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Abstract 

Series compensation techniques can be very effective when applied in an electrical 

network to increase the power transfer capacity of existing power lines. Distributed 

Static Series Compensation (DSSC) is a power electronics based series compensation 

scheme in which a DSSC device comprises of a single-phase H-bridge voltage source 

converter, a dc link capacitor and a low pass filter suspended from the power line via a 

single turn transformer. The application of DSSC in the 11kV distribution network is 

investigated in this thesis. This is followed by a study of existing control strategies 

employed in DSSC and Static Synchronies Series Compensation (SSSC) schemes.  

Most of these controllers are based on dq transformation methods in which balanced 

conditions are assumed and zero sequence currents are assumed to be negligible. While 

this might be a reasonable assumption at transmission level voltages, but it can be 

argued that in the presence of unbalanced loads and currents (a common feature of 

lower voltage distribution networks) these strategies can be inaccurate, leading to the 

wrong amount of compensation being injected. In addition some of the studied 

controllers are based on the 90° phase shift of line current. Practically, the injection 

angle must be slightly different in order to compensate the internal losses of the DSSC. 

The need for the diversion from the 90° can change over the time and this can threaten 

the stability of the system. 

A new single-phase control strategy based on the instantaneous power exchange 

between the DSSC devices and each of the three phase conductors is proposed in this 

thesis to address this issue. The new control method does not employ a dq 

transformation and is immune from the probable errors resulting from the presence of 

unbalanced network conditions. In the same time the injection angle is not fixed and it 

is adjusted by the controller.  

The operation of DSSC can be categorized in two modes and transfer function of 

system is obtained based on these two modes. The transfer function is used in the design 

of controller. This is followed by analyzing immunity of the designed controller against 

change of system parameters. The proposed scheme is simulated (using PSCAD 

software) to examine the operation of the new control method and the resulting impact 

on the 11kV distribution feeder, including the ability to divert power from one line to 

another and the ability to improve network voltage profiles. Performance of DSSC 

using the proposed controller is compared with performance of DSSC when the 

traditional controllers are employed. 
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Effect of line resistance on the performance of the DSSC is studied and relation between 

the compensation and X/R ratio of compensated line is highlighted. A fault management 

study is conducted in order to find a fault recovery strategy in the occurrence of fault.  

 

A 50V test rig has been designed and built to verify the operation of the DSSC devices 

employing the new control method. This includes the design and construction of a 

single turn transformer (STT), filter and all of required electronic boards to execute the 

control strategy. Different types of low pass filters are investigated and their capabilities 

are considered in selection of power topology of filter. Capacitive and inductive 

injection capability of the proposed controller is examined power flow control 

capability is demonstrated. Results obtained from the test rig are in good agreement 

with simulations validating the proposed controller. The experimental results of 

proposed controller are compared against those of traditional controller. 
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1 Introduction 

 

 

 

 

 

 

 

 

1.1 Background 

Distributed static series compensator (DSSC) is a type of FACTS (Flexible AC 

Transmission System) devices that is utilized to compensate the line reactance in 

electrical networks. Through means of series compensation the line reactance can be 

reduced and the Available Transmission Capacity (ATC) can be increased. It can then 

maximize the utilization of the existing networks and postpone the construction of new 

electrical networks.  

 

However, series compensation traditionally is achieved by implementation of fixed 

capacitors in series through the power lines. The combination of fixed capacitors and 

inductance of the line can initiate sub-synchronous resonance (SSR) phenomenon. This 

is a challenging issue with the application of fixed capacitors and it is established the 

idea of using power electronics based compensations. 

 

DSSC is the most novel power electronic based series compensation in the transmission 

lines. Furthermore, by connection of solar generators and wind farms (in most of the 

cases) to the distribution networks the need of expansion in these networks become 

more important. Application of DSSC in the 11kV distribution networks along with a 

new control strategy to enhance the performance of the DSSC device has been 

introduced in this study. The proposed control system has been simulated and 

simulation results are presented to validate the proposed scheme. In addition a test 

bench has been designed and implemented to conduct experimental tests.   
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1.2 Research objectives 

This research focuses on series compensation and the aim, thus, is to primarily build up 

an inclusive understanding of the principle of series compensation. This includes 

investigation of existing series compensation solutions and highlighting their strengths 

and weaknesses. For example, the concept of fixed capacitors and power electronics 

based compensators are required to be studied in depth and their advantages and 

disadvantages identified. Sequentially, applied control strategies are required to be 

studied and drawbacks to be identified. 

 

Control strategy of DSSC device has not received adequate attention in the literature 

and in most of the cases it is simply limited to stating that the injected voltage by DSSC 

must be orthogonal to the line current [1]. In the same time among series compensation 

devices, Static Synchrounes Series Compensator (SSSC) also operates with the same 

concept [2].  This is encouraging to consider investigating control strategies which have 

been employed within SSSC devices. However those strategies are mainly based on the 

abc to dq conversion [3] which they have own disadvantages in presence of unbalance 

AC system. Most of these controllers employ dq conversion in which balanced 

conditions and negligible zero sequence are necessary assumptions. The assumptions 

might be sensible at transmission level, however because of presence of unbalanced 

loads and currents it can be unreasonable assumption the distribution networks. As a 

result these strategies can be erroneous and provide wrong amount of compensation 

being injected.  

Some of the control strategies are based on the 90° phase shift and practically in order 

to compensate the internal losses of the DSSC the voltage is slightly diverted from 90°. 

The diversion can vary over the time and this can put the stability of the system at risk. 

 

A new control system needs to be developed to overcome drawbacks with the existing 

control systems. The controller must guaranty the 90° voltage injection and regulate the 

DC voltage at the desired value. It should be immune against the unbalance of the AC 

system and should provide reference signal for DSSC modules installed in three phase 

independently from each other.  In order to address these requirements a new single-

phase controller conceptually based on the instantaneous power exchange between 

power system and DSSC is proposed.  



25 
 

The developed control therefore is simulated and tested experimentally. In order to 

conduct experimental tests, a test rig is designed and implemented.   

 

The objectives of the research are: 

• To build up a broad understanding of series compensations 

• To identify the drawbacks within the existing series compensation methods  

• To investigate potential application of DSSC in 11kV distribution networks  

• To develop an understanding of  existing control methods and their 

drawbacks 

• To develop a new control method for enhancing the performance of the 

system 

• To design and implement a single turn transformer and a test rig for 

conducting of experimental tests  

• To validate the proposed control strategy  

1.3 Thesis layout 

This thesis introduces application of DSSC devices in 11kV distribution networks. At 

the same time it develops a new control method to enhance the performance of DSSC. 

 

In chapter 2 a brief summary of compensations is stated and the principle of series 

compensation and available commercial solutions are explained and examined. 

Furthermore, their power topologies and the associated advantages and disadvantages 

are clarified. Fixed series capacitors, as a traditional and simple solution, are 

investigated in detail. This is then followed by explanation of power electronics based 

series compensators. In this category static synchronous series compensators (SSSC) are 

explained in detail and their drawbacks explained. DSSC is found to overcome some of 

the issues of application of SSSC in the electrical networks. It is followed by 

explanation of power topology and principle of operation of DSSC. 

Subsequently, existing control algorithms of SSSC and DSSC are explained. The 

advantages and disadvantages of different control systems (existing control strategies in 

the literature review) have been studied. The drawback with dq conversion based 

controllers has been presented.  

Chapter 3 presents potential applications of DSSC in 11kV distribution networks. 

Different applications of the DSSC device has been explained and simulated.  The effect 
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of line resistance on the performance of DSSC has been investigated. Relationship 

between X/R ratio and power transfer capability of line with and without compensation 

is studied. In this chapter it has been shown that how this device can improve the 

voltage profile through an 11kV distribution feeder.. It has been shown that the device 

can contribute toward power flow control by diverting current from one line to another 

one. 

Chapter 4 is organized so that it primarily introduces the novel control algorithms and 

thereupon presents simulation results of its utilization. The modelling approach of 

DSSC to be employed in controller design using MATLAB is also explained in this 

chapter. The designed controller is implemented in the PSCAD model and the 

simulation results show the capability of controller in the injection of both capacitive 

and inductive voltages through the line. Sensitivity of the designed controller against 

change of system parameters has been investigated. An exhaustive list of simulation 

result comparing the performance of the developed controller with the performance of 

the traditional controllers is presented. Satisfactory performance of the developed 

controller in presence of unbalance system and voltage dip has been demonstrated. A 

fault management strategy has been developed in this chapter and the related simulation 

results are presented. An investigation regarding the effect of change of power system 

parameters on the performance of the DSSC has been conducted.   

 

The design procedure of the test rig is presented in chapter 5. The explained procedure 

includes design of single turn transformer (STT), LC filter, all electronics and power 

electronics boards. This is followed by demonstrating full design steps of STT to be 

employed in an 11kV system. Different type of low pass filters has been studied and LC 

filter is selected to be employed in the DSSC device. Moreover, all hardware design 

calculations and implementation process are included. Finally, the chapter includes the 

procedure of conducting the experimental tests and the description of low voltage power 

system required for the tests. The experimental tests include demonstrating the 

capability of developed controller in injecting capacitive and inductive reactance 

through the line. Thereafter, performance of the proposed controller is compared with a 

traditional controller. Finally, load flow capability of DSSC has been demonstrated. 

 

In chapter 6 represents the conclusions and author contributions. The publication from 

this research work is listed. This is followed by recommendations for the future works. 
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At the end of the thesis four appendixes A, B, C and D are presented. Appendix A 

provides expanded information about dq conversion and appendix B is about 

components specifications. Appendix C presents detailed information about 

microcontroller respectively. Feasibility study of application of DSSC devices in 11kV 

distribution networks in terms of mechanical withstand capability of the existing 

networks has been demonstrated in appendix D 
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2 Compensation in electrical networks 

This chapter describes different types of compensations including series, shunt and 

hybrid in the electrical networks. Shunt and hybrid compensators are explained briefly 

as they are not main subject of study. However series compensators are explained 

exhaustively with comprehensive literature review. This includes all available series 

compensation methods and related topologies. 

This chapter presents the principle of control of SSSC and DSSC and it is followed by 

investigation on the existing employed control strategies in their applications. The 

advantages and disadvantages of the controllers are also discussed.  

 

2.1 Compensation methods 

Compensation in electrical networks can be achieved in different ways and they can be 

employed to increase efficiency of the AC system and enhance its controllability. 

Efficiency of the system can be increased by optimal utilizing of ATC and avoiding 

unnecessary reactive power flow through the power lines [4], [5]. Different types of 

compensation, shunt, series and hybrid are categorized in Fig.2.1.  

 

.  

Fig.2.1: Different type of compensation 

 

Shunt compensation can be accomplished by using Static Synchronous Compensator 

(STATCOM) or Static VAR Compensator (SVC) to regulate voltages in the connected 

buses of an electrical network. They can supply all or part of required reactive power 

locally and avoid occupying line capacity to deliver reactive power [6]. Shunt 

compensators act as current source and inject a current in parallel with the line.  

Compensation 

Series Shunt Hybrid (UPFC)
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However, series compensation is mainly used to alter reactance of line. This can be 

performed by inserting a capacitive reactance through the power line. Series 

compensation helps to release ATC and enhance power flow in the network. This 

compensator is of voltage source type and it injects a series voltage through the line.  

In addition, series and shunt compensation simultaneously can be achieved by hybrid 

compensation. Unified Power Flow Controller (UPFC) is a hybrid compensator which 

can control active and reactive power flow through the power lines independently [7, 8]. 

This device is comprised of a shunt compensator and series compensator. UPFC 

regulates bus voltage and compensates line reactance by injecting current in parallel and 

voltage in series respectively [9, 10]. 

 

2.2 Shunt Compensation 

Shunt compensation is usually used to regulate voltages in an electrical network. Shunt 

compensators generate leading current to compensate the lagging current of the load, 

i.e. they inject reactive power into the system and thus regulate the local voltage at the 

point of injection. Shunt compensator can also be inductive and in this case it can be 

used to reduce voltage levels if these are increased beyond the operating limits of a 

circuit. Shunt compensation is traditionally provided using fixed capacitors, reactors or 

rotating synchronous condensers. Compensation can also be provided using static 

switches and power electronics based devices such as STATCOM and SVC allowing a 

very fast response to system transients. Such devices have the capability of injecting 

both inductive and capacitive reactive power on demand [6]. 

 

2.2.1 Synchronous Voltage Source 

Rotating synchronous condensers (over excited synchronous generators running on no 

load) have been used as a shunt compensator in transmission and distribution networks 

for many years. Although the synchronous machine has an inductive nature and cannot 

therefore contribute toward any sub-synchronous resonance oscillations [11], [12], the 

scheme still has some disadvantages. For example, it has a slow response which 

disqualifies it from being used for system dynamic control enhancement. Furthermore, 

it has low short circuit impedance and high maintenance costs [13].  

A SVS shunt compensation device using static switches is discussed in [13].This has 

some advantages in comparison with the rotating synchronous condenser. For example, 
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it does not have inertia and its output can be controlled dynamically. Fig.2.2 shows a 

parallel connection of SVS into a power line. 

 

 

Fig.2.2: SVS shunt compensation 

 

Converters with different power topologies can be employed as a SVS. In [13], a six 

pulse voltage source converter (VSC) is utilized as a static synchronous voltage Source. 

The converter, shown in Fig.2.3, comprises three legs connected in parallel with a DC 

capacitor, each leg consisting of two sets of GTOs with an anti-parallel diode. When the 

GTO in each leg is triggered, the voltage across the capacitor will appear at the 

corresponding ac output. With sequential switching of the GTOs, the converter output 

will be a three-phase ac voltage as shown in Fig.2.4. 

 

Fig.2.3: Voltage Source Converter 
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Fig.2.4: Output voltage 

 

The VSC converter shown in Fig.2.3 has the ability to exchange both active and 

reactive powers with the supply (if an auxiliary power supply is provided on the dc 

side). Power can flow in both directions across the converter (from the DC link into the 

AC system and vice versa) governed by the amplitude and phase angle of the converter 

output voltage. If the amplitude of the AC output voltage is higher than the voltage of 

the AC system, then the converter generates reactive power and behaves like a 

capacitor. However, if the amplitude of the ac output voltage is lower than the voltage 

of the AC system, the converter consumes reactive power and appears as an inductive 

load. Active power exchange can be achieved by controlling the phase angle of the ac 

output voltage (in the presence of an auxiliary dc power source). The converter can 

absorb active power from the AC system if the output voltage of the converter lags the 

AC system voltage and can inject active power into the AC system if the output voltage 

leads the AC system voltage [14]. 

2.3 Series compensation 

Applications incorporating series compensators within power lines are increasing 

nowadays, where they are becoming more important multi-purpose devices in power 

systems. The application of series compensation in transmission lines to increase the 

ATC by changing the line reactance has been proposed and implemented in high 

voltage transmission networks across the world [15, 16]. This provides a cost effective 

and fast solution which can have environmental benefits by reducing the need for the 

construction of new power lines. Additionally, series compensation can improve both 

power system stability and voltage stability as are explained in subsection 2.3.1 and 

2.3.2.  
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2.3.1 Improvement of power system stability 

Because of the difficulties of building new transmission or distribution lines it is 

desirable to utilize existing power lines as much as possible. However there are some 

limitations and requirements which must be met for the proper operation of the system. 

Power system stability is one of these important issues that must be considered. 

Power transfer between two buses in a power system (with ignored line resistance) is 

described by the equation (2.1) 

P�� = ���� �	
��  (2.1) 

where Vs and Vr are the rms bus voltages (Fig.2.5) and δ is the load angle (i.e. the phase 

angle between the sending end voltage Vs and receiving end voltage Vr. XL is the 

reactance of the line and Psr represents the received power at the destination bus. XL 

could be altered by using fixed capacitor type of series compensation. With the insertion 

of the compensator, XC is inserted into line and (2.1) can be rewritten as: 

P�� = ���� �	
����C

 (2.2) 

 

Fig.2.5: Two bus power system 

 

Fig.2.6 shows the amount of transmitted power versus the load angle (δ) for two 

different line reactances. Compensation of line reactance increases the capability of 

power transmission through the line. Therefore it can be concluded that if the 

transmission of a certain amount of power can cause instability in an uncompensated 

system, the compensated system would be more stable and more likely to be able to 

handle the extra power transmission.  

 

Fig.2.6: Power transmission versus the phase angle with different amount of compensation 
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2.3.2 Improvement of voltage stability 

The stability of system voltage in a power system can be affected by the amount of 

transmitted power. The improvement in system voltage stability as a result of reactance 

variation has been well argued in [8, 17]. 

It has been shown that series compensation can even enhance the transient stability of 

the system [17]. Fig.2.7 shows the power-voltage characteristics of the line with and 

without compensation. This figure shows how the demanded active power (horizontal 

axis of the power-voltage characteristics) can be delivered to the load with a lower 

voltage drop at the receiving end bus in the compensated system. 

 

Fig.2.7: Line power-voltage characteristics 

 

2.4 Fixed Series Capacitor Compensation (Series compensation) 

Series compensators can be categorised into fixed series capacitor and power electronics 

based devices. In the fixed series capacitor simply a capacitor has been inserted in series 

through the line and alters the line reactance as shown in Fig.2.8. 

 

Fig.2.8: Compensation of line reactance 

 

As a result of compensation, more transmission capacity will be available and more 

active power can potentially be delivered to the load. Without line compensation, a new 

line may be required to transmit the increased power demand. In a case study carried out 
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by ABB [18], two systems were considered for transmitting 2000 MW, as shown in 

Fig.2.9. 

System A with two parallel 500 kV lines, each compensated by 40% and system B, with 

three parallel 500 kV lines without compensation. 

 

Fig.2.9: Two possible solutions for transmitting 2000 MW 

 

The total implementation cost of system A was found to be 35% less than system B. 

System A also enjoyed other environmental benefits in terms of generating fewer “right 

of way” issues than system B. 

Although high percentage compensation of transmission lines seems to be economically 

efficient, the compensation level must not approach 100%. If this were to be the case, 

fault levels would be very high and line current and power flow would be highly 

vulnerable to any network voltage changes. Furthermore, it would make the protection 

system more complicated. In practice, the maximum recommended level of 

compensation is about 80% [19]. 

 

2.4.1 Power topologies of fixed series compensator 

Series capacitors must be combined with other equipment in order to make them 

controllable while they are being used to compensate the power system [20, 21]. 

Another issue is the high voltages across the capacitors in case of a short circuit fault. 

For economic reasons, capacitors cannot be designed to withstand such high voltages 

and they must be protected against such conditions. Two topologies (Figs.2.10) have 

been employed in the past to achieve this [19], [21]. 
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Fig.2.10: Power topologies for series capacitor connection 

 

The circuits consist of the following components: 

• Capacitor bank: this is the main component of the series compensator circuit and 

is constructed using parallel and series connection of capacitors to meet the 

required MVAr, voltage and current ratings. 

• Damping circuit: made of a reactor (mainly air cored) to restrict the current 

which can be generated by the bypass switch or spark gap. 

• Metal Oxide Varistor (MOV): protects the series capacitors from any possible 

over voltages before the bypass switch operates. 

• Bypass switch: to bypass the capacitors (can be of SF6 type). 

• Spark gap: to bypass the capacitor bank in case the energy absorption capability 

of the varistor is exceeded. 

The short circuit level (SCL) of the compensated system will increase as a result of the 

line reactance reduction. High SCLs will lead to high fault currents and this will put a 

high voltage stress across the series capacitors. For this reason some protection is 

needed for the capacitors. The Spark Gap bypasses the capacitor when an over voltage 

appears across the capacitor. The stored energy in the capacitor will then be absorbed by 

the damping reactor. By closing the bypass switch, the Spark Gap will be bypassed and 

the current will pass through the switch. Finally, when the current drops back to its’ 

normal value the capacitor is reinstated and compensation is resumed. The minimum 

and maximum reinsertion times for the topology shown in Fig.2.10 (A) are 200ms and 



36 
 

400ms, respectively [19]. In Fig.2.10, the MOV has a nonlinear characteristic with a 

high resistance for the voltages below the protective level and a lower resistance for 

voltages above this level. For this reason, immediately after overvoltage across the 

capacitor the varistor quickly initiates conduction and bypasses the capacitor. After 

current returns to its normal value, varistor conduction will cease and this will reinsert 

the capacitor into the line [19]. The Spark Gap comes into operation to bypasses the 

varistor and capacitors current diverted in case the energy absorption capability of the 

varistor is exceeded. 

2.4.2 Point of connection of fixed series capacitors 

The point of connection for series capacitors is important in terms of cost, reliability, 

short circuit level and accessibility. In practice, the midpoint of the line as well as the 

sending and receiving end points are recommended for the installation of series 

capacitors. It would be cheaper to install all the compensation at the sending end or at 

the receiving end of the line but this would complicate the requirements of some 

protection systems such as distance protection schemes. To avoid any complications 

with the protection system, it is more convenient to install the capacitor bank in the 

middle of the line [19] despite the extra cost involved. 

2.5 Thyristor Switched Series Capacitors (TSSC)  

A thyristor switched series capacitor (TSSC) compensator [22] is comprised of a 

capacitor in parallel with two anti-parallel connected thyristors as shown in Fig.2.11. 

 

Fig.2.11: Power topology of TSSC 

 

To insert the capacitor into the power system the thyristors should be turned off. This 

can occur only if the current passing through the thyristor becomes smaller than 

required minimum turn off current. To avoid any possible surge currents, a thyristor can 

be turned on when the voltage across its’ terminals is zero (soft switching). In this case, 

the thyristor may be switched on at the voltage zero crossing points and turned off at the 

current zero crossing points. In order to have enough compensation in the system, there 

might be a number of series connected TSSC units, as shown in Fig.2.12. 
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The implementation and operation of TSSC in a power system can obviously affect the 

power-angle characteristics of the line (Fig.2.13). The transmission capability increases 

with capacitive compensation, as shown in Fig. 2.13, and vice versa. 

 

 

Fig.2.12: Number of TSSC units which are connected in series 

 

 

Fig.2.13: The effects of TSSC on power versus angle 

2.6 Thyristor Controlled Series Compensation (TCSC) 

A thyristor controlled series compensator comprises a capacitor in parallel with a 

thyristor controlled reactor (as explained and presented in [10], [23]), as shown in 

Fig.2.14. In order to avoid over voltages across the module, it always comes with a 

metal oxide surge arrester as shown in figure 1 in [24].The total required compensation 

might be achieved by the series connection of number of TCSC modules as shown in 

Fig.2.15 [11], [24], [25].  

 

Fig.2.14: Power topology of TCSC 
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Fig.2.15: Series connection of TCSC 

 

The operation of a TCSC can be divided into 4 distinct modes based on the circuit 

Boost Factor [22], K, defined as: 

K = �������  (2.3) 

Where XC is the reactance of the device capacitor and XTCSC is given by: 

X���� = Img ���� � (2.4) 

Another important parameter of a TCSC circuit is given by λ defined as [22]: 

� = ��� �!  (2.5) 

The four operation modes [26], [27] are explained in the following sub-sections. 

 

2.6.1 Bypass mode 

In this mode, the thyristor is in conduction and the capacitor is connected in parallel 

with the reactor. The effective reactance of each module is then given by: 

X���� = ��∗���#� (2.6) 

In a practical circuit operating at 50Hz, the resultant reactance of the parallel LC 

connection is inductive. For this reason this mode is mainly used to limit the fault 

current and reduce the voltage across the capacitor in the case of a line short circuit fault 

[22]. 

2.6.2 Blocked mode 

In this case the thyristors are off and the reactor is disconnected from the rest of the 

circuit. The reactance of the TCSC device is then equal to XC and the Boost Factor is 

unity. In this mode, the capacitor carries the full line current and the current in the 

reactor is zero [28]. Capacitor is fully inserted in series with the power line and TCSC 

acts as a fixed series capacitor [29], [30].  
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2.6.3 Capacitive boost mode 

If the thyristors are fired just before the capacitor voltage zero crossing point, current 

will begin to flow through the reactor, thyristors and capacitor as shown in Fig.2.16. 

This charges the capacitor to a high value of voltage (because the current which pass 

through the reactor is added on top of the line current). The generated voltage is 

capacitive and compensates part of the line inductive reactance. The time interval which 

the thyristors are ON is defined by the firing advance angle β which in turns affects the 

amount of compensation provided by the TCSC circuit [22]. 

 

Fig.2.16: Line current, capacitor voltage and reactor current 

 

Current passing through inductance (iL) has non zero value when Thyristor is 

conducting. The current is plotted in Fig.2.16 and its non zero value is an indication for 

conduction of Thyristor.  

2.6.4 Inductive boost mode 

The operation of a TCSC circuit in inductive boost mode is similar to the capacitive 

boost mode. However in this mode the angle β is higher than 
$%& and the current flowing 

through the thyristors is extremely high. This mode can be used to limit the fault current 

in the line. However, because of voltage distortion issues across the capacitor and 

extremely high currents in the thyristors, operation of TCSC in this mode is not 

recommended. 

Fig.2.17, shows the operation of TCSC in both capacitive and inductive with values of 

the boost factor plotted against the firing advance angle β [22]. 
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Fig.2.17: Boost factor K versus β; Operation of TCSC in capacitive and inductive boost mode. 

 

2.7 GTO Thyristor-Controlled Series Capacitor (GCSC)  

A GTO Thyristor-Controlled Series Capacitor (GCSC) unit is comprised of an anti-

parallel GTO pair connected in parallel with a capacitor, as shown in Fig.2.18. The 

whole device is connected in series with the power line.  

 

Fig.2.18: GTO Thyristor-Controlled Series Capacitor 

 

In a GCSC circuit there is no need to wait for zero voltage conditions before switching 

the GTOs which can be fired any point on the voltage wave [31], [32]. This is because 

GTO is a controlled switch and it can be switched on and off using a control signal. In 

the configuration shown in Fig.2.19, a fixed capacitor is used in conjunction with the 

GCSC circuit. In this topology, the main compensation comes from the fixed capacitor 

with the GCSC providing fine tuning of the required compensation [31]. 
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Fig.2.19: GCSC series with a fixed capacitor 

 

Another topology discussed in [31] is shown in Fig.2.20. In this arrangement, a number 

of GCSC units is connected in series with each contributing a different percentage of its 

rated power (down to zero contribution in bypass mode). 

In this approach, there would be a considerable amount of steady state voltage distortion 

because of the in/out switching of the capacitors. In order to reduce the amount of 

voltage distortion, a combination of TSC and GCSC can be used as shown in Fig.2.21. 

In this configuration, the main part of compensation is achieved by the TSC circuit and 

the GCSC provides fine tuning [33], [34]. 

 

Fig.2.20: Numbers of GCSC connected in series 

 

 

Fig.2.21: Combination of number of TSC and a GCSC 

2.8 Application of synchronous voltage source in series compensation 

The VSC converter, previously shown in Fig.2.3, is a synchronous voltage source and it 

can be employed in series compensator [13]. This device does not insert a physical 

capacitor in the system. Hence, the reactance of the system remains unchanged for all 
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frequencies other than the power frequency of the network. The device employs fast 

switching and forced commutated switches within its converter. Feasibility of the 

application of static switches in series compensation devices in transmission and 

distribution lines is well described in [34]. 

The converter is connected in series with the power line (shown in Fig.2.22) via a series 

transformer and in the DC side it is connected to a DC capacitor. If active power 

compensation is required capacitor must be supplied with an auxiliary power sources to 

provide active power. The connection of capacitor to an auxiliary power source is 

shown with dash line indicating that it is optional and required only if active power 

compensation is required (to supply the consumed active power by compensation). The 

required active power can be supplied by another power converter (auxiliary power 

source) which is feeding active power into the DC link (DC capacitor) [13], [1].  

 

 

Fig.2.22: VSC connected in series with the power line (series compensation) 

The operation of VSC in series compensation applications can be divided into four 

categories. These modes of operation provide different types of power exchange 

possibilities for the VSC as shown in Fig.2.23. For example, in order to supply active 

power and absorb reactive power the VSC module must operate in the 1st quadrant of 

Fig.2.23. In this figure Vinj is the injected series voltage while, Vinjp and Vinjq are the in 
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phase and orthogonal component of injected voltage with respect to the line current. 

Phase angle between the injected voltage and line is shown by α and exchanged active 

and reactive power is calculated in equation (2.6). ' = ()*+,-)*. cos 2 (2.6) 

3 = ()*+,-)*. sin 2 
Polarity of P or Q and the corresponding convention are tabulated in Table (2.1). 

 

Parameters 
Operation mode 

Supply Absorb 

P Positive Negative 

Q Negative  Positive 

 

Table 2.1: P or Q and the corresponding convention 

For supplying both reactive power and the active power the operation of VSC converter 

falls into quadrant four. In the absence of an external power supply the VSC can operate 

only in quarters two and three and must absorb a minimum amount of active power 

(losses) to maintain reactive power compensation.  

 

Fig.2.23: The operation of VSC in series compensation applications 

The phase angle of the injected voltage with respect to the line current is an important 

parameter in VSC series compensation. For instance, if the phase angle difference 

between the injected voltage and the line current is zero, this means that the VSC 

supplies only active power. However, if the phase angle is 90°, then the VSC injects (or 

absorbs) reactive power only. When the injected voltage lags the line current by 90°, 

capacitive compensation is being provided. If we assume that Vinj=-JXinjiL is the injected 
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voltage and iL is the line current, then Xinj will represent the effective reactance of the 

injected capacitance. 

The phase angle of the injected voltage can vary between 0 and 360 degrees and this 

determines the functionality of the VSC. For example, VSC connected to a AC system 

as shown in Fig.2.24 can contribute towards voltage regulation by injecting voltage in-

phase or in anti-phase with respect to the bus voltage [13]. 

 

 

Fig.2.24: Regulating bus voltage by VSC based compensator 

 

The phasor diagrams explaining the injections are shown in Fig.2.25. The compensator 

regulates the bus voltage (Vr as shown in Fig.2.25 and Fig.2.26) and bus voltage before 

and after compensation is shown in this figure. 
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Fig.2.25: In-Phase and anti-phase (with respect to the bus voltage)voltage injection 

 

Circuit representation of the corresponding injection is shown in Fig. 2.26.  

 

Fig.2.26: Circuit representation of the injection 

 

where Vs and Vr are the sending end and receiving end bus voltages. Injected voltage is 

shown by Vinj. In this figure the injected voltage is represented by a series voltage 

source moreover its angle and amplitude is being controlled by the controller. For 

example, if compensation of line reactive along with the regulation of the bus voltage is 

required, then there must be an injected voltage which can be decomposed into two 

components as shown in Fig.2.27. Bus voltage regulating component is in phase with 

the bus voltage and line reactive compensator component is in quadrature with line 

current [13], [1]. It must be noted that voltage source only injects Vinj which includes V1 

and V2 and these voltages are not being injected separately. The compensated bus 

voltage is shown with Vr before and after compensation in Fig.2.27. 
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Fig.2.27: Compensating line voltage drops 

 

The VSC can regulate the load angle in a transmission or distribution line, and at the 

same time regulate bus voltage. To do so (Fig.2.28), the device injects an in-phase 

voltage (in phase with the bus voltage ) responsible for voltage drop compensation and 

another voltage component which is trying to alter the phase angle in such a way that 

the resultant rms voltage remains unchanged but with a phase angle shifted of α degrees 

[13], [1]. The resultant injected voltage is Vinj which is being injected in series through 

the line as represented with a voltage source in Fig. 2.26. The compensated bus voltage 

(Vr) is shown in Fig.2.28 before and after injection.  
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Fig.2.28: Compensation of voltage drop and regulating the phase angle 

 

Finally, the VSC can be employed to regulate bus voltage and the transmission load 

angle while it is compensating line reactance. In order to meet all these requirements, an 

injected resultant voltage combining three different elements is needed, as shown in 

Fig.2.29. In this figure V1 represents the in-phase with bus voltage component whileV2 

and V3 show the line reactance compensating and phase angle regulation components of 

the injected voltage, respectively[13], [1]. However at the end only Vinj (which is the 

resultant voltage) is being injected as shown in Fig.2.26. The regulated bus voltage (Vr ) 

is shown in Fig.2.29 before and after compensation. 

 

Fig.2.29: Regulating bus voltage, line reactance and load angle regulation 
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2.9 Static Synchronous Series Compensator (SSSC) 

SSSC is a series compensator device and it is connected in series with the power line 

via a transformer. It employs VSC converter to inject series voltage in quadrature with 

the line and alters the effective line reactance by injecting a voltage. Its principle of 

operation is similar to those explained in pervious section. However, in SSSC the main 

purpose is to compensate the line reactance which can be achieved by injecting a fully 

controlled voltage in quadrant with the line current [14], [35]. In three phase systems, 

SSSC is comprised of a three phase power converter connected in series with the power 

lines through a series transformer. SSSC is mainly used to provide VAr compensation 

and its typical block diagram is shown in Fig.2.30. SSSC needs to absorb active power 

in the start up period to charge up its DC capacitor it needs to absorb active power to 

compensate the ohmic losses within the SSSC device. 

 

 

Fig.2.30: SSSC block diagram 

 

Line reactance in transmission and distribution lines can restrict the available 

transmission capacity. Since there is no physical connection of a capacitor in series with 

the line, SSSC can be used to compensate a percentage of the reactance of the line 

without the initiation of Sub-Synchronous Resonance (SSR) in the network [36]. SSSC 

can also increase the line reactance partially diverting the current in an existing line into 

another parallel line.  

However, application of SSSC is not restricted to the power flow control in electrical 

networks; it can also be used for reactance compensation. For example, in [37] SSSC is 



49 
 

applied in a wind farm to compensate the line reactance in order to release more 

transmission capacity. The different modes of operation of static synchronous 

compensation were explained earlier in section 2.8. In all of schemes, compensation is 

achieved by injecting a series voltage through the power line. The injected voltage by 

SSSC device is shown as a voltage source in Fig.2.31. 

 

 

Fig.2.31: A two bus power system with compensated line 

 

δ presents the phase angle between the two voltages Vs and Vr in the compensated line 

and the value of δ depends on the percentage of compensation. Fig.2.32 shows a phasor 

diagram of the sending end and receiving end voltages and the injected voltage.  

 

Fig.2.32: Phasor diagram of the sending end and receiving end voltages and the injected voltage 

 

Injected voltage is negative for capacitive compensation and positive for the inductive 

compensation. Inductive compensation is important when SSSC is used for power flow 

control purposes. The positive reactance is generated by injecting a voltage which is 

leading the line current by 90° while the negative reactance can be inserted by 

generating a voltage which lags the line current by 90°. The SSSC injected voltage is 

usually modelled as a voltage source with a variable amplitude and phase angle based 

on system requirements [38], [39]. 
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2.10 Comparison between power electronics based series compensators and series 

fixed capacitors 

The implementation of series capacitors is a superb solution to increase the transmission 

capacity of an existing line as it is a low cost and time saving approach. This solution 

removes the need to build another line, with all the associated cost, right of way and 

environmental concerns. However there are some technical issues with application of 

fixed capacitors in the power lines. Some of these issues can be addressed by using 

power electronics based compensators. 

For example the voltage across the series capacitors depends on the line current in fixed 

capacitor solutions and any changes in the line current can alter the compensation. Also 

the compensation provided by series capacitors is restricted to the reactive power and 

they cannot contribute toward the active power compensations. However, these can be 

tackled using VSC based devices which they inject a series voltage irrespective of line 

current and if it is connected to another external power source it can provide active 

power compensation as well.  

Sub-synchronous Resonance (SSR) is a major concern associated with the employment 

of fixed series capacitors in transmission lines, restricting the application of series 

capacitor compensation in electrical networks [40], [41].Since the probability of the 

initiation of SSR as result of series compensations has been identified, many research 

studies have been conducted to try to overcome such barriers [12], [42]. To address this 

issue in [42] Hingorani introduced a thyristor controlled capacitor (Fig.2.33) and argued 

that this can be used for a variety of purposes including damping of SSR. By replacing 

the resistor in the scheme with an inductor, a TCSC circuit is introduced. 

 

Fig.2.33: Scheme introduced by Hingorani 

 

Some researchers [43], [44] have argued that SSR in electrical networks can be 

mitigated by employing TCSC [45]. However, the circuit needs to stand very large 

voltages across the capacitor and high currents through the thyristors during fault 

conditions. This increases the rating of components and means that a complicated 

control system is needed to protect the devices. 
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In order to achieve a higher percentage of compensation a combination of Fixed 

Capacitors and TCSC can be employed [46]. In this approach, the main compensation is 

provided by the fixed capacitors and the TCSC device only contributes a small part of 

compensation. For example, in [46], in order to achieve 0.7 pu compensation, the TCSC 

circuit provides just 1/3 of the required compensation and the rest comes from the fixed 

capacitors. 

TCSC has been broadly employed as a series compensator in electrical networks [47] 

and provides a low cost solution for high percentage compensations. It can alter the 

effective reactance of the lines within the network and can be used to enhance the 

transient stability of system [48], [49]. However there are some concerns related to the 

use of TCSC. Firstly, it injects some harmonics into the system [50], [51], [52] and 

lowers the power quality. In [50] a harmonic analysis of the TCSC circuit was presented 

and a control strategy using a PWM controller was proposed in order to mitigate the 

level of injected harmonics (mainly a combination of the 3rd, 5th, 7th and 9th harmonics) 

[50, 51]. Secondly, as thyristors can turn off only at the current zero crossing points, 

their turn off time can extend up to half a cycle. This affects the response time of the 

TCSC circuit and requires a complicated control system [53]. 

SSSC using a VSC can be another solution to replaces TCSC [48], [49], [54]. In SSSC, 

the capacitor is not connected directly to the power system. For this reason the short 

circuit current does not pass through the capacitor which therefore does not see an 

excessive voltage across its terminals. In SSSC compensation is achieved by the 

injection of voltage and no physical capacitor is involved [1], [55]. SSSC provides 

compensation at system frequency which is immune against oscillations at other 

frequencies. For this reason compensation cannot contribute toward the SSR 

phenomenon which occurs at lower frequencies in the electrical network [38]. 

2.11 Distributed Static Synchronous Compensation (DSSC)  

There has been continuous improvement in series compensation devices in recent years 

in terms of enhancement of their functionality and practicality. However, more 

improvements are needed and there are still many issues and problems associated with 

their use which need a solution.  

