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ABSTRACT 
 

Human embryonic stem cells and human induced pluripotent stem cells are defined as 

pluripotent in view of their ability to maintain self-renewal and differentiation to cells of 

all three germ layers. So far the mechanism underlying the cell cycle regulation, self-

renewal and pluripotency of human pluripotent stem cells are not fully understood. In 

this study, we first screened for candidate miRNAs which might play important roles in 

regulating pluripotency and cell cycle by using a microarray based approach. miR-1305 

was chosen as a target, as its expression profile changed during  human embryonic stem 

cell differentiation and cell cycle. We also revealed the role of miR-1305 in regulating 

differentiation in human embryonic stem cells as well as cell cycle and apoptosis in 

human embryonic and induced pluripotent stem cells. Our results provide evidence that 

overexpression of miR-1305 induces significant human embryonic stem cell 

differentiation and downregulation of miR-1305 maintains human embryonic stem cell 

pluripotency. Furthermore, POLR3G was identified as a downstream target by which 

miR-1305 regulates human embryonic stem cell differentiation. Together our data 

corroborate previous findings indicating an intrinsic link between miRNA and 

maintenance of pluripotency in human embryonic stem cells. 
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Chapter 1. Introduction 

1.1 Human Pluripotent Stem Cells 

1.1.1 Human Embryonic Stem Cells 

Human embryonic stem cells (hES cells), which are derived from the inner cell mass 

(ICM) of early preimplantation human embryos, have two unique properties: unlimited 

self-renewal (ability to divide symmetrically to generate many undifferentiated cells 

under proper culture condition) and pluripotency (potential to give rise to any cell type 

of the adult organism) (Figure 1) 
1,2

.  

 

 

Figure 1. Generation of hES cell lines.  

hES cells are derived from the inner cell mass (ICM) of early preimplantation human 

embryos. They can maintain self-renewal and generate all cell types from all three 

embryonic germ layers and the germline (Adapted from Yabut O et al, 2011) 
3
. 

 

The first hES cell lines was derived in 1998 by James A. Thomson at University of 

Wisconsin 
4
.  Thereafter, many hES cell lines have been produced and characterized in a 

number of independent laboratories 
5-7

. In culture, hES cells grow in colonies; the cells 

have a high nuclear/cytoplasm ratio and expression of pluripotency markers, such as 

OCT4 (POU4F1), NANOG, SOX2, LIN28 and POLR3G (Polymerase (RNA) III (DNA 

directed) polypeptide G (32kD)) et al 
8-10

. The undifferentiated state of hES cells could 

Human embryonic 

stem cells 
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be maintained by culturing hES cells on feeder cells (mouse embryonic fibroblast cells 

(MEF), human feeder cells) with hES media which contains bFGF, or on extracellular 

matrix (ECM, like matrigel or vitronectin) in medium which contains both bFGF and 

TGFFigure 2





Figure 2. The morphology of hES cells cultured under (a) MEF or (b) feeder free 

condition.   

 

There are two discrete pluripotent states recently termed as naïve and primed 
11

. Naïve 

pluripotent stem cells, represented by ICM-derived mouse ES cells 
12

, can efficiently 

contribute to chimeric embryos, maintain both X chromosomes in an active state in 

female cells, can be cloned with high efficiency, grow as packed dome colonies and 

require the growth factor LIF and 2i (dual inhibition of extracellular signal-regulated 

protein kinases ½ (ERK1/2) and glycogen synthase kinase 3 beta (GSK3)) to maintain 

pluripotency 
13-15

. Primed pluripotent stem cells (such as mouse epiblast stem cells), are 

derived from the post-implantation epiblast of embryos. The ICM of an embryo will 

develop into hypoblast and epiblast. Hypoblast cells will develop into primitive 

endoderm, while the epiblast cells are progenitors of definitive endoderm, mesoderm 

and ectoderm. The epiblast stem cells are pluripotent and can give rise to differentiated 

teratomaes, and are highly inefficient in repopulating the ICM upon aggregation or 

injection into host blastocysts 
16-18

. These are characterized by a flattened morphology, 

intolerance to passaging as single cells, and dependent on bFGF and TGFctivin 

signalling 
16-18

. Although not identical, hES cells share several defining features with 

primed mouse epiblast stem cells, such as a flattened morphology, intolerance to 

passaging as single cells, dependence on bFGF and TGFctivin signalling 
4,19-21

. 

There are many similarities and differences between mouse and human ES cells. They 

are both pluripotent stem cells, which can maintain unlimited self-renewal and 
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pluripotency. Both mouse and human ES cells express pluripotent markers Oct4, Sox2, 

and Nanog, as the foundation of mammalian pluripotency 
22

. Mouse ES cells are 

positive for SSEA-1 while negative for SSEA-3, SSEA-4. However hES cells express 

SSEA-3 and SSEA-4 but not SSEA-1 
23

.  

Leukaemia inhibitory factor (LIF) and bone morphogenetic protein (BMP) are required 

for efficient maintenance of mES cells in culture 
14

. In contrast, LIF is insufficient to 

inhibit the differentiation of hES cells, instead FGF and TGF-β pathways are central 

mediators in the maintenance of undifferentiated hESCs 
24

. 

Both mouse and human ES cells have short cell cycle compared with their 

differentiation counterparts, but the cell cycle of hES cells is longer than mouse ES cells. 

Unlike mouse ES cells, hES cells exists both G1/S and G2/M checkpoint 
25,26

. In mouse 

ES cells, the G1/S transition of cell cycle is mainly regulated by miR-290-295 cluster 

and four members of the miR-302 cluster, while hES cells, cell cycle is regulated by 

miR-302/372 cluster, miR-195 and miR-92b 
27

.  
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Table 1. Comparison of Naïve and Primed Pluripotent States.  

(Adapted from Nicholes et al. 2009) 
11

. 

The conversion of hES cells to a naïve state is desirable as their features should 

facilitate techniques such as gene editing and more efficient differentiation. Several 

groups have tried to derive the naïve state hES cells by transgene expression 
28-32

 or the 

use of media containing small molecular and growth factors 
33-41

. Maintenance of these 

ground state cells is possible using a combination of bFGF and LIF, together with 2i 
33-

41
. There remain many challenges in generating naïve pluripotency, for all protocol yield 

slightly different cellular states. It is still unclear which state is closest to its in vivo 

counterpart. Clearly additional research on regulation of hES cell pluripotency is needed 

for better understanding of the true naïve state. 

 

1.1.2 Human Induced Pluripotent Stem Cells 

By screening 24 pluripotency factors, in 2006, Takahashi and Yamanaka identified a 

small number of key factors (Oct‐3/4, Sox2, c‐Myc, and Klf4) that can cause adult skin 

fibroblasts to reprogram to a pluripotent state akin to embryonic stem cells
42,43

. These 

reprogrammed cells are called induced pluripotent stem cells (iPS cells). The iPS cells 

also have unlimited self-renewal and pluripotency 
44

(Figure 3). This study opened a 

completely new area in this field. It is now possible to reprogram differentiated somatic 
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cells into pluripotent cells that have the capacity to generate all the cell type of adult 

tissues 
45

. The iPS technology has the potential to ease the controversy and ethical 

dilemmas associated with hES cells and to effectively bypass the problem of immune 

rejection
46

. 

 

Figure 3. Induced Pluripotent Stem (iPS) Cells.  

Adult cell could be reprogrammed to the pluripotent state by reprogramming factors. 

The iPS cells also have unlimited self-renewal and pluripotency (Adapted from 

http://liveaction.org/blog/stem-cell-research-the-basics-types-of-research-medical-

status-and-ethical-drawbacks/).  

 

Thereafter, many other somatic cell types including blood, keratinocytes were 

reprogrammed into iPS cells by forcing expression of different combination of genes or 

treating with chemicals 
47-50

. The early delivery methods used for reprogramming were 

integrating methods (retrovirus, lentivirus, or non-virus based transposons), which have 

the risk of tumour formation 
45

. Later the researchers developed integration-free 

strategies by employing adenovirus, Sendai virus, plasmids, mRNA, miRNA, and the 

protein-based protocols 
51-56

. Among all these non-integration methods, synthetic 

mRNA-based protocols have maximum efficiency over the original retrovirus-mediated 

system for delivering reprogramming factors 
54

. But the stability of RNA and the 

induction of innate antiviral defence pathways remain a barrier to their further clinical 
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use 
54

. For better clinical prospects, small molecules alone have been successfully 

employed in the generation of iPS cells, which represents significant progress in cell 

reprogramming technology 
50

. Currently available reprogramming protocols with their 

induction efficiency and time frame advantages and disadvantages are summarized in 

Table 2. 

 

 

Table 2. Methods for reprogramming somatic cells to iPS cells 
50-64

. 

 

Both hES cells and human induced pluripotent stem (hiPS) cells share the important 

properties of self-renewal and pluripotency, however accumulating reports suggest the 

difference of transcriptome 
65,66

, histone code differences 
67

, DNA methylation 
68

 and 

variation of differentiation propensity 
69,70

 between hES cells and hiPS cells. These 

studies have led to many questions of the equivalence of these two promising cell types.  

Although global gene expression profiles of hES cells and hiPS cells are largely similar, 

subtle differences in the expression of mRNAs and miRNAs have been reported 
67,71,72

. 
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The researchers applied genome-wide methods to compare hES cells with hiPS cells by 

array CGH (uncover subkaryotypic genome alterations); coding RNA profiling 

(uncover gene expression changes); miRNA profiling (to determine changes in miRNAs) 

and histone modification profiling (epigenetic changes). These analyses found gene 

expression that is different from hES cells and shared among hiPS cells generated in 

different reprogramming experiments, indicating that hiPS cells should be considered a 

unique subtype of pluripotent cell 
72

. 

 The DNA methylation patterns in hiPS cells are not identical with hES cells. Some of 

the differences appear to be related to the origin of somatic cells as an epigenetic 

memory 
73,74

. Notably, continuous passaging 
75

 or chromatin modifying drug treatments 

74
 could abrogate the epigenetic memory induced transcriptional differences in murine 

iPS cells, indicating the epigenetic memory may affect the differentiation propensity 

only transiently. In one recent work, researchers have identified a panel of 82 CpG 

methylation sites that can distinguish hiPS cells from hES cells with high accuracy by 

comparing a large number of hES cells (n=155) and hiPS cells (n=114) generated in 

different lab from different somatic cells by various methods 
76

.  

Despite similarities between hES cells and hiPS cells at general features of self-renewal 

and pluripotency, reports of variability in the in vitro differentiation potential of hiPS 

cells with respect to hES cells have frustrated investigator in this field. For instance, a 

reduced and more variable yield of neural and cardiovascular cells has been observed in 

hiPS cells 
69,70

. In addition, hiPS cell derived early blood progenitor and endothelial 

cells appear to undergo premature senescence 
77

. What underlies these differences in 

yield of useful differentiated cell types is still far from clear. 
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1.1.3 Application of hES Cells and hiPS Cells 

hES cells and hiPS cells share the important properties of self-renewal and pluripotency; 

that is, they are theoretically capable of generating unlimited amounts of any 

differentiated cell in the human body. These unique features have made hES cells and 

hiPS cells extremely important in basic and applied research. They may serve as 

attractive tools for human early development research, disease modelling, drug 

screening and cell replacement.  

Research into human embryonic development 

The early human development process is still unclear due to limited sources of human 

embryos and ethical issues. Apart from the very early preimplantation stage, human 

embryos are inaccessible for research. One approach to overcome this obstacle is to use 

animal models. But despite the similarity between human and mouse, there are still 

major differences between species in size, growth and anatomy 
78

.  While hES cells can 

recapitulate embryogenesis by expression developmentally regulated genes and by 

activating molecular pathways as they occur in vivo. Moreover they could be used to 

study the function of specific gene on particular developmental events, such as cell 

lineage commitment and differentiation.  

Under suspension condition, hES cells tend to aggregate, forming a special structure 

termed EBs (embryoid bodies).  EBs are dynamic structures that undergo extensive 

changes. While the EBs grow, differentiation take places, resulting in the production of 

many different cell types including cells from all three germ layers 
79

.  There are some 

evidences show that the development of EB correlate with embryogenesis. One such 

example is the study of the Nodal signalling pathway, which plays a major role in the 

determination of embryonic axes (right-left, dorsal-ventral, and anterior-posterior) as 

well as in mesoderm induction during early gastrulation. By comparing the expression 

of NODAL and its targets LEFTYA, LEFTYB, PITX2, between early, mid- and fully 

matured hES generated EBs, a transient expression pattern was observed. All four genes 

are expressed at different time points during differentiation, in keeping with the 

conserved pathway as it occurs in the embryo 
79

. 
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Disease modelling, Drug Screening  

 Another potential use of hES cells and hiPS cells is for disease modelling and drug 

screening. 

There are different approaches for adopting hES cells in models of genetic diseases.  

1) Screening hES cells from embryos using preimplantation genetic diagnosis (PGD). 

PGD is mainly used to screen embryos from patients with and carriers of diseases that 

are caused by highly penetrant and well-characterized genetic mutations. Embryos 

carrying these mutations can be used to derive hES cells, and the ensuing phenotypes 

following differentiation are assumed to be similar to those of the affected family 

members. This approach has been successfully used to derive hES cells and model 

disorders such as Huntington’s disease (HD) 
80,81

. 

HD is characterized by the degeneration of striatal projection neurons and is caused by 

an expansion of CAG repeats in the huntingtin (HTT) gene that is inherited an 

autosomal dominant manner. hES cells were derived from embryos diagnosed with 

mutant HTT, and forebrain neurons differentiated from these mutant hES cells showed 

greater glutamate sensitivity than healthy controls 
81

. This is the first time that such an 

early development event was experimentally assessable for HD and it enables the 

dissection of disease mechanisms.   

The derivation of hES cells from PGD embryos has been reported for a range of 

additional diseases, including FXS 
80

, Patau, Down, Triple X and Turner syndromes 
82

, 

as well as cystic fibrosis 
83

. However, only a few diseases are caused by mutations that 

can be diagnosed by PGD. Disease without a known genetic cause cannot be obtained in 

this way. Furthermore, the derivation of such cells relies on access to embryos and on 

parental consent for embryo donation.  

2) Co-culturing differentiated cells derived from hES cells with pathogenic primary 

cells.  This is another approach to use hES cells for disease modelling. For example, for 

modelling amyotrophic lateral sclerosis (ALS), in which astrocytes are implicated in 

causing motor neuron death, several research groups have generated hES cell-derived 

motor neurons that had been co-cultured with primary astrocytes with mutant SOD1, 

which causes ALS 
84,85

. These motor neurons were found more susceptible to 

degeneration 
84,85

. This model was used to assess compounds with neuroprotective 
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effects. MK0524, Apocynin and PTGDR2 were identified as putative therapeutic agents 

for ALS 
79

. 

3) Another method involves using gene editing to introduce disease–causing mutations 

into hES cells from healthy donors.  Recent advances in genome engineering with zinc 

finger nucleases (ZFNs) 
86

, transcription activator like effector nucleases (TALENs)
 87, 

, 

and CRISPR/Cas systems 
88,89

 which can modify the genome with precision will 

potentially allow the modification of hES cell genomes more rountinely. One study 

recently provided proof of generating mutations in 15 different genes what are linked to 

multiple disorders, including dyslipidemia, insulin resistance, hypoglycaemia, 

lipodystrophy, motor neuron death, which was sufficient to induce disease –associated 

phenotypes 
87

.  

 One promising potential of reprogramming is the ability of generation patient specific 

iPS cells. These disease-specific iPS cells can then be differentiated into specific cell 

types. This is very helpful to study the initiation and progression of disease, and to study 

how therapeutic interventions would affect the disease cells. Recently, hiPS cells have 

been applied to study cardiac disease (e.g. long QT syndrome), neurodegenerative 

disease (e.g. Alzheimer disease), and other disorders 
90-94

. This application is especially 

useful for some diseases that were extremely difficult to generate animal models. hiPS 

cells can represent the corresponding disease and allow identification of drug targets 

and understanding of effects of treatment (Figure 4). 

Recently, Lee and colleagues successfully derived hiPS cells from patient with familial 

dysautonomia, a rare genetic disorder of the peripheral nervous system 
95

. Investigators 

produced central and peripheral neural precursors and subsequently found three disease-

related phenotypes, thus providing evidence that disease-related cell types could reflect 

disease pathogenesis in vitro. After screening with multiple compounds, they showed 

that the disease phenotype could be partially normalized by a plant hormone-kinetin 
95

. 

This study demonstrated how iPS cells can model the disease and facilitate the 

discovery of drug. This platform could use to generate predictive tests to determine 

differences in the clinical manifestation of the disorder (Figure 4). 

  



- 12 - 

 

 

 

Figure 4 . hiPS cells derivation, differentiation and application.  

Patient somatic cells can be reprogrammed into iPS cells. After inducing 

differentiation in vitro, hiPS cells can be used in disease modelling, drug screening and 

discovery and testing cellular toxic responses (Adapted from Milena Bellin et al, 2012) 
90

.  

 

Cell Replacement 

The most important potential of hES and hiPS cells is they could be used clinically to 

develop replacement cells for transplantation medicine for diseases caused by loss of 

cell function or loss of one or several types of cells, like Parkinson’s disease, stroke, 

diabetes, heart failures 
96-98

. 

hES cells can be maintained indefinitely under defined conditions and when required , 

can be differentiated into all types of cells, such as retina pigment epithelium (RPE) 

cells 
99

. Using hES cell-derived RPE, Lu and colleagues have demonstrated 

photoreceptor rescue in the Royal College of Surgeons (RCS) rats 
100

. The first use of 

hES cell-derived RPE cells in human patients was described by Schwartz group, in one 

patient with Stargardt’s macular dystrophy and another with dry AMD. Initial results 

show no significant improvement in visual function (Because of the loss of 

photoreceptor cells is at an advanced stage, the likelihood of recovery of vision in this 

population is low), but do suggest a good safety profile 
101

. A number of clinical trials 

investigating the safety of ESC-RPE are now underway or planned. The use of hES cell-
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derived cells transplantation not only entails ethical obstacles, but also carries a risk of 

immune rejection.  

The difficulties associated with hES cells can be overcome with the use of hiPS cells. 

Patient specific iPS cells can be differentiated into any type of cells, which are 

genetically identical to the patient and will not be immunogenic (Figure 4) 
90

. 

Hanna, Jaenisch and colleagues repaired the genetic defects in iPS cells derived from a 

humanized mouse model of sickle cell anaemia. Directed differentiation of the repaired 

iPS cells into haematopoietic progenitors followed by transplantation the cells to the 

mice, led to the rescue of the disease phenotype. The iPS cell derived haematopoietic 

progenitors could stable engraft and correct the disease phenotype 
102

. 

In another landmark study about transplantation of iPS cells from Jaenisch’s group, they 

derived dopaminergic neurons from iPS cells and implant them into the rat brain. The 

cells can functionally integrate and improve the condition of a rat model of Parkinson’s 

disease. This work is the evidence of therapeutic value of pluripotent stem cells for cell-

replacement therapy 
103

. 

The study of transplantation of hiPS-derived RPE sheet in human with exudative age-

related macular degeneration is underway in Japan. The first patient receiving 

transplantation was in September 2014. This is the first human clinical trial to use iPS-

derived cells. The outcomes of this trial are anxiously awaited. 

These promising applications of hES cells and hiPS cells have opened exciting avenues 

for regenerative medicine, disease modelling and drug screening. To harshness these 

potentials, we need to further understand the fundamental mechanisms of hES/hiPS 

cells self-renewal, pluripotency and reprogramming in order to manipulate the process 

and improve the quality, efficiency, accuracy and consistency of generating target cells. 
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1.1.4 Regulation of Pluripotency in Human Pluripotent Cells 

Human pluripotent stem cells (hES cells and hiPS cells) maintain pluripotency through 

regulating the extracellular signal pathways and intracellular transcription factors 

(Figures 5-7) 
24

.  

 

Figure 5. Extrinsic signals that affect self-renewal, differentiation and viability of 

hES cells.   

Signalling mediated by TGF-β family, such as TGF-β, activin and nodal, growth 

differentiation factors (GDFs, including myostatin) and BMPs converges mainly on 

NANOG, which maintains ES cells in an undifferentiated state with the ability to self-

renew, FGF2, PDGF, IGF2 and ERBB2 are also involved in maintaining hES cell 

maintenance (From Martin F. Pera & Patrick P. L. Tam, 2010) 
24

. 

 

Extracellular signal pathway  

The main extracellular signal pathways involved in regulating hES cells self-renewal 

include transforming growth factor-β (TGF-β), receptor tyrosine kinases (RTKs) 

mediated by growth factors 
24

.  

TGF- β family 

The TGF-β family includes the TGF-β proteins, activin, nodal, growth differentiation 

factors (GDFs) and BMPs, all of which are involved in maintaining the stem-cell state 
24

. 
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TGF/Activin/Nodal signal via type I receptors ALK-4,-5 and -7 to activate downstream 

SMADs, whereas BMP/GDF signalling activates SMADs via ALK-1,-2,-3 and -6. 

The nodal- and activin- mediated signalling pathway activates the transcription factors 

SMAD2 and SMAD3, which can translocate into nuclear and regulate various targets, 

like NANOG 
21,104

. SMAD2 and SMAD3 can bind to the promoter region of NANOG 

and activate its expression, while SMAD1, 5, 8, which are activated by BMPs, inhibit 

NANOG expression 
105

. Activin and nodal have been shown to suppress the 

differentiation of hES cells. Blockade the activity of this pathway induces repaid hES 

cells differentiation 
106

. Consistent with this finding, hES cells express receptors for 

nodal and a co-receptor for nodal (TDGF1). Interestingly, hES cells also express the 

nodal antagonists LEFTY1 and LEFTY2, as well nodal itself 
107-109

. In culture, LEFTY1 

or LEFTY2 might modulate the level of Nodal-mediated signalling in hES cells, 

indicating that this pathway is precisely regulated by internal and external factors. 

The BMPs- mediated pathway activates the SMAD1, SMAD5 and SMAD8. When the 

cells are treated with BMP pathway activator, they will differentiate to various cell 

types.  Antagonizing the BMP pathway will enhance hES cell self-renewal or drive ES 

cell to neural cell fate 
110-112

. Activation of Activin-/ Nodal- SMAD2, 3 signalling or 

FGF2-mediate signalling suppresses BMP4 expression in hES cells, preventing 

spontaneous differentiation 
105

. 

Another TGFβ member, the GDFs, could maintain hES cells self-renewal through 

supporting the pluripotency marker expression and blocking BMP-mediated induction 

of differentiation 
113

. 

In summary, the balance between Activin-/Nodal- SMAD2, 3 pathways and BMPs- 

SMAD1, 5, 8 pathways is important for maintenance the hES cells self-renewal 
21,114

. 

Various studies have shown that TGF β signalling could synergize with several other 

extracellular signalling proteins, for example FGF2 or WNTs to promote stem cell 

maintenance. Similarly, TGF β can interact with other pathways (e.g. PI3K) to induce 

differentiation (e.g. endoderm) 
115,116

. 

