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Abstract 

Amazonian soils have been estimated to contain a globally substantial 66.9 Pg C within 

1 m depth. Current uncertainty in model projections for future climate scenarios 

emphasises the need to better understand soil and vegetation carbon stocks which may 

become significant sources of CO2 and CH4. Contemporary data of bulk and molecular 

carbon stocks for full soil profiles and corresponding above ground inputs is needed to 

understand how these stocks may alter with climate change. The savannah-rainforest 

boundary is particularly sensitive to alteration in response to these local climatic 

changes and is thus a focal point of international research.  

The study site in Central Guyana, which lies within the north eastern Amazon, 

encompasses pristine and relatively unexplored savannah-rainforest boundary, 

providing an advantageous location for assessing both soil and vegetation carbon. Soil 

profiles classified as gleysols (FAO) under rainforest have the greatest soil organic 

carbon (SOC) stocks of those studied, and are 43% greater than previously published 

data for tropical regions (up to 1 m depth). Further, estimations of the full soil profile 

SOC stocks show a 94% increase compared to previous 1 m depth data. Although not 

inclusive of the whole boundary region, these SOC stocks emphasise the significance of 

local responses to more extreme weather conditions induced by climate change.  

Molecular surface SOC characteristics are site specific: likely influenced by local water 

table depth, mineralogy, vegetation inputs and microbial activity. However, measured 

environmental variables (pH and water content) show no relationship to molecular 

characteristics. Gleysols have the most degraded lignin and carbohydrates, indicating 

high inputs and a faster turnover than the bulk SOC. Drier savannah woodland 

plinthosols have the greatest amounts of lignin, tannin and carbohydrates, reflecting 

high inputs. Despite this, this soil has significantly lower SOC stocks than gleysols. If 

local weather patterns alter towards postulated longer and more intense dry seasons, 

rainforest die-back may occur. With savannah encroachment, the release of SOC stocks 

from the swamp forest and forest island gleysols is likely to occur. Phenol-rich soil 

organic matter may preside in developing areas of savannah woodland, but nevertheless 

a net decrease in SOC stocks is likely to result. The data collected here can be used to 

inform management policies and practices to help conserve and monitor the significant 

stocks of SOC in the swamp forests and forest island on these boundaries. 



ii 

 

Dedication 

I would like to dedicate this thesis to my late brother, Stephen Black. An incredibly 

charismatic character who achieved great success in too short a life. Thoughts of you 

have provided me with constant motivation and drive throughout, and have given me a 

perspective on life to enjoy every moment, believe that the impossible is possible and 

always strive to create positive change. Forever in my heart and thoughts. 

I would also like to dedicate this thesis to the communities who protect the land from 

which my project has developed. To the people of the Northern Rupununi: during my 

time in your region, you showed such passion and commitment to the beautiful 

savannah and rainforest in which you live. Long may this continue and be respected. 

  



iii 

 

Acknowledgements 

I would firstly like to acknowledge my primary supervisor, Dr. Geoff Abbott, with 

thanks for providing this opportunity as well as giving support and encouragement 

throughout the PhD. I would also like to thank my second supervisor, Prof. Tom 

Wagner, particularly in regards to aiding in the organisation of my field work, and for 

support further into my PhD. I am greatly indebted to NERC for funding the duration of 

my PhD studentship and to the Royal Society Wolfson Research Merit Award held by 

Tom Wagner. 

With regards to my field work in Guyana, I would further like to thank the Iwokrama 

research team, particularly Dr. Isabella Bovolo and Dr. Geoff Parkin, and the village 

communities of the Northern Rupununi for their great assistance in field work. I would 

also like to thank my field assistant Martin Carter who became a good friend during the 

course of my field work, we enjoyed many days of hard work and laughter. Also thanks 

to my driver Dane Clementson, who gave an incredible amount of support, connections 

to the local communities (vital in sourcing a freezer and generator!) and an array of 

‘80’s and ‘90’s music to travel with! I would further like to thank the village of 

Rupertee and Surama for providing the use of a freezer and generator in which to store 

my samples. 

Many great thanks to all the lab staff in the Drummond Building: Berni Bowler, Tracy 

Thompson, Phil Green and Paul Donohoe for their wealth of support and technical 

advice both in and out of the lab. Thanks to Maggie White for help with analysis and 

interpretation of a sub-set of samples. Thanks to Mohammed Alalaween and Ryan 

Pereira for guiding me through the use of equipment. 

I have great gratitude for my undergraduate supervisor Dr. Liz Stockdale, for whose 

passion and dedication created my intrigue for the dynamic and exciting world of soil 

science, and who encouraged me to undertake this PhD.  

Lastly, but by no means least, my wonderful friends (especially Cat, Liz, Shaun and 

Mo) and family who have supported me all the way. You have provided clarity in times 

of uncertainty, and a confidence boost in times of self-doubt. I am incredibly thankful to 

you all. 



  

 

Table of Contents 

Declaration ......................................................................................................   

Abstract .......................................................................................................... i 

Dedication ..................................................................................................... ii 

Acknowledgements ...................................................................................... iii 

Chapter 1. Introduction and literature Review ...................................... 1 

1.1 Introduction ........................................................................................................ 2 

1.2 Literature Review ............................................................................................... 6 

1.2.1 Climate change in the Amazon ................................................................... 6 

1.2.2 Land use and climate change within Guyana .............................................. 7 

1.2.3 Soil Organic Carbon (SOC) ........................................................................ 8 

1.2.4 Carbohydrates ........................................................................................... 10 

1.2.5 Lignin ........................................................................................................ 11 

1.2.6 Lignin Characterisation ............................................................................. 16 

1.2.7 THM in the presence of TMAH ................................................................ 18 

1.2.8 13C-labelled TMAH ................................................................................... 20 

1.2.9 Tannin ....................................................................................................... 22 

1.2.10 SOM analysis in the tropics ...................................................................... 24 

1.3 Aims and Objectives of this Thesis .................................................................. 24 

Chapter 2. Methodology ...................................................................... 27 

2.1 Overview of sampling techniques .................................................................... 28 



i 

 

2.2 Bulk density (Db) .............................................................................................. 29 

2.3 Volumetric water content (θ) ........................................................................... 29 

2.4 Standard Laboratory Procedures ...................................................................... 30 

2.5 Sample preparation ........................................................................................... 30 

2.6 Total organic carbon (TOC) and carbon storage (OC) ..................................... 31 

2.7 pH ..................................................................................................................... 32 

2.8 X-Ray Diffraction (XRD) ................................................................................ 32 

2.9 THM in the presence of unlabelled TMAH and 13C-labelled TMAH ............. 33 

2.10 Aromatic hydroxyl contents ......................................................................... 34 

2.11 Temperature calibration of pyroprobe .......................................................... 35 

2.12 Mass yields and lignin parameters ................................................................ 36 

2.13 THM Reproducibility ................................................................................... 37 

2.14 Statistical analysis ......................................................................................... 37 

Chapter 3. Field sites and soil classifications ...................................... 38 

3.1 Introduction ...................................................................................................... 39 

3.2 Existing knowledge of the study area............................................................... 40 

3.2.1 Location .................................................................................................... 40 

3.2.2 Climate ...................................................................................................... 41 

3.2.3 Geology ..................................................................................................... 42 

3.2.4 Soils ........................................................................................................... 45 

3.2.5 Vegetation ................................................................................................. 46 



ii 

 

3.3 Reconnaissance survey ..................................................................................... 48 

3.3.1 Local knowledge ....................................................................................... 48 

3.3.2 Ground truthing ......................................................................................... 48 

3.4 Sampling methodology ..................................................................................... 51 

3.4.1 Wowetta transect sample sites .................................................................. 53 

3.4.2 Surama sampling sites ............................................................................... 55 

3.5 Soil classification results .................................................................................. 57 

3.5.1 Haplic plinthosols ..................................................................................... 57 

3.5.2 Albic plinthosols ....................................................................................... 57 

3.5.3 Acric plinthosol ......................................................................................... 59 

3.5.4 Pisoplinthic plinthosols ............................................................................. 59 

3.5.5 Humic gleysols .......................................................................................... 59 

3.5.6 Plinthic gleysols ........................................................................................ 59 

3.6 Soil profile schematics ..................................................................................... 60 

3.7 Discussion ........................................................................................................ 63 

3.8 Conclusions ...................................................................................................... 66 

Chapter 4. Soil carbon stocks of sub-environments on the savannah-

rainforest boundary of Wowetta and Surama in central Guyana ................ 67 

4.1 Introduction ...................................................................................................... 68 

4.2 Methodology, sites and samples ....................................................................... 69 

4.3 Results .............................................................................................................. 70 

4.3.1 Vegetation contribution to TOC................................................................ 70 



iii 

 

4.3.2 Soil profile TOC........................................................................................ 72 

4.3.3 Soil profile SOC stock .............................................................................. 77 

4.3.4 Relative proportion of SOC stock of each sub-environment in Wowetta 

and Surama .............................................................................................................. 79 

4.3.5 Volumetric water contents of the soil profiles .......................................... 81 

4.4 Discussion ........................................................................................................ 84 

4.4.1 Soil profile TOC........................................................................................ 84 

4.4.2 Soil profile SOC stock .............................................................................. 86 

4.4.3 SOC comparisons by ecosystem type ....................................................... 88 

4.4.4 SOC based on soil type ............................................................................. 93 

4.5 Conclusions ...................................................................................................... 95 

Chapter 5. Surface soil and vegetation input organic molecular chemistry 

of the Wowetta transect ............................................................................... 97 

5.1 Introduction ...................................................................................................... 98 

5.2 Methodology, samples and sites ....................................................................... 99 

5.3 Results ............................................................................................................ 100 

5.3.1 Thermochemolysis products ................................................................... 100 

5.3.2 Characterisation of savannah-rainforest transect inputs and surface soils

 103 

5.3.3 Comparison of THM product proportions .............................................. 108 

5.3.4 Carbohydrates ......................................................................................... 110 

5.3.5 Lignin ...................................................................................................... 122 



iv 

 

5.3.6 Gallic acid (tannin) and demethylated lignin sources ............................. 125 

5.3.7 Source Indicators - C/G and S/G ............................................................. 128 

5.3.8 Oxidation Extents - [Ad/Al]G and [Ad/Al]S ............................................ 131 

5.3.9 Lambda (Λ) ............................................................................................. 133 

5.3.10 Tannin input ............................................................................................ 135 

5.4 Discussion ...................................................................................................... 137 

5.4.1 THM product proportions and degradation of SOM components in soils

 137 

5.4.2 Source and occurrence of carbohydrates................................................. 140 

5.4.3 Source and occurrence of tannins ........................................................... 143 

5.4.4 Organic molecular chemistry compared to SOC stocks ......................... 144 

5.4.5 Evidence of fire in SOM characteristics ................................................. 145 

5.5 Conclusions .................................................................................................... 146 

Chapter 6. Conclusions and Future work .......................................... 148 

6.1 Conclusions .................................................................................................... 149 

6.1.1 Savannah-rainforest boundary sub-environments and soil types ............ 149 

6.1.2 SOC stocks .............................................................................................. 150 

6.1.3 Molecular SOM characteristics ............................................................... 151 

6.1.4 Implications for future climate and local weather scenarios ................... 152 

6.2 Future recommendations and work ................................................................ 154 

References ................................................................................................. 157 

Glossary ..................................................................................................... 243 



v 

 

 

List of Figures 

Figure 1.1 A schematic representation of lignin (reproduction of Dorrestijn, 2000; L = 

lignin biomacromolecule). The dominant β-O-4 linkage in the lignin macromolecule is 

highlighted in the open circle. ......................................................................................... 12 

Figure 1.2 A schematic of the three main lignin precursor alcohols: p-coumaryl, 

coniferyl and sinapyl (adapted from Dorrestijn, 2000). .................................................. 13 

Figure 1.3 The β-O-4 bond most common in monolignols, (reproduction from 

Dorrestijn et al., 2000). ................................................................................................... 14 

Figure 1.4 The main fungal degradation alterations of guaiacyl lignin (adapted from 

Filley et al., 2000; L = lignin biomacromolecule). ......................................................... 16 

Figure 1.5 Dominant permethylated aromatic compounds released by TMAH 

thermochemolysis (adapted from Filley et al., 2006). .................................................... 19 

Figure 1.6 A reaction schematic reproduced from Swain, 2013 shows how 13C-labelled 

TMAH distinguishes between the lignin syringic acid and tannin gallic acid during 

methylation. Asterisks highlight where 13C-labelled TMAH has added methyl groups. 21 

Figure 1.7 The structures of a) condensed and b) hydrolysable tannins (CT and HT). R = 

H: epicatechin, R=OH: epigallocatechin (reproduced from Behrens et al., 2003; Nierop 

et al., 2005). Where PC = procyanidins and PD = prodelphinidins. ............................... 23 

Figure 3.1 Location of study sites Wowetta and Surama in Central Guyana. White areas 

indicate the Northern Rupununi savannah and green areas indicate rainforest. Inset: the 

location of the study areas within Guyana (Google Maps 2014). ................................... 41 

Figure 3.2 Location of the Takutu Basin in central Guyana. .......................................... 43 

Figure 3.3 Basic geological map with A-B cross section of the Takutu Basin relating to 

Figure 3.4. ....................................................................................................................... 44 

Figure 3.4 Geological cross section of the Takutu Basin, showing several layers of 

geology (adapted from {Crawford, 1985 #507@@author-year}. .................................. 45 



vi 

 

Figure 3.5 Reconnaissance areas within black boxes at Wowetta and Surama. White 

areas indicate savannah and green areas indicate rainforest. .......................................... 50 

Figure 3.6 Wowetta transect GPS sampling points in closed red circles with specific site 

abbreviations labelled adjacently. GPS points have an error of up to 10 m. Green 

indicates rainforest vegetation, white indicates savannah............................................... 54 

Figure 3.7 Surama transect GPS sampling points in closed red circles with specific site 

abbreviations labelled adjacently. GPS points have an error of up to 10 m. Green 

indicates rainforest vegetation, white indicates savannah............................................... 56 

Figure 3.8 Schematic of the sequence of sub-environments sampled along the 5 km 

transect in Wowetta. ........................................................................................................ 61 

Figure 3.9 Schematic of soil profiles at each sub-environment sampled in Surama. ..... 62 

Figure 4.1 Average wood litter, fresh shoot / leaf litter and soil profile TOC % across 

the sampling transect in Wowetta, of 3 replicates with standard error (S.E.) bars shown. 

SG: savannah grassland; SW: savannah woodland; FI: forest island; ST: savannah tree; 

SS: savannah swamp; T: transition; SF: swamp forest; MF: mixed tree spp. forest. ..... 71 

Figure 4.2 Percentage of each soil horizon SOC relative to the total soil profile SOC in 

(a) Wowetta and (b) Surama. SG: savannah grassland; SW: savannah woodland; FI: 

forest island; ST: savannah tree; SS: savannah swamp; T: transition; SF: swamp forest; 

MF: mixed tree spp. forest; KPF: kokret palm forest; MRF: mora forest. ..................... 78 

Figure 4.3 The relative proportion of each soil profile SOC to the total SOC in Wowetta 

sites. ................................................................................................................................. 80 

Figure 4.4 The relative proportion of each soil profile SOC to the total SOC in Surama 

sites. ................................................................................................................................. 80 

Figure 4.5 The average soil profile volumetric water content for sub-environments in 

Wowetta, bars show S.E. multiplied by two. .................................................................. 82 

Figure 4.6 The average soil profile volumetric water content for sub-environments in 

Surama, bars show S.E. multiplied by two. .................................................................... 82 



vii 

 

Figure 4.7 Correlation between SOC and volumetric water content. R2 value shown. .. 83 

Figure 4.8 Depth profiles of OC by meter for Plinthosols in the Wowetta study area. 

Standard error (S.E.) bars of triplicates shown. .............................................................. 90 

Figure 4.9 Depth profiles of OC by meter in Surama Plinthosols. S.E. bars of triplicates 

shown. ............................................................................................................................. 91 

Figure 4.10 Depth profiles of OC by meter for Gleysols in both Wowetta and Surama 

study areas. S.E. bars of triplicates shown. ..................................................................... 92 

Figure 5.1 Partial chromatogram for the total ion current (TIC) of the three main groups 

of thermochemolysis products of surface soil. Open circles: methylated lignin phenols; 

closed circles: oxygenated aromatics 1,2,4-TMB and 1,3,5-TMB; open squares: 

methylated carbohydrates and cellulose THM products; IS: internal standard. ........... 100 

Figure 5.2 Simplified schematic of the total ion current (TIC) of thermochemolysis 

products from wood litter for the sub-environments SW – MF. ................................... 105 

Figure 5.3 Simplified schematic of the total ion current (TIC) of thermochemolysis 

products from fresh shoot / leaf litter at each sub-environment across the transect (SG – 

MF)................................................................................................................................ 106 

Figure 5.4 Simplified schematic of the total ion current (TIC) of thermochemolysis 

procuts from surface soils at each sub-environment across the transect (SG-MF). ...... 107 

Figure 5.5 Relative proportions of lignin, non-lignin and carbohydrate yields in (a) 

wood litter, (b) fresh shoot / leaf litter and (c) surface soil in sub-environments across 

the transect. ................................................................................................................... 109 

Figure 5.6 Proposed TMAH thermochemolysis formation of methylated carbohydrates 

from hexoses, adapted from Fabbri and Helleur, 1999. ................................................ 110 

Figure 5.7 Mass spectra of methylated carbohydrates (MCs) 1-4 via (a) unlabelled 

TMAH and (b) 13C-labelled TMAH. Red numbers indicate the number of extra 

hydroxyl groups methylated with 13C-labelled TMAH as compared to unlabelled 

TMAH. .......................................................................................................................... 112 



viii 

 

Figure 5.8 Partial chromatogram of D-(+)-glucosamine hydrochloride standard. IS: 

internal standard. ........................................................................................................... 113 

Figure 5.9 Methylated carbohydrates 1-4 in (a) wood litter, (b) fresh shoots / leaf litter 

and (c) surface soils across the transect. Standard error (S.E.) bars of 3 replicates shown.

 ....................................................................................................................................... 115 

Figure 5.10 TIC of the authentic cellulose standard analysed in Abbott et al., 2013. .. 116 

Figure 5.11 Mass spectra of the methylated carbohydrates using (a) unlabelled TMAH 

and (b) 13C-labelled TMAH, which show an addition of two mass units (in red next to 

the main ion), as compared to those methylated with unlabelled TMAH. ................... 117 

Figure 5.12  CTP1, 2 and 4 in (a) wood litter, (b) fresh shoots / leaf litter and (c) surface 

soils across the transect. Standard error (S.E.) bars of 3 replicates shown. .................. 119 

Figure 5.13 Comparison of MC and CTP yields in (a) wood litter, (b) fresh shoots / leaf 

litter and (c) surface soils across the transect. ............................................................... 121 

Figure 5.14 Diagram to show how multiple sources can result in the same methylated 

product (S6) upon TMAH thermochemolysis, adapted from Filley et al., 2006. ......... 125 

Figure 5.15 Intact lignin, demethylated lignin and gallic acid amounts across the 

sampling transect (SG-MF) in  (a) wood litter, (b) fresh shoot / leaf litter and (c) surface 

soils. S.E. bars of 3 replicates shown. ........................................................................... 127 

Figure 5.16 Lignin parameters (a) C/G and (b) S/G of surface soils and vegetation 

inputs across the transect. S.E. bars of 3 replicates shown. .......................................... 130 

Figure 5.17  Oxidation extents (a) [Ad/AlG and (b) [Ad/Al]S of surface soils and 

vegetation inputs in sub-environments across the transect. S.E. bars of 3 replicates 

shown. ........................................................................................................................... 132 

Figure 5.18 Lambda values (mg / 100 mg OC) for surface soils, and summed inputs = 

fresh shoot / leaf litter and wood litter across the transect. S.E. bars of 3 replicates 

shown. ........................................................................................................................... 134 

file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751226
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751227
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751227
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751227
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751229
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751229


ix 

 

Figure 5.19 Comparison of the amounts of 1,3,5-TMB, 1,2,4-TMB and gallic acid 

inputs in (a) wood litter, (b) fresh shoots / leaf litter and (c) surface soils. S.E. bars of 3 

replicates shown. ........................................................................................................... 136 

 

Figure A.1 Calibration curve for pyroprobe unit .......................................................... 183 

Figure A.2 Soil residue yield comparison of the three methods ASE 100 °C, ASE 80 °C 

and Soxhlet, with SE bars shown. ................................................................................. 184 

Figure A.3 Reproducibility of mean amounts of lignin phenols in ASE 100 °C, 80 °C 

and Soxhlet (a) guaiacyl units (b) syringyl units (c) cinnamyl units (d) sum of latter 

three lignin units............................................................................................................ 186 

Figure A.4 TICs of ASE 100 °C, ASE 80 °C and Soxhlet labelled with main lignin 

compounds and internal standard (IS). ......................................................................... 189 

Figure C.1 The first sample site on the Wowetta transect: savannah grassland (SG1) 

with scattered trees, savannah woodland and rainforest backed by the Iwokrama 

Mountains to the north east. The transect extends south east from this site. GPS 

coordinate: N 4.020778 W 59.047431. Altitude: 91 m a.s.l ......................................... 194 

Figure C.2 The second sample site: savannah woodland (SW1) facing north east. GPS 

coordinate: N 4.019415 W 59.046491. Altitude: 91 m a.s.l. ........................................ 195 

Figure C.3 Fruiting flowers on the branches of savannah woodland trees which show 

these species are angiosperms. This is important to note for molecular lignin 

investigations (see Chapter 5). ...................................................................................... 196 

Figure C.4 Forest island (FI) between areas of savannah (sample sites SG1 and SW1 to 

the north west, sample sites ST1 and SS to the south east), before the savannah-

rainforest boundary proper. GPS coordinate:  N 4.017538 W 59.045352. Altitude: 99 m 

a.s.l. ............................................................................................................................... 197 

Figure C.5 Savannah tree (ST1) with forest island (FI) behind to the north west. GPS 

coordinates: N 4.015541, W 59.043929. 97 m a.s.l. ..................................................... 198 

file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751238
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751238
file://///TOWER5/home29/a8066596/Guyana/Written%20work/Final%20versions/Thesis%20Final%20post-viva%20corrections%20-%20J.%20BLACK_4.docx%23_Toc432751238


x 

 

Figure C.6 Savannah swamp (SS) with scattered palm trees. Rainforest and mountains 

in the background to the north east. GPS coordinates N 4.013315  W 59.042. 90 m a.s.l.

 ....................................................................................................................................... 199 

Figure C.7 Sixth sample site on the transect: dense muri scrub vegetation of the 

transition zone (T1) between savannah to the north west and rainforest to the south east. 

GPS coordinates: N 4.005092 W -59.036534. 90 m a.s.l. ............................................ 200 

Figure C.8 Facing north east at the seventh sample site: Swamp forest (SF1). Located in 

a depression before a pisoplinthic mound to the south east (PF - next sample site), with 

a closed high canopy with abundant shrub layer vegetation. GPS coordinates: N 

4.00198 W 59.029819.  107 m a.s.l. ............................................................................. 201 

Figure C.9 Facing north east on the eighth sample site: mixed tree spp. forest on a 

pisoplinthic mound (hardened laterite nodules), (PF). This forest has a closed high 

canopy with abundant shrub vegetation. GPS coordinates: N 4.001714 W 59.027946. 

154 m a.s.l. .................................................................................................................... 202 

Figure C.10 Facing north east, the ninth and final sample site on the Wowetta transect: 

mixed tree spp. forest (MF1). Located on even ground, below and to the south east of 

the pisoplinthic forest (PF) sample site. Again, it has a closed high canopy and abundant 

shrub layer. GPS coordinates: N 4.000836 W 59.024487. 119 m a.s.l. ........................ 203 

Figure C.11 Facing north west, savannah grassland (SG2) with rainforest behind. GPS 

coordinates: N 4.153051 W 59.060868. 78m a.s.l. ....................................................... 204 

Figure C.12 Facing north west, savannah grassland on a pisoplinthic hill (PSG). GPS 

coordinates: N 4.155779 W59.06157.  79 m a.s.l. ........................................................ 205 

Figure C.13 Facing north towards the rainforest, savannah woodland (SW2). GPS 

coordinates: N 4.161674 W 59.061503.  79 m a.s.l ...................................................... 206 

Figure C.14 Facing west towards the rainforest, savannah tree (ST2), noticeably smaller 

and likely younger than that sampled at Wowetta. GPS coordinates: N 4.150107 W 

59.069757.  84  m a.s.l. ................................................................................................. 207 



xi 

 

Figure C.15 Facing north, with rainforest behind transition zone (T2) between savannah 

and rainforest. Vegetation at this sample site is very different to muri scrub at Wowetta 

due to a greater occurrence of grass, smaller shrubs / young trees and open canopy. GPS 

coordinates: N 4.16419 W 59.057214. 85 m a.s.l. ........................................................ 208 

Figure C.16 Facing north into the rainforest, kokret palm forest (KPF). Primarily 

composed of kokret palm, with some smaller shrubs beneath. GPS coordinates: N 

4.162185 W 59.080134. 82 m a.sl. ............................................................................... 209 

Figure C.17 Facing north, swamp forest (SF2), noticeably drier ground conditions than 

at Wowetta. High closed canopy with less dense shrub layer than   SF1 at Wowetta. 

GPS coordinates: N 4.153726, W 59.07649. 77 m a.s.l. ............................................... 210 

Figure C.18 Facing north, mora species dominated forest (MRF) which borders on the 

Iwokrama rainforest reserve. Closed high to emergent level canopy with dense shrub 

layer vegetation. GPS coordinates N 4.181601 W 59.061086. 43 m a.s.l. ................... 211 

Figure C.19 Mixed tree spp. forest (MF2). Closed high level canopy with dense shrub 

layer vegetation. GPS coordinates N 4.171157 W 59.082382 110 m a.s.l. .................. 212 

Figure F.1 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from wood litter for the sub-environments SW – MF. ................................... 233 

Figure F.2 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from fresh shoot / leaf litter at each sub-environment across the transect (SG – 

MF)................................................................................................................................ 234 

Figure F.3 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from surface soils at each sub-environment across the transect (SG-MF). .... 235 

 

  



xii 

 

List of Tables 

Table 2.1 Salts used for calibration and expected melting points ................................... 35 

Table 3.1 Defining soil properties for classification at each sub-environment. ND = not 

determined. ...................................................................................................................... 58 

Table 4.1 Full soil profile TOC%, bulk density and OC storage for sub-environments in 

Wowetta, parentheses indicate standard error of triplicates. ........................................... 73 

Table 4.2 Full soil profile TOC%, bulk density and OC storage for sub-environments in 

Surama, parentheses indicate standard error of triplicates. ............................................. 75 

Table 5.1 Main three product groups and their individual compound names from the 

THM of surface soils, fresh shoot / leaf litter and wood litter (continued overleaf) .... 101 

Table 5.2 Lignin parameters in vegetation inputs and surface soils (Λ in mg / 100 mg 

OC). The corrected intact lignin values are displayed with a *, and the uncorrected 

values without. N/A = no wood litter was present at the savannah grassland sampling 

site, (continued overleaf) ............................................................................................... 123 

 

Table A.1 Time and expense comparisons between Soxhlet and ASE......................... 180 

Table A.2 Conditions used to compare Soxhlet and ASE extraction techniques. ........ 182 

Table A.3 Descriptive statistics of soil residue yield from the three extraction methods 

ASE 100 °C, ASE 80 °C and Soxhlet. ........................................................................... 185 

Table A.4 Phenolics recovered in samples in each extraction method and totals (mg/ml).

 ....................................................................................................................................... 187 

Table D.1 Field and average laboratory measurements for soil profiles at Wowetta. n.d 

= not detected ................................................................................................................ 213 

Table D.2 Field and average laboratory measurements at Surama. n.d = not detected 216 



xiii 

 

Table G.1 Averages values (of triplicates) in mg / 100 mg OC for THM products of 

wood litter, fresh shoot / leaf litter and surface soil samples ........................................ 236 

 

List of Equations 

Equation 2.1Bulk density ................................................................................................ 29 

Equation 2.2 Gravimetric water content ......................................................................... 29 

Equation 2.3 Volumetric water content .......................................................................... 30 

Equation 2.4 Organic carbon percentage on oven dry basis ........................................... 31 

Equation 2.5 Organic carbon (OC) ................................................................................. 31 

 

Equation B.1 % Hydroxyl (G6, G5 and G18) ............................................................... 191 

Equation B.2 % Hydroxyl (G4) .................................................................................... 191 

Equation B.3 % Hydroxyl (S6 and S5) ......................................................................... 192 

Equation B.4 % Hydroxyl (S4) ..................................................................................... 192 

 

 

 

  





1 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1. Introduction and literature Review  
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1.1 Introduction 

It has been recognised since the 1960’s that anthropogenically-induced climate change 

has been occurring as a result of greenhouse gas (GHG) emissions, originating largely 

in the industrial era (Bindoff and Sebbari, 2013). At the global scale this climate change 

has been recognised as a warming of the atmosphere with numerous local expressions 

and amplifications. Recently, the IPCC published its Fifth Assessment Report on 

Climate Change, detailing that the average warming of land and ocean surfaces from 

1880 to 2012 has been 0.85 °C (IPCC, 2014). This increase in temperature is extremely 

likely (95%) to be due to anthropogenic GHG emissions originating from fossil fuels 

and land use change, which have increased due to economic and population growth 

since the pre-industrial era (IPCC, 2014). As a consequence of global warming, extreme 

weather events appear to have become more frequent since 1950 (IPCC, 2014).  Future 

predictions also suggest further warming of up to 2 °C by 2100, along with more 

frequent hot temperature extremes and changes in precipitation, depending upon the 

region (IPCC, 2013). Tropical regions are likely to see intensified weather patterns, 

however, uncertainty remains with regards to the spread and scale of these events due to 

high natural variation (IPCC, 2014). 

Guyana is a part of the wider Amazon region, located in the north east of South 

America.  Guyana’s seasons are influenced by the Inter-Tropical Convergence Zone 

(ITCZ) which moves over the country twice a year. When in its northern position during 

May – July, the subtropical area of high pressure weakens and heavy rainfall ensues 

creating the wet season. As it moves into a southern position over the Brazilian Amazon 

during November – January, the high pressure strengthens bringing the dry season. 

Within the Amazon region, annual temperature is predicted to rise up to 1.5 °C in the 

next 21 years, whilst annual precipitation may decrease by 10% in the same time period 

(IPCC, 2013). However precipitation changes are uncertain and may also show 

increases by 10% annually (IPCC, 2013). Such climatic change may cause disturbance 

to the length and intensity of local wet and dry seasons within Guyana. This tropical 

country may therefore experience effects from these local alterations similar to those 

seen during El Niño Southern Oscillation (ENSO) events: drought stress of trees, forest 

fires and resulting deforestation (Laurance and Williamson, 2001; Doughty et al., 2015). 

However, uncertainty in alterations to weather patterns still remains (IPCC, 2014).  
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Although historically deforestation rates in Guyana are low (Food and Agriculture 

Organisation of the United Nations, 2005), potentially, these climate alterations may 

lead to both environmental and social problems (such as economic and population 

growth) which could result in pressure upon the existing rainforest and savannah 

biomes (Terracarbon, 2009). Such problems may include deforestation due to drier, 

hotter climates as well as increased pressure on rainforest resources (Nobre et al., 1991; 

Nepstad et al., 2008). Deforestation may occur through climate or anthropogenically-

induced fires, of which tropical fires have been shown to release a significant 2.6 Pg C 

yr-1 (van der Werf et al., 2003). In turn, this exposes forest types usually found further 

from the boundary, and creates greater vulnerability to fires through edge effects, 

including increases in surface temperatures and decreases in annual evapo-transpiration 

and precipitation (Nobre et al., 1991). If a tipping point is breached, savannah expansion 

into forested areas may result (Hoffmann et al., 2002; Malhi et al., 2008).  

As a result of an awareness of global climate change effects, the Kyoto Protocol was 

ratified in 1997 with the aim of all participating countries committing to a reduction in 

GHG emissions as part of the United Nations Framework Convention on Climate 

Change (UNFCCC). An extension beyond the 2008 – 2012 agreement under the name 

the ‘Bali Roadmap’ was created following recognition of the need to protect rainforest 

nations through financial incentives or voluntarily (Santilli et al., 2005). The 

significance of Guyana’s rainforests, which cover 85% of its land area (Palo, 1994), was 

acknowledged and a response developed for their protection through the Low Carbon 

Development Strategy (LCDS) and Reducing Emissions from Deforestation and Forest 

Degradation (REDD+) mechanism in 2009 (GRIF, 2014; Office of Climate Change, 

2015).  

In order to aid in climate change mitigation through GHG emission reduction and the 

protection of ecologically valuable biomes within Guyana, the existing carbon stocks of 

these biomes needs to be accurately assessed. This will provide a baseline 

understanding of how carbon emissions from climate change may alter these stocks. 

Soil carbon stores are twice that of biomass or the atmosphere (Batjes, 1996) and play a 

vital role in ecosystem processes, feedback mechanisms and the speed of climate 

change (Raich and Potter, 1995; Trumbore et al., 1996). Therefore, having a clear 

picture of current SOC stocks is critical for understanding and interpreting their future 
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changes. The Amazon region is estimated to hold a globally significant amount of SOC 

across a variety of biomes, sub-environments and soil types: a total of 66.9 Pg C within 

1 m of the surface (Batjes and Dijkshoorn, 1999). This region is greatly important in 

terms of potential SOC loss through CO2 emissions with climate change as well as 

future land use changes, which may have significant negative impacts upon the quality 

of these vulnerable soils (Sombroek et al., 1993). Therefore, it is of particular 

importance to assess the SOC stocks within Guyana. The significant 85% rainforest 

land cover in Guyana (Palo, 1994) is bordered by an area of savannah, known as the 

Rupununi (see Chapter 3: Figure 3.1). This region of rainforest and savannah has two 

dry-wet seasons and one dry-wet season, respectively (Bovolo et al., 2012). These 

seasons are likely to affect SOC stocks and molecular characteristics: soils will become 

anaerobic during flooding causing a decrease in microbial decomposition; however this 

may reverse to intensive degradation during dry seasons, as microbes utilise moisture 

remaining from the wet season (Fenner and Freeman, 2011). Different vegetation types 

are also likely to affect SOC stocks, through variations in leaf and wood litter chemistry 

such as the amount and type of lignin, tannin and carbohydrates present (Carr et al., 

2013). 

Lignin and tannin are the second and fourth most abundant biopolymers in terrestrial 

biomass, and thus contribute significantly to soil organic matter (SOM) (Crawford, 

1981; Hernes and Hedges, 2000). Due to similarities in the structure of lignin and tannin 

monomers, it has been previously difficult to distinguish between the two biopolymers 

within biomass and soil samples. However, due to the introduction of a relatively new 

technique employing 13C-labelled tetramethylammonium hydroxide (TMAH) as a 

derivatising agent, it is now possible to distinguish these biopolymers in order to 

accurately assess SOM degradation (Filley et al., 1999).  

