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ABSTRACT

Modelling and control of non-linear systems are not easy, which are now being solved
by the application of neural networks. Neural networks have been proved to solve these
problems as they are described by adjustable parameters which are readily adaptable on-
line. Many types of neural networks have been used and the most common one is the
backpropagation algorithm. The algorithm has some disadvantages, such as slow

convergence and construction complexity.

An alternative neural networks to overcome the limitations associated with the
backpropagation algorithm is the Radial Basis Function Network which has been widely
used for solving many complex problems. The Radial Basis Function Network is
considered in this theses, along with a new adaptive algorithm which has been developed
to overcome the problem of the optimum parameter selection. Use of the new algorithm
reduces the trial and error of selecting the minimum required number of centres and
guarantees the optimum values of the centres, the widths between the centres and the

network weights.

Computer simulation using Simulink/Matlab packages, demonstrated the results of
modelling and control of non-linear systems. Moreover, the algorithm is used for
selecting the optimum parameters of a non-linear real system ‘Brushless DC Motor’. In
the laboratory implementation satisfactory results have been achieved, which show that
the Radial Basis Function may be used for modelling and on-line control of such real

non-linear systems.
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CHAPTER 0

INTRODUCTION

A variety of a non-linear complex systems such as robotics and many other electrical
systems require modelling and control. An example of the real complex systems dealt
with in this thesis is a servo motor. This system is considered to be a black box because
of the absence of system information. Therefore, it is desirable to use a method of
controller design requiring only partial information about the plant. Artificial Neural
Networks (ANN) offer the advantages of performance improvement through network
learning. The most widely studied neural network is known as the Multi-Layer
Perceptron (MLP) neural network. This type of network consists of fully interconnected
layers: one input layer, one or two hidden layers which have an activation function (i.e.
sigmoidal) and one output layer. Use of this type of network in system identification and
control has been successful in different areas, but still suffers from limitations such as the

complexity of construction and slow convergence.

An alternative neural network the Radial Basis Function (RBF) is used in this thesis.
This network is unlike the MLP, in its construction. RBF network consists of one input
layer, one output layer and only one array of hidden nodes called centres. The RBF
network is a simple architecture and moreover, the training of this network is faster than
that the MLP network. One reason the RBF is very fast, is that learning is divided into
two stages. Learning in the hidden layer for selecting centres and widths and the learning

in the output layer for selecting the weights.

One problem still exists in using the RBF network, that is the selection of the optimum
centres and widths. This problem has been overcome by incorporating various algorithms
i.e. K-means clustering algorithm, P-nearest neighbour, Gaussian activation function and
least mean square algorithms in one adaptive algorithm. The new algorithm, can
adaptively select the centres and the widths of any system given a knowledge of the

system input-output and delays.



Two RBF networks were designed; a static network for modelling and a dynamic
network for control of non-linear plants. In this thesis, the neural network control
approach includes: the general learning method and the adaptive control method. The
closed-loop system was used for modelling and control of simulation examples using the

RBF network, where successful results have been obtained.

The main objective of designing the networks, is to model and control the experimental
system speed. This system is a three phase high speed Brushless DC Motor. The motor
speed is proportional to input voltage generated in a PC and controlled by a control card
designed in our laboratory. The motor output has been converted by a simple frequency
to voltage converter (F/V) circuit also designed in house. The whole experiment was set-
up and interfaced with a PC by hardware; e.g. a PCL-818] data acquisition card and
software programs. An open-loop system has been considered for identifying the real-
system (plant) using an autoregressive exogenous (ARX) model. A closed-loop system
has been considered with the dynamic network used for controlling the ‘motor model’ on-
line. The simulated control of the motor speed was tested where results were obtained by
applying changes to input signal. Finally, the ‘motor’ itself is controlled on-line by using
of a square input signal and changeable parameters. Then the same input signal was used

together with the optimum parameters and the obtained results were compared.

This thesis is outlined as follows. In chapter 1, a brief discussion about the principle of
the system identification is given. This is followed by several methods which have been
used for a non-linear system identification. The non-linear identification methods
provided in this chapter are: the group method of data handling, the function series and
the parameter estimation methods. Furthermore, the basic control system and four
control methods are given. These are: adaptive control, gain scheduling, model reference
adaptive control and the self tuning adaptive control methods. These are discussed briefly
and the block diagram for each method is illustrated. Chapter 2 provides background for
the neural networks, starting with the basic idea of artificial neural networks. Although,
some types of neural network are introduced, the Radial Basis Function network is

discussed in detail, since the main work in this thesis depends on this particular type of



neural network. In addition, clustering algorithms, distance measurements, activation
functions and weight adapting algorithms are presented. In chapter 3, a new algorithm for
selecting the centres and widths adaptively is explained and proved by a simple

hypothetical example.

