐻2𝑂 

 

(𝟐. 𝟏𝟐) 4𝐹𝑒2(𝑆𝑂4)3 + 2𝑀𝑒𝑆 + 4𝐻2𝑂 + 2𝑂2  

→ 2𝑀𝑒2+ + 2𝑆𝑂4
2− + 8𝐹𝑒𝑆𝑂4 + 4𝐻2𝑆𝑂4 

The reduction in pH caused by sulphuric acid formation can then cause further leaching 

of metals.  A positive feedback mechanism generates further acidity and metal 

solubilisation (Equation 2.12). 

Modelling undertaken by Petersen and Dixon (2007) found that key constraints on heap 

leaching methods for zinc recovery included liquid/gas phase mixing, availability of 

sulphuric acid for ferrous oxidation, and the generation of excessive heat in certain areas 

of the heap limiting the spatial viability of microbes.  Alternatively, it has been shown 
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that the rate limiting factor in sphalerite oxidative dissolution arises from presence of 

accessory minerals which restrict diffusion (da Silva, 2004).  Villar and Garcia (2002) 

determined that zinc and nickel solubilised at a pH of 6 – 6.5 (near 100% extraction 

demonstrated) compared to copper and chromium required a pH of 2 – 3 to initiate 

solubilisation, catalysed by sulphur oxidising bacteria.  Sand et al. (2001) note that 

sphalerite (ZnS) is acid-soluble and dissolution increases as pH decreases, indicating 

optimum reaction rates will occur at lower pH.  In addition to a favourable pH and 

reduced iron compounds, temperatures of 28 - 30°C, a supply of oxygen and carbon 

dioxide by aeration and micronutrients such as ammonia, phosphate and magnesium are 

required for growth of At. ferrooxidans, one of the key species involved in biomining 

processes (Bosecker, 1997).  A morphologically similar species in the same genus first 

documented by Waksman and Joffe (1922); At. thiooxidans, oxidises sulphur to 

sulphuric acid at a faster rate than At. ferrooxidans (Bosecker, 1997). 

Applications for bioleaching have been tested for a number of different waste materials.  

Henry and Prasad (2006) presented a bespoke bioleaching process for the production of 

compost from sewage sludge within a laboratory scale reactor.  Autotrophic bacteria 

were employed, using elemental sulphur added to drive the process.  Zinc 

concentrations of typically 1,738mg/kg were reduced to between 180mg/kg and 

15mg/kg over periods of between 8 and 20 days.  Overall, metal solubilisation 

efficiencies were of the order of Zn (98%) > Cu (96%) > Cr (93%) > Cd (90%) > Pb 

(67%). 

Extraction of zinc and aluminium from industrial waste sludge has been demonstrated 

by Solisio et al. (2002), using an At. ferrooxidans culture sourced from an acid mine 

discharge.  Extraction efficiencies in the range 72 – 78% were achieved.  However, by 

increasing the sludge concentration, the aqueous concentrations of metals were thought 

to begin to restrict microbial growth and thus reduce extraction efficiencies (Solisio et 

al., 2002).  Similarly, Wu and Ting (2006) found that the aqueous concentrations of 

metals inhibited fungal growth when employing fungal bioleaching (Aspergillus niger) 

to incinerator fly ash.  The extraction efficiencies in this study were also in favour of 

zinc, which was extracted more effectively by bioleaching than parallel chemical 

leaching tests using a range of 0.1 and 0.5 molar acids.  The general order of extraction 

efficiencies was as follows: Al = Zn = Mn > Cu = Pb > Fe.  Wu and Ting (2006) claim 

that their findings were in good agreement with those by Siegel et al. (1983).  High 
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recovery efficiencies for zinc suggests that biohydrometallurgical techniques may be 

suitable for decontamination and metal recovery of passive mine water treatment 

substrates.  Furthermore, it may be feasible to conduct ‘heap leach’ activities at 

abandoned mine sites, thereby reducing the cost of transporting bulk wastes to specialist 

processing facilities. 

2.13 Removal of metals from pregnant leach solutions 

Following extraction of metals using hydrometallurgical methods, a pregnant solution 

typically rich in numerous metals must be dealt with.  In the minerals industry, 

sequences of processes are often adopted to recover individual concentrated metal 

products.  Common methods of metal separation and concentration from pregnant leach 

solution include hydroxide precipitation, sulphide precipitation, ion exchange and 

solvent extraction (Zhang and Cheng, 2007) 

2.13.1 Direct precipitation methods 

Hydroxide precipitation of metals from pregnant leach solutions is achievable by the 

introduction of alkali to raise pH (Rosenqvist, 2004).  Where solutions are acidic, for 

example, the generation of secondary precipitates such as gypsum consume large 

amounts of alkali (Baltpurvins et al., 1997).  Furthermore, process difficulties can be 

encountered with the carrying over of metal colloids (Baltpurvins et al., 1997).  

Kongolo et al. (2003) document the successful sequential removal of iron, zinc and 

cobalt from solutions.  Calcium carbonate dosing and filtration removed iron as 

hydroxide precipitates, with cobalt and zinc losses of 5% and 3% respectively (Kongolo 

et al., 2003).  After iron precipitation, solvent extraction was used to remove cobalt and 

zinc simultaneously, before separation by selective stripping with sulphuric acid 

solutions of different strengths.  More than 90% cobalt and 90% zinc were recovered 

(Kongolo et al., 2003). 

Turan et al. (2004) suggest a process in which zinc is recovered from primary acid leach 

solutions by electrowinning.  Lead is simultaneously recovered from a secondary 

sodium chloride leach solution by addition of sodium sulphide (Turan et al., 2004). 
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2.13.2 Solvent extraction 

Selective recovery of metals from a pregnant leach solution is often undertaken using 

solvent extraction methods by liquid-liquid extraction (Rosenqvist, 2004).  Most 

commonly, Di-2-ethythexyl phosphoric acid (D2EHPA) dissolved in an organic 

solution such as kerosene is employed for zinc extraction (Qin et al., 2007; Ortiz et al., 

2001; Forrest and Hughes, 1978).  Silva et al. (2005) found that D2EHPA was 

successful in the extraction of a pregnant sulphuric acid solution of 2,000mg/L zinc and 

10,000mg/L nickel.  When alkyl phosphoric acids such as D2EHPA are used in 

conjunction with an ammonium chloride lixiviant, neutralisation of H
+
 ions within 

pregnant solutions is achieved (Amer et al., 1995).  In a process context, this negates the 

need for external neutralisers which complicate and add cost to the process (Amer et al., 

1995).  Organic phase chelating compounds can allow for extraction of specific metals 

from an acidic ‘pregnant solution’, relating to the configuration of the atoms that allows 

preferential binding to certain species (Burkin, 1976).  Often, combinations of 

extractants can be used to extract different metals: Gouvea and Morais (2010) 

investigated organophosphorus reagents for selective zinc removal while using 

chelating extractants for selective recovery of copper.  The application of solvent 

extraction techniques is well suited where concentrations of target metals in leach 

solutions are relatively low (Ritcey and Ashbrook, 1984.).  Yet, it has been reported that 

solvent extraction becomes unsuitable where metals such as lead and copper are below 

1,000mg/L (Valenzuela et al., 1999). 

2.13.3 Electrowinning 

Once a solvent solution containing metals is obtained, a series of washing processes are 

often required in order to remove chlorides, before electrowinning to obtain a solid 

metal product (Amer et al., 1995).  The presence of other substances can lower the 

efficiency and purity of the electrowon product although addition of certain additives 

can improve electrical efficiency and surface morphology (Das et al., 1997). 

Vegliò et al. (2003) demonstrated high removal efficiencies of copper and nickel from 

waste water treatment sludge, generated from sodium hydroxide dosing of an industrial 

effluent.  Sulphuric acid was used to leach metals from the sludge before the liquor was 

passed through an electrochemical cell with variable pH to achieve selectivity.  Metal 

recovery efficiencies of 94 – 99% were achieved using this approach (Vegliò et al., 
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2003).  Some attention has been given to the use of electrowinning in the primary 

treatment of waste waters: the development of carbon fibre electrodes with very high 

surface areas has proven to reduce copper concentrations of 400mg/L to <2mg/L 

(Dinardo et al., 1991).  In this context, this technology may be directed to combined 

treatment and recovery systems for particularly polluted metal mine waters. 

2.14 Active treatment and combined treatment and recovery systems  

Combined treatment and recovery systems are likely to be active, given that passive 

treatment systems generally produce complex wastes with heterogeneous metal 

distribution (Gray et al., 2012).  There are very few examples of combined treatment 

and recovery systems for the treatment of non-ferruginous mine drainage or similar 

effluents, and these generally use sulphate reduction processes (Bratty et al., 2006; 

Huisman et al., 2006).  An example of a modest system operating in Colorado, treating 

up to a 9.5L/s flow from an abandoned silver-zinc mine, reduces zinc concentrations 

from 135mg/L to <67µg/L using sulphide precipitation (Kratochvil et al., 2015).  The 

system is claimed to produce a saleable zinc-cadmium product (11.3 tonnes in 2010) 

that offsets the cost of treatment.  It is also claimed that the cost of the plant was 33% 

less than the alternative lime dosing unit (BioteQ, no date), however other authors 

suggest that the technique is actually the more costly option (e.g. Kuyucak, 2006; 

Younger et al., 2005).  BioteQ Ltd. has also developed the technique for the recovery of 

copper from a pregnant leach solution draining a low grade tailings dump (Lawrence et 

al., 2005).  Mosher (1994) documents an example of resource recovery from a lime 

dosing mine water treatment plant, where waste sludge is incorporated as a feedstock to 

a lead smelting operation as a lime replacement.  Incidental metals such as lead and 

copper are recovered as part of the smelting operation (Mosher, 1994).  Morin et al. 

(2006) suggests that mine water discharges could potentially be ideal candidates for 

biological metal recovery, turning a problem into a resource.  Morin et al. (2008) 

presents an example of acid mine/rock drainage containing 500mg/L copper, but this is 

much higher than copper concentrations found in mine water discharges in England and 

Wales.  Indeed the relatively modest mine water discharge tackled by BioteQ (no date) 

has a zinc loading similar only to the worst discharges in England and Wales, as 

outlined in Table 2.11.  Additionally, flow rates from discharges in England and Wales 

are proportionately far higher relative to metal loadings.  This means any system would 
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need to be designed to accommodate high flows, which is likely to increase the capital 

and operational costs of this type of treatment. 

Table 2.11  Top 10 mine water discharges in England and Wales ranked by zinc loading, compared to zinc 
load treated at an active sulphate reducing bioreactor at a site in the USA (BioteQ, no date; unpublished 
data courtesy of the Environment Agency, 2015);  

Wellington Oro, Colorado 
BioteQ plant 

Flow (L/s) Zinc (t/annum) 

Capacity 9.5 39 

Actual treated average flow in 2010 2.3 11.3 

UK Top 10 Discharges   

1 County Adit 454 33.9 

2 Dyffryn Adda Adit 10 22.5 

3 Hayle Adit (mid 1) 644 18.5 

4 Frongoch Adit 60 10.5 

5 Nant y Mwyn Lower Boat Adit 30.12 10.1 

6 Pughs Adit 13 9.2 

7 Hayle Adit (lower) 213 8.5 

8 Meerbrook Sough 740 8.4 

9 Bridford mine adit 20 7.8 

10 Woodend Low Level 5.55 6.4 

2.15 Passive treatment vs. active and combined treatment recovery 

systems 

Metal sulphides are generally more stable and of a greater density than hydroxides 

(Peters et al., 1985).  The products of active sulphide reduction plants have reportedly 

been of commercial value and consequently entail less of a management challenge than 

those of conventional alkali dosed voluminous hydroxide sludges, which would 

normally require landfilling (Kratochvil et al., 2015). 

Passive treatment can be cost effective to implement, operate, and have a low impact on 

immediate natural environments (Parker, 2003; PIRAMID Consortium, 2003; Hedin et 

al., 1994a) but wastes can be voluminous and require disposal at significant cost where 

metals are elevated (Atkins, 2014b).  Active combined treatment/recovery systems are, 
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by their nature high cost, high impact units that require close control and inputs of 

energy and chemicals (Mayes and Jarvis, 2011; Johnson and Hallberg, 2005a).  While 

on face value, units of this nature may not be immediately favourable, waste volumes 

may be low or non-existent in the case of high density sludge (Coulton et al., 2003) or 

sulphide precipitation plants (Kratochvil et al., 2015) respectively.  Thus, consideration 

of the whole life cost of active vs. passive and potential for metal recovery should be 

evaluated for any specific site, taking into consideration the constraints present.  The 

key knowledge gap, and thus the obstacle in allowing this assessment to be conducted, 

is the technical feasibility of recovering metals from passive substrates in an economic 

and environmentally sound manner. 

2.16 Conclusion to Chapter 2 

This chapter addresses objective 1 of the thesis: 

 Review the resource potential of metal mine waters nationally and identify ways 

in which resources can be recovered. 

Accordingly, this concluding section provides a summary of the resource potential of 

metal mine waters, which might be used to enhance or offset costs of mine water 

treatment systems and their amenability to recovery.  Gaps in the literature are then 

specified, the most pertinent of which have been investigated experimentally, as 

described in Chapters 3, 4 and 5 of this thesis. 

2.16.1 Energy 

Potential exists to harness water that discharges from mine workings and flows though 

pipes and channels within mine water treatment systems.  Hydropower systems may 

offer a mechanism to harness this valuable resource, recovering energy otherwise lost at 

a treatment site, or provide power at remote ‘off grid’ treatment sites.  Additionally, 

energy might be recovered from iron oxidisation or the mixing of saline and fresh 

waters, although at present technology to harness this geochemical potential is only 

emerging (Skilhagen et al., 2008; Cheng et al., 2007; Aaberg, 2003). 

Large volumes of water within the mine void lend themselves to providing or receiving 

heat from heating or cooling schemes.  Manual data from seven mine discharges find 

average temperatures typically in the range of 7.3 – 14.3°C.  Considering a heating 
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application that extracts 4°C from the mine water (ΔT), two flows yield in excess of 

300kWthermal power.  Regular monitoring suggests that mine water temperatures are 

perennially stable and thus might be suitable for the extraction or dumping of heat 

(Banks et al., 2003).  This would be easily achievable using commercially available 

heat-pump apparatus although there remains some uncertainty surrounding the impact 

of metal mine water quality on heat exchanger systems. 

Table 2.12 provides a summary of energy resources associated with mine water 

discharges, the features that they are associated with and the power that may be 

recoverable. 

Table 2.12  Energy resources associated with mine waters at sites in England and Wales identified from 
review of the literature and unpublished data 

Resource Feature Power 

Potential energy Flowing water from mines 
0.1 – 2.6kW (data from 5 metal mine 
water discharges) 

Thermal energy  Heat contained within mine waters 
35 – 324kWthermal (out of 7 metal mine 
water discharges) 

 

2.16.2 Mine water treatment and potential for metal recovery 

Significant amounts of metal are discharged from abandoned metal mines in England 

and Wales: estimates made in this review suggest approx. £430,000 of metal (Zn; Ni; 

Pb & Cu) is lost to the environment per annum causing widespread pollution.  Table 

2.13 provides a summary of metals discharging from abandoned metal mines in 

England and Wales, although it must be noted that this load is spread over many 

geographically discrete discharges. 

Table 2.13  Metals in metal mine waters cumulatively discharged throughout England and Wales 
(unpublished Environment Agency data, 2015) 

Metal Quantity (t/annum) 

Nickel 1.8 

Lead 21.2 

Zinc 252.9 

Copper 38.6 
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Where remediation is planned, passive treatment offers a low cost and low impact 

option, with sulphate reducing bioreactors offering both high removal efficiencies and 

removal rates for sustained periods, compared to alternatives (see section 2.8).  A range 

of mechanisms have also been identified which may extend system lifetimes further, 

such as dosing with waste carbon (e.g. Costa et al., 2009).  Over time, however, metals 

accumulate within treatment system substrates which will eventually need replenishing, 

probably after 10 or 20 years (Cheong et al., 2012; Gray et al., 2012; Rose, 2006).  

There have to-date been no attempts to characterise in detail passive metal mine 

treatment system wastes from large scale VFP systems, or in-depth investigations to 

recover the metals from them.  Yet, it is an understanding of exactly these factors which 

is needed to effectively manage the wastes generated by these systems. 

Technology exists to recover metals from both low-grade ores and waste materials; 

some of which are broadly comparable to passive mine water treatment system wastes.  

The processes vary in complexity, but evidence suggests that leaching might be an 

effective mechanism to recover metals from treatment system wastes, using either 

chemical reagents or biologically mediated processes (see section 2.12).  These 

hydrometallurgical techniques are known to be deployed on waste rock heaps at mine 

sites (Renman et al., 2006) or from contaminated soils at development sites (CL:AIRE, 

2007).  As a result, metal recovery might be achievable at mine water treatment sites, 

without the need to transport waste materials significant distances to specialist facilities. 

2.16.3 Resource recovery impacts on life-cycle costs 

Several resource recovery themes have been identified by this review which might be 

used to reduce the costs of passive mine water treatment.  Yet, there is no evidence in 

the literature assessing how resource recovery might be used to this effect.  In particular, 

several authors (Kratochvil et al., 2015; Johnson et al., 2006; Johnson and Hallberg, 

2005a) claim that active sulphidogenic treatment technology is the only viable 

mechanism of economically recovering metals but have neglected to consider whether 

metal recovery might be achievable from passive treatment system substrates.  Due to 

the lower cost of passive treatment systems, it may be that even with the addition of ad-

hoc metal recovery waste processing, the whole-life costs might remain lower than 

active alternatives.  This is explored further in Chapter 5, using the Force Crag 

treatment system as a case study. 
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2.16.4 Gaps in literature 

This review of the literature has identified several knowledge gaps which are significant 

in terms of optimising passive treatment system life-times and offsetting their life-cycle 

costs by resource recovery.  The following areas have been identified which are 

explored further in this thesis: 

 Detailed characterisation of substrates from passive metal mine water treatment 

systems operating in the field. 

 Attempts to recover metals from passive metal mine water treatment substrates 

using chemical and biological methods. 

 Studies to assess quantitatively how recovery of resources may be used to offset 

the life-cycle cost of passive metal mine water treatment. 

Substrate characterisation and metal recovery are investigated using material from the 

Nenthead pilot treatment system, which is detailed in Chapters 3 (methods) and 4 

(results and discussion).  Force Crag is then investigated to assess its performance, 

metal recovery potential and life-cycle cost scenarios with, and without, resource 

recovery: Chapters 3 (methods) and 5 (results and discussion).  These cost scenarios are 

then compared against the costs of active treatment (Chapter 5). 
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Chapter 3. Methods 

3.1  Introduction and chapter contents 

Laboratory and field methods are presented in this chapter.  Two case studies are 

investigated: the Nenthead pilot scale treatment system and the Force Crag full scale 

treatment system, both dealing with circum-neutral mine waters with elevated zinc 

concentrations.  The methods detailed are relevant to research objectives 2 – 5 described 

in Chapter 1 (the first objective was addressed by Chapter 2).  A bespoke experimental 

design was produced, based upon a campaign of sampling, experimentation and analysis 

to address the research objectives.  Where appropriate, standard methods were adopted 

which ensured production of robust of datasets. 

3.2 Nenthead pilot treatment system decommissioning 

Laboratory investigations were undertaken to characterise and to recover metals from 

the Nenthead mine water treatment system substrate.  Details of the treatment system 

can be found in section 1.5.  The following section details the collection and preparation 

of substrate samples. 

3.2.1 Substrate sample collection 

Treatment of the Rampgill mine water with a pilot scale system took place for two years 

at the Nenthead site, before it was decommissioned in August 2012 (Jarvis et al., 2014).  

At this time, a bespoke sampling method devised by Newcastle University was 

deployed to collect substrate samples.  This Author was not involved with either the 

design, operation or decommissioning of the Nenthead treatment system.  Figure 3.1 

shows the substrate sample positions within the treatment tank, in plan, and the 

following details were provided in 2012 by P. H. A. Orme of Newcastle University, 

who was involved with the decommissioning.  The system was uncoupled from the 

mine water feed, and allowed to partially drain, although the substrate remained 

submerged.  Substrate samples were collected from 2 layers: an upper layer 

(approximately 0 – 230mm depth below substrate surface) and a lower layer 

(approximately 230 – 460mm, the base of the substrate) (also summarised in Jarvis et 

al., 2014).  
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The tank was subdivided into 5 rows along its length (A-E), and 4 along its width 

(no’s.1 – 4), forming a grid pattern of 20 subdivisions, over an upper and lower horizon 

(A and B respectively).  Samples were named following this convention, e.g. A1A and 

so on.  After removing the first row of samples it was observed by the Newcastle 

University staff undertaking the work that the substrate near to the surface (top 25-

50mm) was brown in colour, while beneath this surface layer the substrate was black.  

The substrate at the influent end of the system appeared ‘blacker’ than that at the 

effluent end.  Samples (approximately 1 kg) were immediately placed into sealed 

polythene bags before being stored at -20°C at Newcastle University within 24 hours of 

collection for preservation purposes. 

 

Figure 3.1  Sample plan of Nenthead pilot treatment tank (diagram courtesy of P. H. A. Orme, Newcastle 
University) 

3.2.2 Sample preparation 

Substrate samples were removed from frozen storage the day prior to use in laboratory 

investigations, and allowed to defrost within their airtight sample bags at room 

temperature.  In order to reduce sample sizes to suitable amounts for sieving and 

sequential extractions, subsampling by a quartering method was adopted (BSI, 2006).  
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The procedure was repeated until approximately 12.5% (1/8
th

) of the bulk sample 

remained.  De-frosted bulk samples were held for several days in a refrigerator during 

the procedures and remaining sample that was not used was re-frozen at -20°C. 

3.3 Laboratory investigations – Nenthead substrate characterisation 

3.3.1 Investigating metal content in relation to particle size 

Metals are generally known to be associated with fine grained soils and sediments, 

given their higher surface area to volume ratio, compared to larger grained material 

(Mulligan et al., 2001; Singh et al., 1999).  This pattern is also found in waste materials 

(German and Svensson, 2002; Chang et al., 2000b), although there are some cases 

where larger particles are coated with sorbents such as Fe/Mn oxides, which can lead to 

metals accumulating in larger particle size fractions (Singh et al., 1999).  More recently, 

investigations of road sweepings by Gunawardana et al. (2014) identified that the 

mineralogical content of particles had a significant bearing on sorption, with clay 

forming minerals (<150µm) acting as important sorbents (Gunawardana et al., 2014).  

However, no investigations have been undertaken to assess the distribution of metals in 

mine water treatment system substrates according to particle size.  Much of the 

literature investigating waste materials uses particle size separation to separate specific 

components of the waste, such as components from crushed batteries (Nan et al., 2006; 

Shin et al., 2005).  As a consequence, it was necessary to design a method specifically 

for this work.  Standard sieve sizes were chosen according to ISO1377:2 (BSI, 1990) in 

order to assess the relationship between metals and particle size within the Nenthead 

mine water treatment substrate. 

Preliminary sieving using standard sieve sizes was conducted to determine the 

appropriate aperture for the substrate characterisation, as documented in Appendix B: 

‘Trial sieving of Nenthead treatment system substrate samples’ January 2013.  Sieves of 

2mm and 212µm were selected, as these gave a relatively even split in terms of masses 

between particle sizes during preliminary sieving of a test sample: C1B
3
. 

According to the British Standard method (ISO 1377:2), dry sieving is only applicable 

to soils with an insignificant quantity of silt or clay (i.e. particles <63µm) (BSI, 1990), 

                                                 
3
 This sample was chosen, as it was considered to be of relatively low importance for spatial 

investigations, which follow. 
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however, the preliminary wet sieving of substrate sample C1B showed that 9.4% of the 

mass was associated with these fractions.  On the other hand, it was thought that wet 

sieving may re-mobilise or re-distribute metals within the substrate.  Therefore, in order 

to assess the impact (if any) of the use of a deionised water flush by wet sieving, 

compared to dry sieving of a sample, both approaches were conducted on sample C4B 

(as with sample C1B, this sampling location was chosen because the sample was not 

required for subsequent spatial investigations).  The method adopted is outlined below: 

i. Quarter 1 was placed in an acid washed crucible and dried in a 105°C oven 

overnight, before being dry sieved using 2mm and 212µm sieves. 

ii. Quarters 2 and 3 were not sieved, but oven dried in acid washed crucibles and 

ground using a pestle and mortar and laboratory blender (Waring 

Commercial™).  Liquid nitrogen pulverisation (Spex™ Freezer/Mill 6750) was 

used in addition to the laboratory blender to break down fractions of the 

substrate with high content of woody material, as shown in Figure 3.2.  The 

procedure involved inserting the sample into a cylinder containing a magnetic 

rod, and placing in the machine.  Liquid nitrogen bathed the sample for 1 minute 

before an oscillating electromagnet caused the magnetic bar to pulverise the 

sample.  Between each sample, the cylinder and magnet was washed and rinsed 

with 18.2MΩ/cm deionised water.  This was conducted until the entire sample 

passed the 212µm sieve.  

iii. Quarter 4 (undried) was wet sieved using 2mm and 212µm sieves with 250mL 

of deionised water (18.2MΩ/cm).  A 20ml filtered (to <0.1µm with Pall 

Acrodisc Supor Membrane™ syringe filter) sample of deionised water was 

taken from the wash bottle, and another sample from the wash fluid once it had 

passed both sieves and been allowed to settle, for metals analysis.  The three 

fractions of quarter 4 (the final including the residual wash fluid) were placed 

within acid washed crucibles and oven dried at 105°C overnight. 

iv. The two fractions retained on the 2mm and 212µm sieve from the dry sieving of 

quarter 1, and the same two fractions from the wet sieving/drying of quarter 4, 

were then ground using liquid nitrogen pulverisation (Spex™ Freezer/Mill 

6750) and a laboratory blender (Waring Commercial™) to pass the 212µm 

sieve.  The particles in the fraction which passed the 212µm sieve during the wet 

sieving had adhered together during the drying process, and so were broken up 

with a pestle and mortar before being passed through the 212µm sieve again. 
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Figure 3.2  Spex™ liquid nitrogen pulveriser, inset showing pulverised substrate sample 

 

In total, there were 8 samples, all passing the 212µm sieve, as shown in Figure 3.3, 

where red boxes indicate samples for further analysis by sequential extraction. 

 

Figure 3.3  Flow chart showing sample C4B preparation using wet and dry sieving techniques 
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3.3.2 Investigating metal content in different locations 

In addition to determination of the metal distribution in relation to particle size (and the 

impact of sieving methods on results), further investigation was conducted in February 

2013 to assess the distribution of metals throughout the Nenthead treatment system.  

The following 12 samples were investigated, at both upper and lower levels, as shown 

on Figure 3.1:  A2A, A2B, A3A, A3B, C2A, Blank, C3A, C3B, E2A, E2B, E3A, E3B 

(where the last letter of the sample reference refers to the upper 0-230mm (A) or lower 

230-460mm (B) layer).  Sample C2B in the sequence was substituted for a blank 

(substrate which had not been exposed to mine water) as a control.  12 samples were 

chosen due to this being the number of spaces on the centrifuge, and thus the practical 

limit for one sample round of sequential extractions.  Identical sequential extraction 

procedures were undertaken on all samples. 

3.3.3 Sequential extraction procedure 

The 5 step method of Tessier et al. (1979) and the EC Standards Measurements and 

Testing Programme (BCR) method (Ure et al., 1995) are amongst the most widely 

applied sequential extraction procedures.  The standardised procedure, developed by the 

Standards, Measurements and Testing Programme of the European Commission has 

seen improvements which have been commonly adopted to improve repeatability (e.g. 

Rauret et al., 1999). This method has been applied to a substrate from a permeable 

reactive barrier treating mine drainage (Gibert et al., 2003).  However, in the case of 

Gibert et al. (2003) and similar studies discussed below, no investigations have been 

conducted on substrate samples separated by particle size. 

Individual extraction steps are often classified by function, such as ‘exchangeable’ or 

‘bound to Fe / Mn oxides’. However, in practice, the reagents used for these 

operationally defined steps can be poorly selective and species can suffer re-distribution 

by earlier steps (Gleyzes et al., 2002).  In an addendum to the method of Tessier et al. 

(1979), Rapin et al. (1986) noted the significance of sample storage and preparation.  It 

is concluded, in part, that contact of sample with atmospheric oxygen prior to and 

during the extraction procedure will compromise results.  Sample preparation under 

nitrogen has been adopted by some: Jong and Parry (2004) apply this technique in the 

analysis of a substrate from a metal mine water treatment substrate.  The substrate used 

in their study comprised commercial pool filter sand.  In the current study, the compost 
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substrate contained large wood chips (up to ~100mm) which required sub-sampling, 

drying and pulverising/grinding to obtain a homogenous sample.  This requirement for 

sample preparation would have been impractical under nitrogen.  Several studies 

applying sequential extractions have been previously conducted on composts (Paradelo 

et al., 2011; Greenway and Song, 2002), including one using a modified Tessier (1979) 

procedure (Neculita et al., 2008b), but in none of these cases is there reference to 

extractions being conducted under nitrogen, or any other means of excluding oxygen. 

Furthermore, the standard sequential extraction procedures have been developed for 

analysis of fluvial sediments (Tessier et al., 1979; Ure et al., 1995), which differ 

considerably in composition to the substrates used in compost bioreactors treating metal 

mine drainage (e.g. Jarvis et al., 2014; Song et al., 2012; Neculita et al., 2011).  These 

issues are of lesser concern for the objectives of this investigation, which is to assess 

how tightly metals are bound within substrates, and therefore how amenable they might 

be to recovery.  On this basis, the Tessier et al. (1979) method is preferable to the 

Standards Measurements and Testing method (Ure et al., 1995) as it is a 5 step 

procedure, rather than 3, and thus results will provide a higher resolution.  To reflect the 

limitations of the procedure, the step number of the extraction sequence is used for data 

interpretation in Chapter 4.  Details of the extraction steps are included in Table 3.1. 

In this study, sequential extractions using procedures developed by Tessier et al. (1979) 

were performed on 1.00g of homogenised sample, sieved to 212µm.  Solutions were 

recovered following each step by centrifugation (Sorvall Instruments™ RC5C) for 30 

minutes at 10,000rpm and removed using a glass pipette.  Between the 5 steps, samples 

were washed with 8mL of deionised water (18.2MΩ/cm), agitated and separated within 

the centrifuge for 30 minutes.  The wash fluid was then discarded.  Because of the high 

organic content of the material (TOC ≥20%), there was concern that incomplete 

oxidation of organic matter by hydrogen peroxide may occur in the oxidising step (4) 

(see: Gleyzes et al., 2002).  Accordingly, extra hydrogen peroxide was added to a single 

vile of both sets of triplicate samples at step 4 (oxidising agent) to assess whether, in the 

case of these compost samples, the reagent volume was limiting extraction during this 

step. 
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Table 3.1  Sequential extraction procedure, after Tessier et al. (1979) 

Step Reagent Treatment Special amendments 

1 1M MgCl (pH 7), 8mL. Continuous agitation on rolling 

table for 1hr, room temp. 

 

2 1M NaOAc, adjusted to 

pH5 with HOAc, 8mL. 

Continuous agitation on rolling 

table for 5hrs, room temp. 

 

3 0.04M NH2OH-HCl in 25% 

(v/v) HOAc, 20mL. 

Occasional agitation for 6hrs 

(shaken at 30min intervals), 96°C 

temp maintained using oven. 

 

4 a. 0.02M HNO3 (3mL) and 

30% H2O2 adjusted to pH 2 

with HNO3, 5mL. 

Occasional agitation 3hrs (shaken 

at 30 minute intervals), 85°C 

temp maintained using oven. 

5mL extra H2O2 added 

to triplicate vials (2iii; 

3iii) – total volume at 

end of step 4: 25mL. b. Additional 3mL of 30% 

H2O2 added after first 3 

hours 

Further occasional agitation for 

3hrs at 85°C. 

c. 3.2M NH4OAc in 20% 

HNO3, 5mL added to 

cooled samples.  4mL 

deionised water then 

added to make solutions 

up to 20mL. 

Cooling of samples in cold room 

for 30mins.  Following addition of 

reagents, continuous agitation for 

30mins. 

5 a. HClO4, 2mL; HF, 10mL; 

added to sample. 

Residue from step 4 placed in 

Teflon crucibles.  After first 

addition, samples heated on 

130°C hotplate for 30 mins until 

almost dry. 

 

b. HClO4, 1mL; HF, 10mL; 

added to sample. 

Samples heated on 130°C 

hotplate for 30 mins until almost 

dry. 

c. 1mL of HClO4 added until 

the appearance of while 

fumes. 

 

d. Conc. HCl, 5mL added to 

dissolve residue. 

 

Solution transferred to 25mL 

volumetric flasks and made up 

using deionised water. 
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All reagents were made up either from analytical grade salts or concentrated solutions, 

diluted with 18.2MΩ/cm deionised water, using acid washed glassware.  Samples from 

step 1 were acidified with 2 drops of nitric acid to lower pH <2 thereby halting most 

bacterial growth, preventing oxidisation of metals and precipitation or sorption to 

container surfaces (Appelo and Postma, 2010). 

3.3.4 Analysis of sequential extraction solutions 

Metals analysis of extraction solutions was undertaken using a Varian Vista MPX 

Inductively Coupled Plasma Optical Emission Spectrophotometer (ICP-OES) according 

to the British Standard Method ISO11885 (BSI, 2009).  The following metals were 

investigated, as per Tessier et al. (1979) with their respective detection limits: 

 Iron  <0.01mg/L 

 Manganese <0.01mg/L 

 Lead  <0.05mg/L 

 Zinc  <0.01mg/L 

 Cadmium <0.01mg/L 

 Copper  <0.01mg/L 

 Cobalt  <0.01mg/L 

 Nickel  <0.01mg/L 

Detection limits were calculated by running a blank 7 times on the ICP-OES and 

calculating 3x the standard deviation, which is improved over the BSI method which 

specifies that at least 3 outlier free readings are taken (BSI, 2009). 