Within the savannah and rainforest biomes of central Guyana, a variety of sub-

environments have been reported, such as savannah grassland, woodland, scrubland, 

forest islands, Mora (naturally occurring tree species) dominated forests and Kokret 

palm forests (Eden, 1964). Equally, soil types have been found to vary across these sub-

environments e.g. gleysols, regosols and ferralsols (Suggett, 1964). This variety of 

biomass input (including grasslands, scrubs and trees) into soils and soil type may imply 
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profound variation in soil lignin, tannin and carbohydrate signatures as well as total 

SOC stocks across the savannah-rainforest boundary.  

SOC estimates and molecular SOM characteristics of this region of the Amazon have 

not been previously published, and thus it is even more important that this analysis 

should be undertaken. The savannah-rainforest boundary is more susceptible to fire 

hazards from the savannah than deeper rainforest, but may expose these deeper forest 

areas after fire and drought induced die-back. The area of boundary studied in central 

Guyana is relatively pristine and thus provides a rare opportunity to assess SOC, and 

advance understanding of how alterations may be expressed with local weather 

extremes (Uhl and Kauffman, 1990; Nepstad et al., 2004). Although beyond the remit of 

this study, the knowledge acquired here can be transferred to crucial climate change 

mitigation and management strategies: such as comprehensive SOM monitoring over 

time (Batjes and Sombroek, 1997), and effective protection of areas with high SOC 

stocks (Malhi et al., 2008; Walker et al., 2009). 
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1.2 Literature Review 

1.2.1 Climate change in the Amazon 

The Amazon is renowned for its ecosystem services as a biodiversity hotspot, providing 

species with many major medicinal uses, and a vast expanse of vegetation that provides 

a global sink of CO2 and a source of O2 (Malhi and Grace, 2000; Dirzo and Raven, 

2003). Highly weathered and deep soils also provide a significant sink of CO2 here 

(Batjes and Dijkshoorn, 1999). As stated above (Section 1.1), the Amazon region is 

likely to undergo warming and precipitation changes within the current century and 

beyond (IPCC, 2013). Alongside this, it is also suffering from anthropogenic 

deforestation as a result of population and resource pressure (Nepstad et al., 2008). This 

stems from the demand for pastoral agriculture and timber resources (Binswanger, 

1991; Inman, 1993; Soares-Filho et al., 2006).  

Although fires are a natural part of the savannah ecosystem, anthropogenic fires which 

actively cut into the rainforest expose areas of forest that are less drought tolerant and 

susceptible to further die-back (Nepstad et al., 1999; Cochrane and Laurance, 2002). 

Intense El Niño Southern Oscillation (ENSO) events have also been known to affect 

otherwise stable Amazonian rainforests (Meggers, 1994). Climate-induced changes 

towards warmer temperatures and lower precipitation rates can also lead to the exposure 

of deeper forest areas after drought affected die-back (Nepstad et al., 2004). Tree 

mortality was found to have increased by ~50% following the 1997 El Niño event in 

central Amazonia (Williamson et al., 2000). The large carbon stock held within the soils 

beneath the Amazon rainforests may be released with such die-back and conversion to 

savannahs, exacerbating positive feedback effects (Batjes and Dijkshoorn, 1999). Thus, 

assessing SOC stocks of forest edges vulnerable to the above impacts is vital to 

understanding how much carbon may be released with climate change. No published 

data exists for SOC stocks on the savannah-rainforest boundary in Guyana, and so this 

study addresses the SOC characteristics of this exposed forest edge. However previous 

work in central Guyana highlighting soils as strongly acidic and nutrient poor has been 

conducted by the Tropenbos Project (van Kekem et al., 1997). Previous studies have 

also been conducted on soil properties close to the study region (Sugget and Braun, 

1964; GLSC, 2005), which are described in Section 3.2.4. 
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1.2.2 Land use and climate change within Guyana 

As previously mentioned, (Section 1.1), Guyana currently has initiatives in place to 

protect its valuable rainforest resources, although historically deforestation for timber 

resources has been comparatively lower than in other tropical regions (ter Steege et al., 

2002). In recent years rainforest protection policies such as the Forests Act 2009 

(Guyana, 2009) and Protected Areas legislation in 2011 (Guyana, 2011) have been 

established.  

Along the savannah-rainforest boundary within the Northern Rupununi, some areas of 

rainforest are currently utilised by the indigenous population for farming where soils are 

suitable (personal communication with indigenous community of Wowetta, 31st January 

2012). However, due to the occurrence of laterite and nutrient-poor, unsuitable soils, 

there are areas where this is not possible and the rainforest remains unused by humans 

(personal communication with indigenous farmers of Wowetta, 31st January 2012 and 

field observations: see Chapter 3). This study focuses on these pristine areas in order to 

gain fundamental data on the existing SOC characteristics.  

Previous work in this region has focused on characterising the climate system and its 

variability (Bovolo et al., 2012), where precipitation has been highlighted as the main 

regional climatic factor. The study also emphasises the sensitivity of the savannah-

rainforest boundary to climatic changes; and thus the need for further investigation of 

this interface as an early indicator in establishing climate change effects (Bovolo et al., 

2012). The movement of dissolved organic matter (DOM) from plants and soils into 

river waters has also recently been studied (Pereira et al., 2014). The latter study 

highlights that greater amounts of DOM are mobilised from plant litter and surface soils 

than deeper in the soil profile during rainstorm events, which may suggest a substantial 

portion of OM is lost before entering the soil. This further emphasises the need to 

characterise SOM to create a fuller picture of the carbon cycle in this region.  

Strong ENSO events have been shown to be the main cause of fires in established 

forests, particularly when in conjunction with human interference, whilst forests on 

sandy soils in the Guianas, such as those at the savannah boundaries, are most likely to 

burn (Hammond and ter Steege, 1998). Charcoal records from the Holocene period also 
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provide evidence of fires within established forests in central Guyana (Hammond and 

ter Steege, 1998). This indicates that past climates have been dry enough to dramatically 

affect this area. With the predicted changes in climate within the current century and 

beyond (which may include stronger and more frequent ENSO events) it is possible that 

human induced savannah fires may spread into deeper forest areas (Laurance and 

Williamson, 2001), potentially causing large CO2 release from biomass and soils (van 

der Werf et al., 2003). As climate and land use change occurs in Guyana, it is 

imperative to understand the possible effects this has on SOC stocks. As detailed in 

Section 1.2.10, Objective 1 focuses on identifying the different sub-environments and 

soil types on the savannah-rainforest boundary. This is in order to characterise a variety 

of SOC stocks at this important and vulnerable ecosystem interface. 

1.2.3 Soil Organic Carbon (SOC) 

The global carbon cycle includes three major pools, in which carbon is continuously 

cycled. These three major pools consist of an atmospheric pool (760 Gt), an oceanic 

pool (38000 Gt) and a terrestrial pool (8060 Gt), (Lal, 2004). Included in the terrestrial 

pool are the biotic (560 Gt) and soil (2500 Gt) pools, of which the soil pool is 4.5 times 

the biotic and 3.3 times the atmospheric pool. The soil pool is divided into SOC and soil 

inorganic carbon (SIC), of which the SOC accounts for 1550 Gt and the SIC 950 Gt 

(Lal, 2004).  

The transformation of carbon from the atmosphere into the soil occurs through 

conversion of CO2 into terrestrial biomass after which it can be released back to the 

atmosphere through respiration, or sequestered as soil organic matter (SOM) via 

physical and biochemical stabilisation mechanisms (Kay, 1999; Lorenz et al., 2007). 

This soil carbon stock is thus determined by the balance of inputs from biota (mainly 

vegetation) and outputs through respiration. Carbon becomes sequestered in the soil 

when the inputs are greater than the outputs (Powlson et al., 2008). Likewise, soil can 

become a source of carbon when outputs exceed inputs through rapid biotic turnover 

and human interference (Malhi and Grace, 2000). 

SOM contributes ~60% of the pedological carbon pool (Post et al., 2001; Lal, 2004). 

Originating from vegetation in the form of root exudates and root, leaf and wood litter 

as well as dead soil fauna and microbial exudates, SOC is decomposed within soil to 

either be released as CO2 and CH4, leached through the soil profile into waterways or 
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stabilised into either labile or recalcitrant pools. The labile pool accounts for between 60 

and 80%, which decomposes rapidly, with a residence time <10 years. The remaining 

fraction (20-40%) is split between an intermediate (10-100 years) and stable pool 

(>1000 years), (Trumbore et al., 1996; Lützow et al., 2006; Lorenz et al., 2007). This 

stable pool is controlled by spatial inaccessibility, the chemical structure of the OM and 

the availability of mineral surfaces and metal ions in which to complex (Sollins et al., 

1996; Six et al., 2002; Lützow et al., 2006). 

Several factors within soil affect the turnover of SOC (Dungait et al., 2012). These 

include chemical structure (Filley et al., 2008), soil temperature (Amundson et al., 1989; 

Trumbore et al., 1996) and moisture (Amundson et al., 1989), pH (Anderson and 

Domsch, 1993), clay content (Feller and Beare, 1997), nutrient status (Berg, 2000), 

microbial communities (Amundson et al., 1989; Anderson and Domsch, 1993), and 

overall site conditions including climate, aspect, morphology and vegetation (Filley et 

al., 2008). Traditionally, SOC has been divided into ‘labile’ and ‘recalcitrant’ pools 

depending upon the residence time within soil. However, components of these pools 

thought to be reserved to one or the other have more recently been found in opposing 

pools (for example carbohydrates and lignin, respectively), contradicting this theory 

(Lützow et al., 2006; Kleber et al., 2011). This signifies that SOC is still more complex 

than our current understanding and that great heterogeneity exists within soils. 

Global variability between soil types and thus SOC stocks is considerable, which means 

estimations are often difficult or unreliable (Eswaran et al., 1993). This is largely due to 

differences in latitude, climate, micro-climate, vegetation inputs, bedrock and microbial 

communities. Such high variability is reflected in the soils of the Amazon region (Batjes 

and Dijkshoorn, 1999) due to its heterogeneous environment and vast scale. Even 

within the relatively small country of Guyana, this heterogeneity has been noted (Eden, 

1964; Suggett, 1964), and is therefore likely to affect SOC stocks spatially. Objective 1 

and 2 of this study address the heterogeneity of soils and their SOC stocks in savannah 

and rainforest ecosystems. Such heterogeneity is also likely to affect molecular SOM 

composition; the literature surrounding key SOM components is reviewed in the 

following sections. 
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1.2.4 Carbohydrates 

Carbohydrates are the primary resource of metabolic energy in living organisms, and 

are created during photosynthesis by plants therefore incorporating carbon, hydrogen, 

oxygen and using primary energy from solar radiation. They come in both simple 

(monosaccharides), intermediate (oligosaccharides) and more complex, longer chain 

forms (polysaccharides), (Brett and Waldron, 1996).  

In the tropics, there are few studies on carbohydrates as compared to other latitudes and 

studies on SOM content (Nacro et al., 2005). Those that have been conducted include 

those in native grasslands and savannahs of Costa Rica (Guggenberger and Zech, 1999), 

the savannah soils of the Congo and Senegal (Larré-Larrouy, 1997; Sall et al., 2002) 

and in the soils of a forest and savannah mosaic landscape in the Côte d’Ivorie (Nacro et 

al., 2005). Less attention has been paid to looking at natural ecosystems than those 

under management (Nacro et al., 2005). However, carbohydrates could be important for 

soil quality: through the formation and subsequent stabilisation of aggregates, 

controlling soil microbial activity and plant growth (Puget et al., 1998; Nacro et al., 

2005).  

Despite their chemical structure which is comparatively simple compared to lignin and 

tannin, and, thus, more easily degraded (Derrien et al., 2006), they account for 10-20% 

of SOM (Cheshire, 1979; Amelung et al., 1996; Puget et al., 1998). Through calculating 

residence times (based on differences in the peak area and isotopic content), their sugar 

carbon atoms have also been found to date older than those of the bulk SOC, and thus 

may be important in contributing to the recalcitrant SOM pool (Gleixner et al., 2002; 

Kogel-Knabner, 2002). Their significance in SOM as microbial necromass has recently 

been reported (Miltner et al., 2012), and a shift in focus from the importance of lignin 

and its inherent chemical recalcitrance, to microbial turnover of SOM and carbohydrate 

microbial necromass, has taken place (Glaser et al., 2004; Kleber, 2010; Thevenot et al., 

2010; Dungait et al., 2012). Several factors may account for this recalcitrance, 

stemming from the surrounding conditions of the carbohydrates, such as physical / 

physio-chemical preservation and incorporation into humic substances (Derrien et al., 

2006; Lützow et al., 2006) or microbial recycling (Nacro et al., 2005). 
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In the analysis of complex biomaterials such as soil, TMAH with thermally assisted 

hydrolysis and methylation (THM) pyrolysis-gas chromatography/mass spectrometry 

(GC/MS) analysis has proven useful in identifying some carbohydrates trapped within 

SOM (Fabbri and Helleur, 1999; Schwarzinger, 2003; Tanczos et al., 2003; Estournel-

Pelardy et al., 2011). Thus, it is able to identify a cellulose pool that may be otherwise 

unseen from acid hydrolysis (Estournel-Pelardy et al., 2011). Therefore, the use of this 

technique to identify possible complex carbohydrate mixtures in soils along a savannah-

rainforest boundary may provide interesting insights into their recalcitrance in the 

tropics. Objective 3 relates to the identification of carbohydrates in SOM and their 

amounts in the range of soils studied. 

1.2.5 Lignin 

Lignin derives its name from the Latin word for wood (lignum). It comprises a 

structural component of plants, lending rigidity to their forms as well as coating xylem 

cell walls to create hydrophobicity and prevent water loss (Campbell and Sederoff, 

1996). As a part of the cell wall in vascular plants, lignin is interconnected with 

cellulose and hemicellulose (Sarkanen, 1971; Campbell and Sederoff, 1996). This 

biopolymer constitutes a third to the organic carbon content of the biosphere (Boerjan et 

al., 2003) and is second most abundant to cellulose and hemicellulose in vascular plant 

species (Crawford, 1981; Gold, 1989). It has a highly complex and variable 

macromolecular structure (Figure 1.1). In woody plants, lignin can contribute 30% to 

mass, whilst non-woody plants show lesser amounts (Adler, 1977).  

The structure of lignin itself is comprised of three main components (monolignols), 

namely p-coumaryl, coniferyl and sinapyl alcohols (Figure 1.2). These monolignols 

undergo oxidative co-polymerisation during biosynthesis. On enzymic dehydrogenation, 

they are broken down into p-hydroxyphenyl (P), guaiacyl (G) and syringyl (S) units 

(Adler, 1977). As the contribution of these components in lignin varies widely, they can 

be used as biomarkers to distinguish between different vascular plant types and sources: 

for example gymnosperms, angiosperms and non-woody plants, such as grasses 

(Higuchi, 1980). Characteristics of gymnosperms (softwood) are G dominated lignins, 

wioth low levels of P units found to be less susceptible to degradation than S or C 

phenols, whilst angiosperms (hardwood) are primarily composed of S as well as G, with 

trace levels of P units (Sarkanen, 1971; Boerjan et al., 2003). In contrast, non-woody 
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species are dominated by cinnamyl (P) lignins known as p-coumaric acid and ferulic 

acid, with smaller quantities of G and S lignin derivatives (Clifford et al., 1995). 

 

Figure 1.1 A schematic representation of lignin (reproduction of Dorrestijn, 2000; L = 

lignin biomacromolecule). The dominant β-O-4 linkage in the lignin macromolecule is 

highlighted in the open circle. 
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Figure 1.2 A schematic of the three main lignin precursor alcohols: p-coumaryl, 

coniferyl and sinapyl (adapted from Dorrestijn, 2000). 

 

As a complex structure, lignin consists of various linkages between the monolignols 

described above. These monolignols are connected mainly via arylglycerol- β -aryl 

ether (β-O-4) links as seen in Figure 1.3. In hardwood and softwood, β-O-4 accounts for 

60% and 46% of the monolignol links respectively (Dorrestijn et al., 2000). This 

covalent bond occurs between the carbon in the β position of an alkyl side-chain and the 

phenolic oxygen atom in the fourth position of the phenol ring (Adler, 1977). Other 

linkages include carbon-carbon bonds in the form of β-5, β- β, β-1 and 5-5, which are 

stronger than the ether linkage. The latter are found mostly in softwood (30% compared 

to 21% in hardwood). This is due to the greater abundance of guaiacyl and thus 

availability of C5 on the phenol ring for coupling (i.e. other C atoms are already 

occupied by functional groups, such as hydroxyl and methoxy groups), (Dorrestijn et 

al., 2000; Boerjan et al., 2003).  
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Figure 1.3 The β-O-4 bond most common in monolignols, (reproduction from 

Dorrestijn et al., 2000). 

Due to the complexity and variability in linkages within the lignin biopolymer and its 

high molecular weight, it has previously been considered recalcitrant (Crawford, 1981). 

Such recalcitrance was assumed to lead to its stability and possible accumulation in 

SOM, compared to less structurally complex molecules such as cellulose. However, 

studies such as Gleixner et al. (2002) found opposing results, in which lignin was not 

present in soils despite being detected in maize inputs, yet polysaccharides were major 

pyrolysis-GC/MS products in the investigated soils. It has also been suggested that 

lignin actually has a faster turnover rate than bulk SOM (Dignac et al., 2005; Heim and 

Schmidt, 2007). Lignin degradation is fastest under aerobic conditions (Kiem and 

Kögel-Knabner, 2003; Dignac et al., 2005; Bahri et al., 2006; Kalbitz et al., 2006; 

Marschner et al., 2008; Klotzbücher et al., 2011; Dungait et al., 2012), where white rot 

fungi are one of the most efficient degraders (Gold, 1989; Hatakka, 1994). Robertson et 

al. (2008) demonstrated significant lignin oxidation in relation to enzymatic activity and 

fungal growth during white rot decay of wheat straw. Lignin degrading fungi, 

(specifically species Buergenerula spartinae, Phaeosphaeria typharum 

and Leptosphaeria obiones), have also been found in anaerobic environments (Benner 

et al., 1984). The three main groups of lignin degrading fungi (basidiomycetes) are soft 

rot, brown rot and white rot (Kirk and Farrell, 1987). White rot are the only complete 

degraders of lignin, performing full mineralisation of lignin to water and CO2 (Gold, 

1989). Robertson et al. (2008) reported that the white-rot species Pleurotus ostreatus 

degraded lignin from wheat straw after 21 days after the rapid activation of the enzyme 
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peroxidase. The residues of white-rot degradation can be identified through extensive 

side-chain oxidation and aromatic ring cleavage (Umezawa and Higuchi, 1987). Brown 

rot fungi do not show a high degree of side-chain oxidation, however, but demethylate 

the methoxyl groups of lignins, leading to the production of hydroxylated phenyl 

(catechol derivatives), (Anders et al., 1988; Enoki et al., 1988; (Filley et al., 2000). The 

main processes of fungal degradation can be seen in Figure 1.4.  

Some species of bacteria (Streptomyces and Nocardia) have also been found to degrade 

lignin (Sørensen, 1962; Antai and Crawford, 1981; Crawford et al., 1983; Godden et al., 

1992; Trojanowski, 2001). In addition to biotic degradation, abiotic factors may also 

play a role in the breakdown of lignin, for example through photo-oxidation (Hernes 

and Benner, 2003; Gallo et al., 2006; Frouz et al., 2011) and leaching (Hernes et al., 

2007). 

As the main source of lignin degradation, the conditions in which fungi can be active 

are important in determining its breakdown. Temperature, moisture, pH and substrate 

availability all affect fungal activity (Amundson et al., 1989; Donnelly et al., 1990; 

Andersson and Nilsson, 2001). Different species may colonise the range of niches these 

edaphic parameters provide, leading to variations in degrader communities and activity, 

which could influence lignin degradation rates. For example, Blagodatskaya and 

Anderson (1998) reported greater fungal respiratory activity than bacterial under low 

pH. If the fungi assessed in the latter study is of a lignin-degrading variety, this could 

indicate greater lignin degradation is acidic conditions. Within heterogeneous 

environments on the savannah-rainforest boundary, these differences in abiotic and 

biotic factors may result in variations in lignin composition and degradation. This aspect 

will be assessed through Objective 3 (Section 1.3). So far, the majority of studies 

conducted on lignin composition in soils has been focussed primarily in temperate 

latitudes (Kalbitz et al., 2006; Heim and Schmidt, 2007; Nierop and Filley, 2007; 

Mason et al., 2009; Swain et al., 2010), where the function and degradation of lignin is 

still not completely understood (Thevenot et al., 2010).  



16 

 

 

Figure 1.4 The main fungal degradation alterations of guaiacyl lignin (adapted from 

Filley et al., 2000; L = lignin biomacromolecule). 

 

1.2.6 Lignin Characterisation 

Adler (1977) gives a thorough reflection on the history of lignin and its analysis, 

showing that initially research was aimed towards its structure and biosynthesis. The 

primary method employed during such studies of lignin at this time was the cupric 

oxide (CuO) oxidation method (Hedges and Parker, 1976; Hedges and Mann, 1979; 

Hedges et al., 1982; Kögel, 1986). From the latter method, a series of lignin reaction 

products are formed, which include six vanillyl (V) and syringyl (S) phenols in 

aldehyde, ketone and carboxylic acid form, as well as ferulic and p-coumaric acid (C) 

which are p-hydroxyl substituted cinnamic acids (Hedges and Parker, 1976). These 

structures are formed from the three main monolignols as described in Section 1.2.4, 

and correspond to phenols G, S and P, respectively. Their methylated forms can be seen 

in Figure 1.5. Parameters were derived from these products in order to assess the 

vegetation type from the sample, these consisted of the ratios S/V, C/V and [Ad/Al] for 

the degradation state, as well as the overall lignin yield (Λ). The latter ratios can, 

however, be influenced by leaching and sorption to minerals from which elevated ratios 

in deep soil layers may result (Hernes and Benner, 2003; Hernes et al., 2007). This 

stems from the differing surface reactivity and solubility of OM and lignin, causing 
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fractionation during leaching and sorption (Kaiser and Guggenberger, 2000; 

Aufdenkampe et al., 2001) 

Due to the fact that this early method did not provide any structural information on the 

lignin under assessment (Dijkstra et al., 1998), new methods were sought in order to do 

this. The CuO technique meant that the original propyl side chain was destroyed during 

the process, thus not allowing the interpretation as to whether the lignin phenols are 

intact (Hatcher et al., 1995; Filley et al., 2000). Aside from this, the technique is very 

time consuming (Hatcher et al., 1995).  

A more efficient technique which allows for the structural assessment of lignin in 

samples was thus later developed, and is now in greater use than the traditional CuO 

method. This new technique involves high temperature pyrolysis followed by gas 

chromatography and mass spectrometry (Py-GCMS) and has been used to assess lignin 

in soils (Dijkstra et al., 1998; Vancampenhout et al., 2009). Lignin is treated thermally 

without the presence of oxygen, yielding smaller and more volatile fragments which 

allow for detection by the GC (Kaal and Janssen, 2008). In order that benzenecarboxylic 

acids could also be released by this pyrolysis process (Saiz-Jimenez, 1994; Klingberg et 

al., 2005), an in-situ derivatising agent was added to prevent decarboxylation of these 

products during pyrolysis  (Challinor, 1989). This agent is tetramethylammonium 

hydroxide (TMAH) which methylates the lignin phenols making them GC amenable by 

forming the methyl ethers of carboxylic and hydroxyl groups (Challinor, 1989; Kaal and 

Janssen, 2008), so that the compounds are identified by interfacing the GC with a mass 

spectrometer (GC-MS). This method can also be carried out offline, through heating 

both the TMAH and sample in a sealed glass tube and analysing the products after 

cooling (Vane et al., 2001). 

During the process, thermal bond dissociation leads to the fragmentation of lignin into 

compounds with reduced molecular mass, giving a reflection of how the original 

polymer was composed (del Rio et al., 1996). Clifford et al. (1995), highlighted that the 

TMAH reaction is primarily a thermally assisted chemolytic degradation, as opposed to 

a pyrolytic bond cleavage and thus the term ‘thermally assisted hydrolysis and 

methylation’ (THM) has now been widely employed. At present, TMAH is the most 

widely utilised derivatising agent to use in conjunction with the THM method (>90%) 

(Shadkami and Helleur, 2010). Tetraethylammonium hydroxide (TEAH) and 
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teratbutylammonium hydroxide (TBAH) have also been used for lignin analysis, but 

were found to produce lower yields of polycarboxylic acids than TMAH and only 

partially alkylate the phenolic hydroxyl groups (Lehtonen et al., 2003). 

1.2.7 THM in the presence of TMAH 

The use of the THM procedure allows the β-O-4 bonds of the lignin macromolecule to 

be broken, (Hatcher et al., 1995), through the formation of an unstable cyclic epoxide 

structure (Filley et al., 1999). These linkages are known to be of the most common in 

the lignin structure, but the actual proportion may vary from species to species (Pandey 

and Kim, 2011). Using THM can also indicate how many linkages are left intact in the 

macromolecule (McKinney and Hatcher, 1996; Klotzbücher et al., 2011). As the full 

process of THM is yet not fully understood, it has not been possible to assess the 

quantitative recovery of lignin with this method (Kaal and Janssen, 2008). Despite this, 

it is currently the best method for the analysis of humic substances (Saiz-Jimenez, 

1994).  

Using TMAH in conjunction with the THM method has been found to be most 

appropriate for fresh plant material, plant litter and soil surface horizon analysis, due to 

its specific bond cleavage, which may already be lost in extensively coalified lignin 

(Hatcher, 1990; Filley et al., 1999). The total monomer yield released during lignin 

depolymerisation from such samples relies upon the extent of alteration of the lignin 

macromolecule, as well as the proportion and type of the β-O, β-5 and β-β linkages. 

This will assert influence over the degradation rates of lignin components guaiacyl, 

syringyl and cinnamyl (Vane et al., 2001). The method allows for a wide suite of lignin 

phenols to be produced, these include all eight of those also produced in the earlier CuO 

method, in addition to threo/erythro 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropne 

(G14/15) and threo/erythro 1-(3,4,5-trimethoxyphenyl)-1,2,3-trimethoxypropane 

(S14/15) (Hedges and Parker, 1976). Lignin parameters used for assessing the 

degradation state and total lignin phenols can also be applied using the relevant 

compounds (Section 1.2.6), as in the CuO method (Hedges and Mann, 1979; Hatcher et 

al., 1995; Klotzbücher et al., 2011).  
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Figure 1.5 Dominant permethylated aromatic compounds released by TMAH 

thermochemolysis (adapted from Filley et al., 2006). 
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1.2.8 13C-labelled TMAH 

Despite being the most suitable current method for the molecular analysis of SOM 

components, the THM in the presence of TMAH has limitations. One of its most 

significant is the inability to be able to distinguish between the methoxyl groups that 

have been added during the THM process and those that were originally present (Filley 

et al., 2000). Thus, microbial degradation cannot be recognised in addition to the 

compound potentially not being lignin derived. In 1999, the method was developed in 

order that the aforementioned shortcomings could be rectified; this was via the use of 

13C-labelling of the TMAH agent, so that phenolic methylated groups also showed 13C 

(Filley et al., 1999). This  then clearly allows for the recognition of lignin, altered lignin 

and non-lignin phenols (Filley et al., 1999).  

Since its introduction, it has been applied with success to the analysis of SOM, DOM 

and biopolymers (Filley et al., 2000; Filley et al., 2002; Frazier et al., 2005; Filley et al., 

2006; Nierop and Filley, 2007; Mason et al., 2009; Swain et al., 2010). On calculation 

of the lignin parameters Λ, [Ad/Al] and Γ after the use of 13C-labelled TMAH, a 

significant alteration was shown as compared to the parameters that were analysed with 

just TMAH, however S/G and C/G ratios remained similar (Nierop and Filley, 2007). In 

a study of sandy soil profiles beneath oak woodland the total yield of lignin was reduced 

by 16-46% after the use of 13C-labelled TMAH, the reduction owing to the distinction 

between lignin and tannin and poly-hydroxyl compounds, which were contributing to 

the original signal (Nierop and Filley, 2007). 

The similarities between the lignin source and tannin source lie in the compounds 

syringic acid and gallic acid, respectively: these two compounds are both recognised as 

3,4,5-trimethoxybenzoic acid methyl ester (also known as S6). S6 gives a molecular 

weight of 226 when methylated with unlabelled TMAH. However, once methylated 

with 13C-labelled TMAH, a higher molecular weight of 228 is produced owing to the 

methylation of its two hydroxyl groups; whilst gallic acid gives a weight of 230 as its 

four  hydroxyl groups are methylated. This allows the distinction between lignin and 

tannin source when assessing the mass spectra of the compound, using the percentage of 

13C-labelled methyl groups (Filley et al., 1999; Filley et al., 2006), see Figure 1.6. 

Despite the success of the distinction, there is one limitation of the method which means 
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that gallic acid cannot be distinguished from fully demethylated syringic acid, the 

former being the main building block of hydrolysable tannins (Nierop and Filley, 2007). 

 

 

Figure 1.6 A reaction schematic reproduced from Swain, 2013 shows how 13C-labelled 

TMAH distinguishes between the lignin syringic acid and tannin gallic acid during 

methylation. Asterisks highlight where 13C-labelled TMAH has added methyl groups. 

 

As well as distinguishing between the origins of S6, 13C-labelled TMAH can also 

distinguish between the origins of guaiacyl phenol G6 and cinnamyl phenol G18. The 

former compound can be confused between that of lignin origin known as 3-hydroxy-4-

methoxy benzoic acid methyl ester, (or that generated by the Cannizzaro reaction: see 

below), and that of microbially demethylated lignin or protocatechuic acid, known as 

3,4-dihydroxybenzoic acid methyl ester: both are methylated as 3,4-dimethoxybenzoic 

acid methyl ester (Nierop and Filley, 2007).  

G18 has two possible sources: 3-(3-methoxy, 4-hydroxy-phenyl)-3-propenoic acid 

methyl ester, from lignin; and 3-(3-dihydroxyphenyl)-3-propenoic acid methyl ester, 

from microbially demethylated lignin or caffeic acid. Both of these sources are 

methylated to give trans 3-(3,4-dimethoxyphenyl)-3-propenoic acid methyl ester 

(Nierop and Filley, 2007).  
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As mentioned above, G6 may also be affected by the Cannizzaro type reaction, whereby 

a disproportionation of aldehyde occurs. The reaction produces methoxybenzoic acid 

methyl ester and methoxybenzyl alcohol methy ether (Hatcher and Minard, 1995). 

Potentially, this could be of particular concern for the lignin parameter [Ad/Al] which 

indicates the oxidation state.  

As there is no singly used THM method, for example through the range of temperatures 

used, it may be difficult to form comparisons between the literature (Klingberg et al., 

2005). Despite this there are many positive advantages in using the technique, as 

previously described, and it has been noted as the best and fastest thus far developed for 

the analysis of substances such as soil organic matter (Saiz-Jimenez, 1994; Kaal and 

Janssen, 2008). Thus far, only a small number of recent tropical soil studies have 

employed pyrolysis-GC/MS as a method for assessing lignin characteristics (Buurman 

et al., 2007; Buurman and Roscoe, 2011; Stewart et al., 2011), whilst others have used 

the CuO method (Neufeldt et al., 2002; Wilcke et al., 2008). Therefore, it is important to 

undertake new studies via pyrolysis-GC/MS in order to create more comparable studies 

across tropical regions.  

1.2.9 Tannin 

As secondary metabolites, tannins are thought to play a wide range of roles in vascular 

plant adaptations, for example, herbivore defence, competitive advantage, nutrient 

cycling and litter decomposition (Kraus et al., 2003 and references therein). They 

therefore have a strong effect upon soil degradation dynamics, such as in reducing fauna 

decomposition of plants (Loranger et al., 2002; Coq et al., 2010), as well as limiting 

microbial activity (Schultz et al., 1992). In tropical plants they have been found to be 

particularly abundant, more so than in temperate tree species (Coley and Aide, 1991; 

Hallam and Read, 2006). Therefore, these compounds may prove to be a significant 

component of SOM in savannah and rainforest soils. Their amounts in vegetation 

samples will also be assessed to further corroborate evidence for the source and 

importance in these ecosystems. 

Tannins are defined as water soluble polyphenolic compounds (Haslam, 1988), and are 

the fourth most abundant plant biomacromolecule behind cellulose, hemicellulose and 

lignin; thus accounting for a significant contribution to C in terrestrial biomass (Hernes 

and Hedges, 2000). The leaves and bark of tree species may consist of up to 40% tannin 
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in dry weight, which may exceed that of lignin (Kraus et al., 2003). There are two 

groups of tannin which consist of hydrolysable (gallo- and/or ellagi-) tannins (HT) and 

condensed tannins (proanthocyanidins) (CT) (Hernes and Hedges, 2004), see Figure 

1.7. HT’s are specific to dicot angiosperms, whilst CT’s are found in both dicots and 

monocot gymnosperms (Bate-Smith, 1977; Haslam, 1988). The composition of CT’s 

consists of flavan-3-ols connected via C-C bonds, and their monomers can be identified 

by the quantity of OH groups on the B-ring. For example, procyanidins (PCs) have di-

hydroxy rings, whilst prodelphinidins (PDs) have tri-hydroxy B rings. HT’s are divided 

into two groups: gallotannins, consisting of gallic acid; and ellagitannins, consisting of 

hexahydroxydiphenic acid esters, connected via ester linkages to a central sugar moiety 

(glucose). The structure of tannin is complex and diverse, similarly to lignin, and is thus 

variable across plant species (Kraus et al., 2004).  

 

Figure 1.7 The structures of a) condensed and b) hydrolysable tannins (CT and HT). R 

= H: epicatechin, R=OH: epigallocatechin (reproduced from Behrens et al., 2003; 

Nierop et al., 2005). Where PC = procyanidins and PD = prodelphinidins. 

Due to their effect in soils, tannins may be important for estimating long-term 

decomposition rates (Loranger et al., 2002). However, this may be site specific due to 

their ability to be leached through soil profiles if the right conditions exist, depending 

upon precipitation, temperature and availability of clay minerals for complexing (Kraus 

et al., 2003). In seasonal wet periods and rainstorm events on the savannah-rainforest 

boundary, significant leaching of these tannins may occur. High temperatures in this 

region may also induce high microbial activity (Zogg et al., 1997). Conversely, if 
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complexing minerals are present, tannins may be stabilised (Gu et al., 1994). To date, 

the fate of tannins in soils is still largely unknown (Nierop et al., 2005). However, it is 

now possible to assess the extent of tannins alongside lignin in soil via the use of 13C-

labelled TMAH with pyrolysis-GC/MS, which enables the discrepancy between the 

effect and fate of these distinct macromolecules in soil organic matter decomposition 

(Filley et al., 1999). The fate of tannins in soils from the tropical plants assessed in this 

study (as of Objective 3) will provide more information about the effects of site specific 

conditions on their degradation state. 

1.2.10 SOM analysis in the tropics 

Although many studies, especially those concerning climate change, have assessed the 

SOC of tropical soils due to their potential as either large carbon sinks or sources, few 

have considered the molecular composition of this SOC. Studies conducted in other 

regions of the world have shown the importance of understanding SOM composition for 

ecological purposes, such as nutrient cycling, plant physiology and microbial 

populations (Hättenschwiler and Vitousek, 2000). Those that have been conducted in 

tropical and arid regions have revealed interesting differences between biomes and sub-

environments, linked to plant type, land use and environmental conditions 

(Guggenberger et al., 1995; Filley et al., 2008; Stewart et al., 2011; Carr et al., 2013). 