For example, the complexity of SSSC circuit design can be increased as equipments 

within the device need to cope with short circuit currents in the fault events. To do so, 

the equipments can be rated high but this can increase costs. In addition, as the devices 

are connected in series with the line, any failure of a device will disconnect the line. 
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Maintenance costs are high because repairs are carried out on site and consequently the 

mean time to repair (MTTR) will be high increasing the cost of operation such a system. 

Furthermore, each transmission line will have its own requirements and specifications 

for SSSC and consequently this device must be designed and build specifically for each 

line, making it more expensive and increasing lead times significantly [56]. 

In order to overcome some of these problems the new concept of DSSC, was introduced 

in 2005 [58]-[62]. Generally, DSSC has the same functionality as SSSC however DSSC 

has distributed nature in low power ratings. With using DSSC, the required 

compensation is provided by employing a large number of low power DSSC devices. 

These devices can be mass produced, decreasing design and production times and 

making it more economical solution. 

DSSC uses VSC to inject voltage through the line. The injected voltage is orthogonal to 

the line current and depends on the injection angle it generates a virtual capacitance or 

inductance through the line. The possible injection angles are shown in Fig.2.34.  

Line current

Capacitive injection

Indutive injection

 

Fig.2.34: The possible injection angles to generate virtual capacitance or inductance 

 

Although, the DSSC and SSSC have almost same concept (and principle of operation) 

but topologically and practically they are not same. For example DSSC comprises of 

three single phase VSC converter but SSSC is made of a three phase converter. 

Furthermore, in DSSC each module has own DC capacitor in each phase but in SSSC 

the DC capacitor is shared between the three phases. The amplitude of the injected 

voltage by DSSC is in the range of few volts and it does not need high power switches 

while the SSSC does. Fig.2.35 a and b show the power topology of the SSSC and DSSC 

respectively. 



53 
 

C

GTO

D

GTO

D

GTO

D

GTO

D

GTO

D

GTO

D

+

-

Series connected 

transformer

Three phase 

power line

 

a) Power topology of SSSC 

 

 

b) Three single phase DSSC 

Fig.2.35: Power topology of SSSC  and DSSC connected to a three phase power system 

 

Each DSSC employs a single phase H-bridge voltage source converter. In this method 

(Fig.2.37) a single turn transformer (STT) is used to inject a series voltage which is 

orthogonal to the line current [59]. The STT is suspended from the power line and uses 

the power line itself as a secondary winding to inject the voltage. For this reason there 

are no concerns about voltage insulation as the device is fully isolated with no 
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connection to ground [60]. Another advantage of DSSC is that it provides more reliable 

operation as the number of modules provide redundancy in case of failure of even a few 

numbers of devices. 

In addition, STT within the DSSC is a two part device which can be easily clamped 

around the power line then there is no need for the DSSC modules to be repaired on site 

as they can easily be disassembled and carried to a repair centre. This will reduce the 

cost of maintenance and increase the reliability and availability of the system. DSSC 

also has the capability to cope with short circuit currents following a fault in the power 

system. The short circuit current passes through the power line itself and just a small 

amount of current(which depends on the turn ratio of the single turn transformer) is 

induced on the primary side of the STT. This is a challenging problem for SSSC 

compensators because the fault current passes through the series transformer and this 

can be extremely dangerous for the transformer [60].  

 

Fig.2.36: Distributed Static Series Compensation (DSSC) 

 

DSSC is also more flexible than SSSC. For example, if more power flow control is 

deemed necessary, the number of DSSC units can be increased later-on, unlike SSSC, 

which once it has been designed and built there is no possibility for further 

functionality. SSSC needs customised design and to be manufactured for specific 

project however DSSC can be mass produced and later on more modules can be added 
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through the line. A line reactance profile with DSSC is shown in Fig.2.37. This figure 

shows that line reactance can be made capacitive or inductive depending on the number 

of switched-in DSSC units and the characteristics of their compensation. It also shows 

that the change of reactance is achieved in a stepwise fashion and each step can be 

positive, for inductive insertion, or negative, for capacitive compensation. Each DSSC 

device can be switched on in order to insert some reactance through the line. In the 

following figure in each step one DSSC device is switched on. This process can be 

continued in order to meet the required compensation. 

 
Fig.2.37: Example line reactance profile 

 

DSSC devices also have low weight and it is therefore possible to suspend them from 

the line. In a three phase power system, each phase has its own independent DSSC 

module (as shown in Fig.2.38) which operates independently from the each other. 

Meaning that different levels of compensation can be injected into each phase which is 

an important consideration in low voltage distribution networks where there are 

significant levels of load imbalance.  
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Fig.2.38: A distribution line with suspended DSSC through the line 

 

Each DSSC module comprises a STT which provides an electromagnetic connection to 

the power system. The STT is connected to an H-bridge converter via a low pass filter 

located between the output of the converter and the STT (Fig.2.39). 

The low pass filter is employed to eliminate the converter generated high switching 

harmonics. The converter itself includes four Insulated Gate Bipolar Transistors 

(IGBTs) connected in anti-parallel with four diodes as shown in Fig.2.39. On the DC 

side, the converter is connected to a DC link capacitor used to hold the DC voltage at 

the required level. The STT transformer is built of two separate parts which can then be 

easily clamped around the power line to suspend the whole DSSC module. For this 

reason a DSSC unit can be easily assembled and dissembled [61]. All the control and 

communication equipment are built inside the module and are supplied internally from 

the unit’s power supply fed by the current drawn from the STT. 
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Fig.2.39: Circuit schematic of DSSC 

 

From the power system point of view, the DSSC modules provide a “smart wire” option 

for transmission lines allowing for a more flexible and effective power flow control. 

DSSC does not contribute towards the active power compensation because it is not 

connected to another auxiliary power source. However, it has a huge impact on the 

reactive power by significantly compensating it through the line. It has also been argued 

that the deployment of DSSC in an electrical network can reduce the environmental 

impact of electricity transmission and distribution as it releases some line capacity and 

ease congestion issues [62]. In comparison with SSSC, DSSC has the benefit of using 

low rated components as the whole device is working at low power and low voltage. 

For example, in [63] the DSSC device is rated for only 10 kVA and the injected voltage 

is less than 10 volts. This reduces the total cost of manufacturing because components 

like IGBT’s and capacitors can be easily and cheaply sourced.  

Power flow control using DSSC devices has been attracting some attention during the 

past few years [64]. A PSCAD/EMTDC model of DSSC is presented in [65] for 

simulation studies and power flow control investigations. A simple three phase model of 
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DSSC is proposed in [66] to be employed in Newton-Raphson power flow studies. 

Other DSSC application such as improvement of voltage stability in power systems has 

also been proposed [67]. This is achieved by changing the impedance of critical lines in 

the electricity network.  

2.12 Control of DSSC 

The amount of compensation that comes from DSSC can be controlled locally or via a 

centralised control system. In both cases, a special control system is required in order to 

operate the DSSC device itself. The control system implemented within the device is 

responsible for the proper operation of the device only and it receives the set point for 

the required injection from the central controller.   

In a DSSC, the compensation is achieved from a controlled voltage source converter (H-

bridge converter). However, the converter just tracks the reference signal that comes 

from the controller. That shows importance of the employed controller. The generated 

reference signal must be synchronised with the AC power system, having the correct 

phase angle and amplitude in order to meet the requirements of the compensation. The 

compensation percentage can be changed by the control system that is provided by the 

network operator, where it is required that the controller be able to cope with the new 

parameters. In addition, there may be disturbances or an unbalance within the AC power 

system, thus the employed controller in the DSSC must be able to overcome such 

issues.  

From the control point of view, the DSSC tackles the issues slightly different than the 

SSSC. Each phase in the DSSC is independently controlled and therefore, the injected 

voltage through each phase could be totally different from the other two phases. While 

in the SSSC, generally, balanced three-phase is injected into the power system. 

However, the aim is the eventual compensation of the line reactance and control of 

power flow in the electrical networks. Different approaches have been used in the SSSC 

applications, however some of them cannot be employed in the DSSC because of either 

their three-phase nature or they have drawbacks and disadvantages that will be 

discussed later in this chapter. 

DSSC is a new concept however its principle of operation is same as the SSSC device. 

Employed control strategies in the SSSC have been investigated in order to evaluate the 

possibility of their employment in the DSSC devices. L.Gyugyi proposed a system 

using a controlled VSC to provide a series compensation in the transmission lines. In 

this work, the use of a voltage source converter was proposed to adjust the transmission 
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angle between the sending and receiving end buses. Further to this, L. Gyugyi explained 

the principle of series compensation with the applied control strategy, in that it is mainly 

structured by presenting a 90 degree phase shift between the injected voltage and line 

current [62, 2].                                  

The phase shift between the line current and injected voltages has been provided by 

different methods suggested in the literature. Some studies are based on the regulation 

of the phase angle and amplitude [68], [3]. In this method the angle is derived from the 

difference of the DC voltage and the target voltage after passing through a controller 

(holding the DC voltage in a desired value is commonly respected by all of the 

controllers). The amplitude of the injected voltage is then calculated by using the 

required percentage of compensation.  

Another method, which is widely used in most of the control strategies, is simply 

shifting the line current signal by 90 degrees [35], [69]-[71]. In the control strategies 

that are found to be frequently implemented within the literature are using dq 

conversion in the control system [35], [68]-[71]. The dq conversion system is used to 

convert the three AC voltages or currents to the dq domain and then apply the control 

strategy within this domain. 

There are two main factors in control of DSSC that must be properly addressed. The 

first involves finding the right amplitude of the injected voltage, which is significant to 

the extent that it defines the percentage of compensation, or the amount of injected 

capacitive or inductive reactance. The second is the phase angle of injected voltage, 

which must be orthogonal to the line current phasor in order to guarantee the stable 

injection by the device. Moreover, this angle can be controlled so that the injected 

voltage is either leading or lagging the line current in order to create inductive or 

capacitive reactance.  

2.12.1 Control strategy based on dq 

In order to calculation phase angle and amplitude of the injected voltage different 

methods have been used in the literature review. For example, in [2] and [3], the 

amplitude of the injected voltage and its phase angle are calculated separately. The 

block diagram of control strategy to generate reference signal in [2] is shown in 

Fig.2.40. In this method, the main part of the control is based on the dq conversion. The 

Iabc is converted to the Idq and synchronous conversion can be done by the use of a phase 

locked loop (PLL). After providing Idq, the amplitude of the line current is calculated as 
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I6 = �I7% + I9% (2.7) 

where Id and Iq are the direct and quadrature components of the dq conversion, resulting 

in the line current I. Having the line current calculated and knowing how much 

capacitive reactance is required to be injected, the amplitude of the reference voltage is 

calculated by the multiplication of I and Xinj. In the following control block diagram, 

Xinj represents the reactance of injected capacitance, which can also be viewed as the 

percentage of the compensation. 

Reference DC voltage level (shown by Vdcref) and measured DC voltage (shown by 

Vdcm) are compared and the error is used controller to provide the phase angle of the 

injected voltage. The phase angle can be defined by comparing the exchanged AC 

power with the obtained error. This will regulate the DC voltage in the DC bus of the 

converter and at the same time, will stabilise the system to the steady state. This part of 

the controller provides only the required phase shift, where it will be added on top of the 

wt that originates from the PLL. 

22

qd II + DCV

22

CIX3

2

 
Fig.2.40: Control block diagram for generating the reference signal 

 

In [3], a similar control strategy has been proposed and shown in Fig.2.41. However, 

this strategy does not monitor the exchanged AC power and its power control is mainly 

based on the control of the DC voltage on the DC link. To do so, the DC voltage is 

compared against a reference DC voltage and the error is added on top of the both :and 
wt. In this controller, w comes from the PLL then fed into an integrator. The integrator 

will provide the wt and the error of Vdc will be added on top of the wt. As a result, the 

generated signal will include information about the :; of the power system as well as 
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the error of the DC voltage. It means that the signal is synchron with the system and 

tries to eliminate the error within the DC voltage. 

The phase angle of injected voltage can be altered in order to provide proper angle of 

injection. This is because when the DC voltage in the capacitor is less than the reference 

voltage then the error will have non-zero value. Consequently, it will shift the phase 

angle, making the exchange of active power possible. The problem with this controller 

is that the 90 degree phase difference between the injected voltage and the line current 

is not of the utmost importance. The first priority is to keep the DC voltage constant. 

While keeping the DC voltage at a constant value can bring stability to the system, the 

orthogonal injection is still not guaranteed. This type of controller is partly the same as 

the control block diagram as shown in Fig.4.40. 

In order to obtain the amplitude of the injected voltage, the dq conversion has been 

used, thus bringing up some disadvantages. It must be noted that in both controllers that 

are shown in Fig.2.40 and Fig.2.41, the Xinj can be positive and negative. The positive 

Xinj represents the capacitive injection, where the aim of the compensation is to reduce 

the inductive reactance of the line. The negative Xinj represents the inductive reactance, 

whereby injecting such a reactance into the power system results in the total reactance 

of the line to increase. The injected voltage in inductive mode has exactly a 180 degree 

phase difference with the capacitive injection. 

Generally, in both of the discussed controllers, the phase angle of the injected voltage 

controls the power exchange of the series compensator, and the amplitude of the 

injected voltage determines the percentage of the compensation. These two pieces of 

information are obtained from a sinusoidal signal and the generated signal can be fed 

into a PWM generator, providing the switching pattern.  
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Fig.2.41: Block diagram of dq based controller 
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2.12.2 Control strategy based on 90 degree phase shift 

In another approach the required phase angle i provided by shifting the phase of the line 

current by 90 degrees. This method is simple, as shown in Fig.2.42, and can be executed 

by locking to the power system using a PLL. To do so, a PLL must provide the online 

and synchronised angular frequency of the system based on the line current information. 

To proceed, ±π/2 must be added on top of the phase angle of the line current phasor. 

However, the amplitude of the injected voltage can be calculated in different ways. For 

example, it can be included in the phase angle of the reference signal and changed in the 

DC voltage. Consequently, the DC voltage amplitude can be changed by the amplitude 

of the final injected voltage. Alternatively, the amplitude of the reference signal can be 

calculated separately and can be multiplied with the reference sinusoidal signal. While 

having the amplitude of the reference signal is calculated separately, the DC voltage 

level remains unchanged. This can be an advantage in the system design and can reduce 

the cost of equipment. 

 

 
Fig.2.42: Shifting line current 

 

Although this is a simple approach and can even be used in the single phase control, 

there are some inherent problems with this method that makes its application practically 

difficult. For example, in this approach it is assumed that if a 90 degree phase shift is 

introduced between the injected voltage and line current then the injected voltage will 

produce pure inductive or capacitive reactance. Consequently, there will be no active 

power exchange between the compensator device and power system. However, to 

practically in compensate the ohmic and switching losses inside the device, the phase 

angle of injected voltage needs to be diverted slightly from 90 degrees. Furthermore, the 

losses can vary for the different amplitude of the injected voltage, allowing the required 

amount of diversion of phase angle from 90 degree to also vary. As a result, the 

diversion must dynamically track the losses and try to compensate it. For this reason, 

having only a 90 degree phase shift within the phasor of the line current and 

establishing the injected voltage based on the shifted signal cannot be 100% accurate.  
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However, in the literature review this method is widely used in the implemented control 

strategies of the SSSC and DSSC [72]. For example, Fig.2.43 shows a control block 

diagram that is implemented in [35]. In this block diagram, Id and Iq, the two orthogonal 

components of line current are calculated using the dq conversion and provide the 

angular frequency of the power system by PLL. The phase angle is obtained in (2.8) and 

the magnitude of the current can be calculated from (2.7). 

θ = tan�?(�A�B) (2.8) 

The calculated phase angle is used as a base angle and synchronises the injected voltage 

with the power system voltage phasor. However, in order to have a 90 degree phase 

shift, as can be clearly observed in the control block diagram, a value of –π/2 is added 

on top of the obtained phase angle. The added angle does not consider any losses within 

the SSSC device, which can threaten the steady state stability of the system. 

In the block diagram shown in Fig.2.43, similar to the control systems shown in 

Fig.2.44, the amount of the injected voltage is calculated based on the amplitude of the 

line current and the required injected reactance. In control system shown in Fig.2.43, Xq 

represents the required injected reactance and is multiplied with I, which is calculated 

using equation (4.6). The resultant signal, after passing through the gain, represents the 

reference signal for the required DC voltage in the DC link. It means that DC voltage is 

different for different amount of required reactance injections and the amplitude of the 

voltage varies based on the value of injected reactance. The signal is compared with the 

measured DC voltage and the error is added on top of the injected phase angle. This will 

help the system to maintain the DC voltage for the desired value as by changing the 

phase angle the system will be able to absorb or inject active power into the system.  

The DC voltage can then be regulated and the amplitude of the injected voltage will be 

adjusted. However, the DC voltage needs to be changed by a different level of 

compensation. The capacitive or inductive injection by the system will be defined by 

changing the sign of the added value such that it becomes –π/2. The system continues 

by changing the sign of the error, which comes from the deduction of the measured 

voltage from the reference DC voltage. Finally, the generated phase angle is fed into a 

sine function to provide the sinusoidal signal. This signal is used by a PWM generator 

to provide the required switching pattern for the IGBTs.  
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Fig.2.43: Line Current shifted ± 90 degree 

 

A similar approach has been used in [69], where the dq conversion is used to obtain the 

angle and amplitude. However, in [70]-[71], adding a 90 degree phase has been 

implemented as shown in Fig.2.44 with slightly differences. In this control strategy, the 

feedback of the injected voltage is converted to Vd and Vq. 

Orthogonal element of the voltage is used to calculate XS, which is the compensated 

reactance. The parameter XS is then compared with the reference reactance and the 

resultant error is fed into a PI controller. The error provides the fine tuning angle and 

the angle must be added on top of the wt (representing the angular frequency of the 

power system) which comes from a PLL. However, a value of ±π/2 must be added on 

top of the angle coming from PLL (θ) and the error angle (∆α) to provide the inductive 

or capacitive injection. 
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Fig.2.44: Control block diagram of SSSC using 90 degree phase shift 

 

In this strategy, the losses through the filter and even the converter itself are not 

considered, where the practical experiments can result in instability. To avoid such a 

problem, there must be another factor which is added on top of the final calculated angle 

that provides an active power absorption possibility by the converter in order to 

compensate for the losses. 

 

2.13 Drawbacks with dq based controllers 

The dq conversion and its equations have been explained in Appendix A. Using a dq 

control within a power system can raise some problems when it is unbalanced or 

harmonically polluted. In unbalance power systems dq components are oscillatory and 

zero sequence is not zero any more. The oscillatory dq components can cause 

malfunction of controllers and it will lead to failure of the converter.  Furthermore, a dq 

control can lose the stability in connection with power system with low short circuit 

levels. The issue is, to a large extent, related to the phase-locked loop and its ability to 

stay in synchronism with the PCC voltage. As the power changes then the PCC voltage 

angle changes too. This requires the PLL to re-establish its lock. If the system is weak, 

this impact is more significant. The situation escalates if we take the resistive part of the 

system impedance into account (i.e. relatively low X/R ratio) [73]. 

2.13.1 dq conversion in balanced three-phase system 

In all the equations which are explaining the dq conversions in the appendix A, the 

power system is assumed to be balanced. Otherwise, the conversion can be incorrect 
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and results in an inaccurate calculation. For example, power systems can be unbalanced 

if the amplitudes of the voltages in the three-phases are different or if the phase angles 

between the phases are not identical.  

A dq conversion of a balanced three-phase voltage is shown in Fig.2.45. The amplitude 

of the abc axes is one per unit and the dq axes is also shown with a one per unit 

amplitude. The amplitude of “q” and “o” are zero and it shows that the applied three-

phase system is a balanced system. 

 
 

Fig.2.45: dq conversion of a balanced three-phase system 

 

In an ideal case the phase angle between the “d” and “q” components must be 90 

degrees. Their amplitude must be also completely independent from each other. This 

figure shows that with a balanced three-phase system, the “d” and “q” components will 

be identical. Even if the resultant “d” and “q” components are fed into a dq to abc 

converter, the resultant abc waveforms will be the same as the original. However, in all 

of the conversions, the PLL plays a very important role and any failure within the PLL 

will endanger the synchronicity of the power system.  

 

In the case of an unbalanced three-phase system, the amplitude of the “d” and “q” 

components can be different. At the same time the phase angle between them can also 

be different from the previous 90 degree constraint.  
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2.13.2 dq conversion in unbalanced three wire three-phase system 

A three wire three-phase system can be unbalanced because of the different amplitude 

of voltages in each phase and/or different phase angles between them. The definition of 

percentage of unbalance is explained in the appendix A. If the phase to phase voltages 

for the three phases in a three-phase system are 1.2p.u, 0.8p.u and 1p.u, then the average 

voltage can be calculated as 

VEFG = ?.%#?#I.JK =1 (2.8) 

and then the Max ∆V will be 

∆V=1-0.8=0.2. 

The percentage of unbalance can be calculated using equation (A.16) as follow: 

 

Percentage	of	Unbalance = ?II∗	I.%? = 20	% (2.9) 

The dq conversion of unbalance three phase three wire AC system with an unbalance of 

20% is shown in Fig.2.46. 

 
Fig.2.46: abc to dq conversion of unbalance three-phase system 

 

It can be clearly observed that in the dq conversion of the unbalanced system, the 

amplitude of the “d” and “q” components are different and oscillatory. 

Having an unbalanced three-phase system converted to dq and again converted from dq 

to abc is shown in Fig.2.47. It can be clearly observed that the final conversion to abc is 

unbalanced, which can increase the disturbance in the AC system. In SSSC applications, 

when the dq conversion is applied to an unbalanced AC system in order to provide the 

dq components, the compensation cannot be same in the three-phases. This is because 

the provided dq components can be inaccurate and the phase angle between them can be 
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different from the 90 degree requisite. Consequently, after applying the control strategy, 

the converted signals to abc components will carry incorrect information. 

 
Fig.2.47: Conversion from abc to dq and from dq to abc in an unbalance three-phase system 

 

In another unbalanced three-phase system with identical voltage amplitudes but 

different phase angles of 100, 110 and 150 degrees, the results of dq conversion can be 

far from the ideal case. The conversion of abc to dq is shown in Fig.2.48, where it can 

be observed that when there is a difference in the phase angle in the three-phase system, 

the amplitude of the “d” and “q” components will be different and oscillatory. In order 

to observe clearly the detail of the dqo, Fig.2.48 has been spanned through the time axis 

and it is shown in Fig.2.49. 

 

Fig.2.48: abc to dq conversion in an unbalanced system 
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Fig.2.49: abc to dq conversion in an unbalanced system spanned through the time axis 

 

With the intention of investigating dq conversion in the presence of a difference in the 

angle between the three-phases, the angle between the “d” and “q” components is 

plotted in Fig.2.50.This figure shows that the angle is approximately 107 degrees, which 

shows a deviation from the 90 degree. It also means that the dq components are not 

orthogonal to each other, which can be problematic. For example, in control strategies 

that establishes all of the calculations related to the active power on the “d” component 

where all of the calculations pertaining to the reactive power are based on the “q” 

components, the 90 degree phase angle between the dq components are required in 

order to control active power and reactive power independently. Consequently a 

malfunction of a control system through the missing of such a requirement can be 

expected.  

For instance, if an unbalanced system is converted to dq and simply converted back to 

abc, the resultant waveform will also become unbalanced. This is shown in the Fig.2.51. 

It can be seen that the a1b1c1-, which is converted from dq to abc-, is same as the abc. It 

means that in the case of the application of dq conversion in SSSC controllers, the 

injected voltage itself is not balanced and can result in a different amount of 

compensation through the line.  
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Fig.2.50: The angle between the “d” and “q” components in an unbalance system 

 

In addition, the unbalanced compensation can unequally change the impedance of the 

line and consequently increase the unbalance of the system.  

 

 

Fig.2.51: Conversion from abc to dq and from dq to a1b1c1 

 

However, the simulation results show that the resulting dq components can carry wrong 

information, thus the control system will be fed with incorrect signals. In the literature 

review of the SSSC and the DSSC, the unbalanced system has not received much 

attention and therefore there is a drawback in this subject. 

2.13.3 Decomposition of an unbalanced AC System 

However, the problems of the unbalanced system, along with its side effects, have been 

investigated in other applications using VSC. For example, in a vector control based 

systems, an unbalanced AC system is decomposed into positive and negative sequences 

and both of them have been used separately in the control algorithm [74]-[76]. 
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However, the decomposition of an unbalanced system into the three balanced system is 

needed. An unbalanced three-phase system can be written as VWXYZ[ZX\]	;ℎ_]]	`ℎZa]	aba;]cd= V\eXf]_ageX	cZ;_ghdVYZ[ZX\]i	;ℎ_]]	`ℎZa]	aba;]cd 
or 

jabck = l1 1 11 α% α1 α α%o l
aIa?a%o (2.10) 

After having the positive and negative sequences obtained using (2.11) they are then 

converted to dq components. The control strategy is then applied separately to the 

negative and positive sequences [3], [77] as shown in Fig.2.52. 

V(pqr# (pqr� (pqrIds = ?K 	l1 2% 21 2 2%1 1 1 o V(p (q (rds  (2.11) 
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Fig.2.52: Block diagram of decomposition of an unbalance system and applying dq conversion 

 

In the block diagram shown in Fig.2.52, the control strategy has been applied to the dq+ 

and dq- separately. The resultant signals are then individually fed into a dq-to-abc 

conversion in order to generate the signals in the abc format. The generated signals are 

summed up to provide final signal which will be fed into the rest of the controller.  

Although the above mentioned method is useful for unbalanced systems, it cannot be 

recommended when there is a zero sequence with positive and negative sequences in the 

system.  

The presence of zero sequence depends on type of unbalance load. For example in four 

wire star three phase system zero sequence will appear in the natural wire and all three 

phases however in three wire star system there will be no zeros sequence. In delta three 

wire system there is no natural wire but in presence of unbalance load there will be zero 

sequence in phase currents [78]. 
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If there is zero sequence then it will not be compensated in the approach shown in 

Fig.2.52 and as such, it can disturb the final signal. For example, an unbalanced signal 

that is a combination of 0.85 p.u positive sequence, 0.1 p.u negative sequence and 0.05 

p.u zero sequence has been investigated. The resultant final signal, as shown in 

Fig.2.53, in abc format is the conversion of the combination of the positive and negative 

sequences. However, the amplitude of the waveform shows that it is less than 1p.u, in 

fact it is actually 0.95 p.u. It can be argued that the contribution of the zero sequence, 

which is equal to 0.05 p.u, is missing and for this reason, the final value of the 

converted signal is less than 1 p.u. One of the advantages of this method is that the final 

converted waveform, which includes the positive and negative sequences, is in phase 

with the positive sequences and rotates synchronously with the positive sequences. With 

the intention of comparing the phase angle between these two signals, the positive 

sequence and the final converted signal are plotted in Fig.2.54.  

 

Fig.2.53: Conversion of combination of positive and negative signal 
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Fig.2.54: Positive sequence and final converted waveform 

 

In the above figure the synchronicity among the positive sequences and the final 

converted waveform is obvious, but for the purpose of clarity, the phase angle 

difference between them is plotted in degree in Fig.2.55. This plot shows that the phase 

difference between them is absolutely zero.  

 

Fig.2.55:Phase angle difference between the positive sequences and the final converted 
waveform 

 

The dq conversion clearly has the advantage of synchronisation with the final waveform 

with the positive sequence. However, this advantage can easily disappear with a 

malfunction of the PLL. The reason for this is based on the equations (A.11) and (A.13), 

where the synchronisation is ensured by providing an accurate value of wt, and the 

value wt is updated constantly by PLL. At the same time, the proper operation of the 
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PLL can be endangered by various issues. For example, in harmonically polluted 

electrical networks, tracking the correct frequency can be an issue. Furthermore, in 

weak AC electrical networks, switching events or even a load rejection can cause the 

PLL to lose synchronicity because of a SCL. Moreover, the PLL itself has a PI 

controller as shown in Fig.2.56 [79], [80] which is tuneable based on the value of its 

proportional or integrator gain, such that the output error can be minimised. 

 

 

Fig.2.56: Block diagram of the phase locked loop (PLL) 

 

The tuning of the PLL for a SCL of an AC system is one of the key parameters which 

must be considered [81]. However, the SCL of a power network can be changed by 

some events such as tripping a line or coming in or out of a power plant. Practically, the 

mentioned events usually happen in the electrical power networks and when the change 

of a SCL is unavoidable. On the other hand, a PLL that is tuned for a system with a high 

short circuit level may not work or may not have the same performance for a system 

with a low SCL. Subsequently, any change in the SCL may result in an out of tune PLL, 

which will require retuning for updated system parameters.  

Based on the aforementioned problems regarding the operation of a PLL in connection 

with an AC system, it can be argued that a PLL can reduce the reliability of the dq 

conversion. In this study and in the literature review, it has been noted that the dq 

conversion has been used in most of the controllers in the literature review. However, 

synchronicity is a key requirement of a control system that must be met otherwise the 

controller will lose the orthogonal injection of series voltage. 

In addition the amplitude of the “d” and “q” components must be accurate, otherwise a 

pure reactive power injection that is mainly based on the “q” component can be mixed 

with the active power injection. This can lead to instability and finally the DC voltage 

will collapse. Furthermore, the phase angle between the “d” and “q” components can be 

diverted from the 90 degree in the presence of unbalanced power systems and 

consequently this will disturb the assumption of having two orthogonal components in 
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the dq domain. It is worth mentioning that having two “d” and “q” components that are 

orthogonal is a key requirement to provide an independent control of active and reactive 

power. This future is very dominant when the dq conversion is used by a vector control 

through the control system. 

In order to avoid employment of dq conversion within the control of either DSSC, it is 

required that a controller to be independent from the unbalance in the system. A novel 

approach based on the single phase control rather than three-phase will be introduced in 

chapter 4. 

2.14 Summery 

Line reactance is a key parameter in determining the available transmission capacity of 

a power line. Also, it is an important factor in the voltage stability and power system 

stability enhancement. To achieve these, line reactance can be altered and one of the 

alteration methods is the use of series compensation techniques. Series compensation 

can be achieved in different ways. Traditionally, fixed capacitors are employed in series 

with transmission lines in order to reduce the effects of line inductance. However, fixed 

capacitors can only introduce capacitive compensation and are not able to provide an 

inductive reactance which may be required in a power flow control problem. There are 

also other issues associated with the application of fixed capacitor in an electrical 

network. Fixed capacitors can initiate a SSR phenomenon and the resultant resonance 

can damage the network.  

For this reason, the use of series compensation devices utilising power electronics 

switches was established. A number of such schemes, such as TSSC and TCSC devices, 

were reviewed in this chapter and their principles of operation outlined. The use of 

voltage source converters as series compensation devices in SSSC schemes has also 

been described. The many operational advantages of SSSC circuits have been discussed 

as well as their drawbacks in terms of their high costs and reliability issues associated 

with the flow of short circuit currents. 

DSSC was introduced as a concept to overcome some of these problems. This device is 

a single phase device and it is comprised of a VSC converter and STT. It is suspended 

from the power lines and it can be easily assembled and disassembled. It has low power 

rating in comparison with the power electronics based series compensators.  

Concept of control of DSSC is discussed followed by an explanation of the commonly 

used controllers in the literature review. Two different methods of using 90° phase shift 
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and dq conversion based control strategy have been identified. Both methods have been 

explained and their advantages and disadvantages were discussed. 

In 90° phase shift method the injected voltage can be built based on the shifting 90° 

phase of the line current. This will provide a signal that is orthogonal to the line current. 

However, because of the losses, it can cause instability in the system. To avoid 

instability, the injected phase angle must be slightly different from the 90°. Although 

the adjustment of the phase angle in order to be diverted slightly from 90° degree to 

compensate the internal losses inside the DSSC must occur frequently, otherwise the 

operation of device will not be stable. 

In dq based controllers use of PLL is necessary and in most of the phase control 

strategies applied here, the dq conversion has been used. Nevertheless, the dq 

conversion in the presence of unbalanced system can result in inaccurate dq components 

in terms of amplitude or the angles in between. Furthermore, an unbalanced system can 

be decomposed into positive, negative and zero sequences. The negative sequence can 

be compensated by its conversion to the dq domain, applying the same control strategy 

as that used for the positive sequence. However, the compensation can only be obtained 

in systems where their unbalance limited to a very low percentage, less than 5% for 

example. Additionally, in this approach only a negative sequence is being compensated 

and the zero sequence remains uncompensated.  

To overcome the investigated control problems, there is a requirement for a controller to 

operate as a single phase controller and adjust the angle automatically.  
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3 Applications of DSSC in distribution networks 

 

In this thesis, DSSC is proposed as a Distributed FACTS (D-FACTS) device in 11kV 

electrical power distribution networks. The proposed approach is presented in Fig.3.1. 

In this figure, an 11 kV overhead line distribution feeder is being fed from a distribution 

substation and is supplying a residential and industrial load.The aim of application of 

DSSC in the distribution network is to dynamically compensate line reactance through 

the power line. By decreasing or increasing the line reactance it is possible to push away 

current from or pull into a specific line. In addition DSSC can help to increase the ATC 

of the compensated feeder. This is a very valuable achievement in the distribution 

networks because the rate of increasing demand for the consumption of electricity and 

consequently its generation is high. 

 

 

Fig.3.1: Application of DSSC in electrical distribution networks 

 

However, expansion of distribution utilities has not received much attention. Extra 

tension is applied to the distribution networks by direct connection of the renewable 

energy resources such as wind farm and solar panels. For this reason application of 

DSSC in the distribution utilities can release the capacity of distribution lines, hence 

provide capability of enhancing the distribution networks reliability.  

 

Usually distribution feeders supply loads using radial topology. The drawback of this 

arrangement is that all loads will be cutout when a trip occurs. Such interruption in 

these feeders is not acceptable, therefore DSSC can be a solution for these networks. 

DSSC suspends from the power line through STT, so the line current does not pass 
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through the DSSC directly. It means that it is not in series with the line directly and in 

the case of failure it can be easily bypassed without interrupting the power flow in the 

power line. By passing one DSSC device will not have a big effect on the compensation 

because other DSSC device are still in order and they can continue providing 

compensation. 

In this study, the application of DSSC in the distribution networks and the consequent 

side effects has been investigated. Further to that the main body of research is focused 

on the control of DSSC itself (control of voltage source H-bridge converter). 

3.1 Applications of DSSC in the distribution networks 

DSSC has distributed nature and its application through the distribution feeders can 

make the power lines to act like a smart wire. This means that injecting proper voltage 

(with controlled amplitude and phase angle) in series through the line can improve 

different parameters of the power system. For example DSSC can be employed to help 

load flow control in the networks. It can mitigate congestion in a particular line or it can 

divert the load current in other alternative corridors. In another application it can be 

used as a voltage profile improver. These applications have been investigated and are 

explained in the following subsections. However, line resistance in the distribution 

networks is higher and proper operation of the DSSC in distribution networks must be 

investigated.  

3.1.1 Effect of line resistance on the control of DSSC 

Employed controller within a DSSC provides a reference signal for the converter to 

inject a voltage for line reactance alteration purpose. Alteration of line reactance by 

DSSC can affect the transmission capability of the line both by increasing or decreasing 

the transmitted power. It depends on the X/R ratio of the uncompensated line and for 

low ratios compensation can reduce the transmission capability of the line.  

Transmitted power (including active power and reactive power) between two buses in a 

power system shown in Fig.3.2 can be calculated using equation (3.1). 

 

 

Fig.3.2: Two bus AC power system 
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S = Vu� v �u���u�w�#x�y∗ (3.1) 

Where VS and Vr are the sending end and receiving voltages and RS, XL are representing 

the resistance and reactance of the line. Vs and Vr can be substituted with their 

amplitude and angle, then (3.1) can be rewritten in equation (3.2). 

S = ����Gz{(|}z|~)���~w����   (3.2) 

Using Euler formula represented in (3.3) and substituting equation (3.4) the complex 

power is recalculated in (3.5). e�� = cos α + j sin α	 (3.3) δ = θ? − θ% (3.4) 

S = w����� �����w���~#����� �	
�w�~#�~�������������������E��	FG	���G�	
+ j ���~�����(�����w����� �	
�)w�~#�~�����������������wG���	FG	���G�

 (3.5) 

assuming bus voltages in both ends are 1p.u then Vs will be equal to Vr and with 

substituting this assumption in (3.5) active power and reactive power is calculated in 

(3.6) and (3.7) respectively. 

P = �~w�~#�~ VX� sin δ − R�(1 − cos δ)d (3.6) 

Q = �~w�~#�~ VR� sin δ + X�(1 − cos δ)d (3.7) 

 

in long lines 
w�� is negligible and by substituting this in equations (3.6)  and (3.7) active 

and reactive power equations are written in (3.8) and (3.9).  

P = �~� �	
�w�~#�~  (3.8) 

Q = �~�(?�����)w�~#�~  (3.9) 

Practically, power lines have some ohmic resistance along with reactance and with 

considering nonzero value for Rs the transmitted active power is written in (3.10) by 

rearranging (3.8) and substituting RS with R and XL with X.  

P = (�w) �~ �	
�
w(?#��� �~)  (3.10) 

Then transmitted power versus δ(phase angle difference between voltages at the both 
ends of line) will be affected by X/R ratio of line. This is shown by plotting P using 

equation (3.6) for different values of X/R ratio in Fig.3.3. 
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Fig.3.3: Effect of X/R ratio on the transmitted power 

 

This plot clearly shows that if the X/R ratio goes high the ATC will be high and vice 

versa. In addition with low X/R ratio peak value of power occurs in lower angles which 

can endanger stability of the system. For example in Fig.3.3 peak value of power for 

X/R ratios of 20 and 10 take place in almost 87° however for lower ratios such as 1 it 

happens in 45.8°.  

 

In order to investigate the effect of X/R ratio on the transmitted power a two bus AC 

power system as shown in Fig.3.4 has been utilized and simulated in PSCAD.  

 

 

Fig.3.4:  Compensated AC power system 

 

In power lines with higher X/R ratio normally capacitive compensation is required to 

reduce the effect of inductive reactance. However the reduction of X must be in a way 

to not endanger the stability of power system. 

