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Abstract  

For ship systems to remain reliable and safe they must be effectively maintained through a 

sound maintenance management system. The three major elements of maintenance 

management systems are; risk assessment, maintenance strategy selection and maintenance 

task interval determination. The implementation of these elements will generally determine 

the level of ship system safety and reliability. Reliability Centred Maintenance (RCM) is one 

method that can be used to optimise maintenance management systems. However the tools 

used within the framework of the RCM methodology have limitations which may 

compromise the efficiency of RCM in achieving the desired results.  

 

This research presents the development of tools to support the RCM methodology and 

improve its effectiveness in marine maintenance system applications. Each of the three 

elements of the maintenance management system has been considered in turn. With regard to 

risk assessment, two Multi-Criteria Decision Making techniques (MCDM); Vlsekriterijumska 

Optimizacija Ikompromisno Resenje, meaning: Multi-criteria Optimization and Compromise 

Solution (VIKOR) and Compromise Programming (CP) have been integrated into Failure 

Mode and Effects Analysis (FMEA) along with a novel averaging technique which allows the 

use of incomplete or imprecise failure data. Three hybrid MCDM techniques have then been 

compared for maintenance strategy selection; an integrated Delphi-Analytical Hierarchy 

Process (AHP) methodology, an integrated Delphi-AHP-PROMETHEE (Preference Ranking 

Organisation METHod for Enrichment Evaluation) methodology and an integrated Delphi-

AHP-TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) methodology. 

Maintenance task interval determination has been implemented using a MCDM framework 

integrating a delay time model to determine the optimum inspection interval and using the age 

replacement model for the scheduled replacement tasks. A case study based on a marine 

Diesel engine has been developed with input from experts in the field to demonstrate the 

effectiveness of the proposed methodologies.  

 

 

Keywords: maintenance strategy, MCDM, decision criteria, VIKOR, TOPSIS Reliability 

Centered Maintenance, Delay time model.  
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Chapter 1 Introduction 

1.1 Introduction 

The role of the shipping industry in its contribution to the growth of the world Gross 

Domestic Product (GDP) cannot be over emphasized as it is responsible for the movement of 

the bulk of the world economic raw materials and commodities. However despite the large 

market that it serves, the business environment remains highly competitive because there are 

many service providers in the shipping industry and for any service provider to remain in 

business, reliable and quality services must be provided to its customers at a minimum cost 

and at the same time maintaining a safe operational environment. Unfortunately  the costs of 

operating a ship and its systems keeps rising and one of the major contributors to operational 

cost is the maintenance cost which can vary from 15 to 70 % of the total operational cost 

(Sarkar et al., 2011, Bevilacqua and Braglia, 2000). Alhouli et al. (2010) showed in a case 

study of  a 75,000 tonne bulk carrier, that its maintenance cost accounted for 40 percent of the 

total operational cost, based on a sample survey. In the US industries alone, over $3.2 billion 

is lost annually due to energy wastage caused by poor maintenance management of 

compressed air systems (Vavra, 2007). It is also reported that approximately one third of the 

total maintenance expenses of most industries is unnecessarily expended due to poor 

maintenance practice (Wireman, 1990). It is thus obvious that one major factor that influences 

operational cost is maintenance cost, and that reducing this cost will invariably reduce the 

overall operational cost. From the above, two fundamental factors are clearly essential in 

order to keep a service provider operational in a highly competitive business; namely service 

reliability and reduced operational cost. These two factors are, unfortunately, generally 

conflicting. Either reliability increases or cost decreases and vice versa. However in order to 

strike a balance, an efficient maintenance system must be in place that will yield high system 

reliability at a minimum acceptable cost. 

 

However great care must be taken in reducing maintenance costs in order not to compromise 

safety, reliability, availability of the system functionality and safety of the environment. To 

achieve this aim, the various components that make up a maintenance system must be 

optimized. The three main components of a maintenance system are as follows:  

(1) Risk assessment  

(2) Maintenance strategy selection, and  

(3) Maintenance strategy interval determination 
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Risk is generally defined as being the “product of probability of failure of a system and the 

consequences of the failure occurring”. Risk assessment of each item of equipment that makes 

up the full integrated system is carried out and based on the assessed level of risk the 

maintenance strategy that is the most suitable to mitigate the potential consequences of 

failures is selected. There are several different maintenance strategies that are available for 

ship system maintenance practitioners to choose from and these are generally divided into 

three groups; corrective maintenance, preventive maintenance and condition-based 

maintenance.  The corrective maintenance philosophy is the approach in which an item of 

equipment is allowed to run until failure occurs before any corrective action is performed. The 

preventive maintenance type is an approach in which the maintenance action (replacement or 

overhaul) to be carried out on an equipment item is scheduled on a regular basis. Condition- 

based maintenance is the approach in which the maintenance action is performed based on the 

observed condition of the equipment. The condition of an item of equipment can be monitored 

using one of two approaches; continuous or periodic (Mishra and Pathak, 2012). The periodic 

approach is generally the one that is preferred because it is cheaper than the continuous 

monitoring approach. In a maintenance management system after the determination of the 

optimum maintenance strategy for each item of equipment in a system the next step is to 

determine the appropriate interval for performing the maintenance task. There are however, 

other components of a maintenance system such as spare parts inventory management and 

personnel management that have not be considered in this thesis due to time limitations. 

 

Different techniques have evolved for the optimisation of the components of a maintenance 

system namely; Reliability Centered Maintenance (RCM), Total Productive Maintenance 

(TPM) and Risk Based Maintenance (RBM). Each of these techniques aims at maintaining a 

plant or a system at an improved level of reliability and availability and at a lower risk with 

the minimum cost. In the maritime sector Reliability Centered Maintenance (RCM) has been 

applied to a greater or lesser extent in the optimization of maintenance strategies (Conachey, 

2005, American Bureau of Shipping, 2004, Aleksić and Stanojević, 2007, Conachey, 2004, 

Conachey and Montgomery, 2003). However each of the various tools that have been utilized 

within the RCM framework in the optimization of these three major components of a 

maintenance system has several limitations. For example in the area of risk assessment, RCM 

utilizes Failure Mode and Effects Analysis (FMEA) in prioritizing the risk of failure modes of 

a system. With this analysis tool, risk is represented in the form of a Risk Priority Number 
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(RPN) which is computed by multiplying the severity rating (S) by both the occurrence 

probability (O) and the detection rating (D) for all failure modes of the system. However 

FMEA has been criticized by many authors in having limitations such the inability of the 

technique to take into account other important factors such as economic cost, production loss 

and environmental impact (Braglia, 2000, Sachdeva et al., 2009b, Zammori and Gabbrielli, 

2012, Liu et al., 2011) and employing the use of only precise data in expressing the opinions 

of experts whereas in many practical situations the information may only be an imprecise 

estimate.  

 

Another example is the tool that is utilised within the framework of RCM for the selection of 

the maintenance strategy. The RCM logic tree that is utilised for the selection of maintenance 

strategies has been  criticized as being a very time consuming exercise (Waeyenbergh and 

Pintelon, 2004, Waeyenbergh and Pintelon, 2002). Furthermore, the technique does not make 

provision for the ranking of alternative maintenance strategies and as such selecting the 

optimum maintenance strategy apparently becomes difficult. Alternative techniques have 

been developed by previous researchers in the literature. For example Lazakis et al. (2012) 

proposed an integrated fuzzy logic set theory and the use of TOPSIS, Goossens and Basten 

(2015) and Resobowo et al (2014) proposed the use of AHP. Nevertheless, these alternative 

approaches all have one limitation or another such as some doubts remain on the practical use 

of the fuzzy set theory method because of the computational complexity it introduces into the 

decision making process (Zammori and Gabbrielli, 2012, Braglia, 2000).  The limitations of 

RCM can further be proven in the area of maintenance strategy interval determination as there 

is no provision for such an area within the classical RCM framework, although some modified 

RCM models have been developed and utilised for maintenance strategy interval 

determination (Almeida, 2012, Gopalaswamy et al., 1993). However most of these 

mathematical models are either too abstract or are based on a single decision criterion 

whereas the problems in practical situations are generally multi-criteria based and as such are 

better addressed by using a multi-criteria decision making method. 

 

From this brief review and assessment it can be concluded that there is the need to develop 

alternative tools that will enhance the decision making process in these three areas of the 

maintenance system within the framework of RCM. In this research, a multi-criteria decision 

making approach is proposed in solving the problems of (1) risk assessment (2) maintenance 

strategy selection and (3) maintenance strategy interval determination. The multi-criteria 
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decision making approach is proposed because there are numerous decision criteria, which are 

in conflict with one another,  generally involved in the decision making process of each of the 

three problems.   

 

1.2 Research Aim and Objectives 

 

The overall aim of this research was to develop an enhanced RCM methodology based on the 

combination of multi-criteria decision making methods with RCM concepts in order to 

formulate a more efficient maintenance system for application to marine machinery systems. 

 

The objectives of this research, were: 

 

(1) The development of a methodology for the assessment of the level of risk of marine 

machinery systems based on the integration of RCM FMEA with multi-criteria decision 

making techniques. 

(2) The development of a methodology for maintenance strategy selection based on the 

integration of the RCM concept with multi-criteria decision making methods. 

(3) The development of a methodology for maintenance interval determination using 

multi-criteria decision making approaches within the RCM framework.  

 

1.3 Research methodology 

 

From the literature survey that was undertaken, as described in Chapter 2, it is obvious that 

the tools that are currently utilized within the framework of RCM and RBM in the 

optimization of the three major elements of a maintenance system have limitations which 

negatively impact on the reliability of the system. The inadequacy of the tools has also 

resulted in potentially increasing maintenance costs without a commensurate increase in ship 

machinery system availability. Hence there is the need to develop alternative tools that will 

enhance the current methodologies such that maintenance of a system can be more efficiently 

optimized for improved ship machinery reliability at a reasonable cost.   Since in the marine 

industry failure data and maintenance data, as required for performing failure statistical 

analyses, are not easily available, the proposed methodology has been developed with the 

inbuilt capability of using a combination of expert’s opinions, a reliability data bank and data 
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from similar plants. Some of the reasons that are given in the literature as to why failure and 

maintenance data are difficult to come by in the marine industry are (Mokashi et al., 2002): 

(1) Within the RCM framework  analysis is performed at failure mode level whereas in most 

marine industries failure data is kept at the component level, (2) In the RCM methodology 

maintenance is centered on the function of the system being maintained and for some function 

failures, having multiple failure modes, the collecting and keeping of quality and useful 

statistical information is nearly impossible, (3) In many shipping industries, failures are 

largely mitigated through a preventative approach and in such cases data availability for 

statistical analysis may be inadequate and (4) Even if such data is available, in some cases, 

due to commercial sensitivity, the shipping industries, insurance companies and flag societies  

are prevented from the sharing this information. 

 

The methodology that this study has evolved is a decision support tool that has been 

developed within the RCM framework for prioritizing the risk of failure modes of a marine 

machinery system and maintenance strategy is selected based on the prioritized risk. The tool 

also determines the interval for performing the selected maintenance strategy. The flow chart 

of the decision support tool is presented in Figure 1.1. The methodological steps are as 

follows:  

 

Step (a) Risk assessment: This begins with the identification of the specific system to be 

investigated. In this research the ship machinery system was considered because, from  

accident data analysis that has been performed for data collected from 1994-1999, it was 

observed that over 50% of ship accidents were caused by machinery failures (Wang et al., 

2005). However since the full machinery system was considered to be too large, a marine 

diesel engine which is a sub-system of the full marine machinery system was chosen as the 

case study for this research. The failure modes of the individual equipment/components that 

collectively make up the marine diesel engine were then determined. This was then followed 

by the development of a risk prioritisation tool for the ranking of the risk of the individual 

failure modes of the system under investigation. Experts’ opinions were sought in assigning 

values to the failure modes which were then used as input data into the risk prioritisation 

tools. Chapters 3 and 4 discuss the risk prioritisation methodologies that are proposed for the 

risk assessment of marine machinery systems.  
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Figure 1.1: Decision support methodology for maintenance system management 

 

Step (b) Maintenance strategy selection: The maintenance strategy selection process 

commences after the determination of the level of risk of each of the failure of modes of the 

machinery system. Since individual components/equipment items of the system can have 

multiple failure modes the most critical failure modes of the equipment items are identified 

such that maintenance strategy is determined for the equipment items based on their most 

critical failure mode. For example if the most critical failure mode for the high pressure oil 

pump is  injection seizure, then the maintenance strategy to be selected for that pump will be 

based on mitigating failure effects that are caused by injection seizure.  A maintenance 

selection methodology based on a hybrid MCDM technique was developed as an alternative 

to the RCM logic tree that is normally used in the classical RCM framework and other 

alternatives, proposed in the literature. Although a considerable number of critical equipment 
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items and failure modes were identified based on the risk ranking of failure modes performed 

in Step (a) only the high pressure fuel oil pump maintenance strategy was determined in Step 

(b) in validating the proposed methodologies. The maintenance strategy selection process 

started with the identification of decision criteria upon which the optimum strategy is 

selected. This was followed by the identification of alternative maintenance strategies for 

marine machinery systems. The next task was the formulation of the maintenance strategy 

problem and associated data collection.  The collected data was then used as input into the 

MCDM ranking tools in order to assign weights to the alternative maintenance strategies. The 

strategy with the highest weight was deemed to be the optimum solution that the maintenance 

practitioners should select if there are sufficient funds to be able to implement it, otherwise 

the alternative with the second highest weight can be chosen. Chapter 5 presents the 

methodologies for selecting an optimum maintenance strategy for marine machinery systems.  

 

Step (c) Maintenance strategy interval determination: Another important component of 

maintenance management which must be optimised for greater plant reliability at a minimum 

cost is the maintenance strategy interval determination. Having considered the maintenance 

strategy that is the most suitable for each of the equipment items/most critical failure modes, 

the next step is to determine the optimum interval for performing the assigned maintenance 

strategy. Although five maintenance strategies were considered as being potential alternatives 

for a marine machinery system in Step (b) only the interval determination for two of them was 

studied in this research due to time limitations. The two maintenance strategies studied are 

scheduled replacement (SRP) and inspection also referred to, as in this thesis, as Offline 

Condition Based Maintenance (OFCBM). The methodology proposed for determining the 

optimum interval for scheduled replacement is presented in Chapter 6 while that of OFCBM 

is presented in Chapter 7. 

 

 

1.4 Overview of the Thesis 

The work undertaken and described in this research is presented in 8 chapters and the contents 

of chapters 2 to 8 are briefly described as follows: 

 

In Chapter 2 the results are given of an extensive literature review that was undertaken with 

respect to all issues relating to maintenance management of marine machinery systems. 

Firstly an overview of maintenance is described. This is followed by a discussion of the 
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various maintenance strategies that are employed for maintaining an asset. The three basic 

types of maintenance strategies that are discussed are; corrective, preventive and condition 

based maintenance. A discussion of the various maintenance optimisation techniques, such as 

RCM, RBM and TPM, is also given in this chapter. Finally the three major elements of 

maintenance management which are generally optimised within the RCM and RBM 

frameworks are extensively discussed with a view to identifying the challenges of the various 

tools that are currently applied and proffering alternative solutions. 

 

In Chapter 3 a risk assessment methodology based on the FMEA technique that was 

developed is described. The essence was to produce an enhanced version of FMEA by 

eliminating some of the limitations of the classical technique. In order to establish the 

limitations of FMEA and to consider some of the enhanced approaches presented in the 

literature, an FMEA background study and a state of the art review were undertaken. This 

resulted in identification of the limitations of the current approaches and, development of 

hybrid risk prioritisation methodologies. The proposed methodologies were validated using 

three case studies. Finally in this chapter, it was concluded, that that the two proposed 

methodologies can effectively be utilised either individually or in combination in prioritising 

the risk of failure modes of machinery systems. 

 

In Chapter 4 two more alternative risk assessment tools based on a compromise solution 

method are presented. The chapter starts with a review of MCDM tools and their relevance to 

the marine industry. The review then led to identification of the limitations of the techniques 

proposed in chapter 3 and other MCDM techniques that have been applied by other 

researchers in the literature. The methodological steps for the two techniques are then 

presented. To test the applicability of the proposed techniques three case studies are also 

presented.   

 

In Chapter 5 a novel methodology for the selection of maintenance strategies is presented. 

This chapter starts with a review of the MCDM methodology for maintenance strategy 

selection. Based on the review, various hybrid MCDM methods are presented. An analysis of 

data using the various tools in the hybrid method is then performed.  

 

In Chapter 6 a methodology for the determination of the optimum interval for a scheduled 

replacement task is presented. The methods that are proposed utilise three decision criteria; 
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reliability, cost and downtime. An MCDM technique is introduced for the aggregation of the 

three decision criteria models. In order to validate the proposed methodology, a case study of 

a marine diesel engine crankshaft was conducted. A sensitivity analysis is also presented to 

investigate the impact of the decision criteria variables on the rankings of the various 

alternative scheduled replacement intervals. 

 

In Chapter 7 a methodology based on the integration of a delay time concept with the MCDM 

technique is presented for the determination of the optimum inspection intervals. The delay 

time concept was used to model three decision criteria; cost, downtime and company 

reputation, while MCDM techniques were used in converting the three decision criteria into a 

single analytical model. A case study of a cooling system water pump is presented in order to 

determine the suitability of the methodology for the selection of the inspection interval for 

marine machinery systems. A sensitivity analysis is also presented in order to investigate the 

influence that changes to decision criteria weights will have on the ranking of the alternative 

inspection intervals.  

 

In Chapter 8 general conclusions are presented together with the contribution of the study, 

limitations of the current study and with recommendations for future work.  
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Chapter 2 Literature Review 

 

2.1 Introduction 

 

The aim of this chapter is to construct a theoretical structure upon which this research will be 

based. In the light of this, the research objectives are discussed in relation to the work of other 

researchers. This chapter has been divided into five parts: the first part deals with an overview 

of maintenance, the second part deals with maintenance optimization, the third part deals with 

risk assessment methods, the fourth part deals with maintenance strategy selection and finally, 

the fifth part deals with maintenance interval determination.  

 

2.2 Maintenance overview 

 

(Dhillon, 2002) defined maintenance as the combination of activities undertaken to restore a 

component or machine to a state in which it can continue to perform its designated functions. 

Maintenance usually involves repair in the event of a failure (a corrective action) or a 

preventive action.  On the other hand the British Standard defines maintenance as (BS 1993) 

“the combination of all technical and administrative actions, intended to retain an item in, or 

restore it to, a state in which it can perform a required action”. The costs incurred in this are 

normally a major percentage of the total operating cost in most industries including the 

maritime sector. (Vavra, 2007) reported that wasted energy as a result of poorly maintained 

compressed air systems collectively cost  US industry up to $3.2 billion annually. This can be 

attributed to the general perception in the past that maintenance is an evil that plant managers 

cannot do without and that it is impossible to minimise maintenance cost (Mobley, 2004). 

This perception has disappeared with the invention of plant equipment diagnostic 

instrumentation (such as vibration monitoring devices) and computerized maintenance 

management information systems (CMMIS) which provide an effective means of optimizing 

maintenance efficiency (Mobley, 2004). The place of plant equipment diagnostic 

instrumentation in optimizing maintenance effectiveness cannot be overemphasized as it 

continuously monitors the operating condition of plant equipment and systems thereby 

resulting in improved plant reliability and availability (Mobley, 2004). Nevertheless the initial 

overall cost of setting-up such a maintenance scheme is usually very high (Shin and Jun, 
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2015). These costs include, among others, the purchase of diagnostic tools and the training of 

maintenance staff in order to effectively use the technology. Hence the technology is usually 

embraced by most industries only for the maintenance of critical plant equipment.  

 

Plant equipment classically utilizes two types of maintenance management approach: run-to-

failure or preventive maintenance (Mobley, 2001, Waeyenbergh and Pintelon, 2004, Li et al., 

2006). The preventive maintenance approach could be time-based or condition based.  Time 

based preventive maintenance is of two types; scheduled replacement and scheduled overhaul 

while condition based maintenance is also of two types; offline and on-line condition based 

maintenance.  

 

As discussed in Chapter 1, there are three major elements that make up a maintenance system; 

risk assessment, maintenance strategy selection and maintenance task interval determination. 

These elements must be optimized in the maintenance management of a plant system in order 

to have a safe and reliable system at reasonable cost. Different maintenance methodologies 

have been applied in optimizing these elements of maintenance. The notable ones are; 

Reliability Centered Maintenance (RCM) and Risk Based Maintenance (RBM). Within these 

maintenance frameworks different tools such as FMEA and Fault Tree Analysis (FTA) have 

been applied in the optimization of the elements of maintenance (Taheri et al., 2014).  

 

2.3 Maintenance optimization 

Complex systems such as ship systems consist of many equipment items and for the system to 

remain safe and reliable at an optimum cost, the most appropriate maintenance strategy and 

optimum task interval have to be adopted for each of the equipment items. There are different 

maintenance strategies, such as corrective maintenance, preventive and condition based 

maintenance, to choose from with respect to maintaining the different equipment items of a 

plant system. For some items of equipment, allowing them to run to failure may be more cost 

effective than the preventative approach. Whereas for others the preventative approach may 

be more cost effective than the reactive approach. For some equipment where the preventative 

approach is the most appropriate, the optimum interval of the maintenance task must be 

determined in order to have an optimum level of overall system reliability at an optimum cost. 

Hence there is need for maintenance system optimization such that the most effective 

maintenance strategy which will result in optimum balance between cost of maintenance and 

the resulting asset reliability, is utilized for maintaining an asset (Karyotakis, 2011). There are 
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basically three techniques for optimizing maintenance strategies for plant systems namely; 

RCM, Total Productive Maintenance (TPM) and Risk Based Maintenance (RBM) 

(Karyotakis, 2011). The main focus of this research is RCM because none of the other 

techniques can preserve the function of a machinery system in the same way that it 

can(Moubray, 1991).  

 

2.3.1 Risk Based Maintenance (RBM) 

Risk-based maintenance is a systematic approach which combines reliability and risk 

evaluation procedures in developing a cost effective maintenance strategy for reducing the 

overall risk of an operating plant system (Wang et al., 2012). The overall plant risk is a 

combination of the risk of each of the individual constituent units that make up the plant. For 

high risk units, an intensive maintenance effort is needed, whereas for low risk units minimal 

effort is required. Since maintenance is centered on risk, in determining the type and the 

frequency of preventative maintenance in the RBM approach a quantitative method of 

evaluating risk is applied. The RBM strategy generally consists of the following steps (Khan 

and Haddara, 2003, Wang et al., 2012, Krishnasamy et al., 2005):  

(1) Identification of system scope: The system to be investigated is generally broken into 

manageable units. The units referred to could be sub-systems or components. 

(2) RBM risk assessment: This step begins with the identification and analysis of failure 

scenarios and the consequences of the failures for each of the units of the system. It is 

generally advisable to consider one or two of the most important failure scenarios for each of 

the units that may lead to system failure. The risk for each of the units is then calculated by 

multiplying the probability of the failure scenario by the consequence of the failure scenario. 

A quantitative or qualitative measure of risk is finally obtained which is used to categorise 

risk of units into high, medium and low risk.  

(3) RBM Risk evaluation: Here the first step is to determine an acceptable level of risk 

and which may vary from industry to industry. The risk estimated for each unit is then 

compared against the acceptable risk. If the estimated risk is above the acceptable risk the 

unit(s) may be subjected to further analysis and subsequently a different maintenance strategy 

and interval will be adopted to bring the risk down to the acceptable value.   

(4) RBM maintenance planning: The first step is to critically examine the root cause of 

failures for each unit. Then for each unit the basic events’ probability failures are evaluated in 

a reverse fault tree analysis using targeted probability of failure of the top event (unit 
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probability of failure). With the top event probability fixed, the fault tree is generally 

simulated in order to determine the probability of failure of basic events. The optimal 

probabilities of failure of the basic events obtained from this analysis are then used to 

calculate the maintenance tasks and associated inspection intervals. This process is carried out 

for each of the units that have an unacceptable risk value and the main aim is to reduce the 

overall system risk. The Risk Based Maintenance strategy has been applied in the literature by 

several authors as a technique for optimizing maintenance for example Krishnasamy et al. 

(2005)  

 

2.3.2 Total Productive Maintenance (TPM) 

 

With the introduction of ‘Just in Time’ manufacturing and assembly procedures, the need for 

the elimination of any plant downtime has become apparent. One technique that had been 

utilized in aiming to achieve this objective is TPM. TPM is a systematic approach to 

maintenance that maximizes equipment effectiveness and presses towards zero downtime and 

zero product defects through the involvement of all of the labour force. The concept of TPM 

was first introduced by M/s Nippon Denso CO. Ltd of Japan in 1971 and has since been 

applied by many industries across the globe with the major aim of maximizing equipment 

effectiveness (Ahuja and Khamba, 2008). Equipment effectiveness here is referred to as the 

rate to which equipment is performing its normal operating function. Using TPM as a 

maintenance methodology the equipment effectiveness can be maximised in two possible 

ways; (1) improving on plant total availability and (2) improving on the quality of plant 

output and in this case defective product numbers are reduced to the barest minimum. The 

equipment effectiveness is generally measured in the TPM methodology using Overall 

Equipment Effectiveness (OEE) which is evaluated as a product of the availability of the 

equipment (As), the equipment performance rate (Pr) and the quality rate of equipment 

product (Qr) and it is represented as,  (Nakajima, 1989): 

 

𝑂𝐸𝐸 = 𝐴𝑠 . 𝑃𝑟 .  𝑄𝑟                                                                                                                              (2.1) 

 

The availability component is evaluated as follows: 
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𝐴𝑠 = 
(𝑇𝐿 − 𝑇𝐷)

 𝑇𝐿
                                                                                                                                  (2.2) 

 

Where 

TL = Loading time 

TD = Downtime 

The performance rate component is evaluated as follows: 

 

𝑃𝑟 = 𝑂 𝑇𝐿⁄                                                                                                                                            (2.3) 

 

Where 

O = output 

The quality rate of the product from the system is measured as follows: 

 

 𝑄𝑟 = 𝐺𝑃 𝑇𝑃⁄                                                                                                                                   (2.4) 

 

Where 

GP = Good product 

TP = Total Product 

 

Equipment effectiveness is potentially hampered by six major forms of loss in any 

organization. These losses include; machinery breakdown, setup and adjustment time, speed 

reduction, minor stoppages, product rejects and startup losses. The six losses can be measured 

within the three performance measurement indices of the OEE. The machinery breakdown 

and set up and adjustment losses are measured with the availability component of the OEE, 

the speed reduction and minor stops losses are measured with the performance rate 

component and the product reject and startup losses are measured with the product quality 

rate component.  The essence of performing the measurements of these six losses with the 

OEE is to help to keep the company in a position to be able to constantly improve its 

maintenance system efficiency in order to achieve optimum performance of their machinery 

system. 

 

 There are eight pillars upon which TPM can be structured in order to maximize the benefit of 

the methodology in any organization. They are as follows (Rodrigues and Hatakeyama, 2006, 

Ahmed et al., 2005): 
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(1) 5S: The first step to the successful implementation of TPM is the adoption of the 

principle of 5S. The 5S is a logical procedure of good housekeeping with the main aim of 

having a conducive environment in the workstation with the cooperation and commitment of 

all of the workforce. If a workstation is tidy and organised problems become visible and this 

is the first step to system or process improvement. The 5S is generally performed in phases. 

The first S stands for “Seiri” meaning Sort out, the second S stands for “Seiton” meaning Set 

in order, the third S stands for “Seisio” meaning Shine the  workstation, the fourth S stands 

for “Seiketsu” meaning Standardize and the fifth S stands for “Shitsuke” meaning  Sustain 

and practice 

(2) Autonomous maintenance: This puts the responsibility of performing basic 

maintenance tasks, such as lubrication and visual inspection, on the operators of the asset 

thereby creating room for the maintenance personnel to concentrate on the core maintenance 

tasks.   

(3) Planned maintenance: The objective here is to have fault free machinery which is 

achieved by planning maintenance activities to curtail potential failures. Maintenance 

planning involves the following maintenance activities, among others; maintenance type 

determination, the interval for maintenance task determination and spare parts inventories.  

(4) Education and training: The operators and maintenance personnel need constant 

training and education in order to enhance their maintenance skills and harmonious working 

relationships. 

(5) Kaizen: The term kaizen is a combination of “Kai” which stands for change, and 

“Zen” which stands for good. The principle here is that a small improvement that is carried 

out on a continuous basis which involves all of the workforce is better than big changes 

executed once in a while. This principle should be practiced both in production units as well 

as administrative units. The basic objective of using this principle is to systematically 

eliminate losses through a detailed and thorough procedure. There are some basic tools for the 

implementation of this principle and some these tools are; Poka-Yoke, Why-Why analysis and 

a Kaizen summary sheet.  

(6) Quality maintenance: The focus here is to impress the customers by producing defect 

free products. This can be achieved by ensuring that the parts of equipment that the affect 

quality of production are constantly monitored and maintained to ensure that output from the 

equipment or production line is defect free. 

(7) Office TPM: The administrative staff commitment is one of keys to enjoying the 

benefit of the TPM. Hence the administrative staff must ensure that administrative functions 
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are optimized by reducing inventory carrying cost, administrative cost, procurement cost and 

idle time, among others, for improving productivity, waste elimination and reduced 

production cost.   

(8) Safety and environment: A safe and conducive working environment should be 

ensured. This will help to guarantee a healthy workforce and lead to zero accidents. This will 

invariability result in an increase in productivity. 

 

Based on the above pillars of TPM that have been discussed it is obvious that the successful 

implementation of TPM in any organization solely depends on the staff’s willingness to 

embrace the technique and in the management’s commitment to the implementation. The 

implementation is usually challenging, in some cases due to a long established culture of the 

division of labour e.g. maintenance practitioners solely responsible for maintenance of plant 

assets and operators solely responsible for the operation of the assets. This approach 

sometimes brings about rancor among maintenance personnel and operators thereby reducing 

overall productivity. However if this age long negative attitude is broken and TPM is 

successfully implemented then the benefits associated with TPM such as waste reduction, 

downtime minimization, and improved output quality will be appreciated by the organization. 

 

The major difference between TPM and the traditional preventive maintenance approach 

which originated in the US, is that in the TPM approach the total organizations workforce is 

involved in the maintenance of an asset i.e. the operators ensure that the asset is in a good 

condition on a day to day basis by routinely carrying out some basic maintenance on the asset 

so that the maintenance personnel can concentrate on the less frequent core maintenance 

aspects, while for the traditional PM technique the maintenance of assets is limited to the 

maintenance personnel.  

 

2.3.3 Reliability Centered Maintenance (RCM) 

2.3.3.1 RCM overview 

Moubray (1991) defined RCM as “a process used to determine what must be done to ensure 

that any physical asset continues to function in order to fulfil its intended functions in its 

present operating context.” From this definition it is obvious that RCM focuses not on the 

system hardware itself rather on the system function. Maintenance practitioners are faced with 

challenges with respect to maintaining their asset and some of these challenges are; difficulty 
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in selecting the most appropriate maintenance strategy for each equipment failure, difficulty 

in prioritizing the risk of component failure modes of the system, difficulty in ascertaining the 

most cost effective approach and difficulty in getting the best support from the workforce.  All 

of these challenges are addressed by the RCM frame-work in a systematic manner. In fact  

Moubray (1991) categorically stated that  no maintenance technique has proven to be more 

successful in preserving the function of a system than RCM. 

  

The development of the RCM technique can be traced to the aviation industry where the 

Maintenance Steering Groups (MSG) formed within the industry developed a maintenance 

methodology which was reported in three documents referred to as MSG1 MSG2 and MSG3, 

released in the years 1968, 1970 and 1980 respectively (Dhillon, 2002). This technique 

evolved into classical RCM which has since been embraced by all industries ranging from 

manufacturing to the marine sectors and has proven to be successful in all these industries.  

 

The first step to the successfull implementation of the RCM technique is to ask seven basic 

questions about the asset that the methodology is intended to be applied on. These seven 

questions are as follows, (Moubray, 1991): 

(1) What are the intended functions and performance standards of the asset or machinery 

in its current operating situation? 

(2) How does it fail to fulfil these intended functions? 

(3) What are the causes of each failure? 

(4) What are the corresponding consequences? 

(5) In what way does each failure matter? 

(6) What task should be performed in order to avert each failure? 

(7) What should be done if no preventive task is found to be applicable? 

 

2.3.3.2  RCM analysis steps 

The basic steps of the RCM analysis are reviewed as follows (Rausand and Vatn, 1998, 

Dhillon, 2002, Selvik and Aven, 2011): 

 

(1) Preparatory stage: RCM is generally performed by a team and, as such, the first step in the 

RCM analysis is to set up the RCM team. The team should consist of experts with adequate 

knowledge of the system to be investigated. Generally the team should have a minimum of 

one person each from the maintenance and the operational units. The team should also have a 



18 

 

member with a vast knowledge of the RCM methodology and who could serve as the 

facilitator. The RCM team have the responsibility for determining; the scope of the study, the 

level of the assembly to be investigated (i.e. plant, system, sub-system) and the equipment or 

asset to be investigated. They also have the responsibility, among others, of data gathering for 

the analysis.   

 

(2) Maintenance significant items (MSI) identification:  FMEA is generally applied here in 

determining the maintenance significant items. FMEA methodology is discussed in detail in 

Section 2.4.2.4 below. These items are then used to populate the RCM decision diagram in 

order to determine the most appropriate maintenance task. For a very simple system MSI can 

easily be identified without resorting to any specialized tools. For the non-MSI items, the 

items are generally allowed to fail before repair or replacement can be implemented. However 

for the MSI items preventive maintenance tasks are usually more appropriate but in some 

cases they are allowed to fail before repair or replacement activities are performed and these 

are dependent on MSI items failure characteristics, the impact of the failure and maintenance 

costs. 

 

(3) Maintenance strategy classification: The maintenance strategy for addressing crucial 

failure modes of the critical components of an asset have been classified in different ways. 

Rausand and Vatn (1998) considered five distinct maintenance strategies namely continuous 

predictive maintenance, scheduled predictive maintenance, scheduled overhaul, scheduled 

replacement and scheduled function testing  for preventing or mitigating the effects of 

failures. Dhillon (2002) presented the following four maintenance strategies for use in the 

RCM methodology; reactive maintenance, preventive maintenance, predictive testing and 

inspection and proactive maintenance. Nevertheless both the five maintenance strategy types 

considered by Rausand and Vatn (1998) and the four maintenance strategies considered by 

Dhillon (2002) fall within the three basic main maintenance strategies: corrective 

maintenance, preventive maintenance and condition/predictive maintenance. 

  

(4) Maintenance task selection: Here the RCM logic is designed and applied in selecting the 

appropriate maintenance task to the crucial failure mode of each of the critical components of 

the asset. The RCM logic is expressed in decision diagram form which, through a series of 

YES and NO questions, enables the RCM facilitator to arrive at an optimal maintenance 

strategy for the particular failure mode/component in question. There are various versions of 
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the decision RCM logic tree and a sample is shown in Figure 2.1. However all of the versions 

are based on the basic decision criteria of the RCM for selecting the maintenance task which 

are; cost effectiveness, applicability and failure characteristics. The term applicability with 

respect to selecting the maintenance task, means a maintenance preventive task that is capable 

of mitigating or preventing failure and in the case of a potentially hidden failure is capable of 

discovering it. The term cost-effectiveness is a decision criterion for determining the 

maintenance task from different alternatives that is the most cost effective. If there is no 

applicable preventive maintenance task available, then the only alternative is to select Run– 

To–Failure. In the case of cost effectiveness; the cost of the applicable preventive 

maintenance task to mitigate or prevent failure must be greater than the aggregate cost related 

with the failure itself, otherwise Run–To–Failure will be more appropriate except with a 

safety-related issue or a failure situation where redesign may be compulsory.  

 

(5) Maintenance planning: Here the optimal intervals are determined for the preventive 

maintenance tasks assigned for the crucial failure modes of the critical components of the 

asset.  Some of the failure modes are assigned scheduled predictive maintenance and some 

scheduled overhaul, etc. using the RCM logic. The process of determining the interval for a 

preventive maintenance task is, in many instances, very challenging and, in general, 

mathematical models are applied in obtaining these intervals. However in some cases 

mathematical models are not applied and preventive maintenance task intervals not optimized 

but are mainly determined based on experts’ opinions, operational experience and 

manufacturers’ recommendation. It is worth mentioning that in the traditional RCM process 

there is no provision for tools for use in the determination of preventive maintenance task 

intervals.  

 

The outcome of steps 1 to 5 is a mix of diverse preventive maintenance tasks and intervals 

and in order to have an efficient maintenance system programme, at a minimum cost, for an 

entire system the preventive maintenance tasks and intervals are typically grouped. The 

grouping may include the non-MSI i.e. items that were eliminated in the screening phase (step 

2). 
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Figure 2.1: A sample of RCM logic adapted from (Rausand and Vatn, 1998) 

 

 (6) Implementation and update: Here the managerial procedures, with respect to how the 

results of the RCM analysis that is performed by the RCM team are applied, is described. This 

step includes among others; communication of the RCM analysis results from the RCM team 

to the management, results documentation and undertaking updating from time to time which 

is generally subject to availability of new relevant data.  

 

2.3.3.3  RCM application areas and improvement  

The conventional RCM has various limitations which have limited the effectiveness of the 

methodology in addressing maintenance decision making problem. Some of these limitations 

are (Gabbar et al., 2003): (1) the process is very demanding in-terms of time, effort and 

resources especially for a complex system (2) limited data availability for taking optimal 

decisions especially in the area of maintenance strategy  selection and (3) the process 

involvement of non-engineering factors in the maintenance decision problem. Various 

improvements have been made to the conventional RCM methodology in order to make it 

more efficient and adaptable for optimizing maintenance systems. One improvement is the 

integration of the Computerized Maintenance Management System (CMMS) with RCM. 

Zhihong et al. (2005) proposed an integrated CMMS with the RCM. The CMMS was applied 

for storing and supplying the original data for undertaking the RCM analysis since one of the 

key challenges to the success of RCM was lack of data in many instances. The authors 
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proposed it for application in a power system and other engineering related systems. Beni 

(2014)  presented an enhanced RCM technique by integrating CMMS with RCM which, 

according to the author, has the ability to change the maintenance strategy for a system 

dynamically in a manner based on changing the maintenance strategy selection decision 

criteria data. The maintenance strategy decision criteria data are not constant because the 

operating condition of the asset and other factors that affect the life cycle of the asset are not 

themselves constant. The use of CMMS was for dynamically managing the maintenance 

strategy selection decision criteria data which is then applied as input data into the RCM 

maintenance strategy selection methodology. The methodology was proposed for application 

in the National Iranian Gas Company and its subsidiaries. Gabbar et al. (2003) also proposed 

an integration of CMMS and RCM such that the CMMS dynamically manages and updates 

the RCM analysis data which is then fed dynamically into the RCM methodology to 

subsequently change the maintenance strategies of the studied system. In order to ascertain 

the applicability of the technique the authors applied it to a nuclear power plant water-feed 

process.  

 

Another improvement that was carried out on the conventional RCM technique was the 

introduction of the idea of ‘soft’ and ‘hard’ life by Crocker and Kumar (2000a) in order to 

optimize total system maintenance costs. The authors defined hard life as being the age at 

which a component of a system or sub-system has to be replaced and on attaining that age the 

system or sub-system housing the component is removed for subsequent salvage. They 

defined ‘soft’ life as being the age a component of a system or sub-system will attain, after 

which it will be rejected at the next opportunity the system or sub-system housing the 

component will be recovered. From the study the hard life is the suitable replacement age for 

safety-critical parts or components of an aircraft system while the soft life is ideal for 

comparatively cheap components that may cause costly, unplanned rejections of an engine. 

The author concluded that the new RCM approach can be utilized in order to select an optimal 

maintenance strategy for military aero-engines. In another development Cheng et al. (2008) 

proposed an integrated case based reasoning method combined with the RCM analysis 

technique and referred to as IRCMA.  IRCMA, in the authors’ opinion, is a better alternative 

to the conventional Computer Aided Reliability Centered Maintenance (CARCMS) method 

and it is already being used in place of the latter as the RCM analysis tool for China’s military 

equipment. 
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The applications of RCM and the improvements carried out on the technique as discussed so 

far, are in the fields of nuclear power, defense and the oil and gas sectors.  However RCM and 

improved RCM techniques have also been applied in the marine sector. Conachey and 

Montgomery (2003) proposed an integrated spare parts holding model combined with the 

conventional RCM technique for application in machinery equipment  components of ship 

systems. After performing the first three steps of the RCM analysis such as defining systems, 

defining functions and functional failures and performing FMEA, the next step was to 

categorise risk of failure modes. The authors suggested the use of a risk matrix and gave an 

example of a risk matrix that classified failure modes into three risk categories; high risk, 

medium risk and low risk. For the three categories of risk the following maintenance 

strategies are applied as a means of mitigating the risk; for the high risk a one-time change or 

redesign, for the medium risk undertaking condition monitoring or time based preventive 

maintenance and for the low risk, run-to failure. The failure modes and corresponding 

criticality ranking for each failure mode were then used to populate the RCM logic in order to 

ascertain the exact maintenance strategy to be employed to detect from the onset or to 

mitigate or eliminate failure. This was followed by determination of the maintenance task 

interval and finally determination of spare parts holding. In a related paper Conachey (2005) 

suggested the application of conventional RCM on the machinery system of a ship together 

with an additional model to cater for the spare parts needs.  The spare part model that was 

incorporated into the conventional RCM was based on risk assessment. The author 

recommended the basic tools such FMEA, RCM logic and a risk matrix generally applied for 

the conventional RCM analysis, for implementation on the machinery equipment of the ship 

system. It was concluded that the RCM technique is a relatively new maintenance 

optimization approach in the maritime industry and that the industry players (owners and 

operators) will fully embraced it due to the same benefits that other sectors have derived from 

the implementation of the technique.  

 

Lazakis (2011) presented an enhanced RCM technique based on a combination of the 

managerial aspects of TPM and the technical aspects of  RCM. This novel RCM approach is 

referred to by the author as Reliability and Criticality Based Maintenance (RCBM). The 

essence of the approach was to have an efficient maintenance system in place that will have 

the results to improve reliability and downtime minimization of a ship system. In order to 

achieve the aim of the study, the author applied reliability techniques and tools such as 

Dynamic Fault Tree Analysis (DFTA), Failure Modes, Effects and Criticality Analysis 
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(FMECA) and fuzzy set theory in combination with TOPSIS in solving multi-criteria decision 

problems. One such multi-criteria decision problem that was solved is the resolution of a 

maintenance strategy selection problem which the author addressed with the Fuzzy-TOPSIS 

methodology. The applicability of the author’s proposed enhanced RCM was demonstrated 

with two case studies; a cruise ship diesel system and a Diving Support Vessel. 

 

From the RCM discussion it can be seen that there are three key elements of maintenance that 

the methodology is used to optimize; (1) risk assessment, (2) maintenance strategy selection 

from different alternatives, and (3) maintenance task interval determination. A great deal of  

work has been carried out with respect to improving the efficiency of  RCM in optimizing 

these three components and  ensuring continuous asset reliability improvement, however there 

remains scope for further improvement in all three aspects.   