Many of the studies on molecular SOM in tropical regions have focussed upon 

agricultural systems, as opposed to or in comparison to natural ecosystems 

(Guggenberger et al., 1995; Olk et al., 2002; Rumpel et al., 2007; Filley et al., 2008). 

However, it is also important to consider natural ecosystems which may be susceptible 

to climate change and future land use pressures (Hammond and ter Steege, 1998) as 

these ecosystems may hold significant amounts of carbon in their soils (Batjes and 

Dijkshoorn, 1999), and their molecular SOM characteristics may be important for 

discerning climate or land use-induced changes (Swain et al., 2010).  

 

1.3 Aims and Objectives of this Thesis 

With current IPCC (2013) predictions forecasting a potentially destabilising annual 

increase in temperature and changes to precipitation patterns in eastern Amazonia, it is 

vital to understand how SOC stocks may be altered. It may be possible for large releases 
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of CO2 currently held within the soil to create positive feedbacks into the global carbon 

cycle (Cox et al., 2000). Studies which connect molecular SOM characteristics to bulk 

SOC and above ground C stocks are essential to better characterise the overall C cycle 

in terrestrial systems. Given the lack of molecular SOM data from pristine soils on the 

climate sensitive savannah-rainforest boundary, it is critical to ascertain bulk SOC and 

its molecular composition in this region, in order to accurately estimate its stocks and 

fate. Assessing the composition of SOC is not trivial, however. Molecular components 

are influenced by numerous abiotic and biotic factors that may change over short 

distances and with fluctuations in climatic conditions (e.g. seasonality), which 

ultimately decide their fate. Thus, the overarching aim of this study is to characterise 

bulk and molecular SOC on the savannah-rainforest boundary. It will therefore provide 

a baseline for comprehending the factors influencing it, which may be altered with 

modifications to local weather patterns caused by wider climate change. Several sub-

environments on two savannah-rainforest boundaries in central Guyana have been 

assessed. Investigation into the SOC stocks on both of these boundaries, and the 

molecular organic carbon characteristics on one boundary, have been undertaken.  

The study was sub-divided into three sections each with its own objectives, as follows: 

1) Field sites and preliminary soil classifications (Chapter 3). 

This first sub-section included an assessment of the two field sites (Wowetta and 

Surama) in Central Guyana, with respect to the heterogeneous vegetation sub-

environments and their respective soils. This encompassed a distance of 2.5 km 

into the savannah and the rainforest at either side of the boundary.  

The specific objectives were: 

a) complete reconnaissance surveys of both vegetation and soil types in the two 

areas of Wowetta and Surama in order to establish the range of sub-

environments and soil types present for the most representative sampling sites, 

b) to assess soil properties in the field and laboratory in which to make a 

preliminary soil classification for each site under the updated Food and 

Agriculture of the United Nations World Reference Base 2014. 

 

2) Soil carbon stocks of sub-environments on the savannah-forest boundary of 

Wowetta and Surama in Central Guyana (Chapter 4). 
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This sub-section investigates the soil organic carbon stocks, using horizon depth, 

bulk density and total organic carbon measurements, within each sub-

environment soil profile, to a maximum depth of c. 3 m in both Wowetta and 

Surama.  

The specific objectives were: 

a) to estimate the SOC stocks in full soil profiles (which extended up to a 

maximum of c. 3 m depth) of the range of sub-environments and associated 

soil types found on the savannah-rainforest boundary in the tribal lands of 

Wowetta and Surama,  

b) to establish which sub-environments have greatest SOC stocks, 

c) to compare the SOC stocks estimated to existing SOC data of the Amazon 

region and the wider tropics, in order to validate historical datasets against the 

contemporary data presented in this study. 

 

3) Surface soil and vegetation input and organic molecular chemistry of SOM along 

the Wowetta transect (Chapter 5). 

This sub-section utilised THM in the presence of 13C-labelled TMAH to assess 

the state of lignin in surface (0-6 cm) soils of each sub-environment along the 

Wowetta savannah-rainforest boundary. The analysis also allowed for 

identification of tannin input, as well as carbohydrates. The specific objectives 

were: 

a) to identify key vegetation biopolymers (e.g. lignin and tannins) within 

surface soils and vegetation inputs across the transect, 

b) to identify carbohydrates which may be present within the surface soils and 

vegetation inputs, 

c) to compare the degradation state of lignin across the sub-environment 

surface soils and the relative contributions of tannins, as well as 

carbohydrate contents, 

d) to compare molecular SOM results (lignin) to bulk SOC results to assess 

differences between sites on the Wowetta transect and possible correlations 

between the two measurements. 
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2. Methodology 

2.1 Overview of sampling techniques 

Two areas were selected for sampling on the savannah-rainforest boundary in central 

Guyana, detailed information of this area and sampling sites is given in Chapter 3. 

These included one on the tribal lands of Wowetta, and a second on the tribal lands of 

Surama. This was done to account for changes and differences within sub-environments 

and their respective soils between an area of open savannah (Wowetta) and enclosed 

savannah (Surama). Prior to sampling a thorough two week reconnaissance was 

conducted to identify as many soils and vegetation types in the area as possible. The 

reconnaissance revealed that the greatest changes in soil type coincided with those in 

vegetation. Therefore, representative sites in both areas were identified through 

selecting a site at each vegetation type (sub-environment) found on the reconnaissance. 

Biomass samples (fresh shoot / leaf litter and wood litter) were sampled in triplicate 

from the surface of the soil pit and the surrounding area (within 0.25 m of the soil pit). 

Where no litter layer existed, such as in the savannah grassland sites, fresh shoots had to 

be sampled. Fresh grass shoots were also sampled in areas of savannah with trees in 

addition to leaf litter, as the grass itself did not form a litter layer. Soil was also sampled 

in triplicate from each horizon (soil layer) to a maximum depth of ~3 m. Samples were 

also taken in triplicate from 0-6 cm from the surface of each soil profile, in order to 

check for unseen differences in organic matter (e.g. via similar colouration) between the 

surface soil and underlying horizons. The thickness of 6 cm was chosen as the bulk 

density corer was 6 cm in diameter, and thus allowed a bulk density measurement to be 

made from this surface thickness. The latter measurement then also allowed the organic 

carbon stock (OC) to be calculated for the initial 6 cm soil depth. All samples were 

stored in sealed amber glass jars (glass was used to avoid plastic contamination). As 

soon as possible after being sampled, these jars were placed in a freezer in order to 

avoid any out of situ degradative changes. During sample collection, soil profile 

descriptions were taken and recorded according to Payton (2010). These included soil 

texture (‘hand texture method’), soil colour (Munsell Colour chart) structure, boundary 

depth of each horizon and full sampling depth of the soil profile (see Appendix D for 

field descriptions). Water table depth from the surface was also recorded using 

measuring tape as soon as the water table had been breached. Bulk density sampling, 
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volumetric water content and pH measurements are detailed below in Section 2.2, 2.3 

and 2.7. 

2.2 Bulk density (Db)  

Bulk density includes soil solids and pores within a given volume of soil sampled: it is 

the ‘mass unit’ of dry soil. During field work, a metal core with a known volume of 100 

cm3 was used in order to take an undisturbed soil sample from a cleaned soil pit surface. 

This was done in triplicate at each site, excluding the pisoplinthic forest (PF) and 

pisoplinthic savannah grassland (PSG) where the pisoplinthic material (hardened 

aggregates of iron oxide) prevented accurate sampling (see Chapter 3 for site and soil 

descriptions). Where sampled, stones were minimal and so no correction must be made 

to account for this. These samples were weighed, oven dried at 105 °C for 48 hours, 

reweighed and placed back in the oven for 4 hours before reweighing to check dryness. 

Accuracy was in accordance with the British Standard for bulk density measurements 

(maximum 0.1 g change in weight between oven drying episodes). Using the above 

measurements the equation below was used to calculate the bulk density: 

Equation 2.1Bulk density 

𝐷𝑏 =  𝑊𝑑 / 𝑉𝑠 

Db = bulk density in cm3,  

Wd = weight of oven dry soil (g) 

Vs = volume of soil (solids and pores) (cm3) 

2.3 Volumetric water content (θ) 

This calculation involves the use of measurements from Section 2.2: weight of oven dry 

soil, known volume of bulk density sample and bulk density (Db ), (Rowell, 1994). 

Firstly, the gravimetric water content needs to be calculated: 

Equation 2.2 Gravimetric water content 

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 𝑖𝑛 𝑠𝑜𝑖𝑙 (𝑔)

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)
= 𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 
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This measurement can then be used to calculate the volumetric water content (θ), as 

below: 

Equation 2.3 Volumetric water content 

𝜃 = 𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 

 

2.4 Standard Laboratory Procedures 

Dichloromethane (DCM) and methanol (MeOH) were used for cleaning equipment and 

extracting soil and vegetation samples. These were supplied as laboratory grade 

solvents by LSS Ltd. (UK) and then distilled on a 50 plate Oldershaw column. 

Glassware and (accelerated solvent extraction) ASE extraction equipment was cleaned 

by soaking in Decon 90, scrubbing and then rinsing multiple times with tap water, 

followed by 15 MΩ.cm deionised water. After drying in an oven at 60 °C, glassware 

was then rinsed multiple times in DCM and MeOH and then in the solvent to be used 

three times.  

Glass wool and quartz tubes used to contain samples to be run during analysis with both 

on-line thermally assisted hydrolysis and methylation (THM) in the presence of 

tetramethylammonium hydroxide (TMAH) as well as flash pyrolysis gas 

chromatography-mass spectrometry (Py-GCMS) were respectively extracted with 

DCM:MeOH (93:7; v:v) in a Soxhlet apparatus for 24 h and rinsed with DCM before 

use.  

2.5 Sample preparation 

An aliquot of all samples was taken in order to conduct analysis upon. The remainder of 

the sample was kept frozen, in case of future use. All biomass and soil samples were 

then freeze dried and ground to a fine fraction (<0.25 µm). Soil samples were ground 

using either an agate ball mill or an agate pestle and mortar. Biomass samples were 

ground using liquid nitrogen in a cryomill. All samples were passed through a <0.25 µm 

sieve to verify the particle size. Subsequently, samples were extracted using ASE as 

detailed in Section A. 2.  Appendix A. This method was chosen for use after an 

experiment comparing it to Soxhlet with reference to efficiency, reliability and cost (see 

below).  
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2.6 Total organic carbon (TOC) and carbon storage (OC) 

TOC was determined using 0.1 g of freeze dried, sieved and ground sample. 1 mL of 

hydrochloric acid 4.0 mol/L, was added to each crucible, which was allowed to drain 

from the sample for 4 hours. The samples were then placed in the oven at 60 to 70 °C 

for 16 – 24 hours. The Leco CS230 Carbon/Sulphur Analyser was calibrated prior to 

use and the organic carbon content of a reference soil measured. A blank was used with 

each sample set. 

The organic carbon content was calculated as follows:  

 

Equation 2.4 Organic carbon percentage on oven dry basis 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑐𝑎𝑟𝑏𝑜𝑛, % =
D

C - C bls

 

 

Where Cs is the measured carbon percentage of the sample, Cbl is the measured carbon 

percentage of the blank and D is the dry matter factor. 

After calculating both TOC and Db it was then possible to calculate the weight of 

organic carbon (t C ha-1) of soils by horizon, using the following formula: 

Equation 2.5 Organic carbon (OC) 

𝑂𝐶 =  𝑑 𝑥 𝐷𝑏 𝑥 𝑇𝑂𝐶 

Where d = depth (cm), Db = bulk density (g cm3), TOC = total organic carbon (%). 

Through using TOC as a percentage, the conversion from g per cm2 to t per ha, is 

avoided. This conversion has caused confusion and errors in the past (Cannell and 

Milne, 1995). 

Where horizons were missing bulk density data, due to an inability to sample them (e.g. 

water saturation or depth of horizon), bulk densities were estimated using surrogate 

values determined by pedotransfer functions or rules (Bouma and van Lanen, 1987), as 

used in Batjes and Dijkshoorn (1999). The primary surrogate option was to calculate the 

mean bulk density of the soil profile and use this value for missing horizons within the 

profile. The secondary option (if only one bulk density value was available for a profile) 

was to use a mean soil profile bulk density value of a corresponding soil type and the 

one available horizon. 
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2.7 pH 

A suspension of soil was made through weighing 5 ± 0.1 mL freeze dried, seived and 

ground soil (Section 2.5) in a screw-cap bottle with 25 mL water from a measuring 

cylinder. This was then shaken for 1 hour. After this, the suspension was left for 

between 1-3 hours in order to equilibrate. A pH electrode and meter was calibrated prior 

to use using standard buffer solutions, after which the pH-H2O of the suspension was 

then measured and recorded in the laboratory.  

2.8 X-Ray Diffraction (XRD) 

X-ray diffraction was undertaken on a subset of samples in order to have a preliminary 

view of the minerals present within the study sites, for the purpose of aiding a 

preliminary soil classification. 

X-ray diffraction was carried out using a PANalytical X'Pert Pro Multipurpose 

Diffractometer (MPD) fitted with an X'Celerator* detector.  Diffraction data was 

acquired by exposing powder samples to copper-Kα X-ray radiation, generated from a 

copper (Cu) anode supplied with 40 kV and 40 mA, which has a characteristic 

wavelength (λ) of 1.5418 Ångstroms. Data sets were collected over a range of 2-70o 2θ 

with a step size of 0.0334o 2θ and nominal time per step of 250 seconds, using the 

scanning X’Celerator detector (hence the seemingly long counting time per step).  Fixed 

anti-scatter and divergence slits of ¼o and ¼o were used together with a beam mask of 

10mm and all scans were carried out in ‘continuous’ mode.  

Samples were prepared by packing approximately 500 mg of dry milled material into 

16-mm diameter steel sample wells. A spinning stage was used during analysis to 

maximise the randomisation of crystallites contributing to the diffraction pattern. 

Phase identification was carried out by means of the X'Pert accompanying software 

program PANalytical HighScore Plus V3.0 in conjunction with the ICDD Powder 

Diffraction File 2 Database (1999), ICDD Powder Diffraction File 4 - Minerals (2012), 

the American Mineralogist Crystal Structure Database (March 2010) and the 

Crystallography Open Database (February 2012; www.crystallography.net). 

Comparisons of observed data sets with reference patterns were carried out on a 'best-fit' 

basis. 
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* The X’Celerator is an ultra-fast X-ray detector that uses RTMS (Real Time Multiple 

Strip) technology.  It operates as an array of a hundred channels which can 

simultaneously count X-rays diffracted from a sample over the range of 2θ angles 

specified during a scan.  The X’Celerator is therefore able to give produce high quality 

diffraction data in a significantly shorter time period than an older style diffractometer 

would require. 

2.9 THM in the presence of unlabelled TMAH and 13C-labelled TMAH 

In the presence of unlabelled and 13C-labelled tetramethylammonium hydroxide, on-line 

thermally assisted hydrolysis and methylation (THM) was performed using a pulsed 

mode open pyrolysis system specifically a CDS 1000 pyroprobe unit (Chemical Data 

Systems, USA) fitted with a platinum coil and a CDS 1500 valved interface.  

Sample weight (mg) was defined based upon total organic carbon (TOC %) (~1 mg for 

organic soil and ~20 mg for mineral soil samples) which depended upon the sub-

environment. The amount needed was weighed into a quartz pyrolysis tube plugged 

with extracted silica wool to securely hold the sample in place. Immediately prior to 

pyrolysis, 3 µl of 5α-androstane at a 1 mg/ml concentration with dichloromethane was 

injected onto the sample. 10 µl of unlabelled or 13C-labelled TMAH (25% w/w) was 

also injected immediately before pyrolysis. Each quartz tube was inserted into the 

platinum coil of the pyroprobe and then heated 610 °C for 10 s (20 °C / ms temperature 

ramp). The platinum resistance-heated coil was interfaced with an HP5890 gas 

chromatograph with an open split and thermochemolysis products were separated on a 

60 m HP5-MS column (0.25 mm internal diameter, 0.25 µm film thickness). Helium 

was used as a carrier gas due to its inert properties, at a flow rate of 1 ml/min. A solvent 

delay of 10 minutes was used. The GC oven was programmed from 50 to 220 °C at a 

rate of 1.5 °C / min, then isothermally held for 1 minute and finally raised to 320 °C at a 

15 °C / min rate and held for 16 minutes. Compound detection was carried out using a 

HP 5973 mass selective detector in full scan mode (m/z 50-700). 

Compound identification was based upon the NIST98 spectral library of that >95% and 

known retention times and ion fragmentation (Hatcher et al., 1995; del Rio et al., 1996; 

Filley et al., 2006). Compound amounts within each sample were calculated using 

compound weights against the internal standard. 
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Good peak separation was allowed by a slow increase in temperature of 1.5 °C / min 

from 50 °C to 220 °C in the GC oven. This ensured complete peak separation and 

accuracy in the estimated peak area based on the internal standard (IS). The high 

temperature used (610 °C) has been proven to be effective at cleaving condensed tannins 

(CTs) into characteristic thermochemolysis products (Nierop et al., 2005). 

Samples were run using the same conditions on the py-GC MS in order for 

reproducibility of peak retention times and areas. These conditions included solvent 

type, temperature, contact time of sample with both IS and TMAH and the ratio of 

sample to TMAH and IS. Through this, direct comparisons of different sites can be 

made.  

Samples were run via THM with both TMAH and 13C-labelled TMAH in order to 

assess the contribution of non-lignin source to the phenolic signal.  

2.10 Aromatic hydroxyl contents 

In order to determine the contribution of non-lignin sources to the phenolic signature, 

the aromatic hydroxyl contents were calculated. The calculations from the work of 

Filley et al. (1999), Filley et al. (2006) and Mason et al. (2009) were used and are given 

in Appendix B. An initial assessment of samples with unlabelled TMAH allowed for the 

individual compounds to be identified and the appropriate baseline fragment ion ratios 

determined. These ion ratios are required in accurately calculating the percent of the 13C 

addition with the use of 13C-labelled TMAH. From the Wowetta sampling transect, 

triplicate solvent extracted surface soil and biomass samples from each site were 

analysed when using unlabelled TMAH, and duplicate when using 13C-labelled TMAH, 

due to the restricted amount of derivatising agent. 

The process of THM with 13C-labelled TMAH allows for the acidic oxygen functional 

groups of the products to be methylated by the 13C-labelled methyl groups. This then 

reflects the number of acidic oxygen functional groups present on the individual 

products, which is indicated through the additional molecular ion for each product, as 

compared to that of the unlabelled TMAH product.  
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2.11 Temperature calibration of pyroprobe 

In order to make sure a constant temperature was used for all sample runs, each time the 

pyroprobe coil was renewed, the pyroprobe was recalibrated to 610 °C inside the quartz 

tube. The temperature inside the pyroprobe differed from the programmed temperature 

due to the insulating properties of the glass tube and glass wool in which the sample 

was placed. The pyroprobe was calibrated according to Bashir (1999). Where possible, 

however, the pyroprobe was calibrated by the manufacturing company to 610 °C prior to 

use. 

Calibration was performed using 5 different salts of known melting points. These salts 

were inserted into the quartz tubes with glass wool used to plug each end. Each tube 

was then placed into the coil of the pyroprobe and inserted into a brass heating block of 

a 340 °C constant temperature. Gas flow rate of helium carrier gas was maintained at 2-

10 mL/min. See Table 2.1 for the salts used and their expected melting points: 

Table 2.1 Salts used for calibration and expected melting points 

Salt Expected Melting Point (°C) 

PbCl2 501 

LiCl 605 

CsCl 646 

KI 681 

KCl 770 

A glass window was used to observe melting points and initial and fully melted 

temperatures were recorded. This was repeated three times in order to calculate an 

average to plot. The temperature was initially set to that lower of the expected melting 

point and increased until the melting point was observed. The actual and observed 

melting points were then plotted on a graph so that the observed temperature for the 

pyroprobe could be determined.  
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2.12 Mass yields and lignin parameters 

Mass yields from thermochemolysis products were determined through the use of THM 

in the presence of TMAH. The internal standard (IS) 5α-androstane was used with an 

assumed relative response factor (RRF) of 1 (for example as used in Richoz (2012)), 

which allowed semi-quantitative measurements of the differing amounts of 

thermochemolysis products across the sites and down the soil profiles in each horizon. 

Measurements were semi-quantitative as an internal standard was not used during 

solvent extraction of samples, see Section 2.13. 

Several lignin parameters were used to assess composition and characteristics between 

sites and depths. Lambda (Λ) is the sum of all of the 8 dominant lignin derived phenols 

(G4 + G5 + G6 + S4 + S5 + S6 + G18 + P18) normalised to 100 mg of OC (Hedges and 

Mann, 1979; Hedges et al., 1982; Kögel, 1986). Individual compound yields used in 

calculating Λ allow changes within relative degradation dynamics to be assessed. S/G 

and C/G ratios were also used; these are weight ratios of total syringyl and cinnamyl 

phenols compared to total guaiacyl phenols. S/G reflects the relative abundance of 

angiosperms (S/G > 0) to gymnosperms (S/G = 0) and so is used for assessing 

vegetation inputs. These ratios are calculated through the following: OC-normalised 

syringyl amounts (S4 + S5 +S6) / OC-normalised guaiacyl amounts (G4+G5+G6), 

(Hedges and Mann, 1979). C/G ratio indicates the amount of non-woody tissue as the 

compound cinnamyl is only produced in significant amounts by non-woody vascular 

plants. This is calculated through the sum of normalised amounts of cinnamyl (P18 and 

G18) / normalised amounts of guaiacyl, (G4 + G5 + G6), (Hedges and Mann, 1979). 
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2.13 THM Reproducibility 

The accuracy for manual peak integrations was tested to ensure that results were 

reproducible. This was done by repeating the integrations of 4 peaks within one TIC 

five times. Results showed that percent relative standard deviation (RSD) ([std 

dev/av]*100) varied from 0.42 to 1.50%.  

These RSD values show that reproducibility is relatively high and thus repeatability is 

not a concern within this project, as has been expressed in previous work (Kaal and 

Janssen, 2008). 

2.14 Statistical analysis 

Statistical difference tested for via methods such as General Linear Model (GLM) and 

Kruskal Wallis may prove unreliable when sample size is small relative to the 

variability in the data. Due to the relatively small sample size in this study (3 field 

replicates of all samples and 2 instrument replicates of THM thermochemolysis 

analysis) the statistical difference of values between sites was evaluated using the 

standard error of the mean (SE). This is represented on graphs as error bars (±) 

throughout the thesis.  
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Chapter 3. Field sites and soil classifications  
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3.1 Introduction 

Due to the potential for deforestation and land use alterations with predictions of a 

warmer and drier climate in eastern South America in the next century and beyond 

(IPCC, 2013), it is vital that detailed contemporary soil surveys of vulnerable regions 

are undertaken and that the biomes are monitored over time to document change. The 

range of soil types and their characteristics (such as texture, water content and organic 

matter content) need to be measured in order to improve understanding and predictions 

of changes that may consequently take place (Raich and Potter, 1995). For example, 

large releases of CO2 may occur as vegetation inputs, soil cover and microbial 

communities change (Nobre et al., 1991; Zogg et al., 1997; Laurance and Williamson, 

2001).  

Therefore this chapter aims to: 

a) Conduct a literature review on the existing knowledge of climate, vegetation, 

geology and soil types in the study areas, 

b) Undertake a ground-truthing reconnaissance survey of the study areas in order to 

evaluate a sampling strategy and sampling sites that best represent the area and, 

c)  Describe the sub-environments sampled and detail the soil characteristics 

measured, giving a preliminary soil classification to each site under the Food 

and Agriculture Organisation of the United States (FAO) guidelines (IUSS, 

2014).  
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3.2 Existing knowledge of the study area 

3.2.1 Location 

The study area is located in Guyana, South America. Specifically, it is within the 

Northern Rupununi region of central Guyana (Figure 3.1: inset). The Rupununi region 

is situated in the north eastern part of the Takutu Basin – a Mesozoic graben between 

parallel faults which form the Pakaraima Mountains to the north and Kanuku Mountains 

to the south. This basin is 280 km long and 40 km wide, stretching from Guyana into 

Brazil. Within this basin the Northern Rupununi savannahs border rainforest to the 

north, east and south-east of Guyana. The study sites are within the tribal lands of 

Wowetta at 4°01’02.5”N, 59°04’06.0”W and Surama at 4°08’30.4”N, 59°03’56.6”W. 

Wowetta lies on the very north eastern savannah-rainforest boundary of the Rupununi. 

Surama is in a 5 square mile enclosed area of savannah to the north of the vaster 

expanse of the Rupununi and the Takutu Basin (Figure 3.1). Although the area of 

savannah in Guyana is relatively small, it is understudied, particularly in relation to 

SOC characteristics, and its pristine quality provides a unique opportunity to investigate 

this at such a climate sensitive interface. 
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Figure 3.1 Location of study sites Wowetta and Surama in Central Guyana. White areas 

indicate the Northern Rupununi savannah and green areas indicate rainforest. Inset: 

the location of the study areas within Guyana (Google Maps 2014). 

 

3.2.2 Climate 

The savannah is classified as a drier tropical wet-dry climate than the rainforest, and has 

one wet (April to August) and one dry season (September to March). The rainforest has 

a tropical wet climate with two wet and dry seasons throughout the year. The first forest 

wet season corresponds to the savannahs, and the second lasts from mid-November to 

February. The dry season is longer than the wet within the savannah (7 months 

compared to 4) and has high temperatures but lower humidity than in the wet season 

(Suggett, 1964; Bovolo et al., 2012).  

The most current precipitation data ranges from 1400-1800 mm annually, whilst annual 

temperature variations are lower (25 – 27 °C), indicating the stronger influence of 

precipitation on the savannah-rainforest boundary (Bovolo et al., 2012). Maximum 
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temperatures occur in April and October post-equinox and relative humidity is high at 

70 % (Bovolo et al., 2009). Recent IPCC (2013) predictions of a hotter (0.5 – 2 °C 

increase) and drier (up to -10 % decrease in precipitation) climate within much of South 

America, including Guyana, in the next 50+ years carries the consequential risk of 

forest die-back and potential savannah expansion. Bovolo et al. (2012) highlighted that 

the savannah dry season varies spatially and in intensity between years, likely due to 

ENSO and rain-shadow effects from the Guiana Highlands.  

Consistent winds throughout the year mean that temperatures are lowered. During the 

wet season soils become flooded and are heavily leached. They are subsequently 

hardened by dry conditions in the dry season (Suggett and Braun 1964). The seasons are 

better distributed within the forest where it is more humid due to greater canopy cover, 

and dews appear all year round (Suggett and Braun 1964). Due to these seasonal 

conditions, it is expected that soil type and SOM characteristics will differ between 

savannah and rainforest: greater SOM degradation may occur where leaching is most 

pronounced, whilst lesser SOM degradation may occur where soils remain wettest 

throughout the year. 

Land use and land use change may also affect soil type, however pristine areas have 

been targeted for assessment in this study. Intense precipitation pulses during the wet 

season may cause effective leaching and runoff of SOM (Pereira et al., 2014), whilst 

exposure to sunlight in savannahs during the dry season may favour photo-degradation 

(Austin and Vivanco, 2006). Microbial community composition and activity will also be 

affected by these wet and dry seasons, through suppression of activity during anaerobic 

periods and increased activity in dry periods (Freeman et al., 2001). This may cause 

variation in SOM degradation extent depending upon soil type or water retention. The 

current chapter will identify soil types and characteristics, whilst Chapters 4 and 5 will 

explore the SOM characteristics and discuss such abiotic and biotic influencing factors 

of sample sites. 

3.2.3 Geology 

The following sections review studies undertaken at the Guyana Lands and Surveys 

Commission (GLSC), the Guyana Geology and Mines Commission, Iwokrama research 

base and the University of Guyana. This entailed sourcing materials on geology, soils 
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and vegetation in the study area. It also includes further research undertaken via journals 

accessed on the internet, which are referenced in the following passages. 

Figure 3.2 shows the location of the Takutu Basin within central Guyana, which 

encompasses the Northern Rupununi savannahs, including the Wowetta field site. This 

basin developed within the heart of the Precambrian Guyana shield. A generalised 

geological map of the Takutu Basin and surrounding Archean Guyana shield can be 

seen in Figure 3.3. The second field site of Surama is located to the north of the basin in 

the surrounding Precambrian metavolcanics and Iwokrama formation. The latter 

formation consists of felsic volcanics and associated subvolcanic granite, dating from 

around 4000 – 2000 million years ago. 

 

Figure 3.2 Location of the Takutu Basin in central Guyana (adapted from Crawford et 

al. (1985). 
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Figure 3.3 Basic geological map with A-B cross section of the Takutu Basin relating to 

Figure 3.4 (adapted from Crawford et al. (1985). 

Including the Precambrian Guyana shield, there are seven known layers of geology 

within the Takutu Basin. These layers can be seen in Figure 3.4. Daniel and Hons 

(1984) describe the Precambrian crystalline bedrock complex as consisting of granites, 

gneiss, amphibolites, rhyolites and quartz, in addition to metamorphic rocks of both 

volcanic and sedimentary origin. In the Northern Rupununi savannahs and Kanuku 

Mountains, this complex dates to 2700 million years BP. Above this lies the Apoteri 

formation:1700 m of mafic volcanics in the form of grey tholeiitic basalt, dating to the 

Jurassic and potentially older (i.e. Proterozoic) ages. This basalt accumulated to a 

significant thickness, but was likely eroded and potentially faulted prior to the next 

formation. Deposition of the Manari formation over the Apoteri through alluvial and 

lacustrine environments subsequently took place. This formation consists of grey-brown 

shale, siltstone and non-marine carbonates and are c. 300 m thick, dating to the early 

Jurassic. This was also eroded following deposition and shows evidence of block 

faulting. The c. 1200 m thick Pirara formation overlies this, which formed during arid 

climatic conditions of the early Jurassic allowing evaporites to be extensively deposited. 

In a mix of lagoon and shoreline non-marine environments, interbedded halite and shale 

accumulated. Minor occurrences of limestone and marl also constitute this formation. 

Towards the edges of the basin, the deposits grade into fine-grained clastics. This is 

covered by c. 3000-5000 m of late Jurassic sedimentary rocks of the Takutu formation, 

consisting of reddish brown mudstone, shale and sandstone and thin limestone (Sinha, 

1968). The primary and secondary source rocks of these deposits are thought to be the 
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Kanuku (southern) and Makarapan (north eastern) horsts respectively. Berrangé (1977) 

details the ‘Nappi Laterite formation’, which stretches over the Mesozoic graben of the 

northern savannahs. This formation overlies 3-4 km of sediment and is of the Eocene 

age (Sinha, 1968). Dating from the Oligocene to Pleistocene, the Northern Savannahs 

formation of clastics sits above the Nappi Laterite. Holocene sand, silt and clay 

sediments of the Rivers formation are presently accumulating in the basin.  

 

Figure 3.4 Geological cross section of the Takutu Basin, showing several layers of 

geology (adapted from Crawford et al. (1985). 

 

3.2.4 Soils 

The influence of the Nappi Laterite formation can be seen within the soil development 

of the soil types previously recorded, as detailed below. Leaching of the parent rock 

described above during the Eocene would have led to the predominance of insoluble 

iron and aluminium ions constituting the laterite formation. This would have occurred 

under high temperatures and a wet-dry seasonal climate, with rain water percolating 

soluble ions, and dry conditions bringing the dissolved ions back to the surface via 

capillary action. With the return of the wet season, the soluble ion salts deposited on the 

surface were then removed via surface run-off, leaving the insoluble ions. Accumulation 

of sesquioxides in wet areas resulted in the formation of plinthite. After a drop in the 

ground water level, potentially by a lowering of the rock beneath, this plinthite 

irreversibly hardened to form laterite. Due to a high erosion resistance, relief inversion 

of the landscape developed. This has resulted in the present-day gently undulating 
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landscape of laterite and seasonally waterlogged flats (Sinha, 1968; Daniel and Hons, 

1984). 

Such weathered rock is an important feature of the ferralsols mentioned below. The 

Northern Savannahs and Rivers formations lying above the Nappi Laterite are also key 

features within the soil formation: these sandy deposits led to poorly developed regosols 

discovered in the area. 

Within the study region two soil groups have been distinguished and mapped by Suggett 

and Braun (1964): ‘soils of the Youthful Pediplain’ and ‘old sandy terrace and residual 

sand soils’. In 2005, Guyana Lands and Surveys Commission created an updated map in 

which the two aforementioned soil units are included (GLSC, 2005). These two soil 

groups are described below. 

‘Soils of the Youthful Pediplain’ create a matrix within which the soils described below 

exist.. These soils have formed from the erosion and weathering of crystalline rocks and 

are covered by high forest vegetation. They are classed as red-yellow ferralsols and low 

humic gleysols.  

The ‘Old sandy terrace and residual sand soils’ are deep and unconsolidated sands 

deposited from rivers and crystalline rock erosion and are largely undeveloped. These 

residual soils form a gently undulating landscape and may have small wetter areas with 

a higher clay percentage within them where depressions meet high water tables. They 

are classed as regosols (brown quartz sand), and characteristically have little structure or 

profile development due to a high proportion of sand. Excessive drainage occurs leading 

to droughty conditions in the dry season but flooding may also ensue in the wet season. 

Humus staining can be evident from greyish brown colouring at the surfaces, with a 

gradual change down the profile. These soils are extremely acidic and infertile (pH 4 – 

4.5).  

3.2.5 Vegetation 

Forests in the study region are broadly characterised as ‘lowland tall, evergreen, 

seasonal forest’ on the Vegetation Map of Guyana (Huber, 1995). Species such as 

Goupia and Manikara exist here. Non-flooded tall, evergreen forest also grows, with 

species such as Eschweilera, Licania, Catostemma and Chlorocardium. Dry, deciduous 
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forest borders the savannah and is characterised by the species Goupia glabra, 

Couratari, Sclerolobium, Parinari, Apeiba, Peltogyne, Catostemma, Spondias mombin 

and Anacardium giganteum (ter Steege, 2000). Forests may also degrade into Muri-

scrub (Humiria balsmaifera) where fires and floods are frequent (ter Steege, 2000). 

Eden (1964) found that throughout the Rupununi savannahs there exists a mosaic of 

different vegetation types. These include wooded savannah, herbaceous savannah with 

grass or sedge dominance, sedge swamp, palm swamp, galleria (river bank) forests and 

forest islands. More recent studies have noted lowland shrub savannah within in the 

Northern Rupununi (Huber, et al., 1995). Here grass species such as Trachypogon, 

Axonopus and shrubs Curatella and Byrsonima can be found (ter Steege, 1998) addition 

to sedges such as Rhynchospora and Bulbostylis (ter Steege, 2000). These shrubs along 

with others have been suggested to be fire-climax vegetation, i.e. this plant community 

is maintained by the occurrence of fire (ter Steege, 2000).  
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3.3 Reconnaissance survey 

3.3.1 Local knowledge 

Before conducting a reconnaissance survey of the savannah-rainforest boundary around 

Wowetta and Surama, meetings were held with local residents to gain local current and 

historical land use knowledge of these areas. Specifically, areas were discussed in which 

residents knew anthropogenic activity (such as agricultural practices) had not been 

taking place. Areas where this activity was currently occurring and had occurred within 

recent history (c. 50 years) were also discussed and some of these sites were also visited 

with local farmers. This was done to verify that the sites chosen were not under direct 

current or recent anthropogenic influence, so that the data collected was known to be as 

unaffected by human influence as was possible.  

