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Abstract

The scintillation effects on the Global Positioning system (GPS) or other GNSS (global

navigation satellite system) receivers have been investigated by many researchers and

several mitigation strategies have been proposed in this regard but the problem is not yet

fully solved. This thesis covers the investigation of scintillation effects on GPS receivers

and developing a mitigation approach which can play an important role in mitigating the

effects of scintillation on these and other GNSS receivers.

Firstly, a new GPS signal acquisition method known as the repetitive block acquisition

(RBA) is presented which can be used to speed up the GPS signal acquisition in case fast

acquisition is required. This acquisition method is implemented using coarse-acquisition

(C/A) codes and tested by collecting real GPS data. The RBA method can also be used for

other codes as well. It is rather difficult to show that how scintillation affects the acquisition

process in a GPS receiver because mostly it results in tracking loop loss of lock due to

cycle slip. However, during strong amplitude scintillation which is usually most important

at low or near-equatorial latitudes, deep power fades resulting from amplitude scintillation

result in the selection of long data records which leads to slow acquisition due to long

acquisition times. It is shown in this thesis that, by using the RBA method, the acquisition

time can be reduced to a fairly low level by reducing the number of computations involved

in acquisition compared to other well-known methods such as the parallel FFT-based

method and zero padding method (ZP).

Secondly, the scintillation effects on the GPS tracking loop have also been investigated

in this thesis and, based on this investigation, a new improved analogous phase scintillation

index, σw
φa, has been designed to more accurately represent the phase scintillation intensity

at European high latitudes. This is then also validated using the real GPS data from

Trondheim, Norway (63.41o N, 10.4o E). The σw
φa uses dual frequency (L1 & L2) based



vi

time and spatial variations of total electron contents (TEC) at 1 Hz for estimating the

phase scintillation values. For deriving the σw
φa, the low frequency TEC fluctuations

due to Doppler shift of the satellite/receiver motion and also due to the slowly varying

background ionosphere need to be removed in order to consider only the high frequency

TEC fluctuations which are responsible for scintillation due to the fast moving electron

density irregularities which is done by using the wavelet transform. The σw
φa is really

an improved version of σφa where, rather than using time-invariant digital high pass

filters (HPF), which according to several researchers are in-appropriate for filtering the

non-stationary raw GPS signals affected by the ionospheric scintillation, a wavelet-based

filtering technique is used. Although, the wavelet transform has been used previously in

detrending raw amplitude and phase observations at 50 Hz for estimating the scintillation

indices (amplitude and phase), due to the high sample data rate it may not be desirable to

use this transform due to its very high computational cost. Since, σw
φa uses TEC data at 1

Hz so this problem has been overcome. The performance of the new improved index (σw
φa)

is investigated and is also compared with the previously proposed σφa and σφ indices using

one whole year of data from a GPS receiver at Trondheim, Norway (63.41o N, 10.4o E).

The raw TEC observations and the σw
φa index are then used in estimating the tracking

phase jitter using two different methods. The phase jitter helps in defining the tracking

thresholds for the tracking loops in a receiver which is useful in updating the tracking loop

parameters during scintillation conditions as required in robust GPS/GNSS receiver designs

because the phase jitter decides how wide the tracking (and thus the noise) bandwidth

should be allowed in the tracking loop for the tracking to remain efficient. It is shown

that if the phase jitter is estimated using the new proposed methods, generally a better

estimate can be obtained compared to the previously proposed phase jitter estimation

methods which employs σφa and σφ indices. These new phase jitter estimation methods

can further be used in GPS/GNSS receivers for updating the tracking loop parameters

during scintillation conditions and hence can serve as a good alternative for mitigating the

effects of scintillation on GPS/GNSS receivers.
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Chapter 1

Introduction and Background

Satellite-based navigation is one of the most important tools for navigation having a wide

range of applications which includes aviation and marine navigation in addition to life

saving applications; thus the expectation of its availability, reliability and accuracy is

very important. There are currently two global navigation satellite systems that are fully

functional and operational; the first one is the U.S-based GPS (Global Positioning System)

and the second one is the Russian GLONASS (Global Navigation Satellite System).

The development of GLONASS dates back to 1976 under the Soviet rule, however the

launching of the GLONASS constellation satellites began in October 1982 with the launch

of the first three satellites namely Kosmos-1413, Kosmos-1414, and Kosmos-1415 [1].