 

2.4  Risk assessment  

The American Bureau of Shipping (2000) defined risk as the product of the probability of the 

occurrence of a failure and consequence of the failure. Mathematically this is simply 

expressed as: 

 

Risk = failure probability x consequence of the failure                                                        (2.5)   

                                                                                                  

While risk assessment, according to Cross  and Ballesio (2003), is defined as being a 

systematic method that combines diverse aspects of design and operation in assessing risk. 

Arendt (1990) described risk assessment as activities involving hazard identification, chances 

of the occurrence of failure estimation and the consequences of the failure estimation.   

 

With the advent of risk-based inspection and maintenance in the 1990s in conjuction with 

reliability maintenance, risk assessment has gained popularity in the maintenance world and it 

is worth noting that risk assessment is clearly the most critical phase of risk-based 

maintenance since maintenance decisions to be taken will be based on the assessed level of  

risk (Arunraj and Maiti, 2007).  Risk assessment is also a very important aspect of Reliability-

Centred Maintenance (RCM) though RCM is mainly intended for preserving the reliability of 

plant equipment and systems. The risk assessment in the RCM process involves assessing the 

risk of failure of equipment items and based on the assessed risk, an appropriate maintenance 
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strategy will be recommended. However the acceptable level of risk must be defined possibly 

through a retrospective study of earlier successful items etc. 

 

Some of the factors that affect the quality of the output from a risk analysis are; data sources, 

human factors, methods and tools for performing the analysis itself, and the ability and 

experience of the analyst.  

 

2.4.1  Risk assessment approaches 

In assessing the level of risk of an asset the risk analyst has the option of selecting from 

among three different risk assessment approaches and, in general, the choice depends on the 

availability of data for performing the analysis. The three different risk assessment approaches 

are qualitative, semi-qualitative and quantitative (Khan et al., 2012). 

 

2.4.1.1  Qualitative technique 

In this approach risk is measured based on subjective judgement.  As stated above, risk is the 

product of the probability of failure occurring and the subsequent consequences of the failure 

and these parameters should be determined using subjective judgement. In describing failure 

consequences, terms such as minor, major, critical and catastrophic are utilised while the 

probability of  failure occurring is expressed using terms such as improbable, remote, 

occasional, probable and frequent (American Bureau of Shipping, 2003). Since the means of 

assessment are subjective, it follows that the mitigation measures chosen for risk reduction 

will also be subjective. Qualitative risk assessments are generally applied when there is a lack 

of quantitative data in terms of measurable quality and quantity. The techniques are usually 

ideal for systems where risk is relatively small and well known from experience. 

 

2.4.1.2  Quantitative technique 

The use of this technique greatly depends on the availability of quantitative data (Carter et al., 

2003). As opposed to the subjective judgement used in the qualitative technique, judgement is 

based on using probability analysis to determine numerical values for the probability of 

failure occurrence and the consequences of failure (Khan et al., 2012). Some of the tools 

available for quantitative risk analysis are; Fault Tree Analysis (FTA) and Event Tree 

Analysis (ETA). 
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2.4.1.3  Semi-quantitative technique 

In this approach the estimated numerical values necessary for the probability of failure 

calculations and the corresponding consequences of failure are based on expert opinions using 

available data from similar plants (Khan et al., 2012). With this assessment methodology, 

scores are assigned, based on expert judgement, to each of the variables that affect the 

probability of failure and the corresponding consequences and these are summed up in order 

to give an estimate of the probability of failure and of its consequences (Khan et al., 2012). 

This technique can supplement traditional tools such as FMEA, Hazard Operability Analysis 

(HAZOP) and others tools used for quantitative techniques such as FTA and ETA 

(Hauptmanns, 2004). 

 

2.4.2  Risk assessment methods and tools 

An analyst has the option of choosing from a variety of tools for performing risk analysis in 

each of the  three major phases of risk assessment; hazard identification, risk estimation and 

risk evaluation. Some of the commonly used tools/methods will be discussed in the following 

text with emphasis on the tools that will be subsequently used in this research. It should be 

noted that one of the keys to successful risk assessment lies in the ability of the analyst to 

choose the right method or combination of methods for a particular problem (American 

Bureau of Shipping, 2000). 

 

2.4.2.1  Checklist Analysis technique 

A checklist is simply a list of questions about the plant system operation, maintenance, etc. 

and the essence is to systematically check if functional need and requirements are fulfilled. 

They are usually prepared based on the company’s experience, codes and standards employed  

and are the simplest method for risk identification (Khan and Abbasi, 1998). The list indicates 

items of conformance and non-conformance and for the non-conformance items carefully 

prepared recommendations are made in terms of correcting whatever items are found to be 

wrong or faulty. Khan and Abbasi (1998) identified some of the limitations of the checklist 

approach which include: 

(1) It takes a long time to develop a checklist and the result does not give full insight into 

the system. The status of each analysis item are in the form of ‘Yes’ or ‘No’. 
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(2) The quality of the result is a function of the ability and the experience of the analyst 

who compiled the checklist and interpreted the result. 

(3) It cannot identify a hazard that has to do with system mis-operation such as leaks or 

excessive heat generation nor can it tell the severity of operating conditions. 

 

2.4.2.2  Hazard Operability Analysis (HAZOP) 

HAZOP is a risk analysis and assessment tool that was developed by British Imperial 

Chemical Engineering in the 1960s (Zhan et al., 2012). The basic principle of a HAZOP study 

is that once there is a deviation from standard operating conditions of a system the result is a 

potential hazard (Khan and Abbasi, 1998). Once a deviation has been identified (detected) the 

next step is to find out the cause of the deviation and rank the corresponding level of risk in 

the system. Lastly steps will be taken to mitigate the effect of the risk on the system (Zhao, 

2008).  

According to Khan and Abbasi (1998) HAZOP has some limitations. These include: 

(1) Just like a checklist the quality of the result and actions will depend on the ability and 

experience of the analysis team involved. 

(2) The method assumes that the equipment has been built in accordance with appropriate 

codes and standards; this is not always the case as there can be faulty designs and installations 

as well. 

 

Despite these limitations it is still one of the most common of tools that is used used for 

hazard identification and risk assessment in the chemical processing industry, the 

manufacturing industry and the power industry. In spite of its popularity in all of these sectors 

only one application of HAZOP in the area of ship risk assessment has been reported in the 

literature (Zhan et al., 2012).  

 

2.4.2.3   Fault Tree Analysis 

Geoff (1996) defined “fault tree as a method by which a particular undesired system failure 

mode can be expressed in terms of component failure modes and operator actions. The system 

failure mode to be considered is termed the top event and the fault tree is developed in 

branches below this event showing its causes”.  

The information that is fed into the fault tree will determine whether the approach is 

quantitative or qualitative. Quantitative analysis is used if the occurrence or failure probability 
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of  the top event is calculated based on the estimated or measured occurrence probability of 

each basic event (Xing and Amari, 2008). The qualitative fault tree, on the other hand only 

gives a description of the combination of the basic events causing the potential problem of 

interest (American Bureau of Shipping, 2000). The qualitative techniques thus cannot 

quantify or estimate the level of risk but could help in identifying potential hazards and their 

significance (Halme and Aikala, 2012). The fault tree analysis technique is most suited for 

analysing top events (system failures)  resulting from relatively complex combinations of 

component failures (American Bureau of Shipping, 2000). 

 

Just like every other risk analysis tool it has some limitations according to (Khan et al., 2012) 

which include: 

(1) The assumption in the quantitative technique is that the likelihood of basic events is 

precisely known which is not true because the data collection mode is characterised by a high 

degree of uncertainty. 

(2) The assumption that component failures or basic event failures are independent is 

absolutely untrue in real life systems. 

These two assumptions will translate to having an inaccurate risk level analysis assessment 

thereby resulting in potentially wrong maintenance decisions for the particular failure mode 

under consideration. 

   

2.4.2.4  FMEA 

Siddiqui and Ben-Daya (2009) defined Failure Mode and Effect Analysis (FMEA) “as a 

systematic failure analysis technique that is used to identify the failure modes, their causes 

and consequently their fallouts on the system function”. The development and application of 

the FMEA methodology dates back to 1949 and the United States Army  and in the 1970s its 

was embraced by the automotive, aerospace and manufacturing industries (Scipioni et al., 

2002). Today FMEA is a commonly used risk assessment tool in the production of  hardware 

such as mechanical and electronic components (Scipioni et al., 2002). “The introduction of 

FMEA to on–board ship operations can be considered as a step in a new direction” according 

to Cicek and Celik (2013). When FMEA is combined with criticality analysis (CA) it is 

referred to as Failure Mode Effect and Criticality Analysis (FMECA) and its essence is to 

rank the impact of each of the failure modes for the various components that make up the 

entire system (Headquarters Department of the Army, 2006, Sachdeva et al., 2009a).  

According to Ben-Daya (2009) FMEA basically performs three functions. These are: 
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(1) To identify and recognize potential failures including their causes and effects. 

(2) To evaluate and prioritize identified failure modes.  

(3) To identify and suggest actions to either eliminate or reduce the chance of the 

potential failures from occurring. 

 

The technique can be applied to any well-defined system but it is best suited for the risk 

assessment of mechanical and electrical systems (e.g. fire suppression systems, propulsion 

systems) and the approach can either be quantitative or qualitative, (American Bureau of 

Shipping, 2000, Headquarters Department of the Army, 2006). The availability or non-

availability of failure data will determine to a large extent the approach that is used in 

carrying out FMEA risk assessment. A quantitative approach is used when variables such as 

failure rate (λi), failure mode ratios (αi ), failure effect probability (βi ) and its operating time 

(t) are known and are used to generate the criticality number (CN) which can then be used to 

rank ith failure mode  (Headquarters Department of the Army, 2006, Braglia, 2000). This can 

be represented mathematically as: 

 

CNi = αi x βi x λi x t                                                                                                                 (2.6)                                                                                                                       

 

In applying the qualitative method each failure mode is rated or ranked by developing a risk 

priority number (RPN) which is computed by multiplying the severity rating (S) by both the 

occurrence probability (O) and the detection rating (D): 

 

RPN = S x O x D                                                                                                                  (2.7)  

 

Qualitative terms are used to determine these three parameters, usually on a numerical scale 

of 1 to 10 having been determined based on collective expert opinion (Sachdeva et al., 2009b, 

Siddiqui and Ben-Daya, 2009, Ling et al., 2012, Kahrobaee and Asgarpoor, 2011, Zammori 

and Gabbrielli, 2012, Braglia, 2000). Tables 2.1 to 2.3 show the qualitative scales that are 

commonly used for occurrence ranking, severity ranking and detection ranking.  
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Table 2.1: Occurrence ranking, copied from (Headquarters Department of the Army, 2006) 
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Table 2.2: Severity ranking, copied from (Headquarters Department of the Army, 2006) 

 

 

 

Table 2.3 Detection ranking, copied from (Headquarters Department of the Army, 2006) 
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FMEA is generally the preferred tool for reliability and risk assessment studies, probably 

because it can easily be understood and applied (Braglia, 2000). Some other reasons why it is 

frequently employed, according to Ben-Daya (2009), are that it can: 

(1) Help to reduce the chances of a catastrophic failure that can result in injuries and/or 

have an adverse effect on the environment. 

(2) Optimize maintenance efforts by suggesting applicable and effective preventive 

maintenance tasks for potential failure modes. 

 

Despite the popularity of FMEA, it has serious flaws (Bowles, 2003). For example a 

particular failure mode might have a high severity ranking, a high occurrence and a very low 

detection ranking, because it can easily be detected and which may result in having a low 

overall risk ranking i.e RPN (Ling et al., 2012). The result may be that the analyst 

recommends preventive maintenance instead of predictive maintenance or requiring redesign 

because of the misleading RPN. Some authors have suggested the removal of the detectability 

element from the RPN calculation (Bowles, 2003, Fleming and Wallace, 1986, Bowles, 1998) 

as a solution to this potential problem. Conversely some authors are of the opinion that the 

three attributes are equally important and thus  as such the detection attribute should not be 

removed (Narayanagounder and Gurusami, 2009). Other limitations of FMEA are: 

(1) The technique takes into account only three attributes in rating risk whereas there are 

other important factors such as economic cost, production loss, environmental impact etc. 

which are not taken into consideration (Braglia, 2000, Sachdeva et al., 2009b, Zammori and 

Gabbrielli, 2012, Liu et al., 2011) 

(2) Different combinations of three attributes can yield the same RPN number but the risk 

level may be totally different (Sachdeva et al., 2009b, Kutlu and Ekmekçioǧlu, 2012, Liu et 

al., 2012, Sharma and Sharma, 2012).    

(3) It requires the services of very experienced and well trained teams (Teng and Ho, 

1996).  

(4) The RPN formula is questionable and debatable (Liu et al., 2012, Liu et al., 2011, 

Kutlu and Ekmekçioǧlu, 2012, Geum et al., 2011, Chin et al., 2009b) 

 

FMEA is, however a key component of the Reliability-Centered Maintenance methodology 

and ABS specifically require the bottom-up FMEA approach when performing RCM analyses 

(Conachey, 2005).  
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The traditional FMEA has some limitations just like every other risk assessment tool however 

many alternative variations and methods have been advocated in the literature in order to 

overcome or minimise some of these challenges. (Souza and Alvares, 2008) applied the 

traditional FMEA in conjunction with Fault Tree Analysis (FTA) as a risk assessment tool for 

the application of Reliability Centred Maintenance. The methodology was used to study and 

analyse the failure mode of a hydraulic Kaplan turbine of a hydroelectric plant. The 

comparative study showed that the two tools can complement each other for the execution of 

an effective predictive maintenance plan on the basis that the FMEA analysis provided the 

information required for the FTA basic event. However when the results of the risk analyses 

of the FTA and the FMEA were compared some of the items that the FTA identified as being 

critical were shown to be non-critical in the FMEA and vice versa. The discrepancy was 

considerable and this could be attributed to the author using the results of only the probability 

of failures of the basic event in the FTA in comparing the results of the FMEA instead of 

using the probability of failures multiplied by the consequence of failures. Other 

improvements in literature to the classical FMEA and limitations that prompted the need to 

develop new tools for prioritising risk of failure modes are discussed in Chapters 3 and 4. 

 

2.5  Maintenance strategy selection 

 

One of the main challenges of maintenance management is the selection of the appropriate 

maintenance strategy for each equipment item in the system because not all maintenance 

strategies are applicable and cost effective for different components. Hence choosing the right 

maintenance strategy for the system will help maintain a balance between the system 

availability and cost of performing the maintenance. However when choosing the type of 

maintenance strategy for a ship machinery system or other complex related ship systems, 

several conflicting decision criteria must be taken into consideration  such as  cost, reliability, 

availability and safety. These make maintenance strategy selection analysis critical and 

complex and the investigation fundamental  and justifiable (Bevilacqua and Braglia, 2000). 

Despite the significance of the subject, only a few studies have dealt with maintainance 

selection policy problem (Bertolini and Bevilacqua, 2006). 

 

There are different maintenance strategies that can be used for mitigating the different failure 

modes of a marine machinery system. Generally there are three types of maintenance strategy 

that are available for maintenance practitioners to choose from. The three maintenance 
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strategies and a review of the methods utilised for the selection of the optimum strategy for 

each of the different component/failure modes of the system are discussed next. 

 

2.5.1  Maintenance strategies 

 

According to Pintelon et al. (2006) a maintenance strategy is generally viewed from the 

perspective of maintenance policies such as breakdown maintenance, preventive maintenance 

and predictive maintenance and sometimes RCM or TPM. It is worth noting that the 

maintenance strategy is one of the most influential factor affecting the effectiveness of a 

maintenance system (Stanojevic et al., 2000, Stanojevic et al., 2004) and the process of 

estimating the optimal combination of maintenance strategies for different plant system 

equipment items is a very hard and complex task as the maintenance program must combine 

both technical and management requirements (Sachdeva et al., 2009b, Bertolini and 

Bevilacqua, 2006, Bevilacqua et al., 2000). The selections usually require a vast amount of 

information relating to the following decision criteria (Bertolini and Bevilacqua, 2006): 

manpower utilization, cost and budget constraints, safety factors, environment factors and  

Mean Time Between Failure (MTBF) for each piece of equipment. 

 

2.5.1.1   Run-to-Failure 

 

 The rationale of the run-to-failure management approach is simple and straightforward. 

When a machinery equipment item fails it is fixed. That is to say equipment is allowed to fail 

before any maintenance (repair or replacement) is carried out and, as such, resources are not 

deployed until equipment breaks down. It is, in fact, a no-maintenance approach to 

maintenance management of an asset and it is generally the least cost effective technique of 

maintenance management, since the maintenance costs are higher and plant availability is 

lower. In fact maintenance cost analysis revealed that repair carried out in reactive mode is 

nearly three times higher in cost than that carried  out in preventative mode (Mobley, 2001) 

This type of maintenance is usually effective for non-critical and low cost components and 

equipment in a system (Pride, 2008). For the plant manager to know that a component is non-

critical, criticality analysis is carried out and, based on the result, an appropriate maintenance 

strategy is recommended for the plant equipment. 
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2.5.1.2  Preventive Maintenance 

 

Preventive maintenance is defined as maintenance actions performed on plant systems at a 

definite interval with the aim of preventing wear and functional degradation, extending the 

useful life and mitigating the risk of catastrophic failure (Sullivan et al., 2004) and it concerns 

itself with such activities as the replacement and renewal of components, inspections, testing 

and checking of working parts during their operation (Ebrahimipour et al., 2015). In utilising 

this approach for maintenance management, equipment repairs or replacement are performed 

at pre-established intervals. The length of the intervals is usually based on equipment items’ 

industrial average-life such as Mean Time Between Failures (MTBF). However some plant 

managers rely on machine or component manufacturer’s recommendation to schedule 

preventive maintenance activities.  

 

For the shipping industry, the IMO in 1993 set the foundations for preventive maintenance 

implementation by releasing the International Safety Management (ISM) code (IMO 1993). 

Chapter 10 of the ISM code clearly states the procedure and the duties of the shipping 

industry for preventive maintenance implementation in such a way that international 

regulations are adhered to strictly. 

 

The major merit of PM is  its ability to increase the average life of equipment items and to 

reduce the risk of catastrophic failure (Sullivan et al., 2004). However despite the numerous 

benefits of PM, the major limitation is that it often results in unnecessary repair or 

replacement. Another limitation is the difficulty in evaluating the optimum interval of 

performing the maintenance task as this may take years of data collection and analysis (Chen, 

1997).  

The time based preventive maintenance approach can further be divided into two categories as 

follows: 

(1) Scheduled overhaul: a maintenance approach where equipment overhaul or repair is 

carried out on a specified interval basis. This policy is suited to equipment or machinery with 

identifiable age when failure rate function rapidly increases and large elements of the 

equipment or machine must survive to that age and also where reworking can restore the 

machine to an acceptable operational  condition (Rausand, 1998). 

(2) Scheduled replacement: This refers to maintenance techniques in which equipment or 

a unit of it is replaced on a scheduled basis. This is usually ideal when equipment or machines 
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are exposed to critical failure; large units of the equipment or machines must survive to at 

least the replacement time and the failure type must be of major economic consequences 

(Rausand, 1998). 

 

2.5.1.3   Condition Based Maintenance 

 

 This refers to the maintenance approach in which the condition of an item or piece of 

equipment is monitored in order to detect potential failure and recommend appropriate 

corrective action. The CBM are generally of two types; the continuous on-condition task and 

the scheduled on-condition task (Rausand and Vatn, 1998). The continuous on-condition task 

which is referred to as online condition based maintenance (ONCBM) in Chapter 5 is the 

approach where the condition of an equipment item is monitored uninterruptedly using 

diagnostics devices. The major disadvantage of this type of approach is that it is expensive 

(Jardine et al., 2006). The scheduled on-condition task is referred to as offline condition based 

maintenance (OFCBM) in Chapter 5, is an inspection performed on an equipment item at 

regular interval with the aim of detecting potential failure (Rausand and Vatn, 1998). The 

check carried out on equipment items is performed by maintenance practitioners or operators 

with or without the use of diagnostic tools. This approach is effective and yet more cost 

effective than the continuous on-condition task and as such more attractive to most industries 

and the maritime industry inclusive. However the major challenge of the scheduled on-

condition task is the problem of determining the appropriate interval for performing 

inspection task (Jardine et al., 2006). 

 

In designing a condition monitoring program for ship machinery systems, general procedures 

to be followed had been put in place by BSI/ISO 17359 (2003). The standard includes 

procedures for equipment auditing, criticality assessment and overview of the condition 

monitoring procedure and the determination of the maintenance action to be used.   

 

The technique for scheduling maintenance tasks is the major difference between time based 

preventive maintenance and condition based maintenance.  While the time based preventive 

maintenance activity is scheduled based on average life evaluated using historical data of the 

particular piece of equipment, the condition based maintenance activity is scheduled in 

response to a performance degradation observed from diagnostic device readings and/or 
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human sensing which deviate from standard equipment operating conditions (Noemi and 

William, 1994). 

 

2.5.2   Maintenance strategy selection methods 

The use of the Multi-Criteria Decision Making (MCDM) such as such as the Analytical 

Hierarchy Process (AHP), the Analytical Network Process (ANP) and the Technique for 

Order Preference by Similarity to an Ideal Solution (TOPSIS) in making optimum decision 

for when faced with multi-criteria decision problem is becoming popular (Gandhare and 

Akarte, 2012, Bevilacqua et al., 2000). One of such multi-criteria decision problem is the 

maintenance strategy selection. These techniques have either been applied singly or integrated 

with one another or they have been used in conjunction with other tools such as fuzzy set 

theory and mathematical programming. (Bevilacqua and Braglia, 2000) applied AHP to select 

the ideal maintenance strategy for an integrated gasification and combined cycle plant. The 

analysis took into consideration five possible alternatives: preventive, predictive, condition-

based, corrective and opportunistic maintenance. The authors used AHP in conjunction with 

Failure Mode Effect and Criticality Analysis (FMECA) principles in order to choose the ideal 

maintenance strategy for each analysed item in the plant. Other examples of  the application 

of AHP for maintenance strategy selection are: Triantaphyllou et al. (1997) proposed an AHP 

technique for the selection of a maintenance strategy taking into consideration four 

maintenance decision criteria; Nyström and Söderholm (2010) presented a methodology 

based on AHP for prioritising different maintenance actions in railway infrastructure, and 

Labib et al. (1998) developed a model based on AHP for optimum maintenance decision 

making for an integrated manufacturing system.    



Bertolini and Bevilacqua (2006) presented  an  integrated AHP and Goal Programming (GP) 

technique such that the best strategies for the maintenance of centrifugal pumps in an oil 

refinery is chosen. The model that was proposed considered decision criteria such as account 

budget and number of man-hour constraints in comparring three alternative maintenance 

strategies (corrective, preventive and predictive). The authors concluded that the application 

of an integrated AHP and GP methodology proved to be a viable tool for minimization of 

maintenance cost (Bertolini and Bevilacqua, 2006). Similar to this approach, Arunraj and 

Maiti (2010) used AHP and a GP method for the selection of a maintenance strategy for a 

benzene extraction unit within a chemical plant. Equipment failure risk and the cost of 
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performing maintenance were considered as the relevant decision criteria. AHP was used to 

assign weights to the decision criteria by means of pairwise comparison and the GP 

considered the assigned weight to rank the alternative maintenance strategies (corrective, time 

based, condition based and shutdown maintenance). The main improvement to the work of 

Bertolini and Bevilacqua (2006) was the use of the Fussell-Vesely (F-V) importance measure 

by the authors in order to estimate the risk contributions of different items of equipment. Zaim 

et al. (2012)  reported on the use of a combination of AHP and ANP techniques for selecting 

the optimum maintenance strategy for a newspaper printing facility located in Turkey. From 

the comparative study, the two techniques yielded almost the same results. 

 

The use of integrated fuzzy logic and MCDM (such as AHP) for maintenance strategy 

selection has also been reported in literature. Al-Najjar and Alsyouf (2003) used integrated 

fuzzy logic and AHP techniques to select the most cost effective maintenance strategy for a 

pump station. Wang et al. (2007) also proposed a fuzzy logic-AHP technique in order to select 

optimal maintenance strategies for different equipment items in a manufacturing firm. 

 

The Reliability Centered Maintenance (RCM) technique is also widely used (Bevilacqua and 

Braglia, 2000, Mohan et al., 2004). “RCM represents a method for preserving functional 

integrity and it is designed to minimise overall maintenance costs by balancing the higher cost 

of corrective maintenance against the cost of preventive maintenance” (Crocker and Kumar, 

2000b). RCM has been applied to a greater or lesser extent  in the maritime industry for 

example the use of RCM logic diagrams in order to select the most appropriate maintenance 

strategy for different components of a system from the failure modes perspective (Conachey, 

2005, American Bureau of Shipping, 2004). However the use of RCM is a very time 

consuming exercise and generally limited to some specific equipment (Waeyenbergh and 

Pintelon, 2004). Another limitation of the RCM technique in selecting maintenance strategies 

is that it does not allow for ranking of maintenance alternatives such that the optimum 

solution can easily be selected. This prompted Lazakis et al. (2012) to develop a maintenance 

strategy selection methodology based on the integration of fuzzy set theory and TOPSIS for 

the selection of the maintenance strategy for a diesel generator in a cruise ship. The 

maintenance strategy selection model that the authors proposed compared three alternative 

maintenance strategies (corrective, preventive and predictive maintenance) against eight 

decision criteria: maintenance cost, efficiency/effectiveness, system reliability, management 

commitment, crew training, company investment, spare parts inventories and operation loss. 
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From the analysis, condition based maintenance (CBM) was considered as the optimum 

maintenance strategy for the cruise ship diesel generator. However some doubts remain with 

regard to the practical use of the fuzzy approach because of the difficulty in testing and 

developing extensive sets of fuzzy rules (Zammori and Gabbrielli, 2012, Braglia, 2000). 

Additionally some important decision criteria such as applicability for maintenance strategy 

selection especially when dealing with the problem from the system failure modes perspective 

were not taken into account in Lazakis et al. (2012). In further work, Lazakis and Olcer 

(2015) aimed to improve the performance of the fuzzy-TOPSIS methodology by integrating 

AHP into it. AHP was introduced to assist in the weighting of the decision criteria. The result 

of the enhanced technique yielded preventive maintenance as the optimum maintenance 

strategy for the for ship diesel generator.   

 

Goossens and Basten (2015) utilized AHP in the selection of maintenance strategies for naval 

ship systems. The authors involved three different groups within the industry in the decision 

making process namely: the shipbuilders, the owners/operators and the Original Equipment 

Manufacturers (OEM). In selecting the optimal maintenance strategy for the ship system from 

three maintenance strategies; corrective, time/use-based maintenance and condition based 

maintenance, three level decision criteria were applied. The first level consisted of two 

decision criteria; the second level consisted of eight and the third level consisted of 29. From 

the analysed results, the maintenance strategy preferred by the shipbuilder, owner/operator 

and the OEM is condition based maintenance. However the structuring of the problem made it 

computationally intensive as it required formation and analysis of numerous pairwise 

judgements from experts.  

 

Resobowo et al. (2014) also applied AHP in prioritizing the factors that affect military ship 

maintenance management. In this case, the factors considered were; cost, availability, 

reliability, safety, human resource, operations, types of ship and ship characteristics. These 

factors were ranked using planned maintenance, preventive maintenance and routine 

maintenance as decision criteria. According to the authors the result of the analysis revealed 

that the most important factor is human resource. The major interest of the authors was to 

identify important factors for making maintenance decisions and as such does not completely 

address the problem of maintenance strategy selection. 
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It is obvious that there is a need for a more systematic approach that can easily incorporate 

qualitatively and/or quantitatively the maintenance alternatives selection criteria for marine 

system applications. On this basis one of the objectives of this research was to develop an 

alternative maintenance strategy selection method which avoids the limitations of the 

approaches used in literature. 

  

2.6  Maintenance interval determination 

 

After determining the type of maintenance task for each of the failure mode/components of an 

asset or machinery item, the next task is to determine the interval for carrying out the 

maintenance tasks. This process is an essential phase of the different maintenance 

optimization techniques (RBM, TPM and RCM). In this research the maintenance tasks that 

are considered for preventing or mitigating the effects of failure are; CM or RTF, scheduled 

overhaul, scheduled replacement, offline condition based maintenance (physical inspection) 

and online condition based maintenance (use of diagnostic tools). For all of these various 

maintenance types, different models have been developed by researchers for determining the 

intervals for performing them and they have been applied in different fields with variations to 

suit specific industrial needs. However the basic principle for the determination of the interval 

is to have a balance between the cost of achieving the highest reliability and the cost of 

unexpected failure. In the following Sections the different models that have been developed 

by different researchers for determining intervals for (1) scheduled replacement and (2) 

offline condition based maintenance (inspection) are discussed. 

 

 

2.6.1  Scheduled replacement interval determination 

 

As previously stated, preventive maintenance involves repair or replacement activities being 

performed at regular intervals. Hence scheduled replacement is one of the techniques that is 

used in preventive maintenance in order to recover the functions of an equipment item. 

Bahrami-G et al. (2000) defined it as a practice that entails decision making, based on certain 

criteria regarding the optimal time to replace an equipment item so as to reduce or eliminate a 

sudden breakdown. Optimization techniques are used to define the appropriate intervals for 

the replacement of the equipment item in order to have a balance between availability of the 
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equipment items and the cost of the related maintenance. Generally two conditions must be 

satisfied to justify the use of scheduled replacement as a strategy in maintaining equipment. 

These are: (1) the value of Weibull shape parameter β of the equipment/components statistical 

variability must be greater than 1 and (2) the cost of the replacement activity as a result of 

failure must be greater than the cost of planned replacement. It therefore means that data on 

the failure parameters of the equipment and related cost information are essential in order to 

ascertain whether or not there is the need for a scheduled replacement to be carried out. This 

information is also required as an input into the replacement model in order to determine the 

optimum interval for replacement. Once it is ascertained that scheduled replacement is the 

optimum option for performing the recovery or sustainment of items of equipment, the most 

appropriate interval is then to be determined. From the literature two popular models have 

been generally applied and these are; the Age Replacement Model (ARM) and the Block 

Replacement Model (BRM) (Aven and Jensen, 1999).  

 

For the ARM, an equipment item is replaced with respect to a predetermined age (tp) or at 

failure. In this respect if failure occurs before the predetermine interval time, replacement is 

carried out at failure otherwise replacement is at the predetermined age. Furthermore if an 

equipment item is replaced due to failure, the replacement equipment is assumed to be as 

good as new and as such the maintenance practitioner would have to wait for another tp to 

elapse before carrying out the next replacement. The universal ARM mathematical model, 

which is generally used for determining the appropriate time interval (tp) for scheduled 

replacement is the one that was proposed by Barlow and Hunter (1960) and it is represented 

as follows: 

   

𝐶(𝑡𝑝) =
𝐶𝑎 (1 − 𝑅(𝑡𝑝)) + 𝐶𝑏𝑅(𝑡𝑝)

∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑡𝑝
0

                                                                                             (2.8) 

Where: 

𝐶(𝑡𝑝) is the cost function per unit time 

𝐶𝑎 is the cost of unit failure replacement 

𝐶𝑏  is the cost of unit scheduled replacement  

𝑡𝑝  is the given scheduled replacement interval and 

𝑓(𝑡) is the probability density function 

𝑅(𝑡𝑝) is the Reliability function 
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The essence of this age replacement model is to evaluate cost of equipment replacement for 

different values of ‘𝑡𝑝’. The value of 𝑡𝑝with the lowest cost is then chosen as the optimum 

replacement interval. Hence the main purpose of this model is to minimise the cost of 

replacement of equipment.   

 

For the block replacement model, however equipment/components are replaced at constant 

time intervals and in the case of failure before the constant time interval has elapsed the 

equipment/components are replaced and will be replaced again once the same constant time 

interval has passed. This type of replacement model can then result in unnecessary 

replacement of equipment/components.  Hence the generally accepted perception that the 

ARM is more cost effective than the BRM. Nevertheless the BRM can be applied for less 

expensive equipment items whose replacement can be carried out in a group. The only 

advantage of the BRM over the ARM is that BRM is easier to apply and manage since 

replacement is performed at regular intervals as opposed to ARM where the maintenance 

practitioner would have to consider the time for replacement at failure before knowing the 

exact date that the next preventative replacement will be performed.  The general  BRM 

mathematical model is the one developed by Barlow and Hunter (1960) represented as 

follows (Ahmad and Kamaruddin, 2012): 

 

𝐶(𝑡𝑝) =
𝐶𝑏 + 𝐶𝑎 . 𝑁(𝑡𝑝)

𝑡𝑝
                                                                                                                  (2.9) 

 

Where 𝑁(𝑡𝑝) is the number of failures expected in an interval of 0 to 𝑡𝑝. As in the case of 

ARM, the main purpose of this model is to obtain an optimum replacement interval at the 

least cost. 

 

These models (ARM and BRM) and variations have been applied in solving replacement 

problems for both single unit and multi-unit systems in different industries. Since in this 

research ARM has been chosen as the scheduled replacement model, discussion with respect 

to review of existing work in the literature in terms of application and advancement will focus 

on it.  

2.6.1.1  ARM and BRM applications and improvement 

Huang et al. (1995) developed a standard solution for the  ARM that was proposed by Barlow 

and Hunter (1960) and for ease of use it was organised in the form of tables and charts. 



42 

 

Another important feature of the solution, in addition to organising it in tables, is in the 

reduction of input parameters by using a cost ratio (ratio of 𝐶𝑎  to 𝐶𝑏) in place of the actual 

cost of failure replacement (𝐶𝑎 ) and cost of preventive replacement (𝐶𝑏). The algorithm 

developed for the standard solution technique was applied to various hypothetical examples in 

order to demonstrate the applicability of the technique. In their paper Cheng and Tsao (2010) 

applied the standard solution for the determination of the preventive replacement  

maintenance interval for a rolling stock component. Das and Acharya (2004) presented two 

age-based replacement models for preventative replacement of an equipment item. The two 

preventive replacement policies included consideration of the equipment failure delay time 

(the time between the point of equipment failure initiation and the point at which the 

equipment eventually failed). In the first model, the trend of the degradation of the equipment 

during the delay time was utilised in order to determine the preventive replacement interval. 

Hence, for this policy, replacement due to failure or prevention of failure is performed after a 

fixed period during its delay time. The second policy, according to the authors, is an 

opportunistic age replacement technique where a failing equipment item or component is 

replaced at the next available maintenance opportunity.  Finally the authors opined that the 

two policies although designed for a single unit system were capable of addressing a multi-

unit system when there is a difficulty in tracking the whole life of each individual equipment 

item or component. Jiang et al. (2006) investigated the relationship between the preventive 

effect produced from alternative replacement intervals and corresponding cost savings. The 

preventive replacement models that they studied were the age and the block preventive 

replacement models. From the results reasonable cost savings can be derived if the system is 

replaced when it has reached satisfactory age. The authors also opined that the often 

increasing failure rate of the equipment or components does not necessarily translate to 

representing ‘satisfactory age’ and this has to be determined by the maintenance practitioners 

based on the maintenance goal.  

 

Ahmad et al. (2011a) utilised the age based model that was developed by Hunter and Barlow 

in revising the preventive replacement interval for a production machine in the processing 

industry. The important feature of their approach was the consideration of the covariate effect 

on the life of the machine. In the real sense the actual state of the machine was considered in 

the determination of the preventive replacement interval of the machine. The authors 

compared the revised replacement interval (inclusion of the covariate effect) with the 

replacement interval (without covariate effect). From the result, the revised preventive 
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replacement interval and the replacement interval without the covariate effect differed 

considerably. While the revised produced a 21 day interval for replacement of the production 

machine, the replacement interval without the covariate effect produced a 35 day interval for 

the replacement of the production machine.  Bahrami-G et al. (2000) presented a new model 

for the preventive replacement of an equipment item or component that is experiencing an 

increasing failure rate. The model proposed is a simplified version of the BRM that was 

developed by Hunter and Barlow. A case study of an equipment item whose failure rate 

followed a normal distribution was applied to determine the benefits and suitability of the 

technique. According to the authors, the results obtained from the model almost perfectly 

matched the result from that of Hunter and Barlow whose approach is more computationally 

challenging. They concluded that the proposed model will aid the maintenance practitioner to 

make more cost-effective decisions.  

 

2.6.1.2   MCDM tools application for scheduled replacement interval determination 

based on ARM and BRM 

The essence of undertaking preventive maintenance is to reduce the chances of failure of plant 

equipment such that plant reliability and availability is optimised.  The reliability of a system 

is dependent on the reliability of the individual components/equipment items that collectively 

make up the system and in order to achieve this aim, a suitable preventive maintenance and 

inspection programme should be in place (Duarte et al., 2006)  

 

One of the greatest challenges of the preventive maintenance approach is in the selection of 

the optimum interval to perform preventative maintenance tasks on equipment items  (Duarte 

et al., 2006). This is because, if the intervals are not properly timed, it can result in over- 

maintenance and a waste of resources and man-hours due to premature replacement or repair 

of equipment items or an even worse case scenario, in that under-maintenance can result in 

catastrophic failure and invariably production loss and the company’s image being damaged. 

This makes the subject of interval selection for a preventive maintenance task an important 

issue worthy of thorough investigation. There are quite a number of articles published in the 

literature which  are based on a single criterion for making decisions for preventive task 

interval selection (Almeida, 2012, Gopalaswamy et al., 1993) and yet a number of them are 

too abstract often requiring a high level of mathematical and statistical skills thereby limiting 

the practicability of their use in real life situations (Vatn et al., 1996, Duarte et al., 2006, 

Huang et al., 1995). In addition, the application of these single criterion based methodologies 
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is neither reliable nor flexible for effective decision making with respect to interval selection 

(Gopalaswamy et al., 1993). 

 

However there are some limited studies that deal with the use of the MCDM approach to 

selecting intervals for preventive maintenance tasks (Gopalaswamy et al., 1993, Chareonsuk 

et al., 1997) but they were applied for land based systems with no applications reported for 

maritime systems. Cavalcante and De Almeida (2007) presented a preventive maintenance 

decision model based on a combination of  PROMETHEE II and Bayesian technique 

considering two decision criteria; cost and reliability. In a similar work (Cavalcante et al., 

2010) also proposed an integrated PROMETHEE based methodology combined with 

Bayesian technique and, in addition, accounting for possible uncertainty in maintenance data. 

Chareonsuk et al. (1997) also proposed a PROMETHEE multi-criteria decision making 

methodology for the selection of preventive maintenance intervals. The authors applied the 

Huang et al. (1995)  assumption that corrective replacement cost and preventive replacement 

cost can be in the form of a ratio in the case of a situation with a lack of data. The cost ratio 

was then varied for different assigned alternative replacement maintenance intervals in the 

expected cost replacement model in order to obtain corresponding values of cost and 

reliability factors. Finally PROMETHEE was applied in ranking alternative preventive 

maintenance intervals with respect to the evaluated decision criteria, namely cost per unit and 

reliability. The authors chose the replacement maintenance interval with the best 

PROMETHEE index. The PROMETHEE technique used by these authors, has the challenge 

of problem structuring thereby making the evaluation procedure complicated when more than 

seven decision criteria are used. This approach will limit maintenance practitioners’ choice of 

decision criteria for selecting optimum preventive maintenance intervals. Additionally the 

authors’ approach for weighting decision criteria lacked flexibility as it only depends on 

subjective rules without balancing it with an objective technique or using a compromise 

between them.  

 

From this literature review it is obvious that marine industries will benefit from the 

application of MCDM techniques as tools for determination of optimum scheduled 

replacement intervals. However a more systematic MCDM approach will be used in this 

research that will avoid the limitations of the approach applied in the land base systems.  
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2.6.2  Inspection interval determination  

In the condition based maintenance methodology there are basically two approaches for 

monitoring the condition of an item of equipment or component; continuous and periodic. 

These two approaches are also referred to as on-line condition based maintenance and offline 

condition based maintenance in this research and are considered in detail in chapter 5. For the 

continuous monitoring type, the condition of equipment is continuously monitored using 

some form of measurement and/or diagnostic tools. The challenge of this approach is that it is 

quite expensive and on this basis many maintenance practitioners prefer the periodic 

monitoring technique which is more cost effective. However the major difficulty in the 

periodic monitoring approach is in the timing of the inspection interval of the condition 

monitoring activity because of the possibility of failures occurring between consecutive 

inspections (Jardine et al., 2006). In the course of monitoring the state of an item, if a defect is 

found, a repair or replacement task is scheduled and if possible it is executed immediately in 

order to prevent the equipment from further deterioration. If inspections are not carried out 

then slowly developing defects will go unnoticed and this can lead to catastrophic system 

failure with severe economic loss for the company. However even if inspection tasks are 

performed, if they are not properly timed then defects can still occur between successive 

intervals. It is thus obvious that the determination of the optimal inspection interval is central 

to the effective operational monitoring of any mechanical system. In conventional practice, 

the inspection interval is determined by maintenance practitioners relying merely on 

experience and/ or on the equipment manufacturers’ recommendation and the results from this 

approach are far from optimal and are also conservative (Christer et al, 1997).  

 

Inspection tasks as an alternative maintenance approach for an equipment item can only be 

beneficial if there is a sufficient period between the time that a potential defect is observed 

and the actual time of failure of the equipment. Hence the time that elapses between point of 

failure initiation and the point when the failure becomes obvious is vital in estimating the 

inspection interval.  The time that elapse between point P and F is referred to the P-F interval 

(TPF) within the RCM frame work and is illustrated in Figure 2.2. 
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Figure 2.2: P-F interval (Rausand, 1998) 

 

In RCM, the P-F interval principle is applied in determining the frequency of the condition 

monitoring of equipment and it was suggested that an inspection interval (T) be set at T ≤ 

TPF/2 (Arthur, 2005). The author however stated that one major challenge of the use of P-F 

approach is that there are usually no data to evaluate P-F interval (TPF) and in most cases the 

evaluation based on experts opinion. Moubray (1991), on the other hand, suggested five ways 

of determining the inspection interval based on P-F but the author concluded that: “it is either 

impossible, impractical or too expensive to try to determine P-F intervals on an empirical 

basis”.    

 

Apart from this approach that is used in the conventional RCM, other approaches have been 

described in the literature for determining inspection intervals. In the majority of the 

techniques cost optimization is the main decision criterion for determining the inspection 

interval. Christer et al. (1997) proposed the Delay Time model and this concept has been 

subsequently applied by many researchers either in its original form or as a  variant in the 

modelling of the problem of inspection intervals. This approach has surpassed alternative 

models developed by other researchers for enhancing inspection intervals under different 

situations (Wang et al., 2010). The DTM and its application in the modelling of inspection 

programmes is discussed next. 
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2.6.2.1   Inspection interval determination based on delay time 

 

The delay time concept has been employed by many authors in the field of maintenance 

engineering in the modelling of inspection intervals (Scarf, 1997). The introduction of this 

concept can be traced to Christer (1982). The delay time categorises the failure process of 

machinery into two phases; the first phase is the time period from when the machinery is new 

to the time that it starts showing signs of some degradation. The second phase is the time 

period from when it starts showing some sign of performance degradation to the time when 

the machinery eventually fails. The elapsed time between when the machinery first shows 

signs of performance degradation and when it eventually fails is referred to as the delay time. 

