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ABSTRACT 

The main topic of this thesis is the mechanical and non-mechanical 
compaction and fabric rearrangement of fine-grained siliciclastic sediments. 
Part A concentrates on the mechanical compaction of shallow «1000mbsf), 
fine-grained marine sediments, a majority of which was provided by 
DSDP/ODP. The used porosities and stresses were based on measurements 
by DSDP/ODP on fresh sample material. Results reveal, that the reduction of 
porosity with increasing effective stress is mainly controlled by lithology. Clay 
fraction (% material <2J.1m) was used as parameter for the grain size of the 
sample material and found the single most important control on the 
relationship between porosity and effective stress. However, for a given clay 
fraction the porosities of samples containing significant amounts of 
microfossils exceeded those of the fossil-poor sediments. Larger amounts of 
grains between 2J.1m and 8J.1m in the fossil-rich material presumably led to 
these differences in pore space. Deviations between the porosities measured 
on fresh (wet) sample material by DSDP/ODP with those determined by 
mercury intrusion porosimetry on the partly dried out samples used in study 
highlighted the sensitivity of soft, clay-rich sediments to air drying. 
Experimental drying of two clay samples confirmed these observations and 
revealed the changes in total porosity and pore size distribution during air and 
oven drying. Furthermore, two case studies, one located in the Mid-Norway 
area and one offshore New Jersey, underlined the importance of a thorough 
assessment of lithology and confirmed the influence of microfossils on 
shallow mudstone compaction. In Part B of this thesis, a novel approach was 
applied to correlate the petrophysical changes of fine-grained sediments 
during compaction and early diagenesis to alterations of the sediment 
microfabric. High Resolution X-ray Texture Goniometry (HRXTG) was used to 
quantify the alignment of phyllosilicates and results reveal, that mechanical 
compaction does not necessarily lead to a Significant alignment of platy 
minerals. The analysis of the present mineralogies and grain size/shape 
distributions led to the conclusion, that only if both the clay and silt-fractions 
are dominated by platy minerals, mechanical compaction results in higher 
degrees of phyllosilicate alignment. On the other hand, if the silt-fraction is 
dominated by spherical grains (e.g. quartz, feldspar), increasing effective 
stress simply results in tight, poorly-aligned grain packing. Advanced stages 
of clay mineral diagenesis were only observed in two Gulf of Mexico wells. 
Here, the onset of the smectite-to-illite conversion was delayed until 
temperatures of at least 115°C, presumably due to the high sedimentation 
rates (>1 OOOm/Ma). Although observed in other studies, an obvious influence 
of diagenesis on the clay mineral fabric of this sample set was not evident. It 
can therefore be assumed, that the mud- and siltstones from the Gulf of 
Mexico are still too immature to reflect diagenetic reactions in their 
phyllosilicate fabric. 
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1 Introduction 

1 Introduction 

Fine-grained siliciclastic lithologies such as mud- and siltstones dominate 

sedimentary systems around the world (Fuchtbauer, 1988; O'Brien & Slatt, 

1990; Schieber & Zimmerle, 1998; Aplin et aI., 1999). Numerous articles have 

been published about the processes that are involved in the deposition of 

these sediments (e.g. Hjulstmm, 1955; Rieke & Chilingarian, 1974; Potter et 

aI., 1980; Charnley, 1989; Potter, 1998; Schieber, 1998) and much work has 

been done to characterize the physical properties (e.g. porosity, permeability, 

mechanical strength) of the resulting rocks once they are lithified (e.g. Steiger 

& Leung, 1988; Katsube et ai, 1991; Horsrud et ai, 1998; Pearson, 1999). 

However, relatively little is known about the mechanical and chemical 

processes that control these properties during the transition from soft 

sediment to solidified rock. 

It is of great significance to understand the controls on these properties and 

the role of the involved lithological parameters, since porosity, permeability 

and elastoplasticity underpin several important facets of geoscience. These 

include the analysis of fluid flow in basin studies and the prediction of pore 

pressures and fracture gradients from both seismic and wireline data (Atwater 

& Miller, 1965; Bredehoeft et aI., 1988; Mann & Mackenzie, 1990; Neuzil, 

1994; Hansen, 1996a1b; Bolton & Maltman, 1998; Giles et aI., 1998; Luo et 

aI., 1998; Dewhurst et aI., 1999a; Swarbrick et aI., 2000). 

For siliciclastic sediments mechanical compaction is the dominant process 

over the first few kilometres of burial (Jones, 1994; Giles et aI., 1998 and 

references therein). It is an elastoplastic process (Casagrande, 1936; Jones, 

1994; Schneider et aI., 1994; Suetnova & Vasseur, 2000) and can be defined 

as the stress driven rearrangement of grains which results in the loss of 

porosity and expulsion of pore fluid. Compaction is usually described by 

curves (Fig. 1) which show the relationship between porosity and burial depth 

(Hamilton, 1976; Sclater & Christie, 1980; Baldwin & Butler, 1985; Dzevanshir 

etaL, 1986; Nobes etaL, 1986; Ramm & Bj0rlykke, 1994; Giles etaL, 1998). 
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Fig. 1 Porosity versus depth trends (compaction curves) for shales from various stud ies (Giles et ai, 

1998). 

Since burial depth gives no information about the driving force for compaction 

(effective stress), these compaction curves (Fig. 1) often show huge 

variations. Instead, it is more reasonable to plot porosity against vertical 

effective stress, as this accounts for other than hydrostatiC pore pressures 

(Terzaghi, 1921; Gibson et aI. , 1967, 1981; Skempton, 1970; Burland, 1990; 

Schneider et aI. , 1994; Dewhurst et aI., 1998). However, even a collection of 

published porosity/depth data for clay-rich sediments from the Deep Sea and 

Ocean Drilling Program (Fig. 2) show significant variations. Here, nearly 

hydrostatiC pore pressures in most of these wells would justify a plot of 

porosity against burial depth. Nevertheless, compaction trends scatter heavily 

and show porosities that vary over more than 50% for a given burial depth 

(see also Nobes et aI., 1986). 

Previous investigations by Aplin et al. (1995), Dewhurst et al. (1998, 1999b) 

and Yang & Aplin (1998) have suggested that a critical constant in the 

relationship between porosity and vertical effective stress in mudstones is 

clay fraction (percentage of material <2J.U11 in spherical diameter). Their work 

is based on the principles of soil mechanics, where earlier studies 

(Skempton, 1970; Burland, 1990) revealed that the decrease of porosity in 

clays and muds with increasing vertical effective stress is mainly controlled by 
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1 Introduction 

the Atterberg Liquid Limit, a lithological parameter, which is strongly 

correlated with grain size. 

Porosity 
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Fig. 2 Porosity/depth data for "clays" and "muds" (incl. "claystones· & "mudstones") from the Deep Sea 

and Ocean Drilling Program. Measured porosities can vary over more than 50% at a given depth 

(400mbsf) and more than 950m for a given porosity (55%). 

On the basis of this work Yang & Aplin (submitted) established a compaction 

model for fine-grained, siliciclastic lithologies in sedimentary basins. The 

model was calibrated with both laboratory and geophysical well log data from 

the North Sea and Gulf of Mexico. The dataset mainly comprises lithological 

information from very shallow «1 OOmbsf) and deeper (> 1 OOOmbsf) sections 

of the sedimentary record. Data from the intermediate sequences (100-

1000mbsf), where fine-grained sediments lose up to 50 percent of their initial 

porosity (Fig. 1 & Fig. 2) is sparse. In Part A of the present study 80 fine­

grained sediment samples from the DSDP/COP were chosen to verify Yang & 

Aplin's (submitted) compaction model for intermediate depths and to test its 

applicability in several different sedimentary environments. During this 

investigation the possible influence of other parameters like fossil content, 

mineralogy and age was also considered. Part A concludes with two case 
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1 Introduction 

studies where the established relationships are tested on two shallow 

sediment sequences from the northern North Sea and the New Jersey 

continental slope. 

Although substantial literature exists about the purely mechanical compaction 

of muds, little is known about the influence of diagenetic (mineralogical) 

changes on the physical properties of mudstones. It is well known from 

previous studies that diagenesis significantly alters the physical properties of 

sandstones and carbonates (e.g. Galloway, 1974; FOchtbauer, 1967, 1979; 

Bathurst, 1975; Garrison & Kennedy, 1977; Houseknecht, 1987; Tada & 

Siever, 1989; Bj'Hkum, 1996; Fabricius, 2000). In these sediments, elevated 

effective stresses and temperatures lead to dissolution and/or cementation 

processes that strongly affect porosity and permeability. These observations 

might also be true for fine-grained, phyllosilicate dominated lithologies, since 

non-mechanical processes such as clay mineral diagenesis (e.g. smectite-to­

illite conversion) start at the relatively low temperatures of around 60°C (Perry 

& Hower, 1970; Hower et aL, 1976; Kisch, 1983; Freed & Peacor, 1989). 

The key difficulty of quantifying the effect of mineralogical change on the 

phYSical properties of mudstones is their grain size. Siltstones and especially 

claystones are dominated by grains often smaller than a few micrometres and 

changes in the physical properties are very hard to correlate to visible 

alterations of the sediment matrix. The most obvious macro- and 

microscopical alterations of clay-rich sediments during lithification are 

observed in their phyllosilicate microtexture (e.g. Oertel, 1970; Oertel & 

Curtis, 1972; Paga and Wenk, 1979; Curtis at aI., 1980; Laa et aI., 1985, 

1986; Ho et aL, 1995, 1999; van der Pluijm et aL 1998; Merriman and Peacor, 

1999; Jacob et aL 2000). These alterations are mainly caused by two 

processes: 

1 . mechanical rotation or kinking of discrete phyllosilicate 

crystals within a surrounding clay matrix 

2. chemical alterations, namely phyllosilicate neocrystallisation, 

dissolution-recrystallisation and diffusion, the latter often 

described as annealing. 

4 



1 Introduction 

TEM observations have shown that during the early stages of burial 

(diagenetic zone) and cleavage development (low-grade metamorphic zone), 

grain kinking and rotation prevails in low-energy environments (Sintubin, 

1994; Ho et aI., 1995, 1996; van der Pluijm et aI., 1998). At later stages and 

in high-energy environments grain dissolution and neocrystallisation (e.g. 

smectite-to-illite or illite to phengite muscovite transformation) dominate the 

development of preferred particle orientation, either parallel to bedding 

(mainly smectite-to-illite) or parallel to cleavage (Lipshie et ai, 1976; Lee et 

aI., 1986; Merriman et aI., 1990; Ho et ai, 1995, 1996, 1999; van der Pluijm et 

aI., 1998). 

The work of Oertel et al. (1989), Sintubin (1994), Ho et al. (1999) and Jacob 

et al. (2000) revealed that the degree of preferred orientation is partly 

controlled by lithology (grain size). Both Oertel et al. (1989) and Sintubin 

(1994) observed a decrease of fabric intensity during cleavage development 

with increasing quartz content and Jacob et al. (2000) showed that the 

reorientation of phyllosilicates occurred at a lower metamorphic grade in finer­

grained rocks than in silt dominated lithologies. 

Many of these investigations used X-ray texture goniometry (XTG) to quantify 

the orientation of phyllosilicates (e.g. Baker, 1969; Oertel, 1970, 1983; Wood 

et ai, 1976; O'Brien, 1987; Sintubin, 1994). In order to improve the traditional 

XTG method van der Pluijm et al. (1994) developed High Resolution X-ray 

Texture Goniometry (HRXTG). This method "is able to record variations in the 

strain state of deformed (compacted) rocks over small, mm-scale distances" 

(van der Pluijm et aI., 1994) and its improved capabilities have been 

demonstrated in several studies (Ho et aI., 1995, 1996, 1999, 2001; van der 

Pluijm et aI., 1998; Jacob et ai, 2000). 

In one of these studies Ho et al. (1999) showed a close correlation of the 

smectite-to-illite diagenetic reaction with the increase in preferred orientation 

in phyllosilicates of some Gulf Coast mudstones. Since neither Ho et al. 

(1999) nor any of the other studies give an accurate description of the 

sediments they studied (grain size distribution, porosity), systematic 

relationships between lithology, phyllosilicate orientation and the physical 
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1 Introduction 

properties of mudstones remain to be established. Part B of this study 

examines the extent to which compaction alters the phyllosilicate fabric of 

fine-grained sediments and the role that non-mechanical processes like clay 

mineral diagenesis play in the reduction of pore space. Here, samples from 

several sedimentary basins around the world were analyzed by HRXTG to 

generate a first understanding of the interaction between pore space, grain 

size, microfabric and diagenetic grade of clay-rich sediments during 

compaction. 88 samples from 9 wells were chosen to represent sedimentary 

environments such as the continental rise (DSDP well 43/386), a lacustrine 

intercontinental basin (Caspian Sea) and shelf to slope petroleum basins 

(North Sea, Mid-Norway, deep water Gulf of Mexico and Bay of Bengal). 

Thesis Outline 

This study is divided into two parts. Part A deals with the purely mechanical 

compaction of mudstones and begins with a chapter (2 Samples and 

Methods) describing the chosen sample set and the applied analytical 

methods. The following chapter (3 Results) gives details about the results of 

the laboratory experiments, which are discussed in the next chapter (4 

Discussion). Part A will finish with the conclusions that can be drawn from 

this investigation (5 Conclusions). Part B concentrates on the use of 

phyllosilicate fabric as compaction parameter and indicator of non-mechanical 

changes of the physical properties of mudstones. Its structure is very similar 

to Part A, beginning with a chapter about the chosen samples and applied 

methods (6 Samples and Methods). This is again followed by a detailed 

description of the analytical results (7 Results) which are then discussed in 

the subsequent chapter (8 Discussion). A summary of the main observations 

followed by the main conclusions will be given in the final chapter of Part B (9 

Summary and Conclusion). The thesis ends with a few final conclusions 

that can be drawn from Parts A and B (10 Final Conclusions) and some 

recommendations for future work in this field (11 Future Work). 
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Part A - 2 Samples and Methods 

2 Samples and Methods 

Definition 

The terms used throughout this study to describe the analyzed lithologies are 

based on the conventions displayed in Table 1: 

% particles<2/lm unconsolidated consolidated consolidated 
soft non-fissile fissile 

>65 clay claystone 
shale 

45-65 mud mudstone 

<45 silt siltstone silty shale 

Table 1 The classification of fine-grained siliciclastic sediments used in this study. 

2.1 Sample locations 

80 samples from 10 DSDP/ODP wells were selected based on the following 

criteria: 

1. Samples are at maximum depth (vertical effective stress), i.e. no major 

uplift or erosion has occurred. 

2. Detailed information about the lithology (physical properties etc.) and 

stratigraphical age is available. 

3. Maximum temperatures are below 60°C to avoid significant diagenetic 

reactions. 

4. In situ pore pressures are hydrostatic to prevent unloading effects, i.e. 

effective stresses do not deviate from maximum due to elevated pore 

fluid pressures (good knowledge of effective stress is essential). 

In order to increase the representativeness of the examined material, a 

variety of different geographical locations (Fig. 3) were chosen to provide a 

collection of different lithologies, burial depths (effective stresses), 

mineralogical assemblages and geological ages. 

The water depths at the well sites range from 98 m (New Jersey Shelf; Table 

2) to 5278 m (Wharton Basin), the age of the sediments spanning about 156 

Ma (Recent to Oxfordian; Table 2). Burial depths range from 1 m to 959m. 

The sedimentary regimes under which the sediments were deposited range 
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Part A - 2 Samples and Methods 

from mid-ocean ridge to continental shelf, representing deep sea basin, 

continental rise, slope, and upwelling conditions (Fig. 3). 

The sample material from the older wells (26/250, 261257 and 36/330), drilled 

in the early and mid-1970's, consisted of nearly dried-out core chips, whereas 

the majority of samples comprised relatively fresh, wet core plugs. The 

amount of material used varied between 12 and 15 g, depending on the water 

content. 

Fig. 3 Location of the sampled DSDP and ODP wells. 

Well Water Depth No of Deepest Sample Age Range Sed. Regime 
[m) Samples [m) 

26-250 5119 10 648 Plio-Miocene Deep Sea Basin/Ridge 

26-257 5278 4 250 Pleisto-Albian Deep Sea Basin 

36-330 2626 9 520 Albian-Oxfordian Rise 

43-386 4782 14 959 Pleistocene-Albian Rise 

57-440 4509 8 748 Pleisto-Miocene Trench Slope 

116-719a 4748 9 449 Pleisto-Miocene Deep Sea Fan 

127-794a 2821 6 485 Pleisto-Miocene Deep Sea Basin 

150-906a 925 6 560 Mio-Eocene Slope 

174-1072a 110 6 250 Pleisto-Miocene Shelf 

175-1084a 2004 8 450 Pleisto-Pliocene Coastal Upwelling 

Table 2 Details of the sample set. 
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2.1.1 Leg 26 Indian Ocean: Site 250: Mozambique Basin 

Well 26/250 is located in the southeast of the Mozambique Basin (Fig_ 3) 

near the north flank of the Indian Ocean Ridge and was drilled in 5119 meters 

of water (Davies et al. 1972). The basin is bounded west and east by the 

north-south-trending Mozambique and Madagascar rises, respectively. Much 

of the sediment fill is thought to be derived from the Zambezi Canyon and 

Fan system which transports sediments from East Africa and Madagascar 

south to the Mozambique Basin. Sedimentation rates in this area are 

estimated to be about 25m/Ma for the Miocene and about 45m/Ma for the 

Pliocene-Recent. 

Lithological description Core Depth [mbsfl Epoch Sed. rate [m/Mal 

Detrital Clay 4-6 119.38 L-Pliocene 47 

Detrital Clay 6-3 189.6 M-Pliocene 25 

Detrital Clay 7-4 238.65 L-Miocene 25 

Detrital Clay 8-4 295.65 L-Miocene 25 

Detrital Clay 9-3 351.22 M-Miocene 25 

Detrital Clay 10-2 407.3 E-M-Miocene 25 

Detrital Clay 11-2 464.97 E-M-Miocene 25 

Detrital Clay 13-4 571.67 E-M-Miocene 25 

Detrital Clay 14-2 606.7 E-M-Miocene 25 

Detrital Clay 17-2 645.71 L-Pliocene 25 

Table 3 Samples from well 26/250: Mozambique Basin; L - Late, M - Middle, E - Early. 

The age of the 10 examined samples (Table 3, Fig. 4) spans from Recent to 

Upper Cretaceous (Coniacian). All samples are comprised of fine-grained 

detrital clay (Fig. 4) which sometimes contain low amounts of coccoliths. 

10 
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Depth [mbsf] Lithology 

Clayey coccolith ooze 
116 Interbedded with detrital .Ilty 

clay 
t----==----; -116-351 _ -

-1-568 _ 

568-638 _ 

638-725.3 

Interbedded detrital clay 

Detrital clay 

Age 

Recent - Upper 
Pliocene 

Upper Pliocene -
Upper Miocene 

Upper Miocene -
Lower/Middle 
Miocene 

UM Miocene 

Lower Miocene -
Coniac -samples 

Fig. 4 Lithostratigraphy of well 26/250: Mozambique Basin (Davies et al. 1972) . 

2.1.2 Leg 26 Indian Ocean: Site 257: Wharton Basin 

Well 26/257 was drilled southwest of Australia (Fig. 3), in the south-eastern 

Wharton Basin, northeast of the Naturaliste Plateau (Davies et al. 1972). The 

lithological column at this location is represented by only a thin (262m) 

sedimentary sequence, which overlies oceanic crust (olivine basalt, Fig. 5). 

The deep water conditions at this site (5278m water depth) are reflected by 

the present sediments, comprised of zeolite rich or zeolite bearing, dark 

reddish-brown detrital clay. 
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Fig. 5 Lithostratigraphy at site 26/257: Wharton Basin (Davies et al. 1972). 

An absence of palaeontological data makes a stratigraphic subdivision very 

difficult. Therefore, sedimentation rates can only be estimated at about 

2m/Ma or less for the first 199.5mbsf (Davies et al. 1972) and at least 

25m/Ma for the remaining deeper sediments (>199.5mbsf). Four clay 

samples were selected from well 26/257 (Table 2), covering about 100Ma 

years of deep sea sedimentation. 

Lithological description Core Depth [mbsfl Epoch Sed. rate [m/Mal 

Detrital Clay 1-5 7.2 ? - 2 

Detrital Clay 3-2 49.2 ? - 2 

Detrital Clay 5-2 124.04 Campanian 2 

Detrital Clay 9-2 248.7 E-M-Albian 25 

Table 4 Samples from well 26/257: Wharton Basin; L - Late, M - Middle, E - Early. 

2.1.3 Leg 36 Falkland Plateau 

Well 36/330 is located at Maurice Ewing Bank, the eastern end of the 

Falkland Plateau (Fig. 3). The well, drilled at a water depth of 2626m, passed 

through 551 m of sediments and 26m of basement rock, represented by a 

gneiss pegmatite (Fig. 6). During the last 100Ma (Recent-Albian) about 50m 

of diatomaceous and nannofossil-rich clays and oozes were deposited at very 

low rates of about 1.6m/Ma (Barker et al. 1974). In Early Albian to Late 

Jurassic times sedimentation rates were calculated to be between 22m/Ma 
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and 25m/Ma and are represented by nannofossil clays, sapropelic claystones 

and more or less silty clays_ Previous to this period, during Late to Middle 

Jurassic times, higher sedimentation rates around 100m/Ma led to the 

accumulation of a unit of sands and silts (Fig. 6). 

Depth [mbsf] Lithology 

34-200 _ Nanno ooze. nanno clay -

540-551 

Age 

Cenomanian -
Early Albian 

Fig. 6 Lithostratigraphy of well 36/330: Falkland Plateau (Barker et al. 1974). 

Erosion, nondeposition or a drastic reduction in sedimentation rate (Barker et 

al. 1974) resulted in a hiatus of approximately 19m between the Oxfordian 

sapropelic claystone and silty clay (Fig. 6). The dimension of this gap was 

regarded as being of low significance for the overall compaction trend of this 

well. However, since sampling over this interval was very dense (Table 5), 

any drastic change in the compaction trend would have been noticed. 

13 
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Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma] 

Nannofossil Claystone 1-4 134.71 M-Albian 22 

Nannofossil Claystone 2-2 177.41 M-Albian 22 

Sapropelic Claystone 6-4 314.55 Aptian 22 

Sapropelic Claystone 8-3 350.37 E-Kim-Oxfordian 25 

Sapropelic Claystone 9-2 377.75 Oxfordian 25 

Sapropelic Claystone 10-2 405.95 Oxfordian 25 

Silty Claystone 11-2 434.8 Oxfordian 100 

Silty Claystone 13-1 490.83 Oxfordian 100 

Silty Claystone 14-2 519.88 Oxfordian 100 

Table 5 Samples from well 36/330: Falkland Plateau; Kim - Kimmeridgian, L - Late, M - Middle, E -

Early. 

2.1.4 Leg 43 Bermuda Rise 

Well 43/386 was drilled at a water depth of 4782m on the central Bermuda 

Rise, 140km south-southeast of Bermuda (Fig. 3). The drilled section is 

represented by an almost continuously deposited sediment column, ranging 

in age from Cretaceous (Albian) to Recent (Tucholke et al. 1975). The 

sediments are mainly comprised of: 

1. Nannofossil ooze and clay in the upper Pleistocene-Miocene 

formations 

2. Volcanogenic sand turbidites in the Oligocene and Upper Eocene 

3. Siliceous and calcareous turbidites in the Middle Eocene 

4. Cherty and radiolarian claystones in the Lower Eocene-Upper 

Paleocene 

5. Multicolored claystone in the Cretaceous (Fig. 7). 

Sedimentation rates were generally low, between 9m/Ma and 20-40m/Ma. For 

this study 14 samples were taken up to a depth of 957mbsf (Fig. 7, Table 6). 
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Fig. 7 Lithostratigraphy at site 43/386: Central Bermuda Rise (Tucholke et al. 1975). 

Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma] 

Stiff Brown Clay 1-6 59.28 Pleistocene 8 

Brown Clay 4-4 151 .97 E-Miocene 

Grey Claystone 11 -2 252.94 E-Oligocene 10 

Olive Silly Claystone 14-5 335.82 M-Eocene 7 

Olive Claystone 26-2 480.81 E-Eocene 50 

Grey Claystone 28-3 502 E-Eocene 20 

Grey Claystone 32-5 562.96 E-Eocene 15 

Red Claystone 36-4 646.8 L-Cretaceous 2 

Black Claystone 42-4 731.8 L-Cenomanian 15 

Olive Claystone 50-4 818.22 E-Cenomanian 15 

Black Claystone 54-6 858.82 L-Albian 15 

Black Claystone 55-4 865.05 L-Albian 15 

Grey/Black Claystone 59-3 900.59 E-M-Albian 20 

Black Claystone 65-2 957.37 E-Albian 20 

Table 6 Samples laken from well 43/386: Bermuda Rise; L - Late, M - Middle, E - Early. 

2.1.5 Leg 57 Japan Trench 

Site 440 was drilled at a water depth of 4515m, 28km west of the Japan 

Trench, on the trench inner slope. The site lies on a prominent midslope 
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structural terrace that is about 5km wide and extends more than 50km 

parallel within the trench, without structural offset (Huene et al. 1977). 

The sediment section, of which over 800m were penetrated, is comprised of 

fairly uniform hemipelagic mudstone and ranges in age from late Miocene 

through late Pleistocene (Fig. 8). 
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Fig. 8 Lithostratigraphic subdivision of well 57/440: Japan Trench (HUENE ET AL. 1977). 

Three or more periods of slumping in the Miocene and Pliocene are the only 

breaks in continuous sedimentation. Sediment accumulation rates, which are 

uncorrected for compaction, were around 105m/Ma during the Late Miocene 

to Lower Pleistocene and increased more than twofold during the Upper 

Pleistocene, to about 270m/Ma (Huene et al. 1977). 

The eight claystone samples, which were selected from this well for analysis, 

cover the depth between 208mbsf and 748mbsf (Table 7) and range in age 

from about 1 Ma to 7Ma. 
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Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma] 

Claystone 8-2 208.2 L-Pleistocene 270 

Claystone 13-3 257.23 E-Pleistocene 105 

Claystone 24-1 358.74 E-Pleistocene 105 

Claystone 28-3 399.7 L-Pliocene 105 

Claystone 39-2 502.72 L-Pliocene 105 

Claystone 52-1 624.7 E-Pliocene 105 

Claystone 60-2 702.2 E-Pliocene 105 

Claystone 65-1 748.24 L-Miocene 105 

Table 7 Samples taken from well 57/440: Japan Sea; L - Late. M - Middle. E - Early. 

2.1.6 Leg 116 Bengal Fan 

Himalayan uplift and sea-level fluctuation have markedly influenced the 

relative rate of growth and the type of sediment deposited at site 719 during 

the development of the Bengal Fan (Cochran et al. 1988, Fig. 9) . 

ao- as" eo' 8S" 100' 

Fig. 9 The geographical position of well 116n19 on the outer Bengal Fan system (WETZEL & 

WIJAYANANDA 1990). 

Prominent changes in sedimentation occurred when the silty turbidite 

sections of Miocene and Pleistocene age were disrupted by mud-rich 

Pliocene turbidite sequences (Fig. 10). The latter were separated by pelagic 

clays that accumulated at a rate of 70m/Ma. The Pleistocene mud turbidites 
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accumulated at a rate of 50-100m/Ma. The youngest, Late Pliocene 

sedimentation rates were determined as ranging between 150m/Ma and 

200m/Ma. Although the state of consolidation varies between under- and 

overconsolidated, Cochran et al. (1988) classified most sediments to be 

normally consolidated. 

350 

Llllloloqy f~ 

~§ 

PtietiO ottO«IOU. (Fe) CIIY 

~T------a .... d I ... bl4l1" ---------- .... d. IIId 1_ .. ,0 Oily' 
:-:-: -:_:_ II' 2. 3. ClClft lOllll 

f+t+:] + + 0 101'1.., 10 ,,,.1) mud turb idlt" ....... .. 

l ilt .,<1 . ilt Mud turbiditH 
eFI dO"'in~n 

Fig. 10 The lithostratigraphy for well 1161719 (Cochran et al. 1988). 

Table 8 shows the lithologies and depths of the 9 samples that were chosen 

from well 116/719. 

Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma] 

Clay 11X-1 90.58 L-Pleistocene 175 
Clayey Silt 14X-2 120.12 L-Pleistocene 175 

Clay 16X-1 138.26 Pleisto-L-Pliocer 75 
Clay 17X-3 150.87 Plelsto-L-Pllocer 75 
Clay 22X-4 200 L-Pllocene 75 
Clay 28X-1 251.55 L-Mlocene 75 
Clay 33X-2 300.75 L-Miocene 75 
Clay 38X-3 350.3 L-Miocene 75 
Clay 48X-6 448.95 L-Miocene 75 

Table 8 Samples taken from well 1161719: Bengal Fan; L - Late, M - Middle, E - Early. 
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2.1.7 Leg 127 Yamato (Japan) Sea 

The sedimentary sequence overlying the basement in the 2811 m deep 

Yamato basin (Fig. 11) is built from five distinct lithological formations. These 

are: 

1. Lower Miocene delta-front sands and siltstones rich in plant debris 

2. Middle Miocene siliceous and carbonate-rich hemipelagic claystones 

and volcanic tuffs 

3. Upper Miocene claystones and porcellanites 

4. Pliocene diatom oozes 

5. Light/dark rhythmic Plio-Pleistocene sediments (Tamaki et al. 1990, 

Fig. 12). 

Fig. 11 The Yamato Basin and the position of well 1271794 west of the Islands of Japan (Tamaki et al. 

1990). 

The 6 selected samples range in depth from close to sea floor (1 mbsf) down 

to about 485mbsf and cover various clay-rich lithologies (Table 9, Fig. 12). 
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Lithological description Core Depth [mbsf] Epoch Sed . rate [m/Ma] 

Clay 1H-1 1.02 Pleistocene 35 

Diatomaceous Silty Clay 9H-5 80.28 L-Pliocene 33 

Claystone 9R-1 376.07 L-Miocene 36 

Claystone 11 R-1 395.75 L-Miocene 36 

Siliceous Silty Claystone 17R-1 453.6 M-Miocene 36 

Claystone 20R-3 485.35 M-Miocene 36 

Table 9 Samples taken from well 127n94: Yamato Sea; L - Late. M - Middle. E - Early. 

Sedimentation rates at site 127/794 were calculated as follows: 36-38m/Ma 

for the Middle Miocene, 25-54m/Ma for the Upper Miocene through Upper 

Pliocene, and 30-35m/Ma for the Uppermost Pliocene to Quaternary (Tamaki 

et al. 1990). 

Fig. 12 Lithostratigraphy at site 127n94 (Tamaki et al. 1990). 
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2.1.8 Leg 150 New Jersey Slope 

One of three sites drilled on the New Jersey continental slope during Leg 150, 

well 906 is located about 70km south-west of well 174/1072 (Fig. 13) at a 

water depth of 925m (Mountain et al. 1994). The sediments in this well cover 

Eocene to Holocene ages and are dominated by clays, claystones and silty 

clays. Sequence boundaries, which can be traced from the shelf to the slope, 

mark a fundamental change in depositional regime from Eocene chalks to 

Oligocene and younger siliciclastic sediments (Fig. 14). 

Fig. 13 Locations of wells 150/906 and 174/1072 on the outer New Jersey continental shelf and slope 

(Vanderaveroet 2000). 

The sedimentary record shows a filled canyon which was formed between 

15Ma and 12Ma (ODP-TAMU, 2001) ago. The early canyon filling consists 

mainly of debris from its walls and turbidites. The end of the canyon phase is 

marked by rapid infilling with laminated mUd. 

Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma] 

Silty Clay 14X-l 121.31 L-Miocene <100' 

Silty Clay 31X-l 285.6 M-Miocene <100' 

Silty Clay 33X-l 305.05 M-Miocene <100' 

Clay-Silty Clay 41X-3 384.53 E-M-Miocene <100' 

Claystone 51X-3 481 .1 L-Oligocene <100' 

Silty Claystone 59X-l 554.86 L-Eocene <100' 

Table 10 Samples from well 150/906: New Jersey Slope; L - Late, M - Middle, E - Early; . ) estimated 

from age and thickness. 
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The depths and lithologies of the six samples taken from this well are shown 

in Table 10 and Fig. 14. 

Fig. 14 Lithostratigraphy of well 150/906a (Mountain at al. 1994). 

2.1.9 Leg 174 New Jersey Shelf 

Site 1072 was drilled on the outer continental shelf of the New Jersey margin, 

about 130km east of Atlantic city (Fig. 13). The drilled formations belong to a 

classic passive continental margin sequence (Austin et al. 1998) and are 

mainly comprised of silty and muddy sands, sands and clays (Fig. 15). 
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Fig. 15 Lithostratigraphy of well 174/1072 (Austin et al. 1998). 

The accumulation rates at site 174/1072 are reported to be in the range of 

tens to hundreds of m/Ma (Austin et al. 1998). Six samples have been taken 

for analysis (Table 11, Fig. 15). 
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Lithological description Core Depth [mbsf] Epoch Sed. rate [m/Ma) 

Silty Clay 7R-1 51 .35 L -Pleistocene ~ 1 50· 

Silty Clay 11 R-1 71.08 Pleisto-E-Pliocene ~ 1 50· 

Sandy Mud 17R-1 100.21 Pleisto-E-Pliocene ~ 1 50· 

Sandy Mud 25R-3 145.16 Pleisto-E-Pliocene ~ 1 50· 

Silty Clay 37R-1 198.34 E-Plio-L-Miocene ~ 1 50· 

Muddy Sand 46R-4 249.68 E-Plio-L-Miocene ~ 1 50· 

Table 11 Samples from well 17411072: New Jersey Shelf; L - Late, M - Middle, E - Early; .) estimated 

from age and th ickness. 

2.1.10 Leg 175 Benguela Current 

Well 175/1084 was drilled in the upwelling area of the Benguela Coastal 

Current (Fig. 3) . which is fed from the thermocline by South Atlantic Central 

Water. The latter originates at the Subtropical Convergence Zone by mixing 

and sinking of subtropical and subantarctic surface water (Lutjeharms & 

Valentine 1987). 
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Fig. 16 Lithostratigraphy and sampled horizons of well 175/1084 (Wefer et al. 1998). 

The lithostratigraphic column at site 1084 is built up mainly by hemipelagic 

nannofossil and diatom-bearing clays and oozes (Fig. 16). a sedimentary 
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facies typical for upwelling zones. The eight samples analyzed from this well 

were taken from the clay-rich sequences (Fig. 16, Table 12), but the 

fossiliferous opal content in these samples can still reach up to 27 wt% 

(Wefer et al. 1998) . 
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Fig. 17 Sedimentation rates at site 175/1084 for the Early Pliocene to Pleistocene periods (W efer et al. 

1998). 

Sedimentation rates range from 100m/Ma to 270m/Ma with highest values 

within the last 1 Ma (Fig. 17). Prominent gaps of sedimentation or erosional 

surfaces have not been described (Wafer et al. 1998). Any information about 

elevated pore pressures due to disequilibrium compaction has so far not been 

reported from this site. 

Lithological description Core Depth [mbsfj Epoch Sed. rate [m/Ma] 

Nannofossil Clay 12H-5 103 Pleistocene 150 
Diatomaceous Nannofossil Clay 17H-1 145.8 Pleistocene 230 

Nannofossil Clay 24X-1 201 M-Plelstocene 220 

Nannofossil Bearing Clay 29X-1 250.1 E-Plelstocene 120 

Nannofossil Clay 34X-3 300.1 L-Pliocene 140 

Diatomaceous Clay 39X-3 349.5 L-Pliocene 170 

Nannofossil-Rich Diatomaceous Clay 43X-4 389.4 L-Pllocene 170 

Nannofossil Clay 49X-6 449.3 L-Pliocene 120 

Table 12 Samples from well 175/1084: Benguela Current; L - Late. M - Middle. E - Early. 
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2.2 Mineralogy 

The mineralogy of the sample set was determined by X-ray powder 

diffractometry. The setup used was a Hiltonbrooks DG2 X-ray generator 

connected to a Phillips PW 1050 goniometer with a Phillips PW 1752 single 

crystal graphite monochrometer. The settings for each measurement were: 

Cu-Ka radiation, 40kV, 20mA, 0.04°20 step size, 0.02°/sec speed and 2.5-

80.02°20 range of measurement. 

2.3 Physical properties 

2.3.1 Grain size 

The preparation for the grain size analysis is a two step process: firstly the 

sample material is disaggregated using the freeze-thawing method described 

by Yang & Aplin (1997), then, after freeze-drying, the samples are dispersed 

and homogenised using an ultrasonic probe. Finally, the grain size distribution 

(63-0.25 Jlm) is determined using a Micromeritics Sedigraph 5000ET©. For 

this measurement about 1.5g of sample material are dispersed in 45ml of 

distilled water. 5ml of a dispersant solution (0.35M sodium 

metaphosphate/0.06M sodium carbonate) are then added to the sample 

solution to avoid any flocculation of clay minerals. During the Sedigraph 

measurement, X-rays pass through a cell filled with the sample solution and 

the X-ray intensities detected on the other side of the cell determine the 

settling velocity of the dispersed particles. Applying Stokes' Law, these 

settling velocities are then transformed into particle sizes. The weight 

percentage of material coarser than 63J..Ull is determined using a 63Jlm sieve. 

The particle sizes resulting from the application of Stoke's law describe 

values for spherical grains. These are sufficient for samples mainly 

comprised of quartz or other spherical minerals but do not accurately 

describe the grain sizes of platy minerals like phyllosilicates. To overcome 

these problems the Sedigraph measurements were calibrated with internal 

standards (London Clay) which had been previously analysed using the 

pipette method (British Standards 1377, part 6, 1990). The pipette method 

utilizes the relationship between settling time and grain size (Stoke's Law). 
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For this method a sediment sample is brought into suspension and sampled 

by pipette after pre-defined time intervals. Due to the rapid settling velocities 

of grains with diameters larger than 10J,lm, only the ~1 OJ,lm size fraction could 

be calibrated using this method. Consequently, the detailed analysis of the 

grain size distributions in this study was limited to the 0.25Ilm-10llm interval. 

The repeated analysis of the internal standards with the Sedigraph revealed a 

relatively high reproducibility for this interval. 

For the Sedigraph method, every sample has a distinct value for the RATE­

parameter that controls the measurement (duration, step size etc.). RATE 

stands for sedimentation rate and depends on the liquid viscosity and on the 

liquid and particle densities. The input parameters to determine RATE are the 

grain density, the weight of the sample material, the temperature and the 

volume of the dispersed sample solution. In order to estimate the errors of 

incorrect grain densities or temperatures, the effects of different RATE-values 

on the resulting clay fraction was determined using a fine-grained (76% 

<2J,lm) sample. The results reveal, that the errors caused by deviating grain 

densities (± 0.15 g/cm3) and solution temperatures (± 2°C) are within the 

reading errors caused by the thickness of the plotting line (± 0.75 % <2J,lm). 