The constellation was completed in 1995 with the optimal status of 24 fully operational

GLONASS satellites for Global coverage. GLONASS uses frequency division multiple

access (FDMA) as a modulation technique for signal transmission at L1 (1.602 GHz) and

L2 (1.246 GHz) frequency bands to provide navigation services to civilian and military

users. A third frequency band G3 [1] was also later added in GLONASS which can be

used for safety-of-life and military purposes.

The history of GPS, on the other hand, goes back to 1973 with the formation of the

NAVSTAR GPS development programme initiated by the U.S Department of Defense

under the supervision of Bradford Parkinson who is also known as the father of GPS [2].

With the launch of the Block-I experimental satellites beginning in 1978, the GPS system

was declared fully operational by the U.S Air force in April 1995 with the total of 24
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constellation satellites. The GPS uses several frequency bands to provide different kinds

of services to both civilian and military users. These frequency bands are:

• L1 (1575.42 MHz) – Coarse-acquisition (C/A) code for civilian use and encrypted

P(Y) code for militaryuse.

• L2 (1227.60 MHz ) – P(Y) code, military codes and the additional improved

L2C code for civilian use.

• L3 (1381.05 MHz) – Used for nuclear detonation (NUDET) detection.

• L4 (1379.913 MHz) – Being studied for additional ionospheric correction.

• L5 (1176.45 MHz ) – For civilian safety-of-life (SoL) purpose.

The GPS and GLONASS signals are sent from more than 20,000 km above the Earth’s

surface and therefore encounter several phenomena that degardes the performance of these

systems such as the atmospheric attenuation, satellite and receiver geometry, correlation

loss, polarization loss, tropospheric delay, ionospheric scintillation etc. Most of these

errors don’t have a significant impact and can be dealt with during the positioning solution.

However, ionospheric scintillation effects can be severe, particularly at high and near

equatorial latitudes. Ionospheric scintillation is the rapid random fluctuations in amplitude

and/or phase of the received transionospheric radio waves resulting from propagating

through electron density irregularities such as those embedded in the plasma bubbles.

These irregularities are small scale electron density fluctuations in the ionosphere which

can result from geomagnetic storms and increased solar activity. Scintillation effects are

different at different latitudes. Strong amplitude scintillation is more common at low

geomagnetic latitudes due to plasma bubbles rising through the propagation path. However,

it can also be observed at high latitudes but with less severity and lesser effects on the

GPS/GNSS signals while the mid latitude regions usually have no significant phase and

amplitude scintillation effects on the GPS/GNSS receivers. High latitude regions are more

likely to be disturbed by the phase scintillation which occurs due to auroral phenomena in



1.1 Thesis Objectives 3

auroral oval regions. Many researchers have used different methods to mitigate the effects

of scintillation on GNSS/GPS receivers. In this regard, new techniques for scintillation

mitigation are also proposed but they are still not able to solve this problem completely.

This PhD work is focussed on the study of ionospheric scintillation and their effects

on GPS/GNSS receivers and also to propose strategies for scintillation mitigation. In

this regard, a new TEC-based phase scintillation index σw
φa is designed which uses 1

Hz total electron content (TEC) data from a dual frequency GPS receiver to predict

the phase scintillation at high latitude regions. The proposed index uses time and spatial

variations of TEC for the prediction of phase scintillations and the performance comparison

with the standard scintillation index, σφ , and the previously proposed analogous phase

scintillation index, σφa, proves it to be a better indicator of the phase scintillation activity

at high latitudes. On the application side towards scintillation mitigation, the raw TEC

observations and the σw
φa index are used to calculate the tracking phase jitter using two

different phase jitter estimation methods which can be used in configurable tracking loop

designs of geodetic receivers and also in software-based GPS receivers for updating the

tracking loop parameters and has the advantage of low computational cost.