In compensation using DSSC the transmitted power between the sending end and 

receiving end buses becomes function of injected voltage and it is obtained in (3.11) [1], 

[55]. 

P�� = �~�	
�� − ����{���	(�~)�
���������� 

   (3.11) 
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where Pcom is the contribution of compensation provided by injected voltage VInj. In 

(3.11) the following assumption has been used (¡ = (¢ = (  (3.12) 

where Vs and Vr are the bus voltages. By substituting Vr and Vs with V in (3.11) the 

new equation is obtained in (3.13).  

P�� = �����	
�� − �����{���	(�~)� × ¤ �	
(�~)�(¥�¦¥�~¥� )~�¥�¥����~(�~)
§�������������)¡	¨*)©ª	)«	�¬�®�
 (3.13) 

The parameter XL is the line reactance and δ is the phase angle between Vs and Vr. The 

effective inductance will be changed by injecting capacitive or inductive reactance 

through the line by using DSSC between the two buses. As a result, the transmitted 

power will be changed, as shown in Fig.3.9. 

 
Fig.3.5: Change of transmitted power against transmission angle 

 

However, by compensating the line reactance then the phase angle of voltages at the 

receiving end buses will also change. For this reason, the DSSC can also be employed 

as a distributed static phase shifter (DSPS) through the networks. Theoretically phase 
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angle of 90° and above can lead to instability in the power system due to interaction 

with governor of generators [85].  

3.1.2 Calculation of required numbers of DSSC 

The provided compensation by DSSC is calculated in equation (3.14).  

X	
� = �¯�{�°¯�± (3.14) 

where Xinj is the provided reactance and Vinj is the injected series voltage by each DSSC 

module and line current is represented by Iline in this equation. Assuming Kc percentage 

of the line reactance, Xl, is required to be compensated and it can be calculated as 

follow X�7 = K�X6 (3.15) 

where Xcd is demanded compensation reactance.  

In the other hand each DSSC devices has a limited capability in providing 

compensation, Xinj, through the line. The restriction is defined mainly by the rating of 

the components and the voltage source converter within the DSSC device. However, 

number of required modules is calculated in equation (3.16). 

n = �²B�¯�{ (3.16) 

where n is the required number of DSSC devices through the line. For example, in a 

power line (as shown in Fig.3.2) with 20 miles length, total reactance of 6.25Ω and 

resistance of 2.86Ω for FeAl234 conductor can be obtained from Table 3.1. This table 

shows typical line parameters in an 11kV distribution system. Assuming a 

compensation of 20% is required then DSSC modules must provide 1.25Ω capacitive 

reactance. Each module can be designed to inject 10V (depends on the design of DSSC 

the injected voltage can be customized to different values) orthogonal with line current 

of 345A then provided capacitive reactance by the module will be 0.02898Ω. By 

dividing required capacitive reactance, 3.98Ω, with provided reactance of 0.057Ω the 

number of DSSC modules will be 43. Summary of parameters and corresponding values 

within the explained example is presented by Table 3.2 [84]. 
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ACSR 

Type 

Cross section Current capacity R L 

FeAl234 234mm2 345A 0.143Ω/mile 0.996mH/mile 

Chickadee 1118mm2 575A 0.2281Ω/mile 1.19mH/mile 

 

Table 3.1: Typical bare conductors in an 11kV distribution system 

 

Parameter Value 

Reactance of the line 6.25Ω 

Resistance of the line 2.86Ω 

Percentage of compensation 20% 

Line current 345A 

Injected voltage 10V 

Injected reactance 1.25Ω 

Required number of DSSC devices 43 

 
Table 3.2: Summary of parameters and corresponding values 

 

3.2 Load flow control using DSSC 

In order to investigate capability of DSSC in controlling load flow in electrical 

distribution networks a power system including two parallel lines has been considered. 

The power system is shown in Fig.3.10 and the system parameters are tabulated in 

Table 3.3. Line1 is equipped with 20 DSSC devices and its reactance can be 

compensated. Current capacity of line1 is higher than line2 and the aim is to divert 

current from line2 to line1 using DSSC.  

 

Line 
number 

Conductor type Line 
resistance 

Line 
reactance 

Compensation Line current 
capacity 

1 ACSR 
(Chickadee) 

2.368Ω 5.175Ω Yes 575A 

2 ACSR 
(FeAl234) 

2.86Ω 6.25Ω No 345A 

 

Table 3.3: System parameters for two parallel lines 
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Fig.3.6: Compensation of two parallel lines 

 

Line1current in at different level of compensation is plotted in Fig. 3.11. In this figure 

current in line1 is shown with blue line and in line2 is shown with green. First time 

interval belongs to the system with no compensation and the second belongs to a system 

with 20 % compensation provided by DSSC modules in line1. In this time interval as a 

result of compensation, current in line1 increases because of less line impedance and in 

the line2 the current decreases. Third time interval of the plot show the result of further 

compensation and corresponding changes of current in the lines. This is a very useful 

feature of application DSSC in the distribution networks which allows the operator to 

divert current partially from one line to another. 

 
Fig.3.7: Phase current with different level of compensation 

 

DSSC not only can push current into the compensated line but also it can pull away 

current from the compensated line. This can be achieved by injecting inductive current 

through a line.  Fig.3.12 shows current is pulled away from line1 and pushed into line2. 

In this figure at first there is no voltage injection but afterward with injection of 20 % 

inductive reactance current in line1 goes down and in the same time it goes up in the 

line2. Moreover with increasing the injection of inductance furthermore the line current 

in line1 decreased further and it is increased in line2.  
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Fig.3.8: rms value of lines current in presence of inductive injection 

  

3.3 Voltage profile improvement using DSSC 

In the distribution feeders the loads connected to line in different distances from the 

distribution substation. Consequently the impedances of the lines are different and then 

the amount of voltage drop across the lines will be different. Actually, the voltage drop 

increases when the distance increases. The voltage drop is a combination of the drop 

produced by the ohmic resistance of the wire and its inductive reactance. Because the 

inductive reactance can be compensated by using DSSC [88], therefore this opens a new 

application for the DSSC, which is proposed in this study to improve voltage profile in 

the power distribution networks and compensate the voltage drop which comes from the 

inductive resistance of the line. 

The distributed nature of DSSC units facilitates their independent operation even with 

the reconfiguration of the network. Generally, the overhead line distribution networks 

are more vulnerable to short faults but the DSSC modules are immune against the 

consequence of flowing the short circuit currents. This is because in the case of a short 

circuit fault in the power system, a very small amount of current will be transferred to 

the power electronics side of the DSSC device, which is connected in the secondary side 

of the single turn transformer with turn ratio of, let say, 1:100. The mentioned feature 

nominates the DSSC as a reliable solution in reactive power compensation in the 

distribution feeders.  

 

In this application the DSSC modules are connected to the feeder in series as shown in 
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Fig.3.13 in order to compensate the reactive consumption of the line itself. Fig.3.14 

shows part of a loop distribution network with DSSC devices and lumped loads along 

the length of the line. The loads through the feeder can be supplied from both 

substations A and B. However, conventionally in the distribution feeder in order to 

increase the voltage at the end of feeder some fixed capacitors have been used. 

However, with the reconfiguration of the network topology the voltage at the end of 

feeder (which is now the begging of the feeder) can be high enough and then there is no 

need to have the capacitors to increase the voltage. In that situation the application of 

fixed capacitors can be problematic. In contrast to that, the application of DSSC 

modules is independent from the reconfiguration of topology of the network because it 

can provide compensation through the line rather than in one point of the feeder. 

 

 
Fig.3.9:  11kV loop distribution network including DSSC devices 

 

Each DSSC module behaves like voltages source through the line. It works based on 

injecting capacitive voltage in order to eliminate the effect of line reactance. Fig.3.14 

show the model of feeder equipped with the DSSC modules. In this model Ri and Li 

(i=1, n) are the resistance and inductance of the section of the line which are located 

between two DSSC modules and the DSSC models are represented by the voltage 

sources. 

 

 
Fig.3.10: The model of feeder equipped with the DSSC module 

 

Considering one segment of the line in Fig.3.14, the voltage drop in that section can be 

calculated as follow: 

Vdrop = Rn I + jXn I + Vinjn (3.17) 

where Vdrop is the series voltage drop across the segment, I is the current through the 

feeder and Vinjn is the voltage injected by the DSSC module number n. As Vinjn is 

orthogonal with the line current, it can be expressed as: 



88 
 

Vinjn = (±jX’nI) (3.18) 

where X’n is the effective injected reactance. It must be noted that since X’n is not a 

physical reactance then it cannot affect the system impedance at frequencies other than 

fundamental frequency. For this reason it can contribute toward amplifying or 

mitigating the amplitude of the harmonics through the line and it cannot initiate an 

oscillation through the system.  

Furthermore, in the presence of an inductive load, the line current can be expressed as 

follow:  

Il = IP + jIQ (3.19) 

Substituting (3.18) into (3.17), the Vdrop can be calculated as follow: 

ldrop IXXRV 2)'(2 ±+=
 (3.20) 

From the above equation Vdrop can be decreased or increased (based on the polarity of 

X’ which depends on whether the injected voltage lags or leads the line current) 

allowing the line voltage profile to be controlled. In the distribution networks resistance 

of the line is bigger than reactance however manipulating of reactance still will change 

voltage profile. The application of DSSC not only alters the voltage drop across the line 

but also decreases or increases the inductive reactive power flow through the line. This 

is demonstrated by the following calculations: 

))(()( 22'22*

QPQPdrop IIXXjIIRIV +±++=
 (3.21) 

The first term in (3.17) is the active power losses and it dissipates as heat in the line. 

The second term represents the line reactive power consumption which can be reduced 

by injection of X’. This will release part of occupied capacity of the line and also will 

reduce the voltage drop through the line. Furthermore, providing the reactive power 

consumption of the line DSSC module will reduce the absorbed reactive power from the 

substations which will improve the voltage at the compensated buses. 

 

The application of DSSC in the distribution networks has been simulated using the 

PSCAD/EMTDC software. In this simulation, it is assumed that the circuit breaker is 

closed at substation A and it is open at substation B so that the circuit is effectively 

working as a 20km radial feeder which is fed only from substation A. A lumped load of 

3MVA was assumed at the remote end of the 20km, 11kV line. Line resistance of 2.86Ω 

and reactance of 6.25Ω are used in the calculations [84]. Twenty DSSC modules are 

distributed along the length of the line and each of them is connected in series through a 

single turn transformer with a turn ratio of 1:100. The amount of compensation as a 
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percentage of line reactance can be varied by adjusting the amplitude of the injected 

voltage between -10V and 10V. The capacitance of the DC link capacitor is 500µF. The 

capacitor is rated at 1.5kV however expected dc voltage will be less than the rating. 

 

Normally, maximum allowed voltage drop is between 5% and 10% [89]. Fig.3.15 

shows the voltage profile through the line without any compensation. The voltages at 4 

locations through the line (at distances of 0.2km, 2km, 10km and 20km from the 

substation) are shown in Fig.3.16. This figure shows the voltage profile before and after 

compensation by DSSC. Before compensation voltage drop is 700V and this more than 

5% acceptable voltage drop. With compensation voltage drop along the line is reduced 

from about 700V to 400V. The amount of compensation for each line segment is not the 

same and varies according to the distance from the source which supplying the load. 

Fig. 3.16 shows that the amount of improvement at 1st point of the line is negligible but 

this value in the 2nd point is sensible. Voltage improvement becomes almost 500 volts 

at the end of feeder. This is showing that when the length of feeder increases the need 

for compensation will increase. In the same way the compensation of line by DSSC is 

less at the beginning of the line and it is more at the end of the line. The line voltage 

profile is plotted with and without compensation in Fig.3.17. The figure shows that the 

amount of required compensation by increasing the length of the feeder increases. Then 

the DSSC can provide an excellent balance between the demand and production of the 

reactive power through the line.  

 
Fig.3.11: Feeder voltage profile before compensation 
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Fig.3.12: Voltages at different distances along the feeder 

 

Fig.3.13: Feeder voltage profile after compensation 
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3.4 Summary 

DSSC devices can be used in the distribution networks to enhance electrical parameters 

of the system. In distribution networks resistance of the lines are higher and in some 

occasions even the X/R ratio can be less than one. Operation of DSSC device is not 

affected by the X/R ratio and the device can operate without any malfunction. However, 

with X/R ratio of 1 or less capacitive compensation is not increasing the ATC. It has 

been note that in such cases inductive injection can increase power transfer capability of 

the line.  

The required numbers of the devices in each system can be calculated based on the 

demanded amount of compensation, line current and compensation capability of each 

DSSC device. DSSC device can be designed to inject voltage with different amplitudes. 

 

Using DSSC within the electrical power distribution networks can provide more flexible 

load flow control capabilities to the network operators. It has been demonstrated that 

impedance of the compensated line is decreased (or increased) using DSSC in order to 

divert current to the desired line in a parallel lines.   

DSSC also has been employed to enhance the voltage profile through the feeder length. 

The voltage profile improvement is achieved by injection of capacitive reactive power 

through the line to compensate inductivity of the line. The injection is compensating the 

reactive power consumption of the line. This application of DSSC has been simulated 

using the PSCAD/EMTDC simulation. The simulation results show that the voltage 

drop caused by the line reactance is compensated by DSSC. The voltage profile before 

and after application of DSSC in a 20km, 11kV distribution feeder has been compared.  
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4 New Control Strategy 

 

In this chapter, in order to overcome drawbacks with existing control strategies a new 

closed-loop control strategy based on the exchange of instantaneous power is proposed. 

The control guarantees an orthogonal injection of voltage with respect to the line 

current. It also optimizes the active power absorption by the DSSC device and holds the 

DC voltage at desired value at the same time. The controller is applied in order to 

enhance the performance of DSSC which is employed as a FACTS device on an 11kV 

distribution line. The proposed control is studied in the novel application of DSSC in 

the distribution networks. The study starts with a DSSC connected to 11kV distribution 

system. The proposed method is extensively investigated with simulation in PSCAD for 

different working scenarios.  

4.1 New approach of controlling DSSC with single phase control 

This section presents a new control approach which is used to force the phase angle 

between injected voltage and line current to be 90 degree. Based on single phase control 

the proposed control has capability to control the injected series voltage in each phase of 

a three phase system separately. The control strategy is based on the minimisation of the 

exchanging instantaneous power and holding the voltage of the DC link at a desired 

value. For this reason it can be divided into two parts as follows.  

The first part is the regulation of capacitor voltage and holding the voltage at a desired 

value. To do so, the magnitude of DC voltage across the capacitor is monitored 

continuously and then compared to a constant reference value (control block diagram is 

shown in Fig.4.1). The comparison generates an error signal which is carrying 

information about the status of the DC link voltage and it is fed into a PI controller. The 

error is then smoothed out by a PI controller before being added on top of the other 

signals coming from the second part of the controller and the PLL. PLL is locked to the 

system and provides up to date status of the wt of the power system. 

 
Fig.4.1: Control block diagram of DC voltage regulating 
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In Fig.4.1, θdc represents the need for adjustment of the dc voltage. When the DC 

voltage is equal to the desired voltage this angle becomes zero. Also in this figure the 

θan is carrying information about the angle of injection and wt from the PLL. 

Furthermore in this control block diagram Kc determines the percentage of the 

compensation which must be provided by the DSSC. This percentage can be calculated 

based on the line current and amount of the capacitance which must be injected through 

the line as follow: 

³r = ´µ+¶r (4.1) 

where w is the angular frequency of the power system and Il is the line current. C is the 

capacitance which needs to be inserted into the system and calculated from capacitive 

reactance Xinj 

XC=KcXL (4.2) 

where Kc is the percentage of compensation and XL the reactance of the transmission or 

distribution line. Because the DSSC has the capability to inject inductive reactance 

through the line as well, therefore the Kcl for inductive injection is obtained using L. ³r· = ,·¸:¹ (4.3) 

where, L is the inductance required to be injected. 

The second part of the controller, which is the most important and the novel part of the 

controller proposed, provides a proper angle of injection. This part of controller focuses 

on the adjustment of phase angle between the injected voltage and the line current. 

Ideally the phase angle should be 90°. However, due to ohmic losses, this is not 

achievable and it will be different from 90°. 

The solution, which has been employed in the literature, is that to divert the injection 

phase angle to some extent from 90° in order to compensate the losses inside the DSSC 

device. This is because by diverting the injected voltage from the 90° DSSC will be able 

to exchange the active power. To compensate the losses, absorption of active power is 

required and it can be achieved by introducing injection angle of less than 90 degree. 

Although the amount of diversion from the 90° is an important parameter, surprisingly 

it has not received much attention in the literature review. It must be noted that if the 

absorbed active power becomes more than the power losses then the DC voltage in the 

DC link will get increased. This will change the amount of compensation and may cause 

instability in the system. Similarly if the amount of absorbed active power is less than 

that required by losses then the DC voltage will collapse, i.e. the series compensator 

device will lose the stability.  
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However, in the new control strategy, which is based on the instantaneous power 

exchange, the required amount of active power is exactly absorbed. This can be 

achieved by firstly forcing the phase angle between the injected voltage and line current 

to be 90°, then introducing a slightly different phase angle in order to compensate the 

losses. This phase angle obviously needs to be dynamically updated by the controller. 

To do so, line current and injected voltage wave form are being multiplied to each other 

instantaneously as follows:  `(;) = ,(;)-)*. ∗ ((;)´*+ (4.4) 

where p(t) is the instantaneous exchanged power between the DSSC and power system. 

In equation (5.4) V(t)Inj and I(t) Line are the injected voltage and line current respectively 

and can be written as follows: ,(;)-)*. = I6cos(:; + º?	) (4.5) ((;)´*+ = V	
�cos(:; + º%	) (4.6) 

where θ1 and θ2 are the initial phase angle of the line current and voltage. Il and Vinj are 

the maximum amplitude of line current and injected voltage. By substituting the 

equations (4.5) and (4.6) to the equation (4.4) the p(t) can be rewritten as follow: 

`(;) = 	 ?% ∗ » ∗ (cos(2:; + º? + º%) + cos(º? − º%)) (4.7) 

where A is the maximum amplitude of the p(t)  and defined in equation (4.8). » = ()*+ ∗ ,· (4.8) 

Equation (4.7) can be decomposed into two parts: the oscillatory and the DC 

components. The oscillatory part, p(t)ac as defined by equation (4.9), has 2
nd order 

frequency and must be filtered out.  

`(;)pr = ?% ∗ A ∗ cos(2:; + º? + º%) (4.9) 

The remaining part, p(t)dc as defined by equation(4.10) is DC signal. It carries out 

information regarding phase angle between the line current and the injected voltage.  

`(;)½r = ?% ∗ A ∗ cos(º? − º%) (4.10) 

Ideally, if the line current and injected voltage become orthogonal then the (º? − º%) 
will be 90°. Consequently the p(t)dc will be zero. However a non-zero p(t)dc means that 

the injected voltage is not orthogonal to the line current. Practically, this can happen 

because the voltage in the DC link is diverted from the desired value or due to 

compensation of internal losses of DSSC. Diversion of DC voltage from the desired 

value is temporary and it will reach to desired value by change of injection angle. 

Thereafter, an orthogonal injected voltage is expected. However, in order to compensate 
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internal losses of DSSC the injected voltage is slightly diverted from 90°. Then it will 

introduce an error in p(t)dc which will pass through the low pass filter and after that will 

be smoothed out by a controller. In order to avoid accumulating the error a P controller 

has been used. PI controller accumulates the steady state error and should be avoided in 

this application. 

The output of controller is called θerr and includes the error of diversion of phase angle 

between the injected voltage and line current from 90°. The diversion is generated in 

corresponding to a temporary and permanent error. The temporary one disappears after 

DC voltage reaches to desire value however the permanent error will exist to 

compensate internal losses. The control block diagram of the aforementioned procedure 

is shown in Fig.4.2. 

  

 
 

Fig.4.2: Injection phase angle regulation control block diagram 

 

The new proposed controller in this study benefits from the DC voltage regulation and 

orthogonal voltage injection independently. This will provide an opportunity to obtain 

different level of DC voltage across the DC link while the injected voltage phase angle 

is still guaranteed by the rest of the controller. Block diagram of whole controller shown 

in Fig.4.3 the angles from both sides (from DC voltage regulator and injection angle 

provider) will be added on top of each other. The resultant signal, i.e. output of the 

controller (reference signal), will be fed into PWM generator in order to generate the 

switching pattern. The signal generated by the converter is injected through the power 

line and fed back to the controller at the same time. 
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Fig.4.3: Block diagram of the proposed controller 

 

In order to prove the concept, the proposed strategy is simulated using PSCAD/EMTDC 

software. Simulation of application of the proposed control system with a DSSC device 

will follow later in this chapter.  

Injected voltage and line current are multiplied to each other and the result is shown in 

Fig.4.4. The results are satisfying equation (4.7), hence validating the proposed control 

strategy. In Fig.4.4 the first waveform (p(t)ACDC) represents the equation (4.7) and the 

second one (p(t)DC) shows the DC part of the equation. This is expressed in equation 

(4.10) and shown with p(t)DC in Fig.4.4.  

 
Fig.4.4: Multiplication of “line current signal” and “injected voltage” 
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In Fig.4.4 the DC signal is zero which is representing 90 degree phase angle between 

the two signals and it is a prove for orthogonally of multiplied signals. Also in this 

figure the AC signal (representing the instantaneous exchanged power) shows that, in 

the presence of 90 degree phase difference between the multiplied signals, there will be 

no active power absorption. This is because in this signal the positive half cycle is 

exactly equal to the negative half cycle. Consequently the absorbed active power at the 

end of one period is zero. 

With the intention of investigating the dependency of active power absorption on the 

phase angle of injected voltage the voltage has been applied in different phase angle and 

the results are shown in Fig.4.5. In this figure at first there is only 90 degree phase shift 

between the injected voltage and line current. Therefore it can be easily observed from 

the figure the DC signal is zero and the AC signal completely symmetrical (the positive 

and negative amplitude of the signal are same). In the next step a 10 degree difference 

has been introduced on top of the previous phase angle. As a result, the DC signal has 

been moved from zero to -0.85. The AC signal is not symmetrical anymore and there is 

negative bias in the signal. Finally, with introduction of -10 degree phase difference the 

DC signal moves to 0.85 and the AC signal has been shifted up. Phase shift of ± 10º is 

added just to show the dependency of active power absorption to injected angle.    

 
Fig.4.5: Dependency of active power absorption on the phase angle of injected voltage 
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4.1.1 Advantages of the proposed controller 

The proposed controller is not using the dq conversion, which is used widely in the 

literature review. As a result it does not have the associated problems as discussed 

earlier in chapter 2. In addition to that the amount of compensation becomes 

independent from the line current by using this controller as well. For example, Fig.2.40 

and Fig.2.41 in chapter 2 show control block diagram (typically used in the literature) 

where the amount of compensation is being dynamically changed by changing the line 

current. In contrast to that, in proposed control system shown in Fig.4.3 the amount 

compensation is determined by Am which is calculated based on the required percentage 

of compensation. As another example the amount of compensation by the fixed series 

capacitors totally depends on the line current. Consequently the compensation will 

increase with an increase of the current and vice versa. However in the proposed 

controller the compensation achieved by the DSSC is measured by means of p(t) and 

compared to the demanded value.   

 

A further advantage of control system presented in the above figure is its immunity 

against possible harmonics in the power system. It means that as long as the PLL is 

functioning properly and controller has not lost the synchronism the harmonics will not 

penetrate into the control system. This is because with considering some harmonics (for 

example 5th) in the power system the equation (5.5) can be rewritten as follow: ,(;)-)*. = I6Vcos(:; + º?	) + 	cos	(5:; + ºK	)d (4.11) 

By substituting equation (5.11) into (5.4), finally the equation (5.7) becomes 

`(;) = 	 ?% ∗ » ∗ (cos(2:; + º? + º%) + cos(º? − º%) + cos(6:; + º? + ºK) +cos(5:; + ºK − º?))) (4.12) 

Comparing equations (4.7) and (4.12) shows that the dc part, (cos(º? − º%)), remains 

unchanged in presence of the harmonics. It is only the AC part of the equation (4.7) that 

will be changed. However the AC part will be filtered out and it cannot contribute 

toward the θan signal in the control block diagram shown in Fig.4.3.  

Furthermore an additional advantage of the proposed control is that it takes feedback 

directly from the output voltage of the DSSC and tries to minimise the θan .This aspect 

makes the control system to be a closed loop controller rather than being an open loop 

controller. This provides the self-adjusting capability, thus stability, for the control. 

In the polluted power systems along with the fundamental current there will be other 

harmonics as well. It has been shown by equations (4.11) and (4.12) that the harmonics 
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cannot penetrate in the control system. The simulation results validating the proper 

operation of the controller in presence of the harmonics are represented later on in this 

chapter. 

4.2 Modelling of DSSC 

In order to simulate the operation of DSSC using the proposed control strategy the 

DSSC device is modeled as shown in Fig.4.6. It comprises of a single-phase H-bridge 

IGBT converter, a dc capacitor, an AC filter and a single turn transformer which is 

connected in series with the power line. The current flowing inside the DSSC is 

proportional to the line current (depends on the turn ratio of STT) and the line current is 

governed by electrical network. The equivalent model of the power system including 

STT (shown inside dashed red rectangle) seen by DSSC is represented as a current 

source which is shown in red in the following figure.  

 

 

Fig.4.6: DSSC in connection with the power line 

 



100 
 

The functionality of H-bridge converter includes two different modes of operation. In 

mode 1 IGBT’s 1 and 4 are conducting and IGBT’s 2 and 3 are off. In mode 2 IGBT’s 1 

and 4 are switched off and IGBT’s 2 and 3 are conducting. Timing diagram of 

switching of IGBT’s is shown in Fig.4.7.  In this figure Ts is equal to 1/fs and fs is the 

switching frequency also d represents the duty cycle of switching. 

 

 

Fig.4.7: Timing diagram of switching pulses of IGBT’s 

 

4.2.1 Operation mode 1  

The equivalent model of DSSC for the operation mode of 1 is shown in Fig.4.8. 

 

 

Fig.4.8: Equivalent circuit in mode 1 

 

In the above equivalent circuit Cdc is the dc capacitor and lf and Cf are the inductance 

and capacitance of the LC filter. V2 and V1 (injected voltage) are representing the 

secondary and primary side voltages of the STT respectively and n is the turn ratio of 

transformer. Transfer function of the system can be obtained by writing KVL and KCL 

equations in the equivalent circuit shown in the Fig.4.8. To do so, the following 

equations can be written in the S (Laplace) domain in mode 1:  g½r = g·« (4.13) 
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ÀÁ½r(r½r = g½r (4.14) 

where ilf  and idc are the current passing through the lf  and Cdc respectively. In (4.14) vcdc 

is the voltage across the Cdc capacitor. 

Current through the inductance, ilf, is obtained in the (4.15) by writing KCL equation in 

common connection point of STT, lf and Cf . 

g·« = g% ·ÂÃÄ�Å~?#Æ·ÂÃÂ#%ÃÄ�·ÂÇÅ~#(·Â~ÃÂÃÄ�#·Â~ÃÄ�~ )ÅÈ (4.15) 

or 

g·« = Xg? [«Á½rÀ%1 + Æ[«Á« + 2Á½r[«ÇÀ% + ([«%Á«Á½r + [«%Á½r% )ÀÉ 
where i1 and i2 are the primary and secondary current of the SST respectively.   

 

4.2.2 Operation mode 2 

In mode 2 the polarity of voltage at the output of the converter will change as shown in 

Fig.4.9. 

 

Fig.4.9: Equivalent circuit in mode 2 

 

Voltage across the DC capacitor in mode 2 still can be obtained from (4.14) in the 

Laplace domain. However in this mode direction of current passing through the Cdc is 

changed and it is presented in (4.16) g½r = −g·« (4.16) 

 

4.2.3 Average of current through DC capacitor 

During a period, Ts, we shall assume that DSSC circuit operates in mode 1 and mode 2 

for a time period of dTs and Ts(1-d) respectively, where d, as shown in Fig.4.7, is the 

duty cycle for switching between mode 1 and mode 2. Considering the fact that the 
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switching frequency, fs, is fast enough to have negligible change in absolute value of the 

ilf during mode 1 and mode 2 the average value of idc in one period is obtained in (4.17).  

g½r = ½s¬)µÂ#(?�½)s¬(�)µÂ)s¬ = (2i − 1)g·« (4.17) 

Voltage across the DC capacitor is recalculated in (4.18) by substituting the average 

value of idc in (4.14). 

(r½r = (%½�?))µÂÅÃÄ�  (4.18) 

By replacing equivalent of ilf from (4.15) in (4.18) vcdc is recalculated in (4.19). 

fr½r = Xg? (%½�?)·ÂÅ?#Æ·ÂÃÂ#%ÃÄ�·ÂÇÅ~#(·Â~ÃÂÃÄ�#·Â~ÃÄ�~ )ÅÈ (4.19) 

in (4.19), (2d-1) is the control term and it can be represented by u. Having considered 

this in (4.19) transfer function of vcdc to u is obtained in (4.20). 

Ê = ��Ä�¨ = Xg? ·ÂÅ?#Æ·ÂÃÂ#%ÃÄ�·ÂÇÅ~#(·Â~ÃÂÃÄ�#·Â~ÃÄ�~ )ÅÈ (4.20) 

 

4.3 Controller design 

Employed control strategy is based on the regulating the DC voltage in the desired 

value in order to minimize the active power exchange with the AC system. In addition 

to the DC voltage regulation the error of multiplication of injected voltage (v1) and line 

current (i1) after passing through a low pass filter is being added to the feedback loop in 

order to fine tune the injection angle. Block diagram of control strategy is shown in 

Fig.4.10.  

 

Fig.4.10: Block diagram of control strategy 

 

In the block diagram shown in Fig.4.10 vcdcRef  and vcdc are representing the reference 

DC voltage and the voltage across the DC capacitor respectively. Transfer function of 

DSSC device is shown by G in the block diagram and it can be obtained, in the Laplace 
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domain, by replacing the values of capacitors and inductance from the system design 

parameters (tabulated in Table 4.1) in (4.21). 

 

Component Symbol Value 

DC capacitor cdc 500 uF 

Filter capacitor cf 500 uF 

Filter inductor lf 80 uH 

 

Table 4.1: System parameters 

 

Ê = ��Ä�¨ = ?.Ë.zÌÅK.%.z}ÍÅÈ#?.%.zÌÅ~#? (4.21) 

Root Locus diagram of the transfer function, G (transfer function of open loop system), 

is presented in Fig.4.11. The right hand side of the diagram (positive real axis) is an 

indication of unstable system. 

 

 

Fig.4.11: Root Locus diagram of the transfer function G 

 

For closed loop system locations of poles and zeroes are shown in Fig.4.12. This figure 

shows that, there are two poles in the positive real axis which makes system unstable. 
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Fig.4.12: Poles/zeroes map for closed loop system 

 

In order to make closed loop system to be stable, a controller as shown by C in Fig.4.10 

is needed. The controller is obtained using  MATLAB in a way to meet the criteria 

which are tabulated in Table 4.1. 

 

Parameters Values 

Rise time To reach 95% in 0.05 Sec 

Settling time 99% settle in 0.5 Sec 

Max overshoot 5%  

Steady state error  0 

Gain margin Greater than 10 dB 

Phase margin Greater than 60° 

Table 4.2: Criteria in zero/pole placement 

 

In controller design Root Locus has been used. This is a graphical design tool allows 

moving the zero/pole to achieve the design criteria. 

For start in the controller design only gain has been employed. With the initial gain 

value controller has left a steady state error. By increasing the gain steady state error 

was improved but still it is not fully converged to zero. Further increment of gain 

introduces oscillations in the step response.  

In order to eliminate steady state error an integrator has been added to the controller and 

a PI controller has been employed. Adding integrator makes system response to become 

slow and increment of the gain, however this can introduce overshoot and oscillation in 
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the step response. It has been noticed that there is a relationship between oscillation in 

the step response and poor phase margin. In order to eliminate the oscillations and 

improve phase margin, a lead compensator added to the controller. It means that the 

controller C shown in Fig. 4.10 includes a PI controller and a lead compensator. The 

aforementioned explanation describes the employed approach in the controller design.  

In the design process of the controller for start, pole of PI controller is located in “0” 

(which is obvious) and MATLAB is used to find the approximate location (first 

location) of zero. Root Locus diagram of open loop transfer function after insertion of 

zero/pole is plotted in Fig.4.13. Gain of controller has been chosen from the Root Locus 

diagram shown in Fig.4.13 in order to respect required criteria of design.  

 

Fig.4.13: Root Locus diagram of the open loop system including controller C 

 

For example, for overshoot of 76.3% and damping factor of 0.0856 the corresponded 

gain of 0.0163 can be obtained from Fig.4.13. By including the selected gain in the 

controller C the step response of the closed loop system is plotted in Fig.4.14. It can be 

observed that peak of overshoot reaches to 1.58 and it oscillates for few cycles before 

settling down and reaching steady state.   
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Fig.4.14: Step response of closed loop system when gain of controller is 0.0163 

 

The step response of the system can be improved by increasing the damping factor and 

reducing the percentage of overshoot. In order to reduce the peak value and suppress the 

oscillations overshoot of 0.018% and damping factor of 0.93 has been targeted. The 

corresponding gain of 2.85 is obtained from Fig.4.14. In the same time in order to meet 

the required gain margin and phase margin of design criteria the lead compensator has 

been applied. By moving the zero/pole of the lead compensator using the MATLAB 

locations of zero/pole were found in a way to achieve phase margin of 66° and gain 

margin of 72 db. Controller C with the designed gain value and zeros/Poles are 

represented in (4.22). 

Á = 2.85ÏÐp)* ∗ (¡#K.K)¡����´	ÃÑ*©¢Ñ··.¢ ∗ (¡#Ò.K)(¡#?%.K)�����-.p½	rÑÓÔ.*¡p©Ñ¢
        (4.22) 

Bode diagram of system with obtained phase margin and gain margin is plotted in 

Fig.4.15.  The positive values of obtained phase margin and gain margin are showing 

system stability. 
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Fig.4.15: Bode diagram of system 

 

By applying the newly obtained gain the lead compensator the step response of closed 

loop system has been improved as shown in Fig.4.16. 

 

Fig.4.16: Step response of closed loop system meeting overshoot of 0.018% and damping factor 
of 0.93 

 

In order to validate the designed controller DC voltage across the DC capacitor must be 

checked. The designed controller is employed in the simulation of DSSC to control the 

operation of system and Fig.4.17 shows the voltage across the DC capacitor. It can be 

observed that the voltage is being held in the desired value. 

 

10
-15

10
-10

10
-5

10
0

10
5

10
10

-225

-180

-135

-90

-45

0

45

90

Frequency (rad/s)

P
h
a
s
e
 (
d
e
g
)

-200

-100

0

100

M
a
g
n
it
u
d
e
 (
d
B
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-7

0.9

0.92

0.94

0.96

0.98

1

1.02
Step Response

Time (seconds)

A
m
p
lit
u
d
e



108 
 

 

Fig.4.17: Voltage across the DC capacitor 

 

4.4 Sensitivity analysis of designed controller 

Effect of change of system parameters on the performance of the designed controller 

has been investigated. Change of system parameters includes change in the capacitance 

of DC capacitor, AC capacitor (filter capacitor) and inductance of filter. These 

parameters can put stability of system at risk by relocating the poles and zeros. 

Moreover, the step response of the system and the related overshoot can be affected by 

these changes. 

 

4.4.1  Effects of change in the system parameters 

System parameters can be changed. For example, capacitance of a capacitor reduces 

over time [90] and the reduction can affect the stability and step response of the system. 

With the intention of investigating the issue, cdc is reduced by 10%. Resulted step 

response and map poles and zeros of closed loop system are presented in Fig.4.18 and 

Fig.4.19 respectively. It can be observed that still system is stable and step response is 

more or less remains same. 
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Fig.4.18: Step response of system after applying 10% reduction in the capacitance of cdc 

 

 

Fig.4.19: Pole/zero map for a closed loop system after applying 10% reduction in the 
capacitance of cdc 

 

It must be noted that applying 10% reduction in the capacitance of AC capacitor or 

inductance of inductor within the LC filter provides same results as shown in Fig.4.18 

and Fig.4.19.  

It has been validated by the simulation that with 10% change in the system parameters 

still system is stable. This is shown in Fig.4.20 by reducing capacitance of cdc by 10% at 

0.76s. Changing of capacitance of the cdc is followed by a transient overvoltage and 

thereafter the DC voltage comes back the pre event value.  
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Fig.4.20: Effect of changing capacitance of cdc 

 

However, further reduction in the parameters can lead to instability. For example, with 

50% reduction in the cdc, two poles appear in the right hand side of pole/zero map of 

closed loop system and it becomes instable. Fig.4.21 and Fig.4.22 show the step 

response of system and the pole/zero map after having 50% reduction of capacitance of 

cdc. 

 

Fig.4.21: Step response of instable system after applying 50% reduction in capacitance of cdc 
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Fig.4.22: Pole/zero map of closed loop system after applying 50% reduction in capacitance of 
cdc 

 

Simulation results show that after reducing the capacitance of cdc by 50% system 

becomes unstable and DC voltage shown in Fig.4.23 becomes unstable. 

 

Fig.4.23: Instability of system after reducing capacitance of cdc by 50% 

 

4.5 Effect of adding a low pass filter to the proposed controller  

Equation (4.7) presents the proposed control strategy for fine tuning and it shows that 

the signal includes dc and 2ndorder harmonics. Due to presence of 2nd order harmonics 

in this equation (4.2) a low pass filter is needed to be applied in order to eliminate the 

harmonics. Transfer function of the employed second order low pas filter is presented in 

equation (4.23).  
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where G is the gain, wc is the cut off frequency of the filter and ξ is the damping factor 

of the filter. These parameters for the employed low pass filter within the proposed 

controller are provided in Table 4.3. 