2.3.2 Grain density 

In reality, rocks are very inhomogeneous and comprised of many different 

minerals with varying densities. Different depositional environments lead to 

lithologies which might be classified by grain size (e.g. silts or clays), but are 

dominated by very different constituents. Textbooks often display lists of grain 

densities or grain density ranges for certain lithologies, which are then used to 

estimate physical properties like porosity, sonic velocity or shear strength. 

Table 13 shows published grain density ranges for minerals and lithologies 

that are typical for use in petroleum geoscience (e.g. basin modelling). 

Changes in mineral composition due to different sedimentary regimes (e.g. 

shelf or deep sea basin) are reflected by large variations in grain density 

(Table 14) and might limit the applicability of the published values (Table 13) 

significantly. Additionally, diagenesis and low-grade metamorphism during 

burial alter the mineral matrix and change the grain density of these 
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lithologies further. It is therefore very important to establish which range of 

grain densities can be expected for a certain lithological formation. The 

importance of these observations becomes more and more important due to 

the increased number of petroleum prospects in shallow deep sea 

sedimentary sequences (Ellouz-Zimmermann & Mascle, 2001). 

Lithology/Mineral Density [g/cm3
) 

Sandstone 2.65 

Limestone 2.71 

Dolomite 2.87 

Clay-shales 2.65-2.70 

Salt 2.04 

Gypsum 2.35 

Quartz 2.65 

Smectite 2.0-3.0 

Kaolinite 2.40-2.69 

Chlorite 2.60-3.22 

Muscovite 2.76-3.1 

Biotite 2.65-3.1 

Table 13 Typical grain densities (matrix densities) used in petroleum geoscience (Rider, 1996). 

In this study, the grain densities for a variety of marine clay-rich lithologies 

comprised of a wide range of different mineral phases were obtained applying 

the pyknometer method (British Standard 733, 1987). Some of the results are 

displayed in Tabl~ 14 and reveal, that under certain circumstances sediments 

classified as "clay" can yield grain densities around 2.1 g/cm3 whereas others 

reach values of up to 2.9 g/cm3
. The dominance of opal-A!opal-CT in 

upwelling systems for example, can lead to a significant decrease in grain 

density whereas the abundance of smectite in other areas increases this 

value. Higher organic carbon contents also lead to lower grain densities. 

After elimination of all samples containing significant amounts of nan no- or 

microfossils (diatoms, radiolaria etc.) and thus opal-A!opal-CT, the grain 

density average of the remaining clays and mudstones is about 2.71 g/cm3
. 

This value closely resembles the "shale" grain density value used for most 

basin models (Table 13; Rider, 1996). The grain densities of the complete 

sample set averages about 2.61 g/cm3
• Quartz standards (grain density: 2.65 
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g/cm3} were included in all runs (sets of about 15 samples) and revealed a 

standard deviation of ± 0.02 g/cm3 for 29 measurements (Fig. 18). 

Sedimentary environment Water depth [m] Sample depth [m] Grain density 

Shelf 98 51 .35 2.781 
Coastal Upwelling 2004 250.1 2.294 

Coastal Upwelling 2004 389.4 2.103 

Continental Rise 2626 350.37 2.662 

Continental Rise 4782 252.94 2.946 

Continental Rise 4782 731.8 2.763 

Deep Sea Fan 4748 200 2.789 

Deep Sea Basin 2821 453.6 2.579 

Table 14 The variety of grain densities in samples of similar grain size (·clays·). 
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Fig. 18 Summary of grain densities determined for a quartz standard. The calculated mean and median 

is 2.65 ± 0.02 glcm3
• 

2.3.3 Porosities provided by OOP 

The majority of the porosities published by the DSDP and ODP were 

determined gravimetrically, using the wet bulk weight, dry weight, volume and 

grain densities of fresh sample material at room temperature (Boyce 1976, 

1984). In few cases (26/250-7,8,10,13,14,17), only porosity data calculated 

with the GRAPE tool were available. The GRAPE technique utilises the 

attenuation of gamma ray intensity in a beam passing through a sediment 

sample to calculate the bulk density (Boyce 1976, 1984). This on-board 
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technique is very sensitive to both the quality of the core and the accuracy of 

the actual measurement process, and usually provides data of lower 

reliability. In addition, the grain density used in the GRAPE algorithms to infer 

the porosity is by default 2.7 glcc (Boyce 1976) which often deviates 

significantly from the real values. 

In some cases, sample material provided for this study originated from 

positions on the core which were up to 5m away from those used by the ODP 

for their porosity measurements. In these cases ODP porosities over the 

adjacent interval were averaged to diminish the uncertainties. 

2.3.4 Mercury intrusion porosimetry 

Due to the fragile and soft condition of most samples, special care had to be 

taken for the preparation of samples for mercury porosimetry. Several 

samples could not be analysed because of their very soft state. For the 

remaining samples the method of Delage & Lefebvre (1984) was applied to 

dry the core material for the mercury porosimetry. A detailed description of 

this method will follow in the next chapter. The porosimetry measurements 

were made using a Micromeritics© Autopore " 9220 mercury intrusion 

porosimeter. 

2.3.5 Sample dehydration 

2.3.5.1 Background 

Drilling and sampling of soils and clay-rich formations, which have not been 

lithified by cementation, revealed that these sediments remain relatively soft 

(Le. sensitive to small physical forces) until burial depths of at least 1000m. 

Exposure to air leads to the evaporation of pore water of these structurally 

weak sediments and the surface tension forces at the air-water interface often 

cause significant shrinkage (e.g. Gillot 1973; Tovey & Wong 1973; Delage et 

al. 1982, Delage and Lefebvre 1984). To avoid these fabric changes, various 

methods to remove the pore fluid have been examined and the effects on the 

microstructure analyzed (e.g. Tovey and Wong 1973; Gillot 1973). Results 

revealed that the simple exposure to air under ambient conditions (Gillot 

1973) has the strongest impact on clay fabric and that oven drying causes 
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less shrinkage than air drying (Tovey & Wong 1973). However, both methods 

significantly alter the sample material and must be used with caution when 

determining the structural or physical properties of sediments. In contrast, 

methods like freeze-drying or critical point drying have been found to be least 

destructive and are widely recommended for the pore structure analysis of 

soils and clays (e.g. Gillot 1973; Tovey and Wong 1973; Delage et al 1982). 

More recent publications (e.g. Delage and Lefebvre 1984; Griffiths and Joshi 

1990; Dewhurst et al. 1998) suggest that freeze-drying is the most commonly 

used drying method. 

Many of the samples examined in this study were provided by the DSDP/ODP 

and most of these had dried out during storage. In order to estimate the 

impact of drying on the mercury intrusion porosimetry (MIP) measurements, 

two glacial clay samples have been experimentally dried and analyzed by 

MIP. 

2.3.5.2 Sample storage and drying techniques 

The rationale for taking two glacial clay samples was to establish the extent to 

which different methods of storage and drying affect the poroperm properties 

of non-lithified, clay-rich sediments. If these effects are known, it will be 

possible to estimate the minimum corrections that need to be made to the 

porosity and pore size distribution of dried-out clay and soil samples. 

In this investigation two clay cores (61 and 611) were taken from an open 

boulder clay pit at 6irtley Brickworks in Birtley, south of Newcastle upon Tyne. 

The cores were taken using a plastic pipe Scm in diameter.The first core (BI) 

was located stratigraphically 4m lower than the second (611). The mineralogy 

of both samples is dominated by kaolinite and quartz with illite and chlorite as 

accessory constituents. 61 and BII have a grain densities and clay fractions of 

2.76g/cm3 and 67% and 2.8g/cm3 and 56%, respectively. 

Two pieces of each sample were separated directly after sampling to 

measure the degree of pore-water loss due to different methods of sample 

storage. One piece of each sample was placed in an open plastic beaker and 

stored in a cupboard under ambient conditions. The second piece as well as 

the remainder of the sample material was wrapped in aluminium foil, placed 
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in a plastic bag and stored in a refrigerator. The weights of all samples were 

measured on the day of sampling and on several later dates in order to 

determine the amount of pore water evaporated. 

The extent of the water loss for the two methods of sample storage are 

displayed in Fig. 19 and Fig. 20. Exposure to air led to a reduction of sample 

weight by 22% and 21 % after 77 days for BI and BII, respectively (Fig. 19). 

This accounts for a reduction of the total water content by 93% for BI and 

94% for BII (Table 15). A second measurement after 238 days revealed that 

by then about 99% of the pore water in both samples had been lost due to 

evaporation. In comparison, samples stored in the refrigerator lost 

insignificant amounts of water (Fig. 20, Table 15). The water content after 

storage for 204 days was still greater than 99% of the initial value for both BI 

and BII. At this point the foil wrapping of the samples had to be renewed, 

resulting in the loss of minor amounts of sample material and thus, a 

relatively large decrease in weight after 238 days. 

Water loss due to air drying 
(storage under ambient conditions) 
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Fig. 19 The amount of pore water lost during storage of two clay samples (BI & BII) under ambient 

conditions. Both samples have lost most of their moisture after 77 days. 
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Water loss during storage in refrigerator 
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Fig. 20 The extent of evaporation during storage in a refrigerator. The amount of pore water lost during 

storage is minimal (less than 0.5% after 204 days) and only the replacement of the aluminium foil 

wrapping led to a distinct loss of sample weight. 

Sample weights [g) Water content [%) 

Sample start 77 days 204 days 238 days total 77 days 204 days 238 days 

BI air 81.5 63.3 62.47 31 2.2 0.3 

BII air 93.3 73.8 73.1 28 1.6 0.4 

BI refrigerator 284.6 284 283.76 281.9 31 30.8 30.7 30.3 

BII refrigerator 262.4 262.1 261 .38 260.6 28 27.9 27.7 27.7 

Table 15 Changes of weight and water content during storage for two glacial clays. 

As a next step, parts of both the air dried and the wet sample material (i.e. 

material stored in the refrigerator) were separated for mercury intrusion 

porosimetry (MIP). For this measurement the sample material has to be dry, 

to avoid the blocking of pore space by water. As mentioned before, these 

experiments were aimed at the assessment of the impact of different drying 

methods on MIP. Therefore, three different procedures were used to prepare 

both air dried and wet samples for MIP. 

For the first method about 5g of the air dried and about 18g of the wet 

samples were placed in an oven at 105°e for 24 hours. For the second 

technique similar amounts of sample material were freeze-dried using Freon 
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22™, liquid nitrogen and an EDWARDS Modulyo«:) Freeze Dryer. In this 

procedure the sample material is placed in a small glass beaker, immersed in 

Freon 22TM and cooled in a bath of liquid nitrogen for 5 minutes. Freon 22TM 

is used to increase the cooling speed of the pore water by avoiding an 

insulating gas coating, which would develop by placing the sample directly 

into liquid nitrogen. As a result, the pore water is transferred immediately into 

the amorphous ice state, thus avoiding any fabric damage due to volume 

expansion. After cooling in Freon 22™, the sample material is put directly into 

a bath of liquid nitrogen for another 1 0 minutes. The samples are then placed 

in the freeze dryer where the frozen pore water is removed by sublimation for 

24 hours. The third technique of drying the sample material is basically the 

combination of methods one and two, where samples are oven dried for 24 

hours directly after the "Freon 22TM freeze drying" process. 

The results of the measurements show (Fig. 21 & Fig. 22) that all three 

procedures remove approximately the same amount of pore water from the 

sample material. 

Different methods of drying 
(air dried samples) 
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24h at 105C 24h freeze drying 

Method of drying 

24h freeze drying + 
24h 105C 

Fig. 21 The amount of pore water removed from the air dried sample material by different drying 

processes: 1. 24h at 105°C (oven drying); 2. 24h Freon-22 TM freeze drying; 3. 24h Freon-22 ™ freeze 

drying combined with 24h at 105°C (oven drying). 
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Different methods of drying 
(wet samples) 

25 ~----------------~----------------------------~ 

~ 20 
L 

:g 15 
.2 .. 
'§, 10 
'iii 
3: 5 

0 -1-----'--

24h at 105C 24h freeze drying 

Method of drying 

24h freeze drying + 24h 
105C 

Fig. 22 The amount of pore water removed from the wet sample material by different drying processes: 

1. 24h at 105°C (oven drying); 2. 24h Freon-22 ™ freeze drying; 3. 24h Freon-22 ™ freeze drying 

combined with 24h at 105°C (oven drying) . 

The total water contents of samples BI and BII were determined by oven 

drying at 10Soe for 96 hrs and are within O,S-1 % of the values obtained from 

the three drying methods described above (Table 16), This leads to the 

conclusion, that all three techniques are effective in removing the pore water 

from the sampled clays, 

Sample/method Weight loss [%) Water content [%) 

BI Air oven 2.16 0.02 
BI Air FD 1.73 0.02 

BI Air FD + oven 1.78 0.02 

BII Air oven 2.19 0.02 

BII Air FD 1.84 0.02 

BII Air FD + oven 1.97 0.02 

BI wet oven 23.04 29.94 

BI wetFD 23.00 29.87 

BI wet FD + oven 23.26 30.31 

BII wet oven 24.23 31.98 

BII wet FD 23.17 30.15 

BII wet FD + oven 23.85 31 .33 

Table 16 The amount of pore water removed by oven drying for 24h at 105°C (oven), freeze-drying 

(FD) and a combination of both methods (FD + oven). 
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2.3.5.3 Dehydration effect on porosity and pore size distribution 

Apart from learning about the effectiveness in the removal of pore water, it is 

much more important to get information about the changes in fabric and thus 

pore space that accompany the different drying methods. This is of special 

relevance since the pore size distribution controlls properties like permeability 

and the critical entry pressure of a sediment. All these properties can be 

assessed using mercury intrusion porosimetry (MI P) and therefore all 12 

samples were analysed by this method. 

Fig. 23 and Fig. 24 illustrate the differences in the total MIP-porosities. The 

total MI P-porosity is determined by using the unintruded volume of the 

sample material (measured as part of the MIP process), its dry weight and 

grain density. It often differs slightly from the intruded MIP-porosity since not 

all pores are connected or large enough to be intruded under the applied 

pressures. 

Two main features can be observed; firstly, there is no significant difference 

in total porosity for the air dried samples, independent of all drying 

techniques. Secondly, each wet sample dried only in the oven showed exactly 

the same value for total porosity as the air-dried samples. In contrast, the 

total MIP-porosities determined for samples, which were either wet freeze­

dried or wet freeze-dried and then oven dried, were 5% (15%rel) to 7% 

(17%rel) higher (Table 17). Therefore, freeze-drying seems to be very effective 

in preventing a significant shrinkage of the initial pore space during drying. 

For both clays, BI and BII, the total porosities of the freeze-dried/oven-dried 

samples are 1 % higher than the freeze-dried samples. 

The total porosities calculated from the water content of the samples reached 

48% for BI and 44% for BII. A comparison with the total MIP-porosities (Table 

17) reveales a very good agreement for BII. However, the porosity determined 

gravimetrically for BI is about 5% (10%rel) greater than the one measured by 

MIP. Here, much smaller mean pore throat radii for BI might indicate that it 

was either not possible to intrude all pores with the applied pressure, or that 

BI contains a much higher amount of unconnected micropores. 
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MIP-porosities after different methods of drying 
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Fig. 23 The total MIP-porosities for the air-dried and wet samples of BI. Both the air-dried and the wet 

samples have been experimentally dried applying three different methods. 

MIP-porosities after different methods of drying 
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Fig. 24 The total MIP-porosities for the air-dried and wet samples of BII . Both the air-dried and the wet 

samples have been experimentally dried applying three different methods. 
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Sample/method Porosity [%) Vert. Permeability [m2
) rmean [nm) r90 [nm) 

BI Air Oven 36 1.7E-20 28 48 

BI Air FD 37 1.8E-20 30 51 

BI Air FD + Oven 36 1.8E-20 31 48 

BII Air Oven 38 3.1E-20 41 83 

BII Air FD 38 3.1E-20 42 80 

BII Air FD + Oven 39 3.5E-20 47 95 

BI Wet Oven 36 2.2E-20 37 56 

BI WetFD 42 3.7E-20 59 104 

BI Wet FD + Oven 43 3.5E-20 57 95 

BII Wet Oven 37 2.9E-20 39 77 

BII Wet FD 44 9.0E-20 118 191 

BII Wet FD + Oven 45 7.9E-20 106 159 

Table 17 Results of the mercury intrusion measurements for BI and BII. The vertical permeabilities were 

calculated applying Yang & Apl in's (1998) model. rmean and r90 describe the mean pore throat size and 

the pore throat size of the 90th percentile, respectively. 

The influence of each drying method on the clay fabric can best be observed 

by analysing pore throat size distributions obtained by MIP (Fig_ 25 to Fig. 

28). For both samples (BI & BII), mercury intrusion measurements for the air 

dried samples reveal remarkably similar pore throat size distributions (Fig. 25 

& Fig. 26). As for the total porosities obtained from MIP, wet samples which 

were oven dried have pore throat size distributions very similar to those for 

the air dried samples. 
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Fig. 25 Pore throat size distribution curves for the air dried samples and the wet oven dried sample of 

BI. All four drying methods resulted in very similar. unimodal distributions with insignificantly higher 

throat sizes for the wet sample. 
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Pore throat size distribution 
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Fig. 26 Pore throat size distribution curves for the air dried samples and the wet oven dried sample of 

BII. Similar to 81, all four drying methods resulted in very similar, bimodal distributions. 

The strong influence that different drying methods can have on the pore 

throat diameters of soft clays becomes clear when comparing the size 

distribution curves of the "wet" samples. In both cases (BI & BII) a significant 

shift towards larger pore throat diameters could be observed for clays that 

were freeze-dried or freeze-dried/oven dried instead of simply oven dried (Fig. 

27 & Fig. 28). 

The mean pore throat diameters obtained from the MIP measurements are 

listed in Table 17. For the air dried samples the mean pore throat radii are 

very similar (±2.5nm for the freeze-dried samples), regardless of the drying 

technique. In contrast, the mean pore throat diameters of the freeze-dried, 

wet samples are about 21 nm and 73nm greater than those of the air-dried 

samples, for BI and BII respectively. 

Even more striking are the variations of the 90th percentiles (roo) of the 

determined pore throat size distributions (Table 17). Again, for both BI and 

BII, the r90 values of all air dried samples are very similar. On the other hand, 

the differences between the wet oven dried and wet freeze-dried samples are 

significant. 
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Pore throat size distribution 
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Fig. 27 Pore throat size distribution curves for the wet samples of BI. The curves are shifted 

significantly towards higher pore throat diameters for the freeze-dried and freeze-dried/oven dried 

samples. 
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Fig. 28 Pore throat size distribution curves for the wet samples of BII. As could be observed for BI , the 

curves are shifted significantly towards higher pore throat diameters for the freeze-dried and freeze­

dried/oven dried samples. 

The roo value for the wet, freeze-dried sample of BI (104nm) is about twice 

that of the wet, oven dried sample (56nm), and three times greater for BII. 

40 



Part A - 2 Samples and Methods 

Drying induced porosity and fabric changes also alter permeabilities 

calculated from pore size distribution data (Yang & Aplin, 1998). The vertical 

permeabilities listed in Table 17 for freeze-dried samples are 1.6 to 3.1 times 

higher than the air dried or purely oven dried samples. The wet freeze-dried 

samples show higher permeabilities than the freeze-dried/oven dried 

samples, although their total porosities are slightly smaller. This difference in 

permeability is a result of higher rmean and r90 values for the wet freeze-dried 

samples (Table 17), which are input parameters for the permeability 

calculation (Yang & Aplin, 1998). 

Summarizing the discussed effects of the different storage and drying 

techniques on soft clays, two major conclusions have to be drawn: 1. only 

fresh sample material (in-situ water content) should be used for MIP; 2. Freon 

22TM freeze-drying effectively preserves the pore space and fabric of soft 

clays during drying. The latter observation confirms earlier experiments by 

Delage & Lefebvre (1984) who could show that in contrast to freeze-drying, 

oven drying of a sensitive Champlain clay resulted in a reduction of pore 

space by about 66%. The same study could show that the mean entrance 

pore radii of the oven dried samples were up to 7 times smaller than those of 

the freeze-dried samples. 
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3 Results 

3.1 Grain size distribution 

Measured clay fractions (% of mass <2J..lm) vary between 18% in sandy 

samples and 85% in deep sea clays (Table 18). 

Fig. 29 to Fig. 32 show weight percentages for the O.25J..lm to 10Jlm fraction 

which are representative for the sample set. The distinct characteristics of the 

grain size distributions reflect the various sediment types present in the 

sample set. For reasons explained in the previous chapter (2 Samples and 

Methods) the detailed grain size analysis was limited to the interval between 

O.25J..lm and 10J..lm. In Table 18 the weight percentages for the very fine­

grained «O.25Jlm) and coarse-grained material are listed together with the 

clay fraction «2Jlm) and median grain size (<1>50. where <1> = -log2(grain size in 

mm)). 

spherical grain diameter [J1m] 

Fig. 29 Histogram of the size distribution in the 0.25~m-10~m fraction for a sandy sample (18% <2~m). 

The amount of material outside this spectrum is 78% of the total sample mass (i.e. 70% >10~m & 8% 

<O.25~m). 
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Fig. 30 Histogram of the size distribution in the 0.25Ilm-1Qllm fraction for a fine-silt sample (40% 

<211m). The amount of material outside this spectrum is 32% of the total sample mass (Le. 16% > 1 Ollm 

& 16% <O.25Ilm) . 
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Fig. 31 Histogram of the size distribution in the 0.25Ilm-10Ilm fraction for a clay sample (73% <2Ilm). 

The amount of material outside this spectrum is 33% of the total sample mass (i.e. 8% > 1 Ollm & 25% 

<0.25Ilm). 
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.43/386-5085% clay' 

spherical grain diameter hIm] 

Fig. 32 Histogram of the size distribution in the 0.25I-Lm-1OIlm fraction for a deep sea clay sample (85% 

<211m). The amount of material outside this spectrum is 60% of the total sample mass (Le. 8% >10l-Lm & 

52% <O.25I-Lm). 

The grain size distributions reveal that both the mode of the grain sizes 

between 0.25J.1m and 10J.1m (Fig. 29 to Fig. 32) and the median grain size 

(Table 18) shift towards smaller grain diameters with increasing clay fraction. 

This shift is accompanied by an increase in the amount of material (weight 

percent) within the 0.25J.1m to 10J.1m size window for samples with clay 

fractions of up to 70-75% (Fig. 31). For the very fine-grained samples (>50% 

<0.25J.1m, Table 18) the median of the grain sizes passed the 0.25J.1m to 

10J.1m interval towards smaller diameters, resulting in a general decrease in 

sample material within the 0.25J.Lm to 10llm size fraction. 

3.1.1 Fossil-poor versus fossil-rich material 

The sample set was divided into two major categories. The first is comprised 

of samples which do not contain significant amounts of fossil material. The 

second group contains the sample material where DSDP/COP smear slide 

analyses identified larger amounts (>10%) of micro- and nannofossils or 

where X-ray diffraction analysis revealed the abundance of opal-AiCT (Le. 

siliceous fossil material). Scanning electron microscopy was also used to 

examine the constituents of the samples. 

The median grain sizes of the first category (fossil-poor samples) can be 

subdivided into three groups. The first group is mainly comprised of samples 

from wells 26/250 and 26/257, drilled into deep sea basin sequences which 

44 



Part A - 3 Results 

show median grain diameters of <0.45Ilm (<1»11.1; Table 18). The majority of 

samples (>80%) belongs to the second group, yielding median grain sizes 

between 0.6 to 3.21lm (-8.3 to 10.7<1». The last and smallest group consists 

of 5 silty to sandy sediments, the latter reflected in <I>-values smaller than 7.8 

(>4.4llm). 

Many of the fine and very fine-grained deep water samples show the typical 

grain size distributions for eolian sediment input, where the size mode is just 

coarser than 2j.lm (9<1» with very little material coarser than 16j.lm (6<1>; Rea 

and Hovan 1995, Joseph et al. 1998). 

A comparison of clay fraction and median grain size of the fossil-poor 

samples (Fig. 33) illustrates that both parameters are in very good agreement 

(R2 = 0.91). It also shows that both clay fraction and median grain size 

characterize lithology in a similar manner. 

The granulometric features of the fossil-rich samples in general resemble 

those of the fossil-poor material (Fig. 34 to Fig. 36; Table 19). However, 

median grain size and clay fraction are in less good agreement (R2 = 0.86; 

Fig. 33) than they are for the fossil-poor samples. 
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Fig. 33 A comparison of clay fraction and median grain size. Both fossil-rich and fossil-poor samples 

reveal a good agreement between the two parameters. However, the R2 value for the fossil-rich material 

is lower than that of the fossil-poor samples. 
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In order to obtain some information about the general sorting of the smaller 

than 1 O~m size fraction, the silt/clay ratio of this fraction was determined by 

dividing the mass percentage of the 2~m to 1 O~ fraction by the clay fraction 

(% ~2~m). The results show that on average fossil-rich samples (Fig. 34) 

contain slightly more silt-sized grains relative to the clay fraction than fossil­

poor samples. The determined silt/clay ratio for the former is 0.58 in contrast 

to 0.47 for the latter. 

In comparison with fossil-poor samples of the same clay fraction, fossil-rich 

samples usually show higher porosities. This observation might partly be 

explained by the observed difference in silt/clay ratio and the different shape 

and rigidity of the fossil material (Fig. 34). 

Fig. 34 SEM-image of the matrix of a sample representative for a fossil-rich , marine mudstone (36/330-

1 ). 
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Fig. 35 Histogram of the size distribution in the O . 25~m-1 O~m fraction for a fossil-rich silty sample (54% 

<2~m) . The amount of material outside this spectrum is 55% of the total sample mass (Le. 47% > 1 OlJm 

& 8% <O . 25~m) . 
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Fig. 36 Histogram of the size distribution in the O . 25~m-10j.J.m fraction for a fossil-rich clay sample (67% 

<2j.J.m) . The amount of material outside this spectrum is 37% of the total sample mass (Le. 10% >101Jm 

& 27% <O.25j.J.m). 
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Well Sample <1>50 <1>50 in 11m <211m [%] > 10llm [%] <O. 25Ilm [%] 
261250 4 11.5 0.4 72 9 45 
261250 6 11.5 0.4 72 8 46 
261250 9 >12.0 <0.3 77 8 51 
261250 11 >12.0 <0.3 74 11 51 
261257 1 11.1 0.5 70 15 41 
261257 3 >12.0 <0.3 76 8 57 
261257 5 11.3 0.4 73 8 44 
261257 9 >12.0 <0.3 82 8 59 
361330 6 8.0 4.0 39 34 19 
361330 8 9.6 1.3 62 11 23 
361330 9 9.5 1.4 59 12 15 
361330 10 9.7 1.2 62 11 16 
361330 11 9.0 2.0 50 21 12 
361330 13 7.8 4.4 40 39 15 
361330 14 6.2 14.0 25 60 14 
431386 4 8.9 2.1 46 11 19 
431386 11 9.6 1.3 59 9 30 
431386 36 11.5 0.4 74 11 45 
431386 42 9.6 1.3 60 8 23 

431386 50 >12.0 <0.3 85 8 52 

431386 54 9.6 1.3 67 8 25 

431386 55 10.5 0.7 71 10 26 

431386 59 10.2 0.8 75 8 24 

431386 65 10.0 1.0 73 8 25 
1161719 11 8.3 3.2 40 16 16 
1161719 14 8.5 2.7 42 12 16 
1161719 16 8.5 2.7 45 20 21 
1161719 17 11.0 0.5 60 16 44 
1161719 22 10.2 0.8 63 13 28 
1161719 28 9.6 1.3 61 8 32 
1161719 33 9.6 1.3 60 8 24 
1161719 38 11.5 0.4 78 8 44 
127f794 11 8.4 3.0 40 22 12 
127f794 17 9.6 1.3 65 8 14 
127f794 20 9.4 1.5 57 12 13 

150/906 14 9.0 2.0 51 30 22 

1501906 31 9.6 1.3 57 15 21 
150/906 33 8.6 2.5 47 29 18 
17411072 7 9.6 1.3 61 11 23 
17411072 11 7.8 4.4 38 34 17 
17411072 17 6,5 11.0 33 51 15 
17411072 25 6,5 11.0 31 52 17 
17411072 37 7.6 5,0 34 40 13 
17411072 46 <4,1 60.0 18 70 8 

Table 18 Results of the grain size analysis of the samples selected for the compaction curves, i.e. 

samples which are poor in nannofossils and yield good quality porosity data, <1>50 - median grain size 

where <1> = -log2(grain size in mm), 
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Well Sample <1>50 <1>50 in 11m <211m [%] >10llm [%] <0. 25Ilm [%] 
261250· 7 11.7 0.3 74 8 48 
261250· 8 11.3 0.4 74 9 41 
261250· 10 >12.0 0.3 78 8 56 
261250· 13 >12.0 0.3 74 11 54 
261250· 14 12.0 0.3 72 11 50 
261250· 17 11.6 0.3 73 11 46 
361330 1 9.0 1.9 51 19 15 
361330 2 9.0 1.9 52 10 15 
43/386 1 10.1 0.9 68 10 26 
43/386 14 9.7 1.2 64 8 27 
43/386 26 8.3 3.2 41 32 14 
43/386 28 10.1 0.9 67 8 33 
43/386 32 <4.3 50.0 31 63 15 
S7/440b 8 8.0 4.0 37 32 10 
57/440b 13 8.0 4.0 40 32 13 
S7/440b 24 7.6 5.0 33 33 8 
57/440b 28 8.0 4.0 37 30 10 
S7/440b 39 8.7 2.4 45 18 10 
57/440b 52 6.8 9.0 24 47 8 
57/440b 60 8.0 4.0 35 33 10 
57/440b 65 8.8 2.2 47 20 10 

1161719ab 48 9.2 1.7 53 8 26 
127/7948 1 9.0 2.0 50 19 17 
1271794a 91 8.8 2.3 46 26 18 
12717948 95 9.0 2.0 49 24 16 
1501906a 51 8.0 4.0 39 37 13 

17511084a 12 9.0 2.0 50 11 11 
17511084a 17 9.4 1.5 58 12 10 
17511084a 24 8.8 2.2 47 11 11 
17511084a 29 9.5 1.4 59 9 16 

17511084a 34 9.5 1.4 60 9 16 
17511084a 39 9.3 1.6 56 8 15 
17511084a 43 9.5 1.4 61 10 17 
17511084a 49 9.5 1.4 63 8 14 

Table 19 Results of the grain size analysis of the samples with low quality porosity data (') and high 

contents of nannofossils (mainly diatoms). <1>50 - median grain size where <1> :: -log2{grain size in mm. 

3.1.2 Comparison with grain size data from DSDP/ODP 

A comparison of the clay fractions obtained from this study with those 

published by ODP revealed the fundamental difficulties of using smear slide 

data. During smear slide analysis, a small portion of sediment is distributed 

on a glass slide for the microscopical evaluation of mineral and fossil 

composition. Results are usually recorded as numerical abundances by a 

member of the shipboard scientific party and are obviously biased due to the 

change of the analytical personnel. 

A further problem arises from the use of different scales. Where ODP uses 

the Wentworth Scale (clay ~4/lm) this study defines clay as being smaller 

than 2/lm. As a solution in this study, an empirical relationship was 

established where: 

~2/lm = 0.48 + 0.82 * ~4J.1ffi. 
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After this scale conversion, the smear slide analysis of samples poor in 

fossils delivers clay fractions which deviate on average by about 14 %rel from 

those determined by the Sedigraph method (Fig. 37). 

A comparison of the clay fractions for fossil-rich sample material reveals 

remarkably higher deviations (Fig. 37). The average difference of these two 

values is 43%rel. 

These observations illustrate that clay fraction values based on a semi­

quantitative smear slide analysis should not be used in any compaction study. 
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Oay fraction (Sedigraph) 

• samples poor in fossils • samples rich in fossils 

Fig. 37 A comparison of the clay fractions determined by smear slide analysis (OOP) and by Sedigraph 

measurement. 

3.2 Grain density 

Measured grain densities range from 2.1 g/cm3 in opal- and Corg-rich samples 

(55.2 % opal in 175/1084a-39, Lange et al. 1999) to about 2.9 g/ cm3 in 

smectite-rich material (43/386-11; Table 20). The high grain densities in the 

smectite-rich samples are mainly caused by the loss of interlayer water due to 

heating of the sample material to 1050 C prior to the density measurement 

(Colton-Bradley, 1987). The median of all samples (including the opal-rich 

samples), lies at about 2.61 g/ cm3
, where the median of the samples without 

a significant content of opal lies at about 2.71 g/ cm3
. The standard deviation 
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of the measurements was calculated as ± 0.02 gl cm3 using a quartz 

standard with a determined grain density of 2.65 ± 0.02 gl cm3
. 

3.3 Bulk mineralogy 

X-ray diffraction analysis allows a subdivision of the sample set into three 

groups of similar mineralogical composition. 

The first group consists of samples which contain, besides quartz and illite, 

high amounts of smectite (Fig. 38 & Table 20). Common are kaolinite and 

calcite, zeolites are rare. Most of these samples belong to deep sea 

sedimentary regimes (wells 26/250, 26/257, 36/330, 43/386, 116/719, 

127/794). 
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Fig. 38 X-ray diffractogram of a sample (25/250-11, glycolated) representative for a group one 

(smectite-rich) composition. 

Samples of the second group contain predominantly quartz, mica/illite, 

calcite, and opal-AiCT (wells 36/330, 43/386, 57/440, 127/794 & 175/1084; 

Fig. 39). The latter two minerals originate from high abundances of micro­

and nannofossils (diatoms, radiolaria etc.; Schieber et aI., 2000) which in 

case of well 175/1084 (Fig. 34) originate from upwelling conditions. Moderate 

amounts of feldspar and smectite are common. 
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Fig. 39 X-ray diffractogram of a sample (175/1084-39) representative for a group two (opal-rich) 

composition. The opal-A content is striking. 

The third and largest category of samples is characterised by a mix of the 

most common detrital minerals that can be found in proximal and deltaic 

environments (e,g. Windom, 1976; FOchtbauer, 1988; Aplin, 2000): quartz, 

feldspars, mica, clay minerals (illite, chlorite, kaolinite, smectite), and calcite 

dominate, whereas minerals like dolomite and gibbsite are rare (116/719, 

150/906, 174/1072; Fig. 40). The latter are usually present only in small 

amounts. 
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Fig. 40 X-ray diffractogram of a sample (174/1072-27) typical for a group three (detrital) composition. 
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Well Sample 
26/250 4-6 

6-3 
7-4 
8-4 
9-3 
10-2 
11-2 
13-4 
14-2 
17-2 

26/257 1 
3 
5 
9 

36/330 1-4 
2·2 
6-4 
8-3 
9-2 
10-2 
11-2 
13-1 
14-2 

43/386 1 
4 
11 
14 
26 
28 
32 
36 
42 
50 
54 
55 
59 
65 

57/440 8-2 
13·3 
24-1 
28-3 
39-2 
52·1 
60-2 
65-1 

1161719 11 
14 
16 
17 
22 
28 
33 
38 
48 

127(794 lH-l 
9H-5 
9R-l 
lIR-' 
17R-l 
20R-3 

'50/906 14X-l 
31X-l 
33X-l 
41X-3 
5,X-3 
59X-l 

174/1072 7R-1 
lIR-' 
17R-, 
25R-3 
37R-l 
46R-4 

17511084 12 
17 
24 
29 
34 
39 
43 
49 

Qz 

xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
xx 
x 
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xx 
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xx 
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o 
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xx 
xx 
xx 
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xx 
xx 

xx 

var. 

opal/ct 
opal/ct 
opal/ct 

opaVa 
opal/a 
opaVa 
opal!a 
opal/a 
opal/a 
opaVa 
opal/a 

opaVct 
opaVct 

Dolomite 
Dolomite 

Gibbsite 
o Gibbs. 

opal/a 
opal/a 
opaVa 
opal!a 
opal!a 
opal/a 

p 
259 
2.67 
264 
2.67 
261 
264 
263 
267 
264 
268 
253 
263 
251 
260 
267 
275 
2.65 
2.66 
2.69 
2.69 
267 
271 
2.72 
281 
2.80 
2.95 
2.39 
2.47 
2.53 
259 
2.82 
2.76 
2.76 
279 
2.76 
274 
2.83 
245 
252 
239 
238 
224 
240 
2.47 
236 
2.81 
282 
282 
2.75 
279 
2.77 
2.80 
2.73 
2.80 
2.67 
2.33 
2.38 
2.57 
2.58 
2.59 
2.69 
268 
263 
2.81 
2.68 
2.54 
2.78 
2.73 
274 
2.75 
2.69 
2.69 
2.35 
2.33 
250 
2.29 
2.45 
207 
210 
228 

TOC 
053 
028 
034 
028 
039 
010 
010 
005 
0.04 
001 
065 
055 
061 
049 
085 
097 
3.42 
317 
199 
183 
220 
I 39 
079 
0.96 
0.79 
067 
1.05 
0.95 
090 
0.93 
068 
0.34 
080 
086 
285 
I 34 
069 
118 
1 14 
122 
093 
I 58 
089 
104 
0.99 
I 14 
1 16 
I 15 
1.84 
189 
178 
127 
0.78 
0.95 
0.37 
0.64 
036 
0.61 
1.30 
1.05 
1.76 
2.00 
192 
084 
270 
372 
042 
0.29 
034 
0.46 
0.60 
0.46 
7.99 
713 
312 
842 
240 
3.73 
649 
291 

Table 20 Mineralogical composition obtained from X-ray diffraction analysis. Qz=quartz, Fp=feldspar, 

p=grain density (glcm\ TOC=total organic carbon (wt%); xx=abundant, x=common, o=rare. 
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3.4 Total organic carbon (TOe) 

The results of the TOC analyses (Table 20) reflect the various 

sedimentological and palaeontological environments that were sampled. In 

the extreme case of upwelling conditions (175/1084) values of up to 8.4 

weight percent of organic carbon were reached (Wefer et al. 1998 report 

values of up to 18.6 wt% from this well). However, samples of the deep sea 

basins (e.g. 26/250) contain only about 0.1 wt% TOC and the median of the 

complete sample set is 0.95 wt% TOC. 

3.5 Porosimetry 

The physical condition of 23 samples restricted the analysis by mercury 

intrusion porosimetry (MIP) to 56 samples of the total set of 79. The former 

were either too soft or too diSintegrated to undergo the sample preparation 

process (2 Samples and Methods). In most cases only a few samples of 

each well were excluded, with the exception of well 175/1084, which had to be 

excluded completely. 