1.1 Thesis Objectives

The main aim of this research is to study the effects of scintillation on GNSS/GPS receivers

and develop mitigation strategies in order to improve their performance in reliability,

availability and accuracy during moderate to strong ionospheric scintillation. This includes

several objectives which are mentioned below:

1. To study ionospheric scintillation and the theory behind it.

2. To investigate the effects of ionospheric scintillation on GNSS/GPS receivers.

3. To design improved methods for quantifying the scintillation values.

4. To develop strategies which can be used to mitigate the effects of scintillation on

GNSS/GPS receivers.
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1.2 Thesis Contributions

Based on the aims and objectives above, the thesis contributions are summarized as follows:

1. The thesis presents a comprehensive study of the ionospheric scintillation and

its morphology. In this regard, the statistics of occurrences of scintillation from

European high latitudes are presented.

2. The effects of scintillation on the GPS receiver are analyzed by employing dif-

ferent acquisition and tracking loop models during both the scintillation and non-

scintillation conditions.

3. A new method of quantifying the phase scintillation values is presented in this thesis

which uses dual frequency total electron content (TEC) observations at 1 Hz rather

than using 50 Hz raw phase observations as used in many standard scintillation

monitoring receivers. The newly presented phase scintillation index is then validated

by using the data from a high latitude region.

4. Due to the ability of the newly presented scintillation index in predicting more

accurate phase scintillation values as compared to the previously used methods, the

index is used to estimate the tracking phase jitter which can be further used to mitigate

the effects of scintillation on GPS/GNSS receivers due to its low implementation

cost.

1.3 Thesis outline

The whole thesis is divided into the following main chapters:

Chapter 2:

In this chapter, a detail overview of the GPS system is presented. The chapter starts

with a brief introduction on satellite based navigation and then discusses the signal structure

of the GPS system. A complete overview of a GPS receiver is also presented in this chapter

along with the hardware and software aspects involved in signal acquisition, tracking
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and position estimation. The discussion then proceeds on to the factors that affects the

performance of the GPS receiver such as the multipath, satellite geometry, satellite and

receiver clock errors, tropospheric delay and ionospheric delay.

Chapter 3:

The complete morphology of the ionosphere is discussed in this chapter. This chapter

outlines the basic knowledge about the ionosphere, ionospheric layers and the phenomena

that lead to the formation of ionospheric layers. This discussion is then further widened by

presenting the concept of total electron content (TEC), ionosphere irregularities and the

ionospheric scintillation.

Chapter 4:

This chapter discusses the scintillation effects on the receiver performance. The chapter

can be divided into two parts. The first part covers the acquisition strategies that can be

used to speed up the GPS signal acquisition in case the signal is affected by the noise or

scintillation. In the second part, a complete theoretical and mathematical background of

the PLL tracking loop is presented and it is also shown that how the amplitude and phase

scintillation affects the receiver performance and what are the conditions beyond which

the tracking loop loses lock during scintillation. The strategies to mitigate the loss of lock

due to scintillation in the tracking loops are also discussed in this chapter.

Chapter 5:

This chapter details the concept of TEC fluctuations and the relationship between the

TEC and the scintillation producing ionospheric irregularities. Some previous work on

TEC-based indices is also highlighted in this chapter. In this regard, a new analogous phase

index, σφa, is presented and its performance is validated using the GPS data from European

high latitudes. The performance of this new analogous phase index is also compared with

the standard phase scintillation index, σφ .
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Chapter 6:

In this chapter, a new improved TEC-based phase scintillation index, σw
φa, is presented

using a wavelet transform based filtering approach. The chapter starts with a detailed

overview of the wavelet transform, its mathematical description, applications and using

wavelets as a filtering technique. A detailed analysis of some improper filtering effects in

deriving the phase scintillation indices using high latitude data is explained and it is also

discussed why the wavelet-based filtering approach is a better method for dealing with high

latitude raw GPS signals. This chapter details the deficiencies in the previously proposed

analogous phase index and also the standard phase scintillation index and then discussed

the advantages of using the σw
φa index over the σφa and σφ indices. The performance of

the new σw
φa index is compared with the σφa and σφ indices under different geomagnetic

conditions to validate its performance as a potential alternative to these indices for repre-

senting the phase scintillation acitvity.

Chapter 7:

This chapter discusses the possible applications of the research work presented in this

thesis which involves estimation of the tracking phase jitter. Since tracking jitter is the key

component in a receiver used to determine the loss of lock time during scintillation and is

also used for updating the tracking loop paramters, two different methods for estimating

the phase jitter are presented in this chapter. One method uses σw
φa, whereas, the other

method uses the raw TEC observation at 1 Hz from which the phase jitter is derived.