 

Parameter Value 

G 900 

WC 30 

ξ 0.7 

 

Table 4.3: Parameters for the employed low pass filter 

 

One of the typical approaches to investigate the performance of a filter is to plot its 

frequency response over a range of frequencies. Logarithmic magnitude response of the 

low pass filter with presented parameters in Table 4.3 is plotted in Fig.4.24. This figure 

shows that DC signals (signals below 1Hz) passes through the filter without any 

attenuation however those are above 10Hz have been attenuated based on their 

frequency. 

In the proposed controller it is required to filter out the AC signals and the frequency 

response of the applied filter shows that it well matches with the requirements of the 

controller.  

 

Fig.4.24: Logarithmic magnitude response of the low pass filter 
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of the applied low pass filter is plotted in Fig.4.25. It shows higher phase delay for the 

high frequency signals and less delay for low frequency signals. In the proposed 

controller only DC signal is required to be employed and applied filter must not disturb 

it.  

 
 

Fig.4.25: Phase response of low pass filter 

 

In addition the proposed controller is just for the fine tuning purposes and it is mainly 

employed to reduce the error of injection voltage angle in steady state and it is not 
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it) only a proportional controller has been used as shown in Fig.4.2 in order to avoid the 

aforementioned issue. The gain of the controller is proportional to the offset value of the 

angle.  

4.6 Simulation of performance of proposed controller 

In this study, an 11kV distribution network, shown in Fig.4.26 has been considered. 

This network contains two parallel lines. Both of them are connected to an 11kV 

substation at one end and supplying a lumped load at another end. Line1 has 20miles 

(typical long distribution feeder) in length, 2.368Ω resistance and 5.175Ω reactance 

which is equipped with DSSC. Furthermore the Line1 and other line parameters are 

tabulated in Table 4.4. 

 

Line 
number 

Line 
resistance 

Line 
reactance 

Compensation Line 
current 
capacity 

1 2.368Ω 5.175Ω Yes 575A 

2 2.86Ω 6.25Ω No 345A 
Table 4.4: System parameters 

 

For simulation studies twenty DSSC modules are distributed along the length of this 

line; each of them connected in series through a single turn transformer with a turn ratio 

of 100/1(in single turn ratio the primary side is only one turn). A DC link capacitor of 

500µF, rated at 1.5kV, is used in the calculations. 

 

Fig.4.26: One of the two feeders is equipped with 20 DSSC devices 
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DSSC device parameters can be found in Table 4.5. 

Parameter Value 

Capacitance of DC capacitor 500uF 

Ratio of STT 1:100 

Range of injected voltage Between -10 and 10 volts 

 

Table 4.5: DSSC device parameters 

The amount of compensation as a percentage of line reactance can be determined by 

adjusting the amplitude of the injected voltage between -10V and 10V depending on the 

system’s control strategy. The DSSC devices are seen as a voltage source through the 

power line as shown in Fig.4.27. 

 

Fig.4.27: DSSC is seen as a VSC through the power line 

 

The proposed new control strategy, as explained earlier, has been used to control the 

DSSC modules through the line1. The PSCAD/EMTDC software is used for simulation 

to show that using the proposed controller the DSSC device is able to inject capacitive 

and inductive voltage through the line. The simulation results also approve the claimed 

advantages of the controller in this chapter. 

4.6.1 Capacitive injection 

With the intention of investigating the capability of DSSC modules in injecting the 

demanded capacitive voltage the devices are set to inject 10 volts in total. The output 

voltage of the H-bridge converter which is pulse voltage is shown in the Fig.4.28. The 

polarity of the voltage is keep changing based on the switching of the IGBTs in the 

converter. Peak value of the output voltage, 1kV, is equal to voltage across the DC 

capacitor.  
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Fig.4.28: The output voltage of the converter and its input current 

 

Input current of the converter also is shown in this figure which is proportional to the 

line current. The current, passing through the DC link and the current which is fed into 

the converter are shown in Fig.4.29. The converter current, as shown in this figure, is 

sinusoidal and proportional to the line current. The DC link current clearly shows effect 

of switching action. The flow direction of current is being changed in the DC link in 

order to charge and discharge the capacitor voltage to hold the DC voltage in a desired 

value.  

Actually a certain level of DC voltage is required in establishing the output voltage of 

the converter. As discussed earlier and shown in Fig.4.28 the output voltage of the 

converter is a chain pulse of the DC link voltage with positive and negative polarities. 

However the chain pulse is filtered out by LC filter and generates a sinusoidal 

waveform with fundamental frequency at the secondary side of the STT. The voltage of 

the secondary side of STT along with the associated current is shown in Fig.4.30. 
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Fig.4.29: DC link current and output current of the converter in the capacitive injection mode 

 

Fig.4.30: Voltage and current in the power electronics side of the STT in the capacitive injection 
mode 

 

The injected voltage through the line is shown in Fig.4.31. It can be seen that the 
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unchanged. In the second step the DSSC modules compensate 20 % of the phase 

reactance. In order to obtain such compensation it is necessary to inject 12 volts. In the 

next step the modules are required to compensate 50% of the reactance, therefore they 

inject 28 volts. At the final stage the compensation returned back to 20% and it shows 

that the modules can increase or decrease the percentage of compensation. 

 

Fig.4.31: Capacitive injection and voltage is leading the current 

 

Fig.4.32: Capacitive injection in three different levels 
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The consequence of different levels of compensation can be seen in the current of the 

compensated line. With injection of capacitive voltage it is expected that the virtual 

capacitor to be inserted through the line. This leads to reduction of the reactance of the 

line. Less reactance means increment in the line current.  

4.6.2 Inductive injection 

DSSC modules are able to inject inductive voltage as well because they can effectively 

increase the line reactance. This feature is useful in the power flow control when the 

operator wants to push away current from a specific line. To do so the final injected 

voltage through the line must lag the line current. However the output voltage of the 

converter is a pulse voltage and its polarity is changing in different switching condition 

and it is shown along with the input current of the converter in Fig.4.33.  

 

Fig.4.33: Output voltage of the converter along with the input current 

 

The DC link current (current passing through the DC capacitor) along with output 

current of the converter is shown in Fig.4.34. The flow direction of the current through 

the link is being changed frequently to regulate the DC voltage. 
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Fig.4.34: DC link current and output current of the converter in the inductive injection mode 

 

Align with the changing of the flow direction of current in the DC link the polarity of 

the output voltage is being changed to synthesize the required voltage at the output of 

the converter. The generated voltage (pulse voltage) by the converter is being filtered by 

the LC filter. Voltage and current in the secondary side of the STT is shown in Fig.4.35. 

This voltage is injected through the line using STT (same as the capacitive injection 

mode) and it is shown in Fig.4.36. It shows that the injected voltage is lagging the line 

current and the DSSC is capable of injecting of inductive reactance when the proposed 

controller is being applied. 
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The reduction of the line current shows that the impedance of the line has been 
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reactance through the line can be easily achieved. Even the amount of compensation can 

be easily altered.  

 

Fig.4.35: Voltage and current in the secondary side of the STT in the inductive injection mode 

 

Fig.4.36: Inductive injection of DSSC modules 
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Fig.4.37: Different level of inductive injection 

 

Line1 and line2 are in parallel therefore by increasing the inductance in line1 the current 

in this line will decrease and consequently line2 current will increase.  

 

4.7 Comparing performance of proposed controller with 90° phase shift based 

controller 

Performance of the proposed controller has been compared with 90° phase shift based 

controller and dq based controller. The 90 degree phase shift method is used as a control 

strategy in the simulation of functionality of DSSC. The phase difference between line 

current and injected capacitive voltage is plotted in Fig.4.38. The phase angle using this 

controller is -86.85 degree which is different from 90 degree. In this example, the 

deviation of 3.15 degree is needed in order to make the system become stable. The 

deviation angle shows that there are some losses within the DSSC device and the angle 

is diverted from 90 degree to hold DC voltage in the desired value.  
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Fig.4.38: Phase difference in capacitive injection mode using the 90° phase shift controller 

 

It must be noted that if the voltage is not injected with a right angle then it will affect 

the absorbed active power. If the absorption of active power becomes more than ohmic 

losses then the DC voltage will increase. But in the same time voltage regulator will 

initiate an error signal to return back the voltage. Consequently the converter needs to 

switch between the charge and discharge modes more rapidly in order to maintain the 

DC voltage. This dissipates the absorbed power, and additionally, increases amplitude 

of the ripples on the DC link voltage. 

Losses (or the absorbed active power) inside the DSSC module for 90° phase shift 

method is plotted in Fig.4.39 using active power measurement block within the PSCAD. 

In this simulation the aim is to compensate 20 % of the line reactance but DSSC device 

absorbs active power.   

 

Fig.4.39: Power loss in each DSSC module using the conventional control system 
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Each DSSC module using the proposed controller consumes 20.33W in order to 

compensate the internal power losses while in total all of the modules providing 863.34 

VAr to contribute toward the line compensation. However with conventional method 

power loss in DSSC module becomes 47.43 watt. System parameters are tabulated in 

Table 4.6. 

Parameter Value 

System voltage 11kV 

Line current 575A 

Power Line resistance 2.368Ω 

Power Line reactance (rated) 5.175Ω  

DC link voltage 1.05kV 

Number of DSSC device 20 

Switching frequency 5kHz 

 

Table 4.6: System parameters 

Line current is shown in Fig.4.40. Current, passing through the DC link and the current 

is being fed into the converter are shown in Fig. 4.41. The converter current, as shown 

in this figure, is sinusoidal and proportional to the line current. The DC link current 

clearly, as shown in Fig.4.41, shows effect of switching action. This current is being 

chopped frequently to change the flow direction and charge or discharge the capacitor in 

order to hold the voltage in a desired value. 

 

Fig.4.40: Line current 
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Fig.4.41: Converter current and DC link current 

 

The injection angle is an important factor in regulating the DC voltage across the 

capacitor and maintaining the stability of whole system. With the intention of presenting 

the difference in the regulated voltages across DC link when using the conventional 

approach the DC voltage is shown in Fig.4.42 in more details. Using the 90° phase shift 

method the ripple in the DC voltages is 4% which is result of erroneous injection angle. 

With the conventional method the peak value is 1130 volts with respect to 1100 volts. 

This emphasizes that the method is not more effective in reducing the percentage of 

ripples. 

 

Fig.4.42: Ripple of DC voltage (with the conventional method) 
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With the conventional method, the harmonic analysis of the injected voltage however 

reveals that there are 16% of second order harmonic and 3% of third harmonic along 

with the fundamental injected voltage which is shown in Fig.4.43. In this figure the 

fundamental voltage is in blue; the green line represents the second harmonics and the 

brown one shows the third harmonics. 

 

 

Fig.4.43: Harmonic analysis of injected voltage using the conventional control method 

 

The proposed controller can optimize the injection phase angle. Supporting for this 

feature, the angle of injected voltage with respect to the line current has been 

investigated in order to check the accuracy of the controller. The phase difference 

between line current and injected capacitive voltage by using the proposed controller is 

plotted in Fig.4.44.  

 

Fig.4.44: Phase difference in capacitive injection mode using the proposed controller 
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The phase angle using the proposed controller is -88.65 degree and -86.85 degree with 

the conventional control strategy. Comparison between Fig.4.38 and Fig.4.44 shows 

that, the angle in using the proposed controller is closer to -90 degree. It must be noted 

that if the voltage is not injected with right angle then it will affect the absorbed active 

power. If the absorption of active power becomes more than ohmic losses then the DC 

voltage will increase. But in the same time voltage regulator will initiate an error signal 

to return back the voltage. Consequently the converter needs to switch between the 

charge and discharge modes more rapidly in order to regulate the DC voltage. This 

dissipates the absorbed power, and additionally, increases amplitude of the ripples on 

the DC voltage. 

Losses (or the absorbed active power) inside the DSSC module for the proposed control 

strategy is plotted in Fig.4.45. In both cases the aim is to compensate 20 % of the line 

reactance but different control system absorbs different active power.   

 

Fig.4.45: Power loss in each DSSC module using the proposed control system 

 

The losses within the DSSC modules are measured by using active power measurement 

block in the PSCAD software. Each DSSC device using the proposed controller 

consumes 20.33W in order to compensate the internal power losses while in total all of 

the modules providing 863.34 VAr to contribute toward the line compensation. 

However with conventional method power loss in DSSC module becomes 47.43 watt, 

which is much higher than that in the proposed method, while they both provide same 

reactive power to the system. A summary of above figures including the power losses, 

injection phase angle, injected reactive power and percentage of losses in comparison 

with the amount of injected reactive power are given in the Table 4.7. 
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Simulation Results 20% Compensation 

Conventional Method Proposed Method  

Reactive Power Injection 864.12 VAr 863.34 VAr 

Power Loss 47.43 W 20.33 W 

Phase angle -86.85 -88.65 

Loss percentage 5.4 % 2.3 % 

Table 4.7: Summery of power loss and phase angle study 

 

From the table it can be concluded that, in order to inject almost same amount of 

reactive power, the proposed method helps to reduce losses from 47.43W to 20.33W per 

module, i.e. by 3.1%, when compared to the conventional one. 

The injection angle is an important factor in regulating the DC voltage across the 

capacitor and maintaining the stability of whole system. With the intention of presenting 

the difference in the regulated voltages across DC link when using the new control 

method is shown in Fig.4.46 in more details. Using the proposed method the ripple in 

the DC voltages is 3.2 % of the peak value, which is 1.05kV. This shows the peak value 

is 60 volts less than that in the conventional method. This emphasizes that the proposed 

method is more effective in reducing the percentage of ripples compared to the 

conventional one. 

 

a) DC voltage across the DC link (with proposed controller) 
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b)  Ripple of DC voltage (with proposed controller) 
 

Fig.4.46: Ripple of DC voltage 

 

With harmonic analysis of the injected voltage as shown in Fig.4.47, it is realized that 

there is no significant harmonic voltage injection when the proposed method is used. 

 

 

Fig.4.47: Harmonic voltage injection (using the proposed control method) 

 

Earlier in this chapter it has been claimed that the controller is immune against presence 

of harmonics in the power system. This capability has been examined by simulating a 

system which is shown in Fig.4.48. In this system V1 is representing the main source 

with the fundamental frequency and V2 is demonstrating the harmonic source. 
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Fig.4.48: System including harmonics 

 

L1 and L2 are representing the line inductance and the resistance of the line is shown by 

R1 and R2. The line current is shown in Fig.4.49 and it includes 5% of fifth harmonic. 

The harmonic analysis of the line current is shown in Fig.4.50 and in this figure 

amplitude of the fundamental current and fifth harmonic come in blue and pink 

respectively.  

 

Fig.4.49: Line current including 5% of fifth harmonics 
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Fig.4.50: Harmonic analysis of the line current 

 

The exchanged power between the DSSC device and the AC power system is shown in 

Fig.4.51. It can be easily observed from the figure that the AC signal is still symmetrical 

and even the DC signal is zero. These show that with presence of harmonics the 

controller still works properly, filtering out the polluting harmonics.  

 

 

Fig.4.51: p(t) ACDC and p(t)DC in presence of 5% 5th harmonic 
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10 % fifth of harmonic, plus 5% of third harmonic. The simulated results are shown in 

Fig.4.52.  

 

Fig.4.52: p(t)ACDC and p(t)DC in presence of 5% 3rd harmonic and 10% 5th harmonic 

 

The above figure shows that the waveform of the AC signal includes harmonics and 

based on the equation (4.12) the harmonics are defiantly higher than 2nd harmonic. In 

the same time the filter is tuned to pass the low frequency signals (below the 2nd 

harmonic and nearly dc signal) then consequently the high order harmonics will be 

bypassed. Actually, by comparing Fig.4.51 with Fig.4.52 it can be clearly observed that 

the DC signal remains unchanged. From all results obtained above, it can be concluded 

that the harmonic pollution is not an affecting parameter for the proper operation of the 

controller. In other words, the proposed control is immune against harmonics. 

 

4.8 Comparing performance of proposed controller and dq based controller 

In the proposed single phase controller each phase has been controlled independently. 

However, dq based controller is a three phase controller and three phases are not 

independent from each other. In an unbalance three wire three phase system there is no 

zero sequence in the line current and the current can be decomposed to positive and 

negative sequences using control strategy presented in Fig.2.52.  

4.8.1 Performance of proposed controller within three phase system 

The proposed controller which is designed earlier in section 4.3 (The controller is 

comprised of a PI controller and a feedback from multiplication of line current and 
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injected voltage which is passing through a low pass filter as described in controller 

design section) and presented in equation (4.22) has been applied within a distribution 

network. The parameters of the employed distribution power system are tabulated in 

Table 4.6 (power system parameters). In this subsection the performance of the 

proposed controller in terms of its capability in regulating the DC voltage and injecting 

compensation series voltages have been investigated. Control system in each DSSC 

module produces its own reference signal without involving with other modules. 

Fig.4.53 shows that three DSSC modules employed in three different phases are capable 

of regulating the DC voltage within the required value. 

 

Fig.4.53: Voltage across the DC link within DSSC modules employed in three different phases 

 

In order to compare performance of system in supplying balanced load and unbalanced 

load these two setups have been investigated. The examined three phase system is 

supplying a three phase balanced 6MW load. The line currents and injected voltages by 

DSSC devices are shown in Fig.4.54. The figure shows that line currents are balanced 

and the injected voltage in each phase is orthogonal to the line current. The reference 

signals of injected voltages are shown in Fig.4.55 and they are provided by their own 

modules independently. The aim of each controller within DSSC module is to provide 

an injected voltage which is orthogonal to the line current and in the same time hold the 

DC voltage in desired value. These two requirements have been met by the single phase 

controller within three phase system. The simulation results presenting the injected 

voltage and their corresponding reference signals have been shown in figure Fig.4.54 

and Fig.4.55 respectively. 
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Fig.4.54: Injected voltages by DSSC devices in each phase and three phase line currents 

 

 

Fig.4.55: Reference signals of injected voltages provided by each DSSC modules separately 

 

However, the above figures show the performance of the controller when the three 

phase system is balanced. In this case the direct and quadrature component of the line 

currents (Id and Iq) shown in Fig.4.56 are smooth. This is an indication for a balanced 

three phase system. In this figure also the amplitude of the line current is shown by 

IdqLine which is equal to: 

I79�	
G = �I7% + I9% (4.24) 
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Fig.4.56: Id, Iq and amplitude of the line current 

 

4.8.2 An unbalanced three phase system with no series compensation 

An unbalanced load comprises of a 6MW three phase balanced load and a 1MW single 

phase load connected to the phase “b” of three phase distribution system which its 

parameters are tabulated in Table 4.6 (the table represents parameters of each phase) has 

been simulated. The DSSC devices have been bypassed and the lines are 

uncompensated. The injected voltages and line currents are shown in Fig.4.57. It shows 

that the injected voltage is zero and line current in phase “b” is higher than the other two 

phases. This allows observing the status of distribution system in terms of its dq 

components of line current without compensation.  

PLL of series compensators are always locked to the line current. However with 

unbalance line currents the dq components can be distorted. The Id and Iq components of 

line current without compensation along with the amplitude of the line current is plotted 

in Fig. 4.58. It can be clearly observed that dq components are oscillatory.  
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Fig.4.57: Injected voltage and line currents when the three phase system is unbalanced 

 

 

Fig.4.58: The Id and Iq components along with the amplitude of the line current 

 

4.8.3  Performance of propsed controller within unbalanced three phase load 

In the previous subsection it has been shown that in the presence of unbalanced load the 

line currents are unbalanced and dq components are distorted. However simulation 

results show that the performance of the single phase controller is not affected by 

unbalance of the system. Voltages across the DC link are illustrated in Fig.4.59 and it 

shows that the voltage regulation by single phase controller has been satisfactorily 

achieved in each phase.  
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Fig.4.59: DC Voltages 

 

Fig.4.60 shows the reference signals generated by controller within DSSC devices in 

different phases. The signals are generated independently and they are not affected by 

the unbalanced currents.  

 

Fig.4.60: Reference voltages 

 

The injected voltages by the DSSC devices through the three phase system and the 

corresponded line currents are plotted in Fig.4.61. It can be observed that in order to 

provide the required compensation the injected voltages only slightly vary depends on 

the line current. When the line current is less then injected voltage is high. 

The proposed controller is a single phase controller and three phases are completely 

independent from each other. In this method each controller in each phase has no 

connection to the other phases and it does not sense or control three phase related 

components such as zero sequence component.  
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Fig.4.61: The injected voltages by DSSC devices and line currents 

 

Injected harmonics by DSSC devices in each phase is demonstrated in Fig.4.62. 

Amplitude of injected 3rd harmonics is indicated below each figure. It can be observed 

that there are some other high order harmonics as well, however their amplitude is 

significantly low in comparison with the fundamental frequency. 
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Fig.4.62: Injected harmonics in three phase 

 

4.8.4 Performance of dq based controller within unbalanced three phase load 

With the same three phase power system (including the same unbalance load as per 

pervious section) conventional dq controller has been employed within the DSSC 

devices.  
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PI controller dq based controller is designed and the obtained control parameters are 

tabulated in Table 4.8. The designed PI controller is used in the unbalanced three phase 

system regardless of percentage of system unbalance.   

 

Parameters Value 

kp 150 

ki 200 

Time constant 0.005 
Table 4.8: Control parameters 

 

The regulated DC voltages in each phase, shown in Fig.4.63, are slightly different. It 

can be observed that the DC voltage in phase “a” is slightly lower than the voltage in 

phase “b” and “c”. 

 

Fig.4.63: DC voltages in each phase 

 

The dq components of line currents are shown in Fig.4.64. These components are 

oscillatory because the three phase system is unbalanced. Also IdqLine which is calculated 

by (4.24) from dq components of three phase line currents is oscillatory. The dq 

components of the line current are used in producing reference signals by dq based 

controller. The generated reference signals for the three phases are shown in Fig.4.65. 

This figure shows that the amplitude of signals are different from each other and they 

have unbalanced amplitud.  
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Fig.4.64: dq components and amplitude of the line current 

 

 

Fig.4.65: Reference signals generated by the dq based controller 

 

The three injected voltages by DSSC devices using dq based controller in three different 

phases are shown in Fig.4.66. These voltages are unbalanced and distorted. For example 

injected voltage in phase “c” is higher in comparison with the other phases. This is an 

unbalance injection and it increases the unbalance of system. In another example 

injected voltage in phase “a” is more distorted than the injected voltage in other two 

phases.  
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Fig.4.66: Injected voltage and line currents 

 

The injected harmonics by the dq based controller in presence of unbalanced load is 

shown for each phase in Fig.4.67. The amplitude of injected 3rd harmonics is indicated 

below each figure. The presented value is compared with injected 3rd harmonics using a 

single phase controller (shown in Fig.4.62). Comparison between Fig.4.62 and Fig.4.67 

shows that the amplitude of the harmonics is increased by almost 52%. For example in 

the case of phase “a” it is 1.01V in Fig.4.61 and it is 1.94V in Fig.4.67.  

The controller uses dq component of three phase system and it does not sense or control 

zero sequence component.  

 

When performance of dq based controller is compared with the proposed controller the 

followings difference can be identified: 

• The reference signals in the proposed controller are not affected by the 

unbalance load while they are affected in the dq based controller. 

• The injected voltage in the dq based controller is unbalance 

• Amplitude of injected harmonics in the dq based controller is high (i.e. 3rd 

harmonic almost doubled) 
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Fig.4.67: Injected harmonics in three phase 
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4.8.5 Performance of proposed controller in presence of unbalance three phase 

system 

Performance of the proposed single phase controller has been investigated within an 

unbalance three phase system. The amplitude of voltages, as shown in Fig.4.68, are 

different in each phase and the system is supplying a 6MW balanced load.  

 

 

Fig.4.68: Amplitude of each phase in the unbalance system 

 

Despite a balance load (in the previous section effect of unbalance load has been 

investigated) the supplied current become unbalance and this is shown in dq 

representation of load current in Fig.4.69. In this plot it can be observed that there is an 

oscillation in the Id and Iq which is an indication for an unbalance system. Amplitude of 

IdqLine is calculated by root square of Id plus Iq (dq component of three phase line current) 

and it is shown by in Fig.4.69.   

 

 

Fig. 4.69: dq representation of load current 
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Calculated reference signals by single phase controllers in each phase are shown in 

Fig.4.70. Despite the unbalance system voltage and unbalance load current the 

generated signals are identical. 

 

 

Fig.4.70: Reference signals generated by single phase controller 

 

Injected voltage by DSSC and line current is shown in Fig.4.71.  This figure shows that 

regardless of unbalance current and voltages in the three phase system, DSSC is able to 

inject same voltages in each phase. This shows that the DSSC device in each phase can 

execute reference signal without involving with two other phases.   

  

 

Fig.4.71: Injected voltage by DSSC and line current within unbalance system. 

 

Each DSSC device can hold the demanded DC voltage across its own DC capacitor 
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Fig.4.72: Voltages across DC capacitors 

 

Injected harmonics by each DSSC in three phases are shown in Fig.4.73 for phase “a”, 

“b” and “c”. The spectrums of harmonics show that the injected harmonics are almost 

same. 
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Fig.4.73: Spectrums of injected harmonics by single phase controller in an unbalanced system 
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4.8.6 Performance of dq based controller in presence of unbalance three phase 

system 

Performance of dq based controller has been examined in presence of an unbalanced 

system. This is the same three phase system which has been used in pervious subsection 

which performance of the single phase controller has been investigated with. Voltage of 

three phase system is shown previously in Fig.4.68 it shows that system has three 

different voltages in each phase. Furthermore, dq components of the three phase line 

currents because of presence of unbalance are oscillatory as shown in Fig.4.69.  

Generated reference signal by the dq based controller is shown in Fig.4.74 and 

unbalance of three phase voltage can be observed easily.  

 

 

Fig.4.74: Generated reference signal by the dq based controller 

 

Fig.4.74 shows that generated reference signal is affected by unbalance of system. 

However in pervious subsection by using proposed single phase controller the generated 
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Fig.4.75: Injected voltage by DSSC using dq based controller 

 

Injected voltage by DSSC using dq based controller is different for each phases while it 

is almost identical (as shown in Fig.4.71) when the proposed single phase controller has 

been employed. 

Using the dq based controller in an unbalanced system is able to regulate the voltage 

across the DC capacitor as shown in Fig.4.76. 

 

 

Fig.4.76: Voltage across the DC capacitor using the dq based controller in an unbalanced 
system 
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Injected harmonics for three different phases by DSSC when a dq based controller has 

been used are shown in Fig.4.77.  
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Fig.4.77: Spectrums of injected harmonics by dq based controller in an unbalanced system 
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Comparing spectrums of injected harmonics by two controllers shows that amplitude of 

third harmonics using dq based controller is boosted almost ten times in phase B and 

four times in phase C. 

 

4.9 Comparing the performance of proposed controller with using only a DC 

link voltage controller 

Performance of DSSC using only DC voltage controller and proposed controller has 

been compared. In Fig.4.78 concept of both controllers have been presented and it has 

been shown that only one controller can be selected in a time by using contrller selector. 

This figure provides blockdiagramatic comparsion between the two controllers. As it 

can be clearly observed that conventional controller (only DC voltage controller) 

recieves only error of DC voltage as an input and consequently it controls only this 

parameter. However in proposed controller (located inside the green dasht line) in order 

to provide reference signal not only the error of DC voltage is being taken into account 

but also the error of injection angle has been considered. It means that proposed 

controller, controls both injection angle and DC voltage. The proposed controller in 

absense of phase difference signal is the same as the convetional controller. The 

conventional controller alone can adjust the DC voltage however the injection angle can 

be sacrifised. This is because it controls only the DC voltage and tries to keep the DC 

voltage as close as possible to refrence value. In this approach injection angle is not in 

priorety and it is used by DC voltage controller to provide required active power to hold 

the DC voltage.  

However the injection angle itself in DSSC device is required to be kept fixed and as 

close as possible to 90° and it needs to be considered by the controller. By adding the 

phase difference (which is shown in green in Fig.4.78)  in the proposed controller both 

DC voltage and injection angle will be considered.  
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Fig.4.78: Comparison between the proposed controller and DC voltage (only) controller  

 

4.9.1 Performance of the device using voltage regulator only 

DC regulator alone can be used to hold the DC voltage in DSSC device and inject series 

voltage through the line. DC voltage controller is an optimaly tuned PI contoller using 

root locus approach.  

In the DC voltage controller as shown in Fig.4.1 controller regulates the voltage across 

the DC capacitor. Transfer function of DSSC device is shown by G in the block 

diagram and it is represented in (4.25) 

 

Ê = ��Ä�¨ = ?.Ë.zÌÅK.%.z}ÍÅÈ#?.%.zÌÅ~#? (4.25) 

 

Root Locus diagram of G is shown in Fig.4.79. There are two branches that move to the 

positive side and the system is unstable.  
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Fig.4.79: Root Locus diagram of G 

 

A controller is needed to be designed to stabilize the system and meet the requirements 

which are tabulated in Table 4.9. The requirements in this table are chosen in a way to 

be consistent with other designed controllers in this chapter. 

Parameter Value 

Overshoot Less than 5% 

Damping 0.9 

 
Table 4.9: Requirements for the designed controller 

By inserting a zero and pole the Locus is changed as shown in Fig. 4.80. The change of 

Locus is not guaranteeing that the controller is meeting the requirements. The step 

response of the system needs to be seen in order to evaluate the system performance. 

The step response is plotted in Fig. 4.81 and it shows high oscillation in response. 

 

Fig. 4.80: Root Locus with inserted zero and pole  
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Fig. 4.81: Step response with inserted zero and pole 

 

In order to eliminate the oscillation the inserted zero needs to be relocated in a way to 

improve the step response. To do so, inserted zero is moved further right to -1.34 and 

the corresponding Root Locus diagram is plotted in Fig. 4.82.  

For overshoot of less than 5% and damping factor of 0.95 the corresponded gain of 150 

can be obtained from Root Locus in Fig. 4.82. By including the selected gain in the 

controller the corresponding step response of the system is plotted in Fig. 4.83. It can be 

observed that peak of overshoot reaches to 1.04 and there is no oscillation before 

settling down and reaching steady state.   

  

 

Fig. 4.82: Root Locus when inserted zero is moved further to the right 

Time (seconds)

A
m
p
lit
u
d
e

0 0.5 1 1.5 2 2.5

x 10
-6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-10 -8 -6 -4 -2 0 2

x 10
8

-6

-4

-2

0

2

4

6

x 10
7

0.860.9650.9860.9940.997
0.998

0.999

1

1

0.860.9650.9860.9940.997

0.998

0.999

1

1
2e+084e+086e+088e+081e+09

Real Axis

Im
a
g
 A
x
is



156 
 

 

Fig. 4.83: Step response of the system when inserted zero is moved further to the right 

 

Parameters of the PI controller are calculated in (4.26) by comparing the inserted pole 

and zero with the transfer function of controller. The inserted zero and pole are -1.34 

and 0 respectively and the gain is 150 (from Root Locus).  

?ÙI(¡#?.KÉ)¡ = (ÚÛ¡#ÚÜ)¡    (4.26)  

From (4.26) kp and ki are obtained 150 and 200 and tabulated in Table 4.10.  

Parameters Value 

kp 150 

ki 200 

 

Table 4.10: Parameters of PI controller 

 

The injected angle (phase difference between injected voltage and line current) in each 

phase by DSSC devices is presented in Fig. 4.84. The angle is varying in order to 

regulate the DC voltage and for phase “A” the variation is  around 95.85°. It means that 

it is deviated from 90° by 5.85°. 
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Fig. 4.84: Phase difference between injected voltage and line current in each phase 

 

Obviously, the aim of this controller is just to adjust the voltage across the DC link and 

it has no direct control on the angle of injected voltage.  

The DC voltage using voltage regulator only, is plotted in Fig.4.85 for three different 

phases. In steady state the voltage in DC link of each DSSC devices varies between 

977V and 1020V and amplitude of rippel is 43V. 

 

Fig.4.85: DC voltages in three different phases 
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The injected harmonics by DSSC device are plotted in Fig.4.86. The harmonic spectrum 

shows that, along with the fundamental frequency the device injects some other 

harmonics such as 3rd and 20th. Total harmonic distortion (THD) of injected voltage is 

5%. 

Amplitude of the 3rd harmonics is indicated below each harmonic spectrum for each 

phase. For example in phase “A” amplitude of 3rd harmonic is 0.98V.  
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Fig.4.86: Injected harmonics by DSSC device 
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The PI controller gain is changed at different values around the optimally obtained 

value (150 as per Table 4.10) in order to investigate the effect of different gains on the 

performance of system. The changes in the gain values affect the ripples of DC voltages 

and the injected angle. Depends on if the gain is increased or decreased the obtained 

results can be different. Fig. 4.87-Fig.4.94 show the obtained results for ±10% change 

of the gain. 

In Fig. 4.87 the voltage across the DC link has been increased as the gain of PI 

controller is increased by 10%. The peak voltage increased from 1.02 kV to 1.03 kV 

and the ripple is 75V. The increment of ripples amplitude as a result of increasing the 

gain is not a desirable effect.  

The injection angle is presented in Fig. 4.88 and it shows that the angle is improved as 

result of higher gain when it is compared with Fig. 4.84. The angle is reduced from 

95.9° to 95.7° and it is a desirable effect. 

The injected harmonics by DSSC device is represented in Fig. 4.89. By comparing the 

amplitude of harmonics with the harmonics plotted in Fig.4.86  it can be observed that 

amplitude of injected harmonics is slightly increased and THD is obtained 5.2%.  

 

 

Fig. 4.87: Voltages across the DC capacitor when the PI gain is increased 
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Fig. 4.88: Injection angle when gain in the PI controller is increased 

Sec 0.40 0.60 0.80 1.00 1.20 1.40 

95.60 

95.70 

95.80 

95.90 

96.00 

96.10 

A
n
g
le
 [
D
e
g
re
e
]

PhsDifA

95.60 

95.70 

95.80 

95.90 

96.00 

96.10 

A
n
g
le
 [
D
e
g
re
e
]

PhsDifB

95.60 

95.70 

95.80 

95.90 

96.00 

96.10 

A
n
g
le
 [
D
e
g
re
e
]

PhsDifC



162 
 

 

Fig. 4.89: Order of harmonics when gain of controller is reduced 
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In order to investigate the effect of reducing of the gain in the PI controller the gain has 

been reduced by 10%. The ripple of DC voltage is reduced and the reduction is 

noticeable when it is compared with the DC voltage presented in the Fig. 4.90. The peak 

of ripples is reduced from 1.02kV to 1.009 kV and the ripple is 19V. 

In addition, the reduction of gain also can affect the injection angle of voltage. The 

angle is show in Fig. 4.91 and in comparison with Fig. 4.84 it can be observed that it is 

increased from 95.85° to 95.93°.  

The injected harmonics by DSSC device is shown in the Fig. 4.92. Comparing the 

amplitude of the harmonics with corresponding one in Fig.4.86 shows slightly 

improvement in the injected harmonics and THD is 4.85%. 

Studying the change of gain demonstrate that it can improve voltage or injection angle 

but it does not grantee to enhance both in the same time.  

 

 

 
 

Fig. 4.90: Voltages across the DC capacitor when gain the PI controller is reduced 
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Fig. 4.91: Injection angle when gain the PI controller is reduced 
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Fig. 4.92: Order of harmonics when gain of controller is increased 
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4.9.2 Performance of the device using proposed controller 

DC voltage controller can be re-tuned (fine tuning) to improve ripples or reduce 

deviation of injection angle. This requires fine tuning parameters of PI controller 

however proposed controller considers both DC voltage adjustment and angle of 

injection in the same time. It is expected that the ripple of voltages to be lower and 

angle of injection to be closer to the 90° by employing the proposed controller. By 

further tuning the proposed controller it can be observed that the angle of injection is 

reduced to 95.05°. The angle of injection in each phase is plotted in Fig.4.93. 

 

Fig.4.93: Injection angle 
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DC voltage shown in Fig.4.85. The boundary of oscillation is 43V (using only DC 

voltage controller) in Fig.4.85 while it is 15V in Fig.4.94. The DC voltage adjusted by 

each DSSC devices in three different phases is plotted in Fig.4.94.  

The importance of the proposed controller becomes dominant when accuracy of 

injection angle come high priority.  
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Fig.4.94: DC voltage using the proposed controller 

 

The spectrum of injected harmonics using the proposed controller is presented in 

Fig.4.95 for three different phases. Amplitude of injected 3rd harmonic through phase 
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reduced by 27%. THD of injected voltage is 4.1%. 
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Fig.4.95: Injected harmonics using the proposed controller 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
m

p
li

tu
d

e
 [

p
.u

]

Order of Harmonics phase A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
m

p
li

tu
d

e
 [

p
.u

]

Order of Harmonics phase B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
m

p
li

tu
d

e
 [

p
.u

]

Order of Harmonics phase C



169 
 

4.9.3 Summarized results of conventional and proposed controller  

In the conventional controller when gain increases, it affects the voltage ripples, THD 

and the angle of injection. Amplitude of ripples and angle of injection respond 

differently to the change of gain. Increment of gain improves the angle while increases 

the amplitude of ripples and THD. It means that improving one the factors (i.e injection 

angle) sacrifices the other one. 

However, when gain is reduced it reduces the amplitude of ripples and THD, but 

increases the injection angle. It can be observed that reducing gain does not improve all 

factors in the same time. 

Proposed controller can improve ripples, THD and injection angle in the same time as it 

receives continuously feedback from both angle of injection and DC voltage. These 

improvements (as shown in the previous subsection) have been achieved by further 

tuning the proposed controller. The ripple is reduced to 15V and angle of injection is 

reduced to 95.05°. 

Table 4.11 summarizes the simulation results for the further tuned conventional and 

proposed controller.  

 

Controller kp ki Ripple Angle THD 

Conventional controller 150 200 43V 95.9° 5% 

Conventional controller with increase gain 165 200 75V 95.7° 5.2% 

Conventional controller with reduced gain 135 200 19V 95.93° 4.85% 

Proposed controller with further tuning 142 200 15V 95.05° 4.1% 

 

Table 4.11: Summarized results of further tuned conventional and proposed controller 

 

4.10 Investigation of the change of the system parameters on the performance of 

the proposed controller 

In electrical networks (including distribution feeders) some of the system parameters 

such as line voltage, connected load and network configuration can be changed with 

different loading conditions. For example, voltage drop can often happen in heavily 

loaded distribution networks and in another example, amplitude of line current can be 

altered by changing loads in the system. However, it is expected that the functionality of 
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DSSC which is governing by the proposed controller not to be affected by these 

changes.  