3.3.2 Ground truthing 

A two week ground truthing reconnaissance survey was subsequently carried out within 

the tribal lands of Wowetta and Surama. The reconnaissance areas were chosen as 

advised (as above) by local residents, in order to ensure that a representative sampling 

of the savannah-rainforest boundary at these two areas was undertaken (Figure 3.5). 

This survey entailed using landscape form and vegetation types to evaluate where soil 

type and edaphic conditions may also change.  

Soil testing was done using an Eijkelkamp auger to a maximum of 2 -3 m depth to 

provide an overview of the soil profile. Texture (hand test), colour (Munsell colour 

chart), boundary type of each horizon, the depth of each horizon, water table height and 

occurrence of plinthic material, (preferred term of FAO for hard or soft laterite material, 

formed through continual wetting and drying cycles), were deciphered and recorded in 

the field. They were then used to assess the study area and choose representative sites 

for sampling.  

The savannah sub-environments described in Eden (1964) were found: wooded 

savannah, herbaceous savannah with grass and sedges, palm swamp and forest islands. 

These sub-environments are noticeable mainly through vegetation type, however, 

elevation or slope may also alter edaphic conditions and so soil was tested at both 

vegetational changes and changes in slope and elevation. Where possible, vegetation 

species were identified by local field assistants. 



 

The occurrence of soft and hard plinthic material was common to all sites investigated 

and forms a major part of the soil formation. These findings are consistent with the 

Nappi Laterite Formation (Berrange, 1977) and the undulating laterite landscape 

formerly described in Section 3.2.4 (Sinha, 1968; Daniel and Hons, 1984; ISSS, 1998). 

The soft plinthic material identified highlights the intermediate stage of laterite 

formation, in that the accumulated sesquioxides have not hardened to laterite in all the 

sites investigated. Quartz sand overlying plinthic material was also common 

(particularly in savannah sites) and thus was a similarly important part of the soil 

formation. This is consistent with the North Savannah and Rivers formation overlying 

the Nappi Laterite. 

Soils varied depending upon landscape position in both areas and were either sub-orders 

of plinthosols or gleysols as according to the specifications of FAO World Reference 

Base for Soil Resources (IUSS, 2014). These soil types are similar to those cited in the 

literature (Section 3.2.4), in that gleysols were also found. However, the other major 

group of soil classified were plinthosols, conversely to the ferralsols found by Suggett 

and Braun (1964) and as mapped by GLSC (2005). Many characteristics of these two 

soil types are the same, however plinthosols have >15% volume of weakly-cemented 

concretions, nodules or mottles compared to ferralsols, which have lower concentrations 

(FAO, 2014). It is also likely that this difference in soil type allocation may also be due 

to the revisions of the soil classification system in recent years. The regosols described 

in earlier work bear a close resemblance to the upper horizons of some of the 

plinthosols described in this study (GLSC, 2005). The difference in soil type allocation 

may be because no plinthic material was found in those soils classified as regosols. 

However, in this study, evidence of plinthic material was found throughout the 

reconnaissance survey within the soil profile.  
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Figure 3.5 Reconnaissance areas within black boxes at Wowetta and Surama. White 

areas indicate savannah and green areas indicate rainforest. 

 

Iwokrama forest boundary 
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3.4 Sampling methodology 

Eighteen sample pits were excavated in February 2012. Full details of the sampling 

methodology for soil and vegetation can be found in Chapter 2, Section 2.1.The 

properties of each soil profile are fully detailed in Appendix D. 

The occurrence of precipitation was noted prior to and during sampling as this can 

affect properties such as the depth of the water table. It was noted that heavy rain 

occurred within a week of sampling, however, no precipitation occurred on days when 

samples were taken. Sampling was undertaken at the beginning of the dry season, 

starting at Wowetta and finishing at Surama.  

It must be noted that the measurement of the water table is not static and will alter 

depending upon season and length of time since a rain event. For example, after a rain 

event or during the wet season the water table may be higher. Therefore this 

measurement is a guideline rather than being absolute. This may have implications in 

understanding soil organic matter (SOM) content and degradation, i.e. there may be 

changes in microbial activity with differences in soil water content at different times of 

year. Ideally it would be measured throughout the year and averaged for a more 

accurate value, however this was not within the scope of study. The appearance of 

mottled horizons from iron oxide redox reactions may thus also change with water table 

depth throughout the year.  

The depth of occurrence of either the pisoplinthic or the plinthic horizon from the 

surface was also measured. These two plinthite forms were found throughout the study 

areas and indicate the presence of iron oxide undergoing redox reactions through 

wetting and drying cycles (as previously mentioned in Section 3.3.2). Some sites 

consisted of horizons with ≥ 40% volume of concretions or nodules of iron oxide ≥ 

2mm (pisoplinthic) or mottled colours indicating redox reactions of iron oxide (plinthic 

horizon). A moisture probe was also taken into the field, however this equipment failed 

to work (probably due to high humidity) and therefore no results could be collected for 

this measurement.  

These measurements were taken in order to provide a good basis for soil type 

identification as according to the guidelines of the FAO World Reference Base for Soil 
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Resources 2014 (IUSS, 2014). Total organic carbon (TOC) and pH measurements in the 

laboratory (see Chapter 2) further verified these field identifications, however, due to 

time constraints, laboratory measurements as recommended in van Reeuwijk (2002) 

could not be undertaken. 
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3.4.1 Wowetta transect sample sites 

Using the information gained from local residents and from the reconnaissance survey, 

sites were selected along a 5 km transect from the savannah into the rainforest within 

the Wowetta area. A transect was chosen as the best sampling method as it allowed the 

greatest number of sub-environments to be included within the study. These sub-

environments vegetation grades from areas of pure grassland (SG) to isolated savannah 

trees (ST) and denser canopies of woodland (SW). Palm trees and other savannah tree 

species grow alongside grasses and sedges in swampier areas (SS). The savannah is 

dissected by tongues of rainforest island (FI) extending from the main body of the 

rainforest or occurring as isolated groups. The transition zone (T) between savannah and 

rainforest at these areas and at the main body of rainforest is abrupt.It is marked on this 

transect by a border of muri scrub (c. 5 m tall). This vegetation establishes post-fire and 

it is known that a natural fire occurred in this area in 2005 (personal communication 

with local indigenous community, 1st February 2012). The rainforest section of the 

transect consists of the three sub-environments: swamp forest (SF); mixed tree species 

forest (MF); and pisoplinthic mixed tree species forest (PF). The rainforest has a high, 

but not emergent level, canopy (c. 30-50 m tall). The occurrence of palm trees was 

noted in SF, as in SS. A mixture of shrub level plants also exist beneath the canopies of 

the rainforest sites. 

The location of these sub-environments along the 5 km transect are shown below in 

Figure 3.6 via GPS points. A photograph of each sub-environment is then depicted in 

Appendix C to show the differences between vegetation. 
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Figure 3.6 Wowetta transect GPS sampling points in closed red circles with specific site 

abbreviations labelled adjacently. GPS points have an error of up to 10 m. Green 

indicates rainforest vegetation, white indicates savannah.  
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3.4.2 Surama sampling sites 

Due to the size of the savannah in Surama and the close proximity of local residents, it 

was not feasible to create a transect of savannah and rainforest sites. This is because the 

areas of most pristine savannah and rainforest are not aligned but are dispersed 

throughout the landscape. Where it was impossible to guarantee savannah sites were 

chosen without recent or current land use, certain sites within the rainforest have been 

set aside as a reserve for eco-tourist attractions in which no anthropogenic activities 

such as burning or agriculture are allowed within the last 50 years (oral communication 

with residents). Thus using local knowledge, sites were chosen from the most pristine 

savannah sites and the rainforest reserve.  

The sites consist of four forest, four savannah and one transition site. Savannah sites 

include savannah grassland (SG), savannah grassland on a pisoplinthic mound (PSG), 

savannah tree (ST), and savannah wood (SW). It should be noted that the vegetation 

found on the pisoplinthic mounds found at both Wowetta (forest) and Surama 

(savannah) show that these mounds do not result in a specific vegetation type. The 

transition (T) site at Surama has vegetation consisting of tall grasses and shrub trees, but 

no muri scrub as in Wowetta. As muri scrub is often found post-fire, the lack of its 

presence may suggest the lack of recent fire along the savannah-forest boundary. No 

savannah swamp was found in this area, as opposed to Wowetta. Forest sites consisted 

of swamp forest (SF), mixed tree species forest (MF), a kokret palm forest (PKF) and a 

forest dominated by mora tree species (MRF). The tree species identified here were 

known, and thus identified, by the accompanying field ranger.  

The location of these sub-environments along the 5 km transect are shown below in 

Figure 3.7 via GPS points. A photograph of each sub-environment is then depicted in 

Appendix C to show the differences between vegetation. 
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Figure 3.7 Surama transect GPS sampling points in closed red circles with specific site 

abbreviations labelled adjacently. GPS points have an error of up to 10 m. Green 

indicates rainforest vegetation, white indicates savannah.  
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3.5 Soil classification results 

Table 3.1 shows the defining properties of each soil profile sub-environment in both 

Wowetta and Surama. For each soil type, the defining properties are highlighted in bold. 

Below are descriptions of these soil types relating to their sub-environments, as of Table 

3.1. 

3.5.1 Haplic plinthosols 

Haplic plinthosols include savannah soil SG2, SW2 and ST2 and forest soils PKF, MRF 

and MF2. The haplic features of SG2, SW2 and ST2 include plinthic material 54, 50 

and 200 cm from the surface with ≥50% mottling (mix of reductimorphic greys and 

oximorphic reds/yellows of iron oxides from repeated wetting and drying) and low 

activity clays (kaolinite). Although plinthic material should start within 100 cm of the 

surface to classify as a plinthosol, ST2 had no other defining features which would 

indicate a different soil type, and so is classified as a plinthosol despite a deep plinthic 

horizon. KPF, MRF and MF2 have plinthic material evident from the surface to the 

bottom of the soil profiles.  

3.5.2 Albic plinthosols 

Savannah soils SG1, SW1 and ST1 are all albic plinthosols due to the dominant albic 

horizon in these profiles. The albic horizon is generally leached of organic matter and 

minerals (other than quartz) and can be recognised through a light colouring (which 

varied from white to pale brown), low TOC and acidic pH. TOC in this horizon ranges 

from 0.03% to 1% and pH from 4.29 – 5.66 in SG1, SW1 and ST1 (see Appendix D). 

Although the surface horizons of these soils do not affect their classifications, it is worth 

noting that there are apparent differences between SG1 and SW1 / ST1.  These 

differences can be seen through the following three descriptions and measurements (as 

given in Appendix D): the surface horizon colouring of dark greyish brown (SG), and 

dark brown / very dark greyish brown (SW / ST); pH 4.49 (SG1), 3.93 (SW1) and 3.9 

(ST1); and TOC 0.7% (SG1), 1.61% (SW1) and 2.86% (ST1). This is likely caused by 

vegetation differences of grass and wood, where the latter causes a greater organic 

matter input into the surface horizons of SW1 and ST1 than SG1. The potential 

implications of these differences are discussed in Section 3.7.
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Table 3.1 Defining soil properties for classification at each sub-environment. ND = not determined. 
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3.5.3 Acric plinthosol 

MF1 is an acric plinthosol. This soil profile increases rapidly in clay content with depth 

(silt loam – sandy loam - clay), lending the ‘acric’ prefix. Plinthic material is apparent at 

42 cm from the surface and is the dominant soil profile property. 

3.5.4 Pisoplinthic plinthosols 

PSG and PF are both pisoplinthic plinthosols, despite a difference in vegetation. 

Pisoplinthic material exists throughout the profile of both soils. Due to the hard nature 

of this material it was not possible to sample further than 40 and 70 cm depth with a 

spade and auger respectively.  

3.5.5 Humic gleysols 

Sites FI and SF1 are both humic gleysols. ‘Gley’ indicates soil saturation with water, 

resulting in reducing conditions (shown through grey colouring of the surface and an 

Eag horizon as well as a water table 25 cm from the surface). They show similar 

characteristics in respect to water table height (both 25 cm from the soil surface), colour 

(black grading to grey with mottles) which indicates that they are gleysols. Both also 

have a predominantly clayey texture with a black coloured humified surface horizon. 

Average TOC at the soil surface differs between the sites, with FI being roughly half of 

SF1 (FI: 6% and SF1: 13%). However, the high TOC of the surface horizons in both 

sites results in the ‘humic’ status of both. This humic status which is lacking in other 

sub-environments may have implications for the soil organic carbon stock and 

molecular characteristics, and is further discussed in Section 3.7 and Chapters 4 and 5.  

3.5.6 Plinthic gleysols 

SS and T1 are plinthic gleysols due to the presence of gleyed and mottled features. This 

is the overriding feature of this soil type. Plinthic material is also apparent where 

fluctuations in the water table has allowed mottling (oxidation and reduction) of iron 

oxides from the plinthite of ≥15% volume. This evidence is corroborated by the 

presence of the mineral strengite albeit in small amounts compared to quartz (see 

Appendix E). This plinthic material occurs at >100 cm from the surface, and thus this 

soil is primarily a gleysol with plinthic material.  
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SF2 is a plinthic gleysol due to evidence of yellow mottling within a grey coloured 

matrix at 6 cm depth from the surface of the soil, resulting from a fluctuating water 

table. The water table is breached at 270 cm depth from the soil surface. Plinthic 

material is apparent in the mottling and is the second most dominant feature of this soil 

after gleying, resulting in a ‘plinthic’ prefix. 

3.6 Soil profile schematics 

Figure 3.8 and Figure 3.9 are schematics of each sub-environment found and sampled in 

Wowetta and Surama, respectively. Each sub-environment occurred more than once, 

however, only one of each type was sampled in each area. The figures also show the 

field measurements taken. These include the height of the water table, full depth of 

profiles and individual horizons, and the texture and colour of each horizon. Each 

horizon is classified as according to these features (shown in letters adjacent to the 

profile). They also show the vegetation type above the profiles. Each profile is labelled 

with correspondence to the sites named above. 

Both schematics illustrate the undulating landscape of dry pisoplinthic mounds (sites PF 

and PSG, where the water table was not breached) and wetter plinthic depressions (SS, 

T1, SF1 & 2 and MRF). The influence of quartiztic material can be seen in the paler, 

dominantly sandy and eluviated (Ea) horizons of the savannah soils. Mixing between 

sand from river alluvium and clay from plinthic material is evident in the sub-horizons 

of most profiles, and is evident in the texture type (e.g. from loamy sands to sandy 

clays). Transition (T1) and forest sites (FI, SF1 & 2, MF1 & 2 and MRF) typically have 

a dominance of clay over sand in their soil profiles. However savannah sites (SG1 & 2, 

SW1 & 2, ST1 & 2 and SS), typically have a greater sand content. Sites with high water 

tables (FI, SS, T1 and SF1), and / or dense vegetation cover (all latter sites and SW1 & 

2 and ST1 & 2) have dark surface horizons. Mottling from fluctuating water tables were 

apparent in most soil profile sub-surface horizons. 
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Figure 3.8 Schematic of the sequence of sub-environments sampled along the 5 km transect in Wowetta.
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Figure 3.9 Schematic of soil profiles at each sub-environment sampled in Surama. 
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3.7 Discussion 

As seen in Section 3.5 the same soil types may exist in either savannah, transition or 

forest biomes. This indicates that vegetation is not the predominant factor in soil 

formation and classification. . From the results presented it is evident that plinthite is a 

strongly influential factor upon the major soil group, which results in the majority of 

sub-environments being plinthosols. The high temperature, wet-dry seasonal climate of 

Guyana which initially weathered the underlying Takutu sedimentary and Iwokrama 

volcanic bedrock into plinthite during the Eocene is therefore an integral part of the soil 

formation. As of previous studies in this region which detail similar soil types, this 

influence of plinthite  is to be expected (Suggett, 1964). Similarly, the landscape 

position and hydrology is another major factor in soil type: gleysols occur in 

depressions where the water table is near the soil profile surface.  

The factors that cause soil types to have different sub-groups or prefixes to their 

classifications (e.g. haplic plinthosol and albic plinthosol) are caused by a mixture of 

environmental and vegetation differences between sub-environments. For example, 

humic gleysols (SF1 and FI) have a humic prefix due to a high amount of organic 

matter in the surface horizons caused by both high water content (see Chapter 4, Section 

4.3.5) and vegetation inputs (observation), whereas plinthic gleysols SS, T1 and SF2 

have dominant plinthic properties due to drier soil profiles, and a lower vegetation input 

at SS. However, haplic, albic and acric plinthosols are a result of parent material 

features. For example, the presence or eluviated absence of iron oxides, results in haplic 

and albic soil sub-groups respectively. The sandy texture and the rapid textural change 

with depth (sandy loam – clay) results in albic and acric soil sub-groups respectively.  

Differences caused by vegetation between soil profiles are most apparent in the surface 

soil. For example, as evident in Figure 3.8 the surface soil of SG1 is lighter in colour, 

less fibrous in texture, less acidic and lower in TOC than SW1 and ST1. These 

differences are likely caused by less vegetation inputs into SG1 soil than SW1 and ST1: 

greater vegetation inputs may cause a darker colouring, higher TOC and greater acidity 

if the quality of these inputs is poor (i.e. lignin, tannin and cutin rich). Filley et al. 

(2008) showed that woody encroachment into savannah grassland on sandy loam 

surface soils, over 14 - 105 years, caused an enrichment in cutin and suberin aliphatics 
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in non-aggregated particulate organic matter (POM). They concluded that woody 

encroachment led to a rapid accumulation of biochemically recalcitrant molecules in the 

POM. Creamer et al. (2011) identified that old woody stands have greater surface soil 

organic carbon (SOC) than grasslands. Despite this SOC accrual, a greater proportion of 

SOC was mineralised to CO2 than in grasslands, indicating a lack of biochemical 

recalcitrance. It was speculated that this greater respiration may be due to increased 

microbially available OM inputs from the woody encroachment; thus, the location of 

the SOC within the soil matrix is more important than its chemical structure. SOC 

accrual under woody encroachment was therefore attributed to changes in microbial 

community structure and activity due to soil moisture limitations, (Jackson et al., 2002; 

Huxman et al., 2005), release of microbial inhibitors from plants, (Weidenhamer and 

Callaway, 2010) and resulting enzyme suppression (Waldrop et al., 2004). Therefore, 

these observed differences caused by vegetation within surface soils may indicate more 

complex differences in SOC and molecular characteristics between soil types and sub-

groups. Of particular importance, as noted by Creamer et al. (2011), are the differences 

in microbial community and activity, which are influenced by the specific site 

conditions, and in turn are very influential on the SOM characteristics. The SOC and 

molecular characteristics of individual sub-environments will be assessed in Chapters 4 

and 5 respectively. 

Surface soils of SF1 and FI also showed differences relative to other soils; with darker 

colours and highest TOC’s (Figure 3.8). This indicates that SOC may be highest and 

potentially molecular compounds are preserved at these sub-environments (this is 

further assessed in Chapters 4 and 5). However, in the surface 25 cm above the water 

table, where the soil is not completely saturated, there may be degradation of organic 

compounds due to more aerobic conditions (Amundson et al., 1989; Austin et al., 2004). 

Potentially, degradation rates may be higher than at drier sites such as the savannah 

soils, in which water limitation may prevent microbial activity (Huxman et al., 2005).  

The sub-set of soils that were tested for mineralogy show that low activity clay 

(kaolinite) and quartz are the main minerals present (see Appendix E). This may result 

in a lack of ability to stabilise organic matter in the profile (Martin and Haider, 1986), 

leading to low TOC seen throughout profiles (except at surface soils of SF1 & 2 and FI) 

and, thus, overall low SOC stocks. Weaker strengite signals have also been identified in 
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most surface soils (except SF1).. The effects of this mineralogy are further discussed 

alongside SOC data in Chapter 4. The low activity clay in these soils may also indicate 

that organic molecules such as lignin, tannin and carbohydrates have a low ability to be 

stabilised, which will be investigated in Chapter 5.  

Despite the knowledge of a fire in 2005 along the Wowetta boundary, and previous 

studies identifying charcoal and thus evidence of fires in central Guyana rainforest 

(Hammond and ter Steege, 1998), no such evidence of fires within soil profiles was 

observed whilst sampling. A thin dark coloured layer was observed on some savannah 

soils close to the transition (T1) site at the boundary, however this was not observed at 

the T site itself. This suggests that evidence of the 2005 fire has since been lost in the 

soil and is only apparent in the resulting Muri scrub. However, molecular evidence may 

reveal lasting fire-induced characteristics of SOM, as discussed in Chapter 5. 
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3.8  Conclusions 

The soils between the two study areas of Wowetta and Surama show the same main 

orders of classification (plinthosols and gleysols) but with some differences in sub-

orders of classification. Sub-orders of classification ranged between haplic, albic, acric 

and pisoplinthic for plinthosols. This depends upon typical features (haplic), the 

presence of eluviated material (albic horizon), a rapid textural clay increase with depth 

(acric) or pisoplinthic material. Gleysol sub-orders varied between humic and plinthic, 

depending upon either high surface TOC or the depth of a plinthic horizon from the 

surface of the soil profile. 

The majority of soils are plinthosols, which show the predominant influence of 

geological weathering processes (resulting in an accumulation of iron, aluminium and 

quartz) on soil formation. The few exceptions that are gleysols, (swamp forest sites in 

both areas and the forest island and savannah swamp) also highlight the impact of 

hydrology on soil formation. Low activity kaolinite clay and the mineral strengite 

indicate a low ability to complex organic matter in the soil. Low TOC in most surface 

horizons (and throughout profiles, see Appendix D) highlights the inability of these 

soils to retain organic matter. Differences in the properties of surface soils, caused by 

local vegetation, may have implications for SOC and molecular quality and degradation 

extents between sub-environments, as investigated in Chapters 4 and 5.  
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Chapter 4. Soil carbon stocks of sub-environments on the savannah-

rainforest boundary of Wowetta and Surama in central Guyana  
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4.1 Introduction 

Chapter 1 highlighted the significance of soil organic carbon (SOC) stocks within the 

Amazon, encompassing Guyana. It also described the importance of these stocks in 

relation to climate change and population pressures, particularly on the savannah-

rainforest boundary. Chapter 3 then divulged the variability of environment and soils on 

the savannah-rainforest boundary, which may lead to variability within SOC stocks. 

This chapter aims to estimate the SOC stocks in full soil profiles, (up to a maximum of 

c. 3 m depth), in the range of sub-environments and associated soil types found on the 

savannah-rainforest boundary in the tribal lands of Wowetta and Surama, (see details in 

Chapter 3). It thereby creates a baseline of SOC data for these areas. 

Specifically, the objectives were to: 

a) assess how SOC changes in soil profiles with depth, 

b) establish which sub-environments hold most SOC, 

c) compare the SOC stocks estimated to existing data of the Amazon region, and 

the wider tropics in order to validate these historical values against new data. 
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4.2 Methodology, sites and samples 

This chapter encompasses data from both Wowetta and Surama sub-environments, 

sampled at the beginning of the dry season between January and February 2012. Data of 

bulk density, total organic carbon (TOC), soil organic carbon (SOC) stocks and 

volumetric water content from full soil profiles were used in this chapter. For full details 

on sampling, measurements and statistics as well as site descriptions, please refer to 

Chapter 2 and Chapter 3 respectively. 

Soil samples were taken per horizon in order to understand where most organic carbon 

is held within each profile. Sampling each horizon means that important pedogenetic 

information about the soil profile is retained, which is beneficial when studying soil 

processes in the context of carbon storage (Grüneberg et al., 2010). Differences in 

carbon stocks within or between profiles can be better understood via this method, as it 

is easy to relate the amount of carbon to individual horizon characteristics, such as 

texture. Horizon thickness is also crucial for estimating accurate carbon stocks. 

However, this method makes comparisons between soil types more difficult as the type 

of horizon may differ, in which case sampling per square metre may be more suitable 

(Grüneberg et al., 2010). Despite this, it is possible to convert horizon-based 

measurements to square metre-based measurements. In a similar method to the 

sampling approach in VandenBygaart et al. (2007) and Palmer et al. (2002), conversion 

has been done using the thickness of each horizon contained within each metre, for 

example within 0-1 m: Ah = 10 cm, A = 60 cm and B = 30 cm. The full thickness of the 

B horizon is actually 50 cm, but the remaining 20 cm is beyond the first metre, and so is 

factored into the second metre (1-2 m) estimation, but not in 0-1 m. This conversion has 

been employed during the discussion of this chapter in order to compare the stocks 

estimated in this study to those in previous studies.  
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4.3 Results  

4.3.1 Vegetation contribution to TOC 

Figure 4.1 shows the differences in average TOC between sites along the sampling 

transect in Wowetta of wood litter, fresh shoot / leaf litter and soil profiles. SG 

(savannah grassland) had no wood litter / trees present at the site and hence has no 

values for this vegetation component. 

Wood litter across the transect is relatively similar, varying by ~5%. Fresh shoot / leaf 

litter varies slightly more: ~10%. These differences may be due to variations in plant 

composition and degradation rates between sites. Sites SW, ST and SF have the highest 

summed vegetation TOC inputs (~94%) and site SG has the lowest (44%), due to the 

lack of wood litter input.  

Average soil profile TOC also varies across sites by ~12%, which is most likely due to 

differences in vegetation input quantities and degradation rates. Site SF has the highest 

average soil profile TOC (12%) whilst SG has the lowest (0.7%). Despite SW and ST 

having vegetation inputs with some of the highest TOC, they have some of the lowest 

soil profile TOC (~2%). 
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Figure 4.1 Average wood litter, fresh shoot / leaf litter and soil profile TOC % across 

the sampling transect in Wowetta, of 3 replicates with standard error (S.E.) bars shown. 

SG: savannah grassland; SW: savannah woodland; FI: forest island; ST: savannah 

tree; SS: savannah swamp; T: transition; SF: swamp forest; MF: mixed tree spp. forest. 

Wood 
litter Fresh shoot / 
leaf litter 
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4.3.2 Soil profile TOC 

TOC for each soil horizon and site at both Wowetta and Surama are shown in Table 4.1 

and Table 4.2, respectively. TOC decreases down the profile in all soils, for example, in 

SG1 from 0.91% to 0.03% and from 16% to 0.1% in SF1 soil at Wowetta, and in SG2 

from 0.97% to 0.29% and from 5.5% to 0.71% in SF2 at Surama. The sharpest 

decreases are between the surface horizons and the underlying sub-horizons, which is 

likely due to the degradation of vegetation inputs from the surface (Hättenschwiler and 

Jørgensen, 2010).  

At 0-6 cm, site SF1 and 2 had the highest TOC in both Wowetta and Surama (16% and 

5.5% respectively). The surface TOC of FI is almost half that of SF1 (7%), despite 

being of the same soil classification, and is further evidence to corroborate high 

variability.  

All other sites have much lower TOC at 0-6 cm (<3%). These values may reflect a low 

vegetation input or relatively fast organic matter turnover in the surface. Between 

Wowetta and Surama corresponding sub-environments with TOC <3% were similar: 

SW1 and 2 are 1.61 and 1.63% respectively, ST1 and 2 are 1.76 and 1.62% 

respectively, for example. However some differences do occur, such as T1 (1.42%) and 

T2 (0.52%) highlighting soil variation within similar sub-environment, as in the swamp 

forest sites. 
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Table 4.1 Full soil profile TOC%, bulk density and OC storage for sub-environments in 

Wowetta, parentheses indicate standard error of triplicates. 

  Boundaries 

(cm) 

TOC 

(wt %) 

Db 

(g cm3) 

OC 

(t C ha-1) 

OC 

(% total) 

 Area 1 - Wowetta 

Savanah grassland 

(SG1) 

    

Leaf litter /shoots  44.15     

Wood litter       

0-6 cm 6 0.91 1.66 9.08  (0.20) 16.02 

A 52 0.49 1.69 43.06  (5.04) 75.97 

Eag 103 0.03 1.98 3.03 (0.08) 5.34 

B 120 0.02 1.78 0.61 (1.77) 1.07 

Bv 137 0.03 1.78 0.91 (1.77) 1.60 

Total    56   

       

Savannah woodland (SW1)      

Leaf litter /shoots  45.78     

Wood litter  47.83     

0-6 cm 6 1.61 0.93 9.02 (0.49) 12.46 

Ah 9 1.61 0.93 13.48 (0.88) 18.61 

Eag 39 0.20 1.32 17.16 (0.75) 23.70 

Bg 64 0.52 1.93 18.37 (1.59) 25.37 

Bv 200 0.04 1.63 14.38 (0.93) 19.86 

Total    72   

       

Forest island (FI)       

Leaf litter /shoots  39.63     

Wood litter  44.6     

0-6 cm 6 7.3 0.70 30.77  (1.26) 11.93 

Ah 27 5.71 1.30 200.42  (1.26) 77.69 

Eag 220 0.10 1.30 24.31  (1.26) 9.42 

Bv 280 0.03 1.30 2.45  (1.26) 0.95 

Total    258   

       

Savannah tree (ST1)       

Leaf litter /shoots  47.20     

Wood litter  47.25     

0-6 cm 6 1.76 0.93 9.88  (0.03) 7.77 

Ah 10 1.76 0.93 16.37 (1.77) 12.88 

Eag 98 1.00 1.12 98.25 (0.62) 77.33 

Bvg 125 0.06 1.50 2.56 (0.06) 2.01 

Total    127   

  



 

74 

 

  Boundaries 

(cm) 

TOC 

(wt %) 

Db 

(g cm3) 

OC 

(t C ha-1) 

OC 

(% total) 

Area 1 - Wowetta 

Savannah swamp 

(SS) 

      

Leaf litter /shoots  41.28     

Wood litter  44.05     

0-6 cm 6 2.62 1.13 17.83  (0.85) 11.18 

Ahg 54 1.83 1.33 131.65 (2.79) 82.58 

Bvg 105 0.05 1.23 2.97 (1.82) 1.86 

B2 200 0.06 1.23 6.98 (1.82) 4.38 

Total    159   

       

Transition (T1)       

Leaf litter  38.25     

Wood litter  45.43     

0-6 cm 6 2.58 1.12 17.30 (0.30) 17.24 

A 26 1.61 1.54 64.74 (6.84) 62.61 

Bv 264 0.08 1.59 21.37 (3.20) 20.67 

Total    103   

       

Swamp forest (SF1)       

Leaf litter  47.23     

Wood litter  46.3     

0-6 cm 6 16.17 0.61 59.02 (5.59) 15.18 

Oh 27 8.82 0.96 228.61 (55.56) 58.78 

Eag 265 0.30 1.30 92.14 (20.81) 23.69 

Bv 333 0.10 1.30 9.14 (20.81) 2.35 

Total    389   

       

Mixed forest (MF1)       

Leaf litter  39.52     

Wood litter  45.62     

0-6 cm 6 1.16 1.24 8.53 (0.04) 12.02 

A 23 1.12 1.49 38.38 (1.63) 54.12 

E 42 0.11 1.65 3.45 (0.10) 4.86 

Bv 195 0.08 1.68 20.56 (0.38) 28.99 

Total    71   
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Table 4.2 Full soil profile TOC%, bulk density and OC storage for sub-environments in 

Surama, parentheses indicate standard error of triplicates. 

 

Boundaries 

(cm) 

TOC 

(wt %) 

Db 

 (g cm3) 

OC 

(t ha-1) 

OC 

(% total) 

 Area 2 - Surama 

Savannah grassland (SG2)       

0-6 cm 6 0.97 1.30 13.96 (0.65) 8.86 

A 54 0.78 1.54 67.86 (1.88) 43.07 

B 213 0.29 1.59 75.73 (2.73) 48.07 

Total    158   

       

Savannah woodland 

(SW2)       

0-6 cm 6 1.63 1.17 4.81 (0.08) 4.04 

A 50 1.05 1.40 34.07 (0.87) 28.62 

Bv 203 0.38 1.28 74.52 (0.48) 62.59 

B2 220 0.26 1.28 5.66 (0.48) 4.75 

Total    119   

       

Savannah tree (ST2)       

0-6 cm 6 1.62 1.44 7.60 (0.27) 7.10 

A 30 0.82 1.54 5.99 (1.75) 5.59 

B 154 0.31 1.62 35.92 (2.32) 33.53 

Bv 300 0.23 1.53 57.62 (1.45) 53.78 

Total    107   

       

Transition (T2)       

0-6 cm 6 0.52 1.35 11.41 (0.74) 11.54 

A 36 0.47 1.53 53.91 (14.26) 54.52 

B 94 0.48 1.44 33.57 (1.41) 33.95 

Total    99   
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Boundaries 

(cm) 

TOC 

(wt %) 

Db 

 (g cm3) 

OC 

(t ha-1) 

OC 

(% total)  

Area 2 - Surama 

Swamp forest (SF2)       

0-6 cm 6 5.45 1.11 36.30 (0.87) 11.30 

A 270 0.71 1.48 284.93 (10.13) 88.70 

Total    321   

       

Palm forest (KMF)       

0-6 cm 6 0.91 1.36 7.42 (0.15) 6.06 

A 109 0.63 1.76 114.93 (3.07) 93.94 

Total    122   

       

Mora forest (MRF)       

0-6 cm 6 2.51 1.05 9.88 (0.34) 4.91 

A 56 0.55 1.48 47.60 (2.10) 23.65 

B 301 0.27 1.45 143.78 (6.08) 71.44 

Total    201   

       

Mixed forest (MF2)       

0-6 cm 6 1.32 1.25 15.80 (2.03) 9.24 

A 60 0.56 1.51 49.12 (4.35) 28.71 

B 332 0.38 1.58 106.18 (11.23) 62.06 

Total    171   
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4.3.3 Soil profile SOC stock 

The change in SOC with profile depth is displayed in Table 4.1 and Table 4.2 and is 

given in the unit’s t C ha-1. Figure 4.2 shows the percentage of SOC in each soil horizon 

relative to the total profile SOC in a) Wowetta and b) Surama. TOC (wt %) was 

converted into SOC taking into account individual horizon thickness and bulk density. 

Unlike the general decrease with depth in TOC described above, SOC does not always 

decrease in deeper horizons. 

In Wowetta, despite most soils showing an SOC depth decrease (SG1, SW1, FI, T1 and 

SF1), some soils show increases in the deepest horizons (SW1, ST1 and MF1). This is 

due to horizon thickness, as TOC and bulk density decrease with profile depth. For 

example, MF1 SOC decreases from 38 - 3 t C ha-1, until the deepest horizon which 

measures 17 t C ha-1, this horizon depth measures 153 cm compared to the overlying 

horizon which is 19 cm. ST1 shows an increase in SOC in the Eag horizon (98 t C ha-1), 

also due to a greater horizon thickness than the overlying (16 t C ha-1) and underlying 

horizons (3 t C ha-1). 