Chapter 8:

This chapter concludes the work presented in this thesis and discusses the future trends

of the work in order to mitigate the scintillation effects on the GPS/GNSS and the possible

applications of the proposed work for further developments.
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Chapter 2

GPS and the Satellite-based Navigation

2.1 Introduction

The GPS is a satellite based navigation system, one of the 4 different systems currently

deployed, known generically as the Global Navigation Satellite System (GNSS). The GPS

uses five frequency bands to provide navigation services to a wide range of communities,

i.e., L1 signal at 1575.42 MHz ( used for civilian and mililatry purposes), L2 and L2C

signals at 1227.60 MHz ( used for more precise civilian and military navigation purposes),

L3 signal at 1381.05 MHz (used for nuclear detonation (NUDET) detection), L4 signal

at 1379.913 MHz ( being studied for additional ionospheric corrections) and L5 signal at

1176.45 MHz (proposed for use as a civilian safety-of-life (SoL) purpose). There are a

total of 24 or more satellites in the active constellation placed in 6 orbital planes where

each orbit contains 4 or more satellites with an inclination angle of 55o to the equator. The

orbital radius of each satellite from the centre of the Earth is 26,560 km and each satellite

completes its orbit in 11 hours, 57 min and 57.26 sec [3].

Two frequency bands, L1 and L2, are widely used for navigation to cover the civilian

and military customers. The L1 signal transmits the C/A code and P-code whereas the

L2 signal transmits the P-code encrypted by the Y -code and is sometime refer as the

P(Y )-code and a new L2C signal as well [3]. The P-code is a 266 days (38 weeks) long

pseudorandom noise (PRN) code sequence divided into 37 portions and each satellite uses

a different portion of the code having a chip rate of 10.23 MHz [4]. The C/A code on the
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other hand consists of 1023 chips with a period of 1 ms and a chipping rate of 1.023 MHz.

Each satellite is assigned a unique C/A code for its identification. The navigation on the L1

C/A coded signal is available to all users free of cost, however the range measurements are

less precise than those from the P-code. The GPS signals are also modulated by the 50 bps

(50 Hz) data stream known as the navigation message which includes the Almanac Data,

Ephemeris Data, Ionospheric Delay Data, Timing Data and the Satellite Health Message

(SHM). The almanac data contains the orbital information of the satellites to allow the

receiver to determine which satellites are visible at a given location and is valid for several

months. The Ephemeris data is similar to the almanac data but allows more accurate

determination of the satellite position and is valid for only a few hours. The ionospheric

delay data includes coefficients to estimate the ionospheric effects on the GPS signals.

The Timing data contains the transmission time of the GPS signal and the Satellite Health

Message contains the information about the current health of the satellite.

2.2 GPS Segments

In terms of functionalities, the complete GPS system is divided into three main segments, i.

e., space segment, control segment and the user segment whose graphical representation is

shown in Fig. 2.1. Together, these three segments control the complete GPS system and

provide the navigatoin services to its users.

2.2.1 Space Segment

The Space segment consists of all the satellites in the GPS constellation. There are 24

satellites in the active constellation placed in the medium Earth orbit (MEO) and each

satellite orbits the Earth twice a day. The first block of satellites in the GPS constellation

were known as the Block I satellites which were then replaced by the more recent ones (

Block IIA, Block IIR, Block IIR(M), Block IIF) in order to improve the GPS availability.

The most recent Block of satellites are known as the GPS III which are in the production

stage and will be launched in 2016 [2].



2.2 GPS Segments 11

 

Download 
(L-band) 

Upload 

(S-band) 

GPS Signal 

Control Segment User Segment 

Space Segment 

Figure 2.1: GPS Segments

2.2.2 Control Segment

The Control segment of the GPS system consists of a Master control station (MCS),

monitor stations (MS) and the ground antennas which receives information from the

satellites on the L-band and sends the information to the satellites using S-band [5]. The

control segment keeps information about the locations of the GPS satellites in the orbit,

monitor the satellites health and also send commands using the S-band for updating the

navigation message. As of today, there is currently an active MCS located in Schriever Air