The total porosities measured by ODP range in the examined sample set 

from 30% to 54%, the mode pore throat diameters span from 5nm up to 

3000nm. The comparison of the observed total porosities with the porosities 

reported by DSDP and ODP revealed a significant feature of the analyzed 

material: most of the values determined by porosimetry are up to 15% lower 

than the initial on board measurements (Fig. 41 & Table 22). After 

consideration of various parameters like e.g. water content and time since 

sampling it is obvious that drying and shrinkage of the core material during 

storage must have led to a general decrease in pore space. In chapter 2 

Samples and Methods the effect of air drying on the pore space of soft, 

glacial clays was studied and confirmed these observations. There, samples 

lost up to 17% of their total porosity due to the several week long exposure to 

air. 
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Fig. 41 Comparison of the porosities determined by DSDP/ODP directly after drilling and by mercury 

intrusion porosimetry (MIP) in this study. 

The water contents for all samples analyzed by mercury intrusion porosimetry 

were measured during the previously described Freon™ freeze drying 

procedure. A comparison of the measured content with the data provided by 

ODP in Fig. 42 reveals the degree of drying during sample storage. The 

results are listed by well number (Fig. 42 & Table 21) and illustrate an 

increased water loss with increased storage time. 

The measured water content of one sample (127/794-9_1) exceeds the 

values determined by ODP (Fig. 42). A comparison of the depths of the 

samples used in this case (7cm) suggests slight differences in the examined 

material. However, the sample also contains a significant amount of diatoms 

and was thus excluded from the subsequent compaction analysis. 
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Well Sample Lab water content GOP water content Well Sample Lab water content GOP water content 
[wt%) [wt%) [wt%) [wt%] 

261250 4 33 42 57/440 13 30 37 
6 33 41 24 20 35 
7 34 35 28 23 38 
8 34 no data 39 25 38 
9 24 28 52 7 no data 

10 23 27 60 11 no data 

11 22 27 1161719 11 22 28 
13 19 22 14 22 32 
14 19 no data 16 18 26 
17 16 22 17 20 34 

361330 16 45 22 21 30 
2 8 30 28 25 29 
6 6 24 33 15 27 
8 10 27 38 28 34 
9 7 22 48 17 24 
10 8 25 1271794 9_1 32 22 
11 6 21 11 26 33 
13 4 21 20 24 27 
14 3 16 150/906 14 27 30 

43/386 26 16 28 31 28 35 
28 9 28 33 26 30 
32 16 26 51 21 25 
36 11 21 17411072 7 25 26 
42 6 24 11 18 22 
50 7 19 17 17 19 
54 11 20 25 16 20 
55 12 20 37 15 18 
59 9 19 46 17 18 
65 7 19 

Table 21 Water contents measured in this study (Lab) and by GOP. [wt%] = weight percent. 
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Fig. 42 Comparison of the water contents measured in th is study (Lab) and shortly after drilling by 

OOP. 

The pore throat size distribution curves in this study can be subdivided into 

two groups: unimodal and bimodal distributions (Fig. 43 & Fig. 44). The latter 

are characteristical for samples rich in micro- and nannofossils. They either 

show well defined "Mil-shaped distributions or broad, shouldered peaks (Fig. 

43). Samples yielding unimodal pore throat sizes show broad distributions of 

lower cumulative porosity (blue dots, Fig. 44) for coarse-grained material and 

narrow peaks of higher cumulative porosity for clay-rich samples. A 

characteristic flattening slope towards the small pore throat sizes reveals the 

relatively poor sorting of the coarser samples. 
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Fig. 43 The bimodal (left image) or "shouldered" (right image) pore throat size distributions of fossil-rich 

samples. The red dots mark the pore throat sizes, the blue dots the cummulative porosity. Clay 

fractions: 43/386-28=67%, 57/440-60=35%. 

57 



10 

Part A - 3 Results 

261250-9 

100 1000 10000 100000 

Pore radius (nm) 

Q) 

.~ 0.7 
~ 0.6 
§ ~ 0.5 
~ '8 0.4 
E 8. 0.3 
Q) 0.2 
~ 0.1 

~ 0 

361330-14 

11 
j 

I 

~ . ~. 

~ 
• 

10 100 1000 10000 100000 

Pore radius (nm) 

Fig. 44 Pore throat size distributions of two samples poor in fossil material. The pore throat size 

distributions (red dots) reveal exemplary the different spectra of fine-grained (26/2S0-9, 77%<2Ilm) and 

coarse-grained (36/330-14, 39%<2Ilm) samples. 

The observation, that most of the samples have dried out during storage (2 

Samples and Methods) makes a detailed analysis of the pore throat size 

distributions very difficult. The different mineralogical compositions, varying 

grain sizes as well as initial porosities might have affected the changes in 

pore space to different degrees. Therefore, the comparison of sample 

properties obtained from MI P can only reflect general trends of the data. 

By correlating samples from similar stress regimes but with different particle 

size distributions, trends towards smaller pore throat sizes with increasing 

clay fraction can be observed (Table 22). In addition, a general reduction in 

pore throat sizes with increasing effectice stress is evident. Furthermore, a 

significant decrease in pores with very small throats «3nm) occurs at rising 

vertical effective stresses in all groups of similar particle size. 
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Sample 
26/250-4 
26/250-6 

26/250-7 

572 
986 

1286 

26/250-8 1813 

26/250-9 2220 

26/250-10 2612 

26/250-11 3035 
261250-13 3931 

26/250-14 4141 

261250-17 4426 

361330-1 781 

361330-2 1077 
361330-6 2384 

361330-8 2689 

361330-9 2906 

361330-10 3234 

361330-11 3507 

36/330-13 4200 

361330-14 4511 

431386-26 3110 

43/386-28 3300 

431386-32 3780 

431386-36 4554 
431386-42 5344 
431386-50 6173 

431386-54 6606 

431386-55 6687 

431386-59 7019 

43/386-65 7648 

57/440-13 1443 

57/440-24 2083 

57/440-28 2363 

57/440-39 2918 

57/440-52 3723 

57/440-60 4210 

1161719-11 660 
1161719-14 960 
1161719-16 1112 

1161719-17 1202 

1161719-22 1573 

1161719-28 2002 

1161719-33 2411 

1161719-38 2822 

1161719-48 3746 
1271794-91 1532 

1271794-11 1664 
127/794-20 2396 

150/906-14 981 

1501906-31 2180 

150/906-33 2348 

150/906-51 3807 

17411072-7 507 

17411072-11 690 

17411072-17 996 

17411072-25 1452 

17411072-46 2531 

wt% <2mm Mode PTS 
72 80 
72 56 

74 2231 

74 

77 
78 

75 
74 

72 
73 

51 

52 

39 
62 

59 
62 

50 

40 
25 

41 

67 

31 

74 

60 

85 

67 

71 

75 

73 

40 

33 
37 

45 
24 

35 

40 
42 

45 

60 
63 
61 

60 
78 
53 

46 
40 
57 

51 

57 
47 

39 

61 

38 
33 

31 

18 

890 

23 

26 

26 
26 

26 
14 

138 

316 
41 

56 
67 

67 

67 

67 

893 

5 
6&47 

6&26 

26 

13 & 41 

20 

35 

23 

48 
26 

233 

233 

233 

233 

315 

137 

176 
176 
91 

30 

35 
91 

91 

35 
78 

13& 48 
138 

138 

78 

91 

110 
78 

78 

138 

138 

138 

1412 

<p <3nm (*) 
15 
12 

10 

20 

9 
7 

4 

3 
9 
3 
5 
10 
7 

7 

4 
10 
7 

5 
9 
5 
7 

4 

5 
6 
7 
6 
6 

5 
7 
9 
17 

14 

22 

9 
6 
16 
7 

8 
7 

7 

9 
6 
6 

23 

9 
2 
6 

6 
17 

7 
7 

6 
6 
6 
6 
8 

DSDP/ODP <1> 
0.57 
0.59 

0.57 

0.58 

0.43 

0.50 
0.41 

0.39 
0.34 
0.39 

0.69 

0.54 
0.45 
0.44 

0.43 
0.47 

0.40 

0.41 

0.34 
0.48 

0.42 

0.48 

0.43 

0.43 

0.40 

0.40 

0.44 

0.39 

0.40 

0.63 

0.62 

0.59 

0.59 

0.67 
0.59 

0.52 
0.56 
0.48 
0.57 
0.53 

0.52 

0.50 
0.58 
0.47 
0.43 

0.59 
0.51 

0.50 

0.50 

0.51 

0.43 

0.49 

0.48 
0.39 
0.41 

0.37 

MIP<1> 
0.47 
0.53 

0.54 

0.54 

0.39 
0.37 
0.33 

0.32 

0.34 
0.3 

0.41 

0.52 
0.31 

0.37 

0.33 

0.34 
0.3 

0.33 

0.38 

0.46 

0.47 

0.41 

0.3 

0.4 

0.36 

0.41 

0.37 

0.39 

0.38 
0.51 

0.53 
0.51 

0.53 

0.46 
0.44 

0.46 
0.47 
0.39 
0.36 

0.37 

0.45 
0.43 

0.43 

0.43 

0.53 

0.48 

0.47 

0.49 

0.5 

0.49 

0.42 

0.48 

0.39 

0.38 

0.35 

0.4 

Table 22 Porosimetry data obtained from MIP in comparison with data provided by DSDP/ODP. 0' = 

vertical effective stress, $ = porosity, PTS = pore throat size, (*) pore space not intruded by mercury, 

i.e. in pores with throats <311m. 
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4 Discussion 

4.1 Compaction trends 

Understanding the evolution of porosity and permeability, thus, the 

compaction behaviour of clay-rich sedimentary sequences, underpins the 

prediction of fluid flow, seal formation and overpressure generation in modern 

basin studies. Earlier work in soil mechanics (Skempton 1970, Burland 1990) 

revealed that the decrease of porosity in clays and muds with increasing 

vertical effective stress is mainly controlled by the Atterberg Liquid Limit, a 

lithological parameter directly proportional to the clay fraction. Further 

investigations by Aplin et al. (1995); Dewhurst et al. (1998, 1999b) and Yang 

and Aplin (1998 & submitted) suggested, that the compaction behaviour of 

mudstones can be reasonably well described if the effective stress and the 

clay fraction can be estimated. 

Fig. 45 displays the relationship between vertical effective stress (calculated 

from DSDP/ODP bulk density) and DSDP/ODP porosity of all analyzed 

samples, divided according to their clay fractions. Although samples of the 

50-64% and >65% clay fraction groups plot into relatively well defined zones, 

the porosity/effective stress relationships are not obviously related to clay 

fraction. Many of the samples show much higher porosities at given effective 

stresses than one would expect from previous investigations (e.g. Skempton, 

1970; Burland, 1990; Aplin et al. 1995; Giles et al. 1998; Yang & Aplin, 1998). 

60 



Part A - 4 Discussion 
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Fig. 45 The relationship between clay fraction , porosity (from DSDP/ODP) and vertical effective stress 

of the complete sample set. 

The sample set can be subdivided into two main groups: 1. samples that 

contain only small amounts of fossil or fossil-related material (opal) or 2. 

samples that are rich (»15%) in micro- and nannofossils. Since previous 

work (e.g. Meade, 1963; Bryant & Rack 1990) revealed a positive correlation 

between fossil material (diatoms) and porosity the compaction analysis was 

divided into two parts. The first part examines the compaction of fossil-rich 

(opal-rich) samples, the second concentrates on the fossil-poor material. 

4.1.1 Fossil-rich samples 

Data from the relevant DSDP/ODP reports (Barker et al. 1974, Tucholke et al. 

1975, Huene et al. 1977, Cochran et al. 1988, Tamaki et al. 1990, Mountain 

et al. 1994, Wefer et al. 1998) show that many of the samples contain high 

amounts of micro- and nannofossils. X-ray diffraction analyses (Fig. 34) 

confirmed this information in many cases, revealing high abundances of opal­

A, opal-CT and calcite (Table 20). Particularly rich in opal are the samples 

from well 175/1084 (Benguela Current, SW Africa) which show extremely high 

porosities of more than 70% until depths of 450mbsf. Lange et al. (1999) 

showed that some of the sampled sequences in this well contain up to 55% 

opal, a common signature of sediments bearing silicious nannofossils like 

diatoms or radiolaria (Conger 1942; Kuenen 1950; Sears 1984). 
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It is well known that at the same effective stress (Bryant & Rack 1990; Bryant 

et al. 1990; Rack & Palmer-Julson 1992) or burial depth (Meade. 1963; 

Compton 1991; Tribble et al. 1992; Kraemer et al. 2000) diatom/opal-rich 

sediments have higher porosities than purely clastic sediments. Isaacs 

(1981). Chen and Nur (1991). Nobes et al. (1992), Tribble et al. (1992), 

Chaika & Dvorkin (2000), and Chaika & Williams (2001) showed that the 

abundance of opal and especially the transition from the amorphous opal-A to 

the crystalline phases of opal-CT influences the evolution of porosity with 

depth significantly. Isaacs (1981) reported that the transition from opal-A to 

opal CT in the Monterey Formation (California) resulted in a decrease of 

diatom porosity from 70% to 27%. Typical burial depths for the opal-AICT 

conversion are 500m to 800m (Tribble et aI., 1992). The reaction temperature 

for this reaction varies with time (Tribble et al. (1992) and references therein) 

and can be as low as about 10°C (for sediment older than 40Ma). 

Kreaemer et al. (2000) showed that both large pores (5-50Jlm) between the 

diatom skeletons and small pores (2Jlm) within the diatoms result in the 

observed elevated porosities of diatom-rich sediments. A comparison with 

SEM photomicrographs (Bryant et al. 1990; Lange et al. 1999) reveals that 

many pores are actually an order of magnitude smaller. 

The examination of the fossil-rich material by mercury intrusion porosimetry in 

this study could also not confirm the dimensions quoted by Kraemer et al. 

(2000). Most of the analyzed samples either show remarkably broad pore 

throat size distributions (PTSD) in the range of 100-500nm (3 Results; see 

also Appendix) or bimodal PTSDs, with mode pore throat sizes between 3nm 

and 50nm. Both smaller amounts of intact diatoms and higher amounts of 

fine-grained clay and fossil-debris might explain this discrepancy. Additional, 

more detailed studies of the pore size distribution in fossil-rich sediments are 

necessary to contrain this data. 

A further consequence of the elevated porOSities in fossil-rich samples are 

unusual stress/burial depth relationships (Fig. 46 & Fig. 47). Due to the high 

porosities, fossil-rich sequences require much greater thicknesses to 
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generate a given overburden stress (sub sea floor), compared to non­

fossiliferous sediments (Hamilton, 1976). 

Thickness necessary for an overburden* stress of 5 MPa 

174/1072 1161719b 150/906a 431386 261250 175/1084 
O ~~-r--~--~--~~---'--~--~~--~~'-~ 
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. -a70 

Upwelling zone 
high fossil content 
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600 ~----------------~~--------~--------~ 

Fig. 46 The sediment thickness at which an overburden" stress of 5Mpa occurs for these DSDP/ODP 

sections. (*) Overburden sub sea floor. 
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175/1084 261250 431386 150/906a 1161719b 174/1072 

Fig. 47 Calculated overburden" stress at 400mbsf. Note the low stress for the fossil-rich well 

(175/1084). (*) Overburden sub sea floor. 

As a further consequence, the lithostatic gradients of 0.0135-0.0204MPalm 

(0.6-0.9 psi/ft) can be significantly smaller than those typically observed in 

petroleum basins (0.0225-0.0231 MPalm or -1psi/ft; Luo et aI., 1994). 

4.1.2 Fossil-poor samples 

One of the aims was to investigate the influence of grain size on compaction 

trends. Fossil-rich samples were therefore excluded from further 

63 



Part A - 4 Discussion 

interpretations of the compaction trends. Samples where the porosities had 

been determined using the GRAPE tool (Boyce 1976, 1984) were also 

excluded due to the lower reliability of the published values. 

4.1.2.1 The influence of grain size 

In Fig. 48 the dataset is shown after screening out the opal-rich and GRAPE 

samples. The control grain size has on the development of porosity with 

increasing effective stress is now much clearer. However, with the exception 

of the <35% clay fraction group, there is a significant overlap of compaction 

trends, especially in the intermediate clay fractions (35-64%). 

In general it can be observed that, within the first 1000m below sea floor (Le. 

vertical effective stress ~8MPa), the porosities in fine-grained sediments 

decrease with decreasing clay fraction at a given effective stress. 

Furthermore, sediments of all grain sizes lose their porosity systematically 

with increasing vertical effective stress (burial depth). Particularly lithologies 

with higher clay fractions (>65% <2Jlm), which yield up to 85% porosity close 

to the sea floor, can lose more than 50% of their initial pore space during the 

first 1000m of burial. 

Porosity 

0.3 0.4 0.5 0.6 0 .7 0.8 0 .9 
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~ 0 ~ . • 0 • • A 
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.~ 4000 

0 • . 50-64% clay Co) • Q) 

== • . >65% clay Q) 

iij 6000 • Co) • • 'f • Q) • > 8000 

Fig. 48 The relationship between clay fract ion, porosity (from DSDP/GOP) and vertical effective stress 

of the screened sample set. Fossil-rich and GRAPE samples have been excluded. 

The poor separation of porosity-effective stress trends of samples with 

intermediate clay fractions (Fig. 48) might be due to various reasons. On the 
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one hand, the lack of information about the total distribution of grain sizes (2 

Samples and Methods) makes an assumption about the degree of sorting 

impossible. It is well known from literature (Pettijohn 1975) that sorting has a 

significant influence on the pore volume of granular aggregates. On the other 

hand, the internal lamination and thus heterogeneity of the sample material 

might have led to uncertainties in the correlation of clay fraction and porosity. 

Differences between the core material used by DSDP/ODP and in this study 

could also have contributed to these uncertainties. 

4.1.2.2 The influence of temperature 

All sampled sequences have never reached higher formation temperatures 

than 40°C, hence diagenetic reactions should not have substantially changed 

the siliciclastic sediment matrix. Significant alterations have been reported to 

occur at low temperatures in opal-rich sediments (Chen and Nur 1991; Nobes 

et al. 1992; Tribble et al. 1992), but these sediments were excluded from this 

compaction analysis. 

4.1.2.3 The influence of time 

In consolidation experiments (e.g. Kabbaj et aI., 1988; Burland, 1990; 

Crawford & Bozozuk, 1990; Craig, 1997) compaction usually proceeds in two 

stages. The first or "primary" consolidation incorporates most of the instantly 

observed porosity reduction during the loading phase of the experiment. The 

following stage, called secondary consolidation, begins when the primary 

consolidation ceases and no further load is applied. This phenomenon, also 

known as creep or aging of soils, is often used to characterise the ongoing 

reduction of pore space with time at constant effective stresses and in 

engineering times «100a) its rate diminishes linearly with log time (Crawford 

and Bozozuk 1990; Schmertmann 1991). As a result of secondary 

consolidation, pore pressures are reduced due to a transfer of load from the 

pore fluid to the sediment skeleton and pores, mainly in the size range of 100-

1000nm (Griffiths & Joshi 1990), are reduced in volume. 

The important question is, if there is any evidence for a relationship between 

age and porosity in the examined sample set. For a thorough analysis of any 

time effect the following prerequisites have to be fullfilled: 1. the samples 
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need to be of similar lithology (clay fraction), 2. they must have experienced 

the same maximum vertical effective stress, and 3. their age can be 

sufficiently well estimated. The sample set used in this study is too small and 

diverse to either underpin or rule out any influence of time on compaction 

during geological time spans. However, the typical aging effect (secondary 

consolidation) in soils with asymptotical trends of pore space reduction with 

time (Schmertmann 1991; Crawford and Bozozuk 1990), suggests that the 

major changes in porosity occur within the first tens or hundreds of years of 

burial and would be completed for all samples at the time of sampling. 

4.1.2.4 The influence of mineralogy 

The origin of the sample material is highly variable. Consequently, the 

possible influence of different mineralogical compositions on the compaction 

trends needs to be addressed. If changes of the mineralogy due to diagenetic 

processes can be neglected, the mineralogical composition should only be an 

indicator for hydrodynamic processes, i.e. grain size related. In this case, the 

energy level of the depositional environment (Hjulstmm 1955) as well as the 

provenance area (Aplin, 2000) can determine the amount and type of clay 

fraction present. In this study, systematic relations between porosity/effective 

stress and mineralogy could not be observed. 

4.2 Comparison with compaction models 

4.2.1 Compaction trends 

Over the past century, various models have been developed to describe the 

mechanical reduction of sediment porosity with increasing burial depth (Giles 

et al. (1998) and references therein). 

In 1921 Terzhagi introduced the principle of effective stress: 

(1) cr' = cr - u 

where the effective stress (cr') is defined as the difference between total 

stress (0') and pore fluid pressure (u). 
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Since then, several empirical laws were used to describe one dimensional 

mechanical compaction. For example, Athy's law (Athy, 1930) states that 

porosity decreases exponentially with increasing effective stress. 

Skempton (1970), Smith (1971), Burland (1990), Audet & McConnel (1992) 

and Aplin et al. (1995) use a different approach which was developed in soil 

mechanics: 

(2) e = elOO - fJ In(~) 
100 

where the void ratio (e) is defined as the ratio of the pore volume and solid 

volume; e100 and ~ are the void ratio at 100kPa and the compaction 

coefficient, respectively. 

The relationship described by equation (2) is well established in soil 

mechanics from both in situ observation and laboratory experiments 

(Skempton, 1970; Burland, 1990). However, the use of this equation in 

petroleum basins was problematic since the aforementioned studies mainly 

covered stress ranges of less than 10MPa. 

In soil mechanics studies (Skempton, 1970; Burland, 1990; Aplin et aI., 1995) 

it is suggested that the compreSSion coefficients (~) are strongly related to 

lithology. In most of these studies (e.g. Skempton, 1970; Burland, 1990; 

Craig, 1997) the lithology of fine-grained sediments is quantitatively 

characterised using the Atterberg Liquid Limit (ALL). Since this parameter is 

not suitable for samples from oil wells (too much sample material needed), 

Aplin et al. (1995) and Yang & Aplin (1998; submitted) generated a 

compaction model for clay rich sediments using grain size (clay fraction) as 

lithological descriptor. 

Yang & Aplin (submitted) managed to correlate ALL and clay fraction 

(Skempton Model) by reevaluating data that were available in soil mechanics 

literature (Skempton, 1970; Burland, 1990). They used these data together 

with laboratory and wireline data from 22 petroleum wells from the North Sea 

and Gulf of Mexico to calibrate a compaction model for fine-grained 

sediments in petroleum basins. In order to be able to use wireline data Yang 
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& Aplin (submitted) also used calibrated Artificial Neural Networks (ANN) to 

extract clay fraction data from geophysical well logs. Of their data set of 3847 

data points, 168 points were derived from core and cutting samples and 3579 

points from wireline logs. 

They established the following relationships between clay fraction (clay), e100 

and the compression coefficient (~): 

Skempton Model: 

(3) e100 = 0.3024 + 1.6867clay + 1.9505claV 

(4) ~ = 0.0407 + 0.2479clay + 0.3684claV 

Yang & Aplin (submitted) Model: 

(5) e100 = 0.71 + 0.563clay + 2.308claV 

(6) ~ = 0.0712 + 0.0953clay + 0.391 claV 

Although Yang & Aplin's (submitted) model included effective stresses 

between 0.8MPa and 38MPa corresponding to burial depth of 100m to 

3500m, the data coverage for the interval beween 100mbsf and 1000mbsf 

was poor. Since most fine-grained sediments lose up to 50% of their initial 

porosity within this interval (Fig. 1), this study aimed at using the examined 

DSD/ODP sample set to verify the provided mudstone compaction models. 

Examples for compaction curves derived from both models are displayed in 

Fig. 49. At very low effective stresses «1 kPa) the porosity predictions for 

three examplified lithologies are similar for both models. However, as soon as 

the vertical effective stress exceeds 1 kPa the differences between both 

model become obvious. In general, the Skempton model delivers higher 

porosities than the Yang & Aplin model. 
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Fig. 49 Comparison of the two compaction models for clay-rich siliciclastic sediments. Curves derived 

from Yang & Aplin (submitted) and Skempton (1970) . 

As can be seen in Fig. 50 and Fig. 51, the values for the fossil-poor samples 

fit reasonably well into the predicted trends, althought for 6 samples (12.5%) 

the measured porosities deviate 10% or more from the predictions ( 

Table 23). A direct comparison reveals that the average difference between 

the measured and predicted porosities is 4% for the total sample set (no 

fossils, no GRAPE data). The average differences for the chosen clay fraction 

ranges are slightly different, with 5% for the <35% and 35-49% clay fraction, 

3% for the 50-64% clay fraction and 4% for th >65% clay fraction. 
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Fig. 50 Porosity-effective stress data for the fossil-poor samples of this study, compared with 

predictions of the Yang & Aplin (submitted) model. 
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Fig. 51 Comparison of the absolute values for porosities measured by DSDP/ODP and predicted by 

Yang & Aplin's (submitted) model. The average absolute deviations are ± 5% for the <35% and 35-49% 

clay fraction, ± 3% for the 50-64% clay fraction , ± 4% for the >65% clay fraction, and ± 4% for the total 

dataset. 
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Fig. 52 Prosity-effective stress data for the fossil-poor samples of this study, compared with predictions 

of the Skempton (1970) model. 
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Fig. 53 Comparison of the absolute values for porosities measured by DSDP/ODP and predicted by 

Skempton's (1970) model. The average absolute deviations are ± 3% for the <35% clay fraction, ± 4% 

for the 35-49% and 50-64% clay fraction , ± 5% for the >65% clay fraction , and ± 4% for the total 

dataset. 
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In comparison with porosity/vertical effective stress trends based on soil 

mechanics studies (Fig_ 52 & Fig. 53), it can be observed that for the effective 

stress range covered in this study, the Skempton (1970) model delivers 

similar results as the Yang & Aplin (submitted) model. 

The average difference between the measured and predicted poroSities for 

the total set (no fossils, no GRAPE data) is identical (± 4%), with ± 3% for the 

<35% fraction, ± 4% for the 35-64% clay fraction, and ± 5% for the >65% clay 

fraction. As illustrated in Fig. 51 and Fig. 53, the accuracy of the Skempton 

model is slightly higher for the coarser material «50% clay fraction) and 

slightly lower for the finer (>50% clay fraction) material than the Yang & Aplin 

(submitted) model. 

Contrary to the good agreement between the described models and the 

samples used for the compaction analysis, the difficulties caused by fossil­

rich samples are striking (Fig. 54). 
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Fig. 54 Comparison of the measured and predicted porosities of the fossil-rich and GRAPE-samples. 

Note that all GRAPE samples belong to the >65% cay fraction group. 

For almost all samples with less than 65% clay fraction the measured 

porosities are much higher than the predictions by the Yang & Aplin 

(submitted) model ( 

Table 23). The Skempton (1970) model produces similar results. The 

samples whose porosities were determined by applying the GRAPE method 
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belong completely to the >65% clay fraction group and are more or less free 

of fosiliferous material. The porosity predictions for this group come close to 

or exceed the measured values (Fig. 54). However, since the general 

reliability of the GRAPE data is hard to predict (2 Samples and Methods) it 

should only be used if calibration data are available. 

In general these results show how important a thorough characterization of 

fine-grained lithologies in shallow sedimentary sequences is for a successful 

compaction analysis. 
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Leg Site Core 0' mbsf cla~ ~ODP ~Model ~SK ~PSM 
26 250 4-6 572 119.38 0.72 0.63 0.57 0.63 0.47 
26 250 6-3 966 189.6 0.72 0.66 0.57 0.60 0.53 
26 250 7-4 7286 238.65 0.74 0.54 0.57 0.60 0.54 
26 250 8-4 7873 295,65 0,74 0,59 0.57 0.58 0,54 
26 250 9-3 2220 351.22 on 0.52 0.58 0.57 0.39 
26 250 70-2 2672 407.3 0.78 0.53 0.58 0.57 0.37 
26 250 11-2 3035 464.97 0.75 0.51 0.57 0.54 0.33 
26 250 73-4 3937 577.67 0.74 0.47 0.57 0.52 0.32 
26 250 74-2 4747 606.7 0.72 0.37 0.57 0.51 0.34 
26 250 77-2 4426 645.71 0.73 0.41 0.57 0.51 0.3 
26 257 1-5 20 7.2 0.7 0.85 0.56 0.73 n/a 
26 257 3-2 97 49.2 0.76 0.75 0.58 0.71 n/a 
26 257 5-2 322 12404 0.73 0.69 0.57 0.66 n/a 
26 257 9-2 958 248.7 0.82 0.68 0.59 0.64 n/a 
31i 330 1-4 781 134.71 0.51 0.69 OAS 1)';3 OAI 
36 330 2-2 1077 177.41 0.52 0.54 OAB O.~2 0.52 
36 330 6-4 2364 314.55 0.39 0.45 0.44 0.43 0.31 
36 330 6-3 2689 350.37 0.62 0.44 0.51 0.51 0.37 
36 330 9-2 2906 377.75 0.59 0.43 0.50 0.49 033 
36 330 10-2 3234 405.95 0.62 0.47 0.51 0.49 0.34 
36 330 11-2 3507 434.8 0.5 0.40 0.48 0.44 0.3 
36 330 13-1 4200 490.83 0.4 0.41 0.45 0.40 0.33 
36 330 14-2 4511 519.88 0.25 0.34 0.36 0.35 0.38 
43 386 1-6 246 59.28 D.6S (l.IIS O.SI O.6S ilia 
43 386 4-4 750 151.97 0.38 0.46 0.43 0.48 n/a 
43 386 11-2 1493 252.94 0.59 0.66 0.49 0.53 n/a 
43 386 14-5 2097 335.82 D.M O.1I1i 0.5(l 0.53 ilia 
43 386 26-2 3110 480.81 0.41 0048 0.44 0.42 0.411 
43 386 28-3 3300 502 0.67 0.42 0.51 0.51 047 
43 386 32-5 3780 S1i2.96 lUI 0.48 0.40 (l.3H 041 
43 386 36-4 4554 646.8 0.74 0.43 0.53 0.51 0.3 
43 386 42-4 5344 731.8 0.6 0.43 0.49 0.45 0.4 
43 386 50-4 6173 818.22 0.85 0.40 0.55 0.52 0.36 
43 386 54-6 6606 858.82 0.67 0.40 0.51 0.45 0.41 
43 386 55-4 6687 865.05 0.71 0.44 0.52 0.46 0.37 
43 386 59-3 7019 900.59 0.75 0.39 0.53 0.47 0.39 
43 386 65-2 7648 957.37 0.73 0.40 0.52 0.46 0.38 
57 440 8-2 1091 208.2 0.36 0.57 0.40 0.46 ilia 
57 440 13-3 1443 257.23 OA 0.6) 041 OAIi 051 
57 440 24·1 2083 358.74 0.33 0.62 0.39 0.41 053 
57 440 28-3 2363 399.7 0.37 0.59 0.40 0.42 0.51 
57 440 39-2 2918 502.72 0.45 0.59 0.43 0.44 OS) 
57 440 52-1 3723 624.7 0.24 0.67 0.35 0.36 OA6 
57 440 60-2 4210 702.2 IUS 0.59 0.39 1138 0.44 
57 440 65-1 4497 748.24 0047 0.61 (lA3 042 ilia 

116 719 llX-l 660 90.58 0.42 0.52 0.35 0.50 0.46 
116 719 14X-2 960 120.12 0.44 0.56 0.35 0.49 0.47 
116 719 16X-l 1112 138.26 0.48 0.48 0.36 0.50 0.39 
116 719 17X-3 1202 150.87 0.6 0.57 0.38 0.55 0.36 
116 719 22X-4 1573 200 0.63 0.53 0.38 0.54 0.37 
116 719 28X-l 2002 251.55 0.61 0.52 0.38 0.52 0.45 
116 719 33X-2 2411 300.75 0.6 0.50 0.38 0.51 0.43 
116 719 38X-3 2822 350.3 0.78 0.58 0.40 0.56 0.43 
116 719 48X-6 3746 448.95 0.53 0.47 11.37 0.45 0.43 
127 794 IH-I 3 1.02 0.5 0.85 0.35 0.70 nla 
127 794 9H-5 317 80.28 0.49 0.81 0.35 0.56 nla 
127 794 9R-I 1532 376.07 0.46 0.43 0.35 0.48 O.5~ 
127 794 l1R-l 1664 395.75 0.4 0.59 0.34 045 048 
127 794 17R-l 2137 453.6 0.65 0.53 0.37 0.53 n/a 
127 794 20R-3 2396 485.35 0.57 0.51 0.36 0.49 047 
150 906 14X-l 981 121.31 0.51 0.50 0.33 0.52 0.49 
150 906 31X-l 2180 285.6 0.57 0.50 0.34 0.50 0.5 
150 906 33X-l 2348 305.05 0.47 0.51 0.33 0.46 049 
150 906 41X-3 3052 384.53 0.35 0.38 0.31 0.40 n/a 
150 906 SIX-3 3807 481.1 0.39 0.43 0.32 0.40 0.42 
174 1072 7R-1 507 51.35 0.61 0.49 0.32 0.59 048 
174 1072 llR-l 690 71.08 0.38 0.48 0.30 0.48 0.39 
174 1072 17R-l 996 100.21 0.33 0.39 0.29 0.45 0.38 
174 1072 25R-3 1452 145.16 0.31 0.41 0.28 0.42 035 
174 1072 37R-l 2026 198.34 0.34 0.38 0.29 0.42 n/a 
174 1072 46R-4 2531 249.68 0.18 0.37 0.25 0.36 0.4 
175 1084 12H-5 336 103 0.5 0.77 0.31 0.57 n/a 
175 1084 I7H-I 476 145.8 0.58 0.76 0.32 059 nla 
175 1084 24X-I 659 201 0.47 0.76 0.31 0.52 nla 
175 1084 29X-l 837 250.1 0.59 0.75 0.32 0.56 ilia 
175 1084 34X-3 1024 300.1 0.6 0.75 0.32 0.56 nla 
175 1084 39X-3 1173 349.5 0.56 0.74 032 0.53 ilia 
175 1084 43X-4 1274 389.4 0.61 0.74 0.32 O.SS nla 
175 1084 49X-6 1496 449.3 0.114 0.74 0.32 0.55 nla 
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Table 23 The measured and modeled porosities and permeabilities of the complete sample set. a' = 

vertical effective stress; <p SK = porosity predicted by Skempton model; <p Model = porosity predicted by 

Yang & Aplin model; <p PSM = porosity measured by mercury intrusion porosimetry; clay = clay fraction 

(mass <211m sperical diameter). Bolt italic font = GRAPE-data, Times fonl = fossil-rich samples; <p ODP 

= porosity measured gravimetrically by OOP in lab; n/a = samples not suitable for mercury intrusion 

porosimetry. 

4.3 Case studies 

4.3.1 Compaction trends of the shallow Norwegian North Sea 

sequences 

4.3.1.1 Background 

The Middle Miocene to Recent sedimentary sequence (Nordland Formation) 

of the Norwegian North Sea and Mid-Norway area (Fig. 55) is known for being 

dominated by thick (up to 1 DOOm) marine and glacial clay rich lithologies (e.g. 

Jordt et al. 1995; Gradstein & Backstrom, 1996; Gregersen, 1998). These 

range from soft clays and muds to silty and micaceous claystones and were 

deposited at rates between tens of meters per Ma in the Miocene of the 

South Viking Graben (Galloway et al. 1993) and hundreds of meters per Ma 

in the Pliocene in the Haltenbanken area (Gradstein & Backstrom, 1996). The 

thickness of the Nordland Formation increases from -600m in the South 

Viking Graben to approx. 1500m along the Mid-Norway margin. 
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Mid-Norway , -J. 

Fig. 55 Map of the study area. All wells were drilled in the Norwegian sector of the North Sea . 

The analysis of the density log-derived compaction trends of the Nordland 

Formation in the North Viking Graben (Norwegian quadrants 30, 33 & 34) and 

Mid-Norway area (quadrants 6406, 6407, 6506, 6507 & 6608) revealed 

porosity-depth relationships which are very untypical for shallow fine-grained 

sequences (Fig. 56) . In comparison with other shallow clay-dominated 

formations (e.g. Giles et aI., 1998) the observed porosities are not only very 

low, they also decrease linearly, which is uncommon at these shallow depths. 

The lower boundary of this shallow "low porosity"-section is marked in most of 

the examined wells by a prominent porosity reversal between the Nordland 

and underlying Hordaland Formation (Fig. 56) . 
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Porosity 
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Fig. 56 Compaction trends of several wells from the North Viking Graben and Mid-Norway area. Note 

the prominent porosity reversal between 700mbsf and 1100mbsf. which divides the Nordland Formation 

from the underlying Tertiary and Mesozoic sequences. 

In order to provide a representative analysis of the observed porosity-depth 

trends the following chapter will contain a detailed compaction study of a well 

from the Mid-Norway area. 

4.3.1 .2 Compaction analysis of a well from offshore Mid-Norway 

The lithological characterisation of the present well was based on the analysis 

of both geophysical well logs (Fig. 62) and cutting samples. A simplified 

lithological profile is displayed in Fig. 57. 

The top (Unit1) of the 2200m thick sequence is represented by the Mid­

Miocene to Recent Nordland Formation and dominated by muds, silts and 

sands with frequently occuring igneous rock fragments (Fig. 58). This 

classification is the result of the combined use of wireline logs and cutting 

samples and would significantly differ if the latter material were not available. 

The wireline logs (Fig. 62) clearly point to clay-rich sediments and reveal no 

striking evidence for the presence of coarser material. Both the 

neutron/density log and the gamma ray log show levels typical (Rider, 1996) 

for a mud dominated interval. The analysis of the cutting material on the other 
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hand proved the occurrence of significant amounts of silt, sand and milimeter 

to centimeter-sized igneous rock fragments. 

The wireline logs of the underlying Hordaland and Rogaland Formations 

(Unit2) again point to fine-grained material. Although the gamma ray readings 

of this unit are relatively low (API mainly <50), the neutron porosity and 

density logs clearly reveal the clay-rich character. Cutting analyses confirm 

this observation and show that this unit is mainly comprised of claystones and 

shales of Oligocene to Paleocene age. Similar results were found for Unit 3, 

where mudstones and shales represent the Mesozoic section of this well. 

compaction trends 
from density log 

POROSITY~ 

Mud, Silt & 
Rock Fragments 

Claystone & Shale 

Mudstone & 
Shale 

Unit1 

Unit2 

Unit3 

Fig. 57 Simplified lithological profile based on wireline logs and cutting samples. The compaction trends 

are based on the analysis of the density log. 