In Surama only T2 shows an SOC decrease down the profile (from 54 to 34 t C ha-1), 

whilst SG2, SW2, ST2, MF2 and MRF increase in SOC stock with depth. Again this is 

due to horizon thickness as TOC decrease with depth and bulk density either decreases 

or remains similar with depth. For example, the deepest horizon in MF2 is 272 cm thick 

with an SOC of 106 t C ha-1 compared to its overlying horizon of 66 cm and 49 t C ha-1. 
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Figure 4.2 Percentage of each soil horizon SOC relative to the total soil profile SOC in 

(a) Wowetta and (b) Surama. SG: savannah grassland; SW: savannah woodland; FI: 

forest island; ST: savannah tree; SS: savannah swamp; T: transition; SF: swamp forest; 

MF: mixed tree spp. forest; KPF: kokret palm forest; MRF: mora forest. 
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4.3.4 Relative proportion of SOC stock of each sub-environment in Wowetta and 

Surama 

Figure 4.3 and Figure 4.4 show the relative proportions of each sub-environment to the 

total SOC stock of the sites sampled in either Wowetta or Surama. These relative 

proportions were checked against an average soil profile depth of all sites in Wowetta 

and Surama respectively, which revealed that despite differences in depth between sites, 

proportions remain largely the same (data not shown). The main difference is that both 

SF sub-environments have an average of 8% greater proportions, emphasizing the 

importance of TOC and water content (Section 4.3.5). 

Both SF sub-environments have the largest proportions of SOC at 31% and 25% for the 

sampling areas of Wowetta and Surama, respectively. The sites with the second greatest 

proportions of SOC differ between areas: FI (21%) in Wowetta; and MRF (16%) in 

Surama. SS has the third greatest SOC proportion in Wowetta (13%). MF2 & SG2 (13 

and 12% respectively) have the third largest SOC in Surama.  

Sites with the lowest proportions of SOC (<10%) are MF1, SG1, ST1 & 2, SW2, T1 & 

2 and PKF. Thus these are mainly savannah sub-environments, however, both 

transitional sites and two forest sites also account for <10% SOC relative to their 

sampling areas. 
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Figure 4.3 The relative proportion of each soil profile SOC to the total SOC in Wowetta 

sites. 

  

Figure 4.4 The relative proportion of each soil profile SOC to the total SOC in Surama 

sites. 
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4.3.5 Volumetric water contents of the soil profiles 

Volumetric water content (θ) has been calculated from bulk density measurements 

(Chapter 2: Section 2.3, Equation 2.3), in order to verify that the sub-environments SF1 

& 2 and FI which have a water table at 25 cm depth, do have a higher soil moisture 

content than those with water tables deeper than 25 cm when sampled. Figure 4.5 and 

Figure 4.6 show the average profile θ for each site at Wowetta and Surama, 

respectively.  

Figure 4.5 shows that sites SF1 and FI have similar volumetric water contents (75% and 

67%, respectively), but are higher than all other sites. This reflects the SOC for these 

sites. SS has the next highest θ at 58%. SW1, ST1, T1 and MF1 sites have some of the 

lowest θ across the transect (~40%). SG1 has the lowest θ at 27%, which corresponds to 

it also having the lowest SOC. Figure 4.7 shows a strong positive correlation between θ 

and SOC (R2 = 0.9), emphasising that highest θ is related to highest SOC.  

Figure 4.6 shows that SF2 also has the highest θ in Surama at 41%. However, due to 

variability in the soil of MF2 and PKF (illustrated through the SE bars), these soils may 

be similar to SF2 in θ, (35% and 34% on average). These θ values are significantly 

lower than those found at Wowetta, however, and may have resulted in the lack of 

relationship found between the two parameters (data not shown). Sites MRF (28%), T2 

(31%), ST2 (18%) and SG2 (26%) also show low θ values. SW2 has the driest profile, 

with a soil profile θ average of just 8%. All the soils in Surama were dry when sampled, 

as opposed to those at Wowetta. This highlights the high variability of soil properties, 

which are evident even within similar sub-environments. However, future work must 

also consider temporal and seasonal variability to verify these results. 
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Figure 4.5 The average soil profile volumetric water content for sub-environments in 

Wowetta, bars show S.E. multiplied by two. 

 

Figure 4.6 The average soil profile volumetric water content for sub-environments in 

Surama, bars show S.E. multiplied by two. 
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Figure 4.7 Correlation between SOC and volumetric water content. R2 value shown. 
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4.4 Discussion 

4.4.1 Soil profile TOC  

The variations in TOC across the sub-environments are likely due to differences in 

decomposition rates between the soils. This may be due to several factors, such as 

differences in microbial communities (Macrae et al., 2013), incorporation into clay 

minerals and organo-mineral complexing (where organic matter is physically protected 

by binding to the mineral surface e.g. cation-bridging, ligand exchange, H-bonding and 

van der Waal forces), (Gu et al., 1994; Sollins et al., 1996; Lützow et al., 2006; Feng et 

al., 2014), as well as photo-degradation  (Hernes and Benner, 2003; Austin and 

Vivanco, 2006; Gallo et al., 2006), water content (Fenner and Freeman, 2011), and pH 

and temperature (Donnelly et al., 1990). It should be noted that incorporation into clay 

minerals is unlikely given that quartz and kaolinite constitute the mineralogy of these 

soils (see Chapter 3, Table 3.1). The presence of the ferric iron phosphate mineral 

strengite detected in the soils (Appendix E) also suggests a low ability for organic 

matter to complex, as this mineral is known to be stable at low pH in soil (Lindsay, 

1979; Haynes, 1982). Conversely, iron oxy-hydroxides were not detected, (such as 

hematite) which may have otherwise induced some organo-mineral complexing (Gu et 

al., 1994; Sollins et al., 1996; Arnarson and Keil, 2000; Lützow et al., 2006). Thus, in 

Bv horizons where iron oxides are evident, TOC is no higher than horizons where iron 

oxides are not present.  

The highest TOCs are in SF1 and FI soils, which may be related to elevated volumetric 

water content compared to other soils, (Section 4.3.5), for a longer period during the 

year, suppressing microbial activity through anaerobic conditions (McLatchey and 

Reddy, 1998; Kwon et al., 2013). Inherent to the properties of organic matter is its 

ability to retain water, thus volumetric water content may also be high in these soils 

because of the high TOC. SF2 and FI were roughly half the TOC of SF1, (5.5%, 7% and 

16% respectively). SF2 is a drier site (41% θ compared to 75% and 67% respectively, 

see Section 4.3.5), and was not inundated with water at 25 cm depth from the surface 

when sampled, as in SF1 and FI soils. Despite the surface 25 cm of SF1 not being fully 

saturated, it was wetter than SF2 on sampling, (see Section 4.3.5). 
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Recent research into peatlands has revealed that wetting and drying cycles may induce 

greater microbial degradation of SOM (Fenner and Freeman, 2011; Abbott et al., 2013). 

After dry periods, in which inhibitory phenols are depleted by the microbial activation 

of phenol oxidase in aerobic conditions, carbon and nutrients are released via hydrolase 

activity for microbial growth. This enzyme activity lasts long into the re-wetted period 

(months – years) after drying, at least until phenolic concentrations are great enough to 

significantly inhibit microbial enzymes again. Only after the phenolic content of soils is 

significantly reduced can hydrolase activity be initiated by microbes and, thus, 

decomposition take place (Fenner and Freeman, 2011). Therefore, FI and SF2 soils may 

undergo more significant phenolic depletion and thus resulting greater carbon 

degradation during both the dry and wet season, causing lower TOC’s than SF1 soil. 

This greater depletion of phenolics may be due to more pronounced drying of soils 

during the dry season. Although these soils are not peatlands, it is possible that the latter 

processes are occurring in these relatively organic rich surface soils. 

Potentially, edge effects such as a greater exposure to sunlight at FI, (being an isolated 

strip of forest c. 80 m wide surrounded by savannah), may also mean that organic matter 

degradation at FI is more rapid than at SF1, which is c. 1 km deep into the forest 

(Austin and Vivanco, 2006). The similarity of these two humic gleysols could indicate 

that this forest island was previously part of a swamp forest. It is possible that transition 

soils T1 & 2 also undergo greater SOM degradation from greater exposure at the 

boundary of the forest. 

All other soils appear to show higher TOC degradation than the aforementioned SF1 

and 2 and FI, with only slight variations between sub-environments. The less dense 

vegetation in wooded savannah sub-environments (SW1 & 2, ST1 & 2) do not appear to 

significantly affect TOC, as forest soils MF1 & 2, KPF, MRF and PF all have similar or 

lower TOC’s. However, the low TOC’s in forest soils may be subject to different 

decomposition mechanisms, such as amount of microbial activity or community type, 

which result in these similarly low TOC’s. 

Savannah sub-environments, especially grasslands SG1 & 2, are more exposed to 

sunlight and thus photo-degradation of soil carbon, as a result of less dense vegetation 

than forest sub-environments. This likely contributes to lower SOC stocks (Hernes and 

Benner, 2003; Gallo et al., 2006). As a result of less vegetation cover soil temperatures 
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may also be higher, causing greater decomposition, as long as soils are not moisture 

limited (Trumbore et al., 1996). In shaded savannah sub-environments such as SW and 

ST, higher surface soil TOCs emphasize this photo-degradative exposure and potential 

as a mechanism for SOM decomposition. However, the savannah grassland also has 

lower vegetation inputs than SW1 & 2 and ST1 & 2, which is likely to give a lower 

TOC. 

4.4.2 Soil profile SOC stock 

A comparison of individual horizon SOC between sub-environments revealed that 

despite very low TOC’s in some sub-surface horizons (e.g. ST1 Eag 1%, MF1 Bv 

0.08%, SW2 B 0.38% and MF2 B 0.38%), accounting for the bulk density and the 

horizon thickness in the SOC calculation (see Chapter 2: equation 2.4) resulted in 

significantly greater SOC stocks in these horizons, as compared to those with higher 

TOC. Thus, when soil profiles are sampled via metre increments, rather than by 

horizons, important information such as the location in the soil profile of the greatest 

carbon stock may be lost. This may be important when considering SOC losses from 

soil due to vegetation or climate change. 

SOC’s across sub-environments reflected TOC’s in that the wettest soils (SF1 & 2 and 

FI) had the greatest SOC stocks (Section 4.3.4). This is likely due to the reasons 

discussed above (Section 4.4.1). 

FI is classified as the same soil type as both SF soils (gleysol), and as in SF1 also has a 

high water table at 25 cm of the surface, as well as high volumetric water content (67% 

compared to 75%). The difference in the proportion of carbon stock between the latter 

site and SF1 is likely to be a lower average TOC in the profile of FI (3.28% compared 

to 6.35% respectively, Table 4.1 and Table 4.2). The soil profile of MRF has a higher 

TOC than other sites at Surama (profile average of 1.11%) which is likely to have 

caused a greater SOC stock than other sites. 

SS has a similar soil type to that of SF1 and FI (gleysol) with a high water table, thus 

this site shows a relatively significant SOC stock in respect to other sub-environments. 

However, as a savannah site, it has a less dense vegetation cover and input (mainly 

grasses and sedges) and is more exposed to sunlight and thus photo-degradation (Austin 

and Vivanco, 2006), which may both result in a lower TOC (soil profile average 
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1.14%). Its sandy textured sub-surface Eag horizon also suggests that carbon is easily 

leached through the profile. 

Soils in sub-environments MF2 and SG2 have similar SOC proportions relative to other 

soils in Surama. This is surprising because of their contrasting ecosystems of forest and 

savannah. However, both have a low TOC (0.75% and 0.68%) and a similar bulk 

density (1.45 g cm3 and 1.48 g cm3). This shows that organic matter turnover rates may 

be similar in both sub-environments, although this may be via different decomposition 

pathways such as differing microbial activity and communities or sunlight exposure. 

The differences of proportional SOC between comparable sub-environments in 

Wowetta and Surama, such as the savannah grassland (SG1 & SG2) and mixed tree spp. 

forest (MF1 & MF2), are due to lower TOC, bulk density and shallower soil profile 

depths in Wowetta.  

In both areas, the average proportional stocks of SOC are greatest in forest sites 

(Wowetta 19% and Surama 16%). Savannah sites account for a much lower 

proportional SOC average of 9% in Wowetta and 10% in Surama. The transition zones 

show lowest average SOC stocks, with a greater similarity to savannah sites than forests 

(8% in both areas). This is potentially a result of SOM degradation at the forest edge, 

potentially being more exposed to sunlight, wind and higher temperatures (Kapos, 

1989).  

Conclusively sub-environments with the greatest average TOC result in the highest 

SOC stocks (SF1 & 2). Furthermore, these sites also have wetter soil profiles, whilst 

transition sites and dry savannah sites have lower SOC stocks. 

Several authors have published data of estimated SOC stocks for tropical soils beneath 

rainforests and savannahs via metre-depth measurements of 0-1 m, 1-2 m and 2-3 m 

(Kimble, 1990; Eswaran et al., 1993; Batjes and Dijkshoorn, 1999; Jobbágy and 

Jackson, 2000). The OC of the soil profiles in this study have been calculated by metre 

depth intervals in order to compare the values with these studies (see Section 4.2). Soil 

profiles were sampled to the maximum depth possible in this study, which ranges from 

1-3 m. The latter studies have shown that soil type causes great variance between the 

amount of SOC, and that sampling depth is important for SOC estimates; with highly 
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likely underestimations from those commonly only sampled to 1 m depth (Jobbágy and 

Jackson, 2000). Differences in SOC have been evaluated below between ecosystems 

(savannah and forest), sub-environments within these ecosystems and soil types.  

4.4.3 SOC comparisons by ecosystem type 

Jobbágy and Jackson (2000) compared SOC stocks from a range of sub-environments 

(tropical deciduous forests, evergreen forests and savannahs). Comparisons between the 

latter data and that of SOC stocks estimated in this study may highlight differences due 

to the categorisation of sub-environments. For example, the sub-environments presented 

by Jobbágy and Jackson (2000) are broader categories than those sampled in this study. 

Figure 4.8, Figure 4.9 and Figure 4.10 depict the change in OC stocks from 0-1 m, 1-2 

m and 2-3 m depth in both study areas of Wowetta and Surama for the two main soil 

groups identified (plinthosols and gleysols).  

Jobbágy and Jackson (2000) showed that OC stocks up to 3 m depth for tropical 

deciduous forests, evergreen forests and savannahs ranged between 230 – 290 t C ha-1 

(23 -29 kg C m-2) using values from the National Soil Characterization Database 

(NSCD) and the World Inventory of Soil Emission Potential Database (WISE). Within 

the present study, most savannah sites were shallower than 3 m on reaching the 

petroplinthic layer (hard, impenetrable layer, see Chapter 3). However, site ST2 reached 

a depth of 3 m, with a total OC of 107 t C ha-1. This value is clearly below that of the 

range shown in Jobbágy and Jackson (2000). Most forest sites measured ~3 m before 

reaching the petroplinthic layer, including: FI, T1, SF1, SF2, MRF and MF2. Sites T1, 

MRF and MF2 all had estimates below the previous study’s tropical forest estimates 

(103, 201 and 171 t C ha-1 respectively), whilst sites FI, SF1 and SF2 all had values 

within or above the previous study’s tropical forest estimates (258, 388 and 321 t C ha-1 

respectively). These results show that differences in data sets do exist; and thus there is 

a need for higher resolution sampling to cover spatial variability. Although these results 

are not conclusive, they indicate that sub-environments such as forest swamps and 

islands (SF1 & 2 and FI) should be further investigated as to the extent along the 

boundary and thus wider impact in the region. All of these sites had greatest OC stocks 

in 0-1 m of the surface, whilst 1-2 m and 2-3 m had increasingly depleted OC stocks 

(Figure 4.8, Figure 4.9 and Figure 4.10), which highlights the fast turnover of carbon 
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within these tropical soil systems. Jobbágy and Jackson (2000) also showed this 

depletion of OC with the latter depth intervals for tropical forest and savannah biomes.  

Four of the sites studied only extended to 2 m upon reaching the petroplinthic layer, 

which were mostly savannah sites. These included SW1, SS and SG2 and had estimated 

OC stocks of 72, 159 and 158 t C ha-1, these fall within the range estimated by Jobbágy 

and Jackson (2000) for the savannah ecosystem: 40 – 340 t C ha-1 for up to 2 m depth. 

The only forest site with soil depth up to 2 m was MF1 (all other sites extended to 3 m), 

this site had an OC stock of 71 t C ha-1, which is within the 0-2 m SOC estimates made 

by Jobbágy and Jackson (2000).  

Savannah sites SG1 and ST1 at Wowetta only extended to 1 m depth upon reaching the 

petroplinthic layer. Jobbágy and Jackson (2000) showed that estimates up to 1 m depth 

in savannahs ranged between 45 and 222 t C ha-1, this study shows that the latter two 

sites have OC stocks within this range: 57 and 112 t C ha-1 respectively. Forest site PFK 

and transition site T2 at Surama also only reached a depth of 1 m, and had OC stocks of 

99 and 122 t C ha-1 respectively. These values fall within that estimated for tropical 

evergreen and deciduous forests to 1 m: 66 – 290 t C ha-1 in Jobbágy and Jackson 

(2000). 

Although most estimates in the present study fall within the ranges estimated by 

Jobbágy and Jackson (2000), some disparities do occur. Swamp forest sub-

environments SF1& 2 have a greater carbon stock than previously estimated for forests, 

by 98 and 31 t C ha-1 respectively. Other forest, transition and savannah sub-

environments show lower carbon stocks than previously estimated (MRF, MF1 & 2, T1 

and ST2). It is apparent that forest sites show the most disparity between the datasets, 

whilst savannah SOC stocks largely fall within the range found by Jobbágy and Jackson 

(2000). This suggests a greater heterogeneity within the forest ecosystem than 

previously recognised or sampled, highlighting the need for contemporary and more 

spatially detailed estimates. As forest sub-environments had mostly lower SOC stocks 

than in the previous study (on average ~127 t C ha-1 lower at 0-3 m depth), these new 

estimates may reduce the average tropical forest SOC estimates shown in Jobbágy and 

Jackson (2000). However, the results presented here are not extensive along the 

savannah-rainforest boundary; thus more thorough sampling needs to verify the SOC 

stocks and their effect on previous data. 
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Figure 4.8 Depth profiles of OC by meter for Plinthosols in the Wowetta study area. Standard error (S.E.) bars of triplicates shown. 
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Figure 4.9 Depth profiles of OC by meter in Surama Plinthosols. S.E. bars of triplicates shown.
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Figure 4.10 Depth profiles of OC by meter for Gleysols in both Wowetta and Surama study areas. S.E. bars of triplicates shown. 
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4.4.4 SOC based on soil type 

The majority of soils in this study have been classified as plinthosols (see Chapter 3). A 

study by Batjes and Dijkshoorn (1999) compiled C data of various soil types sampled to 

1 m depth of the surface in the Amazon region, from the soil and terrain project for 

Latin America and the Caribbean (SOTER-LAC) database. These soils were given 

classifications based on United Nations Food and Agriculture Organisations (FAO) 

standards, as done in the current study. This compilation of data can be compared to the 

present study of SOC in 1 m depth from the surface (Figure 4.8 and Figure 4.9). 

Batjes and Dijkshoorn (1999) showed that plinthosols had a mean SOC stock of 6.6 kg 

C m-2, which converts to 66 t C ha-1 (which are the units used in this study). This value 

has a coefficient of variance (CV) of 31%; thus SOC stocks potentially ranged between 

46 and 87 t C ha-1.  

Figure 4.8 and Figure 4.9 show that all sub-environments have an SOC stock within the 

range found by the latter study, with the exception of sites ST1, SG2, SW2 and PFK. 

The latter soils all have higher estimates than Batjes and Dijkshoorn (1999): ranging 

between 99 and 152 t C ha-1. This further corroborates the need for a more 

comprehensive sample area when estimating SOC stocks. 

The other major soil type found in this study were gleysols (SS, SF1 & 2 and FI), which 

show much higher OC stocks than the plinthosols. Batjes and Dijkshoorn (1999) 

demonstrated that gleysols in the Amazon may have a mean OC stock of 126.6 t C ha-1 

(12.66 kg C m-2) up to 1 m. This has a CV of 59% and thus profiles may vary between 

50 and 200 t C ha-1. Figure 4.10 shows that sites SS, FI and SF2 fall within the 

estimated range of Batjes and Dijkshoorn (1999), however SF1 has a greater OC stock 

of 265 t C ha-1 within 1 m depth.  

These results further highlight the need for greater sampling resolutions, not just with 

regard to ecosystem type, but also soil type. This will aid in providing more realistic 

values for SOC stocks in the Amazon region. 

Additionally, when the full soil profiles (> 1 m depth) of the study sites are taken into 

account, the values found in the present study show that OC stocks can be much greater 

than the latter values for plinthosols and gleysols. For example, plinthosol T1 was 
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sampled to 264 cm and has 103 t C ha-1, ST2 and MRF to 300 cm and have 107 and 201 

t C ha-1, respectively. Gleysol SF2 was sampled to 270 cm and has 315 t C ha-1, whilst 

SF1 was sampled to 333 cm and has 388 t C ha-1. This stresses the need for deep soil 

sampling where such depths exist, in order to provide more accurate measurements. The 

above results also highlight the importance of soil type and spatial heterogeneity in OC 

stocks when soil sampling.  

Due to the similarities in SOC stock between sub-environments of contrasting 

vegetation, i.e. savannah and forest, it appears that vegetation type is a less reliable 

indicator of SOC stock.  The results presented in this chapter indicate that soil type 

(gleysols) with high water tables and volumetric water content are a more effective 

predictor of SOC stock. However exceptions may occur, such as in the savannah swamp 

(SS); where despite being a gleysol, SOC stocks are not highest. This shows that 

vegetation does have some control over SOC stocks: greater vegetation inputs and cover 

may give a higher SOC stock in this soil type. This may also indicate that SS was once a 

swamp forest before savannah encroachment, and has since depleted in SOC. The 

similarity in soil type and SOC stock between FI and SF1 may also indicate that FI was 

historically part of the wider expanse of rainforest, which is now more exposed and 

subsequently experiencing losses in SOC. Soil molecular characteristics may reveal 

more information about such sub-environment changes, and are investigated in Chapter 

5.
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4.5 Conclusions 

The results presented above highlight the importance of the soil properties water content 

and vegetation inputs to the overall profile SOC stock. Soil type is shown to be a more 

reliable indicator of SOC stock than vegetation, with the exception of SS, which may be 

in a transitional state. 

Primarily, soils with both the highest volumetric water content and TOC have the 

highest SOC stocks (swamp forests – SF1 & 2 and the forest island - FI). Saturated soil 

profiles are likely to have slower OM decomposition rates from anaerobic conditions 

(McLatchey and Reddy, 1998; Kwon et al., 2013). Greater vegetation input quantities in 

rainforest sub-environments such as SF1 & 2 and FI are possibly also a contributing 

factor to the highest SOC stocks, however this would need to be measured to verify. In 

the drier soils SF2 and FI, more pronounced wet-dry cycles may lead to a greater 

amount of SOM decomposition through microbial enzyme activity than in SF1 soil, 

which is wetter and potentially has less oxygen. SG1 & 2, SW1 & 2 and ST1 & 2 soils 

are drier and more exposed than the latter 3, which potentially controls TOC, and results 

in some of the lowest TOC and SOC stocks. 

In comparison to other studies on similar soil types, the depth of sampling was 

highlighted as important for assessing SOC stock, as previous studies that sampled to 

just 1 m had lower values than those sampled in this study to >1 m. Despite this, 

savannah and forest soils in this study had a lower average SOC stock than those for 

savannahs assessed in NSCD and WISE databases (soils sampled to 3 m) by Jobbágy 

and Jackson (2000). Additionally, a high variability was apparent from the differences 

in SOC stocks between the same sub-environments in Wowetta and Surama. For 

example, SG1 (57 t C ha-1) and SG2 (158 t C ha-1). This shows the need to sample a 

larger area in order to provide more accurate results. A greater precision in SOC stocks 

will provide more exact assessments of the effects of local climate change and 

associated weather patterns on these stocks, and the implications upon vegetation, e.g. 

shifts from forest to savannah with lower precipitation. If savannah with lower SOC 

stocks than previously estimated expands into swamp forest area, this may cause a 

greater loss in forest SOC than previously thought. Considering the uncertainty 

observed through the differences in climate model predictions of precipitation changes 

(IPCC, 2014), a reverse scenario to the latter may result. This would involve greater 
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precipitation and potential forest expansion resulting in greater SOC stocks if swamp 

forest areas expand into any of the savannah sub-environments assessed. MF2 and MRF 

also have greater SOC stocks than savannah soils and may increase these if forests 

expand into savannah areas. However, as can be seen in Section 4.3.4 and Figure 4.8 

and Figure 4.9, if MF1 and KPF expand into savannah areas there will not be a 

significant change in SOC stocks. Rainforest expansion would, however, depend upon 

anthropogenic reactions; which may mean harvesting of timber resources as rainforests 

expand, thus preventing potential increases in SOC stock through SF, MF2 and MRF 

expansion. 

The following chapter will explore the organic carbon molecular characteristics of 

vegetation inputs and surface soils along the Wowetta savannah-rainforest transect. 
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Chapter 5. Surface soil and vegetation input organic molecular 

chemistry of the Wowetta transect  
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5.1 Introduction  

Research in lignin and carbohydrates with regards to the tropics is still young and 

requires further investigation, especially in view of the most recent IPCC (2013) 

predictions, as noted in Chapter 1. Characterising soil organic matter (SOM) allows 

insight into the relative components that comprise the organic fraction of the soil. This 

aids understanding of the interactions of SOM components with surrounding edaphic, 

biological and environmental conditions in savannah and rainforest regions, which are 

known to hold large carbon stores (Batjes and Dijkshoorn, 1999), is fundamental to 

increasing the reliability of future predictions and creating mitigation and land 

management policies for SOC storage.  

Therefore, in order to elucidate the fate of lignin and carbohydrates in the potentially 

climate-sensitive location of Central Guyana, this chapter presents TMAH 

thermochemolysis products for living plant tissues, freshly-deposited litter and samples 

of surface soil (0-6 cm) from a 5 km transect spanning the inverted plinthic landscape of 

seasonally wet rainforest and savannah.  

The objectives in this study are to: 

a) identify the molecular chemical composition (lignin, tannin and carbohydrates) 

and changes between vegetation inputs and surface soils in the savannah, 

transition and rainforest sub-environments,  

b) compare these compositions and changes between the sub-environments, 

c) assess the relationship between SOC calculated in chapter 4, (which factors in 

total organic carbon (TOC), bulk density and horizon thickness), to these 

compositions and changes along the transect, to inform the relative importance 

to overall soil organic matter. 
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5.2 Methodology, samples and sites 

The sampling transect of Wowetta was chosen in which to analyse soil organic matter 

(SOM) molecular characteristics. The sites along this transect include savannah 

grassland (SG), savannah woodland (SW), savannah tree (ST), savannah swamp (SS), 

transition (T), swamp forest (SF), pisoplinthic forest (PF) and mixed forest (MF). This 

transect was chosen due the greater variety in soil types along the transect than that of 

Surama, it also provided the transect format which clearly describes the sequential 

changes of sub-environments along one line from savannah into rainforest. Greater 

detail of these soil types and sub-environments is provided in Chapter 3.  

For details of the sampling and laboratory methods, as well as the parameters and 

statistics used in this chapter please refer to Chapter 2, Sections 2.9 - 2.14. 
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5.3 Results 

5.3.1 Thermochemolysis products 

Figure 5.1 shows a typical distribution of thermochemolysis with TMAH products from 

the treatment of solvent-extracted surface soil. This reveals a range of compounds 

forming three groups. Methylated phenols consisting of guaiacyl (G), syringyl (S) and 

p-hydroxyphenyls (P) and the methyl esters of the cinnamyl phenols ferulic acid (G18) 

and p-coumaric acid (P18) constitute the first group. Non-lignin compounds including 

1,2,4-trimethoxybenzene (1,2,4-TMB) and 1,3,5-trimethoxybenzene (1,3,5-TMB) 

comprise the second group. Lastly, a group of methylated carbohydrates were identified. 

These form two sets of products and have been distinguished as follows: (i) four 

methylated carbohydrates (MC1-4: m/z 129), referred to as MC’s from here on in and, 

(ii) three cellulose THM products (1, 2 and 4: m/z 142, 156 and 154 respectively), 

referred to as CTP’s from here on in. Abbott et al. (2013) reported the presence of four 

CTPs (1, 2, 3 and 4) in a Swedish peat – of this latter group three CTP’s were present 

(1, 2 and 4) which are also as yet unassigned products (see Section 5.3.4). All other 

THM products are described with full compound names in Table 5.1. 

 

Figure 5.1 Partial chromatogram for the total ion current (TIC) of the three main 

groups of thermochemolysis products of surface soil. Open circles: methylated lignin 

phenols; closed circles: oxygenated aromatics 1,2,4-TMB and 1,3,5-TMB; open 

squares: methylated carbohydrates and cellulose THM products; IS: internal standard.  
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Table 5.1 Main three product groups and their individual compound names from the THM of surface soils, fresh shoot / leaf litter and wood litter 

(continued overleaf) 

 
Group 1 Compound Group 2 Compound 

P1 methoxybenzene 1,2,4-TMB 1,2,4-trimethoxybenzene 

G1 1,2-dimethoxybenzene 1,3,5-TMB 1,3,5-trimethoxybenzene 

P3 4-methoxybenzeneethylene   

G2 3,4-dimethoxytoluene   

G3 3,4-dimethoxybenzeneethylene   

S1 1,2,3-trimethoxybenzene   

P6 4-methoxybenzoic acid methyl ester   

G4 3,4-dimethoxybenzaldehyde   

G6 3,4-dimethoxybenzoic acid methyl ester   

S4 3,4,5-trimethoxybenzaldehyde   

G7 cis 1-(3,4-dimethoxyphenyl)-2-methoxyethylene   

G8 trans 1-(3,4-dimethoxyphenyl)-2-methoxyethylene   

P18 trans 3-(-4-methoxyphenyl)-3 propenoic acid methyl ester   

S6 3,4,5-trimethoxybenoic acid methyl ester   

S7 cis 1-(3,4,5-trimethoxyphenyl)-2-methoxyethylene   

S8 trans 1-(3,4,5-trimethoxyphenyl)-2-methoxyethylene   

G14 threo/ethryo 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropane   

G15 threo/ethryo 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropane   

G18 trans 3-(3,4-dimethoxyphenyl)-3-propanoic acid methyl ester   

S14 threo/ethryo 1-(3,4,5-trimethoxyphenyl)-1,2,3-trimethoxybenzene   

S15 threo/ethryo 1-(3,4,5-trimethoxyphenyl)-1,2,3-trimethoxybenzene   
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Table 5.1 continued

Group 3 Compound 

1 cellulose THM product 

2 cellulose THM product 

4 cellulose THM product 

MC1 3-deoxy-4,5,6-tri-O-methylgluconic acid, methyl ester 

MC2 Tetra-O-methyl-3-deoxy-D-arabino-hexanoic acid, methyl ester 

MC3 3-deoxy-4,5,6-tri-O-methylmannonic acid, methyl ester 

MC4 Tetra-O-methyl-3-deoxy-D-ribo-hexanoic acid, methyl ester 
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5.3.2 Characterisation of savannah-rainforest transect inputs and surface soils 

The distribution of thermochemolysis products in wood litter (Figure 5.2), fresh shoot / 

leaf litter (Figure 5.3) and surface soils (Figure 5.4) are presented for each sub-

environment (SG – MF). These simplified schematics of chromatograms show that 

lignin phenols are the major thermochemolysis components from the depolymerisation 

of the solvent-extracted insoluble residues from whole plant tissues or soils. The 

amounts of these phenols differ between wood litter, fresh shoot / leaf litter and surface 

soils, as well as between sub-environments. Methylated carbohydrates (MC1-4) are 

detected in all samples and are more abundant in the thermochemolysis products from 

surface soils than vegetation samples. The amounts of THM products 1,2,4-TMB and 

1,3,5-TMB as well as the cellulose products (1, 2 and 4) were low in all samples.  

In wood litter (Figure 5.2) lignin phenol S6 is most prominent in sub-environments SW 

and ST and MF. The latter sub-environment also has a high amount of CTP1. Lignin 

phenol product P6 is most prominent in sub-environments SS and SF. The latter sub-

environment also has a high amount of S6. Sub-environment T has relatively similar 

amounts of most compounds, although CTP1 is fractionally greater than other 

compounds. Therefore, lignin phenols mainly take precedence within wood litter 

samples, with some sub-environments also showing high amounts of CTP1. 

In fresh shoot / leaf litter (Figure 5.3) lignin phenol S6 is most prominent in sub-

environments SW, ST, SS, PF and MF. All other THM products identified are in low 

amounts. SF leaf litter has a clearly predominant P6 phenol compared to all other 

products. SG and T fresh shoot / leaf litter have predominant P18 and G18 lignin 

phenols. In SG fresh shoots, these are not as intense compared to other phenols such as 

S6 and G6 which are also relatively abundant. As with wood litter, fresh shoot / leaf 

litter simplified chromatograms show that lignin phenols are dominant within these 

extracted residue samples. 

Surface soils (Figure 5.4) show a marked difference in the distribution of THM products 

to wood litter and fresh shoot / leaf litter. Sub-environments SG, SW, ST, SS, T and SF 

have more prominent, or similar amounts of methylated carbohydrates (MC1 and MC2 

or 3) as the most abundant lignin phenols. Sub-environment SG has most prominent 

MC1 and 2 products with significantly smaller amounts of all other products. SW, ST 
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and SF have greater or similar amounts of MC1 and 3 to lignin phenols G6 and S6. SS 

has a predominant MC3 product, and similar amounts of MC1, G6, P18 and G18 which 

all have high amounts. T has similar amounts of MC3 to G6 and G18, which are the 

most prominent products. FI has dominant products of MC3, G6 and CTP1. Aside from 

S6 and G18, no other lignin phenols were detected in this soil. Sub-environments PF 

and MF show a different distribution however. Lignin phenol P6 is most prominent in 

both samples, whilst all other products are of much smaller amounts.  

Certain lignin phenols, such as S4, S6, G4, G6 and G18 have the potential to originate 

from sources other than lignin. S4 and S6 can also originate from  demethylated lignin 

(lignin which has been attacked by microbes) and tannin, G4 and G6 from vanillic acid 

and G18 from caffeic acid (Filley et al., 2006). Therefore the amounts of these products 

in Figure 5.2, Figure 5.3 and Figure 5.4 may not be purely of lignin origin. The true 

origin of these products has been investigated via the use of 13C-labelled TMAH and is 

detailed in the following sections. 

The difference noted here between vegetation samples and surface soils indicates the 

alteration of soil organic matter (SOM) from vegetation inputs to soil, and is discussed 

in further detail in the following sections. The average values of triplicates for each 

compound in Figure 5.2, Figure 5.3 and Figure 5.4 are given in Appendix G. 
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Figure 5.2 Simplified schematic of the total ion current (TIC) of thermochemolysis 

products from wood litter for the sub-environments SW – MF. 
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Figure 5.3 Simplified schematic of the total ion current (TIC) of thermochemolysis 

products from fresh shoot / leaf litter at each sub-environment across the transect (SG – 

MF). 
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Figure 5.4 Simplified schematic of the total ion current (TIC) of thermochemolysis 

procuts from surface soils at each sub-environment across the transect (SG-MF). 
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5.3.3 Comparison of THM product proportions 

The different percentages of the main lignin phenols (S4, S6, G4, G6, G18 and P18: Λ), 

gallic acid and 1,3,5-TMB, CTP’s (1, 2 and 4) and MC’s (MC1-4) are presented for 

wood litter (Figure 5.5(a)), fresh shoots / leaf litter (Figure 5.5(b)) and surface soils 

(Figure 5.5(c)) across the savannah-rainforest transect.  