Force Base (AFB) Colorado, USA whereas an alternate MCS is located in Vandenberg

AFB California, USA. There are 12 ground antennas and 16 MS at different locations

around the world controlled by the MCS [2]. Six of the MS are controlled by the Air Force

whereas 10 are controlled by the Geospatial-Intelligence Agency (NGA). Some of the

MS and ground antennas are also connected to the Air Force Satellite Control Network

(AFSCN) remote tracking stations for increasing the visibility and tracking of the GPS

system. The locations of the stations in the control segment around the world are shown in

Fig. 2.2.
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2.2.3 User Segment

The user segment consists of the user equipment used for navigation in which the GPS

receiver is one of the major components. The user segment consists of all the the military

and the civilian users around the world.

Figure 2.2: Control segment of the GPS [2].

2.3 GPS Signal Structure

The mathematical form of the GPS signal at the L1 and L2 frequencies can be given as

SL1 = AIC(t)D(t)cos(2π f1t +φ)+AQP(t)D(t)sin(2π f1t +φ) (2.1)

SL2 = AQP(t)D(t)sin(2π f2t +φ) (2.2)

where,
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• SL1 = signal at L1 frequency

• SL2 = signal at L2 frequency

• AI = in-phase carrier power

• AQ = quadrature carrier power

• C(t) = C/A code

• P(t) = P(Y ) code

• f1 = L1 carrier frequency

• f2 = L2 carrier frequency

• φ = phase shift

• D(t) = navigation data at 50 Hz

The GPS signal at the L1 frequency consists of in-phase and quadrature components.

The in-phase component is bi-phase modulated by the C/A code and the navigation data

message. The quadrature component, on the other hand, is bi-phase modulated by the

P(Y )-code and the navigation data message. The L2 signal, on the other hand, in (2.2), is

only modulated by the P(Y )-code and the 50 Hz navigation data message. However, a new

L2C signal is also added recently whose description can be found in [2]. The structure of

the C/A code and the P(Y )-codes at the L1 frequency are shown in Fig. 2.3 and Fig. 2.4

respectively.

In all GPS signals, the navigation data message contains the key information which is

used for estimating the position in a receiver. A single bit of the navigation data message is

20 ms (50 Hz) long. The complete navigation message contains 25 frames having 1500 bits

which takes 750 s for transmission. A single frame is composed of 5 subframes where each

subframe contains 10 words and each word is 30 bits long. It takes approximately 30 s to

transmit a single frame of the navigation message. The subframes 1, 2 and 3 contains the

clock correction data and the ephemeris data used to determine the velocity and position

of the satellites which is then used in the positioning solution. Subframe 4 contains the
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Figure 2.3: Structure of the C/A code at L1 frequency [4].

Figure 2.4: Structure of the P(Y )-code at L1 frequency[4].
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ionospheric correction terms and coefficients to convert the GPS time to UTC time and also

some free space to accomodate future applications [6]. Subframe 5 contains the alamanac

data of PRN’s 1 to 24. The structure of the navigation message is shown in Fig. 2.5.
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… 
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… 
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Figure 2.5: Structure of the GPS navigation data message.

2.4 GPS Receiver Structure

A simple block diagram of a GPS receiver is shown in Fig. 2.6. The GPS signals received

by the antenna are passed through the front end device to downconvert the signal and then

digitized using the analog-to-digital converter (ADC). These three components together

make up the hardware part of the GPS receiver. The rest of the components can be

implemented both in harware or software.

Once the signal is downconverted and digitized, it is then processed by the acquisition

block to find the visible satellites. The tracking section finds the correct beginning of the

PRN code of the acquired satellites and locks onto the carrier frequency to extract the

navigation information. The navigation data demodulation process reads each and every
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bit of the navigation message to recover the Ephemeris data. The last block estimates the

user position. A complete explanation of these blocks is given below.
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Figure 2.6: Block diagram of a typical GPS/GNSS receiver.

2.4.1 Front End Device

The Front end device is the first component after the antenna used to downconvert and

digitize the received signal. The front end device consists of a chain of amplifiers and

filters [7] to maintain the signal gain and allow the signals within a particular bandwidth

to pass. It also uses an intermediate frequency (IF) converter which serves as a mixer to

downconvert the received signal to a lower frequency so that it can be digitized by the

analog-to-digital converter (ADC). A typical design of a GPS front end is shown in Fig.