The occurrence of igneous rock fragments in cuttings from the Nordland 

Formation points to a significant glacial influence during the deposition of 

Unit1 (FOchtbauer, 1988; Munro-Stasiuk, 2000). This observation agrees with 

previous studies (Rokoengen & R0nningsland, 1983; Hollander, 1984; Riis & 

Fjeldskaar, 1992; Holtedahl, 1993; Henriksen & Vorren, 1996; Gregersen, 

1997) where glacial sediments were reported to comprise significant amounts 

of the first few hundred meters ($500m) of the Nordland Formation. In 

contrast, in the examined Mid-Norway well the glacial influence seems to 

extend much deeper until a depth of at least 650m (Fig. 58). 
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For the present compaction study this information is of great importance, 

since the compressibility of glacial sediments (boulder clay & till) is different 

from that of purely marine clays and muds (Hossain, 1996; Clarke et aI., 

1998; Lind, 1999; Tulaczyk et al. 2001). The characteristic poor sorting and 

wide range of grain sizes in glacial tills results in porosities and permeabilities 

which are often significantly different from those of marine clay-rich 

sediments (Boulton & Dobbie, 1993; Neuzil, 1994; Blum, 1996; Gerber & 

Howard,2000). 

The porosities used in this study were solely derived from the density log and 

represent values which are based on the following relationship (from Rider, 

1996): 

(7) ¢ = Pma - Ph 
PmlJ - PI 

where the porosity ¢ is calculated from the bulk density of the rock (Pb) , the 

density of the mineral matrix (= grain density Pma) and the density of the pore 

fluid (PI). 

The bulk density Pb was delivered by the density log, the density of the pore 

fluid (PI) was set to 1 .04g/cm3 for slightly saline pore water. The three different 

grain densities (Pma) used were 2.65 g/cm3 (sandstone), 2.68 g/cm3 (siltstone) 

and 2.71 g/cm3 (mudstone). The classification of the different lithologies (for 

the assessment of porosity) was based on the gamma ray log, where 20API 

was set as the boundary between sand and silt and 65API as the boundary 

between silt and mudstone. 

Although this classification is a practicable way of allocating grain densities to 

the drilled sections, it is also cause for Significant uncertainty. Since the 

cutting samples from Unit1 revealed that there can be a significant difference 

between the log-derived and actual lithology, these uncertainties have to be 

considered for a wireline log-based compaction analysis. 

Fig. 58 shows the porosity profile derived from the density log by applying 

equation (7). The previous subdivision of the well into 3 lithological units (Fig. 

57) is clearly reflected by changes in porosity. The most obvious seperation 
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exists between Unit1 (Nordland Fm.) and Unit2 (Hordaland/Rogaland Fm.). 

Here, porosity shifts by approximately 30% from about 20% at the bottom of 

Unit1 to about 50% at the top of Unit2. The next significant change of porosity 

can be observed bewteen Unit2 and Unit3 at the top of the Mesozoic. In this 

case, porosity shifts from just over 40% at the bottom of Unit2 down to about 

30% at the top of Unit3. Two further shifts of similar amplitude occur within 

the Mesozoic beyond 1750mbsf. 

I 

Porosity 

o 0.2 

NORDLAND FM. 

1000 
HORDALAND FM. I 

I ROGALAND FM. I 

1500 

MESOZOIC 

2000.': 

0.4 0.6 0.8 

Fragments of 
igneous rocks 

Shale 
fragments 

Fig. 58 Porosity/depth plot for a Mid-Norway well. Porosities were calculated from the density log, 

assuming grain densities of 2.71g1cm3 for API>65, 2.68 glcm3 for API 20-65, 2.65 g/cm3 for APk20 and 

a pore flu id density of 1.04g1cm3
• The red dots mark positions where cuttings have been analyzed. 
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Since the observed shifts coincide with changes in lithology, the use of 

different compaction curves for each unit and subunit seems to be 

appropriate. A comparison with compaction curves based on Yang & Aplin's 

(submitted) model (Fig. 59) shows that the observed porosities fall well into 

the range predicted for fine-grained lithologies. 

For every compaction analysis it is crucial to have information about lithology, 

porosity and effective stress. If these parameters can be sufficiently well 

evaluated it is possible to make assumptions about pore pressure and the 

state of consolidation (e.g. Casagrande, 1936; Taylor, 1948; Skempton, 1970; 

Issler, 1992; Hansen, 1996b; Yang & Aplin, submitted). If the observed 

porosity is lower than predicted for a given lithology and effective stress a 

formation is overconsolidated, if higher it is underconsolidated and 

presumably overpressured (Osborne & Swarbrick, 1997). 

Porosity 
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Fig. 59 Modeled compaction curves (Yang & Apl in, submitted) for a sediment with 20% and 80% clay 

fract ion , respectively. 

Since high quality sample material (core) is not available in the present study, 

information about the exact clay fraction could not be obtained. Thus, Yang & 

Aplin's (submitted) model , which is based on clay fraction as descriptor of 

lithology, can not be applied to infer the state of consolidation. 
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By using the available wireline-Iogs and cutting samples to characterize the 

lithology of the present well the following assumptions about porosity and the 

state of consolidation can be made: 

SCENARIO A 

Unit1 

The sediment is dominated by relatively coarse-grained material of 

presumably glaciomarine origin. The observed porosities are typical for this 

type of sediment (Tulaczyk et aI., 2001) which often has clay fractions of less 

than 20% (Lind, 1999). Predictions based on Yang & Aplin's (submitted) 

model for sediments with clay fractions of about 20% (Fig. 59) agree with this 

scenario and point to a state of normal consolidation with hydraulic pore fluid 

pressures. 

Unit2 

Unit2 is comprised of fine to very fine-grained mudstones and shales. Since 

even poroSities calculated with Yang & Aplin's (submitted) model for very fine­

grained sediments (clay fraction 80%) do not reach the observed levels, the 

formation is presumably underconsolidated and overpressured. 

The sediments of this section are dominated by mudstones and shales. The 

log-derived porosities are in a range typical for these lithologies (Giles et al. 

(1998) and references therein) and confirm predictions made by Yang & 

Aplin's (submitted) model (Fig. 59). The state of consolidation should be 

normal with presumably hydrostatic pore pressures. 

SCENARIO B 

Unit1 is mainly comprised of fine-grained sediments with a regular occurrence 

of coarser, glacial-derived material. The observed porosities are generally too 

low for this type of sediment and burial depth (Giles et aI., 1998) and point to 

a significant degree of overconsolidation. 
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Similar to scenario A. 

Similar to scenario A. 

If scenario A is correct the huge shift of porosity between Unit1 and Unit2 

could be explained by a radical change of sedimentary environment. The fine­

grained sediments of the Hordaland and Rogaland Formations (Unit2) have 

been deposited at relatively low accumulation rates of often much less than 

80m/Ma (Galloway et aI., 1993; Wensaas et aI., 1994). The subsequent 

deposition of the coarser Nordland Formation (Unit1) marked in many areas a 

shift towards higher sedimentation rates of up to 140m/Ma (Hollander, 1984; 

Wensaas et aI., 1994; Kvilhaug & Roaldset, 1998). This combination of 

increased sediment accumulation and change of lithology can explain both 

the underconsolidated state of Unit2 and the normal consolidated state of 

Unit1. Since marine shales like Unit2 usually have much lower permeabilities 

than glacial tills like Unit1 (Neuzil, 1994; Lind, 1999; Gerber & Howard, 2000) 

a rapid load of about 1000m of Unit1 on top of Unit2 would have two effects: 

1. it would hinder the dewatering and consolidation of Unit2 ('disequilibrium 

compaction'; Magara, 1978; Osborne & Swarbrick, 1997; Grauls, 1999), but 

2. it would also allow the dewatering of Unit1. 

Due to the lack of detailed lithological information about Unit3 it is very 

difficult to make assumptions about its state of consolidation. Both low 

sedimentation rates (Wensaas et aI., 1994; Kvilhaug & Roaldset, 1998) as 

well as observed porosities do not point to significant degrees of 

underconsolidation or overpressure. However, as described by Hermanrud et 

al. (1998) it is possible that fluid overpressuring post-dating shale compaction 

resulted in higher than normal pore pressures. 

If scenario B is be correct, Unit1 is overconsolidated whereas Unit2 and Unit3 

have the same states as in scenario A. 
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In order to explain a possible state of overconsoldation in Unit1, several 

geological models can be used: 

Firstly, the sequence could have been uplifted (Fig. 60). In this case, erosion 

of an overlying section would have led to porosities, which represent much 

higher effective stresses than observed today. Difficulties with this model are, 

that the underlying Units 2 and 3 do not show any evidence for higher 

effective stresses in the past. The recently observed porosities should be 

much lower than today if a significant additional load of sediment had been in 

place. Furthermore, Hansen (1996b) showed that the Mid-Norway well is 

located in an area where no major uplift or erosion occurred during the last 

few million years. 

Fig. 60 Overconsol idation of Unit1 due to uplift and erosion. Recently observed porosities (black 

compaction curve) correspond to effective stresses that were much higher in the past. Difficulties with 

this model are that the underlying Units 2 & 3 (Fig. 57) do not show signs for higher effective stresses 

in the past. 

Secondly, the cause of overconsolidation could be connected to a series of 

glaciations which happened in the described area during the 

Pliocene/Pleistocene (e.g. Henriksen & Vorren, 1996; Mangerud et aI., 1996; 

Carr, 1999; Lambeck et aI., 2000). In this model, the presence of glaciers 

could have resulted in an increase of effective stress (Fig. 61). Then, after 

deglaCiation the effective stress would have returned to lower levels, hence 

the observed overconsolidation. There are three main difficulties with this 

model. Firstly, The glacier must have had direct contact to the sediment 

surface, since any water in between would have transferred the ice load to the 
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pore fluid and not to the grain matrix (i.e. increase in hydraulic pressure and 

not effective stress; Boulton & Dobbie, 1993). Since Henriksen & Vorren 

(1996) showed that the examined area was mostly ice-free and one of the 

sediment depocenters (i.e. submerged) it is highly unlikely that these 

glaciations generated the effective stress necessary for a significant degree 

of overconsolidation. Secondly, even if there would have been the necessary 

extent of glacial cover it would have been difficult to expell the pore water of 

Unit1 sideways or through the underlying, less permeable sediments. Finally, 

higher effective stresses in the past are very unlikely, because Units 2 and 3 

do not show any evidence of overconsolidation. 

I GLACIATION I DEGLACIATION 

POROSITY .... 

Fig. 61 Overconsolidation of Unit1 due to glaciation. The additional ice load increased the effective 

stress in the past and resulted in the observed 'low' porosities for Unit1 . Difficulties with this model are 

1. the underlying Units 2 & 3 (Fig. 57) show no signs for higher effective stresses in the past; 2. since 

Unit2 should be of much lower permeability than Unit1 there is no obvious pathway to expel! the excess 

pore water of Unit1 during compaction . 
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Fig. 62 Neutron/density and gamma ray logs of the examined MId-Norway well. RHOS: bulk density; 

NPHI: neutron porosity; GR: gamma ray. 

4.3.1.3 Discussion and conclusions 

Two basic scenarios were presented to explain the compaction trends of the 

Mid-Norway well. 

Scenario B is based on the assumption that Unit1 consists of fine-grained 

material and that the log-derived porosities point to a state of 

overconsolidation. The theory that either uplift/erosion or glaciation could 

have resulted in higher effective stresses in the past is very unlikely since 

Units 2 and 3 show no evidence of overconsolidation. On the contrary, the 

porosities of Unit 2 are rather too large than two small and thus indicate a 

state of underconsolidation. 
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Scenario A on the other hand supports the idea that the Nordland Formation 

(Unit 1) is comprised of much coarser, glacial material with higher 

permeabilities than the underlying Hordaland and Rogaland Formations (Unit 

2). Combined with the increased sedimentation rate during the deposition of 

Unit1 this explains not only the normally consolidated state of the latter but 

also the underconsolidated (presumably overpressured) state of Unit 2. In 

addition, these processes agree with the observed compaction trends of Unit 

3, where no indications for either overconsolidation or underconsolidation 

were detected. The discovered porosity shift at the boundary between Units 2 

and 3 can be explained by an unconformity between the Upper Cretaceous 

and Tertiary (Hollander, 1984) and might not just reflect changes of lithology. 

However, since no detailed lithological information is available at this point is 

is difficult to confirm this observation. 

The analysis of other shallow sequences from the northern North Sea and 

Mid-Norway area suggest that Scenario A is valid for most of the observed 

compaction trends (Fig. 56). Both wireline logs and cutting samples confirm 

the observations of the chosen well. 

Future work about the compaction history of this area should include more 

high quality sample material to allow a better characterization of the examined 

lithology. Pore pressure data should also help to explain the sudden shifts of 

porosity between the different lithological units. 

4.3.2 The New Jersey shelf and continental slope 

4.3.2.1 Background 

Dugan & Flemings (2000a/b) examined the compaction history of a 

sedimentary sequence drilled in 1998 by the Ocean Drilling Program on the 

New Jersey continental slope (Fig. 63). Their analysis of porosity data at this 

site (174/1073) implied the occurrence of highly overpressured pore fluids, 

which they suggested led to the slope failures previously identified in the 

region (Fig. 66; MacDonald et aI., 1990). 

Well 174A11073, drilled at a water depth of 639m, is represented by a 663m 

thick sedimentary sequence (Fig. 64) which mainly comprised silts and clays 
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with few sandy interlayers. The deeper sections (>560mbsf) are dominated by 

siliceous and calcareous fossil material (Table 24). 

The well can be subdivided into three lithostratigraphic units . Unit I is of 

Pleistocene-Holocene age and extends from sea floor down to 519.8mbsf. 

Unit II covers depths from 519.8mbsf to 654.1 mbsf and is Oligocene to 

Pliocene in age. Unit III extends from 654.1 mbsf to 663.6mbsf and is of 

Eocene age. 

• ODP Legs 174 and 174X • ODP Legs 150 and I ~OX 0 previous drilled sites 

Fig. 63 Location of site 1073 at the New Jersey continental Slope (Vanderaveroet 2000) . 

Sedimentation rates of less than 100m/Ma for the Pliocene and Miocene and 

a maximum of about 1100m/Ma for the Pleistocene are based on 

biostratigraphie data (Dugan & Flemings, 2000b). 
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Depth [mbsfj Qz & Fp Clay 

0.1 

1.2 

7.8 

17.2 

26.53 

33.13 

35.33 

40.36 

47.51 

59.3 

62.9 

64.3 

74.1 

75.8 

79.91 

80.4 

83.4 

87.9 

93.3 

101.7 

112.2 

114.3 

118.8 

122.4 

139.9 

147.6 

159.1 

168.6 

178.1 

185.6 

190.3 

198.27 

201.3 

213.86 

218 

228.2 

236.2 

245.8 

256.8 

266.3 

273.2 

282.4 

292 

301.4 

310.7 

319.6 

328.37 

34 

32 

34 

32 

30 

40 

42 

40 

37 

40 

41 

35 

35 

32 

28 

21 

27 

26 

31 

36 

33 

38 

44 

38 

43 

26 

33 

31 

31 

31 

27 

30 

35 

39 

37 

31 

30 

31 

20 

32 

21 

26 

32 

25 

20 

31 

31 

23 

39 

37 

38 

38 

23 

18 

26 

38 

22 

20 

36 

36 

50 

34 

60 

50 

55 

47 

48 

48 

43 

29 

36 

33 

26 

35 

31 

30 

32 

5 

30 

6 

33 

36 

48 

42 

44 

55 

48 

56 

44 

43 

52 

44 

49 

50 
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Total 

Fossils 

34 

17 

13 

15 

14 

19 

21 

16 

11 

19 

20 

15 

11 

6 

22 

7 

8 

6 

10 

6 

5 

9 

14 

14 

10 

39 

18 

20 

23 

23 

50 

28 

44 

13 

16 

7 

14 

13 

7 

8 

11 

19 

14 

17 

26 

10 

9 

epth [mbsfj Qz & Fp 

338.2 

347.6 

357.3 

366.5 

375.9 

385.13 

394.8 

403.6 

412.74 

422.69 

428.15 

433.2 

444.43 

452.96 

461.51 

472 

480.78 

489.7 

497.9 

518.3 

519.76 

519.99 

523.4 

526 

535.3 

542.1 

551.04 

552.22 

553.62 

563.9 

573.35 

582.6 

583.92 

593.52 

598.36 

600.15 

606.14 

610.92 

616.45 

619.05 

625.04 

628.62 

632.9 

641.1 

647.02 

657.7 

37 

31 

32 

35 

35 

37 

38 

37 

37 

34 

37 

36 

36 

35 

35 

36 

27 

27 

30 

22 

21 

23 

20 

20 

15 

25 

15 

16 

16 

17 

16 

16 

13 

13 

17 

13 

12 

13 

11 

13 

15 

14 

36 

13 

11 

3 

Clay 

34 

44 

47 

41 

44 

35 

37 

43 

42 

26 

11 

23 

39 

44 

41 

48 

48 

54 

45 

39 

23 

35 

35 

42 

43 

35 

37 

25 

44 

33 

19 

25 

12 

17 

10 

19 

14 

16 

26 

10 

13 

9 

9 

21 

23 

18 

Total 

Fossils 

17 

9 

7 

10 

7 

16 

10 

5 

8 

30 

39 

29 

11 

7 

9 

6 

13 

8 

10 

25 

37 

25 

31 

28 

35 

28 

14 

25 

29 

37 

46 

43 

56 

52 

48 

54 

46 

52 

51 

58 

48 

54 

44 

49 

51 

69 

Table 24 Main mineralic constituents of well 174/1073 (Austin et aI., 199B). Percentages are derived 

from smear slide analysis. 
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Fig. 64 Seismic section at site 1073 (Dugan & Flemings 2000a) . 

4.3.2.2 Conclusions of the compaction study of Dugan & Flemings (2000alb) 

Based on porosities derived from core data, Dugan & Flemings (2000alb) 

subdivided site 1073 into three zones (Fig. 65 & Fig. 66): a shallow zone (0-

100mbsf) of decreasing porosity, a thick intermediate section (100-550mbsf) 

of constant porosity, and a deep zone (550-660mbsf) of increased porosity. 

100 

200 

00 

400 

500 -.PliQ. -
600 

"0 s-+ 
~ r 
tU 0 JIM en ... - .... -

tH ~ cr ~f"") 
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Fig. 65 Well section for Site 1073 (from Dugan & Flemings 2000b). c!> = porosity, P*= fluid pressures 

predicted from porosity. 
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They used the following three approaches to model the pore pressures for the 

drilled section: 

1 _ Porosity- Vertical Effective Stress Model 

2. 1-0 Sedimentation-Compaction Model 

3. 2-D Sedimentation-Compaction Model 

Model 1: 

Based on the assumption that compaction is governed by vertical effective 

stress they used two relationships to constrain a compaction model and to 

infer pore pressure: 

(9) P = Sv - 1/~ [In (<1>01<1>)] 

where; $ = porosity, $0 = initial porosity, ~ = compressibility, cry = vertical 

effective stress, P = pore pressure and Sv = total vertical stress. 

They assumed that the upper 1 OOmbsf are hydrostatically pressured and that 

lithology is constant over the whole well. They calculate an initial porosity of 

61 % which decreases to 40% at 100mbsf. The calculated bulk compressibility 

J3 for this interval is equal to 0.44MPa-1
• 

From their model constraints they interpret the porosity profile for well 

174/1073 as follOWS (Fig. 66): 

1. Zone 1 (0-100mbsf) is hydrostatic and normally compacted 

2. Zone 2 (100-550mbsf) has nearly lithostatic pore pressure and is 

undercompacted 

3. Zone 3 (below 550mbsf) has lithostatic pore pressure and is not 

compacted 

Model 2 

Here Dugan and Flemings (2000a/b) use sedimentation rate and permeability 

in a one-dimensional model to simulate the pore pressure evolution during 
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sediment accumulation at site 1073. They assume a constant sedimentation 

rate of 950m/Ma for the duration of the Plio-Pleistocene. a constant vertical 

permeability of Kv = 10·18m2 for the Plio-Pleistocene and a constant vertical 

permeability of Kv = 10·16m2 for the Miocene strata. In their model the 

Miocene sediments are hydrostatically pressured prior to the sedimentation of 

the Plio-Pleistocene strata. 

The results of this pressure model are as follows (Fig. 66): 

1. Pore pressure is near lithostatic until 50mbsf 

2. Below 50mbsf overpressures reach values of about 75% of those 

predicted by Model 1 

Model 3 

This approach uses a two-dimensional sedimentation-compaction model to 

evaluate the contribution of lateral fluid flow to the regional pressure field (Fig. 

66). Here the model incorporates a spatially varying sedimentation rate (100-

2000m/Ma) and an anisotropic permeability field (vertical permeability = 10' 

18m2, horizontal permeability = 10.17 m2
). The sedimentation rate is constant 

over time. 

From this two-dimensional model they obtain the following results (Fig. 66): 

1 . Pore pressure is nearly lithostatic until 200mbsf 

2. From 250mbsf to 500mbsf the pore pressures match those of the 

porosity-effective stress model (nearly lithostatic) 

3. For Zone 3 the model predicts high overpressure (68% of the 

porosity-based model) 

Model 3 was introduced by Dugan & Flemings (2000a/b) because the one­

dimensional approach (Model 2) did not manage to produce the pore 

pressures obtained from the porosity-effective stress model (Model 1). The 

additional pore pressures generated by lateral fluid flow resulted in similar 

pressures as in Model 1 for the intermediate section (250-500mbsf) but still 
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failed to explain both the hydrostatic shallow section «100mbsf) or the 

lithostatic bottom section (>550mbsf). 

Dugan & Flemings (2000a) quote two main reasons why they probably did not 

manage to achieve a complete match between the sedimentation-compaction 

models and the porosity-effective stress model. Firstly, they debate wether 

due to the higher porosities at these depths, the permeabilities in the shallow 

section are in fact significantly higher than the assumed value of 10-18m2. 

Secondly, they consider that the porosity-effective stress behaviour infererred 

from the shallow, hydrostatic section might not be accurate to describe the 

compressibility of the deeper sections. The latter point basically means that 

their assumption that lithology is constant does not apply for the whole 

section of well 174/1073. 

In the following chapter the results of Dugan & Flemings' (2000alb) model will 

be compared to predictions based on Yang & Aplin's (submitted) approach, 

which incorporates changing lithologies into a porosity-effective stress model. 

P', Svm •• - Pw'JZ 5km 
o 1.0 2.1 3.2 4.3 5.4 

P' (MPo) 

Fig. 3. (Al Normalized plot of overpressures for Site 1073. TD is the total sediment thickness at Site 
1073 and z is the distance below th e Sea floor. The dashed line is the reduced lithostat. Solid lines 
are one-dimensional model (1Dl. two-dimensional model (2D). and porosity-predicted (P,b) pres­
sureS at Site 1073. Porosity zoneS and measured depth for Site 1073 are labeled for reference (Fig. 
2). (8) Simulated 2D vertical effective stress (contour interval = 1 MPa), overpressure (color 
contours), and flow ields for the New Jersey slope after 1 million years of simulation. The left edge 
(upper slope) is a no-flow boundary. and the right edge (lower slope) is a constant-pressure 
boundary (p. - 0). The model geometry is constrained from regional seismic data (Fig. 1 B). The 
white surface is the Miocene-Pliocene boundary. Vertical effective stress is less than 1 MPa for 
much of the section and is ~, O MPa above the toe of the Miocene bed. The low vertical effective 
streSS indicates that the lower slope is at near-failure conditions. 

Fig. 66 Sketch from Dugan & Flemings' (2000a) publication. It shows the results of the different pore 

pressure models and explain the consequnces of the lateral fluid flow model (Model 3). 
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4.3.2.3 Re-examination of the compaction history at Site 1073 

Based on the core data provided by ODP (Austin et al. 1998). several 

compaction models can be used to explain the observed porosity/depth 

profile (Fig. 65). 

In Fig. 67 the three most relevant core parameters for the compaction study 

are displayed. Former investigations revealed that the clay content can be 

used to characterize changes in lithology which significantly influence the 

compaction behaviour of siliciclastic sediments (Aplin et aI., 1995; Dewhurst 

et ai, 1998, 1999b; Yang & Aplin, 1998 & submitted). In addition, the 

presence of high fossil contents was proven to be an important factor in 

porosity prediction (Meade, 1963; Bryant and Rack 1990; Bryant et al. 1990; 

Compton 1991; Rack and Palmer-Julson 1992; Tribble et al. 1992; Kraemer 

et al. 2000). 

For this study the <4Jlm clay fraction provided by Austin et al. (1998) in Table 

24 was used to calculate the <2Jlm clay fraction needed for Yang & Aplin's 

(submitted) model. Here, a relationship (2Jlm=0.48+0.82*4Jlm) based on 

empirical data from this study was applied to convert the Wentworth Scale 

«4Jlm) into the <2Jlffi scale. 

The main problem Dugan & Flemings (2000a/b) experienced with their one­

dimensional sedimentation-compaction model was, that it did not manage to 

produce the high pore fluid pressures their porosity-effective stress model 

predicted (Fig. 66). 

The compaction model of Yang & Aplin (submitted) uses clay fraction as a 

critical parameter and allows to generate pore pressure predictions for 

different types of siliciclastic lithologies. Based on Dugan & Flemings 

(2000a/b) premise of a constant lithology three different pore pressure 

models have been generated applying the compaction model of Yang & Aplin 

(submitted) to sediments with 30%, 40% and 50% clay fraction (Fig. 69 & Fig. 

70). 

Model A (Fig. 69) sets the clay fraction to a constant 30%, which represents a 

silty sediment. The modeled porosities for this clay fraction are much lower 
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than the porosities measured by ODP (Fig. 68). As a result of this porosity 

difference the sediment seems to be completely uncompacted and thus 

highly overpressured. In fact, Model A produces lithostatic pore fluid 

pressures over most of the interval. 

In comparison with Dugan & Flemings' porosity-effective stress model 

(Model1) the predicted pore pressures are higher, especially in the shallow 

(Zone 1, <800kPa) section (Fig. 69). The obtained pore pressures for the 

deep section (Zone 3, >4600kPa) are very similar. 

porosity Ii clay % 1~'oI' l 
, 

0.1 0.2 0 .3 04 0.5 0 6 0 7 
0.3 0.4 0.5 0.6 0.7 o 0.1 0.2 0.3 0.4 0.5 0.6 

o -!----'---__ ---:l 

100 

100 100 

200 - 200 

:; 300 300 
300 

:[ 
~ 

Q. 

.:; 400 400 400 

500 500 

600 600 600 -

700 J..-____ ---' 700 - Wentworth Scale (ODP) 1 700 J.....-_____ __ 

- <2 mic rons . 

Fig. 67 Porosity, clay content and fossil content based on data from Austin et al. (1998) . The 211m 

fraction was derived from the 41lm (Wentworth Scale) data (Austin et aI., 1998) using a relation based 

on empirical data, where 2Ilm=0.48+0.82*4Ilm. The error bars reflect an uncertainty of the OOP values 

of ±15%rel wh ich was established by laboratory experiments. 
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Fig. 68 A comparison of the porosities measured by ODP and those resulting from Yang & Aplin 's 

(submitted) model for different clay fractions. Zones 1-3 from Dugan & Flemings (2000b). Stresses are 

calculated from bulk densities (Austin et aI. , 1998). 
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Fig. 69 (LHS) Pore flu id pressure based on the porosity/pressure model of Dugan & Flemings (2000b). 

(RHS) Comparison of the Dugan & Flemings model and pore pressures predicted for a constant clay 

fraction of 30% (Model A) . (*) - Reduced lithostatic stress (total vert ical stress-hydrostatic stress) for 

Dugan & Flemings' pore pressures. 

Model B (Fig. 70) sets the clay fraction to a constant 40%. This is compatible 

to a silty mud, and matches the general lithological description for the 

examined sedimentary sequence (Austin et aI., 1998). In this case, the pore 

fluid pressures generated by the model are very similar to those predicted by 

Dugan & Flemings (Fig. 70). However, Model B like Model A does not 
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produce hydrostatic pore pressures for Zone 1 «800kPa). The fluid 

pressures for the intermediate (Zone 2, 800-4600kPa) and deep section 

(Zone 3, >4600kPa) are nearly lithostatic to lithostatic. 

Model C (Fig. 70) sets the clay fraction to a constant 50%, representing a 

mudstone sequence. The porosities measured on the core material of well 

174A11073 show values between 45% and 60%, a range common for 

mudstones at these depths (Giles et aI., 1998). The resulting predictions of 

Yang & Aplin's (submitted) model reflect this fact, with hydrostatic pore fluid 

pressures in the shallow section and overpressures half of the level predicted 

by Dugan & Flemings (Fig. 70) in the intermediate and deep sections. Only 

for small intervals are the nearly lithostatic pore pressures predicted by 

Dugan & Flemings (Fig. 70) reached. 
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Fig. 70 Comparison of Dugan & Flemings' model with Model B (clay fraction of 40%, LHS) and Model C 

(50% clay fraction, RHS). n -Reduced lithostatic stress (total vertical stress-hydrostatic stress) for 

Dugan & Flemings' pore pressures. 

The mineralic composition of well 174A11073 (Table 24) reveals that Dugan & 

Flemings' (2000alb) assumption of a constant lithology is very difficult to 

maintain, especially if taking into account the sensitivity of normal compaction 

curves to changes in clay fraction (this study, Aplin et aI. , 1995; Yang & Aplin, 

1998 & submitted; Dewhurst et aI., 1999b). 
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In order to account for this variability in lithology, a fourth model (Model D) 

was generated (Fig. 71). This model incorporates variable clay fractions and 

should represent the drilled sediments more accurately. Since Yang & Aplin's 

(submitted) model uses 21lm as size boundary between clay and silt, the OOP 

clay fractions based on the Wentworth Scale «4Ilm) had to be converted. A 

conversion of the <4Jlm values into the <2Jlm scale and a comparison of clay 

fractions estimated by OOP and measured using the Sedigraph method 

revealed an average uncertainty of the OOP values of ±15%rel (Fig. 67). This 

rather large uncertainty relates to the fact that ODP values for clay fraction 

are based on visual smear slide analyses and not on analytical 

measurements. Based on the newly calculated clay fractions, the lithology for 

the examined well can be best described as muddy silt with sandy and muddy 

intervals. 

The pore pressure predictions resulting from Model 0 show lithostatic 

pressures for the shallow (Zone 1) and deep sections (Zone 3), and nearly 

lithostatic to lithostatic pressures for most of the intermediate section (Zone 

2). Although Model 0 agrees well with the predictions made by Dugan & 

Flemings' porosity-effective stress model, it still produces lithostatic pore 

pressures for the first 100mbsf (800kPa). 
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Fig. 71 (LHS) Model 4: Comparison of the Dugan & Flemings' model and pore pressures predicted by 

the Yang & Aplin (submitted) model for variable clay fractions. The fossil content (x10·1) is set to 0 at 

15%, the boundary where an influence on porosity becomes significant (Bryant & Rack, 1990). (*) -

Reduced lithostatic stress (total vertical stress-hydrostatic stress) for Dugan & Flemings' pore 

pressures. 

A critical flaw of all the models used to understand pore pressure is the 

neglect of a possible influence of the fossil content on the measured 

porosities. Here, as in other studies (e.g. Bryant & Rack, 1990; Tribble et al. 

1992; Kraemer et al. 2000) it is clear that the abundance of nanno- and 

microfossils has a very significant impact on porosity in shallow marine 
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sediments. Fig. 72 shows the comparison of fossil content with porosity and 

clay fraction in the examined sedimentary sequence. The positive correlation 

between fossil content and measured porosity is obvious. In most cases, the 

porosity curve shows a positive signal as soon as the fossil content exceeds 

values of 15%. Especially in the deep section, where Dugan & Flemings 

(2000alb) report a lack of porosity reduction due to compaction, the fossil 

content reaches values of more than 60% (Table 24). In addition, Fig. 72 

reveals the negative correlation of clay fraction and fossil content. This results 

in a further misinterpretation of the examined sediments. The model of Yang 

& Aplin (submitted) is only calibrated for sediments dominated by siliciclastic 

material and does not account for fossil related compaction features. This 

means that where the clay content points to a silt or sandy silt, the sediments 

would actually be better described as fossil ooze. 
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Fig. 72 (LHS) Correlation of porosity and fossil content measured on core material from site 174N1073. 

The 15% line represents the value where the influence of fossil content on porosity becomes significant 

(Bryant & Rack, 1990). (RHS) correlation of fossil content and clay fraction. 

4.3.2.4 Summary and Conclusions 

In general, both Dugan & Flemings' (2000a/b) porosity-effective stress model 

and Yang & Aplin's (submitted) model for clay fractions between 30% and 

40% predict near lithostatic to lithostatic pore pressures for most of well 

174/1073. A major difference exists only for the pore fluid pressure 

predictions made by Yang & Aplin's (submitted) model for the shallow 

«100mbsf) section. The reason for this difference is obvious, since Dugan & 

Flemings based their compaction model on the assumtion that this interval is 

hydrostatically pressured. In contrast, Yang & Aplin's model only uses clay 
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fraction and porosity for its prediction of pore pressure without making any 

assumptions. 

The difficulty Dugan & Flemings (2000a/b) faced with matching their porosity­

effective stress based model and their two-dimensional sedimentation­

compaction model (lateral fluid flow model) can likely be related to a 

lithological misinterpretation of well 174/1073. Two main discrepancies exist 

between the two models: 1. Zone 1 in the lateral fluid flow model has 

lithostatic instead of hydrostatic pore pressures, and 2. Zone 3 in the lateral 

fluid flow model has significantly lower overpressure than the other model 

(Fig. 66). 

Firstly, since Zone 1 has a highly variable lithology (Table 24) with low clay 

fractions in the very shallow section «60mbsf), the assumption in Model 2 & 

3 of a constant, mudstone-typical permeability is not accurate. Thus, too low 

permeabilities in the lateral fluid flow model generate pore pressures that are 

much higher than in reality. Secondly, Dugan & Flemings's porosity-effective 

stress model assumes that the lithology of Zone 1 is representative for the 

whole well. This is definitely not true for Zone 3 (Table 24). Since this zone is 

not only coarser-grained but also dominated by fossil material it has 

permeabilities which should be much higher than those of a clay/silt 

dominated sediment (Bryant & Rack, 1990). As a consequence, Dugan & 

Flemings' compaction curve for Zone 1 does not represent the compaction 

behaviour of Zone 3 and presumably overestimates the pore pressure 

considerably. 

Dugan & Fleming's (2000a/b) conclusion that the overpressures in Zone 3 

and the lateral fluid flow regime could cause the cold seeps and slope failures 

observed by MacDonald et aI., (1990) is still justified. Although the pore 

pressures predicted by their two-dimensional sedimentation-compaction 

model might be slightly higher than in reality, the proposed fossil content­

related enhancement of permeability might lead to even higher down-slope 

flow rates of pore fluids (Fig. 66). These would then result in a similar way as 

the lithostatic pore pressures predicted by their porosity-effective stress 

model. 
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5 Conclusions 

In general, the data of this study support previous compaction models 

(Skempton, 1970; Burland, 1990; Yang & Aplin, submitted) and the 

observation that grain size seems to be the single most important control on 

the mechanical compaction of fine-grained, siliciclastic sediments. Both 

mineralogy and geological age do not seem to affect the development of 

porosity with increasing effective stress. In this study, the effect of particle 

sorting could not be analysed but should be subject to future investigations. 

The previously observed positive correlation between nannofossil content and 

porosity (e.g. Bryant & Rack, 1990; Kraemer, 2000) could be confirmed. This 

will help to understand poroSity-effective stress trends with unexpectedly high 

porosities in shallow buried, clay-rich sediments. Furthermore, pore throat 

size distributions distinctly different to samples poor in fossil material also 

point to significant differences in physical properties like porosity and 

permeability of fossil-rich sediments. 

The strong influence of grain size and fossil-content on the porosity-effective 

stress relationship of fine-grained sediments had important implications for 

the compaction study of the Mid-Norway and New Jersey case studies. It 

became clear that good quality grain size information and the consideration of 

the fossil content underpin a thorough compaction study of shallow buried 

formations. 

Laboratory experiments conducted in this study confirmed, that air and oven 

drying significantly alters the pore volume-related physical properties of soft, 

clay-rich sediments. It is therefore very important to ensure that samples of 

shallow buried, clay-rich siliciclastics are preserved wet if porosity and pore 

size distribution data are to be meaningful. 
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6 Samples and Methods 

Although extensive work has been done to examine the fabric of argillaceous 

rocks (references see next chapter) little is known about the effects of clay 

fabric development on sediment compaction (Le. the reduction of porosity 

with increasing effective stress). Since previous studies focused mainly on 

the qualitative description of clay mineral fabric, a systematic, quantitative 

approach to describe the fabric development during sediment compaction 

remains to be established. 

The objective of this study is 

• to quantify the clay mineral fabric of phyllosilicate-rich rocks from 

various sedimentary basins around the world using the High Resolution 

X-ray Texture Goniometry approach (Van der Pluijm et al. 1994; Ho et 

aI., 1999) 

• to determine the physical properties (e.g. porosity, pore size 

distribution, grain size) of these sediments and to relate them to the 

fabric 

• to determine the diagenetic grade (for clay minerals) of the samples 

and to establish whether systematic relationships exist between fabric, 

compaction and diagenesis 

6.1 High Resolution X-ray Texture Goniometry: Background 

The orientation of clay minerals in sediments and sedimentary rocks has 

been at the centre of research in various fields of geoscience. One 

application is the use of phyllosilicate orientation in sedimentary and 

metamorphic rocks as an indicator for cleavage development and tectonic 

strain in structural geology (Turner and Weiss, 1963; Oertel, 1970, 1983; 

Oertel et aI., 1989; Lee et aI., 1985, 1986; van der Pluijm & Kaars­

Sijpensteijn, 1984; van der Pluijm et aI., 1998; Holeywell & Tullis, 1975; 

Ramsey and Huber, 1983; Ho et aI., 1995, 1996, 2001; Jacob et aI., 2000). 

Another is the application of the same principles to the investigation of the 

mineralogical changes during diagenesis and low-grade metamorphism (Ahn 

& Peacor, 1986; Freed & Peacor, 1989, Merriman et aI., 1990; Li et aI., 1994). 

107 



Part B - 6 Samples and Methods 

The third group of studies is has utilized the degree of clay mineral orientation 

for the analysis of sediment compaction, i.e. the development of physical 

properties with increasing effective stress (Meade, 1963, 1966; Bowles et aI., 

1969; Oertel & Curtis, 1972; Curtis et al. 1980; Sintubin, 1994; Ho et aI., 

1999; Jacob et aI., 2000). 