Chapter 4, provides an introduction to the modelling of a non-linear dynamic system
using artificial neural network with the representation of the general model being
provided. The procedure and the block diagram structure for training feedforward neural
network models with the equation of a non-linear system are discussed. The analysing of
a mathematical equation, which describes the RBF neural based identification model
output, the hidden or Gaussian output, the network inputs-outputs and the predictive error
equations are presented. The parallel-series method for modelling a non-linear systems is
used and two examples in which the input signals and the network parameters
respectively are varied are tested and the simulation results are presented. In chapter 5,
the work outlined is mainly concerned with configurations suitable for the control of
dynamic non-linear systems using the radial basis function. The concept of the
controlling procedure for SISO dynamic systems is analysed and the block diagram
structure for training the network controller is given. Moreover, two control methods are
discussed and simulation results are presented. In chapter 6, the real system is modelled
and controlled. The system considered was a Brushless DC Motor control system which
is a real example of a system containing non-linearity. First basic motor construction and
its general dynamics together with the transfer function are given. Thus, the necessary
motor interface hardware cards and software programs are mentioned. In addition, the
whole experiment is set-up and the ARX model is used for identifying the real system.
The schematic model is illustrated and the results of modelling the system using the RBF
network are shown. Then, by using the closed-loop system, the motor speed is controlled

on-line. The system diagram is shown and the monitored simulation and real results are
explained. Finally, conclusions and recommendations for further work are made in

chapter 7.



CHAPTER 1

SYSTEM IDENTIFICATION AND CONTROL



CHAPTER 1

SYSTEM IDENTIFICATION AND CONTROL

1.0 INTRODUCTION

In order to design controllers for a dynamic system it is useful to have a model that will
describe the system’s behaviour adequately. Because of the complexity of the system and
unknown parameters, the designer turns to experimental data and the measured response.
The process of constructing models and/or estimating the unknown plant parameters
from experimental data is called system identification. System identiﬁcatiop can be
described as a method for finding the relationship between various signals of a system
under observation. This relationship, often called a model of a system, is usually a system
of difference equations in discrete-time and differential equations in continuous-time.
The identification method may be based on linear or non-linear systems, and its process
may be carried out in either an on-line or off-line mode, depending on the application
context. In practice most systems are non-linear to some extent, therefore a non-linear
system identification method may be needed. Due to the difficulties of analysing non-
linear systems, only a few methods have been developed. Each method depends on the
type of non-linearity of the identified system. These traditional methods have been based
upon Group Method of Data Handling (GMDH), Parameter Estimation and Functional
Series Methods [55,56,58]. Each method has specific problems and limitations which are
discussed briefly in this chapter, particularly in sections 1.1.1-1.1.3. Once the system is
identified, the next step is to design a controller for the same system. The designs have
been produced by means of using conventional or classical control methods.
Conventional control theory is widely applied in linear systems having constant
parameters. This is often a good approximation for systems that are controlled at fixed
operating points. The controllers will not always be satisfactory when the operating

condition changes. Therefore, the iterative adaptive control system has been used in these



cases. The adaptive control system is a type that is able to adapt itself to changing
parameters at various operating points of the system. The extensive research on adaptive
control was started in the early 1950s. To the present date rapid progress has been
achieved and many applications are reported [3,90]. After a brief discussion of basic
control system, in section 1.2, the general adaptive control structure including with three

adaptive systems are described in sections 1.2.1-1.2.3.

1.1 Non-linear System Identification

System identification can be described as a method of finding the relation between the
system’s input and output signals. System identification may be carried out to gain a
better understanding of the properties of a system and to design a good controller for the
system based on the identified model. In order to design a control system it is necessary
to have a mathematical model that adequately describes the system’s behaviour, There
are many identification techniques that can be used. These could be linear or non-linear.
Before discussing these techniques, the difference between linear and non-linear systems
will be briefly discussed. In control literature if a system S, depicted in Figure (1.1), has
an input (%) and an output (}), it is termed linear if the system output depends linearly on

the given input, i.e. the principle of superposition holds.