4.10.1 Performance of the DSSS with no changes in system parameters  

An 11Kv distribution feeder supplying a three phase load is equipped with DSSC 

devices have been used in simulation. Impedance of the line comprises of 0.03 H 

reactance and 1 Ω resistance. DC voltage as shown in Fig. 4.96 has been regulated at 

1kV by each DSSC devices in their own DC link. 

 

 

Fig. 4.96: DC voltage when line impedance includes 0.03 H reactance and 1Ω resistance 

 

Injected voltage and line current is shown in Fig.4.97 and it shows the orthogonal 

injection of voltage through the line and peak amplitude of line current flowing through 

the STT is 380A. 
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Fig.4.97: Line Current and injected voltage when line impedance includes 0.03H reactance and 
1Ω resistance 

 

Load angle between the sending end and receiving end is show in Fig.4.98.  The angle 

is 23.8° when the line peak current is 380A.  It can change depends on the impedance of 

the line and this is shown in the next subsection. 

 

 

Fig.4.98: Load angle when line impedance includes 0.03 H reactance and 1Ω resistance 
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of the line resistance, current is increased from 380A to 400A. This increment can be 

realized by comparing Fig.4.99 and Fig.4.97.  

 

 

Fig.4.99: Line Current and injected voltage when resistance of the line is 0.1Ω 

 

Fig.4.99 shows that injected voltage is orthogonal to the line current and it has not been 

affected by change of line current. 

The load angle is shown in Fig.4.100 and due to the reduction in the resistivity of the 

line, load angle is increased by 1° from 23.8° to 24.8°.  

 

 

Fig.4.100: Load angle when resistance of the line is 0.1Ω 

 

x 0.630 0.640 0.650 0.660 0.670 0.680 0.690 0.700 0.710 

-20.0 

-15.0 

-10.0 

-5.0 

0.0 

5.0 

10.0 

15.0 

20.0 
In
je
ct
e
d
 V
o
lt
a
g
e
 [
V
]

InjVa InjVb InjVc

-400 
-300 

-200 
-100 

0 
100 
200 

300 
400 

C
u
rr
e
n
t 
[A
]

IlineA IlineB IlineC

x 0.40 0.50 0.60 0.70 0.80 

22.0 

23.0 

24.0 

25.0 

26.0 

A
n
g
le
 [
D
e
g
re
e
]

SnRvEndPhsDif



173 
 

Despite the changes in the line current, line impedance and load angle the proposed 

controller has regulated the voltage across the DC link at 1kv (desired value). DC 

voltages are plotted in Fig.4.101 and it shows that performance of the controller has not 

been affected by the aforementioned changes. 

 

 

Fig.4.101: DC voltage when resistance of the line is 0.1Ω 
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the DC link when the supplied load is halved. It can be seen that the voltage is regulated 

in 1kV and it remains stable in steady state regardless of load reduction.  
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Fig.4.102: Voltage across the DC link when the supplied load is halved 

 

With load shading line current as shown in Fig.4.103 has been reduced almost by 50% 

from 400A to 200A. However as it can be observed the DSSC modules are still able to 

inject orthogonal voltage through the line. This shows that operation of controller is not 

dependent on the line current and it can operate satisfactorily with different line 

currents.  

 

Fig.4.103: Line current and injected voltage when the supplied load is halved 
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12.9°. The reduction of load angle is consistent with the lessening of load however this 

is not endangering the functionality of DSSC and its controller.  

 

 

Fig.4.104: load angle when the supplied load is halved 

4.10.4 Performance of the DSSS in reconfigured network 

Reconfiguration of the electrical network is one of the events which can change the load 

angle and line current in the meshed and parallel networks. In order to investigate the 

probable effects of the reconfiguration of the network on the performance of the 

operation of DSSC modules another line is connected in parallel with the existing line 

to supply the same load. One of the notable changes is variation of the load angle which 

is shown in Fig.4.105. By connecting another line in parallel the new load angle has 

become 20.5°. This shows 3.3° reduction in the load angle as it was 23.8° in absence of 

parallel line. 

 

Fig.4.105: load angle when another line is connected in parallel 
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DSSC modules. Line current was 400A when a single line was supplying the load (see 

Fig.4.88) however by connecting another line in parallel, line current becomes 260A. 

Although line current and load angle (as it is discussed earlier) has been changed but 

satisfactory orthogonal voltage injection plotted in Fig.4.106 shows the performance of 

the controller has not been affected. 

 

 

Fig.4.106: Line Current and injected voltage when another line is connected in parallel 

 

Voltage across the DC link is shown in Fig.4.107 and it shows that despite change of 

load angle and line current controller is able to regulate the DC voltage at 1kV. Voltage 

remain stable in steady state and its amplitude is not affected by the changes in the 

power system. 
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Fig.4.107: DC voltage when another line is connected in parallel 

 

4.10.5 Performance of the DSSS in sag swell of the line voltage 

Voltage drop and over voltage in the electrical networks can affect other electrical 

parameters of the system such as line current or load angle. In order to investigate the 

possible effects of the change of voltage on the performance of the DSSC two different 

scenarios has been examined. In one scenario the line voltage has been increased by 

10% and in another scenario it has been reduced by 10%. The rms value of sending end 

line voltage is plotted in Fig.4.108 and it shows 10% over voltage.  

 

 

Fig.4.108: Sending end line voltage when there is 10% over voltage 
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increased by 10% from 400A to 440A and DSSC devices injecting orthogonal voltage 

in respect to the line current. 

 

 

Fig.4.109: Injected voltage and line current in presence of 10% over voltage 

 

When there is a 10% change in the line voltage, DC voltage is regulated in 1kV by 

DSSC device across the capacitor as shown in Fig.4.110. This shows that the voltage 

reaches to steady state and remains stable at 1kV. 

 

Fig.4.110: DC voltage across the capacitor when there is 10% change in the line voltage 
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the voltage or drop in the voltage. For example, Fig.4.111 shows rms value of voltage 

(10kV which is 10% less from 11kV) at the sending end bus of the line however the 

adjusting of the DC voltage remains unaffected as it is shown in Fig.4.110.  

 

 

Fig.4.111: rms value of voltage at the sending end 

 

When there is a 10% voltage drop in the line voltage line current is decreased as well 

and it is dropped to 360A as shown in Fig.4.112. However, this figure shows that still 

the DSSC module injects orthogonal voltage in respect to the line current and the 

functionality of DSSC has not been affected.  

 

 

Fig.4.112: injected voltage and line current when there is a 10% voltage drop at the sending end 
bus 
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4.11 Fault Management Study 

DSSC devices are series through the lines and in the case of short circuit events in the 

power lines a high current is expected to flow through the STT.  Fig.4.113 shows rms 

value of current feeding the fault in occurrence of single phase to ground fault in phase 

“A”. Current increases in the corresponding line as it is shown in Fig.4.114. This figure 

shows the line current when it is not compensated with DSSC and line is just supplying 

a lumped load at the receiving end.  

 

 

Fig.4.113: rms value of fault current 

 

 

Fig.4.114: Three phase line current with single phase to ground fault in “A” phase 
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inside the DSSC in the case of single phase to ground fault.  As it can be observed 

clearly from Fig. 4.115 the peak of current is increased dramatically by 300% by 

jumping from 50A to 150A.   

 

 

Fig. 4.115: Current flowing through the DC capacitor in the DSSC device 

 

The current flowing through the power electronic devices can damage the components. 

In order to protect the DSSC devices some protection action need to be taken. The 
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subsections. 
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Fig.4.116: Current through the DC link when STT is bypassed 

 

The injected voltage by DSSC device and line current is shown in Fig.4.117. Bypassing 

the STT reduces amplitude of injected voltage in the faulty phase. It has almost no 

effect on the line current and this can be distinguished by comparing line current shown 

in Fig.4.117 and Fig.4.114. Having almost same fault current with DSSC and without 

DSSC denotes that the fault level is remaining unaffected.  

 

Fig.4.117: Injected voltage and line current when the STT is bypassed 
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it reaches 1kV by clearing the fault. 
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Fig.4.118: DC voltage across the capacitor when STT is bypassed during the fault 

 

Bypassing the STT in the secondary side helps to circulate the current between the 

secondary and the bypass switch. This mitigates DC link current and discharges the 

capacitor. Mitigation of DC link current is desired however discharge of the capacitor is 

a disadvantageous.  

 

4.11.2 STT is bypassed and converter is blocked 

In order to save DC voltage during fault DC capacitor needs to be isolated from bypass 

switch. This can be achieved by blocking the converter. Blocking the converter 

disconnects the path between the capacitor and the bypass switch. Fig.4.119 shows the 

voltage across the DC capacitor in DSSC for three different phases when STT is 

bypassed and converter is blocked in occurrence of fault. Phase “A” is the faulty phase 

and it can be observed that during the fault the voltage stays flat and immediately after 

fault recovery converges to 1kV. 

 

Fig.4.119: Voltage across the DC capacitor when converter is blocked and STT is bypassed 
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The injected voltage and line current in the case of bypassing the STT and blocking the 

converter is shown in Fig.4.120. It is expected that, injected voltage or line current not 

to be affected by blocking converter and bypassing STT. Comparing Fig.4.120and 

Fig.4.117 shows that there is no difference in the injected voltage or the line current and 

this is satisfying the expectations.  

 

Fig.4.120: Injected voltage and line current when converter is blocked and STT is bypassed 

 

Blocking the converter and bypassing STT in the same time stops current flowing 

through the DC link. Fig.4.121 shows DC link current and It can be seen that current is 

zero immediately after blocking the converter and it resumes after deblocking. 

  

 

Fig.4.121: DC link current when converter is blocked and STT is bypassed 
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4.11.3 STT is opened 

STT can be open circuit in the secondary side instead of being bypassed in occurrence 

of short circuit fault in the power line. In order to take this action a series switch needs 

to be located between converter and STT.  By opening the switch converter will be 

isolated from the STT and consequently from the power line. DC link current shown in 

Fig.4.122 falls down below the steady state value and it slowly decays. 

 

 

Fig.4.122: DC link current when STT is open circuit 

 

Decaying current discharge DC capacitor and reduces the DC voltage. Voltage across 

the DC capacitor inside the DSSC device in three different phases is shown in 

Fig.4.123. DC voltage in phase “A” decreasing during the fault but it recovers again by 

clearing the fault. 

 

Fig.4.123:  DC voltage inside DSSC when STT is disconnected from the converter 
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Disconnecting the STT from the converter makes an open circuit in the secondary side 

of STT. Consequently, it inserts series impedance through the line and limits the fault 

current even below the steady state value as shown in Fig.4.124.  Opening the STT can 

be more beneficial as it limits the line short circuit current however, practically it is 

impossible to be employed. Opening the circuit induces a high voltage in secondary side 

of the STT which can endanger the insulations and related equipments. For this reason 

in the presence of fault opening of the STT must be avoided.    

 

Fig.4.124: Injected voltage by DSSC and line current STT is isolated from converter 
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and IGBTs become an open circuit. Current flowing through DC link in steady state and 

during the fault is shown in Fig.4.125. It shows that current is increased slightly in one 

direction (diodes conducting direction) and id stopped in the reverse direction (diodes 

are not conducting). 
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Fig.4.125: Current through DC link when only converter is blocked 

 

In addition, blocking converter means losing control over the voltage across the 

secondary of the STT. Consequently, a high voltage will be induced in either side of the 

STT (with respect to the turn ratio of the STT they will be different in amplitude) which 

as discussed in pervious subsection it can endanger the insulations and equipments. 

Injected voltage by STT and line current in three different phases is shown in Fig.4.126. 

In this figure the induced voltage is high and it continuously grows but short circuit 

current through the line also remains high.  

 

 

Fig.4.126: Injected voltage by STT and line current in three different phases when only 
converter is blocked 
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Although converter is blocked however DC capacitor still can be charged up through 

diodes and as there is no control on the capacitor voltage then it can exceed the limits. 

For example, Fig.4.127 shows the voltage across the DC link when converter is 

blocked. In this figure capacitor voltage continuously is increasing during the fault and 

as soon as the converter is deblocked then voltage start to become under control.    

 

 

Fig.4.127: Voltage across the DC link when converter is blocked 

 

4.11.5 Concluded fault strategy 

During the fault all components need to be protected from high voltage or current. For 

this reason different fault recovery strategies have been investigated. For example, when 
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another scenario, when STT become open circuit -regardless of blocking or deblocking 

of converter- there will be high AC voltage in either side of the STT which makes this 
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STT tends to be an acceptable option to be employed. It can avoid inducing a high 

voltage in the STT however, it comes with disadvantage of discharging the DC 

capacitor. Blocking the converter along with bypassing the STT holds the DC voltage in 

pre fault value and avoids a high voltage in the STT in the same time. This is the 

solution which is proposed to be taken.  Also with this solution, short circuit current 

through the faulty line remains unaffected and it is not affecting the fault level of the 

power system. 
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possible over-currents and overvoltages. The switches also can be protected against 

overvoltages by employing surge arresters in parallel to bypass the switches when the 

voltage across them exceeds the maximum withstand voltage. However, the switches 

definitely must be rated to the maximum over-current which can occur in the worth 

condition.  

In addition to the switches components of the LC filter needs to be protected against the 

transients. They need to be designed in a way to withstand the worth scenario of over 

current and in the same time they need to be protected by surge arresters against the 

possible overvoltages.     

4.12 Simulation of LC filter 

The LC filter is designed to be employed in the experimental tests is simulated in 

PSCAD using the selected values of RL in order to observe the performance of the 

filter. Having carrier frequency of 1kHz for the PWM pulse generator the output voltage 

of the converter, as it can be clearly observed in Fig.4.128 (blue bars), contains high 

order harmonics. Some of the major dominant generated harmonics are 18, 20, and 22. 

However by using the designed low pass filter the mentioned harmonics have been 

eliminated, as it can be seen in Fig.4.128 (black bars). Now only the fundamental 

frequency has passed through the filter. In spite of this along with the fundamental 

frequency some other low order harmonics with negligible amplitude has been observed 

but they are not effective. 

 

 

Fig.4.128: Harmonics at the input and output of the RLC low pass filter 
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Fig.4.129 presents the output of the filter and output voltage of the converter along with 

the related PWM switching pattern. This figure shows that the output voltage of the 

converter is a chain of pulses with amplitude of ±500 V which are consistent with the 

switching pattern generated by the PWM generator. Meanwhile the output of the filter is 

a sinusoidal waveform.  

 

Fig.4.129: Output voltage of the filter and converter along with the switching pattern 
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Fig. 4.130: Output voltage of the filter 

 

 

Fig.4.131:Output voltage of the converter 
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4.13 Summary 

In this chapter, in order to avoid using dq conversion and provide a compensation which 

is independent from line current a new closed-loop control strategy based on the 

exchange of instantaneous power is proposed. The control guarantees an orthogonal 

injection of voltage with respect to the line current. It also optimizes the active power 

absorption by the DSSC device and holds the DC voltage at desired value at the same 

time.  

The DSSC device was modelled by dividing its modes of operation into two categories. 

In mode 1 IGBT’s 1 and 4 within the DSSC device are conducting and IGBT’s 2 and 3 

are off. In mode 2 IGBT’s 1 and 4 are switched off and IGBT’s 2 and 3 are conducting. 

Based on these two modes of operation and considering equivalent impedance of the 

system in each mode, transfer function of system was obtained.   

The obtained transfer function is used in designing of a controller. The controller 

stabilizes system by inserting zeros and the proper location of the zeros are found using 

SISTOOLS of MATLAB. Stability study is conducted using step response of the closed 

loop system when the designed controller is employed. In addition, effect of change of 

system parameters on the performance of the designed controller has been investigated. 

Change of system parameters includes change in the capacitance of DC capacitor, AC 

capacitor (filter capacitor) and inductance of filter. These parameters do not put stability 

of system at risk as long as their changes are limited to 10%. In sensitivity analysis, 

effect of adding a low pass filter to the proposed controller was investigated. Bode 

diagram of filter was plotted and it has been observed that filter does not have any 

attenuation or phase delay in the DC and the data which is being used by controller is in 

the DC.  

The performance of the DSSC and the proposed controller has been studied using 

PSCAD. This study employs, an 11kV distribution network comprised of two parallel 

lines are connected to an 11kV substation at one end and supplying a lumped load at 

another end. The amount of compensation as a percentage of line reactance can be 

determined by adjusting the amplitude of the injected voltage. This study has 

demonstrated that the applied control system is capable of injecting both capacitive and 

inductive reactances through the line.  

In comparison with 90° phase shift approach the proposed controller has managed to 

reduce the phase angle difference of injected voltage with respect to the line current. In 

the same time reduces the level of injected harmonics through the line by DSSC when 
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proposed controller has been used.  

Comparison of performance of the proposed controller with dq based controller 

demonstrates independency of the proposed controller from the unbalance currents of 

three phase power system. Reference signal in the dq based controller is affected and 

their amplitude are not same. Then DSSC device can provide compensation which is 

differed from the demand. However, proposed controller shows that regardless of 

unbalance current and voltages in the three phase system, DSSC is able to inject same 

voltages in each phase as per demand. 

The proposed controller in comparison with the controller which is using only DC link 

voltage regulator demonstrates better performance with respect of injection angle. When 

only DC voltage regulator has been used the injection angle is diverting from the target 

(90°) and it is oscillating. Diversion from the target angle means the capacitive or 

inductive injection is not purely reached. 

Sensitivity of controller with respect to the change of power system parameters has been 

studied. This study includes power system parameters changes such as line resistance, 

voltage sag swell and reconfiguration of the network. The results show satisfactory 

performance of controller in injection of the series voltage through the line and 

regulating of the DC voltage.  

A fault management study has been conducted in order to find best fault recovery 

solution in occurrence of fault within the system. When only converter (within the 

DSSC) is blocked DC voltage can exceed the limit which is not desired. In another 

scenario, when STT become open circuit -regardless of blocking or deblocking of 

converter- there will be high AC voltage in either side of the STT which makes this 

solution to be unpractical. Blocking the converter along with bypassing the STT holds 

the DC voltage in pre fault value and avoids a high voltage in the STT in the same time. 
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5 Experimental Results 

Although the proposed control and its performance is well simulated using 

PSCAD/EMTDC, however, a laboratory test bench is needed in order to conduct 

experimental tests and validate the simulation results. To do so, based on the available 

lab facilities in the Upper Ground (UG) lab at Newcastle University, a low voltage test 

bench is designed and implemented. The overview of the test bench is shown in Fig.5.1. 

As can be seen, it includes DSSC device and low voltage power system. 

 

Fig.5.1: The overview of the inside of the test rig 

 

The power circuit of the DSSC device comprises of a voltage source H-bridge converter 

(VSC), a single turn transformer, a DC capacitor serving as a DC link, an LC filter. The 

control electronics is digitally implemented using dsPIC33F microcontroller, electronic 

measurement, control boards and a DC power supply. In this device, a 500µF capacitor, 

rated at 1.5 kV is used as a DC link to hold the DC voltage provided by the converter. 

Converter itself is a full H-bridge IGBT module, which is connected between DC link 

and LC filter. The LC filter is located between the converter and a single turn 

transformer. It is built up of a capacitor and an inductor. The filter is a low pass filter, 

designed to eliminate high order harmonics generated by the converter. As a result, it 

can provide a non-distorted sinusoidal waveform at the secondary of the STT. 

The single turn transformer is a cylindrical shape transformer. Its primary winding has 

just one turn and it is the power line itself. In the compensated electrical networks it is 

supposed to be suspended from the lines.  

The dsPIC33F microcontroller is used to process the incoming signal from the system 

and to run the control algorithms. The incoming feedback signals from the system, have 

been provided by the electronic measurement boards. Also another electronic board has 

been designed serving as an interface between the output signals from the controller and 

the converter.  
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The 11 kV power distribution feeder is modelled by a 50 volts power system. This low 

voltage is chosen according to the maximum voltage permissible by the rules and 

regulation of health and safety in the UG lab. The system comprises of a 30mH inductor 

representing the inductance of the line and in series with a 6 Ohm resistance 

demonstrating the ohmic resistance of the line. The power system is supplied by a 

220:50 transformer with a maximum current of 15A. The galvanic isolation between the 

test rig and the main power supply in the lab is achieved by supplying the 220:50 

transformer with a unity-ratio isolation transformer. This will protect the main power 

supply in the lab from any probable fault which may occur during the experimental 

tests.  

The power system as shown in Fig.5.1 is a single phase line and there is only one DSSC 

device connected in series with it. At the end of the line there is a load through which 

the line current is passing. Also, in order to demonstrate that the DSSC module is 

operating correctly, contributing toward the power flow control in the system, there 

must be another parallel line to supply the load. This extra parallel line will facilitate 

this by changing the reactance in the compensated line to be able to change the amount 

of current passing through the compensated line and consequently in the parallel line. 

For this reason another parallel line, exactly with the same characteristics as the first 

one is also provided in the test rig. As stated earlier, the parallel line will only be used in 

the power flow control test. 

Having designed and built of the test rig the proposed control strategy implemented on 

the microcontroller and it is executed to conduct experimental tests to validate the 

simulation results. The capability of control system in generating capacitive and 

inductive injected voltage is examined in this chapter. In addition its efficiency is 

compared with the traditional control method.  

 

5.1 H-Bridge Voltage Source Converter 

The main power electronics device in the DSSC unit is the H-bridge voltage source 

converter. The converter as shown in the Fig.5.2 comprises of four IGBT and four anti-

parallel diodes. The dc side of the converter is connected to the DC capacitor, whereas 

the AC connection points are connected to the LC filter. The maximum current passing 

through (when IGBT is conducting) and the maximum continuous voltage across the 

IGBT (when it is off) needs to be considered carefully. In the same time its power rating 

is also important parameter in the selection of IGBT.  
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The selected DC capacitor is rated at 1.5 kV, therefore in the worst case the maximum 

voltage of the DC link will be controlled not exceeding 1.5 kV. For this reason the 

maximum continuous voltage across each IGBT will not exceed 0.75 kV in steady state. 

However, Transient Over Voltage (TOV) can be higher. Regarding to the rated current, 

the nominal current of the 220:50transformer connected to the power system is 15A. As 

a result the resistors including the connected load to the system has the same range of 

nominal current. The current in the secondary side of single turn transformer depends on 

the turn ratio of the STT, let say n, and it will be n times smaller than line current. It is 

obvious that normally n is a number between 1 and 100 and that the current in the 

secondary side, not only cannot exceed 15A, but also it will be much less than current in 

the primary side.  

Another important factor in the selection of IGBT in the design process is the IC 

(collector current of IGBT) versus VCE (voltage across the collector-emitter of the 

IGBT) curve for different VGE (voltage across the Gate-Emitter). This curve normally is 

provided by the manufacturer and it is shown and explained in appendix B [91]. 

 

Fig.5.2: H-bridge voltage source converter 

 

In the design of DSSC device, based on the aforementioned ratings for voltage and 

current, the IGBT module SK20GH123, manufactured by Semikron, is chosen for 

building up the converter used in the DSSC.  

It can be deducted from ICE-VCE curve which is well explained in appendix B that the 

IGBT can initiate a current flow even with VGE=7 volts but the current will not exceed 

3A. For this reason and in order to reach the rated current flow, high VGE is required. 

In order to meet all these requirements in the design of gate driver board, the turn-on 

voltage for the IGBT’s inside the SK20GH123 device is set to 15 volts. Additionally, a 

negative gate voltage is required to turn off the switch and provide immunity against 
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dv/dt. The lowest range of turn-off voltage for the selected IGBT is -20 V. However 

lower gate voltages, similar to higher turn-on gate voltage, can cause a permanent 

damage to the device and at the same time low negative gate voltage can be problematic 

as well. Because there is a series resistance inside the gate of IGBT and low gate 

voltage can lead to a slow switching.  

In order to turn on the IGBT and let current flows from the collector to the emitter there 

must be a positive voltage across the collector-emitter and gate-emitter terminals. 

Referring to the data sheet [91] of the selected IGBT, VGE (th) is in the range of 4.5 V - 

6.5 V and the typical voltage is 5.5 volts.  Moreover the details of gate leakage current 

and other parameters in general and especially for the selected IGBT can be found in 

[91] and appendix B. The IGBT cannot be turned on or off directly by the controller 

itself, hence there must be buffering interface between them. The interface board, not 

only provides proper voltage and current to drive the IGBT, but also isolates the power 

switches, IGBT’s, electrically from the microcontroller.   

 

5.2 Gate Driver Board 

Gate driver board is mainly employed to convert control signals such as switching 

pattern to a proper voltage or current in order to turn on or off the IGBTs. At its output, 

it must provide the required turn on or turn off energy for the related IGBT. To do so, 

the outer level power supply and the series resistor (gate resistor) must be chosen 

carefully in order to provide a current with proper amplitude to charge or discharge the 

IGBT with minimum possible time. A gate driver board is composed of two different 

parts and a typical plan of this board is shown in Fig.5.3. The first part is called Buffer 

which is directly connected to the microcontroller and the second part is called Gate 

Drive and is located between buffer and IGBT. Four buffers provide the required 

current for the gate drive, otherwise it is not possible for the microcontroller itself to 

feed all of the gate drives. 
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Fig.5.3: Typical layout of Gate Drive Board 

 

In order to guarantee high impedance between microcontroller and the gate driver a 

proper buffer is required to avoid sinking too much current from the microcontroller. To 

do so, based on the output voltage of the microcontroller, 5 volts, and input voltage of 

the gate drive, 5 volts, the chip SN74AHCT125N is selected for its current sinking 

capability [92]. Also it is compatible with a supply voltage of 5 V which can easily be 

provided by many of the ordinary DC power supplies and will avoid a need for special 

DC source.  

In [93] the range of supply voltage is specified between 0.5 and 7 volts however the 

recommended supply voltage is given between 4.5 V and 5.5 V. For this reason, VCC, is 

defined to be 5 volts.  

Another important component in the gate drive board is gate driver. It provides the turn-

on and turn-off voltages directly. In most of the designs for IGBT, it also provides the 

adequate amount of power to charge and discharge the gate of IGBT. Additionally, gate 

drive must isolate the signal level from the power circuits and usually this can be 

achieved by an integrated opto-coupler within the gate drive. It must be well-matched 

with the carrier frequency of PWM pulse generator in order to transfer the generated 

signals to power converter and to be fast enough to correspond to the changes in the 

input. Some electrical features such as input and output voltages and currents must be 

compatible with the related parameters in the connected device.  

For example when output voltages of the bufferSN74AHCT125N, is 5 V and its output 

is an input to the gate drive, then the input of the selected gate drive needs to be 5 Volts. 

Similarly, the input current of the selected device must not exceed the 12 mA limit 
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which is the designed output current for the buffer as explained earlier in part 6.3.1. In 

addition, the PWM signal frequency depends on the different test scenarios and is 

expected to vary between 1 KHz and 10 KHz and the gate drive must have enough 

bandwidth to deal with the generated signals.  

It is also required that the supply voltage feeding the device can easily be provided by 

normal DC power supplies. Based on all of the aforementioned requirements, the opto-

coupler HCPL-3180 device is selected. Its features and further technical data can be 

found in Appendix B. 

However gate drive (gate drive component) needs an “isolated power supply” in order 

to provide the required voltage for turn-on and turn-off of the IGBT. It is like a DC 

power supply which can provide voltage and reference ground. This is because firstly 

the output voltage of the gate drive is less than 15 V and this will not be able to force 

IGBT to conduct fully. Then there is a possibility that the flow of current through the 

device not to reach the rated current. Secondly, in the H-bridge converter two IGBTs 

(IGBTtop and IGBTbot) are connected in series in such a way that the emitter of top 

IGBT is connected to the collector of the bottom IGBT. For this reason the voltage of 

emitter will be depend on the ON or OFF status of the bottom IGBT. In order to avoid 

floating voltage across the gate-emitter, the use of an independent power supply is 

necessary to guarantee the required voltage across the gate-emitter. 

Based on the electrical requirements specified in the appendix B in terms of input, 

output currents and voltages, the NMF0515S isolated power supply is selected to be 

employed in the board. It converts 5 volts at the input to 15 volts at the output. Since the 

isolated power supply is a DC/DC converter and is connected to the power circuit, it 

must have sufficient insulation for high voltages in order to operate safely in such 

voltages. Additionally, it is necessary that the selected device has enough isolation 

capacitance in order to avoid any dv/dt issue. The NMF0515S power supply, the 

selected device, is isolated for 1000 V, which is much higher than the expected DC 

voltage across the DC link in the converter [94]. 

Another important consideration in the design is the maximum peak gate current. Refer 

to appendix B and data sheet of selected component [94] the gate current must not 

exceed 2.5 A; however practically because of negligible impedance of output circuit of 

the gate drive it is not possible. Therefore, the current must be controlled by adding a 

series resistor between the gate drive and IGBT. The resistance can be calculated as 

follow: 
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RÖ = ∆	��Þ±ßà	 (5.1) 

where RG is the resistance of series resistor between the gate drive and IGBT, Ipeak is 

the maximum peak output current of gate drive. The ∆V represents the variation of the 

required gate-emitter voltage for turning on and off of the IGBT. For the 

SN74AHCT125N the maximum output current is 2.5A and for the IGBT the ∆V is 30V. 

Therefore: 

RÖ = 302.5 = 12	Ω 
RG, under any conditions, must not be smaller than 12 Ω otherwise the peak current will 

exceed the permissible output current of gate drive. However, practically the impedance 

of the gate drive circuit is not zero and it will contribute toward the RG and the peak 

current will be less than 2.5 A. Furthermore this current will decay as the gate 

capacitance in the IGBT charges up. But the value of peak current is a key factor in 

charging up time of the gate circuit in the IGBT. This is because with higher peak 

current the charge up time will be less and this will increase the efficiency of the 

switching and will reduce the switching power losses. This is because with smaller 

resistor the gate capacitance will charge and discharge quickly and switching will take 

less time. 

On the other hand, the smaller external resistor will increase the immunity against the 

dv/dt in the gate circuit. However smaller value of external resistor can increase di/dt 

stress through the free wheel diodes in the converters which are connected to an 

inductive loads. This can create a transient over voltage across the switches also it can 

generate an oscillation. In order to solve this problem, a higher external resistor value is 

required but it will increase the switching losses. In each switching event current flows 

through the resistor and increasing the resistance will increase the losses. For this reason 

sometimes having two different external resistances, one for charging the gate 

capacitance in the IGBT and the other one to discharge the gate capacitance are used. In 

order to have two different external resistors the gate drive itself must have two 

different outputs but this can increase the complexity of design and implementation of 

the gate drive board which is not necessary in most of the cases. Especially when the 

switching frequency is quite low then there is no need to have separate charge and 

discharge gate circuits.  
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5.2.1 Design of gate drive board 

Detail of the design is presented in Fig.5.4 and it can be clearly observed that the input 

signals are first fed into the buffer, SN74AHCT125. Then the related output signals are 

connected to four gate drives, HCPL-3180, via series resistors and the resistors are 

controlling the current flowing between buffer and gate drive. The gate drives are 

supplied by isolated power supply, NMF0515S, and they operate like a DC-DC 

converter and always provide a fixed voltage of 15V volts between P3 and P5. 

This voltage appears at the output of gate drive, between pins 8 & 6 or between 5 & 6, 

and provides the gate-emitter voltage via a series resistor. 

 

 

Fig.5.4: Design of the gate drive board 

 

5.3 Voltage Measurement Board 

Generally measurement is a key factor in the control systems especially when the 

measured parameters are used as feedback signals in the control blocks. The capability 

and performance of the controller can be affected by accuracy of the measurement. In 

the proposed control strategy, instantaneous value of DC voltage and injected AC 

voltage are two important inputs along with the instantaneous line current for the 

controller.  

To provide these two voltage inputs for the controller two voltage measurements have 

been designed and implemented. The voltage measurement board includes two main 
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different parts. The first part is a voltage transducer (VT) which is connected in the 

primary side in parallel with the target points to measure the potential between them. 

The second part is a combination of op-amp circuits that are providing desirable signal 

to the microcontroller. The selection of the VT depends on the expected maximum and 

minimum voltage between the points that VT will be connected and also the accuracy of 

measurement which is demanded by the control system. 

Each VT, like any electrical equipment, has rated values for certain input and output 

voltage and current which specified by the manufacturer. In the same time the 

mentioned parameters must be matched with the expected measured voltages. For 

example the DC voltage across the DC link and AC voltage across the secondary side of 

the single turn transformer (STT) in the laboratory prototype DSSC module is not 

expected to exceed 500 volts (however the employed capacitor is rated up to 1.5kV in 

order to withstand to transient over voltages). For this reason, in the voltage 

measurement board design the nominal primary voltage is planned to be 500 volts. 

Based on the design requirements and the available VT in the market and having 

considered their accuracy, the voltage transducer LV 25-P has been selected [95].  

Refer to the device data sheet [95] and appendix B the optimum accuracy of the device 

can be achieved if the primary input current in the measuring of the nominal voltage 

become 10 mA. In order to obtain such accuracy in our design the external resistors in 

DC voltage measurement board and AC voltage measurement board have been selected 

so that when measuring 500 V and 200 V respectively the corresponding currents to be 

10 mA. To do so, Re the external resistor, can be calculated as follow: 

RG = �Þã�Þã  (5.2) 

In equation (5.2) VPN is the measured voltage and IPN is the primary current in the input 

of transducer. Considering the maximum peak value of injected voltage by DSSC in the 

prototype system, the voltage is expected to not exceed 200 volts in the power 

electronic side. This is the voltage that needs to be measured by AC voltage 

measurement then the VPN in this board is 200 volts. For example, with substituting this 

value and 10 mA as input current in equation (6.2), Re is calculated as follow: 

RG = 200	V10	mA = 20kΩ 
Re is selected to be 20kΩ and similar calculation can be done for Reused in DC voltage 

measurement board. In this board the nominal measured voltage is assumed to be 500V 

then the Re is calculated to be 50kΩ. Then with having 20kΩ and 50kΩ resistance at the 
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input of the VT the accuracy of the measurement refer to appendix B will be 0.8 % in 

both boards.  

Another element which is used more frequently in both DC and AC voltage 

measurements is Operational amplifier (Op-amp).In order to alter some electrical 

features of measured signals using specified circuits and provide the desired electrical 

signals. However care must be taken in selection of Op_amp because a device with poor 

slew rate can generate a nonlinear effect in the circuit. For this reason especially in the 

measurement circuits design the slew rate of the employed devices becomes more 

important because any nonlinearity in the measurements can cause instability in the 

system. In the voltage measurement board, the LMC660CM is selected to be used in the 

design. Because typical slew rate of the LMC660CM is 1.1 V/µs; however refer to the 

data sheet of the device [96] and appendix B a minimum slew rate of 0.8 V/µs is 

guaranteed at the ambient temperature.  

5.3.1 Design of voltage measurement board 

The voltage measurement board includes electronics circuits and a voltage transducer 

(VT). VT is located between the electronics part and power circuit and isolates these 

two parts electrically. As a part of the design process an external resistor needs to be 

used to limit the input current which is explained earlier in pervious subsection. By 

having 10mA input current the output current of the VT, considering the turn ratio of 

2500:1000, will be 25mA. Considering Kirchhoff Current Law at the output of the VT 

the KCL equation can be written as follow:  iå = i? + iÉ		 (5.3) 

where iO is the output current of VT and i1 and i4 are the current passing through R1 and 

R4 in Fig. 5.5.It is noted that i1 is almost negligible because the input impedance of the 

op-amp is high and in ideal condition the current passing through it is zero. Substituting 

i1 equal to zero in equation (6.3) it can be concluded that: iå = 0 + iÉ		 iå = iÉ		 
It means that the output current of the VT wholly passes through the R4. As a result 

there will be a voltage drop across the R4 which can be calculated as follow: vå = iÉ ∗ RÉ            (5.4) 

Using the corresponding values VO can be found as follow: 

vO= 25 mA * 100 Ω= 2.5 V 
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In the circuit the output of the VT is connected to a low pass filter which can smooth the 

measured signal by bypassing the high frequency signals. The gain for the low pass 

filter can be written as follow: 

våç� = −v	
 ��}∥w~w}  (5.5) 

where VOut and Vin are the output and input of the filter, Xc1 is the reactance of the 

capacitor. As the frequency of the input signal goes high then the reactance of the 

capacitor will go to the zero and then the gain will be zero. When the frequency of the 

signal goes down the reactance of the capacitor will go high and then only R2 will affect 

the gain. So, for the low frequency signals the gain will be: 

våç� = −v	
 w~w} (5.6) 

As it can be clearly observed from equations (5.5) and (5.6) the designed low pass filter 

is inverting (180 degree phase displacement) the signal as well. Therefore the signal 

needs to be inverted once again in order to return it back to the original phase. In the 

same as the measured voltage is an AC voltage then it has positive and negative 

amplitude repeatedly during each cycle. However the microcontroller requires a positive 

signal between 0V and 3.3 volts. In order to meet these conditions the final signal must 

vary between the mentioned voltage bands. To do so, after low pass filter circuit another 

circuit is needed while inverting the signal gives the required offset and adjust the 

amplitude of the final signal. For this reason an inverting op-amp circuit along with the 

offset bias circuit is added immediately after low pas filter circuit in this design. 

However there could be other solutions which can avoid using multiple Op-amp 

circuits. The bias circuit is just adding up some value on top of the signal in order to 

guarantee that the final signal will not go to negative. The added value can be calculated 

as follow:  

vé	�� = ���∗wÌwê#wÌ  (5.7) 

where Vbias is the added value. Substituting the corresponding values into equation (5.7) 

the Vbias can be calculated as follow: 

vé	�� = ?%∗??K#?= 0.85 
However gain of the inverting Op-amp circuit along with Vbias is: 

våç� = −v	
 wëwÍ + 0.85	 (5.8) 

and substituting the corresponding values, VOut can be calculated as follow: 

våç� = −v	
 10	k10	k + 0.85 = −v	
 + 0.85 
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After this op-amp circuit there are two protective diodes which they are connected 

between final output and ground and a node with potential of 3.3 volts. The aim is that 

if with any reason the amplitude of output signal becomes less than 0 V or greater than 

3.3 V then the related diode will conduct and consequently the microcontroller will be 

protected. All of the aforementioned circuits can be seen in the Fig. 5.5. This figure 

shows the design of voltage measurement board which is obtained using Multisim 

software. 