These investigations share the common premise that at deposition most clay 

minerals are randomly oriented (O'Brien, 1970; O'Brien & Slatt, 1990). Any 

measurable preferred orientation (or change in preferred orientation in the 

case of cleavage development) must therefore be caused subsequently by 

either compactional (overburden) or tectonic stress (e.g. Holeywell & Tullis, 

1975; van der Pluijm & Kaars-Sijpensteijn, 1984). At later stages, during the 

transformation of mudstones into shales and slates, increasing temperatures 

and stresses induce mineralogical processes, which also lead to extended 

levels of preferred orientation (Ramsey and Huber, 1983; Ho et aI., 1995, 

1996, 1999, 2001; van der Pluijm et al. 1998; Jacob et aI., 2000). 

Over the last 40 years various methods have been developed to determine 

the degree of clay particle alignment. Meade (1961) described a way to use 

ratios of X-ray diffraction peak intensities to obtain information about clay 

mineral orientation. For this method, sections of three orthogonal cuts 

(parallel to bedding and orthogonal to bedding) of a sample had to be 

prepared very carefully. In 1969 Baker et al. used an X-ray goniometer in 

transmission mode to examine the preferred orientation in clay-rich 

sediments. This technique was later applied and improved by Oertel (1970, 

1983), Wood et al. (1976), O'Brien et al. (1987) and Sintubin (1994). One 

limitation of this method was that only large (tens of mm2
) sample areas could 

be analysed. Van der Pluijm et al. (1994) tried to overcome this problem by 

developing High Resolution X-ray Texture Goniometry (HRXTG). This method 

"is able to record variations in the strain state of deformed (compacted) rocks 

over small, mm-scale distances" (van der Pluijm et aI., 1994). Since then, 

several publications have demonstrated the capabilities of the new 

methodology (Ho et aI., 1995, 1996, 1999; van der Pluijm et al. 1998, Jacob 

et al. 2000). 
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6.2 Sample set 

Ho et al.'s (1999) key study about the use of High Resolution X-ray Texture 

Goniometry to quantify changes in the fabric of mudstones during diagenesis 

concentrated on a single well in onshore Gulf of Mexico. For the verification of 

the general applicability of the HRXTG method for compaction studies more 

samples from different locations were needed. In order to represent a wide 

range of effective stresses (burial depths), depositional environments and 

lithologies (grain sizes) samples from various sedimentary systems around 

the world were chosen for analysis. These include deep sea samples from 

the Central Bermuda Rise (DSDP well 43/386) and cutting and core samples 

from the North Sea, Mid-Norway, Caspian Sea, deep water Gulf of Mexico 

and Bay of Bengal (Table 25). 

6.2.1 Well 43/386 Central Bermuda Rise 

12 samples from the Central Bermuda Rise were chosen for the analysis by 

HRXTG. Sample details are listed in Table 25. For more information on this 

sample set see chapter 2 Sample locations. 

6.2.2 North Viking Graben (North Sea): NVG 

Samples from several wells were chosen to represent mudstones from 

various depths of the Viking Graben (Fig. 55). The sampled depths range 

from 2047mbsf to 4435mbsf (Table 25). All of the 8 samples were taken from 

conventional, unpreserved core material. Most of the samples are from mid 

Jurassic formations within the deltaic Brent Group or from the underlying 

marine Drake or Dunlin Formation. 

6.2.3 Central Viking Graben: CVG 

4 core samples of a red marine mudstone sequence from the Central Viking 

Graben were analyzed in this study. The samples are from three wells, 

covering depths between 1565mbsf 1848mbsf (Table 25). The water depths 

at the drilling sites were about 125m. 
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6.2.4 Mid-Norway area: MN 

A set of 5 cutting samples was chosen from marine Tertiary and Cretaceous 

formations in one well from the Mid-Norway area (Fig. 55, Table 25). The 

water depth at the well location was about 330m. The sample depths ranges 

from 812mbsf to 2499mbsf. 

6.2.5 Bay of Bengal: BB 

The sampled well is located in the Bay of Bengal (South East Asia) in a water 

depth of about 15m. Five mUdstone cuttings samples were taken from burial 

depths between 1270m and 3495m (Table 25). The well was drilled into a 

succession of Tertiary deltaic sediments. 

6.2.6 Caspian Sea: CS 

Four samples were taken from a well located in the southern Caspian Sea. 

The examined core material comes from a deeply buried (4863mbsf to 

5383mbsf, Table 25), lacustrine sedimentary section from a well drilled in a 

water depth of about 350m. 

6.2.7 Deep water Gulf of Mexico: Pan is, Ikon, Diva 

A total of 50 samples from three wells in the deep water Gulf of Mexico were 

examined in this study. A first screening of these samples revealed that only 

about 30 were of a quality suitable for HRXTG measurements. The excluded 

samples mainly comprise cutting samples which were either severely 

damaged by the drilling process or too soft for the sample preparation 

necessary for HRXTG. 

The water depths at the three well locations range from 1730 to 2030 meters, 

the sampled sections cover 895mbsf to 6041 mbsf (Table 25). The sample set 

was comprised of 14 dry cuttings (Panis), 22 wet (canned) cuttings (Ikon & 

Diva), 5 side wall cores (Ikon & Diva) and 9 conventional core samples (Ikon 

& Diva). All samples are of Tertiary age. 

Ikon and Diva are within a few kilometers of each other and are therefore 

often combined to represent a single virtual well. 
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Well Burial depth [mbsf] Sample type 

Ikon 2529 cutting 

Ikon 2685 cutting 

Ikon 2840 cutting 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

BB 

BB 

BB 

BB 
BB 

2986 

3142 

3297 

3453 

3599 

3745 

3901 

4126 

4128 

4321 

4418 

4660 

5133 

5282 

5420 

5739 

5884 

6041 

1515 

2392 

3481 

3746 

4477 

4849 

4855 

4945 

5001 

5428 

5435 

5511 

5516 

5518 

5647 

5649 

1270 

2030 

2310 

3305 

3495 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

core 

swc 

core 

cutting 

core 

cutting 

swc 

cutting 

swc 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

swc 

core 

core 

cutting 

swc 

core 

core 

core 

core 

core 

cutting 

cutting 

cutting 

cutting 

cutting 

Well Burial depth [mbsf] Sample type 

Panis 895 cutting 

Panis 1444 cutting 

Panis 2175 cutting 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
CVG 
CVG 
CVG 
CVG 
MN 
MN 
MN 
MN 
MN 

43/386 

43/386 

431386 

43/386 

43/386 

431386 

431386 

431386 

43/386 

431386 

43/386 

2541 

2724 

2907 

3090 

3263 

1633 

1816 

1999 

3370 

3553 

3644 

1908 

2311 

2671 

2687 

3410 

3700 

4000 

4331 

1565 

1711 

1754 

1848 

812 

1362 

1487 

2301 

2499 

153 

254 

336 

482 

505 

563 

647 

820 

859 

867 

959 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

cutting 

cutting 

cutting 

cutting 

cutting 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

Table 25 The sample set chosen for HRXTG measurements (swc = side wall core). 

6.3 High Resolution X-ray Texture Goniometry 

X-ray texture goniometry is commonly used to determine the average 

crystallographic orientation of a large number of minerals grains over a 

sample area of tens of mm2 (Oertel, 1983; Wenk, 1985; van der Pluijm et aI., 

1994). The output of these measurements is usually displayed in pole figure 
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diagrams (Fig. 78). A pole figure is a stereogram showing the distribution of 

crystallographic orientations (lattice planes hk~, usually in the form of poles to 

crystallographic planes. For a statistical analysis the distributions are plotted 

on an equal-area diagram. 

For High Resolution X-ray Texture Goniometry van der Pluijm et al. (1994) 

constructed an X-ray pole figure device for the Enraf-Nonius CAD4 

automated single-crystal diffractometer (Fig. 75), equipped with an Mo 

source, which allows measurements of crystallographic orientations in 

transmission mode. A description of the technical details can be found in van 

der Pluijm et al. (1994). Compared to the older method, the advantages of 

this method are the use of thicker sections (200-400J,lm) and small sample 

areas « 1mm2
). 

6.3.1 Sample preparation 

The first step is to prepare a thin section perpendicular to the main fabric 

direction of the sample material (Fig. 77). If it is not possible to determine a 

fabric direction with macro- or microscopic means (lens, binocular 

microscope) a cut perpendicular to the bedding plane should be used. The 

thin section should be between 200J,lm and 400Jlffi thick (van der Pluijm et aI., 

1994). The grinding powder used for the preparation of the thin sections 

should be of 400 grit or finer. 

The rock slabs are then detached from the glass slides and glued to an 

aluminium sample holder (Fig. 73) with super glue. Both sample surfaces 

should be free of any sticky wax left over from the thin section preparation. 

Any wax can be carefully removed with acetone prior to attachment to the 

sample holders. 
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I sample holder I I sample attached to holder I 

Fig. 73 Aluminium sample holder before and after attachment of the rock slab. 

6.3.2 Measurements 

The HRXTG analysis is a two step process. First, the samples are scanned 

over the range of 0.5-6.028 Mo (1-1328 Cu). This is to validate the clay 

mineral phases present and to determine the exact diffraction angles for data 

collection (128-scan" in Ho et aI., 1999; see Fig. 74). It is very helpful to use 

standard powder diffraction prior to these measurements to get an idea of the 

bulk mineralogy of the examined sample material. 
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Fig. 74 Diffractogram resulting from a 28 scan using a Mo source (28 Cu Ka = 2.1788· 28 Mo-

0.0236). 

The 28-scan gives a very good indication of whether the sample slab is 

aligned perpendicular to the predominant clay mineral fabric. Three 

explanations are possible if the 28 diffractograms (Fig. 74) do not show 
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distinct peaks for any of the clay minerals present. In one case, the sample is 

not aligned perpendicular to the main fabric direction and therefore has to be 

cut at a different angle. In another case, insufficient numbers of clay minerals 

in the analyzed area of the sample fail to produce a signal strong enough to 

be detected. In a third scenario, the sample does not have a predominant 

clay mineral fabric and thus should not be analyzed by HRXTG any further. In 

order to validate the third case, the sample should be cut perpendicular to the 

first section to rule out a fabric in any other possible direction. 

I 

¢ 
co 

Fig. 75 HRXTG setup. The mach ine used is an Enraf-Nonius CAD4 automated single-crystal 

diffractometer equipped with an Mo source. The sample holder device was developed and described in 

detail by van der Plu ijm et al. (1994). The sample holder can be rotated in all three dimensions. During 

the fabric measurement the sample is rotated along the (j) and q> axes. 
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I X-ray source I ,~ 
20 ~ X-ray detector I 

Fig. 76 Configuration of the HRXTG setup. The sample slab is mounted perpendicular to the X-ray 

source to enable the transmission diffraction measurement parallel to the 001 direction (Fig. 77). The 

angle (20) between the X-ray source and detector is adjusted to the d-spacing of the phase to be 

analyzed. 

~t angle (00) 

detector source 

sample d-spacing 

001 

Fig . 77 Geometry of the X-ray transmission diffraction setup. The sample is cut perpendicular to the 

001 direction (Le. fabric) of the analyzed phyliosilicates. The generated X-rays (source) pass through 

the sample and are diffracted at the 001 crystal planes of the examined phase. The more crystals are 

aligned in the same direction. the higher is the intensity of the diffracted X-ray beams that reach the 

detector. 
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The second step of the measurement process involves the "pole-figure scan" 

(Ho et aI., 1999). Here, the degree of preferred orientation of any present 

phyllosilicate can be determined. The degree of alignment is obtained from 

the intensity distribution of the diffracted X-ray beams. The latter is dependent 

on the amount of crystals aligned parallel to each other and determined by 

rotating the sample slab relative to the X-ray beam (Fig. 75 & Fig. 77). The 

more crystals are aligned in the same direction, the higher is the resulting X­

ray intensity. 

At the beginning of each run, the diffractometer is fixed to the d-spacing 

characteristic of the phase to be analyzed. The specimen is then rotated in 

the two directions (<p & 0), Fig. 75) perpendicular to the main fabric and the 

intensity of the diffracted X-rays recorded. Due to the limitations of the 

apparatus (van der Pluijm et aI., 1994) the samples can only be rotated 

between 0 nand 40 n. This leads to the blank areas in the resulting pole 

figures (Fig. 78). Diffraction intensity data is collected every 2.5 <p (0-360 ) for 

angles of 0-40 0) (in 5 steps). 

The obtained X-ray intensities have to be corrected for grain density and 

specimen thickness, since these are different for each sample and influence 

the result of the measurement (Van der Pluijm et aI., 1994). Ho (1996) 

developed a computer program which is used to analyse the HRXTG data 

and allows to correct for the sample parameters mentioned above. The 

correction algorithms as described in Van der Pluijm et al. (1994). 

The final results of the HRXTG measurements are displayed in pole figure 

diagrams (Fig. 78). A pole figure is a stereogram which shows the distribution 

of crystallographic orientations in the form of poles to crystallographic planes. 

In this case it helps to visualize the spatial distribution of the determined X-ray 

intensities, i.e. it displays contour lines representing the distribution of 

phyllosilicate 001 orientations. The degree of particle alignment is expressed 

as maximum pole density in multiples of a random distribution [m.r.d.] where 

higher values reflect higher degrees of alignment (Fig. 78). 
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Investigations by Ho et al. (1995, 1996, 1999, 2001) and Jacob et al. (2000) 

as well as measurements from this study revealed that typical maximum pole 

densities for sedimentary rocks are: 

<1.B m.r.d. no/very weak fabric 

2-3 m.r.d. weak fabric 

3-4 m.r.d. moderate fabric 

4-5 m.r.d . strong fabric 

>5 m.r.d. very strong fabric. 

Studies by Ho et al. (1996) and Jacob et al. (2000) also showed, that incipient 

metamorphism at temperatures above 1 BO°C can lead to cleavage 

development where maximum pole densities exceed 12-16m.r.d . An 

extremely strong fabric has been determined by John Solum (pers. com.) for 

a biotite single crystal, yielding a value of 45 m.r.d. (pole figure g in Fig. 7B). 

1.76 1.99 2.76 

4.19 5.6 45.09 

3.29 

HRXTG Pole Figures 
Values are in m.r.d. 
Contour intervals: 
0.2 m.r.d. (a-d) 
0.5 m.r.d. (e-f) 
5 m.r.d. (g) 

Fig. 78 HRXTG pole figures for different degrees of phyllosil icate alignment. Samples a-t represent 

clay-rich lithologies sampled in this study. Pole figure g was obtained by John Solum (pers. com.) at the 

University of Michigan during the fabric analysis of a biotite single crystal. 
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6.4 Mineralogy 

The bulk mineralogy of all samples was determined by X-ray diffraction (2 

Samples and Methods). In addition to the whole rock measurements the 

<2J..lm fractions of most samples were separated and analyzed by XRD. Here, 

both air-dried and glycolated samples were examined. In order to generate 

oriented clay mineral aggregates the specimens were prepared applying a 

procedure similar to the "Millipore® Filter Transfer Method" described by 

Moore & Reynolds (1997). 

6.5 Clay mineral diagenesis 

Based on the method described by Moore & Reynolds (1997) results of the X­

ray diffraction analysis of the glycolated <2J..lm fractions were used to obtain 

information about the diagenetic grade of the samples. The method takes 

advantage of the crystallographic changes that accompany the conversion of 

smectite into illite with increasing diagenetic maturity of clay rich sediments 

(e.g. Perry & Hower, 1970; Hower et aI., 1976; Ahn & Peacor, 1986). 

Smectite and illite often occur as "mixed-layered" clay minerals (e.g. Velde & 

Vasseur, 1992). During diagenesis the proportion of illite crystals increases at 

the cost of existing smectite crystals. This ratio is reflected in the X-ray 

diffraction patterns and can be used as an indicator for the degree of clay 

mineral transformation and thus, diagenetic grade. Due to the difficulties that 

arise when mixed layered illite/smectite (I/S) minerals coincide with discrete 

(detrital) illite, mica or chlorite Reynolds (1985) developed a computer 

program (NEWMODc, later NEWMOD FOR WINDOWS~ to model and 

estimate the amount of diagenetic illite in I/S. 

The typical results of this analysis are given in percentages of illite layers 

within the mixed-layered illite/smectite minerals. Although exact percentages 

of illite and smectite can be determined by Transmission Electron Microscopy 

(e.g. Ahn & Peacor, 1986; Freed & Peacor, 1989; Masuda et aI., 2001), XAD 

methods only yield ranges (10%, 30-40% etc.). Furthermore, a value for the 

Reichweite (Jadgozinski, 1949; Moore & Reynolds, 1997) will be given. The 

Reichweite describes the degree of ordering within a mixed-layered 
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illite/smectite crystal, Le. RD stands for randomly mixed illite and smectite, Rt 

for at least 50% illite in lIS and R3 for 90-100% illite in I/S. 

All values for illite in I/S listed in this study were derived using the XRD 

method. 

6.6 Physical properties and total organic carbon content 

Grain size, porosity (by mercury intrusion porosimetry), grain density and total 

organic carbon content were determined using the methods described in 

chapter 2 Samples and Methods. 
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7 Results 

7.1 Grain size distribution/Clay fraction 

The clay fractions displayed in Table 26 illustrate the sedimentological and 

lithological diversity of the chosen sample set. 

The coarsest material belongs to the North Viking Graben sample set with 

clay fractions ranging from 13% to 41 % and about 1-34% >63J.lm. These 

sediments can be best described as fine sandstones and siltstones. Samples 

from the Bay of Bengal range in clay fraction between 26% and 35%, thus 

representing silt dominated lithologies. 

Fine silt/siltstone and mud/mudstone comprise most of the sediments from 

the Gulf of Mexico and Caspian Sea. In the former province, samples from 

Ikon and Diva (Median = 39% <2Jlm) contain slightly lower clay fractions than 

those from Panis (Median = 43% <2Jlm). The four Caspian Sea samples 

cover clay fraction from 26% to 53%. 

Samples from the Mid-Norway well are dominated by mudstones (51 % to 

59% <2Jlm). An additional siltstone (33% <2Jlm) and claystone sample (67% 

<2Jlm) complete this sample set. 

Red shales from the Central Viking Graben and deep sea clays from the 

Central Bermuda Rise represent the fine-grained end of the data set. The 

measured clay fractions range from 58% to 85% <2Jlm (Median = 74% <2J.lm) 

and 31% to 85% <2J.lm (Median = 67% <2Jlm), respectively. 
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Well Depth [mbsf] Temp.[°C] Clay fraction Well Depth [mbsf] Temp.[°C] Clay fraction 

Panis 1444 33 45 Ikon 5420 111 44 

Panis 1633 37 40 Ikon 5739 115 30 

Panis 1816 40 39 Ikon 5884 116 40 

Panis 2299 51 44 Ikon 6041 118 40 

Panis 2541 56 47 Central Viking G. 1565 73 85 

Panis 2907 64 43 Central Viking G. 1711 79 58 

Pan is 3090 67 41 Central Viking G. 1754 81 82 

Panis 3263 71 39 Central Viking G. 1848 85 65 

Panis 3553 77 43 North Viking G. 1908 76 13 

Diva 1515 33 46 North Viking G. 2311 90 22 

Diva 2392 60 46 North Viking G. 2671 103 31 

Diva 3481 88 40 North Viking G. 2687 104 38 

Diva 4477 110 39 North Viking G. 3410 130 21 

Diva 4849 117 35 North Viking G. 3700 140 19 

Diva 4855 117 36 North Viking G. 4000 151 20 

Diva 5001 120 49 North Viking G. 4331 163 41 

Diva 5428 127 36 Mid-Norway 812 32 33 

Diva 5435 127 39 Mid-Norway 1362 52 67 

Diva 5511 128 37 Mid-Norway 1487 57 58 

Diva 5516 128 33 Mid-Norway 2301 86 51 

Diva 5518 128 60 Mid-Norway 2499 93 59 

Diva 5647 130 22 Bay of Bengal 1270 56 35 

Diva 5649 130 38 Bay of Bengal 2030 83 30 

Ikon 2529 54 39 Bay of Bengal 2310 93 28 

Ikon 2685 58 45 Bay of Bengal 3305 136 26 

Ikon 2840 62 19 Caspian Sea 4863 124 53 

Ikon 2986 66 48 Caspian Sea 4887 124 43 

Ikon 3142 69 42 Caspian Sea 5280 134 26 

Ikon 3297 73 42 Caspian Sea 5383 137 40 

Ikon 3453 76 48 431386 153 5t 38 

Ikon 3599 79 39 431386 254 7t 59 

Ikon 3745 82 33 431386 336 9t 64 

Ikon 3901 85 39 431386 505 12t 67 

Ikon 4126 90 42 431386 563 13t 31 

Ikon 4128 90 46 431386 647 15t 74 

Ikon 4321 93 52 431386 820 18t 85 

Ikon 4418 95 39 43/386 859 19t 67 

Ikon 4660 99 39 431386 867 19t 71 

Ikon 5133 107 56 431386 959 21t 73 

Ikon 5282 109 39 

Table 26 Clay fractions for the samples examined by HRXTG. (t) Based on information from ODP Leg 

172 

7.2 Grain density 

In this study the grain densities of the Gulf of Mexico samples had to be 

determined for grain size and porosimetry measurements. For most of the 

remaining samples the grain and pore throat size distributions were already 

known from previous investigations (Table 27). 
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The grain densities of the three Gulf of Mexico wells were measured applying 

the pycnometer method described in chapter 2 Samples and Methods. The 

results of the measurements are listed in Table 27. 

Well 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Diva 

Diva 

Diva 

Diva 

Diva 

901 

1444 

1633 

1816 

1999 

2175 

2541 

2724 

2907 

3090 

3263 

3370 

3553 

3644 

2529 

2685 

2840 

2986 

3142 

3297 

3453 

3599 

3746 

3901 

4126 

4128 

4321 

4418 

4660 

5133 

5282 

5420 

5739 

5884 

6041 

1515 

2392 

3481 

4477 

4849 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

core 

swc 

core 

cutting 

core 

cutting 

swc 

cutting 

swc 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

Gs 

2.59 

2.6 

2.65 

2.62 

2.63 

2.55 

2.56 

2.67 

2.58 

2.64 

2.66 

2.63 

2.68 

2.66 

2.779 

2.755 

2.632 

2.651 

2.678 

2.733 

2.674 

2.517 

2.628 

2.61 

2.598 

2.807 

2.666 

2.766 

2.744 

2.771 

2.558 

2.78 

2.525 

2.752 

2.62 

2.738 

2.708 

2.639 

2.46 

2.738 

Well 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
BB 

B8 

BB 

88 

88 

CS 
CS 
CS 
CS 

CVG 
CVG 
CVG 
CVG 

43/386 

43/386 

431386 

43/386 

431386 

431386 

431386 

43/386 

43/386 

43/386 

431386 

5428 

5435 

5511 

5516 

5518 

5647 

5649 

6906 

1908 

2311 

2671 

2687 

3410 

3700 

4000 

4331 

1270 

2030 

2310 

3305 

3495 

4863 

4887 

5280 

5383 

1565 

1711 

1754 

1848 

151.97 

252.94 

335.82 

480.81 

502 

562.96 

646.8 

818.22 

858.82 

865.05 

900.59 

cutting 

swc 

core 

core 

core 

core 

core 

cutting 

core 

core 

core 

core 

core 

core 

core 

core 

cutting 

cutting 

cutting 

cutting 

cutting 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

Gs 

2.625 

2.783 

2.764 

2.764 

2.773 

2.726 

2.753 

2.466 

2.74 

2.78 

2.75 

2.75 

2.72 

2.74 

2.73 

2.82 

2.79 

2.81 

2.76 

2.82 

2.798 

2.946 

2.394 

2.465 

2.53 

2.586 

2.82 

2.758 

2.793 

2.76 

2.74 

Diva 4855 swc 2.792 431386 957.37 core 2.828 

Diva 5001 core 2.788 

Table 27 Grain density data of the samples examined by HRXTG. Gs - grain density [g/cm3
]; swc -

side wall core. 

122 



Part B - 7 Results 

The density values range from 2.55g/cm3 to 2.68g/cm3 for Panis and from 

2.46 g/cm3 to 2.81 g/cm3 for Ikon and Diva. The average grain densities are 

2.62±O.02g/cm3 and 2.69±O.02g/cm3
, respectively. 

The extremely low grain densities «2.6g/cm3
) of some of the Panis, Ikon and 

Diva samples are related to very high contents of organic carbon in the 

cuttings material (Table 34). This organic carbon originated from additives to 

the drilling mud and can be regarded as sample contamination. 

7.3 Bulk mineralogy 

The bulk mineralogies of the majority of the samples were determined by X­

ray powder diffraction analysis. Due to a lack of sample material no powder 

XRD data could be collected for the Bay of Bengal samples. Instead, the 

results listed in Table 28 were obtained from the 20 whole rock scans derived 

during HRXTG (6 Samples and Methods). 

7.3.1 North Viking Graben 

The North Viking Graben sample set is dominated by minerals typical for silt­

rich siliciclastics. The major phases are quartz, kaolinite and illite/mica with 

smaller amounts of chlorite and feldspar (Table 28). Smectite is rare in 

relation to the other minerals. 
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Well Depth [mbsfj Sm CI 11M K Qz KFp Pig Cc other 
NVG 1908 0 xx x xx 
NVG 2311 x xx xx xx 
NVG 2671 0 xx xx xx 0 0 

NVG 2687 0 xx xx xx x xx 
NVG 3410 xx xx xx 0 0 

NVG 3700 0 xx xx xx 
NVG 4000 0 0 xx xx xx 
NVG 4331 0 x xx 
CVG 1565 xx 0 x xx 
CVG 1711 xx 0 x xx 
CVG 1754 xx 0 xx 
CVG 1848 x 0 x xx 
MN 812 x x xx x x xx 
MN 1362 x x xx xx 
MN 1487 0 0 xx 
MN 2301 x x x xx x 
MN 2499 0 x x xx xx 0 

BB' 1270 x xx xx 
BB' 2030 xx xx xx 
BB' 2310 x xx xx xx 
BB' 3305 x xx xx 
BB' 3495 x x xx xx 
C8 4863 0 xx xx x xx x x 
C8 4887 0 0 xx xx xx x x 
CS 5280 0 0 xx xx xx xx x 
CS 5383 0 0 x x xx x x 

43/386 153 0 x x xx 0 0 xx 
43/386 254 xx 0 0 0 0 0 xx 
43/386 336 xx 0 0 x xx 
43/386 505 x x xx x Zeo,Op 
43/386 563 xx 0 xx xx Op 
43/386 647 xx xx xx xx 0 

43/386 820 xx x x xx 
43/386 859 0 x xx 
43/386 867 x x 0 xx xx 
431386 959 x x xx 

Table 28 The main mineral constituents of the Viking Graben (NVG. CVG), Mid-Norway (MN), Caspian 

Sea (CS). Bay of Bengal (BB) and Bermuda Rise (43/386) samples_ The data was obtained from whole 

rock powder XRD analyses and HRXTG (*). xx = abundant; x = common; a = rare; 8m = smectite; CI = 
chlorite; 11M = iIIite/mica; K = kaolinite; Qz = quartz; KFp = K-Feldspar; Pig = plagioclase; Cc = calcite; 

leo = zeolite; Op = opal-alc!. 

7,3.2 Central Viking Graben 

The higher clay fractions (Table 26) of the samples from the Central Viking 

Graben are reflected in their mineralogy. Smectite is an important 

component, besides quartz, kaolinite and illite/mica (Table 28). 
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7.3.3 Mid-Norway 

The main constituents of the five samples from this well are very similar to 

those of the North Viking Graben. Quartz, kaolinite and illite/mica prevail, 

whereas chlorite and feldspar are common (Table 28). Calcite and smectite 

are comparatively rare. 

7.3.4 Bay of Bengal 

A detailed mineralogical analysis of the Bay of Bengal well was prohibited by 

a lack of sufficient sample material. Nevertheless, the transmission x-ray 

diffraction analysis (28-scan) performed during the HRXTG measurements 

delivered a rough estimate of the main phases present (Table 28). These are 

for all samples quartz, kaolinite and illite/mica, with an occasional occurrence 

of chlorite. 

7.3.5 Caspian Sea 

The deeply buried silt and mudstones from the Caspian Sea show a distinctly 

different composition to those of the North Sea and Bay of Bengal (Table 28). 

Firstly, all four samples contain significant amounts of calcite and plagioclase, 

in addition to quartz_ Furthermore, with illite/mica, kaolinite, chlorite and 

smectite all major clay minerals are common. 

7.3.6 Central Bermuda Rise 

The bulk mineralogy of the deep sea sequences sampled at the Central 

Bermuda Rise is different in several ways to that of the other regions studied 

here. In contrast to the dominance of quartz, illite/mica and kaolinite, there 

are higher abundances of minerals like calcite, opal-a and zeolites. The 

prevailing clay mineral is smectite, and feldspars occur in trace amounts in 

the shallowest samples. 
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Well Depth* 

Panis 901 
Panis 1444 

Panis 1633 

Panis 1816 

Panis 1999 

Panis 2175 

Panis 2541 

Panis 2724 

Panis 2907 
Panis 3090 

Panis 3263 
Panis 3370 
Panis 3553 

Panis 3644 

Part B - 7 Results 

Sml/M K Qz KFp Pig Sa Cc Do 
xx x x xx x x xx 
xx x x xx 0 xx xx xx 
xx x xx xx 0 xx x xx 
xx xx xx xx x xx 0 

0 0 xx x xx x 
xx x 0 xx 0 0 xx x 
xx x x xx 0 0 x x 
0 x x xx 0 xx xx x 

xx xx x 
x x x xx 0 0 0 xx 
xx xx xx xx x 0 xx x 

xx xx xx 0 0 0 xx 
xx xx xx x x x 
0 0 xx 0 0 0 

other 
P 

P.Ap 

P 

Ah.P 

G 

Ap.Op 

P 

Ap.P 

Table 29 The main mineral constituents of Panis. The data was obtained from whole rock powder XRD 

analyses. xx = abundant; x = common; 0 = rare; Sm = smectite; I/M = illite/mica; K = kaolinite; Oz = 
quartz; KFp = K-Feldspar; Pig = plagioclase; Sa = barite; Cc = calcite; Ap = apatite; Do = dolomite; Ah = 

anhydrite; G = goethite; P = pyrite; Op = opal-alct; (*) in [mbsf]. 

7.3.7 Gulf of Mexico: Panis 

The mineral composition of the cutting samples from the Panis well in the 

Gulf of Mexico shows noticeable differences to those of the wells described 

above. Although quartz, illite/mica, kaolinite and smectite are the dominant 

phases, calcite, K-feldspar and plagioclase are very common and minerals 

like dolomite, apatite and pyrite are also frequently present (Table 29). The 

abundance of barite in several samples illustrates the degree of 

contamination caused by additives to the drilling mUd. 

7.3.8 Gulf of Mexico: Ikon & Diva 

The XRD results for Ikon and Diva are very similar to those of the Panis well 

(Table 30). However, minerals like calcite, siderite and goethite are more 

common throughout the sample set. Widely occurring gypsum reveals the 

presence of evaporites in the drilled formations. 
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Wei Depth" 8m CI 11M K Qz KFp Pig Sa Cc Ap Do G Si other 

Ikon 2529 XX XX XX XX X X 0 X X 

Ikon 2685 X o XX 0 0 0 0 XXX 0 0 Ah 

Ikon 2840 X X XX X X XX X X XX X H 
Ikon 2986 XX XX XX XX X 0 0 0 

Ikon 3142 XX XX XX X XX XX 0 XX X 

Ikon 3297 XX XX X xx X xx X 0 0 X X 

Ikon 3453 XX XX XX XX XX X XX 0 X XX X 

Ikon 3599 XX XX XX X X XX 0 0 X 

Ikon 3745 X X XX XX XX X 0 XX X H 
Ikon 3901 XX XX XX XX XX XX X 0 XX XX 

Ikon 4126 XX XX XX 0 X 0 XX X 

Ikon 4128 XX XX XX X X 0 X 

Ikon 4321 XX XX XX X X 0 0 X 0 

Ikon 4418 XX X XX XX X XX X XX 
Ikon 4660 XX XX XX XX XX X X X leo 
Ikon 5133 XX XX XX 0 X 0 0 X X H 
Ikon 5282 X X xx 0 X X X XXX X X P,Ah 

Ikon 5420 XX X XX X X X 0 XX X P,H 
Ikon 5739 XX XX XX X X XX 0 0 XX X 

Ikon 6041 X XX XX 0 X XX X X 

Diva 1515 XX X XX X X 0 0 0 X 0 

Diva 2392 XX XX XX X X XX 0 0 X X P,H,Op 
Diva 3481 XX XX XX X X X 0 0 Op 
Diva 3746 XX XX XX X XX X X 0 X Op 
Diva 44n XX XX XX 0 0 XX X 0 XX P 

Diva 4849 XX XX XX 0 X X 0 X X 

Diva 4855 XX X XX X XX X 0 XX X P,H 
Diva 5001 XX XX XX XX XX X 0 X X 

Diva 5428 XX XX XX X X X XX 0 X 

Diva 5435 X XX XX XX X X Op,H 
Diva 5511 XX X XX X XX X 0 XX X 

Diva 5516 XX XX XX X X X 0 XX X P, Str 

Diva 5518 XX X XX 0 XX X 0 XX X 
Diva 5647 0 XX XX XX XX XX X 0 0 XX X 

Diva 5649a 0 XX X X X X XX X 

Diva 5649b XX XX XX XX XX X X XX X 

Diva 6906 0 X XX XX XXX XX X 

Table 30 The main mineral constituents of Ikon and Diva, The data was obtained from whole rock 

powder XAD analyses. XX = abundant; X = common; 0 = rare; Sm = smectite; CI = chlorite; 11M = 

illite/mica; K = kaolinite; Qz = quartz; KFp = K-Feldspar; Pig = plagioclase; Sa = barite; Cc = calcite; Ap 

= apatite; Do = dolomite; Ah = anhydrite; H = hematite; G = goethite; P = pyrite; Si = siderite; Zeo = 

zeolite; Op = opal-alet; Str = strontianite (*) mbsf. 

7.4 Clay mineralogy 

7.4.1 North Sea, Mid-Norway, Caspian Sea & Bay of Bengal 

Limited amounts of sample material restricted the detailed XRD analysis of 

the clay fraction to the samples listed in Table 31. Results of the analyses 
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show that in the case of the North Viking Graben (NVG) and Mid-Norway 

(MN) area the clay fraction of most samples is mainly comprised of detrital 

illite/mica, chlorite, kaolinite and quartz. Mixed layer illite/smectite is very rare 

in the silt dominated samples from the North Viking Graben and sparse in the 

slightly fine-grained samples from the Mid-Norway well. 

Well Depth [mbsf] Temp. [OC] Sm 
NVG 1908 76 
NVG 2311 90 

NVG 3700 140 0 

NVG 4000 151 0 

NVG 4331 163 

eVG 1711 79 xx 
MN 812 32 x 
MN 2301 86 

MN 2499 93 0 

BB 3495 136 

CS 4863 124 0 

es 5280 134 x 

11M 
0 

0 

xx 
xx 
xx 
x 
x 
xx 
x 
xx 
xx 
xx 

K 

xx 
xx 
xx 
xx 

x 
x 
xx 
xx 

0 

x 

CI Qz other 
o 

o 
xx 

o xx 
xx xx 
x xx 

x x KFp, xee 
xx xx 
xx xx 
xx xx 
xx xx 0 CC 

x xx x CC 

Table 31 Mineralogical compositions of the clay fraction «2J..lm) of the North Sea, Mid-Norway, Caspian 

Sea and Bay of Bengal wells obtained from XRD analysis. XX = abundant; X = common; 0 = rare; Sm = 

smectite; CI = chlorite; 11M = illite/mica; K = kaolinite; Qz = quartz; Cc = calcite; KFp = K-Feldspar. 

One sample was chosen to represent the red claystones from the Central 

Viking Graben and revealed that the clay fraction is dominated by smectite, 

illite/mica and quartz. 

The Bay of Bengal sample shows a similar composition to those from Mid­

Norway and the North Viking Graben. Detrital illite/mica, chlorite and quartz 

prevail, whereas kaolinite and smectite are missing. 

The clay fractions of both Caspian Sea samples are dominated by illite/mica 

and kaolinite with significant contents of quartz, chlorite, smectite and calcite. 

7.4.2 Gulf of Mexico: Panis, Ikon & Diva 

The mineralogical composition of the <2J..lm fraction of the three Gulf of 

Mexico wells are displayed in Table 32 & Table 33. In general, samples from 

both wells contain smectite, illite/mica, kaolinite and quartz as their main 

constituents. In contrast to Ikon and Diva, the cuttings samples from Panis 

also contain significant amounts of chlorite. All three wells show a sporadic 

occurrence of opal-A and calcite. 
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Well Depth [mbsf) Temp. [OC) 8m 11M K CI Qz other 

Panis 901 2t xx xx xx xx xx 
Panis 1444 33 xx xx xx xx xx 
Panis 1633 37 xx xx xx 0 xx Op 

Panis 1816 40 xx xx xx xx xx Cc 

Panis 1999 44 xx xx xx xx xx 
Panis 2175 48 xx xx xx xx xx Cc 

Panis 2541 56 xx xx xx xx xx Cc 

Panis 2724 60 xx xx xx xx Op 

Panis 2907 64 xx xx xx 0 xx 
Panis 3090 67 xx xx xx 0 xx 
Panis 3263 71 xx xx xx 0 xx Op 

Panis 3370 73 xx xx xx 0 xx 
Panis 3553 77 xx xx xx 0 xx 
Panis 3644 79 xx xx xx 0 xx 

Table 32 The mineralogical composition of the Panis well clay fraction «211m) obtained from XRD 

analysis. XX :: abundant; X = common; 0 = rare; 8m = smectite; CI = chlorite; 11M = illite/mica; K = 
kaolinite; Qz = quartz; Cc = calcite; Op = opal-a. 
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Well Depth [mbsf] Temp. [0C] Sm 11M K CI Qz other 

Ikon 2529 54 xx )( xx xx 
Ikon 2685 58 xx xx )(x xx 
Ikon 2840 62 xx xx xx xx 
Ikon 2986 66 xx xx xx xx 
Ikon 3142 69 xx xx xx xx 
Ikon 3297 73 xx xx xx xx 
Ikon 3453 76 xx xx xx 0 xx 
Ikon 3599 79 xx xx xx )(x 
Ikon 3745 82 xx xx xx 0 )(x 
Ikon 3901 85 xx )(x xx 0 xx 
Ikon 4126 90 xx xx xx )(x 
Ikon 4128 90 xx xx xx xx 
Ikon 4321 93 xx xx xx xx 
Ikon 4418 95 xx xx xx xx 
Ikon 4660 99 xx xx )(x xx Cc 

Ikon 5133 107 xx xx )(x xx 
Ikon 5282 109 xx xx xx xx 
Ikon 5420 111 xx xx xx )(x 
Ikon 5739 115 xx xx xx xx 
Ikon 6041 118 xx xx xx xx 
Diva 1515 33 xx xx xx xx 
Diva 2392 60 xx xx xx xx 
Diva 3481 88 xx xx xx xx 
Diva 3746 95 xx xx xx xx 
Diva 4477 110 xx xx xx xx 
Diva 4849 117 xx xx xx xx 
Diva 4855 117 xx xx xx xx 
Diva 5001 120 xx xx xx xx Cc.OP 
Diva 5428 127 xx xx xx xx 
Diva 5435 127 xx xx xx xx Op 

Diva 5511 128 xx xx xx xx 
Diva 5516 128 xx xx xx xx 
Diva 5518 128 xx xx xx xx 
Diva 5647 130 xx xx xx 0 xx 
Diva 5649b 130 xx xx xx 0 xx 
Diva 6906 145 xx xx xx 0 xx 

Table 33 The mineralogical composition of the Ikon and Diva clay fractions «2~m) obtained from XRD 

analysis. XX = abundant; X = common; 0 = rare; Sm = smectite; CI = chlorite; 11M = illite/mica; K = 
kaolinite; Qz = quartz; Cc = calcite; Op = opal-a. 