The Delay Time concept is in agreement with the P-F interval principle described within the 

framework of the classical RCM. However the major difference is that each concept uses a 

different technique in the evaluation of the time that elapses between the point of failure 

initiation and the point failure eventually occur. For the delay time concept as proposed by 

Christer, statistical distribution, such as a Weibull or an exponential distribution is utilised, 

while the subjective technique is applied in determining P-F interval within the framework of 

the classical RCM. Additionally in the delay time concept approach a different mathematical 

modelling technique are used in the determination of the optimal inspection interval. The 

delay time concept is illustrated in figure 2.3. 

 

 

Figure 2.3: The Delay Time concept 

                                    

 

In Figure 2.3, hf   represents the delay time; pf represents the time of the initial machinery 

performance sign of degradation and, f, represents the time that the machinery eventually 

failed. The most appropriate time to perform a maintenance inspection is within the 

machinery delay time and if it is performed then the fault will be detected and if the necessary 

preventive maintenance such as repair or replacement of the machinery is executed, failure 
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will be averted. However if inspection is not carried out then, the machinery degradation will 

continue until failure occurs at point f.  

 

The delay time concept had been applied by several researchers in solving inspection 

problems either for a single-unit system with a single failure mode or a multi-unit system with 

multiple failure modes. The majority of researchers have focussed on the multi-unit system 

with multiple failure modes. As stated earlier the concept of delay time was first introduced 

by Christer (1982).  In the paper the author applied the delay time concept in the development 

of a cost model for building inspection maintenance. The model was utilised in determining 

an appropriate inspection maintenance plan for a complex building as an alternative 

maintenance strategy to the reactive approach. The following assumptions were made; (1) the 

cost function varied within the delay time period and (2) inspection is perfect. In determining 

the probability density function of the delay time a subjective method was proposed.  On that 

basis the author suggested that information such as time of failure initiation and delay time of 

system parts should be obtained based on experts’ (that is engineers and inspectors) estimates. 

A questionnaire developed for obtaining information from experts asked questions such as: 

(1) For how long has it been since the fault was first observed (=HLA)? 

(2) If repair or replacement is not performed, what duration of time could the fault stay 

before parts may or will eventually fail (=HML)? 

 

The delay time is then evaluated for each fault by hf = HLA+HML. The distribution for f(hf) is 

therefore then obtained by observing a sufficient number of faults or defects.  

 

Christer and Waller (1984a) applied the delay time concept in the development of two 

inspection maintenance models for determining the inspection frequency for a complex 

industrial system. Two different models; cost function and downtime function, were 

constructed with the assumption that inspection is perfect. The cost function model shows the 

relationship between the inspection interval, tp, and the cost for performing inspection at that 

particular tp while the downtime function model shows the relationship between tp and the 

resulting downtime for performing an inspection at that particular tp. The study was further 

extended by introducing a model to cater for imperfect inspection. To demonstrate the 

applicability of these methodologies some numerical examples were provided. 
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Christer and Waller (1984b) proposed both an integrated delay time model and a snapshot 

model for determining an appropriate inspection plan for a canning-line plant in a production 

company in order to reduce the potential system downtime. The integrated model was used to 

model the downtime consequences of the system for every inspection maintenance interval. 

The data applied in analysing the models was obtained subjectively i.e. based on experts’ 

estimates through the administering of questionnaires.  

 

Wang (1997) proposed a novel model for estimating delay time distribution from a 

combination of experts’ judgements in the face of insufficient or a lack of reliability data.  

The author also proposed a technique for combining experts’ opinions as well as a model for 

updating the estimate of delay time distribution in a situation where maintenance and 

reliability data becomes available. One of the most important features of the approach is the 

suggestion of the use of probability estimates rather than point estimates in designing a 

questionnaire. The author compared the delay time distribution obtained using point estimates 

with that obtained using probability estimates using two case studies. From the results of the 

two case studies it was concluded that the delay time distribution obtained using a probability 

estimate presented a better result than the one obtained using a point estimate. In a related 

paper, Wang and Jia (2007) presented an integrated empirical Bayesian based technique with 

a delay time model for determining the inspection interval for an industrial boiler. The 

empirical Bayesian model was introduced for the purpose of utilising both subjective and 

objective data in estimating delay time distribution parameters. 

 

Tang et al. (2014) postulated that for a part of a system subjected to wear, objective data 

should be applied in estimating parameters of the delay time model.  On this basis they stated 

that there is a need for continual functional inspection and repair for such systems so as to 

reduce unscheduled downtime and lead to an increased record of maintenance data. Taking 

into consideration the wearing parts of a system, a model based on the delay time concept was 

developed for both perfect and imperfect inspections. To demonstrate the applicability of their 

proposed models two case studies were presented; a blowout preventer core and a filter 

element, both components of an oil and gas drilling system. Failure and maintenance data 

obtained relevant to both parts were used to estimate the delay time distribution parameters. 

 

The papers reviewed were studies that had been carried out in the non-maritime sector, such 

as manufacturing, building and automobile industries. From the literature some limited work 
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has also been investigated by researchers with respect to application of the delay time concept 

for developing inspection plans for maritime systems. Pillay et al. (2001) applied the expected 

downtime model based on the delay time concept in order to determine appropriate inspection 

periods or intervals for a fishing vessel equipment items. The inspection plan was developed 

with the aim to reduce vessel downtime as a result of machinery failure that could occur 

between discharge ports. To demonstrate the applicability of their approach, reliability data 

gathered from the winch system and complemented with experts’ opinions, was applied to the 

proposed model. The case study results showed that an inspection period of 12 hours was 

appropriate for the system. In a related paper, Pillay et al. (2004) utilised both the expected 

downtime function model and the expected cost function model based on the delay time 

concept, in determining the optimum inspection period for the fishing vessel. In order to 

obtain a compromise inspection period, the expected cost was plotted against expected 

downtime consequences. Arthur (2005) used the delay time model in order to establish an 

inspection interval for condition monitoring of an offshore oil and gas water injection 

pumping system. The purpose of introducing the delay time concept was to produce an 

alternative inspection plan for the system that was more cost-effective than the current 

inspection regime of a one month cycle. Data was obtained from the Computerised 

Maintenance Management System (CMMS) and subjected to screening. From the data 

scrutiny, only one failure mode (bearing failure) was dominant for both the gearbox and the 

motor while three failure modes (bearing failure, shaft failure and impeller failure) were 

dominant for the pumps of the system.  The author validated the observed data by comparing 

it with published industrial reliability data. The validated data was then used as an input into 

the delay time model in order to obtain the mean delay time and inspection interval for each 

of the components of the system. The delay time model that was proposed produced an 

inspection interval of 5 months against the current interval of 1 month with annual cost 

savings of £21,000. 

 

The approaches reviewed so far for maritime application suggested mainly single criteria 

being utilised in the determination of inspection interval, however in practical situations 

multi-criteria are generally involved in making such vital decision. These multiple criteria are 

in most cases conflicting with one another and in such scenario, the use of Multi-criteria 

decision making tools for aggregating decision criteria into a single analytical problem 

becomes imperative. 
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2.7 Summary 

 

In this chapter a thorough literature survey was conducted with respect to providing relevant 

information pertaining to the development of multi-criteria decision making tools for 

maintenance of marine machinery systems. The chapter introduced maintenance practitioners’ 

definition of maintenance, the negative implication of poor maintenance systems, types of 

maintenance strategies and major elements of a maintenance system that must be optimised 

and methods available for their optimisation. Three maintenance methodologies (RBM, TPM 

and RCM) were discussed. Since the major focus in this study is RCM, it was discussed in 

more detail in terms of analysis steps, application and improvements carried out by previous 

researchers. It was observed that different tools are being used in optimising the different 

elements of maintenance system within the framework of RCM.  The three elements of 

maintenance; risk assessment, maintenance strategy selection and maintenance interval 

determination were discussed in detail and for the risk assessment with a particular focus on 

FMEA. For the maintenance strategy selection, the three types of maintenance strategies; 

corrective maintenance, preventive maintenance and condition based maintenance were 

presented. A survey of methods used by previous researchers for the selection of the 

appropriate maintenance techniques was considered. For the maintenance interval 

determination the discussion was centered on scheduled replacement and scheduled 

inspection type of maintenance with respect to current approaches, limitations of these 

approaches and the need for multi-criteria decision making methods for application for marine 

systems. From the review it was obvious that the tools utilised within the framework of RCM 

for the optimisation of the three main elements of maintenance systems have limitations and 

there was a need to develop alternative approaches that avoid such limitations. On this basis 

alternative techniques have been developed and reported in Chapters 3 to 7. 
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Chapter 3    Risk Assessment using enhanced FMEA 

 

 

3.1  Introduction  

One of the key elements of a maintenance system is the assessment of risk of each equipment 

item/component of the system such that the most important equipment items/components in 

terms of risk criticality are given high priority in allocation of scarce resource. Risk 

assessment is usually performed prior to the selection of the optimal maintenance strategy that 

will mitigate the effect of failure since the optimal strategy to be selected is based on the 

assessed risk. One of the most popular tools used for risk assessment of marine machinery 

systems is Failure Mode and Effect Analysis (FMEA). With this analysis tool, risk is 

represented in the form of a Risk Priority Number (RPN) which is computed by multiplying 

the severity rating (S) by the occurrence probability (O) and the detection rating (D) for all 

failure modes of the system. As previously stated in the literature review, the conventional 

FMEA has been criticised as having several limitations such as inability to aggregate 

imprecise ratings of multiple experts and inability to incorporate more than three risk criteria 

(Su et al., 2012, Braglia, 2000). These challenges have been addressed in this chapter by 

developing two novel methodologies for prioritising the risk of failure modes of marine 

machinery systems. The first methodology integrates an averaging technique with RPN of the 

conventional FMEA. This approach eliminates one challenge of the classical FMEA which is 

the inability to aggregate imprecise ratings from experts. Other challenges of the classical 

FMEA such as the inability to incorporate more than three decision criteria cannot be 

addressed with this method. Hence a second approach is proposed for maintenance 

practitioners who need to include other decision criteria such as economic factors or company 

reputation in the decision making process. The second method integrates an averaging 

technique with TOPSIS. While the averaging technique is applied as a means of aggregating 

imprecise risk criteria ratings from multiple experts, RPN and TOPSIS are used in the ranking 

of the risk of failure modes. The applicability and suitability of these methodologies for risk 

prioritisation is demonstrated using two case studies. 

 

The chapter is organised as follows: in Section 3.2 FMEA relevance in the marine industry is 

discussed. In Section 3.3 the proposed risk prioritisation methodology is described. Section 
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3.4 presents the two case studies to demonstrate the applicability and suitability of the 

proposed methodologies. Finally conclusions are presented in Section 3.5. 

 

3.2   FMEA relevance in the marine industry background study and state of art 

review 

Marine machinery systems, no matter how well designed will not remain safe and reliable if 

not properly maintained (Cicek et al., 2010a) . How to maintain such complex systems is still 

a challenge in the maritime industry. One of the major problems is the selection of the 

appropriate maintenance strategy for each piece of equipment/component of the system. 

Different key players in the maritime industry have adopted various methodologies in 

overcoming these challenges. One of the most popular methodologies adopted is Reliability 

Centred Maintenance (RCM). RCM represents a method for preserving functional integrity 

and is designed to minimise maintenance costs by balancing the higher cost of corrective 

maintenance against the cost of preventive maintenance (Crocker and Kumar, 2000b) and it 

uses decision logic diagrams in  selecting  maintenance strategies (Conachey, 2004, Aleksić 

and Stanojević, 2007). 

 

However in deciding on the appropriate maintenance strategy, a thorough risk analysis must 

be carried out because the maintenance decision depends on the assessed risk. Different 

techniques such as FMEA, Hazard and Operability Analysis (HAZOP) and checklist analysis 

are available for risk analysis and within the marine industry, the American Bureau of 

Shipping (ABS) requires FMEA to be employed in prioritising risk of failure modes within an 

RCM framework (Conachey, 2005, Conachey, 2004, Conachey and Montgomery, 2003). 

  

FMEA is a risk analysis tool which is used to define, identify, and eliminate known and/or  

potential failures from the system, design, process, and/or service (Stamatis, 2003).  It is one 

of the most powerful tools for performing risk analysis for marine machinery systems with 

values assigned to O, S and D by a team of experts using an ordinal scale, an example of 

which is shown in Table 3.1. The ordinal scales in Table 3.1 were originally generated by 

Ford Motor Company (Ford Motor Company, 1998) and have since been used by many 

authors in assigning values to risk criteria in the prioritisation of failure modes of different 

systems such as; marine diesel engine subsystems specifically the fuel oil system and 

crankcase (Cicek and Celik, 2013, Cicek et al., 2010a),  aircraft turbine rotor blades (Yang et 

al., 2011),  diesel engine turbocharger (Xu et al., 2002) and the cooling sub-system in an off-
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shore plant (Sankar and Prabhu, 2000).  The FMEA analysis usually involves a series of steps 

which are presented in Figure 3.1.  

 

As mentioned previously, the classical FMEA employed by the marine industry has been 

criticised as having some flaws which limit the effectiveness of the tool in prioritising risk of 

failure modes. Some of the flaws identified in the literature are (1) the inability of the 

technique to take into account more than three attributes in prioritising risk thereby excluding 

other important factors such as economic cost, production loss and environmental impact (Liu 

et al., 2011), (2) the different combinations of the three decision criteria (detection, severity 

and occurrence) yielding the same RPN value whereas  the perceived risk might be totally 

different (Kutlu and Ekmekçioǧlu, 2012) and (3) assumption that decision criteria are of equal 

importance. These make the classical FMEA that uses RPN in prioritising risk unsuitable 

especially in the marine environment and as such a more appropriate technique is needed for 

the marine world.  

 

The problem of aggregating diverse experts’ information which may be imprecise and 

uncertain has been investigated by a few authors in recent years. Chin et al. (2009b) proposed 

an FMEA system/methodology which uses a data envelopment analysis (DEA) technique for 

capturing imprecise criteria ratings obtained from multiple experts. The decision maker has to 

be familiar with linear programming concepts and software in order to apply this approach for 

risk prioritisation. Yang et al. (2011) proposed an FMEA method which uses modified 

Dempster-Shafer evidence theory (D-S) to aggregate the different opinions of experts for risk 

prioritisation of the failure modes of rotor blades of an aircraft turbine. With this approach the 

authors constructed a Basic Belief Assignment (BBAs) for all failure modes with respect to 

risk criteria ratings from multiple experts. The BBAs of failure modes from different experts 

are then aggregated with a Dempster-Shafer combination model. However the Yang 

methodology is limited to aggregating the same complete distribution criteria rating from 

different experts. This situation is not practically possible. Su et al. (2012) modified the BBAs 

constructed by Yang in order to deal with a situation when different integer values of risk 

criteria are assigned by experts. The Su    methodology is also limited to complete distribution 

criteria rating and although it is an improved version of the Yang methodology  it can only 

deal with a situation when integer values  assigned by different multiple experts differ 

marginally, otherwise the combination of multiple expert  criteria ratings will be zero. 

Additionally the aggregation techniques are computationally intensive and challenging.  
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In this chapter some of the drawbacks in the conventional FMEA technique are addressed 

using two approaches for risk prioritisation: an AVeraging technique integrated with 

conventional Risk Priority Number (AVRPN), and an AVeraging technique integrated with 

TOPSIS (AVTOPSIS). The AVRPN technique is capable of aggregating precise, complete 

distribution data and imprecise distribution data of multiple experts’ risk criteria ratings 

through a novel approach using averages that can easily be understood and executed by 

decision makers without resorting to specialised software or having the need to be familiar 

with any programming concepts.  The result obtained from the AVRPN method when applied 

to a complete distribution risk criteria problem, closely matches the one generated from the 

Yang et al. (2011) and Su et al. (2012) modified Dempster-Shafer evidence theory method. 

AVTOPSIS also utilizes averages in aggregating imprecise data and, in addition to this, the 

technique is capable of incorporating as many risk criteria as the decision maker would want a 

decision to be based on. 
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Table 3.1: Ratings for occurrence (O), severity (S) and Detectability (D) in a marine engine 

system, adapted from (Yang et al., 2011, Pillay and Wang, 2003, Cicek and Celik, 2013) 
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Figure 3.1: FMEA methodology, adapted from (Cicek and Celik, 2013) 
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3.3     Proposed Hybrid Risk Prioioritisation methodology 

RPN for quantifying risk in the FMEA system has several flaws as previously explained, such 

as the challenge of aggregating imprecise multiple experts’ information. To holistically 

address these FMEA challenges, two novel methods are proposed for risk prioritisation for 

marine machinery systems:  

(1) AVRPN: AVeraging technique for data aggregation and Risk Priority Number 

evaluation  

(2) AVTOPSIS: AVeraging technique for data aggregation with TOPSIS.  

These are explained in the following sections. 

3.3.1    AVRPN: AVeraging technique for data aggregation and Risk Priority Number 

evaluation 

AVRPN is a combination of an averaging technique and the RPN. The averaging technique is 

applied in converting experts’ imprecise ratings into precise ratings while the RPN is used as 

a tool for the ranking of the failure modes. 

 

3.3.1.1     Averaging technique for data aggregation: 

The averaging technique is a data aggregation method principally designed for aggregating 

imprecise values of individual expert’s criteria ratings (O, S and D) such that the imprecisions 

are captured as an expectation interval. The mean value of the maximum and minimum 

bounds of the expectation interval is then used as the input to the chosen methodologies such 

as RPN, TOPSIS, VIKOR and CP for the ranking of the risk of each the failure modes.  

The steps are as follows: 

(1)    Formation of decision matrix. The values assigned by an expert to failure modes against 

risk criteria are used to form a decision matrix (m x n). Where m is the number of failure 

modes and n is the number of criteria. 

Risk criteria rating information obtained from experts is used to form a matrix of m-failure 

modes with the rating value for each of n-decision criteria.  

(2)   Computation of the minimum and maximum risk criteria values 

The risk criteria data for producing the decision matrix can take the following form (Chin et 

al., 2009a) 

(a) A Precise rating is identified with single confidence of 100%. For example, if 

the rating is 5 this can be written as 5:100%. 
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(b) A Complete distribution such as 5:80% and 7:20% means that a value of 5 at 

80% confidence and 7 at 20% confidence is assigned to a failure mode against a risk 

criterion with the confidence summing to 100%.  

(c) An incomplete or imprecise distribution such as 7:30% and 8:60% means a 

value of 7 at 30% confidence and 8 at 60% confidence with 10% confidence missing. 

The missing 10% confidence is usually  called local ignorance and could be assigned 

to any rating between 1 and 10 (Shafer, 1976).   

 

The incomplete or imprecise assessment can be represented as an expectation interval whose 

minimum and maximum risk criteria values are evaluated as follows (Chin et al., 2009b):  

    

𝑥𝑖𝑗
𝑚𝑖𝑛 = 𝑥𝑖𝑗

1 . 𝑝𝑖𝑗
1  + 𝑥𝑖𝑗

2 . 𝑝𝑖𝑗
2 + [1. (100% − 𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
2 )]                                                               (3.1) 

                                                                                      

     

𝑥𝑖𝑗
𝑚𝑎𝑥 = 𝑥𝑖𝑗

1 . 𝑝𝑖𝑗
1  + 𝑥𝑖𝑗

2 . 𝑝𝑖𝑗
2 + [10. (100% − 𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
2 )]                                                            (3.2) 

                                                                                                                                   

Where 

𝑥𝑖𝑗
𝑚𝑖𝑛  is the minimum rating of failure mode 𝑖 with respect to risk criterion 𝑗 

𝑥𝑖𝑗
𝑚𝑎𝑥 is the maximum rating of failure mode 𝑖 with respect to risk criterion 𝑗 

𝑥𝑖𝑗
1   and  𝑥𝑖𝑗

2   are the distribution ratings of  failure mode 𝑖 with respect to risk criterion 𝑗 

assigned by an expert at percentage confidence  𝑝𝑖𝑗
1   and  𝑝𝑖𝑗

2  respectively. 

 

3.     Computation of the mean rating of failure mode 𝑖 with respect to risk criteria 𝑗 

After determination of the minimum and maximum rating values of failure mode 𝑖 with 

respect to risk criterion 𝑗 , the average may be calculated to obtain the mean rating of failure 

mode 𝑖 with respect to risk criterion 𝑗 as follows: 

          

𝑥𝑖𝑗 =
𝑥𝑖𝑗

𝑚𝑖𝑛 + 𝑥𝑖𝑗
𝑚𝑎𝑥

2
                                                                                                                         (3.3)   

 

Where 𝑥𝑖𝑗 is the mean rating of failure mode 𝑖 with respect to risk criterion 𝑗 

 

The next step is to use the value of 𝑥𝑖𝑗 as the input to the RPN calculation or any other risk of 

failure modes ranking tool such as TOPSIS, VIKOR and CP.  
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3.3.1.2  Failure mode ranking tool; RPN 

The mean rating of failure modes  𝑖 with respect to risk criteria 𝑗 are  used as inputs in the 

RPN model to evaluate the risk of each failure mode as follows:  

         

𝑅𝑃𝑁𝑖 = ∏𝑥𝑖𝑗

𝑛

𝑗=1

∶  𝑖 = 1 , 2… ,𝑚  , 𝑗 = 1, 2, … 𝑛                                                                (3.4) 

     

Where 𝑅𝑃𝑁𝑖 is the risk priority number of the failure mode 𝑖.  

An alternative approach is to feed Eq. (3.1) – (3.3) separately into the RPN model rather than 

feeding only Eq. (3.3) to obtain maximum, minimum and mean risks of each failure mode. 

However when dealing with a complete distribution risk criteria problem, Eq. (3.1) – (3.3) 

generate the same result as using Eq. (3.3) alone. In that case Eq. (3.1) and (3.2) are equal, 

since local ignorance will be zero. Where data is available from multiple experts, RPN values 

from the individuals are averaged to obtain the risk of each failure mode. 

 

3.3.2 AVTOPSIS: AVeraging technique for data aggregation and TOPSIS method 

AVTOPSIS is a combination of the averaging technique and TOPSIS. The averaging 

technique is used in aggregating imprecise rating of failure modes from experts while the 

TOPSIS is used in the ranking of risk of failure modes. 

 

The averaging technique has been described in Section 3.3.1.1. 

 

3.3.2.1  Failure mode ranking tool; TOPSIS 

TOPSIS is a technique for order preference by similarity to  the ideal solution and was first 

proposed by Hwang and Yoon in 1981 (Hwang and Yoon, 1981). The concept of TOPSIS is 

that the best alternative is usually the one which is closest to the ideal solution and farthest 

from the negative ideal solution (Yoon and Hwang, 1995). In this chapter the best alternative 

is the failure mode that poses the greatest risk to the system under investigation. Although 

TOPSIS has many advantages, the rating methodology uses precise values and in effect is 

incapable of dealing with some real life problems where data may be imprecise or incomplete. 

To address these challenges the averaging technique for data aggregation detailed in Section 
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3.3.1.1 has been integrated with TOPSIS for prioritisation of risk in machinery systems. In 

this case, the mean values of O, S, and D are used as input data for the TOPSIS methodology. 

The TOPSIS methodology steps applied here are as shown in Çalişkan et al. (2013). Although 

the TOPSIS model is capable of incorporating more than three risk criteria, the number of risk 

criteria were was limited to three here for an unbiased comparison with the output of AVRPN. 

The steps involved in the TOPSIS methodology are as follows: 

 

(1)   Formation of decision matrix: 

Since the problem is one of dealing with imprecise or incomplete risk criteria rating, a 

decision matrix is formed using values obtained at the aggregation stage. The decision matrix, 

X, may be represented as: 

               

𝑋 = (𝑥𝑖𝑗)𝑚.𝑛
                                                                                                                                       (3.5) 

 

(2)   Normalization of the decision matrix.  

Normalization of the decision matrix is carried out as follow: 

           

𝑟𝑖𝑗  =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑖=1

 ,    𝑖 = 1,…𝑚 ;   𝑗 = 1,… , 𝑛                                                                           (3.6) 

                                                                         

Where 𝑟𝑖𝑗   are the normalised criteria ratings. 

 

(3)   Calculation of the weighted normalised decision matrix: 

The weighted normalised decision matrix can be calculated by multiplying each row of the 

normalised decision matrix by the weight 𝑤𝑗 of each criterion: 

               

𝑣𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 ,      𝑖 = 1, … ,𝑚 ;    𝑗 = 1,… , 𝑛                                                                                     (3.7)    

Where 𝑤𝑗 is the weight of the 𝑗𝑡ℎ criterion. 

 

(4)   Computation of the weights of decision criteria: 

In the literature, many methods are reported for assigning the weight of risk criteria such as 

the entropy method, AHP, ANP etc. (Ölçer and Odabaşi, 2005, Chu et al., 2007b, Çalişkan et 

al., 2013, Liou and Chuang, 2010). For this particular solution to the risk prioritisation 

problem, the entropy method was adopted because of its dynamism and objectivity in 
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weighting of risk criteria relative to the decision making process, as opposed to AHP and 

ANP and other prior weighting methods that assign weight subjectively and independent of 

the decision making process. The steps are as follows (Çalişkan et al., 2013): 

 

Using the normalised decision matrix, the entropy value 𝑒𝑗  of 𝑗𝑡ℎ criterion is calculated as 

follow: 

                

𝑒𝑗 = −𝑘 ∑𝑟𝑖𝑗  

𝑚

𝑖=1

ln 𝑟𝑖𝑗                                                                                                                        (3.8)  

                                  

Where 𝑘 =
1

ln𝑚   
  is a constant which guarantees 0 ≤ 𝑒𝑗 ≤ 1and m is the number of failure 

modes. 

 

The objective weight for each risk criterion is then given by 

𝑤𝑗 =
1 − e𝑗

∑ 1 − e𝑗
𝑛
𝑗=1

                                                                                                                               (3.9) 

                                                                                                             

(5)  Determination of the positive-ideal and negative-ideal solutions. 

 

The reference values for risk prioritisation are the positive and negative ideal solutions. The 

positive ideal solution,  𝐴+,  is the best value of each weighted criterion and the negative ideal 

solution, 𝐴−, is the worst value of each weighted criterion and are determined as follows: 

 

𝐴+ = {𝑣1
+ , 𝑣2 ,…,

+  𝑣𝑛
+} = {(max

𝑖
𝑣𝑖𝑗 |𝑗𝜖𝐼) , (min

𝑖
𝑣𝑖𝑗 |𝑗𝜖𝐼′)}                                                   (3.10) 

   

𝐴− = {𝑣1
− , 𝑣2 ,…,

−  𝑣𝑛
−} = {(min

𝑖
𝑣𝑖𝑗 |𝑗𝜖𝐼) , (max

𝑖
𝑣𝑖𝑗 |𝑗𝜖𝐼′)}                                                   (3.11) 

Where 𝐼 is associated with the benefit criteria and 𝐼′ is associated with cost criteria 

 

(6)  Determination of the distance from positive-ideal and negative-ideal solutions. 

The distance of each failure mode from the positive-ideal solution, 𝐷𝑖
+, and from the negative-

ideal solution, 𝐷𝑖
−, are evaluated, respectively as: 
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𝐷𝑖
+ = √∑( 𝑣𝑖𝑗 − 𝑣𝑗

+)
2

𝑛

𝑗=1

        𝑖 = 1,2… .𝑚;   𝑗 = 1, 2, … , 𝑛                                                  (3.12) 

                           

      

𝐷𝑖
− = √∑( 𝑣𝑖𝑗 −  𝑣𝑗

− )
2
   

𝑛

𝑗=1

𝑖 = 1,2, … ,𝑚;   𝑗 = 1,2, … , 𝑛                                                      (3.13) 

      

(7)    Computation of the relative closeness of failure mode 𝑖 to the positive ideal solution 

The relative closeness 𝑅𝐶𝑖 of each failure mode to the positive ideal solution is computed as: 

                

𝑅𝐶𝑖 =
𝐷𝑖

−

𝐷𝑖
+ + 𝐷𝑖

−   ,    𝑖 = 1 , … ,𝑚                                                                                               (3.14) 

 

The 𝑅𝐶𝑖 value is the risk index of the failure modes. The higher the value the greater the risk 

the failure mode poses to the system.  

 

(8)   Computation of mean risk of failure modes: 

Finally, where data is available from multiple experts, 𝑅𝐶𝑖 values from the individuals are 

averaged to obtain the mean risk of each failure mode. 

 

3.4     Case studies 

The applicability of the proposed methods for risk prioritisation of failure modes of marine 

machinery systems were investigated with three case studies. 

3.4.1    Case study 1  

To validate the aggregation technique (averaging technique) used in this research  a case 

study in the literature  presented by Yang et al. (2011) and Su et al. (2012) was used. The 

authors used modified Dempster-Shafer evidence theory in aggregating opinions of three 

experts. The methodologies of Yang et al. (2011) and Su et al. (2012) were designed to 

aggregate only complete distribution criteria ratings (see Section 3.3.1.1 for a description of 

complete distribution criteria ratings).  In addition to this, their methodologies rely on there 
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being only a marginal difference between the risk criteria ratings from the different experts 

otherwise the combination of the ratings will be zero. Therefore, in order to validate the 

proposed  averaging technique and allow comparison of the results, it was implemented using 

the data from three experts in Table 3.2 as presented in Yang et al. (2011) and Su et al. 

(2012). The methodological steps of the AVRPN technique were applied in solving the 

problem in table 3.2 and the results obtained have been compared with the results obtained 

from the modified Dempster-Shafer evidence theory technique as shown in Table 3.3 and 

Figure 3.2. 

 

Table 3.2: Three experts rating of 17 failure modes (Yang et al., 2011, Su et al., 2012) 
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Table 3.3: AVRPN v. D-S methods 

 

 

 

 

Figure 3.2: Comparison of AVRPN with Dempster – Shafer theory method 

 

From Figure 3.2 it can be seen that the results obtained from AVRPN closely match those 

from Yang et al. (2011) (D-S method) and Su et al. (2012) (Modified D-S method).  For 

example, for failure modes 3, 6, 7, 10 and 11 the same RPN value was obtained from all three 

methods and in the cases of failure modes 1, 2, 4, 5, 8, 12 ,14, 15 and 16 the difference in the 
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RPN is marginal and results in no change to the ranking  of the failure modes. The principal 

differences occur with failure modes 9, 13 and 17 although there is a high level of similarity 

between AVRPN and the modified  Dempster-Shafer evidence theory method of  (Su et al., 

2012) other than for failure mode 9. The sharp deviation of the D-S method RPN values for 

failure modes 13 and 17 is attributed to incorrectly reported values according to Su et al. 

(2012).  It is obvious from the above example that the AVRPN approach is simple and robust 

but it is also more flexible for real life applications as it is capable of handling not only 

incomplete distribution risk criteria information but also of dealing with imprecise 

distribution risk criteria data. 

 

3.4.2     Case study 2: Application to the basic marine diesel engine 

The AVRPN technique was also applied to a case study of a marine diesel engine. The marine 

diesel engine was chosen because it is one of the key marine machinery systems as it provides 

the power for the propulsion of the entire ship system. In addition, the marine main engine 

accounts for over 45 percent of the total compensation for fault accident claims of the entire 

ship system according to the survey carried out by a Swiss shipping insurance Company 

(Dong et al., 2013). It is then obvious that the marine diesel engine is central to the operation, 

of not only the machinery systems, but of the entire ship system powered by this type of 

engine. In this case study only the basic marine diesel engine is considered while in case study 

3 the entire marine diesel engine will be considered. 

 

 Ten major equipment items of the basic engine were considered including: main bearing, 

piston, cylinder head and crankshaft. Each equipment item’s failure modes were examined 

with the causes of failure and the effects of the failures at two levels (local and global effects) 

for the different failure modes. A total of 23 failure modes were examined; a sample of these 

are defined in Table 3.4 along with their causes and effects while the full table is in Appendix 

A1. The risk criteria (O, S and D) values were assigned by three experts for each failure mode 

through the use of an ordinal ranking scale, as shown in Table 3.1. The three experts that 

participated in assigning values for criteria reached a consensus and the agreed values are 

presented in Table 3.5. The three experts have both academic qualifications, with two being 

PhD holders, and sea going and marine diesel engine maintenance experience over many 

years. 
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Table 3.4: Sample of the FMEA for basic engine of a marine diesel engine 

 

 

3.4.2.1 AVRPN: AVeraging technique and RPN analysis 

The values assigned to failure modes against decision criteria in Table 3.5 were used as the 

input for the AVRPN models to: 

 

(1) Compute minimum and maximum risk criteria values: 

 

In Table 3.5, for failure mode 1 the expert gave two incomplete rating values for 𝑥11  i.e. 

Occurrence (O) to be 7:30% and 8:60%; precise rating for  𝑥12  i.e. Severity (S) to be 3 and an 
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incomplete rating for 𝑥13  i.e. Detectability (D) to be 4:70%. Since 𝑥11 had an incomplete 

rating it was transformed into minimum 𝑥𝑖𝑗
𝑚𝑖𝑛 and maximum 𝑥𝑖𝑗

𝑚𝑎𝑥   risk criteria ratings, using 

Eq. (3.1) and Eq. (3.2) respectively. 

 

(2) Compute mean risk criteria values: 

 

The mean risk criterion 𝑥11 was computed using Eq. (3.3). Following the same process of 

evaluation,  𝑥12 and  𝑥13 were calculated.  

 

(3) Compute the risk (RPN) of the failure mode: 

 

The value of RPN for failure mode 1 was obtained using equation (3.4) as follows: 

 𝑅𝑃𝑁1 = 7.5 𝑥 3 𝑥 4.5 = 101.25 

The evaluated RPN values for the 23 failure modes and their corresponding rank are 

presented in Table 3.5 and Figure. 3.3.  
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Table 3.5: Risk criteria rating, RPN values and rankings 
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Figure 3.3: Failure modes RPN values and ranking 

 

It is obvious from Figure 3.3 that failure mode 8 has the highest RPN value with a 

corresponding rank of 1, meaning its poses the greatest risk to the basic marine diesel engine. 

On the other hand, failure mode 11 with the lowest RPN value and a corresponding rank of 23 

poses the least risk to the system. One advantage of this methodology lies in its ability to 

aggregate imprecise expert rating of risk criteria with simple averages that are very easy to 

compute unlike the Dempster-Shafer theory method, data envelopment techniques and fuzzy 

logic theory approaches that are more computationally intensive. 

 

3.4.2.2    AVTOPSIS analysis 

In the application of AVTOPSIS to the case study of the marine diesel engine, information 

obtained from the aggregation stage was used to form the decision matrix shown in Table 3.6. 

The decision matrix was normalised using Eq. (3.6) and then multiplied by the criteria 

weights to obtain a weighted normalised matrix. The weighted normalised matrix is also 

presented in Table 3.6. Note the weights of each criterion were evaluated using Eq. (3.6), 

(3.8) – (3.9). Eq. (3.10) and (3.11) were then utilised to determine the positive ideal and 

negative ideal solutions respectively. Finally, applying Eq. (3.12) – (3.14) the distance of each 

failure mode to the positive-ideal solution 𝐷𝑖
+ and to the negative-ideal solution 𝐷𝑖

− together 

with relative closeness 𝑅𝐶𝑖 of each failure mode to the ideal solution were calculated and the 
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results are shown in Table 3.7. The failure modes were then ranked based on  𝑅𝐶𝑖 scores; the 

ranking order is also presented in Table 3.7 and Figure 3.4. 

 

 

Table 3.6: Decision matrix with weighted normalised decision matrix expert 1 basic engine 
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Table 3.7: Performance index and rank 
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Figure 3.4: RCi values and rankings of 23 failure modes 

 

 

From Figure. 3.4 it is clear that the second failure mode i.e. failure to lubricate the main 

bearing with the highest value of 𝑅𝐶𝑖 is the best ranked and as such poses the greatest risk to 

the basic engine of a marine system while failure mode 11 i.e. cracking of the crankshaft has 

the lowest value of  𝑅𝐶𝑖 meaning it is the least critical failure mode of the system. It can also 

be observed that failure modes 8 and 9 although ranked third and second have 𝑅𝐶𝑖 values 

almost the same as that of failure mode 2 and as such the same attention should be given to all 

three failure modes. This is the case because the method is subjective and any slight changes 

in the input information into the model can make a significant change to the rankings. 

  

3.4.2.3      Comparison of the methods 

The failure mode risk ranking generated using the two proposed methods with risk criteria 

information obtained from experts is shown in Figure 3.5. From Figure 3.5 it is obvious that 

when AVRPN and AVTOPSIS are performed on the same task, the results generated may not 

be the same but are very similar. For example failure modes 3, 5, 10, 11, 17 and 21 were all 

given same ranking in both methods.  The majority of other failure modes had a difference of 

1 ranking between the methods.  

According to Jahan et al. (2010) the degree of agreement between MCDM methods is 

measured using the Spearman rank correlation which evaluates the sum of the squares of the 

deviations between the different rankings. When the Spearman rank correlation between the 
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methods was evaluated a result of 0.9585 was obtained showing that the two methods are 

strongly correlated. The implication of this is that either method can be suitable for use in 

prioritisation of marine machinery systems and other engineering systems when dealing with 

data that may be imprecise. However when the risk prioritisation problem involves dealing 

with more than three risk criteria the AVTOPSIS method should be employed since AVRPN 

is limited to three risk criteria. 

 

Figure 3.5: Comparison of risk of failure mode ranking obtained with proposed methods. 

 

3.4.3     Case study 3: Application to the marine diesel engine 

The second case study that was used to demonstrate the applicability of the proposed 

methodologies was the basic marine diesel which included components such as the piston, 

crankshaft and the cam assembly. The third case study is not be limited to the basic engine but 

includes other sub-systems of the marine diesel engine such as the scavenge air system, 

exhaust gas system, air starting system, main lube oil system and central cooling systems. The 

failure modes of the components of the various sub-systems of the marine diesel engine were 

used to further illustrate the application of the proposed methodologies for risk assessment for 

use in the marine industry. For the whole system, 74 failure modes were considered for 

investigation, as presented in Appendix A1, together with their causes and effects. The same 

experts that were used in assigning ratings for the 23 failure modes in case study 2 were also 

utilised in rating the 74 failure modes of this case study.  A sample of the assigned ratings is 
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shown in Table 3.8 while the full table is presented in Appendix A2. It is worth noting that a 

consensus was reached among the three experts in rating of the 74 failure modes. 

 

            Table 3.8: Sample of assigned criteria rating 

 

 

3.4.3.1   AVRPN analysis 

The assigned ratings against the three decision criteria; O, S and D for the 74 failure modes 

were then applied as input data into the AVRPN methodology. 

 

Firstly the expert-assigned imprecise ratings for the 74 failure modes in Table 3.8 were 

aggregated using Eq. 3.1 to 3.3. The aggregated values were then used as input in Eq. 3.4 to 

evaluate risk of the 74 failure modes and the results are presented in Appendix A4 and Figure 

3.6. From the graph, failure mode 8 is the best ranked failure mode having the highest risk 

priority number (RPN). This shows that based on this particular risk ranking methodology 

failure mode 8 poses the greatest risk to the marine diesel engine. The least ranked failure 

mode is failure mode 70 having the lowest value of RPN. Hence failure mode 70 poses the 

least threat to the marine diesel engine. 
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Figure 3.6: Failure modes RPN values and ranking 

 

3.4.3.2     AVTOPSIS analysis 

 

The assigned risk ratings of the 74 failure modes aggregated using Eq. 3.1 to 3.3 were then 

used to form a decision matrix, a sample of which is presented in Table 3.9 and the full matrix 

is presented in Appendix A3. Next the decision criteria were normalised using Eq. 3.6. The 

normalised decision matrix was then multiplied by the decision criteria weight to form the 

weighted normalised matrix.  In this case study the weight of the decision criteria were 

determined using the entropy method modelled as Eq. (3.6), (3.8) – (3.9). The decision 

criteria weights obtained were as follows; O =0.3443, S = 0.3326 and D = 0.3231. The 

positive ideal and negative ideal solutions were determined using Eq. (3.10) and (3.11). The 

distance of each failure mode to the positive-ideal solution, 𝐷𝑖
+, and negative-ideal solution, 

𝐷𝑖
−, together with relative closeness, 𝑅𝐶𝑖 , of each failure mode to the ideal solution were 

evaluated using Eq. (3.12) – (3.14). The graphical representation of the result of the relative 

closeness of each failure mode to the ideal solution and the corresponding ranking of the 74 

failure modes are shown in Figure 3.7. 
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Table 3.9: Sample of decision matrix 

 

 

 

 

Figure 3.7: RCi values and rankings of 23 failure modes 

 

From Figure 3.7, failure mode 8 with TOPSIS performance index of 0.6707 is the best ranked 

failure mode and as such possess the highest risk to the system. In terms of risk contribution 

to the system this is followed by failure mode 2 ranked second with a TOPSIS performance 

index (𝑅𝐶𝑖) of 0.6413 while the least contributor to the system risk is failure mode 54 having 

the lowest TOPSIS performance index value of 0.2129.  
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3.4.3.3    Comparison of methods 

The failure mode rankings generated from utilising the two techniques; AVRPN and 

AVTOPSIS are presented in Figure 3.8. 

 

 

Figure 3.8: Comparison of proposed methods 

 

 

From Figure 3.8 it can be seen that the majority of failure modes are ranked the same by the 

two methods while a few others have a rank difference of one between them. The Spearman 

rank correlation coefficient between AVRPN and AVTOPSIS was evaluated and a value of 

0.9000 was obtained. With the strong correlation between the two methods it can be 

suggested that the two techniques can be used individually or in combination for risk 

prioritisation.  

 

3.5     Summary 

In this Chapter some of the limitations of the conventional FMEA method were addressed 

using two approaches for risk prioritisation; AVRPN and AVTOPSIS. Both methods utilise a 

novel approach using averages without resorting to specialised software or the need for the 

decision maker to have knowledge of specialised programming concepts, in aggregating 

multiple experts’ diverse information that may be imprecise or incomplete. The AVRPN 

technique was proven to match almost completely with the Yang et al. (2011) and Su et al. 

(2012) modified  Dempster-Shafer method when it was applied to a complete distribution risk 

criteria problem from the literature. It was also demonstrated that the approach is simple yet 
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robust and capable of dealing with imprecise distribution risk criteria problems which the 

modified Dempster-Shafer theory technique is incapable of solving. Comparison between the 

two proposed methods (AVRPN and AVTOPSIS) revealed that both techniques can be 

suitable for use in risk prioritisation jointly or independently as the results generated by both 

methods were very similar. However the AVTOPSIS method is capable of incorporating 

more than three risk criteria unlike AVRPN. Although both techniques have been developed 

for risk prioritisation, they can easily be modified to address other multi-decision engineering 

problems such as maintenance strategy selection problems. Finally another novel aspect in the 

chapter, to the best of the author’s knowledge, is the fact that this is the first application of 

TOPSIS, an MCDM tool, in analysing a problem involving imprecise information from 

multiple experts.  