 

Fig. 5.5: Design of Voltage Measurement Board 

 

5.4 Current Measurement 

Current measurement board is used to monitor current waveform through the power 

line. As the DSSC current is linked to the power line current via a single turn 

transformer then the monitored current waveform includes the instantaneous 

information of the current inside DSSC as well. However based on the proposed control 

strategy the injected voltage must be in orthogonal with the line current. For this reason, 

the line current itself is directly monitored and fed to the microcontroller so that it can 

be used by control algorithm.  

The accuracy and precision of the current measurement board becomes more important 

which must be considered in the design process of the board. It comprises of a Current 

Transducer (CT) and an electronic circuit. The CT is fed by the measured current and 

provides a voltage type signal at the output. This voltage is fed to the electronic circuit 

and the circuit provides a proper signal at the output.  

One of the major criteria in the selection of CT is the maximum primary current that CT 

can take at the input. However in the designed prototype test rig based on the UG lab 
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facilities, the maximum current in the power line will be 15 A then in terms of the 

maximum input current any CT with input current above 15 A will be fine. In terms of 

required supply voltage of CT, it is desirable to be in the standard voltage range then it 

can be easily provided by the standard DC power supplies. Also, it is required that the 

selected CT be mountable on the PCB board in order to facilitate its employment along 

with the electronic board within one PCB board.  

The most important feature of CT is its accuracy as it can affect the proper operation of 

control system. Considering all the aforementioned futures the LTS 25-NP Current 

Transducer has been selected for the current measurement board. More information 

regarding the selected CT and check against the required design criteria can be found in 

the appendix B.  

The selected CT has capability of measuring current of up to 25 A which is enough for 

our purposes [97]. Also it requires 5 volts as supply voltages which can be provided by 

most of ordinary standard DC power supplies.  

The output voltage can be defined as [72]: V�ç� = 2.5 ± (0.625 ∗ I� I�í)V⁄  (5.9) 

where Vout is the output voltage and IP and IPN are the primary current and nominal 

primary currents,  respectively. The current measurement board is designed for nominal 

current of 25 A then by substituting IPN with 25 A the equation (5.9) can be rewritten as: V�ç� = 2.5 ± (0.025 ∗ I�)V	 (5.10) 

From equation (5.10), it can be clearly argued that the output voltage has offset of 2.5V. 

That means even with zero input current the output voltage is 2.5 volts and it must be 

considered in the design.  

5.4.1 Design of electronic circuit of current measurement board 

Electronic circuit of the current measurement board comprises of different op-amp 

circuit which are in cascade connection. The first part, as shown in Fig.5.6, is a Non-

Inverting Amplifier. It is the first point of connection to the CT. As explained in section 

5.4 the output voltage of the CT includes 2.5V DC voltage and it must be bypassed in 

order to pass the alternating part of the output voltage. Actually only the alternating part 

of the voltage includes information about the measured current for this capacitor C1 is 

located between the Op-amp circuit and CT and it bypasses the DC voltage.  
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Fig.5.6: Non-Inverting Amplifier 

 

The output voltage of the amplifier, shown in Fig.5.6, can be calculated as 

Vå? = w~#wïw~ ∗ V	
 (5.11) 

where VO1 is the output voltage of the amplifier and Vin is the input voltage. 

Substituting R2 and R3 in equation (5.11) with 4.4kΩ and 13kΩ the equation (5.11) can 

be rewritten as Vå? = 3.95 ∗ V	
 (5.12) 

Equation (5.12) shows that the gain of amplifier is 3.95. Considering the input voltage 

margin of 0.375 V for the maximum input current of 15 A the VOut will be 1.48 V.  

It means that VO1 will vary between -1.48V and 1.48V. However the negative voltages 

are out of the acceptable input voltage margin of the microcontroller. In order to bring 

signal into the acceptable margin some other op-amp circuit are required. The complete 

electronic circuit of the current measurement board is shown in Fig.5.7. In this circuit, 

after the Non-Inverting Amplifier there are two cascaded Inverting Amplifiers. The first 

one is just inverting the signal and the relation between its output and input can be 

written as 

Vå% = − wÍwÈ V	% (5.13) 

where Vi2 and VO2 are the input and output of the first inverting amplifier. Equation 

(5.13) is a general formula, thus it can be applied to all inverting amplifier circuits. With 

substituting values of R5 and R4 into (5.13) it can be rewritten as  Vå% = −V	% (5.14) 

The second inverting amplifier includes some DC offset while it is inverting the signal. 

The relation between its output and input can be written as  
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V�K = wñwë V	K + Vò� (5.15) 

where Vi3 and VO3 are the input and output of the second inverting amplifier circuit and 

VDC is the DC offset. The DC offset is just shifting up the signal in order to avoid 

appearing any negative signal at final output of the measurement board. VDC is provided 

by a voltage divider and can be calculated as  

Vò� = wêwê#wÌ ∗ 12 (5.16) 

Substituting the values of R8 and R7 into equation (5.16) the VDC becomes 1.6V. In 

continue in equation (5.15) by replacing the values of R9 and R6 and VDC it will 

become  V�K = −V	K + 1.6 (5.17) 

It is argued earlier that the VO1 will vary between -1.48 and +1.48 then by using these 

values in VO2 and VO3 the final output VO will be as  Vå = ±1.48 + 1.6	 (5.18) Vå = 3.1			Or				Vå = 0.1 (5.19) 

Based on equation (5.19) the final output voltage of the measurement board is located in 

the permissible margin of the input voltage of the controller, which is between 0 V and 

3.33 Volts. However a protection for the microcontroller input is needed just in case the 

output voltage goes beyond the safe margin. To do so, two diodes are connected the 

output and they will conduct if the output voltage become more than 3.2 V or less than -

0.6 V. In the former D1 and in the latter D2 will conduct. 

 

Fig.5.7:Full circuit of the current measurement board 
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5.5 Single Turn Transformer (STT) 

Single turn transformer mainly consists of a cylindrical core and a secondary winding. 

The primary winding is the power line itself which is passing through the cylindrical 

core. The core is made of two parts, clamped to each other to make a complete cylinder. 

This makes the mounting and dismounting of device to be simple. However in the 

practical design there is an air gap between the parts and will be included in the 

magnetic path of the flux.  

The secondary winding is wound on the core, as shown in Fig.5.8. This winding is 

coupled to power line like a conventional transformer. As the current flowing through 

the power line it induces current in the secondary winding. However the induced current 

is much lower than the line current. Actually it is reduced by the turn ratio of 

transformer, let say 1:100, and even in the case of short circuit just small proportion of 

current can pass through the power electronic circuits before bypassing the STT in the 

secondary side by mechanical switches.  

 

 

Fig.5.8: Single Turn Transformer 

 

The STT can operate in two different modes of functionality. First mode of operation 

occurs when the secondary side is bypassed by a mechanical switch. By shortening the 

secondary side secondary voltage will be zero and the induced voltage at the primary 

will be zero. In this case, there is no injection in the primary side except the injection of 

leakage inductance which is negligible and has no effect on the proper operation of the 

power system. In the second mode of operation, the secondary winding is connected to 

the converter via a low pass filter and the generated voltage by the H-bridge converter is 

injected by STT. Because the injected voltage can lead or lag the line current then as a 

result of injection inductive or capacitive reactance can be induced through the line.  

The maximum reactance which DSSC can be injected through the power line depends 

on the magnetizing inductance, X, of the STT. The magnetizing inductance is equal to 

the self-inductance of the power line (or primary winding) and is related to the 

reluctance of the core of STT.  In cylindrical core distribution of the air gap between 
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line and core is identical around line and reluctance in different points of the core can be 

calculated as follow: 

ℛ = %	õ�}ö(	�∗6) (5.20) 

In equation (5.20), r is the thickness of the core as shown in Fig. 5.9 and r1 is the 

distance of the calculated point from the centre of the cylinder. In this equation, l is the 

length of the cylinder and µ is representing the permeability of the material of the core.  

The reluctance of magnetic path in the core is highly dependent on the permeability of 

the material. For this reason by introducing air gap in the magnetic path the reluctance 

can be increased. Air gap in magnetic path of STT is unavoidable and it has been 

introduced by gap between the two parts of the core. These two parts are clamped to 

each other in order to create a circulation path for the flux. However increasing the 

reluctance of the magnetic path in presence of air gap is desirable. Because in the 

transmission and distribution lines the flowing current can be very high and 

consequently the core can be easily saturated which can affect the proper operation of 

the DSSC.  

 

Fig.5.9: Cross section of the STT core 

 

By creating an air gap the magnetizing inductance of STT can be tuned to the desirable 

value. In spite of this, in the design of laboratory prototype model of STT the air gap is 

not considered. Because it is used only in the laboratory test rig and there is no need of 

to be made of two parts in order to ease off the mounting and dismounting the device 

through the power line. Additionally, as the applied current in the power system in the 

test rig is considerably low and will not exceed 15A then with the intention of 

increasing flux density in the core the STT is made of just one cylindrical core. 

However, full design steps of the single turn transformer that can be used for an 11kV 

distribution network is explained later in this chapter. 

The connection of DSSC device and relations between the current and voltages are 

shown in Fig.5.10.  
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a) STT is injecting a voltage source through the line 

 

b) Relation between the voltages in a compensated power system 

Fig.5.10: The connection of DSSC device and relations between the current and voltages 

 

The maximum voltage that STT can inject highly depends on the design of its magnetic 

core. The magnetic permeability of core must be high enough in order to provide proper 

reluctance for the generated magnetic flux by the power line. This will increase the 

coupling of the transformer and efficiency of the device. The core chosen is made of 

non-oriented silicon steel laminations, which is called M33035A, with maximum flux 

density of B= 1.5 T. 

The induced voltage by single turn transformer can be calculated as follow: V)*+ = 4.44	BøANf (5.21) 

where Vinj is the injected voltage and Bø is the flux density in the core. Also A is 
representing the net cross-sectional area of the core and N is the number of turns of the 

winding around the core. In this equation, f is the frequency of the injected voltage and 

it is same frequency of the line current which is equal to 50 Hz. To induce 6V, VInj=6 V 

(fundamental), in the primary side with substituting B= 1.2 T, f=50 Hz and N=1 in 

equation (5.21) the cross sectional area for the STT, A, can be calculated as 

A = 64.44 ∗ 1.2 ∗ 50 = 0.0225	m% 
In order to meet the cross sectional area of A=0.0225 m2 one of the possible options is 

using value of r= 0.075 m and l= 0.3 m as represented in the Fig.5.11 and can be 

calculated by equation (5.22). 
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A = r ∗ l (5.22) 

 

Fig.5.11: Core of STT 

 

However, the thickness, r, and length, l, of the core can be different values but at the end 

the required cross sectional area must be provided. In the same time volume of cylinder 

should bare minimum in order to minimize its weight. Having considered this in the 

final design, r is chosen to be 0.06 m and l is decided to be 0.3 m. With having these 

values the related cross sectional area is calculated to 0.018 m2. So in order to induce 6 

V in the primary side with the calculated A= 0.018 m2 the required flux density can be 

calculated using equation (5.21) as follow: 

Bø = 64.44 ∗ 0.018 ∗ 1 ∗ 50 = 1.5	T 
The calculated flux density, 1.5 T, is in the margin of magnetic saturation of the 

employed magnetic lamination in the core. Moreover, B=1.5 T, will be required when 

the injected voltage is expected to be 6 V however in the experimental studies using the 

implemented test rig the injected voltage will not reach to 6 V. Then the saturation of 

the core is guaranteed because of lower than 6 V injected voltages.  

The magnetic field strength in the core, H, depends on the magnetic permeability of the 

material which the core is made of and the flux density in the core. The relationship 

between the field strength and flux density can be written as follow: 

H = üøö (5.23) 

where H is the magnetic field strength, B is the flux density and µ is the magnetic 

permeability.  

On the other hand, magnetic field strength in the different distances from the centre of 

the core is different and it decreases by increasing the distance. However, H also has a 

relationship with the magnitude of electrical current flowing through the wire in centre 

of the core as well. In this case by increasing the current the H is increasing as well. H 

can be formulated as  
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H = í´µ6  (5.24) 

where Il is the magnitude of current flowing through the power line and N is the number 

of turns in the primary winding. In this equation, l is representing the length of distance 

that magnetic flux needs in order to close the loop. For example at the distance of 0.04 

m from the core centre the length is equal to 2*π*0.04= 0.25 m. For the selected core 

material µ is approximately equal to 0.015 and for the designed core B=1.5 T and with 

substituting these values in the equation (5.23) H can be calculated as follow: H = }.Íý.ý}Í = 100 
With substituting H=100, l=0.25 and N=1 in the equation (5.24) the required current for 

generating flux density of 1.5 T in the distance of 0.4 from the centre of the core can be 

calculated as follow: 

I = H ∗ lN = 100 ∗ 0.251 = 25	A 
It can be concluded that the designed core for injecting 6 V in the primary side needs 25 

A current passing through the centre of the core. However practically through the 

experimental studies the injected voltage is not exceed 2 V. Because, first of all from 

the health and safety regulations of the UG lab the secondary side voltage must not 

exceed 50 V and with considering high turn ratio of the STT, 1: 25,  the primary side 

voltage can be restricted to 2 V or less. Secondly, because of low rated facilities of the 

UG lab such as supply transformer and even reactance and load practically it is not 

possible to exceed 15 A current in the power system in the test rig. Then, although the 

designed single turn transformer has capability to inject 6 V in the primary side through 

the power line but practically because of the aforementioned restrictions the injected 

voltage is not reached to the nominal value. 

The designed STT consists of secondary winding. However this winding is not a fixed 

winding and can be easily replaced by another winding with different turns in order to 

provide injected voltages with different voltage magnitude. For example, through the 

experimental tests the turn ratios of 1:25, 1: 50 and 1:75 have been used in different test 

scenarios. All the windings are wounded around the designed core which has 30 cm 

length. By dividing the length of cylinder (30cm) with the thickness of each laminate 

(5mm) the required numbers of laminates obtains 600. The core is built up by stacking 

600 laminations of M33035A with thickness of 0.5mm together in order to provide the 

required length of 30 cm. The laminations are bolted to each other in three different 

points. The location of bolts in the cross section of core is shown in Fig.5.12.  
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Fig.5.12: The location of bolts in the cross section of core 

 

The holes in three different locations are made far from the centre of the core with 

intention of saving the material close the centre. The density of flux close to the centre 

is higher than that in the outer layer of the core. Therefore losing the material in the 

centre can lead to early saturation of core. The laminations are made of non-oriented 

silicon steel which has same magnetic property in all direction. This reduces the flux 

density in the core but it must be noted there is no air gap in the design and this will 

help to avoid the magnetic saturation of the core.  

In the oriented silicon steel the magnetic properties are in one direction and if it matches 

with the direction of flux then the flux density can increase. However if this kind of 

lamination is used then the air gap and having two part core is recommended. 

Otherwise, as the permeability of the core is much higher than the air then the flux will 

concentrate through the core rather than the air path. Both the air and magnetic paths are 

in parallel and of course the flux will pass through the way that has low magnetic 

resistance. But if there is an air gap between the two parts of the core then the reluctance 

of air gap will be in series with the reluctance of the core and consequently the resultant 

reluctance will be higher than reluctance of pure magnetic path of one part core. 

 

5.6 Design steps of single turn transformer to be employed in an 11kV 

distribution feeder 

Line parameters of a typical overhead line (employed in an 11kV distribution network) 

are tabulated in Table 5.1[77]. Design of STT can be customised for specific 

requirements. For example in this design, DSSC is assumed to compensate 10% of line 

reactance. In order to provide such compensation, DSSC should insert a reactance of 

0.0312Ω/mile in series with the line. This compensation can be achieved by injecting a 

voltage of 10.8V/mile. This voltage can be calculated by multiplying the reactance by 
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the maximum allowed current through the line. Multiplying the injected voltage by the 

maximum line current of 345A, the transformer rated is obtained as 3.7kVA. 

Here it is assumed that a single-turn transformer (STT) is installed at each mile of the 

distribution line. In order to insert a reactance of 0.0312 Ω per mile. 

 

Type Cross section Current capacity R L 

FeAl234 234mm2 345A 0.143 Ω/mile 0.996 mH/mile 

 

Table 5.1: Typical line parameters in an 11kV distribution system 

 

The single turn transformer should provide the equivalent inductance calculated from 

equation (5.25). 

¹ = �Üþ�%$«  (5.25) 

where Xing is the inserted reactance, L is the required inductance and f is the power 

frequency. By substituting Xinj with 0.00996 Ω in (5.25) the inductance becomes 

99.3µH. 

Flux within the STT is calculated in equation (5.26)  � = ¹g- (5.26) 

where L represents the target inductance of STT and iL is the line current. By 

substituting L with the calculated value of 99.3µH and iL with line current of 345A the 

generated flux will be about 0.034 Webber. 

Grain-oriented silicon steel with flux density of up to 1.7 T and relative permeability of 

23335 is used in the calculations and design process of the STT [81], [98]. The 

transformer is designed such that the core will not be saturated by the flux generated by 

the maximum line current. Hence, the upper range of flux density is considered to be 

1.6 T. The relationship between flux and flux density is written in equation (5.27). � = �» (5.27) 

where ϕ is the flux, B is the flux density and A is the core cross sectional area of the 

STT . Using the flux density of 1.6 T ( to avoid from saturation ) and the calculate flux 

of ϕ= 0.034Wb, the core cross sectional area is obtained as 0.0215 m2.For a rectangular 

cross section (as shown in Fig.5.13), the area is calculated as » = i × [, where d and l 
are core thickness and length, respectively. 
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Fig.5.13: Rectangular cross section 

 

Assuming a length of l= 1.15 m, a thickness d of 0.0186m is obtained. 

The inner diameter of the core should be bigger than the outer diameter of the line 

conductor. Hence, the radius r1 in Fig.5.14 should be selected to be larger than the 

conductor radius.  

 

Fig.5.14: Designed STT for an 11kV distribution system 

 

Considering the data in Table 5.1 the inner radius is selected to be 0.87cm to allow the 

power line pass through. With a thickness of 1.86cm calculated above, the outer radius 

r2 will be 2.73cm. 

 

For installation considerations, the core is designed to be comprised of two separate 

semi-cylindrical sections, which are clamped together and close the magnetic path. 

There are two air gaps between the two sections as shown in Fig.5.15 which increase 

the magnetic reluctance of the core. 

 

Fig.5.15: Air gap 

 

The air gap reluctance can be calculated using the equation (5.28). 

ℛp� = ·���ý��� (5.28) 

l

d

Air gap

lag

Average 

length
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where ℛp� is the reluctance, 	I is the permeabilityof air (4π×10-7 H/m). »p� and [p� 
represent the cross sectional area and length of the air gap, respectively. The total air 

gap length [p� is assumed to be about 0.1mm. Substituting for those values, the total air 

gap reluctance will be 3701.3H-1 

Reluctance of the core can be calculated in the same way. However, but lag must be 

replaced with leff (effective length) and µ0 should multiplied with relative permeability 

of the core which is 23335 [81].The effective length, leff, includes the average distance 

within the core that flux flows through minus the air gap length and its calculated value 

is 0.1126m. By substituting the related values in (31.4) reluctance of magnetic path of 

the core, ℛrÑ¢., become 0.1787.  

The total reluctance ℛ©Ñ©p· is the summation of reluctance of the core and air gap and it 

is equal to 3701.4787. Inductance can be calculated from equation (5.29) as follow 

¹ = 
~ℛ  (5.29) 

where N is the number of turns and in here it is 1. Then L becomes inverse of reluctance 

and the total inductance of the core including the air gaps becomes equal to 2.7µH. This 

means that adding air gap reduces the core inductance. Hence, in order to achieve the 

previously calculated inductance of 99.3µH (total target inductance) the cross section of 

the core must be increased. (Because of early saturation possibility of core material their 

flux density is considered in the calculations. This consideration provides the cross 

section of the core and the cross section shapes air gap. It means that core material has 

the priority in calculations of the cross section. Having provided the cross section of the 

core, reluctance of air gap can be calculated.) 

The new cross section of the core can be calculated using equation (5.30). 

»*.¶ = -(¶)©�Ñ¨©	p)¢	�pÔ)-(¶)©�	p)¢	�pÔ) × »(:g;ℎe�;	Zg_	Z`) (5.30) 

By replacing the respective values in (5.30), Anew is obtained as 0.079m
2. Therefore, the 

new transformer core thickness will be 

i = 0.0791.15 = 6.86cc 

New outer radius is obtained 7.73cm by adding the thickness of the core to the inner 

radius. Summary of the design is tabulated in Table 5.2. 
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Inductance (L) Inner radius (r1) Outer radius (r2) Thickness (d) Length (l) 

2.7 µH 0.87 cm 7.73cm 6.86 cm 115 cm 

 

Table 5.2: Summary of transformer design 

5.7 Microcontroller 

In order to execute the control strategy, a microcontroller is needed to be employed in 

the test rig. The microcontroller is a digital signal controller which uses the incoming 

signals and produces the outgoing signals by executing the control algorithm. To do so, 

some major units such as, CPU, I/O, Direct Memory Access (DMA) and Analogue to 

Digital Converter (ADC) are required. Some of these units such as ADC can be 

provided externally but obviously some others like CPU must be included within the 

microcontroller.  

There are large numbers of different microcontrollers available in the market that they 

can be employed in the design. However, with intention of reducing the complexity and 

easing off the design, it is decided to use a microcontroller that can provide all of the 

aforementioned units. For example, dsPIC33FJ family is one of the possible options 

which meet the requirements and the feature of dsPIC33FJMC710 from this family 

matches with the requirements of the design. 

For example, it comes with built in ADC then the output signals of the measurement 

boards can be fed directly into the controller. It includes 8 channel fitted hardware 

DMA which permits exchanging data between RAM and ports without interrupting the 

CPU. Otherwise CPU itself must be involved in the managing the data transfer which 

requires interruption and takes some clock cycles to do so. Also it has its own internal 

oscillator and there is no need to provide externally. The oscillator is much needed to 

generate the clocks (time steps) in the system management which can include interrupt 

controller unit, timer, PWM generator, I/O etc.  

One of the most useful features of the employed dsPIC is its built in PWM generator. 

Obviously in order to trigger the IGBT’s we need a PWM generator to produce the 

required pulses from the reference signal. Having this capability, there is no need to 

write a code and add complexity to the algorithm.  

Considering all the above mentioned requirements a dsPIC33FJ256MC710 is selected 

to be used in the test rig with an embedded board. This board includes two different 

communication ports connecting the board to the PC. One of them is ICD 2 port and the 

other one is a USB port. The board can communicate with a PC using the ICD 2 port 
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only when it is connected via a MPLAB ICD2 device.  This device, as explained in the 

appendix C, uses RS-232 or even USB protocol to connect the board to a PC. In the 

designed test rig the RS-232 communication protocol has been employed.  

As already mentioned, the embedded board includes a USB port as well which can be 

used to communicate with PC via the USB port. In this case there is no need to use the 

MPLB ICD 2. However, it needs a specific application to be installed in the PC and be 

coordinated with MPLAB. The application adds the complexity of the transferring data 

and uploading the code. This port is not used for the communication.  

In order to introduce the source code being used to execute the proposed control 

strategy some of the most important configurations within the dsPIC are briefly 

explained in the appendix C or [99]. These configurations include the followings: 

� Direct Memory Access (DMA) [100] 

� PWM Generator 

� Analogue to Digital Converter (A/D) [101] 

� I/O Ports 

5.8 LC Filter 

Output of the converter is just a chain pulse of the DC capacitor voltage. However the 

injected voltage must be a sinusoidal waveform. Then a low pass filter is needed to be 

employed in order to eliminate high order harmonics and provide the required 

sinusoidal waveform at the secondary side of the single turn transformer (STT). 

 

5.8.1 Different types of low pass filters 

Different types of filters can be employed in grid connected power converters to 

eliminate the harmonics (basically harmonics in the range of switching frequency). 

Configuration of filters and their performance are key factors which have been 

considered in the filter design. In the same time cost and weight of components are also 

other requirements which must be respected in the filter design [102].  

Different types of filters which can be used in the grid connected converters mainly 

include L filter, LC filter and LCL filter. These configurations are shown in Fig.5.16 

and they come with different advantages and disadvantages. 
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Lf2

Cf

Lf1Lf

Cf

Lf

L Filter LC Filter LCL Filter  

Fig.5.16: Different types (configurations) of filters 

 

For example, L filter comes with very simple topology as it comprise of only an 

inductor which is located between the converter and transformer in the grid connected 

converters. However, it requires big inductor in order to eliminate the harmonics and 

mitigate the current ripple in the same. This can increase the size, weight and cost of the 

design [103], [104]. Especially the increasing weight of filter in DSSC devices can be 

more problematic as these devices are supposed to be suspended from the line. Another 

disadvantage of application of the L filter is the voltage drop across the inductor. With 

the intention of eliminating the higher frequencies, normally higher inductance required 

and this can insert big impedance in series. Additionally, such a design can attenuate the 

fundamental frequencies as well which is not desired.  

In order to overcome the aforementioned problem LC filter can be employed. Cut off 

frequency for this filter is calculated in equation (5.31). 

�r = ?%$�-ÂÃÂ (5.31) 

where fc is cut off frequency of the filter and Lf, Cf represents the inductance and 

capacitance of the employed inductor and capacitor.  Refer to equation (5.31) with 

higher capacitance implemented in the filter, required inductance will be reduced. 

Reduction of the inductance means lessening of the fundamental frequency voltage drop 

across the inductor. However, higher capacitance brings another issue by reducing 

through the capacitor. Practically this can lead to a high inrush current and it must be 

avoided and the capacitance should be moderated [105].  

Another filter topology which is used in the literature is the LCL filter. However, with 

LCL filter still the aforementioned disadvantage exists but in spite of this, LCL filter 

has some other advantages. For example, current ripples are mitigated by Lf1 and Cf, 

and Lf2 is just smooth out the remaining ripples and provide decoupling impedance 

between the AC power system and converter [105]. 

Decoupling impedance becomes more important when the impedance of the AC system 

affects the performance of the converter and filter [106]. However, in the case of the 
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DSSC, the device is connected in series with the line via a single turn transformer with 

high impedance in the converter side. The change of the impedance of the line can only 

affect the amplitude of the current flowing in the converter side of the STT. This can 

only affect the amount of compensation provided by DSSC and the effect can be easily 

equalized by making available and settable set points for the controller. Then this 

advantage of LCL filter is not attract attention in the low pass filter deign for DSSC 

device. However, LCL filter is a third order system which can unnecessarily add 

complexity to the system and affects the performance of converter within the DSSC 

device [107], [106], [103]. 

 

5.8.2 Performances of the filters 

Transfer functions of the filters presented in Fig.5.17 are stated in equation (5.32) [104]. 

;�- = ?¡-Â	 (5.32) 

;�-Ã = 1¹«\«a% + 1 
;�-Ã- = 1aK¹«?¹«%\« + Æ¹«? + ¹«%Ça 
where tfL, tfLC and tfLCL represent transfer function for L, LC and LCL filter 

respectively. In (5.32) Lf, Lf1, Lf2 and Cf are representing the employed inductance and 

capacitance in the filters as shown in Fig.5.17. Bode diagrams of three different types of 

filters have been plotted in Fig.5.17 using equation (5.32) and typical parameters. In this 

figure bode diagram of L, LC and LCL filter is shown in green, blue and red 

respectively.  

Performances of all three types of filters in terms of magnitude are quite similar in the 

frequencies below the cut off frequency. However in frequencies above the cut off 

frequency LCL provide more attenuation than LC and L filter. This is an advantage for 

the LCL filter in comparison with the other two filters. However, in terms of phase 

angle, LCL filters come with -90° for frequencies below the cut off frequency and -270° 

for frequencies above the cut off frequency. Phase delay for fundamental frequency 

(included in the low frequencies) is not desirable and will weaken the dynamics of 

system.  
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Fig.5.17: Bode diagrams of three different types of filters 

 

It can be observed that in Fig.5.17 phase delay generated by LC filter for harmonics 

below the cut off frequency is smaller in comparison with the other two filters. In the 

same time, in terms of attenuation for higher frequencies LC filter provides middle 

range attenuations (higher than L filter lower than LCL). LC filter has been chosen to be 

employed in the DSSC device because it can provide required attenuation for higher 

frequencies without having the aforementioned disadvantages of the L and LCL filter. 

More importantly, its moderate simplicity reduces the complexity and cost of the DSSC 

device. 
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5.9 Design of LC filter 

Low pass LC filter provides great attenuation for high frequency waveforms and passes 

through the low frequency waveforms. Power topology of employed LC filter within the 

DSSC device is presented in Fig.5.18. 

 

Fig.5.18: Designed and employed low pass filter 

 

Transfer function of the filter is provided in equation (5.33).  ;�« = ?·ÂrÂ¡~#? (5.33) 

Operating switching frequency of voltage source converter within the DSSC device is 

15kHz and the output voltage is expected to be polluted with high order harmonics. In 

order to eliminate the harmonics a low pass filter with cut off frequency of lower than 

switching frequency is needed. Considering the switching frequency and first dominant 

harmonics, a cut off frequency of 12kHz has been considered and it can be calculated 

using equation (5.34). 

�r = ?
�·ÂrÂ (5.34) 

where fc is the cut off frequency of the employed low pass LC filter and lf and cf are the 

inductance and capacitance of the filter.  

Small value of inductor is more desirable as it will reduce the losses and voltage drop 

across the inductor. In addition small inductor comes with small size and less weight 

which in turn makes application of DSSC more feasible in the distribution networks. In 

order to achieve smaller value of inductance higher capacitance is required. With 

assuming capacitance of 500e-6F and considering required cut off frequency of 12kHz, 

calculated inductance using equation (5.34) will be 80e-6H. Design value of the LC 

filter is summarised in Table 5.3. 
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Parameter Value 

cf 12KHz 

lf 80µH 

cf 500µF 

 

Table 5.3: Summery of design value 

 

With substituting the design parameters in equation (5.33) transfer function of the 

designed filter to be employed in the DSSC device is stated in equation (5.35).  

;� = ?Ë.Ò.zñ¡~#? (5.35) 

The filter is expected to attenuate harmonics above the 12kHz and in order to observe 

the expected attenuation, bode diagram of the filter using (24.3) is plotted in Fig.5.19. In 

this figure it can be clearly seen that the filter has no attenuation on the fundamental 

frequency. In addition phase delay for low frequencies (frequencies below the cut off 

frequency) is very small and in the fundamental frequency is negligible.  

Bode diagram shows phase margin of 141° which is inside the safety margin. The 

designed phase margin is an assurance for stability of the filter.  

 

 

Fig.5.19: Bode diagram of the designed low pass LC filter 
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5.9.1 Implemented RC filter 

In the implemented prototype, DSSC module in the lab employed low pass filter (as 

shown in Fig.5.20), which comprises inductor and capacitor.  

 

Fig.5.20: H-Bridge converter, RLC Filter and STT 

 

It must be bear in mind that the output voltage of the converter is the input voltage of 

the filter and the output voltage of the filter is the secondary voltage of the single turn 

transformer.  

In the implemented control system the switching algorithm is using carrier-based pulse 

width modulation (PWM) pulse generator to generate the final desired switching 

pattern. The employed PWM technique is well explained in [108]. The output voltage of 

the inverter includes high level of the harmonics. To smooth out the filtered signal and 

eliminate most of the harmonics the cut off frequency must be smaller than the 

switching frequency. With switching frequency of 1kH, cut off frequency must be 

between 50Hz (fundamental) and 1kH. The cut off frequency can be calculated using 

equation (5.34) and its value must be chosen from frequencies near to the first dominant 

harmonic from the harmonic spectrum of output voltage of the converter. In this case 

study the first dominant frequency is 900Hz. 

In addition, filtering down to the fundamental frequency (which is 50 Hz in this study) 

normally requires big inductor and capacitor that can make the hardware 

implementation difficult and costly. For these reasons and considering available 

inductance in UG lab to be employed in the test rig implementation, cut off frequency 

of 112 Hz found to be achievable. Substituting cut off frequency (fC) of 112 Hz into 

equation (5.34) and Lf of 20mH capacitance of Cf is obtained 100uF. 
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5.10 Validation of proposed controller 

With validation purpose for the simulation results the proposed control method was 

examined using the scaled down prototype DSSC module. The test rig includes a power 

system, which comprises two parallel feeders supplying a load. The power system is a 

single phase system and the line to ground rms voltage of the AC source at sending end 

bus is 50V. This voltage level is defined based on the health and safety regulations of 

the UG lab at the Newcastle University. The parallel lines include a 20mH inductance 

and a 1Ω resistor to model a 20km, 11kV distribution feeder. The DSSC device 

connected in series with the line1 via a single turn transformer with turn ratio of 1:100.  

 

The H-bridge converter is built using a 4-pack IGBT, SK20GH123, which is providing 

four IGBT along with four anti parallel diodes in one pack. The proposed control 

method is implemented using C code in dsPIC33FJ256MC710. The injected voltage, 

along with the line current, DC link voltage and DC link current, are shown in Fig.5.21. 

 

In this figure the injected voltage comes in blue and the line current is in green. The 

yellow and the pink lines represent the current through the DC link and the DC voltage 

respectively. The leading voltage in Fig.5.21 is representing a capacitive injection. In 

this figure line current and injected voltage comes in blue and green respectively. DC 

link current is shown in yellow. 

 

 

Fig.5.21: Capacitive voltage injection (snapshot of the screen of oscilloscope) 

 

In the experimental tests the result data has been extracted from oscilloscope and plotted 

using Excel. Capacitive injection of the DSSC is represented in Fig.5.22. The figure 
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shows the capability of the proposed controller in capacitive injection through the 

power line.  

 

Fig.5.22: Capacitive injection 

 

Inductive injection capability of the system has been examined and the result is shown 

in Fig.5.23.The figure shows the capability of the proposed controller in inductive 

injection through the power line. 

 

Fig.5.23: Inductive injection 

 

The phase difference between injected capacitive voltage and line current based on the 

extracted data when the injection is capacitive becomes -87.98 degree. The angle is 

almost identical to the angle which is achieved by PSCAD simulation and is presented 
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in chapter 4. Along with the phase angle of -87.98 degree the whole losses for DSSC 

module, which is measured using YOKOGAWA power analyzer, is 1.99W. While 

using the conventional control method the angle is -85.23 degree and the losses become 

4.65W for comparison. 

The injection with proper angle can reduce the ripple amplitudes because of less 

absorption of active power. Using the proposed control method the peak amplitude of 

ripples in DC link, as shown in Fig.5.24, become 32.5 volts while this voltage with the 

conventional control system, shown in Fig.5.25, is 34 volts.  

 

 

Fig.5.24: DC link ripples with proposed control 
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Fig.5.25: DC Link ripples with conventional control 
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f¢ = ∆��Ä� × 100 (5.36) 

where vr is representing the percentage of the ripple and Vdc is the peak amplitude of the 

voltage. In this equation ∆v represents variation of voltage from minimum to maximum.  

Using the conventional controller and replacing the corresponding values in (5.36) 

percentage of the DC voltage ripples is obtained as 20.5%. However the ripples become 

12.3% when proposed controller is employed. The percentage of ripples is reduced from 

20.5% to 12.3%, i.e by 8.2 %. This is reduced because in the proposed controller both 

DC voltage and injected angle are controlled in the same time. This can avoid deviation 

of injection angle from the target value and consequently the exchanged active power is 

reduced. As result of reduced exchanged active power percentage of ripples are reduced. 

Table 5.4 summarizes the above tests and compares the experimental results for both 

control methods while DSSC compensating of the parallel lines. 

 

Experimental Results for 
Capacitive Injection 

Using Proposed 
Method 

Using Conventional 
Method 

Losses [W] 1.99 4.65 

Phase angle [Degree] -88.65 -85.98 

DC Link Voltage Ripples [%] 12.3 20.5 

Table 5.4: experimental results for both control methods 

 

Effect of compensation of only one line in a bus with two parallel lines has been 

investigated. Assuming that line1 is being compensated by DSSC and line2 is remain 

uncompensated. Obviously, sending end bus current via two parallel lines is equal to 

sum of the currents in the line1 and line2 before and after the compensation of line1. 

The line current in line1, as a result of compensation, has been increased and in the 

same time current in the line2 has been decreased. This can be identified in Fig.5.26 

which is showing the practical results of the compensation of line1. 
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Fig.5.26: Practical rms value of line current 

 

5.11 Summary 

In this chapter, the hardware implementation of the prototype DSSC device has been 

explained. The device was designed and built in the UG lab at Newcastle Upon Tyne 

University. The operating voltage of power system inside the test rig is 50 volts and the 

maximum expected current is below 15 A. The design and build of test rig includes all 

electronic board, single turn transformer, programming of the microcontroller and RLC 

low pass filter.  

The electronic boards include two voltage measurement boards (one for AC voltage and 

one for DC voltage), a current measurement and a gate drive board. The related PCB 

board is designed using Ultiboard software and was assembled and soldered in the UG 

lab. One of the most important electronic boards which is designed and implemented in 

this project is the gate drive board. This is an interface board between the 

microcontroller and power converter.  

The single turn transformer used in the prototype consists of mainly a cylindrical core 

and a secondary winding. The primary winding in this case is the power line itself 

which is passing through the cylindrical core. As the current flowing through the power 

line it induces current in the secondary winding. The current is fed into the LC filter and 

VSC converter. 

The maximum voltage that STT can inject highly depends on the design of its magnetic 

core. The magnetic permeability of core must be high enough in order to provide 

appropriate reluctance for the generated magnetic flux by the power line. The core is 
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chosen to be made of non-oriented silicon steel laminations, which is called M33035A, 

with maximum flux density of B= 1.5 T. 

Full design steps of single turn transformer that can be used for an 11kVdistribution 

network have been explained. The required inductance of the demanded compensation 

is calculated based on the rated current of the power line. For the calculated inductance 

cross section of STT core is obtained. Practically the core comprised of two parts and it 

comes with air gap and inserts a magnetic resistance in the in the circulating path of the 

flux. The resultant reluctance was included and the new inductance is obtained 

considering the requirements. The obtained inductance requires recalculation of the 

cross section. Having done the recalculation the new cross section the thickness of the 

core is obtained 6.89cm and the length of the STT becomes 115cm. 