Y; System i

Figure 1.1, Input output model

V=S tuyt. )=y o oY) i=123,... (L.1)

=



Any system that does not satisfy this requirement is defined as non-linear. Linear system
identification has been well established and it is found in many applications, but non-
linear system identification has received little attention and only a few methods for
identifying non-linear systems have been developed. This may be attributed to the
difficulty of analysing such systems. In general for both cases, linear or non-linear
system, identification can be carried out in one of two ways. The first is the identification
when model structure is assumed and an analytic description can be constructed for the
system. The second is the identification with an unknown model structure. This latter
type of identification is used only if not enough information about the model structure is
known to allow analytic equations to be written down. Various techniques have been
used for identification of non-linear systems and some of these are discussed in the

following sections.

Before discussing identification techniques, a brief description of classical non-linear
controllers is given. Assume the system has been identified. The next step is to control
the same system. Many control systems contain non-linear elements. Whilst designing a
non-linear control system, an analysis phase includes examination of a fixed structure to
determine such properties as signal size, stability and dynamic response is needed. Since
general non-linear systems have proved so difficult to study, many types of approximate

methods have been proposed i.e., the linearization method.

Another approximate function technique was proposed by R. J. Kochenburger in 1950,
[68] called Describing Functions (DF). This technique has been widely used and many
non-linear problems have been solved. The DF analysis concerns basically with the
frequency response of the system and treated only in terms of sinusoidal input signals.
The basic idea is that a sinusoidal input signal (%) to a non-linear device f{u) produces an
output signal (y) that has frequency as the input, with different shape and possibly shifted
in phase. Describing Function analysis assumes that only the functional component of the
output is important. Thus, the output can then be expressed by a Fourier series as the sum

of an infinite number of frequency and phase shifts. It then assumed that the fundamental



component of the output adequately describes the system response and the higher
harmonics are damped out of the system. The describing function is thus the ratio of the

fundamental component of the output to the input [30,68,83].

1.1.1 The Group Method of Data Handling (GMDH)

The group method of data handling technique is a multilayer self organising algorithm
based on a non-linear mathematical model of data. This method was first introduced by
Ivakhnenko in the 1960’s [26]. Ivakhnenko developed the method using the principles of
heuristic self organisation to solve complex problems with large dimensionality and
short data sequences. The method has received much attention by many other researchers
and has been used for solving many problems, such as identification of static and
dynamic non-linear models, pattern recognition, optimal control etc. The schematic of the
method is illustrated in Figure (1.2). To make the method clear, suppose

x;=[x XX 3,...%m] is the input and the output y; = F [x; ] is a non-linear function of x.

The procedure for the method is summarised in the following steps :

1. The original data is divided into training set and testing set.

2. Quadratic polynomials are formed for all possible combinations of x; variables,
taking pairs each time. .

3. For each polynomial a system of normal Gaussian equations is constructed using all
data points in the training set.

4. The models are used to predict the system response in the training set data region.

The predictions are passed through a mean squares error (MSE) selection criteria,
n

such as MSE =iZ(y(t)— )‘»(t))z , where j(t) is the predicted value, and » is the
ny

number of data points in the testing set.
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Figure 1.2, The schematic for the Grouping Method of Data Handling (GMDH)

5. The outputs y,...,y;, are ordered with respect to the smallest MSE. The model is
allowed to pass to the next level of GMDH if its MSE is less than a specified
threshold.

6. At the next level the independent variables for the new training and testing sets are
found by mapping the original training and testing sets of data through the single layer
which has been formed.

7. According to step 2 new polynomials are formed, and for each layer steps 2-6 are

repeated until the smallest MSE is reached.

For obtaining satisfactory results the GMDH, or Perceptron, must have four layers or
more. Too many layers may give poor results. The Perceptron results are indicated by the
mean squares error method. To avoid unsatisfactory results, the best solution must be
chosen based on data from layers of the Perceptron not on the results of the last layer. As
an example, assume that the input vectors in the training set are N, each composed of p

property values, X n =X " 1,...,X np ),n=123,...N and the desired outputs are yg (n).

The function implemented by an element in one of the layers is



- _ 2 2 12
y Fz()O f0+f1x1+f2x2+f3x1 +f4x2 +f5x]x2 (1.2)
where the subscript in F2 denotes a second order transformation of the inputs.