Calibration standards were made up to cover the anticipated range of element 

concentrations within the samples (Table 3.2).  In total, 3 calibration standards, plus a 

blank, were made up in all 5 extraction matrices.  By using the extraction solution as a 

base for the standards, any interference that this gives is considered within the 

calibration (BSI, 2009).  Where analytes were reported in excess of the highest 

calibration standard, dilution of the samples was undertaken to bring them within range.  

Base solutions were used for dilutions, which were made up as ten-fold and twenty-fold 

as necessary. 
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Table 3.2  ICP-OES calibration standards for Tessier Extraction 

 Calibration solution concentrations, mg/L (three standards per element) 

Step 1 

(Tessier matrix) 

Step 2 

(Tessier matrix) 

Step 3 

(Tessier matrix) 

Step 4 

(Tessier matrix) 

Step 5 

(Tessier matrix) 

Cd, Co, Cu, Ni 0.2; 0.4; 0.6 0.2; 0.4; 0.6 0.2; 0.4; 0.6 0.2; 0.4; 0.6 0.2; 0.4; 0.6 

Pb, Zn 2; 4; 6 5; 10; 15 5; 10; 20 5; 10; 15 2; 4; 6 

Fe 5; 10; 15 5; 10; 15 10; 20; 30 10; 20; 30 10; 20; 30 

Mn 5; 10; 15 5; 10; 15 5; 10; 15 2; 4; 6 2; 4; 6 

 

Calibration standards were run at the start of every analysis sequence, and blanks 

(normally second standard) were run periodically (every 12 sample runs for 

convenience) in order to check that the calibration remained correct. 

Samples were manually injected into the ICP-OES (rather than use of an autosampler 

device).  This was in part due to the relatively low sample number per round (12 

samples per run, over 5 runs: corresponding to each extraction step), but also to allow 

ease of data review and re-running of samples during analysis.  Between individual 

samples, a 1% nitric acid wash solution was passed through the machine to remove 

residues from the preceding samples (APHA, 2005).  In most cases, the plasma could be 

observed changing colour, as the salt from the sample base was flushed through. 

3.4 Laboratory investigations – Nenthead chemical leaching tests 

In order to assess the potential for metal recovery under low pH conditions, such as 

those which might be generated either by bio-oxidation of sulphide minerals or by 

conventional acid-leaching processes, proof-of-principle experimentation was 

conducted using laboratory grade sulphuric acid.  The aim of these investigations, 

conducted between July and December 2014, was to understand the relationships 

between acid concentration, pulp density (i.e. lixiviant:solid ratio) and leach times on 

metal recovery from a mine water treatment substrate. 
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3.4.1 Leach test procedure 

A method was designed for the chemical leach testing, as there is no defined method to 

assess the recoverability of metals from mine water treatment wastes.  The experimental 

design was, however, informed by a number of studies in which broadly analogous 

investigations were conducted, and these are cited where relevant. 

Bulk samples from an even distribution across the upper layer of the Nenthead pilot 

treatment system substrate were combined to form a composite (A2A, A3A, C2A, C3A, 

E2A, E3A – see Figure 3.1).  The composite was oven dried at 105°C for >48 hours and 

sieved to <2mm to remove large fragments.  This composite was then subsampled using 

the quartering method (BSI, 2006) and weighed to ±0.01g. 

Composite subsamples were then placed within 2,000mL acid washed High-Density 

PolyEthylene (HDPE) flasks and subjected to contact with dilute sulphuric acid 

solutions at room temperature for 100 hours under aerated conditions.  Collection of 

samples and manual measurements (temperature, Eh, pH, conductivity), using a 

calibrated
4
 Myron 6P Ultrameter, were taken at specific intervals following 

commencement of the experiments, as outlined below: 

- 0 hours (start of experiment) 

- 1 hour 

- 3 hours 

- 6 hours 

- Daily for the following 4 days 

 

Simultaneously, filtered water samples were collected, using 0.45µm  Pall Acrodisc 

Supor Membrane™ syringe filters to remove suspended debris from pulp.  Note that 

vessels were not topped up as minimal sample volumes of ~15mL had been collected 

for analysis, and any topping up would have diluted leach solutions. 

All bottles were aerated using a simple air injection configuration as shown in Figure 

3.4.  This was to ensure that conditions were oxygenated, facilitating oxidation reactions 

which are responsible for metal solubilisation, in addition to providing agitation to the 

substrate-acid pulp in place of mechanical stirring.  Tests were conducted within a fume 

                                                 
4
 Calibration of the Myron 6P Ultrameter was undertaken periodically using a three point method (with 

pH 4, 7, 10 buffers), and conductivity using a 1413µS/cm solution. 
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cupboard, to provide containment/venting in case of any spills of acid or liberation of 

fumes. 

 

Figure 3.4  Leach test experimental configuration 

Samples collected were stored below 5°C and analysed by ICP-OES.  Upon completion 

of the leach test, the compost/lixiviant pulp was filtered through 8µm pass, 150mm 

no.40 Whatman™ filter papers to separate the pregnant leach solution from the solids 

fraction.  This size filter paper was chosen because it is identical to those used for 

subsequent aqua regia digests of leached substrates (section 3.4.6). 

3.4.2 Leach test variables 

A range of acid concentration and pulp-density variables were investigated in order to 

determine the optimum leaching conditions, as outlined in the following sections.  All 

batch leach tests were conducted in duplicate rather than triplicate due to restrictions on 

fume cupboard space. 

3.4.3 Acid concentration 

Three different dilutions of sulphuric acid were compared, against a distilled water 

control.  Solutions were made up from concentrated laboratory grade sulphuric acid and 

distilled water, up to 1,200mL in the following dilutions:  0.02, 0.1 and 0.5 molar.  

These dilutions were selected as they covered a wide range: from more concentrated 

acids, comparable to those successfully used by other researchers, to very dilute acid; 

thereby testing the limit of acid concentration on metal extraction.  For example, Souza 

et al. (2007) determined in excess of 70% zinc extraction from a zinc silicate calcine 
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with 5 acid concentrations between 0.2 and 1.0 molar, over a 10 minute extraction.  Wu 

and Ting (2006) achieved >48% zinc recovery with 0.1 and 0.5 molar sulphuric acid, 

from a 1% pulp of fly ash containing 6,288mg/kg of the metal.  For brevity, the symbol 

M is used in this thesis to denote molarity. 

Each acid solution was added to 22.5g of compost within the 2,000mL flasks to provide 

a pulp density of 1.875% (solid/liquid), which is comparable to pulp-densities used by 

other researchers (Bayat and Sari, 2010; Henry and Prasad, 2006; Ishigaki et al., 2005).  

Further experimentation to assess the effect of different pulp density was undertaken 

subsequently, as detailed in section 3.4.4. 

3.4.4 Pulp density 

Determination of extraction recoveries over a series of increasing pulp density 

increments was conducted: 1.875%, 3.75%; 7.5% and 15%, measured as the ratio of 

substrate mass (g) to liquid volume (mL), plus a reagent blank.  0.1M acid was selected 

for the pulp density experiments since this provided a balance between high zinc and 

cadmium recovery while minimising acid concentration, as determined by preceding 

tests (see leach test data in Chapter 4, section 4.3.1).  The ‘1.875% pulp’ density test 

was a repeat of the ‘0.1M’ acid concentration test in the preceding round of 

experiments, since both these combinations used 0.1M acid and had a 1.875% pulp 

density.  This allowed direct comparison of repeatability between the variable acid 

concentration and variable pulp density tests. 

Experimental conditions were identical to the previous tests using variable acid 

concentrations.  Initially, however, acid volume was varied in order to increase the pulp 

densities, and consequently it was necessary to vary flask size proportionately to the 

acid volume.  Varying the acid volume and retaining the 22.5g compost volume allowed 

use of the same batch of compost used in the preceding experiments for consistency 

purposes.  Additionally, this maintained the same pulp surface:air ratio, in case this 

would have had any bearing upon reaction rates (i.e. smaller containers reduced the 

cross-sectional surface area of the pulp for smaller leach volumes).  Unfortunately, 

during the pulp test experimentation, it became evident that the substrate had absorbed a 

substantial amount of the acid in the highest density flasks (the substrate had been oven 

dried beforehand).  Thus, collection of small but frequent samples (8 x ~15mL) caused a 

gradual but observable increase in the pulp density, effectively meaning that there was 



Chapter 3.  Methods 

84 

 

little circulation of acid as the pulp turned into more of a thick sludge.  This was most 

notable in the 15% pulp experiment, where there was just 150mL of acid to start with. 

As a result, the pulp-density tests were re-run, using 1,200mL of 0.1M acid in the 

2,000mL flasks, but increasing the masses of compost to achieve the variation in pulp 

density.  This larger quantity of acid meant that sample collection had little bearing on 

final volumes (in total 120mL was taken from a starting volume of 1,200mL), albeit 

data have been corrected to account for these sampling events.  It is these data which are 

presented in Chapter 4 (Nenthead Results and Discussion).  Due to the requirement for 

larger amounts of substrate, an additional composite was produced from Nenthead tank 

substrate samples, also from the upper layer as with the preceding experiments, but 

from locations between the original samples (A1A, A4A, B1A, B2A, B3A, B4A, C1A, 

C4A, D1A, D2A, D3A, D4A, E1A & E4A; see Figure 3.1).  Additional aqua regia 

digests were undertaken on this new composite to accurately calculate metal recovery 

efficiencies. 

3.4.5 Metal recovery from pregnant leach solutions 

Solutions recovered from the pulp-density tests were subjected to alkali dosing in order 

to raise pH and cause precipitation of metals.  This study has focussed largely upon 

zinc, which is not only the most prolific pollutant in metal mine waters of England and 

Wales (Mayes et al., 2013) but also when present in treatment system substrates deems 

them hazardous waste due to its ecotoxicity (NRW et al., 2015; ESG, 2013).  Therefore, 

as the key metal of concern, pH adjustment of pregnant solutions was trialled to remove 

zinc as a solid precipitate.  As Figure 3.5 shows, the optimum pH range for zinc 

hydroxide formation is between 8.5 and 11.5.  On this basis, a target pH of 9.5 was 

chosen, and achieved by drop-wise addition of 6M (24%) NaOH solution.  Given other 

metals have lower solubility at this pH, it was expected that many of these would also 

have formed insoluble hydroxides (see Figure 3.5).  pH measurement was undertaken 

with a pre-calibrated Fisherbrand Hydrus 300 pH probe during mixing with a magnetic 

stirrer to achieve pH of 9.5 (±0.1).  Solutions were then allowed to rest for 3 days to 

allow settlement of precipitates.  Periodic measurements identified that the pH of the 

pregnant solutions had dropped, below 9 in most cases, following 1 day of settlement.  

To correct for this, 1mL of 6M NaOH was added to each of the 8 pregnant solutions; 

mixing and re-measurement confirmed pH had increased to, and stabilised at, between 9 
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and 10 in all flasks which has previously been shown as an effective pH for metal 

removal from leach solutions (Seidel et al., 2004). 

 

Figure 3.5  Hydroxide solubility of Mn(II), Zn, Cd, Cu, Pb, Ni, Fe(III) as a function of pH, redrawn after 
Cortina et al. (2003) 

Following pH correction, samples were filtered through 8µm pore size filter papers 

(no.40 Whatman™), using a vacuum pump to recover the precipitate.  This filter pore-

size was chosen on the basis that it is the same as that used in the digest procedure 

described in the following section, and also that used for the separation of substrate 

from pregnant solutions in the leach test.  Thus, any recovered solids would have 

formed after the addition of sodium hydroxide and settlement period.  Recovered solids 

were dried and weighed before aqua regia digestion.  The filtrate was sampled and the 

samples re-acidified to pH<2 using concentrated nitric acid as per normal practice and 

analysed by ICP-OES for metals.  Un-acidified samples were also taken and analysed 

for sulphate as detailed in section 3.4.8. 

3.4.6 Aqua regia digests 

Digestion of the composite substrate was undertaken before leach-testing in order to 

determine initial metals concentration and thus allow mass-balance calculation of 

recovery efficiencies.  The aqua regia digest procedure, according to the British 

Standard was conducted in triplicate (BSI, 1995b).  Due to elevated Total Organic 

Carbon (TOC) concentrations in the samples, an additional 2.5mL of nitric acid was 
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added to accommodate up to 25% organic carbon (BSI, 1995b).  Organic carbon was 

determined by analysis of triplicate substrate samples by P. Green, Technician in 

Chemical and Biological Laboratories at Newcastle University, according to BSI 

(1995a). 

Additional aqua regia digests were undertaken on the precipitates recovered from the 

pregnant leach solutions.  The standard digest method requires a 3g sample; although 

due to the small mass of recovered precipitate, just 0.5g of sample was used for digest 

in this case (i.e. 1/6).  Accordingly, the volume of aqua regia used was scaled down (i.e. 

1/6 volume of aqua regia compared to BSI method).  In an effort to improve 

repeatability, the sample was ground to <106µm (i.e. finer than 150µm which is 

required by the standard method (BSI, 1995b)) before analysis. 

3.4.7 Metals analysis of leach and digest solutions 

ICP-OES analysis of metals and digests from acid leach testing was conducted on a 

Varian Vista MPX in accordance with the British Standard Method ISO11885 (BSI, 

2009).  The following metals were investigated: iron, manganese, lead, zinc, cadmium, 

copper and nickel; these are both prevalent in mine drainage responsible for polluted 

waters in England and Wales (Mayes et al., 2013), and were investigated by the Tessier 

sequential extraction detailed in section 3.3. 

Additionally, the leach solutions and residues following metal removal by hydroxide 

precipitation were investigated for major elements of sodium, potassium, calcium, 

magnesium and aluminium by ICP-OES, in addition to filtrate analysis for sulphate by 

ion chromatography (see section 3.4.8 for method).  The detection limits for the major 

elements, as determined using the method specified in 3.3.4, are as follows: 

 Sodium <0.1mg/L 

 Potassium <1mg/L 

 Calcium <0.02mg/L 

 Magnesium <0.02mg/L 

 Aluminium <0.5mg/L 

Calibration standards were made up to cover the anticipated range of element 

concentrations within the samples (Table 3.3).  In total, 3 calibration standards, plus a 

blank, were made up for all 3 acid concentrations and the distilled water control.  By 
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using the acid leach solution as a base for the standards, any interference that this gives 

is considered within the calibration (BSI, 2009).  Where analytes were reported in 

excess of the highest calibration standard, the samples were diluted to bring them within 

range.  Base solutions were used for dilutions which were factored as necessary. 

Table 3.3  ICP-OES calibration standards for acid leach tests 

 Calibration solution concentrations, mg/L (three standards per element plus blank) 

Leach test calibration solutions 

(matrices: distilled water; 0.02M; 0.1M; 

0.5M H2SO4 

Aqua regia digest calibration solutions 

(matrix of aqua regia) 

Cd, Cu, Ni, Pb 1; 2; 3 1; 2; 3 

Zn, Mn 4; 8; 12 6; 12; 18 

Fe 10; 20; 30 10; 20; 30 

Na* 5; 10; 15 5; 10; 15 

Ca* 30; 50; 100 30; 60; 90 

K* 10; 20; 30 30; 60; 90 

Mg* 10; 20; 30 15; 30; 45 

*Only investigated in leach solution precipitates and filtrate after NaOH dosing for metal removal 

Calibration standards were run at the start of every analysis sequence, and blanks 

(second standard) were run periodically (every 16 samples for convenience) in order to 

check that the calibration remained correct. 

Samples were manually injected into the ICP-OES, as in the Tessier extraction 

investigations, to allow ease of data review and re-running of samples during analysis.  

Between individual samples, a 1% nitric acid wash solution was passed through the 

machine to flush through and remove residues from the preceding samples (APHA, 

2005). 

3.4.8 Leach solution filtrate analysis for sulphate 

Following recovery of solids from pregnant leach solutions, the sulphate content in the 

filtrate was determined using a Dionex IC25 ion chromatograph according to the 

standard method: 4110B Ion Chromatography with Chemical Suppression of Eluent 
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Conductivity (APHA, 2005).  Given that up to 0.5M sulphuric acid was used for the 

leach test, the sulphate readings were expected to be very high: 

H2SO4 molar mass = ~98 g/M (SO4 ion molar mass ~96g/M) 

Therefore a solution of 0.5M (moles per litre) H2SO4 contains 48g/L; or 48,000 mg/L 

SO4
2-

. 

To account for this using a normal calibration solution of 20mg/L SO4, and to prevent 

measurements exceeding the machine’s calibration and normal working limit of 

100mg/L, 1,000 fold dilutions were conducted on the leach solutions prior to running 

(i.e. bringing the maximum anticipated sulphate concentration to 48mg/L).  This is still 

well above the 0.5mg/L detection limit used for this method.  As just 8 samples were 

analysed, the calibration solution was re-run at the end of the analysis to ensure the 

machine remained in calibration. 

3.5 Laboratory investigations – Nenthead bioleaching tests 

Bioleaching, the principles of which are discussed in Chapter 2, offers a means of metal 

leaching by microbial processes, thereby reducing or removing the requirement for 

industrially produced acids.  This approach was explored using an acid mine water as 

both a leach solution and microbial inoculum for the recovery of metals from the 

Nenthead substrate. 

The role of sulphur and iron oxidising bacteria in the genesis of polluting mine drainage 

is well documented (Aplin et al., 2008; Baker and Banfield, 2003; Younger et al., 2002) 

and the presence of At. Thiooxidans and At./L. Ferrooxidans has been recorded at 

several UK mine waters (Johnson, 2003; Johnson and Hallberg, 2003).  It is exactly 

these bacteria which have been cited previously as important species in bioleaching 

applications (see Chapter 2, section 2.12.4).  In fact, some authors have actually used 

cultured mine water sourced bacterial colonies to inoculate metal recovery experiments 

(Bayat and Sari, 2010; Solisio et al., 2002).  Alternatives involve the use of pure 

cultures (Wu and Ting, 2006; Ishigaki et al., 2005) and indigenous strains (i.e. no 

inoculum) (Liu et al., 2008; Villar and Garcia, 2002).  Reduced iron and sulphur 

(sulphides) within the treatment system substrate might therefore be amenable to 

oxidative dissolution, catalysed by iron and sulphur oxidising bacteria which are 
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commonly present in mine waters.  Further discussion of bio-hydrometallurgy is 

provided in Chapter 2, section 2.12.4. 

3.5.1 Leach solution and inoculum 

Mine water to provide microbial inoculum and leach solution was collected from the 

Woodend Level mine water discharge at the abandoned Threlkeld Mine in Cumbria on 

18 September 2015 (NY32506 26109 – also known as Gate Gill).  It was collected in an 

acid-washed 25L carboy, before transport to Newcastle University and storage below 

5°C until required (less than 1 week).  Threlkeld Mine was considered a suitable site as 

the water is net-acidic with a low pH (~4), and contains elevated zinc concentrations 

(40mg/L).  Therefore any active micro-organisms were likely to be acid and zinc 

tolerant and therefore better adapted to the bio-leaching application.  Use of mine 

drainage as a source of inoculum has the benefit of being both low or no-cost, and 

convenient, in that there are inevitably sources of mine drainage waters near to mine 

water treatment systems. 

3.5.2 Bioleach test procedure 

Biological leaching was conducted in the laboratory between September and November 

2015.  Nenthead substrate was used for bioleaching tests, which consisted of the 

composite of samples A1A, A4A, B1A, B2A, B3A, B4A, C1A, C4A, D1A, D2A, D3A, 

D4A, E1A & E4A which had been sieved to <2mm; identical to the composite used in 

the variable pulp density acid leach tests (section 3.4.4).  As a consequence, initial metal 

content of the substrate was known from previous aqua regia digests. 

The configuration, conditions and sampling regime of these bioleaching experiments 

mirrors that undertaken for the acid leaching tests, but includes additional measures to 

ensure sterility of vessels and sampling equipment.  Experimental vessels were acid 

washed before being autoclaved at 121°C for 20 minutes to ensure that they were both 

chemically and biologically clean (APHA, 2005).  Nenthead substrate for leaching was 

oven dried at 105°C overnight, which is believed to be sufficient to kill all vegetative 

bacteria (pers comm., Dr A. Sherry, Newcastle University 2015).  This was chosen, in 

preference to autoclaving, because exposure to high temperature steam might have 

impacted upon the properties of the substrate and thus the metal recoverability.  

Additionally, it is unlikely that autoclaving would be practical for full-scale substrate 

decontamination activities. 
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Experiments were conducted in 2,000mL polyethylene flasks, with aeration and 

agitation provided by injection of compressed air at a rate of approximately 1L/min.  

This was to ensure oxygen and carbon dioxide required by bacteria is provided 

(Bosecker, 1997).  Air was subject to 0.2µm filtration (Pall Acrodisc Supor 

Membrane™) to remove any foreign bacteria or other debris in the supply (again 

selected over autoclaving to minimise impact upon chemistry).  Sampling was 

conducted using sterile syringes/bottles and 0.45µm Pall Acrodisc Supor Membrane™ 

syringe filters to remove debris; sample bottles were stored below 5°C prior to analysis 

to preserve inorganic species (APHA, 2005).  Key parameters of Eh, pH, conductivity 

and temperature were determined with a calibrated Myron 6P Ultrameter
5
.  These 

factors were identical to those used in the preceding acid leach tests.  Also, for 

comparative purposes, the same pulp-density was adopted as the variable acid 

concentration round of leach tests, where 22.5g of substrate to 1,200mL of lixiviant was 

used.  This provided a pulp density of 1.875%.  Experimental flasks were graduated at 

30mL increments, in order to provide a reliable measurement (±2.5%) of the pulp 

volume at the time of sampling.  This was an improvement over the preceding acid 

leach tests where the lixiviant volume was assumed to be reduced by the volume of 

samples taken; however, over the longer leach period used in the biological leaching 

tests, volume reduction by evaporation was also significant.  This was observed during 

preliminary biological leach tests (not presented in this thesis). 

Experiments were conducted with sulphur (S0) addition to stimulate sulphur oxidising 

microbial populations such as At. thiooxidans.  Seidel et al. (2004) achieved 80% zinc 

extraction from a sediment enriched with 2% zero valent sulphur using a fixed-bed 

configuration (Seidel et al., 2004).  Similar success for zinc recovery was achieved 

using 0.4% and 0.5% sulphur enrichment during experimentation on sewage sludge 

(Henry and Prasad, 2006; Villar and Garcia, 2002 respectively).  Liu et al. (2008) found 

that optimum metal recovery from a Pb-Zn-Cu mine tailings occurred with sulphur 

additions of between 0.5% and 2%.  Based upon previous studies, 5g zero-valent 

sulphur was added to experimental flasks to provide ~0.4% enrichment.  Assuming that 

all added sulphur converts to sulphuric acid, a 0.127M H2SO4 solution would be 

                                                 
5
 Calibration of Myron 6P Ultrameter was undertaken using a three point method (with pH 4, 7, 10 

buffers), and conductivity using a 1413µS/cm solution 
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generated
6
, which is comparable to the optimum acid leach concentration of 0.1M 

determined by the preceding tests. 

Some studies have shown success in bioleaching with neutral or alkaline starting pH:  

pH 9 (Brombacher et al., 1998);  pH 11 (Wu and Ting, 2006); pH 7.1 (Henry and 

Prasad, 2006);. Other investigators have adjusted substrates to generate acidic 

conditions favourable to bacteria.  For example, Bayat et al. (2009) adjusted an alkaline 

metal plating sludge to pH 2.5-3 with sulphuric acid, and Solisio et al. (2002) used the 

same reagent to reduce the pH of an industrial waste sludge to 4.  It was anticipated, 

based upon acid-leaching tests, that the buffering capacity of the Nenthead substrate 

was likely to raise pH of the Threlkeld mine water lixiviant.  Bioleach tests in this study 

were conducted using pH adjusted substrates, in order that they were comparable to the 

mine drainage leach solution.  It is believed that this would reduce the risk of harm to 

bacteria brought about by rapid pH change (pers comm. Dr A. Sherry, Newcastle 

University 2015).  pH adjustment was made with dropwise addition of sulphuric acid to 

substrates in a minimum volume of mine water (200mL) before addition of the 

remaining mine water.  Approx. 0.3mL of concentrated sulphuric acid was required to 

adjust pH to 4(±0.1), which was established after stirring continuously for 15 minutes. 

3.5.3 Bioleach test variables 

All variables described were trialled in duplicate to assess repeatability, although it is 

acknowledged that, if budgets had allowed, triplicate analysis would have produced 

more statistically robust data.  Bioleach tests were conducted in tandem with a sterilised 

replicate, consisting of mine water which has been filtered using 0.2µm syringe filter 

(Pall Acrodisc Supor Membrane™) to remove bacterial cells (APHA, 2005).  This was 

to test the influence of micro-organisms present within mine water to inoculate the 

metal recovery process.  In addition, replicates were undertaken to assess the impact of 

stirring and, separately, heating upon the rate of bio-oxidation and metal recovery (the 

latter since optimised temperatures of ~30°C have been successfully used by other 

authors (Henry and Prasad, 2006; Wu and Ting, 2006; Seidel et al., 2004)).  Stirring of 

beakers was achieved using Fischer Scientific™ magnetic stirrers at rates at which the 

pulp surface was broken (180rpm), which is comparable to speeds used by Henry and 

Prasad (2006) and Solisio et al. (2002).  Stirring was intended to improve the 

suspension of pulp over flasks where agitation was only provided by a stream of 

                                                 
6
 Based upon the molecular weight of sulphur being 32.8g/mol 
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compressed air.  Stirrers were frequently checked and replaced when showing any signs 

of wear of their Teflon sheaths.  Heating was achieved by immersion of flasks in a 

water bath (Fisher Bioblock Scientific™) which was set to 30°C.  Occasional re-filling 

of the water bath was required in order that the water level remained above the pulp 

level within the flasks.  Table 3.4 describes the variables for the bioleaching tests. 

Table 3.4  Variables for bioleaching experiments 

 Leach test (shown in duplicate) 

 1a 1b 2a 2b 3a 3b 4a 4b 

Substrate  
22.5g Nenthead 
substrate <2mm, pH 
adjusted 

22.5g Nenthead 
substrate <2mm, pH 
adjusted 

22.5g Nenthead 
substrate <2mm, 
pH adjusted

 

22.5g Nenthead 
substrate <2mm, 
pH adjusted 

Leach 
solution  

1.2L mine water 1.2L mine water 1.2L mine water 
1.2L sterile 
filtered mine 
water 

Nutrient 
source 

5g S
0 

(0.4%v/v) 5g S
0 

(0.4%v/v) 5g S
0 

(0.4%v/v) 5g S
0 

(0.4%v/v) 

Special 
treatment 

Heated 30°C Stirred 180RPM   

 

3.5.4 Chemical analysis of bioleach solutions 

Samples were collected on a less frequent basis than the acid leaching test, given that 

bioleaching processes generally require significant time periods for microbial 

communities to become established (Johnson, 2013).  Samples were collected at the 

following intervals after commencement of the experiments: 

- 0 hours (start of experiment) 

- 6 hours 

- 24 hours 

- 96 hours 

- Periodically over the following 9 weeks until the experiments were terminated 

Vessels were topped up with sterile filtered distilled water at regular intervals, to 

compensate for evaporative losses.  Metals analysis (Fe, Mn, Pb, Zn, Cd, Cu & Ni) was 

conducted using ICP-OES and sulphate analysis was conducted using ion 

chromatography, using apparatus and methods previously described in the chemical 

leaching procedure (section 3.4).  ICP-OES calibration standards conformed to those 

used for the Force Crag water sample analysis, as detailed in Table 3.7 (section 3.6.3). 
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3.5.5 Microbial analysis 

At the outset, consideration was given to detailed molecular methods of microbial 

analysis to identify community profiles, although, due to the limits upon time and 

resources, this was not undertaken.  Regardless, samples were taken in case it was 

decided that this course of investigation was appropriate in the future.  In place of 

molecular methods, Most Probable Number (MPN) cell counts were conducted in order 

to identify the presence and abundance of cells within a sample of the Threlkeld Mine 

water.  Note that the sample used for cell counts was collected on the 20 January 2015, 

whereas the mine water used for the bioleach tests was collected on 18 September 2015.  

The protocol adopted by the Newcastle University Geomicrobiology team was used 

(Brown 2008
7
) which involves use of a SYBR

®
 Gold nucleic acid gel stain and manual 

cell counts under an optical microscope (Olympus BX40 Epi-fluorescence), a method 

based loosely upon that documented by APHA (2005).  A photograph of the stained 

microbial cells under the microscope is shown as Figure 3.6. 

 

Figure 3.6  Stained cells in the Threlkeld Mine drainage under 100x magnification with oil immersion 

It was determined that there were 5 x 10
3
 cells within the Threlkeld Mine water, thought 

to be chemolithotrophic bacteria, given their source (for example, see Johnson, 2003).  

This number is at the lower end of the spectrum when compared to other studies.  Given 

that this sample of Threlkeld Mine water was collected in January 2015, low cell 

numbers may be due to seasonal effects reducing cell numbers during the winter 

(McGuinness and Johnson, 1993; Walton and Johnson, 1992).  If this is the case, the 

water used for the bioleach tests (collected separately in September 2015) might have 

had a greater abundance of cells.  

                                                 
7
 Cell count protocol included as Appendix C. 
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3.6 Field based investigations – Force Crag 

Commissioning of the Force Crag mine water treatment system took place in April 

2014.  The system removes zinc from a circum-neutral mine water entirely by passive 

means (Jarvis et al., 2015).  In the context of this study, the Force Crag system offers a 

timely and pertinent case study, allowing investigations into metal removal and 

consequently accumulation rates within system substrates.  Additionally, the site 

allowed a detailed study of other resource potential, and a review of life cycle costs with 

and without resource recovery. 

3.6.1 Water sampling and field analysis 

Sampling visits took place twice a week for the first 2 weeks of operation of the Force 

Crag mine water treatment system (1, 3, 8 & 10 April 2014).  Visits were then reduced 

to weekly for the remainder of the year (until 31 March 2015), occasionally less 

frequently when staff availability was limited.  During sample visits, water was 

collected for metals (cation) and anion analysis, and manual field conditions were 

measured as a minimum in order to assess system performance and metal accumulation 

rates.  Table 3.5 provides a summary of the sampling and monitoring parameters 

relevant to this study. 

Calibration of the Myron 6P Ultrameter used in the study was undertaken using a three 

point method (with pH 4, 7, 10 buffers), and conductivity using a 1,413µS/cm solution 

before each sampling visit.  A YSI field oxygen probe was also calibrated prior to use, 

which involved re-setting the device while the sensor was in a controlled atmosphere. 
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Table 3.5  Force Crag field samples and measurements 

Parameter Equipment/vessel Rationale 

Inorganics samples 
(for laboratory 
analysis) 

25mL universal sample 
containers (unamended: 
inorganics; acidified: 
metals; filtered and 
acidified: dissolved 
metals) 

To determine metals and sulphate 
concentrations throughout treatment system 
(and consequently its performance with 
respect to metals removal) 

Eh
8
 Myron 6P Ultrameter™ To determine oxidation/reduction potential of 

water (Appelo and Postma, 2010) 

pH Myron 6P Ultrameter™ Key geochemical parameter indicative of 
hydrogen ion activity (Appelo and Postma, 
2010) 

Conductivity Myron 6P Ultrameter™ Solutions with high inorganic content 
generally have higher electrical conductivity 
(APHA, 2005) 

Temperature Myron 6P Ultrameter™ To determine if heat extraction from mine 
water might be feasible 

Dissolved oxygen
25 

YSI field oxygen probe Measurement of oxygen content of water in 
mg/L to determine if conditions are oxic or 
anoxic (APHA, 2005) 

Alkalinity Hach digital field titrator 
with bromcresol-green 
methyl-red indicator 

Acid neutralising potential, titration to pH 4.5 
(Appelo and Postma, 2010) 

Sulphide Merck MColortest™ Colorimetric field method to determine 
presence of S

2-
 generated by sulphate 

reduction (APHA, 2005) 

 

Samples were taken from the Vertical Flow Pond (VFP) inlets and outlets in order to 

determine the performance of the system and the rates of metal accumulation within 

substrates.  Additionally, samples were taken from the final effluent, which was a 

combination of the effluents from VFPs 1 and 2 which had then passed through a small 

aerobic wetland.  Inlet and outlet sample and flow measurement locations are shown 

either side of the VFPs in Figure 3.7. 

 

                                                 
8
 All manual parameters were measured, and samples taken, from a 5L sampling jug; this is excepting Eh 

and DO measurements, which were taken either in-stream or in buckets used for sample collection from 

the VFP outlets.  This was to minimise exposure of samples to atmospheric oxygen which might have 

influenced Eh or DO. 
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Figure 3.7  Photograph of Force Crag mine water treatment system VFPs (note that at the time of the 
photograph, a fluorescein tracer test was being conducted on the right hand VFP) 

3.6.2 Flow measurements 

20° v-notch thin-plate weirs facilitated influent flow measurements into the VFPs.  Due 

to the swan-neck configuration of the outlet pipes, a manual bucket and stopwatch 

method was adopted for effluent flow measurements instead.  The principle of v-notch 

flow measurement is based upon a relationship between the upstream head on the weir, 

the geometry of the weir and the channel leading up to it, and the fluid properties of 

water (ISO 1438:2008).  Flows are calculated using the height of water behind the v-

notch and an experimentally determined coefficient (see: ISO 1438:2008).  Flow data 

was principally collected by pressure transducer type loggers (Schlumberger Water 

Services Diver™) which were placed behind weirs and determine water level by 

changes in pressure.  These devices operate in pairs, with an atmospheric diver 

correcting for barometric pressure changes (Schlumberger Water Services, 2014).  The 

loggers were set to 15 minute intervals and downloaded periodically.  Manual readings 

were taken during site visits to check logger data. 