80 

 

Chapter 4    Risk Assessment using Compromise Solution Method 

 

4.1  Introduction 

In Chapter 3 two techniques were proposed for prioritisation of the risk of failure modes of 

machinery systems. As stated in Chapter 3, AVRPN addresses only a single limitation of the 

classical FMEA. AVTOPSIS which is the combination of the averaging technique and 

TOPSIS has an advantage over AVRPN in that it is capable of addressing more challenges of 

the classical FMEA. TOPSIS is a compromise solution methodology that is based on the fact 

that the best alternative is the one closest to the positive ideal solution and farthest from the 

negative ideal solution, however when compared to other compromise solution methods, 

more computational effort is required in evaluating the positive and negative ideal solutions 

(Rao, 2008). Other limitations of the TOPSIS technique are (Opricovic and Tzeng, 2004): (1) 

the optimum solution is not close to the ideal solution when the ideal solution has value of 1 

and (2) the relative distance between positive ideal and negative ideal is not considered in the 

evaluation process which negatively affects the decision making process. 

   

 In order to further eliminate or mitigate the limitations of the classical FMEA, two Multi-

Criteria Decision Making (MCDM) tools are proposed as alternatives to the classical FMEA. 

The proposed MCDM tools are Vlsekriterijumska Optimizacija Ikompromisno Resenje, 

meaning: Multicriteria Optimization and Compromise Solution (VIKOR) and Compromise 

Programming (CP).. Utilising these two MCDM techniques, which have successfully been 

applied in solving problems other than risk prioritisation, will allow more decision criteria and 

flexible decision criteria weights to be use in prioritising risk of failure modes which will 

therefore result in the risk of failure mode being more effectively prioritised or ranked. In 

order to enhance the capability of the two MCDM techniques in addressing the limitations of 

the classical FMEA, the averaging technique introduced in Chapter 3 has been integrated with 

the two proposed MCDM techniques. This allows the proposed compromise solution methods 

to use precise and /or imprecise ratings from experts as input. Thus the use of the averaging 

technique in the MCDM tools will eliminate the limitation of the classical FMEA of the 

inability to aggregate imprecise criteria ratings from experts. Furthermore two objective 

weighting techniques are incorporated into the methodology which is a break away from the 

use of subjective weighting techniques that may biasedly influence the decision making 
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process. The suitability and applicability of the proposed methodologies in risk ranking of 

failure modes of the marine diesel engine are investigated through case studies.  

 

The chapter is organised as follows: Section 4.2 presents a review of MCDM tools and 

Section 4.3 presents the proposed methodology for risk prioritisation. In Section 4.4 three 

case studies are presented for illustration of the proposed technique. Finally conclusions are 

presented in Section 4.5. 

 

4.2   Review of MCDM tools and their relevance to the Marine industry 

As previously stated in Chapter 3, the classical FMEA technique has limitations and in order 

to enhance its capability and reduced these flaws, various MCDM techniques have been 

applied in the literature. 

 

Braglia (2000) proposed the Analytical Hierarchical Process (AHP) technique as an 

alternative to RPN in the FMEA system. With this method, a three-level hierarchy was 

formed with the top level representing the main objective of fault cause selection, the 

intermediate level representing the four risk criteria, O, S, D and economic cost and the 

lowest level representing the alternative causes of failures. With this, a series of pairwise 

comparison matrices was formed and evaluated to obtain the weight of risk criteria and local 

priorities of the possible causes of failure with respect to O, S, D and economic cost. The 

aggregation technique in AHP was used to synthesize the local priorities of causes of failure 

into global priorities based on which possible cause of failure was ranked. Carmignani (2009) 

used a similar approach to that of  Braglia (2000) and in the methodology of the former, a new 

profitability calculation technique was introduced in place of economic cost for risk 

prioritisation of an electro-injector, a fuel system component. However the use of AHP has 

been criticised due to its use of an unbalanced scale of judgement and its inadequacy in 

addressing risk criteria ratings that may be uncertain and imprecise in the pairwise 

comparison process (Deng, 1999, Ilangkumaran and Kumanan, 2009). Furthermore, the  AHP 

technique is performed on  problems with 2 to 15 risk criteria and if a problem with more than 

15 decision criteria is to be considered some other technique is required to initially reduce the 

number of risk criteria (Vidal et al., 2011a).   

 

Maheswaran and Loganathan (2013) proposed a hybrid MCDM technique as an alternative to 

RPN in the traditional FMEA system. The technique was based on integration of AHP and the 
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Preference Ranking Organisation METHod for Enrichment Evaluation (PROMETHEE). The 

authors used AHP to determine the weight of each risk factor and used PROMETHEE for 

prioritising the failure modes. The methodology was illustrated by applying it to prioritising 

failure modes of a boiler system in the tyre manufacturing industry. Ayadi et al. (2013) 

presented a multi-criteria failure mode and effects analysis approach based on PROMETHEE 

for prioritising potential failure modes applied to manufacturing of a gas treatment plant.  

Moreira et al. (2009) proposed PROMETHEE in the ranking of equipment failure modes. 

PROMETHEE results in poor structuring of problems compared to AHP and when more than 

seven risk criteria are used it becomes difficult to obtain a view of the problem thereby 

making the evaluation process very complicated (Macharis et al., 2004).  

 

Seyed-Hosseini et al. (2006) proposed a methodology referred to as Decision Making Trial 

and Evaluation Laboratory (DEMATEL) as alternative to RPN in the classical FMEA for 

prioritisation of failure modes. With this approach, failure modes are prioritised based on 

severity of effect and direct/indirect relationships between them. However one of the 

challenges of DEMATEL is that it requires a lot of computational effort and according to 

Shaghaghi and Rezaie (2012) it cannot address the limitations of the traditional RPN method 

especially in a system where each cause of failure is linked to a single  failure mode; the  

results obtained by both methods are the same. 

 

Sachdeva et al. (2009b) proposed an integrated Shannon’s entropy method with TOPSIS 

which enhanced the FMEA for risk assessment. Six criteria of O, D, maintainability, spare 

parts availability, economic safety and economic cost were considered for risk prioritisation. 

An illustration was given with the application to the digester of a paper manufacturing plant in 

India. Braglia et al. (2003) also used TOPSIS under a FUZZY environment for risk 

prioritisation of a foaming machine of a refrigerator production line. The use of TOPSIS, 

especially in the fuzzy environment, is computationally intensive and that may make the 

proposed technique unattractive to the maintenance practitioner.  

 

From the above review and according to Maheswaran and Loganathan (2013), only limited 

publications are available using  MCDM techniques in enhancing the classical FMEA 

evaluation methodology. Moreover the few MCDM techniques employed so far all have one 

limitation or another. Hence there is need for an alternative MCDM technique devoid of the 

limitations of the MCDM techniques applied by other researchers and which will sufficiently 

address the challenges of FMEA especially for the marine environment. On this basis, two 
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MCDM compromise solution methods are proposed; VIKOR and CP as alternatives to the 

standard RPN calculation of the FMEA system.  

 

4.3  Proposed hybrid MCDM risk analysis tool for use on marine machinery systems 

The proposed enhanced FMEA based on the averaging technique integration with VIKOR 

and CP is presented in Figure 4.1. 

 

 

 

Figure 4.1: Flow chart of proposed hybrid MCDM risk analysis tool 

 

The methodological steps of the enhanced FMEA model are briefly discussed as follows: 

  

Steps (a), (b) and (c): The activities here involve formation of a team of experts who 

determine the particular system to be investigated. The failure modes of the system are then 

determined through brainstorming and the use of techniques such as root cause analysis and 

Fault Tree Analysis (FTA) 
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Step (d) Aggregation of imprecise rating: If imprecise ratings are assigned by experts to 

failure modes against decision criteria these are aggregated into precise ratings using the 

averaging technique discussed in Chapter 3.  

 

Step (e) Determination of criteria weight: The weight of each of the decision criteria is 

determined objectively by employing two techniques; the entropy method and the variance 

method. The results from the two techniques are compared in order to ascertain the 

relationship between both techniques.  

 

Step (f) Ranking of failure modes: VIKOR and CP are both applied individually in place of 

the RPN of the classical FMEA to determine the risk of the failure modes. This is carried out 

by using the performance index of both techniques to measure the performance of each failure 

mode and based on the index, the failure modes are ranked.    

Step (g) the ranking obtained from both methods are compared. 

 

4.3.1       Criteria weighting methods 

The determination of the weight of risk criteria is a key factor in risk prioritisation because of 

the impact of the risk criteria in the final ranking of the failure modes of a system. In the 

literature, many methods are available for assigning weight of attributes; among these 

techniques is the use of the entropy method (Çalişkan et al., 2013, Jee and Kang, 2000, 

Shanian and Savadogo, 2006). The statistical variance method has also been used by some 

authors (Rao and Patel, 2010, Nirmal, 2013). Subjective methods such as AHP, Weighted 

Evaluation Technique (WET), the Points method and the digital logic method have also been 

employed (Rao, 2007). 

  

For this chapter, the entropy method and the statistical variance method were adopted because 

these are objective techniques of weighting criteria there-by reducing personal bias in the 

overall decision making process which may influence purely subjective methods.  Moreover 

they have been applied individually by previous researchers in dealing with similar problems 

as detailed above. However one of the objectives of this chapter is to compare both methods 

in order to determine suitability and applicability for marine machinery systems.  
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4.3.1.1      Entropy method 

 

The steps of the Entropy method are as follows (Çalişkan et al., 2013): 

 

(1)    The decision matrix is formed. The decision matrix is produced using the values of 𝑥𝑖𝑗 

obtained in the data aggregation stage as follows: 

 

𝑋 = (𝑥𝑖𝑗)𝑚 .𝑛
                                                                                                                                   ( 4.1) 

 

 (2)   The decision matrix is then normalised: 

𝑝𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

  , 𝑖 = 1,2, … ,𝑚;    𝑗 = 1,2, … , 𝑛                                                                (4.2 )    

       

Where   𝑝𝑖𝑗  is the normalised matrix.                                              

(3)   The entropy value 𝑒𝑗  of each criterion is then determined: 

𝑒𝑗 = −𝑘 ∑𝑝𝑖𝑗

𝑚

𝑖=1

ln 𝑝𝑖𝑗                                                                                                                      (4.3) 

Where 𝑘 =
1

ln𝑚   
  is a constant which guarantees 0 ≤ 𝑒𝑗 ≤ 1 

(4)    Finally the objective weight 𝑤𝑗
𝑒 for each attribute is given by: 

                 

𝑤𝑗
𝑒 =

1 − e𝑗

∑ 1 − e𝑗
𝑛
𝑗=1

                                                                                                                             (4.4)   

               

 

4.3.1.2 Statistical variance method 

In determining the weight of risk criteria, the steps are as follows (Rao and Patel, 2010, 

Nirmal, 2013): 

(1)    The first step is the normalisation of the decision matrix in equation (4.1) as follows: 

 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

  , 𝑖 = 1,2, … ,𝑚;    𝑗 = 1,2, … , 𝑛                                                                 (4.5)     

                                                                                       

Where 𝑟𝑖𝑗 is the normalised matrix. 
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(2)    Next the variance of each risk criterion is evaluated as follows: 

 

𝑉𝑗 =
1

𝑚
[∑(𝑟𝑖𝑗 − 𝑟𝑖𝑗)

2
𝑚

𝑖

]                                                                                                               (4.6)     

                      

Where 𝑟𝑖𝑗 is the mean value of  𝑟𝑖𝑗 

𝑉𝑗    is the variance of each risk criterion. 

(3)    Finally the weight of each risk criterion is calculated as follows: 

𝑤𝑗
𝑣 =

𝑉𝑗

∑ 𝑉𝑗
𝑛
𝑗

                                                                                                                                        (4.7)   

 

 Where  𝑤𝑗
𝑣  is the weight of each criterion  

                             

4.3.2   Failure mode ranking tools 

The two MCDM techniques; VIKOR and CP proposed for the ranking of the failure modes of 

marine machinery systems are discussed next. 

 

4.3.2.1  VIKOR method 

 

The VIKOR method was developed by S. Opricovic in 1979 (Opricovic, 1998) and is defined 

as a multi-criteria decision making tool which focuses on ranking and selecting a compromise 

solution from a set of alternatives with reference to conflicting criteria. The compromise 

solution is obtained using a ranking index based on a measure of closeness to the  positive 

ideal solution (Opricovic, 1998, Opricovic and Tzeng, 2004). The key concept of the method 

lies in defining the positive and negative ideal solutions. While the positive and negative ideal 

solutions are defined as the alternatives with the highest and lowest values respectively with 

reference to risk criteria (Chu et al., 2007a), the optimum or compromise solution is defined 

as the alternative closest to the positive ideal solution and farthest from the negative ideal 

solution. The VIKOR method has been used by many authors in resolving  different multi-

criteria decision problems in literature;  in the selection of industrial robots (Nirmal, 2013), 

selection of vendors (Hsu et al., 2012), an equipment selection problem for mining operations 

(Aghajani Bazzazi et al., 2011) and material selection problems (Liu et al., 2013, Chatterjee et 

al., 2009, Rao, 2008, Çalişkan et al., 2013, Anojkumar et al., 2014).  
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The use of VIKOR in this context as an alternative to the RPN calculation of the FMEA 

system is based on the following considerations:  

 

(1) The classical FMEA is limited to use of only three decision criteria; O, S and D for 

prioritisation of the risk of failure modes of marine machinery systems. However the use of 

VIKOR in place of the RPN of the classical FMEA allows the inclusion of other important 

decision criteria such as economic cost and profitability.  

(2) Failure modes are better ranked and more clearly distinguished from one another using 

VIKOR than RPN of the classical FMEA system. This is because with the use of RPN in the 

classical FMEA, different combinations of O, S and D may result in having the same RPN 

values for different failure modes but the risks in the practical sense may not be the same. The 

aggregation technique of VIKOR combines the decision criteria; O, S and D in a systematic 

manner such that it is almost impossible to have the same value for risk. 

(3) VIKOR allows varying decision criteria weights to be applied in evaluating risk as 

opposed to classical FMEA that assumes equal weight for decision criteria. 

(4) The integration of the averaging technique into VIKOR allows both precise and 

imprecise data to be applied in evaluating risk of failure modes whereas classical FMEA 

relies only on precise data from experts. 

(5) No application of VIKOR techniques is reported in the literature for risk assessment of 

marine machinery systems and other related systems, so applying this MCDM technique 

which has successfully been used in solving other multi-criteria decision problems will   be a 

positive step for the marine industry. 

(6) Less computational effort is required than for the TOPSIS method (Nirmal, 2013, Rao, 

2008, Carpinelli et al., 2014) and other MCDM techniques that have previously been used by 

other authors in risk prioritisation of failure modes. Moreover the limitation of the TOPSIS 

methodology is with respect to its inability to consider relative distance from the positive 

ideal and negative ideal solutions which may be addressed through the VIKOR method 

(Anojkumar et al., 2014).  

 

The basic steps involved in the VIKOR methodology are as follows (Çalişkan et al., 2013, 

Sayadi et al., 2009): 

 

(1)      Determination of the best and worst values for each criterion. 
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Using the decision matrix in Eq. (4.1) the best and worst values for each criterion are 

determined as follows:   

 

𝑥𝑗
+

= max
𝑖

𝑥𝑖𝑗,    𝑥𝑗
−

= min
𝑖

𝑥𝑖𝑗                                                                                                   ( 4.8)    

Where,                                                                                                                                                                  

𝑥𝑗
+
 is the best value for the 𝑗𝑡ℎ criterion, and  

𝑥𝑗
−

 is the worst value for the 𝑗𝑡ℎ criterion.  

 

(2)     Computation of the utility measure and regret measure for each failure mode is as 

follows: 

 

𝑆𝑖 = ∑𝑤𝑗

𝑛

𝑗=1

(𝑥𝑗
+

− 𝑥𝑖𝑗) (𝑥𝑗
+

− 𝑥𝑗
−
)                                                                                      (4.9)     ⁄  

                                                                                                     

𝑅𝑖 = max
𝑗

 𝑜𝑓 [𝑤𝑗 (𝑥𝑗
+

− 𝑥𝑖𝑗) (𝑥𝑗
+

− 𝑥𝑗
−
)⁄ ]                                                                          (4.10)   

 

Where  

𝑤𝑗  is the weight of  𝑗𝑡ℎ criterion, which represents the relative importance of  the criterion. 

𝑆𝑖 is the utility measure 

𝑅𝑖 is the regret measure 

(3)     Computation of the VIKOR index value 𝑄𝑖 , 

This is expressed as: 

 

𝑄𝑖 = 𝑣 (𝑆𝑖 − 𝑆+) (𝑆− − 𝑆+)⁄ + (1 − 𝑣)(𝑅𝑖 − 𝑅+) /(𝑅− − 𝑅+)                                 (4.11)    

 

Where 

                                                                

𝑆+ = max
𝑖

[(𝑆𝑖) , 𝑖 = 1,2, … ,𝑚] 

                                                                                         

𝑆− = min
𝑖

[(𝑆𝑖) , 𝑖 = 1,2, … ,𝑚] 

                                                                                        

𝑅+ = max
𝑖

[(𝑅𝑖) , 𝑖 = 1,2, … ,𝑚] 
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𝑅− = min
𝑖

[(𝑅𝑖) , 𝑖 = 1,2, … ,𝑚] 

                                                                                          

 𝑣 represents the weight of the decision making strategy of the  maximum group utility which 

is usually set at 0.5 although  it can take any value from 0 to 1 (Çalişkan et al., 2013).  

 

However according to (Vahdani et al., 2010, Çalişkan et al., 2013) the compromise can be 

selected with “voting by the majority” (𝑣 > 0.5), with “consensus” (𝑣 ≈ 0.5), or with “veto” 

(𝑣 < 0.5). 

(4)    The ranking of failure modes is based on the VIKOR index 𝑄𝑖 value and the smaller the 

value the higher the rank is and the greater the risk that it poses to the system. The value of 𝑄𝑖  

represents the individual expert performance index rating. However if information is available 

from multiple experts the values of individual experts is averaged.  

 

 

4.3.2.2   Compromise Programming (CP) 

 

Compromise Programming was proposed by Po-lung Yu and Milan Zeleny in 1973 (Zeleny, 

1982) and has  since been used by different authors in solving various multi-attribute decision 

problems. The objective is to produce a solution that is closest to the ‘ideal’ solution which is 

measured in terms of comparing distances of various points to a reference point (the ideal 

point). The optimal solution is the one with the shortest distance to the ideal point. CP has 

been applied in the following areas: Bilbao-Terol et al. (2006) presented a Fuzzy CP 

technique for portfolio selection; Diaz-Balteiro et al. (2011) used the CP technique in the 

ranking of seventeen European countries evaluated in terms of the sustainability of the 

European paper industry; Tiwari et al. (1999) utilised CP in selecting optimum cropping 

pattern using several criteria such as land suitability, energy output/input, water requirements 

and environmental cost and Phua and Minowa (2005) presented a geographical information 

system (GIS)- based CP technique for forest conservation planning. Having been successfully 

applied in solving other problems elsewhere this chapter uses the technique to solve the risk 

prioritisation problem in the marine environment.   

 

The use of CP as an alternative to the RPN calculation of the FMEA system is based on the 

following consideration:  
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(1) CP is capable of incorporating more than three risk criteria, unlike RPN, for evaluating 

risk of failure modes of marine machinery systems. 

(2) The relative importance of different risk criteria is taken into consideration in the risk 

analysis process unlike RPN which assumes equal weight for all risk criteria. 

(3) The incorporation of the averaging technique into CP makes it possible for CP to 

allow the use of imprecise data for risk of failure mode evaluation as opposed to the classical 

FMEA that is limited to the use of precise data. 

(4) The computational effort and time required in evaluating the CP method is far less 

than that of other MCDM techniques. In support of this claim Marler and Arora (2004) and 

Carpinelli et al. (2014) postulated that the CP method can effectively be used when reduced 

computational effort is a strict requirement.  

 

The basic steps involved in this methodology are as follows: 

(1)    Determination of the positive ideal solution 𝑥𝑗
+
 and the negative ideal solution 𝑥𝑗

−
for 

the 𝑗𝑡ℎ criterion using Eq. 4.8. These are then used as input values in the risk prioritisation 

index 𝑑𝑝𝑖 

(2)      Computation of the risk prioritisation index 𝑑𝑝𝑖 

𝑑𝑝𝑖 = [∑𝑤𝑗
𝑝 |

𝑥𝑗
+

− 𝑥𝑖𝑗

𝑥𝑗
+

− 𝑥𝑗
−|

𝑝𝑛

𝑗

]

1
𝑃

                                                                                                   (4.12)   

   Subject to 1 ≤ 𝑝 ≤ ∞ 

 

Where risk prioritisation index  𝑑𝑝𝑖  represents the distance of failure mode 𝑖 (alternative 𝑖 ) 

from the ideal solution and p is the distance parameter which is used in compensating for 

deviation from the ideal solution point. In the case of risk prioritisation, the smaller the value 

of  𝑑𝑝𝑖 the higher the risk a failure mode possess to the system.  

 

It is worth noting that both methods proposed are compromise solution methods. In fact Eq. 

(4.9) and (4.10) of the VIKOR method were derived from equation (4.12) when p values are 

set at 1 and  ∞ respectively (Rao, 2008, Sayadi et al., 2009). However the key interest in the 

CP method in this context is to compare results obtained, with those of VIKOR to identify 

whether the methods can be used jointly or independently. The value of p was set at 2 for the 

CP method because this is the standard value used in the literature (Zeleny, 1982, Phua and 

Minowa, 2005). 
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4.4  Case studies 

4.4.1      Case study 1: Application to the boiler of a tyre manufacturing plant  

To validate the two proposed methodologies a boiler failure mode ranking problem that 

Maheswaran and Loganathan (2013) solved with the PROMETHEE method was considered. 

The authors identified ten failure modes using “What-if analysis” and generated a failure 

report of the system. The identified failure modes were assigned precise ratings for each of 

the four risk criteria Severity(S), Occurrence (O), Detection (D) and Protection (P) by 

different experts, with each of the expert ratings forming an individual decision matrix. The 

average of the individual decision matrices is shown in Table 4.1 which was then normalised; 

the result is shown in Table 4.2. 

 

 Table 4.1: Failure modes of a boiler system and corresponding decision matrix (Maheswaran 

and Loganathan, 2013) 
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  Table 4.2: Normalised Decision matrix (Maheswaran and Loganathan, 2013) 

 

 

4.4.1.1      VIKOR method analysis 

From Table 4.2 the positive ideal and negative ideal solutions of all the risk criteria were 

determined using Eq. 4.8. The relative weights of criteria are then required.  For the purpose 

of comparison of this proposed methodology with the PROMETHEE method of Maheswaran 

and Loganathan (2013), criteria weights evaluated by  these authors  using AHP techniques 

were used. The criteria weights assigned were 0.4996, 0.2884, 0.0655 and 0.1465 for Severity 

(S), Occurrence (O), Detection (D) and Protection (P) respectively. Knowing the weight of 

risk criteria, the distance of each failure mode from the positive ideal solution was then 

calculated firstly based on utility measure using Eq. (4.9) and secondly based on regret 

measure using Eq. (4.10). The VIKOR index 𝑄𝑖 was then calculated using Eq. (4.11) and 

based on the result, the failure modes were ranked. The results of 𝑄𝑖 for each of the failure 

modes and their corresponding rankings are presented in Table 4.3. 
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 Table 4.3: Si, Ri and Qi and corresponding Rank of a boiler system 

 

 

From Table 4.3, failure mode 2 is the most significant failure mode having the lowest 𝑄𝑖 

value meaning it poses the highest risk to the boiler system. On the other hand, failure mode 3 

having the highest 𝑄𝑖 value is the least significant of the 10 failure modes of the boiler system 

considered. The implication is that failure mode 3 has the lowest risk contribution to the 

system and as such it should attract the least attention while the greatest attention should be 

paid to failure mode 2.  

 

4.4.1.2    Compromise Programming  

For the Compromise Programming method, values of the best and worst solutions were 

obtained by applying Eq. (4.8) to the normalised decision matrix in Table 4.2. The values 

generated were used as input into Eq. (4.12) to evaluate the risk index of the CP method. The 

index values of the ten failure modes of the boiler system together with their rankings are 

presented in Table 4.4. 
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Table 4.4: dp values and rank 

 

 

From Table 4.4 it obvious that the highest ranked failure mode is number 2 having the lowest 

dpi values and the lowest ranked is failure mode 5.  

 

4.4.1.3     Comparison of the two methods  

Table 4.5 and Figure 4.2 show comparisons of the results obtained by the two proposed 

compromise solution methods with the results generated by the Maheswaran and Loganathan 

(2013) PROMETHEE based methodology. 

 

Table 4.5: Comparison of methods 
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Figure 4.2: Comparison of methods 

 

Table 4.6: Spearman’s rank correlation coefficient 

 

 

From Figure 4.2 and Table 4.5 it can be seen that all three ranking methods; VIKOR, CP and 

PROMETHEE assigned the top rank to failure mode 2 (feed water pump failure). There is 

absolutely no doubt that failure mode 2 is the most critical failure mode of the boiler system. 

Other failure modes assigned the same ranking by the three methods are failure mode 7 and 9.  

 

From Table 4.6, the high Spearman’s rank correlation coefficient between CP and 

Maheswaran and Loganathan (2013) rankings and between VIKOR and Maheswaran and 

Loganathan (2013) of 0.9758 and 0.9626 respectively, again validated the proposed 

methodologies. The compromise solution methods applied in this study demand less 

computational effort and time compared to the PROMETHEE method and yet produce very 

similar outputs. Also the Maheswaran and Loganathan (2013) methodology can only be 

applied to exact or precise data from experts but the methodology proposed in this paper is 

capable of solving system problems involving both precise and imprecise information from 

experts.  
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4.4.2    Case study 2:  Application to the basic marine diesel engine 

To demonstrate the suitability and applicability of the integrated averaging technique with 

VIKOR and the CP methods in conjunction with entropy and statistical variance weighting 

methods within the marine environment, the same case study of the basic marine diesel engine 

applied to validate the AVRPN and AVTOPSIS in Chapter 3 was considered. Ten major 

equipment items of the basic engine which include: main bearing, piston, cylinder head and 

crankshaft and a total of 23 failure modes were identified alongside their causes and effects; a 

sample of these was presented in Table 3.4 in Chapter 3 while the full table is in Appendix 

A1. The risk criteria (O, S and D) values assigned by the three expert for each failure mode 

through the use of the ordinal ranking scales was also presented in Table 3.5 in chapter 3.  Eq. 

(3.1) – (3.3) had already been applied in aggregating the values assigned by the three experts 

and the aggregated decision matrix formed was also presented in Table 3.5 in Chapter 3.  

 

4.4.2.1  Risk criteria weighting 

The entropy method was applied firstly to determine the weight of each criterion. Using the 

entropy methodology the aggregated risk criteria ratings in Table 3.6 in Chapter 3 were 

normalised using Eq. 4.2. The weight of each criterion was then computed by applying Eq. 

(4.3) and (4.4) to the normalised matrix and the results obtained are shown in Table 4.7. Next 

the weight of the risk criteria were evaluated with the statistical variance models of Eq. (4.5) – 

(4.7) and the results obtained are also presented in Table 4.7. 

  

 

Table 4.7: Risk criteria weightings by entropy and statistical variance 

 

 

 From Table 4.7 it can be seen that the two weighting techniques yielded very similar results. 

It was decided to implement the VIKOR and CP risk analyses using the entropy method as 

there was evidence from the literature to support this decision see (Çalişkan et al., 2013). 

 

 



97 

 

4.4.2.2      VIKOR method analysis 

 

The positive ideal solution f+   and the negative ideal solution f - were determined from the 

decision matrix in Table 3.6 in Chapter 3 using Eq. (4.8). The distance of each failure mode 

from the positive ideal solution was then calculated based on utility measure 𝑆𝑖  and regret 

measure 𝑅𝑖   using Eq. (4.9) and (4.10) respectively. The VIKOR index values, 𝑄𝑖 , were then 

evaluated for the various failure modes by subtituting values of 𝑆+, 𝑆−, 𝑅+ ,  𝑅− and 𝑣 into 

Eq. (4.11). The failure modes were ranked based on the VIKOR index values. The results of 

the 𝑄𝑖 values of the failure modes together with the rankings are presented in Table 4.8 and 

Figure 4.3. 

 

               Table 4.8: VIKOR index Qi of failure modes and rankings 
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Figure 4.3: Qi values of 23 failure modes of marine diesel engine and corresponding rankings 

 

From Figure 4.3, it is clear that failure mode 2 is the one with the lowest value of 𝑄𝑖 and thus 

is ranked number one among the 23 failure modes of the marine diesel engine. In terms of risk 

impact on the system, its poses the highest risk to the marine diesel engine. On the other hand 

failure mode 11 which has the highest value of 𝑄𝑖 is ranked number 23 among the 23 failure 

modes and thus poses the least risk to the system.   

 

4.4.2.3        CP method analysis 

Applying Eq. (4.8) to the decision matrix in Table 3.6, the values of  𝑥𝑗
+
,  𝑥𝑗

−
 were obtained 

and used as inputs to Eq. (4.12) to obtain the risk prioritisation index 𝑑𝑝 of the CP technique. 

The risk prioritisation index 𝑑𝑝 values of the 23 failure modes together with the rankings are 

presented in Table 4.9 and Figure 4.4. 
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                 Table 4.9: dp of failure modes and ranking 

 

 

Figure 4.4: dp values of 23 failure modes and corresponding ranking. 
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It is obvious from Figure 4.4 that failure mode 2 has the lowest value of 𝑄𝑖, thus it is ranked 

number one among the 23 failure modes. Based on this methodology, it is the most critical 

failure mode in the system and, as such, greater attention should be paid to it to mitigate the 

effect on the system. Failure mode 11 is again the one with the highest value of 𝑄𝑖, thus the 

lowest ranked among the 23 failure modes. 

 

4.4.2.4    Comparison of the ranking of the proposed methods with TOPSIS and AVTOPSIS  

In order to validate the proposed methodologies, the results obtained from them together with 

the results obtained by solving the same problem with the standard TOPSIS technique  and 

results obtained by AVTOPSIS in Chapter 3 were compared as shown in Figure 4.5. 

 

 

Figure 4.5: Comparison of rankings obtained with MCDM methods 

 

 

Table 4.10: Spearman’s rank correlation between methods 
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while the majority of the others have a difference of one place between failure modes.  

However the TOPSIS method involves more computational effort.  The gap in the results 

obtained from AVTOPSIS as compared to the other three methods is as a result of the 

different normalisation technique used in the entropy method in obtaining risk prioritisation 

criteria weight. While for VIKOR, CP and TOPSIS the summation of the experts’ assigned 

risk criteria values was used in the normalisation process in the entropy method for obtaining 

criteria weight, the square root of the summation of the square values of risk criteria assigned 

by experts’ was applied in the normalisation technique used in the entropy methodology in 

obtaining criteria weight for the AVTOPSIS. This resulted in different risk criteria weights 

used for AVTOPSIS and the deviation in rankings obtained using the technique from the three 

other techniques. This then shows that criteria weights used as input in the risk prioritisation 

methodology have a very strong influence in the ranking outcome. This makes the process of 

evaluating criteria weight a very important and critical subject.  

 

The Spearman rank correlations between VIKOR, CP and TOPSIS and AVTOPSIS were 

evaluated and the results are shown in Table 4.10. From Table 4.10 the near perfect  

Spearman rank correlations between VIKOR and CP; VIKOR and TOPSIS; CP and TOPSIS 

of 0.9931, 0.9901 and 0.9862 respectively, shows the viability  and validity of the two 

proposed methods for prioritising risk of failure mode of a marine machinery system or any 

other related systems. The Spearman rank correlation coefficient between rankings of VIKOR 

and AVTOPSIS; CP and AVTOPSIS; and TOPSIS and AVTOPSIS of 0.7757, 0.7520 and 

0.7213 respectively show that AVTOPSIS is also strongly related with VIKOR, CP and 

TOPSIS and this further shows the viability of the proposed methodologies.  

 

4.4.3     Case study 3:  Application to a marine diesel engine 

The case study of the marine diesel engine which includes all of the systems of the marine 

diesel engine such as the basic engine, main lube oil system and the scavenge air system was 

previously described in Section 3.4.3 in Chapter 3. The values assigned by experts using the 

ordinal scale to the 74 failure modes identified for the systems as well as the resulting 

aggregated decision matrix have also already been presented in Table 3.8 and 3.9 respectively 

in Chapter 3. The application of the VIKOR and CP for analysis of this data is discussed next. 
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4.4.3.1     VIKOR method analysis 

 

Applying Eq.4.8 to Table 3.9, the positive ideal solution f+   and the negative ideal solution f -   

were determined.  The distance of each failure mode from the positive ideal solution was then 

calculated based on utility measure 𝑆𝑖  and regret measure 𝑅𝑖   using Eq. (4.9) and (4.10) 

respectively. The VIKOR index values, 𝑄𝑖 , were then evaluated for the various failure modes 

by subtituting values of 𝑆+, 𝑆−, 𝑅+ ,  𝑅− and 𝑣 into Eq. (4.11). Based on the VIKOR index 

values the failure modes were ranked. The results of the 𝑄𝑖   values of the failure modes 

together with the rankings are presented in Figure 4.6. From the result, failure mode 71 is 

ranked 1 having the lowest performance index i.e. 0.0234 and as such the failure mode 

contributed the highest risk to the system.  The failure mode that poses the least risk to the 

system is failure mode 54 with a ranking of 74 and having the highest performance index 

value. 

 

 

Figure 4.6: Qi values of 78 failure modes and corresponding rankings 

 

 

4.4.3.2       CP method analysis 

The values of  𝑥𝑗
+
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−
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technique. The risk prioritisation index 𝑑𝑝 values of the 74 failure modes together with the 

rankings are presented in Figure 4.7. 

 

 

Figure 4.7: dp values of 74 failure modes and corresponding ranking 

 

 

4.4.3.3    Comparison of the ranking of the proposed MCDM methods with AVRPN, 

AVTOPSIS and TOPSIS 
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the results obtained from their analysis were compared with those of ARPN, AVTOPSIS and 
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AVTOPSIS, AVRPN and TOPSIS are shown in Figure 4.8 a, b &c. 
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Figure 4.8a: Comparison of proposed methods with AVRPN, AVTOPSIS and TOPSIS 
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Figure 4.8b: Comparison of proposed methods with AVRPN, AVTOPSIS and TOPSIS 
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Figure 4.8c: Comparison of proposed methods with AVRPN, AVTOPSIS and TOPSIS 
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From Figure 4.8 a, b & c it is obvious that there is a very close relationship between the two 

proposed MCDM methods (VIKOR and CP) and TOPSIS as most of the failure modes are 

ranked the same for the three methods with the exception of a few failure modes that had a 

difference of one or two ranking places between them. On the other hand, AVRPN and 

AVTOPSIS also has most of the failure modes ranked the same with the exception of a few 

others that have a difference of one or two places between failure modes. The AVRPN and 

AVTOPSIS closely match because the decision criteria weights utilised for their analysis was 

almost the same. For AVRPN the weights of the decision criteria were assumed to be equal 

while for AVTOPSIS the decision criteria; O, S and D were assigned with weights of 0.3443, 

0.3326 and 0.3231 respectively.  

 

The gap in the ranking obtained from AVTOPSIS as compared to the standard TOPSIS is as a 

result of the different normalisation technique used in the entropy method in obtaining risk 

prioritisation decision criteria weights. The Spearman’s correlation coefficients between the 

different methods were evaluated and are shown in Table 4.11.  

  

Table 4.11: Spearman’s rank correlation between methods 

 

 

From Table 4.11, the very strong Spearman’s rank correlation coefficient between the two 

proposed MCDM methods and TOPSIS and the relatively strong correlation between the 

proposed methods and AVRPN and AVTOPSIS has further proven the suitability of these 

techniques for prioritisation of risk of failure modes.  From the table, the near perfect 

Spearman rank correlation between VIKOR and CP =0.9890; VIKOR and TOPSIS = 0.9580 

and CP and TOPSIS =0.9540 shows that the three techniques can be used individually or in 

combination in the prioritisation of risk for marine machinery systems or any other related 

engineering systems.  
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4.5           Summary 

The place of risk assessment in maintenance strategy selection cannot be overemphasized as 

the maintenance strategy to be adopted depends upon the assessed risk. In this Chapter two 

popular compromise solution methods, VIKOR and CP, have been investigated for suitability 

and applicability for prioritising risk of failure modes of marine machinery systems and other 

related engineering systems. Three case studies have been investigated in determining the 

suitability and applicability of the proposed methodologies. 

  

Both techniques use the novel averaging technique in aggregating multiple experts’ opinions 

and with the integration of the averaging technique with VIKOR and CP both precise and 

imprecise experts opinions can be captured which is generally what is obtainable in a practical 

situation. In evaluating weight for risk criteria for use as an input into the risk prioritisation 

methodologies, two objective techniques, entropy and statistical variance methods, have been 

compared and findings show that the two techniques yield the same result and as such they 

can individually be used effectively in evaluating criteria weight for marine machinery 

systems. The beauty of using the objective risk criteria weighting technique is that the 

decision maker does not biasedly influence the decision making process as the risk criteria 

weight is the key element that influences the risk ranking. The issue of risk criteria weight 

greatly influencing the failure mode rankings of different risk prioritisation methodologies has 

also been demonstrated in this research as in the case of AVTOPSIS having a different trend 

of failure mode rankings from the three other methodologies; VIKOR, CP and TOPSIS 

simply because of the different risk criteria weights used for AVTOPSIS. Finally the 

methodologies, VIKOR and CP, proposed in the research are robust in producing almost 

completely the same results when compared to more computationally challenging techniques 

used by previous researchers thereby validating their applicability and suitability for risk 

prioritisation of the failure modes of machinery and other related engineering systems.  
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Chapter 5    Maintenance Strategy Selection 

5.1  Introduction 

 

The second major stage in the RCM methodology is the selection of the appropriate 

maintenance strategy for each of the components/failure modes of marine machinery systems. 

In the RCM methodology the logic decision tree is used in the selection of an appropriate 

maintenance strategy which is basically based on two major decision criteria; applicability 

and cost effectiveness (Deshpande and Modak, 2002). Generally decision problems involving 

more than one criterion, which are usually conflicting, are better modelled using MCDM 

tools. From this point of view, some MCDM techniques such as TOPSIS and AHP were 

proposed in the literature as alternative maintenance strategy selection methods (Gandhare 

and Akarte, 2012, Braglia, 2000). However it was obvious from the literature review in 

Chapter 2 that there was a need for a more systematic approach that can easily incorporate 

qualitatively and/or quantitatively the maintenance alternatives’ selection criteria for marine 

system applications. On this basis, three hybrid MCDM techniques are proposed for 

maintenance strategy selection for ship machinery systems and other related ship systems in 

this research. The three proposed techniques are: (1) an integrated Delphi-AHP methodology, 

(2) integrated Delphi-AHP-PROMETHEE and (3) an integrated Delphi-AHP-TOPSIS 

methodology. The Delphi method was selected to screen decision criteria for determining the 

optimal maintenance strategy because, if there are too many decisions, the solution may 

become too complicated. For the first proposed method, AHP is used in the weighting of 

decision criteria and subsequently in the final ranking of maintenance strategy alternatives. In 

the second and third proposed methods AHP serves only to determine the decision criteria 

weights while PROMETHEE and TOPSIS are applied in the ranking of maintenance strategy 

alternatives. The hybrid approach was applied in order to combine the merits of the different 

MCDM tools to produce a more efficient maintenance strategy selection tool.  

 

The Chapter is organised as follows: Section 5.2 discusses the various criteria and sub-criteria 

for Selection of a maintenance strategy; Section 5.3 presents the proposed methodology for 

selecting maintenance strategies; in Section 5.4 the case of the high pressure fuel oil pump of 

the marine diesel engine is presented to demonstrate the proposed methodologies. Finally the 

conclusion is presented in Section 5.5.   
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5.2  Criteria for selecting maintenance strategy 

 The selection of maintenance strategies for different components/equipment items of the 

marine machinery system, taking into consideration their distinct failure modes, is a complex 

task which usually involves multiple criteria. These multiple criteria were firstly identified 

through a thorough literature survey and face to face interviews with marine engineering 

experts both in academia and shipping industries. The identified criteria were then subjected 

to screening through the use of the Delphi method, which is described in the next section, in 

order to ascertain the criteria that are most essential for selecting maintenance strategies. The 

various criteria and sub-criteria considered in this study are as follows: 

(1) Cost: Different maintenance approaches have different cost implications. In this case 

cost is viewed in terms of spare parts inventory cost, maintenance cost, crew training cost and 

equipment damage. 

(a) Spare parts inventories: The costs of spare parts inventories for each of the 

maintenance strategies are quantified. When no quantifiable data is available expert 

opinion is relied upon. 

(b) Maintenance cost: Cost of labour, equipment for performing maintenance tasks 

and materials for carrying out each type of maintenance strategy are considered. These 

are then measured for each of the maintenance strategies in order to determine the 

strategy that will best suit a particular failure scenario. 

(c) Crew training cost: The cost of training required by the crew members in order 

to acquire the expertise needed for performing each of the maintenance strategies.  

(d) Equipment damage: This criterion considers the level of damage to plant 

system equipment that may result from implementing a particular maintenance 

strategy. The maintenance strategy that will eliminate or reduce the chances of 

equipment damage is preferred.   

(2) Safety: The level of safety required is determined by the maritime industry and 

regulation bodies and is a key factor in selecting the maintenance strategy for the machinery 

system. Safety is viewed in terms of personnel, equipment and environment. 

(a) Personnel: Failure of some equipment/components of marine machinery 

systems can result in serious injury or death of personnel on board ship. In such cases 

the most effective maintenance strategy is applied irrespective of cost. 

(b) Equipment: In the event of failure of a particular component/equipment item of 

the marine machinery system, the question is how safe is the entire system. Greater 
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attention is paid to parts that may result in severe damage to the system. The 

maintenance strategy that will eliminate or reduce failure frequency to the lowest level 

is advisable.  

(c) Environment: Failure of some parts of the marine machinery system can result 

in serious environmental hazards. The maintenance strategy that will reduce failure of 

a piece of equipment to the lowest level is generally considered appropriate. 

(3) Added value: This criterion considers the degree of improvement to the system that 

will result in terms of reliability and availability from implementation of each maintenance 

strategy. The following factors describe the ‘added value’ category used in this context.  

(a) Minimisation of operational loss: The maintenance strategy that will minimise 

equipment operational loss the most is generally preferred. 

(b) System reliability: High reliability is usually required for most high risk 

component/equipment items of a system. So the maintenance strategy that will yield 

the highest reliability is generally chosen in such instances. 

(4) Applicability: Whether the maintenance strategy can be implemented in mitigating 

failures of the marine machinery system. The following factors are considered under this 

criterion: 

(a) System failure characteristics: The component failure characteristics; wear-in 

failure, random and wear-out failure, are key factors in selecting the most appropriate 

maintenance strategy for plant equipment. For example, online condition-based 

maintenance is suitable for components with random failure patterns, provided there is 

an identifiable warning sign for measuring the condition of the component.  

(b) Available monetary resource: If available finance for maintaining the system 

cannot incorporate online condition based maintenance, the plant manager is left with 

no choice other than to exclude it irrespective of the benefits.  

  (c) Equipment risk level: The level of failure risk of different equipment in the 

marine machinery system varies. For the very high risk equipment whose failure is 

usually catastrophic, condition based maintenance is mostly preferred irrespective of the 

cost implication. 