Considering one element in the first layer the coefficients of this element can be
determined in such that the mean square error between the outputs y; and the desired
output yg(n) is minimised. Thus, the coefficients are obtained from the Gaussian

equations as
Ya)=1o+ Fyxyy + fxyy + I35y Ty + F5my7

bi=j=123,..,N (1.3)

= 2 2
yaWN=1, + 1% +f2xM.+f3le. +f4xM. +f5le.xM.‘

rewrite equation (1.3) in the matrix form as

Y;=XF (1.4)

where matrix Y g ,X and F are of order NxI, Nx6 and 6 x 1, respectively. Multiply both

sides of equation (1.4), by the transpose of X, gives

xTy, =T xF (1.5)
where matrix XTX is 6x6 and the solution is found by inverting the matrix in equation

(1.5)



F=(XT)Q_1XTYd (1.6)

Vector F contains the set of the coefficients which enables this element to approximate
the actual outputs value with minimum squares error. The procedure is repeated for each
element in the first layer with the components in matrix X changing each time dependent
on the identity of the pairs of the input to the particular element. The same procedure and
technique are used to find the six coefficients of each element in the other layers. It is
recommended that, as mentioned earlier in this section the, experimental data is divided
into a training and testing set. If the training data which were used to estimate the
coefficients are used for the network testing, unsuccessful results are expected, since

small changes in the training data will lead to large changes in the coefficient values.
The advantage of GMDH, is its ability to construct differential equations for the system

without a priori information on the relationship between input and output variables. On

the other hand using this algorithm requires very heavy computing power [10,46,58].

1.1.2 Function Series Methods

The functional series method of Volterra and Wiener is based on the representation of a
system by the Volterra series [1,10]. It is well known that, for a linear time invariant
system, the output response y(#), to an input x(f), may be computed from a knowledge of

the system-impulse response A (1), by using the convolution integral:
[¢ 0]
Y= | h)xt~)dy (1.7)

where u(t) and y(#) are the system input and output respectively. A study of non-linear
function (1.7) was made by Volterra [80] in 1887. He studied analytical functions and

introduced the following representation
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o0 [o0]

Y= 1 g, (7 xtt=5)de+ | fa,(r, 5 )xt=r xli -5, )dr dr, +

o0 [«0]
[. .. Igl(rl,rz,. T xt=T)x(t-1). .. (1.8)

coox(t-t,)drdr, .. dr,

where, x(?) and y(?) are the input and the output of the system at time ¢ and the function

g( T o T ) is termed the Volterra kernel of order n. The kernels in (1.8) are
n n

bounded and continuous in each t,, and symmetric functions of their arguments [10].

Unfortunately, some difficulties arise in the use of Volterra series in system modelling
(e.g., the problem of practical measurements of the Volterra kernels). These problems
have not prevented research and in 1942, Weiner overcame the Volterra limitations.
Weiner was one of the first researchers to develop and apply Volterra series to the
identification of non-linear systems. Thus, the Weiner model structure is shown in Figure

(1.3), with the dynamic linear system first, followed by a static non-linear element

[7,10,95].
u(t) x(®) y

Figure 1.3, The Weiner model

u(t) and y(1) are the input and the output respectively.

Although, the functional series of non-linear systems are now well established, very few
attempts have been made at using such series for practical identification of real systems.
This might be attributed to the difficulties associated with the system kernels and the

excessive computational requirements necessary to characterise systems. Moreover, when
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using Volterra kernels, only two kernels are considered for identification of non-linear
systems, for any system involving higher than second order kernels, this offers
considerable difficulties. Furthermore, Weiner’s formulation is impractical and difficult

to use because of the high number of coefficients required [10].

Other researchers have tried to develop a solution to overcome the problems of non-linear
system identification. In 1966 Narendra and Gallman [65] produced a technique known
as the Hammerstein model shown in Figure (1.4). This model consists of a non-linear
element followed by a linear element. These authors have examined this model for
identification of various non-linear systems and conclude that the experimental results of
computer simulations indicate the method could be quite effective for many non-linear

systems for which the Weiner model could be a poor choice.

u(t) x(t) )
o

Non-linear part Linear part

Figure 1.4, Hammerstein model

Thus, if the Hammerstein model is considered to be the system identification method
then, from the separability theory [6], each block can be identified on its own. Based on
this theory, if the linear dynamic part of this model is known or can be estimated
recursively, using linear control theory techniques, then the non-linear part can be
identified by a non-linear identification method such as correlation functions or Newton
Raphson. The results obtained for the Hammerstein model are readily valid for the
Wiener model [1,6,8]. The comparison between these two methods and the summary of

the identification of each techniques have been given in [45].

