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ABSTRACT 

Modelling and control of non-linear systems are not easy, which are now being solved 

by the application of neural networks. Neural networks have been proved to solve these 

problems as they are described by adjustable parameters which are readily adaptable on­

line. Many types of neural networks have been used and the most common one is the 

backpropagation algorithm. The algorithm has some disadvantages, such as slow 

convergence and construction complexity. 

An alternative neural networks to overcome the limitations associated with the 

backpropagation algorithm is the Radial Basis Function Network which has been widely 

used for solving many complex problems. The Radial Basis Function Network is 

considered in this theses, along with a new adaptive algorithm which has been developed 

to overcome the problem of the optimum parameter selection. Use of the new algorithm 

reduces the trial and error of selecting the minimum required number of centres and 

guarantees the optimum values of the centres, the widths between the centres and the 

network weights. 

Computer simulation usmg SimulinklMatlab packages, demonstrated the results of 

modelling and control of non-linear systems. Moreover, the algorithm is used for 

selecting the optimum parameters of a non-linear real system 'Brushless DC Motor'. In 

the laboratory implementation satisfactory results have been achieved, which show that 

the Radial Basis Function may be used for modelling and on-line control of such real 

non-linear systems. 
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CHAPTER 0 

INTRODUCTION 

A variety of a non-linear complex systems such as robotics and many other electrical 

systems require modelling and control. An example of the real complex systems dealt 

with in this thesis is a servo motor. This system is considered to be a black box because 

of the absence of system information. Therefore, it is desirable to use a method of 

controller design requiring only partial information about the plant. Artificial Neural 

Networks (ANN) offer the advantages of performance improvement through network 

learning. The most widely studied neural network is known as the Multi-Layer 

Perceptron (MLP) neural network. This type of network consists of fully interconnected 

layers: one input layer, one or two hidden layers which have an activation function (i.e. 

sigmoidal) and one output layer. Use of this type of network in system identification and 

control has been successful in different areas, but still suffers from limitations such as the 

complexity of construction and slow convergence. 

An alternative neural network the Radial Basis Function (RBF) is used in this thesis. 

This network is unlike the MLP, in its construction. RBF network consists of one input 

layer, one output layer and only one array of hidden nodes called centres. The RBF 

network is a simple architecture and moreover, the training of this network is faster than 

that the MLP network. One reason the RBF is very fast, is that learning is divided into 

two stages. Learning in the hidden layer for selecting centres and widths and the learning 

in the output layer for selecting the weights. 

One problem still exists in using the RBF network, that is the selection of the optimum 

centres and widths. This problem has been overcome by incorporating various algorithms 

i.e. K-means clustering algorithm, P-nearest neighbour, Gaussian activation function and 

least mean square algorithms in one adaptive algorithm. The new algorithm, can 

adaptively select the centres and the widths of any system given a knowledge of the 

system input-output and delays. 



Two RBF networks were designed; a static network for modelling and a dynamic 

network for control of non-linear plants. In this thesis, the neural network control 

approach includes: the general learning method and the adaptive control method. The 

closed-loop system was used for modelling and control of simulation examples using the 

RBF network, where successful results have been obtained. 

The main objective of designing the networks, is to model and control the experimental 

system speed. This system is a three phase high speed Brushless DC Motor. The motor 

speed is proportional to input voltage generated in a PC and controlled by a control card 

designed in our laboratory. The motor output has been converted by a simple frequency 

to voltage converter (FN) circuit also designed in house. The whole experiment was set­

up and interfaced with a PC by hardware; e.g. a PCL-8I81 data acquisition card and 

software programs. An open-loop system has been considered for identifying the real­

system (plant) using an autoregressive exogenous (ARX) model. A closed-loop system 

has been considered with the dynamic network used for controlling the 'motor model' on­

line. The simulated control of the motor speed was tested where results were obtained by 

applying changes to input signal. Finally, the 'motor' itself is controlled on-line by using 

of a square input signal and changeable parameters. Then the same input signal was used 

together with the optimum parameters and the obtained results were compared. 

This thesis is outlined as follows. In chapter 1, a brief discussion about the principle of 

the system identification is given. This is followed by several methods which have been 

used for a non-linear system identification. The non-linear identification methods 

provided in this chapter are: the group method of data handling, the function series and 

the parameter estimation methods. Furthermore, the basic control system and four 

control methods are given. These are: adaptive control, gain scheduling, model reference 

adaptive control and the self tuning adaptive control methods. These are discussed briefly 

and the block diagram for each method is illustrated. Chapter 2 provides background for 

the neural networks, starting with the basic idea of artificial neural networks. Although, 

some types of neural network are introduced, the Radial Basis Function network is 

discussed in detail, since the main work in this thesis depends on this particular type of 
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neural network. In addition, clustering algorithms, distance measurements, activation 

functions and weight adapting algorithms are presented. In chapter 3, a new algorithm for 

selecting the centres and widths adaptively is explained and proved by a simple 

hypothetical example. 

Chapter 4, provides an introduction to the modelling of a non-linear dynamic system 

using artificial neural network with the representation of the general model being 

provided. The procedure and the block diagram structure for training feedforward neural 

network models with the equation of a non-linear system are discussed. The analysing of 

a mathematical equation, which describes the RBF neural based identification model 

output, the hidden or Gaussian output, the network inputs-outputs and the predictive error 

equations are presented. The parallel-series method for modelling a non-linear systems is 

used and two examples in which the input signals and the network parameters 

respectively are varied are tested and the simulation results are presented. In chapter 5, 

the work outlined is mainly concerned with configurations suitable for the control of 

dynamic non-linear systems using the radial basis function. The concept of the 

controlling procedure for 8180 dynamic systems is analysed and the block diagram 

structure for training the network controller is given. Moreover, two control methods are 

discussed and simulation results are presented. In chapter 6, the real system is modelled 

and controlled. The system considered was a Brushless DC Motor control system which 

is a real example of a system containing non-linearity. First basic motor construction and 

its general dynamics together with the transfer function are given. Thus, the necessary 

motor interface hardware cards and software programs are mentioned. In addition, the 

whole experiment is set-up and the ARX model is used for identifying the real system. 

The schematic model is illustrated and the results of modelling the system using the RBF 

network are shown. Then, by using the closed-loop system, the motor speed is controlled 

on-line. The system diagram is shown and the monitored simulation and real results are 

explained. Finally, conclusions and recommendations for further work are made in 

chapter 7. 
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CHAPTER 1 

SYSTEM IDENTIFICATION AND CONTROL 

1.0 INTRODUCTION 

In order to design controllers for a dynamic system it is useful to have a model that will 

describe the system's behaviour adequately. Because of the complexity of the system and 

unknown parameters, the designer turns to experimental data and the measured response. 

The process of constructing models and/or estimating the unknown plant parameters 

from experimental data is called system identification. System identification can be 

described as a method for finding the relationship between various signals of a system 

under observation. This relationship, often called a model of a system, is usually a system 

of difference equations in discrete-time and differential equations in continuous-time. 

The identification method may be based on linear or non-linear systems, and its process 

may be carried out in either an on-line or off-line mode, depending on the application 

context. In practice most systems are non-linear to some extent, therefore a non-linear 

system identification method may be needed. Due to the difficulties of analysing non­

linear systems, only a few methods have been developed. Each method depends on the 

type of non-linearity of the identified system. These traditional methods have been based 

upon Group Method of Data Handling (GMDH), Parameter Estimation and Functional 

Series Methods [55,56,58]. Each method has specific problems and limitations which are 

discussed briefly in this chapter, particularly in sections 1.1.1-1.1.3. Once the system is 

identified, the next step is to design a controller for the same system. The designs have 

been produced by means of using conventional or classical control methods. 

Conventional control theory is widely applied in linear systems having constant 

parameters. This is often a good approximation for systems that are controlled at fixed 

operating points. The controllers will not always be satisfactory when the operating 

condition changes. Therefore, the iterative adaptive control system has been used in these 
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cases. The adaptive control system is a type that is able to adapt itself to changing 

parameters at various operating points of the system. The extensive research on adaptive 

control was started in the early 1950s. To the present date rapid progress has been 

achieved and many applications are reported [3,90]. After a brief discussion of basic 

control system, in section 1.2, the general adaptive control structure including with three 

adaptive systems are described in sections 1.2.1-1.2.3. 

1.1 Non-linear System Identification 

System identification can be described as a method of finding the relation between the 

system's input and output signals. System identification may be carried out to gain a 

better understanding of the properties of a system and to design a good controller for the 

system based on the identified model. In order to design a control system it is necessary 

to have a mathematical model that adequately describes the system's behaviour. There 

are many identification techniques that can be used. These could be linear or non-linear. 

Before discussing these techniques, the difference between linear and non-linear systems 

will be briefly discussed. In control literature if a system S, depicted in Figure (1.1), has 

an input (u) and an output (y), it is termed linear if the system output depends linearly on 

the given input, i.e. the principle of superposition holds. 

Uj 

Figure 1.1, Input output model 

i =1,2,3, ... , n (1.1) 
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Any system that does not satisfy this requirement is defined as non-linear. Linear system 

identification has been well established and it is found in many applications, but non­

linear system identification has received little attention and only a few methods for 

identifying non-linear systems have been developed. This may be attributed to the 

difficulty of analysing such systems. In general for both cases, linear or non-linear 

system, identification can be carried out in one of two ways. The first is the identification 

when model structure is assumed and an analytic description can be constructed for the 

system. The second is the identification with an unknown model structure. This latter 

type of identification is used only if not enough information about the model structure is 

known to allow analytic equations to be written down. Various techniques have been 

used for identification of non-linear systems and some of these are discussed in the 

following sections. 

Before discussing identification techniques, a brief description of classical non-linear 

controllers is given. Assume the system has been identified. The next step is to control 

the same system. Many control systems contain non-linear elements. Whilst designing a 

non-linear control system, an analysis phase includes examination of a fixed structure to 

determine such properties as signal size, stability and dynamic response is needed. Since 

general non-linear systems have proved so difficult to study, many types of approximate 

methods have been proposed Le., the linearization method. 

Another approximate function technique was proposed by R. J. Kochenburger in 1950, 

[68] called Describing Functions (DF). This technique has been widely used and many 

non-linear problems have been solved. The DF analysis concerns basically with the 

frequency response of the system and treated only in terms of sinusoidal input signals. 

The basic idea is that a sinusoidal input signal (u) to a non-linear device f(u) produces an 

output signal (y) that has frequency as the input, with different shape and possibly shifted 

in phase. Describing Function analysis assumes that only the functional component of the 

output is important. Thus, the output can then be expressed by a Fourier series as the sum 

of an infinite number of frequency and phase shifts. It then assumed that the fundamental 
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component of the output adequately describes the system response and the higher 

harmonics are damped out of the system. The describing function is thus the ratio of the 

fundamental component of the output to the input [30,68,83]. 

1.1.1 The Group Method orData Handling (GMDH) 

The group method of data handling technique is a multilayer self organising algorithm 

based on a non-linear mathematical model of data. This method was first introduced by 

Ivakhnenko in the 1960's [26]. Ivakhnenko developed the method using the principles of 

heuristic self organisation to solve complex problems with large dimensionality and 

short data sequences. The method has received much attention by many other researchers 

and has been used for solving many problems, such as identification of static and 

dynamic non-linear models, pattern recognition, optimal control etc. The schematic of the 

method is illustrated in Figure (1.2). To make the method clear, suppose 

Xi =[xj ,x2,x3,···,xml is the input and the output Yi = F [xi] is a non-linear function ofx. 

The procedure for the method is summarised in the following steps : 

1. The original data is divided into training set and testing set. 

2. Quadratic polynomials are formed for all possible combinations of Xi variables, 

taking pairs each time. 

3. For each polynomial a system of normal Gaussian equations is constructed using all 

data points in the training set. 

4. The models are used to predict the system response in the training set data region. 

The predictions are passed through a mean squares error (MSE) selection criteria, 

such as MSE =!... ~(y(t)- y(t))2 , where y(t) is the predicted value, and n is the 
n I 

number of data points in the testing set. 
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Figure 1.2, The schematic for the Grouping Method of Data Handling (GMDH) 

5. The outputs Y, ... ,Ym are ordered with respect to the smallest MSE. The model is 

allowed to pass to the next level of GMDH if its MSE is less than a specified 

threshold. 

6. At the next level the independent variables for the new training and testing sets are 

found by mapping the original training and testing sets of data through the single layer 

which has been formed. 

7. According to step 2 new polynomials are formed, and for each layer steps 2-6 are 

repeated until the smallest MSE is reached. 

For obtaining satisfactory results the GMDH, or Perceptron, must have four layers or 

more. Too many layers may give poor results. The Perceptron results are indicated by the 

mean squares error method. To avoid unsatisfactory results, the best solution must be 

chosen based on data from layers of the Perceptron not on the results of the last layer. As 

an example, assume that the input vectors in the training set are N, each composed of p 

property values, X =(X 1""'X ), n =1,2,3, .. . ,N and the desired outputs areYd(n). n n np 

The function implemented by an element in one of the layers is 
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(1.2) 

where the subscript in F2 denotes a second order transformation of the inputs. 

Considering one element in the first layer the coefficients of this element can be 

determined in such that the mean square error between the outputs Yn and the desired 

output Yd(n) is minimised. Thus, the coefficients are obtained from the Gaussian 

equations as 

i=j=I,2,3, ... ,N (1.3) 

rewrite equation (1.3) in the matrix form as 

(1.4) 

where matrix Yd , X and F are of order N xl, N x6 and 6 x I, respectively. Multiply both 

sides of equation (1.4), by the transpose of X, gives 

(1.5) 

where matrix XT X is 6x6 and the solution is found by inverting the matrix in equation 

(1.5) 
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(1.6) 

Vector F contains the set of the coefficients which enables this element to approximate 

the actual outputs value with minimum squares error. The procedure is repeated for each 

element in the first layer with the components in matrix X changing each time dependent 

on the identity of the pairs of the input to the particular element. The same procedure and 

technique are used to find the six coefficients of each element in the other layers. It is 

recommended that, as mentioned earlier in this section the, experimental data is divided 

into a training and testing set. If the training data which were used to estimate the 

coefficients are used for the network testing, unsuccessful results are expected, since 

small changes in the training data will lead to large changes in the coefficient values. 

The advantage of GMDH, is its ability to construct differential equations for the system 

without a priori information on the relationship between input and output variables. On 

the other hand using this algorithm requires very heavy computing power [10,46,58]. 

1.1.2 Function Series Methods 

The functional series method of Volterra and Wiener is based on the representation of a 

system by the Volterra series [1,10]. It is well known that, for a linear time invariant 

system, the output response y(t), to an input x(t), may be computed from a knowledge of 

the system-impulse response h(t), by using the convolution integral: 

00 

y(t) = I h(t)x(t - t )dt -00 
(1.7) 

where u(t) and y(t) are the system input and output respectively. A study of non-linear 

function (1.7) was made by Volterra [80] in 1887. He studied analytical functions and 

introduced the following representation 
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00 00 

y Ii/I = I g (T )x(t - T )dT + I I g (T ,T )x(t - T )x(t - T2)dT1dT2 + 
\t/ 1 1 1 1 2 1 2 1 

-00 -00 

00 

J. 
-00 

00 

I g (T, T ,. 
I I 2 

-00 

., r )X(t - T )X(t - T ) ... 
n I 2 

(1.8) 

where, x(t) and y(t) are the input and the output of the system at time I, and the function 

g ('t ,'t ,. . ., 't ) is termed the Volterra kernel of order n. The kernels in (1.8) are 
n J 2 n 

bounded and continuous in each 'tn' and symmetric functions of their arguments [10]. 

Unfortunately, some difficulties arise in the use of Volterra series in system modelling 

(e.g., the problem of practical measurements of the Volterra kernels). These problems 

have not prevented research and in 1942, Weiner overcame the Volterra limitations. 

Weiner was one of the first researchers to develop and apply Volterra series to the 

identification of non-linear systems. Thus, the Weiner model structure is shown in Figure 

(1.3), with the dynamic linear system first, followed by a static non-linear element 

[7,10,95]. 

u(t) ( ) x(1) I I y(1) 
--1~~ . hJ(I) _ ~. G[J _ ~ 

Figure 1.3, The Weiner model 

u(t) andy(t) are the input and the output respectively. 

Although, the functional series of non-linear systems are now well established, very few 

attempts have been made at using such series for practical identification of real systems. 

This might be attributed to the difficulties associated with the system kernels and the 

excessive computational requirements necessary to characterise systems. Moreover, when 
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using Volterra kernels, only two kernels are considered for identification of non-linear 

systems, for any system involving higher than second order kernels, this offers 

considerable difficulties. Furthermore, Weiner's formulation is impractical and difficult 

to use because of the high number of coefficients required [10]. 

Other researchers have tried to develop a solution to overcome the problems of non-linear 

system identification. In 1966 Narendra and Gallman [65] produced a technique known 

as the Hammerstein model shown in Figure (1.4). This model consists of a non-linear 

element followed by a linear element. These authors have examined this model for 

identification of various non-linear systems and conclude that the experimental results of 

computer simulations indicate the method could be quite effective for many non-linear 

systems for which the Weiner model could be a poor choice. 

u(t) I I x(t) [ ) y(t) 
--' •. G[J _ • . hltJ _ • 

Non-linear part Linear part 

Figure 1.4, Hammerstein model 

Thus, if the Hammerstein model is considered to be the system identification method 

then, from the separability theory [6], each block can be identified on its own. Based on 

this theory, if the linear dynamic part of this model is known or can be estimated 

recursively, using linear control theory techniques, then the non-linear part can be 

identified by a non-linear identification method such as correlation functions or Newton 

Raphson. The results obtained for the Hammerstein model are readily valid for the 

Wiener model [1,6,8]. The comparison between these two methods and the summary of 

the identification of each techniques have been given in [45]. 

Consequently, various researchers have turned their attention to a restricted class of non­

linear systems. This system is known as the block oriented method, cascaded system or 

12 



general model. The model as shown in Figure (1.5), is composed of a linear system 

followed by a non-linear system followed by another linear system. 

u(t) [ ) x(t) I I y(t) [ ) z(t) 
---l~~, hJt) _ ~. G[J _ • h 2(t) _ • 

Figure 1.5, The general non-linear model 

where hj(t) and h2(t) are the linear elements,y(t) is the non-linear element's output, u(t) 

is the system input and z(t) is the system output. This method is typically an off-line 

technique. It has been studied by many researchers and they have found that it requires 

extensive experimental action to identify the system accurately [7,8,10]. In conclusion, 

the identification of a non-linear systems is very difficult and none of the stated 

techniques can be recommended as providing an acceptable solution and each must be 

judged according to the problem under investigation and their merits. 

1.1.3 Parameter Estimation Method 

The parameter estimation methods for identification of non-linear systems has been 

considered by many researchers. This method has been very successful in many 

applications, but is limited in how good an approximation it may give [9]. One of the 

most widely used structures is a linear difference equation, assumed to be in the form of 

an autoregressive moving average exogenous (ARMAX) model, given in the following 

equation 

A (z)y(t) = B(z) u(t - nk) + C(z) e(t) (1.9) 

in which the polynomials A,B and C are defined as: 
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(1.10) 

where z-1 is the backward shift operator (delay operator), nk is the number of delays 

from system input to system output and na, nb and nc are the orders of the polynomials 

A,B and C. Also y(t) and u(t) are the system output and input sequences respectively and 

e(t) is a disturbance affecting the system. 

Equation (1.9) can be rearranged in a linear difference equation format as: 

na nb nc 
y(t) = - L a·y1t - i l + L b·u/t - nk - i) +(1 + L. c·e(t - i)) . 1 1 I' ;I • 0 1 I' . 1 1 

1= 1= 1= 
(1.11) 

where nk is the system time delay (nk ~ 1). 

If the structural of model (1.11) is known, then the model is simply a linear combination 

of unknown parameters. Thus, the unknown parameters are estimated directly by using 

the available input-output data with one of several algorithms (e.g., Least Square, 

Recursive Least Square, etc.). In practice most systems in industry are non-linear to some 

extent and in many applications, non-linear models are required to provide acceptable 

representations. Moreover, in some models a little a priori information is available and 

the process is treated as a black-box. In this case, the usual approach is to expand the 

input-output data using a suitable model representation, which is usually selected to be 

non-linear in the input and output variables. 

When the system is non-linear however, the traditional system descriptions are based on 

group method of data handling and functional series such as described in sections (1.1.1 

and 1.1.2). Whilst, these provide an adequate representation for a wide class of non-linear 
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systems, they have some difficulties and several parameters are required to characterise 

the non-linear systems making the identification of such systems limited. Thus, Billings 

and his group have realised that the wide application of linear difference equations make 

it natural to search for non-linear difference equation models. Therefore, they have 

proved that the linear difference equation (1.11), which relates sampled input signals to 

sampled outputs can be generalised for the non-linear time invariant process. 