  

5.3       Proposed Hybrid MCDM Methodology for maintenance strategy selection  

     

As previously stated three hybrid MCDM methods have been proposed for selecting the 

maintenance strategy for a marine machinery system in this study. The first method combines 
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Delphi and AHP methods, the second method combines Delphi, AHP and PROMETHEE 

while the third method combines Delphi, AHP and TOPSIS. The flow chart of the proposed 

methodology is presented in Figure 5.1. The methodological steps are as follows:  

 

Step (a) Decision making team formation: A team of experts is formed that will perform the 

selection of the optimum strategy for each equipment item/component of the system. 

 

Step (b) and Step (c): The maintenance strategy alternatives and the decision criteria for 

selecting the alternatives are identified by the team based on experience and literature.   

 

Step (d): The team use the Delphi method to carry out screening of the decision criteria such 

that the most significant criteria are identified for maintenance strategy alternatives.  

 

Step (e): Two types of questionnaire are designed: The first questionnaire is designed for 

experts to carry out pairwise comparison judgment of decision criteria alongside pairwise 

comparison judgment of maintenance alternatives against decision criteria. The second type 

of questionnaire is based on a Likert scale; for this study a 5 point Likert scale was used to 

design the questionnaire for obtaining data for PROMETHEE and TOPSIS.  

 

Step (f) Determination of decision criteria weight: The pairwise comparison judgment 

obtained from the experts for the decision criteria is used as the input into the AHP evaluation 

technique to calculate weights of decision criteria. 

 

Step (g) Ranking of alternatives: The maintenance strategy alternatives are ranked using AHP, 

PROMETHEE and TOPSIS.  

 

Step (h) and step (i) The ranking obtained from the three methods are compared and an 

optimum strategy is then determined. 
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Figure 5.1: Flowchart of proposed methods 

 

 

5.3.1      Delphi method 

The Delphi method can simply be defined as a technique for iteratively  processing opinions 

of experts until a consensus is reach on the subject under investigation (Delbecq et al., 1975).  

The development of the technique can be dated back to the early part of 1950 as a spinoff of 

the US Air Force-sponsored Rand Corporation study. It has since gained prominence with 

various modifications to the conventional Delphi technique emerging (Linstone and Turoff, 
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1975). In order to obtain quality results from Delphi analysis, some authors have 

recommended a sample size of between 5 and 15 experts (Kim et al., 2013a, Novakowski and 

Wellar, 2008, Cavalli-Sforza and Ortolano, 1984) while others recommended between 9 and 

18 (Vidal et al., 2011a, Vidal et al., 2011b). Some of the merits of the Delphi technique are:  

participant experts can freely express their opinions since information is anonymously 

sourced creating no room for domineering experts to dictate the outcome which is usually the 

case of the conventional brainstorming technique (Kim et al., 2013b); The process is cheap 

since through email, surface mail and sometimes face to face contact with individual 

participant experts, the researcher or investigator can obtain a consensus opinion from 

participating experts on an issue as compared to the traditional brainstorming technique where 

experts will need to convene in one place to reach a consensus. The Delphi method has been 

applied standalone or in combination with other techniques in solving a variety of problems in 

the literature: Vidal et al. (2011a) applied the Delphi process in conjunction with AHP in 

evaluating project complexity; Joshi et al. (2011) employed the Delphi technique in 

identifying, synthesizing and prioritising key performance factors of a cold chain 

(“temperature-controlled supply chain”) of  an India company; Kim et al. (2013b) used the 

Delphi technique to identify objective evaluation criteria for selecting electronic waste to be 

recycled. 

 

The first step in the Delphi methodology is to select a panel of experts to be used for the 

investigation. This is followed by developing the questionnaire, which could either be open 

ended or closed ended questions around the subject of the investigation, and this is sent to the 

panel of experts (first round Delphi survey). The next step is to analyse the results of the first 

round survey and resend the results alongside the second round questionnaire which is usually 

a modification of the first round questionnaire to the participants (second round Delphi 

survey). The iteration continues until a consensus is reached among experts for all items in the 

questionnaire and in most cases consensus is reached at the second or third round.  

 

 Different authors have advocated various techniques to determine the overall opinions of all 

experts. Lawshe (1975) proposed a content validity ratio (CVR) with the threshold  value 

defined for removing or retaining a criteria item. This was re-evaluated by Wilson et al. 

(2012). The model is as follow: 

 

CVR =
NPE − (N 2⁄ )

N 2⁄
                                                                                                                         (5.1) 
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Where NPE is the number of experts indicating an item is essential and N is the total number 

of panel experts. The value of CVR varies from +1 (all panel expert indicate an item is 

essential) to -1 (if all panel experts indicate an item is non-essential). The threshold value is 

generally set at greater than 0.29 and the implication is that any item with CVR value greater 

than 0.29 is retained (Kim et al., 2013b). Vidal et al. (2011b) and Vidal et al. (2011a) applied 

mean values in determining items to remove or retain and with this approach, items with a 

mean value below 4.5 on a 5 point Likert rating scale were removed. 

 

In this study the criteria for selection of a maintenance strategy for marine machinery systems 

was screened using the Delphi survey steps described above. The CVR and the mean of all 

maintenance strategy selection criteria in the first and second round surveys were evaluated. 

Since there was no significant difference between the opinions of experts for all criteria in the 

first and second Delphi surveys, the process was terminated at the second round. Finally the 

criteria items with CVR value greater than 0.29 and mean values equal or greater than 2.7 in 

the second round survey were retained. It is worth noting that the mean value of all expert 

ratings in this study was  set at  2.7 since a 3 point Likert scale was used in designing the 

Delphi questionnaire which is equivalent to the 4.5 threshold used by Vidal et al. (2011b) and 

Vidal et al. (2011a)  on 5 point Likert scale. 

 

5.3.2    Analytical Hierarchy Process (AHP) 

 

AHP, first developed by Saaty (1980), is a widely used multi criteria decision making tool 

which helps decision makers to structure complex decision problems. AHP has been chosen 

mainly because it provides a framework to manage conflicting multi-criteria problems 

involving both qualitative and quantitative facets. Additionally the quality of expert opinions 

involved in the process can be mathematically proven using the consistence index (Zammori 

and Gabbrielli, 2012, Saaty, 1980). However AHP has limitations and one of the main 

limitations is the computational complexity in the analysis process when the decision criteria 

for selecting alternatives is more than 15. This shortcoming of AHP is overcome in this thesis 

by integrating the Delphi technique into the AHP method. AHP basically involves reducing 

complex decisions to a series of simple pairwise comparisons and rankings, and then 

synthesizing the results to obtain an overall ranking. The steps for AHP analysis, as presented 

in Caputo et al. (2013), with revision are as follows: 
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(1) Define decision criteria 𝐶𝑖 to be used to evaluate and prioritise maintenance 

alternatives. The criteria were defined using the Delphi study, see section 5.3.1. 

(2) Define maintenance alternatives to be prioritised. Three maintenance alternatives have 

been identified for mitigating effects of equipment failures of marine machinery systems.  

(3) Design the AHP questionnaire for  𝑘  experts to perform pair-wise comparison of the 

relative importance among the 𝑛 decision criteria. Each individual expert’s judgements are 

then used to form an n x n pairwise comparison matrix,  𝑋𝑘 , represented as follows (Wu et al., 

2008):  

 

𝑋𝑘 = [𝑥𝑖𝑗
𝑘 ]

𝑛𝑥𝑛
=

[
 
 
 
𝑥11

𝑘 𝑥12
𝑘 … 𝑥1𝑛

𝑘

𝑥21
𝑘 𝑥22

𝑘 … 𝑥2𝑛
𝑘

⋮ ⋮ ⋱ ⋮
𝑥𝑛1

𝑘 𝑥𝑛2
𝑘 … 𝑥𝑛𝑛

𝑘 ]
 
 
 

                                                                                        (5.2) 

 

Where 

𝑥𝑖𝑗
𝑘  > 0, 𝑥𝑖𝑗

𝑘 = 1/ 𝑥𝑗𝑖  
𝑘 ,     𝑥𝑖𝑖

𝑘  =  1 

 

𝑥𝑖𝑗
𝑘  is the k-th expert defined rating of how the importance of criterion i compares with that of  

criterion j. For example if criteria i and j are of equal importance 𝑥𝑖𝑗
𝑘 = 𝑥𝑗𝑖

𝑘 = 1 and k = 1, 

2,…,z. The AHP scale used in the ranking is presented in Table 5.1. 

 

Table 5.1: AHP importance scale (Saaty, 1980) 

 

 

(4) The weight to be assigned to criteria 𝐶1, 𝐶2, … , 𝐶𝑛   is evaluated using the pair-wise 

comparison matrix 𝑋𝑘. The weights of each criterion are evaluated as follows:  
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𝑤𝑖
𝑘 =

1

𝑛
∑

𝑥𝑖𝑗
𝑘

∑ 𝑥𝑖𝑗
𝑘

𝑖𝑗

                                                                                                                         (5.3) 

 

Where 𝑤𝑖
𝑘  is the weight of criteria 𝐶𝑖 

 

The weights of the criteria can be represented as weight vector (Wk).        

  

𝑾𝒌 = [𝑤1
𝑘, 𝑤2

𝑘, … , 𝑤𝑛
𝑘]𝑇                                                                                                    (5.4) 

 

(5) The consistency of judgement by the experts is then evaluated using the consistency 

ratio 𝐼𝑟, . In general a consistency ratio of less than 0.1 is acceptable and if the value is greater 

than this, experts should be advised to revise their initial judgement (Saaty, 1980). The 

consistency ratio is calculated as: 

 

𝐼𝑟, = 
𝐶𝐼

𝑅𝐼
                                                                                                                                          (5.5) 

 

Where RI is the corresponding average random value of 𝐶𝐼 for an 𝑛 𝑥 𝑛 matrix, the values are 

shown in Table 5.2, and 𝐶𝐼 is the consistency index and can be evaluated as 

 

𝐶𝐼 =  
𝜆max    − 𝑛 

𝑛 −  1
                                                                                                                          (5.6) 

                                     

Where 𝜆max    is the maximum eigenvalue 

 

𝜆max    = 
1

𝑛
∑

(𝑋𝑘𝑤𝑘 )𝑖

𝑤𝑖
𝑘

𝑛

𝑖=1

                                                                                                            (5.7) 

 

 

 

Table 5.2: RI values for different matrix order (Saaty, 1980) 
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(6) The next step is to evaluate the local weight of each maintenance alternative for each 

criterion: firstly construct a pairwise comparison matrix between maintenance alternatives for 

each criterion using Eq. 5.2 (see the sample given in Table 5.7), next the solution models used 

in evaluating criteria pairwise comparison of individual experts i.e. Eq. 5.3 to 5.7 are also 

used for the maintenance alternatives’ pairwise comparison matrix to obtain local weight of 

each maintenance alternative.  

(7) The overall score of each maintenance alternative is evaluated by multiplying the local 

weight of a maintenance alternative by criteria local weight and summing over all criteria. 

Based on the overall score, maintenance alternatives are ranked and the most appropriate 

selected. 

(8) Where pairwise comparison judgements are available from more than one expert, the 

overall score of each maintenance alternative from individuals is averaged to obtain a group 

overall score for the maintenance alternative option (Bolloju, 2001).  

The  Goepel (2014) AHP online calculator was used for the evaluation of Eq. 5.3-5.7 

 

5.3.3  PROMETHEE method 

As discussed in Chapter 4, PROMETHEE is an acronym for Preference Ranking Organisation 

METHod for Enrichment Evaluations, a multi-criteria decision making method developed by 

Brans, first presented in 1982 (Brans, 1986) and further extended by Brans and Vincke (Brans 

and Vincke, 1985). There have been 7 versions developed (Behzadian et al., 2010) and the 

one used here is PROMETHEE II. PROMETTHEE II is the most popular of all the versions 

and it’s fundamental to the implementation of the other versions. The basic principle of 

PROMETHEE II for solving multi-criteria decision problems is the pairwise comparison of 

all alternatives for each criterion. The performance of one alternative over another in the 

pairwise comparison for each criterion is based on a preference function. This preference 

function (PF) turns the difference between two alternatives for each criterion into real values 

which range from 0 to 1. This corresponds to the degree of preference a maintenance 

practitioner has for one alternative over another. If the difference between two alternatives is 

0, it simply means no preference and if the value is 1 its means full preference (Mareschal and 

De Smet, 2009). There are six different types of preference function; usual criterion, U-shape 

criterion, Gaussian criterion, V-shape criterion V-shape with indifference and level criterion 

(Brans et al., 1986). For this study the usual criterion was selected as the preference function 

because there is evidence in the literature that it is most suitable for qualitative data 

(VPSolution, 2013).  
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Apart from the preference function that needs to be defined by the maintenance practitioners 

for the application of PROMETHEE, additional information that needs to be defined are the 

weights of the criteria. There are different techniques available for determining the weights of 

criteria such as the AHP method, entropy method and variance technique. The AHP technique 

was selected for this work as it enables the decision problem to be logically structured, a 

feature lacking in the PROMETHEE method. However AHP has the disadvantage of trading 

off assigned criteria “good” ratings for “bad” ratings and vice versa because its information 

evaluation principle is based on complete aggregation of the additive type which can result in 

loss of vital information. In PROMETHEE partial aggregation is used which avoids the trade-

off associated with the complete aggregation technique  (Macharis et al., 2004). Additionally, 

AHP has a predetermined technique for criteria weight evaluation whereas in the 

PROMETHEE technique there is no provision for criteria weight determination thereby 

laying an additional burden on the maintenance practitioners. On this basis, a combination of 

the two techniques, AHP-PROMETHEE, is proposed for the prioritisation of maintenance 

alternatives by utilising the areas of strength of each technique. While AHP is used in the 

structuring of the decision problem and weighting of decision criteria, PROMETHEE is 

applied in the ranking of the maintenance alternatives.   

 

The basic steps of the PROMETHEE method can be defined as follows: 

(1) Definition of the problem: consider a multi-criteria problem of m alternatives (a1, 

a2,…,am) and n criteria (c1,c2,…cn).  

 

(2) Determination of deviation based on pairwise comparisons as follows:   

 

𝑑𝑗(𝑎, 𝑏) = 𝑐𝑗  (𝑎) − 𝑐𝑗  (𝑏)                                                                                                         (5.8) 

 

Where d is the pairwise difference between evaluations of alternatives a and b for each 

criterion 

 

(3) Utilisation of preference function:  

 

𝑃𝑗(𝑎, 𝑏) = 𝐹𝑗{𝑑𝑗(𝑎, 𝑏)}                                                                                                                (5.9) 
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Where𝑃𝑗(𝑎, 𝑏) represents the preference of alternative 𝑎 with respect to alternative 𝑏 for each 

criterion, as a function of 𝑑𝑗(𝑎, 𝑏).  

 

If the usual criterion is chosen as the preference function then: 

 

 𝑃𝑗(𝑎, 𝑏)   =  [
    0  𝑖𝑓 𝑑𝑗(𝑎, 𝑏) ≤ 0

   1 𝑖𝑓 𝑑𝑗(𝑎, 𝑏) > 0 
]  

 

(4) Define numerical weight of criteria: This is a measure of the relative importance of 

each criterion, where 𝑤𝑗
𝑘 is the weight of criterion 𝑐𝑗. The normalisation of the weight, if there 

is need for it, is carried out as follows: 

 

∑𝑤𝑗
𝑘

𝑛

𝑗

= 1                                                                                                                                      (5.10) 

 

(5) Evaluation of the overall preference index of a over b, 𝜋(𝑎, 𝑏): The weighted average 

of all the preference functions P j (a, b) for all criteria is mathematically defined as follows: 

 

𝜋(𝑎, 𝑏) = ∑𝑤𝑗
𝑘 

𝑛

𝑗=1

𝑃𝑗(𝑎, 𝑏)                                                                                                            (5.11) 

 

The net preference flows which are used in the measurement of the performance of each 

maintenance strategy alternative are then computed. The net flow 𝜙 is the difference between 

the positive flow ∅+ and the negative flow ∅−, evaluated as follows: 

 

∅+(𝑎) =
1

𝑛 − 1
∑ 𝜋

𝑏≠𝑎

(𝑎, 𝑏)                                                                                                          (5.12) 

 

∅−(𝑎) =
1

𝑛 − 1
∑ 𝜋

𝑏≠𝑎

(𝑏, 𝑎)                                                                                                          (5.13) 

 

𝜙(𝑎) = ∅+(𝑎) − ∅−(𝑎)                                                                                                                 (5.14) 
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The maintenance alternatives are ranked on the basis of the net flow and the higher the value 

the better the alternative. Having obtained the input information from experts, rather than 

manually solving the multi-criteria decision problem by applying Eq. 5.8 to 5.14, Visual 

PROMETHEE, developed by Bertrand Mareschal (VPSolution, 2013) was used in processing 

the information and in ranking the maintenance alternatives. 

     

5.3.4  TOPSIS method 

The TOPSIS methodological steps for choosing an alternative from multiple options have 

been previously discussed in Chapter 3 Section 3.3.2.2. Although in Chapter 3 it was applied 

in prioritising risk of failure modes of a marine diesel engine, in this current chapter TOPSIS 

will be used in the ranking (prioritising) of maintenance strategy alternatives such that the 

optimum maintenance strategy will be adopted for the system or component under 

investigation. 

  

5.4    Case study of the marine diesel engine 

The prioritisation of risk of failure modes of the marine diesel engine had been carried out in 

Chapters 3 and 4. From the study, one of the equipment items/components with the greatest 

failure consequence on the marine diesel engine was found to be the water cooling pump of 

the central cooling system. The water cooling pump was chosen to demonstrate the 

applicability of the proposed methodology in the selection of a maintenance strategy. 

5.4.1     Delphi evaluation 

 A panel of ten experts was carefully selected, 5 from academia with 5 to 12 years previous 

work experience in the shipping industry and 5 from the shipping industry ranging from 2nd 

Engineer to Chief Engineer. A thorough literature survey was conducted on relevant 

maintenance strategy selection problems and 22 criteria were initially selected. The 22 criteria 

were further subjected to two rounds of Delphi survey in order to critically select the most 

relevant evaluation criteria for selection of the maintenance strategy for maritime 

applications. The mean of the consensus measurement indices and CVR of all 10 experts’ 

opinions were evaluated in both first and second round Delphi surveys for each of the 

maintenance strategy selection criteria and their corresponding rankings are presented in 

Table 5.3 and 5.4. The Delphi iteration process was terminated at the second round because 

there was no significant difference between results of the first and second rounds. 
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In Table 5.4, the criteria with the ranking highlighted in pink had mean values below 2.7 and 

CVR below 0.29. These criteria were removed and the remaining items retained. Some other 

items were further removed because of their overlapping function with other criteria. The 

remaining criteria were then re-categorised into main and sub-criteria. For example spare 

parts inventories cost, minimisation of loss, maintenance cost, crew training cost and plant 

damage are sub criteria under the main criterion cost. 

 

Table 5.3: Result of first round Delphi survey 
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   Table 5.4: Result of second round Delphi survey questionnaire 

 

 

Having defined the decision criteria against which the maintenance strategies will be ranked, 

the next step is to apply the ranking tools, AHP, PROMETHEE and TOPSIS in evaluating the 

optimum maintenance strategy. Firstly the case studies that are presented use a single expert 

information for analysis of the three ranking tools in reaching an optimum solution and then 

the use of three experts’ (group decision making) information in reaching an optimum 

solution is presented.  
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5.4.2    AHP analysis using information from a single expert  

 The maintenance strategy selection criteria categorised into main and sub-criteria were used 

to form a four level AHP hierarchy decision problem as shown in Figure 5.2. With the first, 

second, third and fourth levels representing overall goal (Decision problem), main criteria, 

sub-criteria and the alternative maintenance strategy to be selected with respect to the main 

and sub criteria, respectively.  

 

 To evaluate the problem in figure 5.2, a structured AHP questionnaire was developed and 

sent to an expert selected from the Delphi survey team to perform the pairwise comparison 

judgement using the Saaty scale in Table 5.1 firstly for the main criteria with respect to the 

overall goal, next for the sub-criteria with respect to the main criteria and overall goal and 

lastly for the maintenance alternatives with respect to the sub-criteria. The comparison matrix 

developed from the expert’s judgement for main criteria is presented in Table 5.5. Samples of 

the comparison matrices formed from the expert’s judgement for the sub-criteria and 

maintenance alternatives are shown in Tables 5.6 and 5.7. The complete comparison matrices 

are presented in Appendix B3.1. It is worth noting that in this research, the consistency of this 

expert’s judgement in all scenarios measured using the consistency ratio, 𝐼𝑟 , was in the range 

of 0.00 to 0.084 which is within the acceptable value of less than 0.1. 
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Figure 5.2: AHP hierarchy of multi-criteria decision maintenance strategy selection problem 

 

CM-Corrective maintenance, SOH-Scheduled overhaul, SRP-Scheduled replacement, 

OFCBM-Offline condition based maintenance, ONCBM-Online condition based maintenance 

 

Next the local weight of the main criteria was evaluated based on Table 5.5 using Eq. 5.3 – 

5.7 and the results are presented in Table 5.8. This was followed by applying Eq. 5.3 –5.7 to 

Table 5.6 (a sample) to obtain local weight of sub-criteria and the result is shown in Table 5.8. 

The global weight of the criteria was generated by aggregating the local weight of the main 

criteria and local weight of the sub-criteria and the results are also presented in Table 5.8. 

Finally the overall score of the maintenance alternatives was obtained by using steps 6 and 7 

of Section 5.4.2 and the results are presented in Table 5.9. 

 

            Table 5.5: Main criteria comparison matrix with respect to overall goal 
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             Table 5.6: Sub-criteria comparison matrix with respect to main criterion (cost) 

 

 

 

   Table 5.7: maintenance alternatives comparison matrix with respect to sub-criterion (spare 

parts inventories cost) 

 

 

 

 

Table 5.8: Local and aggregated (global) weight of criteria 
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Table 5.9: Maintenance strategies overall score 

 

  

      

Comparing the overall scores of the five alternative maintenance strategies in Table 5.9, 

offline condition based maintenance (OFCBM) with the highest performance index of 0.3210 

was the preferred alternative, followed by online condition based maintenance (ONCBM) 

with a weight of 0.3184 and the least preferred was corrective maintenance (CM) with a 

priority value of 0.0935. The preferred choice of offline condition based maintenance to 

online condition based maintenance is probably due to the fact that it is effective and yet is a 

much cheaper means of monitoring the condition of an asset than the online technique. From 

this analysis, as it can be seen in Table 5.8, safety criteria have the greatest influence in the 

selection of the maintenance strategies for the cooling water pump of a marine diesel engine 

with a weight of 54% when compared to other main criteria such as cost, added value and 

applicability with weights of 6.9, 19.3 and 19.3% respectively. 

 

5.4.3  TOPSIS and PROMETHEE 2 analysis using a single expert information  

For the AHP technique, information was obtained from an expert through a pairwise 

comparison method in which alternatives were compared in pairs to ascertain which one is 

more important using the Saaty scale for each criterion. However for the other MCDM 

techniques such as PROMETHEE and TOPSIS, a 5 point Likert scale was applied in this 

study in obtaining information from the expert. In order to have an unbiased comparison of 
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TOPSIS and PROMETHEE with APH that uses the pairwise comparison method, the same 

expert was used in obtaining information for the three methods. The values assigned by the 

expert for the five maintenance alternatives with respect to 12 decision criteria using a 5 point 

Likert scale are shown in Table 5.10.  

 

Table 5.10: Single expert judgement of maintenance alternatives 

 

 

5.4.3.1  PROMETHEE Analysis using information from a single expert 

One of the reasons PROMETHEE is very popular is the availability of software in carrying 

out the analysis. In this case the ‘PROMETHEE software’ refers to Visual PROMETHEE 

which was used in evaluating information obtained from the expert as given in Table 5.10 and 

the criteria weights generated from the AHP analysis in Table 5.8; the purpose being to 

determine the optimum maintenance alternative for the water cooling pump.  

 

The decision matrix in Table 5.10 and the decision criteria weights obtained in the AHP 

analysis were used to populate the PROMETHEE software to obtained the performance index 

based on which the ranking of the five maintenance alternatives; CM, SOH, SRP, OFCBM 

and ONCBM was performed. Prior to the PROMETHEE analysis of the data in Table 5.10 a 

preference function for each criterion was defined. In this study the ‘usual’ preference 

function was chosen for each criterion because it is ideally suited for a qualitative scale with a 

low number of levels such as the 5 point Likert scale (VPSolution, 2013). In the usual 

preference function, actual values are not important in determining preference of one 

alternative to another and what is important is the order: best to worst. This characteristic 

actually makes it ideal for ordinal scale data in contrast to the other preference functions that 
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turn the difference between two alternatives into a real value i.e. from 0 and 1 (De Keyser and 

Peeters, 1996). After defining the preference function for each criterion, the performance 

index net flow which is the difference between the positive flow and the negative flow is then 

evaluated with Visual PROMETHEE. The results of the net flow, 𝜙, together with the 

positive flow, ∅+, and negative flow, ∅−, for the five maintenance alternatives are presented 

in Table 5.11.  

 

 Table 5.11: PROMETHEE flow 

 

 

The alternative with the highest value of net flow 𝜙 is considered to be the best alternative 

while the alternative with the lowest value of net flow is the worst solution. From Table 5.11, 

OFCBM with the highest value of net flow is the best alternative, followed by ONCBM and 

the worst alternative is CM. The values of net flow obtained in this case were based on the 

selection of the preference function referred to as ‘usual criterion’, these values would not be 

the same if other preference functions were selected for the evaluation. Therefore obtaining a 

reliable and efficient result using the PROMETHEE technique depends greatly on the 

maintenance practitioner’s ability to identify the appropriate preference function for each 

criterion. This creates an additional burden on the maintenance practitioner. Another factor 

that greatly impacts on the ranking is the weight of the criteria. 

 

Sensitivity Analysis: 

 

In order to test the robustness of the technique, a sensitivity analysis was carried out by 

changing the weight of different criteria to see the resulting effect with respect to the ranking 

order of the five maintenance alternatives. The results which are shown in Table 5.12 reveal 

the lower and upper limit a decision criterion weight can vary between without changing the 

order of ranking of the five maintenance alternatives. From the result it can be seen that the 

changes in weight of criteria C2, C3, S2, A1, A2 and A3 beyond 40.75%, 17.44%, 31.88%, 

28.52% 47.77% and 22.42% respectively will lead to alteration in the ranking of the five 

maintenance alternatives while for the other criteria, changes in their weights will not lead to 
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changes in the ranking order. In essence criteria C3 has the greatest impact on the ranking 

followed by A3. This sensitivity analysis has demonstrated the robustness of the 

PROMETHEE technique in the prioritisation of the maintenance strategy alternatives. 

 

Table 5.12: Stability interval 

 

 

 

5.4.3.2  TOPSIS Analysis using single expert information 

In the application of TOPSIS to the water cooling pump of a marine diesel engine, the 

decision matrix in Table 5.10 was normalised using Eq. (3.6) and the result is presented in 

Table 5.13. The normalised matrix was then multiplied by the criteria weights in Table 5.8 to 

obtain a weighted normalised matrix also shown in Table 5.13. Eq. (3.10) and (3.11) were 

then utilised to determine the positive ideal and negative ideal solutions respectively as 

presented in Table 5.14. Finally, applying Eq. (3.12) – (3.14) the distance of each 

maintenance strategy alternative to the positive-ideal solution 𝐷𝑖
+ and to the negative-ideal 

solution 𝐷𝑖
− together with relative closeness 𝑅𝐶𝑖 of each failure mode to the ideal solution 

were calculated and the results of 𝑅𝐶𝑖  together with their rankings are shown in Table 5.15.  
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Table 5.13: Normalised decision matrix and weighted normalised decision matrix 

Criteria 

Normalised decision matrix  

 

Weighted normalised decision matrix  

CM SOH SRP OFCBM ONCBM 

 

CM SOH SRP OFCBM ONCBM 

C1 0.1204 0.3612 0.3612 0.6019 0.6019 

 

0.0010 0.0031 0.0031 0.0052 0.0052 

C2 0.3086 0.4629 0.4629 0.6172 0.3086 

 

0.0051 0.0077 0.0077 0.0102 0.0051 

C3 0.5976 0.4781 0.3586 0.4781 0.2390 

 

0.0027 0.0022 0.0016 0.0022 0.0011 

C4 0.1204 0.3612 0.3612 0.6019 0.6019 

 

0.0047 0.0142 0.0142 0.0237 0.0237 

S1 0.1147 0.3441 0.4588 0.5735 0.5735 

 

0.0372 0.1115 0.1487 0.1858 0.1858 

S2 0.1147 0.4588 0.3441 0.5735 0.5735 

 

0.0124 0.0496 0.0372 0.0619 0.0619 

S3 0.1443 0.2887 0.4330 0.7217 0.4330 

 

0.0156 0.0312 0.0468 0.0779 0.0468 

AV1 0.1204 0.3612 0.3612 0.6019 0.6019 

 

0.0116 0.0349 0.0349 0.0581 0.0581 

AV2 0.1250 0.2500 0.3750 0.6250 0.6250 

 

0.0121 0.0241 0.0362 0.0603 0.0603 

A1 0.1474 0.4423 0.2949 0.5898 0.5898 

 

0.0095 0.0284 0.0190 0.0379 0.0379 

A2 0.5040 0.3780 0.3780 0.6299 0.2520 

 

0.0324 0.0243 0.0243 0.0405 0.0162 

A3 0.1222 0.4887 0.3665 0.6108 0.4887 

 

0.0079 0.0314 0.0236 0.0393 0.0314 

 

 

 

Table 5.14: Positive and negative idea solution 
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  Table 5.15: Performance index (RC) and rank 

 

 

 From Table 5.15 it is obvious that the optimum maintenance alternative is the OFCBM since 

it occupies the first position and it has performance index of 0.9972 which is closest to the 

ideal solution. This is followed by ONCBM and the least preferred maintenance strategy is 

CM having the lowest performance index of 0.1357 and being in the fifth position.   

 

5.4.4  Comparison of methods 

The comparison of the rankings obtained from the three MCDM methods are presented in 

Table 5.16. From the table, OFCBM appears in first position for all the ranking models and as 

such is the optimum solution for all of the techniques. Also from the table, last position is 

occupied by CM for the three ranking models; AHP, PROMETHEE and TOPSIS. The 

Spearman rank correlation coefficients between the three MCDM techniques are presented in 

table 5.17. 

 

 Table 5.16: Comparison of rankings from methods 
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 Table 5.17: Spearman’s rank correlation between methods 

 

 

From Table 5.17 the Spearman rank correlation coefficient between PROMETHEE and 

TOPSIS is 1, between AHP and PROMETHEE is 0.937 and between PROMETHEE and 

TOPSIS is 0.937. The perfect and near perfect correlation between the three methods  shows 

that the three techniques can be used singly or in combination with one another for the 

purpose of prioritising maintenance strategy alternatives. This has also validated the 

applicability of the different MCDM techniques proposed for the selection of the maintenance 

strategy for the components of marine machinery systems from numerous alternatives.  

 

5.4.5  Group decision making 

 

The case considered above is a situation whereby a single expert is involved in the decision 

making process. However in many practical situations multiple experts or a group of experts 

are involved in the decision making process thereby bringing a great deal of complexity into 

the use of MCDM methods (Raju et al., 2000). Different aggregation methods are available 

for combining experts’ preferences in group decision making. Either rank or score 

aggregation can be used. In this research the score aggregation technique was chosen because 

rank aggregation may lead to rank reversal. In aggregating the scores of individual experts a 

simple arithmetic mean can be applied. The average of the individual experts AHP scores, 

PROMETHEE and TOPSIS scores for each maintenance alternative are referred to here as 

group scores. On the basis of the group score, maintenance strategy alternatives were ranked 

and the highest ranked chosen as the optimum solution.  

 

As previously stated, for AHP the input information is obtained from experts’ comparison 

judgement which is then used in forming comparison matrices. Three of the original ten 

experts used for the Delphi analysis were used in this group decision making process, the 

scores obtained for the single expert case studied above will be referred to as expert 1 scores 

while the expert 2 and 3 scores for the five alternative maintenance strategies were 
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determined based on comparison judgement obtained from experts 2 and 3. The comparison 

judgements obtained from experts 2 and 3 are presented in Appendix B3.2 and B3.3 

respectively.   

 

However PROMETHEE and TOPSIS, require the use of an ordinal scale in the rating of 

maintenance alternatives against decision criteria. The rating was carried out by the same 

experts that performed the comparison judgement to ensure unbiased comparison between 

AHP, TOPSIS and PROMETHEE. The rating obtained from expert 1 was presented in Table 

5.10 while the ratings obtained from experts 2 and 3 are presented in Table 5.18. Since AHP, 

TOPSIS and PROMETHEE had already been applied to the data from expert 1 in Sections 

5.4.2 and 5.4.3, only evaluation for experts 2 and 3 will be shown subsequently. 

 

 

   Table 5.18: Experts 2 and 3 judgement of five maintenance alternative 

 

 

5.4.5.1  Evaluation of AHP group maintenance strategy alternatives 

AHP analysis using expert 2 comparison judgement 

 

The pairwise comparison judgements obtained from expert 2 were firstly used in producing 

decision matrices which are presented in Appendix B3.2. The comparison matrices were then 

subjected to AHP analysis to obtain the weightings of the main criteria together with the 

weightings of sub-criteria and the global weight of sub-criteria. The results are presented in 

Table 5.19.  Finally, overall alternative maintenance strategy scores were obtained as a 
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product of the global weight of sub-criteria and the weight of maintenance alternatives with 

respect to the decision criteria and the results are shown in Table 5.20.  

 

Table 5.19: Local and aggregated (global) weight of criteria for expert 2 

 

 

 

Table 5.20: Maintenance strategies overall score 
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AHP analysis using expert 3 comparison judgement 

 

Having obtained maintenance alternatives’ overall scores from experts’ 1 and 2 pairwise 

comparison judgement, the same AHP procedure was followed in evaluating the overall 

maintenance alternative scores for expert 3.  Firstly the pairwise comparison judgements 

obtained from expert 3 were converted to comparison matrices which are presented in 

Appendix B3.3.  Applying AHP evaluation techniques to the expert 3 pairwise comparison 

matrices, the weight of the main criteria together with weight of sub-criteria, the global 

weight of sub-criteria were evaluated and overall maintenance alternative scores obtained. 

The results of the weight of the main criteria together with weight of sub-criteria and the 

global weight of sub-criteria are presented in Table 5.21 while the  results of the of the overall 

maintenance alternative scores are presented in Table 5.22. 

 

 

 Table 5.21: Local and aggregated (global) weight of criteria for expert 3 
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  Table 5.22: Maintenance strategies overall score 

 

 

 

As previously stated, to obtain the group overall rating of maintenance strategy alternatives 

the individual experts ratings were averaged, as shown in Table 5.23. From the result, it is 

again obvious that the preferred maintenance strategy alternative is OFCBM, having the 

highest group overall score of 0.3335. This is followed by ONCBM and the least preferred 

option is CM having the lowest group overall score of 0.0835. There is no difference between 

the group rating and the individual expert rating since the same ranking order was obtained. 

This is as a result of the similarity in the comparison judgement of the five maintenance 

alternatives against decision criteria obtained from the three experts.  

 

 Table 5.23: Group decision making AHP score and ranks 
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5.4.5.2  Evaluation of the PROMETHEE group maintenance strategy alternatives 

The decision matrix formed from expert 1’s rating of maintenance strategies against decision 

criteria was firstly subjected to PROMETHEE analysis to obtain the expert 1 PROMETHEE 

overall score for the maintenance alternatives upon which the maintenance alternatives were 

ranked. This was carried out in section 5.4.3.1. This was then followed by subjecting data 

from experts 2 and 3 to PROMETHEE analysis to obtain expert 2 and 3 overall scores (𝜙 

values) of maintenance strategy alternatives. To obtain the group overall scores for 

maintenance alternatives, the individual experts’ scores were averaged.  

 

PROMETHEE analysis using expert 2 judgement 

 

The expert 2 decision matrix in Table 5.18 and the criteria weights evaluated from the expert 

2 AHP analysis of comparison judgement in Table 5.19 were used as input data for the  

PROMETHEE software to obtain overall scores (𝜙 values) of maintenance strategy 

alternatives. The maintenance strategy alternatives were ranked based on the  𝜙 values.   

 

As with the analysis for expert 1, the preference function was the “usual” type. The overall 

scores of maintenance alternatives were then determined using the PROMETHEE software 

and the result obtained is displayed in Table 5.24.  

 

  Table 5.24: PROMETHEE flow for expert 2 

 

 

From Table 5.24, the offline condition based maintenance (ONCBM) with the highest value 

of net flow, 𝜙, was the best ranked maintenance alternative while the worst rank was 

corrective maintenance CM.  

 

Sensitivity Analysis: 

A sensitivity analysis was again carried out to test the robustness of the PROMETHEE 

technique. The results are presented in Table 5.25. From the table, changes in criteria weights 
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C2, C3, C4, AV1, A1 and A2 beyond a certain level (17.93%, 28.29%, 40.75%, 47.24%, 

29.08 and 20.01% respectively) resulted in changes in the ranking order of the five 

maintenance alternatives. For the other criteria irrespective of the changes in the weights of 

the criteria, the ranking order remained unchanged. It is obvious that the criteria that cause 

alteration in the order of ranking have the greatest influence on the ranking of maintenance 

alternatives. 

 

Table 5.25: Stability intervals for expert 2 

 

 

 

PROMETHEE analysis using expert 3 judgement 

 

The expert 3 decision matrix in Table 5.18 and the criteria weights evaluated from the expert 

3 AHP analysis of comparison judgements in Table 5.21 were used as input data in the 

PROMETHEE analysis to obtained overall scores (𝜙 values) of maintenance strategy 

alternatives and the maintenance strategy alternatives were ranked based on the 𝜙 values.  

The preference function type 1 was again chosen as in the cases of experts 1 and 2. The 

overall scores (𝜙 values) of the maintenance strategy alternatives were then determined and 

the five maintenance strategy alternatives ranked. The results obtained are shown in Table 

5.26.  
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 Table 5.26: PROMETHEE flow for expert 3 

 

 

Sensitivity Analysis: 

A sensitivity analysis was again carried out and the results are presented in Table 5.27.  

 

Table 5.27: Stability interval for expert 3 

 

 

 

From the results in Table 5.27, if criteria C2, C3, S3, A1 and A2 weights are increased by up 

to 29.55%, 15.61%, 20.16%, 34.70%, and 29.17% respectively, the order of ranking of 

maintenance alternatives in Table 5.26 will remain unchanged. However if these limits are 

exceeded the ranking order will be altered while for the other criteria, irrespective of the 

weight increase, the ranking order will remain unaltered. 

 

To obtain the group overall scores of maintenance strategy alternatives, the individual experts 

overall scores were averaged, as shown in Table 5.28. From the result it is again obvious that 

the preferred maintenance strategy alternative is OFCBM, having the highest group overall 
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score of 0.7681. This is followed by ONCBM and the least preferred choice is CM having the 

lowest group overall score of -0.7972.  

 

Table 5.28: Multiple experts decision making score and rank 

 

 

5.4.5.3  Evaluation of the TOPSIS group maintenance strategy alternatives 

 

TOPSIS was also applied to the maintenance strategy selection using data from the three 

experts. The expert 1 overall scores (RCi values) for each of the maintenance strategy 

alternatives were evaluated in Section 5.4.3.2. The expert 2 and 3 overall scores for each of 

the maintenance strategy alternatives are evaluated next. The average of the three experts 

maintenance strategy alternatives scores were then used to obtain the group overall scores of 

maintenance strategy alternatives. 

 

TOPSIS Analysis using expert 2 judgement 

 

TOPSIS analysis was applied to the expert 2 decision matrix given in Table 5.18. The expert 

2 decision matrix in Table 5.18 was first normalised using Eq. (3.6) and then multiplied by 

the criteria weights in Table 5.19 to obtain a weighted normalised matrix. Both the normalised 

decision matrix and the weighted normalised decision matrix are shown in Table 5.29. Eq. 

(3.10) and (3.11) were then utilised to determine the positive ideal and negative ideal 

solutions respectively as presented in Table 5.30. Finally, applying Eq. (3.12) – (3.14), the 

distance of each maintenance strategy alternative to the positive-ideal solution 𝐷𝑖
+ and the 

negative-ideal solution 𝐷𝑖
− together with relative closeness 𝑅𝐶𝑖 of alternative maintenance 

strategy to the ideal solution were calculated and the results are shown in Table 5.31. Based 

on the relative closeness 𝑅𝐶𝑖 of each alternative maintenance strategy to the ideal solution, the 

maintenance strategy alternatives were ranked as also shown in Table 5.31. 

 



142 

 

Table 5.29: Expert 2 normalised decision matrix and weighted normalised decision matrix  

Criteria 

Normalised decision matrix  

 

Weighted normalised decision matrix  

CM SOH SRP OFCBM ONCBM 

 

CM SOH SRP OFCBM ONCBM 

C1 0.2857 0.4286 0.2857 0.5714 0.5714 

 

0.0020 0.0030 0.0020 0.0041 0.0041 

C2 0.5774 0.4619 0.3464 0.4619 0.3464 

 

0.0270 0.0216 0.0162 0.0216 0.0162 

C3 0.4619 0.3464 0.4619 0.5774 0.3464 

 

0.0216 0.0162 0.0216 0.0270 0.0162 

C4 0.1187 0.2374 0.4747 0.5934 0.5934 

 

0.0021 0.0041 0.0082 0.0103 0.0103 

S1 0.1250 0.3750 0.2500 0.6250 0.6250 

 

0.0365 0.1096 0.0731 0.1826 0.1826 

S2 0.1204 0.3612 0.3612 0.6019 0.6019 

 

0.0117 0.0352 0.0352 0.0586 0.0586 

S3 0.2357 0.3536 0.3536 0.5893 0.5893 

 

0.0230 0.0344 0.0344 0.0574 0.0574 

AV1 0.2520 0.3780 0.3780 0.5040 0.6299 

 

0.0348 0.0522 0.0522 0.0695 0.0869 

AV2 0.2390 0.4781 0.3586 0.5976 0.4781 

 

0.0330 0.0660 0.0495 0.0825 0.0660 

A1 0.3939 0.5252 0.2626 0.6565 0.2626 

 

0.0093 0.0124 0.0062 0.0155 0.0062 

A2 0.6934 0.4160 0.1387 0.5547 0.1387 

 

0.0491 0.0295 0.0098 0.0393 0.0098 

A3 0.2673 0.4009 0.4009 0.6682 0.4009 

 

0.0063 0.0095 0.0095 0.0158 0.0095 

 

 

 

Table 5.30: Expert 2 negative and positive ideal solution 
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  Table 5.31: Performance index and Rank 

 

 

 

TOPSIS Analysis using expert 3 judgement 

 

The expert 3 matrix in Table 5.18 was normalised using Eq. (3.6) and then multiplied by the 

criteria weights given in Table 5.21 to obtain a weighted normalised matrix. The normalised 

decision matrix and the weighted normalised decision matrix determined are presented in 

Table 5.32. To obtain the positive ideal and negative ideal solution in Table 5.33 Eq. (3.10) 

and (3.11) were applied to the weighted normalised matrix. Finally applying Eq. (3.12) – 

(3.14), the distance of each maintenance strategy alternative to the positive-ideal solution 

𝐷𝑖
+ and to the negative-ideal solution 𝐷𝑖

− together with relative closeness 𝑅𝐶𝑖  to the ideal 

solution were evaluated and the results together with the corresponding rankings are shown in 

Table 5.34. 