Consequently, various researchers have turned their attention to a restricted class of non-

linear systems. This system is known as the block oriented method, cascaded system or
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general model. The model as shown in Figure (1.5), is composed of a linear system

followed by a non-linear system followed by another linear system.

u(t) x(Y) Y@ z(1)

Figure 1.5, The general non-linear model

where hj(t) and h)(1) are the linear elements, y(#) is the non-linear element’s output, u(%)
is the system input and z(?) is the system output. This method is typically an off-line
technique. It has been studied by many researchers and they have found that it requires
extensive experimental action to identify the system accurately [7,8,10]. In conclusion,
the identification of a non-linear systems is very difficult and none of the stated
techniques can be recommended as providing an acceptable solution and each must be

judged according to the problem under investigation and their merits.

1.1.3 Parameter Estimation Method

The parameter estimation methods for identification of non-linear systems has been
considered by many researchers. This method has been very successful in many
applications, but is limited in how good an approximation it may give [9]. One of the
most widely used structures is a linear difference equation, assumed to be in the form of
an autoregressive moving average exogenous (ARMAX) model, given in the following

equation

A@)y(t) = B(z) u(t —nk)+ C(z) e(t) 1.9

in which the polynomials 4,B and C are defined as:
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A@Z)=1 + alz"'l +a22—2 +. . tapgz @
B =by+bzl +bz? . . 4b 27 » (1.10)
Ca=1 + clz_l +c22—2 +. . Hcpez € J

where z-{ is the backward shift operator (delay operator), nk is the number of delays
from system input to system output and na, nb and nc are the orders of the polynomials
4,B and C. Also y(t) and u(?) are the system output and input sequences respectively and

e(t) is a disturbance affecting the system.

Equation (1.9) can be rearranged in a linear difference equation format as:

na nb nc
y) = —_ZJ a;y(t—1i) +_Zobl-u(t -nk—-i)+(1+ 'ZI cie(t—1i) (1.11)
= = 1=

where nk is the system time delay (nk > 1).

If the structural of model (1.11) is known, then the model is simply a linear combination
of unknown parameters. Thus, the unknown parameters are estimated directly by using
the available input-output data with one of several algorithms (e.g., Least Square,
Recursive Least Square, etc.). In practice most systems in industry are non-linear to some
extent and in many applications, non-linear models are required to provide acceptable
representations. Moreover, in some models a little a priori information is available and
the process is treated as a black-box. In this case, the usual approach is to expand the
input-output data using a suitable model representation, which is usually selected to be

non-linear in the input and output variables.
When the system is non-linear however, the traditional system descriptions are based on

group method of data handling and functional series such as described in sections (1.1.1

and 1.1.2). Whilst, these provide an adequate representation for a wide class of non-linear
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systems, they have some difficulties and several parameters are required to characterise
the non-linear systems making the identification of such systems limited. Thus, Billings
and his group have realised that the wide application of linear difference equations make
it natural to search for non-linear difference equation models. Therefore, they have
proved that the linear difference equation (1.11), which relates sampled input signals to

sampled outputs can be generalised for the non-linear time invariant process.

The linear different equation (1.11), can be realised as

[y t+n;-1) ] [ uyt+p)
y](t) ul(t)
yi(t+p)=[al.1 a,...a, : +[bi by bl.k] : 12
ym(t+nm-1) ur(t+p)
X )
where i =1,2, ... ,m, r and m are the dimensions of the input-output vectors u and y
respectively, and p= max(nj,n),. . .,ny). The integers indices ny,n),. . .,ny are the

observability indices of the system and the summation of these integers (n=nj+ny+. .
-*np) is the model order. Every index n; corresponds to the specific output y; The model
(1.12) can be regarded as m interconnected single output models.

The multi-structural input output linear time invariant relationship of equation (1.12) was

generalised to the non-linear equation [55,56] as

yi(t+p)=fi{y](t+n] '1)""’3’1(’)»""}’m(’+”m'1):"'
Ym0y (04 P,y O up (0 Py (1) (1.13)
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where f() is a non-linear function.