The linear different equation (1.11), can be realised as 

y/t+n1 -j) u1(t + p) 

y/t + p) = [ail ai2 ... ain ] 

y/t) 

+[bil bi2 · .. bik ] 

uj(t) 

(1.12) 
y (t+n -1) ur(t + p) m m 

Ym(t) ur(t) 

where i =j,2, ... ,m, r and m are the dimensions of the input-output vectors U and y 

respectively, and p= max(n1,n2, . . . ,nmJ. The integers indices n1,n2, . . . ,nm are the 

observability indices of the system and the summation of these integers (n=nj+n2+ .. 

. +nmJ is the model order. Every index ni corresponds to the specific output Yi. The model 

(1.12) can be regarded as m interconnected single output models. 

The multi-structural input output linear time invariant relationship of equation (1.12) was 

generalised to the non-linear equation [55,56] as 

y/t+ p) = f/Y1(t + nj -1)'''''Yj(t)'''''Ym(t+ nm -1), .. · 

'Ym(t),u1(t+ p), ... ,uj(t), ... ,ur(t+ p),···,ur(t)} (1.13) 
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wheref() is a non-linear function. 

For the case of single input single output (SISO) systems, equation (1.13) can be realised 

into the non-linear stochastic form as [55,56,86]: 

y(t+ 1} = f[y(t),. . .,y(t - n+ 1},u(t + 1},. . .,u(t- n+ 1}+ 

e(t),. . .,e(t - n + 1}J + e(t + 1} 
(1.14) 

This model is called the NARMAX model (non-linear autoregressive moving average 

model with exogenous input) for the standard ARMAX model (equation ( 1.9)}. A 

special case of the general NARMAX model (1.14) is the non-linear autoregressive with 

exogenous (NARX) model 

y(t + 1} = f[y(t},. . .,y(t - n + 1}, u(t + 1},. . ., u(t - n + 1} + e(t} (1.15) 

The non-linear functional form of f(.) for a real world system can be very complicated 

and is rarely known a priori. Therefore a model must be constructed based on some 

known simpler functions [15,17,18,55,56]. 

1.2 Control Systems 

In the recent years control systems have assumed an increasingly important role in the 

development and advancement of modem civilisation and technology. Control systems 

are found in abundance in the domestic domain and in the industries, such as in air­

conditioning, transportation systems, robotics and many other systems. 

The basis system is shown in Figure (1.6), where u(t} and y(t) are the system input and 

output respectively, and the intermediate block is the system components. 
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Inputs u(t) Outputs y(t) 

System 

Figure 1.6, The basic system 

Regardless of what type of control systems are used the systems can be controlled by 

either open-loop or close-loop methods. However, this depends on the nature of the 

system to be controlled. 

Open loop systems: an example of open loop systems is an electrical washing 

machine. The controlling of such systems should be open loop, this is because the 

amount of machine wash time, soap powder quantity etc. are determined by the user. 

The reason being that the machine cannot continuously detect and check the cleanness of 

clothes being washed i.e. the machine cannot make decision whether to stop or start 

washing. As shown in Figure (1.7), the open loop system consists of a controller 

followed by the controlled process system. 

Reference Control / 

"" signal r(t) 
Controller 

signal u(1) Controlled Outputs y(t) 

process 

"- .... 

Figure 1.7, Open loop control system block diagram 

In the above diagram an input signal r(t) is applied to the controller, the controller signal 

u(t), controls the process to produce the desired output signal y(t}. This type of controller 

is very simple and economical but would not satisfactorily fulfil the desired performance 

requirements for many cases. In these cases the closed loop system can be used. 
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Closed loop systems: the closed loop system block diagram is depicted in Figure 

(1.8). This type of control system has the same structure as the previous one, except for 

one difference, the output signal is returned to be compared with the reference signal. 

Reference Control , "" signal r(t) + signal u(t) Controlled Outputs y(t) 
~ Controller process 
-

" ....l1lI 

Feedback 

Figure 1.8, Feedback control system 

The control signal u(t), is a function of the difference of the reference and output signals, 

must be sent through the controlled process to correct the error. This procedure is called 

feedback control. The classical linear controllers have been found not always to give 

satisfactory results, since the parameters of the process may change for some reason, e.g. 

ageing, operating point changes, mild non-linearities, etc . Hence there seemed to be a 

need for a more sophisticated controller which could automatically adapt itself to 

changing characteristics of the controlled process. Therefore, researchers have focused 

their attention towards adaptive control methods. 

1.2.1 Adaptive Control 

Adaptive control is used to alleviate the problem of varying plant dynamics. The main 

idea of using an adaptive control strategy is to adjust the controller parameters 

automatically, based on the measured input-output of the plant. So adaptive control is the 

problem of controlling the output of the process (plant) with a known structure but 

unknown parameters. The general structure of an adaptive controller consists of three 

18 



elements as described in Figure (1.9). The elements are the process, adjustable 

mechanism and the controller. 

u(l) y(t) 

Process 
.. 

Adjustment 
mec"anism 

/-n,daptive 
controller -

r(l) 

Figure 1.9, General adaptive control structure 

Where r(t) and y(t) are the desired and actual outputs respectively and u(t) is the 

controlled signal. In the following sections, some adaptive systems are presented to 

provide the reader with some examples. The review of the implementation of adaptive 

controllers and more information about this task may be found in [3,40]. 

1.2.2 Gain Scheduling Method 

An adaptive controller is a controller that can modify its behaviour in response to 

changes in the dynamics of the system. In many situations, however, the dynamics of a 

system change with its operating conditions. In this way, the controller parameters can be 

adapted directly as a function of the system operating conditions. This idea works in 
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feedforward mode and is referred to as Gain Scheduling. It is depicted in Figure (1.10), 

where r(t), y(t) and u(t) are the reference input, output and control signals respectively. 

Parameters Operating 
Controller Condition 

Gain Schedule 

r(t) u(t) y(t) /, 
Controller Controlled 

~ Process 

Feedback 

Figure 1.10, The gain scheduling block diagram 

The gain schedules are designed off-line and adjusted in an open-loop mode i.e. there is 

no feedback to compensate for an incorrect schedules. The main problem in the design of 

systems with gain scheduling is to find suitable scheduling variables. This is normally 

done based on knowledge of the physics of a system. This method was widely used in 

process industries where the process dynamics are non-linear functions of one or more 

parameters. The method has the advantages that the controller parameters can be changed 

very quickly in response to process changes. These parameters must be determined for 

many operating conditions and the performance ideally be checked by simulations. On 

the other hand, in this approach, the controller parameters are changed in an open-loop 

process without feedback from the performance of the closed-loop system. This makes 

the method impossible to use if the dynamics of the process or the disturbance are not 

known accurately. Also this type of adaptive control cannot be generalised, and so has 

been used only for special cases, such as in auto-pilots for high-performance aircraft 

[30,40,90]. 
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1.2.3 Model Reference Adaptive Control (MRAC) 

Model reference adaptive control is one of the most important and successful forms of 

adaptive control strategy. The original MRAC was first proposed by Whitaker in the late 

1950's. As shown in Figure (1.11), the reference model is set in parallel with the system 

to be controlled (controlled process or plant). In this model, the measured input-output 

data are used to monitor the system performance. These are then combined with the 

reference model output Ym(t) according to an adaptation rule and the result is used to 

adjust the controller. 

Model of Ym (I) 
~ desired 

response -
Controller 
parameters Adjustment e(t) 

mechanism 
r+ 

+ 
r(t) 

'" 
u(t) y(t) 

Controller Controlled 

-+- Process 

"- ..... 

Feedback 

Figure 1.11, Model reference adaptive control block diagram 

The controller consists of two loops: the inner loop, an ordinary feedback loop composed 

of the process and the controller element and the outer loop, which is used for adjusting 
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the controller parameters. These parameters originally are adjusted by the Massachusetts 

Institute of Technology (MIT) rule, 

de de 
-=-lle-
dt d8 

where 

de 
d8 

11 

e 

8 

are the sensitivity derivatives ofthe error 

is the adaptation rate 

is the error and 

is the adjustable parameter. 

(1.16) 

The MIT rule is the adjustment mechanism which keeps the system stable while driving 

the error e(t), between the controlled process output y(t) and the model output Ym(t), to 

small values. This procedure is called adjustment of controller parameters. The MRAC 

has been studied and applied in many applications [3,48,90]. 

l.2.4 Self-Tuning Adaptive Control (STAC) 

Self-tuning adaptive controller, illustrated in Figure (1.12), is based on the idea of 

estimating some parameters of the process. The STAC is composed of three main 

elements. The first is the standard feedback controller in the form of a difference 

equation, which acts upon a set of values such as the measured output and reference 

signal. This controller then produces a new control signal u(t) to be the input signal to the 

process. In this approach the feedback controller element and the process are called the 

inner loop. The second element is the parameter estimator, which computes the process 

dynamics by using knowledge of the process input-output. 
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Process parameters 

+ 
Control 
design 

algorithm 
Estimation -+ 

Controller 
parameters 

r(t) y(t) / U(t) 
Feedback Controlled 

r+ Controller Process 

"-
Feedback 

Figure, 1.12, The self-tuning adaptive control block diagram 

The parameters are estimated on-line using one of the recursive algorithms such as least­

squares and extended and generalised least squares. The third element is the control 

design algorithm, which receives the estimated parameters and then provides a new set of 

coefficients (controller parameters) for the feedback controller. The control design 

element represents an on-line solution to the design problem for a system with known 

parameters. Some design methods that can be used are pole placement or minimum 

variance. The control design algorithm and the recursive parameter estimator are the 

outer loop, which update the controller parameters at each sampling period. 

In conclusion, the STAC is designed to obtain an automatic adjustment mechanism. It 

must identify the system (controlled process) using measured input-output data to form 

an appropriate controller. The adaptive control can be identified as a control technique in 

which controller parameters are continuously and automatically adjusted, in response to 

measured variables, in order to approach optimum performance [3,90]. 
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As discussed above, it is clear that the ST AC is a form of MARC. The distinction 

between these two methods has mainly been based on the different design approaches. 

From Figures (1.11) and (1.12) we can see that both control schemes are similar to each 

other. The difference between the methods is only the updating of the control parameters. 

This difference however, is not fundamental, because ST AC may be modified so that the 

control parameters are updated directly, the same as the MARC [3,48]. 

Conventional and adaptive control methods have been widely used and satisfactory 

results have been obtained when they are applied in linear systems. However, very little 

attention has been given to non-linear control systems. This is because of the complexity 

of such systems. One approach called bilinear, has been widely introduced by many 

researchers [21,37]. Models having a bilinear structure have been shown to be applicable 

to many non-linear systems. The bilinear approach was used for controlling of a non­

linear systems and an acceptable simulation and experimental results were obtained. In 

conclusion, if the system is a non-linear, then all these methods will suffer greatly and 

hence more recently Artificial Neural Networks (ANN), have been studied extensively 

and are discussed briefly in chapter two. A special type of neural network, known as the 

Radial Basis Function (RBF), is also discussed in detail in this chapter. The RBF method 

is developed and applied to model and control of non-linear simulated examples, as 

presented in chapters three, four and five. Also the RBF is used for modelling and control 

of a real laboratory servo system. The implementation and the obtained results are 

discussed in chapter six. 
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CHAPTER 2 

ARTIFICIAL NEURAL NETWORKS (ANNs) 

2.0 INTRODUCTION 

The concept of a neural network was originally conceived as an attempt to model the 

biophysiology of the brain. The early work in neural networks was carried out by 

biophysicists and scientific psychologist groups. At the same time, research engineers 

were concerned with how to use Artificial neural networks (ANNs) to form controllers 

from neurons with interesting and powerful computational capabilities. 

ANNs offer a potential solution for problems which require complex data analysis and 

promise to form the future basis of an improved alternative to current engineering 

practice. Therefore, this area has received a considerable amount of attention from many 

researchers. 

The first idea of neural networks was conceived by McCulloch and Pitts (1940s) [78] as a 

means of mimicking human brain activity. In 1943 they published the first systematic 

study of artificial neural networks. McCulloch and Pitts carried on working in this field 

and much of their work involved the simple neuron network (have been called 

perceptrons). These neurons are still the major building block of virtually every neural 

network being developed [42]. 

In the 1960s Minsky and Papert proved that there are several restrictions in the tasks the 

simple single layer perceptron can perform; e.g. it can not implement the simple 

exclusive-OR logic problem. Therefore, neural network research was extinguished until 

the early 1980s, when John Hopfield studied an autoassocitive network that has some 

similarities with the perceptron [31,82,88]. 
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A learning algorithm called the generalised delta rule or backpropagation rule was 

developed and reported by Rumelhart, Hinton and Williams in 1986. In the same year, 

parallel distributed processing by Rumelhart and McClelland were published in two 

volumes. After their publications, the field exploded with research publications [4,42]. 

Many researchers found that neural networks have many applications in various fields of 

study including signal processing, modelling and control of linear and non-linear 

systems. However, one of the great potentials areas for the application of neural networks 

is in control. 

Neural networks have been developed in different ways, where various algorithms and 

methods have been applied. In this chapter a brief discussion of the simple perceptron 

and the well known Back-Propagation (BP) rule, are given. Later, the Radial Basis 

Function (RBF) is discussed in detail; this ANN architecture is used in our research. 

2.1 Perceptron 

The simple perceptron shown in Figure (2.1), is a single processing unit with an input 

vector X = (Xo, x j ,X2, ... ,xn). This vector has n elements and so is called an n-dimensional 

vector. Each element has its own weights usually represented by the n-dimensional 

weight vector W, e.g. W=(WO,wp w2 , ... ,w
ll

) • 

.. ~ 
/ ....., T HR ES HOLD 

INPUTS . , L I 
w, 

S 
y 

, 
, 0 , 

w. 
~ "-

' . 

Figure 2.1 , Perceptron diagram 
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The output Y is a weighted sum of the input X Mathematically, this is described by the 

following equation: 

n 
Y= LW'x, . a I I 

1= 

Equation (2.1), is thresholded to give a binary output, that is 

n 
a if L W.X. < a 

1 I 
i = a 

Y= 

n 
1 if L W.X. ~ a 

I 1 
i= a 

(2.1) 

(2.2) 

The output is at either the state 1 or 0; the neuron is either on or off. The training of the 

perceptron can be done by changing the weight vector. The perceptron can also be 

trained using a set of input-output pairs called training data, and the weights are changed 

by using a learning law. This learning law can be summarised as following 

1- Randomise all network weights. 

2- Present input training vector X and desired output Yd. 

3- Calculate the actual output using equation (2.1). 

4- Adapt weights according to the following least square algorithm. 

w;ew (t + 1) = wfld (t) + 17 (Y d (t) - y(t)) Xi (t) (2.3) 

where a < 17 ~ 1 is a positive gain factor term that controls the adaptation rate of the 

algorithm, Y and Y d are the actual output and the desired output respectively and t is the 

current time. 
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5- Steps 2- 5 should be repeated until the network converges. 

This algorithm adjusts the weights to reduce the error at each iteration until ideally 

(Y d (t) - y(t)) = 0 which means no modification to the weight would be necessary. The 

perceptron has a major limitation in that as mentioned before it can not solve the simple 

Exclusive-OR example. This problem has been overcome by the work of Widrow and 

Hoff [4,41,88] in which they proposed a learning rule known as the Widrow-Hoff delta 

rule (Least Mean Squares). Using this rule the square of the difference between the 

weighted sum and the required output (which they called the error, E) is calculated. That 

IS 

N 

E(t) = i -: 1 (y d(t) - y(t)) 2 (2.4) 

L1 = (Y d(t) - y(t)) (2.5) 

where N is the length of the output data. This error is minimised with respect to the 

weights. 

Substitute (2.5) into (2.3) yields 

(2.6) 

It is worth noting that the equation (2.6) is written exactly as equation (2.3), however, in 

equation (2.3) the output variable has only two states (0,1). The 11 in equation (2.6) is 

varied depending on the difference between the actual output and the desired output. 
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2.2 Multi-Layer Perceptron 

Ifwe recall equation (2.2) in the previous section, the two state neuron being either on or 

off, gives no indication of the scale by which we need to adjust the weights. In other 

words the hard-limiting threshold function removes the information that is needed if the 

network is to learn successfully. This difficulty is known as the credit assignment 

problem since it means that the network is unable to determine which of the input 

weights should be increased or decreased and which ones should not. Therefore, the 

network is unable to work out what changes should be made to produce a better solution 

next time [4,41]. This difficulty can however be resolved by replacing the hard-limiting 

by a non-linear (sigmoid) function as the thresholding process. By using this function, the 

network would be able to determine when the relevant weights need to be strengthened or 

weakened. Many problems may be solved by using an important class of neural networks 

known as multilayer feedforward networks which are commonly referred to as multilayer 

perceptron (MLPs). 

Multilayer perceptrons, are constructed from multiple layers of elements, neurons or 

nodes, which are quite similar to the simple perceptron discussed in section (2.2). This 

type of neural networks shown in Figure (2.2), consists of units that constitute the input 

layer, an output layer and a number of intermediate layers (hidden layers). 

Xn 

Input 
layer 

First 
hidden 
layer 

Second 
hidden 

layer 

Figure 2.2, Multilayer perceptron diagram 
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The network requires a set of data as inputs to the input layer. The outputs of the input 

layer are then fed as weighted inputs to the first hidden layer. The outputs from the first 

hidden layer are fed as weighted inputs to the second hidden layer and so on. This 

process continues until the output layer is reached [22,42]. Multilayer perceptrons have 

been applied successfully to solve many problems such as motor speed and position 

control, speech and pattern recognition. 

The most popular training technique used to find a set of weights is the backpropagation 

(BP) algorithm [1,22,32,42]. The backpropagation algorithm is a set of learning laws in 

which a training signal is presented to the input layer, passed through the hidden layers 

and then to the output layer to produce the actual response of the network. The actual 

output is then compared with the desired output to produce an error signal. Finally the 

weights of the network are adjusted to minimise the error signal. This procedure is 

carried out repeatedly adjusting the weights to make the actual response of the network 

closer to the desired response. 

To examine the algorithm let us consider the network illustrated in Figure (2.2) with the 

particular output defined for node j by the function 

Yj(t)= ___ l __ 
1 + exp (-a j(f)) -00 <aj(t) <00 (2.7) 

where aj(t) is the net internal activity of node j . According to this non-linearity, the 

amplitUde of the output lies inside the rang 05" Yi 5" 1. 

To begin the algorithm initialises the weights to small random values, and presents the 

net with the input vector (xO, xl, . .. , xn-1), obtained from the plant to be modelled or 

controlled. The desired output (YdO, Yd1, . . . ,Ydm-1), is compared to the calculated 

network outputs (YO, Y 1, .. . ,ym-1), where n and m are the number of input and output 
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nodes, respectively. Then, a recursive algorithm is used which starts at the output nodes 

and works back to the first hidden layer, adjusting weights by the following adaptive 

expression: 

(2.8) 

where wij-(t) represents the weights from node i to node j at time t, 'tl is the learning rate, 

/). j is an error term for unitj, and xi is the actual input of unit i. If unitj is an output 

unit, then /).j can be computed as [53]: 

(2.9) 

where y dj is the desired output of unit j and Yj is the actual output. If unit j is an internal 

hidden unit then 

(2.10) 

where the sum is over the k nodes in the layer above j. Internal unit thresholds are 

adapted in a similar manner by treating them as connection weights on links from 

auxiliary constant valued inputs. The convergence can be improved if a momentum term 

is added and weight changes are smoothed [4,32,41]. This is shown in the equation 

below. 

(2.11) 

where a. is usually a positive number (0 <a. < 1) called the momentum constant. This 

factor controls the feedback loop acting around the weight changes 'tl~ jXi [22,32,78]. 
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The process is repeated by re-presenting the actual and desired outputs, and is carried on 

till the error is reduced to a pre-defined limit. 

In most cases the structure of the MLPs is carried out in a fairly heuristic way, so for a 

certain problem a reasonable number of layers and neurons in each layer are initially 

selected based on experience. However, if incorrect number of nodes are selected, then 

adjustments can be made on a trial and error basis. Moreover, the backpropagation 

algorithm suffers from several deficiencies, such as slow convergence and construction 

complexity [23,52,54]. 

An alternative approach to overcome the limitations associated with the BP algorithm is 

to use the Radial Basis Function (RBF) network which is discussed in detail in the 

following section. 