 

Table 5.32: Expert 3 normalised decision matrix and weighted normalised decision matrix 

Criteria 

Normalised decision matrix  

 

Weighted normalised decision matrix  

CM SOH SRP OFCBM ONCBM 

 

CM SOH SRP OFCBM ONCBM 

C1 0.1459 0.2917 0.1459 0.7293 0.5835 

 

0.0033 0.0067 0.0033 0.0166 0.0133 

C2 0.3050 0.3050 0.1525 0.7625 0.4575 

 

0.0023 0.0023 0.0011 0.0057 0.0034 

C3 0.7906 0.4743 0.1581 0.3162 0.1581 

 

0.0066 0.0039 0.0013 0.0026 0.0013 

C4 0.1098 0.4391 0.4391 0.5488 0.5488 

 

0.0003 0.0011 0.0011 0.0013 0.0013 

S1 0.1147 0.4588 0.3441 0.5735 0.5735 

 

0.0529 0.2118 0.1588 0.2647 0.2647 

S2 0.1147 0.4588 0.3441 0.5735 0.5735 

 

0.0100 0.0402 0.0301 0.0502 0.0502 

S3 0.6868 0.2747 0.2747 0.5494 0.2747 

 

0.0266 0.0107 0.0107 0.0213 0.0107 

AV1 0.1187 0.4747 0.2374 0.5934 0.5934 

 

0.0042 0.0169 0.0084 0.0211 0.0211 

AV2 0.1187 0.4747 0.2374 0.5934 0.5934 

 

0.0042 0.0169 0.0084 0.0211 0.0211 

A1 0.1400 0.4201 0.5601 0.5601 0.4201 

 

0.0038 0.0115 0.0153 0.0153 0.0115 

A2 0.4121 0.4121 0.1374 0.6868 0.4121 

 

0.0310 0.0310 0.0103 0.0517 0.0310 

A3 0.1250 0.3750 0.2500 0.6250 0.6250 

 

0.0259 0.0778 0.0519 0.1296 0.1296 

 

 

 



144 

 

 

Table 5.33: Negative and positive idea values 

 

  

 

Table 5.34: Performance index and ranks 

 

 

 

The group overall scores of maintenance strategy alternatives were evaluated by averaging the 

individual experts overall scores and the result is shown in Table 5.35. From the table, 

OFCBM occupies the first position having a group overall score of 0.9542. Hence the 

preferred maintenance strategy alternative is OFCBM. This is followed by ONCBM and the 

least preferred choice is CM with the lowest group overall score of 0.1639. 
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Table 5.35: multiple experts’ decision making score and rank 

 

 

 

5.4.5.4   Comparison of the proposed hybrid MCDM technique group ranking 

The comparison of group ranking of maintenance strategy alternatives obtained from the three 

MCDM methods is presented in Table 5.36. From the table, OFCBM appears in first position 

for all of the ranking models and as such is the optimum solution is the OFCBM. Also from 

the table, last position is occupied by CM for the three ranking models; AHP, PROMETHEE 

and TOPSIS. The Spearman rank correlation was also used to determine the relationship 

between group rankings obtained from the three methods and the results are presented in 

Table 5.37. 

 

Table 5.36: Comparison of group ranking from methods 

 

 

 

Table 5.37: Spear man’s rank correlation between methods 
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5.5      Summary 

In this chapter, three hybrid MCDM techniques; (1) Delphi-AHP and (2) Delphi-AHP-

PROMETHEE and (3) Delphi-AHP-TOPSIS have been presented for the selection of a 

maintenance strategy for marine machinery systems. In the three proposed hybrid MCDM 

techniques, Delphi was applied to reduce the number of criteria such that only the most 

significant criteria were used in the maintenance alternative decision problem. The aim was to 

make the evaluation process as simple as possible such that it could easily be adopted by 

shipping system maintenance practitioners. AHP, which has the capability of incorporating 

quantitative and qualitative information, was used in the first proposed MCDM technique 

(Delphi-AHP) as a tool for determining the decision criteria weight and for the final ranking 

of the maintenance strategy alternatives with respect to decision criteria. In the second 

proposed MCDM technique (Delphi-AHP-PROMETHEE) AHP was applied as a tool for 

evaluating weights of decision criteria while PROMETHEE was used in the ranking of the 

maintenance strategy alternatives. In the third proposed MCDM technique (Delphi-AHP-

TOPSIS) AHP was used for the weighting of decision criteria while TOPSIS was applied for 

the prioritisation of the maintenance strategy alternatives. The three hybrid methods were 

used in addressing a maintenance strategy selection problem involving a single expert firstly 

in the decision making process and this was followed by involving three experts (group) in 

the decision making process. For both the single expert and group decision making process 

the Spearman rank correlation between the three hybrid MCDM techniques was very strong 

and, as such a conclusion can be drawn that the three MCDM hybrid techniques can be used 

individually or in combination with one another in selecting the maintenance strategy for a 

marine machinery system or other related engineering system. Also from the analysis, there 

was no significant  difference between the group rating and the single expert rating as a result 

of the similarity in the judgement of the five maintenance alternatives against decision criteria 

obtained from the three experts otherwise the ranking order would have altered significantly. 

Another reason is that since only five maintenance strategy alternatives were available, the 

degree of freedom was limited. If more alternatives were available there would be more 

chance of alteration in the ranking order of maintenance alternatives.  Furthermore, from the 

analysis, the driving force for the selection of maintenance alternatives for critical marine 

machinery equipment is safety which was assigned half of the total weight of decision criteria.  
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For the two scenarios, single expert and group decision making, the selected maintenance 

alternative for the water cooling pump of the marine diesel engine was offline condition based 

maintenance (OFCBM). This is in line with current best practice. The proposed MCDM 

methodologies are simple and yet robust and effectively incorporate the RCM methodology 

decision criteria of cost and applicability in addition to other important decision criteria such 

as safety and added value which are not usually part of the RCM. Although AHP, 

PROMETHEE and TOPSIS produced almost completely the same ranking result for the five 

maintenance strategy alternatives for the single expert and group decision making process, 

PROMETHEE and TOPSIS would be recommended for those maintenance practitioners who 

may find generating numerous pairwise comparison judgments too laborious compared to the 

use of a Likert scale that can be applied in generating data for PROMETHEE and TOPSIS 

analysis. 

 

Although the proposed methods have been validated for marine machinery systems they can 

also be applied to other related engineering systems and, depending on the preference of the 

maintenance practitioners, the decision criteria can further be reduced to make the evaluation 

process easier.  
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Chapter 6 Scheduled Replacement Interval Determination 

 

 

6.1  Introduction 

 

The task of determining the maintenance strategy was performed in Chapter 5. Marine 

machinery systems are made up of many components/equipment items that require different 

maintenance approaches. Hence there is a need to define the optimum maintenance strategy 

for each of the critical components/equipment items. After the determination of the of the 

appropriate maintenance strategy for each component of the system the next task is to 

determine the optimum interval for performing the maintenance task. This is the third stage of  

the Reliability Centered Maintenance approach in the optimisation of maintenance (Rausand 

and Vatn, 1998).  

 

As stated in the literature review, there are three major maintenance strategies in the RCM 

methodology for eliminating or mitigating failure of machinery equipment; corrective 

maintenance, Preventive maintenance and condition based maintenance. Time based 

preventive maintenance can further be divided into scheduled overhaul and scheduled 

replacement while condition based maintenance is sub-divided into on-line condition based 

maintenance and off-line condition based maintenance. This chapter presents a technique for 

determining the optimal maintenance interval for scheduled replacement while the technique 

for determining the optimum interval for off-line condition based maintenance (inspection) is 

presented in Chapter 7.  

 

The chapter is organised as follows: in Section 6.2 the proposed scheduled replacement 

interval determination methodology is presented. In Section 6.3 the case of the marine diesel 

engine cooling water pump is presented. Finally conclusions are presented in Section 6.4.  

 

6.2  Proposed scheduled replacement interval determination methodology 

In this research, after analysis of the literature in Chapter 2, a need was identified to introduce 

a multi-criteria decision making (MCDM) methodology as a decision support tool in 

determining the optimum interval for carrying out scheduled replacement tasks for marine 
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machinery systems. The basis was the following few land-based applications found literature; 

(Cavalcante et al., 2010, Cavalcante and De Almeida, 2007, Chareonsuk et al., 1997). 

However the proposed MCDM approach for marine system maintenance is intended to be 

devoid of the limitations of the approaches used for land-based systems in the literature. To 

achieve this objective, firstly a multi-criteria decision making approach based on systematic 

application of TOPSIS was applied for marine systems as opposed to the PROMETHEE 

technique used for land based applications. Secondly, since the key factors that influence the 

selection of intervals are the decision criteria, an efficient framework which integrates 

subjective and objective criteria weighting techniques is introduced for evaluating weights of 

criteria as opposed to the use of only subjective techniques identified for land based system 

applications  in the literature. The weighting framework is flexible and it allows maintenance 

practitioners to either use subjective criteria weighting techniques or objective weighting 

techniques or a combination of the two.  

 

The first step in this methodology is the identification of possible scheduled replacement 

intervals for implementing maintenance replacement activities. The experience of the 

maintenance team is vital with respect to determining feasible scheduled replacement 

intervals. In addition, the manufacturer’s manual for an equipment item can also be of help. 

The optimum interval is then selected based on preferred criteria. The criteria that may be 

considered are cost, reliability, availability, maintainability, spare parts inventory, quality 

issues and maintenance downtime (Chareonsuk et al., 1997). In this research, maintenance 

cost, reliability and maintenance downtime were considered. The maintenance cost criterion 

was chosen because it constitutes a major portion of the operating cost of ship systems. As 

previously stated, for a shipping company to remain in business in a deregulated and 

competitive environment, the cost of operation must be optimised and one way to achieved 

this is to minimise the cost of ship system maintenance. However in minimising cost, 

adequate care must be taken not to compromise the reliability of the system. This is because if 

the reliability of the system is compromised, it can result in catastrophic failure that may have 

irreversible damage on personnel, equipment and the environment. This makes reliability an 

important criterion that must not be ignored in selecting the optimum replacement interval for 

ship machinery systems. The downtime criterion was also chosen because downtime of 

equipment can produce detrimental penalties.  For example, for a ship carrying perishable 

goods, the goods can be spoilt and this can result in the ship operator compensating the 

owners of the goods. Furthermore the image of the company can also be badly damaged.  
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Data availability is central to the successful selection of the optimum interval for scheduled 

replacement activities and as such data should be collected for the system being investigated. 

However for equipment which deteriorates with time such as marine machinery systems a 

Weibull distribution is generally applicable to fit the collected failure data (O'Connor, 1985). 

On this basis, the Weibull distribution function is assumed in this study. The Weibull 

distribution was applied to the component life data in evaluating the scale parameter ∅, shape 

parameter β and location parameter γ.  This was followed by calculation of the criteria values 

using criteria models for the different alternative intervals. The decision criteria were 

modelled in this research using the Age Replacement Model (ARM). Another possible 

technique that can be used in modelling the decision criteria is the Block Replacement Model 

(BRM) (Wang, 2002). However ARM has been chosen as the tool for modelling the decision 

criteria because the BRM, in most scenarios, results in unnecessary replacement of 

equipment/components which makes the ARM technique more cost effective (Ahmad et al., 

2011b).  Criteria weights were then evaluated and finally a multi-criteria decision tool based 

on TOPSIS was used to aggregate values of criteria with the weights of criteria in order to 

determine the optimum preventive interval. The flowchart of this methodology is shown in 

Figure 6.1. 
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Figure 6.1: Flowchart of methodology 

 

6.2.1  Weibull distribution 

The Weibull distribution is one of the most popular probability distributions for  modelling 

the failure behaviour of practical systems, especially equipment that deteriorates with time  

(Ebeling, 2004). The hazard function rate of the distribution is not constant with time unlike 

the exponential distribution (Ebeling, 2004). The Weibull distribution comes in different 

forms; one, two and three parameters versions. The key advantage of this type of distribution 

is its versatility as it may be applicable in modelling systems or components with increasing 

or decreasing failure rates. However its use is limited by availability of adequate data for 
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defining the Weibull parameters and this data may be very difficult to access, especially in the 

marine industry. The three parameter Weibull distribution probability density function is 

represented as: 

 

𝑓(𝑡) =
𝛽

∅
[(

𝑡 − 𝛾

∅
)]

𝛽−1

exp −(
𝑡 − 𝛾

∅
)
𝛽

                                                                                       (6.1) 

 

Where t ≥ 0, ∅, β and γ > 0 

 

β is the shape parameter which expresses the form of the distribution, 𝛾 is the location 

parameter which describe the location of the distribution and ∅ is the scale parameter which 

influences the spread of the distribution. 

  

While the cumulative density function is:  

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [−(
𝑡 − 𝛾

∅
)
𝛽

]                                                                                                        (6.2) 

 

For the two parameter Weibull the probability density function is as follows: 

 

𝑓(𝑡) =
𝛽

∅
(
𝑡

∅
)
𝛽−1

 𝑒𝑥𝑝 [−(
𝑡

∅
)
𝛽

]                                                                                                    (6.3) 

 

Where t ≥ 0, ∅ > 0 and β > 0 

 

While the cumulative density function is as follows: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [−(
𝑡

∅
)

𝛽

]                                                                                                               (6.4) 

 

6.2.1.1  Data types 

Failure data is generally classified as: complete data or censored data. 

 

Complete data: Failure data is said to be complete when time of failure of all units 

investigated are known. For example if failure data of a marine diesel engine is collected for a 
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period of say 5 years and within the period, time to failure of all the components are known 

and recorded.   

 

Censored data: Censoring occurs when the exact time to failure of an item is unknown and 

either failure occurred before the assumed time or after. Censored data is further categorised 

into three groups; right censored data, interval censored data and left censored data. Right 

censored data arises when there is doubt about the exact times of failure of some units but it is 

known that it happened after some specified time. Left censored data arises when there is 

doubt about the exact times of failure of some units but it is known to have happened before 

some specified times.  Interval censored data is when there is doubt as to the precise times of 

failure of some units within an interval. 

 

6.2.1.2  Parameter estimation 

Several techniques such as probability plotting, regression analysis, method of moment and 

maximum likelihood estimation have been developed for determining parameters ∅, β and γ 

that will fit a distribution to a particular data set. The choice of method is a dependent on the 

data type collected and in some scenarios the type of distribution selected. When a complete 

set of data for machinery is available, regression analysis is generally more appropriate. 

However in most real life situations that may not be realistic as data is subjected to censoring. 

The maximum likelihood technique is usually the most suitable for analysing a data set with a 

relatively large amount of censoring (Cohen, 1965). 

 

Maximum likelihood estimation 

The maximum likelihood estimation technique can be used to obtain parameters for any life 

distribution such as a Weibull distribution that will best describe the given failure data. The 

beauty of this technique is that it is capable of handling problems with varying degrees of 

censored data.  

 

Considering T as a continuous random variable with probability density function 

 𝑓(𝑡𝑖, 𝜃1,𝜃2, … , 𝜃𝑘 ), where 𝜃 are the parameters of the distribution which are candidates for 

evaluation and 𝑡1,𝑡2, … , 𝑡𝑛   are failure time data collected for the machinery system. The 

likelihood function is determined as follows (Al-Fawzan, 2000, Cohen, 1965): 
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𝐿 = ∏𝑓

𝑛

𝑖=1

(𝑡𝑖; 𝜃1,𝜃2, … , 𝜃𝑘  )                                                                                                             (6.5) 

 

L or the natural logarithm of it is then partially differentiated with respect to  𝜃1,𝜃2, … , 𝜃𝑘  

which will then result in equations for obtaining the estimated values of 𝜃1,𝜃2, … , 𝜃𝑘 . The 

partial derivative of natural log of L is as follows: 

 

𝜕 ln 𝐿

𝜕𝜃𝑗 
= 0            𝑗 = 1,2, … , 𝑘.                                                                                                       (6.6)  

 

This technique may be illustrated through application to the probability density function of a 2 

parameter Weilbull distribution function given in Eq. (6.3) to estimate the Weibull 

parameters; ∅ and β as presented in the work of (Al-Fawzan, 2000, Cohen, 1965). This is as 

follows: 

 

𝐿(𝑡1,𝑡2, … , 𝑡𝑘 ; 𝛽, ∅ ) = ∏
𝛽

∅
(
𝑡𝑖
∅
)
𝛽−1

𝑛

𝑖=1

 𝑒𝑥𝑝 [− (
𝑡𝑖
∅
)
𝛽

]                                                                (6.7) 

 

The logarithm of Eq. (6.7) was taken and partially differentiated with respect to ϕ and β 

respectively and equated to zero which resulted in Eq. (6.8) and (6.9). 

 

𝜕 ln 𝐿

𝜕β
= −

∅

𝛽
+ ∑ln 𝑡𝑖

𝑛

𝑖=1

−
1

∅
∑𝑡𝑖

𝛽
ln 𝑡𝑖

𝑛

𝑖=1

= 0                                                                                 (6.8) 

 

𝜕 ln 𝐿

𝜕∅
=

𝑛

∅
+

1

∅2
∑𝑡𝑖

𝛽

𝑛

𝑖=1

= 0                                                                                                               (6.9) 

 

 

Equation (6.8) and (6.9) were reduced to: 

 

∑ 𝑡𝑖
𝛽
ln 𝑡𝑖

𝑛
𝑖=1

∑ 𝑡𝑖
𝛽𝑛

𝑖=1

−
1

𝛽
−

1

𝑛
∑ln 𝑡𝑖

𝑛

𝑖=1

= 0                                                                                                (6.10) 
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From here the first step is to evaluate 𝛽 using a standard iterative procedure such as the 

Newton-Raphson method. Finally ∅ may be determined using Eq. (6.10) which produces 

 

∅ = √
∑ 𝑡𝑖

𝑛
𝑖=1

𝑛

𝛽

                                                                                                                                   (6.11) 

 

6.2.2  Criteria function 

The scheduled replacement interval selection decision making is based on decision criteria 

generally defined by the maintenance managers. In this study as previously stated, cost, 

reliability and maintenance down time are the criteria upon which the optimum interval will 

be selected. Two factors that influence the selection process are the weights and values of the 

criteria. In assigning values to criteria, experts’ opinion is relied on in the face of a lack of or 

limited reliable failure data and that approach is qualitative. However the concern here is the 

quantitative approach that relies heavily on data availability. Quantitative mathematical 

functions are used in evaluating values of decision criteria (reliability, cost and down time) 

which are illustrated as follows.  

 

Reliability function:  The probability that a system will survive to a particular time t, is 

referred  to as reliability (Jardine and Tsang, 2013).  The Reliability function is thus 

represented as follows: 

 

𝑅(𝑡𝑝) = ∫ 𝑓(𝑡)𝑑𝑡
∞

𝑡𝑝

                                                                                                                        (6.12) 

 

The two parameter Weibull form of the reliability function is defined as 

 

𝑅(𝑡𝑝) = 𝑒𝑥𝑝 [− (
𝑡𝑝

∅
)
𝛽

]                                                                                                                 (6.13) 

However when the parameter 𝛽 is 1, the Weibull model becomes an exponential model and is 

then represented as follows: 

 

𝑅(𝑡𝑝) = 𝑒−𝜆𝑡𝑝                                                                                                                                   (6.14) 
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Cost function: Several cost models have been developed for defining cost with respect to 

scheduled replacement intervals. The cost per unit time is given as follows (Jardine, 1973): 

 

𝐶(𝑡𝑝) =
𝐶𝑎 (1 − 𝑅(𝑡𝑝)) + 𝐶𝑏𝑅(𝑡𝑝)

∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑡𝑝

0
+ 𝑇𝑏 (1 − 𝑅(𝑡𝑝)) + {(𝑇𝑎 + 𝑡𝑝)𝑅(𝑡𝑝)}

                                           (6.15) 

 

Where: 

The numerator is the expected cost per cycle and the denominator is the expected cycle time; 

Ca is the cost of unit failure maintenance 

Cb is the cost of unit preventive maintenance 

tp is the given scheduled replacement interval 

 

Downtime function: Downtime is given by (Jardine, 1973) 

 

𝐷(𝑡𝑝) =
𝑇𝑏 (1 − 𝑅(𝑡𝑝)) + 𝑇𝑎𝑅(𝑡𝑝)

∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑡𝑝

0
+ 𝑇𝑏 (1 − 𝑅(𝑡𝑝)) + {(𝑇𝑎 + 𝑡𝑝)𝑅(𝑡𝑝)}

                                          (6.16) 

 

Where: 

Tb is the time taken for unit failure maintenance 

Ta is the time taken for unit preventive maintenance 

 

 R, C and D, together with the alternatives’ preventive maintenance interval (tp) are then used 

to form a decision table. The decision table formed is presented in Table 6.1 where R, C and 

D are represented as 𝐵𝑗  (𝑗 = 𝑅, 𝐶 & 𝐷)  and the alternative replacement intervals are 

represented as 𝐴𝑖  (𝑖 = 1, 2… ,𝑚) while the measure of performance of the alternatives’ 

preventive maintenance interval is represented as  𝑋𝑖𝑗.  Having formed the decision table, the 

next task is to explore different multi-criteria decision making (MCDM) techniques for 

determining the optimum alternative maintenance task interval. In this research the use of the 

TOPSIS technique is proposed using the detailed methodology discussed in Section 3.3.2.1 of 

Chapter 3. 
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                                      Table 6.1: Decision matrix 

 

 

6.2.3  Criteria weighting model 

6.2.3.1  Compromised weighting method: 

 

After the formation of the decision table or matrix, the next step in the application of the 

MCDM technique in selecting an alternative from different options is to determine the weight 

of the decision criteria (R, C and D).  Previous authors that have used the MCDM approach in 

determining the most appropriate time interval for scheduled replacement tasks have only 

assumed weight for decision criteria in their analysis (for example, see the work of Cavalcante 

et al. (2010) and Chareonsuk et al. (1997)), forgetting the fact that the weight of decision 

criteria is a critical factor in arriving at the appropriate scheduled replacement time interval. 

On the basis of the criticality of this factor, two different decision criteria weighting 

techniques; the variance method and the AHP method were considered. While the variance 

method is an objective weighting technique, the AHP method is a subjective weighting 

technique. The methodological steps for the statistical variance and AHP techniques were 

discussed in Section 5.3.2 and Section 4.3.2.2 respectively. However in order to have a 

balanced weighting technique, the two methods were integrated to give a compromise 

weighting technique. The integrated weighting technique produced by combining the variance 

method and AHP method is presented as follows:  

 

𝑤𝑐𝑗 =
∅𝐴𝑗 . 𝑤𝑒𝑗

∑ ∅𝐴𝑗. 𝑤𝑒𝑗
𝑛
𝑗=1

    𝑗 = 1, … , 𝑛                                                                                                   6.17 

                                                    

Where ∅𝐴𝑗 is the weight of criteria obtained by AHP method, 

           𝑤𝑒𝑗 is the weight of criteria obtained by variance method. 

           𝑤𝑐𝑗  is the compromised decision criteria weighting method. 
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6.2.4  TOPSIS: Preventive maintenance interval alternatives ranking tool 

The steps in evaluating alternatives with respect to decision criteria in the TOPSIS 

methodology were discussed in Section 3.3.2.1. The basis of the TOPSIS methodology is the 

determination of relative closeness to different scheduled replacement interval alternatives 

with respect to an ideal solution. The alternatives are ranked based on this relative closeness 

to the ideal solution. The scheduled replacement alternative interval with the highest value is 

regarded as the optimum solution. 

 

6.3   Case study: Marine diesel engine 

 

From the risk assessment performed on the marine diesel engine the most critical components 

of the system were identified. For the basic engine which is one of the systems of the marine 

diesel engine, components such as the connecting rod, piston and turbocharger were identified 

as the critical. Scheduled replacement was identified as the optimum maintenance strategy for 

mitigating critical failure modes of the connecting rod (Liang et al., 2012).  The maintenance 

strategy selection methodology proposed in this research in Chapter 5 has not been applied in 

validating their claim nevertheless, the connecting rod was used to demonstrate the 

applicability of the proposed scheduled replacement interval determination model. 

 

6.3.1  Data collection 

When applying a life-time distribution such as the Weibull distribution or exponential 

distribution in curve fitting individual units’ failure data or group failure data, reasonable 

accuracy can be obtained with only four or five data points (Alexander, 2003). Rausand and 

Vatn (1998) reported that lack of  reliability data will always be a challenge because of 

difficulty in accessing operational data with adequate quality and because transforming 

operational data into reliability data is challenging. The authors further postulated that in spite 

of these challenges, useful maintenance decisions can still be made from the little or no data 

situation as there are other sources of data such as experts’ opinions and reliability databanks 

for making useful reliability decisions. In response to the challenges of obtaining failure data 

from the shipping industry, in this research values for Weibull parameters β and ∅ for some of 

the components of the marine diesel engine were obtained from the work of (Perakis and 

Inözü, 1991) and they are presented in Table 6.2. The Weibull parameters are the key data 
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required for the implementation of this methodology. However if time to failure data were to 

be available, the data could have been used as input into eq. (6.3), (6.5) to (6.11) to obtain 

Weibull parameters β and ∅.  

 

  

Table 6.2: Reliability data 

 

 

6.3.2  Data analysis and discussion 

Given the values of the Weibull parameters, the next step is to obtained the cost parameters; 

Ca, Cb, Ta and Tb. However because cost data was also not available, values used by previous 

researchers were used which were in the form of ratios. For example Wong et al. (2010) used 

a cost ratio of 1 to 5 ($5000 assumed as the replacement cost when performed under 

preventive mode and $25000 assumed as the replacement cost when performed under failure 

mode) as the cost  of preventive replacement to the cost of failure replacement. Furthermore 

Mobley, (2001) stated that the cost of maintenance implemented under reactive mode is 

generally about three times the cost if executed in preventative mode. In this research, a cost 

ratio of 1 to 4 was assumed as the cost of preventive replacement to the cost failure 

replacement. Also, since the downtime as result of failure replacement is usually higher than 

that resulting from preventative replacement, it was considered appropriate that a ratio of 1 to 

5 was assumed as the ratio of downtime for preventive replacement to downtime for failure 

replacement.  
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The connecting rod parameters which were used as input data in the reliability function, cost 

function and downtime function are; β =3.432   and ∅ = 31699, Ca= £8000, Cb= £2000, Ta = 3 

and Tb = 15.  

 

Having obtained the Weibull parameters β and ∅ and cost parameters; Ca, Cb, Ta and Tb the 

next step was to evaluate the R, C and D for all possible alternative preventive maintenance 

intervals which may then be used to form a decision table or matrix. In deciding on the 

possible scheduled replacement time interval alternatives reference was made to literature 

(Perakis and Inözü, 1991) in consultation with the experts previously used for the strategy 

selection stage in Chapter 5. The possible preventive maintenance time intervals arrived at are 

presented in Table 6.3. The evaluation of R, C and D was carried out with a simple program 

executed in Matlab® which is given in Appendix C1 and the results obtained are presented in 

Figures 6.2 to 6.4.  

 

Table 6.3: Alternative scheduled replacement intervals 
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Figure 6.2: Reliability function against scheduled replacement interval tp 

 

 

 

 

Figure 6.3: Cost function against scheduled replacement interval tp 
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Figure 6.4: Downtime function against scheduled replacement interval tp 

 

 

From the results in Figures 6.2, 6.3 and 6.4 it is obvious that the three decision criteria are in 

conflict with one another making it difficult to select the optimum preventive replacement 

interval. For example: the maintenance practitioner would prefer to maintain the plant with 

the highest possible reliability and, as such for the reliability function in Figure 6.2 the 

optimum preventive maintenance interval is 5000hrs; however considering the cost function 

in Figure 6.3, the optimum replacement interval will occur at the least possible cost and in this 

case the preferred maintenance interval is 18,000hrs and finally for the downtime function in 

Figure 6.4 the maintenance practitioner would prefer to operate the plant with the least 

possible plant downtime and from this analysis the optimum solution would be to carry out 

replacement at an interval of 16,000hrs. In such a conflicting scenario, the use of an MCDM 

method becomes crucial in order to arrive at a compromise solution. As previously stated, the 

use of the TOPSIS method is proposed in this research in selecting the most appropriate 

preventive replacement alternative interval. In the TOPSIS technique the first step is to form 

the decision matrix which is achieved from the results generated for R, C and D for scheduled 

replacement intervals A1 to A30 as presented in Table 6.4.  
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  Table 6.4: decision matrix for connecting rod 

Replacement intervals (tp) tp(hrs) Rtp Ctp(£) Dtp(hrs) 

A1 5000 0.998234 0.402036 0.000604 

A2 6000 0.996702 0.336712 0.000507 

A3 7000 0.994408 0.290747 0.000439 

A4 8000 0.991171 0.257035 0.000389 

A5 9000 0.986803 0.231631 0.000352 

A6 10000 0.981108 0.212175 0.000324 

A7 11000 0.973894 0.197167 0.000303 

A8 12000 0.964970 0.185607 0.000287 

A9 13000 0.954153 0.176806 0.000276 

A10 14000 0.941272 0.170267 0.000268 

A11 15000 0.926174 0.165626 0.000263 

A12 16000 0.908729 0.162604 0.000261 

A13 17000 0.888834 0.160983 0.000262 

A14 18000 0.866420 0.160589 0.000264 

A15 19000 0.841456 0.161276 0.000268 

A16 20000 0.813957 0.162918 0.000274 

A17 21000 0.783981 0.165407 0.000281 

A18 22000 0.751638 0.168643 0.000289 

A19 23000 0.717090 0.172532 0.000298 

A20 24000 0.680550 0.176986 0.000309 

A21 25000 0.642279 0.181920 0.000320 

A22 26000 0.602586 0.187251 0.000332 

A23 27000 0.561822 0.192896 0.000344 

A24 28000 0.520369 0.198773 0.000357 

A25 29000 0.478633 0.204805 0.000370 

A26 30000 0.437038 0.210912 0.000383 

A27 31000 0.396005 0.217019 0.000395 

A28 32000 0.355949 0.223053 0.000408 

A29 33000 0.317263 0.228948 0.000420 

A30 34000 0.280303 0.234641 0.000432 

 

 

After the formation of the decision matrix, the next step was to use the MCDM tool in ranking 

of the alternative maintenance intervals. However prior to the use of the MCDM tool, the 

weight of each decision criterion had to be determined. As previously explained, a 

combination of AHP and the variance weighting method was used in this research. The results 

of R, C and D obtained from the AHP and the variance technique together with the 

combination of the two techniques (compromise weighting technique) are presented in Table 

6.5 and Figure 6.5. 
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   Table 6.5: Combined weight technique comparison with others 

 

 

 

 

Figure 6.5: combine weight technique comparison with others 

 

The evaluated compromise weights of R, C and D together with data in the decision matrix in 

Table 6.4 were then used as input data for the TOPSIS analysis. The first step in the TOPSIS 

analysis was the normalisation of the decision matrix in Table 6.4 using Eq. (3.6). The 

weighted normalised matrix was then obtained by multiplying the normalised decision matrix 

by the decision criteria weights. Applying Eq. (3.10) and (3.11), positive and negative ideal 

solutions were obtained and the results are presented in Table 6.6. Using Eq. (3.12) and (3.13) 

the separation of each of the alternative replacement interval from the positive and negative 

ideal solutions were then evaluated. Finally, the relative closeness of each alternative 

replacement interval to the positive ideal solution was evaluated using Eq. (3.14)  and the 

results together with their corresponding rankings are presented in Table 6.7 and Figure 6.6.  

 

Table 6.6: Positive and negative ideal solution 

Criteria Negative ideal Positive ideal 

Reliability 0.2083 0.9982 

Cost 0.4011 0.1605 
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Table 6.7: Relative closeness to positive solution and ranking 

Replacement 

alternatives 
dp Rank 

A1 0.7352 16 

A2 0.7932 14 

A3 0.8401 11 

A4 0.8777 9 

A5 0.9073 6 

A6 0.9293 4 

A7 0.9427 2 

A8 0.9458 1 

A9 0.9387 3 

A10 0.9245 5 

A11 0.9058 7 

A12 0.8835 8 

A13 0.8580 10 

A14 0.8293 12 

A15 0.7973 13 

A16 0.7622 15 

A17 0.7240 17 

A18 0.6828 18 

A19 0.6391 19 

A20 0.5930 20 

A21 0.5452 21 

A22 0.4962 22 

A23 0.4469 23 

A24 0.3979 24 

A25 0.3504 25 

A26 0.3056 26 

A27 0.2652 27 

A28 0.2306 28 

A29 0.2036 29 

A30 0.1854 30 
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Figure 6.6: Relative closeness to positive ideal and ranking 

 

From Table 6.7 and Figure 6.6 it is obvious that the optimum solution is A8 (12000hrs) 

having the highest TOPSIS performance index of 0.9452. The implication is that for this 

system, at every interval of 12000hrs, an equivalent of 500 days, the maintenance practitioner 

should replace the connecting rod in the marine diesel engine at a cost of 0.18543 per unit 

time, reliability of 0.96497 and resulting downtime per unit time of 0.00029. However this 

interval can vary from system to system depending on the input parameters into the model 

which is controlled by the system age, system failure distribution (such as Weibull, normal 

and exponential distribution) demand, prevailing cost factor, maintenance practitioner opinion 

and the environment of the operation of the system. This leads to a sensitivity study carried 

out to see how the various factors affect the optimum choice. 
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6.3.3  Sensitivity study 

The sensitivity analysis was performed by varying parameters that were used as inputs into 

the reliability, cost and downtime cost functions. This was firstly to ascertain the impact of 

the input variables on the individual functions; R (tp), C (tp) and D (tp). Secondly it was to 

ascertain the impact of the individual input variables in selecting the optimum replacement 

interval based on the combination of the three decision criteria, R (tp), C (tp) and D (tp) by the 

MCDM technique (TOPSIS). In performing the analysis, the input variables β and ∅ were 

increased and decreased by 5%, 10%, 15% and 20% respectively while other variables such 

as Ca, Cb, Ta and Tb ratios used were increased and decreased by integer increment. 

 

6.3.3.1  R(tp) sensitivity analysis 

The two variables that influence R(tp) are  β and ∅ and these factors were increased and 

decreased by 5% , 10%, 15% and 20% from the nominal. The results of the sensitivity 

analysis based on β and ∅ are presented in Figures 6.7 and 6.8 respectively.  

 

 

Figure 6.7: Reliability (R(tp)) for sensitivity analysis of β 
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reliability for the operation of the system. For the nine cases, the highest reliability is 

approximately one at a time interval for carrying out maintenance of A1 (5000hrs). It is also 

worth mentioning from the graph that the lowest possible reliability for the nine cases is 

almost the same. One can then conclude that the rate of decrease of reliability of this system 

with age or time for any value of the factor β is almost constant.  

 

 

 

Figure 6.8: Reliability (R(tp)) for sensitivity analysis of ∅ 

 

Again increasing or decreasing the value of ∅ as shown in Figure 6.8, does not change the 
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using MCDM based on the three decision criteria; R(tp), C(tp) and D(tp), the impact of ∅ will 

be greater than β since reliability is more sensitive to ∅ than β when Figures 6.7 and 6.8 are 
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are ∅, β, Ca, Cb, Ta and Tb and as such a sensitivity analysis was performed on these input 

variable.  

 

For the sensitivity analysis performed on β, the original value was increased and decreased by 

5%, 10%, 15% and 20% and the results are presented in Figure 6.9. 

 

 

Figure 6.9: Cost per unit time for sensitivity analysis of β 
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marginal increase in the cost of carrying out scheduled replacement maintenance. For 

example when the original value of ∅ was decreased by 5% the alternative replacement 

interval changed from A14 (18,000hrs) to A13 (17,000hrs) and when ∅ decreased by 10% it 

changes to A12 (16,0000hrs).  

 

 

Figure 6.10: Cost per unit time (C(tp)) for sensitivity analysis of ∅ 

 

Another input parameter whose impact on the output of the cost model was tested is the cost 
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Figure 6.11: Cost per unit (C(tp)) for sensitivity analysis of Cost ratio 

 

 

 

 

Figure 6.12: Cost per unit time (C(tp)) for sensitivity analysis of ratio of Tb to Ta 
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For the sensitivity investigation performed on β, the original value was increased and 

decreased by 5%, 10%, 15% and 20% and the results are presented in Figure 6.13. The results 

show that the optimum replacement interval (tp) remains the same in the nine scenarios 

however with a gradual increase in cost per unit time when β varied from -5% up to -20% and 

gradual decrease in cost per unit time when β varied from 5% up to +20%. In a similar 

fashion, a sensitivity analysis was performed by decreasing and increasing ∅ over the range of 

5% to 20%. The result of the sensitivity analysis is as shown in Figure 6.14. The result of this 

investigation shows that an increase in the variable ∅ resulted in a small increase in the 

replacement interval and a decrease in the value of ∅ produced a decrease in the replacement 

interval. 

 

 

 

Figure 6.13: Downtime per unit time for sensitivity analysis of β 
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Figure 6.14: Downtime per unit time (C(tp)) for sensitivity analysis of ϕ 

 

Finally, the D(tp) model  sensitivity analysis was performed by varying the ratio of Tb to Ta 

over the range of 2 to 9. From the result shown in Figure 6.15 it can be seen that when the 

ratio increased there was a reduction in the optimum replacement interval, however with an 

increase in cost per unit time of performing the maintenance task.  

 

 

 

Figure 6.15: Downtime per unit (D(tp)) for sensitivity analysis of ratio of Tb to Ta 
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6.3.4  Impact of input parameters variations on the overall ranking of replacement 

interval alternatives 

Having established the impact of changes to the individual input parameters on the three 

decision criteria R(tp), C(tp) and D(tp), the next step was to determine the impact of the 

variations of input parameters on the overall ranking of the replacement alternative intervals. 

As previously explained, when R(tp), C(tp) and D(tp) are used  simultaneously as decision 

criteria to determine the optimum replacement  intervals,  an MCDM technique is appropriate 

for selecting the optimal alternative interval and in this research TOPSIS was used. The 

TOPSIS performance index for all replacement alternative intervals was generated as the 

individual input parameters were varied and based on the TOPSIS performance index, 

replacement alternative intervals were ranked.  

 

6.3.4.1  Impact of β variations on the overall ranking of replacement interval 

alternatives 

Firstly the impact of the variation of β on the overall ranking of the alternative replacement 

intervals was considered. The TOPSIS performance index was obtained for all replacement 

interval alternatives as input parameter β was increased and decreased by 5%, 10%, 15% and 

20%. The result obtained is presented in Table C1 in Appendix C2 and based on these, the 

TOPSIS performance index and scheduled replacement interval alternatives were ranked as 

shown in Figure 6.16 a &b and Table C2 in appendix C2. Note Figure 6.16b is only a section 

of Figure 6.16a and it’s presented to clearly shown how replacement (maintenance) 

alternative intervals vary with increase or decrease of parameter β. 
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Figure 6.16 a: Ranking of sensitivity analysis of β 

 

 

 

Figure 6.16b: Ranking of sensitivity analysis of β 
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hand, as the value of β was decreased by 5% the optimal replacement interval changed to A7 

(11,000hrs) and it further changed to A6 (10,000) when the value of β was decreased by 20%.  

To summarise, the higher the value of β the higher the replacement interval and the lower the 

value of β the lower the replacement interval. An additional conclusion is that in all the 

scenarios, whether increasing or decreasing the value of β, the optimal replacement interval 

varied by relatively small amount as the change was over the range A6 - A9. 

 

6.3.4.2 Impact of ∅ variations on the overall ranking of replacement interval alternatives 

 

The impact of ∅ on the overall ranking of alternative replacement intervals was performed by 

decreasing and increasing the values of ∅ by 5%, 10%, 15% and 20% and using the results 

obtained in each scenario as input to the TOPSIS methodology which was evaluated using 

TOPSIS. The TOPSIS performance indices generated in the nine scenarios are presented in 

Table C3 in Appendix C2. On the basis of the TOPSIS performance indices, the replacement 

alternative intervals were ranked and the results are presented in Table C4 in Appendix C2 

and Figure 6.17. 

 

 

Figure 6.17: Ranking of sensitivity analysis of ϕ 
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replacement interval to the changes in ∅ are larger than the response to the changes in β. In 

other words, the ranking model is more sensitive to changes in ∅ than β.  

 

6.3.4.3  Impact of cost ratio variations on the overall ranking of replacement interval 

alternatives 

The sensitivity analysis was perform on cost ratio to determine the effect that changes of the 

ratio of Ca to Cb would have on the overall ranking of replacement interval alternatives. The 

ratio of Ca to Cb ranging from 2 to 8 was applied in carrying out the investigation. The 

TOPSIS performance index obtained for all the replacement interval alternatives for all eight 

scenarios and their corresponding rankings are presented in Tables C5 and C6 in Appendix 

C2. The graphical representation of the ranking of all alternatives are shown in Figure 6.18a 

& b. Note Figure 6.18b is only a section of Figure 6.18a and it’s presented to clearly shown 

how replacement (maintenance) alternative intervals vary with increase or decrease of cost 

ratio. 

 

 From Table C6 in Appendix C2 and Figure 6.18a it can be seen that as the ratio of Ca to Cb 

increased up to 5 there was a reduction in the replacement interval. Increases beyond 5 

resulted in no further change across the range of scenarios i.e. the ratio of Ca to Cb ranging 

from 2 to 8, only three replacement interval choices were obtained (A9, the optimal 

replacement interval obtained for Ca:Cb =2, A8 the optimal replacement interval obtained for 

Ca:Cb=3 to 4 and A7 the optimal replacement interval obtained for Ca:Cb=5 to 8). It can be 

concluded that as the ratio increases, the replacement interval decreases up to a point and then 

remains constant. When compared to β and ∅ the cost ratio has a smaller impact on the 

ranking of replacement interval alternatives. 

 

 

 

 

 

 

 

 

 



178 

 

 

Figure 6.18a: Ranking of sensitivity analysis of cost ratio 

 

 

 

 

 

 

Figure 6.18b: Ranking of sensitivity analysis of cost ratio 
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6.3.4.4  Impact of ratio Tb to Ta variations on the overall ranking of replacement 

interval alternatives 

 

In order to determine the impact that variation of the ratio Tb to Ta would have on the overall 

ranking of replacement interval alternatives, the ratio of Tb to Ta was varied from 2 to 9 and 

the TOPSIS performance index generated for the replacement interval alternatives for the 

eight scenarios. The results are presented in Table C7 in Appendix C2. The performance 

index for the replacement interval alternatives in the nine scenarios were ranked and the 

results are presented in Table C8 in Appendix C2 and Figure 6.19. It is obvious from the table 

and graph that the optimal replacement interval for the scenarios remained unchanged with 

the exception of the first scenario (Tb to Ta equal to 2). When compared to the other input 

parameters the Tb to Ta ratio has less impact on the overall ranking of replacement interval 

alternatives.  