For the case of single input single output (SISO) systems, equation (1.13) can be realised

into the non-linear stochastic form as [55,56,86]:

yt+1)=fye),. . yt-n+Dut+1),. . u@t-n+l)+
e, . .ett—-n+D]+e(t+1)

(1.14)

This model is called the NARMAX model (non-linear autoregressive moving average
model with exogenous input) for the standard ARMAX model (equation ( 1.9)). A
special case of the general NARMAX model (1.14) is the non-linear autoregressive with

exogenous (NARX) model

ye+D)=fIp®),. . yt-n+Dut+l),. . ult—n+l)+e) (1.15)

The non-linear functional form of f{) for a real world system can be very complicated

and is rarely known a priori. Therefore a model must be constructed based on some

known simpler functions [15,17,18,55,56].

1.2 Control Systems

In the recent years control systems have assumed an increasingly important role in the
development and advancement of modern civilisation and technology. Control systems
are found in abundance in the domestic domain and in the industries, such as in air-

conditioning, transportation systems, robotics and many other systems .

The basis system is shown in Figure (1.6), where u(?) and y() are the system input and

output respectively, and the intermediate block is the system components.

16



Inputs u(t) Outputs y(2)

Figure 1.6, The basic system

Regardless of what type of control systems are used the systems can be controlled by

either open-loop or close-loop methods. However, this depends on the nature of the

system to be controlled.

Open loop systems: an example of open loop systems is an electrical washing
machine. The controlling of such systems should be open loop, this is because the
amount of machine wash time, soap powder quantity etc. are determined by the user.
The reason being that the machine cannot continuously detect and check the cleanness of
clothes being washed i.e. the machine cannot make decision whether to stop or start
washing. As shown in Figure (1.7), the open loop system consists of a controller

followed by the controlled process system.

Reference Control

signal r(?) signal u(?)
aee—— | Controller

Outputs y(?)

.| Controlled
process

Figure 1.7, Open loop control system block diagram

In the above diagram an input signal #(%) is applied to the controller, the controller signal
u(t), controls the process to produce the desired output signal y(z). This type of controller
is very simple and economical but would not satisfactorily fulfil the desired performance

requirements for many cases. In these cases the closed loop system can be used.
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Closed loop systems: the closed loop system block diagram is depicted in Figure
(1.8). This type of control system has the same structure as the previous one, except for

one difference, the output signal is returned to be compared with the reference signal.

Reference Control
signal r(t) + signal u(?) Controlled Outputs y()
-_— Controller process >
Feedback

Figure 1.8, Feedback control system

The control signal u(#), is a function of the difference of the reference and output signals,
must be sent through the controlled process to correct the error. This procedure is called
feedback control. The classical linear controllers have been found not always to give
satisfactory results, since the parameters of the process may change for some reason, e.g.
ageing, operating point changes, mild non-linearities, etc . Hence there seemed to be a
need for a more sophisticated controller which could automatically adapt itself to
changing characteristics of the controlled process. Therefore, researchers have focused

their attention towards adaptive control methods.

1.2.1 Adaptive Control

Adaptive control is used to alleviate the problem of varying plant dynamics. The main
idea of using an adaptive control strategy is to adjust the controller parameters
automatically, based on the measured input-output of the plant. So adaptive control is the
problem of controlling the output of the process (plant) with a known structure but

unknown parameters. The general structure of an adaptive controller consists of three
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elements as described in Figure (1.9). The elements are the process, adjustable

mechanism and the controller.

u(t) »(v)
™ Process FH
Adjustment
mechanism
daptive
controller

r(t)

Figure 1.9, General adaptive control structure

Where r(t) and y() are the desired and actual outputs respectively and u(?) is the
controlled signal. In the following sections, some adaptive systems are presented to
provide the reader with some examples. The review of the implementation of adaptive

controllers and more information about this task may be found in [3,40].

1.2.2 Gain Scheduling Method

An adaptive controller is a controller that can modify its behaviour in response to
changes in the dynamics of the system. In many situations, however, the dynamics of a
system change with its operating conditions. In this way, the controller parameters can be

adapted directly as a function of the system operating conditions. This idea works in
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feedforward mode and is referred to as Gain Scheduling. It is depicted in Figure (1.10),

where r(t), y(¢) and u(t) are the reference input, output and control signals respectively.