RTK signalling mediated by growth factors 

RTK signalling mediated by fibroblast growth factor 2 (bFGF), sphinigosine-1-phsphate 

(S1P), and platelet derived growth factor (PDGF) is also important for hES cell self-

renewal. 
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FGF2 was the first factor found to be crucial for the maintenance of hES cells. Many 

chemically defined media incorporate this factor to enhance hES cell growth. hES cells 

express receptors for FGFs and produce FGF2 
117

, which activates signalling through 

the RTKs ERK1 and ERK2 in these cells, inhibition of this pathway results in cell 

differentiation 
118,119

. How bFGF-mediated signalling interacts with the network of 

pluripotency factors still remains unclear. For cell culture, activating Activin-/Nodal- 

signalling together with FGF2 could maintain hES cells long term self-renewal 
4,19-21

.  

S1P (sphinigosine-1-phsphate), a bioactive lysophospholipid, has been implicated in a 

diverse range of biological processes, including cell growth, differentiation, migration 

and apoptosis in many different cell types 
120

. PDGF has also been implicated in the 

prevention of apoptosis 
121

. PDGF can activate sphingosine kinase, an enzyme 

responsible for the conversion of sphingosine to S1P by phosphorylation. When 

cultured in the presence of S1P and PDGF together, hES cells have shown the ability to 

retain their pluripotency and undifferentiated state in the absence of co-culture or serum 

122
, indicating a role for lysophospholipid signalling in the maintenance of stem cells. 

WNT signalling 

WNT signalling has an extensive role in controlling animal development, including 

embryonic induction, the generation of cell polarity and cell fate processes 
123-125

. 

Canonical WNT signalling involves the binding of WNT ligands to the Frizzled 

receptors. This activates Dishevelled, which displaces GSK-3β from the 

Axin/adenomatous polyposis coli (APC) complex, preventing ubiquitin-mediated 

degradation of β-catenin. β-catenin accumulates and translocates into the nucleus where 

it associates with T cell factor/lymphoid enhancer (TCF/LEF) proteins to activate 

transcription of WNT targets 
2
. 

However the role of WNT signalling in pluripotent cells in vitro, has been difficult to 

decipher because of conflicting reports. Some studies suggest roles for WNT signalling 

and inhibition of GSK3β in hES cells maintenance 
126

. WNT signalling activation by 6-

bromoindirubin-3’-oxime (BIO), a specific pharmacological inhibitor of GSK-3, 

maintains the undifferentiated phenotype of hES cells and sustains expression of the 

pluripotent state-specific transcription factors OCT4, REX-1 and NANOG 
126

. Whereas 

others found WNT signalling could stimulate hES cells proliferation, but also 

differentiation. They found the β-catenin-mediated transcriptional activation in the 

canonical WNT pathway was minimal in undifferentiated hES cells, but greatly 
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upregulated during differentiation 
127

. Therefore, the function of WNT signalling in 

regulating hES cells pluripotency is inconclusive. 

PI3K signalling 

The phosphoinositide-3-kinase (PI3K) family are lipid kinases that form three classes (I, 

II, and III). The activated PI3K acts as intracellular second messengers recruiting 

pleckstrin-homology (PH) domain containing proteins, such as AKT 
128

.  PI3K 

signalling can switch TGFβ/SMAD activity between pro-self-renewal and pro-

differentiation through regulating ERK and GSK/ β-catenin signalling 
129

.  

Singh et al. 2012 found that blockage of PI3K signalling induced the expression of 

mesendoderm marker genes such as Eomes, Goosecoid and MIXL1. While simultaneous 

blockage of TGFβ/SMAD signalling abolished the induction of these mesoendoderm 

genes. As TGFβ/SMAD signalling is required for hES cell maintenance, these results 

suggeste that robust PI3K activity collaborates with TGFβ/SMAD to maintain hES cell 

self-renewal, while weak PI3K activity switches the function of TGFβ/SMAD to 

promote differentiation 
129

 (Figure 6). 

The authors proposed a model for maintenance of hES cell self-renewal. In this model, 

activated PI3K signalling could suppress MEK/ERK activity, leading to high GSK3β 

activity and low β-catenin activity; the low β-catenin activity does not allow the 

moderate level of TGFβ/SMAD activity to initiate mesendoderm gene expression and 

thereby maintains hES cells in their self-renewal state 
129

. 
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Figure 6. Heregulin and IGF-1 via PI3K/Akt and Activin via Smad2/3 Cooperate 

to Maintain Self-Renewal of hES cells.  

Red indicates the activated state of signaling molecules, whereas blue indicates the 

repressive state. The dashed line indicates the regulation with unclear mechanisms. 

(From Yeguang Chen et al. 2012) 
129
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Intracellular transcription factor 

hES cells have a subset of transcription factors specifying “stemness”, among which 

OCT4, NANOG, SOX2 are considered to be the key factors that constitute the core 

pluripotency circuitry.  

OCT4, also known as OCT3, a class V POU domain-containing transcription factor, 

was identified as essential for both early embryo development and pluripotency 

maintenance in ES cells 
130,131

. OCT4 is highly expressed hES cells and its expression 

diminishes when these cells differentiate and lose pluripotency 
132

. The precise level of 

OCT4 is important for ES cell fate determination. Loss of OCT4 causes inappropriate 

differentiation of ES cells into trophectoderm, whereas overexpression of OCT4 results 

in differentiation into primitive endoderm and mesoderm 
133-136

. OCT4 regulates a broad 

range of target genes including FGF4, REX1, SOX2 and CDX2, through binding to 

enhancers carrying the octamer-sox motif (OCT-SOX enhancer), for synergistic 

activation with SOX2 
137-139

. 

SOX2 is an HMG-box transcription factor that is detected in pluripotent stem lineages 

and the nervous system
139

. Inactivate Sox2 in vivo results in early embryo lethality due 

to the failure of ICM maintenance 
140

.  SOX2 can form a complex with OCT4 protein to 

occupy OCT-SOX enhancer to regulate target gene expression. OCT-SOX enhancer 

could be found in the regulator region of most of the genes that are specifically 

expressed in pluripotent stem cells, such as OCT4, SOX2, NANOG, FGF4 and FBX15 

141-143
. 

NANOG is a NK2-family homeobox-containing transcription factor that is specifically 

expressed in pluripotent ES cells 
144,145

. In hES cells, Activin/ TGF-β signalling 

stimulated expression of NANOG, which in turn prevent FGF-induced neuroectoderm 

differentiation 
104

. Down-regulation of NANOG leads to a significant down-regulation 

of OCT4 and loss of ES cell-surface antigens and the differentiation
1
. Conversely, hES 

cells overexpressing NANOG can be maintained in the undifferentiated state over 

several passages in a feeder-free system, without the requirement for conditioned 

medium 
146

. 

Many studies have demonstrated the importance of OCT4, SOX2 and NANOG as the 

core regulators in regulation of hES cell pluripotency 
104,147,148

. Besides regulating 

pluripotency, these genes also control specific cell fates in hES cells. Previous study 



- 20 - 

 

showed that OCT4 regulates, and interacts with, the BMP4 pathway to specify 

developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 

but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce 

embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic 

lineages in the presence of BMP4. NANOG represses embryonic ectoderm 

differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are 

redundant and repress mesendoderm differentiation 
149

.  

In addition, OCT4, SOX2 and NANOG physically interact with each other and 

coordinately regulate target genes in some cases, as their binding sites are often in close 

proximity to one another 
8
. OCT4, SOX2 and NANOG together occupy a minimum of 

353 of hES cell genes. Half of the promoter regions occupied by OCT4 and SOX2, and 

more than 90% of these sites were also occupied by NANOG. OCT4 , SOX2, NANOG 

are also bound to their own promoters, thus forming an interconnected autoregulation 

loop to maintain the ES cell identity 
8
.OCT4 maintains NANOG expression by directly 

binding to the NANOG promoter when present at a sub-steady level, but represses it 

when OCT4 is above the normal level. And OCT4 represses its own promoter also 

when OCT4 level rises too high, thus exerting a negative feedback regulation loop to 

limit its own expression. This negative feedback loop keeps the expression of OCT4 at a 

steady level, thus maintaining the ES cell properties 
150,151

 (Figure 7). 
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Figure 7. Expanded transcriptional regulatory network showing target hubs of 

multiple factors within the protein interaction network.  

(From Kim et al. 2008) 
146

 

 

Besides the core transcription factors, POLR3G is a novel new identified pluripotency 

marker, which is  expressed in undifferentiated hES cells, hiPS cells and early mouse 

blastocytes 
9
. It plays an important role to maintain pluripotency of hES cells, as 

decreased levels of POLR3G results in loss of pluripotency and promotes differentiation 

of hES cells, while overexpression of POLR3G results in increased resistance to 

differentiation. OCT4 and NANOG could regulate the level of POLR3G through binding 

at its promoter region 
9
. The detail regulatory mechanism of POLR3G remains unknown. 

Further studies that focus on finding the downstream targets and upstream regulators of 

the POLR3G in hES cells and hiPS cells would be helpful for us to better to understand 

the regulatory network of self-renewal and pluripotency in hES cells and hiPS cells. 
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1.2 Cell Cycle  

1.2.1 Introduction of Cell Cycle 

The cell cycle is an important event that leads to cell division and duplication. The basic 

function of the cell cycle is to duplicate genetic information and equal segregation of 

copied DNA between two daughter cells 
152

. The cell cycle includes four different 

phases: G1, S, G2 and M phase. G1, S and G2 phases are also called interphase (Figure 

8). Interphase is an important part of cell cycle. During this stage the cells grow, prepare 

nutrients and duplicate its DNA for mitosis. M phase is the short acronym for mitosis 

phase. During M phase cell’s division into two daughter cells is achieved 
153

. 

 

 

 

Figure 8. Schematic representation of the cell cycle.  

(From Murtala B. Abubakar et al, 2012) 
154

.  

G1 phase 

The G1 phase of the cell cycle encompasses the time from the end of the previous 

mitosis until the next DNA replication. During this phase, the cells synthesize many of 

the proteins and enzymes which are required for DNA duplication in S phase 
155

. Cells 

in G1 phase are very sensitive, during which the cell fate is often decided. The length of 

G1 is highly variable between different cell types. G1 checkpoint is located at late G1 

phase is also for cells make decision for whether divide, delay division, or enter a 

resting stage 
156

.  
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S phase 

The S phase is a period between G1 and G2 phase in the cell cycle. The major event 

occurring during this phase is DNA replication, resulting in doubling of DNA amount. 

Another important event in this phase is the detection and repair of DNA damage 
157

. 

This is achieved through activation of special signalling pathways, involving DNA 

damage sensors (ATR) and effectors (Chk1) which detect the damage and cause a stop 

in DNA replication and stabilize the DNA polymerase complex to fix the DNA damage 

158,159
. 

G2 Phase 

The G2 phase is the last interphase before the mitosis. In this phase, cells synthesise 

proteins which are necessary for mitosis. Microtubules, which are required for mitosis, 

are also synthesized in G2 phase. But in some cell types, such as Xenopus at the 

embryonic stage 
160

and some cancers 
161

, G2 phase is not necessary: they can directly 

enter mitosis. 

M phase 

The M phase is the stage during which the cells separate into two daughter cells. The M 

phase can also be divided into several sequentially parts namely prophase, metaphase, 

anaphase, telophase and cytokinesis. During the M phase, pairs 

of chromosomes condense and attach to fibres that pull the sister chromatids to opposite 

sides of the cell 
162

. Then the cell starts cytokinesis immediately by dividing itself into 

two equal cells which share the cell components. The mitosis is also a very important 

part of the cell cycle as mistakes during this stage are likely to lead to cell apoptosis or 

initiation of cancer 
163

. 

1.2.2 Cell Cycle Regulation 

Cell cycle regulation is very important for deciding cell fate and as such it needs to be 

precisely regulated. Two main regulators of cell cycle are cyclins and cyclin-dependent 

kinases (Cdks) along with other cell cycle positive and negative regulators act to control 

the cell cycle process 
152

.  

http://en.wikipedia.org/wiki/Xenopus
https://en.wikipedia.org/wiki/Chromosomes
https://en.wikipedia.org/wiki/Sister_chromatids
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Cyclins 

The first cyclin was discovered by R. Timothy Hunt in 1982 
164

. They were initially 

named cyclins because their expression changes in a repeatable and specific pattern 

(cycled) during the cell cycle. The basic function of cyclins is to regulate the cell cycle 

by activating cyclin-dependent kinases (Cdks) through protein-protein interactions.  

Based on their expression profiles, the cyclins can be divided into four classes, G1/S 

cyclins, S cyclins, G2 cyclins and M cyclins. Different type of cyclins may bind with 

different Cdks during the cell cycle, for example, cyclin D/Cdk 4/6, cyclin E/Cdk 2 and 

cyclin A/Cdk 2 (Figure 9). 

 

 

Figure 9. Expression of human cyclins through the cell cycle.  

The concentrations of cyclin proteins change throughout the cell cycle (From 

https://en.wikipedia.org/wiki/Cyclin-dependent_kinase_complex). 

 

Cdks 

Cdks is the acronym for cyclin-dependent kinases. Cdks promote the cell cycle through 

binding with cyclins
152

. However, they can play additional roles in transcriptional 

regulation, mRNA processing, DNA damage and cell cycle checkpoint activation as 

well as cell differentiation (Table 3) 
165

.  

The Cdks have negligible kinase activity without the cyclins 
121

. When a Cdk associate 

with a cyclin to form the cyclin-Cdk complex, its kinase activity can then are activated. 

http://en.wikipedia.org/wiki/R._Timothy_Hunt
http://en.wikipedia.org/wiki/Cell_cycle
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However, only cyclin binding is not sufficient to fully activate Cdks. The inhibitory 

phosphate groups are also need to be removed by Cdc25 phosphatases 
166

. In addition, 

the active sites of Cdks need to be phosphorylated by cyclin activating kinase (CAK) to 

enable full kinase activity. 

 

 

Table 3. Cyclins and Cdks function in human and consequences of deletion in mice. 

 (Adapted from Gopinathan L et al 2011) 
121

. 
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Cyclin and Cdks interaction 

The interaction between cyclins and Cdks is to form a heterodimer in which the cyclins 

provide the regulatory subunits, whilst Cdks provide the catalytic subunits. Without 

cyclins, the Cdks only have negligible kinase activity as the active site of Cdk is 

blocked by a flexible loop. Binding of Cdks to cyclins causes a structural change which 

promotes the ATP binding to some amino acid site, Cdks can be activated by CAK 
167

. 

The active cyclin-Cdk complex is able to phosphorylate their specific target proteins to 

lead the cell’s entry into next cell cycle phase. This is corroborated by studies 

performed in human fibroblast cells by Ohtsubo showing that overexpression of cyclin 

D or cyclin E in early G1 phase cause premature S phase entry 
168

, suggesting that these 

cyclins at least partially regulate the G1/S phase entry.  

Cdks are constitutively expressed during the cell cycle; however cyclins are expressed 

in specific time of the cell cycle. This cyclic expression pattern is regulated by various 

signalling pathways. Different types of cyclin-Cdk complex have different functions in 

each cell phase 
152

. For example, cyclin E can bind to Cdk2, to form the cyclin E / Cdk2 

complex, which will promote the G1/S transition (Table 4) 
169

. Cyclin B can bind to 

Cdk1 and this active complex is able to initiate the G2/M transition 
170

.  

 

Table 4. Phenotype in mouse ES cells with downregulating G1 phase component.  

(Adapted from Momciilovic et al. 2011) 
152

. 

Cell cycle inhibitors 

Cell cycle inhibitors also play an important role in cell cycle regulation. These are 

classified in two families: cip/kip family (CDK interacting protein/Kinase inhibitory 
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protein) and the INK4 (Inhibitor of Kinase 4). Members of these two families are also 

known as tumour suppressors, as they play a role in prevention of tumour formation 
171

. 

The cip/kip family includes p21, p27 and p57. These genes can arrest the cell cycle by 

inactivating relevant cyclin/Cdk complex. Cyclin D/Cdk4-6, cyclin E/Cdk2 and cyclin 

B/Cdk1 are all regulated by cip/kip family. The INK4 proteins include p16INK4a, 

p15INK4b, p18INK4c and p19INK4d. These proteins only bind with Cdk4 and Cdk6 to 

inhibit their activity
171

.   

1.2.3 G1 to S Transition  

G1/S transition is regulating expression and phosphorylation of G1/S specific Cdk, 

cyclins and Rb gene family. The activity of Cdks is largely depending on binding with 

Cyclins, which are regulating by many internal and external signals. Phosphorylation of 

Rb by Cdks is a key point of progress of G1 to S transition 
171

. 

Significance of the G1/S transition 

Many studies show that the G1 phase of the cell cycle is a key factor for cell’s decision 

to differentiate, proliferate, apoptosis, become quiescent or enter into senescence 
171

.  

The length of G1 phase is very different between somatic cells and murine embryonic 

stem cells 
172

. Cell cycle has been proved to be much shorter in embryonic stem cells 

(8~10 h) compared to somatic cells (murine fibroblasts, 22~25h) 
169,173

. Many studies 

have shown that lengthening of G1 can cause the differentiation of embryonic, neural 

and hematopoietic stem cells 
174-176

. These models are based on “the concept that time, 

i.e., G1 length, may be a limiting factor for cell fate change to occur because 

differentiation factors require time in order to trigger a physiological response” 
172

. 

Previous study also showed G1 phase cells in naïve ES cells appeared to be more 

susceptible to differentiation 
177

. Recent study also uncovered mechanisms by how G1 

phase control cell fate choice. Endoderm induction is only possible in early G1 phase 

when the cyclin D expression level is low, allowing Smad2/3 to bind and to activate 

endoderm genes, and late G1 cells only receptive for neuroectoderm initiation 
178

.In 

view of the above findings, it is very important to understand mechanisms of G1 to S 

transition in detail in embryonic stem cells and how this impacts the maintenance of 

pluripotency. 



- 28 - 

 

1.2.4 Regulation of the G1/S Transition in Somatic Cells 

There are several specific cyclin/Cdk complexes involved in G1 to S transition, and 

these are cyclin D/Cdk4, cyclin D/Cdk6, cyclin E/Cdk2 and cyclin A/Cdk2 
171

. 

In differentiated mammalian cells, G1 to S transition is regulated by three main 

pathways, retinoblastoma (Rb) pathway, c-Myc pathway and p53 pathway (Figure 10) 

152,171
.  

 

Figure 10. Simplified schematic representations of the key molecular pathways 

controlling G1 to S phase transition in somatic cells (A) and in hES cells (B).  

In proliferating cells, Rb phosphorylation by cyclin/Cdk complexes releases E2F, which 

then induces genes that mediate S phase entry. Arrows indicate stimulatory 

modifications, blocked lines show inhibitory modifications. –p and +p indicate removal 

and addition of phosphorylation respectively (From Neganova et al, 2008) 
171

. 
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Retinoblastoma (Rb) is a negative regulator of the cell cycle and a positive regulator of 

cellular differentiation. G1 to S progression is regulated by hypophosphorylated Rb 

genes (Rb1/p105, Rb2/p107, Rb3/p130), which inhibit the expression of genes required 

for entry into S phase by sequestering E2F 
179

. In somatic cells, at the mid-late G1 phase, 

cyclin D/Cdk4-Cdk6 complex phosphorylates Rb protein leading to partial release of 

the E2F gene, which in turn activates the transcription of cyclin E and Cdc25A. The 

cyclin E binds to Cdk2 and further phosphorylates Rb completely, allowing the cell to 

pass through the restriction point entry the S phase 
180

. 

The c-Myc pathway, which stimulates directly the expression of cyclin E and the 

Cdc25a gene, maintain cyclinE/Cdk2 activity by sequestering p21 and p27 protein 
181

. 

Overexpression of c-Myc in growing cells leads to reduced growth factor requirements 

and a shortened G1 phase, while reduced c-Myc expression causes lengthening of the 

cell cycle 
182

. 

Tumor suppressor protein, p53 is inactivated by its negative regulator mdm2 in normal 

cell. Many types of cellular stresses cause activation of p53, disassociation from mdm2 

and translocation to the nucleus 
183

. p53 can induce cell cycle arrest through regulating 

many target genes, including p21 and Bax, to enable either arrest of cell stop cycle and 

activation of DNA repair pathways or in cases where damage is too extensive activation 

of apoptosis to eliminate the damaged cells from the population 
184

. 

1.2.5 G1/S transition in Mouse ES Cells 

Mouse ES cells have a very short cell cycle (11-16 h) and G1 is much shorter (2 h) 

compared to somatic cells 
169

. This cell cycle strategy is one of the key factors enabling 

the rapid proliferation of mouse ES cells and minimizing the differentiation events 

during G1 phase. To enable such short G1 phase, Rb proteins are hyperphosphorylated 

and inactive throughout the cell cycle of murine ES cell. Without Rb, E2F is 

constitutively activated resulting in E2F target genes constitutively active throughout 

the cell cycle 
185

. 

In mouse ES cells, cyclin D expression is very low and Cdk4 kinase activity is almost 

undetectable 
169,186

. Cyclin E/Cdk2 shows cell cycle independent activity and cyclin 

A/Cdk2 is constitutively active. Only Cdk1 and Cyclin B1 are regulated in a cell-cycle 
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dependent manner 
185

. Initiation of ES cell differentiation results in acquisition of cell 

cycle features that are common in somatic cells (Figure 11).  

 

 

  

Figure 11. A simplified presentation of the fluctuation of expression of cyclins and 

Cdks involved in G1 to S progression in mouse ES cells.  

Expression of cyclin D, cyclin E and cyclin A is not dependent on the cell cycle 

progression in murine ES cells. Hyperphosphorylated Rb is present at all cell cycle 

stages and the only cyclin that demonstrates cell cycle periodicity in mouse ES cells is 

cyclin B1 at G2 stage of the cell cycle (not shown). Although it is clear that R point 

does not operate in murine ES cells, the existence of a functional S point and G2/M is 

not clear. Recent investigations suggest that although the mitotic-spindle checkpoint, 

which helps to maintain chromosomal integrity during all cell divisions, functions in 

human and mouse ES cells, it does not initiate apoptosis as it does in somatic cells. 

(Adapted From Neganova and Lako 2008)
171

 

 

1.2.6 G1/S Transition in hES Cells and hiPS Cells 

hES cells and hiPS cells display also a very short G1 phase similarly to murine ES cells 

187
. In hES cells and hiPS cells, cell cycle duration is 15-16 h and G1 phase accounts for 

about 20% of the cell cycle 
173

. However, unlike mouse ES cells, Cyclins and CDKs 

show cell cycle dependent manner expression (Figure 12). The expression of Cdk4 is 

higher than Cdk6 in hES cells and human iPSCs compared with mouse ES cells. 
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Furthermore, the expression of cell cycle inhibitors, INK and Cip/Kip family is almost 

undetectable 
171

.   

 

 

Figure 12. Comparison of expression and activity of cell cycle controllers in mouse 

and hES cells.  

(From Momciilovic et al. 2011) 
152

. 

 

1.2.7 G1/S Checkpoint 

Cell cycle checkpoints are an important part of cell’s life cycle as they act as key 

monitors and regulators of cell cycle 
188,189

. The main role of checkpoint is to assess 

DNA damage and ensue the necessary response (this being cell cycle arrest or apoptosis) 

to enable either DNA repair or elimination of “faulty” cells from the cell population 
190

. 

The cells cannot entry next phase until checkpoint requirements have been completed. 

The G1/S checkpoint is the first point located at the end of G1 phase. The main function 

of this checkpoint is to assess genome stability prior to DNA duplication in S phase. 