2.3 Radial Basis Function Network 

Feedforward layered neural networks have increasingly been used in many areas such as 

modelling and control of non-linear systems. One example of a feedforward neural 

network is the BP neural network, discussed briefly in the previous section. This form of 

neural networks has been applied in different fields of research and satisfactory 

performance has been obtained [69,85,92]. In practice, however, the BP algorithm has 

been found to perform poorly (e.g. slow convergence of weights in the non-linear 

updating procedure and difficulty in modelling differential response [86]). A viable 

alternative neural network is the RBF network. The RBF is surveyed by Powell (1985) 

[73], Broomhead and Lowe (1988) [13], and Moody and Darken (1989) [63]. Many other 

researchers are also exploiting the use of RBF in the design of neural network controllers. 

The first neural network controller was used by Broomhead and Lowe (1988). 
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The RBF network can be regarded as a special three layer network including input, 

hidden and output layers. Full explanations of the connections of these layers together 

with the activation function are given in the next sections. The performance of the RBF 

depends on the proper selection of three important parameters, centres, widths and the 

weights. The K-means clustering algorithm for selecting the centres and P-nearest 

neighbour for the width selection are discussed in detail in Section (2.5), whilst Singular 

Value Decomposition (SVD), used for selecting the weights off-line is discussed in 

subsections 2.5.3.1. The least mean squares method (LMS) is used for adapting the 

weights on-line and is discussed in subsection (2.5.3.2). The conclusions to this chapter 

are outlined in section (2.6). 

2.4 Radial Basis Function Network Structure 

The radial basis function has been shown to be able to solve many problems in different 

fields; one example is the modelling and controlling of non-linear systems [23,39,44,86]. 

The RBF neural network has a feedforward structure consisting of three layers as shown 

in Figure (2.3). 

Input 
Layer 

Hidden Layer 

Activation 
Function 

Figure 2.3, The radial basis function structure 

The input layer passes the input data to the hidden layer. The hidden layer consists of an 

array of nodes and each node contains a parameter vector, called a centre. The output 
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layer is only a set of weighted linear combinations of the activation functions. The only 

adjustable parameters in the output layer are the weights. The output vector y is given by 

N 
Y= L w.¢. 

. 1 ] ] 
J= 

(2.12) 

where (wjJ is the weight of the O/h) node and ~j is the activation function. The 

transformation of the data from the input space to the hidden unit space is non-linear. The 

hidden node calculates the distance between the centre and the RBF network input 

vector, and then passes the result through the non linear activation function (¢) to the 

output layer. The RBF make use of various activation functions [19,20,23,60] and some 

typical choices are given below: 

~ ((r) = r2Zog(r) the thin plate spline function 

~ (r)=[r2 +cr2 J~ the multi-quadratic function 

~ (r)= 1 
[r2 +cr2 J1I2 

the inverse multiquadratic function 

~ (r) = exp( _r2 /cr2
) and Gaussian function 

The chosen function influences both the modelling and the learning abilities of network, 

as well as the selection of the learning rule. From the above given functions, only the 

Gaussian and the inverse multi-quadratic functions tend to 0 as (r) tend to 00. Therefore, 

only those functions which have a localised minimum should be employed when 

instantaneous adaptation rules (e.g. LMS) are used to train the weight vector [14]. The 

Gaussian activation function is unique, in a sense that it is the only radial function which 

can be written as a product of univariate functions 
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i =1,2,3, .. . ,n, j = 1,2,3, .. . ,m (2.13) 

where (¢j) is the output of the (jth) unit in the hidden layer, r=lx-cl in which (xiJ is the 

input data to the network, (Cj) is the centre of the lh unit in the input space and ~I is the 

Euclidean norm. Value (OJ) is the width of the Gaussian function, (m) is the number of 

centres and (n) the dimension of the input space. 

Equation (2.13) is easier to implement for use in Gaussian RBF networks with high­

dimensional input spaces where only a small number of inputs are relevant. This 

factorisation also makes it possible to incrementally construct Gaussian RBF networks 

where each unit may depend on different inputs. Weighting functions (non exponential 

functions) shown above, can be used but do not guarantee a good approximation. As we 

will explain later, a is an important variable and functions not using such a parameter are 

not preferred. 

The major requirement is that the function must tend to zero quite rapidly as the distance 

increases between the input x and centre c. This can be assured by using the Gaussian 

exponential function. It can be shown that the exponential function possesses good 

approximation properties. Moreover, the Gaussian function is the most common basis 

and has been used by many researchers [14,16,35,50,89,93]. 

The operation of the network may be seen clearly by referring to Figure (2.4), which 

shows the simplified single neuron for RBF case, when only one input to the hidden layer 

is considered. 

Input 

G)~---"'''~I 
Neurone output 

J------t~ ~j(x) 

hidden layer 

Figure 2.4, One input to single RBF 
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The Gaussian function (2.13) is applied to the given input Xj and the result showing the 

hidden output varying with respect to x is depicted in Figure (2.5). 

1.0 

0.8 

0.6 

'i 
0.4 

0.2 

0 
-1 

x 

Figure 2.5, Hidden layer response function 

At any instant, when the input value is equal to the centre value, the function output is 

1.0, regardless of the value of a. Thus, the centre values determine the value of the input 

which produces the maximum output from the neuron (hidden output). As shown in 

Figure (2.5) above, the response of the neuron at other values of x drops quickly as x 

deviates from c. If the value of x is far from the value of c, then the hidden layer output 

becomes negligible i.e. zero. 

The Gaussian function can be extended to any number of inputs as shown in Figure (2.3) 

and equation (2.13). Multiple outputs can be added to the network, but this is not 

considered in this work, where only one output is needed [23,28,94]. 

2.5 Learning In The Radial Basis Function Network 

The Radial Basis Function Network consists of three important parameters, centres (c) 

,widths (aj and weights (w). The value of these parameters are generally unknown and 

may be found during the learning process of the network. There are a variety of methods 

to allow the RBF network to learn. These processes are generally divided into two stages, 
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as each layers of the RBF perform a different task [23,42,44]. The first learning stage 

involves selecting the centres and the widths in the hidden layer. The second stage is to 

adjust the weights in the output layer. 

2.5.1 Selection of the Centres (c). 

In general, the theoretical analysis of RBF networks assumes that the basis functions are 

distributed on an n-dimensional lattice, with the centre of a basis function occurring at 

every point on the lattice. Hence, in theory, the number of basis functions depends 

exponentially on n, in equation (2.13). In the first practical applications of RBF it was 

assumed there were as many basis functions as data points, and the centres of the basis 

functions were chosen to be the input vectors data points. In this case, if the amount of 

input data is large, then a correspondingly large number of basis functions are required 

[11,14]. This leads to lengthy calculations and may result in redundancy. One solution is 

to choose randomly selected training vectors as the centres. This idea may give 

unacceptable results, especially for small training sets which are not representative of the 

whole data. Therefore, the random method is inconsistent if small numbers of centres are 

employed [76]. The gradient descent method has been used for learning the centres. That 

is the centres are moved consecutively so as to reduce the error by the greatest amount. 

This procedure needs repeated training of the network output and causes slow learning in 

the output layer [2,42], therefore, selecting the centres in this manner is unsatisfactory 

and sometime gives unsatisfactory models. The major problem which therefore remains 

is one of how to select an appropriate set of RBF centres. To overcome this problem, the 

network requires some strategy for selecting the adequate set of centres, hence clustering 

algorithms have been used extensively. The objective of clustering algorithms is to 

categorise or cluster the data. The classes must be found from the correlation of an input 

data set. So, the clustering is a way of grouping similar patterns and separating dissimilar 

(different) ones. Assume there is a set of data to be used as input to an RBF network and 

no information is known about the number of classes that may be present in this set. 
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Clustering in such a case involves identifying the number of classes and assigning 

individual datum membership of these classes. The vectors in the same cluster are similar 

which means that they are close to each other in the input space. There are many 

clustering algorithms which have been used: such as Kohonen feature map [33] and 

adaptive resonance theory [41] which are discussed briefly in the following sections. The 

importance of using each algorithm may vary from application to application. Moreover, 

it is difficult to compare the variety of different algorithms because the comparison 

depends on the criteria used to evaluate the final clustering. However it seems that the 

well known K-means clustering is a good algorithm. Therefore this clustering technique 

is presented in this theses. 

2.5.1.1 Kohonen Feature Map 

The kohonen feature map has been developed by Teuvo Kohonen in 1982 [33] and has 

been applied to a large variety of problems i.e. biological modelling. The algorithm is 

summarised as in Table (2.1). For each training set {XI' x2, ... ,XN} it is possible to find the 

closest output y and move the weights of y and the weights of its neighbours closer to x. 

The weights are adapting according to the equation in Table (2.1) step 3. 

Table 2.1, Summary of Kohonen algorithm 

-Specify the number of iterations K 

-Define the step size for each iteration by ark) = (1- k ~ 1) where k is a single iteration 

1- Initialise the weights to random value 

2- Select a random training set X at the starting of iteration k 

3- By using of the Euclidean distance, find the output y with weights W closest to X 

4- Adjust the weights Wat each iteration; W = W + a(k){X - W} 

5-Go back to step3 for the next iteration and increase k by one. 
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At each iteration weights are adjusted using a decreasing step size a., where a. is a small 

constant selected heuristically, usually between 0.1-0.7. The Kohonen feature map has a 

limitation when it has been demonstrated to produce an acceptable result only for the 

simplest problems [33,96]. 

2.5.1.2 Adaptive Resonance Theory 

Adaptive resonance theory (ART), is one of the important artificial neural network 

clustering algorithms. This algorithm was proposed by Grossberg in the 1976 [33]. ART 

has been developed into a series of different algorithms e.g. ART1, ART2 and ART3. 

However, ART 1 network that applies to problems of learning and clustering is 

considered. This approach learns clusters in an unsupervised mode and it can 

accommodate new clusters without affecting the storage or recall capabilities for clusters 

already learned. The network produces clusters by itself if such clusters are identified in 

input data and stores the clustering information about patterns without a priori 

information about the number of clusters. The training procedure of ARTI is explained 

briefly as follows. Every training iteration consists of taking a training example U and 

examining existing prototypes weight vector W that are sufficiently similar to U. Then, 

according to the following conditions the decision will be taken about the clusters. Thus, 

if a prototype W is found to match the training example U, then U is added to clusters 

represented by Wand W is adjusted to make it better match U. Otherwise U becomes the 

prototype for a new cluster. This approach nicely integrates clustering but on the other 

hand by using it problems caused by noise might also be amplified. ARTI networks are 

restricted to binary values {O, I} of the input values U and to the networks weights W. 

For more details about ART algorithms see [41,96]. 
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2.5.1.3 K-means Algorithm 

The choice of a subsets of data as centres for the radial basis function is a very important 

task, since network performance relies upon good generalisation. The K-means clustering 

algorithm is used for selecting the values of the centres, the number of which must be 

decided in advance [59,62,63]. This algorithm has been shown in the literature, because 

of its simplicity and ability, to produce good results [23,50,54,64]. The K-means finds a 

set of cluster centres and partitions the training data into subsets. Each cluster centre is 

associated with one of the H hidden units in the RBF network. The data is partitioned 

such that the training points are assigned to the cluster with the nearest centre. The 

algorithm finds a local minimum in terms of the total squared Euclidean distances 

between the training points assigned to each cluster and the cluster centres C h' This 

minimum is known as Ecluster defined as 

H K 
Ecluster= L L Bhkllch-ckll 

h=ik=i 
h=i,2,3, .. ,H. k=i,2,3, ... ,K (2.14) 

where Bhk is the cluster partition or membership function which is a HxK matrix, His 

the maximum number of hidden layer and K is the number of centres in each hidden 

layer. The centre of each cluster is initialised to a different randomly chosen training 

point. Then each training example is assigned to the unit nearest to it. When all training 

points have been assigned, the average position of the training points for each cluster are 

found and the cluster centre is moved to that point. The procedure is repeated until the 

data sets converge, or in other words there is no further change in the grouping of the 

data points. Once this has happened, each cluster is associated with one radial basis. The 

revised cluster centres become the unit centres c of the RBF units [23,33]. To show the 

clustering results of this algorithm a hypothetical exampleis considered, with one input 

node, three centres and one output node. The input data clustered as depicted in Figure 

(2.6). 
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Figure 2.6, Clusters data using K-means algorithm 

If some input data is far away from the selected centres, then one possible solution is to 

increase the number of centres. 

2.5.2 Width selection (eY) 

The next task would be the proper selection of the width between the centres. This 

parameter controls the amount of overlapping of Gaussian Function as well as the RBF 

network generalisation, i.e., the degree of the network approximation. The width of the 

Gauassian Function is a positive constant that represents the standard deviation of the 

function. RBF neural networks with the same cr in each hidden unit have the capability of 

universal approximation [64]. This suggests that one may simply use a single global 

fixed value cr for all the activation functions of the hidden layer. Moreover, using centers 

suggested that the width of Gaussian RBF may be fixed at cr = ~, where (d) is the 
,,2M 

maximum distance between the centers and (M) is the maximum number of centres [42]. 

Empirical results (Moody and Darken, 1989) suggest that a good estimate for the global 
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width parameter is the average width O'=lh -c j II. This represents a global average over 

all Euclidean distances, between the centre of each unit i and that of its nearest neighbour 

j. In general, the choice of 0' is crucial in the estimation process. If 0' is too small then, it 

will give sharp peaks at the sample point and so yield a rapidly decreasing function. If a 

is too large, then it will result in a more gently varying function. So, the selection of 

standard deviation of cr is not an easy procedure. To avoid these two extremes, other 

heuristics based on local computations may be used which give individually tuned 

widths. This is known as the P-nearest neighbour algorithm [38,42,76]. 

2.5.2.1 P-nearest neighbour 

The P-nearest neighbour algorithm is used for training the widths of the hidden nodes of 

an RBF network. Note that the width adjustment does not depend on the inputs directly, 

but depends on the selected centres. The P-nearest neighbour algorithm attempts to set 

the width of each node to the root mean square value of the Euclidean distances between 

each node and its P-nearest neighbours. It is given by 

/=1,2, ... P. (2.15) 

1\ 

where clare the P-nearest neighbours of (c f)' cr is the Gaussian width and P is the 

index of the P-nearest neighbours. The most important point in selecting the width of the 

Gaussian function is to find a reliable way of measuring the distance between the 

centres. Various methods have been used for this purpose and some of them are discussed 

below. 
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Hamming distance measure: 

The Hamming distance is widely used for measuring the distance between two vectors: 

X/=[Xl'X2,···xnJ 

C/=[c1,c2,···cnJ 

(2.16) 

(2.17) 

This distance is found by evaluating the difference between each corresponding 

component of the two vectors, and summing these differences to provide an absolute 

value for the variation between the two vectors. The measure is defined by 

/=1,2,3, .. . ,n (2.18) 

where n is the dimensionality of the vectors C and X and H is the Hamming distance. 

This distance is often used to compare binary data, i.e., the data used by the exclusive-OR 

function. 

The square and city block distance: 

These two methods are similar to Euclidean distance, but they perform the Euclidean 

measure without calculating the square root functions making them much faster but less 

reliable. Thus, the city block distance is given as: 

11 

Dcb = Llel-xil 
1=1 

(2.19) 

and the square distance equation is 

(2.20) 
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where MAX is defined as the maximum of the differences between each measured 

element [4]. So, equation (2.20) measures the largest distance between the two vectors (C 

and X). 

Euclidean distance measure 

The most common method used is the Euclidean distance measure. This method is 

widely used because it is simple to calculate and more reliable as compared to the above 

methods [54,86]. The use of this method can be explained by an example in a rectangular 

co-ordinate system. Consider Figure (2.7), the measured distance is between vectors X 

and C. The shortest distance between these vectors is the Euclidean distance defined as: 

(2.21) 

where n is the vector dimension and Edist is the Euclidean distance. For the n­

dimensional example, equation (2.21) gives: 

(2.22) 

In the same manner, the measure has been used in neural network learning algorithms. 

Thus, assume Xi and Cj denote an Nxl input and centre vectors, respectively 

(2.23) 

(2.24) 
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where the superscript T denotes transpose and N is the input dimension. The Euclidean 

distance between a pair of N x 1 vectors Xi and ej is defined by 

(2.25) 

where Xin is the nth element of the input vector Xi and ejn is the nth element of the centre 

vector cj- In conclusion, the similar points (Xi, ej) , should produce a similar 

representation in a neural network and would therefore be classified as belonging to the 

same category [4,42]. 

x 

c 

Figure 2.7, Euclidean distance 

2.5.3 OutDut layer Learnine 

After the centres and widths of Gaussian function are found, the next step would be the 

estimation of the weights of the linear combination at the output layer. Thus, the output 

layer weight matrix (W) can be optimised by using a supervised training algorithm. A 

training data set must be available that is composed of pairs of vectors called input and 
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target (desired) vectors. The target vector indicate the desired output for the network 

when the associated input vector are applied. The training process consists of the 

following steps: 

1- Apply the input vector (x) from the training data set to the input layer. 

2- Calculate the outputs of the hidden layer using equation (2.13), which 

are then the inputs to the output layer. 

3- Compute the RBF network output vector ry). Compare this to the desired 

vector (yd), then adjust the vector W so as to reduce the difference. 

4- Repeat steps 1 to 3 for each vector in the training set. 

5- Repeat steps 1 to 4 until (Y-Yd) tends to zero or other terminating conditions 

occur. 

The weight parameters can be determined by using various algorithms e.g., LMS, RLS, 

SVD etc. [32,47,48,54,91]. Let for each component of input vector x in the training data 

set, calculate a Gaussian output and place it in a row of a matrix (G). Also place the 

vector Y d in the corresponding row of the desired matrix Yd. The weights associated with 

the Gaussian output is then a column of the matrix W. Using equation (2.12) and letting 

G = rjJ and if Yd is considered in place of the actual output y, then the equation can be 

rewritten in matrix form as 

(2.26) 

or 

(2.27) 

where G-l is the inverse of G. However, the matrix G can not be guaranteed to be 

square so it is not invertible and therefore, only its pseudo inverse can be found (if it 

exists). Finding the pseudo inverse involves inverting a matrix which may be ill-
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conditioned (singular or nearly so) and cannot be accurately inverted. However, Singular 

Value Decomposition (svd) can be used to approximate it This will be briefly explained 

in the following section. 

2.5.3.1 Singular Value Decomposition (svd). 

In many cases some methods for calculating the pseudoinverse of a matrix such as the 

lower and upper triangular matrices (LU) fail to give satisfactory results [36,42,91]. 

Singular value decomposition is a very powerful technique and has the ability to deal 

with a set of data or matrices e.g., Gaussian Outputs. The svd algorithm is an efficient 

off-line procedure and will be used to obtain the weights off-line. The svd matrices is 

given by 

o 
o T 

.V 

o 0 A 

(2.28) 

If ¢ =mxn, then U=mx n left singular matrix (orthogonal), Vis an nxn right singular 

matrix and Ai are the singular values of the matrix ¢. 

With respect to RBF networks, ¢) are the activation functions outputs as shown in Figure 

(2.3) and equation (2.13). The singular value decomposition algorithm coded in Matlab, 

is used to compute the svd matrix as [U.s, Vj = svd (rbf,O) which produces the economy 

size decomposition. 

where U = {uij, ... ,unml, i =1,2,3, ... , n, j =1,2,3, .. . ,m 

V = {Vii, ... , VnnJ 
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and A. is nxn with nonnegative diagonal elements in decreasing order; AI ~ A2 ~ ••• An ~ O. 

Where m is the length of the input vector of the RBF network and n is the size of the 

hidden layer. 

Now from equation (2.28), the inverse of matrix ¢ is given by 

¢-I = V[diag(J / A .)]UT 
1 

(2.29) 

Assuming W =¢ -lYdusing equation (2.27), the equation (2.29) may be rewritten as 

(2.30) 

To clarify the process, equation (Z.30), can be rewritten to express any matrix W, as a 

sum of outer products of columns of V, rows of U r and columns of YdT with the 

weighting factors being the singular values Ai. The vector Yd = nxl and the vector W = 

nxl. Assume the RBF network has only one output. Therefore, the weights are calculated 

as 

wnew - Wold + V IUTy T - A d (2.31) 

The objective being that of finding a set of weights that minimise the squares of the 

errors between the desired and the actual RBF network outputs, i.e. 

(2.32) 
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where Y d(t) and y(t) are the desired and the actual outputs of neural network, 

respectively, t is the varying time and N is the number of input data set. 