 

 

 

 

 

Figure 6.19: Ranking of sensitivity analysis of ratio of Tb to Ta 
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6.4  Summary 

 

For safe and reliable operation of marine machinery systems at reasonable cost there needs to 

be in place an efficient maintenance system.  However in making maintenance decisions, 

different parties are involved and the decisions are usually based on certain criteria which are 

always in conflict with one another. In resolving such conflicts the multi-criteria decision 

making technique is usually suitable. In this research, decision criteria such as reliability, cost 

and downtime were considered as the basis for selecting the optimum preventive replacement 

interval for marine machinery systems. Since the three decision models are in conflict with 

one another, the outputs were aggregated with the aid of MCDM techniques. In order to 

demonstrate the applicability of the methodology, failure data obtained from secondary 

sources and estimated cost data for the connecting rod of a marine diesel engine were used as 

input data. The result of the investigation revealed the following: 

(1) For the data considered, the optimum replacement interval for performing 

maintenance tasks on the connecting rod of the marine diesel engine is 12,000hrs.  However 

this is not fixed as the interval could vary depending on the operating environment of the 

system, the age of the system, cost of replacement at breakdown, cost of preventive 

replacement and type of failure distribution. 

(2) If the Weibull distribution is the failure distribution for the system, the scale 

parameter, ∅, has a greater impact on the three models than the shape parameter, β. However 

for the cost model the ratio of Ca to Cb has the greatest impact. For the downtime model, the 

ratio of Tb to Ta has the greatest impact followed by ∅ while β has the least impact. 

(3) ∅ has the greatest influence on the overall ranking of replacement interval alternative. 

The ratio of Tb to Ta has the least impact on the overall ranking of replacement intervals. 

(4) Increasing the values of parameters such as ∅ and β will result in a corresponding 

increase in the replacement interval and reducing the value will result in a reduction in the 

replacement interval. 

 

From the result of this analysis the proposed methodology is simple and robust. The approach 

in this research has an advantage over the technique applied by some authors for land based 

systems as the criteria weight evaluation model is flexible with both objective and subjective 

components. The proposed methodology is not limited to application to marine machinery 

systems as it capable of solving other engineering system problems if provided with the 

appropriate input data.  
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Chapter 7 Inspection Interval Determination 

 

7.1  Introduction 

 

One of the maintenance strategy options for maintaining components of a marine system is 

scheduled on-condition task which was referred to as Offline-Condition Based Maintenance 

(OFCBM) in Chapter 5. As previously stated, scheduled on-condition task is the inspection 

carried out on plant systems to monitor their performance degradation. Once it has been 

established that the optimum maintenance strategy for mitigating failure of a particular 

equipment item of the system is scheduled on-condition task, the next task is to determine the 

interval for performing the maintenance task.  

 

Based on the literature review in Chapter 2, the most promising technique for determining the 

optimum interval for carrying out inspection is the delay time model. However most of the 

delay-time model applications for inspection interval determination discussed in the literature 

are based on a single model such as the use of cost or downtime in optimising inspection. 

However a few cases considered a combination of two models in deciding the inspection plan 

for either a single unit or multi-unit system. In these few cases, the optimum inspection 

intervals obtained from the individual models were close and, as such, reaching a compromise 

solution was straightforward without resorting to special MCDM tools. Nevertheless in most 

real life applications the decision criteria results may not be close and in such a scenario 

reaching a compromise solution becomes challenging.  For cases of this nature, the use of 

multi-criteria tools such as PROMETHEE, TOPSIS, Elimination Et Choix Traduisant La 

REalite (ELECTRE) and Multi-Attribute Utility Theory (MAUT) becomes imperative. 

Additionally the use of such tools make it possible to include the opinion of maintenance 

practitioners in the decision making process. The use of the MAUT method specifically has 

an additional benefit of integrating the risk perception of the maintenance practitioners into 

the decision making process. Considering the benefits of both delay model and MAUT 

techniques, a combination of the two methods is proposed for determining the inspection 

interval for marine machinery systems. 

 

The Chapter is organised as follows: In Section 7.2 a background study of the delay time 

model is discussed; Section 7.3 presents the proposed methodology for determining the 
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optimum inspection interval; in Section 7.4 the case of the water cooling pump is presented to 

demonstrate the proposed methodology. Finally the conclusion is presented in Section 7.5  

  

7.2   Delay time model background 

 

 In determining the maintenance strategy of marine systems using the RCM methodology, 

some equipment items are more effectively maintained by scheduled inspection or scheduled 

inspection in combination with other maintenance tasks. The essence of inspection is to 

ascertain the true condition of an item and as such it’s similar to online condition based 

maintenance. The difference is that while inspection is carried out by maintenance personnel, 

online condition based monitoring is carried out through the use of diagnostic tools which 

continually monitor the condition of the equipment. In the course of performing inspection 

activities, if a defect is found, a repair or replacement task is schedule and if possible executed 

immediately to prevent the equipment from further deterioration. If inspections are not carried 

out, defects may go unnoticed which can result in catastrophic system failure with severe 

economic loss for the company. However even if inspection tasks are performed, if they are 

not properly timed, defects can still occur between successive intervals. It is obvious then that 

the determination of the optimal inspection interval is central to the effective operation of any 

marine machinery system. Conventionally the inspection interval is determine by maintenance 

practitioners relying on experience and/ or on the equipment manufacturers’ recommendation, 

the result being far from optimal and also conservative (Christer et al., 1997).  

 

An inspection task as an alternative maintenance approach can only be beneficial if there is a 

sufficient period between the time that the defect is observed and the actual time of failure of 

the equipment. The time interval between when a defect becomes identifiable and the actual 

time of failure is referred to as the delay time (hf). Based on this concept, Christer proposed 

the Delay Time model (Christer et al., 1997) for determining the inspection interval of an 

equipment item. The delay time is the most appropriate time to carry out an inspection on a 

marine machinery system. Figure 7.1 is used to illustrate the delay time concept.  
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Figure 7.1: Delay time concept showing a defect’s initial points and failure points 

 

 

Figure 7.1 shows multiple points of failure, both initial and actual points where failure occurs 

and also two different inspection plans for the marine machinery system in question. It is 

obvious from the figure that if the inspection of the system is performed at an interval of B a 

lot of failures will happen in the system since most of the defects would have resulted in 

actual failure. Alternatively inspection plan A would result in detecting virtually all of the 

defects before the actual failure of the system could occur. The key to achieving maximum 

success in mitigating catastrophic failure of a marine machinery system is to have a proper 

understanding of the delay time (hf) of the system such that maintenance can be performed 

within this period. 

 

 Based on Christer and Waller (1984a), a defect occurring within a period of (0, T) in a marine 

machinery system has a delay time, hf and hf  has a probability density function of f(hf). If 

failure of the machinery system occurs at a period (0, T-hf) the maintenance (repair or 

replacement) carried out is referred to as breakdown maintenance otherwise the maintenance 

is inspection maintenance.  For the marine machinery system, if all possible values of hf are 

added up, according to Christer and Waller (1984a), the probability  of a defect occurring as a 

breakdown failure is: 

 

𝐵(𝑇) = ∫
𝑇 − ℎ𝑓

𝑇

𝑇

0

 𝑓(ℎ𝑓)ℎ𝑓                                                                                                             (7.1) 

 

 

The above Equation was established based on the following assumptions: 
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(1) Inspection is performed at regular intervals 

(2) Defects discovered during inspection are repaired 

(3) Perfect inspection meaning all defects are discovered during inspection 

(4) Arrival rate of defects is constant 

 

However it is worth noting that some of these assumptions may not be realistic in practical 

situations. For example, it may not be possible to identify all defects during inspection as 

some defects could be hidden although the system performance degradation may have started 

during inspection. Some of these assumptions are made to ease the modelling of the system 

and for ease of computation of the models. 

 

Detailed information on the delay time concept and its application in marine and other related 

industries for the purpose of optimising maintenance, was discussed in the literature section. 

 

7.3  Proposed inspection interval determination methodology 

 

In this research, the delay time model was used in conjunction with MCDM techniques in 

order to determine the optimum inspection interval for marine machinery equipment. The 

MCDM techniques are used in aggregating the expected cost, expected downtime and 

reputation models. The weights of the decision criteria were evaluated with respect to 

maintenance practitioners’ preference. Hence a flexible weighting technique has been 

developed for this purpose. The decision criteria considered simultaneously in deciding the 

optimum inspection interval using the delay time technique are; Downtime per unit time D(T) 

and Cost per unit time C(T) and expected Reputation per unit time R(T). The flowchart of the 

proposed methodology for selecting appropriate inspection intervals for the marine machinery 

system is presented in Figure 7.2. 

 

The methodological steps are as follows:  

 

Step (a) the system to be investigated is determined and is usually broken down into sub-

systems and components. Next the system is thoroughly studied to identify dominant failures 

and corresponding consequences. Various techniques such as, group brainstorming, FMEA 

and FTA can be applied to determine dominant failures, causes and the chances of the failures 

occurring. In this research, the FMEA technique was chosen for this purpose.  Once the 
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dominate failures have been identified, data is gathered to be applied as input into a 

mathematical model for optimising the inspection interval such that system failure can be 

eliminated or minimised. The data that can be applied for delay time model analysis may be 

subjective /and or objective. Objective data is generally preferable however, if it is lacking in 

quality and quantity, subjective data can be applied. Objective data is obtained from 

maintenance and failure data records from the marine industry. In most cases, this data is not 

available because of the nature of the environment and sometimes due to commercial 

sensitivity. Subjective data on the other hand is obtained by developing questionnaires which 

are used in gathering information relating to maintenance and equipment failures from marine 

maintenance personnel, vessel crews and management.   

  

Step (b) The three mathematical models based on the delay time concept; D(T), C(T) and 

R(T) are evaluated by using data collected in step (a). Common to the three Delay Time 

Analysis (DTA) models are variables such as B(T), downtime as a result of inspection,  𝜕 , 

and arrival rate of defects per unit time, 𝑘𝑟. To determine B(T), a failure mode is chosen and 

from failure records, the initial point of failure is determined. This is followed by the 

determination of the distribution of the delay time of failure which may be a normal, 

exponential or Weibull distribution. Once the distribution has been estimated, the parameters 

of the distributions may be determined.  These parameters are then used as input into the B(T) 

model to calculate its value. Having known values of B(T), 𝜕 and 𝑘𝑟 , D(T) is evaluated. To 

evaluate C(T) other variables such as costs of breakdown, inspection repairs and inspection 

are needed in addition to B(T), 𝜕 and 𝑘𝑟   and finally to evaluate R(T) parameters such as Rbr 

and Rii are needed in addition to B(T), 𝜕 and 𝑘𝑟.  

 

Step (c) C(T), D(T) and R(T) are evaluated for every value of T and used to form a decision 

matrix, xij (m x n), as presented in Table 7.1, where m is the number of alternative inspection 

Ti , and n is the number of decision criteria. In this case, the decision criteria are C(T), D(T) 

and R(T). 

 

Step (d) Determination of decision criteria weight: The pairwise comparison judgment 

obtained from the experts for the decision criteria is used as the input into the AHP evaluation 

technique to calculate weights of decision criteria. 
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Figure 7.2: Flow of the integrated MCDM and Delay time model for inspection selection 
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Table 7.1: Inspection interval alternatives decision table 

 

 

Step (e) Ranking of inspection alternatives: The maintenance strategy alternatives are ranked 

using Elimination Et Choix Traduisant La REalite (ELECTRE) and Multi-Attribute Utility 

Theory (MAUT).  

 

Step (f) the ranking obtained from both methods are compared and an optimum strategy is 

then determined 

 

7.3.1  Develop delay time concepts models 

The assumption in this research is that the delay times of failure for the marine machinery 

systems components follow a Weibull distribution, therefore 𝑓(ℎ𝑓) is represented as follows: 

 

𝑓(ℎ𝑓) =
𝛽

∅
(
ℎ𝑓

∅
)

𝛽−1

 𝑒𝑥𝑝 [−(
ℎ𝑓

∅
)

𝛽

]                                                                                             (7.2) 

 

On the basis of Eq. (7.2) the B(T) model, which is the probability that defects will be repaired 

as breakdown repairs in Eq. (7.1) can be represented as follows: 

    

𝐵(𝑇) = ∫
𝑇 − ℎ𝑓

𝑇

𝑇

0

 
𝛽

∅
(
ℎ𝑓

∅
)

𝛽−1

 𝑒𝑥𝑝 [−(
ℎ𝑓

∅
)

𝛽

] 𝑑ℎ𝑓                                                                 (7.3) 
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7.3.1.1   Downtime models 

The expected downtime per unit possible time of inspection using the delay time approach 

can be presented as follows (Christer and Waller, 1984a): 

 

𝐷(𝑇) =
𝜕 + 𝑘𝑟𝑇𝐵(𝑇)𝑑𝑎

𝑇 + 𝜕
                                                                                                                  (7.4) 

                             

Where 

T = Inspection time interval 

𝜕 = Downtime as a result of inspection  

𝑑𝑎 = Average downtime due to breakdown repair 

ℎ𝑓= Delay time 

𝑘𝑟= Arrival rate of defects per unit time 

 

If Eq. (7.3) is substituted in to Eq. (7.4), D(T) will be represented as: 

 

𝐷(𝑇) =

𝜕 + 𝑘𝑟𝑇 {∫
𝑇 − ℎ𝑓

𝑇
𝑇

0
 
𝛽
∅

(
ℎ𝑓

∅
)

𝛽−1

 𝑒𝑥𝑝 [−(
ℎ𝑓

∅
)
𝛽

] 𝑑ℎ𝑓} 𝑑𝑎

𝑇 + 𝜕
                                         (7.5) 

 

7.3.1.2  Expected Cost model 

The downtime model in Eq 7.4 may be modified by including three distinct cost components; 

cost of breakdown, cost of inspection repair and cost of inspection,  in order to model the 

expected cost per unit time function (Christer and Waller, 1984a). The expected cost per unit 

time of inspection of a marine machinery system, C(T), is written as follows: 

 

 

𝐶(𝑇) =
[𝑘𝑟𝑇{𝐶𝑏𝑟𝐵(𝑇) + 𝐶𝑖𝑖[1 − 𝐵(𝑇)]} + 𝐶𝑖𝑐]

𝑇 + 𝜕
                                                                      (7.6) 

 

Where 

𝐶𝑏𝑟  = cost of breakdown repair  

𝐶𝑖𝑖 = cost of inspection repair  

𝐶𝑖𝑐 = cost of inspection 
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The three cost variables each need to be evaluated to be applied as an input into C(T) together 

with the delay time parameters. In order to evaluate breakdown repair cost there is a need to 

know all of the failure modes of the marine machinery system and the corresponding 

consequences of the failure. As previously stated, FMEA has been applied in this research. In 

Chapter 4, the consequences of the failure modes were presented whose values were assigned 

by experts using an ordinal scale of 1 to 10. These are now expressed in monetary terms.  The 

cost of breakdown repair is evaluated as the sum of the labour cost (Lc), spare parts cost (Sc), 

equipment downtime time cost (Edc), penalty cost (Pc), and dry-docking cost (Ddc) shown as 

follows:  

 

𝐶𝑏𝑟 = 𝐿𝑐 + 𝑆𝑐 + 𝐸𝑑𝑐 + 𝑃𝑐 + 𝐷𝑑𝑐                                                                                                      (7.7) 

 

 

The labour cost can be expressed as the product of the number of maintenance personnel 

(Ncm) that will carry out the repair, the pay rate per hour per person (Prm) and the time 

duration of repair (Tdm). This is shown as follows: 

 

𝐿𝑐 = 𝑁𝑐𝑚. 𝑃𝑟𝑚. 𝑇𝑑𝑚                                                                                                                             (7.8) 

 

The cost of inspection repair is presented as follows: 

 

𝐶𝑖𝑖 = 𝐶𝑖𝑐  + 𝐿𝑐 + 𝑆𝑐 + 𝐸𝑑𝑐 + 𝑃𝑐                                                                                                        (7.9) 

 

It is obvious from Eq. 7.7 and 7.9 that the cost of break down repair and cost of inspection 

repair are the same except that (1) inspection cost is included in the cost of inspection repair 

and dry-docking cost is excluded from it. The dry-docking cost is excluded from inspection 

repair because defects are addressed before the actual failure occurs and so it will not result in 

catastrophic failures that can call for unplanned dry-docking of the entire ship system; and (2) 

the time duration for performing corrective action during breakdown repair is higher than the 

time duration for carrying inspection repair. The time duration for breakdown repair is 

generally higher than time  taken to perform corrective action for inspection repair because in 

breakdown repair the defect may not only have resulted in a particular component failure but 

could also result in both secondary and tertiary effects.   
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The cost of inspection 𝐶𝑖𝑐 for the machinery system equipment or component may be 

expressed as the product of the number of marine maintenance crew (Nic), their pay rate per 

hour (Pr) and the duration for performing the maintenance added to the product of equipment 

or component downtime and duration of performing the maintenance, presented as follows: 

 

 𝐶𝑖𝑐 = [(𝑁𝑖𝑐 . 𝑃𝑟 ) +  𝐸𝑑𝑐]𝑇𝑑                                                                                                            (7.10) 

 

Where Td is the duration of inspection.  

 

7.3.1.3  Expected Reputation model 

With the reputation model, the relationship between the impact of failures on the reputation or 

image of the marine industry can be studied. The failure of marine machinery systems can 

have a negative impact on the company and as such this model helps in determining the most 

appropriate time interval to perform maintenance inspection with the intention of reducing or 

eliminating system downtime whilst boosting the reputation of the company. In similar 

fashion to developing the cost model and downtime model, the reputation model is presented 

as follows:   

 

𝑅(𝑇) =
𝑘𝑟𝑇{𝑅𝑏𝑟𝐵(𝑇) + 𝑅𝑖𝑖[1 − 𝐵(𝑇)]}

𝑇 + 𝜕
                                                                                  (7.11) 

 

Where Rbr is the company reputation when a failure correction measure is performed as a 

breakdown repair and Rii is the company reputation when failure corrective action is 

performed as an inspection repair. In assigning values to the two variables; Rbr and Rii , an 

ordinal scale of 1 to 10 is applied by experts. The value assigned is a function of the severity 

and the occurrence of the failure.  In this case, the worst case scenario was assumed for Rbr 

since a breakdown repair scheme may sometimes result in catastrophic damage that may 

affect personnel on board ship, marine machinery system equipment and the environment. For 

Rii , the best case scenario may be assumed since failures are preventatively mitigated. For the 

best case scenario 1 is assigned and for the worst case scenario 8 to 10 can be assigned. 

 

A programme was written in Matlab® to evaluate D(T), C(T), and R(T). The Programme is 

given in Appendix D. 
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7.3.2  Decision criteria weighting techniques  

The AHP technique for determining the weights of decision criteria; D(T), C(T) and R(T) was 

discussed in Chapter 4. 

 

7.3.3  Ranking of time interval tools   

The decision making process involves applying simultaneously three decision criteria which 

are usually conflicting, in arriving at the most appropriate time interval for inspection of the 

marine machinery system. Two MCDM techniques; ELECTRE and MAUT were used and 

compared. The methodological steps for these methods are discussed next: 

 

7.3.3.1  ELECTRE method 

ELECTRE is the acronym for Elimination and Et Choice Translating Reality, a multi-criteria 

technique which utilises the concept of paired comparisons among alternatives with respect to 

chosen decision criteria. The method was established by Roy and Vinke (Roy and Vincke, 

1981) and has since been modified and applied successfully in addressing multi-criteria 

decision problems in different fields. Shanian et al. (2008) utilised the technique in solving a 

material selection problem and Sevkli (2010) integrated ELECTRE with a fuzzy logic 

technique in addressing a supplier selection problem. In this thesis, the technique has been 

used to solve an inspection interval selection problem in the marine environment.  The 

methodological steps associated with the ELECTRE method as presented in (Anojkumar et 

al., 2014) are as follows: 

 

Step 1: Formation of the decision matrix: the process starts with formation of a decision 

matrix, X, with alternatives, j with respect to criteria, i. An example of such a decision matrix 

with elements xij is presented in Table 7.1. 

 

Step 2: Normalisation of the decision matrix: the normalisation of the decision matrix is 

performed in order to convert varying units among different decision criteria into 

dimensionless form. The normalisation of the decision matrix xij is carried out as follows: 

 

𝑟𝑖𝑗  =  
𝑥𝑖𝑗

√∑ 𝑥𝑖𝑗
2𝑚

𝑗=1

 ,    𝑖 = 1,2… , 𝑛 ;   𝑗 = 1,… ,𝑚                                                              (7.12) 
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Where rij is the normalised matrix 

 

Step 3: determination of the weighted normalised matrix:  

The weighted normalised matrix (vij) is obtained as a product of decision criteria weight, wi , 

and the normalised matrix as follows: 

 

𝑣𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 ,      𝑖 = 1, … , 𝑛 ;    𝑗 = 1,… ,𝑚                                                                                   (7.13) 

 

Step 4: Determination of the concordance interval matrix: Given a pair of alternatives, Aj and 

Ak, the concordance index cI(j, k) can be evaluated as the summation of all weights for those 

criteria where weighted normalised score of Aj is greater than or equal to Ak, , as follows: 

 

𝑐𝐼(𝑗, 𝑘) =  ∑ 𝑤𝑖 ,     

𝑣𝑖(𝑗)≥𝑣𝑖(𝑘)

𝑗, 𝑘 = 1,… ,𝑚 ;    𝑗 ≠ 𝑘                                                                 (7.14) 

 

Where vi(j) and vi(k) are the weighted normalised scores of the jth and kth alternatives 

respectively. The results obtained from the concordance evaluation are then applied to form 

the concordance matrix as follows: 

 

𝐶𝐼 = [

− 𝑐𝐼(1,2) … 𝑐𝐼(1,𝑚)
𝑐𝐼(2,1) − … 𝑐𝐼(2,𝑚)

⋮ ⋮ ⋱ ⋮
𝑐𝐼(𝑚, 1) 𝑐𝐼(𝑚, 2) … −

]                                                                               (7.15)  

 

Step 4: Determination of the discordance interval matrix: The first step to producing the 

discordance matrix, is to determine discordance index. The discordance index dI(j, k), can be 

evaluated as: 

 

𝑑𝐼(𝑗, 𝑘) = {

                            0 ,              𝑖𝑓   𝑣𝑖(𝑗) ≥ 𝑣𝑖(𝑘)   𝑖 = 1,2, … , 𝑛

max
𝑣𝑖(𝑘)>𝑣𝑖(𝑗)

[𝑣𝑖(𝑘) − 𝑣𝑖(𝑗)]

max
𝑖=1,…,𝑛

[|𝑣𝑖(𝑘) − 𝑣𝑖(𝑗)|]
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              𝑗, 𝑘 = 1,2, … ,𝑚.  𝑗 ≠ 𝑘 

(7.16) 

 

The discordance matrix is then formed by using the evaluated results from the discordance 

index, presented as follows: 
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𝐷𝐼 = [

− 𝑑𝐼(1,2) … 𝑑𝐼(1,𝑚)
𝑑𝐼(2,1) − … 𝑑𝐼(2,𝑚)

⋮ ⋮ ⋱ ⋮
𝑑𝐼(𝑚, 1) 𝑑𝐼(𝑚, 2) … −

]                                                                             (7.17)  

 

  

Step 5: Determination of the performance index: 

 

The performance of the alternatives is measured using the net superior and inferior values. 

The net superior values, Cs , upon which the alternatives are ranked, is evaluated as follows: 

 

𝐶𝑠 = ∑ 𝐶𝐼(𝑗, 𝑘) −

𝑚

𝑘=1

∑ 𝐶𝐼(𝑘, 𝑗)

𝑚

𝑗=1

   𝑗 ≠ 𝑘                                                                                      (7.18) 

 

On the other hand the net inferior values, Ds , upon which alternatives are also ranked can be 

determined as follows: 

 

𝐷𝑠 = ∑ 𝐷𝐼(𝑗, 𝑘) −

𝑚

𝑘=1

∑𝐷𝐼(𝑘, 𝑗)

𝑚

𝑗=1

   𝑗 ≠ 𝑘                                                                                     (7.19) 

 

The two indices for measuring performance of alternatives will yield two rankings. The two 

rankings obtained from the indices can then be averaged to produce the final ranking from 

which the alternative with the superior rank is selected. The ELECTRE methodology used for 

the ranking of alternatives, was coded in Matlab® and is presented in appendix D2. 

 

7.3.3.2  Multi-Attribute Utility Theory (MAUT)  

 

Multi-Attribute Utility Theory (MAUT) is one of the MCDM tools for arriving at a specific 

decision when the decision making process involves different alternatives with conflicting 

decision criteria. MAUT provides a systematic means for making trade-offs among decision 

criteria such that an optimum alternative can be selected from numerous options. The beauty 

of this technique lies in the fact that decision makers’ preferences in terms of risk structure 

can be included in the decision making process, something which is lacking in the other 

MCDM tools. MAUT has its foundation in the utility theory developed by Neumann and 
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Morgenstern (Neumann and Morgenstern, 1947) and the elicitation and specific assessment 

techniques developed by Keeney and Raiffa (Keeney and Raiffa, 1976). With the combination 

of these techniques, the decision criteria of the decision problem can be represented as 

individual utility functions which are then aggregated into a single analytical function. The 

MAUT method has been applied in solving different multi-criteria decision problems in 

different industries. Hwang (2004) utilised MAUT to establish an optimal scenario that can 

reduce residents’ exposure to radioactive substances during the elementary phase of a nuclear 

power plant accident. Brito and de Almeida (2009) used MAUT to prioritise the risk of 

leakage in a natural gas pipeline.  The technique was also applied by De Almeida and Bohoris 

(1996) in a maintenance strategy selection problem. Having been applied in solving other 

problems, the method is used in this thesis to model the maintenance inspection problem 

within the marine environment.   

 

The methodological procedure of the MAUT technique is as follows: 

 

Step 1: Formation of the decision problem: The overall aim is to determine the optimal 

alternative with respect to some decision criteria. The decision problem is generally 

represented in the form of a matrix, an example is shown in Table 7.1. From Table 7.1, the 

decision criteria are represented as Bi and the alternatives represented as Aj where i is the 

number of decision criteria and j is the number of alternatives. In this particular decision 

problem, i is 3 that is to say the decision problem has three decision criteria which are D(T), 

C(T) and R(T) and  xij are the elements of the decision matrix which are the values evaluated 

for  alternatives against the decision criteria. The alternatives referred to here are the 

inspection intervals, the most appropriate of which is to be determined by the decision maker 

(maintenance practitioner) with respect to the decision criteria; D(T), C(T) and R(T). It is the 

duty of the decision maker, based on experience and maintenance and failure records of the 

marine machinery system, to determine alternative inspection intervals (Aj) for the marine 

machinery system which can be rated in hours, days, weeks, months, etc.  

 

Step 2: Determination of single utility functions: The utility function is used to embed the 

decision maker’s risk preference in the decision making process. For the different decision 

criteria, utility functions are determined which are then applied to form a multi-attribute 

utility function. The risk perceptions of the decision maker are of three types which are 

incorporated into the utility function. The three risk perceptions are; risk prone, risk neutral 
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and risk averse. The three risk perceptions with respect to the utility function are illustrated in 

Figure 7.3.  

 

 

Figure 7.3: Utility function characteristics (Anders and Vaccaro, 2011) 

 

One popular utility function to define decision criteria is the power series function, as follows 

(Anders and Vaccaro, 2011): 

 

𝑢(𝐵𝑖) =
(𝐵𝑖 − 𝑎)𝑆

(𝑏 − 𝑎)𝑆
                                                                                                                          (7.20) 

 

Where S is used to define the risk perception of the decision maker. For a risk-neutral decision 

maker, S is given the value of 1 and for risk prone and risk averse decision makers the value 

of greater and less than 1 are assigned to S respectively. The maximum and minimum values 

of the element of decision criterion Bi are a and b respectively in Eq. 7.20. The outputs of the 

utility function of decision criteria range from 0 to 1. In this research it was assumed that the 

decision maker was risk neutral and as such the utility function of the three decision criteria; 

cost, downtime and reputation are as presented in Eq. 7.21, 7.22 and 7.23 respectively: 

 

𝑢(𝐶(𝑇)) =
𝑥1𝑗 − 𝑎1

𝑏1 − 𝑎1
                                                                                                                        (7.21) 

 

 

𝑢(𝐷(𝑇)) =
𝑥2𝑗 − 𝑎2

𝑏2 − 𝑎2
                                                                                                                       (7.22) 

 

 

𝑢(𝑅(𝑇)) =
𝑥3𝑗 − 𝑎3

𝑏3 − 𝑎3
                                                                                                                       (7.23) 
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The constants a1, b1 are the maximum and minimum values of x1j , where x1j  are the elements 

that belong to the decision criterion cost in the decision matrix in Table 7.1. The constants a2, 

b2 are the maximum and minimum values of x2j where x2j  are the elements that belong to the 

decision criterion downtime. Finally, 𝑏3, 𝑎3 represent the maximum and minimum values of 

𝑥3𝑗 where 𝑥3𝑗 are the elements in the decision matrix that belong to the decision criterion 

reputation. 

 

Although it was assumed in this research that S was equal to 1, analysis was also conducted 

for the situation where S was greater than 1 and less than 1 in order to see the effects it would 

have in the decision making process. This was performed as a sensitivity analysis by applying 

S in the range of 0 to 2. 

 

Step 3: Determination of multi-attribute utility functions: The individual decision criteria 

utility functions determined in step 2, together with their respective scaling constants were 

multiplied and then aggregated using either the additive or the multiplicative technique. In 

this research the additive technique was utilised and is shown as follows: 

 

𝑈(𝐶(𝑇),𝐷(𝑇), 𝑅(𝑇)) = 𝑤𝑐𝑢(𝐶(𝑇)) +  𝑤𝑑𝑢(𝐷(𝑇)) +   𝑤𝑅𝑢(𝑅(𝑇))                                (7.24) 

 

Where 𝑤𝑐, 𝑤𝑑 and 𝑤𝑅 are the scaling constants of the utility functions of decision criteria; 

cost, downtime and reputation respectively as determined using the AHP method detailed in 

Section 5.3.2.  

 

7.4  Case study 1: Marine diesel engine-sea water cooling pump 

The sea water cooling pump is used as a case study in this research to illustrate the 

applicability of the proposed integrated MCDM techniques and the delay time model. The sea 

water pump is one of the equipment items of the central cooling system of the marine diesel 

engine. In Chapters 3 and 4, the FMEA analysis of the entire marine diesel engine was carried 

out and from the analysis the sea water pump failure modes were identified as being among 

the most critical failure modes of the marine diesel engine. Knowing the risk contribution, the 

next step was to define the maintenance strategy to mitigate failures and this was carried out 

in Chapter 5. The optimum maintenance strategy for the sea water cooling pump, was 
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identified in Chapter 5 to be offline condition based maintenance (inspection). Finally, in this 

chapter, the optimum interval for performing the inspection activities is determined.  

  

7.4.1  Data collection  

The basic data needed as input into D(T), C(T) and R(T) in order to determine the optimum 

inspection interval for the sea water cooling pump are delay time parameters, cost parameters 

and reputation parameters.  

 

Central to the delay time analysis is the delay time distribution and this is generally 

determined using two techniques; the subjective and the objective methods. The objective 

method usually requires the use of large amounts of equipment failure data in determining 

delay time distributions but these are not available in most cases. The use of the subjective 

method on the other hand requires limited data but a lot of time is involved in developing 

questionnaires and obtaining the required information for estimating delay time (hf) from 

experts. For this research, due to difficulty in defining the exact delay time distribution 

function, a Weibull distribution was assumed. The Weibull distribution was assumed because 

of its flexibility in representing different failures patterns (Krishnasamy et al., 2005, Wang et 

al., 2012). Having assumed the Weibull distribution, the delay time probability density 

function, f(hf), parameters need to be determined. Due to the unavailability of data to estimate 

these parameters, one of the combinations of shape and scale parameters which had 

previously been applied by Cunningham et al. (2011) for a sea water cooling  pump was used 

in this study. The different combinations of shape and scale parameters are presented in Table 

7.2. The combination of lower 𝛽 and higher ∅ produces a more definite minimum point in a 

delay time model plot (Cunningham et al., 2011). On this basis a combination of 10 and 5 

were chosen from Table7.2 for this research. 

 

 

Table 7.2: Weibull parameters 
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The possible alternative time intervals for inspection of the equipment were determined by 

considering the failure data of the equipment, maintenance manuals and with the aid of an 

expert with several years of marine diesel engine maintenance experience.  

 

The arrival rate of defects is another variable that needs to be evaluated in the DTA.  The 

arrival rate of defects and failure rate of equipment items or components are identical if the 

equipment items or components are maintained based on reactive maintenance (Cunningham 

et al., 2011). In this study, the failure rates in OREDA (2002) were assumed to have been 

collected based on reactive maintenance of a system.  Based on this assumption, the failure 

rates in OREDA 2002 for a centrifugal pump were used as the arrival rate of defects. From 

the OREDA 2002 data handbook, the failure rate for the centrifugal pump is given as 1277 

per 106 hours for all failure modes.  

 

Having obtained the arrival rate of defects, the next important variables that needed to be 

determined were downtimes due to breakdown repair and inspection. For both variables, the 

data already available in the literature was relied upon. Cunningham et al. (2011) had taken 

downtime due to inspection to be 12.5 minutes. In arriving at 12.5 minutes for downtime due 

to inspection of a centrifugal pump of the main cooling system of a passenger ferry, the 

authors considered the time used for visual inspection of suction and discharge pressure, 

observation of abnormal noise using audio inspection and monitoring of the level of current 

drawn by the electric motor by means of electrical inspection.  The value of 168 hours for the 

downtime as a result of breakdown repair was obtained from OREDA 2002. This value 

included the delay in procuring and transporting spare parts.  

 

The three basic cost parameters are cost of inspection (cic), cost of inspection repair (cii) and 

cost of breakdown repair (cbr). However cost information was not generally available hence a 

combination of experts’ opinions and logged records were relied on to find reasonable 

estimates. These estimates were used as input into Eq. 7.7, 7.9 and 7.10 to obtain estimated 

values of cost of breakdown repair, cost of inspection repair and cost of inspection 

respectively. The estimated costs generated from the equations are presented as follows: 

 

Cost of breakdown repair (cbr) = £52,500  

Cost of inspection repair (cii) = £10,500    

Cost of inspection (cic) = £210 
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Finally, for the reputation per unit time of the inspection model, two parameters were needed 

as input into the model. The two, Rbr and Rii were estimated by experts using an ordinal scale 

of 1 to 10. The value assigned was a function of the severity and the occurrence of the failure.  

In this research, the worst case scenario was assumed for Rbr since breakdown repair may 

sometimes result in catastrophic damage that may affect personnel on a board ship, marine 

machinery system equipment and the environment. For Rii, the best case scenario was 

assumed since failures are preventatively mitigated. On this basis the values of 1 and 10 were 

assigned for Rii and Rbr respectively. 

 

 

7.4.2  Delay time model analysis 

The data for the variables of the delay time models were input into Eq. 7.4, 7.5 and 7.6 to 

evaluate downtime per unit cost, cost per unit time and reputation per unit time for different 

inspection intervals. The evaluation of Eq. 7.4, 7.5 and 7.6 was achieved using a Matlab 

programme as presented in Appendix D1. The results obtained for downtime, cost and 

reputation are presented in Figures 7.4, 7.5 and 7.6 respectively. 

 

 

Figure 7.4: Alternative inspection interval vs downtime per unit time 
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Figure 7.5: Alternative inspection interval vs cost per unit time 

 

 

Figure 7.6: Alternative inspection interval vs reputation per unit times 

 

From the figures, it is obvious that the optimum solution for the three decision criteria are in 

conflict with each other. For the cost per unit time function, C(T), the optimal solution in 

Figure 7.5 is a 9 hour inspection interval having the lowest possible cost of £40.34. The 

optimal solution for the downtime per unit time in Figure 7.4 is the inspection interval of 7 

hours, corresponding to a downtime per unit time of 0.0345 hours while the optimal solution 

for the reputation per unit time in Figure 7.6 is an inspection interval of 1 hour with a 

reputation per unit time of 0.0106. This puts the decision maker or maintenance practitioner in 

a dilemma with respect to arriving at the most appropriate choice of inspection interval for the 
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cooling water pump. In such a situation, a multi-criteria technique is needed to aid the 

decision maker in reaching a compromise solution.  

 

7.4.3  Formation of decision matrix using D(T), C(T) and R(T) analysis result 

In applying the multi-criteria techniques, the first step is to form a decision matrix. The results 

of the three decision criteria, D(T), C(T) and R(T) were utilised to produce a decision matrix   

which is shown in Table 7.3.    

    Table 7.3: decision matrix 

 

 

7.4.4  Determination of Decision criteria weights using AHP 

Applying the AHP techniques discussed in Chapter 4, the weights of the decision criteria, 

C(T), D(T) and R(T) were obtained as 0.45, 0.3 and 0.25 respectively. AHP is a subjective 

method for determining the decision criteria weights and the weights determined using the 

technique may vary from expert to expert. Hence there is a need to determine the impact that 

varying decision criteria weights may have on the overall ranking of alternative inspection 

intervals. The above weights are referred to as case ‘1’. Four other scenarios were used to 
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perform the sensitivity analysis of decision criteria weights. The five scenarios are shown in 

Table 7.4. Note: Cases 2 to 4 were used to demonstrate what happens if experts give extreme 

values of weights. 

 

 Table 7.4: Decision criteria weight cases 

 

 

7.4.5  Ranking of alternative inspection intervals 

7.4.5.1  ELECTRE method ranking 

In utilising the ELECTRE method to determine the optimal inspection interval, the decision 

matrix in Table 7.3 was normalised using Eq. 7.12 and the result is shown in Table 7.5. The 

normalised decision matrix was then multiplied by the weights of the decision criteria (case 1) 

to form the weighted normalised matrix, also presented in Table 7.5. This was followed by the 

formation of the concordance interval matrix and the discordance interval matrix using Eq. 

7.15 and 7.16 respectively. The performance indices, net superior and net inferior values of 

each of the inspection intervals were evaluated using Eq. 7.18 and 7.19 and the results are 

shown in Table 7.6. Finally, the inspection intervals were ranked based on their net superior 

and inferior values and the results are also shown in Table 7.6. The graphical representation of 

the net superior values of the inspection intervals and corresponding rankings is presented in 

Figure 7.7 while the net inferior values of inspection intervals and corresponding rankings are 

shown in Figure 7.8. The performance of the inspection interval can be determined by 

applying the net superior index; in this case, the inspection interval with the highest superior 

value is selected as the most appropriate. The performance of the inspection intervals can also 

be determined using the net inferior index and in this case the inspection interval with the 

lowest net inferior value is selected as the optimal solution. 

 

From the net superior performance index in Figure 7.7 an inspection interval of 9 hours is the 

best ranked having the highest net superior value of 21.40 and as such, based on this 

performance index, it is the most appropriate interval for the inspection of the cooling water 
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pump. The worst solution is the inspection interval of 49 hours which has the lowest net 

superior value of -22.20.  

 

From Figure 7.8 an inspection interval of 9 hours is the optimal solution to this inspection 

interval selection problem having the lowest net inferior value of -31.3334. The second 

ranked inspection interval is 7 hours with a net inferior value of -28.7606 while the lowest 

ranked inspection interval is 49 hours with a net inferior value 32.7569.  The inspection 

interval of 7 hours might also be recommended because of the closeness of its net inferior 

value to that of the 9 hour inspection interval.  

 

 

Table 7.5: Normalised and weighted normalised matrix  
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Table 7.6: ELECTRE II ranking of inspection interval 

 

 

 

 

Figure 7.7: Net superior values and corresponding ranks of inspection interval 
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Figure 7.8: Net inferior (Ds) values and corresponding ranks of inspection intervals 

 

 

Sensitivity analysis 

 

One of the variables that affects the ranking of alternative inspection intervals produced by 

the ELECTRE method is the decision criteria weight. In this study, AHP was used to 

determine decision criteria weights. The technique is highly subjective and as such different 

experts or decision makers might assign different weights to each decision criterion. In order 

to study the effects of varying weights that may be assigned by the decision makers on the 

rankings of inspection intervals obtained from the ELECTRE method, a sensitivity analysis 

was performed using various combinations of decision criteria weight. The various 

combinations of decision criteria weights applied for the sensitivity analysis study are 

presented in Table 7.4. From the sensitivity analysis study, the performance indices net 

superior and net inferior values obtained for alternative inspection intervals in the five 

different combinations of decision criteria weights (cases 1-5) are presented in Figures 7.9 

and 7.10 and in tabular format in Tables D4 and D5 in Appendix D4. The corresponding 

rankings of inspection interval based on the net superior and net inferior values are presented 

in Figures 7.11 and 7.12 respectively and in tabular form in Tables D6 and D7 respectively in 

Appendix D4.  
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Figure 7.9: Net superior-Cs values from decision criteria weight sensitivity analysis 

 

 

 

 

 

Figure 7.10:  Net inferior-Ds values from decision criteria weight sensitivity analysis 
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Figure 7.11: Net superior-Cs rankings from decision criteria weight sensitivity analysis 

 

 

 

 

Figure 7.12: Net inferior-Ds rankings from decision criteria weight sensitivity analysis 
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the five cases based on net inferior index in Figure 7.10 and the corresponding ranking of 

inspection intervals in Figure 12 also vary from 7 hours to 9 hours. The optimal inspection 

interval for the five cases based on the net inferior index are tabulated in Table 7.8. 

 

Table 7.7: Optimal inspection interval for five cases 

 

 

Table 7.8: Optimal inspection interval for five cases 

 

 

7.4.5.2  MAUT method rankings 

The MAUT technique used in the ranking of inspection intervals commenced with the 

formation of the decision matrix shown in Table 7.3. The first step to solving the decision 

matrix in Table 7.3 using the MAUT method was to define the range of each decision 

criterion, the results of which are shown in Table 7.9. The values in Table 7.9 were then used 

as inputs into Eq. 7.21 to 7.23 to calculate the utility values of each alternative inspection 

interval against the decision criteria. Finally, the multi-attribute function values of each 

inspection interval were evaluated by aggregating utility values of the alternative inspection 

intervals multiplied by decision criteria weights as expressed in Eq. 7.24. The multi-attribute 

function values of each of the inspection intervals obtained using Eq. 7.24 are shown in Table 

7.10 and Figure 7.13. 
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 Table 7.9: Range of decision criteria 

 

 

 

Table 7.10: MAUT ranking 
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Figure 7.13: Multi-attribute utility function U(C(T), D(T), R(T)) based on inspection intervals 

 

From Table 7.10 and Figure 7.13, an inspection interval of 7 hours is in the first position 

having the highest multi-attribute utility function value of 0.9927 and as such it is the 

optimum solution for the inspection interval selection problem. The inspection interval in 

second position is 9 hours, having multi-attribute utility function value of 0.9556. The 

inspection interval in last position is 49 hours, having the lowest multi-attribute function value 

i.e. 0.0857.  