At the VFP outlets, manual bucket (6.5L) and stopwatch readings were taken.  As the 

outlets were located in a deep manhole chamber, the bucket was lowered from the 

surface by means of a short length of rope before being allowed to fill, to avoid entry 

Outlet chambers 

Inlet chamber 
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into the confined space.  Regardless of non-entry, personal gas alarms were worn during 

fieldwork as a precaution against the risk of hydrogen sulphide which is generated by 

the system.  Bucket and stopwatch flow measurements were repeated 3 times and 

averages taken to calculate the flow in L/s (Younger et al., 2002). 

3.6.3 Analysis of water samples 

Analysis of collected samples was undertaken by technical staff at Newcastle 

University, rather than this author, as this data was also being collected for purposes 

outside this research.  Table 3.6 provides a summary of the parameters determined. 

Table 3.6  Analytical parameters adopted for Force Crag water sampling analysis 

Parameter Method 

Total and dissolved (filtered to <0.1µm and <0.45 
µm) elements (Mg, Na, K, Ca, Zn, Cd, Pb, Cu, Ni, 
Fe, Mn, Al, Si)  

ICP-OES (Varian Vista MPX) according to standard 
method ISO 11885 (BSI, 2009) 

Anions (SO4
2-

) Ion chromatograph (Dionex IC25) 

 

0.45µm syringe filters are used widely to separate dissolved species from total; 

however, it has been shown that fine metal oxy-hydroxides pass through 0.45µm pores, 

and therefore 0.1µm (Pall Acrodisc Supor Membrane™) syringe filters were also used 

(Appelo and Postma, 2010).  ICP-OES Standards used for metals analysis are presented 

in Table 3.7.  Note that samples were acidified using ~0.1mL of concentrated HNO3 

(69%) to preserve metals in solution.  This approximates sample acid concentration of 

~0.3% in a 25mL sample container, which is comparable to the calibration standards, in 

case of any interference caused by the acid (BSI, 2009).  3 standards plus a blank were 

used for all elements, other than zinc, which had a 5 point calibration to improve 

accuracy.  Calibration checks were made using a certified reference material sourced 

from a local government chemist (LGC 6019) and blanks and standards run every 8 test 

samples. 
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Table 3.7  ICP-OES calibration standards for Force Crag mine water metals analysis 

 Calibration solution concentrations, mg/L (three standards per element plus blank) 

Leach test calibration solutions (~0.3% HNO3 matrix) 

Cu, Ni 0.2; 0.5; 1 

Zn; Fe 2; 4; 6 (+10; 20 Zn only) 

Mn; Pb 1; 2; 3 

Cd 0.1; 0.2; 0.3 

 

Sulphate analysis was conducted by ion chromatography (Dionex IC25) and was 

calibrated using a 20mg/L standard.  The standard was also run every 5 samples to 

check for analytical accuracy.  The detection limit of the ion chromatograph for sulphate 

is 0.5mg/L, as determined by the 4110B method (APHA, 2005).
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Chapter 4. Results and Discussion – Nenthead Substrate 

Characterisation and Metal Recovery 

4.1 Introduction and chapter contents 

This chapter presents results and discussion of detailed geochemical analyses and metal 

recovery experiments on substrate taken from the Nenthead pilot scale treatment system 

at the time of its decommissioning in August 2012 (refer to section 1.5).  This is to fulfil 

objectives 2 and 3 of this Thesis as described in Chapter 1, to: 

 Characterise the distribution of metals within passive metal mine water 

treatment system substrates (objective 2). 

 Assess the options for metal recovery from passive treatment system substrates 

and undertake lab-scale proof-of-principle metal recovery tests (objective 3). 

The geochemical analysis investigates the nature and distribution of metals within the 

compost substrate, in order to understand the wastes generated by systems of this type.  

Sequential extractions according to the method developed by Tessier et al. (1979) were 

undertaken and are detailed in section 3.3.3 (herein referred to as ‘Tessier extraction’ 

for convenience).  Variation in metal extractability in relation to particle size was 

investigated, as was the spatial distribution of metals within the treatment system.  To 

achieve this, sieving of substrate was conducted, along with analysis of samples taken in 

three dimensions from across the treatment tank. 

In addition, data are presented and discussed relating to the recovery of metals from the 

Nenthead substrate.  Reducing metal concentrations within contaminated mine water 

treatment system substrates is a fundamental objective of this research, as a key element 

of identifying ways to recover resources and reduce whole life costs of compost-based 

passive treatment systems.  The intention of reducing the metal content of the compost 

is so that it no longer represents a hazardous waste but can either: 

a. be re-used as a major substrate component in the treatment system from 

which it came; or, 

b. be re-used in an alternative application either on or off-site.
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Metal recovery tests have been conducted using laboratory grade sulphuric acid and 

biological leaching to determine if these common strategies were effective at recovering 

metals from organic substrates.  Additionally, recovery of a metal-rich solid was trialled 

by dosing pregnant leach solutions with a strong alkali followed by filtration.  The focus 

of investigations was to attempt metal recovery from passive treatment system substrate 

samples to establish whether, in principle, they could be decontaminated, generating a 

concentrated low-volume metal product which might be suitable for further metal 

recovery by commercial recycling operations.  Although it is acknowledged that if re-

cycling of the waste concentrate is not realised, disposal to landfill would still offer 

substantial savings due to mass reduction of hazardous waste. 

4.2 Characterisation of treatment system substrates 

Presented in this section are sequential extraction data for zinc in samples which have 

been sieved, and copper, lead, zinc, cadmium, nickel, iron and manganese within 

samples taken from three dimensions within the treatment system.  Substrate 

characterisation data are included as Appendix D. 

4.2.1 Particle size characterisation 

Physical separation has been identified as a key method for separating metal rich 

components from other materials in mining and contaminated land remediation 

industries (CL:AIRE, 2007; Wills, 2006).  It has also been suggested that this technique 

may be suitable for metal recovery operations from VFP substrates (Gusek et al., 2006).  

Preliminary sieving was therefore conducted, using both wet and dry procedures 

outlined in the British Standard method for soil classification in order to determine 

which technique yielded better results (BSI, 1990). 

Sieving was conducted on two quartiles of the Nenthead substrate using wet and dry 

methods (see section 3.3.1 for details of sample and procedure).  By separating the 

substrate by particle size, this also allowed the metal content of different fractions to be 

determined.  It was found that the mass of the wet sieved sample had a more even 

distribution across the three particle sizes, compared to dry sieving where a greater mass 

was associated with the larger size fraction.  It is thought that this is due to aggregation 

of dried substrate which was observed during the procedure; whereas wet sieving can 

cause disintegration of aggregates which has been seen by other authors (e.g. Sainju, 
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2006; Beauchamp and Seech, 1990).  The masses of the sieved fractions (quarter 1 and 

4) for each sample are shown in Table 4.1. 

Table 4.1  Masses of compost following sieving of quarters 1 and 4 of sample C4B (quarters 2 and 3 were 
not sieved) 

Ref Sample Mass (g) 

1a ≤0.212mm dry sieved 1.17 

1b 2mm - 0.212mm dry sieved 4.58 

1c >2mm dry sieved 7.04 

Quarter 1 total 12.79 

4a ≤0.212mm wet sieved 4.56 

4b 2mm - 0.212mm wet sieved 3.05 

4c >2mm wet sieved 5.11 

Quarter 4 total 12.72 

 

4.2.2 Sequential extraction procedure 

There has been much conjecture surrounding the interpretation of sequential extraction 

data (for review, see: Gleyzes et al., 2002) and, consequently, an alternative approach to 

classification of extraction steps has been suggested, based upon the operational 

definition of the extraction step rather than the assumed nature of solid phase metals 

(Tessier et al., 1979). 

Data from studies of the Nenthead treatment system by Jarvis et al. (2014) suggests that, 

during operation, zinc sulphide solid formation under reducing conditions is an 

important removal mechanism, which agrees with other studies (Johnson and Hallberg, 

2005b; Jong and Parry, 2004).  It might therefore be expected that, during sequential 

extractions of arising substrates, metals associated with sulphides would consequently 

be removed by oxidisation (e.g. step 4 of a Tessier extraction) (Clark et al., 2000).  

However, studies by Peltier et al. (2004) and Burton et al. (2006) found that there is 

little evidence of this during multi-method investigations.  The majority of Acid 

Volatile Sulphide (AVS) associated metals were extracted during step 3 of the Tessier 
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procedure (Burton et al., 2006; Peltier et al., 2004).  The Tessier method actually 

defines step 3 as ‘bound to iron and manganese oxides’ which, if used for interpretation 

of data, could lead to mischaracterisation of sulphides.  On the other hand, when 

considering the ‘reducible’ interpretation made by Gleyzes et al. (2002) for the third 

extraction step, it is implied that metals are amenable to further reduction.  In the case of 

sulphate reducing bioreactors, it would be assumed that metals would already be in 

reduced forms, yet large quantities of metal have been found to be associated with this 

third step in several other studies (Mayes et al., 2011; Neculita et al., 2008b).  For the 

purposes of this thesis, therefore, the extraction step sequence number is used for 

simplicity and to avoid any mischaracterisation surrounding described phases.  This 

approach provides an adequate indication of the recoverability of different metals within 

the substrate according to particle size and spatially within the treatment system. 

4.2.3 Zinc data for sieved samples 

Sequential extractions according to the Tessier et al. (1979) method were performed on 

1g of each sieved fraction.  Triplicate extractions were conducted on the two remaining 

un-sieved quarters of the substrate sample (quarters 2 and 3 of sample C4B – see 

Chapter 3, Figure 3.1 for location) in order to test the reproducibility of the procedure 

which is detailed in section 4.2.6.  Zinc data as concentrations in mg/kg are presented as 

this was the key metal removed by the Nenthead treatment system (Jarvis et al., 2014).   

 

Figure 4.1  Zinc content of wet and dry sieved substrate 
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Figure 4.1 shows results from dry sieved and wet sieved fractions (quarters 1 and 4 of 

sample C4B, respectively).  In addition to a breakdown of the zinc concentration in each 

of the 5 extraction steps, the amount of zinc lost from the wash solution used for the wet 

sieving (included in 4a: <212µm fraction) is depicted on this bar as ‘Loss in wash’. 

A clear pattern was apparent within the wet sieved sample: the greater the particle size, 

the lower the zinc concentration.  The wet sieved fraction ≤212µm contained 

2,158mg/kg of zinc, in contrast to the >2mm fraction that contained just over a quarter 

of this amount (541mg/kg).  This pattern was also observed for iron, manganese, lead 

and cadmium (data not presented).  Such behaviour may be attributable to the function 

of increased surface area for sorption or precipitation of metals in materials with finer 

grains, yet previous studies indicate that specific sorbents may also accumulate in 

smaller particle fractions.  Soares et al. (1999) determined a similar pattern in 

contaminated river sediment, that finer grained material contained the greatest metal 

concentration: the <150µm fraction contained 12,167mg/kg zinc, compared to the 

>150µm fraction which contained 9,015mg/kg.  This behaviour might be explained by 

higher clay forming mineral content found in solids <150µm (Gunawardana et al., 

2014).  An alternative explanation might be that it is due to increasing organic matter 

content with decreasing particle size: 39% in <150µm fraction, vs. 21% in >150µm 

fraction of contaminated river sediments (Soares et al., 1999).  Both clay forming 

minerals and organic matter are important sorbents; Soares et al. (1999) identified that 

organic matter sorption occurred in the following order: Cu>Zn>Pb>Cr>Ni>Cd.  

Organic matter or clay mineral fractionation between different particle sizes was not 

investigated during experimentation with the Nenthead substrate, so it is unclear how 

this may impact upon metal partitioning.  In terms of metal partitioning according to the 

sequential extraction, wet sieving shows an inverse relationship between particle size 

and zinc concentration across all extraction steps, excepting step 2 (Figure 4.1). 

Dry sieving, however, did not yield such a clear pattern, with the ≤212µm fraction 

containing 2,014mg/kg of zinc, in comparison to >2mm fraction which had 1,403mg/kg, 

but the intermediate dry sieved size fraction (212µm-2mm) contained the greatest 

amount 2,214mg/kg, albeit by a small margin (Figure 4.1).  Such a distinct contrast 

between sieving methods is potentially explicable by the behaviour of materials within 

the sieves: dry sieved compost, pre-dried to remove moisture, comprised loosely 

cemented fragments bound together with fine grained material.  These findings are 
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consistent with those following investigations by other authors using wet and dry 

methods for soils analysis (Sainju, 2006; Beauchamp and Seech, 1990).  Sieving only 

showed some success in separating these fragments, evidenced in part by the recovery 

rate of fine grained material (see Table 4.1): just 1.17g passing ≤212µm, compared to 

7.04g of material retained on the 2mm sieve.  In contrast, 4.56g of material passed the 

212µm sieve and 5.11g was retained on the 2mm sieve during the wet sieving operation. 

From observations during the sieving process, the deionised water wash solution aided 

the separation of compost fragments to achieve a more accurate representation of 

particle distribution. 

It was not unexpected that wet sieving would assist the separation of particles during 

sieving, but it was recognised that the deionised water wash has the potential to both 

dissolve metals and, potentially facilitate geochemical reactions which might alter 

speciation.  Unfortunately, on the basis of the data presented (and the issues discussed 

with dry sieving discussed in section 4.2.1) it has not been possible to demonstrate that 

the latter concern is not the case.  Nevertheless, a sample of the deionised water wash 

solution was analysed by ICP-OES (in parallel with a blank), which showed that just 

13.76mg/kg equivalent of zinc was leached from the compost (see ‘Loss in wash’ in 

Figure 4.1 for relative significance).  This demonstrates that there was very minimal 

dissolution of zinc in the wash solution. 

 

Figure 4.2  Comparison of zinc partitioning according to particle size (as % of total determined by Tessier 
extraction), showing data for wet and dry sieved substrate samples 
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It can be seen from Figure 4.2 that step 3 of the Tessier procedure yielded greatest zinc 

concentrations, with more than 50% of the total extracted during this step for both wet 

and dry sieved samples.  Additionally, there appears to be similar patterns between the 

sequential extraction profiles across all particle size fractions.  However, for both wet 

and dry sieved samples, more zinc is extracted during step 2 as particle size increases 

and, less zinc is extracted during step 3 as particle size increases.  This suggests that the 

fraction of zinc extracted by step 2 may be more associated with coarse grained 

material, whereas the fraction extracted by step 3 is more associated with fine grained 

material.  There is, however, a paucity of published investigations into particle size 

coupled sequential extraction investigations of organic wastes which means it is 

difficult to corroborate this data.  Furthermore, due to the limited sample number in this 

preliminary study (just one wet and one dry sieved sample) and the inherent variability 

between replicate samples (see section 4.2.6), further investigation would be required 

before any firm conclusions on metal partitioning in different size fractions of 

contaminated substrates can be drawn. 

4.2.4 Metal distribution in samples from different locations 

The significance of spatial variation was investigated in a second round of sequential 

extractions using the Tessier method detailed in section 3.3.  Particle size separation 

was not undertaken as part of these tests, as they were conducted to assess the variation 

(if any) between metal species throughout different parts of the Nenthead treatment 

system.  11 bulk samples in total were analysed, plus a substrate blank.  A fuller 

analysis is presented covering copper, lead, zinc, cadmium, nickel, iron and manganese, 

as it has previously shown that different metals accumulate in different parts of sulphate 

reducing bioreactor systems (Neculita et al., 2008b).  Cobalt is also investigated in the 

standard Tessier sequential extraction (Tessier et al., 1979), but is not considered in this 

analysis as it is not a major pollutant from abandoned mines (e.g. Mayes et al., 2009a). 

Table 4.2 provides details of the Rampgill mine water prior to treatment at the Nenthead 

site for reference, and Figures 4.3 - 4.12 depict the metal concentrations and the steps by 

which they were extracted for the different sample locations, including the blank 

substrate.  
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Table 4.2  Rampgill Horse Level water quality, after Jarvis et al. (2014); Gandy and Jarvis (2012) 

Parameter Unit Mean Range 

pH pH units 7.74 6.88-8.62 

Temperature °C 8.89 5.8-12.5 

Conductivity μS/cm 589.5 389-681.4 

Eh mV 139 28-276 

Alkalinity mg/L CaCO3 156 103-238 

Sulphate mg/L 134 87-164 

Copper mg/L <0.01 - 

Lead mg/L <0.05 - 

Zinc mg/L 2.32 1.69-4.5 

Cadmium mg/L <0.01 - 

Nickel mg/L <0.01 - 

Iron mg/L 0.33 0.1-2.72 

Manganese mg/L 0.15 0.08-0.56 

 

Data are discussed in the context of existing literature and sulphide solubility products 

of metals, given that this is a primary removal mechanism in anaerobic compost based 

systems (e.g. Neculita et al., 2007).  Please refer to Table 2.7 (Chapter 2) after Hedin et 

al. (1994a) which provides a summary of metal sulphide solubility products. 
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Figure 4.3  Copper partitioning in different sample locations 

Copper concentrations in the blank sample equal 136mg/kg, a slightly greater amount 

than the mean copper concentration of all samples taken from the pilot system after 

operation, which equal 119mg/kg.  It appears unlikely that net copper removal occurred 

in the treatment system, probably due to its low concentration in influent mine water:  

below 0.1mg/L detection limits in both influent and effluent samples (Gandy and Jarvis, 

2012).  However, under reducing conditions, copper is the first element to form a 

sulphide due to its low Ksp, and consequently is also likely to be the last metal sulphide 

to be solubilised during a sequential extraction.  This might explain why copper is 

almost entirely associated with steps 4 and 5 of the sequential extraction procedure 

(>99.5%), a pattern also found by Jong and Parry (2004) who found that, in their 

investigations into a pilot scale sulphate reducing bioreactor, >98.5% of copper was 

associated with the last two steps of a modified Tessier analysis, with step 4 yielding 

86.7%.  This finding is also in agreement with Mayes et al. (2011) who found 96-98% 

of copper associated with the 4
th

 step of a Tessier analysis investigated column 

bioreactors.  Mayes et al. (2011) concludes that the high copper association with step 4 

of the Tessier extraction is likely to be copper sulphide, because sulphides are 

commonly associated with this step of the extraction, and copper’s low sulphide 

solubility product increases the likelihood of sulphide formation compared to other 

metals. 

 



Chapter 4.   Results and Discussion - Substrate Characterisation and Metal Recovery 

108 

 

 

Figure 4.4  Lead partitioning in different sample locations 

More lead has accumulated in upper substrate layers compared to lower layers across 

each sample location.  Generally, step 4 and 5 fractions dominate for lead, where 

concentrations on average are 64mg/kg and 99mg/kg, respectively, with other fractions 

representing just 27mg/kg in total.  Mayes et al. (2011) on the other hand identifies that, 

in Tessier analysis of laboratory scale sulphate reducing bioreactor substrates, most lead 

is associated with step 2.  These laboratory-scale systems contain 50% limestone or 

shells, therefore increasing the likelihood of metal association with acid-soluble 

carbonate fractions typically targeted by the second extraction step (Mayes et al., 2011).  

This is in comparison to the Nenthead pilot unit which contained just 10% limestone by 

weight, which was removed before analysis (Gandy and Jarvis, 2012).  Given that lead 

has a relatively low solubility product, it is more likely to form a sulphide compared to 

other metals (excepting copper).  Sequential extraction data is, to some degree, in 

agreement with this, given that significant quantities of metal are seen in step 4, which 

has been attributed to the step at which sulphides are generally extracted (Mayes et al., 

2011). 
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Figure 4.5  Zinc partitioning in different sample locations 

In all but one case (samples E3A/B), substrate from the upper layer contains 

substantially more zinc than samples taken from the respective lower layer.  Greatest 

total zinc concentrations were seen in sample E2A (14,050mg/kg), with the lowest seen 

in the corresponding lower layer sample E2B (808mg/kg).  340mg/kg zinc was 

measured in the blank substrate.  To facilitate comparison between zinc fractions, the 

target metal of the Nenthead treatment system, a series of pie charts have been plotted 

on a sketch of the treatment tank sampling grid.  These are displayed in Figure 4.6 and 

Figure 4.7, where each pie chart position corresponds to the location from which that 

sample was taken. 
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Figure 4.6  Zinc partitioning in upper 0 – 23cm compost layer: pie charts positioned approximately at 
sample locations 

 

Figure 4.7  Zinc partitioning in lower 23 - 46cm compost layer: pie charts positioned approximately at 
sample locations 
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Step 1 of the sequential extraction provided perhaps the clearest pattern in variation 

between metal concentrations in upper and lower levels, as significant zinc associated 

with this step was only shown at depth.  E3B did not show this clear pattern, but this 

sample was an outlier for total metal concentrations also, compared to other sample 

locations.  In the upper layer, zinc was largely extracted by step 3 and step 4 

(3,139mg/kg and 1,536mg/kg, respectively), with very small concentrations of zinc 

associated with steps 1 and 2 - 80mg/kg and 485mg/kg, respectively.  Step 5, however, 

extracted a relative small fraction of zinc at Nenthead: 3.1% on average.  Data for the 

blank sample showed a similar pattern; almost half (46%) zinc attributed to the 3
rd

 step, 

with significant amounts also associated with steps 2 and 4, and a lesser amount (5%) 

step 1 (Figure 4.8). 

 

Figure 4.8  Zinc distribution for blank compost sample 

Tessier analysis of sewage sludge by Perez-Cid et al. (1996) identified zinc fractions 

were dominantly extracted by step 3 (37.3%) and 4 (20%); which is comparable to the 

blank Nenthead substrate; however step 5 of the sewage sludge also contained a 

substantial fraction of zinc (26.7%) whereas this was significantly lower in the 

Nenthead blank substrate (8%).  While zinc extracted by step 5 in the blank is still 

proportionally higher than every sample from the treatment system, it was less in 

absolute terms than all other substrate samples.  Several samples (A2A, C2A, E2A) had 

in excess of 10 times the concentration of zinc extracted in this final step, compared to 

the blank (Figure 4.5). 

In a modified Tessier extraction on a column bioreactor with a 7.3 day residence time, 

Neculita et al. (2008b) found the greatest zinc fraction (37 – 50%) was associated with 

step 3, which is comparable with Nenthead data.  In contrast, substantial zinc 

concentrations were also associated with the 4
th

 and 5
th

 steps: specifically 4
th

 in the top 
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layers (36 – 46%) and 5
th

 in the lower (28 – 36%) (Neculita et al., 2008b).  What is of 

significance here is that substantial amounts of zinc appear more tightly bound (i.e. 

latter sequential extraction steps) in the study by Neculita et al. (2008b), specifically at 

depth.  Yet, while data from the Nenthead tank shows typically very low zinc extracted 

by step 1 in the surface layer, Neculita et al. (2008b) found that this is where most of 

this readily extractable zinc occurs (8 – 12%).  A second duplicate set of columns were 

investigated, with an increased hydraulic residence time of 10 days (Neculita et al., 

2008b).  These columns yielded similar results, although one possible trend was an 

increase in zinc extracted by step 5 in the bottom layers of the columns: 33 - 41% 

(Neculita et al., 2008b).  Increased zinc attributable to the final sequential extraction 

step found in lower parts of the treatment system appears to be associated with 

increasing residence times as follows, where * denotes investigations by Neculita et al. 

(2008b):  

 Nenthead pilot (19hr – 2.7%) < Columns* (7.3d – 32%) < Columns* (10d – 37%) 

The inverse is the case for residence time to exchangeable and acido-soluble zinc (steps 

1 and 2):  

 Nenthead pilot (19hr – 11%) > Columns* (7.3d – 8%) > Columns* (10d – 3%) 

This pattern suggests that increasing residence time may lead to more tightly bound zinc 

phases deep in the treatment system.  One possible explanation is that increased 

sulphide formation is known to occur in systems with higher residency times (Chang et 

al., 2000a), although further investigation would be required to confirm that this is the 

case.  In particular, to rule out the wide range of variables which differ between the 

Nenthead system which was installed in the field in northern England (Gandy and 

Jarvis, 2012), and the laboratory scale columns operated by Neculita et al. (2008b).  For 

instance, it is thought that the seasonal temperature fluctuations at Nenthead had a 

significant effect on zinc removal, compared to parallel laboratory experiments which 

took place under controlled conditions (Gandy and Jarvis, 2012). 
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Figure 4.9  Cadmium partitioning in different sample locations 

Cadmium concentrations across all substrate samples were elevated compared to the 

blank, although concentrations were still low compared to other metals studied (i.e. 

Figures 4.3 – 4.12).  In particular, it appears that substantially more cadmium 

accumulated in surface layers
9
.  Given that the treatment system operated in a down-

flow configuration, this suggests that rapid removal of cadmium was occurring before 

the water reached lower layers of the system.  Most cadmium was extracted during step 

4, with a lesser amount in steps 3 and 5.  These data are in agreement with findings by 

Neculita et al. (2008b), who find that 72-97% of cadmium is concentrated in step 4 

across 7 of 8 samples (the eighth shows 77% of cadmium associated with step 5).  It 

might be expected that cadmium would have a similar extraction pattern to zinc, given 

their similar sulphide solubility products, but this is not the case.  The key variable 

between the two metals at Nenthead is concentration, which is far higher for zinc in the 

mine water (2.32mg/L zinc, <0.01mg/L cadmium) and the substrate (mean metal 

content 5,404mg/kg zinc, 11mg/kg cadmium).  It is likely that metal concentration 

therefore has some bearing upon removal mechanisms. 

                                                 
9
 Where the last letter of the sample reference is A, samples are from an upper layer of the treatment 

system, which differentiates samples from a lower layer of the system which are denoted B. 
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Figure 4.10  Nickel partitioning in different sample locations 

Nickel was moderately elevated across all substrate samples in comparison to the blank.  

Unlike cadmium, there was a far less pronounced difference between concentrations in 

the upper and lower layers.  Considering its relatively high Ksp, nickel would be 

expected to form a sulphide after cadmium, zinc, lead and copper; and therefore had a 

greater chance of accumulating in lower parts of the treatment system.  Nickel was most 

associated with step 5 of the sequential extraction (46mg/kg on average) with lesser 

amounts associated with steps 3 (11mg/kg) and 4 (21mg/kg).  Jong and Parry (2004), 

however, determine that most nickel was associated with steps 2 and 4 in their 

investigations
10

, yet this is in contradiction to Neculita et al. (2008b) who find nickel 

most concentrated in steps 3 and 5.  It should be noted that both of the Tessier methods 

used by these authors had been modified and, that the treatment system configurations 

differed from this study, all of which may have had a bearing on the results.  In 

particular, Jong and Parry (2004) used a method which excludes oxygen in order to 

prevent reaction of metal sulphides with atmospheric oxygen.  This was undertaken to 

minimise mischaracterisation of sulphides during the sequential extraction procedure 

(Jong and Parry, 2004). 

                                                 
10

 Note Jong and Parry (2004) use an additional first-step ‘step 0’ in their modified Tessier analysis which 

is not referred to in this discussion.  All other numbered steps (i.e. 1-5) are functionally comparable to the 

standard method. 
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Figure 4.11  Iron partitioning in different sample locations 

Iron exhibited very high concentrations in the pilot treatment system substrate and the 

blank, with similar partitioning across all samples.  Iron concentrations in the blank 

were 13,128mg/kg, slightly lower than the average concentration in the samples taken 

from the treatment system: 15,376mg/kg.  It is thought unlikely that there was any iron 

accumulation in the substrate due to the low concentrations in the mine water.  In fact, 

influent mine water concentrations were 0.2mg/L, yet over the first year of operation, 

the average concentrations of the treatment system effluent were 0.6mg/L (Gandy and 

Jarvis, 2012).  This suggests iron was exported from the system during this period.  It 

may be that the lower than average concentrations in the blank sample could be 

explained by sample heterogeneity; yet without further sampling of the blank, this 

cannot be confirmed. 
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Figure 4.12  Manganese partitioning in different sample locations 

Manganese, at the opposite end of the Ksp scale to copper for sulphide formation, 

showed the greatest proportion of readily extractable fractions: step 1, and step 2, as it is 

easily dissolved into solution compared to the other metals investigated, which agrees 

with data obtained in a similar studies by Mayes et al. (2011) and Dufresne et al. (2015).  

Yet, more metal is still seen in upper layers even though the Ksp would indicate that this 

metal forms a sulphide last.  This may be due to the relatively low concentration in the 

mine water (0.1mg/L) meaning that little had actually been removed (only 4 of 11 

samples show higher concentrations than the blank).  In fact, Appelo and Postma (2010) 

suggests that manganese sulphide is extremely rare in recent environments, due to its 

greater solubility, over elements such as iron.  Mayes et al. (2011) suggests that one 

possible explanation, where similar observations were made, is that manganese 

recovered during step 2 is associated oxic limestone surfaces contained in the treatment 

system.  Additionally, according to Irving and Williams (1953); manganese has low 

complex stability compared to a range of other metals (Mn<Fe<Ni<Cu>Zn) and, as a 

consequence, it would be more amenable to extraction by weaker reagents when in 

sorbed phases (i.e. first steps of a sequential extraction). 

It is notable that, across all elements investigated, metal concentrations in the blank 

sample were elevated.  The source of these metals must have been from the constituents 

of the substrate, such as the PAS100 compost or digested sewage sludge.  When 

comparing total concentrations of cadmium, copper, lead, nickel and zinc in the blank 

substrate, they are all below limits set out by the PAS 100 standard (BSI, 2011). 
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4.2.5 Partitioning of metals 

Data for the spatial investigations was aggregated and averages taken to provide an 

overview of the metal partitioning determined by the sequential extraction procedure.  

Fractions associated with each extraction step are shown for the range of metals 

investigated in Figure 4.13.  The pie charts are ordered according to their sulphide 

solubility products, which are noted on each chart for reference. 

 

Figure 4.13  Metal partitioning using aggregated data, ordered in terms of sulphide solubility products 
for metal sulphides. 

From the data presented in Figure 4.13, it is clear that there was distinct variability 

between the sequences in which the metals were extracted.  Comparatively little was 

extracted during step 1 and 2 for all metals, other than manganese which has been 

shown to form weakly sorbed phases (Irving and Williams, 1953).  Additionally, 

manganese occurs as its Mn
2+

 aqueous species over a range of Eh conditions when pH 

is below 6 (e.g. Appelo and Postma, 2010. p. 436).  Lead, copper, cadmium, nickel and 

iron were all characterised by strongly bound phases, with in excess of 75% of their 

mass being extracted only by steps 4 and 5.  Most zinc was extracted during step 3 

(58%), which differs substantially from cadmium which was largely extracted by step 4 

(73%), even though zinc and cadmium would be expected to both form sulphides at 

similar times according to their similar solubility products.  In addition to the difference 

in concentrations between zinc and cadmium previously discussed, there is evidence 
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that cadmium forms a strongly bound organic complex which is not affected by acid.  

This may also explain its preferential partitioning in oxidisable and residual steps 4 and 

5 of the Tessier extraction, compared to zinc (Neculita et al., 2008b; Palágyi et al., 

2006). 

Despite some patterns seen between increasing sulphide solubility products and metal 

partitioning seen by Tessier analyses, the sequence does not correspond exactly.  This 

implies that other factors may be impacting upon metal partitioning, such as non-

sulphide metal phases.  It has been suggested that other metal removal mechanisms are 

at work in sulphate reducing systems such as complexation with organic matter and 

sorption to oxyhydroxide minerals (Matthies et al., 2009; McCauley et al., 2009; 

Neculita et al., 2008b).  While it has not been possible to identify the metal species 

present, data suggest that metals accumulate preferentially within upper layers of the 

treatment system; and that different metals exhibit selectivity to different steps of the 

sequential extraction.  Specifically, manganese shows greatest recovery during steps 1 

and 2 of the procedure (46%) out of all metals investigated, whereas lead and copper 

show greatest selectivity to steps 4 and 5 of the procedure (>86%).  69% of zinc is 

recovered between steps 1 – 3 of the extraction (58% by step 3), which is substantially 

higher than all other metals, except manganese.  On this basis, it may be possible to 

selectively recover the main contaminant, zinc, along with manganese, while leaving the 

majority of other metals within the substrate.  But, given that manganese is likely to be 

recovered simultaneously to zinc, selective recovery of just zinc may be difficult. 

When considering influent metal concentrations, copper, lead, cadmium and nickel are 

all below laboratory detection limits and, out of these metals, only cadmium appears to 

show significant enrichment in used substrates compared to the blank.  Zinc, on the 

other hand, has the highest concentrations of all metals in the treatment system influent 

(2.32mg/L) and accumulates in substrates to concentrations of typically well in excess 

of an order of magnitude greater than the blank.  The greatest substrate concentration of 

zinc was 14,050mg/kg, compared to the greatest cadmium concentration which was just 

43mg/kg.  Geochemically, zinc and cadmium are similar with comparable sulphide 

solubility products 4.5 x 10
-24

 and 1.4 x 10
-23 

respectively (Hedin et al., 1994a).  It might 

therefore be assumed that in a sulphide producing treatment system, these metals would 

form sulphides in a similar way and consequently show similar geochemical profiles 

when extracted sequentially.  Yet this is not seen, as zinc exhibits association with 
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earlier steps in the sequential extraction process.  One explanation for this is that the 

nature of metal sequestration in bioreactor systems varies depending upon influent 

concentration.  This will have a knock-on effect for metal recoverability from these 

materials, and would therefore warrant further investigation to assess metal removal 

mechanisms as a function of influent metal concentration. 

4.2.6 Sequential extraction reproducibility 

In order to demonstrate reproducibility, triplicate samples were run for the remaining 

two quarters of sample C4B (those which were not sieved: quarters 2 and 3).  Presented 

in Figure 4.14 are the results of these replicates for zinc. 