2.5.3.2 Least Mean Squares Method (LMS) 

In our work the feedforward neural network was considered. In this network, the 

proposed learning procedure involves the presentation of a set of system's input-output 

pairs. The network uses the input vector to produce the estimated (actual) output value 

compared with the true (desired) value to generate an error vector. If there is no 

difference, no learning takes place, otherwise, the weights are adjusted to reduce the 

error. The LMS rule for adapting the weights can be written as: 

L\Wj = TJ(Yin)- y(n»gj(n) = TJejgin) 

j = 1,2,. " . C, and n = 1,2, ... , N. 

(2.33) 

where C is the number of centres, N is the number of inputs to the network, 11 is the 

learning rate, and Yd ,Y and g are the desired output, actual output and the hidden output 

(Gaussian output), respectively. The ej = (Yo; - Y/) is the error signal at the output and 

L\Wj is the change to the network weights. 

The LMS method was originally introduced by Widrow and Hoff (1960'S) [42] for use in 

adaptive switching circuits and is therefore known as the Widrow-Hoffrule or Delta rule. 

This method is similar to the well known gradient descent method [32,34,78]. It is 

considered to be an on-line method for adapting the weights of RBF networks. 

The recursive process permits the weights to change on-line in accordance with LMS, 

that is 
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W j (n + 1) = W j (n) + 77 (y d (n) - y(n)) g j (n) (2.34) 

where y(n) is the output of the network, gj are the Gaussian outputs, w/n) are the 

previous weights originally set to zero and Wj (n + 1) are the updated weights. 

The adaptation algorithm described by equation (2.34) is illustrated in Figure (2.8). 

Net Inputs x
2 

................................... 

Gaussian 
output 

Error 

Figure 2.8, The adaptive LMS algorithm 

Desired signal Yd 

E J+---...... 
+ 

Finally, a summary of this algorithm is presented in Table (2.2), which clearly illustrates 

the simplicity of the algorithm. 
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Table 2.2, Summary of the LMS algorithm 

1- Initialisation of the weight vector. 
1\ 

Wj(l) = 0 for j=1,2, . .. , H 

2- Calculate the network output. For time steps n =1,2, .. . ,N. 

N 
yen) = L W .(n)G .(n) 

j=1 J J 

ern) = (,y d(n) - y(n)) 

2.6 Conclusion 

The simple pereceptron neural network was discussed briefly. The learning rule was 

explained and the main limitation of perceptron was also mentioned. It was shown that 

this limitation can be solved by the introduction of the Backpropagation algorithm. The 

later was discussed and its disadvantages were stated. The Radial basis Function (REF) 

neural network structure was shown and the parameter selection algorithms were 

discussed. Three clustering algorithms were introduced of which the K-means clustering 

algorithm was briefly explained along with an example of data clustering showing the 

ability of this algorithm. The selection of the widths together with different ways of 

finding the distance have been illustrated. The method of adjusting the weights of the 

RBF network off-line was also given and the on-line method discussed and summarised. 
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CHAPTER 3 

DESIGN OF A NEW RADIAL BASIS FUNCTION 

3.0 INTRODUCTION 

There are different learning strategies that can be considered in the design of radial basis 

function networks. The original RBF method requires as many RBF centres as there are 

data points. This method is rarely practical in modelling and controlling of non-linear 

systems, as the number of data points is usually very large. The other approach is to 

select and fix the centres randomly from the training data set. In this case the Gaussian 

function has to be employed with its standard deviation fixed. An alternative method 

may be the self organised selection of centres, that is the RBF are permitted to move the 

locations of their centres in a self organised fashion regardless of the centre widths. The 

self organised component of the learning process serves to allocate network resources in 

a meaningful space where significant data are present. Note, the linear weights of the 

output layer are computed using a supervised learning rule. Hence, the selection of the 

centres affects both the adjustment of the widths and the learning of the output layer 

weights [42]. Improper selection of these parameters may give unsatisfactory results. 

Therefore, the choice of the correct number of the centres and the adjustment of the 

widths are not easy tasks. However, a new algorithm is presented in this chapter, which is 

capable of selecting these parameters adaptively. The optimisation of the proposed new 

algorithm and its summary are given in sections 3.1 and 3.2, respectively. In section 3.3 

the signal flow diagram of the algorithm is shown with an explanation of its mechanism. 

An example and concluding remarks are given in sections 3.4 and 3.5. 

3.1 Optimisation 

In this section the new adaptive technique for the selection of the RBF parameters is 

presented. The selection of these parameters is divided in two stages [23,54 ]. The first 

52 



stage deals with the training of the hidden layer, for selection of the centres and the 

widths. The second stage is the learning process for adapting the weights in the output 

layer. Each learning problem is treated separately (i.e., there is no direct relationship 

between these two learning strategies). 

The most commonly used methods for selecting the centres and the widths are the k­

means clustering algorithm and the P-nearest neighbour technique [23,54,63]. When 

using k-means, the desired number of centres is usually determined a priori using 

equation (2.14). In this case, a trial and error procedure is used for selecting the optimum 

number of centres. The RBF width parameter, 0', is usually chosen as an average distance 

between the neighbouring centres. The number of these centres, however, is dependent 

on the index P of P-nearest neighbour given in equation (2.15). This should also be 

known a priori. The selection of the index P is dependent on the characteristics of the 

model to be learnt. Proper selection of these two parameters is not easy and depends upon 

the complexity of the system to be modelled or controlled. If one could adjust their value 

adaptively, however then an optimal solution may be found. Accordingly a new method 

is introduced to improve parameter selection. The new method is a merger of the two 

stages in one. It is composed of a number of algorithms (e.g., k-means, svd, Gaussian 

function and P-nearest neighbour), incorporated in a unsupervised adaptive algorithm. 

Although heuristic in some sense, the algorithm will adaptively choose the number of 

centres, the widths and the weights respectively. Consider the following: 

ni nc-1 
S = L L 

i i=1 r=1 

nc ( )2 L g-g 
j = r + 1 ir ij 

(3.1) 

(3.2) 
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SAGO = (:N) (3.3) 

where, i = 1,2,3, ... ,ni, r = 1,2,3, .. . ,nc -1 andj = 2,3, .. . ,nc, in which nc is the number of 

centres and ni is the length of the input data vector. S is the sum of the squares of the 

distances between the Gaussian output sets at some amplitude level. eN is a calculation 

number indicating the horizon of the Gaussian outputs over which the value of S is 

averaged, G = [gll,g21,g31,' . . ,gnc,ni]T are the Gaussian's outputs and SAGO is the 

Sum of the Squares of the distance between the Gaussian Outputs over the calculation 

number. The algorithm starts with an initial number of centres, which should be initially 

selected equal to or less than the input data vector length. This is not an important issue 

as the algorithm will adjust it approximately, however it can be selected based on the 

number of data elements in the system's difference equation. Then the Gaussian outputs 

are checked for overlapping which means the centres are too close to one another. If so, 

then the spread between the centres is increased. Otherwise, if the centres are 

underlapping (Le., the centres are too far from each other) then the number of centres are 

increased by one. During the process of training, the number of centres are increased as 

well as the spread between them until an optimal solution is reached. 

This algorithm monitors the Gaussian outputs as shown in Figure (3.1) and makes an 

intelligent decision as to whether to increase the number of centres or the index P [29]. 

Using the algorithm, overlapping between the centres may be avoided and the appropriate 

number of the centres and the widths are selected. The criteria would be in having some 

conditions on the net output which also insures convergence of the REF output. 
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Figure 3.1, RBF network using the new algorithm 

3.2 The Algorithm 

1. Select the sample number NS of the input data for RBF network training. 

2. Initialise the number of centres starting with a guess value nc ~ ni, and the distance 

index number, P ~nc. Initialise SAGO ~O. 

3. Compute the new SAGO, using equations (3.1-3.3), and compare it with the previous 

SAGO. 

4. If new SAGO ~ previous SAGO, then the centres are overlapping and the index p 

should be increased, otherwise go to step (5). 

5. Using svd, algorithm, find the values of weights Wi, use equation (2.31). 

6. Calculate the sum squared error SSE between the plant and the network output, within 

the input samples window. If SSE is beyond the pre-set boundary, then increase the 

number of centres by one. 

7. Repeat steps 3 to 6 until both conditions (new SAGO> previous SAGO and SSEnew ~ 

SSEold ) are satisfied. 
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3.3 Description of Algorithm 

The algorithm is a routine which searches for the optimum solution of RBF parameters 

(centres, width and weight) automatically. The flow diagram in Figure (3.2) gives an 

outline of the algorithm. 

x(t) = [y(t + I), y(t), •• , y(t - n + I), 
u(t - I), ••. ,u(t - m + 1)1 

Determ ine N S 
Initialise nc, P ,SSE 
Initialise SAGO 

yes 

no 

no 

Figure 3.2, New algorithm flow diagram 
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The Simulink package is used for constructing the non-linear plant. In the Matlab 

environment, the network inputs, consisting of the plant input-output, including the 

delays x(t)=[y(t+l),y(t), •• ,y(t-n+l),u(t-l), ... ,u(t-m+l)], are determined by a 

function coded as Matlab programs. The number of network input samples NS is 

determined and nc and P are initialised to small values. The initial centres are calculated 

by using the K-means algorithm equation (2.14) and the width between the centres is 

generated using equation (2.15). Then, the Gaussian output is calculated using equation 

(2.13) and the algorithm progresses by initialising SAGO to a large value. Equations 

(3.1-3.3) are used for calculating the value of SAGO. IfSAGonew ~ SAGoo1d
, then this is 

sufficient to ensure that the centres are overlapping and the index P increases by one. If 

the above condition is not satisfied, then the weights of RBF network are calculated. The 

process continues and the sum squares errors between the desired and actual signals are 

calculated and the result is compared with the old one. If SSEnew ~ SSEold is true then the 

conditions are satisfied and the optimum parameters are obtained. Thus, the search is 

finished and the algorithm stops. Otherwise, nc is incremented by one, and the process 

continues until all possibilities are exhausted. If no possible solution is found, then the 

only solution is to increase the number of input samples NS and start a new search. 

3.4 An Example 

To demonstrate this algorithm, assume a simple hypothetical example when nc and ni 

are 4 and 5 respectively and rewrite equation (3.1) in the matrix form as: 

i=l 
3 4 

SJ = L L 
r=J)=2 

o o 

57 

2 + (gl/ - g14) 

2 
+ (gI2 - g14) , 

+ (gJJ - g14) 
2 

(3.4) 



i=5 

and in general 

ni nc-J nc 
S.= L L L 

I i=!r=!j=2 
o o 

2 + (g5J - g54) 

2 
+ (g52 - g54) , 

+ (g53 - g54) 
2 

... + /. _ )2 
\gni.nc-! gni.nc 

(3.5) 

(3.6) 

Equations (3.4-3.6) are equivalent to equation (3.1) where S(ni) = s1 + s2 + ... + Sni. 

Equation (3.2) gives the distances between the Gaussian outputs, and for the example 

given above, eN = 4 x (~-1) = 6, as can be verified by equation (3.4) and (3.5). Using 

the same procedure, if nc is 5, then eN = 5 x (~-1) = 10 and so on. Note that this 

number depends only on the number of centres nc regardless of the length of input data 

vector ni. 

To illustrate the outcome of the algorithm for the above example, consider the outputs 

illustrated in Figures (3.3) and (3.4). These have been obtained when training a Single 

Input Single Output (SIS0) system. The RBF network consisted of one input node, 4 

centres, one output node and 10 input samples. Figure (3.3) shows no overlapping 

between the centres. However, to achieve a better RBF output, it can be easily 
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demonstrated that an extra centre is needed, e.g. new SAGO ~ previous SAGO. Addition 

of the fifth centre causes overlapping of the centre as it can be seen in Figure (3.4). 

o . 9 

o .8 

o . 7 

! o . 6 

~ o . 5 
. ~ 

c::> o . 4 

o . 3 

o . 2 

o . 1 

0 
0 2 4 

num b .r o f .am p l •• 

Figure 3.3 , Non-overlapping centres 

o .9 

o . 8 

o .7 

I o . 6 

~ o . 5 g II 

~ o . 4 

o . 3 

0 . 2 
non . o ve rl a pp i n g 

0 . 1 ove rlappin g - - -- -_ . 

0 
0 2 4 6 8 1 0 

nurn b.r of sa m pl. s 

Figure 3.4, Overlapping centres 

To avoid overlapping between centres, it is necessary to increase the index number, P. 

The alternate selection of nc and P has to be repeated several times in order to obtain a 

reasonable solution_ However, the use of the new algorithm avoids this uncertainty. This 

is illustrated by a simulation study in chapters/our andfive. 
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3.5 Conclusion 

The general scope of using the new algorithm, is to select the minimum number and the 

proper values of the RBF neural network parameters i.e. centres, widths and weights 

adaptively. Particularly, the algorithm has been developed and tested to obtain the 

parameters of a non-linear systems model. 

The new algorithm is composed of many other algorithms, such as K-means, P-nearest 

neighbour, singular value decomposition algorithms and the Gaussian function. Firstly, 

the algorithm equations were considered and explained to show the algorithm's 

mechanism. Secondly, as has been shown in Figure 3.1, the new algorithm monitors the 

Gaussian outputs and makes an intelligent decision to increase or decrease the number of 

centres or the index P. 

For simplicity, the algorithm was summarised in seven steps and described in a flow 

diagram. An hypothetical example has been given in a matrix form, then the network 

trained, when a single input single output was considered. As shown in Figure 3.4, the 

addition of the centres causes overlapping between them. However, the use of the new 

algorithm avoids this uncertainty. The algorithm also reduces the trial and error search 

for the network parameters. Moreover, by using this algorithm, the network can be 

trained within a very short time compared to conventional methods. 

It is worth mentioning that we have not given any information on the modelling and 

control of non-linear systems yet, and so the usefulness of the algorithm in the modelling 

of non-linear systems will be studied using conventional methods in chapter four. The 

results of using the new algorithm for modelling the same system are shown in chapter 

five. Finally, the benefits of the new algorithm are shown in chapter six, when it used for 

selecting the parameters in a real servo system application. 
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CHAPTER 4 

IDENTIFICATION OF NON-LINEAR DYNAMIC SYSTEMS USING 

ARTIFICIAL NEURAL NETWORK 

4.0 INTRODUCTION 

Artificial neural networks (ANN) have been widely studied and successfully applied in a 

variety of applications such as modelling and controlling non-linear systems. In many 

engineering solutions the Backpropagation (BP) network algorithm is used. This 

algorithm, however, has many problems, some of them were stated in chapter two. The 

more popular type of neural network with control engineers is the RBF algorithm 

discussed in detail in the previous chapters. The increasing popularity of the RBF 

algorithm is due to its many distinctive advantages, these include best approximation, 

much faster convergence compared to MLP, the need for a small number of units in the 

hidden layer, and its simple network structure [63,72,86]. Therefore, these advantages 

motivated us to use the RBF network to model the input-output relationship of equation 

(1.15). 

4.1 RBF Neural Network for the Identification of Non-linear Dynamic Systems 

Most physical systems are dynamic in nature and the identification of such systems using 

input-output data will naturally involve dynamic elements. Four dynamic models were 

introduced, by Narendra and Partiasarthy (1990) for the representation of single input­

single output (SISO) non-linear plant. These models have been used in the adaptive 

systems literature for the identification of linear systems and can be extended and applied 

also to non-linear systems. The most general model is described by the following non­

linear difference equation [66,67]: 
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x(t + 1) = f[x(t),x(t -1), .. . ,x(t - n + 1); u(t), u(1 -1), ... , u(t - m+ 1)] (4.1) 

where [U(I), X(I)] represents the input-output pair of SISO plant at time I and the function 

f is assumed to be a differentiable function of its arguments. The output of equation 

(4.1), at any instant, is a non-linear function of the past values of both the input and the 

output. The representation of the model using tapped delay lines (TDL) is shown in 

Figure (4.1). 

f(·) 
x (t+ 1) 

U(I) 

Figure 4.1, Representation of Model (4.1) 

In each case the RBF is assumed to contain three layers with a sufficient number of nodes 

in each layer, so as to match the input-output characteristics of the corresponding non­

linear mapping in the given plant. To identify the plant, an identification model is chosen 

based on a prior information concerning the class to which it belongs. The architectures 

for training the RBF networks to represent non-linear dynamic systems will be discussed 

in the following section. 
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4.1.1 Forward Modelline: 

The problem of identification, consists of setting up a suitably parameterized 

identification model (see equation (2.4» and adjusting the parameters of the model to 

optimise a performance function based on the error e(t) between the plant input and the 

identified model output. For modelling the plant, the structure of the neural network is 

judiciously chosen. Hence, for plant representation the series-parallel model is used, this 

type of modelling is known as forward modelling. This model structure has been used by 

Narenda and Parthasarathy [66] in order to avoid many of the analytical difficulties, as 

well as to ensure stability and to simplify the identification procedure [57,67]. The 

structure for achieving the forward modelling is shown in Figure (4.2), where the RBF 

network is used to represent the forward dynamics of the system. 

u(t) ...---iZ' f-----,--_ 
Yn{t+l) 

...-___ -fZ.m ~'--.. 

e-_---iz·n t--.. ... _--
L-----------------e + 

Ys (t+I) 
SYST EM 

Figure 4.2, Series-parallel identification 

As shown in Figure (4.2), the system is placed in parallel with the neural network model 

and at each instant of time (I) the past (m) inputs and the past (n) outputs of the system 

are fed into the RBF neural network. 

The system is governed by the following non-linear difference equation: 
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y (t+1)=f[Y (t), . . . ,y (t-n+1),u(t),u(t+1), . . . ,U(t-m+1)] (4.2) s s s 

where Ys() is the plant output and u() is the input sequences. The neural based 

identification model is assumed to have the same structure as that of the plant and is 

given by: 

Ym(t+ 1) = j [ys(t),. . "Ys(t-n+ 1); u(t), u(t +1),. . .,u(t-m+ 1)] (4.3) 

Where J(.) represents the non-linear input-output map of the network. Thus, from the 

input-output representation (4.3), in which 1(,) is replaced by the hidden layer 

feedforward network model (RBFNm), the neural-based identification model output may 

be described as: 

Ym (t+ 1)= RBFNm [x(t)] (4.4) 

or 

N m 
A /, m m 
Yml t +1)= L Wj x ~i (4.5) 

i 

where 

m -(x!'l- c!'l)/a'!l 
¢. = e I I I 

I 
(4.6) 

and the superscript m is a variable related to the plant model order, cyz are the RBF 

centres, a is the width between the centres, N is the number of the hidden layer units 

(centres) and x(t) is a data vector which represents the present and past plant outputs and 

inputs at sample time t as: 
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xm(t) = [ys(t),. . .,ys(t - n + J), u(t), u(t - J). . .,u(t - m + J)]T (4.7) 

By substituting equation (4.7) into equation (4.4), we can write the model output as 

A /, T Yml t + J) = RBFNm [ys(t),. . .,ys(t- n+ J),u(t). . .,u(t- m+ J)] (4.8) 

The difference between the network output Ym() and the next observation of the system 

outputys (), is known as the prediction error e(t), and is given by 

e (I + J) = Y m (t + J) - y s (t + J) (4.9) 

The estimation of the prediction error is the well known mean squares error (MSE) (see 

equation (2.32)) . This mean value is minimised to correctly model the system [56]. 

The RBF centres and width parameters are adapted and the weights of the network are 

then adjusted to minimise the sum of the squared errors between the desired and 

approximated outputs. These parameters were selected by using the methods discussed 

in chapters 2 and 3. When the error is of a small value, e.g. Ys(t+l)=~m(t+l), the 

network gives a good representation of the system and so the network parameters are 

adjusted and no more adaptation is required to train the network. Thus, the model output 

data lags may be feedback to the model itself to form a feedback function. In this model 

structure the input vector may be represented as 

Xm(t) = lYm(t),. . "Ym(t- n+ l);u(t),u(t-l). . ., u(t- m+ l)JT (4.1 0) 

Hence, the output of the model can be realised by 

y(t + 1) = REFN m (ym(t),. . "Ym(t - n + J), u(l}. . ., u(t - m+ 1)]T (4.11) 
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This model can be reconstructed to give the feedback representation as illustrated in 

Figure (4.3). The structure illustrated in Figure (4.3) is used in our simulation studies. 

u(t) ....---iz· 1-----:---tIi 

NEURAL 
.-___ --fl-m t----''--M NETWORK 

IDENTIFICATION 
(RBFNm) 

system 

e(t+ I) 

+ 

Ys (t+ l) 

Figure 4.3, Feedback representation of the inputs-outputs of the RBF 

4.1.2 Simulation Study 

Simulations have been performed using the RBF neural network and different methods 

for selecting the parameters were considered. Various non-linear plants were tested and 

very good results were obtained. Two different plants were used as examples to show the 

properties of the RBF network. These examples have been studied by Narendra [66], 

Hunt and Sbarrbaro [44] and [1], where Backpropagation was applied. These examples 

have been chosen in order to obtain reference results to which the accuracy of the RBF 

results are compared. Figure (4.4), is a block diagram of a series-parallel model. The 

output of the plant and the network are compared and the resulting error is used to update 

the network parameters (centres, width and weights). 
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u 
System 

+ 
e 

Figure 4.4, Series-parallel identification scheme 

Example 0): 

The plant considered for identification is a non-linear model governed by the difference 

equation 

Yp(t) = O.8Yp(t-l)+ f[u(t-l)) (4.12) 

where the unknown non-linear function has the form/lui = (u - 0.8)u(u + 0.5). The 

system is simulated using the Matlab/Simulink package as shown in Figure (4.5). u(t) 

and y(t) are the input and output to the network receptively. In this example the training 

signal is a sinusoidal wave with a frequency of 50Hz. The number of data points from the 

training signal is 3000, the number of input samples to the net is 60, the signal amplitude 

is 0.5 and the step size is 0.0001. The parameters of the model are selected in different 

ways as explained below to show the accuracy and effectiveness of each method. 
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Plnaloulput 

urn 

err 0 r 

R B F 0 u tp u t 

Figure 4.5, Simulink blocks setup of the non-linear model. 