 

Sensitivity analysis 

 

The results obtained above using the MAUT technique are when the decision maker is risk 

neutral, in which case R is equal to 1. However there are situations where the decision maker 

may be risk prone or risk averse and in such situations R is greater than 1 (risk prone) or less 

than 1 (risk averse). The effect of the risk perception of the decision maker was investigated 

to see how it would affect the rankings of the inspection interval. Based on this a range of R 

from 0 to 2 was used and the results obtained are shown in Figure 7.14 and Table D1 in 

Appendix D4. 
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Figure 7.14: Sensitivity analysis of R 
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Figure 7.15: Multi-attribute utility function values for varying weights of decision criteria 

 

 

 

 

Figure 7.16: Inspection intervals rank for varying weights of decision criteria 
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ELECTRE ranking indices, the net superior (represented in the graph as ELECTRE (Cs)) and 

the net inferior (represented in the graph as ELECTRE (Ds)) are  the same for most of the 

inspection intervals with only a few having a rank difference of one between them. When the 

results of the two ranking indices of ELECTRE are also compared with the result generated 

from the MAUT method, the results are also very similar. To further show the relationship 

between the three ranking systems, a Spearman rank correlation test was performed. The 

Spearman correlation coefficients obtained between ELECTRE (Cs) and ELECTRE (Ds), 

between MAUT and ELECTRE (Cs) and between MAUT and ELECTRE (Ds) are 0.928, 

0.998 and 0.906 respectively. The near perfect correlation obtained among the three ranking 

methods revealed that they can be applied individually to rank alternative inspection intervals 

for marine machinery systems so that the optimal solution can be obtained. The optimal 

solution obtained for the water cooling pump from ELECTRE (Cs) and ELECTRE (Ds) was 

an inspection interval of 9 hours and for the MAUT technique is 7 hours. The two techniques 

can also be compared in terms of robustness. From the results of the five cases in the 

sensitivity analysis of decision criteria weights, the MAUT method gave the same optimal 

solution in all cases while the ELECTRE method had an optimal solution that varied from 7 

hours to 9 hours. This shows that the MAUT technique is more robust and less sensitive to 

decision criteria weight changes than the ELECTRE method.  The MAUT method is therefore 

recommended for the marine industry for determining optimal inspection intervals.  
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     Table 7.11: Comparison of methods 

 

 

 

 

Figure 7.17: Comparative ranking of alternative inspection intervals 
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most appropriate interval for performing inspection. Traditionally, maintenance practitioners 

rely on their experience in determining the most appropriate time for carrying out inspection 

activities. The delay time approach has been reported in the literature, however in determining 

the optimal inspection interval most of the authors applied a single decision criterion (cost or 

downtime). The purpose of this research was to apply multiple decision criteria in obtaining 

the optimal inspection interval.  Three decision criteria; cost, downtime and reputation were 

chosen for measuring performance of an inspection interval.   

 

The delay time concept was used to model the relationship between inspection intervals and 

the corresponding cost, downtime and reputation due to system failure. Since the optimal 

solutions obtained from the three decision criteria are in conflict with each other, the three 

decision criteria results were aggregated with two MCDM techniques; MAUT and 

ELECTRE.  To illustrate the applicability of the proposed methodology for determining an 

optimal inspection interval, a case study of a sea water cooling pump was investigated. From 

the analysis, the rankings of alternative inspection intervals produced from both the MAUT 

and ELECTRE methods were very similar. To further prove the similarity between the two 

MCDM techniques, the Spearman rank correlation coefficient between the techniques was 

evaluated and showed a near perfect relationship. This confirms that the two techniques can 

be applied individually or in combination to rank and select the best inspection policy for 

marine machinery systems.   

 

The robustness of the two methods; MAUT and ELECTRE was tested via sensitivity analysis 

of the decision criteria weight. The five different combinations of decision criteria weights 

chosen for the sensitivity analysis revealed that the MAUT method is more robust and less 

sensitive to decision criteria weight variations.  The preference of the decision maker for 

decision criteria weightings was accommodated through use of AHP which can both 

quantitatively and qualitatively determine the weight of decision criteria. Despite the 

suitability of both techniques for optimal inspection interval determination, the MAUT 

method was recommended for the marine machinery system for the following reasons: 

(1) The risk preference of maintenance practitioners is accommodated in the MAUT 

method which is not something that is available in the ELECTRE method and  

(2) The MAUT method is more robust, as evidenced by the sensitivity analysis of the 

decision criteria weight.  
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In this study, the MAUT and ELECTRE methods have been validated for inspection selection 

problems within the framework of marine machinery systems however they could also be 

applied in solving inspection selection problems for other related engineering systems. 
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Chapter 8 Conclusions, Contributions and Recommendation for future 

work 

 

8.1  Conclusions 

 

Ship systems will not remain safe and reliable no matter how well designed and manufactured 

they are if they are not properly maintained. However over-maintenance may result in system 

degradation and excessive costs that may lead to increases in the operational cost of the 

system. On the other hand, under-maintenance may result in system failures that may be 

catastrophic. Hence there is a need for a sound and effective system to be in place for the 

maintenance of ship systems such that their availability and cost of maintenance are 

optimised. Basically, there are three key elements of a maintenance system which are; risk 

assessment, maintenance strategy selection and maintenance task interval determination.  

RCM is one of the more commonly used methods for the optimisation of these three key 

elements of a maintenance management system. From the extensive literature survey 

performed it was obvious that the tools used in the RCM methodology have flaws which limit 

the effectiveness of the approach in optimising ship system availability. Hence the main 

purpose of this research was to develop alternative tools to enhance the RCM methodology 

such that ship systems are more effectively maintained and managed for improved availability 

and reduced downtime and at a reasonable cost which will invariably result in a significant 

reduction in operational cost. To achieve this aim different methodologies were developed for 

risk assessment, maintenance strategy selection and maintenance interval determination. 

 

In the area of risk prioritisation four methods were proposed in this study; an averaging 

technique integrated with RPN, averaging technique integrated with VIKOR, averaging 

technique integrated with TOPSIS and averaging technique integrated with CP. For the four 

proposed techniques, the novel averaging technique was used in aggregating multiple experts’ 

opinions that may be imprecise, while the RPN, TOPSIS, VIKOR and CP methods were used 

in the ranking of the risk of the individual failure modes. The suitability and validity of the 

proposed methods were demonstrated with case studies of partial and full marine machinery 

systems and case studies from the literature. The results showed that the four proposed 

methods are strongly correlated and can individually be applied for risk prioritisation more 

efficiently than the classical FMEA and other approaches in literature. 
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In the area of maintenance strategy selection three hybrid MCDM maintenance strategy 

selection methods were proposed: (1) Delphi-AHP (2) Delphi-AHP-PROMETHEE and 

(3) Delphi-AHP-TOPSIS. From the analysis of the results, the three proposed 

methodologies yielded the same optimum solution for the cooling water pump of the 

marine diesel engine for both; the single expert decision making process and the group 

decision making process. Based on the information that was obtained from the experts, the 

decision criterion ‘safety’, was found to be the driving force for the selection of the 

maintenance strategy. The scheduled on-condition task or OFCBM, which was the 

optimum solution for maintaining the cooling water pump of the diesel engine in both 

scenarios, was in-line with the current best practice in the marine industry. The proposed 

methods avoid the limitations of RCM logic tree analysis which has an inability to rank 

alternative maintenance strategies and they are also less computationally intensive than 

approaches in the literature. 

 

In the area of maintenance task interval determination two of the five maintenance task 

options utilised in maintenance management were modelled. The maintenance tasks 

considered were; (1) scheduled replacement and (2) scheduled on-condition task.  

o For the scheduled replacement interval determination age replacement models 

were integrated with TOPSIS. While the ARM were used in modelling decision 

criteria, TOPSIS was applied in aggregating decision criteria and in the ranking of 

alternative replacement intervals. From the results of the analysis it can be 

concluded that the proposed methodology is both simple and robust. The approach 

has the advantage of including criteria weighting with both objective and 

subjective components whereas most previous research only included subjective 

components.  

o For the inspection interval determination two MCDM tools; MAUT and 

ELECTRE were combined with the delay time model. The suitability of the 

integrated delay time and the MCDM model was demonstrated with a case study 

of a cooling water pump of a marine diesel engine. From the results both the 

MAUT and the ELECTRE methods produced the same optimal inspection interval 

for the cooling water pump. The proposed approaches have the advantage of 

simultaneously using multiple decision criteria in determining optimum inspection 

interval as opposed to current approaches in literature that use a single criterion.  
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In these proposed methodologies seven different MCDM tools: VIKOR, CP, TOPSIS, AHP, 

PROMETHEE, MAUT and ELECTRE were used for the ranking of alternatives in the areas 

of risk assessment, maintenance strategy selection and maintenance interval determination. 

However each of these tools has the capability to rank alternatives in all three elements of the 

maintenance system. Their individual use will depend on the practitioners’ and/or analysts’ 

choice which may be guided by ease of implementation (computational effort) and suitability 

(Løken, 2007). To guide the practitioner with respect to making a choice on the basis of ease 

of implementation Table 8.1 is presented below. From the table there are two categories of 

MCDM tools based on the different criteria such as Hand calculation in measuring ease of 

implementation; those that are easy to implement such as CP and MAUT with or without 

software and those that are difficult to implement without software such as ELECTRE and 

PROMETHEE. 

 

Table 8.1: Degree of ease of implementation of MCDM tools 

Computational 

effort 

MCDM tools 

TOPSIS VIKOR CP AHP ELECTRE MAUT PROMETHEE 

Hand calculation × ×  × ×  × 

Spreadsheet     ×  × 

Software tool  × ×   ×  

Software code     ×  × 

Hand calculation/spreadsheet: Tick- easy to calculate using hand calculation/spreadsheet & Cross-difficult to 

calculate using hand calculation/spreadsheet 

Software tool: Tick- software available & Cross-software not available 

Software code: Tick- easy to code & Cross- difficult to code 

 

The work demonstrated is an enhanced RCM system and in reality RCM methodologies are 

already routine for whole ship maintenance and as such the proposed enhance RCM does not 

need scaling up to make it applicable to entire ship maintenance. Concerning the practicality 

of a shipping company implementing the proposed enhanced RCM methodology, this will 

generally require a team which should consist of both external and internal experts, technical 

managers, superintended engineers and chief engineers and a statistician who will be able to 

identify appropriate functions such as the Weillbull distribution. Once the expert team has 

implemented the enhanced RCM methodology it would be straightforward for practitioners 

on board to utilise.  
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8.2  Research Contribution  

This research presents the development of various tools in order to support the RCM 

methodology and to improve its effectiveness in marine maintenance system applications. 

This will result in an improvement in marine system reliability at minimum cost. The 

contribution of this research has been disseminated through journal and conference 

publications listed in the publication section. In particular the research contributions with 

regard to addressing the limitations of RCM in the optimisation of the three major elements of 

maintenance management are as follows: 

 

(1) Development of a methodology for the assessment of the risk of marine machinery 

systems. The innovation of this risk assessment methodology is in the combination of 

different MCDM tools such as VIKOR, CP, and TOPSIS in addressing the limitations of 

classical FMEA that is frequently used within the framework of RCM in the risk assessment 

of marine systems. Although VIKOR, CP and TOPSIS have been applied individually by 

practitioners in solving other multi-criteria decision problems they have not been used in 

solving the fundamental risk prioritization problem. The incorporation of the averaging 

technique into the approaches further makes the methodology unique as it allows for the use 

of both precise and imprecise ratings provided by experts to be applied as input into VIKOR, 

CP and TOPSIS which each normally use only precise data, thereby providing a more 

efficient technique for risk prioritization that is highly beneficial to the marine industry. An 

additional important feature of this proposed methodology is in the breakaway from the use of 

a subjective weighting technique, such as AHP, in assigning decision criteria weights, by also 

integrating the variance and entropy methods into VIKOR, CP and TOPSIS. 

 

(2) Development of a methodology for maintenance strategy selection based on the 

integration of the RCM concept with multi-criteria decision making methods. The novelty in 

the proposed methodology lies in the combination of different MCDM tools such as AHP, 

PROMETHEE and TOPSIS for solving the problem of maintenance strategy selection within 

the framework of marine system maintenance. Another important feature of the proposed 

methodology is the incorporation of the Delphi method into AHP, PROMETHEE and 

TOPSIS. The Delphi method was introduced in order to collect, identify and screen decision 

criteria such that the most important decision criteria are applied in selecting the optimal 

maintenance strategy for the marine system. 
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(3) Development of a methodology for the determination of the optimal interval for 

scheduled replacement.  The innovation of the methodology is based on the integration of the 

Age Replacement Model (ARM) with the TOPSIS technique which has never been used 

before for preventive replacement interval determination in the maritime environment. 

Another important feature of the proposed methodology is the combination of an efficient 

decision criteria weighting framework into the ARM and TOPSIS models. The efficient 

decision criteria weighting framework integrates both subjective and objective techniques in 

evaluating the weights of decision criteria, as opposed to the use of only a subjective 

technique for land based system applications found in literature. The weighting framework is 

so flexible that it allows maintenance practitioners to either use a subjective criteria weighting 

technique or an objective weighting technique or a combination of both techniques.  

 

(4) Development of a methodology for the determination of the optimal interval for 

scheduled inspection. The novelty again lies in the combination of MCDM tools (MAUT and 

ELECTRE methods) with a delay time model in determining the optimum intervals for 

performing inspections for systems for the first time within the maritime maintenance 

framework. Another important feature of the methodology is the use of the delay time concept 

in the development of a company reputation model. The company reputation is used as a 

decision criterion in addition to already established cost and downtime decision criteria delay 

time models in determining inspection intervals for maintaining plant system equipment.  

 

8.3  Limitations encountered 

One of the greatest challenges that was encountered in the execution of this study was the 

problem of real life data availability. The lack of reliable real life data in terms of both 

quantity and quality in most scenarios was the reason behind the use of experts’ opinions and 

data from literature as alternatives in this research.  

 

8.4  Recommendation for future work 

8.4.1  Risk assessment 

The technique that was applied in this study for risk assessment, FMEA, is a well-established 

qualitative technique which is useful in making maintenance decisions. However a 

quantitative approach is more reliable in making such decisions. On this basis, a quantitative 

approach such as FTA may be exploited in determining risk of failure modes of marine 
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machinery systems. Furthermore, in this study the FMEA that was performed on the marine 

diesel engine, could be extended to the whole ship system. In addition, three MCDM tools; 

VIKOR, CP and TOPSIS have been used however other MCDM techniques such as 

EXPROM 2 may also be applied in determination of the risk of failure modes of marine 

machinery systems.  

 

8.4.2  Maintenance strategy selection 

Although the proposed methodologies have been validated for marine machinery system they 

can also be applied to other related engineering systems and, depending on the preferences of 

the maintenance practitioners, the decision criteria can further be reduced in order to make the 

evaluation process easier. Furthermore, other techniques such as the MAUT, VIKOR and 

EXPROM 2 may be applied for the ranking of alternative maintenance strategies. There may 

also be the need to capture the expert information imprecisely rather than obtaining precise 

data from experts. In such a scenario, information from experts would be in the form of an 

estimated interval and, in addressing this, the fuzzy logic technique may be integrated within 

the proposed methodologies.  

8.4.3  Maintenance interval determination 

The five maintenance strategies considered in this study are; scheduled overhaul, scheduled 

replacement, offline condition based maintenance (inspection) and online condition based 

maintenance. From these five maintenance strategies, methodologies have been developed for 

determining the optimum interval for carrying out offline condition based maintenance and 

scheduled replacement (SRP) tasks. For future work a methodology could be developed for 

determining the interval for performing scheduled overhaul and scheduled replacement. 

 

8.4.3.1  Scheduled replacement interval determination 

The methodology for determining the scheduled replacement interval in this study is based on 

a multi-criteria decision framework, the three decision criteria being; cost, downtime and 

reliability. The cost and downtime models were adapted from the Barlow and Hunter (1960) 

age replacement model. The TOPSIS methodology was applied in simultaneously obtaining 

the ranking of alternative replacement intervals for marine machinery systems from the three 

decision criteria. For future work other MCDM tools such as MAUT and ANP may be 

exploited for the ranking of the alternative replacement intervals such that an optimum 
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solution can be obtained. For example, the MAUT method will allow the maintenance risk 

perception to be included in the decision making process which is not possible in the 

proposed method in this research and the ANP allowed for the interrelationship between the 

decision criteria to be utilised in the analysis process which again is not possible in the 

method utilised in this study. For the three decision criteria models the failure distribution of 

the systems that were studied were assumed to follow a Weibull distribution, however other 

well know distributions such as exponential and normal distributions should be investigated. 

Alternatively system failure data could be obtained to determine the exact distribution rather 

than assuming it. 

 

8.4.3.2  Inspection interval determination 

In determining the intervals for performing the inspection for the system under investigation, 

the delay time model was integrated with the multi-criteria decision tools ELECTRE and 

MAUT.  The delay time was used to model the three decision criteria; cost, downtime and 

reputation, while the ranking of alternative inspection intervals was performed using MAUT 

and ELECTRE. For the delay time models the Weibull distribution was assumed as the 

distribution probability of the delay time. For future work other known distributions such as 

exponential and normal distributions could also be studied. A database system should be 

developed such that the shipping industry can easily gather delay time information. For the 

ranking of alternative inspection intervals the use of other MCDM techniques such as 

EXPROM 2 and PROMETHEE can be explored.  
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Appendix A: Risk Assessment 

A.1  FMEA analysis sheet for the marine diesel engine 

The information used in the formation of the FMEA analysis sheet were obtained in bits from 

the following sources: (Cicek and Celik, 2013, Cicek et al., 2010b, American Bureau of 

Shipping, 2004, Bejger, 2011, Dunford, 2011, Mokashi et al., 2002, Lazakis, 2011), experts 

opinion and logged records. 
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A.2 Expert assigned failure mode rating for the marine diesel engine 
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A.3  Decision matrix for failure modes of the marine diesel engine 
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A.4 Failure modes performance index and rankings for the marine diesel engine 
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Appendix B: Maintenance Strategy Selection  

B.1 Delphi Survey Questionnaire 

The Delphi survey questionnaires sent to 10 experts in the first and second rounds are 

presented in B.1.1 and B1.2 respectively. 

 

B.1.1 Delphi Survey Round 1 Questionnaire  

 

Dear Sir/Madam, 

I am a PhD Research Student at Newcastle University conducting research entitled, 

DEVELOPMENT OF A METHODOLOGY FOR SELECTING OPTIMAL 

MAINTENANCE STRATEGIES FOR MARINE SYSTEMS  

 

The Research Aim is to develop a holistic methodology to enable plant managers to select an 

optimal maintenance strategy for each piece of equipment in the marine machinery system 

from a set of possible alternatives. In our approach we are embedding Multi-Criteria Decision 

Making tool (Analytic Hierarchy process) within the Reliability Centered Maintenance 

framework, for selecting maintenance strategy for failure mechanisms of a marine machinery 

system. 

 

As part of the effort to achieve the research objectives I would like you to kindly take a few 

minutes to respond to this questionnaire. All information provided will be used for academic 

statistical analysis only and the data source will be kept anonymous. Therefore please feel at 

ease in filling out the answers. Please note that this is the first round of questionnaire; the 

second round of questionnaire (summary of result of first round questionnaire) will be 

forwarded to you in four weeks’ time. 

 

Table B1 on page 2 is a list of proposed criteria for selecting the maintenance strategy in 

addressing potential failure mechanisms of a marine diesel engine and diesel generator. Please 

rate each of the criteria with respect to its value in determining the appropriate maintenance 

strategy for each component of the system, where 1 indicates not necessary, 2 indicates 

useful but not essential and 3 indicates essential. 
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Table B1 Round 1 Delphi survey questionnaire 
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2. If you have any suggestion of any criteria for selecting maintenance strategy not listed in 

the above 22 criteria, please list below: 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

 

B1.2 Delphi Survey Round 2 Questionnaire  

 

Dear Sir/Madam, 

I wish to thank you for your participation and prompt response in the first round of the Delphi 

survey. As stated in the first survey, the Delphi method is an iterated technique for processing 

opinions of experts till a reasonable consensus is reach on the subject under investigation.  

Please re-evaluate the second round questionnaire in Table 1 (Note: it is the same 

questionnaire in the first round I sent to you four weeks ago) with the knowledge of the 

summary of results of the ten-man experts’ responses you inclusive from the first round 

presented in Table 2.  

The summary of results presented in Table 2 shows the average or mean and the standard 

deviation of scores returned by ten experts for each of the proposed maintenance selection 

strategy criteria for marine diesel engine using a three point scale in which 1 indicates not 

necessary, 2 indicates useful but not essential and 3 indicates essential. From the result 

using the Delphi elimination rule, criteria with mean value below 2.7 is dropped. Based on 

this rule the following maintenance selection criteria will be eliminated: 

 

1. Planning flexibility 

2. Compatibility 

3. Acceptance by labour 

4. Availability 

5. Manufacturer’s recommendation 

6. Image damage 

7. Assurance. 

 

 



255 

 

 

Table B2 Round 2 Delphi survey questionnaire 
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2. If you have any comments, please state below: 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

 

 

B.2: Survey Questionnaire for the development of the AHP model for maintenance 

strategy selection for marine machinery systems 

 

Dear Sir/Madam, 

 

The purpose of this questionnaire is to perform a pair comparison judgement of three different 

maintenance strategies; corrective maintenance, preventive maintenance and condition based 

maintenance with respect to evaluation criteria in order to choose the most appropriate 

strategy for maintaining sea water pump of a central cooling system of a marine diesel engine. 

In order words, your opinions is being sort in deciding on the most appropriate maintenance 

strategy for maintaining sea water pump of a central cooling system of a marine diesel engine. 

 

Kindly take some of your precious time to respond to question 1, 2 and 3 and freely express 

your opinion by marking X in the appropriate column as your response will be treated 

anonymously and only be used for statistical analysis.  

 

We will appreciate if you respond as soon as possible. 

 

Thanks for your anticipated cooperation.  

 

Question 1. Perform pairwise comparison of main criteria with respect to the main goal; 

maintenance strategy selection.  

For Table B3 carry out a pair wise comparison of main criteria for selecting maintenance 

strategy for sea water pump of a central cooling system of a marine diesel engine. If the main 

criterion on the left column of the table is more important to the one on the right, mark X to 

the left of ‘Equal’ otherwise mark to the right and if they are of equal importance mark X on 

‘Equal’. 
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Question   2. Perform pairwise comparison of sub-criteria with respect to 4 main criteria and 

bearing in mind the main objective. 

Do a pairwise comparison of sub-criteria in Tables 2 to 5 with respect to main criteria. If the 

sub-criterion on the left column of the table is more important to the one on the right, mark X 

to the left of ‘Equal’ otherwise mark to the right and if they are of equal importance mark X 

on ‘Equal’. 

 

Question 3. Perform a Pairwise comparison of maintenance strategy with respect to 16 

criteria and having in mind the main goal.  

  

For each criterion in Tables 6 to 20 compare the maintenance strategy on the left column to 

the one on the right column. If a maintenance strategy on the left column is more important to 

the one on the right, mark X to the left of ‘Equal’ otherwise mark to the right and if they are 

of equal importance in maintaining sea water pump of a central cooling system of marine 

diesel engine with respect to a criterion mark X on ‘Equal’.  

 

 

Table B3: Importance of one main criterion over another with respect to selection of 

maintenance strategy 
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Table B4: Importance of one sub-criterion over another with respect to main criterion 1 (Cost) 

 

 

 

Table B5: Importance of one sub-criterion over another with respect to main criterion 2 

(Safety) 

 

 

Table B6: Importance of one sub-criterion over another with respect to main criterion 3 

(Added value) 
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Table B7: Importance of one sub-criterion over another with respect to main criterion 4 

(Applicability) 

 

 

 

Table B8: Importance of one maintenance strategy over another with respect to criterion 

Spare parts inventories costs 
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Table B9: Importance of one maintenance strategy over another with respect to criterion 

Maintenance cost 

 

 

 

Table B10: Importance of one maintenance strategy over another with respect to criterion 

Crew training cost 

 

 

 

 



261 

 

Table B11: Importance of one maintenance strategy over another with respect to criterion 

Equipment damage cost 

 

 

 

Table B12: Importance of one maintenance strategy over another with respect to criterion 

Personnel safety 
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Table B13: Importance of one maintenance strategy over another with respect to criterion 

Equipment safety 

 

 

 

Table B14: Importance of one maintenance strategy over another with respect to criterion 

Environment safety 
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Table B15: Importance of one maintenance strategy over another with respect to criterion 

Minimisation of operation loss 

 

 

 

 

Table B16: Importance of one maintenance strategy over another with respect to criterion 

Equipment reliability 
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Table B17: Importance of one maintenance strategy over another with respect to criterion 

System failure characteristics 

 

 

 

Table B18: Importance of one maintenance strategy over another with respect to criterion 

Available monetary resource 
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Table B19: Importance of one maintenance strategy over another with respect to criterion 

Equipment risk level 

 

 

B.3 Comparison judgement from three experts 

 

B3.1 Comparison judgement for AHP models obtained from expert 1 

 

Table B20: Sub-criteria comparison matrix with respect to safety 

 

 

 

Table B21: Sub-criteria comparison matrix with respect to added value 
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Table B22: Sub-criteria comparison matrix with respect to applicability 

 

 

Table B23: maintenance alternatives comparison matrix with respect to sub-criterion 

maintenance cost 

 

 

Table B24: maintenance alternatives comparison matrix with respect to sub-criterion Crew 

training cost 

 

 

Table B25: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment damage cost 
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Table B26: maintenance alternatives comparison matrix with respect to sub-criterion 

personnel safety 

 

 

Table B27: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment safety 

 

 

Table B28: maintenance alternatives comparison matrix with respect to sub-criterion 

environment safety 

 

 

Table B29: maintenance alternatives comparison matrix with respect to sub-criterion 

minimisation of operation loss 
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Table B30: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment reliability 

 

 

 

Table B31: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment failure characteristics 

 

 

Table B32: maintenance alternatives comparison matrix with respect to sub-criterion available 

monetary resources 

 

 

Table B33: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment risk level 
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B3.2: Comparison judgement for AHP models obtained from expert 2 

 

Table B34: Criteria matrix with respect to overall goal 

 

 

Table B35: Sub-criteria comparison matrix with respect to main criterion cost 

 

 

Table B36: Sub-criteria comparison matrix with respect to safety 

 

 

Table B37: Sub-criteria comparison matrix with respect to added value 

 

 

Table B38: Sub-criteria comparison matrix with respect to applicability 
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Table B39: maintenance alternatives comparison matrix with respect to sub-criterion spare 

parts inventories cost 

 

 

Table B40: maintenance alternatives comparison matrix with respect to sub-criterion 

maintenance cost 

 

 

Table B41: maintenance alternatives comparison matrix with respect to sub-criterion Crew 

training cost 

 

 

 

Table B42: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment damage cost 
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Table B43: maintenance alternatives comparison matrix with respect to sub-criterion 

personnel safety 

 

 

Table B44: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment safety 

 

 

 

Table B45: maintenance alternatives comparison matrix with respect to sub-criterion 

environment safety 

 

 

Table B46: maintenance alternatives comparison matrix with respect to sub-criterion 

minimisation of operation loss 
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Table B47: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment reliability 

 

 

Table B48: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment failure characteristics 

 

 

 

Table B49: maintenance alternatives comparison matrix with respect to sub-criterion available 

monetary resources 

 

 

 

Table B50: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment risk level 
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B3.3: Comparison judgement for AHP models obtained from expert 3 

 

Table B51: Criteria matrix with respect to overall goal 

 

 

 

Table B52: Sub-criteria comparison matrix with respect to main criterion cost 

 

 

 

Table B53: Sub-criteria comparison matrix with respect to safety 

 

 

Table B54: Sub-criteria comparison matrix with respect to added value 
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Table B55: Sub-criteria comparison matrix with respect to applicability 

 

 

 

Table B56: maintenance alternatives comparison matrix with respect to sub-criterion spare 

parts inventories cost 

 

 

 

Table B57: maintenance alternatives comparison matrix with respect to sub-criterion 

maintenance cost 

 

 

 

Table B58: maintenance alternatives comparison matrix with respect to sub-criterion Crew 

training cost 
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Table B59: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment damage cost 

 

 

Table B60: maintenance alternatives comparison matrix with respect to sub-criterion 

personnel safety 

 

 

 

Table B61: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment safety 

 

 

 

Table B62: maintenance alternatives comparison matrix with respect to sub-criterion 

environment safety 
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Table B63: maintenance alternatives comparison matrix with respect to sub-criterion 

minimisation of operation loss 

 

 

Table B64: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment reliability 

 

 

Table B65: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment failure characteristics 

 

 

Table B66: maintenance alternatives comparison matrix with respect to sub-criterion available 

monetary resources 
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Table B67: maintenance alternatives comparison matrix with respect to sub-criterion 

equipment risk level 

 

 

 

B.4: Questionnaire produce to obtained information for PROMETHEE and TOPSIS 

 

Dear Sir, 

The purpose of this questionnaire is to determine the most appropriate maintenance strategy 

from among five maintenance alternatives for sea water pump of a central cooling system of a 

marine diesel engine. The five maintenance strategies are: Corrective maintenance (CM), 

Scheduled overhaul (SOH), Scheduled replacement (SRP), Offline-Condition based 

maintenance (OFCBM) and Online-Condition based maintenance (ONCBM). 

 

Please rank the five maintenance strategies with respect to the 4 decision criteria using a 5 

point Likert scale i.e.1 to 5. Ranking score 1 represent very bad and 5 represent very good. 

Note lower cost is preferred to higher cost and higher benefit is preferred to lower benefit. 

 

 For example considering criteria cost; if I rate Corrective maintenance (CM), Scheduled 

overhaul (SOH), Scheduled replacement (SRP), Offline-Condition based maintenance 

(OFCBM) and Online-Condition based maintenance (ONCBM) to be 5, 4, 3, 2 and 1 

respectively; it means applying corrective maintenance will result to lowest spare parts 

inventories cost while applying Online-Condition based maintenance will result to highest 

spare parts inventories cost. Also considering criteria AV2; Corrective maintenance (CM), 

Scheduled overhaul (SOH), Scheduled replacement (SRP), Offline-Condition based 

maintenance (OFCBM) and Online-Condition based maintenance (ONCBM) to be 1, 2, 3, 4 

and 5 respectively; it means condition based maintenance will result to best equipment 

reliability and corrective maintenance least equipment reliability while others are in between. 
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Table B68: PROMOTHEE and TOPSIS questionnaire 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



279 

 

Appendix C: Scheduled Replacement Interval Determination 

 

C.1: Matlab Program for calculating Reliability function, Cost function and 

Downtime function 

 

b=3.432;a=31699;ca=8000;cb=2000;Ta=3;Tb=15; % input data 

f=@(x)(x.*((b./a).*((x./a).^(b-1)).*exp((-(x./a).^b)))); % probability density function 

calculation 

 j=5000:1000:34000; % replacement alternative intervals 

tp=zeros(1,length(j));q=zeros(1,length(j));Rtp=zeros(1,length(j));Ctp=zeros(1,length(j));Dtp=

zeros(1,length(j)); 

t=zeros(1,length(j)); 

for i=1:length(j); 

    tp=j(i); 

    t(i)=tp; 

    q(i)=quadgk(f,0,t(i)); 

    Rtp(i)=exp(-(t(i)/a).^b); % Reliability per unit time calculation 

    Ctp(i)=(ca.*(1-Rtp(i))+cb.*Rtp(i))/(q(i)+Tb.*(1-Rtp(i))+(Ta+t(i)).*Rtp(i)); % cost per unit 

time calculation  

    Dtp(i)=(Tb.*(1-Rtp(i))+Ta.*Rtp(i))/(q(i)+(Tb.*(1-Rtp(i)))+(Ta+t(i)).*Rtp(i)); % Downtime 

per unit time calculation  

end 

figure;plot(t,Ctp,'bo','linewidth',1.0) 

title('cost vs time');xlabel('time(tp(s))');ylabel('Ctp') 

figure;plot(t,Dtp,'bo','linewidth',1.0) 

title('downtime vs time') 

figure;plot(t,Rtp,'bo','linewidth',1.0) 

title('reliabilty vs time') 

 

 

 

 

 

 



280 

 

C.2 Sensitivity analysis of parameters of decision criteria  

 

Table C1: TOPSIS performance index of sensitivity analysis β 
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Table C2 Ranking of sensitivity analysis of β 
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Table C3: TOPSIS Performance index of sensitivity analysis of ϕ 
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Table C4: Ranking of sensitivity analysis of ϕ 
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Table C5: TOPSIS performance index of sensitivity analysis of cost ratio 

 

 

 

 

 

 

 

 



285 

 

 

 

Table C6: Ranking of sensitivity analysis of cost ratio 
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Table C7: TOPSIS performance index of sensitivity analysis of ratio of Tb to Ta 
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Table C8: Ranking of sensitivity analysis of ratio of Tb to Ta 
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Appendix D: Inspection Interval Determination 

 

 D.1 Matlab Program for determining D(T), C(T) and R(T) under various delay time 

failure distribution  

 

% % % % % WEILBUL DISTRIBUTION ROUTINE 

d=0.2083;k=0.001277;db=168;a=5;b=10;CB=52000;CIR=10500;CI=210;ld=0.1;RBR=10;RII

=1; 

q=zeros(1,length(j));DT=zeros(1,length(j));CT=zeros(1,length(j));q1=zeros(1,length(j));q2=z

eros(1,length(j)) 

j=1:2:50; 

ms=3; %markere size 

 for i=1:length(j); 

 T=j(i); 

    t(i)=T(:,1); 

    f=@(h)((T-h).*((a./b).*((h./b).^(a-1)).*exp((-(h./b).^a)))); 

    q(i)=1./T*integral(f,0,T); 

    CTw(i)=(k*T*(CB.*q(i)+CIR.*(1-q(i)))+CI)./(T+d); 

    RTw(i)=(k*T*(RBR.*q(i)+RII.*(1-q(i))))./(T+d); 

    DTw(i)=((d+k.*T.*q(i)).*db)./(T+d); 

end 

figure;plot(t,CTw,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('cost vs time');xlabel('time(T(s))');ylabel('CTw'); 

 figure;plot(t,RTw,'bo','linewidth',1.0,'MarkerSize',ms) 

title('Reputation vs time');xlabel('time(T(s))');ylabel('RTw') 

 figure;plot(t,DTw,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('downtime vs time');xlabel('time(T(s))');ylabel('DTw') 

  

 % % % % % EXPONENTIAL DISTRIBUTION ROUTINE 

for i=1:length(j); 

 T=j(i); 

    t(i)=T(:,1); 

    f1=@(h)((T-h).*(ld*exp(-ld*h))); 

    q1(i)=1./T*integral(f1,0,T); 
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    CTe(i)=(k*T*(CB.*q1(i)+CIR.*(1-q1(i)))+CI)./(T+d); 

    RTe(i)=(k*T*(RBR.*q1(i)+RII.*(1-q1(i))))./(T+d); 

    DTe(i)=((d+k*T.*q1(i)).*db)./(T+d); 

end 

figure;plot(t,CTe,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('cost vs time');xlabel('time(T(s))');ylabel('CTe') 

 figure;plot(t,RTe,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('Reputation vs time');xlabel('time(T(s))');ylabel('RTe') 

 figure;plot(t,DTe,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('downtime vs time');xlabel('time(T(s))');ylabel('DTe') 

  

% % % % % NORMAL DISTRIBUTION ROUTINE 

for i=1:length(j); 

 T=j(i); 

    t(i)=T(:,1); 

    f2=@(h)((T-h)./T).*((2/((2*pi)^(0.5)).*exp(-(h.^2)/2))); 

    q2(i)=integral(f2,0,T); 

    CTn(i)=(k*T.*(CB.*q2(i)+CIR.*(1-q2(i)))+CI)./(T+d); 

    RTn(i)=(k*T*(RBR.*q2(i)+RII.*(1-q2(i))))./(T+d); 

    DTn(i)=((d+k*T.*q2(i))*db)/(T+d); 

end 

figure;plot(t,CTn,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('cost vs time');xlabel('time(T(s))');ylabel('CTn') 

 figure;plot(t,RTn,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('Reputation vs time');xlabel('time(T(s))');ylabel('RTn') 

 figure;plot(t,DTn,'-bo','linewidth',1.0,'MarkerSize',ms) 

title('downtime vs time');xlabel('time(T(s))');ylabel('DTn') 

 figure;plot(t,DTw,'-or',t,DTe,'-*b',t,DTn,'-dk','linewidth',1.0,'MarkerSize',ms) 

title('downtime vs 

time');xlabel('time(T(s))');ylabel('DTw,DTe,DTn,(hr)');legend('Weilbul','Exponential','Normal'

) 

 figure;plot(t,CTw,'-or',t,CTe,'-*b',t,CTn,'-dk','linewidth',1.0,'MarkerSize',ms) 

title('costvs 

time');xlabel('time(T(s))');ylabel('CTw,CTe,CTn,(hr)');legend('Weilbul','Exponential','Normal'

) 
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 figure;plot(t,RTw,'-or',t,RTe,'-*b',t,RTn,'-dk','linewidth',1.0,'MarkerSize',ms) 

title('Reputation vs 

time');xlabel('time(T(s))');ylabel('RTw,RTe,RTn,(hr)');legend('Weilbul','Exponential','Normal'

) 

  

D.2 Computer programme for the ELECTRE method 

tic 

% enter criteria vector 

C1=[1350; 1680; 1560; 1470]; %; 256];  

C2=[1850; 1650; 1950; 1850]; %; 610]; 

C3=[7.5; 8.5; 6.5; 9.5];%; 60]; 

C4=[2.58; 3.75; 4.86; 3.16];%; 86]; 

C5=[93.5; 95.3; 88.6; 98.4];% 89]; 

C6=[0.045; 0.068; 0.095; 0.072];%; 0.01]; 

% C7=[2.75; 2.63; 2.5; 4; 2.59]; 

  

% Enter Criteria weights 

w=[0.2336 0.1652 0.3355 0.1021 0.0424 0.1212]; 

Wcheck=sum(w(:));   % Wcheck=1 

  

%length of a CRITERIA matrix is the same as the number of alternatives 

% build the decision matrix D 

  

% CONCATENATE CRITERIA TO FORM DECISION MATRIX D 

D=[C1 C2 C3 C4 C5 C6];% C7] % Size of D is no. of alternative by no. of criteria 

L=size(D); 

LA=size(D,1); %NUMBER OF ALTERNATIVE 

LC=size(D,2); %NUMBER OF CRITERIA 

  

% normalize the Decision Matrix D  

  

j=1:LC; 

SumD=(sum((D(:,j).^2))).^0.5; 

% SumD=sum(D(:,j));  % Alternative Normalizing technique 
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 r=zeros(); V=zeros();  %pre-allocation 

for i=1:LA 

    for j=1:LC; 

        r(i,j)=D(i,j)/SumD(j); % Normalized MATRIX 

        V(i,j)=r(i,j).*w(j); % Weight Normalized MATRIX 

    end 

end 

  

%Concordance calculation 

wc=w; 

for i=1:LA 

     for i1=LA:-1:1 

          E1=V(i,:); 

        E2=V(i1,:); 

        E12=[];    

        for j=1:LC; 

            a=E1(1,j); 

             b=E2(1,j); 

         if a>=b; 

            E12_1=j; 

            else 

            E12_1=0; 

        end 

            E12=[E12 E12_1]; 

            for k=1:length(E12) 

        if E12(k)==0; 

            wc(k)=0; 

        else 

            wc(k)=w(k); 

        end 

         

        end 

        EC=sum(wc(:)); 

       % RETURN ZERO FOR ALL DIAGONAL MATRIX ELEMENT,i.e COMPARING 

SAME 
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       % ALTERNATIVES 

        if i==i1 

          ECM(i,i1)=0; 

        else        

        ECM(i,i1)=EC; 

        end 

        

        end 

  

    end 

end 

  

%DISCONCORDANCE calculation 

% wc=w; 

for i=1:LA 

     for i1=LA:-1:1 

          E1=V(i,:); 

            E2=V(i1,:); 

            E12=[];    

        for j=1:LC; 

            a=E1(1,j); 

             b=E2(1,j); 

             cc=b-a; 

             c(1,j)=cc; 

             cmax=max(c(:)); 

             abscmax=max(abs(c(:))); 

             dd=cmax./abscmax; 

        end 

        d(i,i1)=dd; 

       % RETURN ZERO FOR ALL DIAGONAL MATRIX ELEMENT, i.e. COMPARING 

SAME 

       % ALTERNATIVES  

        if i==i1 

          d(i,i1)=0; 

        else        
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        end       

      end 

end 

  

% COMPUTATION OF NET SUPERIOR AND INFERIOR VALUES 

ca=zeros(); da=zeros(); 

for i=1:length(ECM) 

    ca(i)=sum(ECM(i,:))-sum(ECM(:,i)); %  

    da(i)=sum(d(i,:))-sum(d(:,i));  % 

end 

    

toc 

 

D.3 MATLAB computer program for MAUT analysis 

tic 

% enter criteria vector 

C1=[210; 212; 212; 206.5; 206.5; 187.5; 210; 593; 212.5]; %; 256];  

C2=[330; 632.5; 655; 1575; 360; 1825; 1930; 4405; 1655]; %; 610]; 

C3=[54.5; 46; 87.5; 38; 111.5; 80; 21; 14.05; 120];%; 60]; 

C4=[0.00111; 0.00117; 0.000515; 0.00026; 0.00089; 0.00071; 0.00002055; 0.00135; 

0.00113];%; 86]; 

C5=[150; 355; 305; 483; 190; 532.5; 771; 1250; 448.5];% 89]; 

C6=[0.673; 0.7045; 0.864; 1.175; 0.8665; 6.97; 7.99; 79.6; 1.73];%; 0.01]; 

% C7=[2.75; 2.63; 2.5; 4; 2.59]; 

  

% Enter Criteria weights 

w=[0.291 0.079 0.206 0.188 0.098 0.139]; 

Wcheck=sum(w(:));   % Wcheck=1 

  

%length of a CRITERIA matrix is the same as the number of alternatives 

% build the decision matrix D 

  

% CONCATENATE CRITERIA TO FORM DECISION MATRIX D 

D=[C1 C2 C3 C4 C5 C6];% C7] % Size of D is no. of alternative by no. of criteria 
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 L=size(D); 

LA=size(D,1); %NUMBER OF ALTERNATIVE 

LC=size(D,2); %NUMBER OF CRITERIA 

  

%Input alternative inspection 

Tmin=50; 

Tmax= 300; 

% Tinterval=0.55; 

% T=Tmin:Tintval:Tmax; 

T=linspace(Tmin,Tmax,length(C1)); 

 

R=1; % Factor that determines the decision maker RISK Perception 

 % Standardize the D matrix 

for j=1:LC% 

    for i=1:LA 

U(i,j)=((D(i,j)-min(D(:,j)))/range(D(:,j)))^R; 

u(i,j)=U(i,j)*w(j); %weight factor multiplied standardized matrix U. 

A(i)=sum(u(i,:));  %Alternatives evaluation 

    end 

end 

 figure; plot(T,A,'-*b') ;title('plot of  ... vs ...'),xlabel('T ,,,,'),ylabel('A''''')' 

legend('A') 
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D.4: Sensitivity Analysis of decision criteria weight on MAUT and ELECTRE methods 

 

Table D1: sensitivity analysis of R on MAUT method 
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Table: D2 Sensitivity analysis of decision weights on MAUT method 
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Table D3: Sensitivity analysis of decision weights on MAUT method 
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Table D4: Sensitivity analysis of criteria weights on ELECTRE method 
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Table D5: Sensitivity analysis of criteria weights on ELECTRE method 
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Table D6: Sensitivity analysis of criteria weights on ELECTRE method 
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Table D7: Sensitivity analysis of criteria weights on ELECTRE method 

 

 

 

 

 

 

 

 