There are clear differences between the proportion of products in vegetation inputs of 

wood litter and fresh shoot / leaf litter and the surface soils. The vegetation inputs are 

composed mainly either of tannin (gallic acid) or lignin, and CTP’s are also a relatively 

important product in wood litter of FI, SF PF and MF. Soils are predominantly either 

lignin (SS, SF and PF), MC’s (SG and MF) or a similar proportion of both (T). Soils 

from SW and ST sub-environments have a predominant mix of the three latter product 

groups (tannin, methylated carbohydrates and lignin). Uniquely, FI has similarly 

predominant proportions of CTP’s and lignin. Proportions of 1,2,4-TMB in both 

vegetation and soils are much smaller than lignin or tannin products, although are more 

significant in soils of SW, FI, ST and SF. 1,3,5-TMB has relatively small proportions in 

most samples, but is slightly more prominent in leaf litter (particularly sub-environment 

PF). 
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Figure 5.5 Relative proportions of lignin, non-lignin and carbohydrate yields in (a) 

wood litter, (b) fresh shoot / leaf litter and (c) surface soil in sub-environments across 

the transect. 

.  
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5.3.4 Carbohydrates 

Figure 5.7 (a) shows THM products of group 3  (Table 5.1) with a base peak of m/z 

=129 and fragment ion of m/z = 101, which have been tentatively assigned as 

methylated carbohydrates according to the work of Fabbri et al. (1996) and Fabbri and 

Helleur (1999). This was initially done by Fabbri et al. (1996) from the NaOH extracted 

residue of humin and humic acids from an Italian agricultural soil (Carpi, near 

Bologna). Since then, further investigation has been undertaken by Fabbri and Helleur 

(1999) to verify the compounds in a series of monosaccharide hexose standards 

(specifically D-Glucose and  D-mannose). These standards were labelled with TMAH 

and analysed using py-GCMS at 500 °C, resulting in the methylated carbohydrates with 

similar mass spectra. They were then tentatively assigned as tetra-O-methyl-3-deoxy 

hexanoic acids. The proposed formation of these methylated carbohydrates (also known 

as metasaccharinic acids) through TMAH thermochemolysis can be seen below in 

Figure 5.6. 

 

 

Figure 5.6 Proposed TMAH thermochemolysis formation of methylated carbohydrates 

from hexoses, adapted from Fabbri and Helleur, 1999. 
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As in Fabbri and Helleur (1999), the methylated carbohydrates detected here form two 

pairs: MC1 & 3 and MC2 & 4. The mass spectra of these compounds using both 

unlabelled and 13C-labelled TMAH are shown in Figure 5.7 (a) and (b) respectively. 

From these spectra, it can be seen that the pair MC2 & 4 have fully methylated acidic 

oxygen functional groups from the increase in weight (+2, 3 or 4) upon 13C-labelled 

TMAH thermochemolysis (thus giving an m/z 103 from m/z101, m/z 131 from m/z 129, 

m/z 164 from m/z 161 and m/z 195 from m/z 191 (Fabbri and Helleur, 1999). However, 

this is not seen in MC1 & 3, where only 2 or 3 functional groups have been methylated, 

instead of the respective 3 and 4 that are available. For example, m/z 147 gives m/z 149 

and m/z 177 gives m/z 180, where 13C-labelled TMAH should yield m/z 150 and m/z 

182 respectively. This is apparent because of the difference in weight of 14 between m/z 

147 and m/z 177 of MC1 & 3 compared to m/z 161 and m/z 191 of MC2 & 4: indicating 

an unmethylated oxygen functional group. This result has been presented previously in 

Schwazinger et al., 2002 and Abbott et al., (2013), and was suggested in the latter to 

need a greater amount of TMAH to fully methylate the compounds.  
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Figure 5.7 Mass spectra of methylated carbohydrates (MCs) 1-4 via (a) unlabelled 

TMAH and (b) 13C-labelled TMAH. Red numbers indicate the number of extra hydroxyl 

groups methylated with 13C-labelled TMAH as compared to unlabelled TMAH. 
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A standard of D-(+)-glucosamine hydrochloride was analysed using the same pyrolysis 

GC-MS procedure and internal standard (5α-androstane) as all other samples analysed 

in this study. Analysis of this glucosamine standard was undertaken in order to 

investigate the occurrence of methylated carbohydrates (MC’s) in this compound to add 

evidence that these products are of microbial origin, as has been previously reported 

(Kandeler et al., 2000; Amelung et al., 2001; Glaser et al., 2004).   

Figure 5.8 shows that the glucosamine standard analysed does produce all four MC 

products, in addition to 1,2,4-TMB. This therefore indicates that these products are 

likely to originate from microbial sources, in comparison to vegetation inputs. Literature 

on the origin of 1,2,4-TMB is currently uncertain, with reports of both carbohydrate 

(Fabbri and Helleur, 1999) and tannin sources (Nierop et al., 2005). The presence of 

1,2,4-TMB also indicates that this product may be microbially derived, and may arise 

from the TMAH thermochemolysis of microbial carbohydrates. The origin of 1,2,4-

TMB in the soils and vegetation analysed in this study is discussed further in Sections 

5.3.10 and 5.4.3. 

 

 

Figure 5.8 Partial chromatogram of D-(+)-glucosamine hydrochloride standard. IS: 

internal standard. 
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Figure 5.9 shows the amount of the methylated carbohydrates across the savannah-

rainforest transect in wood litter (a), fresh shoot / leaf litter (b) and surface soils (c). 

Vegetation inputs of wood litter and fresh shoot / leaf litter are significantly lower than 

surface soil amounts, with the former ranging from 0 – 0.017 mg / 100 mg OC and 

surface soils from trace amounts of 0.05 mg / 100 mg OC to more significant amounts 

of 0.9 mg / 100 mg OC.  

Further to this large difference in methylated carbohydrate amounts between vegetation 

and surface soils, the individual carbohydrates also differ in relative amounts within the 

sample set. For example, MC4 is predominant in both wood litter and fresh shoots / leaf 

litter (MC4 average = 0.004 mg / 100 mg OC, compared to an average of 0.001 – 0.003 

mg / 100 mg OC for MC1, 2 & 3), whilst MC1 & 3 dominate in the majority of surface 

soil sub-environments (averages of 0.28 and 0.31 mg / 100 mg OC respectively 

compared to averages of 0.05 and 0.06 mg / 100 mg OC for MC2 & 4 respectively).  

FI wood litter shows a significantly different MC composition, however: it has a 

dominant MC3 peak (0.014 mg / 100 mg OC), no detected MC1 and only traces of 

MC2 and 4 (0.0004 mg / 100 mg OC). FI leaf litter products included all MC’s and are 

also dominated by MC3 (0.012 mg / 100 mg OC), with <0.005 mg / 100 mg OC of 

MC1 & 2 and trace amounts of MC4. FI soil also shows significant differences to all 

other soils analysed as only trace amounts of MC 1 & 3 were detected. 

Sub-environment SG surface soil differs to the other soils studied with a predominance 

of MC2 (0.65 mg / 100 mg OC compared to 0.37, 0.1 and 0.16 mg / 100 mg OC for 

MC1, 3 and 4 respectively).  
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Figure 5.9 Methylated carbohydrates 1-4 in (a) wood litter, (b) fresh shoots / leaf litter 

and (c) surface soils across the transect. Standard error (S.E.) bars of 3 replicates 

shown. 
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A second set of carbohydrates were also identified (CTP1, 2 and 4) in traces of soil and 

vegetation samples across the savannah-rainforest transect. Figure 5.11 shows their 

mass spectra, with m/z 142, 156 and 154. These compounds result from the 

thermochemolysis of cellulose (Abbott et al., 2013) and have been given the numbering 

1, 2 and 4 in Figure 5.2, Figure 5.3 and Figure 5.4; this numbering correlates to the 

compounds in Swain (2013) and Abbott et al., (2013). Figure 5.10 shows all four CTP’s 

(labelled as 1, 2, 3 and 4) identified in the authentic cellulose standard analysed by 

Abbott et al. (2013). The third CTP (3) with an m/z of 156 (an isomer of CTP2) in 

Abbott et al., (2013) was not detected in these samples. These compounds have also 

previously been detected by Schwarzinger et al. (2002) and more recently by Bardy et 

al. (2011) in Amazonian podzols. Even more so than the MC’s, these cellulose 

derivatives are still largely unknown compounds and as yet need further work to clarify 

their origin.  

Figure 5.11 shows the alteration in methylation from unlabelled to 13C-labelled TMAH 

for CTP1, 2 and 4. With 13C-labelled TMAH analysis, all three CTP’s show an 

additional weight of two, highlighting that there are two hydroxyl groups present on 

each of these products, resulting from the THM chemical reaction with TMAH.  
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Figure 5.10 TIC of the authentic cellulose standard analysed in Abbott et al., 

2013. 
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Figure 5.11 Mass spectra of the methylated carbohydrates using (a) unlabelled 

TMAH and (b) 13C-labelled TMAH, which show an addition of two mass units (in 

red next to the main ion), as compared to those methylated with unlabelled TMAH. 
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Figure 5.12 shows how the amounts of the three detected CTP’s (1, 2 and 4) change 

across the transect in vegetation inputs (a and b) and surface soils (c). CTP2 and 4 show 

similar low amounts throughout the transect for vegetation inputs and surface soils. 

CTP1 (m/z 142) was greater in vegetation inputs and soils than 2 and 4, except in ST 

fresh shoots / leaf litter which showed similar amounts, and SS soil which showed 

slightly lower amounts. All soils are degraded in comparison to total inputs, except for 

CTP1 (SG) and CTP2 (SS); these soils may indicate elevated microbial input or 

preservation. However, the elevated amount in soil compared to inputs is small: SG 

0.02 mg / 100 mg OC and SS 0.002 mg / 100 mg OC. CTP1 fluctuates between soils, 

with SW, FI and PF having the greatest and SS the lowest amount. This may be due to 

vegetation inputs, which somewhat reflect this pattern.  
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Figure 5.12  CTP1, 2 and 4 in (a) wood litter, (b) fresh shoots / leaf litter and (c) 

surface soils across the transect. Standard error (S.E.) bars of 3 replicates shown. 
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Figure 5.13 shows a comparison of the proportion of summed MC’s and summed CTP’s 

across the transect in wood litter (a), fresh shoot / leaf litter (b) and surface soils (c). The 

majority of surface soils show that the proportion of MC’s are significantly greater than 

that of CTP’s. FI soil is an exception here, which shows the reverse, with CTP’s being 

present in greater amounts than MC’s.  

Wood litter shows that the CTP’s are consistently greater in proportion to MC’s. In 

fresh shoot / leaf litter the majority of sites also show a greater proportion of CTP’s to 

MC’s, except for SS and T. This shows compositional and potentially degradative 

differences at these sub-environments.  
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CTP1, 2 & 4 

MC 1-4 

(a) 

(b) 
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Figure 5.13 Comparison of MC and CTP yields in (a) wood litter, (b) fresh shoots / leaf 

litter and (c) surface soils across the transect. 
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5.3.5 Lignin 

Lignin parameters were calculated to assess lignin phenol degradation in the surface 

soils and vegetation inputs across the savannah-rainforest boundary. As previously 

mentioned in Section 5.3.2, the phenols analysed here can potentially originate from 

other sources such as demethylated lignin (microbial oxidation) and tannins (Filley et 

al., 2006) and thus amounts calculated using un-labelled TMAH need to be corrected 

for these other sources with 13C-labelled TMAH (Filley et al., 1999). The parameters are 

shown in Table 5.2 with corrected values indicated with a * and uncorrected values 

without. Individual lignin phenols were corrected via the calculation of the hydroxyl 

contents of intact lignin, altered demethylated lignin and non-lignin sources (see 

Appendix B for calculations).  

Λ indicates the total of the main lignin phenols (G4, G6, G18, P18, S4 and S6). This 

parameter decreased significantly after correction; as little as 6% of the original 

uncorrected values were intact lignin phenols. Largely, this was due to alterations of 

G18, S6 and G6 after corrections. Ratios C/G and S/G are used as source indicators 

(non-woody and angiosperm / gymnosperm inputs respectively), and are calculated as 

(P18+G18)/(G4+G6) and (S4+S6)/(G4+G6) respectively (Filley et al., 2006). After 

correction C/G saw increases by an average of 19% for vegetation inputs and soils due 

to lower G6 amounts, although a few exceptions occurred where decreases were 

observed. S/G largely shows decreases after correction by an average of 50% due to 

lower S4 and S6 amounts, although a few increases did occur. Ratios [Ad/Al]G and 

[Ad/Al]S indicate oxidation extent for guaiacyl and syringyl phenols, respectively. They 

are calculated as G6/G4 and S6/S4, respectively (Filley et al., 2006). After correction of 

[Ad/Al]G there was an average decrease of 18% again due to lower G6 amounts, 

however, some soils did see a small (5%) increase. After correction of [Ad/Al]S there 

was an average decrease of 55% across all vegetation inputs and soils, again due to 

lower S6 amounts. Therefore, the largest decreases were observed with regards to the 

phenol S6, largely due to gallic acid. The proportion of this gallic acid relative to the 

other THM products analysed in vegetation inputs and surface soils can be seen in 

Section 5.3.1. 
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Table 5.2 Lignin parameters in vegetation inputs and surface soils (Λ in mg / 100 mg OC). The corrected intact lignin values are displayed with a *, 

and the uncorrected values without. N/A = no wood litter was present at the savannah grassland sampling site, (continued overleaf) 
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Table 5.2 continued
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5.3.6 Gallic acid (tannin) and demethylated lignin sources 

Figure 5.15 shows the amounts of intact lignin, demethylated lignin and gallic acid in 

syringyl phenol S6 in wood litter (a), fresh shoots / leaf litter (b) and surface soils (c) 

across the sampling transect. This syringyl phenol showed the most alteration after 

correction with 13C-labelled TMAH. 

The % aromatic hydroxyl contents of S6 (1% OH, 2% OH and 3% OH) were 

determined using 13C-labelled TMAH. 1% OH refers to intact lignin, 2% OH to 

microbially demethylated lignin (syringic acid) and 3% OH to gallic acid (tannin 

derived). Filley et al., (2006) showed how multiple sources such as intact lignin and 

microbially altered lignin (specifically their methoxyl functionalities) can lead to the 

formation of identical products (Figure 5.14). Using previously established equations 

(Filley et al., 2006), (see Appendix B) these hydroxyl contents were calculated and then 

converted into mg / 100 mg OC. The unlabelled TMAH thermochemolysis of these 

samples allowed the identification of S6 and thus the baseline essential for accurately 

calculating the 13C percentage addition. 

 

Figure 5.14 Diagram to show how multiple sources can result in the same methylated 

product (S6) upon TMAH thermochemolysis, adapted from Filley et al., 2006. 
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It is evident from Figure 5.15 a, b and c that gallic acid is most abundant in sub-

environments SW and ST. In vegetation inputs there is an average amount of 2.6 mg / 

100 mg OC (SW) and 2.16 mg / 100 mg OC (ST) and for surface soils an average of  

1.48 mg / 100 mg OC (SW) and  0.47 mg / 100 mg OC (ST). All other sub-

environments generally show much lower amounts (<0.27 mg / 100 mg OC), except for 

leaf litter in forest sub-environment PF (1.19 mg / 100 mg OC). Generally, both 

demethylated and intact lignin are much lower than gallic acid across vegetation inputs 

and surface soils. Demethylated lignin averages 0.05 mg / 100 mg OC in vegetation 

inputs and 0.04 mg / 100 mg OC in surface soils. Intact lignin averages 0.06 mg / 100 

mg OC in vegetation inputs and 0.11 mg / 100 mg OC in surface soils.  

Despite a low surface soil average, intact lignin is greater than gallic acid in all sites 

except SW and ST. This shows that these sub-environments have uniquely high 

amounts of gallic acid in surface soils along the savannah-rainforest transect. Wood 

litter and fresh shoot / leaf litter generally show greater amounts of gallic acid than 

demethylated or intact lignin across the transect.  
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Figure 5.15 Intact lignin, demethylated lignin and gallic acid amounts across the 

sampling transect (SG-MF) in  (a) wood litter, (b) fresh shoot / leaf litter and (c) 

surface soils. S.E. bars of 3 replicates shown. 

 



 

128 

 

5.3.7 Source Indicators - C/G and S/G 

Table 5.2 shows the values for uncorrected and corrected (*) C/G and S/G parameters. 

These parameters indicate the non-woody input and angiosperm / gymnosperm input, 

respectively. After correction, the values of C/G for all fresh shoot / leaf litter and the 

majority of wood litter and surface soils increase. This highlights that G4 and G6 are 

more affected by microbially demethylated vanillic acid than G18 is by caffeic acid, 

resulting in a greater amount of intact G18. The exceptions are in the wood litter of T 

and both the wood litter and surface soils of SF which decrease, and therefore show the 

opposite effect of non-lignin sources. This may be due to differences in plant species 

and plant functional traits. Increases in C/G after correction for gallic acid and 

demethylation have also been identified in peat soils under an afforested conifer 

plantation by Swain (2013). However, other studies have shown no change in C/G after 

correction in sandy soils under oak woodland (Nierop and Filley, 2007).  

Figure 5.16 (a) shows the values of C/G across the savannah-rainforest transect in fresh 

shoot / leaf litter, wood litter and surface soils. All wood litter across the transect show 

values <1, which indicates that G is dominant over C and thus there is a woody 

signature, which would be expected from these samples (Nierop and Filley, 2007). 

Conversely, most fresh shoot / leaf litter samples show a non-woody input, with 

values >1. Again, SF is an exception here, where the leaf litter gives a woody signal of 

guaiacyl predominance over cinnamyl. This may be due to plant species differences, 

which has been identified in previous studies (Swain et al., 2010), or preferential 

degradation of G18 relative to G4 and G6 in the leaf litter. 

Across the savannah-rainforest transect, the sub-environment surface soils differ in 

woody / non-woody characterisation (Figure 5.16 (a)). Non-woody ratios are 

predominant in sites SG, FI, SS, T and MF. This would be expected at SG due to its 

wholly graminaceous input. In the latter four sites, selective degradation of guaiacyl 

over cinnamyl is apparent. However, in SW, ST, SF and PF the opposite is apparent in 

surface soils, highlighting selective cinnamyl degradation. 

Table 5.2 shows that S/G values after correction largely decreased in fresh shoot / leaf 

litter, wood litter and surface soils. In some cases, this resulted in significant decreases 

indicating large tannin (gallic acid) inputs, as seen in Section 5.3.6. Exceptions to this 
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include wood litter at SS and T and leaf litter at T which all increased slightly. 

However, these increases are minimal: SS wood litter 0.49 to 0.6(*), T wood litter 0.69 

to 0.71(*), T leaf litter 0.64 to 0.88(*). Additionally, FI wood litter and both SF and PF 

surface soils did not change from the original values (0.83, 0.71 and 0.55 respectively). 

This minimal change has also been detected in Nierop and Filley (2007). 

Fresh shoot / leaf litter S/G of SW, ST and SF values were 1.2, 4.09 and 1.58, 

respectively, showing that an angiosperm signal dominates here. All other sub-

environments had values <1, showing selective degradation of syringyl phenols of leaf 

litter. Wood litter at SW, FI and ST is predominantly angiosperm (>1), whilst the 

remaining sub-environments showed selective syringyl degradation. Figure 5.16 (b) 

shows the differences between vegetation inputs and surface soil S/G values. This 

highlights that surface soil S/G values are lower than vegetation values, thus syringyl 

phenols are degraded preferentially to guaiacyl. All surface values are <1 showing that 

angiosperms signals are lost. MF soil is >1, however the large error bars indicate a high 

degree of uncertainty. 
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Figure 5.16 Lignin parameters (a) C/G and (b) S/G of surface soils and vegetation 

inputs across the transect. S.E. bars of 3 replicates shown. 
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5.3.8 Oxidation Extents - [Ad/Al]G and [Ad/Al]S 

Table 5.2 also shows the uncorrected and corrected (*) [Ad/Al]G and [Ad/Al]S values 

for fresh shoots / leaf litter, wood litter and surface soils across the savannah-rainforest 

transect. Both of these ratios generally decreased in vegetation and surface soils, as 

described by Nierop et al. (2005) and Swain et al. (2010). This is in general agreement 

with the above source indicator ratios (C/G and S/G). Oxidation ratios [Ad/Al]G/S could 

not be calculated for the surface soil of FI, as both G4 and S4 were not detected in the 

surface soils. This shows an advanced rate of degradation in this soil.   

Increasing values indicate increasing oxidation, therefore, it is usually expected that 

values of these ratios are higher in soils than vegetation. Table 5.2 and Figure 5.17 

shows that this is true of the majority of sites for both guaiacyl and syringyl. Wood litter 

generally has very low values for both [Ad/Al]G: (0.52 – 0.92) and [Ad/Al]S (0.17 – 

0.75), which are similar to those investigated in oak wood (Nierop and Filley, 2007). 

Figure 5.17 (a) and (b) show that all wood litter is less oxidised than surface soils. 

Some surface soils do show similar oxidation levels to fresh shoot / leaf litter values, 

however. This is true of SG [Ad/Al]G which is likely due to the fresh shoot input; in the 

presence of polyphenols fresh vegetation can have values similar to those expected in 

soils (Nierop and Filley, 2007). The same is true of [Ad/Al]G  MF surface soil and leaf 

litter, (2.31 and 2.24, respectively), however, unlike fresh shoots at SG, the leaf litter 

here may be exhibiting rapid degradation within this sub-environment. MF also shows 

similar [Ad/Al]S between soils and leaf litter (2.44 and 2.31 respectively), potentially for 

the same reason. T surface soil and leaf litter also shows this trend for [Ad/Al]S, again 

suggesting that leaf litter is rapidly degraded in these sub-environments. 

In surface soils, SG and PF have the lowest [Ad/Al]G ratios and thus lowest extents of 

oxidation. All other sub-environment surface soils have similar or near similar guaiacyl 

oxidation extents to each other. All other fresh shoot / leaf litter values are low, with 

SW and PF having the smallest guaiacyl oxidation extents.  

MF has the lowest syringyl oxidation extent in surface soils (2.24), whilst SF has the 

highest syringyl oxidation extent in both surface soil and leaf litter (14.1 and 4.79, 

respectively). This may be due to a greater moisture content making microbial activity 
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more prolific than at other sites (Donnelly et al., 1990). All other sub-environments 

have similar surface soil syringyl oxidation extents.  

 

Figure 5.17  Oxidation extents (a) [Ad/AlG and (b) [Ad/Al]S of surface soils and 

vegetation inputs in sub-environments across the transect. S.E. bars of 3 replicates 

shown. 
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5.3.9 Lambda (Λ) 

Table 5.2 shows uncorrected and corrected (*) Λ values in fresh shoot / leaf litter, wood 

litter and surface soils along the savannah-rainforest transect. Figure 5.18 represents the 

changes in corrected (*) Λ values in summed averages of fresh shoot / leaf litter and 

wood litter and averages of surface soils across the savannah-rainforest boundary. 

Summed vegetation and surface soil Λ show little variation between sub-environments 

(as seen above in degradation ratios). The most notable difference is in the surface soil 

of FI, which shows very low Λ (0.05 mg / 100 mg OC). This is because only lignin 

phenols G6, S6 and G18 were detected in the THM products, showing a highly 

degraded soil. The surface soil of SW and the vegetation of MF also show noticeable 

differences to the other sub-environments through greater Λ amounts, however, large 

error bars suggest the vegetation at MF needs further sampling.  

Greatest Λ was seen in the surface soil of savannah sub-environment SW (2.36 mg / 

100 mg OC). This is mainly due to phenols G6 and G18 (1.08 and 0.63 mg / 100 mg 

OC respectively). All other Λ values of surface soils across the transect were ≤1.6 mg / 

100 mg OC, with the majority between 0.6 and 0.7 mg / 100 mg OC.  

Degradation is apparent in the surface soils of FI, in which all phenols are heavily 

degraded, and G/S4 are absent from the THM products. ST, SS, SF and MF also show 

degraded Λ amounts compared to vegetation inputs, largely due to lower G4 and S4 

degradation.  

Although surface soil phenolic degradation is occurring, as apparent in Sections 5.3.7 

and 5.3.8, the amounts of Λ in surface soils of SG, SW, T and PF are similar relative to 

their vegetation inputs, (apparent in the overlapping error bars between soils and their 

respective vegetation inputs). This is mainly due to amounts of phenols G6 and G18 in 

all of the latter soils. Further, SG surface soil has a slightly greater Λ than vegetation 

inputs (a difference of 0.44 mg / 100 mg OC), suggesting preservation of phenols. 

These phenols are specifically G18 and G6.  

. 
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Figure 5.18 Lambda values (mg / 100 mg OC) for surface soils, and summed inputs = 

fresh shoot / leaf litter and wood litter across the transect. S.E. bars of 3 replicates 

shown. 
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5.3.10 Tannin input 

As discussed in Section 5.3.3, tannin input can be a significant contributor to SOM 

parent materials, often in the form of gallic acid (Nierop and Filley, 2007). Their 

persistence in soils has mixed findings with both low amounts (Kuiters and Denneman, 

1987; Schofield et al., 1998) and high amounts detected (Lorenz et al., 2000). Tannin 

phenols can be divided into two groups: hydrolysable (HT) and condensed (CT), 

(Harborne, 1997). As both of these groups are cleaved by the process of high 

temperature pyrolysis GC-MS and thus become amenable to analysis, they cannot be 

distinguished in order to find the relative input of gallic acid (Nierop and Filley, 2007). 

Alongside gallic acid, 1,3,5-TMB also detected within the samples analysed, has been 

assigned as a significant product of A-ring CTs, and thus is a useful marker for CT 

concentration in soil and vegetation samples (Nierop et al., 2005). Additionally, 1,2,4-

TMB can also be derived from B-ring CTs, potentially providing another tannin marker 

(Nierop et al., 2005). However, this product can also be derived from polysaccharides, 

and to date the relative concentration from each source cannot be distinguished (Fabbri 

and Helleur, 1999).  

Figure 5.19 shows the amount of 1,3,5-TMB, 1,2,4-TMB and gallic acid in (a) wood 

litter, (b) fresh shoots / leaf litter and (c) surface soil samples. All compound amounts 

are greatest at SW in surface soils but are much lower throughout the rest of the 

transect. The exception here is PF, which has similar amounts of 1,3,5-TMB to SW. 

Despite this, both 1,2,4-TMB and 1,3,5-TMB show suitability as markers for tannin due 

to the correspondence with gallic acid. The amount of 1,3,5,-TMB at PF is associated 

with relatively large standard error bars, thus, the amount would need to be confirmed 

with further analysis, which would further clarify 1,3,5-TMB as a potential tannin 

biopolymer. Leaf litter 1,3,5-TMB and gallic acid patterns also show a resemblance, 

with highest amounts in SW, ST and MF. A high amount is also seen in PF relative to 

other sites. Again this shows significant tannin input in these leaves. 1,2,4-TMB 

amounts are too low to indicate any resemblance to gallic acid. Wood litter 1,3,5-TMB, 

1,2,4-TMB and gallic acid amounts show little similarity, however. This indicates that 

within wood litter these two products do not necessarily relate.  
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Figure 5.19 Comparison of the amounts of 1,3,5-TMB, 1,2,4-TMB and gallic acid 

inputs in (a) wood litter, (b) fresh shoots / leaf litter and (c) surface soils. S.E. bars of 3 

replicates shown. 
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5.4 Discussion 

5.4.1 THM product proportions and degradation of SOM components in soils 

In Section 5.3.3 the proportions of each THM product were analysed. This analysis 

reveals differences between sub-environments, but also indicates information about the 

degradation state. For example, it is apparent that within the surface soils of sub-

environments SG and MF the greatest proportion are the MC compounds, conversely in 

sub-environments SS, SF and PF, lignin amounts are greatest. This may indicate that 

less degradation is taking place at the latter sub-environments which have around ≥50% 

lignin of the total THM products analysed. Therefore, there may be differences in 

microbial communities or activity between the sub-environments. For example, the 

greater proportion of MC’s in SG and MF than the other sites suggests that greater 

microbial activity may be occurring here, or that dead microbial biomass (necromass) is 

retained for longer in these soils.  

In FI, SS and SF soils, where the lower proportion of MC’s (18, 17 and 23% 

respectively) possibly indicates lower lignin degradation, it is possible that having 

wetter soils than sub-environments SG and MF (see Chapter 4, Section 4.6) contributes 

to this slower SOM turnover. Due to the higher volumetric water content of FI, SS and 

SF soils (67, 58 and 75% respectively) it is possible that limited oxygen availability is 

suppressing aerobic decomposition (Tate, 1979; Colberg, 1988). Despite this, results 

from Sections 5.3.7, 5.3.8 and 5.3.9 actually show that lignin in soils of FI, SS and SF is 

largely degraded. FI soil is heavily decomposed due to the absence of G4 and S4 

phenols. It has been shown that annual variation in precipitation and short-scale rain 

events after and between dry periods may activate microbial populations (Austin et al., 

2004; Abbott et al., 2013). These wet and dry cycles can cause the break-up of soil 

aggregates, thus releasing previously physically protected OM, allowing it to be more 

available to microbial attack. Drier soils after a wet period also result in an 

intensification of phenol oxidase release by microbes, previously suppressed by oxygen 

limitation, causing phenolic decomposition (Fenner and Freeman, 2011). Thus, the 

water retained in these soils from a rainfall event during the dry season may activate 

microbial decomposition of lignin. Sampling of sub-environments SF and SS was 

undertaken 2 and 3 days respectively after a heavy rainfall event (observation) in 

February (during the savannah dry season and early in the second dry season of the 
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rainforest). Despite these recent findings, no relationship was identified between any of 

the lignin parameters and volumetric water content (data not shown), thus, temporal 

investigations into lignin amounts between wet and dry cycles is needed. Further, 

stimulation of phenol oxidation through iron oxide has also been reported in humid 

tropical forest soils of Puerto Rico, where iron oxide acts as a reactive oxygen species 

for microbial respiration and an acidifier of OM (Hall and Silver, 2013). This 

decomposition is only active under aerobic conditions, when microbes are able to 

release phenol oxidase. Iron oxide originating from the plinthic parent material was 

observed in the soils investigated for this study (see Chapter 3 and Appendix E), and 

thus this is another likely decomposition mechanism here after water logging in the wet 

season. In FI, SS and SF soils, the lower proportion of MC’s and more degraded lignin 

relative to SG and MF soils, indicate a high turnover of all SOM components. Therefore 

they present a situation in which the carbohydrate products resulting from microbial 

degradation of OM are degraded as well as the lignin, potentially also through the 

mechanisms described above.  

The similarity in degraded SOM characteristics between the latter three soils (FI, SS 

and SF) may be further evidence to suggest that SS and FI were historically a part of the 

wider rainforest, as suggested in Chapter 4. In this area of Wowetta, savannah fires burn 

along the forest edge (noted in Chapter 3) which may have shaped the savannah 

encroachment and forest island (FI) apparent in the present day. FI surface soil is more 

degraded than SF which is apparent in the observed lack of G/S4 phenols; possibly 

indicating the effect of a more exposed position in the landscape. Being more exposed 

may induce greater losses of SOC, as soils are likely to dry out faster after wet periods 

allowing aerobic decomposition for a longer period within the year. Photo-degradation 

may also be greater in this soil compared to SF soil due to less dense surrounding 

vegetation cover. SS soil shows even lower SOC stocks than FI (Chapter 4) as well as 

degraded molecular characteristics. This may indicate a further progression of the 

rainforest – savannah transition, in which SOC stocks are becoming depleted, which 

may be an example of future alterations with climate change scenarios of warming and 

drying in this region (IPCC, 2013). Interestingly, SS shows less degraded lignin phenols 

than FI, which suggests different degradation mechanisms between the two sub-

environment soils. For example, white-rot fungi may exist at FI but not SS due the 
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presence of trees, as well as lignin-degrading bacteria (Huang et al., 2013), therefore 

causing a greater extent of lignin degradation in FI soil. 

Sub-environments SW, ST and PF have drier soils, (40 and 42%, volumetric water 

content, respectively, PF not measured but dryness observed), a significant proportion 

of plant inputs (gallic acid and lignin) relative to other THM products and greater 

amounts of lignin phenols (Sections 5.3.7, 5.3.8 and 5.3.9). It has been noted that plant 

phenols may have inhibitory effects on soil organisms in relation to SOM degradation 

(Hättenschwiler and Vitousek, 2000). For example, ferulic acid and gallic acid have 

been attributed to inhibiting spore germination and hyphal growth of saprotrophic fungi 

(Kuiters, 1990), whilst Schimel et al. (1998) also identified that condensed tannins from 

a species of alder tree reduced microbial decomposition and nitrogen mineralization. 

Therefore it could be tentatively speculated that the high proportions of phenols in these 

sub-environments may be causing microbial inhibition and thus lower proportions of 

MC’s relative to the other THM products. This is especially prominent in SW and ST, 

where gallic acid proportions are large. Further, in near-by French Guiana leaf litter 

quality has been shown to control litter decomposition in tropical forests, suggesting 

that tree species may produce these phenols to reduce soil microbial activity 

(Hättenschwiler and Jørgensen, 2010). This may also be true of the rainforest tree 

species in the sub-environment PF. However, the role of these phenols and the 

microbial populations would need to be further investigated before the low proportion 

of MC’s at these sites can be fully explained. 

It has been suggested that in some environments, slower degradation of lignin exists as 

a result of adaptation to low nutrient contents (Mitchell et al., 1986), which may be 

causing phenolic stabilisation in the soils of SG, SW, T and PF, and lack of complete 

lignin degradation in FI, SS, SF and MF. All soils in this study are acidic: SW, ST, PF 

and MF pH 3-4 and SG, SS, T and SF pH 4.5-5 (see Chapter 3) and thus likely nutrient 

poor. However no correlation was detected between Λ and pH (data not shown). High 

vegetation input quantities may also result in the partial, but not complete, lignin 

degradation seen across the transect. In SG, low degradation in soil compared to input is 

likely due to the fresh shoots sampled, and the greater Λ in soil may be due to additional 

root inputs.  
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Lignin syringyl showed oxidation in all soils on the transect (Section 5.3.7 and 5.3.8). 

Savannah soils at SG, ST and SS are most exposed to sunlight due to low density 

vegetation cover (observation). Degradation of syringyl has been linked to mechanisms 

such as photo-oxidation, which may act alongside microbial degradation in these 

exposed soils, in particular (Austin and Vivanco, 2006). Another py-GC/MS study in 

semi-arid and arid biomes in the Fynbos of South Africa have also identified S over G 

preferential degradation (Carr et al., 2013). Syringyl phenols may also be preferentially 

degraded by microbial activity in transition and forest sites (Huang et al., 1998). 