1- Random selection of the centres 

The centres of the radial basis function network have been set to a random subset of 13 

from the input set. The width parameter (eT) has been set by a guess to a value of 0.1. The 

centre vectors were arranged in a grid and the weights were adjusted by minimising a 

sum of squared errors function using singular value decomposition. 

The training signal is shown in Figure (4.6), while the plant and the RBF output are 

shown in Figure (4.7). The difference between the net and the plant output signal (i.e., the 

error term) is shown in Figure (4.8). It can be seen from Figure (4.8) that the error level 

increases rapidly from the first samples and then settles to about 0.48. This error level is 

very high and is due to inadequate selection of the RBF parameters. This procedure, 

therefore, is undesirable. 
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Figure 4.6, Input training data 
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Figure 4.7, modelling the plant, random centres: 

Plant output (solid line) and RBFoutput (dotted line) 
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Figure 4.8, Error between RBF and Plant outputs 

11- Clusterine: centres using a conventional method 

Here, the K-means clustering algorithm in equation (2.14) was used to tune the centres 

and the P-nearest neighbour equation (2.15) algorithm was used to adjust the width by 

varying the index P. The results are shown in Table (4.1) and Table (4.2) respectively. 

Table 4.1, Fixing nc and varying P Table 4.2, Fixing P and varying nc 

Trial Fre. Am nc P SSE NS Trial Fre. Am nc P SSE N 

No. Hz P No. Hz P S 

1 50 0.5 7 1 0.17248445 60 1 50 0.5 5 1 0.216634 60 

2 50 0.5 7 3 0.0544932 60 2 50 0.5 8 1 0.0170851 60 

3 50 0.5 7 4 0.04511277 60 3 50 0.5 \0 1 0.00\315 60 

4 50 0.5 7 6 0.03693646 60 4 50 0.5 15 1 0.00051171 60 

In case (1) the number of the centers (nc) selected was 7 and in case (2) the index (P) 

parameter was set to unity. After the nets were trained, the system and the RBF net 

outputs were compared, as shown in Figure (4.9), using the structure in Table (4.1). As 
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shown in Figure (4.10), the error settles to within ± 0.05 (i.e., at 14.285% of the plant 

output amplitude), this result is satisfactory but not optimal. However, the method is 

inconsistent especially if the system is more difficult to identify. In these situations 

several trial runs will have to be carried out and in some cases no optimal solution may 

be found. 
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Figure (4.9), modelling the plant, using conventional method: 

Plant output (solid line) and RBFoutput (dotted line) 
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Figure 4.10, The error between the RBF and the plant outputs 
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111- Clustering the centers using the new algorithm 

In this method, the net was trained using the new algorithm, equations (3.1)-(3.3), in 

which the optimal number of centers (nc) and index P were selected. The process is 

carried out only once and so the trial and error situations are avoided. An initial guess 

was made of 4 for the number of centres and 2 for the value of index P. The same number 

of samples were used as in cases I, II and III with the same training signal waveform. The 

algorithm adaptively searches for the optimal number of centres (nc) and the optimal 

value of index (P). The input data to the network and the initial centres are shown in 

Figure (4.11). As seen in this figure, most of the data points are far away from the 

selected random centres. This may cause unsatisfactory results to the system to be 

controlled. To overcome this problem, the new clustering algorithm is applied and the 

centres are clustered. The final centres and the input data set for the network are 

displayed in Figure (4.12). 

0.4 r-------------------~==~~------------------------_. 

~
.j 
IT! --------=~[ ~ <r 
E.-J.h:po:=....._-=~] 

0 . 2 c:-o 

-0.2 

-0.4 

-0.6 

-0.8 ~------------------------~------------------------~ -0.5 0 . 5 

Figure 4.11 , The input data to the RBF and plant (0) 

and the initial centres (*) 
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Figure 4.12, The input data to the RBF and plant (small circles), 

the final centres (*) and groups of clustered data (large circles) 

The results are shown in Table (4.3), and the RBF output and the model output are 

plotted in Figure (4.13). Note that the parameters in the second row have been used for 

this simulation and the results have been recorded after the simulation run. 

Table 4.3, Selection of nc and P adaptively, using the new algorithm 

NS Initial Initial EAL Freq. Amp. Optimum Optimum SSE 

nc p nc P 

60 4 2 0.01 50 0.5 9 5 3.197xI0-4 

60 4 2 0.001 50 0.5 IO 5 1.15x I 0-4 

The SSE term in Table (4.3) is the sum squared errors between the desired and actual 

signal. The EAL is the error accuracy limit between the new SAGO and the previous 

SAGO, which is used for fine tuning the selection of the net parameters. As shown in 

Table (4.3), the EAL is reduced to 0.001, the index P has been kept the same, but the 

number of centres is increased to 10 and the SSE decreased by approximately a factor of 

3 compared to the first row result. Finally, the error between the plant and the net outputs 
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is shown in Figure (4.14), where the error level is approximately 0.003, that is 0.857 % of 

the plant input amplitude. Figure (4.15) shows the comparison between the errors in 

cases II and III. This Figure shows clearly that the method in case III is significantly 

better than the other two methods, the error in case III is less than that in case II by a 

factor 16.7. The percentage error for the three cases is shown in Table (4.4). 

Table 4.4, Comparison between the percentage error for I,ll and III cases 

Case Plant amplitude Maximum error amplitude % error 

I 0.35 0.48 137.14286 

II 0.35 0.05 14.285714 

III 0.35 0.003 0.8571428 
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Figure 4.13, modelling the plant using the new algorithm: 

Plant output (dash-dot line) and RBFoutput (dotted line) 
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Figure 4.14, The error between the RBF and plant using the new algorithm 
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Figure 4.15, Comparison between errors between the RBF and 

the plant outputs; case II (dotted line) and case III (solid line) 
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Example (2) 

The plant to be identified is a second order non-linear system governed by the following 

difference equation: 

Yp(t) 
Yp(t+l) = 1 hI + f [u(t) ] 

+ Yplf., 
(4.13) 

The unknown non-linear function in the plant is assumed to be 

f[ u(t) ]= u3 (4.14) 

The input to this plant is a sum of two sinusoids u(l) = sin (2rcl /25) + sin (21tl /10). The 

same procedure explained in example 1 has been used. During the identification process 

a series-parallel model was used, where the training signal has 500 samples, the number 

of input samples to the RBF network was 200 and the step size was set to unity. The new 

algorithm is used for selecting the optimum number of centres and widths as shown in 

Table (4.5). 

Table 4.5, Selection of the nc and P adaptively using the new algorithm 

NS Initial Initial EAL st Amp. Optimum Optimum 

ne p ne P 

200 5 2 0.01 1 7 9 3 

The input data to the network and the initial centres are displayed in Figure (4.16). Figure 

(4.17) shows the final clustering of the centers and the input data to the network. The 

outputs of the plant and the model are shown in Figure (4.18), and are seen to be 
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indistinguishable. Figure (4.19) shows the error between the outputs of the plant and the 

RBF network. 
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Figure 4.16, The input data to the RBF and plant (0) 

and the initial centres (*) 
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Figure 4.17, The input data to the RBF and plant (small circles), 

the final centres (+) and groups of clustered data (large circles) 
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Figure 4.19, The error between RBF and plant outputs 

200 

4.1.3 Model test 

Once the plant is modelled, it is convenient to apply some different signals to insure that 

the obtained model is the same as the plant itself i.e. the selected parameters are correct. 
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In this test, the non-linear plant (4.12) and the obtained model discussed in example (1) 

section (4.1.2) are considered. The model is tested and the results are compared with the 

plant output using Matlab/Simulink packages as shown in Figure (4.5) in the previous 

section. The parameters in second row of Table (4.3) have been used for this test. 

Different signals with different amplitudes are used and the results are shown. Firstly, the 

sinusoidal signal is applied and the input amplitude is varied. The plant and the model 

outputs and the errors are shown in Figure (4.20). Then the different input signals with 
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Figure 4.20, The plant and the model outputs (varieng the amplitude) 

the same amplitude 0.25, 100 Hz and sampling time 0.0001 are used and the results of 

the plant and model outputs as well as the errors are shown Figure (4.21). 
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As shown in the above Figures, during the change of the signal form and amplitude the 

desired input tracked the actual signal very well. This indicates that the model and the 

plant are in agreement. 

4.1.4 Conclusion 

In this chapter the use of artificial neural networks for the identification of non-linear 

dynamic models was described and evaluated. 

The RBF neural network modelling structures were considered, these included the series­

parallel modelling. In this approach, the delayed values of relevant signals in the system 

were used as inputs to the RBFNm. 

Two benchmark examples of non-linear dynamic systems were identified, using RBFNm 

in computer simulation, to show the effectiveness of the algorithms. 

Different approaches for selecting the RBFNm parameters were tested and the benefit of 

using "the proposed new method" has been illustrated. It has been proved by simulation 

that the selection of optimum values of the network parameters is possible using the new 

algorithm. The results of the various methods have been summarised in Table (4.4). 

Thus, the adaptive mechanism of the new algorithm eliminates the trial and error search 

for the RBFNm parameters. The network was trained in one pass and a very small 

number of parameters have been used. 

The extensive simulations carried out have revealed that the RBFNm algorithm is a very 

effective algorithm for the identification of non-linear dynamic systems. 

The capability of the RBF for modelling non-linear systems using the new algorithm has 

been demonstrated. 
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CHAPTERS 

NON-LINEAR DYNAMIC SYSTEMS CONTROL USING 

RADIAL BASIS FUNCTION 

5.0 INTRODUCTION 

In this chapter, artificial neural networks (ANN's) are considered for the purpose of 

controlling non-linear dynamic systems. ANN's are adaptive systems capable of 

overcoming many of the difficulties encountered by conventional adaptive control 

techniques, specially with non-linear plants with unknown structures [32,85,86]. Some 

types of neural networks have been discussed in the previous chapters, each has a 

problem. The radial basis function is suggested to overcome these problems and is 

thought to be the best. To the best of author's knowledge this type of neural network has 

not been widely investigated or used for the control of non-linear dynamic systems [44]. 

In general, neural network controllers are based on a structure which learns the inverse 

dynamics of the plant from the observation of the plant inputs-outputs relationship 

through time. The inverse model of an unknown plant may be used to generate a 

command signal to the plant itself, to make it operate in a desired manner. Various types 

oflearning algorithms for inverse control have been suggested in the literature [67,86]. In 

this study two methods are investigated: the general learning method and the adaptive 

control method which are presented in Sections (5.1) and (5.2), respectively. Simulation 

results are presented and evaluated in Section (5.3). Finally, the conclusions are drawn in 

Section (5.4). 

5.1 General Learning Method. 

The general learning method, which is also known as off-line inverse modelling or direct 

inverse control, is depicted in Figure (5.1). 
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+ 

u(t) 
Yp (t+ l) 

plant 

Figure 5.1, General learning diagram 

The training structure contains a trained forward model of the RBF neural network placed 

after the plant. As a special case, for the radial basis function network controller RBFNc, 

the centres and the width parameters are assumed to have already been selected, as 

described in section (4.1.1). 

From equation (4.3), the non-linear relationship for the network model, the plant inverse 

is given by: 

-1 
u(t) = f [y(t + 1). y(t) . ... y(t - n + l).u(t -l) ..... u(t - m + 1)} (5.1) 

- / 
where f is the inverse of non-linear functionf(). 

The utilised controller network RBFNc can be described by 

(5.2) 

where, 

'" c - (xc - c -) / a 7 
'fJ i = exp I I (5.3) 
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In equation (5.2), the c superscript indicates a variable related to the controller and (~) is 

the connection control weights between the hidden layer and the output layer; these 

weights are adjusted when the known input (u) is used as the input to the plant to obtain a 

corresponding plant output (y). Alternatively the plant outputs y and the desired signal u 

(with their lags) are applied to the network to produce the control signal Dc' Then the 

difference equation of the estimated Uc is written in the form 

-1 
Uc(l) = i [y(1 + 1), Y(I), .. , Y(I - n + 1),u(t -1), ... ,u(l- m + 1)] (5.4) 

-I 

where, I represents inverse of the system realised by the RBFNc. Thus, for equation 

(5.4) the neural based prediction control signal can be realised as 

Dc (t) = RBFNc [xc (I) J (5.5) 

where 

xC (I) = [y(t + 1),y(t), .. ,y(t - n + 1),u(I-1), ... ,u(t - m + 1)J (5.6) 

The learning process of the neural network is carried out to minimise the overall square 

of errors, between the desired output (u) and the actual output (Dc)' until the error 

becomes very small (i.e., the values of u equal or nearly equal to that of Dc)' Then the 

weights are adjusted and the network should be able to take any reference signal Yr (not 

necessarily the training signal) and produce an appropriate output uc, which makes the 

actual plant outputy approximately equal to Yr [74,75,85] . 

Unfortunately, this way of controlling the plant output Y is ineffective due to the high 

level of error; that is the estimated plant output Y and the reference signal Yr have a large 

difference. The reason for this is because we cannot selectively train the plant to respond 
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correctly to the region of interest since we do not know which plant input corresponds to 

the desired output. Therefore, this method is rarely used in practice since the learning 

process of the neural network is carried out off-line. An alternative solution to this 

problem is to train the network using an on-line learning approach. 

5.2 Direct Adaptive Control Method 

The direct adaptive control (or the on-line) method is used to overcome the problems 

associated with the off-line approach. In this method, the neural network learns during 

the on-line feed forward control period. As shown in Figure (5.2), the controller network 

is placed in front of the plant, whereby the net output control signal Uc is an input to the 

plant. 

~------IZ-"I--.....:....-tI 
Yr(t+l) 

RBFNc 

1\ 

Uc (I) 

training 
signal 

+ 

Plant 

Figure 5.2, Direct adaptive control configuration 

The network is trained to produce the plant input that drives the system output to the 

reference values Yr(t+ 1). Thus, the input to the network can be obtained from equation 

(5.6), where the desired reference signal Yr(t+ 1) was used instead of the unknown y(t+ 1), 

this can be rewritten as 
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xC (I) = [Yr (I + 1), y(I), .. , y(1 - n + 1), U(I -1), ... ,u(1 - m + 1)JT (5.7) 

In general it is important that Yr is chosen such that it can be physically achieved by the 

system, so that the error can truly reach a minimum. 

During the training of the network, the centres are assumed selected presumed to have 

been prior to training and are given as 

i = 1,2, ... ,n 

j=1,2, ... ,m 
(5.8) 

where n is the network input space dimension and m is the number of centres (hidden 

units) with m $ n. It is recommend that the width between the centres is also selected 

previously as described in section (4.1.1), remembering that the same number of centres 

and the width value obtained during the modelling are used for the purpose of controlling 

the system. Therefore, only the weights of the networks are adapted using the LMS 

algorithm to decreases the error between the reference signal Yr(t+ 1) and the actual 

output y(t+ 1) in every iteration step. 

After the learning process is finished, the connection weights between the output layer 

and the hidden units will have been adjusted so that Yr(t+ 1) =y(t+ 1). The learnt inverse 

model may then be able to take a desired response and calculate an appropriate control 

signal ftc' forcing the plant output to approach the desired value. Thus, equation (5.7) can 

be rewritten as 

XC (t) = [Yr(t + 1),Yr (t), .. ,Yr (t - n + l),u(t - J), ... ,u(t - m + J)]T (5.9) 

The fully learnt RBF network controller is depicted in Figure (5.3). It can be seen from 

this figure that no adjustment of weights is needed when the desired reference is within 

the boundary of the training signal. 
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Plant 
y,(t+l) 

fie (t) 

Figure 5.3, Radial basis function controller (RBFNc) configuration 

The direct adaptive control method is considered in our work for controlling the non­

linear dynamic models due to its simplicity and robustness, especially when the proper 

parameters are selected. One limitation which might affect the performance of the 

controller is the choice of the learning factor (11) which controls the convergence of the 

LMS algorithm. Care must be taken by the user when selecting this value; the correct 

value can be selected according to the experience or by a trial and error procedure. 

5.3 Simulation Results 

The performance of the neural network controller is illustrated by the two examples 

discussed in Section (4.1.2). These examples have been studied by Narendra [66], Hunt 

and Sbarrbaro [44], where different controller methods and neural network types have 

been employed. 

Regardless of the method being employed, the objective for any control system is to force 

a given dynamic system to exhibit a desired response. In this study the RBFNc is chosen 

as the reference controller against which the accuracy and performance of the other neural 

network controllers may be compared. 
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Example (1): 

A first order non-linear plant (4.12), discussed in section (4.1.2), is considered. In this 

example, the desired outputs were selected as a square wave, sinusoidal and saw tooth 

signals with different frequencies and amplitudes. The centres and the width between the 

centres of the RBFNc are selected before; for more details see previous section. By 

passing the training input signals through the selected 10 RBFNc nodes (centres), the 

network controller is configured in the same way as shown in Figure (5.2). Assuming the 

optimal width has been selected, then the optimal output layer weights are found using the 

least mean square LMS algorithm equation (2.34). The weight vectors is initially set to 

zero and the learning factor is varied depending on the behaviour of the desired input. The 

simulations are carried out using the Matlab/Simulink packages described in the previous 

section. Thus, the designer can use the block diagram windows to create a model and 

achieve the desired behaviour. The other important advantage of using Simulink is the 

simplicity in building and modifying the models. Simulink also enables us to view the 

progress of a simulation during its run. 

The Simulink model of the RBFNc design is shown in Figure (5.4). This is a hypothetical 

example, where only two inputs with one centre have been shown to illustrate the 

mechanism. 
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Figure 5.4, Simulink blocks setup to simulate the control of a non-linear plant sing RBFNc 
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In this example, the designed network consists of one centre (Le., only one RBF unit). 

The RBF is loaded with its own centres and width values. The desired and feedback input 

signals are passed via the RBF unit and the Gaussian output (Gout) is calculated. The 

LMS on-line method is used for adapting the RBF controller weights. Thus, the weighted 

Gaussian outputs are summed (if more than one output) by the output layer to produce the 

RBF network output control signal Uc. The Uc signal drives the plant to give the desired 

signal Yd. The plant output delay (Yd -1) is feedback to the network and the error signal 

(i.e., the difference between the plant output and the actual output) is used for correcting 

the weights. 

5.3.1 Result (1): 

In order to demonstrate the effectiveness of the RBFNc, four different tests have been 

carried out and are listed below. 

1- The controller is realised with different learning factors. 

2- The system is subjected to some square wave set point. 

3- The controller is subjected to a signal with changeable amplitude andfrequency. 

4- The system is subjected to some set point changes. 

For cases 2,3 and 4 the learning factor of the neural network is fixed at 0.05. The 

amplitude and frequency of the input signals applied in cases 1,2 and 4 are set to 0.3 and 

50 Hz, respectively. The step size is set to 0.0001 for all cases. 

In the first case, the set point was a step response with an amplitude of 0.3. The learning 

factor" for the controller was changed between three different values, " = 0.01, 0.05 and 

0.099, the results are illustrated in Figure (5.5). It can be seen from Figure (5.5) that any 

increase in the controller learning rate directly leads to an increase in the desired response 

and faster convergence. On the other hand it causes an overshoot on the control signal 
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itself. However, a small value for 11 cause a slow convergence rate. Therefore, care should 

be taken when choosing the learning rate values. 
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Figure 5.5, The effectiveness of changing Learning rate values 

In the second test, the learning rate of the controller was set to 0.05 and the set point 

applied to the system was a square wave. The control response is illustrated in Figure 

(5.6), where, the number of samples was 5000 ,the desired signal was a square wave with 

an amplitude of 0.3. The actual and desired signals are shown in Figure (5.6a) and the 

control signal and the error between the signals are shown in Figures (5.6b, 5.6c), 

respectively. 
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Figure 5_6, Results of square wave input(a), desired and actual 

signals, (b), control signal and (c), the error signals 
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In the third test, the learning factor is set as in case 2 and the amplitude and frequency of 

the sinusoidal signal were changed as follows: 

- amplitude = {O.l, 0.2 and 0.3} 

- frequency = { 60, 20 and 80} Hz . 