Two key regulators of G1/S checkpoint are and two PIKK (Phosphatidylinositol 3-

kinase-related kinase) family members, ATM (ataxia-telangiectasia mutated) and ATR 

(ATM and Rad 3-related) 
190

. DNA damage caused by ionizing radiation leads to 

activation of ATM, which in turn causes phosphorylation and activation of Chk2 

(Figure 13). Activated Chk2 phosphorylates p53 at Ser 20 
191

. The phosphorylation of 

Ser20 blocks the interaction between p53 and mdm2, thus releasing p53 from mdm2, 

and increasing the p53 protein level (Figure 13) 
192

.  

ATM or ATR can also phosphorylate the Ser15 residue of p53 following UV irradiation 

and stalling of DNA replication forks 
191

. The phosphorylation of Ser15 will enhance 
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subsequent phosphorylation of p53 at Ser18 
193

. The phosphorylation at these two sites 

activates p53 and reduces its interaction of p53 with mdm2 (Figure 13) 
194

.   

ATM is also able to phosphorylate the mdm2 directly at Ser395. The phosphorylation of 

mdm2 at Ser395 affects its shuttling activity 
195

. As consequence, the p53/mdm2 

complex cannot be normally exported out of the nucleus for proteosomal degradation in 

the cytoplasm, resulting in p53 stabilization 
196

.  

Activated p53 leads to upregulation of its target genes. One of the key targets is p21, 

whose activation results in inhibition of the cyclin E/Cdk2 activity and stalling of G1 to 

S phase progression 
197

.  

Several studies showed mouse ES cells lack of a functional DNA damage induced G1/S 

cell cycle arrest 
198-200

 and defect on expression of checkpoint proteins 
200,201

. Unlike 

mouse ES cells, hES cells have been shown to be capable of executing G1/S checkpoint 

activation in response to DNA damage 
202,203

. Previous study in our group showed 

downregulation of CDK2 triggers the G1 checkpoint through the activation of the 

ATM-CHK2-p53-p21 pathway (Figure 13) 
203

. 
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Figure 13. ATM/ATR-dependent signalling through the G1checkpoint.  

Cells that have incurred DNA double-strand breaks (dsbs) during G1 phase activate p53 

primarily via an ATM-dependent pathway. In cells that express both ATM and ATR, 

the activation of p53 is reinforced and maintained by ATR (pathway indicated by dotted 

lines). ATM regulates p53 accumulation by indirect pathways involving the Chk2-

mediated phosphorylation of Ser 20 on p53, by promoting casein kinase-I-dependent 

phosphorylation of Ser 18 (not shown), and by directly phosphorylating MDM2 on Ser 

395. ATR may influence Ser 20 phosphorylation through activation of Chk1. (From 

Robert T. Abraham) 
190

. 

 

1.2.8 The Cell Cycle and the Regulation of Pluripotency 

Rapid cell cycling is the feature of hES cells and hiPS cells. A short G1 phase has been 

considered as means of pluripotency maintenance that limits the window of opportunity 

during which a cell can be responsive to differentiation
178,204

. During differentiation, the 

G1 phase is prolonged. Interestingly, lengthening G1 phase by manipulating cell cycle 
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regulators is sufficient to induce differentiation, implying that G1 lengthening is a cause 

rather than a consequence of differentiation and that a short G1 phase is crucial for ES 

cell self-renewal and pluripotency. Recent studies have revealed that specific cell cycle 

components could regulate the pluripotency 
205

. Use of the CDK inhibitor rescovitine in 

hES cell culture prompted G1/S arrest, accumulation of hypophosphorylated Rb, 

smaller hES cell colonies and the down-regulation of the pluripotency marker OCT4 
206

. 

Specific knockdown of CDK2 using siRNA induced cell arrest in G1 and differentiation 

of hES cells to extra-embryonic lineages 
25

. 

Furthermore, a study revealed a role of p27
KIP1,

 the negative regulator of CDK2, in self-

renewal of hES cells differentiation 
207

. Cell cycle components could also regulate the 

differentiation capacity through controlling the differentiation signals. One recent study 

addressed the variation of differentiation capacity during the progression of hES cell 

cycle. They found that the hES cells in early G1 could only initiate 

endoderm/mesoderm differentiation, whereas the hES cells in later G1 could only 

initiate the neuroectoderm. On the other hand, cells in G2/M phases of the cell cycle 

responded poorly to differentiation signals
178

. The results confirm that induction of 

differentiation on hES cells occurs during the G1 phase and also the hES cells in early 

and late G1 might have a different capacity of differentiation. Knockdown of Cyclin Ds 

in hES cells systematically dimish pluripotency and neuroectoderm marker expression. 

Whereas hES cells with overexpressing Cyclin Ds maintained self-renewal and 

pluripotency, but showed an increase in neuroectoderm marker expression and have a 

limited capacity to differentiate into meso/endoderm
178

. These mechanisms are 

governed by the Cyclin Ds which can regulate the differentiation signalling such as the 

TGF/SMAD pathway
178

. 

Recent studies have shown that transcription factors such OCT4, SOX2 and NANOG 

regulate pluripotency by transcriptional regulation of cell cycle genes. OCT4, SOX2 

and NANOG have been found to bind to promoters of several cell cycle regulatory 

genes, including CDC25A, CDK1, CDK6 
8
. NANOG was shown to directly regulate 

CDK6 and CDK25A at the transcriptional level and by this mechamism to regulate G1 

progression and S phase entry in hES cells 
208

. Vice versa, cell cycle regulatory proteins 

can regulate expression of core pluripotency regulators or of their target genes. For 

instance, Geminin, a negative regulator of prereplication complex assembly, 

antagonizes the chromatin remodelling protein Brg1 to maintain expression of Oct4, 
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Sox2 and Nanog. In the absence of Geminin, Brg1 represses expression of Oct4, Sox2 

and Nanog, and ES cells differentiate 
209

. 

In addition, core pluripotency factors indirectly regulate cell cycle through miRNAs. 

Pluripotency factors Oct4, Sox2 and Nanog can bind the promoter region of the miR-

302 cluster in hES cells, however only Oct4 and Sox2 are required for expression of the 

miR-302 cluster 
210,211

. Further study showed miR-302 regulates cyclin D1 in hES cells, 

which indicate the link between pluripotent factors with cell cycle 
210

. The miR-17-92 

family is regulated by Myc, this family target cell cycle regulators include E2F, cyclins 

and Rb family 
212

.  

Another intrinsic link between pluripotency and cell cycle has been proposed to be 

MYC.  MYC has many roles in normal proliferative control and cell fate determination 

in ES cells. c-MYC upregulates expression of several pro-self-renewal miRNAs, miR-

141, miR-200 and miR-429 
213,214

, represses lineage determinants, such as the endoderm 

master regulator gene GATA6 in hES cells 
208

, and supports cell cycle and rapid G1 

progression by directly upregulating cyclins and CDKs and indirectly downregulating 

negative cell cycle regulators 
208

. 

 

1.2.9 The Cell Cycle during Reprogramming 

hiPS cells exhibit the unique cell cycle program of pluripotent cells, similar with hES 

cells. While partially reprogrammed cells exhibit a cell cycle profile that is intermediate 

between fibroblasts and pluripotent cells 
2
. The formation of iPS cells further support 

the essential role of specific cell cycle regulation in pluripotency and reprogramming 
2
. 

It is generally observed that older or more slowly dividing cells are more difficult to 

reprogramme 
204,215

. In addition, the fibroblasts which were permeabilized and 

incubated in meiotic Xenopus egg extract (high CDK1 activity), but not interphase egg 

extract (low CDK1 activity) were much easier to be reprogrammed by the four factors 

216
.  

In 2011, Ruiz et al. found that induction of cell proliferation through ectopic expression 

of cyclin D1, cyclin D2 and cyclin E2 promotes formation of hiPS cells; while cell 

cycle arrest through ectopic expression of p15, p16, or p21 inhibits cell reprogramming 

204
. The Ink4/Arf tumour suppressor locus encodes three potent inhibitors of 



- 36 - 

 

proliferation, namely p16, p15, and ARF. This locus is epigenetically silenced in hES 

cells, hiPS cells and upon reprogramming. Ink4/Arf deficient MEFs reprogramme with a 

15-fold higher efficiency than wild-type MEFs
217

. Such conclusions are consistent with 

the previous study demonstrating the p53 tumour suppressor pathway is also a barrier to 

reprogramming 
218

. By using short hairpin RNA against the p53 or p53 target gene 

p21
cip1

 both allowed increased reprogramming efficiency 
218

.  

Also ES cell miRNAs, including miR-302b and miR-372, have been found to enhance 

the efficiency of reprogramming
219

. By targeting multiple inhibitors of CDK2 activity, 

miRNAs mediate rapid progression through G1 phase and promote the unique cell cycle 

program of pluripotent cells in reprogrammed cells
219

. 

These studies highlighted the role of the cell cycle in the somatic cell reprogramming 

process, the higher proliferation rate is required for cell reprogramming. 
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1.3 MicroRNA  

1.3.1 MicroRNA Biogenesis 

MicroRNAs (miRNAs) are 20-25 nucleotides, endogenous non-coding RNAs. The first 

miRNA was discovered in 1993 by Rosalind Lee, Rhonda Feinbaum, and Victor 

Ambros while studying the function of the gene lin-14 during the development of 

Caenorhabditis elegans. They discovered that “the lin-14 protein expression was 

regulated by a short RNA product encoded by the lin-4 gene” 
220

. Since then, more than 

700 miRNAs have been identified, while 1000 miRNAs are predicted to play role in 

gene regulation in human cells 
221

. 

More than half of mammalian miRNAs are located in introns of host gene as well as in 

long non-coding transcripts 
222

. However, some miRNAs can also be found in the exons. 

Most of the miRNAs located in intron region are expressed in the same tissues as their 

host gene 
223

. For example, in human and zebrafish, miR-126 is located in an intron of 

the EGFL7 gene. The expressions of miR-126 and EGFL7 are observed in endothelial 

cells of the heart and blood vessels 
224

. 

The generation of mature miRNAs usually needs a series of cleavage processing. First, 

the pri-miRNA, which has a cap structure (7MGpppG) and a polyadenylation tail 

(AAAAA), is transcribed in nucleus by RNA polymerase II 
225

. Then the pri-miRNA is 

cleaved in the nucleus by the RNaseIII enzyme Drosha and its RNA binding partner 

Dgcr8 
226-228

. This cleavage generates a 60-75 nucleotides pre-miRNA with a short 

hairpin. The pre-miRNA is transported to the cytoplasm by Exportin 5 through a Ran-

GTP dependent manner 
229-231

. In the cytoplasm, the pre-miRNA is cleaved by another 

RnaseIII enzyme Dicer and its partner TRBP to generate the mature miRNA duplex 
232

. 

This duplex is loaded with Ago2 into a protein complex called RNA induced silencing 

complex (RISC). In this complex, the miRNA can regulate its target mRNAs through 

mediating the mRNA target cleavage, translational repression or mRNA deadenylation. 

The interaction between miRNAs and their targets is largely dependent on the seed 

sequence, which located at 2-8 position at the five prime untranslated regions (5'UTR) 

of miRNA and three prime untranslated regions (3'UTR) of target mRNA 
233

. Recently, 

many studies show that miRNA can also regulate target miRNA expression through 

binding to the coding region or the 5'UTR of the mRNA (Figure 14). 
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Figure 14. The ‘linear’ canonical pathway of miRNA processing.  

The miRNA generation includes the primary miRNA transcript (pri-miRNA) by RNA 

polymerase II or III and cleavage of the pri-miRNA by the microprocessor complex 

Drosha–DGCR8 (Pasha) in the nucleus. The pre-miRNA, is exported from the nucleus 

by Exportin-5–Ran-GTP. In the cytoplasm, the RNase Dicer in complex with the 

double-stranded RNA-binding protein TRBP cleaves the pre-miRNA hairpin to its 

mature length. The mature miRNA is loaded together with Argonaute (Ago2) proteins 

into the RNA-induced silencing complex (RISC) to silence target mRNAs through 

mRNA cleavage, translational repression or deadenylation (Adapted from Winter et al. 

2009) 
234

.  

 

1.3.2 miRNA Function 

The function of miRNAs has been studied for many years. It was first found that the 

binding of miRNA to its target mRNA can repress the translation process. For example, 

the let-7 miRNA of C. elegans can repress lin-41 mRNA translation, and lin-4 can 

repress lin-14 protein synthesis. Initial studies suggest that these repressions do not 

affect mRNA degradation 
220

.  

In contrast, recent studies have shown that miRNAs can also regulate mRNA 

degradation, mainly through deadenylation 
235,236

. Two genome-wide studies involving 

overexpression or knockdowns of various miRNAs in HeLa cells and mouse neutrophils 
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revealed that both target protein level and mRNA level were downregulated 
233,237

. 

These results suggest that the mRNA degradation is likely to be a critical mechanism 

used for reducing protein expression levels by miRNAs in mammalian cells. Recent 

studies have also revealed that miRNAs may bind to promoter regions 
238

and have the 

potential to activate gene expression 
239

. In human genome, more than 1000 miRNAs 

had been found 
240

, however the number of mRNAs is typically estimated at about 

30000. Thus, one miRNA may regulate hundreds of target mRNAs 
241

. Through 

regulating target genes’ mRNA level and protein translation, miRNAs are involved in 

almost every biological process, including a variety of developmental, physiological 

processes and play key functions in the cell differentiation (Table 5). In addition to 

these important biological process, miRNAs also involved in different cellular activities, 

such as insulin secretion 
242

, neurotransmitter synthesis 
243

, immune response 
244

, 

circadian rhythm 
245

, and viral replication 
246

. Recent genome-wide analyses have also 

identified miRNAs can regulate oncogenic or tumor suppressor pathways 
247,248

. 
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Table 5. Biological functions of miRNAs in animals, disease and cancer 
249-251

. 
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1.3.3 The Role of miRNAs in Regulating Self-renewal 

miRNA expression has been examined in mouse ES cells and human ES cells by 

comparing undifferentiated ES cells to their differentiated counterparts. Those 

experiments revealed that ES cells seem to be characterized by a unique miRNAs 

signature 
252

.  

The fact that many miRNAs have the same seed sequence and that a single miRNA can 

target multiple mRNAs make difficult to study their function individually. Remove of 

all miRNAs can be achieved by deleting the genes encoding the enzymes involved in 

the processing of miRNAs. Deletion of proteins in the miRNA biogenesis, such as 

Dgcr8 and Dicer, in mouse ES cells results in the loss of miRNA in cells. These global 

miRNA- knockout cells provide a valuable tool for studying the function of miRNAs. 

Individual miRNAs can then be reintroduced as mimics to assess their functions. Mouse 

ES cells with Dgcr8 or Dicer proliferate slower, with a slight cell accumulation at G1, 

couldn't silence the self-renewal when induced to differentiation, indicating the 

important roles of miRNA in controlling the self-renewal and differentiation 
253,254

. 

Knockdown of Dicer or Drosha in hES cells also dramatically attenuates cell division 

and results in the formation of stem cells with high levels of stem cell factors, 

correlating with delayed differentiation 
255

. 

By screening the miRNAs which could enhance proliferation in Dgcr8 knockout mouse 

ES cells, miR-290/371 cluster was determined as ES cell specific cell cycle regulating 

miRNAs, which can increase proliferation in the mutant ES cells and reduce cells 

accumulated in G1 phase 
256

. The miR-290-295 cluster is regulated by Oct4 in mouse 

ES cells, and also binds to the promoter region of Oct4, Sox2, Nanog and Tcf3 
257

, 

suggesting a regulatory loop between pluripotency factors and miR-290-295 cluster.. 

Overexpression of miR-290 promotes G1/S transition in mouse ES cells by regulating 

p21, Rbl2, and Lats2, and prevents early differentiation by directly targeting two cell 

cycle regulating genes, Wee1 and Fbx15 
258

. 

hES cell enriched miRNAs can be categorized in four major groups: miRNA from the 

miR-302 cluster, miRNAs from the miR-17 family, miRNAs from the miR-371-373 

cluster, and miRNAs from chromosome 19 miRNA cluster. More additional families 

have been found enriched in hES cells by recent studies, such as miR-130 and miR-200 

252
. The promoter region of most of those miRNAs can be regulated by OCT4, SOX2, 

and NANOG 
257

. These groups of miRNAs are important for maintenance of hES cell in 
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and undifferentiated state. Such as the miR-302 family, which include miR-

302a/a*/b/b*/c/c*/d and miR-367, is highly expressed in hES cells and hiPS cells 
259

. 

The transcription factors OCT4, NANOG and SOX2 are required for the transcription 

regulation of miR-302 through binding to its promoter 
210

. Conversely, miR-302–367 is 

required for the expression of these pluripotency factors forming an autoregulatory 

positive loop in pluripotent cells. The miR-302 also promotes G1/S transition by 

inhibiting cyclin D1 and inhibition of miR-302 induce pluripotent hES cells accumulate 

in G1 phase 
210

.  

1.3.4 The Role of miRNAs in Reprogramming 

The iPS cells were first generated from mouse fibroblasts by overexpression of four 

Yamanaka factors, OCT4, SOX2, KLF4 and c-MYC 
42,43

. Except Yamanaka factors, 

other methods have also been investigated to generating iPS cells, including using 

miRNAs. Previous study showed overexpression miR-291-3P, miR-294 and miR-295 

with OCT4, SOX2 and KLF4 can generate iPS cells 
260

. The same group also 

demonstrated that miR-302 and miR-372 family transfected with Yamanaka factors can 

enhance reprogramming efficiency 
219

. Overexpression of miR-302/367 can 

reprogramme mouse and human cells without other factors 
55

. Transfected a 

combination of miR-200c, miR-302 family and miR-369 family can reprogram mouse 

somatic cells and human somatic cells to pluripotency 
261

.  

Downregulation of some miRNAs also contribute to increase reprogramming efficiency. 

Knockdown miR-21 and miR-29A in MEFs enhances reprogramming efficiency by 

reducing expression of P53 
262

. miR-34 is a target of p53 during reprogramming. 

Knockdown of miR-34 in MEF promoted iPSC generation without affecting self-

renewal or differentiation 
263

. These results indicate the important roles of miRNAs in 

regulating reprogramming of somatic cells into iPS cells.  

Recent studies have also demonstrated the potential role of miRNAs as regulators of 

trans-differentiation. miR-124 combined with MYT1L and BRN2, was sufficient to 

directly reprogram adult human primary dermal fibroblasts (mesoderm) to functional 

neurons (ectoderm) in the absence of other cell types 
264

. miRNA have been used to 

improve the direct reprogramming efficiency of fibroblasts into cardiomyocytes. Recent 

study indicated that transient transfection of miR-1, miR-133a, miR-208a, and miR-499 

could induce mouse fibroblasts reprogramming into cardiomyocytes, both in vitro and 

in vivo 
265

. 
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1.3.5 The Role of miRNAs in Regulating ES Cell Differentiation 

Recent studies have shown that some miRNAs promote the transition from self-renewal 

to differentiation by either directly suppressing self-renewal state or stabilizing the 

differentiated state 
266

. 

In mouse ES cells miR-134, miR-296, and miR-470 induce differentiation by directly 

targeting the pluripotency genes, Oct4, Nanog, and Sox2 
267,268

. miR-200c, miR-203, 

and miR-183 were found to repress Sox2 and Klf4 
269

. 

In hES cells, miR-145 is significantly upregulated during differentiation and directly 

suppresses self-renewal by targeting OCT4, SOX2 and KLF4 
270

. miR-145 itself is 

repressed by OCT4 in hES cells by a negative feedback loop 
270

. Let-7 is repressed in 

ES cells but rapidly upregulated during differentiation. The introduction of let-7 into 

Dgcr8-knockout ES cells successfully silences their self-renewal and pluripotency 
213

. It 

also been reported that knockdown of the let-7 family can promotes reprogramming 

efficiency 
271

.  

As shown in Figure 15, miRNAs also have functions in regulate lineage-specific 

differentiation.   
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Figure 15. miRNAs are capable of regulating proliferation and differentiation in 

various somatic stem cells.  

Selected miRNAs can regulate lineage-specific cells differentiation (Adapted from Ong 

et al 2015) 
266

. 

 

1.3.6 miRNAs Regulate the G1/S Transition in Mouse ES cells 

 

Mouse ES cells have a high self-renewal capacity. The cycling time of mouse ES cells 

is ~10 h, while in differentiated cells is more than 18h. ES cells have a very short G1 

phase (~2 h) and more than 50% of the cells are in S phase of the cell cycle 
249

. This has 

been attributed to high activity of constitutively active cyclin E/Cdk2 complex 

throughout the cell cycle 
185

. The high activity of Cdk2 leads to rapid proliferation and 

avoids the differentiation of mouse ES cells during G1 phase. Studies in Dicer or Dgcr8 

knockout models indicate an important role for miRNAs in regulation of cell cycle. 

Knockdown of Dicer or Dgcr8 in murine ES cells results in negation of miRNA 

generation ability 
254

. Furthermore, murine ES cells show reduced proliferation, 

impaired differentiation 
254,272

 and cell accumulation in G1 phase of the cell cycle, thus 

suggesting that miRNAs may play an important role in G1/S transition in murine ES 
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cells. To understand miRNAs function in ES cells, the miRNA mimics, were 

individually transfected into the Dgcr8 knockout cells 
256

. Several of those miRNAs 

rescued the Dgcr8 knockout phenotype. These miRNAs include miR-290 cluster, miR-

302 cluster and a group of miRNAs with similar seed sequence “AAAGUGC” 

including miR-20, miR-93, and miR-106 
273

.  

 

In wild type ES cells, the expression level of the miR-290 cluster is the highest 
257

. The 

miR-290 cluster includes miR-291a-3p, miR-291b-3p, miR-294 and miR-295 
256,274

. 

Transfection of these miRNAs individually can fully rescue the G1 phase arrest and 

promote cell proliferation thus demonstrating that these miRNAs play a role in 

regulating G1/S transition 
275

. 

The group of miRNAs, which are enriched in ES cells and can regulate cell cycle, are 

named as ESCC miRNAs for Embryonic Stem cell specific Cell Cycle regulating 

miRNAs 
256

. It has been found that the ESCC miRNAs can regulate cyclin E/Cdk2 by 

suppressing cell cycle inhibitors such as p21, Rbl1, Rbl2 and Lats2 
256,274

. 

1.3.7 miRNAs Regulate Cell Cycle in hES Cells 

hES cells proliferate quickly, and similarly to mouse ES cell are characterized by a short 

G1 phase. Similarly, miRNAs also play roles in regulating hES cells cell cycle. For 

example, the miR-302 cluster can promote G1/S transition in hES cells 
210

. miR-302 

cluster is abundant in hES cells and decreases dramatically during the ES cell 

differentiation. Inhibition of the miR-302 cluster increases percentage of cells in G1 

phase of cell cycle, down regulates pluripotency maker SSEA-3 and decreases the 

number of Oct4 positive clones. The miR-302 cluster promotes hES cells entry S phase 

by repressing CyclinD1/Cdk4 
276

. 