The [Ad/Al]G/S ratios in Section 5.3.8 show that sub-environments have different 

degrees of degradation: i.e. SF and MF soil have some of the greatest and lowest 

syringyl oxidation, respectively, whilst SG and PF have the lowest guaiacyl oxidation 

extents compared to other sub-environments studied. As G/S4 were not detected in the 

soil of FI, and Λ (Section 5.3.9) shows degradation compared to input amounts, this soil 

shows the greatest degradation. Differences in SOM composition between arid and 

semi-arid biomes within South Africa have also been identified, of which the 

decomposition extent was suggested to be the driving factor behind this compositional 

variability (Carr et al., 2013). The differing extents of oxidation described above also 

indicate a control over SOM composition, which is evident in the THM product 

proportions between sub-environments seen in Figure 5.5.   

5.4.2 Source and occurrence of carbohydrates  

The differences in both amount and composition of methylated carbohydrates between 

vegetation inputs and surface soils in Figure 5.5, Section 5.3.1, indicates that either 

there is preferential accumulation of MC1 & 3 in soils or that there are other sources of 

these methylated carbohydrates in the soil, such as microbes. A microbial origin of 

these MC’s is suggested particularly by the small proportion of MC’s in the fresh shoots 

of SG, which are less likely to have undergone degradation than the leaf litter in other 

sites. Thus, the carbohydrates MC1 & 3 may be from microbial biomass or necromass 

and form a significant contribution of the total extracted soil residue THM products in 

this study (Figure 5.5(c)). As described in Section 5.3.4, these MC’s have been detected 

in the THM products of a series of hexose sugar standards (specifically D-Glucose and 

D-mannose) labelled with TMAH (Fabbri and Helleur, 1999) and in the THM products 

of glyceraldehyde labelled with TMAH (Schwarzinger, 2004). These hexoses in soils 
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have been used previously to indicate microbial biomarkers (Amelung, 2001; Kandeler 

et al., 2000), and it is also known that plants contribute few hexoses to soil in 

comparison to microbes (Amelung et al., 2008). On THM with TMAH analysis of the 

glucosamine standard in this study (Figure 5.8) all four MC’s identified in the analysis 

of surface soils were detected. Glucosamine has previously been identified as a 

microbial marker for both fungi and bacteria (Amelung et al., 2001), further 

corroborating evidence for microbial origin of these MC’s. Additionally, on analysis of 

the amino sugars galactose, glucosamine and muramic acid via gas chromatography, 

Glaser et al. (2004) suggested that these microbial biopolymers are best used for 

characterising soil microbial necromass, rather than living microbial biomass. This was 

also previously suggested by Guggenberger et al. (1999) and Amelung et al. (2001). 

Miltner et al. (2012) highlighted the importance of microbial necromass in SOM 

through incorporation of plant materials into living microbial biomass and ultimately 

dead microbial biomass (necromass). Further, Miltner et al. (2012) suggested that this is 

a much more important part of SOM than previously considered. Thus, it is likely that 

the MC’s identified in this study, particularly MC1 & 3 due to their abundance in soils, 

represent microbial necromass. Where these MC’s are in greatest proportion (sub-

environments SG and MF), it is likely that more microbial activity is taking place. Thus, 

the MC’s identified in this study, particularly in the soils of SG and MF, may indicate 

an important pool of stabilised SOM, accounting for 63% and 56% respectively of the 

total THM products analysed in these soil residues (Figure 5.5(c)). In experimental soils 

under C3 and C4 plants of northern France, Gleixner et al. (2002) also identified 

carbohydrates as a substantial part of SOM in relation to other major pyrolysis products. 

Further, Spaccini et al. (2000) showed that carbohydrates from plants are microbially 

transformed and stabilised within humic substances of soils. Kindler et al., (2006, 2009) 

and Miltner et al., (2009) also reported that after an incubation experiment, 40% of 

microbial biomass C residues remained in soils, and were thus a significant contribution 

to SOM.  

Despite having a lower proportion than SG and MF soils, sub-environments SW - PF 

average 25% proportion of MC’s in surface soil and thus highlight that these 

carbohydrates are a significant contribution to SOM across the transect. In order to 

further understand the relative proportions of the compounds studied here, and the use 

of MC’s as microbial necromass biomarkers in these soils, further research needs to be 



 

142 

 

undertaken on the type and activity of microbial communities present e.g. bacterial and 

fungal. Analysis of extracted lipids may provide important information towards 

microbial biomass contributions. 

Interestingly, sub-environment FI soil shows a large proportion of CTP’s relative to 

other THM products (~36%), of which much lower proportions were detected in all 

other soils analysed (<10%), (Figure 5.5(c)). FI soil has a relatively smaller proportion 

of MC’s, but a similar proportion of lignin products to CTP’s. Only ~10% of FI leaf 

litter accounts for CTP’s in the THM analysis, however, there are similar amounts in 

wood litter as in soils (almost 35%), (see Figure 5.12). As previously detailed in Section 

5.3.4, these CTP’s have not yet been properly assigned, and their origin is largely 

unknown. Figure 5.12 shows that the dominant CTP is the same in both vegetation and 

soil (142 m/z: CTP1) and, thus, suggest vegetation origin.  

As may be expected, the vegetation THM product proportions at FI show similarity to 

those at SF with regard to CTP proportions, and T in regard to MC proportions (Figure 

5.5(b)). FI wood litter characteristics are similar to that of SF, PF and MF in CTP’s, 

lignin and 1,2,4-TMB proportions, (Figure 5.5(a)). However, CTP’s and 1,2,4-TMB 

proportions in the soils of SF, PF and MF are much smaller than at FI. Assuming that 

the latter sub-environment is a remnant of the larger expanse of rainforest (as 

hypothesised in Chapter 4), the likeness to the transition (T) leaves may indicate that 

leaves at FI have adapted to the more exposed environment, as opposed to enclosed 

forest. Further, the differences in molecular soil characteristics compared to the other 

sub-environments show that a unique environment has developed here, where CTP’s are 

a more important component of the SOM. 

Section 5.3.4 and Figure 5.12 show that CTP’s are degraded in surface soils from 

vegetation inputs across the transect. This may indicate that they are plant derived, and 

rapidly degraded upon entering the soil. Additionally, the glucosamine standard 

analysed did not show the CTP products, which may further suggest plant origin. CTP’s 

have been correlated against lignin oxidation parameters [Ad/Al]G/S in addition to 

individual phenols G/S6 and G/S4, however, very weak relationships are observed (R2 

≤0.4: data not shown). The weak relationship between CTP’s and individual lignin 

phenols is positive (≤0.4), showing that when lignin phenols have a greater amount in 

soils, so do CTP’s.This potentially points towards a plant origin of CTP’s, as lignin is 
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purely of plant origin. The weak relationship between CTP’s and oxidation parameters 

(R2 ≤0.2) is negative, further corroborating a plant origin. If CTP’s are of microbial 

origin the latter relationship may otherwise be positive, which would indicate that 

CTP’s are microbial products released after lignin oxidation. However, additional 

samples would be needed to verify these preliminary interpretations. Further, 

relationships between MC’s and the above lignin phenols and oxidation parameters 

have been assessed. This revealed a set of very weak relationships (R2 ≤0.1, most are 

≤0.06: data not shown), this lack of association between lignin and MC’s may 

corroborate their microbial origin. It also suggests that microbes do not preferentially 

degrade lignin, as a negative relationship may in this case be observed. A positive 

relationship may have suggested either plant origin (as with CTP’s). However, such 

inferences behind this lack of relationship are speculative.  

Evidence from the occurrence of MC’s in degraded FI, SS and SF soils shows that these 

CTP’s may have a high turnover, even if microbially derived. Swain (2013) detected 

either decreases or insignificant changes between leaf litter and soil CTP amounts in 

Sitka spruce and moorland sites, with the moorland having a greater amount than the 

Sitka spruce sites. Aside from a tentative assignment, no other research has been carried 

out on these CTP’s in soil and thus they require further analysis for verification of 

source and potential roles within SOM. 

Figure 5.13 highlights clearly that vegetation inputs have a greater proportion of CTP’s, 

and a lesser proportion of MC’s than surface soils. The relative proportions observed in 

these soils have been previously attributed to preferential degradation of cellulose by 

white-rot fungi, which is known to be a principal energy source for heterotrophic 

microbial communities (Dijkstra et al., 1998; Huang et al., 1998). Huang et al. (1998) 

also reported Oh horizons rich in microbial metabolites (anhydrohexose and 

anyhdroglucosamine), which were attributed to fungal activity.  

5.4.3 Source and occurrence of tannins 

Section 5.3.10 analysed the role of tannin biopolymers in vegetation and surface soils. 

Both similarities and disparities between 1,3,5-TMB, 1,2,4-TMB and gallic acid 

occurrences were detected in Section 5.3.10. Most disparities were observed in wood 

litter samples. In peaty gley soils in the North East of the UK, Swain (2013) also 
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identified both similarities and disparities between gallic acid, 1,3,5-TMB and 1,2,4-

TMB amounts, depending upon sub-environment (afforested conifer plantation and 

moorland). Mason et al. (2009) also observed similarities between gallic acid and 1,3,5-

TMB in soil profiles between different sub-environments in the temperate zone. 

However, Nierop et al. (2005) identified that A-ring products such as 1,3,5-TMB were 

negatively correlated to gallic acid within a range of plant species from different 

environments in North America. These converse findings show that 1,3,5-TMB needs 

further assessment in its relationship to gallic acid. The correlation between 1,2,4-TMB 

and gallic acid, particularly in SW and ST surface soils, may indicate its source from 

tannin as opposed to polysaccharides, but warrants further investigation. Other studies 

comparing these compounds in soils and vegetation of the tropics have not yet been 

undertaken. 

Gallic acid in the leaf litter of SW and ST samples may be due to the production of 

condensed tannins in order to prevent damage from herbivores, as these are known to 

inhibit digestion (Cooper & Owen-Smith, 1985).  They can also be used as deterrents by 

producing an undesirable, astringent taste (Harborne, 1991; Bryant et al., 1992) and 

reduce protein and other nutrient availability (Robbins et al., 1987). Additionally, 

condensed tannins have been identified in rainforest plants, also associated with 

herbivore defence (Coq et al., 2009). Hättenschwiler et al. (2008) demonstrated that 

different plant species can have high variation in foliage and leaf litter chemistry within 

the same rainforest ecosystem, thus, the differences observed here between sub-

environments may be expected. 

5.4.4 Organic molecular chemistry compared to SOC stocks 

SOC stocks from 0-6 cm depth of the surface soil were calculated for each sub-

environment along the savannah-rainforest boundary transect in Chapter 4 (Table 4.1). 

These surface soil SOC stocks were correlated to the range of organic molecular 

products analysed at 0-6 cm surface soil in this chapter, including methylated 

carbohydrates, cellulose THM products, gallic acid, 1,3,5-TMB and lignin. No 

correlations were identified between any THM products and SOC stocks. 

The greatest 0-6 cm SOC stocks are in FI and SF soils, however these showed some of 

the lowest amounts of lignin, MC and CTP characteristics across the savannah-
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rainforest transect. The greatest amount of lignin, MC’s and gallic acid are detected in 

the surface soils of SW1, which has one of the lowest 0-6 cm SOC stocks across the 

transect. This suggests that the turnover of molecular products may be faster than that of 

the bulk SOC, despite the large stocks likely accumulated over time. This indicates the 

importance of specific site conditions and vegetation inputs to both molecular 

characteristics and SOC stocks. It may also suggest that lignin may not be as important 

a component in soil carbon stocks as previously thought (Thevenot et al., 2010). 

Conversely, Carr et al. (2013) reported a positive correlation between lignin and TOC, 

and proposed that this represents an important role for less altered plant organic matter 

in SOC. Swain et al. (2010) also reported that, between two sites in the temperate zone, 

there were similarities between lignin amount and SOC stock in the surface horizons. 

However, the results from sub-environment SW indicate that high amounts of less 

altered plant-derived SOM, such as lignin, do not necessarily result in high SOC stocks. 

Comparisons between molecular composition and SOC stocks have not been widely 

made in tropical soils, however, further research into this is recommended to establish 

how this varies within different sub-environments and ecosystems and how changes in 

climate may affect SOM and, thus, SOC stocks in the future. 

5.4.5 Evidence of fire in SOM characteristics 

Within the surface soils characterised, no evidence of fire was observed in the THM 

products. This may have been in the form of condensed aromatic structures and the 

evolution of O-alkyl C to furan-like structures (Baldock and Smernik, 2002; Almendros 

et al., 2003). However, other studies have also found decadal cycling of fire-affected 

SOM, indicating that fast turnover times of this material can occur (Alexis et al., 2012), 

as is indicated in this study.  
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5.5 Conclusions 

This chapter summaries the analysis of SOM components via THM with unlabelled and 

13C-labelled TMAH across a savannah-rainforest boundary in central Guyana. Clear 

differences in molecular composition are apparent between the sub-environment soils. 

Average amounts of pyrolysis products show that SOM in SW and ST contain the 

greatest amounts of lignin and gallic acid and thus less-altered plant-derived OM. 

However, [Ad/Al]G/S ratios show that oxidation extents of lignin phenols are similar to 

the other soils studied here. This indicates that SW and ST have a higher input of lignin 

than other sites, despite similar degradation. In addition to the SG and MF soils, SW 

soil also has greater amounts of MC’s compared to all other soils analysed, which 

suggests that both OM input and turnover is rapid in this soil. Greater gallic acid and 

lignin amounts than carbohydrates may indicate that microorganisms are preferentially 

degrading plant materials other than lignin and tannins, such as the CTP’s or other more 

easily degraded sugars. Sub-environments SG and MF have a greater proportion of 

MC’s than lignin or gallic acid, which indicates a greater alteration of plant-derived 

OM. MC’s are likely to be microbially derived due to their more significant presence in 

surface soils than vegetation inputs. Their chemical structure (hexoses) also indicates 

microbial formation (Fabbri and Helleur, 1999; Schwarzinger et al., 2002). The poor 

correlations with lignin phenols may also suggest microbial origin, although this initial 

conclusion needs further investigation. The importance of MC’s as potential microbial 

necromass in these soils is apparent from their proportion compared to other pyrolysis 

products, and their indicated stabilisation needs further investigation. Plant-derived OM 

shows relatively high degradation extents in all soils, however, the amounts of MC’s are 

lower in soils ST – PF in comparison to SG, SW and MF, potentially suggesting either 

less microbial input or a faster turnover of MC’s in these soils.  

Soils of FI and SF sub-environments at first appear unusual because of high OM 

degradation (highest syringyl and high guaiacyl oxidation extents, low Λ, gallic acid 

and MC amounts), despite having the highest SOC and volumetric water contents, (see 

Chapter 4), which may otherwise suggest OM stabilisation. However, the likely reasons 

for high turnover are site specific and linked to volumetric water content, wet-dry cycles 

and the presence of iron oxide stimulating phenol and carbohydrate decomposition. The 

disconnection between SOM degradation and bulk SOC highlights that vegetation 



 

147 

 

inputs and microbial carbohydrates turnover faster than the bulk SOC, which calls for 

temporal scale studies to monitor fluctuations between SOM and SOC throughout the 

year. Investigation into the extracted lipid fraction of the soils studied here may provide 

useful information about the composition of the bulk SOC. 

Due to the lack of correlation between the OM characteristics and measured 

environmental variables such as pH and volumetric water content, this also emphasises 

the need to study other variables in greater detail, such as temperature, iron oxides and 

photo-degradation. These abiotic factors all influence soil microbial communities and in 

turn, the fate of the carbohydrates they produce. However, leaf and wood quantities are 

also likely to affect SOM characteristics and microbial activity, and should be measured 

and compared across the transect in order to detect differences between sub-

environments. Additionally, the significant amounts of MC’s within the SOM of these 

sub-environments calls for the need to further investigate the types and activity of 

microbial communities.  

Therefore, with predicted climate change of increasing temperature and alterations to 

precipitation patterns (IPCC, 2013), shifts in SOM characteristics are likely to be 

observed (Davidson and Janssens, 2006). In the rainforest studied here, where SOM 

turnover is high, a potentially warmer and drier climate (Bovolo et a., 2012; IPCC, 

2013) may initially mean forest die-back, causing an influx of nutrients and fast carbon 

turnover, providing soil moisture is sufficient. However, as these nutrients are rapidly 

consumed by microbial populations and savannah vegetation takes precedence, inputs 

will decline, microbial communities are likely to change and the greater stock of SOC 

under forest such as FI and SF will be mineralised to CO2 and CH4, causing further 

atmospheric warming. Uncertainty in climate model predictions of precipitation (IPCC, 

2013; IPCC, 2014) could indicate greater rainfall, potentially allowing the expansion of 

swamp forest into savannah swamp increasing SOC stocks and altering microbial 

communities. Savannah grasslands and woodlands which may convert to rainforest 

under this scenario may not see significantly increased SOC stocks (see Chapter 4; 

Section 4.3.3), however, changes in molecular SOM dynamics may alter, with lower 

amounts of tannins in inputs and soils. Thus, understanding SOM characteristics and the 

factors that affect them is key to understanding how future climate change and locally 

affected weather patterns will alter these SOC stocks.  
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6.1 Conclusions 

This study presents an assessment of the sub-environments, soil types, and their organic 

carbon characteristics investigated at two areas, Wowetta and Surama, on the savannah-

rainforest boundary in Central Guyana. Specifically, major soil groups and sub-groups, 

bulk SOC and molecular organic carbon characteristics of the nine sub-environments 

were assessed. SOC was analysed using bulk density, horizon thickness and TOC 

measurements in full soil profiles. Surface soils and vegetation samples of the Wowetta 

sub-environments were analysed using thermally assisted hydrolysis and methylation 

(THM) in the presence of 13C-labelled and unlabelled tetramethylammonium hydroxide 

(TMAH) for both phenolic (lignin and tannin) and non-phenolic (carbohydrate) 

products.  

The lignin, tannin and carbohydrate biopolymers assessed reveal important site specific 

differences in SOM characteristics, and the processes influencing them, between the 

sub-environments analysed.  

6.1.1 Savannah-rainforest boundary sub-environments and soil types 

The heterogeneity of the savannah-rainforest boundary was revealed through the initial 

reconnaissance survey which highlighted nine sub-environments in Wowetta and 

Surama. These included: savannah grassland (SG1 & 2), savannah woodland (SW1 & 

2), savannah tree (ST1 & 2), pisoplinthic savannah grassland (PSG), savannah swamp 

(SS), transitional zone (T1 & 2), swamp forest (SF1 & 2), mixed tree spp. forest (MF1 

& 2), pisoplinthic forest (PF), kokret palm forest (KPF) and mora forest (MRF).  

Within these sub-environments two major soil groups have been identified: plinthosols 

and gleysols. The soil type depend upon the position of the sub-environment in the 

landscape, which affects the influence of hydrology and parent material on soils. 

Several sub-groups of these two major soil types were identified, which in some cases 

depends upon both abiotic factors (such as hydrology) and biotic factors (vegetation 

input quantity), e.g. swamp forest humic gleysols. The ‘humic’ prefix reflects the high 

quantity of vegetation inputs from the forest and the main soil group ‘gleysol’ reflects 

the hydrological condition of the soil. Other soil subgroups had no significant or visible 

vegetation influence, e.g. haplic plinthosols, and were determined entirely upon parent 

material characteristics (the dominant presence of plinthic material within the soil 
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profile). Differences in the texture of soil profiles also determines the soil sub-groups, 

i.e. a rapid increase in clay in the profile of soil under mixed tree spp. forest gives an 

‘acric’ plinthosol sub-group, and the sandy eluviated horizon of the soil profiles beneath 

savannah vegetation gives an ‘albic’ plinthosol sub-group. Both plinthosols and gleysols 

occur in savannah and rainforest environments, thus, vegetation is not a reliable 

indicator of soil type. From these results it is suggested that within sub-environments on 

the savannah-rainforest boundary, morphology, geology and hydrology are the best 

indicators of soil type.  

Analysis into the mineralogy of a sub-set of surface soil samples via XRD revealed a 

primarily quartz, kaolinite and strengite composition. Quartz, kaolinite and strengite 

suggested a low ability to complex with organic matter.  

6.1.2 SOC stocks 

As soil type is linked to parent material and hydrological conditions at each sub-

environment, these factors are very influential upon SOC stock. Wettest soil profiles 

(gleysols) have the highest SOC stocks, particularly those under forest vegetation (SF1 

& 2 and FI: total soil profiles 388, 321 and 258 t C ha-1, respectively). Gleysol under 

savannah vegetation (SS: 160 t C ha-1) has a substantial carbon stock but it is 

significantly lower than SF1 & 2 and FI. Plinthosols have significantly lower SOC 

stocks than gleysols, regardless of savannah or rainforest vegetation (56 – 201 t C ha-1). 

Therefore, soil type is a more accurate indicator of SOC stock than vegetation type. 

In comparison to previous data for these soil and sub-environment types, SOC stocks 

estimated in this study (56 - 258 t C ha-1) largely fall within or below previous 

estimates. However, SF1 & 2 SOC stocks are greater than previous estimates by 98 t C 

ha-1 and 31 t C ha-1, respectively. High variability between the same sub-environments 

also exists between the sampling areas of Wowetta and Surama, e.g. within the sub-

environment MF1 & 2 the former has 71 t C ha-1 and the latter 171 t C ha-1. The 

disparities between the datasets and sub-environments highlights the need for high 

resolution sampling. 

Some soil profiles show an increase in SOC in sub-surface horizons; this highlights the 

importance of taking into consideration individual horizons, their thickness and bulk 

density (Grüneberg et al., 2010). The importance of sampling a full soil profile where 
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possible, as opposed to only 0-1 m, is also highlighted through the differences observed 

between the SOC of full profiles in this study, and previous studies only measuring 0-1 

m depth. Both of these sampling techniques enable more accurate estimations of SOC 

stocks.  

6.1.3 Molecular SOM characteristics 

Both plant and microbially-derived biopolymers have been identified in the THM 

analysis products. Plant biopolymers include lignin and tannins, and microbially-

derived biopolymers include methylated carbohydrates (MC’s) which were identified 

from their chemical structure (ion fragmentation patterns) in previous literature (Fabbri 

and Helleur, 1999; Schwarzinger, 2004). The amounts of MC’s are much greater in 

surface soils than vegetation inputs which also suggests microbial formation. A second 

set of carbohydrate THM products (CTP’s) were also identified, of which the origin is 

uncertain, hence they are currently only tentatively assigned. Wood litter has a greater 

amount of CTP’s than surface soils, however, fresh shoots / leaf litter show mostly 

lower or similar amounts to soils. This indicates that the main source of these CTP’s is 

in wood litter as compared to leaves. More work is needed to properly assign these 

products and their origin, for example microbial CTP products may also be possible. 

Analysis of the SOM characteristics in the surface soils of the Wowetta sub-

environments reveals clear differences in molecular composition. SW has the greatest 

amount of lignin and tannin products and thus unaltered plant derived material. 

Additionally, it has one of the greatest amounts of MC’s; indicating high microbial 

activity. This indicates that microorganisms may be selectively degrading other plant 

components, such as CTP’s and other more easily degraded sugars. SG and MF soils 

have the greatest amounts of MC’s, highlighting high microbial activity. This is 

corroborated by degraded lignin and tannin products in these soils. SG may also have 

low inputs from vegetation due to the sparse grass cover.  

In surface soils the amounts of CTP’s relative to MC’s are lower. This has previously 

been attributed to rapid degradation of these products by white rot fungi. Within fresh 

shoots / leaf litter, CTP’s are a greater proportion and amount than MC’s. This may 

highlight slower degradation and less microbial activity in fresh shoots / leaf litter than 

soils, which may be expected. 
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FI surface soil has the most degraded lignin and a much greater amount of CTP’s than 

all other soils analysed. This may indicate a different microbial community to other 

soils; in which lignin is selectively degraded relative to CTP’s, possibly suggesting the 

presence of white-rot fungi.  

Despite FI and SF soils having the high SOC stocks, these soils have some of the most 

degraded lignin and tannin amounts across the transect. However, some of the lowest 

amounts of MC’s were measured in these soils, suggesting high turnover of both 

vegetation and microbial inputs. The disparity seen between the SOC stocks and 

degradation of molecular products in soils suggests that these products have a higher 

turnover rate than the bulk SOC.  

6.1.4 Implications for future climate and local weather scenarios 

The results presented in this study highlight the forest island and swamp forest as key 

sub-environments and soils in relation to SOC stocks. These sub-environments have the 

most significant SOC stocks on the savannah-rainforest boundaries studied, which are 

greater than those previously estimated (Jobbágy and Jackson, 2000). However, from 

analysing the molecular characteristics of these soils it is also evident that they have a 

fast turnover of OM. These soil characteristics are likely largely due to the hydrological 

conditions of the site, with wet-dry cycles influencing both molecular turnover and bulk 

SOC stocks. In relation to future predictions of a warming and drying scenario for this 

region of the Amazon (IPCC, 2013) it is evident that these soils and their carbon stocks 

may be vulnerable to drying, potentially causing SOC loss. It has been postulated that 

alterations in precipitation are of greatest concern for Amazonian climate change, 

particularly within the dry season (Malhi et al., 2008). Previous Amazon droughts, such 

as the 2005 and 2010 ENSO events, demonstrate the vulnerability of rainforest 

mortality (Doughty et al., 2015). Thus, the savannah-rainforest boundary studied here 

may be subjected to increased forest mortality and die-back if local weather patterns are 

influenced by warmer and drier conditions. This may result in mineralisation and 

subsequent decrease of the significant SOC stocks of FI and SF if exposed through die-

back. Historically, deforestation rates in Guyana are low (Food and Agriculture 

Organisation of the United Nations, 2005), however, as the pressure for resources also 

increases with expanding populations (Nobre et al., 1991; Nepstad et al., 2008), drier 

conditions may mean fires from agricultural practices may spread along the boundary 
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into the areas studied, causing further exposure of deeper rainforest SOC stocks. As an 

isolated strip of forest, FI may be most vulnerable to drying, conversion to savannah 

and resulting SOC loss. Equally, amplified resource use of timber and space for cattle 

may prevent SOC stocks increasing even if precipitation increases do occur. However, 

ultimately, the current uncertainty in precipitation predictions (IPCC, 2013; IPCC, 

2014) means that it is difficult to extrapolate how these stocks and their molecular 

dynamics may be altered in the future. The data collected in this study can be used to 

inform management policies and practices within the rainforest and savannah areas of 

Wowetta and Surama. For example, areas with significant SOC stocks such as the 

rainforest swamps and forest island should be monitored for change in the long term, as 

well as being protected from logging. 
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6.2 Future recommendations and work 

The results from this study have highlighted areas for further work, some of which will 

be detailed in the following paragraphs.  

In order to create the baseline data established in this study, a transect in Wowetta and a 

selection of pristine sites in Surama was implemented for sampling. In future work, 

these sampling sites could be scaled up, employing a sampling grid method, which 

would include a wider area along the savannah-rainforest boundary. This would aid in 

verification of the data presented and quantification of variability along the savannah-

rainforest boundary in Wowetta and Surama. The increased number of sampling sites 

would also allow more complex statistical analysis, such as multivariate analyses.  

The overall extent of each sub-environment should be mapped in order to assess the 

relative importance of the SOC stocks of these areas to the country of Guyana. Through 

this, the carbon stocks of these sub-environments could be better protected and managed 

for the future. This will be particularly important for the swamp forest and forest island 

soils which hold the greatest SOC stocks, and face the prospect of drying out through 

increasing temperatures and decreasing precipitation (IPCC, 2013). This may lead to a 

loss in SOC, as indicated by the drier soils with smaller SOC stocks.  

In addition to more thorough spatial sampling, it is recommended that bulk density soil 

sampling and monitoring of the water table depth is undertaken throughout the year. 

This would allow a clearer understanding of the hydrology, which is especially 

important in forest swamp, forest island and savannah swamp soils, and may provide 

more evidence to suggest fluctuating microbial activity between wet and dry cycles. 

This would further aid in understanding bulk SOC stocks, especially in the 

aforementioned soils. Sampling further into the dry season may also allow bulk density 

sampling of horizons which were inundated with water and thus not sampled, if the 

water table has lowered. This would verify surrogate data used in this study where bulk 

density samples could not be obtained. Further soil and vegetation sampling throughout 

the year would also allow temporal molecular changes to be analysed, which may 

change with season. For example, less SOM degradation may be observed in the wet 

season when all soils are likely to be inundated with water. 
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Although a lack of correlation between SOM characteristics and the abiotic factors pH 

and volumetric water content was observed in this study, correlations may appear if 

measured on a longer timescale, i.e. throughout the year. Exploring both abiotic and 

biotic controls in greater detail may also reveal possible stabilisation and degradative 

mechanisms of SOC in these soils. Effects of anaerobic conditions could be measured 

via redox potential in order to better investigate the differences in aerobic and anaerobic 

conditions between the sub-environments. This would allow for a greater understanding 

of the potential microbial SOM decomposers present. Analysing the microbial species 

and communities present will provide further information on the decomposition of 

SOM. Techniques such as polymerase chain reaction (PCR), which amplifies specific 

DNA fragments, or 454 sequencing and ion semiconductor sequencing, which allow 

population characterisation of microbes without the need for amplifying DNA, could be 

employed. 

Microbial inputs are likely present throughout the surface soils of all sub-environments 

analysed (in the form of methylated carbohydrates: MC’s), and are of particular 

importance in the surface soils of SG and MF. These potential microbial inputs may be 

stabilised through transformation into more recalcitrant forms, such as alkyl C (Baldock 

et al., 1992), and are thus worth further investigation. 14C-radiocarbon dating these 

microbial inputs would allow an evaluation of their age. The origin of the carbohydrate 

THM products (CTP’s) analysed in this study (postulated to be plant-derived), also need 

further investigation in order to properly assign them. 

Strong bonds can form between organic material and iron oxyhydroxides, stabilising 

organic matter on the surfaces of these minerals. These strong bonds have been found 

between the latter metal surfaces and acidic organic ligands, after the oxidative 

degradation of lignocellulose (Kaiser and Guggenberger, 2000). However, 

polysaccharides have weaker bonds to metals and thus are less likely to be stabilised 

than lignin (Kaiser and Guggenberger, 2000). Due to the presence of iron in these soils 

from the plinthic parent material, it is possible that SOM is stabilised through such 

bonds. However, this may be more important in sub-surface horizons, where iron oxides 

were mostly observed, rather than at the surface of the soil profile. Such stabilisation 

may lead to a greater amount of lignin than carbohydrates in sub-surface horizons and 

requires further investigation in these soils.   
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Monitoring of soil temperature and sunlight levels throughout the year will provide data 

to correlate against SOM characteristics. Analysing sunlight levels may highlight photo-

oxidative degradation of the lignin phenol syringyl as a major SOM control in exposed 

savannah sites: Austin and Vivanco (2006) found that photo-degradation through 

ultraviolet-B and total radiation was a main control on SOM decomposition in a semi-

arid ecosystem. Analysing soil temperature within the different sub-environments may 

highlight differences between them as well as seasonal variations within sub-

environments, which may affect SOM decomposition. However, temperature itself may 

not be a direct influence upon SOM degradation: Pisani et al. (2014) found that along an 

increasing mean annual temperature gradient, temperature had no effect upon lignin or 

microbially-derived aliphatics, although a stronger relationship was found in 

conjunction with mean annual precipitation. Therefore, temperature may be an 

important abiotic factor to consider in relation to other variables. Temperature 

sensitivity of SOM is also influenced by microbial temperature optima, microbial 

substrate availability and physiochemical controls of SOM such as pH, water, oxygen 

and nutrient supply (von Lützow and Kögel-Knabner, 2009). Thus, the latter abiotic 

variables need holistic consideration in future work in further understanding of the 

controls on SOM characteristics of these soils. 

In order to better understand the amount of plant derived carbon entering the soil in 

each sub-environment, assessment of the quantities of fresh shoot / leaf litter and wood 

litter should be undertaken. Root litter quantities should also be taken into 

consideration, as these are likely to be of importance, (Rasse et al., 2005). Surface soils 

in the sub-environments of Surama should also be assessed for molecular 

characteristics. This may highlight differences within similar sub-environments of 

Wowetta and Surama. Investigation into sub-surface horizons of all soils may also 

reveal important information about the fate of lignin, tannin and carbohydrates. 
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Appendix A.  Extraction Experiment 

The preferred method of extracting soils analysed by Py-GCMS lignin analysis at 

Newcastle University has been Soxhlet extraction (Mason et al., 2009; Swain et al., 

2010). However, this can be a time-consuming process as samples need to be extracted 

for 48 hours, in order to ensure efficient extraction. In addition to this, pre-extraction of 

thimbles and glass wool for 24 hours must be undertaken in order to ensure that they are 

thoroughly clean before use. This method also means that a large amount of solvent 

(DCM and MeOH) is used. Thus costs and environmental impact is high due to the 

amount of equipment needed when analysing a large quantity of samples. A comparison 

between Soxhlet and pressurized lipid extraction (PLE), also known as ASE, was 

therefore undertaken for extracting soils for pyrolysis GC-MS analysis of lignin 

derivative products. ASE has also been designed to be an equivalent extraction method 

to that of the Soxhlet but also with the advantage of being more efficient (Richter et al., 

1996). ASE is run at a higher temperature than Soxhlet (100 °C vs. 80 °C) therefore both 

the standard 100 °C temperature and the lower 80 °C on ASE were included in the 

experiment in order to investigate any differences this could possibly cause in this 

particular extraction technique.  

A. 1.  Aim and Objectives 

The aim of the extraction experiment was to evaluate whether ASE could be used as a 

more efficient extraction technique in preference to Soxhlet, specifically for 

investigating soil organic carbon compounds. 

The work program to address the aim was: 

 Use two different temperature settings on ASE: conventional 100 °C and lower 

80 °C (same temperature as used in Soxhlet extraction). 

 Analyse results by running extracted soils on pyrolysis GC-MS and semi-

quantitatively calculate amounts of lignin compounds present. 

 Compare the amounts of each compound to look for differences in efficiency 

between the extraction methods (via standard error). 
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 Evaluate and recognise which method is best to use considering extraction 

efficiency, time and economic value. 

 

A. 2.  Methods 

Extraction method potential 

Table A.1 demonstrates the potential of each extraction method, considering the full 

number of samples that can be extracted in one run, the time taken to run this number of 

samples, and the cost involved. ASE extracts the greatest amount of samples in one 

extraction run, for a comparatively shorter length of time than the Soxhlet, it also 

extracts faster than this, and with greater ease. The expense of the extraction (e.g. 

additional equipment) is also greatly reduced when using the ASE. Costs are factored in 

for the analysis of 200 samples, which is the number to be extracted in this project.  

Table A.1 Time and expense comparisons between Soxhlet and ASE. 

 Soxhlet ASE  

No. of samples possible to extract at 

one time (incl. Blank) 

6 12 

Time 

 

48 hours 8 hours 

Minimum expense (£) 

 

600 390 

 

Samples 

A single soil sample (0-5 cm from surface) was collected in a 125 ml DCM cleaned 

amber glass jar. This was then freeze dried and homogenised with an agate pestle and 

mortar, passed through a 355 µm sieve to remove plant material, and subsequently split 

into 4 parts for the respective extraction experiments (Soxhlet, ASE 100 °C and ASE 

80 °C). The 4 samples were split again into triplicates prior to extraction. Sub-samples 

were analysed in triplicate.  