 

Figure 4.14  Zinc concentrations in triplicate samples of two unsieved replicates as determined by 
Tessier extraction (additional 5mL H2O2 added to triplicates 2(iii) and 3(iii) in step 4) 

A minimal variance between both sets of triplicates was seen: statistically this is at most 

8.5% of the mean value (within quarter 3, step 4) and is less for all other steps in both 

quarters.  This variation might be partly due to additional hydrogen peroxide being used 

in samples 2(iii) and 3(iii) in step 4 of the extraction, leading to greater recovery in 

these replicates (see section 3.3.3, Chapter 3). On the other hand, there is only very 

modest variation between fractions mirrored between numerous steps: for example, zinc 

concentrations in 2(i) are frequently greater than 2(ii) where experimental conditions 

were identical.  Although this pattern is not entirely consistent, it does suggest that the 

experimental error of the relative fractions is less significant than the experimental error 

between samples.  Yet, when two apparently identical quarters of the same bulk sample 
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are compared visually (i.e. Figure 4.14) the significance of heterogeneity within the 

larger substrate sample is clear to see.  Total metals were substantially higher in quarter 

3, compared to quarter 2.  In particular, far more zinc appears to be recovered during 

step 3 in quarter 3.  A similar observation can be made when comparing the sum of the 

zinc concentrations of dry sieved sample to the wet sieved sample of the other two 

quarters (1 and 4). 
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4.3 Metal recovery from treatment system substrates: Chemical leaching 

Chemical leaching with a range of sulphuric acid concentrations and solid:liquid ratios 

(pulp densities) was undertaken as described in section 3.4.  Raw data from the 

chemical leaching tests are included as Appendix E.  Data are presented as percentage 

metal recovery, which is calculated as the efficiency of metal extracted from the 

substrate by leaching, compared to the metal content of the unleached substrate 

determined by aqua regia digest.  Correction is made to account for metal removal from 

the experiment by preceding sampling events.  Metal quantities (as mg) are used to 

calculate efficiencies and correct for sampling, as expressed in Equation 4.1. 

 (𝟒. 𝟏)  𝒆 = [
𝒔𝒍 + 𝒔𝒔
𝒔𝒕

] 𝟏𝟎𝟎 

Where:  e efficiency of leaching, % 

sl quantity of metal leached from substrate, mg 

ss quantity of metal removed by sampling, cumulative, mg 

  st quantity of metal in unleached substrate, mg 

4.3.1 Leaching with variable acid concentrations 

Across all metals, significant recovery occurs at the very start of the leach process so 

that the first sample taken at the very start of the tests typically has substantial metal 

concentrations.  This sample was collected immediately after addition of the acid to the 

substrate, indicating that very rapid solubilisation of metals can occur under these 

conditions.  To a much lesser degree, the same pattern is shown for the deionised water 

control which suggests that very weakly bound metal phases are quick to dissolve in 

deionised water. 

Aqua regia digest data, summarised in Table 4.3, are presented for triplicate samples 

taken from the composite substrate before leaching (samples from locations A2A, A3A, 

C2A, C3A, E2A, E3A - see Figure 3.1).  There is good similarity between metal 

concentrations in the replicates, except for iron, where there is substantially more within 

replicate 3.  This is considered to be due to sample heterogeneity.  Averages of the aqua 

regia triplicates were used to calculate percentage metal recovery in the leach tests.  

Extraction efficiencies, as percentages, are presented in Figure 4.15.  This shows the 
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percentage of metal leached after 100 hours in relation to metal extracted from the un-

leached substrate by aqua regia digestion. 

Table 4.3  Metal content of mine water treatment substrate used for variable acid concentration tests 

[mg/kg] Fe Ni Cu Cd Mn Pb Zn 

Replicate 1 16564.9 54.1 135.7 17.1 907.8 224.3 8200.0 

Replicate 2 17093.7 56.2 139.9 17.6 992.8 235.0 8437.6 

Replicate 3 29536.8 54.1 138.2 17.0 984.0 218.5 8158.4 

Mean 21065.1 54.8 137.9 17.2 961.5 225.9 8265.3 

Std. deviation 220.2 0.04 0.06 0.01 1.4 0.25 4.5 
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Figure 4.15  Metal extraction efficiencies during leach-test where acid concentration was varied, 
compared to metals extracted by aqua regia digest (mean values of duplicates) 

It is initially evident for zinc, manganese, cadmium and nickel, that in excess of 100% 

was extracted during 2 of the 4 leach-tests, with in excess of 100% of zinc and 

manganese also extracted during the 0.02M leach test.  This means that greater amounts 

of these metals were removed using dilute sulphuric acids over 5 days than achieved by 

aqua regia digest.  Although the aqua regia comprises a mixture of concentrated nitric 

and hydrochloric acids (BSI, 1995b), there may be tightly bound fractions of metal 

which are not extracted by the process.  It has been shown by Chen and Ma (2001) that 

conducting aqua regia digest on a hotplate (standard method adopted in this research, 

see section 3.4.6) can have relatively poor metal recovery efficiencies, compared to 
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more aggressive methods such as microwave aqua regia and microwave aqua regia with 

hydrofluoric acid.  In their investigations, average total metal recovery from certified 

soils using the hotplate method was 74%; with 85% recovery for manganese and 93% 

for zinc (Chen and Ma, 2001).  This has been confirmed by additional aqua regia 

digestion of the substrates after leaching, which shows <100% extraction across all 

metals and all acid dilutions.  It may, therefore, be the case that due to the long exposure 

time of substrate to acids during the leaching procedure, a greater amount of metal was 

leached when compared to the short-exposure aqua regia digests.  This would explain 

the >100% recovery observed for some metals during the acid leach process. 

Extraction efficiencies for iron were 26% to 68% (depending upon acid concentration) 

when compared to total iron content as determined aqua regia digests.  This suggests 

that the majority of zinc can be solubilised with dilute acid, but more concentrated acids 

are required to have the same effect on iron.  Similar findings have been made by Oliver 

and Carey (1976), who determined that in a waste ash, iron showed lower solubilisation 

than zinc, copper and cadmium in dilute sulphuric acid (~10%v/v) whereas more 

concentrated acid (<75%) increased the recovery of iron over these elements. When 

considering the sulphide solubility of these elements, iron would be expected to dissolve 

preferentially to zinc when present as sulphides, given that it has a higher solubility 

product.  Yet, this is not seen, which suggests that these metals may not be retained in 

substrates in the same sulphide form. 

Solubilisation appears to be consistently very rapid for manganese, with the greatest 

percentage (109%) of all elements extracted upon test completion during exposure to 

the most dilute acid, 0.02M.  This is consistent with both its high sulphide solubility 

product (Ksp = 5 x 10
-16

) and the Irvings-Williams order of complex stability, where 

manganese features the lowest stability in the sequence (Mn < Fe < Ni < Cu > Zn) 

(Hedin et al., 1994a; Irving and Williams, 1953).  On this basis, it would be expected 

that manganese both in sulphide and complex form would be released rapidly when 

compared to other metals.  Significant lead recovery was only observed in the 0.1M and 

0.5M tests (64% and 68%, respectively).  Copper shows the poorest extraction 

efficiencies of all elements, although time of exposure to acid has a pronounced bearing 

on copper extraction when compared to other metals (Figure 4.15).  Copper extraction 

efficiencies are greatest at the end of the 0.5M test at 58%.  Both lead and copper have 

low sulphide solubility products (4 x 10
-32

 and 1 x 10
-29

, respectively) and, as a 
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consequence, lead and copper sulphides would dissolve last out of the metals studied.  

Additionally, copper is known to form a highly stable complex with a range of 

substances (Irving and Williams, 1953).  However, other studies find high leach 

efficiencies for copper when using sulphuric acid leaching: between 53 and 100% 

across a range of experimental variables (Bayat and Sari, 2010; Wu and Ting, 2006; 

Brombacher et al., 1998).  This high copper recovery might be explained by the nature 

of the wastes being treated: incinerator fly ash as opposed to an organic substrate which 

has been under anoxic conditions.  High temperatures involved with incineration would 

both substantially reduce organic carbon (to which copper may be bound) and oxidise 

any metals in sulphide form to oxides (Jha et al., 2001); a common approach used in 

mineral processing to improve the recovery of copper from sulphide ores (Davenport et 

al., 2002).  Cadmium and nickel both show high extraction efficiencies in the more 

concentrated acids (>105% in 0.1M and 0.5M acids) albeit slightly lower than 

manganese and zinc (>120%).  In the case of this substrate, however, starting 

concentrations of nickel and cadmium were low at <60mg/kg, more than two orders of 

magnitude lower than zinc and iron. 

Generally, the most soluble metal sulphide, manganese, is most readily extracted and 

copper, the least soluble, most conserved in the substrate, showing agreement with the 

sulphide solubility products for these elements and the Tessier extraction data.  Yet 

there is less agreement with other metals: zinc, in particular, shows high extraction 

efficiencies, second only to manganese on average, but it is the fifth most soluble out of 

the elements investigated.  When considering Tessier extraction data, more zinc was 

associated with acido-soluble and reducible fractions compared to other metals (in 

particular cadmium, nickel and iron which have higher sulphide solubility products).  

This may be explained by other zinc species being present in the substrate which could 

be more amenable to solubilisation (Neculita et al., 2011). 

4.3.2 Leaching with variable pulp densities 

Pulp density was investigated using 0.1M sulphuric acid leaching across a range of 

solid:liquid ratios.  Data are presented in Figure 4.16 for percentage metal recovery 

compared to aqua regia digest of the unleached substrate.  Digestion data for the 

composite substrate used in pulp-density tests is summarised in Table 4.4, although note 

that this substrate was taken from slightly different positions compared to that used in 

the variable acid concentration tests (A1A; A4A; B1A; B2A; B3A; B4A; C1A; C4A; 
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D1A; D2A; D3A; D4A; E1A & E4A).  There is marginally greater variation between 

these digest triplicates compared to the digests used in the previous tests, which is 

considered to be due to heterogeneity of the compost substrate (Table 4.3).  

Substantially larger amounts of substrate were used in the leach tests: 22.5g versus 3g 

used in aqua regia digests as dictated by the standard digest method and, on this basis, 

the heterogeneity will have had a greater bearing on the aqua regia than the leach tests 

where individual sample size was smaller.  Averages of the triplicates were used to 

calculate percentage metal recovery in the leach tests to account for this heterogeneity. 

Table 4.4  Metal content of mine water treatment substrate used for variable pulp density acid leaching 
tests and biological leaching tests 

[mg/kg] Fe Ni Cu Cd Mn Pb Zn 

Replicate 1 18744.1 53.4 191.4 13.9 996.3 205.2 7405.9 

Replicate 2 19681.2 52.3 204.6 13.6 980.8 197.2 7290.7 

Replicate 3 14875.1 52.4 154.1 13.3 786.3 192.1 5977.2 

Mean 17766.8 52.7 183.4 13.6 921.1 198.1 6891.2 

Std. deviation 2547 0.61 26.2 0.3 117 6.6 794 

 

Additionally, there was significant variation between the two composite substrates (i.e. 

that represented in Table 4.4 used for the pulp-density tests and that used in the variable 

acid concentration tests, Table 4.3).  For example, average iron concentrations were 

17,767mg/kg and 21,065mg/kg between the two composites, respectively.  Similarly, 

zinc was lower in the pulp density test substrate compared to the variable acid 

concentration test substrate: 6,891mg/kg vs. 8,265mg/kg, and a similar pattern was seen 

across all other metals; suggesting that sample heterogeneity affects all metals.  This is 

explored further in the leach test, where the 1.875% pulp density is a repeat of that 

conducted during the 0.1M variable acid concentration leach tests (both conducted using 

0.1M sulphuric acid and 1.875% pulp densities), but differing in the composite substrate 

used.  Across the flasks with 1.875 – 7.5% pulp densities shown in Figure 4.16, the pH 

shows an initial spike after 1 hour, although it is unclear why this has occurred.  
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Figure 4.16  Metal extraction efficiencies across a range of solid: liquid ratios compared to metals 
extracted by aqua regia digest (mean values of duplicates) 

Significant variability in recovery was seen between metals, indicating that sulphuric 

acid was far more effective at recovering some metals compared to others.  For 

example, at a 1.875% pulp density, just 33% of lead was recovered after 100 hours, yet 

in excess of 120% of both zinc and manganese were recovered, compared to the aqua 

regia.  As pulp density increases from 1.875% to 3.75% little substantive change was 

seen in terms of extraction efficiency, excepting copper, which decreased from 90% 

extraction to 28%.  In the 7.5% pulp density flasks lead and copper recovery was 4% 
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and 0.4% respectively, whereas other elements showed greater than 20% extraction over 

the experimental period.  Indeed, at this increased pulp density, in excess of 100% 

extraction was seen for both zinc and manganese.  However, at the greatest pulp 

density, 15%, far less metal was extracted for all elements.  In fact, over the 100 hour 

experimental duration, the concentration of most metals in solution started to decrease, 

perhaps as metals became less soluble due to an increasing pH.  The following 

extraction orders have been derived from the average extraction efficiencies during the 

leach tests across the four pulp densities: 

1.875%: Mn > Zn > Cd > Ni > Fe > Cu > Pb 

3.75%:  Mn > Zn > Ni > Cd > Fe > Pb > Cu 

7.5%:  Mn > Zn > Ni > Fe > Cd > Pb > Cu 

15%:  Mn > Ni > Zn > Pb > Fe > Cd > Cu 

As with the variable acid concentration tests, manganese had the greatest solubility 

across all pulp density tests, and copper or lead the least, which is consistent with their 

sulphide solubility product and the Irving-Williams order of complex solubility (Hedin 

et al., 1994a; Irving and Williams, 1953).  Similarly, zinc also exhibited high extraction 

rates, second to manganese in 3 out of the 4 experiments, yet this does not correspond to 

its sulphide solubility product which suggests that iron, nickel and cadmium should 

have greater solubilities.  It is not clear why this was the case, but may be due to factors 

associated with the high levels of zinc which have recently accumulated in the substrate 

during its exposure to mine water.  If zinc and iron (also at high concentrations in the 

substrate) are removed from the sequence, the orders of the remaining metals 

correspond exactly to the sulphide solubility product order for the 3.75% and 7.5% pulp 

density tests.  This might be explained by the high zinc concentrations being attenuated 

as non-sulphide phases such as sorption within the treatment system.  Binding of metals 

to sorption sites can be time dependent, with less metal being desorbed from sorbents 

such as ferrihydrite over longer ageing processes (Appelo and Postma, 2010).  

Therefore, metals recently removed from mine water by sorption processes may be 

more amenable to recovery than those which have been sorbed for some time. 

While it was evident that there is a decreasing pattern of metal solubilisation as the ratio 

of solid to liquid (pulp density) increases, there appears to be a threshold between 7.5% 

and 15% solids where metal recovery becomes ineffective.  These findings are in broad 
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agreement with a study by Bayat and Sari (2010), who found a substantial drop in metal 

recovery between a similar pulp density change during bioleaching of a metal plating 

sludge.  For example, nickel recovery from the Nenthead substrate was 67% for 7.5% 

pulp density and 16% for 15% pulp density, compared to 68% recovery for 8% pulp 

density and 41% for 14% pulp density in the metal plating sludge study (Bayat and Sari, 

2010).  Observing the pH throughout the experiment sheds some light upon the findings 

at Nenthead, where pH in the 1.875%, 3.75% and 7.5% pulp experiments remained 

steady between 1.2 and 2.4 (mean 1.6); except in the 15% pulp experiment where pH 

gradually rose, reaching 4.5 by the end of the experiment.  It is suspected that the 

buffering capacity of the compost in the latter neutralised the acid, allowing the pH to 

rise and therefore the solubility of metals to decrease, a conclusion also drawn by Bayat 

and Sari (2010). 

In the context of the current investigation, zinc and cadmium were of particular concern 

in terms of recovery from substrates, due to their prevalence in the Rampgill mine water 

(and consequently Nenthead treatment system substrate) and mine waters more widely 

(Mayes et al., 2013; Gandy and Jarvis, 2012).  Additionally, high zinc concentrations 

have classified the Nenthead substrate as a hazardous waste (ESG, 2013), and cadmium 

has a high toxicity and is of specific concern for regulators in soil and water 

environments (Environment Agency, 2009a; ECC, 2000).  Further accumulation of 

cadmium in treatment system substrates, for example, where they are exposed to mine 

water for longer durations, may pose particular problems with substrate disposal or re-

use.  Sulphuric acid leaching has demonstrated effectiveness at recovering both these 

elements across a range of conditions over 100 hours, summarised in Table 4.5. 

Table 4.5  Zinc and cadmium recovery efficiencies for acid leaching after 100 hours 

 
Variable acid concentration (fixed 

1.875% pulp density) 

Variable pulp density (fixed 0.1M 

sulphuric acid concentration) 

 0.02M 0.1M 0.5M 1.875% 3.75% 7.5% 15% 

Zn recovery (%) 102.9 123.1 122.9 125.8 120.3 100.4 15.2 

Cd recovery (%) 18.4 109.6 121.4 117.6 103.73 20.2 >0.6 

 

On the basis of combined high cadmium and zinc recoveries, 0.1M sulphuric acid 

concentration appears to be the most dilute acid suitable for high recovery rates, as this 
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demonstrated >100% recovery of both zinc and cadmium.  Cadmium recovery 

efficiencies for the 0.02M test were poor at just 18.4%.  Leaching with 0.1M acid at an 

increased pulp density of 3.75% yielded ≥100% recovery rates for both zinc and 

cadmium which suggests that this combination would offer an optimum compromise 

between recovery efficiency and quantity of substrate leached.  Further increases in pulp 

density caused substantial decreases in total cadmium recovery (7.5% pulp), and then 

zinc and cadmium recovery (15% pulp). 

4.3.3 Leach test reproducibility and controls 

Chemical leach data showed good replication and typically duplicate tests were well 

within 10% of the mean values.  Where replicate measurements deviate more than 10% 

from mean values, they were discarded.  Distilled water recovered very little metal over 

the 100 hour experimental period (<5% for all metals) with many much lower, such as 

zinc (<0.5% recovery).  Control flasks containing no substrate were simultaneously 

operated using 0.1M acid and metal concentrations in samples taken were below 

detection limits (n=103) or very close to them (n=9).  This confirms that metals data 

were not affected by contamination during the experimental procedure. 

The 1.875% pulp density test flasks are an identical repeat of the 0.1M variable acid 

concentration test flasks (bottom left Figure 4.15 and top left Figure 4.16).  Both these 

experiments had a 1.875% pulp density and used 0.1M sulphuric acid, although data 

obtained indicate notably different recovery rates and efficiencies.  More copper is 

recovered from the substrate in the 1.875% flasks, however, when compared to lead in 

the 0.1M repeat; all other metals following a similar order of extractability.  Rates of 

recovery differ considerably between the two repeated experiments: the rate of recovery 

is considerably greater in the 0.1M test.  This may be explicable upon observation of the 

average pH between the two: 1.32 in the 0.1M flasks, compared to 1.42 in the 1.875% 

flasks. Given that conditions were identical, the substrate in the 1.875% test appears to 

have had a greater buffering capacity, causing the pH to rise, compared to that used in 

the 0.1M test. 
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4.3.4 Metal removal from substrate 

Digest of residues from the 0.1M, 1.875% pulp density sulphuric acid leach test 

determined metal concentrations as summarised in Table 4.6
11

.  Comparison is made 

between the contaminated substrate used in the leach tests, and the substrate before it 

was exposed to mine water, known as the blank.  Immediately, it was evident that zinc 

and cadmium concentrations in the used substrate were reduced to levels comparable to 

the blank.  Lead and copper concentrations were largely unaffected, given that sulphuric 

acid is a poor lixiviant for these elements (Sadegh Safarzadeh et al., 2007).  Iron, nickel 

and manganese concentrations were all reduced to below concentrations in the blank.  

The figures presented for the leached substrate are conservative: the substrate was not 

rinsed following leaching, thus it is likely that some of the metal-containing leach 

solution was retained within the compost during the drying and digestion procedure.  

Therefore, it may be possible to reduce metal contents of the substrate further by rinsing 

after the leach procedure.  Regardless, the data presented in Table 4.6 suggests that zinc 

and cadmium, in particular, can be effectively removed from the compost substrate, 

down to concentrations comparable to the blank compost. 

Table 4.6  Average metal content of (1) contaminated Nenthead substrate, (2) substrate after leaching 
with 0.1M acid and (3) blank substrate which was used in the mine water treatment system, as 
determined by aqua regia digests 

Metals (mg/kg) Fe Ni Cu Cd Mn Pb Zn 

(1) Substrate pre-
leach (Composite 2) 
(n=3) 

21,065.1 54.8 137.9 17.2 961.4 225.9 8,265.3 

(2) 0.1M; 1.875% 
pulp leach residue 
average metal conc. 
(n=4) 

8,999.6 17.3 118.7 1.6 77.4 211.4 650.5 

(3) Blank substrate 
sample* (n=3) 

19,344 81.2 234 1.5 851 88.8 634 

*Newcastle University unpublished data for blank substrate used in Nenthead pilot treatment system 

In comparison with the Nenthead study, acid leaching of a sewage sludge by Oliver and 

Carey (1976) was generally less effective at removing metals from solids, reducing zinc 

                                                 
11

Digests of leached substrate were only undertaken for the variable acid concentration tests due to 

limitations on time and resources. 
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concentrations from 5,100mg/kg to 1,500mg/kg; cadmium from 57mg/kg to 27mg/kg; 

and copper from 2,500mg/kg to 2,050mg/kg.  Like the Nenthead study, sulphuric acid 

was used and pH maintained at 1.5 (Oliver and Carey, 1976), which is not vastly 

dissimilar to the 0.1M Nenthead test which had an average pH of 1.3.  Substantially 

shorter leach times of just 1 hour may explain this relatively poor removal (Oliver and 

Carey, 1976).  Iron, however, showed high rates of removal, being reduced by 68% in 

the solid from 29,000mg/kg to 9,280mg/kg (Oliver and Carey, 1976).  This is 

comparable to the 100 hour long leach test of the Nenthead substrate using 0.1M acid 

and 1.875% pulp, where 70% of the iron was recovered (Figure 4.16). 

4.3.5 Separation of solids from pregnant leach solutions 

Dosing with 6M (24% w/w) sodium hydroxide was undertaken to adjust pH to ~9.5 in 

order to achieve precipitation of metals from pregnant leach solutions.  Final pH values 

at the time of filtration are provided in Table 4.7, indicating a slight drop in pH during 

the intervening two days between final pH adjustment and filtration.  It is thought that 

this pH drop was as a result of oxidisation and hydrolysis of metals such as iron within 

the solution resulting in a net increase in hydrogen ions, as per Equations 4.2 and 4.3 

(after Banks et al., 1997).  Additional evidence to support this comes from visual 

observation of the pregnant solutions, which turned from green to a red-brown as shown 

in Figure 4.17, at least at the liquid-air interface, during settlement.  This is 

characteristic of a change in iron valency from ferrous (II) to ferric (III). 

(𝟒. 𝟐)  𝐹𝑒2+ + 𝐻(𝑎𝑞)
+ +

1

4
𝑂2 = 𝐹𝑒

3+ +
1

2
𝐻2𝑂 

(𝟒. 𝟑)  𝐹𝑒3+ + 3𝐻2𝑂 =  𝐹𝑒(𝑂𝐻)3 + 3𝐻(𝑎𝑞)
+  

 

Table 4.7  Final pH of leach solutions from variable pulp density leach test, prior to filtration 

Solution 1.875%a 1.875%b 3.75%a 3.75%b 7.5%a 7.5%b 15%a 15%b 

pH 9.89 9.93 8.89 9.07 8.92 8.92 9.36 9.37 
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Figure 4.17  Dosing of pregnant leach solutions with sodium hydroxide (left – at time of dosing; right – 
one day after dosing) 

 

Table 4.8  Metal content and pH of pregnant leach solutions after 5 day leach test 

Leach-test 
pulp 
density 

Fe Ni Cu Cd Mn Pb Zn pH 

mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
 

1.875% a 248.31 1.02 3.36 0.32 22.63 1.22 171.92 1.36 

1.875% b 224.67 0.93 3.09 0.29 20.65 1.21 154.65 1.42 

3.75% a 428.36 1.72 1.92 0.54 39.86 1.50 313.41 1.82 

3.75% b 432.25 1.73 2.15 0.54 40.59 1.42 314.11 1.59 

7.5% a 557.20 2.69 0.05 0.23 85.60 0.60 532.50 2.43 

7.5% b 540.45 2.65 0.05 0.20 84.52 0.60 518.93 2.43 

15% a 2.88 2.69 0.05 0.23 80.80 1.09 150.69 4.21 

15% b 3.39 2.65 0.05 0.20 79.84 1.06 139.33 4.26 

Data showing replicate tests, a and b. 
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Table 4.9  Metal content and pH of leach solution after dosing with NaOH and filtration 

Leach-test 
pulp 
density 

Fe Ni Cu Cd Mn Pb Zn pH* 

mg/L mg/L mg/L mg/L mg/L mg/L mg/L 
 

1.875% a 0.58 0.03 0.05 <0.01 0.06 <0.05 0.40 9.93 

1.875% b 0.30 0.03 0.04 <0.01 0.08 <0.05 0.28 9.89 

3.75% a 0.28 0.12 0.02 <0.01 0.49 <0.05 0.24 9.07 

3.75% b 0.39 0.12 0.03 <0.01 0.29 <0.05 0.33 8.89 

7.5% a 0.25 0.19 <0.01 <0.01 0.54 <0.05 0.38 8.92 

7.5% b 0.45 0.18 <0.01 <0.01 0.56 <0.05 0.73 8.92 

15% a 0.02 0.42 0.02 <0.01 0.81 <0.05 0.33 9.36 

15% b 0.02 0.46 <0.01 <0.01 0.68 <0.05 0.16 9.37 

*pH measured in solutions after adjustment with NaOH, but before filtration.  Data showing duplicate 
tests, a and b. 

Table 4.8 and Table 4.9 present data for the leach solution after the 5 day leach test, and 

data for the leachate which had been dosed with sodium hydroxide and filtered, 

respectively. 

It is evident that dosing with sodium hydroxide and filtration achieved very good 

recovery of metals from the low-pH pregnant leach solutions.  >99.7% of the target 

contaminant zinc was removed from the leach solutions by this method, with >98.8% of 

manganese and >99.4% of iron also being removed across all eight experiments.  

Cadmium and lead were both removed to below detection limits, although starting 

concentrations were very low, and lead showed comparatively poor solubilisation into 

the leach solution from the compost substrate (≤68% in leach tests).  Nickel was less 

effectively removed from solution, albeit >90% was achieved in all but the 15% pulp 

density solutions.  Copper shows >98.5% removal in the two lower density leach 

solutions (1.875% and 3.75%) and was close to or below detection limits in the higher 

density solutions.  These data suggest that dosing leach solutions with sodium 

hydroxide to a moderately high pH followed by filtration can reduce metals to very low 

concentrations. 
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Other than adjustment to a favourable pH, initial inspection of data suggests that 

discharge to the environment or re-use within the metal recovery process may be 

achievable with little or no further treatment.  Further analysis for major elements, 

however, revealed substantial concentrations of sodium (from pH adjustment with 

sodium hydroxide) and sulphate (from sulphuric acid).  Major element data are 

presented in Table 4.10 for the treated leach solution, and are compared to water quality 

data at 3 locations; the Rampgill mine discharge, its receiving watercourse the River 

Nent at the point of discharge, and a location approximately 8km downstream.  The 

Nent is an upland water course in a metal mining area, presented as an example of a 

watercourse which might receive effluent from a metal recovery operation. 

Table 4.10  Major species in leach solution after dosing with NaOH and filtration 

 Na K Ca Mg SO4 Al 

1.875% a 4650 24.4 187 1.23 10169 9.95 

1.875% b 3113 12.8 264 2.33 7376 6.98 

3.75% a 3382 29.4 204 48.1 8311 0.73 

3.75% b 3646 31.2 160 26.3 7959 1.22 

7.5% a 2116 28.5 94.0 60.4 4966 0.59 

7.5% b 2150 27.9 99.1 57.8 5073 0.83 

15% a 549 25.4 500 210 2601 0.01 

15% b 510 21.5 477 213 3047 0.01 

Rampgill* 10.1 – 24.4 5 73 - 81 22.5 – 24.5 118 – 130 <0.01-0.02 

Nent at Rampgill* 13.4 – 92.8 0.8 – 1.1 14 - 32 2.9 – 6.4 12 – 110 0.08 – 0.2 

Nent at Alston* 32.4 - 49 1.6 – 2.5 32 - 58 4.8 – 9.5 28 – 63 0.06 – 0.7 

*Data from catchment monitoring report (Atkins, 2010) 

Greatest concentrations of sulphate and sodium were seen in solutions from lower pulp-

densities.  Sulphate would be present in the leach solutions, primarily from the sulphuric 

acid totalling 11,520mg/L calculated using molecular masses (96,000mg SO4
2-

 per L 

1M H2SO4 solution).  Dosing with sodium hydroxide would add sodium to the leach 
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solutions, which varied depending upon how much was added to each flask (138mg per 

mL for 6M NaOH solution).  Calculations based upon volumes added suggest that 

sodium values in the leach solution fit well with measured values in the leach solutions, 

for example: 35mL 6M NaOH added to flask 1.875a increasing its sodium 

concentration by 35mL x 138mg and bringing its total volume to 1,050mL; therefore, 

total added sodium is (35 x 138) ÷ 1,050 = 4.6mg/mL or 4,600mg/L, a figure very 

comparable to that in Table 4.10
12

.  Identical quantities of sulphate (11,520mg/L) were 

added to the flasks in the form of sulphuric acid, although these were reduced 

substantially in the higher pulp density solutions.  The mechanism for sulphate 

attenuation is unclear and further investigation would be required to determine the 

cause. 

Sodium concentrations were, on occasion, two orders of magnitude higher than those in 

the Nent, and sulphate concentrations significantly in excess of one order of magnitude 

greater
13

.  Therefore discharge of significant volumes of a leach solution with this 

chemistry would cause substantial increases in salinity of a receiving watercourse like 

the River Nent, unless flow conditions provided adequate dilution.  Yet this increase in 

salinity would only be on a temporary basis during the metal recovery operation. 

A similar pattern of decreasing concentrations with higher pulp densities is seen for 

aluminium, although at far lower levels.  Its presence in the pH adjusted leach solution 

may be explained by the amphoteric nature of aluminium hydroxide, which has a low 

solubility around pH6, but as pH increases above this value it increasingly forms an 

aqueous hydroxy-anion, Al(OH)4
-
 (May et al., 1979).  Aluminium could still be 

problematic if concentrations of the order seen in 1.875% solutions were to be 

discharged to small watercourses, as found by Jarvis and Younger (1999) from an 

aluminium-rich spoil tip discharge.  Magnesium concentrations are more than an order 

of magnitude lower than sodium but increase with increasing pulp density.  Potassium 

concentrations show little in the way of a clear trend with increasing pulp densities and 

average concentrations are relatively low.  Calcium concentrations are also relatively 

low, except in solutions from the greatest pulp density, 15% where up to 500mg/L was 

measured. 

                                                 
12

 This assumes sodium concentrations in the leach solution were comparatively minimal before addition 

of sodium hydroxide, although this was not measured. 
13

It should be noted that an over-titration of 1.875A with NaOH occurred, and was corrected with 4 drops 

of concentrated sulphuric acid, which accounts to some degree for the additional sodium and sulphate 

within this particular sample, compared to its duplicate. 
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4.3.6 Metal content of leach solution residues 

Residues obtained on the filter papers from filtration of the alkali dosed pregnant leach 

solutions consisted of gelatinous green-brown solids.  These residues were oven dried at 

105°C and ground prior to analysis (Figure 4.18). 

 

Figure 4.18  Filtration residue (left) and after drying and grinding (right) 

Metal masses are determined by weighing dry precipitate and determining total metals 

by aqua regia digest (section 3.4.6).  These data are presented in Table 4.11.  It should 

be noted that there would have been some loss of metal mass during the leach process 

due to sampling of pregnant leach solutions.  Additional factors during the recovery of 

solids from leach solutions may have also led to some loss of mass.  These include 

unavoidable retention of some precipitate on sides of flasks and filtration apparatus, and 

fragments of dried residue being lost in the oven/desiccator or en-route to the balance 

for weighing.  With these factors in mind, Figure 4.19 shows metal content of residues 

plotted against metal content of treatment substrate before leaching.  
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Table 4.11  Metal mass of residues obtained from leach solutions, determined as product of residue mass and total metals by aqua regia 

 
Residue 

mass 
Fe Ni Cu Cd Mn Pb Zn Na K Ca Mg S Al 

 
mg mg mg mg mg mg mg mg mg mg mg mg mg mg 

1.875% 

a 
3139.20 208.75 0.67 1.05 0.23 17.27 0.87 139.79 232.48 1.30 296.76 54.28 191.94 95.06 

1.875% 

b 
1772.60 140.58 0.44 0.72 0.15 11.48 0.85 92.52 47.47 0.23 185.68 34.93 52.67 63.83 

3.75% 

a 
4565.10 392.59 1.24 1.36 0.43 35.54 1.23 274.05 215.87 2.49 298.17 72.66 170.60 208.55 

3.75% 

b 
5063.20 395.50 1.27 1.52 0.44 36.10 1.16 275.38 288.13 3.29 346.57 91.52 234.20 218.63 

7.5%   

a 
4842.80 412.95 1.69 0.03 0.14 57.22 0.43 388.03 158.52 3.87 325.35 142.12 147.29 196.37 

7.5%   

b 
5994.90 506.59 2.09 0.04 0.18 69.92 0.51 474.77 206.31 5.01 399.45 173.01 193.88 245.50 

15%    

a 
1165.30 2.48 0.26 0.01 0.00 45.04 0.01 83.08 6.42 0.51 122.69 68.77 27.03 2.91 

15%    

b 
1079.90 2.61 0.24 0.01 0.00 49.28 0.01 85.09 5.70 0.51 132.90 63.99 28.94 3.09 

a and b are duplicates across the four pulp densities
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Figure 4.19  Metal mass in leach solution residues compared to metal mass in the unleached substrate 
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Iron, zinc and manganese, in descending order, were the most abundant of the measured 

metals within the Nenthead treatment system substrate.  Less than 50% iron was 

recovered as a solid in all but one of the tests (1.875%a), with less than 0.1% of the 

element recovered in the highest density (15% pulp) leach tests.  Manganese showed 

good recovery in the residue across all solutions: 54 – 84% in the 1.875, 3.75 and 7.5% 

pulp density tests and even 27-30% recovery in the 15% pulp density tests, the greatest 

of all metals investigated under these conditions.  In excess of 60% zinc was recovered 

from the 1.875, 3.75 and 7.5% pulp density tests, with greater recovery shown in the 

lower density tests, excepting the 1.875%b residue.  This appears to be an outlier across 

all metals except lead, where recoveries between 1.875a and 1.875b were 19.5% and 

19.1% respectively.  This is explicable when the mass of the residue is considered: just 

1.77g compared to its replicate, 1.875%a, which was 3.14g as shown in Table 4.12.  It is 

possible that a significant amount of the residue may have been inadvertently lost 

during the grinding and drying process: desiccated fragments of the residue were of low 

density and could easily have fallen from the petri-dish between the oven/ desiccator/ 

balance, although this was not actually witnessed during the analysis.  A mass balance 

of the 1.875b leach test does, however, supports this:  154.65mg/L zinc in final leach 

solution (~1.02L pregnant leach solution recovered), reduced to 0.28mg/L in filtrate 

means 157.7mg zinc must have been recovered in the filtration residue.  Yet just 93mg 

zinc was measured in the 1.875b residue, compared to 139.8mg in the duplicate 

(1.875a) precipitate. 