The responses of this test is reproduced in Figure (5.7). The chosen amplitude and 

frequency were varied as shown above and the number of samples was 800. There are no 

distinguishable differences between the desired output and the actual output as shown in 

Figure (5.7a). The error signal is shown in the same Figure, and the control signal is 

shown in Figure (5.7b). 
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Figure 5.7, Varieng the amplitude and frequencies of the sinusoidal 

input signal, (a), the desired and actual signals and the error 

between them and (b), the control signal 
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In the last case, different shapes of set points were applied to the system and the rest of 

the parameters are kept as in the case 2. The results are shown in Figure (S.8). At the 

beginning of the simulation, the sinusoidal was applied followed by square wave, sow 

wave, sinusoidal and square wave signals. There is no differences between the desired and 

actual signals as shown in Figure (S.8a). The error signal and the control signals are 

depicted in Figures (S.8b) and (S.8c) respectively. 
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Figure 5.8c, The plant control signal 

Example (2): 

In this example, the Simulink blocks are built in the form of the RBFNc model shown in 

Figure (5.4). The net is cascaded in the same way as shown in Figure (5.2), and the 

second order plant is modelled as discussed in the previous chapter, section (4.1 .2) and 

example (2). The important parameters (centres and widths) were also selected during the 

identification process. The desired input signal together with the plant output (including 

the lags) are passed through the selected 9 RBFNc centres to produce the control signal 

as the plant input. Finally, the plant output is compared with the desired signal to produce 

the error signal which is used to correct the output layer weights; the weight adaptation is 

carried out by using the LMS algorithm. 

5.3.2 Result (2): 

The process to be controlled is the same non-linear plant described in chapter 4 equations 

(4.13) and (4.14), where the training signal was a sum of two sinusoids 
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u(t) = sin(27ttl25) + sin(27ttll 0) . The input to the net was 200 samples as shown in 

Figure (5.9). 
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Figure 5.9, The training signal of example two 

As discussed in chapter 4 example (2), the new algorithm has been used to select the 

optimum centres, widths and weights when 200 samples are considered as the input to the 

feedforward controller and the plant. The same control objective given in example (1) was 

also considered in this example. The purpose of this example is to discuss and explain 

some points not covered in the previous example. These points can be outlined in the 

three cases discussed below. In the first test, the random centres shown in chapter 4, 

Figure (4.16), and the constant value 0.1 of the centres width shown in Figure (5.10a), 

are examined to show the effectiveness of the non optimal parameters. The simulation 

time was 4 seconds and the amplitude of the input signal was set at 0.5. The response is 

depicted in Figure (5.l0b), in which it is shown that, the desired sinusoidal output has not 

been tracked. 
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In the second test, the optimum centres shown in Figure (4.17) together with the spread of 

case 1 are used. The same running time, amplitude and desired signal applied in test 1 are 

used. The result of this case is shown in Figure (S.lla), where, it is seen that the actual 
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output has improved, compared to the results of case 1, but does not as yet reach the 

optimum value. 
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Figure 5.1 la, The response of test 2: Actual signal (solid line) 

and desired signal (dotted line) 

In the third case, the optimum centres used in case 2 and the selected widths shown in 

Figure (5.12a), were used for training the controller network. The square and the 

sinusoidal desired input signals were tested again to show the effectiveness of RBFNc for 

controlling this system. The responses are depicted in Figures (5.12b) and (5.12c). In both 

Figures, it is difficult to distinguish between the actual signals and the desired signals. 

This proves the RBFNc parameters appropriateness. 

97 



d) 

"0 
::l -
c.. 

e 
«l 

d) 

"0 

6 

5 

.: 4 

0. 
3 

2 

o o 

0.6 

0.4 

0.2 

a 

-0.2 

-0.4 

-0.6 

-0.8 
a 

l-

-

2 4 6 
nurn b e r of centres 

Figure S.12a, The widths used in test 3 

0 . 1 0.2 
time Isecond 

8 

0 . 3 

FigureS. 12b, Response of square wave: actual signal (solid line) 

desired signal (dotted line) 

98 

1 0 

· 

· 

· 

0.4 



0.6 ~--------~----------~----------~---------, 

0.4 

Q) 0 .2 
"0 
~ -
0. 

E 

o 

ro -0 .2 

-0 .4 

-0 .6 ~----______ ~ ________ ~~ ________ ~~ ________ ~ 
o 0.1 0.2 0 .3 0.4 

time Iseconds 

Figure 5.l2c, Response to sinusoidal wave: Actual signal (solid line) 

desired signal (dotted line) 

5.4 Conclusion 

A neural network controller has been introduced for controlling non-linear dynamic 

systems. In this work the radial basis function RBF was used and its effectiveness was 

demonstrated by simulation examples. 

Two methods have been discussed in this chapter; the general learning method and the 

direct adaptive control method. The former called off-line, has not been used in our work, 

because of the disadvantages discussed in section (5.1). The later method was considered 

and employed. The RBF was used on-line to adapt the weights using the LMS algorithm 

to obtain the control signal which can be directly input to the non-linear dynamic system. 

The effectiveness of the RBF was demonstrated by examples. Simulation results have 

shown that the RBF has good performance and ability in controlling dynamic systems. 

The results have also shown that the parameters selected using the new method were more 
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appropriate. It can be also shown that the response of the desired signal was heavily 

dependent on the value of the learning factor chosen. 

In conclusion, the results have shown that the on-line RBF neural network controller is an 

effective and robust algorithm; one of the main advantages is the adaptivity of the 

algorithm i.e., the quick modification in the behaviour of the controller when there are 

changes in the dynamics of the process. 

The results indicate that we can implement the algorithm in modelling and controlling 

real systems. 
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CHAPTER 6 

MODELLING AND CONTROL OF A BRUSHLESS DC MOTOR 

USING RBF NEURAL NETWORK CONTROLLER 

6.0 INTRODUCTION 

Direct drive (DD) motors have received increasing attention for their freedom from 

backlash and dead zone caused by reduction gearing. These high performance servo 

motors are used extensively in industrial automation areas such as the car manufacturing. 

The drive control of such motors is a very important task. However it is very difficult, 

and in order to obtain a good controller it is advantageous to exploit non-linear control 

techniques, e.g. neural network. This is because, to some extent, most such systems are 

non-linear. In motor control system, the non-linearity depends on such factors as fraction 

hysteresis or saturation [70,81]. These effects are usually neglected in drive control in 

order to use linear controllers, but this does not give a very good control result. 

In order to control a system, the mathematical structure representing a process should be 

known a priori. In reality, the structure of the systems to be controlled is not always 

known and so, these systems are treated as black boxes. These black box systems are 

mostly identified by applying various identification methods, using the available system 

input-output data. 

In this chapter a brushless DC motor is considered as a black box system because of the 

absence of information; such as the mathematical model (model order and time delays). 

In the first instance the well known ARX model is applied to the real system input-output 

data. Once the mathematical model is ascertained, the Smith predictor is used for 

controlling the system and the RBF neural network is then applied for modelling and 

controlling the system. 
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The layout of chapter is as follows. The basic brushless DC motor, the hall effects 

elements, the general dynamic model and the motor transfer function are described in 

section 6.1. In section 6.2 brief descriptions of the servo system, motor control card, data 

acquisition and the experiment set-up are given. The identification of the real system 

using ARX model is given in section 6.3. The Smith Predictor controlling method is 

briefly discussed and some simulation results are provided in section 6.4. The results of 

modelling and control of the system using the RBF neural network are given in sections 

6.5. Finally, by using an RBF the simulation and the real control results of the system are 

presented in section 6.6. 

6.1 Brushless DC Motor 

Conventional DC motors are highly efficient and their characteristics make them suitable 

for use as servomotors. These motors need a commutator and brushes to connect 

mechanically, and hence require extensive maintenance. In conventional DC motors, the 

rotor and the field magnets are placed in the armature and stator. A brushless DC motor is 

unlike the conventional motor, in that it is very similar to an ac motor. The armature 

windings are part of the stator, and the rotor is composed of one or more magnets. AC 

motors are different from brushless DC motors in the way that the later detect rotor 

position and produce signals for controlling the electronic switches. This type of motor 

has the advantage of not using brushes. Brush maintenance is no longer required and the 

problems associated with the brushes such as sparking are eliminated. Another advantage 

is the motor construction, the rotor is placed inside the stator, so more cross sectional 

area is available for the armature winding. In addition, the lack of brushgear in brushless 

motors reduces the motor's size. The brushless DC motor is used extensively because of 

its high torque delivery. 

The controlling of such motor depends on the detection of its rotor position. These 

motors incorporate some means of detecting the pole position on its rotor. The detectors 
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which have been used are, light emitting diodes and phototransistors (photo diode), 

inductors sensitive to inductance variation (not in use recently) and the common one, 

Hall effect elements which are used in this project. To use of any of these sensors the 

required elements are fabricated in a complex electronic circuit. This complexity may be 

one of the disadvantages of brush less DC motors [49,84]. 

6.1.1 Hall effects element 

As mentioned in the previous section, several methods have been used for detecting the 

rotor pole position. The Hall effect method was discovered by E.H.Hall in 1878, [49] and 

it is a widely used method for detecting a magnetic field by using semiconductors devices 

(called Hall elements). With Hall effect elements used as the position sensors, all the 

elements are incorporated in one integrated circuit chip. For simplicity only one chip is 

placed in the brushless DC motor as shown in Figure (6.1). 

WI 

Hall elements (IC) 

Figure 6.1, Basic principles of the brushless DC motor using Hall effect element 

The chip consists of many elements i.e. resisters and transistors. The output signal from 

the Hall element operates transistors to control the electrical currents in the stator 

windings WI and W 2' 
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6.1.2 The Motor Dynamic and Transfer Functions 

The dynamic characteristics refer to how a motor responds to operational commands. So 

when considering the dynamic characteristics, it is convenient to represent a motor using 

an equivalent circuit, which is used to explain and analyse the dynamic behavior of a DC 

motor. Consider the schematic diagram of the armature controlled DC motor depicted in 

Figure (6.2), where 

Ra 
La 

1 
ia ~ 

J 
Va 

Load 
w 

Armature circuit 

Figure 6.2, The equivalent circuit of the dynamics of a DC motor 

Va = armature voltage 

La = armature inductance 

Ra = armature resistance 

ia = armature current 

Vb = back emf volts 

if = field current 

Kj = visco us- /riction 

Kb = back emf constant 

Kt = torque constant 
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T = motor torque 

J = moment of inertia 

w = angular velocity 

where, 

and 

the differential equation for the armature circuit is 

v: L dia R' V a = a-+ a1a+ b 
dt 

Substituting equation 6.2 into equation 6.5 yields 

v: L dia R' k a = a - + ala + b W 
dt 

- motor electrical equation 

The armature current produces the torque that overcome the inertia and friction. 

T dw 
=J-+kf w 

dt 
- motor dynamic equation 

Substituting equation 6.2 into equation 6.5 produces 
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(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 



K ·· Jdw k 
('f'a = d+ f W 

( 

(6.6) 

Assuming the initial conditions are all zero and taking the Laplace transforms of 

equations (6.1,6.4 and 6.6) obtaining the following equations 

kb w (s)= Vb (s) 

(Las + Ra)ia +kb w(s)=Va(s) 

(Js+kf ) w(s) = K(ifia(s) 

Simplifying equations (6.7-6.9) , gives the following transfer function 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

The inductance fa in the armature circuit is usually small and may be neglected. If so, 

then the transfer function given in equation (6.10) can be reduced to 

K 
w(s) = m V(s) 

(T, s+l) m 
- desired speed (6.11) 

where, 

- motor gain constant (6.12) 

- motor time constant (6.13) 
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For the field circuit shown in Figure (6.2), there is an inductance lJ in series with a 

resistance Rr . Thus, for that circuit 

dif . 
Vf=Lf-+R I 

dt f f 
(6.14) 

From the above equation, the field current if leads to the production of a magnetic field 

and hence a torque acting on the armature coil as indicated by equation (6.2). Many 

authors assume if to be constant, but in reality it is not. However, if the field current 

varies, torque varies as well, hence the flux (0/) will be effected. The relation between 

field current and flux is shown in Figure (6.3). 
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Figure 6.3, Relation between flux and field current 

In addition ia can vary the flux (small effect). The armature reaction may also change the 

field in the machine which in turn changes the torque constant. According to these 

assumptions, equation (6.11) can be assumed non-linear and therefore, DC motors are 

non-linear systems [68,77,79]. Furthermore, in practice most plants contain several non­

linear elements which can not be easily described by mathematical models. To some 
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extent every plant is non-linear because each will eventually reach some physical limit 

which prevents its output increasing or decreasing indefinitely. This is due to a 

phenomenon called 'saturation'. The effects of this phenomenon is to effectively reduce 

the gain at high amplitudes and to slow the plant response to disturbance. Another 

example, is 'velocity limiting', where the speed of a motor must be limited to prevent 

centrifugal forces damaging the motor and couplings. Such a velocity limited motor can 

follow slow positional changes requiring speeds below the limit, but will lag when called 

to perform high speed changes. Moreover, there are some other factors which cause non­

linearities in motors, e.g. Hysteresis (backlash) and Dead zone. Furthermore, the torque 

speed currents are parallel for a relatively wide speed range but they may not be 

equidistant; i.e., for a given speed, the torque may not vary linearly with respect to the 

control voltage [25,68]. In reality the non-linearities exist in some operating conditions, 

hence the neural network approach is used to capture the unmodelled dynamics. 

6.2 BH3400 Brushless Dc Motor 

The BH3400 is a Hathaway motor with type B winding insulation. This motor is of a 

permanent magnet AC type which is commonly referred to as a brushless DC motor and 

requires a 60-100 volts DC supply. The BH3400 is a four pole, three phase !l. connection 

and its maximum no load speed is 12000 rpm at maximum input voltage. The control 

specifications has been given such that the motor achieves and maintains speeds ranging 

from 1000 rpm to the maximum speed to an accuracy of ± 0.1 % . 

6.2.1 Brushless DC Motor Controller Card (BMCC) 

The servo motor cannot be directly driven by applying a current or voltage from the 

mains power supply. Therefore, a control card (power amplifier) is needed to control the 

required input signal. In this project a card is designed for a three phase brushless de 
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motor using Hall effect sensors, to derive and control the motor speed. The designed 

Brushless dc Motor Control Card (BMCC) is an analogue servo amplifier, requiring no 

software or programming skills to set-up. The control card is supported by a protection 

circuit to assure system integrity and to save it from overvoltage problems. The card is 

composed of many components, the main one is a UC3625 an integrated circuit (lC). The 

UC3625 motor controller IC integrates most functions required for high-performance 

brushless DC motor control, into one package. When coupled with external power 

MOSFETs, this IC performs fixed frequency pulse width modulation (PWM) motor 

control in either voltage or current mode, whilst implementing closed loop speed control 

and braking with smart noise rejection, safe direction reversal, and cross condition 

protection. This IC is rated for operation over the temperature range of O°C to 70°C. The 

block diagram of the drive circuitry is shown in Figure (6.4). For more details about the 

drive, see appendix A. 
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6.2.2 Data acquisition card 

The PLC-8I8L is a high performance multifunction data acquisition card for IBM 

PCIXTIAT or compatible computers. This card offers most desired measurement and 

control functions : I2-bit AID and D/A conversion, digital input, digital output and timer 

Icounter. In our work the following three functions were used 

- AID conversions; converts an analogue input signal to digital form. 

- DI A conversions; converts a digital value into an analogue output signal, and 

- Counterl timer; performs frequency measurement, event counting, pulse output, 

timer interval measurement and timed interrupt generation. 

The PCL-8I81 card, comes with a software driver that allows the user to control the 

card's functions using high level languages. There are many language interfaces which 

allow the application program to communicate with the software driver; BASICA, 

TURBO PASCAL and BORLAND CIC++ etc. In this application, BORLAN C was 

used to interface between the PC and the Brushless DC motor via the BMCC [71]. The 

schematic of this card is shown in Figure (6.5). 
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Figure 6.5, The PCL-8I81 block diagram 
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6.2.3 Experiment Set-up 

The experiment set-up of the brushless DC motor control system, is depicted in Figure 

(6.6). The experiment consists of a Brushless DC motor, a Frequency to Voltage (FN) 

converter, a Personal Computer (PC) and an interface circuit board PLC-8I8l. 

Brushless 
DC Motor 

Power Supply 

ON • I--~~ Motor 
OFF. Driver 

High-performance DA 

PCI...-818LS 
card 

Personal Computer 
.~ ....... ... .... . ........ . . .... ... .. eo . ...... .... ...... . ...... " ' " .... , .. .... .. ...... .......... .. 

Figure 6.6, The control system setup 

6.3 Identification of the Brushless DC Motor 

In the identification of non-linear models, dynamic networks have been proven 

successful in modelling and control. The usual method for making the network behaviour 

dynamic, is to feedback the delayed output of the network to its input space along with 

the delayed input. This is known as tapped delay line (TDL) methodology. Before 

realising the neural network control experiment, the system dynamic behaviour is 

characterised by identifying the open-loop characteristics of the system. In order to 
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identify the model, numerous sets of data should be obtained from the real system to 

ascertain the system behaviour. The motor is loaded by a disc with a total mass of 

approximately 1.0 kg. The experiment was set-up as shown in Figure (6.7) and the 

procedure is described in the following. 

y 

Figure 6.7, Open-loop identification of the experimental system 

A ramp de voltage signal Urn was calculated in the computer and transmitted through the 

DI A converter to the motor via the driver circuit card. The input voltage signal is nearly 

proportional (at certain level) to the motor rotational speed, the speed can be increased as 

much as is required by increasing the applied voltage. The input was increased linearly 

by 0.0005V, in the range of 2.5685V to 3.0480V, and the motor outputs Ym were 

transmitted through the FN and AID converters to the PC. The first four samples of the 

motor input voltage, output voltage and the equivalent frequencies and motor speed are 

illustrated in Table (6.1). 

Table 6.1 , The motor inputs-outputs data 

No. of samples Motor input motor output Output frequency Motor speed 

V V HZ rpm 

1 2.5680 1.3194 33 1000.04 

2 2.5685 1.9990 50 1515.14 

3 2.5690 2.7986 70 2121.21 

4 2.5695 3.5982 90 2727.27 
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The input-output data is plotted in Figure (6.8). It is clear from the output results shown 

in Figure (6.8b), that the brushless DC motor exhibited a non-linearity. This non-linearity 

problem may be attributed to some of the reasons stated in section (6.1.2). 
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Figure 6.8, A typical DC motor (a) input and (b) output data presentation 

Procedures for finding the solutions of problems involving such non-linear systems are 

extremely complicated. Because of the mathematical difficulty attached to non-linear 

systems, one often finds it necessary to mtroduce equivalent linear system in place of 

non-linear ones. The modelling of such non-linear systems by linear system models may 
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give quite accurate results. In this work, the MATLAB function ARX was applied to the 

real system input-output data, for identification purpose. 

6.3.1 Choice of Sampline Period 

The time constant (l' cJ of any system is the time required for the system output to rise 

exponentially from zero to 63.2 per cent of the maximum output, when a step signal is 

applied to the input. The importance of the time constant, is that it provides a handy 

reference for judging system performance. This parameter is determined by the controller 

designer in order to calculate the sampling time, (tsJ, for digital control systems [5,12,43]. 

For the DC motor setup a step response test gave a time constant of 4 seconds. Using this 

information the sampling time was chosen to be 0.25 seconds. 

Following the choice of sampling period a number of different model structures were 

used to obtain the best fit to the data from the step response. After many trials it become 

apparent that a second order model provide the best fitting result, but that this needed to 

be complemented by a large time delay. 