7.5 Total organic carbon content (TOC) 

The determination of the total organic carbon content (Table 34) revealed that 

most of the cutting samples were contaminated by organic additives to the 

drilling mud. Where possible (Panis), careful cleaning of the cuttings limited 

the contamination to relatively low levels. However, a comparison of the TOC 

levels typical of the cuttings (0.8-6%) and uncontaminated core samples (0.2-
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0.5%) from Ikon and Diva indicated that the measured TOe values for Panis 

might still be too high by a factor of about 4. 

The typical inorganic carbon contents on the other hand remain within a small 

range (0.2-1.8%) and do not reveal a bias towards any particular type of 

sample. A reason for the strong contamination of the cuttings from Ikon and 

Diva might be the way the samples are stored. The cuttings were taken 

immediately after drilling and put into metal cans together with the drilling 

mud. This permanent immersion in oil based drilling fluid could have led to 

the high levels (2.2% - 7.1 %) of organic carbon measured in this study. 
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Well De~th [mbsf] T:i~e TOC[%] TIC[%] TC[%] 

Panis 901 cutting 2.67 2.64 5.31 

Panis 1444 cutting 0.76 1.61 2.37 

Panis 1633 cutting 1.96 1.84 3.8 

Panis 1816 cutting 1.60 2.78 4.38 

Panis 1999 cutting 2.56 1.47 4.03 

Panis 2175 cutting 2.36 1.51 3.87 

Panis 2541 cutting 1.97 0.29 2.26 

Panis 2724 cutting 2.20 0.57 2.77 

Panis 2907 cutting 2.77 0.63 3.4 

Panis 3090 cutting 1.38 0.73 2.11 

Panis 3263 cutting 2.07 0.37 2.44 

Panis 3370 cutting 1.98 0.83 2.81 

Panis 3553 cutting 2.20 0.21 2.41 

Panis 3644 cutting 1.95 0.60 2.55 

Ikon 2529 cutting" 3.56 0.88 4.44 

Ikon 2685 cutting" 3.02 0.57 3.59 

Ikon 2840 cutting" 2.26 0.68 2.94 

Ikon 2986 cutting" 3.27 0.24 3.51 

Ikon 3142 cutting" 3.5 0 3.5 

Ikon 3297 cutting" 3.03 0.13 3.16 

Ikon 3453 cutting· 3.66 0.55 4.21 

Ikon 3599 cutting· 7.07 1.45 8.52 

Ikon 3745 cutting· 3.76 1.28 5.04 

Ikon 3901 cutting· 4.47 0.96 5.43 

Ikon 4126 cutting· 6.35 0.22 6.57 

Ikon 4128 core 0.303 0.602 0.905 

Ikon 4321 swc 2.28 0.33 2.61 

Ikon 4418 core 0.996 0.284 1.28 

Ikon 4660 cutting' 5.19 3.93 9.12 

Ikon 5133 core 0.569 0.311 0.88 

Ikon 5282 cutting' 5.02 0.21 5.23 

Ikon 5420 swc 0.881 0.839 1.72 

Ikon 5739 cutting' 6.03 0.68 6.71 

Ikon 6041 cutting' 6.43 1.39 7.82 

Diva 1515 cutting' 2.19 0.22 2.41 

Diva 2392 cutting' 2.31 0.58 2.89 

Diva 3481 cutting' 2.7 0.41 3.11 

Diva 4477 cutting' 4.6 0 4.6 

Diva 4849 cutting' 4.73 0.25 4.98 

Diva 4855 swc 1.34 0.82 2.16 

Diva 5001 core 0.524 0.536 1.06 

Diva 5428 cutting' 5.11 1.11 6.22 

Diva 5435 swc 0.567 1.173 1.74 

Diva 5511 core 0.764 0.246 1.01 

Diva 5516 core 0.465 0.45 0.915 

Diva 5518 core 0.558 0.405 0.963 

Diva 5647 core 0.183 1.767 1.95 

Diva 5649a core 0.289 0.084 0.373 

Diva 5649b core 0.587 0.171 0.758 

Table 34 Total carbon (TC), organic carbon (TOC) and inorganic carbon (TIC) content of the Gulf of 

Mexico samples; , = canned (wet) cutting; alb = silty/shaly. 
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7.6 Water content 

Most of the examined samples in this study were comprised of dried out core 

chips and cuttings which made a determination of the total water content 

impossible. Only in case of two (Ikon & Diva) of the three Gulf of Mexico wells 

was the initial water content of many of the samples preserved. Although 

great care was taken to avoid the loss of pore water from the core material 

(wrapping in plastic and aluminium foil), only the water content of the canned 

cuttings was regarded as being close to the initial level (Table 35). This is of 

particular importance since experiments in this study (2 Samples and 

Methods) showed that air drying of soft, clay-rich material significantly alters 

their poroperm properties. 

The determined water contents (weight %) for all Ikon and Diva samples are 

listed in Table 35. They range from as low as 2% in some of the cores and 

side wall cores to about 32% in the cuttings. As can be seen in Table 35, the 

water content of all cuttings is significantly higher than that of core material 

taken from adjacent sequences. 
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Well De~th [mbsf] T~~e Water [wt%] Water [vol%] 

Diva 1515 cutting" 26 36 
Diva 2392 cutting" 27 37 

Diva 3481 cutting" 30 44 

Diva 4660 cutting" 14 17 
Diva 4855 swc 4 4 
Diva 5001 core 5 6 

Diva 5282 cutting" 20 25 
Diva 5435 swc 3 3 
Diva 5511 core 5 5 
Diva 5516 core 4 4 
Diva 5518 core 5 5 
Diva 5647 core 2 2 
Diva 5649 core 2 2 
Diva 5739 cutting" 23 30 
Ikon 2529 cutting" 24 31 

Ikon 2685 cutting" 28 39 
Ikon 2840 cutting" 17 20 
Ikon 2986 cutting' 26 36 
Ikon 3142 cutting" 20 26 
Ikon 3297 cutting" 24 32 
Ikon 3453 cutting" 28 39 
Ikon 3599 cutting" 18 22 
Ikon 3746 cutting" 18 22 

Ikon 3901 cutting" 18 23 
Ikon 4126 cutting" 19 23 
Ikon 4128 core 6 7 
Ikon 4321 dry swc 3 3 
Ikon 4418 core 7 8 
Ikon 4477 cutting' 32 47 

Ikon 4849 cutting' 9 10 
Ikon 5133 core 6 6 
Ikon 5420 swc 3 3 
Ikon 5428 cutting" 24 32 
Ikon 5884 swc 2 2 
Ikon 6041 cutting" 21 26 
Ikon 6906 cutting" 12 14 

Table 35 Water contents of the Gulf of Mexico well Ikon & Diva. swc = side wall core; " = canned 

cuttings; wt% = weight percent; vol% = volume percent. 

7.7 Porosimetry 

The total porosities and pore throat size distributions of most of the samples 

examined in this study were determined by mercury intrusion porosimetry 

(Table 36 & Table 37; see Appendix for figures). Results for the Central 

Bermuda Rise (43/386) were described in chapter 3 Results and it was 

concluded that drying during storage significantly altered the pore structure. 

Thus, only the total porosities determined gravimetrically by OOP were used 

for later analysis. A lack of useful sample material from the Mid-Norway well 
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prohibited any measurements from this site. The poor quality of the Ikon and 

Diva cuttings restricted the pore space analysis from these wells to core 

material. 

Well/Sam 

Diva 

Diva 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Diva 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Diva 

Ikon 

Diva 

Diva 

Diva 

Ikon 

Ikon 

Ikon 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Ikon 

Ikon 

Ikon 

Diva 

BB 
BB 
BB 
BB 
BB 

1515 

2392 

2529 

2685 

2840 

2986 

3142 

3297 

3453 

3481 

3599 

3746 

3901 

4126 

4128 

4321 

4418 

4477 

4660 

4849 

4855 

5001 

5133 

5282 

5420 

5428 

5435 

5511 

5516 

5518 

5647 

5649 

5739 

5884 

6041 

6906 

1270 

2030 

2310 

3305 

3495 

cutting" 0.5 

cutting" 0.38 

cutting' 0.36 

cutting' 0.52 

cutting' 0.43 

cutting" 0.57 

cutting" 0.41 

cutting" 0.47 

cutting" 0.52 

cutting" 0.53 

cutting" 0.37 

cutting" 0.4 

cutting" 0.38 

cutting" 0.39 

core 0.22 

swc 0.15 

core 0.16 

cutting' 0.58 

cutting' 0.33 

cutting' 0.21 

swc 0.17 

core 0.17 

core 0.19 

cutting" 0.47 

swc 0.17 

cutting' 0.5 

swc 0.14 

core 0.13 

core 0.16 

core 0.15 

core 0.09 

core 0.12 

cutting" 0.51 

swc 0.16 

cutting" 0.46 

cutting" 0.27 

cutting 0.25 

cutting 0.2 

cutting 0.15 

cutting 0.15 

cutting 0.14 

0.52 

0.53 

0.49 

0.55 

0.38 

0.51 

0.44 

0.49 

0.54 

0.56 

0.39 

0.40 

0.40 

0.40 

0.19 

0.10 

0.21 

0.56 

0.35 

0.25 

0.14 

0.18 

0.19 

0.42 

0.12 

0.49 

0.11 

0.15 

0.14 

0.16 

0.08 

0.08 

0.46 

0.10 

0.44 

0.29 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

43/386-4 

43/386-11 

43/386-14 

43/386-26 

43/386-28 

43/386-32 

43/386-36 

43/386-50 

43/386-54 

43/386-55 

43/386-59 

43/386-65 

CS 
CS 
CS 
CS 

CVG 
CVG 
CVG 
CVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 
NVG 

901 

1444 

1633 

1816 

1999 

2175 

2541 

2724 

2907 

3090 

3263 

3370 

3553 

3644 

151.97 

252.94 

335.82 

480.81 

502 

562.96 

646.8 

818.22 

858.82 

865.05 

900.59 

957.37 

4863 

4887 

5280 

5383 

1565 

1711 

1754 

1848 

1908 

2311 

2671 

2687 

3410 

3700 

4000 

4331 

cutting 0.19 

cutting 0.2 

cutting 0.19 

cutting 0.15 

cutting 

cutting 0.15 

cutting 0.12 

cutting 0.17 

cutting 0.14 

cutting 0.18 

cutting 0.15 

cutting 0.16 

cutting 0.21 

cutting 0.19 

core 

core 

core 

core 0.46 

core 0.47 

core 0.41 

core 0.3 

core 0.36 

core 0.41 

core 0.37 

core 0.39 

core 0.38 

core 0.1 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

core 

0.11 

0.11 

0.11 

0.24 

0.28 

0.25 

0.2 

0.27 

0.14 

0.12 

0.12 

0.06 

0.1 

0.06 

0.11 

Table 36 The porosities of the HRXTG sample set. MIP .p = total porosity from mercury intrusion 

porosimetry: w .p = total porosity from water content. 
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0.66 

0.66 

0.48 

0.42 

0.48 

0.43 

0.40 

0.40 

0.44 

0.39 

0.40 



Well Depth 

Panis 901 
Panis 1444 

Panis 1633 
Panis 1816 

Panis 1999 
Panis 2175 
Panis 2541 
Panis 2724 

Panis 2907 
Panis 3090 
Panis 3263 
Panis 3370 
Panis 3553 
Panis 3644 
Diva 4855 

Diva 5001 

Diva 5435 
Diva 5511 
Diva 5516 
Diva 5518 
Diva 5647 
Diva 5649 

Ikon 4321 

Ikon 4418 
Ikon 5133 
Ikon 5420 
Ikon 5884 
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Mode Well 

18 CVG 
18 CVG 
10 CVG 
13 CVG 
12 CS 
10 CS 
10 CS 
8 CS 
10 BB 
10 BB 
13 BB 
12 BB 
16 BB 
20 NVG 
9 NVG 
8 NVG 
8 NVG 
8 NVG 
10 NVG 
14 NVG 
7 NVG 
6 

9 

12 
12 
10 

6&26 

Depth 

1565 
1711 
1754 
1848 
4863 
4887 
5280 
5383 
1270 
2030 
2310 
3305 
3495 
1908 
2311 
2671 
2687 
3410 
3700 
4000 
4331 

Mode 

8 
7 

10 

5 

4 

4 

8 & 100 
5 

73 
52 
38 

1474' 
41' 
4' 
8' 
3' 

4' 

5' 

3' 

Table 37 Mode or mean (*) pore throat diameters [nm] of the sample set. Two values describe bimodal 

pore throat size distributions. 

7,7,1 North Viking Graben 

The core samples from the North Viking Graben range in total porosity 

between 6% and 27% (Table 36). The mean pore throat diameters span 

1471nm, from 1474nm in the shallowest sample down to 3nm in the deepest 

sample (Table 37). The different magnitudes of these values reflect the 

diversity of the sampled lithologies: 13% clay fraction for the shallowest 

sample and 41% for the deepest sample. 

7.7,2 Central Viking Graben 

In contrast to the North Viking Graben the four samples from the Central 

Viking Graben show different features. Although the clay fractions (58-85%) 

and total porosities (20-28%, Table 36) vary significantly, the measured pore 

throat sizes are relatively similar. The absolute value for these mud- and 

claystones range from 5 to 10nm (Table 37). 
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7.7.3 Bay of Bengal 

The porosities and mode pore throat sizes of the Bay of Bengal samples 

decrease with increasing depth from 25% at 1270mbsf to 14% at 3495mbsf 

and from 73nm to 3Snm, respectively. Almost constant porosities between 

15% and 14% were measured from 2310mbsf down to 3495mbsf (Table 36). 

7.7.4 Caspian Sea 

The relatively thin (520m) interval sampled from the Caspian Sea shows only 

insignificantly varying porosities between 10% and 11 %. The observed mode 

pore throat sizes range between 4nm and 5nm for the sampled mudstones 

and between Snm and 100nm for the examined siltstone sample. 

7.7.5 Gulf of Mexico: Panis , Ikon & Diva 

Several observations were made comparing the pore space analysis of Ikon 

and Diva core and cuttings samples: 

• As displayed in Fig. 79 and Table 36 all cuttings yield higher porosities 

than any of the adjacent core samples. Although the lithologies and 

burial depths (effective stresses) are similar, both the mercury intrusion 

(MI P) and water content methods produced cuttings porosities which 

are often about twice as high as those of the core samples. 

• The MIP results typical for the cuttings samples of Ikon and Diva are 

very different to those of the core samples. Fig. SO illustrates, that 

mode pore throat sizes differ by 3 orders of magnitude between many 

of the cutting and core samples from Ikon and Diva. 

• Elevated total organic carbon contents (Table 34) and resulting low 

grain densities revealed a high degree of contamination of the cuttings 

samples. 

• Tool marks indicate an intensive mechanical deformation of the 

cuttings material during drilling. 

Due to these fundamental differences all Ikon and Diva cuttings were 

regarded as low quality and thus excluded from any further pore space 

related analysis. 
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Ikon & Diva samples 

0.7 -r--------------~ 

~ 0.6 
E 0.5 
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l: 0.3 ·s 0.2 

~ 0.1 
O ~-~-------~-~~ 
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Porosity from water content 

I:cuttlngs 
o Cores 

Fig. 79 Comparison of the porosities derived by mercury intrusion porosimetry (MIP) and sample drying 

(water content). Porosities of cutt ings are significantly higher than those of the core samples. 
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Fig. 80 Typical results of the mercury intrusion measurements for Diva and Ikon cutting (lhs) and core 

samples (rhs) . 

The absolute porosities for the Ikon and Diva core samples range from 9% at 

5647mbsf to 22% at 412Bmbsf (Table 36). The mode pore throat sizes range 

from 6nm to 26nm (Table 37). 

The whole Panis sample set was comprised of nearly dried out cuttings, thus, 

no water content derived porosities were available for this well. The total 

porosities from MIP are displayed in Table 36 and range from 12% at 

2541 mbsf to 21 % at 3553mbsf. 

Since both MI P porosities and mode pore throat sizes in the range of Bnm to 

20nm are in good agreement with those of the Ikon and Diva core material 

the Panis cuttings were regarded as good quality and thus useful samples. 

7.8 Clay mineral diagenesis 

7.S.1 North Sea, Mid-Norway, Caspian Sea & Bay of Bengal 
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As already noted earlier, the clay fraction of some samples of the North Sea, 

Mid-Norway, Caspian Sea and Bay of Bengal wells could not be analyzed due 

to a lack of useful material. For the remaining samples the results of the 

iIIitelsmectite (liS) mixed-layer analysis are displayed in Table 38. 

Well Depth [mbsf] 

NVG 1908 

NVG 2311 

NVG 3700 

NVG 4000 

NVG 4331 

CVG 1711 

MN 812 

MN 2301 

MN 2499 

BB 3495 

CS 4863 

CS 5280 

Type 

core 

core 

core 

core 

core 

core 

cutting 

cutting 

cutting 

cutting 

core 

core 

%1 in liS, R* 

3O,RO 

10,RO 

10, RO 

20-30, RO 

Table 38 The amount of illite (I) in mixed-layered illite/smectite (I/S) and the resulting Reichweite R 

(Jadgozinski, 1949; Moore & Reynolds, 1997) for the North Sea, Mid-Norway, Caspian sea and Bay of 

Bengal samples. (*) = Reichweite. 

Many samples were dominated by detrital mica grains to such an extent (Fig. 

100 & Fig. 101), that any present mixed-layer liS was undetectable in the 

<2Jlm fraction. For the few North Sea samples where the amount of illite in liS 

could be quantified the results reveal values of not more than 10% illite in lIS, 

representing a Reichweite (Jadgozinski, 1949; Moore & Reynolds, 1997) of 

RO. Samples of the Central Viking Graben and Caspian Sea reach illite 

percentages in liS of up to 30% (RO). 

7.8.2 Gulf of Mexico: Panis, Ikon & Diva 

In all but 9 cases the analYSis of the mixed-layered liS minerals revealed 

early diagenetic grades for the Gulf of Mexico samples (Table 39). Illite in liS 

in generally comprises 10% or less, with a resulting Reichweite of RO. All 

samples from Panis belong to this group. Only the deeper samples of Ikon 

and Diva reach grades where the amount of illite increases to 30-50% and 

40-80%, respectively (Fig. 81). 

In contrast to the pore space analysis the mineralogical observations for the 

Ikon and Diva cuttings agree very well with those for the core material, and 

thus were not excluded from this study. 
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Well 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Panis 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Depth [mbsf] 
901 

1444 

1633 

1816 

1999 

2175 

2541 

2724 

2907 

3090 

3263 

3370 

3553 

3644 

2529 

2685 

2840 

2986 

3142 

3297 

3453 

3599 

3745 

3901 

4126 

Type 
cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 
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%1 in I/S, W' Well 

±10, RO Ikon 

±10, RO Ikon 

±10, RO Ikon 

±10, RO Ikon 

±10, RO Ikon 

±10, RO 

±lD, RD 

±10,RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±lD, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RO 

±10, RD 

±10, RO 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Depth [mbsf] 
4128 

4321 

4418 

4660 

5133 

5282 

5420 

5739 

5884 

6041 

1515 

2392 

3481 

4477 

4849 

4855 

5001 

5428 

5435 

5511 

5516 

5518 

5647 

5649 

Type 
core 

swc 

core 

cutting' 

core 

cutting' 

swc 

cutting' 

swc 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

cutting' 

swc 

core 

cutting' 

swc 

core 

core 

core 

core 

core 

%1 in I/S, R" 

±10, RO 

±10, RO 

±10, RO 

30, RO 

10-20, RO 

±10, RO 

±lD, RD 

10-20, RO 

30, RO 

50, RO 

±10, RO 

±10, RO 

±10, RD 

±lD, RO 

±10, RD 

±10, RD 

±lD, RO 

±10, RO 

±10, RO 

40, RO 

40, RO 

10, 40-50, RO 

70, Rl 

80,Rl 

Table 39 The amount of illite (I) in mixed-layered illite/smectite (liS) and the resulting Reichweite R 

(Jadgozinski, 1949; Moore & Reynolds, 1997). (') = wet cuttings; (") = Reichweite. 

.... ... 

Panis 

1816mbtl! 

SlO% lin lIS ~ 

W~ 
2II07mbtl! 

SlO% lin lIS 

3644mbtl! 
SlO% lin lIS 

Ikon 

573I1mba! 
10-20% I in lIS 

6041mb.! 
-50% I in lIS 

Diva 

3481mb.! 
S10% I in lIS 

5516mb.' 
-40% lin lIS 

564l1mbtl! 
- 80% I in lIS 

Fig. 81 XRD traces of the clay fraction of representative samples from Panis, Ikon and Diva. Values for 

illite in liS were determined using NEWMOD© (Reynolds, 1985). 
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7.9 HRXTG 

7.9.1 Central Bermuda Rise 

The fabric analysis of the sediments from well 43/386 revealed a relatively 

wide range of preferred clay mineral orientation. The results (Fig. 82, Table 

40) show slowly increasing maximum pole densities (MPD) with increasing 

burial depth. Weak illite/smectite (I/S) fabrics around 2m.r.d. at about 

200mbsf change to moderate degrees (35Sm_r_d.) of alignment at around 

9S0mbsf. A remarkably strong fabric for I/S (S.6m.r.d.) was observed in 

sample 43/36_ 

The samples containing enough kaolinite crystals for a HRXTG measurement 

confirm the trends observed for the liS phases, although the kaolinite fabric is 

less well developed. 

Sample Depth [mbsf] Temp.[°C]t 

43-4 153 5 

43-11 254 7 

43-14 336 9 

43-28 505 12 

42-32 563 13 

43-36 647 15 

43-50 820 18 

43-54 859 19 

43-55 867 19 

43-65 959 21 

<2~m [%] %1 in liS 
38 <10' 

59 <10' 

64 <10' 

67 <10' 

31 <10' 

74 <10' 

85 <10' 

67 <10' 

71 <10' 

73 <10' 

1/5 MPD [m.r.d.] 

2.51 

1.93 

2.86 

2.89 

3.32 

5.6 

3.7 

3.64 

3.55 

K MPD [m.r.d.] 

2.06 

1.69 

5.35 

2.75 

3.19 

Table 40 HRXTG results for the Central Bermuda Rise. (t) Based on information from ODP Leg 172; (*) 

the low temperatures prohibited any significant smectite-to-illite conversion; MPD = maximum pole 

density; lIS = Illite/Smectite; K = Kaolinite. 

The pole figures displayed in Fig. 82 show remarkably circular contour lines 

which points to a very well defined direction of preferred orientation. In this 

sample set, this direction was found to match the bedding planes almost 

perfectly. 
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Central Bermuda Rise 43/386 

Maximum pole density Im.r.d .] 

o 1 2 3 4 5 6 

O +---~--~----~--~--~--~ 

100 

200 

lJ. .2 

300 
. 3 

400 
!;' .. 
.c 
.E. 500 ..c 

! · 5 
600 

lJ. ·6 

700 
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900 

lJ. • 9 
1000 '--- --------------------' 

I. Illite/smectite lJ. Kaolinite I 

" I 
) ) I 1 1 

I CI: 0.5 
, '- -' y MPD: 2.51 

......... - -' 

5 
CI: 0.5 
MPD: 3.32 

7 
CI: 0.5 
MPD: 3.70 

9 
CI: 0.5 
MPD: 3.SS 

Fig. B2 The preferred orientation of clay minerals in a well (DSDP 43/3B6) drilled into the Central 

Bermuda Rise . • = value for the maximum pole density (MPD in [m.r.d.]) of illite/smectite 001 crystal 

surfaces; tJ. = MPD value for Kaolinite; CI = contour interval [m.r.d.). The pole figures (I/S phases) were 

rotated into the direction of the maximum intensity, which in the case of 43/3B6 is parallel/subparallel to 

the bedding plane. 

7.9.2 North Viking Graben 

The majority of samples from the North Viking Graben show moderate 

degrees of preferred orientation for I/S, illite/mica and kaolinite/chlorite. 

However, in contrast to the Central Bermuda Rise no general trend towards 

higher maximum pole densities with increasing burial depth can be observed 

(Fig. 83). 
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Well Depth [mbsf] Temp. [0C] <211m [%] %1 in I/S I/S/M MPD [m.r.d.] KlC MPD [m.r.d.] 

NVG 1908 76 13 3.68 3.34 

NVG 2311 90 22 -0 3.08 2.62 

NVG 2671 103 38 -0 3.71 3.78 

NVG 2687 104 31 -0 3.34 2.85 

NVG 3410 130 21 2.59 

NVG 3700 140 19 -0 2.63 2.57 

NVG 4000 151 20 -0 3.16 2.7 

NVG 4331 163 41 -0 4.19 3.11 

Table 41 HRXTG results for the North Viking Graben samples. (0) Due to the dominance of detrital 

illite/mica in the <211m fraction it was not possible to quantify %1 in I/S with the applied method; MPD = 
maximum pole density; I/S/M = Illite/Smectite/Mica; KlC = Kaolinite/Chlorite. 

Pole figures for liS and Mica (Fig. 83) reveal that most samples yield MPD 

values between 3m.r.d. and 4m.r.d. (Table 41). 

As already observed for the Central Bermuda Rise the fabric intensities of the 

KaolinitelChlorite crystals are similar to but somewhat lower than those of liS 

and mica. 
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Fig. 83 The preferred orientation of phyllosilicates in the North Viking Graben. The pole figures (liS & 

Mica) were rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.]; MPD = 

maximum pole density. 
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7.9.3 Mid-Norway 

The results of the HRXTG analysis of 5 cutting samples from a Mid-Norway 

well are displayed in Fig. 82 and Table 42. Maximum pole densities reveal 

that the examined phyllosilicates (I/S , illite/mica and kaolinite/chlorite) show 

moderate to strong degrees of alignment. 
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Fig. 84 The preferred orientation of phyllosilicates in the Mid-Norway well. The pole figures (I/S) were 

rotated into the direction of the maximum intenSity. CI = contour interval [m.r.d.): MPD = maximum pole 

density. 

No systematic change of MPD values with increasing depth was observed. 

The prominent elongated shape of the pole figures from samples 1-4 (Fig. 84) 

is probably caused by the small sample size. The examined cutting slabs 

were not much larger than the beam area a less than perfect beam alignment 

led to blank spots during data collection. 

Well Depth [mbsf) Temp. [0C] <21lm [%) %1 in liS IIS/M MPD [m.r.d.) KlC MPD Im.r.d.) 

MN 812 32 33 S10 4.25 3.61 
MN 1362 52 67 3.24 

MN 1487 57 58 3.01 

MN 2301 86 51 S10 2.92 2.99 
MN 2499 93 59 4.45 4.81 

Table 42 HRXTG results for the Mid-Norway well. MPD = maximum pole density: I/S/M = 

Illite/Smectite/Mica: KlC = Kaolinite/Chlorite. 
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Measurements of the orientation of kaolinite were possible in 3 of the 5 

samples. The determined degree of alignment reflects in general the 

observations made for the 1/8/M phases (Fig. 84). However, in contrast to the 

Central Bermuda Rise and the North Viking Graben, the MPD values of 

kaolinite are not generally lower than those from 1/8/M. 

7.9.4 Central Viking Graben 

Four red shale samples from 3 different wells in the Central Viking Graben 

show a remarkable consistency in the degree of clay particle alignment. The 

sampled wells are located very closely together and a direct comparison 

reveals a more or less constant (moderate) degree of preferred orientation 

over an interval of about 300m (Fig. 85). 
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Fig. 85 The preferred orientation of phyllosilicates in the Central Viking Graben. The pole figures (l IS) 

were rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.]; MPD = maximum 

pole density. 

Pole figures shown in Fig. 85 indicate the uniformity of the HRXTG results . 

Extremely low signals for kaolinite prohibited further measurements (Fig. 86). 
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Fig. 86 2-Theta scan of a sample from the Central Viking Graben. The very low signal for the 7A phase 

(Kaolinite) prohibited a HRXTG measurement for this mineral; I/S = Illite/Smectite. 

Well Depth [mbsf] Temp. [0C] <2~m [%] %1 in I/S I/S MPD [m.r.d.] 

CVG 1565 73 85 3.52 

CVG 1711 79 58 30 3.8 

CVG 1754 81 82 3.17 

CVG 1848 85 65 3.51 

Table 43 HRXTG results for the Central Viking Graben. MPD = maximum pole density; I/S = 

Illite/Smectite. 

7.9.5 Bay of Bengal 

The results of the HRXTG measurements of the Bay of Bengal well indicate a 

slowly increasing degree of particle alignment with increasing overburden 

(Fig. 87). With the exception of one sample all MPD lie between 3.03 and 

3.83m.r.d. (Table 44), thus representing a moderate degree of preferred 

phyllosilicate orientation. One sample at about 2200mbsf shows very strongly 

(5.56m.r.d.) aligned clay minerals. 

Well Depth [mbsf] Temp. [0C] <2~m %1 in lIS I/S MPD [m.r.d.] K MPD [m.r.d .] 

BB 1270 56 35 -* 3.03 2.63 

BB 2030 83 30 -* 3.62 3.26 

BB 2310 93 28 -* 5.56 4.52 

BB 3305 129 26 -* 3.83 3.4 

BB 3495 136 3.3 3.08 

Table 44 HRXTG results for the Bay of Bengal well. (*) Not sufficiently enough sample material; MPD = 

maximum pole density; I/S/M = Illite/Smectite; K = Kaolinite. 
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Fig. 87 The preferred orientation of phyliosilicates in a Bay of Bengal well. The pole figures (I/S) were 

rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.]; MPD = maximum pole 

density. 

As observed in several other wells, MPD values for the kaolinite crystals are 

lower than those of I/S, but display a similar trend. (Table 44). 

7.9.6 Caspian Sea 

The sampled shale sections were limited to an interval between 4863mbsf 

and 5280mbsf (Fig. 88). Three of the four samples contained a clay mineral 

fabric intense enough to be analyzed by HRXTG. Maximum pole densities of 

the I/S phases represent strong to very strong degrees of preferred 

orientation (4.0m.r.d. to 5.97m.r.d.). 

Well Depth [mbsf) Temp. [0C] <2~m [%) %1 in I/S I/S MPD [m.r.d.] KlC MPD [m.r.d .) 

CS 4863 124 53 5.97 6.66 
CS 4887 124 43 4 4.56 
CS 5280 134 26 20·30 4.73 5.45 

Table 45 HRXTG results for the Caspian Sea samples. MPD = maximum pole density; I/S = 
Illite/Smectite; KlC = Kaolinite/Chlorite. 

In contrast to most other wells the kaolinite/chlorite crystals in the Caspian 

Sea samples are better aligned than those of the illite/smectite phases (Fig. 

88, Table 45). 

147 



4900 

'ii' 5000 
.tl 

§. 5100 
~ 

0. 
B 5200 

5300 

Part B - 7 Results 

Caspian Sea 

Maximum pole density [m .r.d.] 

a 234 567 

2. 6. 
1. 6. 

• 6. 
3 

2 
CI: 0.5 
MPD: 4.00 

5400 ...L-__________ -l 

I_ llite/Srrect~e 6. Kaolin~e/Chlor~e I 

CI: 0.5 
MPD: 5.97 

3 
CI: 0.5 
MPD: 4.73 

Fig. 88 The preferred orientation of phyllosilicates in the Caspian Sea well . The pole figures (lIS) were 

rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.): MPD = maximum pole 

density. 

7.9.7 Gulf of Mexico: Pan is, Ikon & Diva 

A comparison of the results obtained from HRXTG for all three deep water 

Gulf of Mexico wells reveals that weakly aligned clay minerals prevail in this 

region (Fig. 89 to Fig. 91). Samples comprised of clay minerals with very 

weak «2m.r.d.) or moderate (3-4m.r.d.) maximum pole intensities were found 

independent of burial depth in all three wells (Table 46). The degree of 

preferred orientation for the kaolinite/chlorite phases is generally similar but 

somewhat lower than that of illite/smectite (Fig. 89 to Fig. 91). 

A systematic difference between the phyllosilicate alignment of the much 

shallower and colder Panis samples and those of Ikon and Diva was not 

observed. 
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Gulf of Mexico: Panis 
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Fig. 89 The preferred orientation of phyllosilicates in the deep water Gulf of Mexico: PAN IS. The pole 

figures (liS) were rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.]; MPD 

= maximum pole density. 
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Fig. 90 The preferred orientation of phyllosilicates in the deep water Gulf of Mexico: IKON. The pole 

figures (liS) were rotated into the direction of the maximum intensity. CI = contour interval [m.r.d .]; MPD 

= maximum pole density. 
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Gulf of Mexico: Diva 
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Fig. 91 The preferred orientation of phyllosilicates in the deep water Gulf of Mexico: DIVA. The pole 

figures (I/S) were rotated into the direction of the maximum intensity. CI = contour interval [m.r.d.J; MPD 
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Depth [mbsfJ 

1816 

1999 

2907 

3090 

3453 

4128 

4321 

4418 

4660 

5133 

5420 

4855 

5001 

5511 

5516 

5518 

5647 

5649 

= maximum pole density. 

Temp. [OCJ <211m [%J %1 in I/S I/S MPD [m.r.d.J 

40 41 ~10 

44 39 ~10 4.05 

64 39 ~10 2.7 

67 44 ~10 3.1 

76 48 ~10 2.54 

90 46 ~10 

93 52 ~10 2.94 

95 39 ~10 2.69 

99 39 30 3.54 

107 56 10-20 2.78 

111 44 ~10 1.88 

117 36 ~10 2.6 

120 49 ~10 1.74 

128 37 40 2.76 

128 33 40 2.17 

128 60 40-50 2.46 

130 22 70 3.15 

130 38 80 3.41 

KlC MPD [m.r.d.J 

2.73 

3.8 

2.9 

2.57 

1.99 

1.88 

1.87 

1.8 

2.08 

1.92 

3.36 

1.91 

2.47 

2.32 

Table 46 HRXTG results for the Gulf of Mexico wells. MPD = maximum pole density; I/S = 
Illite/Smectite; KlC = Kaolinite/Chlorite. 
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8 Discussion 

The compaction of fine-grained siliciclastic sediments is controlled by many 

different parameters. These exercise control at various levels and their 

relative significance shifts with different geological environments. A 

prerequisite for the understanding of compaction is the analysis of the 

interactions and relative importance of each parameter. The influence of 

lithology (grain size) and effective stress was analyzed in PART A of this 

study and regarded as being the dominant control of the purely mechanical 

phase of compaction. This chapter concentrates on the way that phyllosilicate 

fabric changes during mechanical compaction and as a result of 

mineralogical transformation (Fig. 92). It also considers the effect of fabric 

change on the porosity and pore size distribution of mudstones. 

Time &Temperature 

Mineralogy Diagenesis I+-----i Ion Availability 

Grain Size 

Hydrodynamics Fabric 

Effective Stress 

Fig. 92 The interaction of the parameters influential on mudstone fabric and poroperm. 

8.1 Hydrodynamics and the depositional environment 

The extensive analytical database provided by DSDP allowed a detailed 

investigation of the influence of the sedimentary environment on the clay 
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mineral fabric of well 43/386 (Central Bermuda Rise). Palaeontologically well 

constrained ages as well as a good understanding of the depositional history 

at the drill site (Tucholke et al. 1975) made it possible to compare porosity 

and sedimentation rate with the results of the grain size, mineralogy and 

fabric analyses undertaken in this study. 
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Fig. 93 Comparison of the hydrodynamically influenced parameters grain size (RHS) and sedimentation 

rate (LHS) with the degree of preferred clay minerai orientation and porosity. One sample (646.8mbsf) 

shows a remarkably high degree of particle alignment. 

Sedimentation rates at site 43/386 range from extremely low (2m/Ma) to low 

(25m/Ma) and reflect the deep sea environment (Fig. 93). The pole densities 

show moderate (2-3m.r.d.) to high (>5m.r.d.) values. The negative 

relationship between sedimentation rate and clay mineral orientation is 

striking (Fig. 93) and highlights the strong influence of hydrodynamic effects 

in this deep water, low sedimentation rate environment. Relative changes in 
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sedimentation rate over time (the deepest samples is of Early Albian age 

(-105 Ma)) always resulted in changing degrees of clay particle alignment. 

Lower sedimentation rates led to higher fabric intensities and vice versa. This 

observation clearly points to a hydrodynamically controlled initial alignment of 

clay particles. 

Furthermore, the pole density increase with depth is accompanied by a 

general increase in clay fraction (Fig. 93). This pOints to an additional 

influence of grain size on the clay fabric development. 

As known for many years from literature (e.g. Hjulstr0m, 1935; Bouma, 1962), 

most sedimentary systems show a general link between depositional energy 

and grain size. Here, lower energy usually results in the deposition of smaller 

particles, hence the concentration of fine-grained, phyllosilicate dominated 

sediments in pelagic environments (Chamley, 1989; Aplin, 2000). 

Since phyllosilicates are platy minerals, higher concentrations of these result 

in lower concentrations of spherical grains like quartz or feldspar which hinder 

the alignment of the former. Therefore, the higher the amount of 

phyllosilicates the better the primary clay fabric (O'Brien & Slatt, 1990). As a 

consequence, low energy systems like deep sea basins should be dominated 

by relatively well oriented clays. 