Different types of low pass filters and their performance in mitigating harmonics have 

been studied. In terms of amplitude they provide quite similar attenuation in the 

frequencies below the cut off frequency. However in frequencies above the cut off 

frequency LCL provide more than the other two. As regard as phase angle concerns, 

LCL filters generate -90° phase delay for frequencies below the cut off frequency and -

270° for frequencies above the cut off frequency.  

Phase delay generated by LC filter for lower frequencies is smaller in comparison with 

the other two filters and for higher frequencies LC presents middle range attenuations. 

Based on this study and in order to avoid complexity of LCL filter, LC has been 

employed in the DSSC device. Design process of LC low pass filter is explained and 

proper inductance and reactance have been selected.   

Microcontroller, dsPIC33FJ256MC710, was selected for being employed in the 

implementation of the prototype. The microcontroller has its own A/D, DMA and PWM 

generator which decreases the complexity of hardware implementation.  

Ultimately, all of the equipment and devices are located inside an aluminium cage, as 

presented in this chapter, with a wooden floor and net metal lid. This cage includes the 

power system as well and the operator has not have access to inside the cage during the 

test (operation). This is because the lid of the cage is equipped with a protection switch. 

As soon as the lid is opened the power system will cut off immediately. In addition the 

test rig comes with an emergency STOP switch which can cut off the power in all 

equipment immediately in an emergency case. 

The proposed controller was examined using the designed test rig. The experimental 

results show that the controller is capable of injecting both capacitive and inductive 
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voltages and alter the reactance of the line. In a power system, including two parallel 

lines, as result of the capacitive injection, current increases in the compensated line and 

decreases in the other one. In the same system by injecting inductive reactance in the 

compensated line, current is pushed away from the line and pulled into the 

uncompensated parallel line.  

Experimental results using the conventional and the proposed controller have also been 

compared. It has been noted that the loss is reduced using proposed controller in 

comparison with the 90° phase controller. In this study it has been demonstrated that 

diversion of injection angle from the target value is improved. In addition, the 

percentage of ripples in the DC voltage has been reduced from 20% to 12.5% when the 

proposed controller has been used instead of 90° phase shift based controller.  
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6  Conclusions and Future Work 

Investigations in relation to distributed static series compensator (DSSC) are concluded 

in this chapter. The conclusions includes an overview of all types of series compensator 

solutions and discusses feasibility of application of DSSC devices in the existing 

distribution feeders investigating mechanical withstand capability of the feeders. This is 

followed by reviewing the advantages and disadvantages of existing control algorithms 

and developing a new control strategy to overcome some of the drawbacks.  

Conclusion of achieved simulation and experimental results proposing the utilization of 

proposed control system are then discussed. Finally, the contributions and published 

papers are listed and future work is discussed. 

 

6.1 Conclusion 

Fixed capacitors in series through the power lines is one of the series compensation 

solutions can be employed electrical networks. However it comes with some 

disadvantages which encourages looking for alternative solutions. Power electronic 

based series compensators are introduced to overcome to the disadvantages. SSSC and 

DSSC are power electronic based series compensators which are using VSC to inject a 

series voltage through the line. 

DSSC is a single phase device and it is more reliable as it uses a STT to inject voltage 

through the line and in case of fault in the system just a small current passing through 

the power electronic devices. As it is just suspended from the line then even failure of 

device does not disrupt the power in power line. In addition it can be easily assembled 

and disassembled from the line by clamping the STT. Finally there is no need for 

customized design and thus these could be mass produced in effect lowering the costs. 

 

The capability of existing distribution overhead lines to withstand the suspension of 

DSSC devices from the lines has been studied and presented in Appendix D. Between 

each two poles there was one suspended DSSC device from the power line. The mass of 

the DSSC device generates an extra mechanical load through the line. The added load 

increases the line mechanical inertia and helps to stop the low amplitude horizontal 

oscillations (Galloping) however as soon as the oscillation is started its suppression will 

be difficult. The vertical vibration (Aeolian) was not dependant on the mass of the line 

and so remains unaffected by adding the DSSC device.  
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In most of the cases the total weight of the wire plus weight of the DSSC was in the 

acceptable margin. However it is recommended that installation of device some part of 

the feeder with long span such as river crossing to be avoided. The study of the 

mechanical withstands capability of the feeders show that the application of DSSC in 

the distribution networks is feasible however this cannot be generalized for all feeders 

and it is recommended that their capability to be investigated individually before any 

installation of the DSSC devices.  

 

Two different control strategies, 90° phase shift and dq conversion based controller 

have been employed in literature review. Practically, the DSSC device needs to 

compensate its own internal losses and this requires angle of injected voltage to be 

diverted slightly from 90° with respect to line current. The slightly diversion of phase 

angle over the time period can be different and it requires an adaptive control to take the 

changes into account.  

In most of the control strategies employed with SSSC, the dq conversion has been 

applied. However, it has been shown that in presence of unbalanced AC system the 

accuracy of dq conversion can be affected and the resultant dq components can be 

inaccurate.  

In order to overcome the aforementioned drawbacks a single phase controller which is 

providing a dynamic injection angle has been developed. The angle was being adjusted 

to reduce exchange of active power.  It has been shown that the controller monitors DC 

voltage and the injection angle in the same time and regulates both of them.  

Performance of proposed controller was compared with conventional controller (only 

DC voltage controller). In the conventional controller changing the gain affects 

amplitude of ripples, THD and angle of injection in different ways. For example, 

increasing the gain improves the angle but deteriorates the amplitude of ripples and 

THD. However, reducing the gain reduces the amplitude of ripples and THD, but 

increases the injection angle. The results show that always improving one the factors, 

using conventional controller, can sacrifices the other one. 

Proposed controller enhances ripples, THD and injection angle all in the same time, as it 

receives continuous feedback from both angle of injection and DC voltage. The 

simulation result show that proposed controller was reduced amplitude of the ripples, 

THD and angle more than the conventional controller (only DC voltage controller). 
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Using the proposed controller the exchanged active power and ripple of DC voltage are 

reduced. These are mainly achieved because the new controller reduces unnecessary 

charge and discharge of DC capacitor around the desired voltage level. The simulation 

results have proven that the controller was capable of injecting both capacitive and 

inductive reactance through the line. 

DSSC devices were employed in an 11kV distribution networks and it was improved 

electrical parameters such line reactance or voltage profile. It has been demonstrated 

that with X/R ratio of one (or in the vicinity of 1) capacitive injection can decrease the 

transmission capability of the power line. More interestingly in these lines (with lower 

X/R ratio) inductive injection can increase the line capacity.  

It has been shown that, the amount of compensation that each DSSC module can deliver 

was calculated by dividing the injected voltage with line current. DSSC device can be 

designed to inject voltage with different amplitudes and the number of modules is 

highly depends on the capability of each module and required compensation to be 

achieved. The required compensation per mile was a key parameter in the design of 

each device. The number of devices can be obtained by dividing the required 

compensation with the compensation that each device can deliver.  

It has been demonstrated that using DSSC devices, which were controlled using a new 

control strategy, power flow can be controlled in parallel power lines. It has been shown 

that load flow can be diverted partially from either of the lines to the other one by 

injecting capacitive and inductive reactance. It means that by inserting capacitive 

reactance the line reactance was reduced and it can transfer more power.  

In another application DSSC has been used to improve voltage profile through the line. 

In this application the injected capacitive reactance by the DSSC compensates the line 

inductive reactance and the voltage drop. It also injects reactive power to boost up the 

line voltage and provides part of the consumed reactive power. 

A controller using the achieved transfer function and considering specific requirements 

such as overshoot percentage of step response has been designed. The controller 

guaranties stability of the system by inserting zeros at the proper location of the zeros 

poles map.  

A sensitivity analysis has been conducted and it shows the designed controller was 

immune against system parameters changes. The changes include variation in 

capacitance of DC link, capacitor and inductance of low pass filter. It has been found 

that stability of system will not be at risk as long as the changes are restricted to 10%. 
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The impact of adding a low pass filter to the designed controller was also examined.  

 

The performance of the proposed controller employed within a DSSC device has been 

compared with the traditional controllers when DSSC was being used in an 11kV 

distribution network. The proposed controller shrinks phase angle of injected voltage in 

comparison with 90° phase shift method. Also it mitigates the injected harmonics more 

than 90° phase shift method.  

When a dq based controller was used in the control of DSSC dependency of reference 

signal on to the line current has been observed. This was because reference signal in the 

dq based controller was calculated based on the dq component of line current. However 

the proposed controller demonstrates independent performance from the line current as 

it provides a reference signal for each phase.   

 

When only DC link voltage regulator was being used, the angle of injection was more 

oscillatory. The proposed controller demonstrates better performance with respect to 

this controller. Using the proposed controller the injection angle was diverting less from 

the target.  

In another sensitivity analysis performance of the DSSC which employs proposed 

controller against system parameters change has been examined.  Change of parameters 

includes change in line resistance, voltage, and figuration of the network. The 

simulation results present satisfactory functioning of controller.  

A fault recovery strategy has been developed based on the studying different fault 

scenarios. This was to identify an approach to be taken in the occurrence of fault in the 

power system. It has been found that, by blocking only converter (H-bridge converter 

inside DSSC) voltage across the DC link can exceed its limit. However, when fault 

occurs and STT becomes open circuit regardless of blocking or not of the converter- a 

high AC voltage will be generated in either side of the STT. In order to avoid these 

issues converter was blocked and STT was bypassed.  This hold DC voltage in the pre 

fault value (within the limit) and keep away STT from experiencing a high voltage in its 

terminals. 

A full design step of STT for an 11kV application in distribution network was included. 

STT was required to provide appropriate inductance in order to meet the demanded 

compensation. The inductance was calculated from required compensation reactance 

and the calculated inductance determines the cross section of STT. Practically the STT 
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core was a combination of two parts which are clamped to each other. The air gaps 

between two parts insert a magnetic resistance in the flux path and changes the 

reluctance which was obtained from the calculations. The cross section was calculated 

based on the inductance which includes reluctance of the air gaps as well. Considering 

the calculated cross section of the core thickness of 6.89cm and the length 115cm were 

obtained for STT. 

DSSC also requires a low pass filter to mitigate the harmonics. Different topologies of 

low pass filters (including L, LC and LCL) and their performance in connection with 

grid connected power converters have been studied. Based on the conducted study the 

provided attenuation by filters for frequencies below the cut off frequency are quite 

similar. Conversely in higher frequencies LCL attenuates more than the other two 

filters. In terms of phase angle, LCL creates -90° delay for lower frequencies and 

generates -270° phase delay for higher frequencies (Higher frequency means above the 

cut off frequency and lower frequency means below cut off frequency).  

In using LC filter the created phase delay for lower frequencies was smaller when it was 

compared with phase delays which were generated by other two filters. The attenuation 

provided by LC filter for higher frequencies was middle range. In this study LC filter 

presented satisfactory performance and it has been used in the DSSC device.  Thereafter 

a low pass LC filter has been designed for to mitigate the harmonics above the cut off 

frequency.   

A laboratory test rig has been designed and implemented in the lab and it has been used 

to execute the control algorithm. The implemented device using the proposed controller 

was capable of injecting both capacitive and inductive voltage through the line. The 

designed STT was used to inject the voltage and the experimental voltage injection 

results prove its proper functionality.  

 

In an experimental test with a power system with two parallel lines capacitive and 

inductive reactance injected in the compensated line in order to investigate the load flow 

capability of the device. In the capacitive injection current pulled into the line and 

pushed away from the other line. Additionally, in an inductive injection current was 

diverted to uncompensated line. These were demonstrating the load flow control 

capability of the device.   

Using the experimental test rig performance of the proposed controller was compared 

with the traditional controller. In this study proposed controller reduces the losses when 
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it was compared with the performance of 90° phase controller. Furthermore, the 

proposed controller reduces diversion of injection angle from 90°. It has been found that 

ripples in the voltage of DC link reduce to 12.5% when the proposed controller has been 

employed within the DSSC device while it was 20% when 90° phase shift controller 

was in use. 

 

6.2 Contributions 

The conducted study includes research, design, experimental implementation 

(experimental results) and feasibility study. The author contributions have been listed in 

the following bullet points: 

� An overview of compensation in electrical networks is obtained. 

� An overview of series compensations and the related control strategies have 

been provided which can be used as a reference document for the research works 

conducted in this field. 

� Novel application of DSSC in distribution system has been introduced. This 

includes application of DSSC to improve voltage profile in a distribution 

network and novel application of DSSC in load flow control in distribution 

network. It has been shown that using DSSC in distribution networks voltage 

profile can be improved and load flow can be controlled. Improving voltage 

profile in a novel idea which introduced in this research work.  

� It has been found that as X/R ratio decrease ATC of line will decrease too. A 

novel idea has been developed that with systems with low X/R ratios inductive 

series injection by DSSC can increase ATC 

� A novel single phase controller for control of DSSC based on the instantaneous 

exchange of complex power has been developed. This is an alternative approach 

to the fine tuning of conventional controller to improve functionality of DSSC.  

� A novel fault recovery strategy has been developed for DSSC device to be taken 

in occurrence of fault. 

� Full design steps of a STT (to be employed in an 11kV distribution system)has 

been provided.  

Three cited conference papers have been published from the research work as listed 

follow: 
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� “New Control Method For Distribution Network, Distributed Static Series 

Compensator”  Oral presentation in: PEMD, Brighton UK, 2010  

� “Distributed Static Series Compensation for Distribution Network Line 

Voltage Profile Improvement” Oral presentation in: IEEE PES ISGT (Smart 

Grid Conference), Manchester, 2011,  

� “Feasibility study of application of DSSC in distribution networks” Oral 

presentation in: CIRED Conference, Stockholm, 2013  

6.3 Future work 

This study is focused on the DSSC itself and its control algorithm. The algorithm 

reflects on the control system of the converter inside the DSSC and does not consider 

the relationship between the all modules throughout the compensated system. The 

DSSC is a novel idea and needs lots of work to be carried out to become mature 

technology. For example the following topics came across during the research which 

was out of the scope of this research but they are important issues and they need to be 

investigated in the future works  

6.3.1 Design consideration 

The DSSC is a special device and it is supposed to be suspended from the overhead 

lines in the electrical networks. It must be designed so that it has capability to withstand 

in extreme weather conditions. For example in the icy, rainy and windy condition the 

normal operation of the system needs not to be affected. In addition the functionality of 

DSSC must not be affected in presence of large corona or electromagnetic waves which 

are generated around the power lines. Furthermore, in order to industrialize the DSSC 

the reliability of the solution must be found out carefully. DSSC must be designed in a 

way so that mounting or dismounting can be done easily in a live system within the 

minimum time. The recommended research work needs to be conducted in properly 

equipped laboratories in order to simulate the environmental conditions and provides 

high voltage and high current facilities. 

6.3.2 High level control and managing the modules in the network 

The DSSC modules through the network must be controlled by a high level control. 

Each module has own program and control strategy inside which can deliver the 

demanded compensation. However the demand itself is an important factor which can 

be defined by operator or an intelligent program. For example the program can provide 



240 
 

an up to date and online demand plan for the modules based on the dynamic of the 

power system. For instance it can consider the stability of the whole network and based 

on that repeatedly updating the demand for compensation. In another example it can 

contribute toward the peak shaving in the network. This can be achieved by change the 

reactance of a feeder which is connecting peak area to the network that has available 

generation capacity.  

Customized software is needed to be developed in order to receive online information 

about the parameters of system from all over the network and analyse the data. 
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Appendix A: dq Conversion 

 

A.1 Introduction 

dq conversation is a mathematical conversion of a three dimensional system to a two 

dimensional system. Both systems are synchron and they share a same angular 

frequency. The two dimension system is so-called dq system and “d” is the direct 

component and the “q” is the quadrature component of the system. In an ideal system 

the angle between “d” and “q” is 90°. In appendix A the dq conversion is explained and 

the related formulas have been represented. In addition the definition of the unbalanced 

AC system is denoted in this appendix.   

A.2 dq conversion 

dq conversion has been used widely in the literature reviews of previous research in the 

field of SSSC. It is mainly used to convert a three-phase system to a two dimensional 

system, which is rotating synchronously with the three-phase system. This conversion 

reduces the volume of calculations in the power system studies and also it reduces the 

complexity of the analysis. The conversion matrix is shown as 

 

T = �%K ���
�� cos	(wt) cos	(wt − %õK ) cos	(wt + %õK )−sin	(wt) −sin	(wt − %õK ) −sin	(wt + %õK )?√% ?√% ?√% ���

��
 (A.1) 

 

where w is the angular frequency of the three-phase system, which must be updated 

using a PLL that is locked to the power system. The equation (A.2) shows the 

conversion of Vabc to the Vdq using the matrix shown in equation (A.1): 

 

¤V7V9V�§ = �%K ���
�� cos	(wt) cos	(wt − %õK ) cos	(wt + %õK )−sin	(wt) −sin	(wt − %õK ) −sin	(wt + %õK )?√% ?√% ?√% ���

�� lV�VéV�o (A.2) 

 

consequently, the parameters Vd and Vq can be calculated as 
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V7 =	�%K �cos(wt) V� + cos �wt − %õK � Vé + cos �wt + %õK �V�� (A.3) 

V9 =	−�%K �sin(wt) V� + sin �wt − %õK � Vé + sin �wt + %õK � V��(A.4) 
and 

V� = ?√K (V� + Vé + V�) (A.5) 

 

In the above calculations, the Vq parameter is orthogonal to the Vd parameter and they 

are so-called the quadrature and direct components of the conversion. The V0parameter 

is supposed to be zero in this conversion. However, the non-zero value of the V0 

parameter shows that the three-phase system is not a balanced system. This is because 

in an ideal case and in a balanced system, the Va, Vb and Vc parameters are as follows: 

Va= VmaxSin(wt) (A.6) 

Vb= VmaxSin(wt +120)  (A.7) 

and 

Vc= VmaxSin(wt - 120) (A.8) 

where if the equivalent values of Va, Vb and Vc from equations (A.6), (A.7) and (A.8) 

be substituted in equation (A.5), then equation (A.5) can be rewritten as 

V� = ?√K (V���Sin(wt) + V���	Sin(wt	 + 120) + V���	Sin(wt	 − 	120)	) (A.9) 

however, the following equality must be observed where V���Sin(wt) + V���	Sin(wt	 + 120) + V���	Sin(wt	 − 	120) = 0 (A.10) 

The equation (A.10) can then be argued that in balanced power systems, the dq 

conversion of Vabc will result in Vd and Vq only and that the Vo parameter will be zero. 

Equation (A.2) can then be rewritten as 

 

�V7V9� = �%K ¤ cos	(wt) cos	(wt − %õK ) cos	(wt + %õK )−sin	(wt) −sin	(wt − %õK ) −sin	(wt + %õK )§ l
V�VéV�o (A.11) 

 

Furthermore, in most of the applications after the conversion of Vabc to Vdq, the 

calculations and control strategy take place in the dq domain and thereafter, the 

provided signals must be reconverted to the abc format. To do so, the inverse 

conversion matrix is needed, which is denoted as 
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T�? = � cos(wt) −sin	(wt)cos	(wt − %õK ) −sin	(wt − %õK )cos	(wt + %õK ) −sin	(wt + %õK )
� (A.12) 

By applying the equation in (A.12), the Vabc parameter can be calculated from Vdq as 

lV�VéV�o = �
cos(wt) −sin	(wt)cos	(wt − %õK ) −sin	(wt − %õK )cos	(wt + %õK ) −sin	(wt + %õK )

� �V7V9� (A.13) 

In all of the above calculations, it is assumed that the dq axes are synchronised with the 

abc axes as shown in Fig.A.1. This means that the d-and a-axes are in the same direction 

(aligned). However, this is not necessarily needed because there can be a phase 

difference between them in some specific applications. For example, in SSSC or DSSC 

applications, the introduced phase angleθ can be ±π/2 in order to create 90 degree phase 

shift. The shifted dq axes are shown in red in Fig.A.1. 

 

 

Fig.A 1: abc to dq 

 

Considering the phase angle θ, equations (A.11) and (A.13) can be rewritten as 

 

�V7V9� = �%K ¤ cos	(wt ± θ) cos	(wt − %õK ± θ) cos	(wt + %õK ± θ)−sin	(wt ± θ) −sin	(wt − %õK ± θ) −sin	(wt + %õK ± θ)§ l
V�VéV�o (A.14) 

and 

lV�VéV�o = �
cos(wt ± θ) −sin	(wt ± θ)cos	(wt − %õK ± θ) −sin	(wt − %õK ± θ)cos	(wt + %õK ± θ) −sin	(wt + %õK ± θ)

� �V7V9� (A.15) 



253 
 

In equations (A.14) and (A.15), the parameter θ represents the initial phase angle, which 

will be useful when the dq axes needs to either lead or lag the abc axes. 

A.3 Unbalanced Three Phase AC System 

A typical unbalanced three-phase system is shown in Fig.A.2(a), which can be 

compared with a three-phase balance system in Fig.A.2(b).  

 

Fig.A 2: a) Unbalance three-phase system b) Balance three-phase system 

 

In Fig.A.2 (a) the phase angles between the phasors in the unbalanced system are not 

identical and their amplitudes are different. However, in a balanced system as seen in 

Fig. A.2 (b), the angle is indistinguishable and the amplitudes are the same.  

Furthermore, the unbalanced system disturbs the dq conversion and can lead to an 

incorrect calculation. The unbalance of a three-phase system is defined by the 

percentage of difference from the average voltage. This can be calculated as 

Percentage	of	Unbalance = ?II∗ ��	∆��!"±  (A.16) 

where Max ∆V is the maximum difference from the average voltage and VAve is the 

average voltage. 
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Appendix B: Technical Characteristics of Components 

B.1 Introduction 

Technical characteristics of components and test rig are represented in appendix B. It 

includes the components and electronics boards which are employed in the 

implementation of the electronic and power electronics boards. The design process is 

explained in chapter 4 then appendix B includes only the technical specifications and in 

some cases the input and output layouts of the components and the related photo. 

The test rig includes 220:50 transformer, DSSC device and all of the electronic boards 

which are located inside an aluminium cage, as shown in Fig.B.1 a and b, with a 

wooden base and net cover. 

 

 

a) Aluminium cage of test rig 
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b) Inside test rig 

Fig.0.1: Designed and implemented test rig 

B.2 H-Bridge Converter 

In the design of power electronics converter SK20GH123has been selected which is a H-

bridge compact module has been used. It can be easily secured to a top-mounting 

copper heatsink with just one screw. It has well matched IGBT’s and diodes inside in 

terms of rated voltage and current. Its IC-VCE curve for different VGE voltages is shown 

in Fig. B.2. Based on the design the rated maximum voltage between collector and 

emitter, VCE, in the off mode is 1.2 kV and the rated collector current, IC, is 23A at the 

ambient temperature of 25°C. This current rating could go down to 15A at the 

temperature of 80°C. The rated current for the freewheeling diode is 24A and 17A at 

temperatures of 25°C and 80°C respectively [91]. 
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Fig. B. 2: IC versus VCE curve 

 

The SK20GH123 device, as shown in Fig.B.3, comes with 16 pins. These pins provide 

access to different points of the H-bridge converter and IGBTs. Moreover, the 

corresponding points of connection inside the SK20GH123 for pin numbers 1,2, 5, 7, 8, 

9, 13 are shown in Fig. B.4 but the rest of pins including 3, 4, 6, 10, 11, 12, 14, 15 are 

left unconnected, i.e. they are not applicable. 

 

 

Fig.B.3: SK20GH123 device 

 

 

Fig.B.4: The pin-configuration of SK20GH123 device 
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B.3 Buffer 

SN74AHCT125 has been used in the gate driver board design. This device has 14 pins, 

as shown in Fig.B.5, including four inputs, four outputs and four output-enabling (OE$$$$) 
inputs[93]. 

 

Fig.B.5: SN74AHCT125 

 

The %&$$$$ input can disable or enable the output by being high or low respectively. If the 
output is enabled then it will follow the input. It means that the output will be equal to 

the input. The relationship between input and output of each buffer is represented in 

Table B.1.The logical diagram representing the functionality of the device along with 

the related pin numbers is depicted in Fig.B.6. 

 

Inputs Output %&$$$$ A Y 

L H H 

L L L 

H X Z 

Table B.1: Function table for each buffer 

 

In this device, the high level output is equal to VCC and the minimum high level input is 

2V while its maximum low level is 0.8 V. The input values between 0.8 V and 2 V will 

not be recognised and the related output for these inputs will not be reliable but in the 

gate driver the inputs will be 0V and 5V for the low level and high level input values 

respectively. In order to disable one of the outputs, the related %&$$$$ is connected to VCC, 

+5V, and irrespective of input the output will have no values.  However, if %&$$$$ is 
connected to ground (zero volt) then the related output will be active and with 
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connecting the associated input to the 5 volts the output will be 5 volts. Also having 0 

volt in the input will make output zero as well. 

 

Fig. B. 6: Logic diagram of the SN74AHCT125 

B.4 Gate Drive 

The HCPL-3180 device includes an integrated GaAsP LED which is providing optical 

coupling, as shown in Fig.B.7, between input and output. This device comes with 8 pins 

where pin numbers 1 and 2 are not connected; pin number 2 and 3 are connected to 

anode and cathode respectively. Pin number 8 and 5 are used for VCC and VEE 

connection. Pin numbers 7 and 6 are connected to the VO jointly [109].  

 

 

Fig. B. 7: Functional diagram of HCPL-3180 

 

With reference to the data sheet [68] there must actually be a minimum positive voltage 

of 1.2V across the anode-cathode in order to trigger the GaAsPLED. The recommended 

voltage in data sheet is 1.5 V therefore, the forward voltage of diode is considered as 

1.5V in the design. On the other hand the output voltage of the buffer is 5 V and the 

voltage across the resistor will be 3.5V and referring to the data sheet [109] the 
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minimum required input current for the GaAsP LED must be 10mA. Then the highest 

resistance between the buffer and gate drive must not exceed 350 Ohm in the same time 

the lowest resistance also must be below 280 Ohm. Moreover in order to select a 

standard resistance, a 320 Ohm resistor is selected as a series resistance connected in 

series with the anode of the gate drive. 

In continue the calculations to select a proper resistor using equation (B.1) are presented 

as follow: Våü − V�Ö = I�Ö ∗ R� (B.1) 

where VOB is the output voltage of the buffer and VIG is the input voltage of the gate 

drive. Additionally, RS is the series resistance, located between the gate drive and 

buffer, and IIG is the input current of the gate drive passing through the RS. In the design 

procedure the following is assumed: 

VOB= 5 V 

VIG = 1.5 V 

IIGmin= 10 mA and IIGmax= 12 mA 

RS can then be calculated as follow: 5 − 1.5 = 10 ∗ R�→ the Max RS will be 350 Ω  5 − 1.5 = 12 ∗ R�→ the Min RS will be 280 Ω 

Electrical specifications of HCPL-3180 and associated required parameters are given in 

table B.2. 

Parameters Specified HCPL-3180 

Opt coupler isolation Required Provided 

Bandwidth Max 10 kHz 250 kHz 

Input current (ON) 12 mA 10 mA 

Input voltage (OFF) 0.8 V 0.8 V 

Input forward voltage <5 V 1.5 V 

High level output current 12 mA 0.5-2 A 

High level output voltage 5 V VCC-4 
Table B.2: Electrical specifications 

 

A PCB board has been designed using Ultiboard software and printed at Newcastle 

University. The PCB is built using a one layer copper board and the components have 

been soldered at bottom copper layer. Fig.B.8 and Fig.B.9 show the design of PCB and 

the final assembled board respectively. The outputs of the gate drive are connected to 

the gate and emitter of the related IGBT’s by using 8 coaxial and shielded wires. It is 

very important that the shields in the wires to be connected to the ground the system; 
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otherwise noise can be induced through the wire and it can generate unwanted 

switching. Even the length of the wire must be as short as possible in order to avoid any 

possible induced noises. 

 

 

Fig.0.8: Design of PCB Gate Drive Board 

 

 

Fig.0.9: Implemented Gate Drive Board 

 

B.5 Isolated power supply 

Isolated power supply provides isolation between electronic signals and power circuit. 

This device, NMF0515S, is shown in Fig.B.10 which is a DC/DC converter [94].The 

device comes with 5 pins where pin numbers 1 and 2 are connected to the supply 

voltage of 5 V.Pin numbers 3 and 5 provide the output voltage of 15V. Its rated output 
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power is 1 Watt and requires no heat sink. It also can provide output current of 67 mA 

[94].  

 

Fig. B. 10: NMF0515S DC/DC converter 

 

Its output power capacity may reduce by an increase in the operating temperature. The 

reduction in output power starts from 70° and up to this point it can deliver 100% of the 

rated power. After this point, the output reduces linearly with an increase in the 

temperature. For example at 100° the output power is halved. Moreover when the 

temperature reaches 125°, the output converges to zero. The safe operation zone is 

shown in Fig. B.11 [94]. 

 

 

Fig. B. 11: Safe operation zone and out power of MNF0515S at different ambient temperatures 

 

In general, switching ON and OFF of IGBT consumes some energy which must be 

provided by the gate drive and gate drive power supply. The amount of required energy 

depends on the gate charge characteristics of the selected IGBT and the switching 

frequency. The average current which must be supplied is given as follow: IEFG = QÖ ∗ få (B.2) 

where fO is the operation frequency and QG is the total gate charge. The operating 

frequency in this experimental study is about 1 KHz and the total gate charge can be 

found from gate charge characteristics curve which comes with data sheet of the IGBT. 

For SK20GH123 IGBT the gate charge characteristics is depicted in Fig.B.12 and can 
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be easily observed that for the IGBT, in order to reach its nominal current, it requires 90 

nC energy.  Therefore the average current will be: 

IAve = 90 * 1000 = 0.9 mA 

and the required power which must be provided is calculated as follow: P�G9 = IEFG ∗ ΔV (B.3) 

wherePreq is the required power to turn on the IGBT so that the current through 

collector-emitter to reach its nominal value. Also ∆V is the range of change of the gate-

emitter voltage from OFF to ON status or vice-versa. The gate-emitter voltage changes 

from -15 to 15 so the ∆V will be 30 volts. Therefore Preq is calculated using (B.3) as 

Preq = 0.9 * 30 = 27mW 

Referring to the data sheet of the gate drive isolated power supply [94], its output power 

is 1W, enough to supply the gate drive to turn ON and turn OFF the IGBT. In addition, 

referring to data sheet of the gate drive, its output power is 600mW which is enough to 

provide Preq as calculated above.  

Furthermore, it must be noted that the experimental studies are conducted in order to 

prove the validity of the proposed control idea which is discussed earlier in chapter 4. 

However in these studies the collector-emitter current in ON status of the IGBT due to 

the restriction on the equipment and the available facilities in the UG lab is designed not 

to exceed 15 A. But yet full Preq is required in order to force IGBT to fully conduct the 

current. For this reason, although the collector-emitter current will rarely reach 15A, but 

the gate-emitter voltage is designed to be 15V and the Preq will be 27mW. 

 

 

Fig.B.12: Gate charge characteristics of SK20GH123 
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Despite a small amount of power is required to turn on and turn off the IGBT, a 

considerable high peak current is required in order to provide an efficient switching. 

This is because having sufficient current, the required energy will be supplied quickly 

and the switching will be performed faster. To do so, the gate current must be increased 

up to the specified permissible value. This value is determined mainly by the output 

current of the gate drive which is 2.5 A for the HCPL-3180. 

B.6 Voltage Transducer (VT) 

Voltage transducer is a key component in the voltage measurement board. The LV 25-P 

VT is shown in Fig. B.13. The measurement of voltage can be achieved by passing a 

current through the transducer which is proportional to the measured voltage and can be 

controlled by an external resistor. In the calculation of the resistance it must be noted 

that the optimum accuracy of the device can be achieved if the primary input current in 

the measuring of the nominal voltage become 10 mA [95].  

 

Fig. B.1: LV 25-P the selected voltage transducer 

 

In addition the accuracy of VT depends on the value of input current and refer to the 

data sheet of the LV 25-P [95] its accuracy is 0.8% for IPN=10 mA and 1.5% for 

IPN=5mA. Furthermore, the turn ratio of the transducer is 2500:1000 and with nominal 

current at the input the nominal output current will be 25 mA. In order to convert the 

output current to the voltage and make it useable by the electronic circuit a resistor, RM, 

needs to be connected between output pin and ground of the electronic board in the 

measurement board. The connections of the VT and related pins are shown in Fig.B.14. 

In this device +HT and –HT are positive and negative polarity of connections of the 

input voltage. +VC and –VC are the supply pins. The output is shown by M and it must 

be connected directly to the RM resistor.  

 



264 
 

 

Fig. B.2: Connections of VT 

As a part of the hardware design and implementation, a PCB board which is shown in 

Fig.B.15 is designed using Ultiboard software. The designed PCB is printed in the 

Newcastle University and afterward the other devices are populated. After 

implementation, the board itself was tested and validated using fixed AC and DC 

voltage sources. The final implemented voltage measurement board is shown in 

Fig.B.16. 

 

 

Fig.B.15: PCB designed voltage measurement 
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Fig.B.16: Implemented voltage measurement board 

B.7 Op-Amp 

LMC660CMOp-amp chip is used in the voltage and current measurement boards. It is 

used to boost up the main signals (i.e. voltage or current) and eliminate the unwanted 

signals. It includes four Op-amps and its connection diagram is shown in Fig.B.17. As 

long as its electrical features concern it must be noted that it has rail to rail output swing 

therefore, the output voltage can dynamically vary between VSS and VEE [96].  

 

Fig. B.3: Connection diagram of the LMC660CM 
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B.8 Current Transducer 

Current transducer LTS 25-NP shown in Fig.B.18 is employed in the current 

measurement board. Its accuracy is ±0.2 % at nominal input current and temperature of 

25°C [97]. 

 

 

Fig.B. 4: LTS 25-NP Current Transducer 

 

The I-V characteristic of the CT presented in Fig.B.19 shows that for input currents 

above the absolute value of IPmax the output voltage remains unchanged, i.e. gets 

saturated. The output voltage for input currents above IPmax will retain in the fixed value 

of 4.5 volts and for currents less than -IPmax will remain in 0.5 volts. IPN (nominal input 

current) for this current transducer is 25 A then with the nominal input current the 

output voltage will be 3.125 V. It can be concluded that the permissible output voltage 

margin to measure the currents between 0 up to 25 A is 0.625 V.  

 

Fig.B.5: I-V characteristic of LTS 25-NP Current Transducer 

 

However if the CT is supposed to be used to measure lower currents then different 

configurations of the input can be used in order to achieve the accuracy of 0.2 %. To do 
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so, three different configuration of CT can be used as depicted in Table B.3. For 

example, for input currents about 25 A it is recommended that pin numbers 1, 2, 3 to be 

connected together and pins 4, 5, 6 also to be tied together as well then the turn ratio of 

1 will be selected in the transducer.  

 

Number of 
Primary Turns 

Primary Nominal 
Current rms IPN [A] 

Nominal Output 
Voltage VOut [V] 

Recommended 
Connections 

1 ±25 2.5±0.625 

 

2 ±12 2.5±0.600 

 

3 ±8 2.5±0.600 

 
 

Table B.3: Different configuration of CT with different turn ratio 

 

The connection of LTS 25-NP is shown in Fig. B.20. It shows that the CT can be 

supplied by 5 V DC and the ground is shared between supply voltage and output 

voltage. In this diagram, the input current is shown by ±IP which can be shared between 

input pins 1, 2, 3 and output pins 4, 5, 6. The turn ratio of CT can be changed by 

choosing one of the connections in Table B.3.It is noted that if the direction of input 

current is from pins 1, 2, 3 to 4, 5, 6 the polarity of the output voltage will be positive. If 

the direction of input current changes then the polarity of output voltage will be 

negative. Despite of this the output voltage is still positive (minimum 0.5 volts) because 

there is 2.5V offset at the output. However the change of direction must be considered 

in the calculations. 

 

 

Fig. B.20: Connection in LTS 25-NP Current Transducer 
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A PCB is designed for the current measurement board using Multisim and Ultiboard 

software. The designed PCB is printed at Newcastle University and it layout is shown in 

Fig.B.21. 

 

 

Fig.B.21: layout of designed and printed PCB for current measurement board 

 

After printing the PCB, other components including p-amps, CT, resistors etc... have 

been soldered in the UG lab as a part of the implementation process. The final 

completed current measurement board is shown in Fig.B.22. 
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Fig.B.22: The current measurement board 
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Appendix C: Microcontroller 

 

C.1 Introduction 

A microcontroller is needed to run the control algorithm. The algorithm is being 

executed by CPU which is the main part of a microcontroller. However a CPU sends 

commands and receives information by importing and exporting of data. Then a 

microcontroller needs to provide a proper input and output (I/O) ports in order to be 

able to run an algorithm and control a plant. The received signals are in an analogue 

format and their configuration needs to be converted to digital. This is achieved with an 

analogue to digital (A/D) converter within the microcontroller. The digital data is 

handled using data memory access (DMA) in the microcontroller and this can avoid 

involvement of CPU in data management. In addition the control algorithm of the 

DSSC includes a PWM generator. This functionality either can be provided by the 

microcontroller itself as an embedded function or it can be written in a code and 

executed by the CPU.  

In appendix C the employed microcontroller, dsPIC33FJ256MC710, in the 

implementation of test rig is explained. The microcontroller comes with embedded 

board and it includes its own PWM generator, A/D, I/O ports and DMA. 