As an example identification results for the following three models are displayed 

graphically in Figures (6.9a- 6.9c). These structure models are: 

model 1 : k =1, A = [I -1.8491 0.8504], 

model 2: k=14, A = [1 -1.69170.6927] 

model 3 : k=20, A = [1 -1.7049 0.7053] 

lIS 

B = [-0.14540.1496] 

B = [0.0251 -0.0218] 

B = [0.0121 -0.0107] 
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Figure 6.9b, Actual and simulated model outputs for model 2 
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The combination of simulated outputs is depicted in Figure (6.9d). The comparison 

between the errors of the real and simulated outputs of different models with different 

values of k are shown in Figure (6.ge). It is considered that the minimum error is obtained 

for model 2. 
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For this reason, the test with 14 delays was considered and a second order linear model 

was found for the system using the certainty equivalence criteria. The dynamic model is 

represented in equation (6.1 S) below. The validity of the model was tested and the results 

are shown in Figure (6.10). From equation (6.1S) it can be seen that the model provides a 

very long time delay. This delay can be attributed to the hardware and software programs 

(transport and computation). As will be shown later, in spite of that large delay the neural 

network controls the system adequately. 

y(t) = 1.6917 Y (t -1) - 0.6927 y (t - 2) + 
0.0251 u (t -13) - 0.0218 u (t -14) 

(6.1 S) 

The estimation error e(t) between the real output and simulated output is calculated as 

/\ 
e(t) =: y(t)- y(t) (6.16) 

The error is plotted in Figure (6.11). 
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Figure 6.11, Error of the model 

As seen in Figure (6.10), the simulated output matched the plant output well, but there is 

still some room for improvement. It is clear that the fit is an approximation and does not 

follow the real system. The motor input-output relationships were represented by a linear 

equation (6.15), in most cases the actual relationships are not quite linear. In fact, a 

careful study of physical systems reveals that even so-called linear systems are really 
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linear only in limited operating ranges (i.e. non-linear systems) [51,68]. Hence, it was 

justified to use the RBF neural network to identify the system. This will be discussed in 

section 6.5. As Smith Predictor (SP) has been well recognised in control literature to cope 

well with time delayed system [21,87], before using the neural networks, the SP method 

was used for controlling the model as discussed in the following section. 

6.4 Smith Predictor Implementation 

Due to the large delays in the model (6.15), this section is concerned with the effect of 

these delays on the control of the system. One of the best methods, which has been 

widely used to deal with such models, is the SP introduced by OJ.M. Smith [87]. The SP 

model shown in Figure (6.12), is a method which utilises a mathematical model of the 

process in a minor feedback loop around the conventional controller. This method is used 

to overcome some of the difficulties associated with controlling a processes with pure 

time delay. For real system controllers using the SP, some hardware devices are required 

i.e. the microcomputer e.g. Intel 2920. It has been noted that such processors can be used 

to implement discrete algorithms for control system applications [24,61]. 

R(s) 

+ 

U(n) 

Yes) 
+ 

Figure 6.12, The block diagram of Smith Predictor 

(arrangement for 2920 implementation) 
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In general, the predictor has a transfer function G(s) e-sT and a controller with transfer 

function C(s). As shown in the above figure, the format of SP is analogue. In this project 

the method will be implemented in digital form. By referring to the model (6.15) and to 

the general form of the SP, Figure (6.12), the whole block diagram of the system, 

including the controller, is implemented as shown in Figure (6.13). 

Figure 6.13, Block diagram of the whole system 

The system consists of four important blocks: a DC Motor with delays (Motor _d), a DC 

Motor without delays (Motor), Delays, and a PID Controller. The transfer functions of 

each block is explained as follows. 

The general transfer function G(s) of the SP is 

G
s 

(s) = U(s) = C(s) 
:P E(s) J + G(s)C(s)(J- e -sT ) 

(6.17) 

where C(s) is the PID Controller G(s) is the system without delay and e-sT is the Delay. 

This Gsp(s) was acquired from the minimisation of the SP block diagram depicted in 

Figure (6.12). Based on Gsp(s), equation (6.17), can be rewritten in the digital form 

Gsp(z) as follows: 
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G 
/,.\ _ U(z) _ C(z) 

SplZJ - - k 
E(z) 1 + G(z)C(z)(J - z - ) 

(6.18) 

By using the factors of equation (6.15), the system with delays has be obtained to be 

G(z) = 0.0251z-13 
- 0.0218z-14 

1-1.6917z-1 +0.6927z-2 

when the delay D(z) = z-14, the system without delay can be written as 

G(z) = 0.0251- 0.0218z-
1 

1-1.6917z-1 + 0.6927z-2 

(6.19) 

(6.20) 

The output response Y would react according to the values of the PID controller 

parameters, proportional gain (Kp), integral constant (KiJ and the derivative constant 

(Kd). The general form of the PID controller is [27,30,48]. 

C (z) = kp(1 + Tz + kd(z -1)) 
PID ki(z -1) Tz 

(6.21) 

Tes/(J): the parameters for the PID and Smith Predictor controller were set at the Ziegler­

Nichols settings which were obtained from the open loop step response test. Thus, the 

obtained values of the parameters kp, ki and kd are 2.739, 1.6 and 0.4 respectively. 

Ultimately, the model is tested by using an input square signal with different amplitude 

was varied alternatively from 0.1- 0.6-0.5. The selected PID parameters are used and the 

results are shown in Figure (6.14) and the error between the desired and actual signals are 

depicted in Figure (6.15). 
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Figure 6.14, DC motor response using Smith Predictor method, 

desired signal (solid line) and actual signal (dotted line) 

(Ziegler and Nichols settings) 
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6.5 Modelling the Brushless DC Motor using an RBF neural network 

In modelling a Brushless DC motor, the RBF neural network was trained to model the 

forward and the inverse dynamics of the motor. The input-output structure of the network 

was determined based on knowledge of the motor input-output and equation (6.15), 

which indicates that the motor is a second order system. Accordingly, a non-linear model 

was assumed for the motor as, represented in the following equation. 

yp(k + 1) = f(yp(k), ... ,yp(k -m),u(k -n» (6.22) 

where fO is the non-linear function. 

The representation of the forward dynamics model of the motor is shown in Figure 

(6.16). 

Input 
D C M o tor 

Radial basis 
Neuron 

Network 

Error 

e = Yn- Yp 

Figure 6.16, Modelling of Brushless DC Motor Using RBF neural network 

The modelling procedure for the forward and inverse dynamics of the motor were based 

on the procedure and the techniques that have been presented and discussed in chapter 5 

section 5.2 . 
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6.5.1 Modelling results 

A fit was obtained using the collected input-output data. The time delay was set to 14 

and the model orders na = nb = 2 . The number of input samples was 300 and the input 

to the network was delayed values of these inputs and the motor outputs. The process is 

carried out using the MA TLAB programs for selecting the optimum parameters, where 

the motor output gain was 0.1. The parameters and the final results are shown in Table 

(6.2). 

Table 6.2, The optimum motor model parameters. 

NS Initial Initial EAL Optimum Optimum sse SAGO 

nc p nc P 

300 4 2 0.001 10 3 5.071 X 10.3 2.14xI0·' 

The final outputs of the RBF neural network and the DC motor are depicted in Figure 

(6.17). It is observed that the model is following the motor output very well. The error is 

plotted in Figure (6.18). 
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Figure 6.17, The RBF and DC motor outputs 
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Figure 6.18, The error between RBF and DC motor outputs 

6.6 Controlling the Experimental Brushless DC Motor using RBF neural network 

The speed control system will be defined here as one in which a motor will run at a 

preselected speed without the need for an operator to monitor it. This is known as 

automatic or self control. Most self controllers use armature voltage control (see equation 

(6.11)). The speed control falls into two basic categories; open-loop and closed-loop. An 

open-loop speed control system is one in which the motor's armature voltage is strictly a 

function of an input signal representing the commanded speed of the motor. A closed­

loop speed control system is unlike the open-loop, in that the motor's armature voltage is 

a function of both its input signal and a feedback signal. The feedback signal is a voltage 

representative of the motor's actual speed. In this way a closed-loop system can self 

correct for changes in reference signal whereas an open-loop system cannot. Therefore, 

the closed-loop system is considered. 
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6.6.1 Closed loop speed control 

In order to control the Brushless DC Motor, software, hardware, and algorithms for 

designing and implementing the control system (neural network controller) along with 

the data acquisition card PCL-8I81 are used, as shown in Figure (6.19). The controller 

consists of a computer that implements a control algorithm in real time. The Of A 

converter converts the digital control signal (RBF output) into a suitable analogue voltage 

Uc for the motor. The output Uc of the DIA converter gain (G), will drive the motor to 

give the desired signal Y d 

Feedback 

Driver 
card 

Figure 6.19, The closed-loop diagram for DC motor speed control 

The output of the motor Y (motor speed), measured by sensors, is then converted by an 

FN converter. The analogue to digital converter AID converts the digital voltage Y to an 

analogue form and passes it to the computer as feedback. The feedback signal is 

subtracted from the desired signal Yd to create the error signal e. The error signal is used 

to correct the weights of the RBF network controller which issues the corresponding 

control action Uc. This signal is applied to the DC motor until the error is minimised. As 

the value of desired signal Y d is increased or decreased, the speed of the motor will 

follow. For changes in speed, corrective action will be taken automatically. In this way 

the motor will reach and run at the desired speed. 
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The controller is implemented by computer programs. These programs are written in the 

C language according to the RBF neural network mechanism. The RBF centres and width 

parameters were pre-selected as described in section 6.5.1, and only the weights are 

adapted on-line. The weights are changed to obtain the best control performance. 

6.6.2 Implementation structure 

The implementation structure of the Brushless DC motor control is shown in Figure 

(6.19). The objective is to control the motor speed by using the RBF neural network 

controller. The controlling procedure and the techniques for controlling the dynamics 

model have already been explained and discussed in chapter 5, hence they are not 

repeated. As the accuracy of control system depends on the motor parameters, and 

because of the different behaviour of the real-world plant and the simulation, two models 

had to be trained. The first is the simulated one and the second is the real system. The 

block diagram of the control system is shown in Figure (6.20). 

-
+ 

Yd e 
'1 

Vc Brushless Y -
DC Motor 

II r------t 
RBFc 

l-j IDL I: 

I IDL [ 

Figure 6.20, The Brushless DC Motor control system block diagram 
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6.6.2.1 Control ofthe Motor model. 

During the modelling procedure, the RBF neural network parameters were selected by 

using the new algorithm discussed in chapter 3. The selected 10 centres and the widths 

of the centres are as shown in Figures (6.21) and (6.22), and have been used for training 

the neural network controller. The training data together with the selected centres are 

depicted in Figure (6.23). Simulink has been used to simulate and control the DC motor. 

The selected parameters are loaded into the Radial Basis Function network in the way 

explained in chapter 5, section 5.3. The motor model is cascaded with the RBFc 

controller in the same manner as in Figure (6.20) and two different signals have been 

used for testing the ability of the network controller. 
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Figure 6.21, The DC Motor optimum Centres 
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Figure 6.23 , The motor training data (dotted line) and the optimum centres (circle) 

Test(l): in this simulation, the controller was tested for input signal change and the other 

factors are set as follows . 
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1- Learning factor TJ = 0.01. 

2- Step size is set to 0.001. 

3- The controller gain is 4. 

4- The initial weight vectors are set to zeros. 

A saw tooth signal is used as the reference signal, with amplitude 0.2-0.6. The RBF 

neural network is trained to control the motor. From the result obtained in Figure (6.24), 

it is clear that the actual output is driven to the desired signal within a very short period 

of time and no overshoot occurs. 

0 .1 

°0~--~1~0----~2~O--~3~O~--~4~O----5~O~--~6~O----~70'---'6~O--~90 
time Isecond 

Figure 6.24, The actual signal (dotted line) and the desired signal (solid line) 

Test (2): the second test is the more important one, where the desired output of the real­

time system (motor) is a square wave. This signal is chosen to be the reference signal 

during the motor speed control simulation. The parameters are set as in the test (1) and 

the reference signal amplitude is varied alternatively from 0.1-0.6-0.5. The results of this 

test are shown in Figure (6.25). At the beginning of the simulation, overshoot occurs but 

only for a short period. The overshoot is eliminated when the weights of the controller 
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network are adjusted and the actual signal tracks the reference signal very accurately. The 

error signal between the signals is depicted in Figure (6.26). 
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In comparison, with the Smith Predictor method when the P+I controllers were used, the 

simulation results have clearly demonstrated that for a system containing a time delay, 

the use of this method dose not always give a good controller. Conversely the RBF neural 

network controller performed very well, revealing this method has the ability to control 

the real system. 

6.6.2.2 Control oftlze experimental Bruslz'ess DC Motor 

In the best of the authors knowledge, as yet the Radial Basis Function has not been 

applied for controlling brushless DC motors. The speed control scheme for the DC 

motor is indicated in Figure (6.19) and the RBF,c neural network is cascaded with the 

motor as shown in Figure (6.20). The speed is set between 1000 to approximately 10000 

rpm, which corresponds to a range of voltages on the input of the AID converter, i.e. 

2.5685-3.0480 volts. The desired square wave is applied to the DC motor via the RBFc 

controller and the results are described as follows. 

Test (1): the results of the real-time control system using the RBFc neural controller are 

indicated in Figure (6.27). The motor is controlled by using the same centres and widths 

parameters as in the simulation test and only the LMS algorithm is used for adapting the 

weights of the network. Instead of Simulink and Matlab programs, the C language is used 

to interface between the PC and the motor. In this practical application two factors should 

be selected carefully: the sampling time ts and the learning factor 7]. The input signal is a 

square wave for which the selected parameters were ts = 0.25 and" = 0.01. As shown in 

Figure (6.27), the motor output does not follow the desired signal. That is the motor 

speed increases too slowly and the control signal Uc, is unable to compensate. The error 

shown in the same figure is high and the LMS algorithm has not the capability to 

minimise it. This is due to the fact that the learning parameter was set too low. 
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Figure 6.27, The results of test 1; motor output, desired signal and the error 

Test (2): the reference signal and the sampling time are kept as in test 1 and the learning 

factor is changed to 0.095. The reference signal and the motor output are shown in Figure 

(6.28). The comparison of this results with the previous test indicates that a smother start­

up and shorter adaptation time are achieved with this parameter setting. In this case the 

actual signal follows the desired signal well. As shown in Figure (6.29), a large error e 

appears in the beginning of the adaptation, but it is quickly minimised. The control signal 

is displayed in Figure (6.30). 
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Figure 6.29, The error between the actual signal and the desired signal 
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Figure 6.30, The motor control signal 

Test (3): in this test, the desired output signal, the centres, and the widths parameters 

were repeated as in the previous tests. The learning factor TJ was set to 0.095 and the 

sampling time Is increased to 0.4 second. The objective of this test is to show the effects 

of the high sampling time on the controlling of the system. The desired, and the actual 

output signals are depicted in Figure (6.31) below. As seen in this figure, the actual signal 

does not track the desired one very well, and the response of the system is slow, 
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especially during the decreasing of the Motor speed. The error and the control signal are 

shown in Figure (6.32). 
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Figure 6.31, The motor reference signal (solid line) and 
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Test (4): the same reference signal, centres, widths and procedure in test 1 to test 3 were 

used. In this examination, the learning factor was set to 0.095 and the sampling time 

decreased to a small value Is = 0.1. The results of the motor response and the desired 

signal are shown in Figure (6.33). Comparing these results with that in test two and three, 

there is a very fast response and less delay between the signals. On the other hand, the 

actual signal decreases below the desired signal. This means the motor speed decreases 

whilst the motor is under the control action. Therefore, the decrease of the sampling time 

to a small value for such systems, must be avoided and the correct value must be selected 

by the designer. The error and the control signal of this test are shown in Figure (6.34). 
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Figure 6.33, The motor reference signal (solid line) and 
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Figure 6.34, The Motor control signal (dotted line) and the error 

between the actual and desired signals (solid line) 

Test (5): As explained in the previous chapters, the centres are very important parameters 

and incorrect selection or any change in their values may cause severe problems when 

controlling the system. Also care should be taken in the selection of the width between 

the centres. The effectiveness of both parameters was explained with the simulation test 

examples, see chapter 4. In this real-time application, all parameters are kept as in the test 

two except the widths between the centres which are set to 0.1 for all centres. As shown 

in Figure (6.35), once the control signal is applied, the motor is started, but immediately 

the response increases towards infinity. This practical result shows that proper selection 

of parameters is very important and without the adaptive algorithm presented in chapter 

3 it would have been extremely difficult to find the optimum centres and widths by trial 

and error. 
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Figure 6.35, Motor output, reference signal and 

the error signal (width = 0.1) 

We can conclude from the above results that selection of the optimum parameters is very 

important for control tasks. The RBFc controller has been successfully applied for the 

simulated and the real-time speed control of the brushless DC motor. The results of the 

practical application have demonstrated the improvement of control performance. It was 

also proved that the sampling time and the learning factor should also be selected 

carefully. 
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CHAPTER 7 

CONCLUSIONS AND FURTHER WORK 

The artificial neural network has been widely used for solving many problems, 

particularly non-linear modelling and control which has been investigated by many 

researchers. The common type of neural network is the backpropagation algorithm. This 

method has been intensively studied and applied for different problems with satisfactory 

results. On the other hand the method suffers from slow convergence and the complexity 

of the network construction. A brief discussion of the method was given in chapter two 

section 2.2. 

An alternative method is the Radial Basis Function neural network (RBF). This method 

has been investigated by many authors and has been proven to learn faster than the 

backpropagation method. 

One major problem in using RBF networks is the selection of the network parameters, 

such as the centres and the widths. Currently no mathematical method for finding such 

parameters exists. Therefore, in this thesis, a new adaptive algorithm for selecting the 

parameters was developed. The algorithm consists of a set of other algorithms: K-means 

clustering algorithm, P- nearest neighbour and the singular value decomposition or least 

mean squares algorithm. The new algorithm description with an example was given in 

chapter three. 

The new algorithms ability to select the optimum centres and the width between the 

centres was proved in chapter four. The accuracy of the selected parameters are 

demonstrated by simulation examples of non-linear dynamic systems, where the obtained 

results are compared with those obtained by using the RBF conventional method. 
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In chapter five, the optimum parameters selected for modelling the systems in chapter 

four are used for controlling the same non-linear system. Thus, the direct adaptive 

method, using the RBF neural network, and the least mean square method were used on­

line to adapt the network weights. The examples have been demonstrated when reference 

signals with different amplitudes, shapes and frequencies were applied. The effects of 

changing of the width values between the centres was also shown. 

The important thing discussed and proved in this thesis is the modelling and control of 

real non-linear dynamic systems by means of the RBF neural network. The real system is 

a high speed brushless DC motor. In the best of the authors knowledge, such systems 

have not been controlled by this type of the neural network before. 

The most important aspects in controller design of any system is the knowledge of the 

process characteristics. To obtain some knowledge of the DC motor, the ARX 

identification technique was applied to the real input-output data. Then the RBF network 

was configured and trained to represent a Non-linear Autoregressive Exogunes (NARX) 

input-output model structure and the performance of the trained network was 

investigated. In modelling a real brushless DC motor, the functionf(.) is assumed to be a 

differentiable unknown continuous non-linear function. 

After the investigation, it was found that the system provides a very long delay, therefore 

the Smith Predictor method was used for controlling it. The system was then modelled 

and controlled by use of the RBF. The results of both methods were compared and the 

robustness of the network was demonstrated. 

An RBF network was implemented for modelling and control of a real system with 

centres and widths selected by the new algorithm. For system implementation, two 

circuits: brushless DC motor control card and a frequency to voltage converter were 

designed. The RBF neural network program was written in C and compiled to interface 

the entire system. Satisfactory results were obtained and shown in chapter six. These 
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show the RBF network has the ability to model and control high speed motors; a difficult 

non-linear system. 

Further work in this area should proceed in several directions. In this thesis only one real 

system was modelled and controlled, so more investigations into problems which require 

on-line performance, when a little a priori information about the system is available, are 

recommended. 

The RBF neural network studied in this thesis can only be used for single input single 

output systems. The method therefore needs to be extended to multi-input multi-output 

systems. Some other method such as the neuro fuzzy is recommended as well. 

In our work the C language has been used for programming the real system RBF 

controller and for interfacing the real system with the PC. This is time consuming and 

involves implementation difficulties, so the Simulink package is recommended in the 

future with appropriate hardware interface. These hardware are readily available by 

vendors though still very expensive. 
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APPENDIX A 

At- Main Brushless DC Motor Drive Circuit 

The main component for designing the brushless DC control card is UC3625 (lCI). This 

circuit is equipped with MOSFETs (metal oxide semiconductors field effect transistors) 

power devises capable of self-switching OFF/ON very rapidly. This devices together 

with many other electronic components are used in leI, see Figure (6.4) part I. 