However, several studies (e.g. McCave, 1970, 1971; Syvitski, 1991; Allison & 

Nittrouer, 1998; Schieber, 1998) have shown that the deposition of clays and 

muds is not limited to low-energy environments. Flocculation can cause the 

deposition of heavier silt- to sand-sized aggregates of clay particles where 

single grains would stay in suspension (Chamley, 1989; Kranck (1991) and 

references therein; Syvitski, 1991). In addition, Joseph et al. (1998) illustrated 

that in the case of sediment drifts higher energies not necessarily mean 

poorer particle alignment. They found that faster currents are able to align 

sediment particles more effectively than slower currents. 

Flocculation as well as other phYSicochemical processes can form various 

"non-aligned" clay microstructures which prevent an initial preferred 

orientation (e.g. Rieke & Chilingarian, 1974; O'Brien & Slatt, 1990; Bennett et 

aI., 1991; O'Brien & Pietraszek-Mattner, 1998). These phenomena explain 
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Tribble et al.'s (1992) SEM observations from the Barbados Convergent 

Margin, where several mud and mudstone samples showed no or only poor 

alignment of clay particles until depths of at least 600mbsf. 

In addition to these primary factors there are various bioorganic, 

biomechanical or biophysical mechanisms (e.g. bioturbation or organic gas 

generation, Bennett et aI., 1991) which prevent the preservation of initial 

sedimentary clay fabrics prior to lithification. 

In the light of all these processes, it is quite remarkable that in the case of the 

Central Bermuda Rise well sedimentation rate (and to a lower extent grain 

size) seems to be a sufficient proxy for relative changes in initial clay particle 

alignment. 

Fig. 94 Backscatter Scanning Electron Micrograph (BSEM, A) and Scanning Electron Micrograph (SEM, 

B) of sample 43/386-36 (646.8mbsf). Both images show the dominance of platy minerals (smectite, 

illite, kaolinite) in this red clay sample. The images are oriented subparallel to the bedding plane and 

reveal the extreme degree of clay particle alignment. 

For one sample from well 43/386 an unusually high degree of preferred 

orientation (5.6m.r.d., Fig. 93) was detected. This red clay was deposited at a 

very low sedimentation rate of 2m/Ma (Tucholke et aI., 1975). XRD, EDX as 

well as grain size analyses confirmed that not only are 74% of the particles 

smaller than 2~m (Fig. 93), but also that most of these are comprised of 

phyllosilicates (smectite, illite & kaolinite). It seems to be a consequence of 
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these rare conditions that initial fabric intensities where created which are 

more typical of deeply buried shales (Fig. 125). 

8.2 Grain size and mineralogy 

As mentioned before, sediments with high concentrations of lath shaped 

minerals (phyllosilicates) seem to have better primary clay fabrics than 

sediments with high contents of spherical grains. In the present study, the 

combination of SEM/BSEM, grain size and XRD data revealed distinct 

patterns in the relationship between fabric (HRXTG) and particle assemblage. 

Here, the main focus was put on the mineral composition of the silt grains (2-

63Jlm) , since this fraction seems to have a significant control on the 

alignment of the remaining phyllosilicates. 

The analysis of samples from the Gulf of Mexico revealed that in most cases 

the clay fraction is dominated by phyllosilicates whereas the silt fraction is 

comprised of quartz, feldspar and carbonates/microfossils (Fig. 95 & Fig. 96). 

Significant amounts of silt-sized detrital mica were not observed. The 

measured pole densities are relatively low, even at depths of more than 

5000mbsf. 

In contrast, the grain size distributions and mineral assemblages of the North 

Viking Graben, Mid-Norway, Caspian Sea and Bay of Bengal samples were 

distinctly different (Fig. 97 - Fig. 103). Here, dominating constituent of the silt 

and sand fraction is detrital mica. Quartz, feldspar and microfossils are only 

abundant in the largest grain sizes (Fig. 97, Fig. 100 & Fig. 103). The large 

quantities of silt-sized phyllosilicates are often aligned subparallel to the 

bedding plane and create a noticeable"mica fabric· (Fig. 102). It can be 

assumed that it is these micas which generate the high fabric intensities 

determined by HRXTG. These readings might accurately reflect the general 

fabric of many samples, but BSEM analyses reveal (Fig. 98 & Fig. 103) that 

most of the fine-grained «5fJffi) mica particles show no preferred orientation. 

A further feature of samples with high detrital mica contents was revealed by 

the analysis of a fine sandstone sample from the North Viking Graben. This 

sample showed a clear macroscopic fissility and analysis by BSEM revealed 

a high content of biotite and muscovite (Fig. 100 & Fig. 101). The rare 
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concentration of these large phyllosilicates resulted in a distinct stacking of 

mica crystals (Fig. 101) and produced a fissility uncommon for sand-sized 

sediments. Since most other fine sandstones do not contain enough clay 

minerals to produce a detectable phyllosilicate fabric the pole densities 

determined by HRXTG were unexpectedly high. 

Although fundamentally different with respect to grain size, samples from the 

Central Viking Graben, Caspian Sea (4887mbsf & 5280mbsf) and deeper 

(>600mbsf) Central Bermuda Rise showed degrees of phyllosilicate 

alignment very similar to those of the mica-rich sandstone. The resemblance 

of the determined fabrics can be attributed to the predominance of lath­

shaped minerals in these samples. Silt- to sand-sized micas dominate in the 

former two whereas fine-grained clay minerals prevail the latter. 

Fig. 95 BSEM image of a mudstone core sample from 5001 mbsf (Diva). The clay fraction of this sample 

is 49%. Larger particles are primarily comprised of quartz, feldspar and microfossil material. Silt· and 

sand-sized detrital mica is rare. 
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Fig. 96 BSEM image of a siltstone (33% <211m) core sample from 5516mbsf (Diva). The amount of si lt­

and sand-sized particles is greater than in Fig. 95. However, the matrix is dominated by clay mineral s 

and large phyllosilicates are rare. 

Fig. 97 BSEM image of a shallow (1270mbsf), fine silt (35% <211m) from the Bay of Bengal. The overall 

alignment of the phyllosilicates in this silty matrix is relatively weak (3.03m.r.d. for ill ite/mica). Qz = 

Quartz; KFp = K-Feldspar. 
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Fig. 98 BSEM image of the same Bay of Bengal sample as in Fig. 97. This magnification illustrates the 

lack of preferred orientation for most of the fine-grained «5j.lm) mica particles. 

Fig. 99 BSEM image of a deeper (2310mbsf) siltstone (28% <2I!m) from the Bay of Bengal. The mineral 

matrix consists mainly of platy minerals (mica) which are much better aligned (5.56m.r.d.) than those of 

the 1290mbsf sample (Fig. 98) . 
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Fig. 100 BSEM image of a fine-grained sandstone (13% <2J.lm) from the North Viking Graben. This 

sample was taken at 1908mbsf and shows no obvious preferred phyllosilicate orientation at this 

magnification. 

Fig. 101 Higher magnification BSEM image of the same sample as displayed in Fig. 100. The high 

content of silt to sand sized mica (muscovite & biotite) grains led to a stacking of these platy minerals. 

The measured pole density for illite/mica is 3.68m.r.d. 
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Fig. 102 BSEM image of a cutting sample (812mbsf) from the Mid-Norway well. The bright prolate 

minerals (mica) reveal the good degree of alignment (4.25m.r.d.) of the silVsand fraction in thi s siltstone 

(33%<2~m). 

Fig. 103 This BSEM image of the same sample as in Fig. 102 illustrates that the fine-grained matrix of 

this siltstone is dominated by poorly oriented clay and mica grains. Qz = Quartz; Plag = plagioclase; D = 
diatom; P = framboidal pyrite. 
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8.3 Clay mineral diagenesis 

It is known from previous studies that clay mineral diagenesis significantly 

alters the fabric and mineralogy of mudstones (e.g. Perry & Hower, 1970; 

Hower et aI., 1976; Oertel & Curtis, 1972; Curtis et aI., 1980; Kisch, 1983; Ho 

et aI., 1995; van der Pluijm et al. 1998; Jacob et al. 2000). In order to be able 

to systematically compare these alterations with changes in the physical 

properties it is important to determine the diagenetic grade of a mudstone. 

Many previous studies (Dunoyer de Segonzac, 1970; Perry & Hower, 1970; 

Reynolds & Hower, 1970; Hower et aI., 1976; Ahn & Peacor, 1986; Pollastro, 

1992; Hillier et aI., 1995; Drief & Nieto, 2000) have shown that in most 

sedimentary basins there is a diagenetic transition from smectite to mixed­

layered illite/smectite to illite according to the reaction: 

K-feldspar + smectite ~ illite + chlorite + quartz or 

smectite + AI3+ + K+ = illite + Si4+. 

It is the progress of this reaction that can be utilized to determine the 

diagenetic grade of a mudstone. The most practicable way to accomplish this 

is by analyzing the separated clay fraction «2Jlm) by X-ray diffraction (Moore 

& Reynolds, 1997). This method enables the determination of the percentage 

of diagenetically generated illite in mixed-layered illite/smectite. Here, higher 

amounts of illite point to higher diagenetic grades. 

The influence of the various parameters that control the transition of smectite 

to illite have been widely studied (e.g. Essene & Peacor, 1995). Besides 

temperature (Freed & Peacor (1989) and references therein), these 

parameters are mainly time (e.g. Kisch, 1983, Srodon & Eberl, 1984; Velde & 

Espitalie, 1989; Velde, 1995; Cuadros & Linares, 1996), pressure (e.g. 

Srodon & Eberl, 1984; Colton-Bradley, 1987; Buryakovsky et aI., 1995), 

potassium availability (e.g. Hower et aL, 1976; Srodon & Eberl, 1984; Pearce 

et aI., 1991; Moore & Reynolds, 1997) and pore fluid chemistry (e.g. Blank & 

Seifert, 1976; Roberson & Lahann, 1981; Pearce et aI., 1991; Drief & Nieto, 

2000). The general kinetics of the reaction were discussed by Velde & 
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Vasseur (1992) , Cuadros & Linares (1996 and references therein) and Elliott 

& Matisoff (1996). 

The results of the XRD anlaysis in this study revealed that of all examined 

silt- and mudstones only the deeper samples from the Gulf of Mexico (Ikon & 

Diva) show a gradual increase of illite in I/S (Fig. 104 & Fig. 105). The first 

change in illite content was observed in a cutting sample of Ikon at a depth of 

4660mbsf and an in situ temperature of about 100°C. The first increase of 

illite in Diva was determined at 5511 mbsf (128°C). 
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Fig. 104 The relationship between illite content in lIS and burial depth (Ihs) and in situ temperature 

(rhs) for the deep water Gulf of Mexico samples. 

The maximum percentage of illite in liS was measured for a Diva sample 

which was taken from 5649mbsf. The in situ temperature was determined as 

130°C, the illite content as about 80%. Although some samples from Ikon are 

from greater depths than those from Diva, differences in the thermal gradient 

(Diva: 23°C/km; Ikon: 20°C/km) resulted in higher maximum temperatures for 

the latter. The highest content of illite in liS observed for Ikon was about 50% 

at 6041 mbsf. 
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The maximum measurement of 80% illite in lIS for the Diva sample 

resembles a value often regarded as the completion value for the smectite-to­

illite transition (Kisch, 1983; Freed & Peacor, 1989). Srodon & Eberl (1984) as 

well as Moore & Reynolds (1997) report that the illite content in I/S in the Gulf 

of Mexico rarely exceeds 80%. They argue that at this stage most of the 

available potassium to feed this reaction is consumed, an observation which 

is in agreement with the results of Hower et al.'s (1976) study. 

The temperature/diagenetic grade relationships observed for the Gulf of 

Mexico samples are quite remarkable if compared to values published by 

Kisch (1983) and Freed & Peacor (1989) for other areas of the Gulf of 

Mexico. As displayed in Fig. 106, values for both, the onset as well as the 

completion of the illite-to-smectite transition are at the upper limits of the 

published data. However, the most prominent deviation can be observed in 

the burial depths corresponding to these limits. The onset as well as the 

completion of the smectite-to-illite conversion in the examined Gulf of Mexico 

wells occurs more than 2000m deeper than in most of the published datasets. 

This is likely a consequence of the high sedimentation rates in the sampled 

area (Kisch, 1983; Doligez et aI., 1986), where rapid accumulation 

(> 1 OOOm/Ma; A. Aplin, pers.comm) has resulted in relatively low thermal 

gradients of 20-23 C/km. These low gradients and the young age (Plio­

Miocene) of the formations did not allow for the smectite-to-illite reaction to 

complete (Velde & Vasseur, 1992). 

In addition, the lowered thermal gradient also leads to a shift in the pore 

pressure/temperature relationship, which causes higher pressures at lower 

temperatures and may hinder the dehydration of smectite prior to the 

conversion into illite (Kisch, 1983; van Groos & Guggenheim, 1984; 

Buryakovsky et aI., 1995). The often present overpressures due to 

disequilibrium compaction (Swarbrick & Osborne, 1998) might further 

contribute to this effect (Buryakovsky et aI., 1995). 
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Fig. 105 XRD traces from the Gulf of Mexico sample set. The arrows mark the position of the smectite 001 peak. All Panis samples (1-3) as well the shallow samples from 

Ikon & Diva (4 & 7) show no indication for a progress of the smectite-to- ilii te conversion. Only the deeper samples from Ikon & Diva (5,6,8,9) show a gradual decrease in 

smectite and increase in diagenetic illite. 
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Fig. 106 Comparison of the results for the Gulf of Mexico samples (GaM) with published depths and 

temperatures for the onset and completion of the reduction of expandable layers in illitelsmectite mixed­

layers. The onset and completion limits of the smectite-to-illite reaction were defined as 25% I in liS and 

80% I in liS, respectively (Kisch, 1983; Freed & Peacor, 1989). Freed and Peacor's (1989) data are all 

based on Gulf of Mexico data, Kisch's (1983) data was collected from literature and represents Gulf of 

Mexico and Cameroon data. Note the remarkably small temperature difference between onset and 

completion of the Diva samples. 

The results of the illite in I/S measurements for the remaining samples could 

not be plotted with respect to onset/completion temperatures. Limited well 

coverage as well as insufficient sample material inhibited the collection of 

appropriate data. However, a measurement for the Central Viking Graben 

delivered an illite content in I/S of about 30% at 1711 mbsf and a temperature 

of -6aoC. This result would fit very well into the published values for the onset 

of the smectite-to-illite transition (Fig. 106). 

High amounts of detrital illite/mica and chlorite in the Caspian Sea made an 

estimation of the degree of clay mineral diagenesis very difficult. The XRD 

patterns of the air dried and glycolated clay fraction of one sample (Fig. 107) 

revealed only small amounts of expandable material (smectite) which could 

not be quantified. In contrast, another deeper sample of this well (Fig. 108) 

contained Significantly more mixed-layered illite/smectite (I/S) with an 

estimated illite content of 20-30%. 
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Fig. 107 XRD patterns for the air dried (Ihs) and glycolated (rhs) clay fraction of a Caspian Sea sample 

(4863mbsf). The main changes of the glycolation are marked with arrows. 
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Fig. 108 XRD patterns for the air dried (Ihs) and glycolated (rhs) clay fraction of a Caspian Sea sample 

(5280mbsf) . The main changes of the glycolation are marked with arrows. 

As already observed for the Gulf of Mexico wells, it is quite remarkable that 

deeply buried material from the Caspian Sea still contains considerable 

amounts of smectite and liS at temperatures of about 135°C (data from this 

study; Buryakovsky & Djevanshir, 1986; Buryakovsky et aL, 1995). It is 

therefore not surprising to find basically the same depositional and 

geothermal boundary conditions as in the Gulf Coast wells. The 

sedimentation rates in the sampled area reached up to 1300m/Ma, the 

thermal gradient being in the range of 16-25°C/km (Buryakovsky et aL, 1995; 

Tagiyev et aL, 1997; Nadirov et aL, 1997). The widespread overpressure in 

these formations (Bredehoeft et aL, 1988; Buryakovsky et aL, 1995) is also a 

feature similar to the Gulf of Mexico wells. 

The XRD analysis of the clay fraction of the Mid-Norway samples (812-

2499mbsf, 32-93°C) did not reveal any indications for an advanced level of 

the smectite-to-illite transion. The dominance of kaolinite, detrital chlorite and 

detrital illite/mica significantly hindered the quantification of %1 in I/S. 
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8.4 The effects of phyllosilicate alignment and clay mineral 

diagenesis on porosity and pore size 

As discussed in Ho et al.'s (1999) study about the preferred orientation of 

phyllosilicates in Gulf Coast mudstones, the textural changes that occur due 

to the rotation and dissolution-neocrystallization of clay minerals during burial 

should have a significant impact on physical properties like porosity and 

permeability. Since Ho et al. (1999) showed that the textural changes are 

stong est close to and during the smectite-to-illite transformation (Fig. 109), 

fabric data should also be a good indicator for a clay-diagenetic influence on 

the physical properties. Unfortunately, neither their nor any other study 

provides a direct correllation of phyllosilicate fabric data with physical 

properties like porosity or pore size. 
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Fig. 109 HRXTG data from Ho et al. (1999). Maximum pole intensities are plotted against in situ 

formation temperature assuming a thermal gradient of 37 Clkm and a surface temperature of 10 C. The 

box marks samples which were described as showing larger concentrations of detrital quartz grains. 

As shown in Part A of this study, during the purely mechanical part of 

compaction the porosity of a mudstones is mainly controlled by its lithology 

(grain size) and the governing effective stress. As a consequence of different 

burial histories, these stresses occur at different formation temperatures and 

geological ages. Due to the kinetics of the smectite-to-illite reaction (Velde & 

Vasseur, 1992; Cuadros & Linares, 1996) this means that clay mineral 

diagenesis affects sedimentary rocks at different stages of mechanical 

compaction. 
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In order to examine the influence of non-mechanical processes on 

compaction it is necessary to establish whether changes in mudstone 

porosity and pore size can be related to both changes of the measured 

phyllosilicate fabric and the diagenetic grade. It is also of great interest 

whether grain size has a significant control on the impact of non-mechanical 

processes on mudstone compaction. 

8.4.1 General correlation of the phyllosilicate fabric with porosity, pore 

size and grain size 

In this study, no general relation between the degree of phyllosilicate 

alignment and porosity was revealed by the HRXTG measurements (Fig. 

110). However, with the exception of one deep sea sample, good 

phyllosilicate alignment (>4m.r.d.) was only found in samples with less than 

15% porosity. Similar observations were made for the pore sizes of the 

sample set (Fig. 111). The maximum pole intensities scatter widely for any 

given pore throat size. However, with the exception of one sample from the 

Caspian Sea, good phyllosilicate alignment (>4m.r.d.) can only be found in 

samples with pore throat sizes smaller than 10nm. 
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Fig. 111 Comparison of the mode or mean pore throat sizes with the maximum pole densities. Pore size 

data was limited to the samples listed in Table 37. 

In addition, the correlation of maximum pole density and clay fraction in Fig. 

112 revealed that there is no obvious connection between the two 

parameters. These results confirm earlier observations (this chapter), where 

the granulometrical composition of the silt fraction was more significant for 

the primary phyllosilicate fabric than the overall grain size. 
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8.4.2 Regional correlations of the phyllosilicate fabric with porosity, 

pore size, grain size and diagenetic grade 

8.4.2.1 Gulf of Mexico 

Fig. 115 to Fig. 118 show porosity, pore radius, fabric and mineralogical data 

for the three wells (Panis, Ikon, Diva), plotted against depth and, more 

importantly in the context of diagenesis, in situ formation temperature. The 

data illustrate that neither porosity and pore throat size nor the maximum pole 

density change significantly between 2000mbsf (40°C) and 5000mbsf 

(120°C). Values for porosity fluctuate slightly around 15% with mode pore 

throat sizes around 10nm (Fig. 113). The maximum pole densities in this 

interval hardly exceed 3.0m.r.d. X-ray diffraction analyses reveals that 

significant clay mineral recrystallization is absent in this interval. 
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Fig. 113 Pore throat size distributions representative of the 2000mbsf to 5000mbsf interval of the Gulf 

of Mexico wells Pan is, Ikon and Diva. Both total porosity (2175mbsf: 15%, 4855mbsf: 17%) and pore 

size distribution (mode 2175mbsf: 10nm, 4855mbsf: 9nm) are very similar. 

The most prominent changes in these wells occur at depths greater than 

5000mbsf (120°C) (Fig. 115 & Fig. 116). Here, a drop of porosity below 10% 

at 5649mbsf (130°C) is accompanied by a decrease in mode pore throat size 

to about 6nm. Over the same interval the amount of diagenetiC illite (% illite in 

liS) increases to 80%. 

Most dramatic are these changes in the deepest (hottest) core samples from 

Diva (5511mbsf-5649mbsf; 128°C-130°C). Within 140m porosity drops by 

25%rel and illite in liS increases by 40% (Fig. 117 & Fig. 118). A comparison 

of porosity with diagenetic illite and clay fraction (Fig. 119) reveals that these 

parameters are weakly correlated in this interval. Although consistent with the 
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predictions of the mechanical compaction model , the correlation between clay 

fraction and porosity is weaker than that between illitization and porosity. A 

similar observation was made for the relation between pore throat size, clay 

fraction and illitization (Fig. 120). In both cases, diagenesis is of slightly 

greater influence than lithology. 

Changes in the degree of phyllosilicate alignment are much less prominent 

(Fig. 115 to Fig. 118). Maximum pole densities range from very weak 

«2m.r.d.) to moderate (3-4m.r.d.) and, even in samples which have 

undergone the smectite to illite transition (5647mbsf & 5649mbsf), never 

reach the values of 5-6m.r.d. measured by Ho et al. (1999) in lower 

temperature samples from the coastal Gulf of Mexico section (Fig. 121). 

These results are qualitatively consistent with the BSEM images. These 

generally show no evidence of aligned fabrics, except for the hottest samples, 

where some fabric is implied by the parallel orientations of cracks resulting 

from the unloading which occurs when cores are brought to surface 

conditions (Fig. 114). 

Fig. 114 BSEM image of a mudstone from Diva (5649mbsf) . This sample showed the highest degree of 

alignment (3.41 m.r.d.) of all GoM cores samples. The prevailing phyllosilicate fabric is highlighted by 

unloading cracks (black) and subparallel aligned detrital mica grains (bright grey). 
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The difference between the pole densities for the Gulf of Mexico in this study 

and those from Ho et al.'s (1999) study are likely related to two observations. 

Firstly, different burial histories provided a different kinetic background for the 

illitization in both regions. The samples from Ho et al.'s (1999) study are in 

general more diagenetically mature since a smaller formation thickness and 

higher thermal gradient allowed for a more intense recrystallisation of the clay 

minerals. Secondly, Ho et al. (1999) observed that the fabric intensities are 

much lower in samples rich in detrital quartz grains (Fig. 109). Unfortunately, 

no further information about the grain size of their samples set is available. 

Since, some of the samples from this study have pole densities similar to 

those of the "sandy" samples from Ho et al. (1999) it is not clear wether the 

different results were caused by significant differences in the analyzed 

lithologies. However, as shown earlier, phyllosilicate fabric in general is not 

directly related to clay fraction and thus differences in the diagenetic maturity 

are more likely to be the reason for the observed pole densities. 
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8.4.2.2 Other regions 

Samples from both the Central Viking Graben and Mid-Norway area are fine-grained and 

show a moderate to good phyllosilicate alignment (Fig. 122 & Fig. 123). Neither of these 

wells revealed any significant degree of illitisation and in the case of the Central Viking 

Graben no relation between fabric and porosity or pore size distribution (see Appendix) 

was observed. Clay fraction and phyllosilicate alignment are also not related in either of 

the wells. However, the shallowest sample from the Mid-Norway well was very rich in silt­

and sand-sized detrital mica, which created a so-called "mica fabric" (Fig. 101). Relatively 

large stack of this crystals led to increased pole densities for this sample (Fig. 123). 

The sample set from the North Viking Graben shows very similar characteristics to that 

from Mid-Norway (Fig. 124). The observed alignment of phyllosilicates is moderate to 

good and shows no relation to porosity or pore size distribution (see Appendix). The main 

difference between this well and those from the Central Viking Graben and Mid-Norway 

area is the clay fraction. The latter is significantly lower in the North Viking Graben and 

explains the frequent occurence of silt- to sand-sized detrital mica (Fig. 100). It is these 

grains again that resulted in some of the higher pole densities. In addtion to frequently 

causing mica fabrics the large amounts of detrital mica also masked any ongoing 

illitisation in the North Viking Graben samples. Although XRD traces revealed the 
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presence of expandable material (smectite) even the <2J.lm fraction was to rich in detrital 

mica to allow a quatification of illite in liS. 

The samples from the Caspian Sea show a good to very good phyllosilicate alignment for 

both coarse and fine-grained mudstones (Fig. 125). Nevertheless, neither porosity nor 

pore size distribution (see Appendix) are related to the maximum pole densities. Similar to 

most of the Gulf of Mexico samples, high temperatures did not result in significant 

degrees of illitisation. Thus, any clay diagenetic influence on fabric or porosity should be 

limited. However, the low porosities in this well reveal the efficiency of purely mechanical 

processes on compaction. 

With one exception, samples from the Bay of Bengal have moderately aligned 

phyllosilicates (Fig. 126). The measured very good alignment for the sample at 2310mbsf 

is again related to silt-sized detrital mica. A systematic relationship between fabric and 

porosity or pore size distribution (see Appendix) was not observed. Clay fraction is not 

related to phyllosilicate fabric. Due to a lack of sample material the progress of the 

smectite-to-illite transformation could not be determined. 

The strong correlation of sedimentation rate and clay mineral alignment observed for the 

deep sea clays of the Central Bermuda Rise is not reflected in the total porosity of these 

sediments (Fig. 127). Here, neither clay fraction nor phyllosilicate alignment are related to 

porosity. However, Fig. 127 reveals that very good degrees of phyllosilicate alignment can 

be reached in shallow and clay diagenetically unaffected deep sea formations. 
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9 Summary and Conclusion 

The rationale of this study was to investigate the possibility of using changes in 

the microtexture of phyllosilicates to infer information about the influence of clay 

mineral diagenesis on the compaction of mudstones. In 1999 Ho et al. showed 

that the clay mineral fabric determined by High Resolution X-ray Texture 

Goniometry (HRXTG) in Gulf Coast mudstones is closely related to the 

diagenetic conversion of smectite to illite, a very common reaction in fine-grained 

siliciclastic sediments. In this study, the phyllosilicate fabric of 83 fine-grained 

sediments was analyzed by HRXTG in order to determine the extent to which 

fabric can be related to clay diagenetic grade, clay fraction, porosity and pore 

size distribution. 

Results show that the phyllosilicate fabric of a clay-rich sediment prior to the 

smectite-to-illite conversion is controlled by several parameters. Firstly, deep sea 

environments like the Central Bermuda Rise can create situations where 

hydrodynamic processes control the degree of clay mineral alignment. Here, 

lower sedimentation rates clearly led to initially better aligned clay particles. 

Secondly, grain size and grain shape seem to have a complex control not only 

on the primary fabric but also on the reorientation of phyllosilicates. Since the 

clay fraction «2Jlm) is dominated by platy minerals it is the granulometric 

composition of the silt fraction (2f.1m-63f.1m) which is significant for the overall 

phyllosilicate fabric. Samples with high amounts of lath shaped minerals (clay & 

mica) in the silt fraction not only show better degrees of alignment at earlier 

stages, they also seem to improve the alignment more rapidly with increasing 

burial. In contrast to this, higher amounts of spherical minerals like quartz or 

feldspar inhibit the development of a strong phyllosilicate fabric. An additional 

effect of high amounts of silt- to sand-sized detrital mica is what is termed here 

the "mica fabric". Here, larger stacks of detrital mica can lead to higher fabric 

intensities during the HRXTG measurements, which often do not reflect the 

degree of alignment of the majority of phyllosilicates. 
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Since the main aim of this investigation was to reveal how alterations of the 

phyllosilicate fabric and clay diagenetic grade relate to porosity and pore size, 

several wells were chosen where in situ temperatures cover the levels typical for 

the onset and completion of the smectite-to-illite conversion. The main focus 

was put on three wells from the Gulf of Mexico (GaM), since Ho et al.'s (1999) 

study concentrated on the same area and the sample availability was sufficient 

to cover the critical temperatures. 

The results reveal that although similar in age and temperature, samples from 

the GaM are of much lower diagenetic grade than those from Ho et al. 's (1999) 

study. In addition, the degrees of phyllosilicate alignment are not only much 

lower, but also do not increase substantially with diagenetic grade. A comparison 

of the burial history of both case studies showed that high sedimentation rates 

and low heatflows in this study have retarded the smectite-to-illite conversion. 

Thus, any fabric change due to clay mineral diagenesis was inhibited. Only for 

the very deepest and hottest samples of Diva the transformation of smectite into 

illite has just started. The analysis of the remaining wells delivered similar 

results. In most cases the clay diagenetic grades were either to low or 

undetectable to reveal any influence on the phyllosilicate fabric. 

A systematic relationship between porosity or pore size distribution and 

phyllosilicate fabric was not observed. However, the very deepest samples of the 

GoM showed some indications for a decrease in porosity and pore size parallel 

to an increase in pole density and diagenetic grade. 

In general, it was revealed that purely mechanical processes are sufficient to 

reduce mudstone porosity and modal pore throat sizes to values of 10% and 

less than 8nm, respectively. It was also shown that high burial depths 

(>SOOOmbsf) do not necessarily result in mudstones with well aligned 

phyllosilicates. 
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10 Final Conclusions 

In general. the results of this study support the mechanical compaction models 

previously published by Skempton (1970). Burland (1990) and Yang & Aplin. 

(submitted). Grain size (clay fraction) seems to be the single most important 

lithological control on the purely mechanical compaction of fine-grained. 

siliciclastic sediments. However. the previously observed positive correlation 

between nannofossil content and porosity (e.g. Bryant & Rack. 1990; Kraemer et 

al.. 2000) was also confirmed. This has important implications for investigations 

similar to the compaction study of Dugan & Flemings (2000a/b) on the New 

Jersey Continental Margin. Here. differences in the porosity and permeability of 

fossil-poor and fossil-rich sediments can have significant implications for the 

prediction of pore pressures based on sedimentation-compaction models. 

The analysis by HRXTG revealed that prior to the diagenetic conversion of 

smectite into illite the phyllosilicate fabric of fine-grained sediments is mainly 

controlled by hydrodynamic (sedimentation rate) and granulometric parameters 

(grain size and shape distribution of the silt fraction). A comparison with Ho et 

al.'s (1999) study also suggests that in sediments where the smectite-to-illite 

conversion has significantly progressed, the duration of the iIIitisation (Le. 

recrystallisation) is of major importance for the development of a preferred 

phyllosilicate orientation. Nevertheless. a systematic relationship between 

porosity or pore size distribution and phyllosilicate fabric was observed neither 

for sediments prior to nor within the smectite-to-illite conversion. 

In general, it was shown that purely mechanical processes are sufficient to 

reduce mudstone porosity and modal pore throat sizes to values of 10% and 

less than 8nm, respectively. Furthermore, it was revealed that high burial depths 

(>5000mbsf) do not necessarily result in mudstones with well aligned 

phyllosilicates. 
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11 Future Work 

The basic controls on the purely mechanical compaction of mudstones are 

reasonably well understood, at least from a practical, petroelum geological 

perpective. The influence of grain sorting and fossil material on the pore size 

distributions should be examined further, since these have a significant impact 

on the permeability of fine-grained sediments. Regarding the quantification of the 

phyllosilicate fabric of mudstones by HRXTG, this study has shown that much 

more work is necessary to establish whether this technique can be used to 

quantify changes in the physical properties due to diagenetic processes. In 

addition, besides its use an indicator for non-mechanical compaction, more work 

is needed on the influence of changes in the phyllosilicate fabric on other 

petrophysical properties such as permeability, sonic velocity or mechanical 

strength. Suggested further work is described below: 

1. A methodology should be developed to characterize the grain sorting 

of the silt fraction in fine-grained sediments. This could either be done 

by a better calibration of the applied Sedigraph ™ method or by using 

optical methods such as the computer aided image analysis of 

scanning electron micrographs. The results should help to explain why 

fine-grained sediments with similar clay fractions can have different 

porosities and permeabilities at the same effective stress. 

2. An integrated study to understand the mechanical compaction of fine­

grained, fossil-rich siliciclastic sediments. Several case studies should 

be used to quantify the influence of fossil material in clay-rich 

sediments on physical properties like porosity, pore size distribution 

and permeability. This could help to better constrain traditional 

mechanical compaction models in marine environments with changing 

sedimentary facies. 
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3. More combined studies of the phyllosilicate fabric and physical 

properties of mudstone sequences where the completion of the 

smectite-to-illite conversion is reached. In these studies both High 

Resolution X-ray Texture Goniometry (HRXTG) and transmission 

electron microscopy (TEM) should be applied to obtain a detailed 

understanding of the fabric changes during clay mineral diagenesis. 

These analyses should then be compared to alterations of the porosity 

and pore size distribution of these sediments. 

4. A study about the influence of changing phyllosilicate fabrics on the 

hydraulic and acoustic properties of fine-grained sediments. Since an 

increase in the preferred orientation of phyllosilicates results in an 

increase in the textural heterogeneity of a sediment, the implications 

for directed permeability and sonic velocity should be significant. The 

results of this research should not only help to predict the fluid flow in 

sedimentary basins but also to locate clay mineral diagenesis in 

seismic or sonic surveys. 
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Appendix 

Physical Property Data: Part A DSDP/ODP core material 

Well Sample Depth" 
26/250 4 119.38 572 

26/250 

26/250 

26/250 

261250 

26/250 

261250 

261250 

26/250 

26/250 

26/257 

261257 

261257 

261257 

36/330 
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361330 
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361330 

361330 

361330 

361330 

361330 

431386 

43/386 

43/386 

431386 

43/386 

43/386 

431386 

43/386 

431386 

431386 

43/386 

431386 

431386 

43/386 

57/440b 
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57/440b 

57/440b 

57/440b 

57/440b 

57/440b 

57/440b 
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11 

13 
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5 
9 

1 
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26 

28 
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42 

50 

54 

55 
59 

65 
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13 

24 

28 

39 

52 

60 

65 

189.6 986 

238.65 1286 

295.65 1813 

351.22 2220 

407.3 2612 

464.97 3035 

571.67 3931 

606.7 4141 

645.71 4426 

7.2 20 

49.2 97 

124.04 322 

248.7 958 

134.71 781 

177.41 1077 

314.55 2384 

350.37 2689 

377.75 2906 

405.95 3234 

434.8 3507 

490.83 4200 

519.88 4511 

59.28 246 

151.97 750 

252.94 1493 

335.82 2097 

480.81 3110 

502 3300 

562.96 3780 

646.8 4554 

731.8 5344 

818.22 6173 

858.82 6606 

865.05 6687 

900.59 7019 

957.37 7648 

208.2 1091 

257.23 1443 

358.74 2083 

399.7 2363 

502.72 2918 

624.7 3723 

702.2 4210 

748.24 4497 

0.57 

0.59 

0.57 

0.58 

0.43 

0.50 

0.41 

0.39 

0.34 

0.39 

0.85 

0.75 

0.69 

0.68 

0.69 

0.54 

0.45 

0.44 

0.43 

0.47 

0.40 

0.41 

0.34 

0.68 

0.46 

0.66 

0.66 

0.48 

0.42 

0.48 

0.43 

0.43 

0.40 

0.40 

0.44 

0.39 

0.40 

0.57 

0.63 

0.62 

0.59 

0.59 

0.67 

0.59 

0.61 

MPI $ we Lab we ODP Gs 
0.47 33 2.592 

0.53 

0.54 

0.54 

0.39 

0.37 

0.33 

0.32 

0.34 

0.30 

0.41 

0.52 

0.31 

0.37 

0.33 

0.34 

0.30 

0.33 

0.38 

0.46 

0.47 

0.41 

0.30 

0.40 

0.36 

0.41 

0.37 

0.39 

0.38 

0.51 

0.53 

0.51 

0.53 

0.46 

0.44 
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33 

34 

34 

24 

23 

22 

19 

19 

16 

16 

8 

6 

10 

7 

8 
6 

4 

3 

16 

9 

16 

11 

6 

7 

11 

12 

9 
7 

30 

20 

23 

25 

7 

11 

45 

30 

24 

23 

22 

24 

21 

21 

16 

28 

28 

26 

21 

24 

20 

20 

22 

19 

19 

37 

35 

38 

38 

2.668 

2.645 

2.668 

2.613 

2.642 

2.632 

2.669 

2.642 

2.677 

2.529 

2.633 

2.508 

2.596 

2.669 

2.754 

2.647 

2.662 

2.695 

2.695 

2.674 

2.711 

2.720 

2.811 

2.798 

2.946 
2.394 

2.465 

2.530 

2.586 

2.820 

2.763 

2.758 

2.793 

2.760 

2.740 

2.828 

2.453 

2.516 

2.386 

2.382 

2.240 

2.403 

2.470 

2.364 

72 

72 

74 

74 

77 

78 

75 

74 

72 

73 

70 

76 

73 

82 

51 

52 

39 

62 

59 

62 

50 

40 

25 

68 

38 

59 

64 

41 

67 

31 

74 

60 

85 

67 

71 

75 

73 

37 

40 

33 

37 

45 

24 

35 

47 

TC 
0.8 

0.4 

1.0 

1.3 

0.5 

0.1 

0.2 

0.1 

0.1 

0.0 

0.0 

0.0 

0.1 

0.1 

5.6 

6.1 

5.3 

3.2 

1.8 

1.8 

2.2 

1.4 

0.8 

1.9 

5.9 

2.4 

2.4 

2.2 

0.6 

2.0 

0.3 

0.0 

0.3 

0.4 

3.8 

1.6 

0.2 

0.6 

0.6 

0.7 

0.4 

1.0 

0.4 

0.5 

0.5 

TOC 
0.5 

0.3 

0.3 

0.3 

0.4 

0.1 

0.1 

0.1 

0.0 

0.0 

0.6 

0.5 

0.6 

0.5 

0.9 

1.0 

3.4 

3.2 

2.0 

1.8 

2.2 

1.4 

0.8 

1.0 

0.8 

0.7 

1.1 

1.0 

0.9 

0.9 

0.7 

0.3 

0.8 

0.9 

2.9 

1.3 

0.7 

1.2 

1.1 

1.2 

0.9 

1.6 

0.9 

1.0 

1.0 



Appendix 

Physical Property Data: Part A DSDP/COP core material (continued) 