Extractions 

The conditions used for each extraction method are summarized in Table A.2. Soxhlet 

extraction was performed using a Scientific Laboratory Supplies Thermo Scientific 
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Soxhlet extractor. ASE extraction was implemented using a Dionex 200 model ASE. 

All samples were extracted using a 93:7 dichloromethane/methanol solvent ratio. 

Blanks were run with all extractions to check for possible contamination. All equipment 

parts in all extraction methods were cleaned prior to use with dichloromethane in order 

to remove all possible organic contaminants. Thimbles were extracted by Soxhlet for 24 

hours and subsequently dried before use. Pre-extracted silica wool was used to prevent 

loss of soil from thimbles during extraction in both of these methods. 200 ml of solvent 

was used per sample by Soxhlet extraction. Extraction on the Soxhlet was undertaken 

for 48 hours.  

ASE sample cells were sonicated in DCM for 30 minutes before rinsing with DCM 

prior to use to ensure thoroughly clean. 11 mL sample cells were used for which 65 mL 

solvent was used per cell. Solvent was heated for 5 minutes, static for 5 minutes and 

then flushed at 100 % volume. Cells were purged for 120 seconds for 3 cycles. The 

pressure used was 1500 psi, and two sets of samples were extracted at 100 °C and 80 °C. 

Samples were mixed with a roughly equal amount of extra pure sea sand in order to 

ensure minimum aggregation of the samples which may otherwise have prevented 

efficient extraction. The extra pure sea sand was also extracted in order to check for 

contamination. ASE extractions were run for 2.6 hours (40 minutes per cell).   
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Table A.2 Conditions used to compare Soxhlet and ASE extraction techniques. 

 Soxhlet ASE 100 °C ASE 80 °C 
Extraction solvent 

 

93:7 DCM/MeOH 93:7 DCM/MeOH 93:7 DCM/MeOH 

Solvent volume per 

sample (mL) 

 

200 65 65 

Pressure (psi) 

 

Ambient 1500 1500 

Temperature (°C) 

 

80 100 80 

Time  

 

48 hours 2.6 hours 2.6 hours 

No. samples run 

 

3 + blank 3 + blank 3 + blank 

 

THM analysis 

Online THM in the presence of TMAH was performed using a pulsed open mode 

pyrolysis system, specifically a CDS 1000 pyroprobe unit (Chemical Data Systems, 

USA) fitted with a platinum coil and a CDS 1500 valved interface. Approximately 20 

mg of sample was weighed into a quartz pyrolysis tube plugged with pre-extracted silica 

wool. 6µl of the internal standard 5α-androstane (concentration = 0.1 mg/mL) with 

DCM was inserted prior to pyrolysis. 5µl of an aqueous solution of TMAH (25% w/w) 

was also inserted immediately before pyrolysis in order to derivatise lignin compounds. 

The quartz tube was inserted into the platinum coil of the pyroprobe and then heated 

610 °C for 10 s (20 °C/ms temperature ramp). The platinum resistance-heated coil was 

interfaced with an HP5890 gas chromatograph with an open split and thermochemolysis 

products were separated on a 60 m HP5-MS column (0.25 mm internal diameter, 0.25 

µm film thickness). Helium was used as a carrier gas due to its inert properties, at a flow 

rate of 1 mL/min. A solvent delay of 10 minutes was used. The GC oven was 

programmed from 50 to 220 °C at a rate of 1.5 °C/min, then isothermally held for 1 

minute and finally raised to 320 °C at a 15 °C/min rate and held for 16 minutes. 

Compound detection was done using a HP 5973 mass selective detector in full scan 

mode (m/z 50-700). 
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The pyroprobe unit was calibrated prior to use. This was done using the salts lead 

chloride, lithium chloride, caesium chloride, potassium chloride and potassium iodide of 

which the melting points were known (ranging from 501 – 770 °C), (Bashir, 1999). 

From the observed temperature of the salt melting points in a quartz tube a calibration 

curve was created (Figure A.1) and the actual temperature within the quartz tube in the 

pyroprobe unit calculated. The temperature within the quartz tube was found to be 

different to that actually being used, roughly 150 °C hotter, and so the programmed 

temperature was corrected for this. 

 

Figure A.1 Calibration curve for pyroprobe unit 

Compound identification was based upon the NIST98 spectral library of that >95% and 

known retention times and ion fragmentation (Hatcher et al., 1995; del Rio et al., 1996; 

Filley et al., 2006). Compound weights (mg/ml) within each sample were calculated 

using spectral abundance against the internal standard. Means and standard errors (SE) 

of the triplicates for total soil residue yield and THM compounds were calculated and 

have been compared for significant differences between the methods below. 
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A. 3.  Results 

Sample weight after extraction 

The weight of sample after extraction (soil residue yield) was calculated by subtracting 

the weight of extract from the weight of sample before extraction. ASE 80 °C had the 

lowest degree of variability between replicates (Figure A.2 and Table A.3). This shows 

that by bulk sample it is the most reliable method. However, as lignin phenols are an 

important part of the study, guaiacyl, syringyl and cinnamyl phenols have also been 

analysed in the extracted soil (see ‘Lignin phenol amounts’, below). 

 

 

Figure A.2 Soil residue yield comparison of the three methods ASE 100 °C, ASE 80 °C 

and Soxhlet, with SE bars shown. 
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Table A.3 Descriptive statistics of soil residue yield from the three extraction methods 

ASE 100 °C, ASE 80 °C and Soxhlet. 

Method Mean SE 

ASE 100 5.00 0.03 

ASE 80 5.00 0.00 

Soxhlet 4.98 0.01 

TMAH thermochemolysis products 

THM in the presence of TMAH gave the methylated phenols guaiacyl (G), syringyl (S) 

and p-hydroxyphenyl cinnamyl (C) in all extraction methods.  

Lignin phenol amounts 

Following extraction the main lignin phenols guaiacyl, syringyl and cinnamyl (G, S and 

C) were assessed for analytical quantitative reproducibility during THM in TMAH 

using triplicate samples (Section 2.9). G phenols consist of G4+G6, S units consist of 

S4 + S6, and C units consist of G18 + P18. SE bars show that ASE 80 °C has a greater 

yield of G, S and C units than ASE 100 °C. However, it only shows a greater amount for 

G units than Soxhlet. Soxhlet showed greater yields than ASE 100 °C of all lignin units 

except for G. ASE 80 °C also recovered the greatest yield of total lignin products 

(including compounds other than the above mentioned) of all the extraction methods 

tested (Table A.4). Therefore ASE 80 °C is the most efficient at yielding lignin 

products. 
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Table A.4 Phenolics recovered in samples in each extraction method and totals (mg/ml). 

Method G1 P6 G4 G6 S4 P18 S6 G18 Total 

ASE 100 °C 3.55 1.46 1.00 1.48 0.06 0.24 0.47 0.45 8.72 

ASE 80 °C 3.87 2.74 1.57 2.42 0.77 0.61 1.70 0.91 14.59 

Soxhlet 2.34 2.61 1.50 2.71 0.00 0.66 2.40 0.81 13.04 
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Peak quality of TICs 

Following extraction (ASE 80 °C) the macromolecular insoluble residues were 

depolymerised using THM in TMAH and these produced the cleanest peaks with less 

co-elution than with either Soxhlet extraction or the higher ASE extraction temperature. 

This also increased confidence in the identification and assignments of the 

thermochemolysis products. 
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Figure A.4 TICs of ASE 100 °C, ASE 80 °C and Soxhlet labelled with main lignin compounds and internal standard (IS). 
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A. 4.  Conclusion 

This extraction experiment has revealed that when run at a temperature of 80 °C (the 

same as that of the Soxhlet) the ASE has a greater recovery of total insoluble residue 

yield with greater reproducibility than both ASE 100 °C and Soxhlet. It also has the 

greatest yield of total lignin phenols, despite not having greater G, S and C components. 

The ASE is also more efficient in terms of time and greatly reduces the cost of the 

extraction process. 
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Appendix B.  Equations for determining the demethylated lignin 

and tannin content of lignin phenols 

The following equations have been employed to determine the original aromatic 

methoxyl/hydroxyl content of 3,4-dimethoxy (guaiacyl, 1 and 2) and 3,4,5-trimethoxy 

(syringyl, 3 and 4) compounds, taken from (Filley et al., 2006). 

Equation B.1 % Hydroxyl (G6, G5 and G18) 

= 100 𝑥 [
𝑀𝐿+1 − (𝑀𝐿+1)𝑐𝑎𝑙𝑐)

𝑀𝐿 + 𝑀𝐿+1 − (𝑀𝐿+1)𝑐𝑎𝑙𝑐
] 

   Where 

(𝑀𝐿+1)𝑐𝑎𝑙𝑐 =  𝑀𝐿 𝑥 (
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
) 

Equation B.2 % Hydroxyl (G4) 

= 100 𝑥 [
(𝑀𝐿+2)𝑐𝑎𝑙𝑐

(𝑀𝐿)𝑐𝑎𝑙𝑐
+ (𝑀𝐿+2)𝑐𝑎𝑙𝑐

] 

   Where 

(𝑀𝐿)𝑐𝑎𝑙𝑐 =  (𝑀𝐿−1 𝑥 (
𝑀𝑈𝐿

𝑀𝑈𝐿−1
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
))  

   Where 

(𝑀𝐿+1)𝑐𝑎𝑙𝑐 =  (𝑀𝐿 −  (𝑀𝐿−1 𝑥 
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
)) 

− ((𝑀𝐿+1 −  (𝑀𝐿+2 𝑥 
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑀𝑈𝐿−1

𝑀𝑈𝐿
))  𝑥 (

𝑀𝑈𝐿−1

𝑀𝑈𝐿
)) (

𝑁𝑈𝐿+1

𝑁𝑈𝐿
) (

𝑀𝑈𝐿+1

𝑀𝑈𝐿
) 

   Where 

(𝑀𝐿+2)𝑐𝑎𝑙𝑐 =  𝑀𝐿+1 −  (𝑀𝐿+2 𝑥 
𝑀𝑈𝐿−1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿+1

𝑁𝑈𝐿
) − (𝑀𝐿+1)𝑐𝑎𝑙𝑐 
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Equation B.3 % Hydroxyl (S6 and S5) 

% 1 Hydroxyl 

= 100 𝑥 [
(𝑀𝐿)

𝑀𝐿 +  [𝑀𝐿+1 − (𝑀𝐿+1 )𝑐𝑎𝑙𝑐] +  [𝑀𝐿+2 −  (𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

% 2 Hydroxyl 

= 100 𝑥 [
𝑀𝐿+1 −  (𝑀𝐿+1)𝑐𝑎𝑙𝑐

𝑀𝐿 +  [𝑀𝐿+1 −  (𝑀𝐿+1)𝑐𝑎𝑙𝑐] +  [𝑀𝐿+2 −  (𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

% 3 Hydroxyl 

= 100 𝑥 [
𝑀𝐿+2 −  (𝑀𝐿+2)𝑐𝑎𝑙𝑐

𝑀𝐿 +  [𝑀𝐿+1 −  (𝑀𝐿+1)𝑐𝑎𝑙𝑐] +  [𝑀𝐿+2 −  (𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

   Where 

(𝑀𝐿+1)𝑐𝑎𝑙𝑐 =  (𝑀𝐿 𝑥 (
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
))  

   Where 

(𝑀𝐿+2)𝑐𝑎𝑙𝑐 =  ([𝑀𝐿+1 −  (𝑀𝐿+1)𝑐𝑎𝑙𝑐] 𝑥 (
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
))  

Equation B.4 % Hydroxyl (S4) 

 

%1 Hydroxyl 

= 100 𝑥 [
(𝑀𝐿−1)

𝑀𝐿−1 + [(𝑀𝐿−1) +  (𝑀𝐿+1 )𝑐𝑎𝑙𝑐] +  [𝑀𝐿+2 −  (𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

%2 Hydroxyl 

= 100 𝑥 [
(𝑀𝐿+1)𝑐𝑎𝑙𝑐

(𝑀𝐿−1) + [(𝑀𝐿+1)𝑐𝑎𝑙𝑐] +  [(𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

%3 Hydroxyl 
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= 100 𝑥 [
(𝑀𝐿+2)𝑐𝑎𝑙𝑐

(𝑀𝐿−1) + [(𝑀𝐿+1)𝑐𝑎𝑙𝑐] +  [(𝑀𝐿+2)𝑐𝑎𝑙𝑐]
] 

   Where 

(𝑀𝐿+1)𝑐𝑎𝑙𝑐 =  𝑀𝐿+1 

 

− [(𝑀𝐿 −  𝑀𝐿−1 𝑥 (
𝑀𝑈𝐿

𝑀𝑈𝐿−1
))   𝑥 (

𝑀𝑈𝐿−1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿

𝑁𝑈𝐿
)

+  (𝑀𝐿+2 −  𝑀𝐿+3 𝑥 
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿+1

𝑁𝑈𝐿
)] 

   Where 

 

(𝑀𝐿+2)𝑐𝑎𝑙𝑐 =  𝑀𝐿+2

−  [𝑀𝐿+1

−  (𝑀𝐿+2 −  𝑀𝐿+3 𝑥 
𝑀𝑈𝐿+1

𝑀𝑈𝐿
)   𝑥 (

𝑀𝑈𝐿+1

𝑀𝑈𝐿
)  𝑥 (

𝑁𝐿+3

𝑁𝑈𝐿
)  𝑥 (

𝑀𝑈𝐿

𝑀𝑈𝐿−1
)] 

 



 

194 

 

Appendix C.  Photographs of field sites taken from each sample pit location. 

Wowetta sub-environments 

 

Figure C.1 The first sample site on the Wowetta transect: savannah grassland (SG1) with scattered trees, savannah woodland and rainforest backed 

by the Iwokrama Mountains to the north east. The transect extends south east from this site. GPS coordinate: N 4.020778 W 59.047431. Altitude: 91 m 

a.s.l
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Figure C.2 The second sample site: savannah woodland (SW1) facing north east. GPS coordinate: N 4.019415 W 59.046491. Altitude: 91 m a.s.l.
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Figure C.3 Fruiting flowers on the branches of savannah woodland trees which show these species are angiosperms. This is important to note for 

molecular lignin investigations (see Chapter 5).
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Figure C.4 Forest island (FI) between areas of savannah (sample sites SG1 and SW1 to the north west, sample sites ST1 and SS to the south east), 

before the savannah-rainforest boundary proper. GPS coordinate:  N 4.017538 W 59.045352. Altitude: 99 m a.s.l.
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Figure C.5 Savannah tree (ST1) with forest island (FI) behind to the north west. GPS 

coordinates: N 4.015541, W 59.043929. 97 m a.s.l. 
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Figure C.6 Savannah swamp (SS) with scattered palm trees. Rainforest and mountains 

in the background to the north east. GPS coordinates N 4.013315  W 59.042. 90 m a.s.l.
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Figure C.7 Sixth sample site on the transect: dense muri scrub vegetation of the transition zone (T1) between savannah to the north west and rainforest 

to the south east. GPS coordinates: N 4.005092 W -59.036534. 90 m a.s.l.
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Figure C.8 Facing north east at the seventh sample site: Swamp forest (SF1). Located in a depression before a pisoplinthic mound to the south east 

(PF - next sample site), with a closed high canopy with abundant shrub layer vegetation. GPS coordinates: N 4.00198 W 59.029819.  107 m a.s.l. 
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Figure C.9 Facing north east on the eighth sample site: mixed tree spp. forest on a pisoplinthic mound (hardened laterite nodules), (PF). This forest 

has a closed high canopy with abundant shrub vegetation. GPS coordinates: N 4.001714 W 59.027946. 154 m a.s.l.
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Figure C.10 Facing north east, the ninth and final sample site on the Wowetta transect: mixed tree spp. forest (MF1). Located on even ground, below 

and to the south east of the pisoplinthic forest (PF) sample site. Again, it has a closed high canopy and abundant shrub layer. GPS coordinates: N 

4.000836 W 59.024487. 119 m a.s.l.
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Surama sub-environments – photographs taken from the sample pit location 

 

Figure C.11 Facing north west, savannah grassland (SG2) with rainforest behind. GPS coordinates: N 4.153051 W 59.060868. 78m a.s.l.
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Figure C.12 Facing north west, savannah grassland on a pisoplinthic hill (PSG). GPS coordinates: N 4.155779 W59.06157.  79 m a.s.l.
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Figure C.13 Facing north towards the rainforest, savannah woodland (SW2). GPS coordinates: N 4.161674 W 59.061503.  79 m a.s.l
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Figure C.14 Facing west towards the rainforest, savannah tree (ST2), noticeably smaller and likely younger than that sampled at Wowetta. GPS 

coordinates: N 4.150107 W 59.069757.  84  m a.s.l.
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Figure C.15 Facing north, with rainforest behind transition zone (T2) between savannah and rainforest. Vegetation at this sample site is very different 

to muri scrub at Wowetta due to a greater occurrence of grass, smaller shrubs / young trees and open canopy. GPS coordinates: N 4.16419 W 

59.057214. 85 m a.s.l.
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Figure C.16 Facing north into the rainforest, kokret palm forest (KPF). Primarily composed of kokret palm, with some smaller shrubs beneath. GPS 

coordinates: N 4.162185 W 59.080134. 82 m a.sl.
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Figure C.17 Facing north, swamp forest (SF2), noticeably drier ground conditions than at Wowetta. High closed canopy with less dense shrub layer 

than   SF1 at Wowetta. GPS coordinates: N 4.153726, W 59.07649. 77 m a.s.l.
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Figure C.18 Facing north, mora species dominated forest (MRF) which borders on the Iwokrama rainforest reserve. Closed high to emergent level 

canopy with dense shrub layer vegetation. GPS coordinates N 4.181601 W 59.061086. 43 m a.s.l.
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Figure C.19 Mixed tree spp. forest (MF2). Closed high level canopy with dense shrub layer vegetation. GPS coordinates N 4.171157 W 59.082382 110 

m a.s.l.
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Appendix D.  Soil profile field and laboratory data 

 

Table D.1 Field and average laboratory measurements for soil profiles at Wowetta. n.d = not detected 

Boundaries 

(cm) 
Texture pH 

TOC 

(%) 
Colour 

Wowetta      

      

SG - Albic plinthosol     

A 52 sand 4.49 0.70 10YR 4/2 - dark greysih brown 

Eag 103 loamy sand 4.53 0.03 10YR 8/1 white 

B 120 loamy sand 4.65 0.02  

Bv 137 clay loam 4.61 0.03 10YR 6/8 reddish yelow 10YR 8/1 white 

SW - Albic plinthosol     

A 9 sandy loam 3.90 1.61 7.5YR 3/2 - dark brown 

Eag 39 loamy sand 4.29 0.20 7.5YR 6/2 - pinkish grey and 5/2  - brown 

Bg 64 sandy loam 4.55 0.52 10YR 4/4 and 4/6 - dark yellowish brown; mottled 

Bv 200 clay 5.25 0.04 10YR 7/8 5YR 5/8 - yellowish red and 5Y 8/1 white; mottled 

FI - Humic gleysol     

Ah 27 humified 5.00 6.50 7.5YR 2.5/1 - black 

Eag 220 clay 5.13 0.10 10YR 5/1 - grey 

Bv 280 clay 5.86 0.03 7.5YR 6/1 - grey and 7.5YR 8/1 - white and 10YR 7/8 - yellow; mottled 
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Boundaries 
(cm) 

 Texture pH 
TOC 

(%) 
Colour 

ST - Albic plinthosol     

Ah 10 
sand with semi-

fibrous material 
3.93 2.86 2.5YR 3/1 - very dark grey 

Eag 98 sand 5.66 1.00 2.5YR 7/2 - light grey 

Bvg 125 sandy loam 6.11 0.06 10YR 6/8, 2.5Y 8/1, 2.5YR 3/6 - dark red and 2.5Y 7/4 - pale yellow; mottled 

Bv 200 clay   10YR 7/8, 5YR 5/8 - yellowish red and 5Y 8/1 - white; mottled 

SS - Plinthic gleysol     

Ahg 54 sandy loam 4.83 2.22 10YR 3/2 - very dark greyish brown 

Bvg 105 sandy loam 5.77 0.05 Gley 1 8/1 white and 10YR 7/8, 8/8 - yellow; mottled 

B2 200 sand 7.33 0.06 7.5YR 7/1 - light grey 

T - Gleyic plinthosol     

A 26 sandy clay loam 4.84 2.10 10YR 3/3 - dark brown 

Bv 264 clay 4.44 0.08 
10YR 7/1 - light grey, 10YR 6/8 - brownish yellow and 2.5YR 4/8, 5/8 - red 

mottled 

SF - Humic gleysol     

Oh 27 humified 5.04 12.49 7.5YR 2.5/1 - black 

Eag 265 sandy clay 4.4 0.30 10YR 5/1 - grey 

Bv 333 clay 4.45 0.10 7.5YR 6/1 grey, 7.5YR 8/1 white and  10YR 7/8 yellow - mottled 

PF - Pisoplinthic plinthosol     

Apx 56 sand 4.52 2.71 10YR 3/4 - dark yellowish brown 

Bpx 70 sand 4.61 1.97 2.5Y 5/4 - light olive brown 

MF - Acric plinthosol     

A 23 silt loam 4.33 1.14 10YR 3/2 - dark brown 

E 42 sandy loam 4.55 0.10 7.5YR 5/2 - brown 

Bv 195 clay 4.46 0.09 2.5Y 8/1 and 7/2 - white and pale red, 5YR 5/8 and 4/6 - yellowish red; mottled 
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Water table 

depth 

(cm) 

Plinthic depth 

(cm) 

Wowetta   

SG - Albic plinthosol   

A   110 144  

Eag    

B    

Bv   

SW - Albic plinthosol   

A  100 200  

Eag   

Bg   

Bv   

FI - Humic gleysol   

Ah  25 300  

Eag   

Bv   

ST - Albic plinthosol   

Ah  100 200  

Eag   

Bvg   

Bv   

SS - Plinthic gleysol    

Ahg    

Bvg    

B2    

   25 95 

T - Gleyic plinthosol     

A     

Bv     

     

SF - Humic gleysol     

Oh   50 166 

Eag     

Bv     

     

PF - Pisoplinthic plinthosol     

Apx     

Bpx   n.d 0 

     

MF - Acric plinthosol     

A     

E     

Bv   80 282 
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Table D.2 Field and average laboratory measurements at Surama. n.d = not detected 

 
Boundaries 

(cm) Texture pH 

TOC 

 (%) Colour 

Surama      

      

SG - Haplic plinthosol     

A 54 loamy sand 5.09 0.78 2.5Y 4/3 - olive brown 

B 207 sandy loam 5.51 0.29 10YR 5/8 - yellowish brown  and 2.5YR 4/6 - red; mottled 

      

PSG - Pisoplinthic plinthosol     

Apx 10 loamy sand 5.25 1.68 10YR 3/6 - dark yellowish brown 

Bpx 40 loamy sand 5.5 1.06 2.5Y 5/6 - light olive brown 

      

SW - Haplic plinthosol     

Av 50 sand 5.37 1.05 10YR 2/1 - black and 3/2 - very dark greyish brown 

Bv 203 sandy loam 5.4 0.1 2.5YR 4/6 - red and 10YR 4/2 - dark greyish brown; mottled 

Bv2 300 loamy sand 5.52 0.1 2.5Y 6/1 - grey 

      

ST - Haplic plinthosol     

A 30 sandy loam 5.44 0.82 2.5Y 4/2 - dark greyish brown 

B  200 loamy sand 5.41 0.31 2.5Y 5/6 - light olive brown 

Bv 300 loamy sand 5.44 0.1 5YR 5/8 - yellowish red and 2.5Y 6/3 - light yellowish brown; mottled 
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Boundaries 

(cm) Texture pH 

TOC 

 (%) Colour 

T - Haplic plinthosol     

Av 36 silt loam 5.11 0.47 2.5Y 4/4 - olive brown 

Bv 88 silt loam 5.28 0.48 2.5Y 5/4 - light olive brown 

      

SF - Plinthic gleysol     

Ea 6 sandy loam 5.52 5.45 10YR 3/3 - dark brown 

Bv 260 sandy clay loam 5.51 0.71 2.5Y 6/1 - grey and 10YR 6/3 - brownish yellow; mottled. 

      

PKF - Haplic plinthosol     

Av 103 loamy sand 5.81 0.63 10YR 3/3 - dark brown 

Bv 303 sandy loam 5.59 0.1 10YR 5/4 and 6/8 - yellowish brown 

      

MRF -Haplic plinthosol     

Av 56 clay loam 5.41 0.55 2.5Y 5/4 - light olive brown 

Bv 300 clay loam 5.41 0.27 10YR 6/8 - brownish yellow 

      

MF - Haplic plinthosol     

Av 60 loamy sand 6.04 0.56 10YR 3/3 - dark brown 

Bv 196 sandy clay loam 5.92 0.38 10YR 6/8 - brownish yellow 
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Water table 

depth 

(cm) 

Plinthic 

depth (cm) 

Surama    

    

SG - Haplic plinthosol n.d n.d 

A    

B    

    

PSG - Pisoplinthic 

plinthosol 

n.d 0 

Apx    

Bpx    

    

SW - Haplic plinthosol n.d n.d 

Av    

Bv    

Bv2    

    

ST - Haplic plinthosol 300 n.d 

A    

B     

Bv    

    

T - Haplic plinthosol n.d n.d 

Av    

Bv    

    

SF - Plinthic gleysol 270 n.d 

Ea    

Bv    

    

PKF - Haplic plinthosol n.d n.d 

Av    

Bv    

    

MRF -Haplic plinthosol n.d n.d 

Av    

Bv    

    

MF - Haplic plinthosol n.d n.d 

Av    

Bv    
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Appendix E.  Soil mineralogy – XRD results 

Inventory 

Sample A – SF1 surface soil 

Sample B - MF1 surface soil 

Sample C – T1 surface soil 

Sample D – SW1 surface soil 

Sample E – SS surface soil 

Sample F – ST1 surface soil 
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Position [°2Theta] (Copper (Cu))

10 20 30 40 50 60

Counts

0

10000

20000

 JB_A_160712

 Peak List

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488

 Ti0.72 O2; Anatase - synthetic; Titanium Oxide; Tetragonal; Q: C; 01-086-1157

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045
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 Peak List

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488

 Ti0.72 O2; Anatase - synthetic; Titanium Oxide; Tetragonal; Q: C; 01-086-1157

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045
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Position [°2Theta] (Copper (Cu))
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150000
 JB_B_160712

 Peak List

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892
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Position [°2Theta] (Copper (Cu))
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 Peak List

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892



 

225 

 

Position [°2Theta] (Copper (Cu))
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 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488



 

226 

 

Position [°2Theta] (Copper (Cu))

10 20 30 40 50 60

Counts

0

2000

4000

6000

 JB_C_160712

 Peak List

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 Al2 Si2 O5 ( O H )4; Kaolinite-1\ITMd\RG; Aluminum Silicate Hydroxide; Monoclinic; Q: B; 00-029-1488
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 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892
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 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892
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 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 Al2 Si2 O5 ( O H )4; Kaolinite; Aluminum Silicate Hydrate; Anorthic; Q: B;D; 00-001-0527
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 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 Al2 Si2 O5 ( O H )4; Kaolinite; Aluminum Silicate Hydrate; Anorthic; Q: B;D; 00-001-0527
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 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452
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 Si O2; Quartz, syn; Silicon Oxide; Hexagonal; Q: S; 00-046-1045

 ( Na2.5 Ca1.5 ) ( Si8 Al4 ) O24 Cl0.5 ( C O3 )0.5; Scapolite; Sodium Calcium Aluminum Silicate Chloride Carbonate; Tetragonal; Q: C; 01-076-0892

 ( K , Na ) Al Si O4; Nepheline, potassian, syn; Potassium Sodium Aluminum Silicate; Hexagonal; Q: I; 00-012-0198

 Fe P O4 !2 H2 O; Strengite; Iron Phosphate Hydrate; Orthorhombic; Q: O;D; 00-003-0452
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Appendix F.  Partial chromatograms for the total ion current 

(TICs) of all sample sites in Wowetta 

 

Figure F.1 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from wood litter for the sub-environments SW – MF. 
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Figure F.2 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from fresh shoot / leaf litter at each sub-environment across the transect (SG – 

MF). 
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Figure F.3 Partial chromatogram for the total ion current (TIC) of thermochemolysis 

products from surface soils at each sub-environment across the transect (SG-MF). 
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Appendix G.  Average values of the THM products  

Table G.1 Averages values (of triplicates) in mg / 100 mg OC for THM products of wood litter, fresh shoot / leaf litter and surface soil samples 
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Glossary 

[Ad/Al]G/S [Acid / Aldehyde]Guaiacyl / Syringl ratio 

1,2,3-TMB 1,2,3-trimethoxybenzene 

1,2,4-TMB 1,2,4-trimethoxybenzene 

1,3,5-TMB 1,3,5-trimethoxybenzene 

A A horizon: mineral horizon mixed with 

organic matter 

Ah As A horizon but with greater content of 

organic matter giving it a darker colour 

Apx As A horizon but with pisoplinthic 

material 

ASE Accelerated solvent extraction 

a.s.l. Above sea level 

B Mineral sub-horizon 

Ba As B horizon but with albic properties (a) 

Bpx As B horizon with pisoplinthic material 

(px) 

Bv As B horizon but with plinthic material (v) 

Bvg As B horizon but with plinthic material (v) 

and gleying (g) 

C  Carbon 

C (referring to lignin) Cinnamyl 

C/G Cinnamyl / Guaiacyl ratio 

CH4 Methane 

CO2 Carbon dioxide 

CsCl Caesium chloride 

CT Condensed tannins 

CTP1 Cellulose Thermochemolysis Product 1  

CTP2 Cellulose Thermochemolysis Product 2 
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CTP4 Cellulose Thermochemolysis Product 4 

CuO Cupric oxide oxidation  

CV Coefficient of variance 

Db Bulk density 

DCM Dichloromethane 

DOM Dissolved organic matter 

Eag Eluviated albic horizon (Ea) with evidence 

of gleying (g) 

ENSO El Nino Southern Oscillation 

FAO Food and Agriculture Organisation of the 

United Nations 

FI Forest island 

G Guaiacyl 

G1 1,2-dimethoxybenzene 

G14 
threo/ethryo 1-(3,4-dimethoxyphenyl)-

1,2,3-trimethoxypropane 

G15 
threo/ethryo 1-(3,4-dimethoxyphenyl)-

1,2,3-trimethoxypropane 

G18 
trans 3-(3,4-dimethoxyphenyl)-3-

propanoic acid methyl ester 

G2 3,4-dimethoxytoluene 

G3 3,4-dimethoxybenzeneethylene 

G4 3,4-dimethoxybenzaldehyde 

G6 3,4-dimethoxybenzoic acid methyl ester 

G7 
cis 1-(3,4-dimethoxyphenyl)-2-

methoxyethylene 

G8 
trans 1-(3,4-dimethoxyphenyl)-2-

methoxyethylene 

GC Gas chromatography 

GHG Greenhouse gases 

GIS Geographical information system 

GLM General linear model 

GLSC Guyana lands and surveys commission 

GPS Geographical positioning system 
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GtC Gigatons of carbon 

H Hydrogen 

HT Hydrolysable tannins 

IPSS Intergovernmental Panel on Climate 

Change 

IS Internal standard 

ISRIC International Soil Reference and 

Information Centre 

ITCZ Inter-tropical convergence zone 

IUSS International Union of Soil Sceinces 

KCL Potassium chloirde 

KI Potassium iodide 

KPF Kokret palm forest 

LCDS Low carbon development strategy 

LiCl Lithium chloride 

MC1 Methylated carbohydrate product 1 (3-

deoxy-4,5,6-tri-O-methylgluconic acid, 

methyl ester) 

MC2 Methylated carbohydrate product 2 (Tetra-

O-methyl-3-deoxy-D-arabino-hexanoic 

acid, methyl ester) 

MC3 Methylated carbohydrate product 3 (3-

deoxy-4,5,6-tri-O-methylmannonic acid, 

methyl ester) 

MC4 Methylated carbohydrate product 4 (Tetra-

O-methyl-3-deoxy-D-ribo-hexanoic acid, 

methyl ester) 

MeOH Methanol  

MF1 Mixed species forest 1 

MF2 Mixed species forest 2 

mg 100 mg OC Milligrams per 100 milligrams of organic 

carbon 
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MRF Mora forest 

NSCD National soil characterisation database 

O2 Oxygen 

OC  Organic carbon 

Oh Horizon dominated by organic material, 

consisting of undecomposed or partially 

decomposed litter, (e.g. leaves, twigs, 

moss) which has accumulated on the 

surface 

OM Organic matter 

P P-hydroxyphenyl 

P1 methoxybenzene 

P18 
trans 3-(-4-methoxyphenyl)-3 propenoic 

acid methyl ester 

P3 4-methoxybenzeneethylene 

P6 4-methoxybenzoic acid methyl ester 

PbCl2 Lead chloride 

PCR Polymer chain reaction 

PF Pisoplinthic forest 

PgC Petragram of carbon 

PSG Pisoplinthic savannah grassland 

Py-GC/MS Pyrolysis-gas chromatography/mass 

spectrometry 

REDD+ Reducing Emissions from Deforestation 

and Forest Degradation 

S Syringyl 

S/G Syringyl / Guaiacyl ratio 
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S1 1,2,3-trimethoxybenzene 

S14 
threo/ethryo 1-(3,4,5-trimethoxyphenyl)-

1,2,3-trimethoxybenzene 

S15 
threo/ethryo 1-(3,4,5-trimethoxyphenyl)-

1,2,3-trimethoxybenzene 

S4 3,4,5-trimethoxybenzaldehyde 

S6 3,4,5-trimethoxybenoic acid methyl ester 

S7 
cis 1-(3,4,5-trimethoxyphenyl)-2-

methoxyethylene 

S8 
trans 1-(3,4,5-trimethoxyphenyl)-2-

methoxyethylene 

SE Standard error 

SF1 Swamp forest 1 

SF2 Swamp forest 2 

SG1 Savannah grassland 1 

SG2 Savannah grassland 2 

SIC Soil inorganic carbon 

SOC Soil organic carbon 

SOM Soil organic matter 

SOTER-LAC Soil and terrain project for Latin America 

and the Caribbean 

SS Savannah swamp 

ST1 Savannah tree 1 

ST2 Savannah tree 2 

SW1 Savannah woodland 1 

SW2 Savannah woodland 2 

t C ha-1 Tonnes of carbon per hectare 

T1 Transition zone 1 

T2 Transition zone 2 

TBAH Tetrabutyl ammonium hydroxide 

TEAH Tetraethyl ammonium hydroxide 
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THM Thermally assisted hydrolysis and 

methylation 

TIC Total ion current 

TMAH Tetramethyl ammonium hydroxide 

TOC Total organic carbon 

UNFCCC United Nations framework for the 

convention on climate change 

V Vanillyl 

Vs Volume of soil 

Wd Weight of oven dry soil 

WISE World inventory of soil emission potential 

database 

XRD X-ray diffraction 

θ Volumetric water content 

Λ Lambda (sum of main lignin phenols) 

 

 