Nickel exhibits similar patterns to zinc when recovered as a solid across the range of 

pulp density leach tests, yet with lower efficiencies (36 – 56% in the 1.875, 3.75 and 

7.5% leach tests), and very low efficiencies (2.6 - 2.7%) for the 15% test.  Cadmium 

mass in the compost is extremely low, with recovery efficiency typically ~70% in the 

lower pulp density tests (i.e. 1.875 and 3.75%) and ≤15% in the higher density tests, 

suggesting that for recovery of cadmium, pulp density of lixiviant to solid should be 

3.75% or lower. 
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Table 4.12  Residue and substrate masses, and mass and efficiency of zinc recovered 

Leach-test 
pulp density substrate mass Residue mass 

Residue mass as 
percentage of 
substrate 

Overall recovery 
efficiency of zinc 
from substrate 

g g % % 

1.875%a 22.5 3.14 13.95 90.16 

1.875%b 22.5 1.77 7.88 59.67* 

3.75%a 45 4.57 10.14 88.37 

3.75%b 45 5.06 11.25 88.80 

7.5%a 90 4.84 5.38 62.56 

7.5%b 90 5.99 6.66 76.55 

15%a 180 1.17 0.65 6.70 

15%b 180 1.08 0.60 6.86 

*outlier – see text for further details 

Copper and lead both show very low recoveries as a solid: ≤26.1% for copper and 

≤19.5% for lead across all tests.  It is clear from both analysis of residues, and also leach 

efficiencies, that sulphuric acid leaching is not effective for the recovery of copper and 

lead.  Both these elements have shown very poor recovery rates during leaching with 

sulphuric acid, requiring high acid concentrations and low pulp-densities to achieve 

significant recovery from substrates, which at least in part can be explained by their 

relatively low sulphide solubility products compared to the other metals investigated 

(Hedin et al., 1994a). 

Where copper is present as a sulphide within these materials, highly oxidising 

conditions are required before it is dissolved (Davenport et al., 2002).  Pacović (1980) 

(after Vračar et al., 2003) indicates that an electrochemical potential of +337mV is 

required for effective copper sulphide dissolution.  Eh measurements conducted during 

the Nenthead leach tests indicated electropotentials were between 209mV in the 15% 

pulp solutions and up to 389mV in the 1.875% pulp solutions.  Under the most 

oxidising conditions of the lower pulp densities it is possible that Cu
2+

 species may 

form; however, studies have shown that even where oxidising agents are added, 

sulphuric acid-leach procedures yield low copper solubilisation rates at ≤60°C (Vračar 

et al., 2003; Oliver and Carey, 1976).  This also explains the slow solubilisation of 

copper compared to other metals as seen during the leach tests (see, for example, Figure 

4.15).  Increasing temperature also has also been shown to have a dramatic effect on 

recovery (Vračar et al., 2003).  Such behaviour has been attributed to the higher 

temperatures providing the activation energy required to oxidise copper in sulphuric 
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acid solutions (Vračar et al., 2003).  Therefore, recovery of copper from substrates is 

likely to require increased temperatures and may also require additional oxidising 

agents within the leach solution or, alternatively, the use of a bacterial catalyst to obtain 

reasonable reaction rates (Davenport et al., 2002). 

Upon exposure to low pH oxidising solutions, lead forms a sulphate (PbSO4) where 

sulphur is present, such as in sulphuric acid leach solutions.  PbSO4 is known to be 

insoluble in aqueous solutions (Inoue, 2000; Mercier et al., 1996) which explains the 

very poor recovery seen during the leach tests conducted as part of this work.  This is in 

addition to its low sulphide solubility product which means that it is less likely to 

dissolve compared to other metals when in sulphide form.  Alternative lixiviants such as 

hydrochloric acid or chelating compounds such as EDTA would therefore be required 

where lead recovery is an objective (Inoue, 2000; Cline et al., 1993). 

4.4 Metal recovery from treatment system substrates: Bioleaching 

Biological oxidisation of iron and sulphur offers a mechanism of recovering metals 

from waste materials (e.g. Bayat et al., 2009; Pathak et al., 2009a; Solisio et al., 2002).  

This approach avoids the need for handling large quantities of sulphuric acid as it is 

generated in-situ by microbially catalysed reactions (Rawlings, 2002).  Experimentation 

has been conducted, using conditions to promote biological sulphur oxidation, to test if 

this approach is effective at metal recovery (see section 3.5 for details of approach.  

Raw data are included as Appendix F).  This experimentation is preliminary only due to 

limitations on time and resources.  As a result, no attempts have been made to identify 

microbiological communities which might have otherwise provided a fuller picture of 

the mechanisms at work. 

Biological leaching of the Nenthead substrate used a configuration comparable to the 

acid-leach tests (sections 3.4 and 4.3) although using sterile apparatus and reagents, and 

substrates with 2% sulphur (S
0
) enrichment as a microbial nutrient source, comparable 

to other studies (Liu et al., 2008; Seidel et al., 2004).  A leach solution consisting of 

acidic mine water from the Woodend Low Level of the Threlkeld Mine, Cumbria (also 

known as Gate Gill), was selected to provide a microbial inoculum (refer to section 3.5).  

Static flasks at room temperature (~19°C - 3a/b) were tested against a stirred (2a/b) and 

heated flask (~30°C 1a/b) to test the influence of these variables on metal recovery rates 

(see section 3.5).  In addition, a control replicate (4a/b) was operated which was 
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identical to the static flask (3a/b) but the Threlkeld mine water was sterile filtered 

(<0.2µm) to remove the inoculation.  Table 4.13 shows the key parameters for the 

Threlkeld mine water. 

Table 4.13  Chemical analyses of the Threlkeld Mine discharge used for bioleaching tests 

Parameter unit <0.2µm filtered total Apparatus 

Eh mV 503 465 Myron 6P Ultrameter 

pH 
 

3.54 3.58 Myron 6P Ultrameter 

Cond. µS/cm 472.0 474.4 Myron 6P Ultrameter 

Zn mg/L 43.27 43.35 ICP-OES 

Pb mg/L 0.41 0.40 ICP-OES 

Cd mg/L 0.08 0.08 ICP-OES 

Ni mg/L 0.32 0.31 ICP-OES 

Fe mg/L 1.27 1.49 ICP-OES 

Mn mg/L 4.33 4.33 ICP-OES 

Cu mg/L <0.01 <0.01 ICP-OES 

SO4 mg/L 220.8 235.2 IC 

 

4.4.1 Key variables during bioleaching 

Figure 4.20 provides variables of pH, sulphate, and temperature measured during the 

biological leaching test and also shows sulphate as a function of pH. 

At the start of the biological leaching test, flasks were adjusted to pH 4±0.1 using 

concentrated sulphuric acid.  After 6 hours, however, pH had risen to >5, and after 96 

hours was >6 in all flasks but one (pH 5.9 in flask 4a – control).  This rapid rise in pH at 

the start of the test is attributable to buffering by the substrate, which was observed over 

a similar period during the chemical leaching tests (Figure 4.16).  After 216 hours, a 

rapid drop in pH to <5 (mean=4.39 for flasks 1a/b, 2a/b, 3a/b) was observed across all 

flasks excepting the control (4a/b) which remained pH >6.  All inoculated flasks (i.e. 

1a/b, 2a/b, 3a/b) continued to drop in pH, with mean pH for replicates as follows: 1a/b: 

2.48, 2a/b: 2.14 and 3a/b: 2.83.  pH in the control also dropped during the leach tests, 

but remained >4 (mean=4.12 upon test completion for flasks 4a/b). 
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Figure 4.20  Plots showing sulphate, pH and temperature over time, and pH vs. sulphate during 
bioleaching experiments 

Sulphate increased substantially in the inoculated flasks during the experimental period, 

from an average of 645mg/L at the start to 3,245mg/L in the heated flasks (1a/b), 

4,085mg/L in the stirred flasks (2a/b), and 2,702mg/L in the static room temperature 

flasks (3a/b) by the end of the test.  Sulphate in the control (4a/b) also increased, but to 

a lesser degree: 1,769mg/L.  As shown in Figure 4.20 (sulphate-pH plot), there was an 
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inverse correlation between sulphate concentration and pH (rs
 
= -0.91

14
 across 

inoculated flasks), indicating that H2SO4 was being generated.  Given that flasks were 

enriched with S
0
 and there was a ready supply of O2 (via aeration) and H2O, this 

suggests the following reaction could be occurring, (Waksman and Joffe, 1922): 

(2.10)  2𝑆 + 2𝐻2𝑂 + 3𝑂2
𝐴𝑡.𝑡ℎ𝑖𝑜𝑜𝑥𝑖𝑑𝑎𝑛𝑠
→            2𝐻2𝑆𝑂4 

The key missing piece of evidence is the identification of specific micro-organisms such 

as At. thiooxidans which would confirm the mechanism for sulphur oxidisation, 

although it is known that sulphur is chemically stable which implies that abiotic 

oxidation is unlikely (Rawlings et al., 2003).  Acid mine drainage waters such those 

from Threlkeld Mine used as a leach solution in these experiments are toxic to the 

majority of micro-organisms, with a few extremophile taxa which are adapted to such 

hostile environments, in particular iron and sulphur oxidising autotrophs (Mendez-

Garcia et al., 2015; Rawlings et al., 2003).  It is suspected that the cells identified in the 

Threlkeld Mine water (used to inoculate replicates 1-3) were autotrophic iron/sulphur 

oxidisers, given the mine water was sourced from deep underground, was strongly 

acidic (pH<4) and contained significant quantities of toxic metals and sulphate (Table 

4.13).  In-fact, a number of studies have actually used acid mine drainage as a sources 

of bacteria to inoculate biological leaching experiments (Bayat and Sari, 2010; Liu et 

al., 2008; Renman et al., 2006; Solisio et al., 2002).  It is less clear, however, why 

sulphur oxidation also appeared to have occurred (albeit to a lesser degree) within the 

control flasks (4a/b), in which mine water was sterile filtered to remove microbial cells.  

A possible explanation for this could be due to microbial contamination from the 

atmosphere, or spore-forming bacteria remaining within the substrate after oven drying.  

It is not uncommon for bacterial leaching to be conducted without inoculum but rather 

being operated in non-sterile environments allowing microbial communities to establish 

(Rawlings and Johnson, 2007; Seidel et al., 2004).  While these experiments were 

undertaken in a relatively clean environment, there was potential for microbial 

contamination of control flasks from the atmosphere (i.e. during setting up and 

sampling).  Generally, gram-negative sulphur oxidising bacteria such as At thiooxidans 

are non-spore forming (Waksman and Joffe, 1922) but spore-forming gram-positive 

acidophiles capable of sulphur oxidation have been identified, such as Sulfobacillus 

(Dufresne et al., 1996) and other Firmicutes (Rawlings and Johnson, 2007).  More 

                                                 
14

 d.f. = 76, P <0.001; Spearman rank order correlation 
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recently, gene sequencing technology has identified that the often quoted gram-negative 

bacteria, such as Acidothiobacillus and Leptospirillum genera, are actually less diverse 

than gram-positive strains in a range of acid-sulphide mine waste dumps (Schippers et 

al., 2010).  This means that spore-forming sulphur oxidisers do exist and, may well have 

been part of a sulphur-cycling community present in the Nenthead treatment system 

substrate.  If so, it is possible that these organisms could have survived storage and 

105°C oven drying and been revived in the leach tests, giving rise to bio-oxidation of 

sulphur to sulphuric acid.  This latter explanation seems most plausible because it is 

known that sulphur oxidising organisms both exist in mine drainage waters and are 

active in passive mine water treatment systems (Hallberg and Johnson, 2005; Johnson, 

2003).  Nevertheless, as shown in Table 4.14, sulphur oxidation was substantially 

higher within the inoculated flasks (1-3) when compared to the control (4). 

Table 4.14  Sulphate and pH measurements upon completion of bioleaching experiments, showing 
replicates 

Flask 
Heated Stirred No heat/stir Control 

1a 1b 2a 2b 3a 3b 4a 4b 

SO4 3,015 3,475 3,815 4,355 2,554 2,851 1,841 1,697 

pH 2.60 2.37 2.15 2.13 2.96 2.69 4.07 4.16 

 

Note that sterile filtering caused minimal change to geochemistry of mine water (Table 

4.13) and, as a consequence, it is considered that the difference in sulphuric acid 

generation is due to the filterable fraction present in the mine water.  Microbiological 

analysis would be required to confirm whether this filterable fraction contains sulphur 

oxidising bacteria.  Greater increases in acid generation were seen in inoculated flasks 

which were stirred and heated, and were continuing to increase at the time the 

experiments were terminated.  If completely oxidised, the added 5g/L of sulphur would 

form 12,192mg/L of sulphate
15

, far more than measured at the completion of the 

biological leaching experiments.  Additionally, upon dismantling, significant quantities 

of what appeared to be raw sulphur were observed within the substrate.  These factors 

imply that further oxidation of sulphur might have occurred if experiments were 

allowed to continue. 

                                                 
15

 Sulphur molecular weight 32.8g/mol, sulphate molecular weight 96g/mol. 
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In addition to oxidation of added sulphur, there may have also been oxidation of 

reduced sulphur present in the substrate, such as metal sulphides.  Metal removal in the 

Nenthead treatment system was thought to be, at least in part, due to sulphate reduction 

and formation of metal sulphides (Jarvis et al., 2014).  Because no analyses have been 

conducted on the substrate to determine its sulphur content and oxidation state, the 

importance of this mechanism in the generation of sulphuric acid is unknown.  

However, given that the Rampgill mine water was poorly mineralised (particularly in 

respect to iron: 0.02mg/L (Gandy and Jarvis, 2012)), its treatment is unlikely to form 

significant quantities of acid generating minerals such as pyrite.  Dissolution of zinc 

sulphide (and other di-valent metals sulphides such as NiS; PbS; CdS and CuS) on the 

other hand generate no acidity (Younger et al., 2002) and could therefore not be 

responsible for the observed drop in pH. 

4.4.2 Metal recoveries during bioleaching 

Data are presented for metal recovery efficiencies in Figure 4.21, calculated according 

to equation 4.1 (section 4.3).  Because the same substrate was used for the bioleaching 

tests and the variable pulp density acid leach tests, the un-leached substrate metal 

concentration is the same as that shown in Table 4.4. 

Manganese showed rapid and substantial recovery compared to other metals after a 

relatively short period in the heated flasks (72% after 336 hours) compared to 59% in 

the stirred flasks, 50% in the room temperature static flasks, and just 23% in the control 

flask.  >100% manganese was recovered in the heated flasks after 720 hours and 888 

hours in the stirred and static flasks at room temperature, with recovery reaching 96% in 

the control.  Zinc, like manganese, also showed high recovery efficiencies, although 

initially recovery rates were negative, reflecting removal of zinc from the leach solution 

(refer to Table 4.13 for starting concentrations).  Positive recovery was established after 

336 hours in the heated and stirred flasks, 552 hours in the static, room temperature 

flasks and 720 hours in the control.  Similarly to the chemical leaching tests, >100% 

recovery efficiencies were seen for zinc, with >100% being achieved by the end of all 

inoculated tests reflecting greater extraction than achieved by aqua regia digest of the 

substrate.  Zinc recovery in the control reached 71% by the end of the experimental 

period.  Nickel and cadmium both show good recoveries (71 – 92% across all 

inoculated experiments) albeit that these figures are lower than those for zinc.  Re-

examination of sequential extraction data show that both nickel and cadmium were 
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predominantly extracted by latter steps of the procedure (>75% associated with steps 

4/5 – Figure 4.13).  This implies that these metals were more tightly bound than zinc, 

which would explain their lower rates of recovery. 

  

Figure 4.21  Metal recovery efficiencies and pH during bioleaching experiments 

4.4.3 Reproducibility of bioleaching experiments 

Replication of biological leaching tests was generally good, with the majority of 

replicate measurements being within 10% of the mean value (n=342/364).  The majority 
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of replicates with poor repeatability (i.e. >10% deviation from mean, n=18/22) occurred 

within the stirred flasks (2a/b) as is evident from deviating recovery efficiencies as 

shown in Figure 4.22.  It may have been that in one of the stirred replicates (2a/b) 

effective stirring may not have been achieved, compared to the other replicate.  The fact 

that flask 2a shows very comparable zinc recovery rates as the unstirred flasks (3a/b) 

supports this theory.  Further investigation using an improved stirring mechanism (such 

as top-mounted mechanical stirrers) would be required to determine the impacts of 

stirring on metal recovery rates. 

 

Figure 4.22  Zinc recovery from bioleaching tests showing replicates 

Compared to other studies in the literature, recovery rates were relatively slow.  For 

example, Bayat and Sari (2010) achieved 97% zinc removal from a metal plating sludge 

after 480 hours, whereas it took 720-888 hours to achieve the same efficiency in any of 

the tests in this study.  Furthermore, after the same period, 96% copper and 84% lead 

recoveries were seen from the metal plating sludge (Bayat and Sari, 2010); whereas 

even after 1,560 hours, <50% of these elements were recovered from the Nenthead 

substrate.  Brombacher et al. (1998)  undertook a leach test over just 144 hours, 

demonstrating ~80% zinc recovery, ~90% copper recovery and ~100% cadmium 

recovery from fly ash after a three stage process (Brombacher et al., 1998).  Variables 

and experimental configurations in these studies differ significantly from this study, 

making it difficult to draw meaningful comparisons.  When inspecting the manuscripts, 

however, the microbial populations used have been pre-cultured to increase their 
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numbers before being used in the leaching tests.  For example, cell counts were 10
9
 in 

the stock leach solution used by Brombacher et al. (1998) and 10
6
 in the 10% v/v 

inoculum used by Bayat and Sari (2010); whereas the cell count in this study was just of 

the order of 10
3
.  This is just one variable which would warrant further investigation in 

order to optimise the bioleaching process. 

It has been suggested that biogenic sulphuric acid leaching is effective at leaching 

metals bound to iron and manganese oxides (characterised by step 3 of a Tessier 

analysis), yet less effective when metals are bound to organic matter (step 4) 

(Karwowska et al., 2015).  These findings are in agreement with data presented in this 

thesis: copper and lead are largely extracted during steps 4 (and 5 for Pb) of a Tessier 

sequential extraction, and show poor recovery efficiencies during biological (and 

chemical) leaching.  However, zinc and manganese, dominated by steps 3 (and 2 for 

Mn) in the Tessier results show very high recovery efficiencies in the biological 

leaching tests.  As explored throughout this chapter, these differences in extractability 

may be due to several factors, including sulphide solubility products and complex 

stabilities (Irving and Williams, 1953). 

In terms of order of extraction of different metals, biological leaching exhibits a similar 

sequence to chemical leaching, perhaps unsurprising given sulphuric acid is involved 

with both approaches.  Nevertheless, there is one notable difference in that very little 

iron is extracted in any of the bioleaching tests: a maximum of 13.4% measured in flask 

2b (stirred).  The static flask at room temperature (3a/b), while recovering 106/113% of 

the zinc, recovered just 0.3/0.8% of the iron by the end of the experimental period.  

Whereas, for instance, the 0.02M chemical leach test (Figure 4.15) recovered 102.9% 

zinc and 26.1% iron.  Because there was no significant enrichment of iron in the 

substrate as a result of treating mine water, its source must be the substrate itself and, 

therefore, leaching is likely to result in change to the substrate composition which may 

impact its suitability for re-use.  Furthermore, iron can be a nuisance component of 

leach solutions adding cost and complexity to downstream processing requirements 

(Amer et al., 1995; Rabah and El-Sayed, 1995). 

While copper and lead recovery efficiencies remained very low or negative throughout 

the majority of the test, towards the end the rate of recovery started to increase in the 

inoculated flasks.  In particular, greater recovery efficiencies were seen for lower pH 

(mean of replicates - stirred: pH 2.1, Cu 46%, Pb 17.9%; heated: pH 2.5, Cu 23.3%, Pb 
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-0.8%; static room temp: pH 2.8, Cu 10.4%, Pb -5.8%).  The pattern for copper is in 

agreement with the chemical leaching tests and could be explained by the speciation of 

copper in the substrates (refer to Figure 4.3) and its low sulphide solubility.  Lead 

recovery was particularly poor, explicable by its propensity to form a sulphate with low 

solubility (Mercier et al., 1996).  However, as pH values were on a downward 

trajectory, it might be possible that significant increases in recovery of these metals 

might have occurred if experiments had been allowed to continue (Bayat and Sari, 2010; 

Brombacher et al., 1998). 

4.5 Conclusions 

4.5.1 Summary of investigations 

Tessier sequential extractions were undertaken to characterise substrates from the 

Nenthead pilot treatment system after it had been decommissioned.  The samples were 

subjected to both wet and dry sieving, and samples were analysed from different 

locations within the treatment system, to identify how metals had accumulated and how 

amenable they might be to recovery. 

Leach tests were conducted on a mine water treatment substrate across a range of 

sulphuric acid concentrations (0.02M; 0.1M; 0.5M) and pulp densities (1.875%; 3.75%; 

7.5%; 15%) in two separate sets of experimentation.  Leach solutions for the variable 

pulp density tests were dosed with alkali and filtered to recover leached metals as a 

solid.  Additionally, biological leaching was attempted in a third set of experiments, 

using an acidic mine water as a lixiviant and microbial inoculum.  Recovery efficiencies 

were calculated against metals data from aqua regia digest of the unleached substrate. 

4.5.2 Substrate characterisation 

Wet sieving indicated that substantially more zinc was associated with the fine grained 

fraction of the Nenthead substrate.  This pattern was not seen from dry sieving, where it 

is thought that the results are partially an artefact of the procedure (by cementing of 

compost fragments during drying).  Sequential extraction procedures appear to be 

reproducible based upon triplicate samples, but differences between duplicate sub-

samples was identified as an issue.  This is attributed to bulk sample heterogeneity. 
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Average metal concentrations based upon 11 samples from across the treatment tank 

identified zinc and iron as the most abundant metals with average total concentrations of 

5,404mg/kg and 15,374mg/kg, respectively.  Zinc and iron concentrations were 

typically an order of magnitude greater or more than other metals investigated: 

manganese (570mg/kg), lead (189mg/kg), copper (119mg/kg), nickel (83mg/kg) and 

cadmium (11mg/kg).  Substantially more zinc, cadmium and manganese were found in 

upper substrate layers compared to respective lower layers across most sample 

locations.  This general pattern was seen for other metals, although to a lesser degree. 

Copper appeared to be most tightly bound, associated with steps 4 and 5 of the 

sequential extraction, whereas manganese was least tightly bound, mostly associated 

with the first three steps.  This is consistent with both their sulphide solubility products 

and Irving-Williams order of complex stability, which order copper and manganese as 

the least and most soluble, respectively (Hedin et al., 1994a; Irving and Williams, 

1953).  Generally, most zinc was associated with the 3
rd

 extraction step.  This is counter 

intuitive since zinc was expected to be largely present as a sulphide, commonly 

extracted in the 4
th

 step (Mayes et al., 2011; Jong and Parry, 2004).  This may be 

explained by issues with the sample collection and preparation for analysis which may 

have altered species (Rapin et al., 1986).  Alternatively, the high concentrations of zinc 

compared to other metals may have led to differences in removal mechanisms within 

the treatment system, such as adsorption.  On the basis of the most readily extractable 

fractions (steps 1-3 of the Tessier analysis), the metals investigated can be ordered in 

the following sequence of extractability: 

Mn > Zn > Ni > Cd > Fe > Pb > Cu 

These findings suggest that sieving may offer a means of concentrating the zinc rich 

fraction of the substrate.  Separation of fine grained material by a wet-sieving process 

might be used to recover a zinc rich concentrate, leaving behind a material comprising 

larger, less contaminated particles.  Selective removal of upper substrate layers may also 

offer a mechanism of separating more contaminated substrates from those which are 

less contaminated.  Both these processes could be used to reduce volumes of 

contaminated material which require disposal off site, or processing for metal recovery; 

thereby reducing life-cycle costs of mine water treatment. 
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4.5.3 Acid leaching tests and metal recovery 

More than 100% of the zinc was extracted after 100 hours across the three acid 

concentrations investigated, whereas it took more concentrated acids to achieve 

significant extraction efficiencies of other elements such as iron, copper, cadmium and 

lead.  Manganese showed high extraction efficiencies, with in excess of 100% leached 

across all acids after just 30 hours.  Nickel and cadmium also showed >100% extraction 

by the end of the leach tests in the two more concentrated acids (0.1M & 0.5M), 

although starting concentrations were low.  Extraction efficiencies >100% are thought 

to have arisen due to incomplete recovery of metals by the aqua regia digest of the 

starting substrate, thereby providing an underestimate of the metal available for leaching 

(Chen and Ma, 2001).  Extraction efficiencies for lead and copper were comparatively 

poor, reaching 68% and 58% for these metals in the most concentrated acid by the end 

of the test. 

Pulp density tests were all conducted using 0.1M sulphuric acid, and experimental 

conditions were identical to the first round where acid concentration was varied.  In 

excess of 100% of zinc and manganese was leached by the end of the 1.875%, 3.75% 

and 7.5% pulp leach tests.  Yet <60% of manganese and <20% of zinc was leached in 

the 15% pulp density test, with all other metals showing leach efficiencies of <20%.  pH 

measurements showed that values remain supressed below 2.5 in all tests, other than the 

15% pulp density test, where pH rose to above 4.5.  It is thought that buffering of the 

lixiviant by the substrate has caused the pH rise, responsible for poor leaching 

efficiencies in this test.  It appears that there is a threshold, between 7.5% and 15% pulp 

density where the recovery of the target metal zinc drops significantly.  Higher pulp 

densities would offer a greater through-put of substrate for less lixiviant, assuming that 

a batch rather than a continuous process is operated. 

It can therefore be concluded that 0.1M sulphuric acid offers an effective compromise 

between very high zinc and cadmium extraction efficiencies (>100%) yet only 

mobilising 50% of iron from the substrates.  Optimum pulp densities for similarly high 

recovery of zinc and cadmium were 1.875% and 3.75%.  The higher of the two pulp 

densities may be preferable in practical applications, given that this would allow a 

greater through-put of material for a given volume of leach solution. 
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In the 0.1M leach test (1.875% pulp density), both zinc and cadmium were reduced to 

levels comparable with the blank.  With respect these two elements, therefore, it can be 

considered that the substrate was effectively de-contaminated by the acid-leaching 

process. 

Precipitation of metals from pulp density test leach solutions was achieved by raising 

pH to >9 with sodium hydroxide, which resulted in precipitation of a solid, recoverable 

by filtration.  Zinc, iron, manganese, nickel and copper were all below 1mg/L in the 

filtrate, and lead and cadmium were below detection limits.  Sodium (from sodium 

hydroxide alkali), sulphate (from sulphuric acid) and aluminium remained elevated in 

the filtrate, which may cause problems for discharge in the case of spent leach solutions, 

although this would only be for the duration of the metal recovery process.  Between 

60% and 90% of the zinc was recovered as a solid, compared to starting concentrations 

in the substrate, across 1.875%, 3.75% and 7.5% pulp density leach tests.  Metals were 

determined by aqua regia digest in both the substrate and the residue, although it was 

noted that some material was probably lost in the process of leaching and recovery and 

processing of solids from leach solutions, and thus true recovery efficiencies might have 

been higher. 

Chemical leach and precipitation procedures investigated demonstrate a highly effective 

mechanism for the decontamination of passive compost based treatment system 

substrates and generation of a concentrated metal solid.  This method of substrate 

decontamination may offer a mechanism of reducing treatment system life-cycle costs 

by reducing waste volumes and recovering metals.  This is discussed in the context of a 

full-scale system in Chapter 5. 

4.5.4 Bioleaching tests 

Leaching was conducted, encouraging biological sulphur oxidation to form sulphuric 

acid within aerated leach test reactors in a similar configuration to the chemical leach 

tests.  In order to provide conditions to facilitate biological sulphur oxidation, S
0
 was 

added to the Nenthead substrate, along with raw acid mine drainage (Threlkeld Mine) to 

serve as a microbial inoculum.  Additional variables were investigated: stirring, heating 

and control replicates.  The control replicate received sterile filtered acid mine drainage 

from the Threlkeld Mine, in order to remove any inoculation that this might provide.  

Geochemically, the filtered water was comparable to that which was unfiltered, 
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meaning that any difference between the control and inoculated flasks arose due to the 

filterable fraction. 

Sustained decreases in pH and increases in sulphate were observed which is indicative 

of microbial sulphur oxidation (Rawlings et al., 2003).  Lower rates of sulphur 

oxidation were also observed in the control flasks, indicating that self-inoculation may 

have occurred, or sulphur oxidation may have occurred by another mechanism.  

Potentially, microbial contamination from either the atmosphere or the oven dried 

substrate could have given rise to self-inoculation of the substrate.  Further investigation 

would be required, however, to determine the mechanisms of sulphur oxidation across 

all replicates.  Nevertheless, data collected confirm that increased rates of sulphuric acid 

generation are achievable by the use of raw mine water, compared to the same water 

after sterile filtering. 

At the start of the experiments, the pH rose from 4 to >6 across all flasks, attributable to 

buffering by the substrate.  This rise in pH was accompanied by negative metal 

recoveries (for all metals excepting Mn) which reflected metal removal from the mine 

water leach solution.  However, this pattern was observed to have started to reverse by 

216 hours as pH dropped to <5 in all inoculated flasks. 

Although biological leach tests operated for much longer periods than the chemical 

leaching (1,560 hours vs. 100 hours), metal recovery efficiencies were generally high.  

In particular, >100% recovery was seen for zinc and manganese for all the inoculated 

experiments; with 100% being reached between 552 and 888 hours in the heated flasks.  

High recovery efficiencies were also seen for nickel and cadmium, where 71-83% and 

71-92% were achieved in respectively, across the inoculated flasks.  Higher recovery 

efficiencies were seen in the stirred and heated flasks, compared to the static flasks at 

room temperature, although metal recovery efficiencies in the control were significantly 

lower.  For example, at the end of the experiment just 31% nickel, 71% zinc and <0% 

cadmium had been recovered.  Average pH measurements at the end of the tests were: 

4.1 controls, 2.8 static room temperature flasks, 2.5 heated flasks and 2.1 stirred flasks. 

Copper recovery rates were slow, however, and only started to increase towards the end 

of the test implying that, for this substrate, a longer leach period would be required.  

Lead recovery was very poor, with a maximum of 18% being recovered in the most 

successful leach (stirred reactors).  This can be explained due to the low solubility of 
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lead sulphate in aqueous solutions (Mercier et al., 1996).  Both these elements were at 

relatively low concentrations in the substrate. 

Perhaps one of the most significant differences observed in biological leaching is that 

iron extraction was low, compared to chemical leaching, with an average of ≤10% 

recovery in the most successful leach (stirred reactors) when >100% of zinc and 

manganese, and >80% nickel and cadmium were extracted.  Because iron can be a 

nuisance when processing leach solutions (e.g. Amer et al., 1995), biological leaching 

yields a benefit over chemical leaching.
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Chapter 5. Force Crag: Resource Recovery to Offset the Cost of 

Mine Water Treatment 

5.1 Introduction and chapter contents 

Review of the literature identified a research gap relating to how resource recovery 

might be used to reduce or offset the life-cycle costs of passive metal mine water 

treatment systems (see Chapter 2).  To date, there have been no investigations of 

passive metal mine water treatment systems to either forecast life-cycle costs, or to 

assess how resource recovery might be used to reduce or offset these costs.  In 

particular, for passive treatment systems, it appears that little consideration has been 

given to the rates of metal accumulation, which directly relate to the quantities of metal 

recoverable for a given operational period. 

Commissioning of the first full-scale passive treatment system in England to tackle a 

zinc rich metal mine water took place in April 2014 at the Force Crag Mine, Cumbria.  

In the context of this research, this offered an ideal opportunity to closely study the 

possibilities for recovery of resources from a system of this type at full-scale.  It may be 

that resources are available for recovery, which could offer potential to offset life cycle 

costs.  Or, monitoring of system performance might identify possible limits to the length 

of time for which the system will operate effectively and which, if resolved, could 

extend system lifetime.  To reiterate the objectives outlined in Chapter 1, the intention 

of studying the Force Crag treatment system was to: 

 Monitor the performance of a passive treatment system to gain an understanding 

of the rates of metal accumulation and thereby forecast future metal 

concentrations in the substrate (Objective 4). 

 Estimate life-cycle costs associated with an operational metal mine water 

treatment system and determine how resource recovery from the mine water 

might offer a mechanism for offsetting these costs (Objective 5). 