Knockdown of DICER or DROSHA in hES cells results in reduced generation of 

miRNAs, cell accumulation not only in G1 phase but also G2/M 
187

. The G1 related 

phenotype is rescued by overexpression of miR-372 which is thought to regulate the 

cyclin E/Cdk2 pathway in G1/S transition by inhibiting the cell cycle inhibitor 

CDKN1A (p21) 
277

. In addition, miR-92b regulate the Cdk2/Cyclin D complex in G1/S 

transition by inhibiting the cell cycle inhibitor CDKN2B (p57) 
278

. The G2/M phenotype 

can be rescued by overexpression of miR-195 which regulates WEE1 kinase, a known 

inhibitor of cyclin B/Cdk1 proven to be necessary for G2/M transition (Figure 16) 
275

. 

This miR-195/WEE1 pathway may be specific for hES cells because there is no 
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significant G2/M arrest in mouse Dicer or Dgcr8 knockout ES cells model and 

furthermore miR-195 is not highly expressed in mouse ES cells 
275

. 

The miRNAs involved in regulate cell cycle in mouse ES cells and hES cells is 

summarized in Figure 16.  

 

Figure 16 . miRNAs that regulate cell cycle of mouse ES cells and hES cells. 

(From WenTing Guo et al 2014) 
27

. 

Recent studies suggest that several miRNAs can regulate cell cycle through the p53 

pathway 
279-281

. miR-125b and miR-504 can induce cell cycle arrest through directly 

down-regulating p53 expression level 
282

. And miR-34a/b/c can upregulate p53 via 

repressing the level of SIRT1, which is a negative regulator of p53 
283

. miR-122 

upregulates p53 by inhibiting Cyclin G1, which can form a complex with PP2A 
284,285

. 

This complex can phosphorylate and increase the activity of MDM2 to repress p53. The 

miR-192 family regulate p53 by targeting the IGF pathway and MDM2, which reduce 

p53 activity 
286,287

. More details of regulation of p53 by miRNAs are summarized in 

Figure 17. 

 



- 47 - 

 

 

 

Figure 17. Multiple miRNAs regulate the activity and function of p53.  

Model summarizing the regulation of the 3’-UTR of p53, and the down-regulation of 

p53-modifying enzymes by miRNAs. (Adapted from Sabine Hüntenet et al. 2013) 
288

. 

 

In summary, miRNAs play a role in regulating G1/S transition in hES cells 
275

. As hES 

cells maintain rapidly self-renewal and pluripotency is partly due to their unique cell 

cycle structure characterized by a short G1 phase 
187

, it is very important to understand 

the mechanisms that govern the G1 to S phase progression in detail in embryonic stem 

cells and how this impacts the maintenance of pluripotency by miRNA. 
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Chapter 2. Methods  

2.1 MEF Generation  

Swiss MF1 pregnant females (12.5-13.5 dpc) were sacrificed by experienced, 

qualified animal handlers. All embryos were removed from the uterus using sterile 

surgical instruments and placed in a dish containing Phosphate Buffered Saline (PBS) 

supplemented with 10% Fetal Bovine Serum (FBS) and antibiotic 

(penicillin/streptomycin; 1%) to reduce potential infections. All visible organs (head, 

tail, limb, heart and liver) were removed under a dissection microscope and the 

remaining embryo was washed in fresh PBS. Scissors were used to mince the remaining 

bodies before further incubation in 1% Trypsin-EDTA (Sigma) for 5 minutes at 37°C. 

Cell suspension was pipetted repeatedly till single cell disassociation was achieved. The 

trypsin was inactivated by adding fresh MEF culture media containing 10% FBS. The 

cell suspension was centrifuged at 1000 rpm for 3 minutes. After removal of 

supernatant, the cell pellet was resuspended in fresh media and transferred to T75 

(Iwaki) flasks (one embryo per flask). Flasks were incubated at 37°C in a humidified 

atmosphere (>95%) and with 5% CO2. 

2.2 MEF Culture and Passage 

Primary MEF cultures were inspected every day to check for cell density and 

morphology.  MEF media (Table 6) was changed every 2 days and MEFs were sub-

cultured when 80%-90% confluence was observed. Sub-culturing was carrying out by 

washing MEFs with PBS and incubating with 0.05% trypsin-EDTA at 37°C for 5 

minutes. Trypsin was inactivated by adding fresh MEF media. The cells suspension was 

centrifuged at 800 rpm for 3 minutes. The supernatant was removed and cells were 

passaged in a ratio of 1:3 by resuspending in fresh MEF media. Flasks were incubated 

at 37°C in a humidified atmosphere (>95%) and with 5% CO2.   
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Table 6. MEF media composition 

 

2.3 Mitotic Inactivation of MEFs  

Normally MEFs were inactivated at passage 5. The media was removed and the MEFs 

were washed with PBS. The cells were cultured in the media supplemented with 10 

µg/ml Mytomycin C for 3-4 hours. Then the media was removed, the cells were washed 

5-7 times with PBS and digested with 0.05% trypsin-EDTA, and centrifuged at 800 rpm 

for 3 minutes. The cells were resuspended in fresh MEF media and plated in pre-

gelatinized 6 well plates at the concentration of 1.5x10
4 

cells/cm
2 

or 5.6 x10
4 

cells/cm
2 

(as the quality of MEFs are variable among batches). 

2.4 Cryopreservation of MEFs 

Confluent flasks of MEFs were washed by PBS and digested with 0.05% trypsin-EDTA 

at 37°C for 5 minutes. The cell suspensions were centrifuged at 800 rpm for 3 minutes, 

the supernatant was removed and the cells were resuspended in MEF freezing media 

(Table 7). The cell suspensions were transferred to the cryovials (Nunc) and stored at -

80°C in the “Mr Frosty” box. 1 day later, the vials were removed for long term storage 

in liquid nitrogen.  

 

Table 7. MEF freezing media 
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2.5 hES Cells and hiPS Cells Culture on MEF Feeder Layer 

hES cells and hiPS cells were cultured on MEF feeder layers in the 37°C incubator with 

a humidified atmosphere (>95%) and with 5% CO2. The media (Table 8) was changed 

every 24 hours. The cell morphology was observed under inverted phase contrast 

microscope every day. All visible differentiated cells were manually removed before 

further passaging.

 

Table 8. hES cells and hiPS cells media 

 

2.6 hES Cells and hiPS Cells subculture on MEF Feeder Layer 

hES cells and hiPS cells were passaged every 4-5 days by mechanical procedure or 

collagenase IV. The cell morphology was observed under the microscope and the 

differentiated parts of the colonies were scraped away before sub-culturing. 

For the mechanical procedure, the colonies were cut into smaller pieces (3 or 4 smaller 

pieces) with needles or tips, then they were transferred into a new 6 well plate with 

feeder layer by using a P200 (200µl) pipette, and cultured in the 37°C incubator with a 

humidified atmosphere (>95%) and with 5% CO2..  

For the collagenase method, the culture media was aspirated first, and then 1 ml 

collagenase IV (5 mg/ml) was added to each well. The plate was incubated at 37° C for 

5 minutes. Then the collagenase was removed, 2 ml of fresh media was added in each 

well and pipetted up and down gently for several times. The cell suspensions were 

collected in a new tube and centrifuged at 900 rpm 3 minutes. The supernatant was 

removed and the cells were resuspended in the fresh media by gentle mixing. The cell 

suspensions were distributed to a new 6 well plate covered with feeder layers (split ratio 
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1:3 or 1:4), and cultured in the 37°C incubator with a humidified atmosphere (>95%) 

and with 5% CO2.   

2.7 hES Cells and hiPS Cells Feeder free Culture with Condition Media 

Sub-culturing of hES cells was carried out as outlined in 2.6 and the cells were 

transferred to the matrigel coated plates with MEF conditional medium (Table 9) at 

37°C incubator with a humidified atmosphere (>95%) and with 5% CO2. 

 

Table 9. MEF conditioned medium. 

 Inactivated MEFs were incubated with hES cell media. The media could be collected 

everyday (<10 days) and filtered through a 0.2 μm filter to remove any remaining cells. 

 

2.8 hES Cells and hiPS Cells Culture in mTeSR1 Media 

All hES cells and hiPS cells lines were transferred from feeder culture to the matrigel 

(growth-factor-reduced; BD Biosciences) coated plates with mTeSR1 media (Stem Cell 

Technologies) according to Wicell Inc. protocols. Cells were passaged every 4-5 days at 

~80% confluence by using 0.02% EDTA (Versene). All visible differentiated cells were 

manually removed before further passaging. 

2.9 Embryoid Body (EB) Culture 

The hES cells were cultured on Matrigel coated plate with mTeSR1 media. The 

differentiation parts were removed. When 80%-90% confluence was observed, the cells 

were digested by collagenase IV and resuspended in human EB media (Table 10). Three 

wells of hES cell colonies were transferred to one well of the ultra-low attachment 6 

well plates (Corning) for EB formation. The EBs were incubated at 37°C incubator with 

a humidified atmosphere (>95%) and with 5% CO2. Media was changed every 3-4 days.  
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Table 10. EB media 

2.10 Cell Cycle Synchronization 

hES cell were cultured under feeder free culture condition. To achieve cell 

synchronization in G2/M phase, the media was removed and the cells were re-covered 

with the fresh media with 200 ng/ml nocodazole (Sigma-Aldrich Ltd, Dorset, UK) as 

described by Becker et al 
187

. After 16 hours, the media was removed and the cells were 

washed with warm media for 5 times. This treatment results in cell accumulation in 

G2/M phase 
171

. To achieve cell synchronization in G1 phase, the cells were first 

synchronized into G2/M phase, and then the cells were further cultured in the media 

with 10 mg/ml of aphidicolin (Sigma) for 10 hours. To achieve cell accumulation in S 

phase, the cells were first synchronized into G2/M phase and replaced with the fresh 

media, then further cultured for 10 hours 
171

. 

2.11 miRNA Isolation by TaqMan® MicroRNA Cells-to-C ™ Kit 

TaqMan® MicroRNA Cells-to-C ™ Kit (Cat. 4391848) was used for miRNA isolation. 

Medium was removed and cells were washed with PBS once. Then 1 ml Accutase was 

added in to 1 well of the 6 well plate to detach the cells. The plate was incubated at 

37°C for 3 minutes. 2 ml of cold media was added in to the well to inactivate the 

Accutase. The media was pipetted up and down gently. The cell suspensions were 

collected in a new tube, and centrifuged at 800 rpm for 3 minutes. 

Approximately 1x10
5
 cells were required for each sample according to the instruction of 

the kit. The samples were washed with cold PBS, and centrifuged at 800 rpm for 3 

minutes. PBS was removed and cells were resuspended in 5 µl cold PBS and 50µl lysis 

solution with DNase I (1:100). The lysis were gently mixed by pipetting up and down 

for 5 times, and then incubated at room temperature (19-25°C) for 8 minutes. 5 µl stop 



- 54 - 

 

solution was added to the tube and mixed by gently pipetting 5 times and incubating at 

room temperature for 5 minutes to inactivate the lysis solution. These lysates are 

subsequently stored at -20°C. 

2.12 miRNA Reverse Transcription (RT)  

TaqMan® MicroRNA Reverse Transcription Kit was used for miRNA reverse 

transcription. 1 to 10 ng of total RNA sample were used per 15 µl RT reaction. 

TaqMan® MicroRNA probe was used as the Reverse Transcription (RT) primer. Each 

reaction included 7 µl master mix (Table 11), 3 µl 5 X RT primers and 5 µl of RNA 

sample (1-10 ng). 

 

Table 11. TaqMan® MicroRNA Reverse Transcription master mix components 

The samples were incubated at 16°C for 30 min, followed by 42°C for 30 min, and then 

85°C for 5 min to inactivate the RT enzyme (Table 12).  

  

Table 12. Reverse Transcription program 
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2.13 miRNA Real-time quantitative PCR by Taqman System 

TaqMan® Small RNA Assays kit was used for Real-time quantitative PCR (qPCR). 

Details of reaction composition are shown in Table 13.  

 

Table 13. Real-time quantitative PCR reaction components 

Thermal Cycling Conditions are as follows: enzyme activation (95°C, 10mins), 40 

cycles of Denaturion (95°C, 15 seconds) and Anneal/extend (60°C, 60seconds) (Table 

14). The program was performed on an ABI 7900 machine. Data was analysed by using 

the ABI Sequence Detection System 2.3 (SDS 2.3) software. Further data analysis and 

normalization was applied using the qBase v1.3.5 software. 

 

Table 14. Real-time quantitative PCR program 
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2.14 Cell Cycle Analysis by Flow Cytometry 

BD Cycletest™ Plus DNA Reagent Kit was used to analyze cell cycle progression. First, 

the cells were washed by PBS. Then the PBS was removed and Accutase were added 

into the well to digest the cells at 37°C for 3 minutes.  Cold hES cell media was added 

to inactivate the Accutase. The media was pipetted gently up and down until single cell 

suspension was achieved. The cell suspension was centrifuged at 800 rpm for 3 minutes. 

The culture media was aspirated, the cells were resuspended in 3 ml buffer solution and 

centrifuged at 800 rpm for 3 minutes. The buffer solution was discarded and the cell 

pellet was incubated at room temperature for 10 minutes with 200 µl solution A (trypsin 

in spermine tetrahydrochloride detergent buffer), then added 200 µl solution B (RNase 

A and trypsin inhibitor in spermine buffer) for further 10 minutes incubation, and final 

10 minutes incubation by adding 100-150 µl solution C (Propidium Iodide (PI) in 

spermine buffer) at 4°C.  

2.15 Plasmid Transformation 

One Shot® of TOP10 Chemically Competent E. coli was used for plasmid 

transformation. 50-100 ng of plasmid DNA was added to the competent cells gently. 

The cells were incubated on ice for 30 minutes and then subjected to a heat shock for 30 

seconds in 42°C water bath followed by incubation on ice for 2minutes. 250 µl Luria-

Bertani (LB) broth (Table 15) was added to the cells and placed in a 37°C shaking 

incubator for 0.5-1 hour. Then 10-50 µl cells were spread on a pre-warmed agar plate 

(Table 16). The plates were incubated at 37°C overnight. 

 

Table 15. LB Broth with Ampicillin 

 



- 57 - 

 

  

Table 16. Agar Plates with Ampicillin 

 

2.16 Mini Bacterial Culture 

Small single colonies were picked up from the bacterial plates using a 100 µl pipette tip 

and placed in a 15 ml tube with 2-5 ml LB broth (with 100 µg/ml ampicillin). The tube 

was then cultured in a 37°C shaking incubator for 16-20 hours. 

2.17 Plasmid DNA isolation by QIAGEN® Plasmid Maxi Kit 

2-5 ml bacterial from bacterial mini cultures were transferred in to a conical flask with 

200 ml LB and 100 µg/ml ampicillin and incubated at 37°C shaking incubator (250 rpm) 

for 16-20 hours. The bacterial cells were harvested by centrifugation at 4000 rpm for 30 

minutes at 4°C. All the bacterial media was removed and 10 ml buffer P1 containing 

RNase was added to the tube. The cells were suspended sufficiently by gently pipetting 

up and down for several times. Then 10 ml of buffer P2 was added into the tube and the 

suspension was mixed gently by inverting 10 times. After 5 minutes incubation at room 

temperature, 10 ml of chilled buffer P3 was added into the tube, the mixture were mixed 

gently and immediately. The tube was incubated on ice for 5 minutes. After 

centrifugation at 4000 rpm for 30 minutes, the supernatant fluid was transferred into a 

new 50 ml tube with 2.5 ml buffer ER. The mixture was mixed gently by inverting the 

tube and incubating on ice for 30 minutes. During the waiting time, a QIAGEN-tip 500 

was equilibrated by adding 10 ml buffer QBT. The column was emptied by gravity flow. 

After the tip was empty, the lysates were added into the QIAGEN-tip and allowed to 

enter the resin by gravity flow. The tip was washed by 30 ml buffer QC twice. 15 ml 

buffer QN was added in the tip to elute the DNA. The eluted liquid flowing from the tip 

was collected into a new tube and plasmid DNA was precipitated by adding 10.5 ml 

isopropanol. After centrifugation at 4000 rpm for 1 hour at 4°C, the supernatant was 
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decanted and the DNA pellet was air dried at room temperature for 5 minutes. The DNA 

pellet was further washed in 5 ml endotoxin-free 70% ethanol and centrifuged at 4000 

rpm for 1 hour at 4°C. The ethanol supernatant was carefully decanted and the DNA 

precipitate was dried in air for 5 minutes, and then dissolved in TE buffer or endotoxin-

free water. 

2.18 Plasmid Restriction Enzyme Digestion 

Restriction enzyme digestion was used to test the correctness of plasmids. The reaction 

was performed in the system as shown in Table 17, and incubated at the enzyme’s 

optimum temperature for 1-4 hours. 

  

Table 17. Digestion reaction 

2.19 Plasmid Linearization and Purification 

The correct plasmid need to be linearized and purified before the transfection. The 

components of linearization are shown in Table 17. After the linearization, an equal 

volume of phenol/chloroform/isoamyl alcohol (24:25:1, Invitrogen) was added into the 

plasmid linearization mixture and mixed gently. The aqueous phase which contains 

plasmid DNA can be separated by centrifuged at 10000 rpm for 1 minute. The aqueous 

phase were removed carefully to a new tube with 1/10X volume 3M sodium acetate (pH 

5.2) and 2.2X volume absolute cold ethanol. The reaction was incubated at -20°C 

overnight or -80°C for 30minutes. The plasmid DNA was collected by centrifugation at 

12000 rpm for 5 minutes at 4°C. The ethanol was removed carefully and DNA pellet 

was further washed with 70% ethanol to remove excess salt from the pellet. The tube 

was centrifuged at 12000 rpm for 2 minutes. The ethanol was removed, and the plasmid 
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was air dried for 5 min. The DNA pellet was resuspended in TE buffer (pH 8.0) and 

stored at -20°C. 

2.20 Plasmid Electroporation  

Amaxa® Cell Line Nucleofector® Kit L (Lonza) was used for Electroporation. The hES 

cells were cultured on matrigel coated dishes. Upon reaching 80%-90% confluent, cells 

were harvested using collagenase IV and pipetted into single cell. The single cell 

suspension was resuspended into 90 l mix (81.8l Cell Line Nucleofector® Solution 

and 18.2 l Supplement) with 5-10 g plasmids. The mix of cells and DNA was 

transferred into a cuvette and the Nucleofector® Program A-023 was applied for 

electroporation. 500 l of hES media supplemented with 10 M ROCK-inhibitor was 

added to the cuvette and the cells were gently transfer to a pre-prepared 12 well feeder 

dish and incubated at 37°C  in a humidified atmosphere (>95%) and with 5% CO2.  

2.21 Lipofection  

Lipofectamine® RNAi Max reagent (13778-075, Life Technologies) was used for 

miRNA mimic/inhibitor transfection and Lipofectamine® 3000 regent was used for 

plasmid transfection. In brief, hES cells were dissociated by incubating with EDTA 

(0.02 %) for 5 minutes. The disassociated cells were collected and centrifuge at 500g for 

5 minutes. Then the supernatant was aspirated and the cell pellet was resuspended into 1 

ml of media. Cell counting was performed prior to replating of cells at the density 

3X10
5
 cells into one well of a 12 well plate one day before lipofection.  

For miRNA mimic/inhibitor lipofection, 6μl Lipofectamine® RNAiMax reagent was 

diluted into 100 μl Opti-MEM® media. In parallel, 6 μl (60 pmol) miRNA 

mimic/inhibitor was diluted into 100 μl Opti-MEM® media. The diluted Lipofectamine 

reagent and miRNA mimic/inhibitor were mixed together in a 1:1 ratio, incubated for 5 

minutes and then added to one well of a 12 well plate which was seeded with hES cell 

as indicated above.  

For plasmid lipofection, 3 μg plasmids (each well of 12 well plate) were used to 

transfect hES cells following manufacturer’s recommendations. 
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2.22 RNA and miRNA Isolation by ReliaPrep™ RNA Cell Miniprep System 

ReliaPrep™ RNA Cell Miniprep System (Promega) was used for RNA and miRNA 

isolation. Details of reaction compositions are shown in Table 18. In brief, media was 

removed from cells and one cold PBS wash was carried out. Then 250 µl BL+TG lysis 

buffer was added to the cells and the lysate was transferred to a sterile centrifuge tube, 

followed by adding of 85µl of 100% isopropanol. The mixed lysate was transferred to a 

ReliaPrep™ minicolumn then centrifuged at 12,000 x g for 30 seconds in room 

temperature. The column was washed with 500µl RNA wash solution prior to a further 

centrifugation step at 12,000 x g for 30 seconds at room temperature. 30µl DNase I 

enzyme and Yellow core buffer mixture was added into each tube and further incubated 

for 15 minutes at room temperature. After incubation, a further wash with 200µl 

Column wash solution followed by a centrifugation step at 12,000 x g for 15 seconds. 

Two more washes with RNA wash solution were carried out (the first with 500µl and 

the second with 300µl RNA wash solution) followed by a final centrifugation step at 

12,000 x g for 2 minutes. 20-30 µl nuclease-free water was added to the membrane and 

RNA solution was collected in a new collection tube after centrifugation at 12,000 x g 

for 1 minute. The purified RNA was stored at -80 °C. 

  

Table 18. Composition of RNA isolation buffers and solutions 

2.23 Reverse Transcription 

GoScript™ Reverse Transcription system was used for reverse transcription. Details of 

reaction compositions are shown in Table 19 and 20. First the RNA and Oligo (dT) 15 

were incubated at 70°C for 5 minutes. The tube was chilled on ice for 5 minutes. 15 µl 

reverse transcription mix was combined with 5µl of RNA and Oligo (dT) 15 mix. The 
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tube was further incubated at 25°C for 5minutes. This step was followed by further 

42°C incubation for 1 hour.  

 

Table 19.  GoScript™ Reverse Transcription components part 1 

  

Table 20. Reverse Transcription components part 2 
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2.24 Real-Time quantitative PCR by SYBR Green System 

GoTaq® qPCR master mix reagent was used for quantitative PCR. Details of reaction 

composition are shown in Table 21. Thermal Cycling Conditions are as follows: hot-

start activation (95°C，2 minutes), 40 cycles of Denaturation (95°C, 15 seconds) and 

Anneal/extend (60°C, 60seconds; shown in Table 14). The program was 

performed on an ABI 7900 machine. The data was analyzed by using the ABI Sequence 

Detection System 2.4 (SDS 2.4) software. Further data analysis and normalization 

was applied by qBase v1.3.5 software.   

  

Table 21. GoTaq® qPCR master mix reagent components 
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2.25 Western Blot  

Cells were washed with ice-cold PBS and lysed in RIPA buffer (50 mmTris-HCl pH 8.0, 

150 mm NaCl, 1% IGEPAL CA 630, 0.5% Na-DOC and 0.1% SDS) with PMSF(1mM) 

and protease inhibitors (Thermo). The total protein concentration was determined by 

Bradford Kit (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK) using the 

manufacturer's instructions. Lysates (30 μg total protein) were electrophoresed on a 10–

12% SDS–PAGE gel and electrophoretically transferred to a polyvinylidene difluoride 

membrane (Hybond-P (hydrophobic polyvinylidene difluoride membrane, cat no. 