 

C.2 Microcontroller 

The selected board is shown in Fig.C.1 with description of different parts. The 

microcontroller (dsPIC) itself needs to be supplied by 3.3 V, which comes from a robust 

on-board power supply. This power supply is well regulated for 9V-36V input voltage 

range. Other different voltage levels for the different parts of the board are provided 

internally. Even the polarity of the input voltage of the board is not important and a 

voltage between the permitted margins can be used in the input. Robustness of the 

embedded board in terms of using wide range of voltages, no matter what polarity they 

have, makes the embedded board flexible and easy to use. In the designed test rig, the 

embedded dsPIC board is supplied with + 9V via a DC power distribution feeder which 

is built to supply the electronic boards within the test rig. Additionally, the dsPIC can be 

supplied externally via available connectors and the reference voltage for the ADC can 

be altered and provided externally [110]. 
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Fig. C. 1: dsPIC33FJ256MC710 within an embedded board 

 

It can be observed from Fig.C.1 that the board comes with six different LEDs. They 

facilitate monitoring different status of operation of the board. Different operation mode 

of the board is indicated by the related LEDs which they come in different colour in 

different operation mode. More details of each LED and related colour can be found in 

table C.1 [110]. 
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LED Colour 
 
Function 
 

DL1 Green 
 
Input power supply 
 

DL2 Green 
 
Internal +5V power line activity 
 

DL3 Green 
 
Internal +5V power line activity 
 

DL4 Yellow 
 
dsPIC (R) DSC controlled led (e.g., debugging purposes) 
 

DL5 Yellow 
 
Internal PIC18 controlled led 
 

DL6 Red 
 
USB cable connection monitor 
 

Table C.1: Colours of LEDs indicating different functionality of the board 

 

As soon as the power supply is connected, the DL1 becomes green indicating input 

power supply is on. 

The dsPIC’s pins are available at the connectors which are shown in the Fig.C.1 [92]. 

The connectors assign easy access to all the pins in the microcontroller. The signals 

coming from the measurement boards, as well as the signals going to the gate drive 

board, are connected to the dsPIC via these connectors. The pin configuration of the 

dsPIC33FJ256MC710 is shown in the Fig.C.2 which is a Thin Quad Flat Pack (TQFP) 

100 pin chip. Pin numbers 93 (PWM1L), 94 (PWM1H), 98 (PWM2L) and 99 

(PWM2H) are used as PWM outputs. Pin numbers 25 (AN0), 24 (AN1) and 23 (AN2) 

are used as analogue inputs for two voltage signals and one current signal coming from 

the measurement boards. All pins are accessible by sockets provided in the board. This 

facilitates direct access to the dsPIC. 
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Fig.C.2: Pin diagram of dsPIC33FJ256MC710 

 

It operates like an interface and must be used along with MPLAB software installed in 

the PC. It gives the opportunity for the programmer to see the status of the registers in 

the breakpoint [74]. The program written in C code is then compiled using MPLAB 

software and uploaded to the controller via MPLAB ICD 2 (shown in Fig. C.3). Once 

running the program in the microcontroller, the status of the variable and registers can 

be downloaded to the PC again using the MPLAB ICD 2. This communication even 
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allows amending the value of registers which can be very useful in debugging the 

program [99].   

 

Fig. C. 3: MPLAB ICD 2 

 

C.3 Direct Memory Access (DMA) 

Direct Memory Access (DMA) is used to manage data between the CPU and other 

peripherals in the dsPIC. This helps the CPU not to be involved in transferring data 

between the registers. The peripherals which are involved with DMA in this project are 

[93]:  

� ADC 

� Input Capture 

� Output compare 

Each DMA must be configured properly to carry out specific functions. There are six 

different registers in the DMA controller which need to be set to certain values. For 

example, DMAxCON configures channel x to carry out a certain mode of operation. 

Also Enabling or Disabling the channel is done by this register. As another example, 

DMAxCNT deals with the numbers of requests from DMA which must be set in DMA 

controller.   

In this project, DMA is set for peripheral indirect mode and continuous, not Ping-Pong 

mode. The related code is as follow: 

void initDma0(void) 

   { 

   DMA0CON = 0x0000; // no increment 

DMA0CONbits.AMODE = 0; // Config DMA for Peripheral indirectmode 

DMA0CONbits.MODE  = 0;// Config DMA for Continuous no Ping-Pong mode 

   DMA0CNT=3; // 4 DMA request 

   DMA0REQ = 13; // 0001101 = ADC1 – ADC1 Convert  



275 
 

   DMA0PAD=(int)&ADC1BUF0; 

   DMA0STA = __builtin_dmaoffset(DMA0_buffer);  

   DMA0CONbits.CHEN=1; // Enable DMA 

   IFS0bits.DMA0IF = 0; //Clear the DMA interrupt flag bit 

   IEC0bits.DMA0IE = 1; //Set the DMA interrupt enable bit 

   DMA0CONbits.CHEN=1; // Enable DMA 

   } 

C.4 PWM Generator 

ThedsPIC33FJ256MC710 has four PWM generators. Each of them can be configured 

independently. In this project two of them have been employed in order to trigger four 

IGBT’s in the H-bridge converter. Each PWM generator has two outputs, high and low, 

which can be in complimentary or independent mode. For example, in the 

complimentary mode if the high value output has logic “1” then the low value output 

definitely is “0”. However, in the independent mode the low value output is not 

necessarily “0” and can be “0” later on.  

The PWM generator can be configured to insert dead time in the transition from low to 

high or high to low status. This is a very useful capability of the PWM generator when 

generating two outputs from one single PWM signal in order to trigger two IGBTs in 

one leg. If two IGBTs in one leg of the converter conduct at the same time then it will 

create a short circuit, thus will discharge the DC capacitor. By introducing dead time 

between the switching times of the IGBTs there will be no short circuit in the related 

phase. 

Output of PWM can operate in different modes as follow [112]: 

• Single Event PWM Operation 

• Edge Aligned PWM Mode 

• Centre Aligned PWM Mode 

• Complimentary PWM Output Mode 

The Centre Aliened PWM mode has been used in this project then only this mode is 

explained here and further information regarding the other modes of operations can be 

found in [96].The centre aligned PWM mode, as shown in Fig.C.4,usesPxTMR, PxDC 

and PTPER parameters to generate PWM pulses. For example in half period when the 

PxTMR reaches to the PxDC value the related PWMxH output becomes zero (low 

level). The output value is zero till the second half period when the PxTMR again 
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becomes equal to the PxDC and the output becomes “1”. The change of value of output 

happens each time PxTMR become equal to the PxDC.  

However this change depends on the mode of PxTMR. For example, when PxTMR is in 

up counting mode then the output value will change from “1” to “0”. There will be other 

way around when the PxTMR is in down counting mode. The mode of PxTMR changes 

when the value of PxTMR reaches the PxTPER. This event happens twice per period as 

it is explained in continue. Initially, the PxTMR value is zero then it starts to count up 

until it reaches the PxTPER value. This time interval is equal to half period and at this 

point PxTMR starts to count down. After another half period the PxTMR reaches to 

zero which is the time again to switch to up counting mode. 

 

Fig. C. 4: Centre aligned PWM mode 

 

In dsPIC33FJ256MC710 each PWM generator can produce two PWM pulses with 

different duty cycles but with the same frequency. This can be obtained by using 

different PxDC values; each of them can generate different pulses in the corresponding 

output. The value of PxDC is updated by the reference signal at each clock. With new 

value of PxDC then the generated pulse will be different and of course updated. This 

process makes the producing of the demanded waveform (in our project a sinusoidal 

voltage which is orthogonal to the line current) become possible by the converter. The 

value of PxTPER determines the frequency of carrier signal in the PWM generation. 

This is so called chopping frequency in the PWM and it can be increased or decreased 

by decreasing or increasing the PxTPER, respectively. 



277 
 

The PWM generator can be configured to operate in different mode with different 

functionalities. Such a configuration is represented in the following code. For example, 

the PWM outputs can be selected to operate in pair or single mode. Having the pair 

mode selected, the pin pairs can be either in the Independent output mode or in 

Complementary output mode. In the independent mode each of pin pairs can hold either 

values of “0” or “1”. It means that both in the same time could have value of “1” or “0”. 

In complementary mode if one of them is high the other is necessarily low. 

In the DSSC prototype project the complementary mode is selected. This is because in 

H-bridge converter there are two series-connected IGBTs in each leg of converter and if 

they are triggered at the same time then there will be a short circuit in the DC bus. In 

order to avoid such a failure they must be protected against being “ON” at the same 

time.  

After selection of the mode of operation for the outputs, the outputs themselves must be 

activated. This is activated by Enable/Disable bit for the corresponding output in the 

configuration register of the related PWM generator. For example, in order to enable the 

“HIGH” output of the PWM1 the “PWM1CON1bits.PEN1H”, as it is represented in the 

following code, must be set to “1”. 

As explained earlier the PxTPER is employed in PWM generator to achieve the desired 

chopping frequency. Normally this frequency remains unchanged during the operation. 

The PxTPER can be calculated as  

PxTPER = )�*)Þ+,�?%  (C.1) 

where PxTPER is related to half of the period of the carrier signal, FCY is the 

instruction clock of the dsPIC. This FCY determines the speed of operation of the 

device. With dsPIC33FJ256MC710 operation frequency of 40 MHz can be achieved. 

FPWM is the chopping frequency of the carrier signal. For example, if using FCY of 20 

MHz in order to achieve PWM frequency of 20 kHz, PxYPER can be calculated as 

PxTPER = ~ý,-.~ýà-.�?% = ÒÒÒ% = 499.5 ≅ 499	 (C.2) 

The PxDC, the duty cycle of the pulses, are changing all the times during the operation. 

Source of changes is the reference signal itself. For this reason, there is a facility in the 

PWM generator which provides opportunity to update the PxDC immediately after any 

change within the reference signal. Also, the update can be taken place at the end of 

each clock. In the prototype implementation, the update is set to be taken into account at 

the end of each clock in order to avoid disturbances.    
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voidinit_PWM() 

{ 

P1TCONbits.PTCKPS = 0b00; 

P1TCONbits.PTOPS = 0b0000;  //<3:0>: PWM Time Base Output Postscale Select bits 

P1TCONbits.PTMOD = 0b11;   //<1:0>: PWM Time Base Mode Select bits ---11 = 

PWM time base operates in a Continuous Up/Down mode with interrupts for double 

PWM updates 

PWM1CON1bits.PMOD1 = 0; 

PWM1CON1bits.PMOD2 = 0;  

PWM1CON1bits.PMOD3 = 0;   // PWM I/O Pair Mode bits 

FPOR1bits.HPOL=0 ;//1 = PWM I/O pin pair is in the Independent Output mode 

//0 = PWM I/O pin pair is in the Complementary Output mode 

PWM1CON1bits.PEN1H =1; 

PWM1CON1bits.PEN1L = 1;     

PWM1CON1bits.PEN2H = 1; 

PWM1CON1bits.PEN3H = 1;  

PWM1CON1bits.PEN2L = 1;  // PEN4H=1 PWMxH4 I/O Enable bits(1,2) 

PWM1CON1bits.PEN3L = 1;  

PWM1CON2bits.IUE = 0;    //IUE=1 Immediate Update Enable bit 

PWM2CON2bits.IUE = 0; 

PTPER = 6500;        /* PTPER = ((1 / 400kHz) / 1.04ns) = 2404, where 400kHz  

//PTPER = 1000; // is the desired switching frequency and 1.04ns is PWM resolution. */ 

/*~~~~~~~~~~~~~~~~~PWM1Configuration ~~~~~~~~~~~~~~~~~~~~~*/     

PDC1 = 640;   /* Initial Duty cycle */  

/* Clock period for Dead Time Unit A is TcY */ 

/* Clock period for Dead Time Unit B is TcY */ 

P1DTCON1bits.DTAPS = 0b00; 

P1DTCON1bits.DTBPS = 0b00; 

/* Dead time value for Dead Time Unit A */ 

/* Dead time value for Dead Time Unit B */ 

P1DTCON1bits.DTA = 8; 

P1DTCON1bits.DTB = 5; 

/* Dead Time Unit selection for PWM signals */ 

/* Dead Time Unit A selected for PWM active transitions */ 
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P1DTCON2bits.DTS3A = 0; 

P1DTCON2bits.DTS2A = 0; 

P1DTCON2bits.DTS1A = 0; 

P1DTCON2bits.DTS3I = 1; 

P1DTCON2bits.DTS2I = 1; 

P1DTCON2bits.DTS1I = 1; 

P1TCONbits.PTEN = 1; // PWM Time Base Timer Enable bit Enabling PWM Pulse 

Generation 

 //1 = PWM time base is on    

 //0 = PWM time base is off 

} 

C.5 Analogue to Digital Converter (ADC)  

Analogue signals come from the measurement boards need to be converted to the digital 

format and this is achieved in microcontroller through means of an ADC. In the 

laboratory prototype DSSC test rig, the employed microcontroller, 

dsPIC33FJ256MC710, includes an integrated ADC. The block diagram of the ADC 

module is shown in Fig.C.5, where it comes with 32 analogue inputs connecting to pins 

AN0 AN1...AN31.These inputs can be selected by using the control bits to be connected 

to a sample and hold devices. This will provide an opportunity to control the incoming 

signals and decide to connect the desired signal within a proper timing to the ADC. It 

means that all of the inputs eventually can be connected to the ADC but this can happen 

only if the related control bit becomes “1”[94]. 

One of the key features of the ADC module is that it can take an external reference 

signal instead of an internally provided one. This feature can be used to manipulate the 

conversion resolution. However in the DSSC prototype implementation the internal 

reference signal has been employed in order to avoid complexity. Also the ADC module 

supports DMA which allows the data to be stored in the memory without using CPU. 

This attribute of ADC saves time and consequently speeds up the operation of device.  

The ADC module, like other parts of the dsPIC33FJ256MC710, has its own 

configuration registers. These registers allow selecting different configuration of the 

module. For example, the analogue input channel s can be selected and configured using 

these registers. Even the “ON” and “OFF” mode of ADC can be controlled by 

allocating “1” or “0” to the associated register. In the DSSC prototype inputs AN1, AN2 
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and AN3 are allocated as analogue inputs. These three inputs receive analogue signals 

from current and two voltage measurements. 

 

 

Fig.C.5: The block diagram of the ADC module 
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C.6 I/O Ports 

I/O ports are used to send or receive data in order to monitor and control the other 

devices. In the dsPIC33FJ256MC710 all the pins can be employed as I/O ports except 

pins for supply (such as VDD or VSS) and the pins used for clock and oscillator 

(OSC1/CLKL). A dedicated port model is shown in Fig.C.6 where each port can be 

configured to be “Input” or “Output” [92]. 

 

 

Fig.C.6: A typical block diagram of I/O port 

 

Each I/O port needs four registers namely, TRIS, PORT, LAT and ODC in order to be 

set to operate in desired mode. For example, the TRIS register defines the flow direction 

of data by enabling the I/O port to be “Input” or “Output”. When the TRIS register (for 

the corresponded I/O port) is set to “0” it means that the port is an “Output” while “1” 

in the TRIS register shows that the corresponded port is an “Input”. “PORT” register 

allows reading or writing of the corresponding I/O pin. To do so, some instructions like 

“BSET” or “BCLR” are needed to be used. For instants, the example code for “BSET” 

can be as follow: 

 

BSET        PORTA,    #0                   ; Set pin 0 on Port A to ‘ 1’ 
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BSET        PORTA,    #1                   ; Set pin 1 on Port A to ‘ 1’ 

 

In the above code, the “BSET” instruction sets value of “1” to the port “A”. However, 

reading from and writing into the port can be problematic if the read and write follows 

each other (so-called “Read-Modify- Write” mode). The problem can occur when these 

instructions want to be executed one after each other while the voltage in the 

corresponding pin has not reached to the target level. In occurrence of this problem, 

wrong data will be presented in the I/O pin. In order to avoid the fault the “LAT” 

register must be employed. In the “Read-Modify-Write” operation the data can be red 

from the port latch and is written in the I/O port pin. The following code shows the 

writing on the I/O port using LAT register. 

 

BSET        LATA,    #0                   ; Set pin 0 on Port A to ‘ 1’ 

BSET        LATA,    #1                   ; Set pin 1 on Port A to ‘ 1’ 

 

There is no difference between LAT and PORT register when they are used to write to 

the I/O port. However, using these two registers to read from I/O port can result in 

different values. For instance, LAT reads the previous value which was held in the port 

but PORT reads values which are currently on the port. 
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Appendix D: Application of DSSC in Distribution Networks; 

Feasibility Study 

 

D.1 Introduction 

Feasibility of DSSC application in the existing 11kV distribution networks, in terms of 

their mechanical withstand capability, has been studied. The study includes overhead 

line design considerations and evaluation of the strength of poles. The study identifies 

important mechanical factors which must be considered in application of DSSC in the 

electrical networks. The study focuses mainly on the existing networks and employed 

equipments within their design. For example, the poles used in the construction of low 

voltage overhead lines are not as strong as transmission line towers and they can be 

made of different type of wood or metal. The overhead line wires can also be made of a 

wide range of conductors and materials. In addition, the effect of environmental 

conditions such as wind and the consequence oscillations has been studied. 

 

D.2 Overhead Line Design Consideration 

The mechanical construction of an overhead line, and its maintenance, requires a lot of 

attention in the design process of the line. Generally the most likely element to fail in an 

overhead line is the conductor and this can happen because of high winds or 

overloading of the line due to ice. For example, most of the reported overhead line 

failures in 11kV distribution circuits are related to line breakages [113]. Long spans 

increase the possibility of conductor clashing and may cause some damage at the 

contact points. This will weaken the strength of the wires and increase the likelihood of 

a break down in windy or bad weather conditions. For these reasons, care must be taken 

to ensure that the extra weight presented by the suspension of DSSC devises from the 

line conductors is fully taken into account when considering the application of DSSC. 

D.2.1 Restricted vibration 

Vibrations in an overhead distribution line can be divided into two categories. The first 

is an oscillation with large amplitude and low frequency referred to as Galloping and is 

generated by winds with speed of 5-10 miles/s. This type of vibration usually occurs in 

locations with long spans, for example where lines cross rivers or highways. The second 
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type is referred to as Aeolian vibrations and is a vertical vibration with low amplitude 

and normally with the frequency of about the natural frequency of the line. 

With regard to the Galloping, the suspension of DSSC from existing lines acts like 

added inertia and will initially contribute toward damping of any small amplitude weak 

oscillations in the line. However, as the large amplitude oscillation starts, for example 

as a result of strong wind, the extra weight of the DSSC device will boost the oscillation 

and may lead to a clash between the lines. 

 

Fig.D.1: Decomposition of mechanical forces 

 

The decomposition of mechanical forces in a DSSC compensated line is shown in 

Fig.D.1. In the figure, F is a mechanical force pointing toward the ground due to the 

mass of the line and the DSSC device. Under normal conditions, i.e. no oscillation, F2 is 

zero and F1 is equal to F. However, as the line moves to the side as a result of Galloping 

F will be decomposed into the two orthogonal forces F1 and F2 with F2trying to force a 

return back to the pervious conductor location. Thus, and in accordance with Newton 

laws of motion, it may be concluded that the extra mass of the DSSC device will help 

stop the initialisation of Galloping. However if as result of strong winds Galloping is 

initiated, the extra mass means that it may become more difficult to stop. Therefore 

where there is a likelihood of Galloping, in areas like river or highways crossings (in 

locations with long span), the installation of DSSC is not recommended in those 

sections of the line. Because of the distributed nature of the compensation, however, 

this will have a minimal effect on the performance of the line as a whole. 

Aeolian vibration on the other hand is not directly related to the weight of the wire and 

will not be significantly affected by the presence of DSSC devices in the power lines. 

This kind of vibration is caused by continuous wind and the margin for this movement 

is similar to the wire dimensions. 
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D.2.2 Conductor tension 

Conductor tension is generated by the line mechanical load which is a combination of 

wind force and weight of the conductor. The former is mainly horizontal and is referred 

to as the Maximum Conductor Pressure (MCP), while the latter is a vertical load and is 

referred to as the Maximum Conductor Weight (MCW). The maximum permissible 

tension of the conductor is the tension which the conductor can stand at a temperature of 

−5.6°C, considering the effects of all loads including wind pressure and weight.  The 

maximum tension of the conductor must of course be within certain safety limits. The 

suspension of DSSC modules, however, means that there is a possibility of the resultant 

tension exceeding the existing safety margins as a result of the extra weight of the 

modules.  

 

 

Fig.D.2: Interaction between the forces in a compensated distribution line 

 

Fig. D.2 shows the forces generated by the mass of the line, the mass of the DSSC 

module and the forces generated in the line to counter the resultant force. In the figure, 

F2 is generated by the mass of the DSSC module and is equal to mDg, where mD is the 

mass of the DSSC device and g is the gravitational acceleration. F1 represents the force 

generated by the mass of the line and is equal to mlg where ml is the mass of the line 

section between two poles. F is the sum of the two forces F1 and F2. In order to counter 

the effect of F, the line generates the force FH, which may be decomposed into two 

orthogonal components, −F and Ft, as shown. The force −F has exactly the same 

magnitude as F but acts in the opposite direction while Ft is the force which creates 

tension in the wire. The line tension will therefore increase with any increase in F. For 

this reason the effects of adding the external weigh represented by the DSSC modules 

must be carefully studied.  

The tensions withstand capability of a power overhead line varies from line to line 

depending on the dimensions, materials and geometry of the wires. The characteristics 
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of Aluminium alloy, as a commonly used conductor for 11kV overhead lines, is selected 

for investigation in this study. A conductor with a cross sectional area of 180.7 mm2 has 

a mass of approximately 497 kg per km, with a calculated breaking load of 50.65 kN 

[60]. Assuming that each DSSC module has a mass of approximately 50 kg (typical 

weight of DSSC as mentioned in [50]) and considering the mass of 0.4 km section of 

the line (the maximum span length for medium class poles) then the wire must be able 

to withstand (0.4*497+50) kg. The force produced by such a mass is around 2.4kN and 

is less than the calculated breaking load for the wire. So, in this case suspension of 

DSSC modules from the wire may not be problematic in terms of the calculated 

breaking load. Using another example of a standard aluminium alloy stranded conductor 

(with a cross sectional area of 30.10 mm2 and an approximate mass of 82 kg/km) the 

calculated breaking load is 8.44 kN. By adding the weight of the DSSC device, the total 

load will be 82.8 kg which produces a force of 0.8 kN, still less than the breaking load 

of the conductor. However, as the cross sectional area of the wire becomes smaller the 

ratio of breaking load to the resultant load becomes smaller and care must be exercised 

when considering the implications of DSSC. 

 

Cross 

sectional area 

Mass per 

kilometer 

Calculated 

breaking load 

Total load 

with DSSC 
Ratio of breaking 
load over the total 
load 

30.10 mm2 82 kg 8.44 kN 0.8 kN 10.55 

47.84 mm2 131 kg 13.4 kN 0.99 kN 13.26 

59.87 mm2 164 kg 16.80 kN 1.11 kN 18.73 

180.7 mm2 497 kg 50.65 kN 2.4 kN 21.10 

211.0 mm2 580 kg 59.10 kN 2.72 kN 21.73 

362.1 mm2 997 kg 101.5 kN 4.33 kN 23.44 

 

Table D.1: Results for different standard aluminium alloy stranded conductors 

 

Results for different standard aluminium alloy stranded conductors are presented in 

Table D.1.The results show that installing DSSC modules into distribution feeders is 

possible with the lowest ratio of breaking load to the total load in all cases being 10.55. 

However, the wires used on each feeder are different and even it can even be different 

with different parts of one feeder. For this reason, the characteristics of feeder in terms 

of the breaking load of the wires must be studied carefully before installing the DSSC 

modules.  
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D.2.3 Cross-arm 

Cross-arms on top of the overhead line poles in distribution feeders are used to hold the 

line conductors and the related insulators. In terms of their mechanical design, the cross-

arms must be able to support two different types of vertical and horizontal loads. 

Vertical loads include the weight of the wire and an extra load of about 225 lb [85], 

[114] which is the approximate weight of a line worker. The horizontal load is 

generated mainly by wind. Wire tension in most cases is negligible because the 

generated tensions from both sides of the cross-arm are equal. Generally, both vertical 

and horizontal loads depend on the characteristics of the conductor, the span, ice load 

and wind load. The vertical load can be calculated [114] as follows: 0� = V1¶ + 0.913 ∗ 2 ∗ g[	(g[ + i:)10�Kd (D.1) 

In equation (D.1)Tvis the vertical load on the cross-arm (Fig. D.3), while il and dw 

represent the cross section of ice load and wire, respectively. Ww is the weight of wire 

and this will be increased by the additional weight of the DSSC modules. This will 

increase Tv for each cross-arm but the new load should not cause any immediate 

problems since the mass of the DSSC device (at less than 50 kg) [114] is less than the 

extra design weight margin representing the weight of a line worker. The many varieties 

of cross-arm designs as well as different quality of the materials used in their 

construction are key parameters that must be carefully considered before the inclusion 

of DSSC modules in distribution feeders. As discussed earlier they have some margins 

to with stand extra load but this cannot be generalized for all networks Because the 

weight margins can be different from one cross-arm design to another, it is 

recommended that each circuit should be investigated individually on a case by case 

basis in order to obtain a certain level of confidence, reliability and safety. 

 

Fig.D.3: Vertical load on cross-arm 

 

The horizontal load will be different for cross-arms which are located through the feeder 

from those which are at the begging or at the end of the feeder. For a cross-arm not 
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located at either ends of the line (Fig. D.4), the horizontal load is calculated [114] as 

follow: T�} = (P� ∗ d ∗ 10�K)S�         (D.2) 

whereTt1 (kg) is the horizontal force of wind and Pw(k/m
2) is the wind pressure. d 

represents the cross sectional diameter of the wire and Sw is the effective length of the 

span. The additional weight of a DSSC module does not affect any of these parameters. 

Therefore, no extra horizontal load is imposed by the suspension of the DSSC modules. 

Tt1

Tt1

 

Fig.D.4: Horizontal load on cross-arm 

 

However, at locations where there is a bend in the feeder an additional force due to the 

angle of the bend is added to the horizontal load of the cross-arm. In this case, the 

resultant force is the combination of wind force and the angle force and can be 

calculated [114] as follows: T�~ = 2H©.*Sin %γ+ (P� ∗ d ∗ 10�K) ∗ S� (D.3) 

whereTt2is the resultant horizontal force and Hten is horizontal tension in the line. In this 

equation, H can be affected by the weight of the DSSC modules. This may be mitigated 

by using supportive joints, etc. However, because of the distributed nature of DSSC, the 

connection of DSSC modules in such sensitive locations can simply be omitted.  

A similar situation can be found at the beginning or at the end of the feeder. At these 

locations, the line tension on the two sides of the cross-arm is not equal. Normally, the 

line tension from the substation side is negligible and the total horizontal force is the 

combination of two orthogonal forces, one generated by the wind and the other 

generated by the line tension in the direction of the conductor. These forces are shown 

in Fig.D.5. 
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Fig.D.5: Horizontal loads at the corners 

 

In this situation, the total load, Tt3, is calculated as follows: 

T�K = �H©.*% + T�5% (D.4) 

In this equation Tt’ as discussed earlier cannot be affected by the weight of the DSSC 

device, however, Hten must be considered [114]. If the inclusion of a DSSC module at 

the beginning or at the end of the feeder becomes necessary for any reason, then the 

cross-arm must be supported mechanically by a supportive structure.  

Two other parameters must be considered in the cross-arm design process, the phase to 

phase distance and the phase to pole distance. The phase to pole distance is the 

minimum space between the closest wire to the pole or its connection and can be 

calculated [62] as follows: L�	
 = 125 + 5 ∗ (V − 8.7) (D.5) 

where Lmin (mm) is the minimum distance between line and pole and V is the line 

voltage. For example, for an 11kV feeder this must be at least 136.5 mm, however other 

issues such as birds sitting on the wires or maintenance requirements mean that this 

distance is larger in practice. In equation (D.5) Lmin is function of V only, and is not 

affected by the additional weight of the DSSC modules. So, it can be stated that series 

compensation of a line using DSSC will not change the minimum distance required 

between pole and line. The minimum distance between two phases PC (needed to make 

sure that they are electrically isolated) is calculated [114] as follows: 

PC = KG�f��� + L� + �?ÙI (D.6) 

where V is the line voltage and LI represents the insulator string length. In this equation 

the maximum depth of span is represented by fmax and Ke is a parameter which is 

determined by type of wire, its material and cross sectional area. These parameters are 

not going to be affected by suspending the DSSC modules from the line. However, it is 

recommended that the modules are connected to the three conductors in different 
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locations between each two adjacent poles. The suggested configuration is shown in 

Fig.D.6. 

 

 

Fig.D.6: Connection of DSSC modules in different locations 

 

The configuration and structure of the cross-arm is an important parameter in the 

distribution of mechanical loads. Different types of cross-arm are shown in Fig D.7 and 

their advantages/disadvantages given in Table D.2.The selection of a given cross-arm 

design depends on environmental conditions, the length of the span, depth of the span 

and the line voltage. Based on the type of their connection to the pole and the way they 

hold the wires, the cross-arm designs are given names like flag shape arm, double 

circuit arm, triangle shape arm, L shape arm, buck arm and double arms as shown in 

Fig.D.7.  

The materials with which the cross-arms are made and the way that insulators are 

connected to the arms may be different for different designs. For example, the insulator 

can be implemented on the arm or alternatively it can be suspended from the arm. 

Moreover, the arms can be made of wood, metal or composite material depending on 

environmental conditions and the mechanical loads that the arms needs to carry.  
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Nameof 
cross arm 

Description 

Flag 
shape 

This cross-arm needs a small space and can be employed when there is a 
difficulty in providing enough safety margin in terms of electrical 
clearances. Long depths of span can be achieved with this design. As each 
individual wire has its own independent arm, the weight of each added 
DSSC module will rest on one arm. This will avoid having the weight of all 
three modules on one arm. 

Double 
circuit 

The cross-arm carries two sets of three phases and can be employed with 
long spans between poles. Normally it comes with pin insulators. However, 
adding two sets of three DSSC modules can present a heavy total load. 

Triangle 
shape 

This cross-arm uses three pin insulators to hold the wires which and are 
located at the three points of a triangle so that the phases are relatively 
close to each other. This limits the possible depth and length of span 
between two poles. 

L shape 
Using this cross-arm in the distribution feeders will limited the depth of the 
span between two poles. This design is used when there is a small space for 
electrical clearances. 

Single 
arm 

This design is employed in areas where there is heavy ice and pollution. As 
it needs a large space for the required electrical clearances, it is most 
commonly found in the countryside and in mountainous areas where the 
distance between the two poles are long. They are usually designed to 
withstand large mechanical loads, so the implementation of DSSC modules 
on this type of cross-arm will not be problematic. 

Buck arm 
Is used when two line cross each other. There will be two orthogonal loads 
vertically and horizontally and extra support wires may be needed in some 
cases. 

Double 
arm 

This is essentially the same as the single arm design, reinforced by another 
arm in parallel. The second arm is added to manage the high mechanical 
loads in heavily loaded feeders with big heavy wires. 

 

Table D.2: Different cross-arm designs  
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Fig.D.7: Different possible type of cross-arm in the distribution feeders 
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D.2.4 Poles 

The pole is a major item of equipment in an overhead line distribution network. It holds 

the mechanical loads of the cross-arms and wires and other vertical loads due to wind, 

ice, and the resultant tension in the conductors. In most cases, the resultant wire tension 

generates only a vertical force in the direction of the pole itself (uplift or downlift) and 

the horizontal effects are negligible (horizontal tensions at either end cancel each other 

out). The vertical force acting on the pole is equal to the total weight multiplied by the 

length of span and can be expressed as: 8� = :	 ×	À· (D.7) 

where Fv is the vertical force on to the pole, w is the total weight of the wires, ice, etc. 

and Sl is the length of span. It can be clearly observed from equation (D.7) that w will 

be increased by introducing the DSSC modules into the system. This force, Fv, is 

directed at the foundations of the pole and do not affect the pole itself.  

Poles must also withstand another horizontal force generated by the wind. This force 

depends on the length of span the wind blows through and the strength of the wind and 

can be expressed as: F:; = S� ∗ (W�= ∗ ρ) (D.8) 

where FWH is the horizontal force generated by the wind through the wire and directed 

to the pole, Wmf is the maximum wind force through one meter of the wire, Sw is the 

length of span which the wind blows through and ρ is a parameter defined by 

environmental parameters. Adding a DSSC module will not have any effect on the 

horizontal force because the parameters in equation (D.8) will remain unaffected. Based 

on equations (D.7) and (D.8) it can be concluded that if the mechanical load of the 

DSSC modules is balanced on both sides of the pole, there will not be any extra load on 

the poles themselves. For this reason it is recommended that the number of added DSSC 

devices must be equal on both sides of the pole.  

Poles are made of different materials including concrete, wood and steel and their 

mechanical properties will differ in term of their load carrying capabilities. In 

distribution networks, and especially in 11kV networks, poles are mainly made of wood 

or concrete and metal poles are rarely used. For this reason, only wooden and concrete 

poles are considered in this study.  

Concrete poles are made of reinforced concrete and they have some advantages that 

encourage utility companies to employ them widely in their networks. For example, 

they do not need any maintenance, are fire proof and do not decay for years and years. 
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They can be made in a variety of different sizes, heights and dimensions [114], [115] 

and this gives designers a lot of freedom in the planning stage. Table D.3 gives the 

maximum mechanical load for different lengths of some common, widely used concrete 

poles. The selection of the height of the pole and its’ mechanical strength depends on 

environmental factors and the weight of the conductors. 

 

Length of 
pole [m] 

9 9 9 9 12 12 12 12 12 15 15 15 15 

Maximum 
mechanical 
load [kgf] 

200 400 600 800 200 400 600 800 1200 400 600 800 1200 

Table D.3:  Different design of concrete poles 

 

In Table (D.3) maximum mechanical load is the load that the pole can withstand under 

normal conditions measured in kilogram force (1kgf being equal to the force generated 

by a mass of 1kg). Table D.4 gives the mass of different conductors and of the DSSC 

modules [116]-[118]. The conductors are called All Aluminium Alloy Conductors 

(AAAC) and widely employed through the 11kV distribution networks. They are made 

of copper and aluminium. Table 3.4 includes the calculated total weight of wire and a 

DSSC module through the span. In this calculation the length of span is assumed to be 

0.4 km and the weight of one DSSC device to be 50 kg. Each wire includes one DSSC 

device and between two poles there are three devices suspended from the wires.  

 

Code 
Name 

Conductor 
Cross 
sectional area 

Mass per 
kilometer 

Calculated 
weight of span 
and DSSC (0.4 
km) 

Almond 30.10 mm2 82 kg 82.8 kg 

Fir 47.84 mm2 131 kg 102.46 kg 

Hazel 59.87 mm2 164 kg 114.88 kg 

Ash 180.7 mm2 497 kg 248.4 kg 

Elm 211.0 mm2 580 kg 281.52 kg 

Upas 362.1 mm2 997 kg 448.15 kg 

 

Table D.4: calculated weight of conductors and DSSC modules 
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Wooden poles are also employed widely in distribution networks, and especially in 

older, aging circuits. The wood poles decay with time is and this can reduce their 

strength, so they need to be maintained and kept in good condition. The strength of the 

poles throughout a feeder becomes more of a concern when the feeder is proposed to be 

compensated by DSSC and the poles must be checked and tested against rot and 

weakness. There are two commonly employed methods to check the strength of wooden 

poles. 

One approach is to use the Sibert drill method in which the pole is drilled using a tiny 

drill, 1milimeter in dimension, at quite high speed of say 7000 rpm [85]. The sample 

will generate data which is then analysed to check for any signs of rot. Another method 

is to simply check the pole visually or by using the Mattson bore approach. Mattson 

bore approach is a kind of visual check however in this method a tool is screwed into 

the pole. This will provide some sample from inside the pole which can be checked and 

analysed visually. The collected data can then be analysed to check the condition of the 

pole. 

Table D.5 shows different types of wood poles with their related fibre stress and 

circumference taper [119]. The fibre stress represents the average strength of the pole 

and along with the circumference defines the pole class. For example, Cedar western 

red an specie of wood pole comes in different class mentioned in Table D.6 [120].The 

length and load capacity of each pole class is given in Table D.6 [119]. The table shows 

that each pole has a limited load capacity which must not be exceeded under any 

circumstances. Then introduction of the DSSC modules must be carried out based on 

the values given in these Tables to avoid exceeding the permissible load capacity of the 

pole. 
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Species 
Fiber 

Stress(Ib/in2) 

Circumference 

Taper (inch/ft) 

Cedar, western red 6,000 0.38 

Pine, ponderosa 6,000 0.29 

Pine, jack 6,600 0.30 

Pine, lodge pole 6,600 0.30 

Pine, red 6,600 0.30 

Cedar, yellow 7,400 0.20 

Douglas-fir (interior north) 8,000 0.21 

Douglas-fir, coast 8,000 0.21 

larch, western 8,400 0.21 

Southern Pine 8,000 0.25 

 

Table D.5: Different type of wood pole with related fibre stress 

 

 

Pole class Horizontal load (lb) Length range (ft) 

H5 10,000 45-125 

H4 8,700 40 -125 

H3 7,500 40-125 

H2 6,400 35-125 

H1 5,400 35-125 

1 4,500 35-125 

2 3,700 20-125 

3 3,000 20-90 

4 2,400 20-70 

5 1,900 20-50 

6 1,500 20-45 

7 1,200 20-35 

8 740 20-30 

9 370 20-25 

 

Table D.6: Length and load capacity for different pole classes 
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D.3 Summery 

This study, investigates main parameters of overhead line design in an distribution 

feeder which may be affected by suspending an external mechanical load from the 

power lines. For example, the effect of adding DSSC modules on the horizontal and 

vertical vibrations through the lines is studied. It is comprehended that the additional 

mechanical load represented by the DSSC modules can even help suppress Galloping 

(horizontal oscillations), but does not affect Aeolian (vertical vibrations).  

Furthermore, braking load of some commonly used conductors (the most vulnerable 

part of the system to failure) in electrical distribution networks is also analysed. It has 

been concluded that the additional DSSC devices directly increase the tension in the 

conductor. Afterward, study recommends suspension of DSSC devices to be avoided 

where the feeder is crossing a river, road or where it has a very long span.  

In general, it was concluded that compensating distribution lines using DSSC devices is 

a feasible proposition in terms of the mechanical load capacity of the feeder. However 

this statement cannot be generalized for all feeders and all networks. For this reason and 

before adding the modules through the line, the capability of the line must be carefully 

studied.  

 