Well Sample Oepth * 

1161719b 

1161719b 

1161719b 

1161719b 

1161719b 

1161719b 

1161719b 

1161719b 

1161719b 

127n94a 

11 90.58 660 

960 

1112 

1202 

1573 

2002 

2411 

2822 

3746 

14 120.12 

16 138.26 

17 150.87 

22 200 

28 251.55 

33 300.75 

38 350.3 

48 448.95 

1271794a 95 

1271794b 91 

127/794b 11 

1271794b 17 

127n94b 20 

150/906a 14 

150/906a 31 

1501906a 33 

150/906a 41 

1501906a 51 

150/906a 59 

17411072 7 

17411073 11 

17411074 17 

17411075 25 

17411076 37 

17411 on 46 

17511084a 12 

17511084a 17 

17511084a 24 

17511084a 29 

17511084a 34 

17511084a 39 

17511084a 43 

17511084a 49 

1.02 3 

80.28 317 

376.07 1532 

395.75 1664 

453.6 2137 

485.35 2396 

121.31 981 

285.6 2180 

305.05 2348 

384.53 3052 

481.1 3807 

554.86 4462 

51.35 507 

71.08 690 

100.21 996 

145.16 1452 

198.34 2026 

249.68 2531 

103 336 

145.8 476 

201 659 

250.1 837 

300.1 1024 

349.5 1173 

389.4 1274 

449.3 1496 

Sample 

BI 

BII 

0.52 

0.56 

0.48 

0.57 

0.53 

0.52 

0.50 

0.58 

0.47 

0.85 

0.81 

0.43 

0.59 

0.53 

0.51 

0.50 

0.50 

0.51 

0.38 

0.43 

0.35 

0.49 

0.48 

0.39 

0.41 

0.38 

0.37 

o.n 

0.76 

0.76 

0.75 

0.75 

0.74 

0.74 

0.74 

0.43 

0.39 

MPlcp 

0.46 

0.47 

0.39 

0.36 

0.37 

0.45 

0.43 

0.43 

0.43 

0.53 

0.48 

0.47 

0.49 

0.50 

0.49 

0.42 

0.49 

0.48 

0.39 

0.38 

0.35 

0.20 

0.40 

0.48 

0.44 

we Lab we OOP 

22 28 

22 32 

18 26 

20 34 

21 30 

25 29 

15 27 

28 34 

17 24 

32 

26 

24 

27 

28 

26 

21 

27 

25 

18 

17 

16 

15 

17 

we Lab 
32 

27 

22 

33 

27 

30 

35 

30 

25 

20 

26 

22 

19 

20 

18 

18 

49 

62 

48 

58 

53 

66 

62 

59 

67 

56 

Gs 

2.807 

2.816 

2.823 

2.752 

2.789 

2.767 

2.802 

2.734 

2.801 

2.666 

2.334 

2.384 

2.568 

2.579 

2.586 

2.694 

2.684 

2.628 

2.813 

2.678 

2.544 

2.781 

2.727 

2.737 

2.748 

2.691 

2.687 

2.346 

2.334 

2.500 

2.294 

2.447 

2.066 

2.103 

2.284 

Gs 

40 

42 

45 

60 

63 

61 

60 

78 

53 

50 

49 

46 

40 

65 

57 

51 

57 

47 

35 

39 

33 

61 

38 

29 

31 

37 

18 

50 

58 

47 

59 

60 

56 

61 

64 

2.76 

2.8 

TC 

0.9 

1.0 

0.6 

1.2 

1.4 

1.2 

0.7 

0.3 

0.5 

0.5 

0.8 

0.4 

0.6 

1.4 

1.4 

1.3 

1.5 

1.4 

1.5 

5.0 

6.1 

1.6 

1.9 

0.5 

0.6 

0.7 

0.4 

10.9 

12.4 

8.4 

8.8 

5.9 

3.8 

6.6 

5.4 

TOC 

1.1 

1.2 

1.2 

1.8 

1.9 

1.8 

1.3 

0.8 

0.9 

0.4 

0.6 

0.4 

0.6 

1.3 

1.1 

1.8 

2.0 

1.9 

0.8 

2.7 

3.7 

0.4 

0.3 

0.3 

0.5 

0.6 

0.5 

8.0 

7.1 

3.1 

8.4 

2.4 

3.7 

6.5 

2.9 

Key: (*) - mbsf, d - effective stress [kPa), $ - porosity (measured by OOP), MPI $ - porosity (measured 
by mercury intrusion porosimetry), $* - porosity from water content Lab, wc Lab - water content [%) (this 
study), we OOP - water content [%] (measured by OOP), Gs - grain density [g/em3

), <211m - elay 
fraction [%], TC - total carbon [%). TOC - total organic carbon [%]. 
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Physical Property Data: Part B 

Well 

BB 
BB 
BB 
BB 
BB 
CS 
CS 
CS 
CS 

CVG 
CVG 
CVG 
CVG 
Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Diva 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Ikon 

Depth [mbsfj Type 
1270 cutting 

2030 cutting 

2310 cutting 

3305 cutting 

3495 cutting 

4863 core 

4887 core 

5280 core 

5383 core 

1565 

1711 

1754 

1848 

1515 

2392 

3481 

44n 
4849 

4855 

5001 

5428 

5435 

5511 

5516 

5518 

5647 

5649 

6906 

2529 

2685 

2840 

2986 

3142 

3297 

3453 

3599 

3746 

3901 

4126 

4128 

4321 

4418 

4660 

5133 

5282 

5420 

5739 

5884 

6041 

core 

core 

core 

core 

cutting" 

cutting' 

cutting' 

cutting' 

cutting" 

swc 

core 

cutting" 

swc 

core 

core 

core 

core 

core 

cutting" 

cutting" 

cutting" 

cutting" 

cutting" 

cutting" 

cutting' 

cutting' 

cutting' 

cutting" 

cutting" 

cutting' 

core 

swc 

core 

cutting' 

core 

cutting' 

swc 

cutting" 

swc 

cutting' 

MIPej) 
0.25 

0.2 

0.15 

0.15 

0.14 

0.1 

0.11 

0.11 

0.11 

0.24 

0.28 

0.25 

0.2 

0.5 

0.38 

0.53 

0.58 

0.21 

0.17 

0.17 

0.5 

0.14 

0.13 

0.16 

0.15 

0.09 

0.12 

0.27 

0.36 

0.52 

0.43 

0.57 

0.41 

0.47 

0.52 

0.37 

0.4 

0.38 

0.39 

0.22 

0.15 

0.16 

0.33 

0.19 

0.47 

0.17 

0.51 

0.16 

0.46 

Appendix 

Gs 

2.79 

2.81 

2.76 

2.82 

2.738 

2.708 

2.639 

2.46 

2.738 

2.792 

2.788 

2.625 

2.783 

2.764 

2.764 

2.n3 

2.726 

2.753 

2.466 

2.779 

2.755 

2.632 

2.651 

2.678 

2.733 

2.674 

2.517 

2.628 

2.61 

2.598 

2.807 

2.666 

2.766 

2.744 

2.nl 

2.558 

2.78 

2.525 

2.752 

2.62 
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35 

30 

28 

26 

53 

43 

26 

40 

85 

58 

82 

65 

46 

46 

40 

39 

35 

36 
49 

36 

39 

37 

33 

60 

22 

38 

39 

45 

19 

48 

42 

42 

48 

39 

33 

39 

42 

46 

52 

39 

39 

56 

39 

44 

30 

40 

40 

TC 

1.22 

1.13 

1.25 

1.36 

2.41 

2.89 

3.11 

4.6 

4.98 

2.16 

1.06 

6.22 

1.74 

1.01 

0.915 

0.963 

1.95 

0.4-0.8 

4.44 

3.59 

2.94 

3.51 

3.5 

3.16 

4.21 

8.52 

5.04 

5.43 

6.57 

0.905 

2.61 

1.28 

9.12 

0.88 

5.23 

1.72 

6.71 

7.82 

4.44 

TOC 

0.44 

0.37 

0.15 

0.17 

2.19 

2.31 

2.7 

4.6 

4.73 

1.34 

0.524 

5.11 

0.567 

0.764 

0.465 

0.558 

0.183 

0.3-0.6 

3.56 

3.02 

2.26 

3.27 

3.5 

3.03 

3.66 

7.07 

3.76 

4.47 

6.35 

0.303 

2.28 

0.996 

5.19 

0.569 

5.02 

0.881 

6.03 

6.43 

3.56 



Appendix 

Physical Property Data: Part B (continued) 

Well De~th [mbsf] Type MIP~ Gs <2!:!m TC TOC 

NVG 1908 core 0.27 2.74 13 1 

NVG 2311 core 0.14 2.78 22 1.61 1.28 

NVG 2671 core 0.12 2.75 38 1.01 0.81 

NVG 2687 core 0.12 2.75 31 1.81 1.54 

NVG 3410 core 0.06 2.72 21 1.61 1.28 

NVG 3700 core 0.1 2.74 19 1.87 1.59 

NVG 4000 core 0.06 2.73 20 0.11 0.11 

NVG 4331 core 0.11 2.82 41 1.49 1.46 

Panis 901 cutting 0.19 2.59 2.67 5.31 

Panis 1444 cutting 0.2 2.60 45 0.76 2.37 

Panis 1633 cutting 0.19 2.65 43 1.96 3.8 

Panis 1816 cutting 0.15 2.62 41 1.60 4.38 

Panis 1999 cutting 2.63 39 2.56 4.03 

Panis 2175 cutting 0.15 2.55 2.36 3.87 

Panis 2541 cutting 0.12 2.56 40 1.97 2.26 

Panis 2724 cutting 0.17 2.67 2.20 2.77 

Pan is 2907 cutting 0.14 2.58 39 2.77 3.4 

Pan is 3090 cutting 0.18 2.64 44 1.38 2.11 

Panis 3263 cutting 0.15 2.66 47 2.07 2.44 

Panis 3370 cutting 0.16 2.63 1.98 2.81 

Panis 3553 cutting 0.21 2.68 43 2.20 2.41 

Panis 3644 cutting 0.19 2.66 1.95 2.55 

Mid-Norway 812 cutting 2.63 33 

Mid-Norway 1362 cutting 2.80 67 

Mid-Norway 1487 cutting 2.63 58 

Mid-Norway 2301 cutting 2.79 51 

Mid-Norway 2499 cutting 2.76 59 

Key: (*) wet (canned) cuttings. swc - side wal core. MPI q, - porosity (measured by mercury intrusion 

porosimetry). Gs - grain density [glcm~. <21lm - clay fraction [%]. TC - total carbon [%]. TOC - tolal 

organic carbon [%]. 
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Grain Size Data: Part A 

Well 

261250 

261250 

261250 

261250 

261250 

261250 

261250 

261250 

261250 

261250 

261257 

261257 

261257 

261257 

361330 
361330 

361330 

361330 

361330 

361330 

361330 

361330 

361330 

43/386 

431386 

431386 

431386 
43/386 

431386 

43/386 

43/386 

431386 

Sample Depth [mbsf] 

4 119.38 

6 

7 

8 

9 

10 

11 

13 

14 

17 

1 

3 

5 

9 

1 

2 

6 

8 

9 

10 

11 

13 

14 

1 

4 

11 

14 

26 

28 

32 

36 

42 

189.6 

238.65 

295.65 

351.22 

407.3 

464.97 

571.67 

606.7 

645.71 

7.2 

492 

124.04 

248.7 

134.71 

1n.41 

314.55 

350.37 

3n.75 

405.95 

434.8 

490.83 

519.88 

59.28 

151.97 

252.94 

335.82 

480.81 

502 

562.96 

646.8 

731.8 

Appendix 

Grain Size [%] 

>63l1!!l ~ __ 1Qlun__1ot!rn ___ ~ _§i.m ___ ~ ___ 21JITl 11JITl 0.61JITl O.~ 0.251JITl 

0.2 99.8 91.9 90.6 89.3 86.7 81.6 71.9 62.7 56.3 52.1 45.3 

0.1 

0.0 

0.0 

0.0 

0.0 

0.4 

0.0 

0.3 

0.0 

3.1 

0.0 

0.0 

0.0 

2.8 

1.0 

12.3 

0.1 

0.2 

0.1 

0.4 

3.8 

0.2 

0.8 

0.1 

0.1 

0.1 

17.7 

0.2 

50.5 

2.6 

0.0 

99.9 

100.0 

100.0 

100.0 

100.0 

99.6 

100.0 

99.7 

100.0 

96.9 

100.0 

100.0 

100.0 

97.2 

99.0 

87.7 

99.9 

99.8 

99.9 

99.6 

96.2 

99.8 

992 

99.9 

99.9 

99.9 

82.3 

99.8 

49.5 

97.4 

100.0 

92.1 

92.2 

92.2 

92.2 

92.2 

91.7 

92.2 

91.9 

92.2 

86.6 

92.2 

92.2 

92.2 

84.7 

90.9 

72.3 

92.1 

91.9 

92.1 

86.8 

70.1 

60.5 

90.6 

90.8 

92.0 

92.0 

70.3 

91.9 

37.2 

88.8 

92.2 

92.1 

92.2 

90.7 

92.2 

92.2 

91.7 

89.4 

88.9 

89.5 

85.0 

92.2 

91.5 

92.2 

80.8 

89.6 

65.9 

89.4 

87.6 

89.4 

79.0 

60.6 

39.9 

89.9 

89.5 

90.7 

92.0 

68.3 

91.9 

37.2 

88.8 

92.2 

90.7 

89.4 

89.2 

90.7 

90.9 

91.7 

86.6 

87.5 

88.1 

83.5 

90.7 

90.9 

92.2 

78.3 

87.1 

63.9 

88.1 

86.1 

88.1 

77.5 

57.6 

37.1 

89.9 

88.2 

89.3 

90.5 

66.3 

89.2 

37.2 

87.4 

90.6 
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89.3 

86.6 

86.3 

89.1 

88.3 

87.6 

85.2 

84.6 

85.4 

82.0 

89.2 

88.3 

90.9 

75.8 

83.3 

57.9 

85.6 

81.9 

82.8 

73.0 

54.6 

33.6 

87.3 

81.8 

83.9 

89.1 

61.5 

852 

36.7 

86.0 

87.5 

83.9 

82.4 

82.0 

86.1 

85.7 

83.7 

81.1 

80.3 

81.4 

77.5 

85.6 

83.1 

89.5 

69.8 

78.4 

50.3 

76.9 

73.7 

76.5 

64.5 

48.9 

30.2 

81.0 

71.0 

76.2 

82.0 

54.1 

80.0 

35.8 

82.4 

78.5 

72.4 

74.5 

73.7 

77.3 

78.3 

74.9 

74.5 

72.1 

72.5 

70.4 

76.4 

73.3 

81.8 

51.1 

52.0 

39.1 

62.0 

58.6 

62.3 

50.1 

40.1 

25.4 

67.9 

45.7 

59.4 

63.8 

41.4 

66.5 

30.8 

73.6 

60.5 

62.9 

64.5 

63.3 

67.7 

70.0 

65.4 

66.9 

64.4 

64.1 

62.2 

68.4 

62.9 

74.3 

31.8 

33.1 

30.6 

47.6 

41.0 

46.5 

28.3 

31.4 

21.0 

51.8 

32.6 

45.7 

46.6 

29.6 

52.1 

23.0 

62.1 

43.6 

56.1 

58.6 

57.2 

61.1 

64.3 

59.8 

62.1 

59.4 

58.4 

54.5 

63.3 

55.4 

68.4 

22.6 

24.0 

25.0 

37.6 

28.8 

32.8 

18.7 

22.9 

17.6 

39.5 

26.4 

39.9 

38.5 

22.0 

43.1 

19.0 

56.2 

33.1 

51.8 

54.0 

50.3 

57.4 

61.0 

55.5 

58.6 

55.9 

54.0 

48.4 

59.6 

50.3 

64.9 

17.9 

18.7 

21.8 

30.2 

20.0 

22.7 

14.9 

18.5 

15.7 

32.3 

22.8 

35.3 

32.9 

17.9 

38.4 

16.6 

51.6 

27.4 

45.7 

47.6 

40.6 

51.3 

55.7 

49.3 

54.0 

50.1 

45.7 

40.5 

57.2 

43.5 

59.3 

14.8 

15.0 

18.8 

23.5 

14.5 

16.1 

12.2 

15.1 

13.9 

26.5 

18.8 

30.2 

26.8 

14.3 

33.2 

14.6 

45.1 

23.0 
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Grain Size Data Part A: continued 

Well 

431386 

43/386 

43/386 

431386 

43/386 

57/440b 

57/440b 

57/440b 

57/440b 

57/440b 

57/440b 

57/440b 

57/440b 

1161719 

1161719 

1161719 

1161719 

1161719 

1161719 

1161719 

1161719 

1161719 

1271794a 

1271794a 

1271794b 

1271794b 

1271794b 

1271794b 

1501906a 

150/906a 

1501906a 

150/906a 

1501906a 

Sample Depth [mbsf] 

50 818.22 

54 858.82 

55 865.05 

59 900.59 

65 957.37 

8 208.2 

13 

24 

28 

39 

52 

60 

65 

11 

14 

16 

17 

22 

28 

33 

38 

48 

1 

95 

91 

11 

17 

20 

14 

31 

33 

41 

51 

257.23 

358.74 

399.7 

502.72 

624.7 

702.2 

748.24 

90.58 

120.12 

138.26 

150.87 

200 

251.55 

300.75 

350.3 

448.95 

1.02 

BO.28 

376.07 

395.75 

453.6 

485.35 

121.31 

285.6 

305.05 

384.53 

481.1 

Grain size [%] 

>631UTl 63IUTl.. ~. 1Q1.i.r11. awn 61UTl 4pm 21UTl ~ .. ...Q,§J.Il11_ 0-1!J!r! 0.251UTl 

0.1 99.9 92.1 92.1 92.1 90.7 89.4 84.8 17.8 70.4 63.4 52.0 

0.0 100.0 92.2 92.2 90.8 90.8 82.4 66.9 46.5 34.9 29.6 24.7 

0.0 100.0 92.2 89.5 86.8 84.2 79.1 70.5 57.9 46.5 34.6 25.7 

0.0 100.0 92.2 92.2 90.8 88.0 83.9 74.7 56.6 39.0 30.9 24.5 

0.5 99.5 91.6 91.6 91.6 88.7 84.5 72.5 50.1 35.1 29.8 24.9 

13.5 86.5 75.2 68.2 64.9 57.3 49.3 37.4 26.2 19.4 13.9 9.7 

1.7 

5.5 

3.9 

0.6 

3.9 

2.0 

0.7 

0.0 

0.0 

0.3 

0.1 

0.1 

0.0 

0.0 

0.0 

0.0 

0.9 

3.8 

1.0 

0.0 

0.0 

0.4 

3.9 

0.3 

1.2 

8.5 

5.6 

98.3 

94.5 

96.1 

99.4 

96.1 

98.0 

99.3 

100.0 

100.0 

99.7 

99.9 

99.9 

100.0 

100.0 

100.0 

100.0 

99.1 

962 

99.0 

100.0 

100.0 

99.6 

96.1 

99.7 

98.8 

91.5 

94.4 

81.9 

79.2 

80.9 

90.0 

73.2 

17.2 

85.7 

90.7 

92.2 

90.5 

90.7 

92.0 

92.2 

92.2 

92.2 

92.2 

91.0 

84.4 

BO.6 

92.2 

92.2 

91.6 

76.2 

90.5 

BO.4 

76.5 

68.9 

68.2 

66.8 

70.2 

81.8 

53.3 

66.9 

BO.3 

83.6 

87.6 

BO.5 

84.0 

87.3 

92.2 

92.2 

92.2 

92.2 

81.1 

76.2 

74.5 

90.7 

92.2 

87.5 

69.7 

85.4 

70.9 

69.6 

63.1 

63.5 

61.5 

66.8 

71.8 

47.7 

632 

79.0 

79.5 

81.6 

74.5 

BO.l 

84.3 

89.5 

91.5 

92.2 

89.3 

78.4 

73.5 

73.3 

87.8 

90.9 

84.9 

68.4 

81.6 

67.4 

66.3 

60.9 
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57.9 

54.4 

59.2 

71.4 

41.4 

58.4 

73.8 

68.9 

74.5 

66.5 

75.1 

81.3 

85.6 

88.0 

89.5 

82.1 

71.7 

69.6 

68.6 

82.1 

88.3 

BO.9 

64.7 

76.6 

64.1 

62.0 

56.5 

49.4 

45.1 

50.1 

60.4 

32.7 

49.4 

63.9 

55.6 

59.8 

55.8 

67.8 

74.0 

76.9 

79.7 

86.7 

71.3 

64.1 

62.0 

61.8 

70.0 

80.6 

73.3 

61.1 

69.5 

56.6 

53.8 

SO.3 

39.6 

33.3 

37.2 

45.2 

24.1 

35.4 

47.2 

39.6 

42.3 

45.1 

59.8 

63.0 

60.7 

59.7 

77.6 

52.9 

50.1 

49.3 

46.4 

49.5 

65.2 

57.0 

SO.7 

57.3 

46.6 

34.8 

38.8 

30.0 

23.2 

25.4 

28.6 

18.0 

25.8 

31.9 

29.4 

31.3 

37.1 

54.3 

52.8 

47.3 

45.5 

67.7 

39.1 

38.7 

37.0 

33.0 

30.6 

46.4 

40.7 

40.3 

47.2 

35.8 

22.2 

28.7 

23.1 

15.8 

17.4 

17.4 

13.3 

17.6 

21.5 

23.7 

25.0 

29.8 

51.2 

44.6 

41.6 

37.6 

59.5 

34.3 

29.5 

27.9 

25.9 

17.9 

31.3 

28.5 

33.7 

38.0 

28.6 

18.4 

22.0 

17.5 

11.0 

12.8 

12.9 

10.3 

13.1 

15.4 

19.9 

20.9 

24.6 

48.1 

37.1 

37.2 

31.3 

53.0 

29.8 

22.9 

22.3 

21.6 

12.0 

26.7 

19.6 

27.6 

29.7 

22.1 

16.6 

17.3 

12.7 

8.2 

9.7 

9.6 

7.6 

9.6 

10.1 

15.7 

16.4 

20.5 

44.1 

28.3 

32.1 

23.9 

43.8 

26.4 

17.1 

16.5 

17.7 

8.1 

13.5 

13.3 

22.0 

20.9 

17.5 

14.8 

13.1 
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Grain Size Data Part A: continued 

Well Sample Depth [mbsf] 
Grain size [%] 

>63Jun 6311fT1 2011/Tl 1 011fTl 811fT1 6!1fTI 4!tm 211fT1 111fT1 0.611fT1 0.4!tm 0.251Ull 

1501906a 59 554.86 2.0 98.0 76.3 66.3 62.8 57.1 47.4 33.2 22.0 17.8 15.2 12.8 

17411072a 7 51.35 0.0 100.0 922 89.2 86.3 83.4 75.1 60.9 45.9 35.7 29.2 22.6 

17411072a 11 71.08 1.9 98.1 BO.6 66.5 61.2 56.1 48.9 37.8 30.0 24.6 20.4 16.6 

17411072a 17 100.21 20.6 79.4 48.8 42.3 41.3 38.2 35.2 28.8 23.7 19.8 16.9 14.1 

17411072a 25 145.16 15.6 84.4 57.3 24.9 44.3 41.9 37.3 30.8 25.5 21.8 19.5 16.8 

17411072a 37 198.34 12.6 87.4 66.8 60.1 56.9 52.7 45.7 34.0 26.1 20.4 17.2 13.0 

17411072a 46 249.68 52.1 47.9 32.3 29.7 28.9 26.5 22.7 18.5 14.6 11.7 10.0 8.0 

175/1084a 12 103 0.4 99.6 91.7 88.7 85.8 78.7 67.8 49.6 30.4 19.7 14.7 11.0 

175/1084a 17 145.8 0.5 99.5 91.6 88.5 85.5 81.0 73.8 57.9 33.4 18.7 13.1 10.0 

175/1084a 24 201 0.1 99.9 92.0 89.4 86.8 81.6 69.4 46.9 28.4 18.5 14.2 10.8 

175/1084a 29 250.1 0.2 99.8 91.9 90.5 89.2 83.7 75.9 59.1 41.3 28.9 21.9 15.8 

175/1084a 34 300.1 0.4 99.6 91.7 91.0 90.3 86.1 76.5 60.3 40.8 27.3 20.4 15.6 

175/1084a 39 349.5 0.1 99.9 92.0 92.0 90.5 87.6 BO.5 55.9 34.7 21.8 17.4 14.6 

175/1084a 43 389.4 0.1 99.9 92.0 90.5 88.1 84.4 77.0 60.7 41.8 27.0 21.1 17.3 

175/1084a 49 449.3 0.0 100.0 92.2 92.2 91.4 87.4 81.3 62.8 40.9 25.0 18.4 14.0 
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Appendix 

Grain Size Data: Part B 

Well Depth [mbsf] 
Grain Size [%] 

>631lffl ~ 2~ 1~ 81J.1Tl 6Ilffl 4pm 21lfTl llJ!Tl 0.61J.1Tl 0.4jJm 0.251lfTl 

Panis 1444 1.2 98.8 96.4 70.1 67.4 62.1 55.8 45.2 35.6 28.9 22.8 13.8 

Panis 2541 4.1 95.9 86.2 62.4 59.8 55.9 48.6 39.6 32.4 27.6 24.1 19.1 

Panis 2907 8.2 91.8 76.3 56.3 54.3 SO.4 45.7 38.7 32.9 28.4 25.5 21.4 

Panis 3090 1.5 98.5 91.7 70.1 65.4 60.9 52.3 44.4 39.4 34.7 30.2 23.1 

Panis 3263 2.6 97.4 87.8 67.2 64.1 61.1 56.7 47.1 39.5 33.6 28.2 22.3 

Panis 1633 1.1 98.9 94.9 74.5 69.9 64.2 55.6 42.9 33.4 27.9 24.2 18.8 

Panis 1816 0.7 99.3 81.9 70.6 67.0 61.2 53.5 41.5 30.8 25.3 20.9 16.9 

Panis 1999 1.9 98.1 88.0 66.5 62.7 56.7 SO.9 39.3 29.9 24.8 20.9 16.6 

Panis 3553 1.2 98.8 76.8 64.1 62.6 56.7 52.5 43.2 35.9 31.4 27.2 22.3 

Well Depth [mbsf] Grain Size [%] 

>63gm 63gm 20gm 10gm 81:!:m 61:!:m 41:!:m 2!!:m 1!!:m O.6gm O.4gm O.25!!:m 

Diva 1515 0.2 99.8 93.2 68.8 66.3 61.4 55.5 45.6 34.7 28.5 22.9 17.0 

Diva 2392 1.4 98.6 90.9 69.9 67.0 62.7 57.2 45.7 36.5 31.2 26.3 20.9 

Diva 3481 2.8 97.2 83.9 60.7 58.5 55.3 SO.l 40.5 31.8 27.8 28.6 21.2 

Diva 4477 1.3 98.7 79.3 66.5 62.1 57.9 49.8 38.8 30.6 23.2 19.9 13.9 

Diva 4849 6.3 93.7 62.9 54.8 51.9 49.1 43.7 35.3 26.4 20.4 16.2 12.9 

Diva 4855 4.0 96.0 71.5 58.6 56.1 52.6 46.9 36.4 25.4 17.6 13.5 10.4 

Diva 5001 1.9 98.1 92.8 77.0 75.6 73.0 66.5 48.7 29.0 19.4 13.9 11.5 

Diva 5428 3.7 96.3 68.0 57.0 54.9 SO.8 45.0 36.1 28.8 22.9 18.2 12.9 

Diva 5435 11.3 88.7 92.2 65.9 63.4 59.7 52.6 38.6 25.0 16.7 12.7 9.8 

Diva 5511 8.5 91.5 72.3 63.7 60.2 56.7 50.2 37.2 23.7 16.0 11.7 9.0 

Diva 5516 16.2 83.8 54.7 49.9 48.3 45.3 42.4 32.B 22.2 16.1 12.4 9.2 

Diva 5518 1.1 98.9 81.2 76.6 73.6 70.7 66.4 59.5 53.0 46.8 41.0 33.5 

Diva 5647 44.7 55.3 87.5 33.9 32.8 30.6 28.4 22.4 16.2 12.2 9.4 6.8 

Diva 5649 0.0 100.0 83.2 68.B 64.3 58.9 50.6 38.5 26.4 19.5 15.1 12.3 
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Grain Size Data Part B: continued 

Well Depth [mbsf] Grain Size [%] 

>63mic 631:!m 20l:!m 10l:!m 81:!m 61:!m 41:!m 2l:!m 'I:!m O.6~m O.4l:!m O.25 l:!m 
Ikon 2529 7.7 92.3 76.8 56.7 54.7 SO.8 46.1 38.9 33.2 28.6 25.7 21.5 
Ikon 2685 0.4 99.6 92.4 69.5 66.8 60.2 55.1 44.5 35.9 31.0 24.6 18.2 
Ikon 2840 9.5 90.5 SO.8 29.9 29.2 26.4 23.7 18.8 15.9 14.3 12.7 10.8 
Ikon 2986 4.7 95.3 89.7 68.5 67.2 62.3 58.6 48.4 40.0 34.2 30.6 25.5 
Ikon 3142 1.2 98.8 n.2 64.9 61.4 58.0 51.4 42.3 34.8 30.5 27.3 21.9 
Ikon 3297 5.0 95.0 85.1 62.3 59.2 54.8 SO.5 42.4 34.9 30.3 27.1 21.0 
Ikon 3453 0.8 99.2 83.0 73.7 70.7 64.9 59.4 47.7 37.3 31.0 26.1 21.6 
Ikon 3599 11.5 88.5 68.0 58.9 55.1 52.7 48.1 39.3 32.3 27.7 24.3 17.9 
Ikon 3746 18.4 81.6 58.5 49.5 47.4 44.2 39.2 32.7 25.9 22.7 19.8 17.0 
Ikon 3901 0.6 99.4 72.7 59.2 56.0 51.9 46.0 37.8 30.3 25.8 22.2 17.6 
Ikon 4126 8.2 91.8 89.6 63.3 60.7 56.8 SO.7 41.5 34.2 28.4 24.0 15.3 
Ikon 4128 0.3 99.7 85.2 742 72.7 66.8 61.1 45.6 31.1 23.5 18.4 13.8 
Ikon 4321 0.8 99.2 86.1 74.8 73.3 68.7 62.9 51.9 37.3 25.8 18.7 13.2 
Ikon 4418 0.5 99.5 83.6 71.7 66.1 60.7 SO.5 39.0 28.9 22.6 17.0 12.1 
Ikon 4660 0.3 99.7 87.5 64.0 59.7 54.4 48.5 39.2 30.9 24.9 20.7 15.1 
Ikon 5133 0.3 99.7 88.3 79.7 78.0 73.1 68.4 56.4 38.1 25.0 18.5 12.1 
Ikon 5282 12.2 87.8 64.7 56.8 53.5 SO.4 46.3 38.7 32.5 26.8 23.1 18.2 
Ikon 5420 0.4 99.6 862 74.1 70.8 66.0 58.3 44.4 28.9 19.0 13.9 9.4 
Ikon 5739 3.7 96.3 58.0 47.9 45.0 41.3 36.9 30.3 23.6 18.9 15.8 12.3 
Ikon 5884 4.8 952 68.4 56.8 54.1 52.7 47.5 37.8 26.2 19.7 14.8 11.2 
Ikon 6041 4.1 95.9 762 65.0 60.8 56.8 49.9 40.0 31.1 25.3 20.6 15.2 
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Grain Size Data Part B: continued 

Well Depth [mbsf] Grain Size [%] 

>631!m 631!m 2~m 10l!m 81!m 61:!:m 41!m 21!m 11!m O.61:!:m O.4l:!:m O.251!m 
BB 1270 1.4 98.6 98.6 74.9 66.4 58.3 45.9 34.9 25.3 18.6 14.1 6.7 

BB 2030 0.0 100.0 86.5 73.8 67.0 57.4 45.6 30.3 21.7 16.1 12.7 9.6 

BB 2310 0.3 99.7 85.2 64.7 57.3 48.6 36.0 22.8 13.1 8.7 6.4 5.6 

BB 3305 0.9 99.1 84.7 68.2 62.7 51.4 39.4 25.9 16.7 12.2 10.1 8.2 

NVG 1908 33.8 66.2 34.5 27.7 25.7 23.4 19.3 13.7 9.9 8.3 7.2 6.5 

NVG 2311 23.8 76.2 55.3 48.4 46.2 41.9 34.0 22.4 14.7 11.4 9.8 9.1 

NVG 2671 22.1 n.9 53.7 47.5 46.0 43.8 38.9 31.7 24.0 17.8 15.0 11.5 

NVG 2687 4.5 95.5 80.4 65.7 61.5 57.4 49.7 38.2 28.0 21.2 16.3 12.0 

NVG 3410 16.6 83.4 542 42.1 37.6 34.8 28.2 21.0 15.7 12.9 11.1 9.4 

NVG 3700 0.4 99.6 70.7 43.2 37.9 32.4 25.6 19.4 15.1 12.8 11.8 10.2 

NVG 4000 22.3 n.7 36.1 29.1 27.9 26.8 23.7 19.7 15.8 13.6 12.3 10.7 
NVG 4331 0.7 99.3 80.1 68.7 58.9 40.5 

CVG 1565 7.8 92.2 92.2 92.2 92.2 92.2 90.9 85.1 74.1 62.6 53.6 39.4 

CVG 1711 7.8 92.2 92.2 90.9 90.9 90.9 88.3 76.4 56.7 43.0 33.0 24.2 

CVG 1754 7.8 92.2 92.2 92.2 92.2 92.2 90.9 83.2 70.0 58.9 49.6 37.6 

CVG 1848 7.8 922 90.9 89.6 87.0 87.0 80.7 65.4 45.8 33.0 24.9 19.1 

MN 812 7 93 74 59 54 50 42 33 25 19 16 12 

MN 1362 2 98 88 85 84 81 n 67 56 49 44 34 
MN 1487 1 99 89 83 80 77 70 58 46 35 28 22 

MN 2301 10 90 76 70 69 66 60 51 41 36 30 23 

MN 2499 1 99 90 89 86 84 76 59 42 29 22 16 

CS 4863 0.1 99.9 98.6 90.8 88.2 85.6 75.8 52.6 28.6 17.5 12.9 10.2 

CS 4887 0.0 100.0 92.2 90.9 87.0 79.5 67.7 43.0 23.5 15.1 11.8 9.2 

CS 5280 0.0 100.0 72.3 45.8 42.1 36.8 31.8 26.4 20.1 16.3 14.0 11.3 

CS 5383 0.0 100.0 90.9 87.0 83.2 75.8 64.3 40.3 22.1 15.1 11.8 9.2 
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Mercury Intrusion Porosimetry Data: Part A Glacial Clays for Drying Tests 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A Glacial Clays for Drying Tests continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A Glacial Clays for Drying Tests continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A DSDP/ODP 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A DSDP/GOP continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/GDP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/CDP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/GOP continued 
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Mercury Intrusion Porosimetry Data: Part A DSDP/ODP continued 
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Mercury Intrusion Porosimetry Data: Part B Panis (cuttings) 
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Mercury Intrusion Porosimetry Data: Part B Panis (cuttings) continued 
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Mercury Intrusion Porosimetry Data: Part B Panis (cuttings) continued 
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Mercury Intrusion Porosimetry Data: Part B Panis (cuttings) continued 

Q) 

> 

0.25 

~ 0.2 
::J 

E >-
<3 .~ 0.15 
1ee 
&5 8. 0.1 
E 
Q) 

U 0.05 
c 

o 

Panis 3644mbsf 

1 10 100 1000 10000 100000 
Pore radius (nm) 

243 



Appendix 

Mercury Intrusion Porosimetry Data: Part B Ikon (core samples) 
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Mercury Intrusion Porosimetry Data: Part B Ikon (core samples) continued 
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Mercury Intrusion Porosimetry Data: Part 8 Diva (core samples) 
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Mercury Intrusion Porosimetry Data: Part B Diva (core samples) continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part B Bay of Bengal (cuttings) 
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Appendix 

Mercury Intrusion Porosimetry Data: Part B North Viking Graben (core) 
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Appendix 

Mercury Intrusion Porosimetry Data: Part B North Viking Graben (core) continued 
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Appendix 

Mercury Intrusion Porosimetry Data: Part B Caspian Sea (core) 
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Appendix 

Mercury Intrusion Porosimetry Data: Part B Central Viking Graben (core) 
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Appendix 

HRXTG Data Part B 

Sample Depth Imbsf] Type liS MPD Im.r.d.] K MPD Im.r.d.] 
43-4 153 core 2.51 2.06 

43-11 254 core 1.93 1.69 

43-14 336 core 2.86 

43-28 505 core 2.89 

42-32 563 core 3.32 

43-36 647 core 5.6 5.35 

43-50 820 core 3.7 

43-54 859 core 2.75 

43-55 867 core 3.64 

43-65 959 core 3.55 3.19 

NVG 1908 core 3.68 3.34 

NVG 2311 core 3.08 2.62 

NVG 2671 core 3.71 3.78 

NVG 2687 core 3.34 2.85 
NVG 3410 core 2.59 
NVG 3700 core 2.63 2.57 
NVG 4000 core 3.16 2.7 
NVG 4331 core 4.19 3.11 
MN 812 cutting 4.25 3.61 
MN 1362 cutting 3.24 

MN 1487 cutting 3.01 

MN 2301 cutting 2.92 2.99 
MN 2499 cutting 4.45 4.81 

CVG 1565 core 3.52 

CVG 1711 core 3.8 

CVG 1754 core 3.17 

CVG 1848 core 3.51 

BB 1270 cutting 3.03 2.63 

BB 2030 cutting 3.62 3.26 

BB 2310 cutting 5.56 4.52 

SS 3305 cutting 3.83 3.4 

SS 3495 cutting 3.3 3.08 

CS 4863 core 5.97 6.66 

CS 4887 core 4 4.56 

CS 5280 core 4.73 5.45 
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Appendix 

HRXTG Data Part B (continued) 

Well De~th [mbsf] T~~e liS MPD [m.r.d.] K/C MPD [m.r.d.] 

Pan is 1816 cutting 2.73 

Panis 1999 cutting 4.05 3.8 

Panis 2907 cutting 2.7 2.9 

Panis 3090 cutting 3.1 2.57 

Ikon 3453 cutting 2.54 

Ikon 4128 core 1.99 

Ikon 4321 swc 2.94 1.88 

Ikon 4418 core 2.69 1.87 

Ikon 4660 cutting 3.54 

Ikon 5133 core 2.78 

Ikon 5420 swc 1.88 1.8 

Diva 4855 swc 2.6 2.08 

Diva 5001 core 1.74 

Diva 5511 core 2.76 1.92 

Diva 5516 core 2.17 3.36 

Diva 5518 core 2.46 1.91 

Diva 5647 core 3.15 2.47 

Diva 5649 core 3.41 2.32 

Key: liS MPD -lliite/Smectite Maximum Pole Density in mean random distribution, : KJC MPD 

- KaolinitelChlorite Maximum Pole Density in mean random distribution. 
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