This chapter firstly evaluates the performance of the Force Crag mine water treatment 

system.  This is important to demonstrate the effectiveness of this technology for 

tackling pollution from abandoned metal mines.  In addition, a break-down of costs for 

construction and operation are provided.  
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The water quality monitoring forms a larger body of externally funded research into 

system performance and, consequently, while this author has been significantly 

involved with the sample collection, there are some elements which have been entirely 

undertaken by others.  In particular, laboratory analyses of water samples were 

completed by technical staff and analysed according to methods outlined in section 

3.6.3, Chapter 3.  Interpretation of data presented in this chapter has been made by this 

Author. 

Whole life-cycle costs presented are based upon actual outturn for construction and 

forecast operational costs, without resource recovery.  The possibility of reducing these 

life-cycle costs by resource recovery and waste reduction are then investigated.  Data 

from preceding chapters and the literature will be contextualised and their implications 

discussed in the context of the full scale treatment system.  Assessment is made of the 

rates of accumulation of the key metal, zinc, in the substrate in comparison to estimates 

and measurements from other examples in the literature.  Evaluation of the cost 

implications of metal recovery from the substrate are investigated using estimates from 

industry specialists, Acumen Waste Ltd.  As the first of its kind in Great Britain, the 

Force Crag system presents a new set of challenges relating to waste disposal, which 

have not previously been evaluated in any detail, either nationally or internationally.  

Renewable energy generation may offer a way to both generate revenue and improve 

the heritage facilities at the site, which, due to its location, does not have access to 

conventional energy supplies.  Potential for hydropower and mine water-sourced 

heating are explored.  Additionally, the life-cycle costs of the passive system with and 

without metal recovery are evaluated against costs of active treatment. 

5.2 Treatment system performance 

Data presented and discussed in this thesis are for the first year of operation of the 

treatment system (April 2014 – March 2015).  The general focus is on performance of 

the two Vertical Flow Pond (VFP) units in the treatment system, rather than the 

treatment system as a whole (i.e. including the polishing wetland) since the latter 

component provides only an auxiliary function to reintroduce oxygen into the water 

before discharge to the Coledale Beck (see Jarvis et al., 2014).  Raw data are included 

as Appendix G. 
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5.2.1 Metal removal over monitoring period 

System performance over the first year of operation was carefully monitored; Table 5.1 

provides a summary of metal removal over the first year of operation for both VFPs. 

Table 5.1  VFP treatment performance showing mean values for April 2013 - March 2014, inclusive 

  Influent 

(Level 1) 

VFP1 out VFP2 out Efficiency 

VFP1 VFP2 

  mg/L mg/L mg/L % removal % removal 

Zn 3.26 0.04 0.16 98.68 95.17 

Pb ≤0.053 ≤0.051 ≤0.051 - - 

Cd ≤0.017 <0.01 <0.01 - - 

Ni 0.018 ≤0.012 ≤0.012 - - 

Al ≤0.07 ≤0.099 ≤0.112 - - 

Fe 0.51 1.47 1.35 -186.02 -162.67 

Mn 0.56 0.44 0.51 20.87 8.28 

Cu <0.01 ≤0.013 ≤0.013 - - 

 

Zinc removal of >95% was achieved across both VFPs as shown in Table 5.1.  Because 

removal of zinc as a key pollutant was the overarching objective at Force Crag (Jarvis et 

al., 2014), this result signifies a major success of the treatment system.  Further details 

relating to this main contaminant are provided in section 5.2.2.  Aluminium, iron and 

copper were greater in the system effluents than influents when averaged over the first 

year of operation, indicating that the system was a net exporter of these metals.  A rapid 

decline in concentration within effluents was seen, however, over the first few months 

of operation.  Nickel and copper decreased to below the 0.01mg/L analytical detection 

limits after just 1 and 2 weeks, respectively.  Copper was below detection limits in the 

system influents throughout the study period and nickel concentrations were only 

marginally elevated on occasion.  Likewise, lead and cadmium concentrations were 

frequently below analytical detection limits and therefore further investigation is 

required to determine actual values before any firm conclusions can be drawn on 

removal of these metals. 

Aluminium had a mean influent concentration of 0.07mg/L excepting occasional times 

when it was below 0.05mg/L analytical detection limits (n below detection: 3/43).  

Effluent aluminium concentrations decreased and remained below detection limits after 
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2 months in VFP1 (n below detection: 29/43), although it took 7 months before 

concentrations remained below detection limits in VFP2 (n below detection: 12/43).   

Due to limits of detection, removal efficiencies may have been higher than might be 

inferred from the data presented
16

.  Iron concentrations in effluents did not reach 

detection limits during the experimental period, although they decreased to below 

1mg/L after 6 months of operation.  Removal mechanisms for iron and aluminium in 

passive treatment systems are dominated by (oxy)hydroxide formation (Uster et al., 

2015; Younger et al., 2002).  Ochreous precipitates were observed on the substrate 

surface indicative of iron removal by this process, which has been shown to dominate 

over sulphate reduction in similar systems elsewhere in the UK (Matthies et al., 2009; 

Watson et al., 2009).  Manganese exhibits low removal efficiencies (8-21% removal) 

which might be explained by its high sulphide solubility product (5x10
-15

) and low 

complex stability (Mn<Fe<Ni<Cu>Zn) (Hedin et al., 1994a; Irving and Williams, 

1953).  If manganese is to be removed as a sulphide, it has been shown that an excess of 

H2S is required (Yoo et al., 2004), although other mechanisms such as carbonate (Uster 

et al., 2015; Zagury et al., 2006) and hydroxide (Bamforth et al., 2006) precipitation 

have also been shown to be important removal mechanisms elsewhere. 

5.2.2 Zinc 

The Force Crag treatment system was designed specifically to remove zinc as a key 

contaminant, and removal efficiencies for this metal were very high during the 

monitoring period.  If considered on a quarterly basis, for the first two quarters of 

operation total zinc removal efficiency was 97%, for the third it had increased to 98% 

and by the final quarter of the year it was 99%.  Such consistently high performance, 

particularly over the colder winter months, is encouraging for the longer term operation 

of this treatment system.  Mean influent zinc concentrations were broadly comparable 

for total zinc: 3.26mg/L, <0.45µm filtered: 3.20mg/L and <0.1µm filtered: 3.07mg/L.  

Filtered zinc (<0.45µm) shows marginally higher removal efficiencies compared to total 

zinc, with zinc removed to below 0.01mg/L detection limits in VFP1 on several 

occasions in the final quarter (Figure 5.1).  However, throughout the duration of the 

monitoring period, zinc filtered to <0.1µm was consistently below 0.01mg/L detection 

limits in both effluents (data not shown) compared to the total zinc concentrations of 

0.04mg/L (VFP1) and 0.16mg/L (VFP2).  This suggests that, while the majority of zinc 

                                                 
16

 Analytical detection limits in mg/L for Pb, Al: 0.05; Cd, Cu, Ni: 0.01 
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in the system influent is dissolved (i.e. <0.1µm), very little is dissolved in system 

effluents (<0.01mg/L).  It is worth noting, however, that classification of dissolved 

species is not clearly defined by particle size (Stumm and Morgan, 1996).  Mechanisms 

for zinc removal are discussed further in section 5.2.4. 

 

Figure 5.1  Zinc removal at Force Crag.  Final effluent is a combined flow of VFPs 1 and 2 after having 
passed through a small aerobic wetland (note log scale) 

Table 5.2 compares the performance of the Force Crag VFPs to some other passive pilot 

and full scale systems engineered to harness bacterial sulphate reduction for metals 

removal.  However, mine water geochemistry and treatment system design vary 

between sites, which is likely to affect performance.  These data are a short summary of 

removal metrics relating to total zinc, where efficiency is calculated as the percentage 

zinc removed between influent and effluent (%), and volume adjusted removal rate is 

the mass of metal removed per unit of treatment system volume per day (g/m
3
/d).  All 

data, including other variables, are available within the database in Appendix A. 
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Table 5.2  Comparative mean zinc removal rates and efficiencies from a range of bioreactor systems 
harnessing bacterial sulphate reduction 

System name/ description, Reference Location Influent 
zinc  

Flow Study 
period 

Efficiency 
and removal 
rate (zinc) 

mg/L L/s d % g/m
3
/d 

Nenthead, field based pilot bioreactor 
(Jarvis et al., 2014) 

Cumbria, 
UK 

2.2 0.018 730 68 0.9 

Luttrell system, single cell bioreactor 
(ITRC, 2013; Hiibel et al., 2008) 

Montana, 
USA 

205 0.048 1,095 99 1.45 

West Fork Unit, settling / anaerobic 
ponds active lead mine (Gusek et al., 
1998) 

Missouri, 
USA 

0.36 75.8 180 80 0.63 

Burleigh Mine, up-flow bioreactor 
(USEPA, 2002) 

Colorado, 
USA 

57 0.32 1,460 56 3.40 

Burleigh Mine, down-flow bioreactor 
(USEPA, 2002) 

Colorado, 
USA 

57 0.32 1,460 65 3.93 

Cadillac Molybdenite bioreactor / 
oxidation pond & ALD (Kuyucak, 2006) 

Quebec, 
Canada 

1.35 0.38 420 99 0.11 

Cwm Rheidol field based pilot 
bioreactor.  Unpublished data, 
Newcastle University 

Wales, UK 12.75 0.060 750 63 2.07 

Palmerton pilot unit, smelter drainage 
bioreactors (Dvorak et al., 1992) 

Pennsyl-
vania, USA 

317 0.003 126 100 9.58 

Dalsung Tungsten Mine pilot bioreactor 
(Cheong et al., 1998) 

South 
Korea 

11.4 0.001 118 84 2.40 

Standard Mine superfund site, 
Biochemical reactor (Rutkowski, 2013; 
Reisman et al., 2008) 

Colorado, 
USA 

24.7 0.063 1,230 100 11.20 

Haile Mine bioreactors (2no.) / wetland 
(ITRC, 2013) 

S. Carolina, 
USA 

1.8 0.38 1,643 95 0.02 

Lady Leith bioreactor and wetland (ITRC, 
2013) 

Montana, 
USA 

0.75 0.38 3 
visits  

72 0.54 

Active coal mine site, pilot bioreactor 
(Trumm and Ball, 2014) 

New 
Zealand 

6.3 0.010 141 100 5.40 

Galkeno adit, United Keno Hill Mines 
wetland (Infomine, 2015) 

Yukon, 
Canada 

25 0.3  72 0.64 

Force Crag VFP1 bioreactor.  
Unpublished data, Newcastle University 

Cumbria, 
UK 

3.26 3.27 365 99 1.89 

Force Crag VFP2 bioreactor.  
Unpublished data, Newcastle University 

Cumbria, 
UK 

3.26 2.94 365 95 1.90 
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Flow rates at Force Crag are greatest out of all systems studies, excepting the West Fork 

Unit system which was operating at an active mine site (Gusek et al., 1998).  

Performance indicators of zinc removal efficiency and volume adjusted removal rate 

show that the Force Crag system is a high performing compost bioreactor, out-

performing 5 similar systems described in the literature across both these metrics, 

including the Nenthead system of the same design, albeit that this system suffered some 

operational problems which affected its performance (Gandy and Jarvis, 2012).  A 

further 5 sites show broadly comparable performance to Force Crag when considering 

both removal rate and efficiency together (where efficiencies ranged between 56-99% 

and removal rates between 1.45 and 3.93g/m
3
/d).  Three treatment systems cited, 

however, outperform the Force Crag VFPs by both rate and efficiency of zinc removal: 

Palmerton pilot system treating smelter drainage in Pennsylvania (Dvorak et al., 1992), 

Standard Mine bioreactor, Colorado (Rutkowski, 2013; Reisman et al., 2008) and a pilot 

bioreactor operating at an active coal mine site in New Zealand (Trumm and Ball, 

2014).  Looking more closely at the variables for these three systems, both the influent 

sulphate concentrations at the Palmerton and the New Zealand sites were in excess of 

2,000mg/L (mean values).  The Standard Mine site also had relatively high sulphate 

concentrations of 281mg/L (mean, n=7), more than an order of magnitude greater than 

those seen at Force Crag (mean: 26.7mg/L, n=43).  Zinc concentrations were also very 

high in the Palmerton system at 317mg/L (mean, n=26).  Given a sulphate to zinc 

stoichiometric ratio of 1:1 for ZnS formation, there is a comparative excess of sulphate 

(950%) to that at Force Crag (820%).  While there appears to be little empirical 

evidence linking stoichiometric excess of sulphate to metal removal efficiencies, an 

excess of biogenic sulphide would prevent this factor from being a limit on treatment 

performance (Klein et al., 2013).  Closer inspection of the system configuration, 

however, finds a residence time of 33 days at Palmerton, dictated by the unusually low 

flow, highly concentrated waters (Dvorak et al., 1992).  Both the site in New Zealand 

and Standard Mine also have higher zinc concentrations than Force Crag (6.3mg/L and 

24.7mg/L, respectively – mean values) yet retention times at both these sites are only 

slightly higher than at Force Crag (28 and 30 hours, respectively, compared to the 15-20 

hours at Force Crag (Jarvis et al., 2015)).  Given the relatively high metal accumulation 

rates of these systems, it would be of great interest to compare, in the long term, their 

life-times with that of the Force Crag VFPs.   
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5.2.3 Alkali and alkaline earth metals and secondary contamination 

Considering firstly the four major alkali/ alkaline earth metals (calcium, magnesium, 

sodium and potassium), data shows that initial effluent concentrations were very high, 

followed by exponential decay.  Within 4 months of operation, concentrations of 

magnesium, sodium and potassium had decreased to levels comparable with influent 

concentrations (potassium below detection limits of 1mg/L).  Calcium concentrations do 

not exhibit the same exponential decay but a relatively linear decline over the 

monitoring period. 

Effluent metal concentrations in excess of those measured in the system influent during 

the early phase of operation must have been sourced from within the treatment system, 

probably from leaching of the compost substrate.  Jarvis et al. (2015) identifies that 

ammonium, Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand 

(COD) are also significantly elevated in the effluent shortly after commissioning at this 

site, also attributable to leaching of the substrate and resulting in secondary 

contamination of the receiving Coledale Beck (Jarvis et al., 2015).  After 4 months, 

however, these parameters had decayed in the system effluent and concentrations in the 

Coledale Beck were back to acceptable levels (Jarvis et al., 2015). 

5.2.4 pH, conductivity, sulphate and alkalinity 

During the first month of operation, pH was, on average, 6.6 in system influent and 7.6 

in system effluent, before decreasing slightly in the effluents to 6.9, on average, for the 

remaining 11 months.  Conductivity was initially highly elevated in system effluents for 

the first week (typically >1,000µS/cm) before showing rapid decline to <500µS/cm 

after this period, decreasing to <200µS/cm after 6 months.  This pattern is consistent 

with the major ion and organic contaminant data, reflecting initial leaching of the 

substrate.  Influent conductivity measurements remained relatively stable for the 

monitoring period at 114µS/cm on average (SD 20.8, n=42). 

Sustained removal of sulphate through the treatment system was seen during the first 

year of operation.  Figure 5.2 shows that, during summer months, sulphate 

concentrations were <10mg/L in effluents, although they rose later in the year.  It is too 

early to determine if this effect is seasonal and, although some studies have identified 

that low temperatures do not adversely affect bacterial sulphate reduction (Tsukamoto et 
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al., 2004; Zaluski et al., 2003; Fortin et al., 2000), others have observed that low 

temperatures can affect overall system performance (Gandy and Jarvis, 2012; Gusek, 

2002).  It might be that temperature affects other sulphate removal mechanisms such as 

adsorption and formation of sulphate rich phases (Lefticariu et al., 2015).  Alternatively, 

it could be that these mechanisms are particularly important for sulphate removal during 

the early phase of system operation which was during spring and summer months. 

 

Figure 5.2  Alkalinity, pH, conductivity and sulphate at the Force Crag treatment system.  Final effluent is 
a combined flow of VFPs 1 and 2 after having passed through a small aerobic wetland 
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Unlike sulphate, zinc removal does not peak during the summer, with the lowest 

concentration in the final effluent seen during the middle of winter (3/02/2015)
 
while 

influent concentrations remain comparatively stable over the monitoring period (Figure 

5.1).  Data presented in Figure 5.2 indicate that, on average, sulphate concentrations are 

reduced by 12mg/L throughout the monitoring period.  According to equation 2.7 from 

Chapter 2 (repeated below for convenience) two moles of alkalinity are generated for 

every one mole of sulphate reduced (Younger et al., 2002).  Therefore, it would be 

expected that 24mg/L of bicarbonate alkalinity would be generated by sulphate 

reduction, on average, during the monitoring period.  This assumes that all sulphate is 

removed by sulphate reduction. 

(𝟐. 𝟕) 2𝐶𝐻2𝑂 + 𝑆𝑂4
2−  → 𝐻2𝑆 + 2𝐻𝐶𝑂3

− 

Alkalinity measurements (as bicarbonate) increase by 68.4mg/L on average through the 

system.  As seen in Figure 5.2, there is a progressive decline in alkalinity generation 

throughout the monitoring period (effluent - influent = 39.8mg/L as CaCO3 over the last 

month of monitoring (n=4)).  Over the same period the amount of bicarbonate produced, 

assuming that all influent sulphate was removed by sulphate reduction, was 15.4mg/L.  

These data suggest that while sulphate reduction may contribute significantly to the 

elevated alkalinity of the system effluent, there appear to be additional mechanisms of 

alkalinity generation at work, such as reduction of sulphate present in the substrate 

(Yim et al., 2015) or calcium carbonate dissolution associated with limestone 

(McCauley et al., 2009).  Net increases in calcium concentrations, which might be 

expected to arise from calcium carbonate dissolution, are observed through the 

treatment system supporting the latter explanation.  According to the measured calcium 

values during the last month of monitoring (8.8mg/L influent, 27.7mg/L effluent), 

18.9mg/L of calcium was sourced from the treatment system.  Equation 5.1 indicates 

that, equally, 18.9mg/L of bicarbonate alkalinity would have been generated if the 

increase in measured calcium concentrations through the system arose from calcite 

dissolution (Younger et al., 2002).   

(𝟓. 𝟏) 𝐶𝑎𝐶𝑂3 + 𝐻
+ ↔ 𝐶𝑎2+ + 𝐻𝐶𝑂3

− 

Combining the estimated alkalinity generated by calcite dissolution and sulphate 

reduction, a value of 34.3mg/L alkalinity is obtained, which is close to the measured 

value of 38.9mg/L.  This implies that it is possible that these two mechanisms are 
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responsible for the generation of the majority of alkalinity in the system, although there 

may be other, less dominant, mechanisms at work.  Sulphate to zinc removal at Force 

Crag had a stoichiometric ratio of 3.4:1 based upon mean data (n=43), with removal as 

metal sulphide solids under sulphate reducing conditions being cited as a key 

mechanism (Jarvis et al., 2015).  It is unlikely, considering the chemistry of the Level 1 

water, that there is much in the way of competing cations which might react with 

sulphide instead of zinc: both copper and lead which have higher sulphide solubility 

products than zinc (Hedin et al., 1994a) are below detection limits of 0.1mg/L and 

0.5mg/L respectively.  Given the stoichiometry ratio of zinc sulphide formation (1:1) 

and the absence of measured competing cations in the influent water, it is entirely 

plausible that zinc removal as a sulphide is the most important metal removal 

mechanism at this time.  Nevertheless, it is known that hydrogen sulphide is highly 

reactive and volatile and can often be oxidised or liberated from bioreactors before 

reacting with metals (Jong and Parry, 2003; Johnson and Hallberg, 2002). 

Sulphide (S
2-

) concentrations were also measured from July 2014 using a field based 

indicator kit (Hach – see Table 3.5, Chapter 3).  This method provides a useful indicator 

for the presence of sulphide within the treatment system (APHA, 2005).  Sulphide 

concentrations measured within effluents were typically 0.1-0.7mg/L in VFP1 and 0.5-

2.0mg/L in VFP2 effluents (n=17) showing that there was still unreacted sulphide in 

solution at the point it was leaving the VFPs.  This, coupled with highly negative Eh 

values when taking measurements from VFP effluent pipes (-191, VFP1; -220, VFP2; 

n=160) and a notable hydrogen sulphide odour, indicates that sulphate reducing 

conditions were present in the treatment system. 

While there is evidence to suggest that bacterial sulphate reduction is occurring within 

the treatment system, other processes such as adsorption and co-precipitation have also 

been cited as important removal mechanisms (Mayes et al., 2011; Matthies et al., 2009; 

Neculita et al., 2008b).  These studies and others have been discussed in Chapter 2 and 

data from the Force Crag treatment system has not yet proven beyond doubt that 

bacterial sulphate reduction is the most important metal removal mechanism.  Ongoing 

investigations, which include microbial community analysis, are hoped to address this 

(pers comm., Dr C. J. Gandy, Newcastle University, 2015). 
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5.2.5 Electroneutrality 

In addition to the accuracy checks undertaken during analysis of water samples, it is 

good practice to conduct a charge-balance of major ions, in order to provide additional 

data verification.  The charge balance error is calculated for the Force Crag water 

analyses using Equation 5.2, with data expressed in meq/L (Appelo and Postma, 2010). 

(𝟓. 𝟐) 𝐶ℎ𝑎𝑟𝑔𝑒 𝑏𝑎𝑙𝑎𝑛𝑐𝑒,% = 
𝛴𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 𝛴𝑎𝑛𝑖𝑜𝑛𝑠

𝛴𝑐𝑎𝑡𝑖𝑜𝑛𝑠 −  𝛴𝑎𝑛𝑖𝑜𝑛𝑠
 𝑥 100 

Where full analytical suite are investigated (data not presented in this thesis
17

) the 

charge balance is typically within 5% (n= 46/60) and all within 15%, excepting values 

from the very first monitoring event, which have consequently been discarded.  While 

data with a charge balance of <5% is considered to be indicative of good accuracy, it is 

suggested that data with electroneutrality of 5-15% should be used with caution 

(Younger, 2009).  These analytical errors are attributable to difficulties in conducting 

accurate colorimetric alkalinity titrations in the field, because of the murky colour of the 

effluent waters.  This was particularly problematic during the early phase of system 

operation when waters had a deep brown colour.  The electrical conductivity can be 

used as a quick check of analytical accuracy by the following expression (Equation 5.3 

after Appelo and Postma (2010)): 

(𝟓. 𝟑) 𝛴𝐶𝑎𝑡𝑖𝑜𝑛𝑠 =  𝛴𝐴𝑛𝑖𝑜𝑛𝑠 (𝑚𝑒𝑞/𝐿) ≈ 𝐸𝐶/100(µ𝑆/𝑐𝑚)  

Analytical data from shortly after start-up of the treatment system for turbid VFP and 

wetland effluents confirms that the anions are suspect, with total cation values 

comparable to EC/100: 13.16-13.47meq/L and 16.3-16.6µS/cm•100, respectively; 

whereas anions were somewhat lower at 6.39-8.45meq/L.  Good charge balance for the 

clear, poorly mineralised influent mine waters provides further reassurance of analytical 

accuracy, as all charge balances following the first sampling event were within 10%. 

  

                                                 
17
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5.3 Life-cycle costs of mine water treatment 

Throughout the process of design and construction, it has long been standard practice in 

the civil engineering industry for project costs to be carefully controlled and all 

opportunities for savings identified by value engineering to be explored (Miles, 1962).  

On this basis, and for the purposes of this study, it can be assumed that the construction 

cost of the Force Crag treatment system was as low as practicable.  The figures 

presented in Table 5.3 are actual outturn figures obtained from The Coal Authority 

following completion of its construction.  Normally, costs attributed to 

scoping/feasibility and outline design stages are not counted as part of the construction 

cost on the basis that, at this stage of the project, the decision has not yet been made to 

invest in the treatment scheme.  Table 5.3, however, details all known expenditure in 

order to provide a full illustration of the costs associated with the project. 

Table 5.3  Construction costs for Force Crag mine water treatment system (courtesy of The Coal 
Authority) 

Construction item Actual cost 

Scoping and feasibility studies £100,957.00 

Outline design and planning £54,322.18 

Environment Agency permits and consents £4,805.82 

Land agent costs £19,974.00 

Project management (Coal Authority staff cost) £117,132.47 

Ground investigation £86,600.00 

Detail design £53,993.32 

Level 1 diversion and treatment system construction £650,280.86 

Archaeological watching brief £10,444.00 

Total £1,098,509.65 

 

Operational costs have been forecast by The Coal Authority and its consultants, based 

on experience of operating similar coal mine water treatment systems for over 20 years 
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(Table 5.4).  Waste disposal costs are, however, different to most coal mine water 

treatment systems due both to the nature of the treatment substrate and the metals which 

accumulate within it.  Therefore, quotations were received from waste carriers to 

determine the waste disposal cost (Atkins, 2014b).  It is pertinent to mention that the 

substrate density used to calculate substrate tonnage has been assumed to be comparable 

to soils at 1.25 tonnes per m
3
 (Atkins, 2014b).  Preliminary measurements of the blank 

substrate by Newcastle University indicate that the actual density is significantly lower: 

0.61 (wet) – 0.32 (dry) (unpublished data, Newcastle University 2015).  Yet these 

measurements were conducted on loose substrate in the laboratory and do not consider 

the effects of compaction of the substrate once within the VFPs. 
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Table 5.4  Operational costs (forecast) for the Force Crag mine water treatment system (courtesy of The 
Coal Authority) 

Description Forecast cost 

Annual costs 

Routine inspection and maintenance  £6,000 

Landscape maintenance  £1,000 

Routine sampling and testing for regulatory 
compliance 

£3,000 

Total annual cost £10,000 

One-off costs (10 year estimate) 

Substrate excavation and haulage £97,500 

Substrate disposal* £685,750 

Substrate renewal £29,200 

Total one-off cost £812,450 

*Disposal cost based upon quotations received from hazardous waste carriers, assuming substrate has 
the same classification as the Nenthead pilot system wastes – lowest of 3 quotes considering combined 
cost of haulage and disposal 

Assuming a life-cycle of 10 years (as estimated by The Coal Authority before the 

system performance drops and the substrate requires replenishment), the total cost of 

construction is £1.1m and operation £0.1m for routine sampling and monitoring.  At the 

point at which the system starts to fail, it has been forecast by Atkins (2014b) that 

expenditure of more than 70% of the initial capital construction cost will be entailed by 

substrate disposal and replenishment.  The life-cycle cost profile based upon these 

figures is graphically represented in Figure 5.3, in comparison to the monetised benefits 

as determined by a benefits assessment according to the National Water Environmental 

Benefits Survey (NWEBS) (RPA, 2013). 
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Figure 5.3  Force Crag treatment system cost in relation to monetised benefits (financial data used to 
produce conceptual model was supplied by The Coal Authority, see text for further explanation) 

The NWEBS approach was designed to assess the non-market benefits to UK 

households of implementing measures to improve water quality to achieve Water 

Framework Directive objectives (Metcalfe et al., 2012).  Several methods were 

employed to derive these benefits figures, including discrete and dichotomous choice 

scenarios and willingness to pay surveys using focus groups (Metcalfe et al., 2012).  

Values determined from the study by Metcalfe et al. (2012) were used to determine the 

benefits of improving the water quality of the Derwent Catchment which is impacted by 

mining pollution from sites at Force Crag and Threlkeld (RPA 2013).  Financial 

benefits of remediating the mine water pollution at Force Crag, devised using the 

NWEBS assessment, are compared to predicted scheme life-cycle cost, providing 

financial justification for investment in the project (The Coal Authority, 2014).  All 

figures have been discounted using a Discounted Cash Flow (DCF) factor of 3.5% over 

the first 30 years, and 3.0% thereafter according to Government guidance (HM 

Treasury, 2011).  This DCF provides adjustment when forecasting future cash flows, 

considering that the value of an investment varies depending on when it is received 
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(HM Treasury, 2011).  Calculations showing discounted life-cycle costs and NWEBS 

benefits are provided in Appendix H. 

Financial forecasting reveals that, over 50 years, the cost of substrate disposal 

(assuming 5 disposal/replenishment events) equates to £1.6m, compared to all other 

maintenance costs which are just £0.24m.  As the single greatest cost beyond value 

engineered construction, substrate disposal might offer the greatest area for potential 

saving in the whole-life cost of the treatment system.  Two possible approaches to 

reducing this element of cost are: 

1. Increasing substrate lifetime, thereby reducing the frequency of disposal. 

 

2. Finding alternative (less costly) disposal routes for substrates, which may 

involve some degree of decontamination or processing for resource recovery. 

These two approaches are discussed in the following two sections. 

5.4 Force Crag substrate lifetime 

Passive treatment systems, constructed from earthworks and minor engineered 

structures, such as capture chambers and transfer pipelines, require little regular 

maintenance (PIRAMID Consortium, 2003; Jarvis and Younger, 1999).  Only 

occasional intervention is required, for example, to keep channels clear and control 

vegetation (PIRAMID Consortium, 2003).  This approach has been adopted at the Force 

Crag site (Jarvis et al., 2015).  Over time, however, accumulation of metals within a 

system may reach a point at which the system is no longer operating effectively and 

major intervention is required (Gray et al., 2012; PIRAMID Consortium, 2003).  

Excavation and disposal of treatment sludge and substrates is one of, if not the greatest 

operational costs of passive mine water treatment systems (PIRAMID Consortium, 

2003).  Reducing the frequency of this activity by extending system lifetime should 

therefore be a key objective at Force Crag and of system operators more widely. 

5.4.1 Forecasting VFP substrate lifetime 

Given the absence of published long-term monitoring data for analogous treatment 

systems, forecasting the life-cycle of the Force Crag treatment system is a challenging 

task.  The limitations on system longevity are complex and may relate to a range of 
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factors, which are discussed in detail in section 2.9 (Chapter 2).  While The Coal 

Authority has assigned a notional 10 year life-time to the Force Crag treatment system 

substrate, there is little certainty around this figure.  If anything, 10 years appears to be 

conservative compared to estimates of VFP systems in the literature (Cheong et al., 

2012; Rose, 2006).  Furthermore, site specific factors will undeniably have a bearing 

upon life-times, such as cellulose concentration of substrates (Logan et al., 2005), and 

consequently there is likely to be variation between individual sites (refer to section 

2.9).  When system failure occurs, however, there may be ways in which the 

performance could be restored, without wholesale substrate removal and replacement as 

detailed in section 2.10. 

5.4.2 Possibilities for extending substrate lifetime 

Evidence from the literature evaluated in Chapter 2 (section 2.9) identified several 

common reasons for VFP system failure, including the blinding of substrate surfaces by 

hydroxide precipitates (Rose, 2006), loss of permeability due to compaction (Nordwick 

et al., 2006), drop in sulphate reduction due to crystalline carbon fractions and 

inhibition of SRB by high metal content of substrate (Logan et al., 2005; Utgikar et al., 

2002).  At Force Crag, there are relatively low concentrations of metals such as iron and 

aluminium which readily form hydroxide solids at circum-neutral pH, compared to 

other sites (e.g. ITRC, 2013).  This means that one of the major modes of VFP system 

failure, blinding of substrate surfaces with hydroxide precipitates, is unlikely to apply at 

Force Crag.  Nevertheless, other potential modes of failure relevant to Force Crag might 

be overcome by minimal intervention: 

 Digging over of compacted substrates to restore permeability has been suggested 

(Rose, 2006); although the implications on effluent quality from changes in 

redox conditions and suspension of solids during excavation are unknown. 

 Drops in sulphate reduction due to depletion of labile carbon might be 

counteracted by liquid carbon dosing.  Various substances have been suggested 

for this including wine wastes (Costa et al., 2009); methanol (Mayes et al., 2011; 

Bilek, 2006); tannery effluent (Boshoff et al., 2004) and biodiesel waste 

(Zamzow et al., 2007). 

 Metals accumulate in surface layers of substrates, according to this research 

(section 4.2.4).  Therefore, where high metal content is inhibiting removal 

processes, upper substrate layers could be selectively replaced. 
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Detailed monitoring of the treatment system in the long-term would allow the reasons 

behind any decrease in system performance to be investigated, and thus facilitate 

targeted measures to counteract it. 

5.5 Substrate re-use and metal recovery 

Eventually, minor interventions will no longer be sufficient to restore system 

performance.  At this point, it will be necessary to either dispose of the exhausted 

substrate, or identify ways in which it can be de-contaminated for re-use.  

Decontamination processes might feasibly be coupled with recovery of metals for 

recycling. 

5.5.1 Metal content of used substrates 

The used substrate from the Nenthead pilot system has been deemed as hazardous waste 

due to its elevated zinc concentrations (ESG, 2013).  Some degree of decontamination 

coupled with resource recovery might therefore offer a means of reducing otherwise 

very high disposal costs forecast for Force Crag (see section 5.3).  Experimentation 

presented in Chapter 4 (section 4.3) has demonstrated at proof-of-principle scale that 

metals are recoverable from the Nenthead passive treatment system substrate, which is 

very similar to that used at Force Crag.  Data show that, in acid leach tests, 

concentrations of zinc and cadmium are substantially reduced, resulting in residual 

concentrations very close to the blank, unused substrate in at least one of the leach 

configurations.  Crucially, this indicates that the leaching process may completely 

decontaminate the substrate in respect of concentrations of these two key contaminant 

metals (see section 4.3.4).  Copper and lead appear not to have been significantly 

recovered by leaching, although, similarly to Nenthead, their low concentrations in the 

water discharging from Force Crag Mine suggests that these metals are unlikely to be 

problematic: <0.01mg/L and ≤0.053mg/L (mean values, n=43) for copper and lead in 

the Force Crag mine water, respectively (Table 5.1).  At sites where copper and lead 

concentrations are significant, alternative lixiviants may be required to decontaminate 

substrates (refer to section 4.3 for discussion).  At Force Crag it is likely that zinc will 

have accumulated within substrates by the time the system fails, given that significant 

amounts are being removed by the treatment system.  Figure 5.4 shows, based upon data 

presented for zinc removal at Force Crag, the average rate of accumulation in the 

substrate.  Additionally, data points are plotted for a range of systems from the literature 
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where it has been possible to determine zinc accumulation from monitoring data.  Note 

that, because zinc concentrations in the raw substrates have not been included, actual 

substrate zinc concentrations are likely to be higher than indicated in Figure 5.4.  For 

these data refer to Appendix A. 