RPN303F); Amersham Biosciences, Piscataway, NJ, USA). Membranes were blocked 

in Tris-buffered saline with 5% milk and 0.1% Tween. The blots were probed with anti- 

ZIC2 (1:1000, Abcam), LIN28A (1:1000, Santa Cruz Biotechnology, Inc.), GAPDH 

(1:750, Abcam), POLR3G (1:500, Santa Cruz Biotechnology, Inc) overnight and 

revealed with horseradish peroxidase-conjugated secondary anti-rabbit or anti-mouse 

antibodies (DAKO). Antibody–antigen complexes were detected using ECL Plus 

reagent (Pierce). Antibodies to GAPDH were used after membrane stripping to confirm 

uniform protein loading. 

2.26 Luciferase Reporter Assays 

The 3’-UTR of human POLR3G was cloned into a commercial psiCHECK™-2 vector, 

which contains two luciferase, Renilla and firefly. The predicted binding regions were 

mutated by PCR with individual mutant primers by using Quick Change II XL site-

Directed mutagenesis kit (Agilent Technologies, Inc.). Thermal Cycling Conditions are 

showed in Table 22. The H9 cells were co-transfected by Lipofectamine 3000 

(Invitrogen). Luciferase reporter assays were performed 48h post-lipofection using 

Dual-Luciferase® Reporter Assay (Promega) according to manufacturer’s 

recommendations.  
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Table 22. Quick Change II XL site-Directed mutagenesis kit PCR program 

2.27 RNA Interference 

POLR3G was knocked down by using Silencer® Select siRNA (Invitrogen). 5.0 p mol 

of POLR3G siRNA was transfected into cells by Lipofectamine® RNAi Max reagent 

according to manufacturer’s recommendations.  

2.28 Statistical Analysis  

Quantitative data are expressed as means ± SD. Statistical significance was determined 

by the Student’s t-test. P-value < 0.05 was considered as statistically significant (*P < 

0.05, **P <0.001).  

  

http://www.lifetechnologies.com/uk/en/home/life-science/rnai/synthetic-rnai-analysis/silencer-select-sirna.html?icid=cvc-sirna-analysis-c3t1
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CHAPTER 3 RESULTS I 
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Chapter 3. (Results I): Microarray-based Expression Profiling 

3.1 Microarray-based Expression Profiling at different Stages of the hES Cell 

Cycle and Differentiation Process 

Pluripotent stem cells, including hES cells and hiPS cells, can maintain unlimited self-

renewal and have the potential to generate every differentiated cell type. These 

remarkable properties make them valuable resources for modelling early human 

development and regenerative medicines 
44,289

. Much effort has been spent in recent 

years to understand the molecular mechanisms underlying hES cell pluripotency and 

differentiation, although a lot of work still remains in this respect. Regulation of cell 

cycle is closely related with the pluripotency and differentiation properties of hES cells 

and hiPS cells 
215

. Specific knockdown of CDK2 induces cell arrest in G1 and causes 

hES cells to differentiate into extra-embryonic lineages 
25

. NANOG controls entry into 

S-phase in hES cells by promoting the expression of CDC25C and CDK6 
208

. Recent 

studies have also demonstrated that miRNAs play important roles in modulating hES 

cell self-renewal and differentiation and somatic cell reprogramming 
55,256,261,270,290-292

. 

For example, the miR-302 cluster, which is regulated by OCT4/SOX2, is highly 

expressed in hES cells
210

, overexpression of this miRNA cluster can maintain stemness 

of hES cells and promote somatic cell reprogramming 
55

 and in parallel it can also 

regulate the cell cycle and apoptosis pathways by targeting Cyclin D1 
210

, and 

BNIP3L/Nix respectively 
293

. 

We hypothesised that miRNAs are hES cell specific (i.e. that they are expressed in hES 

cells and are downregulated during the differentiation process), that their expression 

levels significantly change during cell-cycle transition, and that they are likely to affect 

the regulation of both pluripotency and the cell cycle. To identify miRNAs which are 

potentially important in the regulation of both the cell cycle and hES cell pluripotency, 

Dr. Joseph Collin and Dr. Irina Neganova in our group collected the hES and human 

fibroblast cells samples (pluripotent vs. differentiated control), as well as hES cell 

samples that were specifically synchronized in G1, S, and G2/M phase. These samples 

were used for miRNA screening analysis using an Agilent human miRNA (V3) 8X15K 

microarray (Agilent, G4470) which contains 866 human and 89 human viral miRNAs 

probes. 

The data was analysised by our collaborator Dr. David Montaner (Centro de 

Investigation Principe Felipe, Valencia, Spain). First the expression data generated from 
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the array was normalized using quintile normalization 
294

 and differential miRNA 

expression was subsequently estimated using the limma package 
295

 from Bioconductor. 

Statistical probability of significance (adjusted p values, set at p < 0.05) and a fold-

change of more than two were used to select the miRNAs that were differentially 

expressed between hES cells, human fibroblast cells, or synchronised hES cells from 

different stages of the cell cycle. The number of miRNAs identified is summarized in 

Table 23. 

  

Table 23. Summary of the miRNAs that were significantly changed between hES 

cells versus human fibroblast cells, and synchronised hES cells in different stages 

of the cell cycle.  

These miRNAs were selected using a statistical probability of significance set at p < 

0.05 and by accepting only miRNAs with a fold-change > 2.0. 

 

A Venn diagram analysis of the miRNAs listed in Table 23 was carried out by Prof. 

Lako to identify the candidate miRNAs which were differently expressed between both 

hES cells versus human placental fibroblast cells, and hES cells from different stages of 

the cell cycle (Figure 18).  
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Figure 18. Venn diagram analysis of the miRNAs listed in Table 23.  

The shared area in the middle indicates that 33 miRNAs were differently expressed 

between hES cells versus human placental fibroblast cells, S phase versus G1 phase, 

and S phase versus G2 phase.  

 

This analysis identified 33 miRNAs in the central shared area (Figure 18), meaning that 

these miRNAs are differently expressed between hES cells versus fibroblasts, S phase 

versus G1 phase hES cells, and S phase versus G2 phase hES cells. The 33 miRNAs in 

the middle changed during hES cells differentiation and cell cycle process. The fold 

change in expression of these 33 miRNAs is summarized in Table 24.  

The validity of our array data was further confirmed by checking the changes in 

expression of several other well-known miRNAs matched those reported in the 

literature. For example, in our array, miR-372, which is enriched in hES cells and 

promotes the G1/S transition, was also highly expressed in hES cells in S phase relative 

to the G1 and G2 phases.     
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Table 24. List of miRNAs (33) that were differently expressed between hES cells 

versus human placental fibroblast cells, S phase versus G1 phase hES cells, and S 

phase versus G2 phase hES cells. 
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To narrow these target miRNAs down for further investigation, I checked the literature 

in the NCBI (National Center for Biotechnology Information) database which referred 

to the 33 miRNAs listed in Table 25, and listed their functions and targets, paying 

special attention to studies relating them to cell-cycle and/or pluripotency regulation.  

 

http://www.ncbi.nlm.nih.gov/
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Table 25. Summary of the biological functions and downstream targets of the 

candidate miRNAs identified in previous experiments.  

These miRNAs were expressed in hES cells but were downregulated during the 

differentiation process, and also changed during the G1 to S transition and S to G2-

phase transition. 
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miR-1305 was particularly interesting, which is the top candidate in our array data when 

expression of miRNAs during G1/S transition is investigated. It fulfils the selection 

criteria highlighted above (i) it is specific to hES cells, and its expression is higher in 

hES cells compared to differentiated cells (it is upregulated 25.9-fold in hES cells 

compared to differentiated cells [p = 2.76
-71

] and (ii) it is significantly modulated during 

the G1 to S transition (its expression is higher in S phase compared to G1 phase in our 

array data and it is upregulated 6.1 fold during the G1 to S transition; [p = 5.80
-

07
]).Using online software TargetScan the predicted targets for miR-1305 

(http://www.targetscan.org/vert_61/) 
296-298

 include DICER1, CDK6, CYCLIND2, 

LIN28A, and POLR3G, indicating a potential function for miR-1305 in regulating hES 

cell pluripotency and cell cycle.  

3.2 The miRNA Expression Kinetics of Candidate miRNAs during the hES Cell 

Cycle Regulation and Differentiation Process 

First we confirmed the expression kinetics of miR-1305 in hES cells during the cell 

cycle and differentiation process by qRT-PCR, using miR-367, a well-known miRNA 

that controls self-renewal and pluripotency in hES and hiPS cells, as a positive control 

276,299,300
.  

To analyse the expression levels of this candidate miRNA in hES cells at different cell 

cycle stages, the cells were synchronised (see methods) and then analysed by Flow 

cytometry and qRT-PCR.  

hES cells treated with nocodazole-aphidicolin were effectively blocked at G1 phase (G1: 

80.5%; Figure 19b), while most cells treated with nocodazole alone were blocked at G2 

phase (G2: 85.02%; Figure 19d).  After 10 hours a subset of the cells were released 

from the G2 phase, and most were in S phase at the time of analysis (S: 71.06%; Figure 

19c). This is consistent with previous work in our group which achieved similar results 

25,208
.  

  

http://www.targetscan.org/vert_61/
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Figure 19. The cell cycle profile of H9 cells after cell-cycle synchronization.  

(a) Normal hES cell-cycle profile. (b) 80.50% of cells in G1 phase after cell-cycle 

synchronization with nocodazole-aphidicolin. (c) 71.06% of cells in S phase after cell-

cycle synchronization with nocodazole. (d) 85.02% of cells in G2 phase after cell-cycle 

synchronization with nocodazole and release after 10 hours. This is a representative 

example of 3 independent experiments. 
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The miR-1305 expression levels were then checked in these synchronized cells by qRT-

PCR; consistent with array data, miR-1305 was highly expressed in S phase (Figure 

20a), while miR-367 was highly expressed in G1 phase (Figure 20b) in agreement with 

previously published results 
276

. 

The fold change of miR-1305 expression between G1 and S phase in qRT-PCR is about 

2.5, while in the array analysis is 6.1. This is because array analysis (based on the 

probe-hybrdization) and qRT-PCR (based on the PCR-amplification) are two different 

technologies. All potential candidates we want to study in the future need be confirmed 

by qRT-PCR analysis. This difference will not affect the selection strategy, as the trend 

of miR-1305 during hES cells differentiation and cell cycle process are the same in both 

the array analysis and qRT-PCR.  
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Figure 20. Quantitative RT-PCR analysis of the relative expression levels of the 

expression profile of mi0R-1305 during the hES cell cycle.  

The expression profile of (a) miR-1305 and (b) miR-367 (control) during the hES cell 

cycle. Unsynchronized H9 hES cells were used as an unsynchronised cell-cycle control, 

and H9-G1, H9-S, and H9-G2 samples were collected after performing cell-cycle 

synchronization as described in Figure 19. Quantitative RT-PCR data are represented as 

the mean ± SD; n = 3. The statistical probability of significance was *p < 0.05, as 

measured using the Student-t test. The unsynchronised H9 control was set to 1.0.   

hES cells remain undifferentiated when adhesion-cultured with mTESR 1 media, but 

grow as small aggregates (known as embryoid bodies or EBs), which undergo 

spontaneous differentiation to all three germ layers when cultured in suspension without 

bFGF and TGF 
79

. This is a classic method for studying the hES cell differentiation. 

To study the expression profiles of these two miRNAs during the differentiation process, 

hES cells and EBs at different differentiation time points  were tested by qRT–PCR. We 

collected undifferentiated H9 cells as a control and EBs at different time points (Day 1, 
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3, 5, 7, 14, 18, and 21), as well as adult AD3 fibroblast cells as another differentiated 

cell sample.  

Consistent with previously published studies, the expression level of miR-367 is much 

higher in H9 cells than in differentiated cells (EBs and fibroblasts; Figure 21) 
276,299

. 

The level of miR-367 decreased from the start of EB differentiation (day-1; D1) and 

was almost undetectable in D14 EBs and fibroblasts.  

Consistent with the array data, miR-1305 expression was much higher in hES cells 

compared with adult fibroblasts (AD3) cells. But interestingly, unlike miR-367, miR-

1305 expression was significantly increased (~1.5 fold) in D1 EBs at the beginning of 

differentiation. It then decreased from D3, but was still detectable in D21 EBs and 

fibroblasts (Figure 21), which indicates miR-1305 might play an important role in the 

initial stages of hES cell differentiation. 
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Figure 21. Quantitative RT-PCR analysis of the relative expression levels of the 

expression profile of (a) miR-1305 and (b) miR-367 in H9 hES cells, day (D) 1-21 

embryoid bodies (EBs) and adult dermal skin fibroblasts (AD3 cell line).      

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. The statistical 

probability of significance was *p < 0.05 as measured using the Student-t test. The 

miRNA expression levels in H9 cells were set to 1.0. 

 

In summary, based on these microarray-screening experiments, reviewing the literature, 

and target prediction, we selected the candidate miRNA, miR-1305. Further qRT-PCR 

results, which are consistent with our array data, showed that miR-1305 expression 

levels were higher in S phase compared to the G1 and G2 phases, and that it was higher 
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in H9 cells compared to differentiated cells (EBs and fibroblasts). However miR-1305 

expression initially increased at the beginning of differentiation (EB-D1), thus 

suggesting it has a potential role in inducing differentiation.  
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CHAPTER 4 RESULTS II 
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Chapter 4. (Results II): Investigation of the function of miR-1305 in hES Cell 

Cycle Regulation and Pluripotency Maintenance 

4.1 miRNA Inducible Overexpression System  

To further investigate the role of miR-1305 in regulating the cell cycle and maintaining 

pluripotency, we first generated an inducible miRNA overexpression system in order to 

perform gain-of-function studies. 

The inducible system was chosen because of its unique advantages. 1) We could 

generate a stable cell line before starting to overexpress miRNA; in our case this 

avoided survival potential problems because our miR-1305 may be able to induce cell 

differentiation and/or proliferation. 2) By using the inducible cell lines the miRNA 

overexpression could be induced and maintained at any time by adding 4-OHT into the 

culture medium. 3) More cells could be easily be propagated for further studies in 

contrast to transient mimic-miRNA transfection. 4) A stable cell line is easier to work 

with in follow up experiments, such as functional rescue or reporter assays, designed to 

elucidate downstream targets. The inducible system from Cellutron contains the 

pCreER-IRES-Puro plasmid (Figure 22a) and the inducible miRNA expression plasmid 

pEGFP/RFP–miR–BL (Figure 22c). pCreER-IRES-Puro expresses a 4-

hydroxytamoxifen (4-OHT)-activated form of Cre and a puromycin resistance gene for 

drug selection. The inducible miRNA expression plasmid (pEGFP/RFP–miR–BL) 

incorporates the expression of the candidate miRNA under a suitable hES cell promoter 

(CAG) which is resistant to DNA silencing which occurs during the differentiation 

process. The plasmid contains an EGFP fluorescent reporter, with a 3x termination 

sequence (stop codon) flanked by two loxP sites, followed by a RFP expression 

sequence, and miRNA transgenes, and a blasticidin (BL) expression cassette for drug 

selection to create the stable cell lines.  
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Figure 22. The construct information for the inducible miRNA expression system 

plasmids.  

(a) The Cre expression vector: pCreER-IRES-Puro. (b) The control construct for the 

inducible miRNA expression vector, pEGFP/RFP–BL. (c) The inducible miRNA 

expression vector, pEGFP/RFP–miR1305–BL. 

 

After the transfection and selection process (as described below), the stable cell lines 

containing both pCreER-IRES-Puro and pEGFP/RFP–miR–BL enabled us to 

conditionally express the miRNA transgenes. Without adding 4-OHT, the inactivate 

form of Cre is unable to cut the loxP sites hence the cells express EGFP but not the 

candidate miRNA. When 4-OHT is added to the culture medium Cre is activated 

leading the LoxP sites to be cut and the expression of RFP and the desired miRNA. 
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The sequence information of the plasmids is kept by the company (Cellutron) as 

confidential intellectual property. Even though the quality and correction of the products 

were guaranteed, we still tested the plasmids by restriction-enzyme digestion after we 

obtained the constructs. We used EcoRV/Xhol to cut pCreER-IRES-Puro (Figure 23a) 

and pEGFP/RFP–BL (Figure 23b), and BglII/EcoRV to cut pEGFP/RFP–miR1305–BL 

(Figure 23c).   

 

Figure 23. Restriction enzyme cut sites in the inducible miRNA expression system 

plasmids.  

(a) The restriction sites in pCreER-IRES-Puro, (b) pEGFP/RFP–BL, and (c) 

pEGFP/RFP–miR1305–BL. The red boxes indicate the restriction sites used for this 

digestion-identification experiment. The green boxes indicate the restriction site use to 

linearize the plasmids. 
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The enzyme-digested construct samples were separated by agarose gel electrophoresis 

(Figure 24) and were consistent with the sizes predicted for each construct based on 

their restriction site maps (Figure 23), thus indicating that the plasmid constructs were 

correct. 

 

 

Figure 24. Identification of the plasmids in the inducible miRNA expression system 

by digestion with restriction enzymes and separation by agarose gel 

electrophoresis.  

(a) pCreER-IRES-Puro was cut into two fragments, 480bp+8.5kb, using EcoRV and 

Xhol, pEGFP/RFP–miR1305–BL was cut into two fragments, 1556bp+7.8kb using Bgl 

II and EcoRV,  and (b) pEGFP/RFP–BL was cut into two fragments, 724bp+8.3k using 

EcoRV and Xhol. 
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These plasmids were then linearized at the single enzyme cut site (as shown in the green 

boxes in Figure 23) and purified for further transfection by electroporation (Figure 25).  

                                                                                                                                                                                                                                                                                                                                                                                                        

Figure 25. Agarose gel identification and separation of the inducible miRNA 

expression system plasmids after linearization using ScaI and subsequent 

purification.  

All three cut and uncut plasmid products were the predicted sizes. 

 

The concentrations of the purified products were measured using a Nano Drop 2000 

spectrophotometer (Figure 26). 

 

Figure 26. Concentrations of the inducible miRNA expression system plasmids 

after separation by agarose gel electrophoresis and purification, as measured using 

a NanoDrop spectrophotometer. 
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4.2 Generation of an Inducible miRNA Overexpression Cell Line  

To generate a stable cell line which can consistently express Cre, the purified pCreER-

IRES-Puro plasmid was transfected into H9 hES cells by electroporation. Ten days after 

puromycin (0.5 g/ml) selection no cells survived in the control group (treated with the 

same transfection procedure but using a buffer instead of the construct). While several 

colonies with the typical undifferentiated hES cell morphology were detected in the 

pCreER-IRES-Puro group (Figure 27). The colonies were then picked out of the 

experimental dishes and expanded as described in the methods section. 

 

Figure 27. The cell morphology of normal (a) hES cells, (b) cells transfected with a 

control buffer, or (c) pCreER-IRES-Puro transfected cells after puromycin 

selection for 10 days.  

(a) Normal morphology of an H9 hES cell colony. (b) No hES cells transfected with the 

control buffer survived the puromycin (0.5 g/ml) selection. (c) Positive colonies were 

observed in the H9 hES cells transfected with pCreER-IRES-Puro after the puromycin 

(0.5 g/ml) selection. The red line delineates the edge of the colony. Scale bar: 200 m.   

 

To further generated the inducible miRNA expression stable line, the pEGFP/RFP–BL 

or pEGFP/RFP-miR-1305-BL plasmid was transfected into pCreER-IRES-Puro cell line 

(as shown in Figure 27) and selected by blasticidin (10 g/ml) for 10 days. 13 stable 

clones were generated from the pEGFP/RFP-miR-1305-BL group and 8 from the 

control pEGFP/RFP–BL group. Based on the expression level of GFP under the 

microscope, #4 and #10 from experimental group were selected because of the highest 

GFP expression (data not shown). 
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4.3 Determining the Optimal Concentration of 4-OHT  

To select the optimum concentration of 4-OHT to induce the experimental plasmid, we 

performed a 4-OHT concentration gradient test by treating one of our stable lines, 

pEGFP/RFP-miR-1305-BL-1, with different concentrations of 4-OHT (0.25 μM, 0.5 

μM, 1 μM, 2 μM, and 3 μM) for 3 days. The cells were then tested for RFP expression 

by flow cytometry (Figure 28).  

 

Figure 28. RFP expression in the pEGFP/RFP-miR-1305-BL-1 stable cell inducible 

cell line after treatment with different concentrations of 4-OHT (0.25 μM-3 μM).  

 

To avoid any potential deleterious effects that 4-OHT might have on H9 cells, we also 

performed the same 4-OHT concentration gradient test on hES cell for 3 days.  Their 

cell-cycle profile was assessed by flow cytometry (Figure 29). The result shows that 

0.25μM 4-OHT was the optimal concentration because it caused minimum changes in 

the cell cycle profile when compared to untreated cells (Figure 29) and induce RFP 

expression in stable lines. Based on these results, 0.25 μM 4-OHT was chosen for 

further studies. 
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Figure 29. The cell cycle profile of H9 hES cells treated with different 

concentrations of 4-OHT. 

 (a) 0 μM; (b) 0.25 μM; (c) 0.5 μM; (d) 1 μM; (e) 2 μM (f) 3 μM for 3 days. This is a 

representative example of at least three independent experiments. 

 

4.4 Testing the miR-1305 Stable Cell Line  

By treating both the pEGFP/RFP-miR-1305-BL (#4, #10) cell lines with 4-OHT (0.25 

μM) most cells started to lose EGFP expression and acquired RFP expression (Figures 

30 and 31). But a few cells in the colony still maintained EGFP expression after 3 days’ 

induction. This might be because EGFP is very stable and may require more time to 

degrade. Another possibility is that there are multiple copies of the constructs within 

each cell, and LoxP site cutting may not have been 100 percent efficient after induction 

meaning that some cells might have continued to express EGFP, or EGFP and RFP at 

same time.  
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Figure 30. EGFP/RFP expression in the pEGFP/RFP-miR-1305-BL-4 stable cell 

line after treatment with 4-OHT for 3 days.  

(a) Bright field; (b) EGFP; (c) RFP; (d) Merge. This is a representative example of at 

least three independent experiments. 

 

Figure 31. EGFP/RFP expression in the pEGFP/RFP-miR-1305-BL-10 stable cell 

line after treatment with 4-OHT for 3 days.  

(a) Bright field; (b) EGFP; (c) RFP; (d) Merge. This is a representative example of at 

least three independent experiments. 

  



- 89 - 

 

Flow cytometry analysis showed that, about 10% of cells expressed only RFP in both 

the pEGFP/RFP-miR-1305-BL clones (#4, #10), about 50% of cells in clone #4 and 60% 

in clone #10  expressed both EGFP and RFP, and about 40% (#4) and 30% (#10) of 

cells continued to express EGFP after three days of 4-OHT treatment (Figure 32).  

 

 

Figure 32. FACS results showed the percentage of cells that expressed EGFP/RFP 

in pEGFP/RFP-miR-1305-BL (#4, #10) cell lines after 3 days of 4-OHT  treatment.  

Data are represented as the mean ± SD; n = 3.  
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Further qRT-PCR analysis indicated that pEGFP/RFP-miR-1305-BL (clones #4 and #10) 

cell lines treated with 0.25 M 4-OHT showed increased miR-1305 expression, but not 

at a high level (~1.5-fold compared with control; Figure 33). 

 

Figure 33. Quantitative RT-PCR analysis of the relative expression levels of miR-

1305 in pEGFP/RFP-miR-1305-BL #4 and #10 cells treated with or without 4-OHT 

for 3 days.  