The six transistors (three high-side and three low-side) are connected to the motor 

windings A, B and C. The rotating of the motor is depends on the relation between the 

OFF/ON states of these transistors and the motor speed depends on the values of the 

motor control signal (TP5). 

A2- Protection circuit 

In general the motors are expensive and any damage caused by overvoltage may cost the 

user money, time and might be some other problems. Therefore, the protection circuit 

shown in Figure (6.4) part II, was designed to limit the input voltage to the brushless De 

Motor. 

The circuit is very simple construction and its protective mechanism may be activated by 

an overvoltage conditions at pins 2 and 3 in the integrator circuit (le3) • The Ie) can 

maintain full overload protection while operating at up to 150 V. 

A3- Reversing the direction of rotation 

When it is not convenient or possible to reverse the polarity of the input command to the 
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driver card to cause the direction of rotation change for a given input, the wiring between 

the driver card and the motor may be changed to effect a reversal. As an example, the 

motor rotates clockwise for a positive input command at control input (IPS). If it is 

desired that the motor rotate counter clockwise for the same input sign, the procedure 

outlined below has to be followed. 

1- Swap the connection of 'A-MOTOR' and 'C-MOTOR' 

2- Swap the connection of 'HALL A' and 'HALL B' 
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APPENDIXB 

BI-Operating procedure for brushless De servo system 

To control the system, the following steps must be adhered to: 

Step(1): load the hardware interface with the software programs, use the DOS command 

line edit 

(i) peL-81S1 

(ii) Tee -ml file name.c SlS1cl.lib 

(iii) File name 

Step(2): determine the RBF inputs, hidden and outputs nodes number and defined the 

parameters file names i.e. centres and widths, assuming the learning factor and the 

sampling time set a priori. 

Step (3): rune the program and save the desired output signal, actual output signal and the 

error between the signals in files. 

Step(4): check the results. 

The structure of the main program is look like the following: 

# include < > 

include "userrbf.h" 

Initialisation ( ) 

{ 

example: learning factor =0.02 

1* Radial Basis Function *1 
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} 

Get centres and widths ( ) 

{ 

defined the centres and widths files name 

} 

{ 

define peL-8I81 functions 

example: pcl8I8L(I3,param); 

pcl8I8L( 4,param); 

pcl8I8L(5,param); 

/* Brushless DC Motor */ 

1* Function. 13: .oN" times of DI A output *1 

1* Function. 4: AID initialisation *1 

1* Function. 5: .oN" times of AID trigger *1 

determine the sampling time ts 

} 

main () 

{ 

1* main program *1 

1* Parameter table *1 

In the main program, determine the pel-8I81 board number, Base I/O address, AID and 

DI A converters number etc. 

example: param[O]=O; 

param[I]=Ox300; 

param[I4]=I; 

END PROGRAM 

} 

I*Board number *1 

1* Base I/O address * I 

1* AID conversion number *1 

146 



REFERENCES 



REFERENCES 

1. Abdulaziz. A. A., (1994), "Neural Based Controller Development for Solving Non­

Linear Control Problems", PhD. Thesis, University of Newcastle Upon Tyne, UK. 

2. Aleksander I. and H. Morton, (1995), "An Introduction to Neural Computing", 

London : International Thomson Computer Press. 

3. Astrom K. J. and B. Wittenmark, (1989), "Adaptive Control", Addison Wesley 

Publishing Company. 

4. Beale R. and T. Jackson, (1992), "Neural Computing: and Introduction", Bristol; 

Philadelphia: lOP, 1992, c1990. 

5. Bennet S., (1988), "Real-time Computer Control", Prentice Hall International UK 

LTD. 

6. Billings .S.A., and S. Y. Fakhouri, "Theory of Separable Processes with Applications 

to the Identification of Non-linear Systems", Pro. lEE, Vol. 125,No .. 9, 1987, pp.1051-

1058. 

7. Billings S. A. and S. Y. Fakhouri, (1978), "Identification of a Classes of Non-Linear 

Systems Using Correlation Analysis", Proc. lEE, Vol. 125, No.7, pp.691-697. 

8. Billings S. A., S. Y. Fakhouri, (1982), "Identification of Systems Containing Linear 

Dynamics and Static Non-linear Elements", Automatica, Vol.18, No. 1 ,pp. 15-26. 

9. Billings S. A., and I. J. Leontaritis, (1981), " Identification of Non-linear Systems 

using Parameter Estimation Techniques", lEE Conference on Control and its 

applications, Warwick, March 1981. 

147 



------~.~~~~--~~~~~~~~ 

10.Billings. S. A, (1980), "Identification of Non-Linear Systems A Survey", lEE 

Proceeding Vo1.127, Part D, No.6, pp.272-285. 

11.Bishop C. M., (1995), "Neural Networks for Pattern Recognition". Oxford 

Clarendon Press; New York: Oxford University Press. 

12.Bolton W., (1992), "Control Engineering", Longman Group UK LTD. 

13.Broomhead D. S and D. Lowe, (1988), "Multivariable Functional Interpolation and 

Adaptive Networks", Complex Systems Publications Inc. Vol. 2, pp.321-355. 

14.Brown M, and C. Harris, (1994), "Neurofuzzy Adaptive Modelling and Control", New 

York: Prentice Hall. 

15.Chen S. and S. A. Billings, (1989), "Representations of Non-linear Systems: the 

NARMAX model ", Int. Journal ofControl,VoI.49,No. 3, pp.1013-l032. 

16.Chen S. and S. A. Billings, (1992), "Neural Networks For Non-linear Dynamic 

System Modelling and Identification", Int. Journal of Control,VoI.56,No. 2,pp.319-

346. 

l7.Chen S., Billings S. A. and W. Lou, (1989), "Orthogonal Least Squares Methods and 

Their Application to Non-linear System Identification", Int. Journal of Control, Vol. 

50, No.5, pp.1873-l896. 

IS.Chen S., C. F. N. Cowan, and P.M. Grant, (1990), " Practical Identification of 

NARMAX Models Using Radial Basis Function", Int. Journal of Control, Vol. 52, 

No.6, pp.-1327-l350. 

148 



19.Chen S., C. F. N. Cowan, and P.M. Grant, (1991), " Orthogonal Least Squares 

Learning Algorithm for Radial Basis Function Networks", IEEE Transactions on 

Neural Networks, Vol. 2, No.2, pp.-302-309. 

20.Chen S., C. F. N. Cowan, and P.M. Grant, (1991), " Orthogonal Least Squares 

Learning Algorithm for Training Multi-output Radial Basis Function Networks", lEE 

Conference publication No.349, Second International Conference on Artificial Neural 

Networks, pp.336-339. 

21.Copp D.G., K. J. Burnham and F. P. Locett, (1997), "Model Identification for 

Predictive Control of Automatic AirlFuel Ration Systems", Proc. 12th Int. Conf. on 

Systems Engineering, ICSE'97 Coventry University, UK, 9-11 September 1997. 

22.Cybenko G., (1989), "Approximation by Superpositions of a Sigmoidal Function", 

Mathematics of Control Signals Systems, Vol. 2, pp.303-3l4. 

23.Doner Hush and Bill G. Home, (1993), "Progress in Supervised Neural Networks", 

IEEE Signal Processing Magazine, pp. 8-39. 

24.Donoghue F. J., (1977), "A comparison of the Smith Predictor and Optimal Design 

Approaches for Systems with delay in the Control", IEEE Transactions on Industrial 

Electronics and Control Instrumentation, Vol. IECI-24, No.1, pp. 109-117. 

25.Emanuel Perrcles, (1985), "Motors, Generators, Transformers and Energy", Prentice­

Hall. 

26.Farolow S. J., (1984), "Self-Organizing Methods In Modelling GMDH Type 

Algorithms" New York: Marcell Dekker. 

149 



----------------------------

27.Farsi M., (1986), " Simplified Self-Tuning Algorithm and Model Reduction for Robot 

Control", Ph.D. Thesis, University of Newcastle Upon Tyne, UK. 

28.Fathala G. and M. Farsi, (1996), "Modelling and Control of Non-linear System Using 

Radial Basis Function Neural Network Proc. 11th Int. Conf. on Systems Engineering, 

ICSE'96 University of Nevada, Las Vegas, USA, 9-11 July 1996, pp.25-30. 

29.Fathala G. and M. Farsi, (1997), "Modelling and Control of a Brushless DC Motor 

Using RBF Neural Networks", Proc. 12th Int. Conf. on Systems Engineering, ICSE'97 

Coventry University, UK, 9-11 September 1997,pp. 248-251. 

30.Franklin G. F., J. D. Powell and M. L. Workman, (1990), "Digital Control Dynamic 

Systems", Addison Wesley. Pub. Co. 

31.Freeman J. F. and D. M. Skapura, (1992), "Neural Networks, Algorithms, 

Applications, and Programming Techniques", Reading, Mass. : Addison-Wesley. 

32.Fukuda. T and T. Shibata, (1992), "Theory and Application of Neural Networks for 

Industrial Control System", IEEE Trans. on Industrial Electronics, Vol.39, No.6, pp. 

472-489. 

33.Gallant S. I., (c1993), "Neural Network Learning and Expert System", Cambridge, 

Mass. : MIT Press. 

34.Garica C. E., D. M. Prett and M. Morari, (1989), "Model Predictive Control: Theory 

and Practice -a Survey", Autotmatica, Vol. 25. No.3, pp.335-348. 

35.Giorsi F and T. Poggio, (1990), "Networks and the Best Approximation Property", 

Biological. Cybernetics, Vol. 63, pp.169-176. 

150 



36.Golub G. H., Van Loan and F. Charles (cI989), "Matrix Computations, second 

edition", Baltimore, Md. : Johns Hopkins University Press. 

37.Goodhart S. G, K. J. Burnham and D. J. G. James, (1994), "Bilinear self-tuning 

Control of a High Temperature Heat Treatment Plant", lEE Proc. Control Theory 

Appl. Vol. 141, No.1, January 1994. 

38.Gorinevsky D., (1995), "On the Persistency of Excitation in Radial Basis Function 

Network Identification of Non-linear Systems", IEEE Transactions on Neural 

Networks, Vol. 6, No.5, pp 1237-1244. 

39.Gorinversky D. and L .A. Feldkamp, (1996), "RBF Network Feedforward 

Compensation of Load Disturbance in Idle Speed Control", IEEE Control System 

Magazine, Vol. 16, No.6, pp.18-27. 

40.Harris G. J. and S. A. Billings, (1981), "Self-Tuning and Adaptive Control: Theory 

and Applications", Peter Peregrinus LTD. 

41.Hassun M. H., (1995), "Fundamentals of artificial neural networks", The MIT Press. 

42.Haykin S., (1994), "Neural Networks, A Comprehensive Foundation', Macmillan 

College Publishing Company. 

43.Healey M., (1975), "Principle of Automatic Control", The English University Press 

LTD. 

44.Hunt K. J. and D. Sbarbaro, (1991), "Neural Networks for Non-linear Internal Model 

Control", lEE proceeding part D, Vol. 138, pp.431-438. 

151 



45.Hunter 1. W. and M. J. Korenberg, (1986), "The Identification of Non-linear 

Biological Systems: Weiner and Hammerstein Cascade Models", Biological 

Cybernetics, Vo1.55, pp.l35-144. 

46.1vakhnenko. A.G., (1991), "Polynomial Theory of Complex Systems", IEEE Trans. 

,Vol.SMC-l, NoA, pp.346-378. 

47.Jian Tan, Hong Xie, and Yung Cheng Lee, (1995), "Efficient Establishment of a 

Fuzzy Logic Model for Process Modelling and Control", IEEE Transaction on 

Semiconductor Manufacturing, Vo1.8, No.1, pp 50-61. 

48.Karam Z. K., (1988), "Fast Adaptive Control Algorithms and their Application to 

industrial Robots", PhD Thesis, University of Newcastle Upon Tyne, UK. 

49.Kenjo T. and S. Nagamori, (1984), "Permanent Magnet and Brushless DC Motors", 

Oxford : Clarendon Press. 

50. Kiernan L., J. D .Maso and K. Warwick, (1996), "Robust Initialization of Gaussian 

Radial Basis Function Networks Using Partitioned k-means Clustering", lEE 

Electronic Letters, Vol. 32, No.7, pp.671-673. 

51.Kou. C. B., (1987), "Automatic Control Systems", Prentice-Hall International, Inc. 

52.Kuo L. E. and S. S. Melsheimer, (1994), "Using Genetic Algorithms to estimate the 

optimum width parameter in Radial Basis Function Networks", Proceedings of the 

American Control Conference, Baltimore, Maryland, pp. 1368-1371. 

53.Lau Clifford, ( 1992 ), "Neural Networks: Theoretical Foundations and Analysis", 

New York: IEEE Press. 

152 



54.Leonard J. A. and Kramer M. A., (1991), "Radial Basis Function Networks for 

Classifying Process Faults" IEEE Control System Magazine, Vol. 11, No.3, pp. 31-

38. 

55.Leontaritis I. J. and S. A. Billings, (1985), "Input-Output Paramitric Models for Non­

Linear Systems, Part I: Deterministic Non-linear Systems ", International Journal of 

Control. Vol. 41, No.2, pp.303-328. 

56.Leontaritis.I. 1. and S. A. Billings,(1985), "Input-Output Paramitric Models for Non­

Linear Systems, Part II: Deterministic Non-Linear Systems ", International Journal of 

Control. Vol. 41, No.2, pp. 329-344. 

57.Levin A. U. and K. S. Narendra, (1996), "Control of Non-Linear Dynamical Systems 

Using Neural Networks-Part II: Observability, Identification, and Control", IEEE 

Transactions on Neural Networks, Vol. 7, No.1, pp. 30-42. 

58.Linkens D. A., (1993), "Parallel Processing for Self Organizing in a Control 

Systems", In Parallel Processing in a Control Systems Environment (E. Rogers and Y. 

Li, ed), Prentic Hall. 

59.MacQueen J., (1967), "Some Methods for Classification and Analysis of Multivariate 

Observations", In Proceedings of the Fifth Berkeley Symposium on Mathematical, 

Statistics and Probability, Vol. 1, pp.281-297. 

60.Mao J. and A. K. Jain, (1996), " A Self-Organizing Network for Hyperellipsoidal 

Clustering (HE C)", IEEE Transactions on Neural Networks, Vol.7, No.1, pp. 16-29. 

61.Meyer C, D. E. Seborg and R. K. Wood, (1976), "A Comparison of the Smith 

Predictor and Conventional Feedback Control", Chemical Engineering Science, Vol. 

31, pp. 775-778. 

153 



62.Moody 1. and C. J. Darken, (1988), "Learning with Localized Receptive Fields", In 

Proceedings of the 1988 Connectionist Models Summer School, eds. Touretzky, 

Hinton and Sejnowski. Morgan-Kaufmann, Publishers. Omohundro, S. 1987. Efficient 

Algorithms with Neural Network Behaviour. Complex Systems, VoU, pp.133-143. 

63.Moody J. and C.J.Darken, (1989), "Fast Learning in Networks of Locally-Tuned 

Processing Units", Neural Computation, Vol. I, pp. 281-294. 

64.Musavi M. T., W. Ahmed, K. H. Chan, K B. Faris, and D. M. Hummels, (1992), "On 

the Training of Radial Basis Function Classifiers", Neural Networks, Vol.5, pp.595-

603. 

65.Narendra K. S and P. G. Gallman, (1966), "An Iterative Method for The 

Identification of Non-Linear Systems Using A Hammerstein Model ",IEEE 

Transactions On Automatic Control, Vol.ll, pp.546-550. 

66.Narendra K. S. and K. Parthasarathy, (1990), "Identification and Control of 

Dynamical Systems Using Neural Networks", IEEE Trans. Neural Networks, Vol. 

1 ,No.1 , pp.4 - 27. 

67.Narendra K S., (1990), " Adaptive Control Using Neural Networks", MIT Press. 

68.0gata K, (1970), "Modern Control Engineering", Prentice Hall. 

69.0wen D. 8., (1984), "Self-Organizing Method in Modelling", Statistics Textbook and 

Monographs. 

70.Parr. E. A., (1996), "Control Engineering", Oxford: Butterworth-Heinemann. 

154 



71.PCL-8181-Hight Performance, Low Cost Data Acquisition Card, (1995), "User's 

Manual", Bede Technology LTD, 48 Cuthbert Court, Bede Industrial Estate, 

Newcastle Upon Tyne, UK. 

72.Piegat Andrzej and M. Plucinski, (1995), "Application of the Radial basis Function 

(RBF) in Modelling and Identification of Linear and Non-linear Systems", Proceeding 

of the 12th International Conference on System Science, Vol. 1, pp.266-274. 

73.Powell M. J. D., (1992), "The Theory of Radial Basis Function Approximation in 

1990", W. Light, ed., Advances in Numerical Analysis, Oxford: Clarendon Press, 

Vo1.2, pp.l02-205. 

74.Psaltis D., A. Sideris and A. Yamamura, (1988), "A Multilayered Neural Network 

Controller", IEEE Control Systems Magazine, Vol. 8, No.2, pp. 17-21. 

75.Raiskila P. E. and H. N. Koivo, (1990), "Properties of a Neural Network Controller, 

ICARV", In Proc. 90 Inti. Conf. on Automat. Robotics, Comput. Vision, pp. 1-5. 

76.Renolds 1. and L. Tarassenko, (1991), "Isolated word recognition with the Radial 

Basis Function classifier", lEE Conference publication No.349, Second International 

Conference on Artificial Neural Networks, pp.345-349. 

77.Robbins and Myeosl Electrol- Craft, (1988), "DC Motors, Speed Control , Servo 

Systems", An Engineering Handbook. 

78.Rumelhart D. E., 1. L. McClelland and the PDP Research Group, (1986), "Parallel 

Distributed Processing: Explorations in the Microstructure of Cognition", The MIT 

Press. 

79.Say M. G. and E.O. Jaylor, (1980), "Direct Current Machines". Pitman Books LMT. 

155 



80.Schetzen. M, (1980), " The Voltera and Wiener Theory of Non-linear Systems", John 

Wiley & Sons, Inc. 

81.Shieh Jang-Hang. and Kai-Tai Song, (1995), "An Experimental Study of Learning 

Control Design for a Non-Linear Servosystem", Dept. of Control Engineering 

National Chiao Tung University, Taiwan, pp.l-22. 

82.Soucek B. and M. Soucek, (1988), " Neural and Massively Parallel Computers: The 

Sixth Generation", New York: John Wiley and Sons, Inc. 

83.Stephen P. B., (1986), "Control System Engineering: modelling and simulation, 

control theory and microprocessor implementation", Prentice-Hall. 

84.Takashi Kenjo, (1994), "Power electronics for the microprocessor age", Oxford 

University Press. 

85.Tanomaru J. and S. Omatu, (1992), "Process Control by On-Line Trained Neural 

Controllers", IEEE Transactions on Industrial Electronics, Vol.39, No.6, pp. 511-521. 

86.Warwick K., G. Irwin and K.J Hunt, (992), "Neural Networks for Control and 

Systems", Peter-Peregrinus Ltd UK. 

87.Warwick .K and D. Rees, (1986), "Industrial Digital Control Systems", lEE Control 

Engineering, Series 29, Peter Peregrinus Ltd. 

88.Wasserman P. D., (1989), "Neural Computing: Theory and Practice", New York: 

Van Nostrand Reinhold. 

89.Wasserman P. D., (1993), "Advanced Methods in Neural Computing", New York: 

Van Nostrand Reinhold. 

156 



90.Wellstead P. E. and M. B. Zarrop, (1991), "Self-tuning Systems: Control signal 

processing", John Wiley and Sons, Inc. 

91.William H. P., S. A. Teukolsky, W. T. Vetterling and B. P. Flanery (1992), 

"Numerical Recipes in C: The Art of Scientific Computing, 2nd Edition", :Cambridge 

[Cambridgeshire] ; New York: Cambridge University Press. 

92.Yamda T. and T. Yabuta, (1992), "Neural Network Controller Using Autotuning 

Method for Non-Linear Functions", IEEE Trans. on Neural Networks, Vo1.3, No.4, 

pp. 595-601. 

93.Ye X. and N. K. Loh, (1993), "Dynamic System Identification Network", Proceeding 

of the American Control Conference, San Francisco, pp.2912-2916. 

94.Zalzala A. M. S. and A. S. Morris, (1995), "Neural Networks for Robotics Control 

Theory and Applications", New York: Ellis Horwood. 

95.Zhu. Q. M., K. Warick and J. L. Douce, (1991), "Adaptive General Predictive 

Controller for Non-linear Systems", IEE proc. D, Vol. 138, No.1, pp.33-40. 

96. Zurada J. M. (1992), " Introduction to Neural Systems", West Publishing Company. 

157 