 

Figure 5.4  Zinc accumulated in treatment system substrates from cases in the literature
18

, and 
projected for Force Crag.  Force Crag substrate zinc content as mg/kg dry weight (substrate density 
0.32

19
).  Nenthead and Standard Mine sites shown in red 

On the basis of projections, the Force Crag treatment system will accumulate 

4,304mg/kg of zinc within its substrate after 2 years, which is broadly comparable to the 

Nenthead substrate, where 4,724mg/kg had accumulated following 2 years of 

operation
20

.  Nevertheless, it has been shown by Rutkowski (2013) that sustained 

performance is likely to result in very high zinc concentrations within substrates of 

compost based treatment systems (22,940mg/kg calculated based upon performance 

data for the Standard Mine bioreactor, Colorado – refer to Table 5.2).  After 3.4 years of 

operation, the passive bioreactor at Standard Mine was decommissioned, yet its 

performance had shown no noticeable decline by this time (Rutkowski, 2013).  Zinc 

accumulation in the Standard Mine system was greater than forecast for Force Crag 

after 10 years of operation (20,954mg/kg), based upon calculations made by this 

Author.  This implies that, after 10 years, the Force Crag system may still have not 

accumulated a quantity of zinc which might adversely affect its performance.  The 

                                                 
18

 Density of 0.5 assumed for substrates from case studies in literature where data do not exist, after 

Logan et al. (2005), for indicative purposes only. 
19

 Determined by weighing a known volume (500mL) of blank substrate. 
20

 Average zinc content of 11 samples taken from the Nenthead pilot system, minus blank substrate zinc 

concentrations; see section 4.2, Chapter 2. 
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projections provided in Figure 5.4 are, however, heavily extrapolated from just a single 

year of monitoring data and are based upon a laboratory defined figure for substrate 

density.  This density measure may not necessarily be representative of field conditions 

of aged substrates, which may have been affected by compaction, for example (Jarvis et 

al., 2014; Rose, 2006).  Furthermore, the figure quoted for the Standard Mine site is 

based upon calculations from data extracted from grey literature sources, and has not 

been measured directly.  It is therefore important that long term performance monitoring 

of these systems is undertaken, along with measurements of substrate density and metal 

content in order that the rates of metal accumulation can be accurately assessed. 

Acid leaching has been shown to reduce metal content of the used Nenthead substrate to 

levels close to the blank (Chapter 4), although no evidence has been collected to 

indicate its suitability for re-use within the treatment system as this is out of the scope 

of this research.  It is known that breakdown of cellulose occurs during operation of the 

system, and also to some degree by the application of sulphuric acid (Mukherjee and 

Woods, 1953).  It is also noteworthy that key nutrients might be depleted by the 

exposure to sulphuric acid, a phenomenon which has been widely investigated in the 

wider environment as a result of atmospheric pollution and acid rain (e.g. Tomlinson, 

2003; Pennanen et al., 1998; Haynes and Swift, 1986).  Furthermore, Pennanen et al. 

(1998) discovered that soil acidification can have significant impacts upon microbial 

communities.  Investigations are therefore required in order to assess the requirements 

for pH adjustment, nutrient replenishment and re-inoculation of leached substrates 

before re-use in a treatment system. 

5.5.2 Alternative uses for used substrates 

Alternative uses of leached substrates may exist, for example as clean-cover material at 

brownfield sites, or to achieve vegetation at abandoned mine sites where soils are 

typically poor (Neville, 2007).  The latter application may, in fact, be the most 

environmentally sound, in that transport of leached substrates may not be required but 

might provide a beneficial alternative use at the mine site from which they came.  

Younger and Mayes (2015) suggest a novel concept for carbon sinks in flooded open pit 

mine voids by infilling with organic sediments sequestering their carbon.  Retention of 

organic matter under anaerobic conditions in the presence of sulphate causes 

methanogens to remain supressed, thus atmospheric methane emissions from 

degradation would be prevented (Younger and Mayes, 2015).  This approach might 
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have the added benefit of removing dissolved metals present within the flooded mine 

void and local water table as insoluble sulphides within the organic substrate (Younger 

and Mayes, 2015).  This approach would require an open pit mine void to exist near to 

the passive treatment site to make this a practical solution. 

Soils which may be contaminated must undergo environmental assessments before re-

use or site development occurs, under guidance by UK regulators (DEFRA and 

Environment Agency, 2007).  If treatment system substrates were to be re-used as soils 

for new developments, contamination assessments in line with this guidance would be 

required to assess risks of exposure to human health.  This consists of a tiered approach, 

initially assessing soil quality against ‘soil guideline values’ where they exist.  

However, soil guideline values have only been produced for a handful of contaminants, 

and therefore where they do not exist, values produced must be generated by modelling 

using the Contaminated Land Exposure Assessment (CLEA) software by assessors 

(DEFRA and Environment Agency, 2007). 

Considering Soil Guideline Values (SGV) exist for both nickel and cadmium, 

comparison is made in Table 5.5 between leached substrate values and soil guideline 

values for a range of land uses (Environment Agency, 2009a; Environment Agency, 

2009b).  Additional Generic Acceptance Criteria (GAC) values, produced by a third 

party (Amec, 2011), are provided where SGVs do not exist (for zinc, lead and copper).  

For context, PAS 100 thresholds are also included in Table 5.5. 

Table 5.5  Comparison of pre- and post-leach substrate from the Nenthead pilot system with SGVs (Cd, 
Ni) or GAC (Zn, Pb, Cu) for human health exposure and PAS 100 threshold (see text for further details) 

 
Cd (mg/kg) Ni (mg/kg) Zn (mg/kg) Pb (mg/kg) Cu (mg/kg) 

Substrate pre-leach 17.2 54.8 8,265.3 225.9 137.9 

Substrate post-leach (0.1M H2SO4 
for 5 days). 

1.6 17.3 650.5 211.4 118.7 

SGV/ 
GAC 
according 
to Land 
use 

Residential 10 130 40,000* 450* 5,200* 

Allotment 1.8 230 No data No data No data 

Commercial 230 1,800 No data No data No data 

PAS100 compost specification (BSI 
2011) 

1.5 50 400 200 200 

*Generic acceptance criteria for residential without plant uptake, as applied by Amec (2011) during tier 
1 contamination assessment of Force Crag mine site. 
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Mean data from Nenthead substrate analysis, both pre and post-leach (with 0.1M 

sulphuric acid over 5 days) show that, against SGV/GAC levels of zinc, copper, nickel 

and lead are acceptable for use in residential developments.  Projections suggest that for 

zinc at Force Crag (Figure 5.4) this key contaminant is still likely to be below 

residential GAC after 10 years in this full-scale system.  Cadmium, on the other hand, 

has a stringent SGV and therefore restricts the un-leached Nenthead substrate to 

commercial land use, unless further site specific assessments are undertaken to evaluate 

whether risks are acceptable for residential or allotment sites (DEFRA and Environment 

Agency, 2007).  Following leaching, all metals provided in Table 5.5 are at 

concentrations considered suitable for use in residential developments from a human 

health risk perspective.  It is important to note, however, that a more detailed analysis 

(extending to organic contaminants, and risks of metal leaching to controlled waters, in 

particular) would be necessary before substrates could be certified as a suitable soil for 

use at a development site (DEFRA and Environment Agency, 2007).  This is beyond the 

scope of investigation in this thesis, but such investigation would be highly advisable in 

case the substrates require little or no decontamination before re-use. 

5.5.3 Metal recovery potential 

Based upon performance data for the Force Crag treatment system and data collected 

during leach-testing of the Nenthead pilot treatment system substrate, it is possible to 

forecast the mass of metal recoverable from the substrates after a given time.  It should 

be noted that the figures discussed below are based upon data extrapolation and 

therefore are only intended to provide an indication of likely quantities of metal 

concentrate recoverable from a full-scale system.  Quantities of metal recoverable have 

been calculated by working out their removal rates from the Force Crag mine water over 

the first year of operation and then multiplying by the efficiency of recovery during the 

Nenthead leach test.  Leach test data for the 0.1M sulphuric acid and a pulp density of 

1.875% was used as these yielded the greatest extraction efficiency (see section 4.3) 

Recovery potential calculations are presented in Table 5.6. 
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Table 5.6  Metal recovery potential at Force Crag based upon current performance, showing metal 
accumulation rates and metal recovery potential, using Nenthead substrate leach efficiencies 

 
Fe Ni Cu Cd Mn Pb Zn 

Influent concentration, mg/L 0.51 0.02 <0.01 ≤0.017 0.56 ≤0.053 3.26 

VFP 1 effluent, mg/L 1.47 ≤0.012 ≤0.013 <0.01 0.44 ≤0.051 0.04 

VFP 2 effluent, mg/L 1.35 ≤0.012 ≤0.013 <0.01 0.51 ≤0.051 0.16 

VFP1 metals retained, 
kg/annum 

-86.23 ≥0.55 - - 10.47 - 289.80 

VFP2 metals retained, 
kg/annum 

-78.57 ≥0.58 - - 4.33 - 291.22 

Leach efficiency from 
Nenthead substrate, % 

54 100 35 100 100 64 100 

VFP 1 metal recovery 
potential, kg/annum 

-46.56 ≥0.55 - - 10.47 - 289.80 

VFP 2 metal recovery 
potential, kg/annum 

-42.42 ≥0.58 - - 4.33 - 291.22 

 

Initially, it is evident that for iron the recovery potential per annum is negative.  This is 

due to a net export of this metal from the treatment system over the first year of 

operation, thought to be a component of secondary contamination of the treatment 

substrates over the first few months of operation (section 5.2).  Copper, lead and 

cadmium are typically below analytical detection limits and, therefore, it is unclear how 

much metal, if any, might be recoverable.  Likewise, while nickel is just above detection 

limits in influent, it is below in the effluent and, as a consequence, only a lower limit 

can be placed on masses recoverable.  However, for the main contaminant, zinc, it is 

estimated that in excess of 500kg of metal in total is recoverable from the VFPs for each 

year of operation, based upon data for the first year of operation.  If the system were to 

perform similarly for 10 years before substrates were removed and metals recovered by 

leaching, it may be expected that in excess of 5 tonnes of zinc metal would be 

recoverable. 

When considering these materials as native metals, the theoretical value recoverable 

from the metal rich precipitate may be illustrated.  Table 5.7 provides figures from the 

London Metal Exchange and compares them to the projected metal recovery rates for 

the Force Crag treatment system.  It is clear that zinc is the only metal which might be 
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recovered in any significant quantity of any value, although it is important to point out 

that the efficiency and cost of metal processing has not been considered as this is out of 

scope of this research. 

Table 5.7  Value of metals potentially recoverable from Force Crag based upon first year of operation 

Metal 
Projected 
mass over 10 
years (t) 

Market value for native metal (£/t) 
(*London Metal Exchange, 
www.lme.com 29/9/15; • FOB 
Warehouse USA www.metalprices.com 
19/9/15 (exchange rate of $0.65US to 
1GBP) 

Value as native metal 
recoverable after 10 years 
at Force Crag (£) 

Zn 5.81 *1,061.13 6,165.17 

Mn 0.15 •1,806.06 270.10 

Ni >0.011 *6,766.50 74.43 

 

5.5.4 Waste reduction potential 

Disposal costs for the substrate from Force Crag are calculated based on their tonnage 

(Atkins, 2014b) and consequently, if it is possible to reduce the mass of waste by a 

significant factor, the costs of disposal are likely to be reduced proportionately.  

Evidence obtained from investigation with the Nenthead substrate indicates that this is 

achievable.  Leaching with dilute sulphuric acid has been shown to effectively leach 

zinc, cadmium, nickel and manganese from contaminated substrate from the Nenthead 

pilot system as detailed in Chapter 4, section 4.3.  These metals have then been 

successfully removed as a precipitate from pregnant leach solutions by pH adjustment 

with sodium hydroxide.  Assuming that leached substrates can be re-used, either at site 

or elsewhere, the concentrated metal precipitate will represent a waste (probably 

classified as hazardous
21

), requiring disposal, or a metal rich material worthy of re-

cycling.  Assuming the former, the mass of this precipitate was determined as 6% - 

11%
22

 of the mass of the initial (dried) substrate.  This would substantially reduce Force 

Crag VFP waste disposal costs from £685,750 to between £40,000 and £75,000, 

                                                 
21

 Waste classification testing would be required before the category of the waste can be confirmed 
22

 Mass of precipitate for 7.5% pulp density leach test (6% of initial substrate sample) and for 1.875% 

pulp density leach test (11% of initial substrate sample) as determined experimentally on Nenthead 

substrate 

http://www.lme.com/
http://www.metalprices.com/
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according to the cost/tonne figures in Atkins (2014b)
23

.  These values exclude the cost 

of substrate decontamination by recovering metals. 

When considering the metal constituents (zinc, cadmium, copper, nickel, iron, lead and 

manganese) in the precipitate, they equate to just 13 – 16% of the total precipitate mass, 

7 – 8% of which is iron and 5 – 8% of which is zinc
24

.  It should be noted that the 

Nenthead treatment system had not reached a point of failure, and as a consequence, the 

substrate characteristics are likely to be different for a full-scale decontamination 

activity.  Specifically, metals such as zinc will have accumulated to higher levels in 

systems which have been operating for longer time periods (Figure 5.4). 

5.5.5 Cost of metal recovery 

Indicative costs of metal recovery to achieve substrate decontamination were kindly 

provided by an industry specialist Acumen Waste Services Limited 

(www.acumenwaste.co.uk).  In order to gauge the practicalities and costs of large-scale 

decontamination, elements of research conducted for this thesis were discussed in 

confidence with a Director and Technical Specialist in hazardous and difficult wastes; 

Mr. Leon Kirk, between 9
th

 and 10
th

 March 2015.  The details presented in the following 

paragraphs of this section were provided by Mr. Kirk in personal communications, 

unless otherwise stated. 

Based upon the findings of particle size investigations and acid-leaching (Chapter 4), it 

was suggested that a bespoke mobile ‘soil washing’ type plant would be required for 

substrate decontamination.  Acidification and lime dosing could also be incorporated to 

leach metals from substrate particles and precipitate them as a finer grained, more 

contaminated material.  Soil washing and sieving would be expected to produce a de-

contaminated aggregate largely composed of wood-chip fragments (approximately 90% 

by mass) and a filter cake (<63µm) containing high concentrations of metals 

(approximately 10% by mass).  This waste reduction factor is similar to that achieved 

by leach and precipitation tests conducted as part of this research.  Given the atypical 

nature of the material (compared to typical contaminated soils which might have lower 

organic matter content) the requirement for a bespoke plant would entail significant 

capital cost.  Assuming that the plant received reasonable use against this investment, 

                                                 
23

 Assume waste falls under worst-case classification of hazardous waste with high TOC content 

requiring high temperature incineration 
24

 Data taken from 1.875% - 7.5% pulp density tests. 

http://www.acumenwaste.co.uk/
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the cost per tonne is estimated as £25 - £45
25

, exclusive of waste disposal costs.  In 

addition, a one-off cost of mobilisation/demobilisation of plant would be required, of 

approximately £8,000.  It is assumed that the de-contaminated material can be re-used 

within the treatment process with minor additions of carbon, such as sewage sludge or 

PAS100 compost, for example.  The costs for substrate excavation, addition of carbon 

and replacement have not been forecast, but it is thought that these are likely to be 

relatively low-cost items.  The costs for de-contaminating the Force Crag substrate is 

estimated in Table 5.8, assuming the greater per unit cost of £45/tonne and the same per 

tonne cost for waste disposal of the concentrated filter cake as estimated for the 

untreated substrate.  This disposal cost is an upper limit, based upon high temperature 

incineration at a specialist waste facility before hazardous waste disposal (Atkins, 

2014b). 

Table 5.8  Costs of substrate decontamination 

Item Breakdown Cost, £ 

Soil washing 1,055t substrate*; 45£/t assumed 47,475 

Mobilisation/demobilisation £4,000 mobilisation/demobilisation 8,000 

Waste transport and disposal 105.5t residue; £650£/t 70,015 

Total 125,490 

*Mass assumed by Atkins (2014) 

Disposal of the concentrated filter-cake still represents a substantial cost, outweighing 

that of the cost of the washing process.  However, after a 10 year period, zinc 

concentrations in a filter cake of 105.5t would be 5.5%, based upon projections in Table 

5.6 and assuming the entire zinc content of substrate were concentrated in is fraction.  

Because this metal concentration is above typical ore cut-off grades, it may be 

economically viable to recover metals from the filter cake.  There are, however, few 

facilities in Great Britain to take this type of material, although export for processing 

overseas is not uncommon (pers comm., L. Kirk, Acumen Waste, 2015). 

Regardless, these figures indicate that a substantial net saving may be achievable, based 

upon employing a soil-washing process to decontaminate substrates.  It has been 

                                                 
25

 Cost per unit assumed to include labour, power, servicing and reagents 
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suggested that, prior to design and implementation of any decontamination equipment, 

recovery trials should be conducted with contaminated substrates from candidate 

treatment systems (pers comm., L. Kirk, Acumen Waste, 2015). 

5.6 Renewable energy 

As discussed in Chapter 2, waste decontamination and recovery of metals from 

treatment systems are not the only resource recovery mechanism of reducing or 

offsetting operational costs at mine water treatment sites.  Abandoned mine sites may 

also offer opportunities for recovery of renewable energy. 

Situated within a steep valley of the English Lake District, the Force Crag Mine site is 

well positioned to harness the potential energy of cascading waters, both from mine 

entrances and within rivers and streams.  Small-scale hydroelectric systems may offer a 

way of generating electricity which could be used in the treatment process, for example 

for telemetry systems to collect operational data, or within the mine buildings to 

enhance their utility as a visitor attraction. 

5.6.1 Small scale hydropower 

There are a number of practical considerations when assessing the suitability of mine 

drainage waters and surface waters for hydropower, both of which exist at Force Crag.  

Table 5.9 evaluates some of the pros and cons of hydropower installations at surface 

water streams and drainage from abandoned mines, although this is far from exhaustive. 
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Table 5.9  Factors affecting small hydropower installation in watercourses and mine discharges 

 Hydropower system harnessing 
surface water stream or river 

Hydropower system using drainage 
from abandoned mines 

Ecological 
considerations 

Fish passes around installed turbines 
may be required, adding to scheme 
cost (Environment Agency, 2013a). 

No evidence of ecological sensitivities 
in mine drainage. 

Land drainage Surface waters provide land drainage 
and, therefore, in England Flood 
Defence Consent are required from 
the Local Authority or Environmental 
Agency depending upon size of 
watercourse (Environment-Agency, 
2013). 

Unlikely to require Flood Defence 
Consent unless works are located 
within, under, over or next to a 
watercourse (Environment Agency 
2013). 

Consenting 
implications 

Additional consents for surface 
waters are likely to be required, such 
as abstraction and transfer licenses 
(https://www.gov.uk/environmental-
management/water). 

Consents likely to already in place 
where there is a treatment system 
and thus will only require 
amendment. 

Wider stakeholders Stakeholder interest may be 
significant such as impact upon local 
angling clubs and river trusts 
(Environment-Agency, 2013). 

Mine explorers frequent abandoned 
mines in Great Britain and may 
require consultation 
(http://www.mineexplorer.org.uk/.) 

Suitability of 
equipment for turbine 
use 

Turbines widely designed specifically 
for use in small watercourses (Paish, 
2002). 

Mine waters are often characterised 
by poor quality.  In particular, high 
dissolved solids content and acidity 
can lead to corrosion of turbine parts 

(Sharma et al., 2010). 

 

Mine waters are subject to less permitting and other requirements due to their lower 

environmental sensitivity than streams and rivers.  Additionally, monitoring data 

suggest that the upland streams at Force Crag (the Coledale and Pudding Beck) have 

highly variable flow rates which may pose difficulties for engineering of a hydropower 

system (Rose, 2015).  This is particularly significant during periods of low flow when 

abstractions need to be reduced to maintain base flow in the rivers (Environment 

Agency, 2013b).  Rose (2015) found that, because of this requirement, a system on the 

Pudding Beck would generate no power at all for 3 months of the year. 

Mine water quality may be a problem though when compared to surface water courses: 

many discharges are characterised by acidity and high metal content, which may cause 

corrosion and blockage of turbine components (Sharma et al., 2010).  At Force Crag, 

however, mine waters are circum-neutral and contain relatively low concentrations of 

metals.  In particular, the iron concentration is low (typically 0.5mg/L), which is 

https://www.gov.uk/environmental-management/water
https://www.gov.uk/environmental-management/water
http://www.mineexplorer.org.uk/
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important as it is known to cause blockages in renewable energy technologies (Bailey et 

al., 2013b).  Nevertheless, geochemical modelling by Rose (2015) identified that iron 

minerals hematite and goethite are supersaturated in the Level 1 mine water at Force 

Crag, and may therefore form as precipitates in a hydropower installation (Rose, 2015).  

Small-scale hydroelectric systems are, however, designed for frequent servicing, and 

replacement parts are inexpensive and readily obtainable (pers comm., G. Sharples, 

National Trust 2015).  Weighing up these considerations, the main discharge at Force 

Crag Mine (Level 1) appears most suitable for a small scale hydropower system, 

assuming that a regular programme of maintenance can be incorporated. 

The Level 1 discharge at Force Crag emanates from a mine portal in the hillside of 

Grisedale Pike, before being transferred via a gravity pipeline to a distribution chamber 

where the flow is split (see Figure 5.5).  

 

Figure 5.5  Elevation of Level 1 discharge compared to mine water distribution chamber and treatment 
system, note location of former mine office building near the distribution chamber at base of Grisedale 
Pike 

Approximately 6 L/s is diverted to the mine water treatment system, with the remainder 

being discharged untreated to the Coledale Beck (Atkins, 2014a).  Flow rates from 

Level 1 are presented in Figure 5.6, which indicates the minimum flow is 8.5L/s and 

mean flow 12.3L/s. 

Treatment system 

Coledale Beck 

Distribution 
chamber 

Level 1 adit 
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Figure 5.6  Level 1 flow rates at Force Crag Mine measured from April 2014 to March 2015, inclusive 

In order to optimise the potential energy available from the Level 1 mine water 

discharge, it is necessary to harness the maximum available head and flow (see section 

2.3).  Installation of a penstock arrangement at the mouth of the Level 1 portal and a 

tailrace connected to the distribution chamber would allow use of the full flow.  

Between these two locations, there is also a significant drop in elevation: 19.09m 

according to the general arrangement as-built drawing of the treatment system (Atkins, 

2014a).  The minimum flow of 8.5L/s measured between April 2014 and March 2015 

(inclusive) has been assumed for the purposes of this investigation, although it is noted 

that higher flows were available for the majority of the year.  According to equations 

5.4 and 5.5 (rearranged from equation 2.1, Chapter 2) the following power is available: 

(5.4)  𝜌𝑄𝑔ℎ =  𝑃 

(𝟓. 𝟓) 1 𝑥 8.5 𝑥 9.8 𝑥 19.09 = 1,590𝑊 

Where P = power in watts (W); ρ = density of water (1 kg/L); Q = flow in L/s; g = 

gravitational acceleration (9.8m/s
2
) and h = hydraulic head in m (Harvey et al., 1993). 

Based upon the hydraulic head/flow characteristics, impulse turbines such as crossflow 

or pelton wheels are suitable for this site (Paish, 2002).  System efficiency must be 

calculated in order to consider all the potential losses within both the hydraulic, 

mechanical and electrical components (Harvey et al., 1993).  Therefore, whilst a system 
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design would be required prior to determination of power generating efficiency, there 

are similar ‘rules of thumb’ in the literature: 50% (Harvey et al., 1993); 53% (US 

Department of Energy, 2001); 51% (Meier and Baumer, 1985).  Taking a conservative 

50% system efficiency estimate, the electrical power generation potential based upon 

the minimum Level 1 flow measured between April 2014 and March 2015 at Force 

Crag would be 795W.  During periods of higher flow rate in autumn and winter, this 

value would be higher, and consequently it would be beneficial if a hydropower system 

was designed to operate across a range of flows. 

5.6.2 Mine water heat recovery 

Temperature monitoring of Level 1 flow between April 2014 and March 2015 reveal 

that the temperature of the mine water showed little seasonal variation, remaining above 

8°C year round (Figure 5.7).   

 

Figure 5.7  Force Crag Level 1 and Coledale Beck temperatures April 2014 - March 2015 

In contrast, measurements of the Coledale Beck show peaks of >16°C in the summer 

(June-August) decreasing to ≥4°C in the winter (January-March).  Given that any space 

heating demand is likely to be greatest in the winter, a source which retains higher 

temperatures during these months is likely to offer greater efficiency when coupled to a 

heat-pump system (see equation 2.5, Chapter 2). 
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As an example, a 6kW system, typical of small residential units (e.g. Kensa Heat 

Pumps, 2016) may be suitable for heating a small space within the abandoned mine 

buildings.  Assuming the heat pump was operating at capacity with a Coefficient Of 

Performance (COP) of 3.5 (Heat Pump Test Centre WPZ Switzerland, 2012), 4.3kW of 

heat would be provided by the mine water source, with the remaining 1.7kW provided 

by electrical energy supplied to the heat pump.  Approximately 1L/s of mine water was 

used in a successful 12kW heat pump installation at the Dawdon site in Co. Durham 

(Bailey et al., 2013b); suggesting that for a 6kW system, 0.5L/s might be a suitable 

flow.  Applying the simple power calculation (equations 5.6 and 5.7) provided by Banks 

et al. (2003) allows us to calculate the temperature change of a 0.5L/s flow of mine 

water for this power output: 

(𝟓. 𝟔) ∆𝑇 =
𝑃

𝑄𝑐
 

Where ΔT = temperature change of source in °C; Q = flow in litres per second; c = 

specific heat capacity in KJ/litre/°C (assumed as 4.2) and P = power is in kW. 

(𝟓. 𝟕) 𝛥𝑇 =
6

0.5 𝑥 4.2
= 2.86 

For the 0.5L/s flow of Level 1 mine water passed through a 6kW heat pump to provide 

hot water at space heating, the temperature of the mine water would be reduced by just 

2.86°C.  In reality, system inefficiencies may increase this temperature drop slightly; 

however, due to the elevated mine water temperature (11.3°C annual average), it is 

likely that the COP efficiency would be greater than 3.5 (a figure based upon a 5°C 

source) as the temperature increase would be lower (Banks, 2008).  A higher COP 

efficiency would produce the same amount of heat output for a lower electrical power 

input.  At full power, the electrical demand for the 6kW heat pump operating at a COP 

of 4.0, for example, would be 1.5kW, albeit this would be on a ‘peak demand’ basis.  

Due to the remote nature of this site, this electrical demand would need to be met by an 

on-site power source, such as a hydroelectric turbine.  Calculations suggest, however, 

that a micro-hydro turbine would generate just 0.795kW of power, assuming the 

minimum Level 1 flow.  To achieve the peak demand of a heat pump system, batteries 

charged by the hydropower system could be used to boost power (Davis, 2003). 

Additional consideration must be given to ensure any system operates in a way which 

excludes oxygen from the source water, to minimise precipitation of (oxy)hydroxide 
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minerals such as ferrihydrite.  Precipitation of these minerals from mine waters have 

been known to cause blockage of heat pump systems (Bailey et al., 2013b; Banks et al., 

2009), although iron concentrations are relatively low at Force Crag. 

5.6.3 Energy recovery to offset operational costs 

Small scale micro-hydro power capturing potential energy from the Level 1 discharge 

may provide 795W of electrical power, assuming low flow conditions (see equation 5.4, 

assuming 50% efficiency).  The cost of this system has been estimated at £10,180 

during a parallel study by Rose (2015) although the power generated would be of 

unique value to this site, given its remote location and lack of grid connection.  Power 

generated could be used at the mine site to enhance its value as a visitor facility, for 

example, by providing lighting and power to a heat pump system for space heating (e.g. 

REALL, 2007).  Government incentives currently apply for micro-hydro schemes in 

England under the Feed In Tariff (FIT) scheme.  The generation tariff (which is 

applicable to off-grid systems) pays 15.45p/kWh for systems below 15kW at the time of 

writing (Ofgem, 2016).  Therefore, assuming the turbine at Force Crag operates 

continuously, 6,934kWh per annum would be generated, which would be eligible for a 

generation tariff of £1,071.  Decreases in the tariff have been made over successive 

years, and therefore, it is not possible to forecast the long term income stream based 

upon these incentives (see: www.ofgem.gov.uk).  Nonetheless, it has been suggested 

that use of power by a field classroom (one possible option for the old mine buildings at 

Force Crag) may generate a revenue stream which could offset the cost of a hydropower 

turbine (Rose, 2015). 

Development of the small former mine office at the site as a visitor facility (field 

classroom or café, for example) would demand space heating during colder months.  To 

provide this, a small 6kW domestic-type heat pump might be suitable (given the ~55m
2
 

footprint is comparable to a small domestic dwelling – quoted as 60m
2
 by the EST 

(2015)).  This heat source would offer an alternative to oil-fired heating, which is one of 

the few realistic alternatives at such a remote site.  Savings calculated by the EST 

(2015) suggest that domestic sized ground-sourced heat pumps may offer savings of 

between £475 and £725 per annum over oil alternatives, although typical system 

installation costs are normally between £11,000 and £15,000 (EST, 2015)
26

.  Given the 

                                                 
26

 Figures based upon electrical power for the heat pump supplied by a grid connection rather than by 

hydropower. 

http://www.ofgem.gov.uk/
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relative small size of the old mine office and, consequently, its proportionately modest 

heating requirement, the smaller figure might be most applicable to this study but it is 

worth noting that the building is a simple structure, likely to be of poor energy 

efficiency, which would increase its heating demand
27

.  Over a 25 year life-cycle, a 

conservative estimate of £8,103
28

 of operational savings might be achieved by use of a 

heat-pump over oil fired space heating.  By providing electrical power for the heat 

pump from an un-metered source at site, such as a hydroelectric turbine, this cost saving 

would be greater.  In addition, government subsidies such as the Renewable Heat 

Incentive (RHI) may apply. 

For systems installed on or after 1 October 2015, the RHI applies a subsidy of 

8.84p/kW/hr of energy generated by a heat pump (Ofgem, 2015).  For a 6kW unit, 

operating for 7.2 hours a day during the coldest 6 months of the year, 7,884kW/hrs of 

renewable heat would be produced.  This would generate a subsidy income stream of 

£697 per annum.  Over 20 years (duration of the incentive) the discounted RHI income 

would be £10,252.  Nevertheless, it should be noted that changes in Government policy 

may affect the eligibility and rate of any subsidies for a renewable heating system. 

5.7 Financial assessment of active vs. passive treatment 

Passive mine water treatment system construction costs are known in detail for the 

Force Crag installation, yet ongoing operational costs have to be estimated based upon 

current knowledge (Atkins, 2012).  Forecasting of these operational costs has identified 

disposal of spent substrates as a substantial expense which will be entailed at the end of 

a passive treatment system life-cycle.  On this basis, it seems pertinent to compare the 

possible life-cycle costs of an active treatment system (engineered to produce a low-

volume waste) to the passive system.  In order to undertake this assessment, a costed 

design was kindly provided by an experienced chemical engineer, Mr. Hein Schade of 

Helix Projects Ltd.  All information pertaining to the active treatment design in this 

section is sourced from the report by Schade (2015), unless otherwise stated. 

                                                 
27

 A full energy performance assessment would be required for any building, prior to design and costing 

of a space heating system.  The figures provided here are for indicative purposes only. 
28

 3.5% DCF applied HM Treasury (2011) 
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5.7.1 Hypothetical active mine water treatment system design 

Several active treatment techniques are suitable for the removal of zinc from the Force 

Crag mine water.  However, given the proven effectiveness of hydroxide precipitation 

(e.g. Younger et al., 2002), this technology was selected for the process design.  This 

involves raising the pH to 9.8 with hydrated lime to achieve rapid precipitation of zinc 

hydroxide according to the following reaction (equation 5.8) (Schade, 2015): 

(𝟓. 𝟖) 𝑍𝑛2+𝑎𝑞 + 2𝑂𝐻
−
𝑎𝑞 ↔ 𝑍𝑛(𝑂𝐻)2(𝑠) 

Aluminium sulphate is used as a coagulant, along with an organic polymer flocculent 

which acts to increase settlement rates and generate sludge with a high density.  

Separation of the precipitate is achieved with a lamellar clarifier and the sludge is de-

watered using a filter press to increase its density from 3 to 37% solids.  Predictions 

made suggest that 210kg of sludge would be produced per day (37% solids), with a zinc 

concentration of 4% (as dry solids) which would be disposed of as a hazardous waste 

(Schade, 2015). 

The chemical process plant would be housed within an industrial unit with associated 

office/welfare/laboratory and chemical store.  The footprint of this unit would be 30m x 

45m with a roof height of 8m (Schade, 2015). 

5.7.2 Comparison of active vs. passive life-cycle costs 

The costs associated with active and passive treatment (with and without substrate 

washing) are shown in Table 5.10.  Active treatment system cost breakdown has not 

included peripheral items, such as ground investigation, archaeological investigations 

and Coal Authority staff costs for administration of the project.  Because of 

uncertainties associated with these elements, comparison will be made solely upon the 

treatment systems’ capital and operational costs, although it is acknowledged that this 

falls short of full-life cycle costs. 
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Table 5.10  Construction and operational costs of active and passive treatment and passive treatment 
with substrate washing for the Force Crag site 

Operational and ad-hoc costs Active        
(Schade, 2015) 

Passive      
(Atkins, 2012) 

Passive with 
substrate washing 

Annual operational costs 
(labour/power/maintenance) 

£108,360.00 £10,000.00 £10,000.00 

Sludge disposal (annual average) £10,680.00 £78,325.00 £12,549.00* 

Substrate replenishment (annual 
average) 

n/a £2,920.00 £2,920.00 

Chemical reagent cost (annual 
average) 

£20,448.00 n/a n/a 

Average annual operational cost £139,488.00 £91,245.00 £25,469.00 

25 year operational cost, 3.5% DCF £2,298,973.51 £1,537,147.60 £429,060.36 

Capital cost £1,550,000.00 £704,274.18** £704,274.18** 

25 year life cycle cost £3,848,973.51 £2,241,421.78 £1,133,334.54 

*Budget based upon costs for soil washing obtained from Acumen Waste Ltd, assuming a 10 year life-
time of substrates and cost of disposal of filter cake. 
**Passive capital cost only considers treatment system design and construction to be in line with active 
comparison. 
 