Quantitative PCR data are represented as the mean ± SD; n = 3. *p < 0.05, calculated 

using the Student-t test. The control was set to 1.0. 

Given that the miR-1305 overexpression level was similar in both two cell lines (clones 

#4 and #10), we decided to use clone #10 for further experiments because it had fewer 

EGFP positive cells after 4-OHT treatment than clone #4. 
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4.5 Selecting the pEGFP/RFP-BL Control Cell Line 

To select stable pEGFP/RFP-BL control lines, the colonies generated were treated with 

4-OHT and then the expression of GFP and RFP were checked. As expected, treating 

the control cell line with 4-OHT resulted in a decrease in EGFP expression in most of 

the cells, but surprisingly, there was no RFP expression. This induction was repeated in 

all 8 stable control cell lines and they all lost EGFP expression but did not express RFP, 

leading us to speculate that there may have been problems with the pEGFP/RFP-BL 

control plasmid sequence.  

To overcome these problems, we obtained other two other batches of control plasmids 

from Cellutron and repeated the experiments. However, we continued to obtain results 

similar to those described above, suggesting that the commercially-available 

pEGFP/RFP-BL control plasmid could not be used to generate valid stable control cell 

line clones for this work.  

We tested whether the pEGFP/RFP-BL plasmids could express RFP in 293 cells. All 

three different batches of control plasmids obtained from Cellutron were co-transfected 

with pCreER-IRES-Puro into the 293 cells. In parallel, pEGFP/RFP-miR-1305-BL and 

pCreER-IRES-Puro were also co-transfected as a positive control. 4-OHT was added to 

the culture media 24 hours after co-transfection. As expected, significant RFP 

expression was observed in the pEGFP/RFP-miR-1305-BL co-transfection group 48 

hours after treatment with 4-OHT (Figure 34). But the RFP expression level in all three 

control plasmid groups was almost undetectable (Figure 34) indicating that there were 

technical issues with RFP expression when using these control plasmids.  
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Figure 34. EGFP/RFP expression in 293 cells transfected with pCreER-IRES-Puro 

and pEGFP/RFP-miR-1305-BL, or pCreER-IRES-Puro and pEGFP/RFP-BL 

(clones #1, #2, and #3).  

RFP expression was detected after the cells were treated with 4-OHT for 2 days. This is 

a representative example of at least three independent experiments. 

 

While we were trying to establish a proper control cell line, we also investigated the 

impact of 4-OHT treatment on the established pEGFP/RFP-miR-1305-BL-10 clone. 

Although RFP was not expressed in the pEGFP/RFP-BL clone, we still choose one of 

the control clones (#6) to use in parallel with the miR-1305 overexpression clone. 

To study the function of miR-1305 in hES cells, the control and miR-1305 

overexpression lines were treated with 0.25 M 4-OHT and were harvested 3 days after 

induction. When the control group treated with 0.25 M 4-OHT, more apoptosis cells 

and less differentiation cells were observed (Figure 35).  
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Figure 35. The cell morphology of pEGFP/RFP-BL and pEGFP/RFP-miR-1305-

BL cells treated with or without 4-OHT (0.25 μM) for 3 days. 

 This is a representative example of at least three independent experiments.  

 

Quantitative RT-PCR analysis was performed to test the relative expression of hES-cell 

pluripotency and specific germ-layer markers. The results showed that 4-OHT treatment 

decreased the levels of the OCT4 and NANOG pluripotent markers, and the 

differentiation markers CDX2, GATA4, PAX6, and T, and increased FGF5 and FOXA2 

expression in the control cells (Figure 36a). There was also change in the expression of 

OCT4, PAX6, FOXA2, and GATA4 upon miR-1305 overexpression in the pEGFP/RFP-

miR-1305-BL cell line upon the addition of 4-OHT (Figure 36b). However, because of 

the effect of 4-OHT on the control cell line we could not attribute these changes to miR-

1305 overexpression or 4-OHT treatment.  
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Figure 36. Quantitative RT-PCR analysis of the relative expression levels of 

pluripotent and differentiated markers in (a) pEGFP/RFP-BL and (b) 

pEGFP/RFP-miR-1305-BL cells treated with or without 4-OHT (0.25 μM) for 3 

days.  

qRT-PCR data are represented as mean ± SD; n = 3. *p < 0.05, **p<0.01 calculated 

using the Student-t test. The control was set to 1.0. 

 

In summary, to study the function of miR-1305 we first tried to establish an inducible 

miR-1305 expression system in hES cells, but we encountered two main technical 

issues, 1) we were not able to create an appropriate control cell line which properly 

expressed RFP after induction; 2) The addition of even very low levels of 4-OHT (0.25 
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M) affected pluripotency and differentiation markers. For these reasons, it was 

impossible to discern the impact miR-1305 overexpression in the inducible miRNA 

overexpression system tested.  

After checking the recent literature relating to miRNA we decided to proceed with 

miRNA mimics/inhibitors from Invitrogen for further functional studies, as described in 

the following sections. 
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4.6 miRNA Gain-of-Function Study Using Mimics 

4.6.1 Establishing a Technique for Effective miRNA Mimic/Inhibitor Transfection 

The mirVana
TM

 second generation mimics/inhibitors from Invitrogen have a high 

efficacy in both in vitro and in vivo studies, and have been widely used in the miRNA-

research field 
301,302

. miRNA mimics are small, chemically-modified double-stranded 

RNAs that mimic endogenous miRNAs and enable miRNA functional analysis by 

upregulating miRNA activity. The miRNA-mimic negative control and miR-1305 

mimic (mirVana
TM

 Mimics, Invitrogen) were used for these gain-of-function studies.  

To test the transfection efficiency and the effect of miRNA mimic on hES cells, a well-

studied miR-1 mimic was used as a positive control, as suggested by the manufacturer. 

After thoroughly checking the literature, we chose Lipofectamine® RNAiMAX to 

transfect the mimic into hES cells (see detailed protocol in the methods section). Forty-

eight hours after transfection, cell inspection under a microscope showed that miR-1 

overexpression significantly decreased the cell numbers compared with the control 

(Figure 37), which is consistent with previous studies 
303-305

 . An especial phenotype 

was observed in miR-1 group, empty holes formed between the clones, which may due 

to the increase of cell apoptosis in miR-1 group.  

 

Figure 37. The morphology of H9 cells 2 days after transfection with the miRNA-

mimic negative control or miR-1-mimic.  

This is a representative example of at least three independent experiments. 
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The mRNA levels of some known miR-1 targets were tested by qRT-PCR and, as 

shown in Figure 38, miR-1 mimic efficiently decreased the mRNA levels of its target 

genes KLF4 
306

 and TWF1 
307

. 

 

 

 

Figure 38. Quantitative RT-PCR analysis of the relative expression levels of miR-1 

downstream targets KLF4, TWF1-1, and TWF1-2 in H9 hES cells 2 days after 

transfection with miRNA-mimic (control) or miR-1-mimic.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 

 

In summary, the above results indicate that the miRNA mimic and the transfection 

method (Lipofectamine® RNAiMAX) we used worked very well in hES cells. 

 

4.6.2 Kinetics of miR-1305 Overexpression 

We then transfected H9 hES cells with miR-1305 mimic using Lipofectamine® 

RNAiMAX and measured the expression levels of miR-1305 at different times after 

transfection (24h, 48h, 72h, and 96h). As shown in Figure 39, miR-1305 mimic 

significantly increased the miR-1305 levels at 24h post transfection. Peak 

overexpression miR-1305 overexpression was detected at 24h post transfection, and still 

remained high at 96h post transfection (Figure 39a). To show the specificity of the miR-
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1305 mimic, we also tested the expression of miR-135a* after the transfection of miR-

1305 mimic and did not observe any increase in its expression level (Figure 39b).  

 

 

 

Figure 39. Quantitative RT-PCR analysis of the relative expression levels of (a) 

miR-1305 and (b) miR-135a* after miR-1305 transfection.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 
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4.6.3 Impact of miR-1305 Overexpression on hES Cell Pluripotency 

We checked the cell morphology at different time points after miR-1305 mimic 

transfection. As shown in Figure 40, cells transfected with the miRNA-mimic control 

maintained a typical hES cell colony morphology. The colonies in the miR-1305-

mimic-transfected group were smaller than control group and started to lose the 

undifferentiated hES colony morphology while and seeming to gain morphological 

features typical of differentiated cells. The colonies lost the typical compact 

morphology. The cells on the edge of the colony start differentiate. 

 

Figure 40. The morphology of H9 cells from 24 h to 96 h after transfected with a 

miRNA-mimic Control or miR-1305-mimic.  
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This is a representative example of at least three independent experiments. 

The cells were also collected 48 hours after mimic transfection in order to check the 

expression of pluripotency and germ-layer markers by qRT-PCR. As shown in Figure 

41, overexpression miR-1305 reduced the expression of the pluripotency markers OCT4 

and NANOG and increased the expression of ectoderm markers (FGF5, PAX6), 

mesoderm marker (T), endoderm markers (GATA4 and FOXA1) and trophectoderm 

markers (CDX2 and HAND1). It is interesting to note that unlike other germ-layer 

markers, the expression of FOXA2, a definitive endoderm marker, was downregulated 

upon miR-1305 overexpression on day 2 (Figure 42).   

 

 

Figure 41. Quantitative RT-PCR analysis of the relative expression levels of 

pluripotency markers OCT4 and NANOG in H9 hES cells 2 days after transfection 

with a miRNA-mimic control or miR-1305-mimic.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 
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Figure 42. Quantitative RT-PCR analysis of the relative expression levels of 

differentiation markers in H9 hES cells 2 days after transfection with a miRNA-

mimic control or miR-1305-mimic.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 
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The cells were also analysed by flow cytometry to check the expression of the early 

differentiation marker SSEA-1 which was significantly increased (~5.6 fold) in the 

miR-1305 overexpression population of differentiated H9 hES cells (Figure 43). 

 

Figure 43. Flow cytometry results showing that 2 days after overexpression of 

miR-1305 the differentiated-cell population (SSEA-1 +) population increases. 

 Data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 0.01 calculated using 

the Student-t test. 

 

In summary, all results suggest that miR-1305 overexpression could induce the 

differentiation the hES cells. 
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4.6.4 Impact of miR-1305 Overexpression on hES Cell Apoptosis and Cell Cycle 

Compared with the control cells transfected with miR-1305 mimic generated a lot of 

small colonies and more cells in suspension in the culture medium. This led us to 

investigate the impact of miR-1305 overexpression on hES cell apoptosis. To test this 

hypothesis, 48 hours after miR-1305 mimic transfection, the cells were stained with 

Annexin V/PI and were further analysed by flow cytometry. There are more late stage 

apoptosis and dead cells (5%), and more early stage apoptosis cells (2%) in miR-1305-

mimic group compare to the control group. The population of surviving cells was much 

lower in the miR-1305-mimic group indicating that miR-1305 overexpression induces 

hES cell apoptosis (Figure 44a). This was further confirmed by staining with an 

apoptosis marker, cleaved-PARP. Our data shows that, miR-1305 mimic significantly 

increases the cleaved-PARP positive population (Figure 44b).   

 

Figure 44. Flow cytometry results showing that miR-1305 overexpression increases 

cell apoptosis (a) annexin V/PI staining and (b) cleaved PARP staining.  

Data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 0.01 calculated using the 

Student-t test. 

 

To test the function of miR-1305 in regulating the cell cycle, 24 hours after mimic 

transfection, the cells were synchronized in the G2/M phase by incubating them with 

nocodazole for 18 h, as described in Chapter 2.10 (Figure 45) 
208

.  
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Figure 45. Chart representing the fraction of cells in the G1/S/G2 phase after 

transfection of (a) miRNA-mimic control or (b) miR-1305 mimic followed by 

synchronization with nocodazole for 18 h.  

Flow cytometry result above shows the percentage of cells in G2 phase after nocodazole 

treatment for 18 hours. This 18h result represents the state of cells at 0h in time course 

experiment in Figure 46.    
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The cell cycle was analysed at different time points after synchronization by flow 

cytometry. Compared to the control there were more cells in S phase 6 h after 

synchronization in the cells transfected with miR-1305 mimic, indicating that miR-1305 

may speed up the G1/S transition (Figure 46). 

 

Figure 46. Chart representation of the fraction of cells in G1/S/G2 phase at 

different time points after transfection with miR-1305 mimic and synchronization 

with nocodazole for 18 h.  
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4.6.5 Kinetics of miR-1305 Inhibition 

We used miRNA-inhibitors (Invitrogen) to perform loss-of-function tests. hES cells 

were transfected with a control inhibitor or with a miR-1305 inhibitor using 

Lipofectamine RNAi max. Quantitative RT-PCR analysis indicated that the miR-1305-

inhibitor significantly reduced (~80%) miR-1305 levels which reached their lowest 

levels 24 hours after transfection, and was still maintained after 96 hours (Figure 47a).  

To test the specificity of the miR-1305 inhibitor, we also checked the levels of miR-

135a* after miR-1305 inhibitor transfection. After 24 hours after transfection miR-

135a* levels did not change, although the levels increased at 48 hours, and decreased at 

72 h and 96 h. We attribute these changes to indirect effects induced by miR-1305 

knockdown, possibly caused by changes in the cell population (Figure 47b).  

These results indicate that the miR-1305 inhibitor specifically and significantly reduces 

miR-1305 expression and that the transfection method we used worked very well in hES 

cells.  
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Figure 47. Quantitative RT-PCR analysis of the relative expression levels of miR-

1305 and miR-135a* after miR-1305 transfection.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 
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4.6.6 Impact of miR-1305 Inhibition on hES Cell Pluripotency 

We checked the cell morphology 48 hours after transfection of the miR-1305 inhibitor. 

Both the cells transfected with the control inhibitor or the miR-1305 inhibitor 

maintained their typical undifferentiated hES cell colony morphology (Figure 48) 

indicating that miR-1305 inhibition did not induce hES cell differentiation. Furthermore, 

the colonies in the miR-1305 inhibitor group generally appeared to be bigger than in the 

control group. 

 

Figure 48. The morphology of H9 hES cells after transfection with the control 

miRNA-inhibitor or the miR-1305-inhibitor.  

This is a representative example of at least three independent experiments. 

 

The cells were collected for qRT-PCR analysis 48 hours after transfection. Consistent 

with the cell morphology we observed, as shown in Figures 49 and 50, there was a 

slight but significant increase (10-20%) in the expression of the pluripotency markers 

OCT4 and NANOG (Figure 49), and a reduction in the expression of ectoderm (FGF5), 

mesoderm (T and MIXL1), endoderm (GATA4 and FOXA1), and trophectoderm 

(HAND1) markers. The slight change in the expression of pluripotent markers upon 

miR-1305-inhibit may due to the expression level of miR-1305 in hES cells is relatively 

low, further reduction miR-1305 may not have obvious effects It is interesting to note 

that again, unlike any other germ layer makers tested, the expression of FOXA2, a 

definitive endoderm marker, was significantly upregulated (~2.5 fold) upon miR-1305 

inhibition (Figure 50).  
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In brief, miR-1305 inhibition could help hES cell to better maintain the undifferentiated 

state. 

 

Figure 49. Quantitative RT-PCR analysis of the relative expression levels of 

pluripotency markers OCT4 and NANOG in H9 hES cells 2 days after transfection 

with a control inhibitor or a miR-1305-inhibitor.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 

 

 

Figure 50. Quantitative RT-PCR analysis of the relative expression levels of 

differentiation markers in H9 hES cells 2 days after transfection with a control 

inhibitor or a miR-1305-inhibitor. 

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0.  
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4.6.7 Impact of miR-1305 Inhibition on hES Cell Apoptosis and Cell Cycle 

Because the cells transfected with the miR-1305 inhibitor generally had better colony 

morphology we wondered if miR-1305 inhibition affected hES cell apoptosis. To 

investigate this further we performed flow cytometric analysis on live cells (expressing 

Annexin V or PI) after transfection. There are less late apoptosis and dead cells (2.5%), 

and less apoptosis cells in miR-1305-inhibition group compare to the control group 

(2%). As shown in Figure 51a, miR-1305 inhibition reduced the population of apoptotic 

cells, which was also confirmed by claved-PAPR1 staining (Figure 51b).  

 

 

 

Figure 51. Flow cytometry results showed that inhibition of miR-1305 reduced cell 

apoptosis.  

(a) Annexin V/PI staining (b) Cleaved PARP staining. Data are represented as the mean 

± SD; n = 3. *p < 0.05, **p < 0.01 calculated using the Student-t test.  
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To test the function of miR-1305 in hES cell cycle regulation, 24 hours after inhibitor 

transfection the cells were synchronized in the G2/M phase by incubating them with 

nocodazole for 18 h (Figure 52).  

 

Figure 52. Chart representation of the fraction of cells in the G1/S/G2 phase after 

transfection of the miR-1305 inhibitor and synchronization by nocodazole for 18 h.  

 

Flow cytometry result above shows the percentage of cells in G2 phase after nocodazole 

treatment for 18 hours. This 18h result represents the state of cells at 0h in time course 

experiment in Figure 53.   

The cell cycle was analysed at different time points after synchronization by flow 

cytometry; 10 hours after synchronization, there were fewer miR-1305-inhibitor 

transfected cells in S phase compared with the control, indicating that miR-1305-

inhibition makes the G1/S transition slower (Figure 53). 

We are aware that the percentages of cells at G2/M phase (0 h) in two control groups 

are different (Figure 46 and 53). This may due to the effect of transfected chemical on 

the cells. When we only compare mimic-control with miR-1305 mimic or inhibit-

control with miR-1305 inhibitor, the percentages of cells at G2/M phase is similar after 

cell synchronization.  
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Figure 53. Chart representation of the fraction of cells in the G1/S/G2 phase at 

different time points after transfection with the miR-1305 inhibitor and 

synchronization with nocodazole for 18 h. 
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4.6.8 Impact of miR-1305 Overexpression/Inhibition on hiPS Cell Pluripotency 

To test the function of miR-1305 in hiPS cells, we also performed a miRNA 

mimic/inhibitor transfection in AD3CL1 hiPS cells using same method. AD3CL1 is a 

well-characterized cell line generated in our lab which we have widely used for other 

studies. Quantitative RT-PCR analysis indicated similar results to those from the hES 

cell experiments: miR-1305 overexpression slightly reduced the expression of 

pluripotency markers OCT4 and NANOG and increased the expression of ectoderm 

(FGF5 and PAX6), mesoderm (T and MIXL1), endoderm (GATA4 and FOXA1), and 

trophectoderm (CDX2 and HAND1) markers. Interestingly, the expression level of 

FOXA2 was also reduced in AD3 hiPS cells after miR-1305 mimic transfection (Figure 

54).  

 

 

Figure 54. Quantitative RT-PCR analysis of the relative expression levels of 

differentiation markers in AD3 hiPS cells 2 days after transfection with a control 

miRNA-mimic or miR-1305-mimic.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 

 

When miR-1305 was inhibited, we could detect a slightly increase in the pluripotency 

markers OCT4 and NANOG and a reduction in ectoderm (FGF5 and PAX6), mesoderm 

(T and MIXL1), endoderm (GATA4 and FOXA1), and trophectoderm (CDX2 and 

HAND1) markers. Expression of the definitive endoderm marker FOXA2 was increased 

upon miR-1305 inhibition on day 2 (Figure 55).  
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Figure 55. Quantitative RT-PCR analysis of the relative expression levels of 

differentiation markers in AD3 hiPS cells 2 days after transfection with a control 

miRNA inhibitor or miR-1305-inhibitor.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student- t test. The control was set to 1.0. 

 

In conclusion, we have confirmed that miR-1305 acts as a cell differentiation, cell cycle, 

and cell apoptosis regulator in hES/hiPS cells. This microRNA can induce hES/hiPS 

cell differentiation, speed up the G1/S transition, and increase cell apoptosis.  
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Chapter 5. (Result III): Identification of POLR3G as the miRNA-1305 Target in 

hES Cells  

5.1 Microarray-based Expression Profiling of hES Cells with miR-1305 

Overexpression or Inhibition 

 

To find potential miR-1305 targets, we studied the global gene expression profiles of 

H9 hES cells transfected with a miRNA mimic control/miRNA-1305 mimic (2 days 

after transfection) or a miRNA inhibitor control/miRNA-1305 inhibitor (2 days after 

transfection) by testing them in a SurePrint G3 Human Gene Expression 8x60K 

Microarray (Agilent Technologies); the array data was analysed using GeneSpring. The 

statistical probability of significance was set at p < 0.05 and a fold change of greater 

than 1.3 was used to select the differently-expressed genes after miR-1305 

overexpression (miRNA-mimic control vs. miR-1305 mimic) or miR-1305 inhibition 

(miRNA inhibitor control vs. miR-1305 inhibitor). 

 

The expression level of miRNA target genes should decrease in cells overexpressing 

miRNA-1305, while it should increase in miRNA-1305-inhibited cells. Therefore Venn 

analysis (Figure 56) of genes which were downregulated in cells transfected with miR-

1305 mimic compared with control, and the genes which were upregulated in miR-

1305-inhibited cells compared with control identified 248 potential miR-1305 target 

genes. 

 

 

 

Figure 56. Venn diagram analysis of genes from array data.  

The shared area indicates that genes were downregulated in cells transfected with miR-

1305 mimic compared with the control and were also upregulated in miR-1305-

inhibited cells compared with the control.  



- 117 - 

 

5.2 Identification of Gene Expression Signatures Regulated by miR-1305 in hES 

Cells 

In addition to the microarray study, we also used well-known software (TargetScan, 

miRDB, TargetMINER, RNA22-HAS, and microRNA) to predict miR-1305 targets. To 

narrow down the candidate miR-1305 target genes, we focused on genes which had 

been confirmed to function in maintaining pluripotency, and regulating differentiation 

and cell cycle (Table 26).  

 

 

Table 26. List of predicted miR-1305 target genes by TargetScan, miRDB, 

TargetMINER, RNA22-HAS and microRNA.  

  

  

By comparing the software prediction results with array data, three potential targets 

(LIN28A, POLR3G and ZIC2) which involved in regulating pluripotency and 

differentiation were choose for further study. LIN28A is one of the factors required for 

pluripotency, which regulates stem cell differentiation and maintenance through 

targeting let-7. POLR3G is a novel pluripotency regulator in hES cells, which is a 

downstream target of OCT4 and NANOG and can be readily regulated by the ERK1/2 

signalling pathway. ZIC2 is a member of the ZIC family which involved in regulating of 

Wnt/β-catenin protein signalling 
9,308,309

.  
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5.3 Expression Kinetics of Target Gene during miR-1305 Overexpression and 

Inhibition 

 

We characterized the mRNA expression levels of the predicted target genes in miR-

1305-overexpressed or inhibited cells using Quantitative RT-PCR. The results 

confirmed that POLR3G, LIN28A, and ZIC2 mRNA were decreased upon miR-1305 

overexpression and increased upon miR-1305 inhibition (Figure 57).  

 

 

 

Figure 57. Quantitative RT-PCR analysis of the relative expression levels of the 

predicted miR-1305 targets.  

Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 

 

Western bolt analysis showed that, the protein level of POLR3G was also reduced when 

miR-1305 was overexpressed, but was increased when miR-1305 was inhibited (Figure 

58). Interestingly, the protein levels of LIN28A and ZIC2 increased upon miR-1305 

overexpression, and there was no big difference in their protein levels upon miR-1305 

inhibition (Figure 58). Thus, it seems that POLR3G is likely to be a direct downstream 

miR-1305 target.  
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Figure 58. Western blot analysis of the protein levels of the predicted miR-1305 

targets.  

This is a representative example of at least three independent experiments. 
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5.4 Confirmation that POLR3G is a Direct miR-1305 Target 

Three putative miR-1305 binding sites were identified in the 3’UTR of POLR3G. All 

three predicted binding sites were conserved between different species (Figure 59).  

 

 

 

Figure 59. Three putative miR-1305 binding sites in the POLR3G 3’-UTR which 

were identified using TargetScan software. 

 

Next, we investigated the functional interaction between miR-1305 and the POLR3G 

3’-UTR. We cloned the POLR3G 3’-UTR into a psiCHECK
TM

-2 vector (Promega) in 

order to create a reporter assay. To confirm miR-1305 regulates POLR3G by directly 

binding to its 3’-UTR, all three binding sites were mutated separately or together (Table 

27).  
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Table 27. The wild type and mutated sequences of the predicated miR-1305 

binding sites in the POLR3G 3’UTR.  

All three binding sites were mutated separately or together.  

 

 

The reporter results showed that ectopic expression of miR-1305 significantly 

suppressed (~45%) the activity of the 3’UTR POLR3G reporter (Figure 60). Moreover, 

this inhibitory effect could be abolished when all three sites (mu-all) were mutated. 

Mutation of any single site (mu-1, mu-2, or mu-3) did not disrupt the interaction. Thus, 

our data shows that miR-1305 can regulate POLR3G expression by binding to its 

3’UTR. 

 

 

 

 



- 122 - 

 

 

Figure 60. Dual luciferase reporter assays in hES cells co-transfected with dual-

luciferase constructs containing wild-type (wt-POLR3G) or the POLR3G 3’-UTR 

mutants (mu 1-3) along with the control miR-1305 mimic.  

Data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 0.01 calculated using the 

Student-t test. The normalised luciferase activity of the miRNA-mimic control-

transfected cells was set as 1. Mu-All includes mutations for all three identified miR-

1305 binding sites.  

 

5.5 miR-1305 Regulates hES Cell Pluripotency by Targeting POLR3G  

 

POLR3G is an RNA polymerase III (Pol III) subunit 
310

. Recent studies show that 

POLR3G is a novel pluripotency regulator in hES cells, and it is a downstream target of 

OCT4 and NANOG and can be readily regulated by the ERK1/2 signalling pathway 
9
. 

However, the function and regulatory mechanism of POLR3G in hES cells remain 

poorly studied. 

 

To test whether miR-1305 regulates cell differentiation by targeting POLR3G, we tried 

to knockdown POLR3G in miR-1305-inhibited hES cells using an siRNA. The 

experiment was set up as three groups, (1) miRNA-inhibitor control/siRNA control, (2) 

miR-1305-inhibitor control/siRNA control, (3) miR-1305 inhibitor/POLR3G siRNA. 

The efficiency of siRNA was also tested by qRT-PCR, POLR3G siRNA alone reduced 

the POLR3G expression about 70% and miRNA/siRNA co-inhibition reduced the 

POLR3G expression about 50%.   
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The results indicated that miR-1305 inhibition significantly reduces (10-40%) the 

expression of all the differentiation markers, while this effect is abolished in the 

knockdown POLR3G scenario where all the differentiation makers were significantly 

higher (1-1.5 fold) compared with miR-1305 inhibition alone (Figure 61).  

 

 

 

Figure 61. Quantitative RT-PCR analyses of the relative expression levels of 

differentiation markers in H9 hES cells 2 days after transfection with a control 

miRNA-inhibitor or miR-1305-inhibitor and control siRNA or POLR3G siRNA. 

 Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1.0. 

 

Next we studied whether POLR3G overexpression could inhibit hES cell differentiation 

induced by miR-1305. The coding region of POLR3G was cloned into a vector with a 

CAG-promoter and a puromycin expression cassette. We generated a POLR3G-

overexpressing stable cell line by transfecting the POLR3G-CAG into hES cells and 

selecting with puromycin (10 μg/mL). Both the mRNA (Figure 62, 2-fold higher) and 

the protein levels (Figure 63) of POLR3G were increased in the stable cell line 

compared to the control.  
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Figure 62. Quantitative RT-PCR analysis of the relative expression levels of 

POLR3G in the control and POLR3G-overexpressing stable cell line. 

 Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using the Student-t test. The control was set to 1. 

 

 

 
 

Figure 63. Western blot of the POLR3G protein levels in the control and 

POLR3G-overexpressing stable cell line.  
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To test whether POLR3G overexpression could inhibit hES cell differentiation induced 

by miR-1305, a further experiment was set in three groups, (1) control-mimic/control-

CAG, (2) miR-1305 mimic/control-CAG, and (3) miRNA-1305 mimic/POLR3G and 

the relative levels of differentiated marker expression were detected by qRT-PCR. As 

shown in Figure 64, miR-1305 overexpression increased the levels of trophectoderm 

(CDX2 and HAND1), ectoderm (FGF5 and PAX6), mesoderm (T), and endoderm 

(GATA4 and FOXA1) markers. While POLR3G overexpression abolished the increase 

of all these differentiation markers, indicating that miR-1305 overexpression induced 

differentiation by regulating POLR3G. 

 

 

 

Figure 64. Quantitative RT-PCR analysis of the relative expression levels of 

differentiation markers in the control-CAG cell line or the POLR3G-CAG cell line 

2 days after transfection with a control miRNA-mimic or a miRNA-1305-mimic. 

 Quantitative RT-PCR data are represented as the mean ± SD; n = 3. *p < 0.05, **p < 

0.01 calculated using Student-t test. The control was set to 1.0. 

 

 

In summary, all these results suggest that the miR-1305 regulates the hES cell 

pluripotency by directly regulating POLR3G. 
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CHAPTER 6 DISCUSSION AND 

FUTURE WORK 
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Chapter 6. Discussion and Future Work  

Pluripotent stem cells, including hES cells and hiPS cells can self-renew indefinitely 

while also maintaining their full developmental potential to produce all the tissues of the 

adult body. These remarkable properties hold great potential for modelling early human 

development and thus represent promising tools for clinical applications in regenerative 

medicine 
44,289

. However, to fully realise their potential and to avoid safety issues, 

proper strategies must be developed to control their self-renewal and differentiation 

processes. This requires a good understanding of the molecular details underlying the 

regulation of hES and hiPS cell cycles, self-renewal, and pluripotency. Along with 

signalling pathways, transcription factors, and epigenetic regulators, miRNAs are 

emerging as important regulators in the establishment and maintenance of pluripotency 

and the cell cycle.  

Our study revealed that miR-1305 has a function in regulating pluripotency and the cell 

cycle in hES cells and hiPS cells. Overexpression of miR-1305 promotes differentiation 

of hES cells to all three germ layers, increases cell apoptosis, and speeds up the G1/S 

transition. On the other hand, inhibition of miR-1305 enhances hES pluripotency, 

decreases apoptosis, and makes the G1/S transition slower. Our results show, for the 

first time, that POLR3G, a regulator of hES cell pluripotency, is a downstream target of 

miR-1305. This is also the first time that miR-1305 has been shown to have an 

important role in the regulation of pluripotency and the cell cycle in hES cells. Thus, we 

have described a link between miRNA (miR-1305) and a pluripotency factor (POLR3G), 

which will help us to better understand the regulatory network in human pluripotent 

stem cells. 

miR-1305 was chosen as the target based on our array screening-experiments which 

contained samples of undifferentiated hES cells, differentiated cells, and hES cells in 

different stages of the cell cycle. The array results show that miR-1305 increased 

expression during the G1/S transition and was highly expressed in hES cells compared 

to differentiated cells (Table 24). The validity of our array data was further confirmed 

by checking that the changes in expression of several other well-known miRNAs 

matched those reported in the literature. For example, in our array, miR-372, which is 

enriched in hES cells 
259

 and promotes the G1/S transition 
277

, was also highly expressed 

in hES cells in S phase relative to the G1 and G2 phases.   
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Further study by qRT-PCR confirmed the expression of miR-1305 was higher in S 

phase and was generally downregulated during hES cell differentiation (it was higher in 

hES cells compared with adult fibroblast cells). Interestingly, miR-1305 expression 

significantly increased at the beginning of EB differentiation (EB D1), and its 

expression decreased from D3 but it was still detectable in D21 EBs and fibroblasts 

(Figures 20, 21). Besides miR-1305, qRT-PCR experiments also confirmed that miR-

367, which is enriched in undifferentiated hES cells and plays role in the G1/S transition 

276,299,300
, was also highly expressed in the G1 phase relative to the S and G2 phases in 

our undifferentiated hES cells. These results demonstrate the validity and accuracy of 

our array and expression profile data, and further indicate that our list of 33 miRNA 

candidates is likely to represent a valuable resource for future functional studies aimed 

at comprehensively defining the role of miRNAs in every aspect of hES cell behaviour, 

as well as in the hES cell cycle process. 

Little is known about the function of miR-1305, because most previous studies focus on 

its expression profile; it is highly expressed in CpG island methylator-phenotype 

positive or TP53-mutated colon tumours 
311

, while it expressed at a lower level in 

systemic lupus erythematosus and rheumatoid arthritis patient cells compared to healthy 

controls 
312

. More recently, another study showed that miR-1305 was significantly 

upregulated in human periodontal ligament-derived stem cells (PDLSC) derived from 

smokers, suggesting that it might play an important role in the deleterious effects on 

stem cells caused by cigarette smoke 
313

.  

Our results reveal a function for miR-1305 in initiating hES cell differentiation. 

Compared with the control, miR-1305 overexpression induced a 10-20% reduction in 

the expression of pluripotency markers (OCT4 and NANOG), and a 1.5-2-fold increase 

in the expression of differentiation markers (CDX2, HAND1, FGF5, PAX6, T, GATA4, 

and FOXA1). hES cells overexpressing miR-1305 still maintained the hES cell colony 

morphology but there were increased signs of differentiation. These results suggest that 

miR-1305-induced differentiation occurs at a very early stage. Consistent with this 

finding, miR-1305 expression increased at the beginning of differentiation (D1) in an 

EB spontaneous-differentiation model, and then decreased as differentiation progressed 

(Figure 21), thus indicating that miR-1305 has role in initiating, but not furthering, hES 

cell differentiation. The function of miR-1305 in hES cells can be further elucidated in 

future studies by specifically overexpressing miR-1305 at different time points during 

hES cells differentiation, or by first increasing its expression and then inhibiting it. 
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This ‘first increase, then decrease’ expression profile during differentiation has also 

been found in other genes. For example, transcription factor Snail, which is involved in 

controlling the epithelial-to-mesenchymal transition (EMT), a process that is essential 

for initiating and promoting ES cell differentiation. Snail first increases at the beginning 

of the differentiation, reaching its peak on day 3.5, and then decreases as differentiation 

continues 
314

. 

We also performed these functional studies with miR-1305 in AD3 hiPS cells, which 

gave similar results to hES cells. The overexpression of miR-1305 induced cell 

differentiation and its knockdown helped maintain pluripotency. These results 

demonstrate that miR-1305 may also have a fundamental role in regulating human 

pluripotent stem cell biogenesis. 

Our study revealed POLR3G as an authentic downstream miR-1305 target. Thus we 

provide the first evidence of a direct link between POLR3G and miR-1305 in regulating 

hES cell pluripotency. POLR3G plays an important role in maintaining hES cell 

pluripotency, as decreased levels of POLR3G results in the loss of pluripotency and 

promotes hES cell differentiation, while its overexpression makes hES cells more 

resistant to differentiation. Moreover, OCT4 and NANOG can regulate POLR3G levels 

by binding its promoter region 
9
, and POLR3G overexpression can rescue the hES cell 

differentiation induced by miR-1305. However, there was only about a 30% change of 

the POLR3G expression level after overexpressing or inhibiting miR-1305. 

miRNAs bind to complementary target sites in mRNA 3’UTRs, which results in 

degradation or translational repression of the target mRNAs 
240

. In general, one gene 

can be repressed by multiple miRNAs and one miRNA may repress multiple target 

genes, which results in the formation of complex regulatory feedback networks 
241

. 

Many miRNAs have a very ‘gentle’ regulatory function in regulating the levels of their 

target genes, like for example, miR-145 which targets KLF4 in hES cells. Increased 

miR-145 expression inhibits hES cell self-renewal and represses KLF4 expression, but 

only reduces KLF4 mRNA levels by 20% and its protein levels by 50% 
270

. Another 

example are miRNAs belonging to the miR-302 cluster, which are emerging as key 

players in the control of proliferation and cell fate determination during hES cell 

differentiation. This miRNA can directly repress NR2F2, but NR2F2 mRNA levels are 

only reduced by about 20-50% cells overexpressing miR-302 cells compared with the 

control 
315

. 
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Our functional study of miR-1305 is consistent with previous data on POLR3G, its 

knockdown resulted in loss of hES cell morphology and we noted similar observations 

to the authors, “bulky cells with multiple granules and a spindle-like cell type” 
9
, in our 

miR-1305-overexpressing cells (Figure 40). POLR3G knockdown in hES cells results in 

a 2-6-fold upregulation of differentiation markers and a 40% reduction in pluripotent 

markers (OCT4 and NANOG), which was a more significant change than was induced 

by miR-1305 overexpression. One possible explanation for this is that the reduction is 

more effective by directly knocking down POLR3G (40-50% reduction) compared to 

decreasing it indirectly via miR-1305 overexpression (30% reduction) 
9
. Knockdown of 

miR-1305 helps hES cells maintain an undifferentiated state with typical hES 

morphology, lowers differentiation marker (HAND1, FGF5, T, MIXL1, GATA4, and 

FOXA1) expression compared to hES cells (by 20-70%), and slightly increases 

pluripotent marker (OCT4 and NANOG) expression (by 10-15%). This is also consistent 

with the POLR3G study, in which POLR3G overexpression had no effect on hES cell 

morphology but slightly increased (by 15%) pluripotent marker (OCT4 and NANOG) 

expression and reduced (by 40-70%) differentiation marker expression during EB 

differentiation 
9
. 

Besides pluripotency marker, POLR3G, there are some other genes which are potential 

miR-1305 targets. For example, FOXA2 could be potential miR-1305 targets. In 

POLR3G study, expression of FOXA2 during POLR3G ectopic expression was not 

studied. In this study, unlike other germ layer markers, FOXA2 decreased when 

overexpressed miR-1305 and increased when inhibited miR-1305, which indicated that 

miR-1305 might regulate the FOXA2 level directly. miR-1305 could target not only 

pluripotent genes, but also some differentiated genes, this might be the mechanism of 

why miR-1305 increased at the beginning of differentiation, but need to decrease later 

for further differentiation (Figure 21). 

Cell cycle in hES cells and hiPS cells is rapid: it is estimated at about 15-16 h, with a 

very short G1 phase 
173,187

. Cell-cycle regulation is important for maintaining hES cell 

self-renewal, as illustrated by experiments that inhibited CDKs in hES cells, thus 

promoting hES cell G1/S arrest, downregulating the pluripotency marker OCT4, and 

inducing hES cell differentiation 
206

. In this study, miR-1305 overexpression in hES 

cells induced their differentiation and accelerated their entry into S-phase. This is 

noteworthy because differentiated cells normally enter S-phase more slowly than hES 

cells 172. This result indicted that miR-1305 might regulate the cell cycle and 
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pluripotency independently. There are several cell-cycle related genes on the list of 

predicted miR-1305 target genes, such as CDK6 and CYCLIN D2 (Table 26), which 

further hints at the potential function of this miRNA in cell cycle regulation. However, 

our microarray study did not reveal any changes in the expression of these targets, 

leaving the question of how miR-1305 regulates the G1/S transition process. Previous 

array analysis of miR-1305 has also indicated that miR-1305 may be involved in cell 

cycle regulation 
316

, and so future work in this area will focus on exploring its potential 

cell cycle targets by further analysis of our array data and other published array data.  

Similarly, our study showed that miR-1305 overexpression increased cell apoptosis 

while its knockdown reduced the population of apoptotic cells, however there was no 

changes in apoptosis when POLR3G was knocked down 
9
. There are also several 

apoptosis related genes on the list of predicted miR-1305 target genes, such as BCL2, 

MDM2, and MDM4 (Table 26). These findings indicate that miR-1305 might have 

potential function in regulating cell apoptosis, but not via POLR3G. 

Recent study in human periodontal ligament-derived stem cells, RUNX2 was found as 

one of the miR-1305 target genes 
316

. It was showed that upregulation of miR-1305 

could be associated with downregulation of RUNX2, which effect stem cell migration 

and osteogenic differentiation 
317,318

. RUNX2 is known as a critical regulator during 

osteogenic development 
319

. Its expression significantly increased during hES cell 

differentiation 
318

. One recent study revealed the role of Runx2 in regulating cell cycle 

and apoptosis in MCF-10A 
320

. They found that ectopic Runx2 expression increases cell 

cycle G1 stage, and reduced the cell apoptosis 
320

, which is in a good agreement with 

our data about knocking down miR-1305 in hES cells.  Future work will focus on 

investigation whether RUNX2 is the target of miR-1305 or the function of RUNX2 in 

hES cells might help us find the answer for the mechanism of miR-1305 in regulating 

cell cycle and apoptosis.    

Here we report the miR-1305 expression profile during hES cell differentiation, its 

function in regulating pluripotency, and its downstream targets. However, upstream 

regulators of miR-1305 in hES cells remains unclear. From the data presented here we 

can infer that miR-1305 expression is precisely regulated in hES cells, because 1) it is 

expressed at much higher levels in undifferentiated hES cells compared with fully 

differentiated cells (fibroblasts), 2) when its level in hES cells goes higher than normal 

the cells are induced to initiate differentiation.  
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In future studies, in order to find upstream miR-1305 regulators we could carry out 

ChIP qPCR analysis of OCT4, SOX2, KLF4, c-MYC, NANOG, TCF3, and SUZ12 

binding in hES cells, then use NimbleScan software to link them to histone methylation 

(especially H3K4me3 which is associated with transcription start sites, even in non-

transcribing genes) and acetylation marks, as well as miR-1305 pluripotency factors to 

regulatory regions. Loss-of-function experiments in hES and hiPS cells using siRNAs 

could also be performed for the previously mentioned pluripotency factors, followed by 

miR-1305 expression analysis. 

Previous studies on POLR3G have shown that it is present in the cytoplasm of fertilized 

mouse zygotes and two-cell embryos, and that it is located in the nucleus during the 8-

16-cell stages and the blastocyst stage, suggesting it may have function during embryo 

development 
9
. Given that previous studies have shown that miRNAs are expressed at 

specific stages of mammalian embryonic development 
321,322

 , it would be interesting to 

study the function of miR-1305 in embryonic development, especially in the light that 

POLR3G is a functional miR-1305 target. 

In conclusion, we have established a useful platform for studying miRNA expression in 

hES cells in our lab. Furthermore, our work has revealed a novel role of miR-1305 in 

regulating pluripotency, cell cycle, and cell apoptosis in hES cells, and we also found 

that POLR3G is a downstream target of miR-1305. Taken together, our results provide a 

link between miRNAs (miR-1305) and pluripotency factors (POLR3G) which will help 

us to better understand the regulatory network in hES cells. A schematic summary of 

the published literature and the data generated from this manuscript is presented in 

Figure 65. 
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Figure 65. Schematic representation of the function of miR-1305 in regulating 

pluripotency, cell cycle, and cell apoptosis in hES cells.  

Arrows indicate stimulatory modifications and blocked lines show inhibitory 

modifications. ? indicates scientific questions that have not yet been addressed. 
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APPENDIX 
Primer 
name 

Forward Sequence Reverse Sequence 

GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 

PAX6 GCCTATGCAACCCCCAGT TCACTTCCGGGAACTTGAAC 

SOX2 TTGTTCGATCCCAACTTTCC ACATGGATTCTCGGCAGACT 

MIXL1 GAGACTTGGCACGCCTGT GGTACCCCGACATCCACTT 

T CAGTGGCAGTCTCAGGTTAAGAAGGA CGCTACTGCAGGTGTGAGCAA 

FOXA2 GCATTCCCAATCTTGACACGGTGA GCCCTTGCAGCCAGAATACACATT 

GATA4 TCCAAACCAGAAAACGGAAG AAGGCTCTCACTGCCTGAAG 

CDX2 CTCGGCAGCCAAGTGAAAAC CTCCTTTGCTCTGCGGTTCT 

HAND1 ACCAGCTACATCGCCTACCTGATG TCCCTATTAACGCCGCTCCAT 

OCT4 GAGAACCGAGTGAGAGGCAACC CATAGTCGCTGCTTGATCGCTTG 

KLF4 TTACCAAGAGCTCATGCCACC GCGAATTTCCATCCACAGCC 

FGF5 CACTGATAGGAACCCTAGAGGC CAGATGGAAACCGATGCCC 

NANOG AAGGTCCCGGTCAAGAAACAG CTTCTGCGTCACACCATTGC 

FOXA1 AAGGCATACGAACAGGCACTG TACACACCTTGGTAGTACGCC 

TWF1-1 ATGCAGCAACAAGAGCAACTC TCCTCTGGGCTCTCATTGAT 

TWF1-2 CAATGAGAGCCCAGAGGATCATA AACGAGCTGAATCCTTGGGAA 

POLR3G CGCTTCGAGACTTAGGGAGC GGGGGTGGTTTCAACACTACA 

LIN28 AGCGCAGATCAAAAGGAGACA CCTCTCGAAAGTAGGTTGGCT 

ZIC2 CACCTCCGATAAGCCCTATCT GGCGTGGACGACTCATAGC 

 

Table 28. List of Quantitative PCR primers used in this study. 
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Potential targets of miR-1305 (generated from array data) 

Probe Name Gene Symbol Description 

A_21_P0002274 lnc-INSIG2-1 LNCipedia lincRNA 

A_21_P0002430 lnc-HAAO-1 Q3X3G3_9ACTN 

A_19_P00322705 MIAT 

Homo sapiens myocardial infarction associated 

transcript (non-protein coding) (MIAT), transcript 

variant 1 

A_23_P129174 LRRC49 
Homo sapiens leucine rich repeat containing 49 

(LRRC49), transcript variant 2 

A_21_P0002549 lnc-GPR55-2 LNCipedia lincRNA 

A_21_P0007055 lnc-MAP3K8-6 LNCipedia lincRNA 

A_21_P0008673 lnc-FURIN-1 LNCipedia lincRNA 

A_33_P3233546 
  

A_23_P306352 RGAG1 
Homo sapiens retrotransposon gag domain 

containing 1 

A_23_P86283 LAPTM5 Homo sapiens lysosomal protein transmembrane 5 

A_24_P396231 LAMP2 
Homo sapiens lysosomal-associated membrane 

protein 2 (LAMP2), transcript variant A 

A_21_P0013316 XLOC_l2_013868 BROAD Institute lincRNA 

A_23_P423309 PCDH12 Homo sapiens protocadherin 12 

A_33_P3326662 lnc-PDGFB-2 
Homo sapiens cDNA FLJ42244 fis, clone 

TKIDN2005934 

A_33_P3344861 LOC389602 Homo sapiens uncharacterized LOC389602 

A_24_P293530 CYP4X1 
Homo sapiens cytochrome P450, family 4, 

subfamily X, polypeptide 1 

A_33_P3256883 
  

A_33_P3415623 LRRIQ1 leucine-rich repeats and IQ motif containing 1 

A_24_P402779 PARP3 
Homo sapiens poly (ADP-ribose) polymerase 

family, member 3 (PARP3), transcript variant 2 

A_32_P116989 ZCCHC18 
Homo sapiens zinc finger, CCHC domain 

containing 18 (ZCCHC18), transcript variant 1 
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A_21_P0007296 LOC101929497 Homo sapiens uncharacterized LOC101929497 