Parameters Operating
Controller Condition

t Gain Schedule (¢————

@)
Controlled

Controller
Process

Feedback

Figure 1.10, The gain scheduling block diagram

The gain schedules are designed off-line and adjusted in an open-loop mode i.e. there is
no feedback to compensate for an incorrect schedules. The main problem in the design of
systems with gain scheduling is to find suitable scheduling variables. This is normally
done based on knowledge of the physics of a system. This method was widely used in
process industries where the process dynamics are non-linear functions of one or more
parameters. The method has the advantages that the controller parameters can be changed
very quickly in response to process changes. These parameters must be determined for
many operating conditions and the performance ideally be checked by simulations. On
the other hand, in this approach, the controller parameters are changed in an open-loop
process without feedback from the performance of the closed-loop system. This makes
the method impossible to use if the dynamics of the process or the disturbance are not
known accurately. Also this type of adaptive control cannot be generalised, and so has

been used only for special cases, such as in auto-pilots for high-performance aircraft
[30,40,90].
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1.2.3 Model Reference Adaptive Control (MRAC)

Model reference adaptive control is one of the most important and successful forms of
adaptive control strategy. The original MRAC was first proposed by Whitaker in the late
1950’s. As shown in Figure (1.11), the reference model is set in parallel with the system
to be controlled (controlled process or plant). In this model, the measured input-output
data are used to monitor the system performance. These are then combined with the

reference model output yp,(#) according to an adaptation rule and the result is used to

adjust the controller.

Model of ¢
desired Yn
response ]
Controller
parameters [ Adjusiment | e(t)
mechanism
A
+
r(t
K )
Controller Controlled
Process

Feedback

Figure 1.11, Model reference adaptive control block diagram

The controller consists of two loops: the inner loop, an ordinary feedback loop composed

of the process and the controller element and the outer loop, which is used for adjusting
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the controller parameters. These parameters originally are adjusted by the Massachusetts

Institute of Technology (MIT) rule,

do _ de

7= (1.16)
where

de e s .

5 are the sensitivity derivatives of the error

is the adaptation rate
e is the error and
0 is the adjustable parameter.

The MIT rule is the adjustment mechanism which keeps the system stable while driving

the error e(?), between the controlled process output y(#) and the model output yy,(2), to

small values. This procedure is called adjustment of controller parameters. The MRAC

has been studied and applied in many applications [3,48,90].

1.2.4 Self-Tuning Adaptive Control (STAC)

Self-tuning adaptive controller, illustrated in Figure (1.12), is based on the idea of
estimating some parameters of the process. The STAC is composed of three main
elements. The first is the standard feedback controller in the form of a difference
equation, which acts upon a set of values such as the measured output and reference
signal. This controller then produces a new control signal (%) to be the input signal to the
process. In this approach the feedback controller element and the process are called the
inner loop. The second element is the parameter estimator, which computes the process

dynamics by using knowledge of the process input-output.
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Process parameters

Control
design
algorithm o
Estimation
Controller
parameters
& u(t) 0
Feedback .| Controlled
Controller Process
Feedback

Figure, 1.12, The self-tuning adaptive control block diagram

The parameters are estimated on-line using one of the recursive algorithms such as least-
squares and extended and generalised least squares. The third element is the control
design algorithm, which receives the estimated parameters and then provides a new set of
coefficients (controller parameters) for the feedback controller. The control design
element represents an on-line solution to the design problem for a system with known
parameters. Some design methods that can be used are pole placement or minimum
variance. The control design algorithm and the recursive parameter estimator are the

outer loop, which update the controller parameters at each sampling period.

In conclusion, the STAC is designed to obtain an automatic adjustment mechanism. It
must identify the system (controlled process) using measured input-output data to form
an appropriate controller. The adaptive control can be identified as a control technique in
which controller parameters are continuously and automatically adjusted, in response to

measured variables, in order to approach optimum performance [3,90].
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As discussed above, it is clear that the STAC is a form of MARC. The distinction
between these two methods has mainly been based on the different design approaches.
From Figures (1.11) and (1.12) we can see that both control schemes are similar to each
other. The difference between the methods is only the updating of the control parameters.
This difference however, is not fundamental, because STAC may be modified so that the
control parameters are updated directly, the same as the MARC [3,48].

Conventional and adaptive control methods have been widely used and satisfactory
results have been obtained when they are applied in linear systems. However, very little
attention has been given to non-linear control systems. This is because of the complexity
of such systems. One approach called bilinear, has been widely introduced by many
researchers [21,37]. Models having a bilinear structure have been shown to be applicable
to many non-linear systems. The bilinear approach was used for controlling of a non-
linear sy