It is evident, based upon the figures in Table 5.10, that active treatment is far more 

expensive than passive treatment, both for capital costs and over system lifetimes 

(calculations included in Appendix H).  Although waste disposal costs from passive 

treatment are predicted to substantially greater than active treatment, the overall 

operation of an active system including waste disposal is greater than passive treatment.  

Decontamination of passive system substrates by soil washing has the potential to 

reduce waste volumes considerably.  As a result, 25 year whole life costs may be almost 

halved from £2.24m to £1.13m for the passive system (Table 5.10). 

These figures assume that the Force Crag VFP substrate has a 10 year life.  If this life 

was, in practice, just 5 years, the cost of passive treatment without substrate 

decontamination would be comparable to active treatment over 50 years (see Figure 

5.8).  Yet, if VFP system substrates were decontaminated, passive treatment would still 

offer a more cost effective solution, even if decontamination was required every 5 years.  
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In fact, the cost over a 50 year period would be less than half of the active and passive 

(without substrate decontamination) alternatives (see Appendix H for calculations). 

 

Figure 5.8  Whole life costs for different treatment scenarios, assuming passive treatment substrate life 
of 10 years (left) and 5 years (right).  Note capital build costs only include system design and 
construction for comparison purposes. 

5.7.3 Composition of wastes 

Active treatment produces a high density sludge with a water content of ~37% (Schade, 

2015), which requires disposal to landfill as a hazardous waste or recycling via a metal 

recovery process (Zinck, 2005).  Given that the process design undertaken by Schade 

(2015) was intended for zinc removal, it is perhaps no surprise that zinc is predicted to 

be a major constituent of active treatment sludge at 4% by dry weight (Figure 5.9).  This 

is a significantly greater zinc content than in the passive treatment substrate taken from 

the geochemically similar Nenthead site
29

, which contains approximately 0.5% (see 

Figure 5.4).  Yet, acid leaching of the Nenthead substrate and recovery of a solid 

concentrate has been demonstrated in the laboratory (section 4.3).  The concentrate 

                                                 
29

 Data presented from 1.875% pulp density leach tests using 0.1M sulphuric acid, followed by 

precipitation of metals with sodium hydroxide. 
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obtained from the 2 year old Nenthead substrate had zinc concentrations of 4.5 – 8.0%, 

which is greater than concentrations in sludge from the hypothetical active treatment 

system (Figure 5.9).  Because of this, a smaller mass of metal concentrate would need to 

be processed to recover the same amount of zinc compared to a given mass of high 

density sludge from active treatment. 

 

Figure 5.9  Left - predicted composition of active treatment sludge (Schade, 2015).  Right - metal 
concentrate recovered from acid leaching of the Nenthead passive system substrate with 0.1M H2SO4 
and 1.875% pulp density. 

5.8 Conclusions 

This chapter investigated the performance of the Force Crag mine water treatment 

system over the first year of operation, focussing on the rates of metal accumulation and 

potential for metal recovery, comparing it to a database of systems from around the 

world.  Additionally, the life-cycle costs of passive treatment have been forecast, 

considering options for resource recovery which might be used to offset or reduce these 

costs.  These scenarios were then compared against a life-cycle cost estimate for a 

common type of active treatment system. 

5.8.1 Treatment system performance and metal accumulation 

The Force Crag treatment system has been monitored in detail from commissioning in 

April 2014 until the end of March 2015.  Data indicate that treatment performance has 

been good: on average 95% to 99% removal of zinc across VFPs 1 and 2, respectively.  
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Given the loading and system size, this equates to 1.89g/m
3
/d and 1.90g/m

3
/d of zinc 

removal for VFPs 1 and 2, respectively.  These metrics situate the system within the 

upper-middle of a ranking of the known systems of this kind globally (Table 5.2).  

Secondary contamination during early operation resulted in a net export of some metals 

less abundant in the mine water, as well as initially elevated concentrations of some 

organic components (Jarvis et al., 2015).  Nonetheless, the period of secondary 

contamination was short lived.  Projection of zinc removal rates suggest that 

2,152mg/kg of zinc are accumulating in the substrate per annum.  Yet, a study from 

overseas (Standard Mine Superfund Site) indicates that zinc might accumulate to 

23,000mg/kg in VFP systems without affecting treatment performance (Rutkowski, 

2013; Reisman et al., 2008).  This suggests that, if zinc concentrations in the substrate is 

the limiting factor on system longevity, the Force Crag system might expect to perform 

well for in excess of 10 years.  On the other hand, it is known that there are other factors 

which limit system life-times, such as depletion of carbon sources (Cheong et al., 2012).  

Long-term monitoring of the Force Crag system will be of great value in understanding 

the limits on VFP system life-times. 

5.8.2 Life cycle cost estimates 

Life-cycle costs for the passive treatment system at Force Crag are calculated as £2.2m 

over 25 years, and £3.0m over 50 years, based upon data obtained from The Coal 

Authority and using current discounting rates (HM Treasury, 2011).  While the greatest 

single cost is scheme development and construction (£1.1m), the removal, disposal and 

replenishment of substrates over 50 years has been estimated at £1.6m, assuming a 10 

year interval.  These figures have been discounted though, and therefore the actual 

substrate management costs may be far higher.  Regardless, the discounted figures 

highlight that, over 50 years, the costs of substrate management are substantial and 

cumulatively outweigh the initial development and constuction costs.  This reinforces 

the need to identify sustainable ways of reducing or offsetting substrate disposal costs. 

5.8.3 Resource recovery to offset operational costs 

One mechanism of reducing substrate disposal costs is by extending system lifetime to 

increase the disposal interval.  This might be achievable at a low cost by dosing with 

waste carbon sources (Costa et al., 2009; Zamzow et al., 2007; Boshoff et al., 2004), 

digging over substrates to restore permeability (Rose, 2006) or selective removal and 
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replenishment of more contaminated substrate layers at system surfaces.   There will, 

however, be a point at which minor interventions are unable to maintain system 

performance and substrates will then require disposal. 

Evidence suggests that alternative routes to landfill disposal do exist for used substrates.  

Contaminated land screening values indicate that, for human health risks of key metals, 

the substrate from the Nenthead system (after 2 years of operation) might be suitable for 

industrial land use applications.  After acid leaching (0.1M H2SO4; 1.875% pulp 

density; 100 hour leach) the substrate is suitable for use in the more stringent residential 

and allotment applications (in respect of risks to human health).  Further investigation to 

assess the risks to human health posed by other contaminants would be required, in 

addition to assessment of risk to other receptors such as controlled waters, before this 

material could be considered for use as a cover material (DEFRA and Environment 

Agency, 2007). 

Leaching of the Nenthead substrate and precipitation of metals from leach solutions 

reduces the contaminated waste material to 6-11% of the mass of the starting substrate.  

In terms of costs of waste disposal, this would reduce from £685,750 to £40,000-

£75,000, assuming the same disposal route was applicable (see: Atkins, 2014b).  This 

volume reduction may be achievable by the implementation of soil washing equipment.  

Independent specialist advice suggests that a volume reduction of 90% might be 

achievable, with a waste disposal cost of £70,015.  This waste reduction factor is in very 

good agreement with that developed by this author by laboratory scale tests.  The cost 

of soil washing at the Force Crag site is estimated to be £55,475, excluding waste 

disposal.  On this basis, a substantial saving over wholesale substrate disposal might be 

achieved by employing soil washing, to allow re-use of the de-contaminated substrate 

and disposal of the low-volume filter cake, ideally for further processing to recover 

metals. 

Renewable energy generation at the Force Crag treatment system appears feasible and is 

an exciting prospect, in part because the system is entirely passive and would be a net 

source of energy.  In addition, the site has significant heritage value which may benefit 

from the energy generated.  There is significant interest in the use of such renewable 

energy by the National Trust which owns the site and operates tours around the historic 

mine buildings.  Located within a remote area, the site is ideally placed for off-grid 

energy generation and use to heat/light mine buildings, which would enhance their 
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value as a visitor facility.  Specific energy potential exists in the cascading mine waters 

(from the discharge to the treatment system), which could be harnessed by a small scale 

hydroelectric turbine to generate 795W of electrical power continuously, assuming a 

50% efficiency for the turbine.  Additionally, mine water temperatures have been shown 

to remain above 8°C throughout the year, suggesting that heat might be extracted with 

heat pump apparatus for space heating.  A hydropower coupled heat-pump would offer 

a novel source of entirely renewable space heating to the old mine office, facilitating its 

transformation into a useable visitor space.  It has been estimated that a 6kW heat pump 

might be suitable for heating of the existing mine office building.  Operating at full 

capacity at a COP of 4, using 0.5L/s of the Force Crag mine water, the system would 

lower the temperature of the mine water flow by just 2.8°C.  A heat pump system is 

likely to offer savings in the region of £8,103 over 25 years, compared to fuel oil 

heating.  A hydropower turbine would also, at the time of writing, be eligible for the 

Generation Tariff subsidy of up to £1,071 as part of the Government Feed In Tarriff 

(FIT) scheme.  Additionally, the coupled heat pump would be eligible for a £697 

Renewable Heat Incentive (RHI) subsidy payment, per annum.  These subsidies, 

however, are liable to change and have shown decreases over recent years. 

5.8.4 Life-cycle cost scenarios 

Life cycle cost scenarios with and without resource recovery were compared against 

each other and against alternative treatment with an active HDS type plant.  HDS 

treatment using lime to achieve hydroxide precipitation of zinc would offer an effective 

means of treating the Force Crag mine water (Schade, 2015).  Financial analysis, 

however, indicates that costs significantly outweigh those of passive treatment.  Costs 

only become comparable when passive treatment substrate life is reduced to 5 years, 

and treatment has been taking place for 50 years (see Figure 5.8).  Nevertheless, it is 

likely that a HDS plant would require major refurbishment or replacement within this 

period, entailing additional cost. 

Decontamination of passive system substrates every 10 years offers a reduction in life-

cycle costs of passive treatment to less than a third of comparable active treatment.  The 

total cost of passive treatment with substrate washing after 50 years is £1.58m, 

compared to active treatment which is £4.86m.  Even if substrate washing is required 

every 5 years, the life-cycle cost of passive treatment over the 50 year period would still 

be just £2.00m.
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Chapter 6. Conclusions and Recommendations 

6.1 Chapter contents and overview 

This chapter summarises and concludes the thesis, explaining how the aims and 

objectives outlined in Chapter 1 have been addressed, and documents the key findings 

of the research conducted.  Crucially, the original research contribution made by this 

thesis is stated and contextualised.  The chapter then goes on to discuss the limitations 

of the study and recommendations for further research in the area. 

6.2 Addressing thesis aims and objectives 

The overarching aim of this thesis was to examine the potential for recovering resources 

at abandoned metal mine sites in order to minimise the life-cycle costs of passive mine 

water treatment systems.  Two case studies in Cumbria, England, were explored:  the 

Nenthead pilot scale system treating mine water flowing from the Rampgill Horse Level 

and the full-scale Force Crag system treating drainage from the Force Crag Level 1.  

Both these systems harness(ed) bacterial sulphate reduction for metals removal within 

vertical flow passive treatment units. 

Sections 6.2.1 – 6.2.5 detail how each specific objective stated in Chapter 1 was 

addressed through a programme of laboratory, field and desk based investigations. 

6.2.1 Objective 1.  Review the resource potential of metal mine waters 

nationally and identify ways in which resources can be recovered 

Through the process of reviewing both published and grey literature, two key areas of 

resource potential exist at discharges from abandoned metal mines.  Resources found to 

be significant from the data reviewed consist of energy resources (thermal and potential) 

and metals contained within mine waters that accumulate within treatment systems.  To 

date, reviews of the resource recovery options from passive metal mine water treatment 

systems have been conducted by Gray et al. (2012); Gusek et al. (2006); and Gusek and 

Clarke-Whistler (2005).  The review in Chapter 2 builds upon these previous studies, 

providing figures from sites in England and Wales and assessing technologies for the 

recovery of energy and metals during the treatment process.
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It has been identified that flows from abandoned mines contain thermal and potential 

energy, which might be readily captured at mine water treatment sites.  Technology for 

recovery of heat energy for space heating applications and for generating electricity 

from gravity flows has been long established in the form of heat pumps and 

hydroelectric devices.  Some of the earliest examples of these technologies were 

developed by pioneering engineers John Sumner, who developed the Norwich Heat 

Pump in 1945-6, and William Armstrong who, working with Sir Joseph Swan in the 

1840s, was the first to install electric lighting powered by hydroelectricity at Cragside, 

Northumberland (Heald, 2010; Sumner, 1948).  Since recovery of thermal and potential 

energy is achievable with mature technology, little research would be required before 

deployment at a mine water treatment site.  Limited monitoring data indicate typical 

hydroelectric potential of 0.1 – 2.6kW of power from five cascading mine discharges, 

and 35 – 324kW
30

 of thermal energy readily extractable from seven metal mine water 

flows.  This demonstrates that significant energy potential exists at these sites from 

renewable sources, which may be utilised to enhance the treatment process or for 

applications off-site where nearly users exist.  It is, however, acknowledged that this 

data is from a very small proportion of the flows that exist and, therefore, the energy 

available is likely to be far higher.  Further field data collection is necessary in order to 

accurately characterise this resource more fully, although it might be advisable for this 

to be collected at sites where energy users or grid connections can be identified. 

Review of literature highlights that metal loads contained within mine water flows are 

substantial, with 253t of zinc, 21t of lead, 39t of copper and 2t of nickel estimated to be 

discharged from monitored sites in England and Wales per annum (unpublished 

Environment Agency data, 2015
31

).  Technology does exist to recover metals from 

flows as a solid sulphide product using active treatment technology (BioteQ, no date; 

Kratochvil et al., 2015) although the cost of this technology is high compared to 

alternatives (Younger et al., 2005).  Additionally, the loads of individual metal mine 

waters in England and Wales are comparatively small (6.4 – 33.9t zinc at top 10 

discharges – Environment Agency data, 2015) to even the most modest examples of 

commercial bio-sulphide plants (39t at Wellington Oro) (Bratty et al., 2006).  Passive 

treatment systems are therefore preferred when tackling lower pollutant loads seen in 

Great Britain (Jarvis et al., 2012b), although over time metal loads accumulate within 

                                                 
30

 ΔT 4°C after Banks et al. (2003) 
31

 These figures are more recent than those published in Mayes et al. (2013) 
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substrates to form voluminous wastes (Gray et al., 2012).  While, at the time of writing, 

there had been no major effort to investigate the recoverability of metals from these 

wastes, well established techniques from the mining, waste management and 

contaminated land industries have been identified which might be suitable.  In 

particular, hydrometallurgical and bio-hydrometallurgical methods have shown to 

effectively recover metals from a range of materials with similar characteristics to 

compost-based mine water treatment substrates (refer to section 2.12).  These 

techniques might be suitable for recovery of metals from spent treatment system 

substrates like those used at the case study sites, so that they would no longer be 

classified as wastes. 

6.2.2 Objective 2.  Characterise distribution of metals within passive metal 

mine water treatment system substrates 

In order to characterise the metal content of a passive metal mine water treatment 

system, destructive sampling of the Nenthead pilot treatment system was undertaken at 

the time of its decommissioning in 2012 (further details of the Nenthead treatment 

system are provided in Chapter 1).  The intention of this characterisation was to 

understand metal accumulation in passive treatment systems, and their amenability to 

recovery as a mechanism to offset or reduce operational costs.  This is particularly 

significant for substrates like those from Nenthead, which were deemed by an 

independent laboratory to be hazardous due to their high zinc content (ESG, 2013).  

Geochemical analyses of 12 samples taken from three dimensions across the Nenthead 

system were conducted using the Tessier sequential extraction method (see section 4.2, 

for results and discussion). 

Initially, sieving was undertaken to determine the relationship between the key 

contaminant zinc and substrate particle size.  It was found by wet sieving that far more 

zinc was associated with the fine grained fraction (2,158mg/kg: <212µm) compared to 

coarser fractions (962mg/kg: 212µm–2mm; 541mg/kg: >2mm).  This indicates that 

metals may be concentrated by sieving, although because these experiments were not 

repeated, further investigation is required to determine if these data are reproducible.  

Analysis of bulk substrates from different locations around the system identified 

substantially more zinc, cadmium, lead and manganese in upper layers of the treatment 

system, which operated in a down-flow configuration.  For example, zinc concentration 

in upper substrate layers ranged between 2,987-14,050mg/kg (mean 7,716mg/kg, n=6) 
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compared to lower layers which were 808-5,851mg/kg (mean 2,421mg/kg n=5).  This 

indicates that targeted removal of substrate layers may help separate highly 

contaminated material from that which is less contaminated.  Sequential extractions 

showed that different metals varied in the sequence in which they were extracted, with 

copper most tightly and manganese least tightly bound.  There was a degree of 

consistency between metal sulphide solubility products and the order in which metals 

were extracted, although there were exceptions.  This suggests that other (non-sulphide) 

metal bearing phases were important for metal sequestration in the treatment substrate, 

which are known to be important during early phases of system operation (Neculita et 

al., 2007).  Metal concentration in the influent mine water may also have a bearing on 

the phases present.  Specifically, zinc appeared more easily solubilised than iron in 

these investigations, although its sulphide solubility product is lower than iron, implying 

that zinc sulphide should in fact be less soluble than iron sulphide.  It is important to 

note that this system operated for just 2 years, and it is anticipated that systems of this 

type may last for 10 years or more, which could impact upon metal content and 

speciation in substrates. 

6.2.3 Objective 3.  Assess the options for metal recovery from passive 

treatment system substrates and undertake lab-scale proof-of-principle 

metal recovery tests 

Chemical leaching using sulphuric acid was conducted on the Nenthead treatment 

system substrate over 100 hours, for a range of acid concentrations and pulp densities.  

By recovering metals from treatment system substrates, decontamination may be 

achieved, with simultaneous production of a metal rich concentrate that could be 

suitable for further processing to recover metal product(s).  Results of these 

investigations are detailed in Chapter 4, section 4.3.  Very high recovery efficiencies 

(>100%) were seen for zinc and manganese for 0.02M, 0.1M and 0.5M acids, with high 

recovery rates also seen for nickel and cadmium (>100% in the 0.1M and 0.5M acids), 

when compared to aqua regia digests of the same substrate.  >100% recovery is 

attributed to longer exposure times to acids during leaching than during aqua regia 

digests.  Leaching of lead and copper, however, was poor compared to other metals: 

58% and 68% respectively in the most concentrated (0.5M) acid.  Experiments were 

repeated using the 0.1M acid, but increasing pulp density from 1.875% (as in preceding 

experiments) to 3.75%, 7.5% and 15%.  Little decrease in recovery efficiency was seen 
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as pulp density increases from 1.875% to 3.75% (zinc, cadmium and manganese still 

exhibit >100% recovery).  Between 7.5% and 15% pulp density, however, metal 

recovery dropped dramatically, with <20% zinc recovered in the 15% test.  This result 

demonstrates that there is a threshold beyond which increasing pulp density severely 

limits recovery efficiencies.  It was observed that beyond this threshold pH rose sharply, 

suggesting that the acid was being buffered by the substrate.  From these investigations, 

it has been determined that the optimum acid concentration is 0.1M, with optimum pulp 

density of between 1.875% and 3.75%.  Under these conditions, ≥100% of the key 

contaminants zinc and cadmium were recovered from the substrate, compared to aqua 

regia digests. 

Sodium hydroxide was used to effectively raise the pH of the pregnant leach solutions, 

and recover a metal rich solid with zinc concentrations of ≤8%.  When compared to the 

substrate zinc concentration of 0.69%, this represents a ten-fold increase in 

concentration. 

Preliminary bioleaching tests were conducted to assess the potential for achieving metal 

recovery by biochemical means.  This approach is widely discussed in the literature for 

recovery of metals from a range of wastes, primarily because it circumvents the need for 

large quantities of hazardous chemicals in leach procedures (e.g. Pathak et al., 2009b; 

Wu and Ting, 2006).  Bioleaching was conducted using the same leach configuration as 

the chemical leach tests, but with sulphur addition, and acid mine water being used as 

the leach solution.  It was hoped that use of an acid mine water would inoculate the 

experiments with sulphur oxidising organisms, often abundant in these environments 

(see section 3.5).  After an initial rise in pH to 6.5-7, it was observed to rapidly decrease 

after two weeks in flasks containing the mine water (pH≤4.2), with concurrent increases 

in sulphate concentrations.  This implies that sulphur was being oxidised to sulphuric 

acid: a reaction which occurs in the presence of sulphur oxidising bacteria (Rawlings et 

al., 2003).  pH in the control flasks, which contained sterile filtered mine water (i.e. to 

remove inoculum) also decreased, although remaining above 4 for the duration of the 65 

day experimental period.  Yet, pH decreased to <3 in the inoculated flasks over the 

same 65 days, with inversely correlated increases in sulphate in the inoculated flasks (rs 

= -0.91, P <0.001).  More rapid sulphur oxidisation was observed in flasks which were 

heated (28-30°C) and stirred, compared to unstirred flasks at room temperature.  Metal 

recovery efficiencies after 100 hours were negative for all metals excluding manganese 
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(indicating metals had been removed from the mine water leach solution, rather than 

leached from the substrate into it).  Over time, however, solubilisation of metals started 

to occur, with recovery efficiencies of ≥100% for zinc and manganese, and 71-92% for 

cadmium and nickel across all the inoculated flasks by the end of the leach test.  Lower 

recovery efficiencies were seen for copper and lead, similarly to those in the chemical 

leaching tests.  Additionally, iron recovery was very low (<10%), although iron 

concentrations were not enriched in the Nenthead substrate due to mine water.  

Bioleaching experimentation demonstrated that recovery of the key contaminant metals 

zinc and cadmium is possible by this approach, achieved by sulphur oxidisation which 

is thought to be biologically mediated.  However, significantly longer time periods are 

required to achieve significant extraction using bioleaching when compared to chemical 

leaching.  Investigations using stirred and heated replicates showed that these 

interventions improved recovery rates, implying that bioleaching processes can be 

optimised by careful control of these variables.  Further investigation is required in 

order to confirm that the mechanisms of sulphur oxidation were indeed bacterially 

catalysed. 

6.2.4 Objective 4.  Monitor the performance of a passive treatment system to 

gain an understanding of rates of metal accumulation and thereby 

forecast future metal concentrations in the substrate 

Chapter 5 is dedicated to the Force Crag mine water treatment system, and the 

performance of the system over the first year of operation (2014-15) is discussed in 

section 5.2. 

Over this first 12 months, zinc removal rates and efficiencies for the VFPs were: 

1.89g/m
3
/d; 95% and 1.90g/m

3
/d; 99% across VFPs 1 and 2, respectively.  These 

metrics situate the treatment system within the upper-middle range of similar systems 

treating zinc rich discharges described in the literature.  Given the zinc loading at Force 

Crag, 586kg of zinc per annum is accumulating in the VFP units, which would equate to 

5.85t over 10 years assuming current rates of removal are sustained.  An important 

observation was that in the final treatment system effluent, <0.1µm zinc was below 

detection (0.01mg/L), indicating that the majority of zinc (>0.07mg/L) was associated 

with particulate matter (i.e. >0.1µm particles).  Whereas, zinc in the system influent was 

overwhelmingly dissolved: 3.07mg/L <0.1µm vs. 3.11mg/L total.  If it is possible to 

engineer a system to remove particulate zinc from VFP effluents, even higher zinc 
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removal would be achievable, albeit that because of the systems high performance, this 

would achieve only a small further reduction in load. 

During the first year of operation, there was an overall export of some metals (iron and 

possibly copper and aluminium), which was associated with secondary contamination 

arising from leaching of the substrate.  For instance, average influent iron 

concentrations during the experimental period were 0.51mg/L; with effluent 

concentrations decreasing from 1.96mg/L in the first 3 months to 0.33mg/L in the last 3 

months.  This pattern was seen across a range of other parameters, indicating that this 

issue is a short-lived phase following commissioning (Jarvis et al., 2015). 

A 10 year life-time has been assigned to the system by its operator The Coal Authority, 

which appears to be conservative when considering analogous case studies from the 

literature (see section 2.9.2).  There are several potential catalysts for eventual system 

failure, and given the nature of the Force Crag site, depletion of organic carbon and 

metal accumulation would appear most likely (see section 5.4)
32

.  These factors may be 

overcome by dosing with labile liquid carbon and selective substrate 

removal/replenishment, respectively (section 5.4).  By increasing system life-time, 

costly episodes of wholesale substrate disposal and renewal become less frequent.  In 

addition, the longer the system has been effectively operating for, the higher the 

concentration of zinc within the substrate will be.  At current rates of removal, it has 

been forecast that 21,500mg/kg (2%) zinc will have accumulated within the Force Crag 

substrate after 10 years. 

6.2.5 Objective 5.  Estimate life-cycle costs associated with an operational 

metal mine water treatment system and determine how resource 

recovery from the mine water might offer a mechanism of offsetting 

these costs 

Section 5.3 in Chapter 5 gives baseline figures for the life-cycle costs forecast for the 

Force Crag treatment system by its operator (The Coal Authority).  In subsequent 

sections, limits on system lifetime and means of extending it are investigated and 

options for recovering resources are detailed, which could be used to reduce life-cycle 

costs. 

                                                 
32

 Observed reductions in substrate permeability at Force Crag in late 2015 suggest that this may also be a 

limit on system lifetime at this site. 
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Substrate disposal is considered to be the most costly part of operating the Force Crag 

passive treatment system, and has been forecast as £685,750 per life-cycle (Atkins, 

2014b).  By applying metal recovery principles investigated in earlier chapters, it may 

be possible to decontaminate substrates and produce a low volume metal rich material.  

Decontamination of the Force Crag substrate has been estimated at £55,475, generating 

a relatively small quantity of metal rich waste requiring disposal at a cost of ≤£70,000.  

This offers a saving of >£550,000 to the life-cycle of the treatment system.  The de-

contaminated substrate might then be suitable for a beneficial re-use. 

Over 10 years, extrapolation of data suggests that up to £6,165 zinc (as a native metal) 

might be recoverable from the treatment system substrate at Force Crag.  While the 

value of this metal is low when compared to the cost of decontamination, logic dictates 

that a small quantity of metal rich concentrate would be more amenable to economically 

viable re-cycling than a large quantity of contaminated substrate, with a lower 

concentration but the same mass of metal (given a reduction in the mass of material that 

would need to be processed).  Clearly, the longer the treatment system is removing 

metals for, the greater the quantity, and consequently value of metals recoverable will 

be.  Long term monitoring and measurements of actual substrate metal concentrations is 

advisable to accurately determine the metal content in the future. 

Passive treatment life-cycle costs have been evaluated against active treatment using 

lime dosing to remove metals as hydroxides at a high pH.  Even without substrate 

decontamination (i.e. entailing high waste disposal costs), passive treatment represents 

the most cost-effective solution.  By de-contaminating substrates to lessen waste 

disposal requirements, the cost difference between these two technologies increases 

further.  Table 6.1 provides details of these three scenarios, assuming that substrate 

lifetime is 10 years.  Substrate decontamination costs were provided by consultation 

with Acumen Waste Ltd (refer to section 5.7 for further details). 
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Table 6.1  Summary of costs associated with mine water treatment scenarios at Force Crag Mine: active, 
passive, and passive with substrate decontamination 

Operational and ad-hoc costs Active         
(Schade, 2015) 

Passive       
(Atkins, 2012) 

Passive with 
substrate 
decontamination 

Annual operational cost (averaged 
over life-cycle) 

£139,488.00 £91,245.00 £25,469.00 

25 year operational cost, 3.5% DCF £2,356,001.46 £1,537,147.60 £429,060.36 

Capital cost £1,550,000.00 £704,274.18 £704,274.18 

25 year life cycle cost £3,848,973.51 £2,241,421.78 £1,133,334.54 

 

At the Force Crag site, other resources exist which might be used to offset the life-cycle 

costs of passive treatment.  Specifically, 1.6kW of kinetic energy exists as mine water 

passes from the mine portal to the treatment system distribution chamber.  This energy 

could be harnessed by a small hydroelectric turbine, which could then be used to 

provide electricity to a heat-pump to provide space heating to the adjacent mine 

buildings.  The mine water at Force Crag remains >8°C throughout the year despite air 

temperature fluctuations, and therefore would offer an ideal source of heat for a heat-

pump system.  This energy, while not currently required, may act as a catalyst for the 

development of visitor facilities at the site.  Under current regulations, these 

technologies qualify for Government subsidies which further increase their appeal, 

although these subsidies were in a state of flux at the time of writing.  Regardless of 

subsidies, the potential for off-grid generation is of unique value at this site, given its 

tourist interest and remote off-grid location. 

6.3 Research contribution 

The findings presented in this thesis contribute to knowledge of resource recovery from 

passive metal mine water treatment systems in the following ways: 

 First in-depth assessment of the resource potential of drainage from abandoned 

metal mine waters, using data from sites in England and Wales. 
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 Unique assessment of VFP substrates, characterising metal content in three 

dimensions by sequential extraction and a preliminary assessment of metal 

content in relation to particle size. 

 Proof-of-principle chemical leaching of passive mine water treatment substrates 

for decontamination and recovery of a metal rich solid. 

 Proof-of-principle bioleaching of passive mine water treatment substrates to 

recover metals. 

 First of its kind assessment of the resource recovery potential of a passive metal 

mine water treatment system to offset life-cycle costs. 

6.4 Study limitations 

Whilst this study makes significant contributions to understanding of resource recovery 

at passive metal mine water treatment sites, the limitations of the study must be 

acknowledged.  The research undertaken was based upon sites and data from Great 

Britain, with review of a selection of readily available international literature.  It 

attempted to identify the potential for resource recovery and consider some technical 

aspects of doing so, although given the breadth of resource potential it is far from 

exhaustive.  Substrate characterisation and metal recovery experimentation have been 

conducted at proof-of-principle stage, and are not representative of larger scale metal 

recovery operations.  In addition, the mine waters investigated were from just two sites 

which were both poorly mineralised, and, while they had problematic zinc 

concentrations, many other metals were below analytical detection limits.  This had 

implications upon the metal content of the Nenthead substrate, and the performance 

assessment of the Force Crag treatment system. 

Some life-cycle cost projections were produced for the Force Crag mine water treatment 

system case study to contextualise the research conducted.  These projections are based 

upon extrapolation of best available information, although future technological 

advances and financial conditions are likely to impact upon the actual life-cycle costs.  

No detailed life-cycle analyses were conducted, as this is out of the thesis scope and has 

been explored by others (e.g. Hengen et al., 2014). 
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6.5 Recommendations 

Throughout this research, it became evident that there are many potential research 

avenues which were out of scope under the current investigation.  Some of the most 

pressing of these areas are as follows: 

 Geochemical investigations into metal mine water behaviour under conditions 

encountered within renewable energy systems (at the time of writing the author 

is not aware of any open-loop energy recovery systems at abandoned metal mine 

sites in Great Britain). 

 More detailed investigations into particle size distribution of passive treatment 

system substrates.  It was a limitation of this research that experiments into 

particle size distribution were only preliminary, and not repeated. 

 Further investigations into biological leaching, in particular community 

assessment by 16s rRNA gene sequence analysis to understand the role of 

biological processes in these experiments. 

 Long-term monitoring of passive VFP treatment units at Force Crag, in order to 

quantify limits on system life-time and more accurately forecast substrate 

composition at time of failure. 

 Repeating the experimentation conducted in this thesis at geochemically 

different sites, to determine the impacts of geochemistry on treatment system 

performance and metal recoverability. 

Further development of technology for the recovery of metals from treatment system 

wastes is required by industry, such as conducting pilot substrate leaching trials using 

soil washing techniques.  Renewable energy potential has also been quantified, along 

with estimated costs and benefits, yet it is for other sectors to champion and exploit 

these resources for wider benefit. 

6.6 Final remarks 

Recovery of resources from passive mine water treatment systems has the potential for 

benefits which exceed the monetary savings afforded to operators.  Metal concentrates 

recovered from passive treatment system wastes could be exported to mineral 

processing facilities, where metals could be recovered for re-cycling.  This would divert 

potentially toxic metals from further dispersal into the environment through landfilling 
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of waste substrates.  By recovering metals in this way, future mining operations along 

with their inherent environmental and social risk factors could be proportionately offset. 

Renewable energy potential exists within mine waters which flow by gravity, and where 

stable temperatures exist.  By recovering energy at passive treatment sites, the treatment 

process may be enhanced (for example, by powering of reagent dosing units), or power 

could be used for off-site applications.  Where energy is exported from a fully-passive 

treatment system, either to the grid or for off-grid users near to the site, the system 

becomes a net exporter of renewable energy. 

Mechanisms exist to recover metals from passive mine water treatment systems and 

recover energy from mine water flows; these have been shown by this research to offer 

a way of offsetting the financial costs of remediation.  What is, perhaps, of greater 

significance is that resource recovery has knock on environmental benefits: recovery of 

metals from treatment substrates avoids landfill disposal of metalliferous wastes, yet 

generating a low-impact metal resource, while recovery and export of renewable energy 

offsets carbon emissions from fossil fuel generation elsewhere.  These benefits are 

consistent with the current European agenda of resource efficiency within a circular 

economy (European Commission, 2016), a crucial strategy for protecting the world for 

future generations.
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