A_21_P0011629 DNAH17-AS1 Homo sapiens DNAH17 antisense RNA 1 

A_21_P0014290 LOC100507480 
PREDICTED: Homo sapiens uncharacterized 

LOC100507480 

A_33_P3231602 ZNF569 Homo sapiens zinc finger protein 569 

A_21_P0001447 
 

PREDICTED: Homo sapiens uncharacterized 

LOC102724382 

A_21_P0007879 CISTR 
Homo sapiens chondrogenesis-associated 

transcript (CISTR), transcript variant 1 

A_23_P120794 SLC7A4 Homo sapiens solute carrier family 7, member 4 

A_23_P100386 IL34 
Homo sapiens interleukin 34 (IL34), transcript 

variant 1 

A_23_P147465 PARK2 
Homo sapiens parkin RBR E3 ubiquitin protein 

ligase (PARK2), transcript variant 1 

A_21_P0013827 XLOC_l2_015789 BROAD Institute lincRNA 

A_23_P86599 DMBT1 
Homo sapiens deleted in malignant brain tumors 1 

(DMBT1), transcript variant 2 

A_21_P0003563 lnc-STK32B-1 DB207493 TRACH2 Homo sapiens cDNA 

A_33_P3328543 
  

A_33_P3371237 LOC100131514 PREDICTED: Homo sapiens mucin-3A-like 

A_23_P373687 PUS10 Homo sapiens pseudouridylate synthase 10 

A_33_P3391455 SCN5A 
Homo sapiens sodium channel, voltage gated, type 

V alpha subunit (SCN5A), transcript variant 6 

A_33_P3287403 
  

A_21_P0014166 LOC100506379 AF064804 transcription factor SUPT3H 

A_33_P3316169 ZNF705E Homo sapiens zinc finger protein 705E 

A_33_P3362367 RTN3 reticulon 3 

A_21_P0003455 
 

BX115251 

A_33_P3340802 DHDDS dehydrodolichyl diphosphate synthase 
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A_21_P0002066 
  

A_21_P0006342 lnc-DMRTA1-5 LNCipedia lincRNA 

A_23_P140375 NGB Homo sapiens neuroglobin 

A_33_P3213645 ERN2 
Homo sapiens endoplasmic reticulum to nucleus 

signaling 2 

A_33_P3388067 ZNF735 Homo sapiens zinc finger protein 735 

A_24_P294851 TRIM38 Homo sapiens tripartite motif containing 38 

A_24_P147242 RBFOX1 

Homo sapiens RNA binding protein, fox-1 

homolog (C. elegans) 1 (RBFOX1), transcript 

variant 3 

A_23_P31124 COL21A1 Homo sapiens collagen, type XXI, alpha 1 

A_23_P169278 AGTPBP1 
Homo sapiens ATP/GTP binding protein 1 

(AGTPBP1), transcript variant 2 

A_21_P0003235 lnc-GPR27-1 LNCipedia lincRNA 

A_23_P300056 CDC42 
Homo sapiens cell division cycle 42 (CDC42), 

transcript variant 2 

A_23_P78849 SYT5 
Homo sapiens synaptotagmin V (SYT5), transcript 

variant 1 

A_21_P0009969 lnc-ARFGEF2-2 LNCipedia lincRNA 

A_33_P3317797 SLC2A5 

Homo sapiens solute carrier family 2 (facilitated 

glucose/fructose transporter), member 5 

(SLC2A5), transcript variant 2 

A_33_P3241681 CDKL2 
Homo sapiens cyclin-dependent kinase-like 2 

(CDC2-related kinase) 

A_23_P73571 MUM1L1 
Homo sapiens melanoma associated antigen 

(mutated) 1-like 1 (MUM1L1), transcript variant 2 

A_23_P98571 PPP1R32 
Homo sapiens protein phosphatase 1, regulatory 

subunit 32 (PPP1R32), transcript variant 1 

A_21_P0014088 LOC101929752 
PREDICTED: Homo sapiens uncharacterized 

LOC101929752 

A_19_P00320492 lnc-MRPL14-1 Homo sapiens alpha-actinin-like mRNA 

A_24_P612446 C6orf89 
Homo sapiens chromosome 6 open reading frame 

89 (C6orf89), transcript variant 1 
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A_24_P33508 -March11 
Homo sapiens membrane-associated ring finger 

(C3HC4) 11 (MARCH11) 

A_23_P212126 COLQ 

Homo sapiens collagen-like tail subunit (single 

strand of homotrimer) of asymmetric 

acetylcholinesterase (COLQ), transcript variant II 

A_33_P3295991 
 

Homo sapiens cDNA FLJ46084 fis, clone 

TESTI2006543 

A_21_P0004552 LINC01019 
Homo sapiens long intergenic non-protein coding 

RNA 1019 

A_21_P0013338 XLOC_l2_013931 BROAD Institute lincRNA 

A_23_P308839 TMEM132D Homo sapiens transmembrane protein 132D 

A_21_P0001161 LINC01349 
Homo sapiens long intergenic non-protein coding 

RNA 1349 

A_21_P0009175 
 

DB100140 TESTI4 Homo sapiens cDNA clone 

TESTI4051979 

A_24_P263786 
 

immunoglobulin kappa variable 2D-30 

A_23_P62709 SPRR3 
Homo sapiens small proline-rich protein 3 

(SPRR3), transcript variant 1 

A_24_P41850 MASP1 

Homo sapiens mannan-binding lectin serine 

peptidase 1 (C4/C2 activating component of Ra-

reactive factor) (MASP1), transcript variant 3 

A_33_P3388536 LOC728752 Homo sapiens uncharacterized LOC728752 

A_33_P3318966 METTL20 
Homo sapiens methyltransferase like 20 

(METTL20), transcript variant 1 

A_33_P3404922 KIAA1217 
Homo sapiens KIAA1217 (KIAA1217), transcript 

variant 7 

A_33_P3297853 AKNA Homo sapiens AT-hook transcription factor 

A_23_P419786 ZNF781 Homo sapiens zinc finger protein 781 

A_32_P142779 SPPL2C Homo sapiens signal peptide peptidase like 2C 

A_21_P0014674 
  

A_21_P0012179 XLOC_l2_009134 BROAD Institute lincRNA 

A_33_P3241489 CEBPZOS 
Homo sapiens CEBPZ opposite strand 

(CEBPZOS), transcript variant 1 
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A_33_P3635527 KRTAP24-1 Homo sapiens keratin associated protein 24-1 

A_23_P435601 ST8SIA4 

Homo sapiens ST8 alpha-N-acetyl-neuraminide 

alpha-2,8-sialyltransferase 4 (ST8SIA4), transcript 

variant 2 

A_21_P0002196 lnc-TTC27-1 LNCipedia lincRNA 

A_21_P0004502 lnc-FBXO4-1 LNCipedia lincRNA 

A_33_P3236077 CLRN2 Homo sapiens clarin 2 

A_23_P434430 ZNF439 Homo sapiens zinc finger protein 439 

A_33_P3421318 NR2F2-AS1 
Homo sapiens NR2F2 antisense RNA 1 (NR2F2-

AS1), transcript variant 3 

A_21_P0011338 LINC00933 
Homo sapiens long intergenic non-protein coding 

RNA 933 (LINC00933), transcript variant 1 

A_21_P0012176 XLOC_l2_009096 BROAD Institute lincRNA 

A_23_P135486 AHSP 
Homo sapiens alpha hemoglobin stabilizing 

protein 

A_21_P0005927 LOC101930275 
 

A_23_P502336 EMR2 

Homo sapiens egf-like module containing, mucin-

like, hormone receptor-like 2 (EMR2), transcript 

variant 1 

A_21_P0004716 
  

A_33_P3354514 SLC2A13 
Homo sapiens solute carrier family 2 (facilitated 

glucose transporter), member 13 

A_33_P3260223 TXLNGY 
Homo sapiens taxilin gamma pseudogene, Y-

linked (TXLNGY), transcript variant 1 

A_21_P0002470 lnc-POLR1A-1 LNCipedia lincRNA 

A_24_P277657 GMPR 
Homo sapiens guanosine monophosphate 

reductase 

A_23_P27229 MYO15A Homo sapiens myosin XVA 

A_33_P3367541 lnc-SEC61G-7 LNCipedia lincRNA 

A_21_P0011518 
  

A_33_P3257683 
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A_33_P3286552 NOX1 
Homo sapiens NADPH oxidase 1 (NOX1), 

transcript variant 2 

A_21_P0004361 LOC101929261 
PREDICTED: Homo sapiens uncharacterized 

LOC101929261 

A_33_P3250018 HCFC2 Homo sapiens host cell factor C2 

A_21_P0001158 LOC101928241 Homo sapiens uncharacterized LOC101928241 

A_23_P213137 LNX1 

Homo sapiens ligand of numb-protein X 1, E3 

ubiquitin protein ligase (LNX1), transcript variant 

2 

A_33_P3301221 MORN1 
Homo sapiens MORN repeat containing 1 

(MORN1), transcript variant 3 

A_33_P3401586 EFCAB10 
Homo sapiens EF-hand calcium binding domain 

10 

A_23_P69637 OTUD4 
Homo sapiens OTU deubiquitinase 4 (OTUD4), 

transcript variant 2 

A_23_P87036 APOA4 Homo sapiens apolipoprotein A-IV 

A_33_P3306232 PABPC1L2A 
Homo sapiens poly(A) binding protein, 

cytoplasmic 1-like 2A (PABPC1L2A) 

A_23_P168130 IP6K3 
Homo sapiens inositol hexakisphosphate kinase 3 

(IP6K3), transcript variant 1 

A_33_P3396527 POLR3G 
Homo sapiens polymerase (RNA) III (DNA 

directed) polypeptide G (32kD) 

A_21_P0001016 SRGAP2-AS1 Homo sapiens SRGAP2 antisense RNA 1 

A_21_P0000573 CCDC162P 
Homo sapiens coiled-coil domain containing 162, 

pseudogene 

A_21_P0000843 LOC100507250 Homo sapiens uncharacterized LOC100507250 

A_24_P170395 
  

A_23_P91636 POM121L9P 
Homo sapiens POM121 transmembrane 

nucleoporin-like 9, pseudogene 

A_24_P46130 ACPP 
Homo sapiens acid phosphatase, prostate (ACPP), 

transcript variant 1 

A_21_P0001954 
 

RST724 Athersys RAGE Library Homo sapiens 

cDNA 

A_33_P3376954 XLOC_l2_001648 BROAD Institute lincRNA 

A_21_P0002334 lnc-OBFC2A-1 LNCipedia lincRNA 
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A_21_P0006625 lnc-JMJD1C-2 BX358171 

A_21_P0004486 lnc-ADCY2-5 LNCipedia lincRNA 

A_21_P0014454 LOC100507600 Homo sapiens uncharacterized LOC100507600 

A_24_P252945 CXCR5 
Homo sapiens chemokine (C-X-C motif) receptor 5 

(CXCR5), transcript variant 2 

A_24_P29594 HBS1L 
Homo sapiens HBS1-like translational GTPase 

(HBS1L), transcript variant 1 

A_24_P203000 IL2RB Homo sapiens interleukin 2 receptor, beta 

A_24_P129834 TPH2 Homo sapiens tryptophan hydroxylase 2 

A_21_P0001513 lnc-JUN-6 LNCipedia lincRNA 

A_24_P268196 LZIC leucine zipper and CTNNBIP1 domain containing 

A_33_P3226761 SOX18 
Homo sapiens SRY (sex determining region Y)-

box 18 

A_33_P3423853 C20orf166-AS1 Homo sapiens C20orf166 antisense RNA 1 

A_24_P193244 SOHLH2 

Homo sapiens spermatogenesis and oogenesis 

specific basic helix-loop-helix 2 (SOHLH2), 

transcript variant 1 

A_21_P0001796 lnc-FAM168B-1 
Homo sapiens cDNA FLJ33681 fis, clone 

BRAWH2002549 

A_21_P0013744 LOC101929116 Homo sapiens uncharacterized LOC101929116 

A_21_P0005902 lnc-FAM84B-2 LNCipedia lincRNA 

A_21_P0010968 WT1-AS 
Homo sapiens WT1 antisense RNA (WT1-AS), 

transcript variant 4 

A_33_P3743432 DEFA8P Homo sapiens defensin, alpha 8 pseudogene 

A_33_P3257518 FLJ22447 Homo sapiens uncharacterized LOC400221 

A_32_P155826 USP27X-AS1 Homo sapiens USP27X antisense RNA 1 

A_33_P3212022 RGS6 
Homo sapiens regulator of G-protein signaling 6 

(RGS6), transcript variant 4 

A_21_P0014300 LOC104613533 Homo sapiens uncharacterized LOC104613533 
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A_21_P0007460 MIR4454 long intergenic non-protein coding RNA 678 

A_32_P170481 LOC100240735 Homo sapiens uncharacterized LOC100240735 

A_33_P3262742 DAPL1 Homo sapiens death associated protein-like 1 

A_23_P81529 ISL1 Homo sapiens ISL LIM homeobox 1 

A_33_P3367062 SWT1 
Homo sapiens SWT1 RNA endoribonuclease 

homolog 

A_24_P417935 AGAP2-AS1 Homo sapiens AGAP2 antisense RNA 1 

A_21_P0006440 
  

A_21_P0004031 
  

A_33_P3879161 PIK3AP1 
Homo sapiens phosphoinositide-3-kinase adaptor 

protein 1 

A_33_P3492042 LINC00307 
Homo sapiens long intergenic non-protein coding 

RNA 307 

A_21_P0000567 SLC25A5-AS1 Homo sapiens SLC25A5 antisense RNA 1 

A_23_P24211 MMP21 Homo sapiens matrix metallopeptidase 21 

A_33_P3272668 
  

A_24_P213950 HEPACAM 
Homo sapiens hepatic and glial cell adhesion 

molecule 

A_33_P3319860 IFFO1 
Homo sapiens intermediate filament family 

orphan 1 (IFFO1), transcript variant 7 

A_21_P0008821 LOC102725022 

PREDICTED: Homo sapiens uncharacterized 

LOC102725022 (LOC102725022), transcript 

variant X2 

A_33_P3271800 SIRT2 
Homo sapiens sirtuin 2 (SIRT2), transcript variant 

1 

A_33_P3327208 
 

zinc finger protein 114 pseudogene 1 

A_23_P420831 TRIM10 
Homo sapiens tripartite motif containing 10 

(TRIM10), transcript varian 2 

A_21_P0007819 lnc-CLEC2D-5 ou35e09.x1 

A_32_P347617 APOBEC3H 

Homo sapiens apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like 3H 

(APOBEC3H), transcript variant SV-183 
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A_23_P211584 SMDT1 
Homo sapiens single-pass membrane protein with 

aspartate-rich tail 1 

A_24_P415280 SEC61A2 
Homo sapiens Sec61 alpha 2 subunit (S. cerevisiae) 

(SEC61A2), transcript variant 1 

A_33_P3334305 TFF3 Homo sapiens trefoil factor 3 (intestinal) 

A_33_P3235562 CAPZB 
Homo sapiens capping protein (actin filament) 

muscle Z-line, beta (CAPZB), transcript variant 2 

A_33_P3242713 
 

Homo sapiens cDNA FLJ11996 fis 

A_33_P3271711 
  

A_21_P0013170 ZNF316 Homo sapiens zinc finger protein 316 

A_23_P3221 SQRDL 
Homo sapiens sulfide quinone reductase-like 

(yeast) (SQRDL), transcript variant 1 

A_19_P00318363 lnc-QPCT-2 LNCipedia lincRNA 

A_33_P3380618 HSPG2 
Homo sapiens heparan sulfate proteoglycan 2 

(HSPG2), transcript variant 1 

A_33_P3257609 PPP1R12B 
Homo sapiens protein phosphatase 1, regulatory 

subunit 12B (PPP1R12B), transcript variant 1 

A_33_P3264179 LCE3E Homo sapiens late cornified envelope 3E 

A_33_P3402071 
  

A_21_P0009088 lnc-C16orf95-2 LNCipedia lincRNA 

A_33_P3241090 OR6Q1 
Homo sapiens olfactory receptor, family 6, 

subfamily Q, member 1 

A_33_P3311740 ZNF774 Homo sapiens zinc finger protein 774 

A_23_P256624 DDX4 
Homo sapiens DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 4 

A_21_P0014724 LOC100507336 

PREDICTED: Homo sapiens uncharacterized 

LOC100507336 (LOC100507336), transcript 

variant X1 

A_33_P3252479 SETDB1 
Homo sapiens SET domain, bifurcated 1 

(SETDB1), transcript variant 3 

A_21_P0003045 lnc-P2RY1-3 LNCipedia 

A_21_P0002655 LOC100505774 
PREDICTED: Homo sapiens uncharacterized 

LOC100505774 
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A_23_P146294 EFCAB1 
Homo sapiens EF-hand calcium binding domain 1 

(EFCAB1), transcript variant 1 

A_33_P3217958 FCHSD2 Homo sapiens FCH and double SH3 domains 2 

A_21_P0001570 lnc-NGF-1 LNCipedia lincRNA 

A_24_P381441 LMO3 
Homo sapiens LIM domain only 3 (rhombotin-like 

2) (LMO3), transcript variant 1 

A_33_P3217743 LINC01061 
Homo sapiens long intergenic non-protein coding 

RNA 1061 

A_33_P3221403 LOC646743 Homo sapiens clone TESTIS-608 mRNA sequence. 

A_21_P0014055 MROH1 
Homo sapiens maestro heat-like repeat family 

member 1 (MROH1), transcript variant 4 

A_33_P3302652 
 

chromosome 1 open reading frame 132 

A_21_P0010050 lnc-PREX1-4 LNCipedia lincRNA 

A_21_P0010375 
 

601671535F1 

A_24_P769672 C12orf73 
Homo sapiens chromosome 12 open reading frame 

73 

A_24_P342944 CSPG5 
Homo sapiens chondroitin sulfate proteoglycan 5 

(neuroglycan C) (CSPG5), transcript variant 1 

A_23_P168357 CPA1 carboxypeptidase A1 (pancreatic) 

A_21_P0000065 SLC1A3 

Homo sapiens solute carrier family 1 (glial high 

affinity glutamate transporter), member 3 

(SLC1A3), transcript variant 3 

A_21_P0006220 lnc-RP11-295D22.1.1-6 LNCipedia lincRNA 

A_21_P0007670 
  

A_24_P277673 HIST1H4G Homo sapiens histone cluster 1, H4g 

A_33_P3346083 DCDC1 Homo sapiens doublecortin domain containing 1 

A_21_P0004729 LINC00518 long intergenic non-protein coding RNA 518 

A_21_P0011368 LOC101928134 
Homo sapiens uncharacterized LOC101928134 

(LOC101928134), transcript variant 2 

A_33_P3326235 HBM Homo sapiens hemoglobin, mu 
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A_23_P143526 S100B Homo sapiens S100 calcium binding protein B 

A_33_P3278714 
  

A_19_P00316324 LINC01132 
Homo sapiens long intergenic non-protein coding 

RNA 1132 

A_24_P54174 TNFRSF1B 
Homo sapiens tumor necrosis factor receptor 

superfamily, member 1B 

A_33_P3280360 LOC100133857 Homo sapiens cDNA FLJ45691 fis 

A_21_P0008196 lnc-SLITRK6-1 LNCipedia lincRNA 

A_33_P3247342 ANO7 
Homo sapiens anoctamin 7 (ANO7), transcript 

variant NGEP-S 

A_23_P118095 RPL3L Homo sapiens ribosomal protein L3-like 

A_23_P397937 SAMD3 
Homo sapiens sterile alpha motif domain 

containing 3 (SAMD3), transcript variant 3 

A_23_P201211 FCRL5 
Homo sapiens Fc receptor-like 5 (FCRL5), 

transcript variant 1 

A_33_P3679221 LOC152578 Homo sapiens uncharacterized LOC152578 

A_21_P0003253 lnc-GYG1-1 LNCipedia lincRNA 

A_21_P0003027 LOC644662 
PREDICTED: Homo sapiens uncharacterized 

LOC644662 

A_23_P254896 FGF16 Homo sapiens fibroblast growth factor 16 

A_21_P0006433 LOC101928495 Homo sapiens uncharacterized LOC101928495 

A_23_P34144 MAGEH1 Homo sapiens melanoma antigen family H, 1 

A_33_P3332937 MIPEPP3 Homo sapiens mRNA 

A_23_P216118 UNC5D Homo sapiens unc-5 homolog D 

A_33_P3237804 lnc-RP11-351M8.1.1-1 LNCipedia lincRNA 

A_21_P0009007 LINC01569 
Homo sapiens long intergenic non-protein coding 

RNA 1569 

A_23_P370544 ANKAR 
Homo sapiens ankyrin and armadillo repeat 

containing 

A_21_P0007875 lnc-SLC38A2-1 LNCipedia lincRNA 
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A_21_P0000124 DENND1B 
Homo sapiens DENN/MADD domain containing 

1B 

A_21_P0012466 XLOC_l2_010405 BROAD Institute lincRNA 

A_23_P47579 NLRP14 
Homo sapiens NLR family, pyrin domain 

containing 14 

A_33_P3283824 SLC39A8 

Homo sapiens solute carrier family 39 (zinc 

transporter), member 8 (SLC39A8), transcript 

variant 3 

A_21_P0014037 
  

A_32_P159234 KIAA1456 
Homo sapiens KIAA1456 (KIAA1456), transcript 

variant 1 

A_21_P0006664 
  

A_33_P3402993 
  

A_32_P9986 lnc-PHF10-1 LNCipedia lincRNA 

A_19_P00321414 LINC01091 
Homo sapiens long intergenic non-protein coding 

RNA 1091 (LINC01091), transcript variant 2 

A_33_P3259457 
 

PREDICTED: Homo sapiens golgin-like 

A_23_P313652 AKAP14 
Homo sapiens A kinase (PRKA) anchor protein 14 

(AKAP14), transcript variant 1 

A_33_P3374833 BLOC1S6 
Homo sapiens biogenesis of lysosomal organelles 

complex-1, subunit 6, pallidin 

A_21_P0007398 
  

A_21_P0011878 XLOC_l2_007788 BROAD Institute lincRNA 

A_32_P213349 lnc-DPP4-1 Q56A81_HUMAN (Q56A81) TBR1 protein 

A_33_P3339731 LOC100131170 Homo sapiens cDNA FLJ25537 fis 

A_23_P1320 MYOZ1 Homo sapiens myozenin 1 

 

Table 29. List of 248 potential targets downregulate in miR-1305 overexpression 

and upregulate in miR-1305 knockdown generated from array data. 
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