2.7.
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Figure 2.7: RF Front-end device.
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An important factor to consider while downconverting the signal to the sampled IF

signal is the sampling frequency. According to the Nyquist criteria, if the bandwidth of the

input signal is ∆ f then the sampling frequency should be greater than 2∆ f . In practical

applications, usually 2.5∆ f is used to filter out the out-of-band signals.

2.4.2 Acquisition

Once the the signal is received in a sampled form by the front end device, the acquisition

process is started to find the beginning of the PRN codes of the satellites to despread the

spectrum of the received signal by correlating it with the locally generated PRN code

sequence of each and every satellite present. The despreaded signal becomes continuous

from which the carrier frequency can be found. An example of how despreading is done is

shown in Fig. 2.8. The despreaded signal and the carrier frequency are the two parameters

passed to the tracking program for further processing.

0

0

0

0

Message Signal

De−spreaded Signal

Locally generated
 PRN code

Figure 2.8: Signal de-spreading uisng locally generated PRN code.

Two factors must be considered during the acquisiton process [8]. The first is the data

length used for acquisition and the second is the frequency steps in acqusition.
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Data Length for Acquisition

The data length for acquisition must be selected very carefully as a long data set slows

down the acquisition process although it improves the input signal-to-noise ratio (S/No).

Conversely, a short data length may speed up the acquisition process but at the expense

of reduced input S/No. In the case of the C/A code, a minimum of 1 ms of data can be

used for acquisition [8] however longer data sets can also be used but care must be taken

because the incoming signal is also bi-phase modulated by the navigation message (20 ms

long) and if there is a data transition due to navigation data bit (which occurs every 20 ms),

then the output will no longer be a continuous wave and the acquisition process will be

degraded.

Frequency Steps in Acqusition

The frequency steps in acqusition are associated with the Doppler search space. In the

case of GPS signals, the maximum Doppler search space is ±10 kHz [8] in case of a high

speed aircraft. If 1 ms of data is used for acquisition, then the frequency steps to cover

the Doppler search space will be 1 kHz apart which is the reciprocal of the data length.

Similarly, if 10 ms of data is used, then the frequency steps will be 100 Hz apart. For fast

data acquisition, choosing the minimum permissable data length will give the best results.

2.4.3 Tracking

Acquisition provides a rough estimate of the carrier frequency and beginning of the PRN

code of a particular satellite. To refine these results and extract the navigation information

from the GPS signal, tracking is performed to completely remove the PRN code and to

track the carrier frequency. Two loops are used for tracking; the code tracking loop and the

carrier tracking loop. These two loops work simultaneously to provide code and carrier

tracking in order to extract the navigation information from the received signal.
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Code Tracking Loop

The code tracking loop is simple to implement compared to the carrier tracking loop as a

rough estimate of the beginning of the C/A code is already known from the acquisition

program. This information is then used to perform more fine and accurate correlation

by generating the early, prompt and delayed versions of the acquired PRN code [7]. For

this purpose, the prompt code is considered to be a perfect replica of the received signal

whereas the early and late codes are the shifted versions to the left and right respectively

by some samples. If a single chip of a PRN code consists of 4 samples then the correlation

between the received signal and the locally generated PRN code will gradually slide down

to zero, if 4 samples apart. The main idea behind the early and late gate approach also

known as the DLL (Delay Locked Loop) is to find the movement of the PRN code from

its maximum correlation value towards left or right due to Doppler shift. This can be best

described by a correlation triangle in Fig. 2.9 where the maximum correlation between the

received signal and the local PRN code is at zero position and gradually decreases to no

correlation when outsampled at 4 and -4. In order to keep track of the received PRN code,

the maximum correlation must be maintained to perfectly align the locally generated PRN

code with the incoming signal.
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Figure 2.9: Correlation triangle.

A simple block diagram of a code tracking loop using an early and late gate approach

[9] is shown in Fig. 2.10. The sampled IF signal from the acquisition program is first
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converted into the in-phase (I) and quadrature (Q) components using the carrier frequency

from the numerically controlled oscillator (NCO) which is initially set to the carrier

frequency passed from the acquisition program, and will keep on updating itself using

the frequency from the carrier tracking loop discussed in next section. Once the signal

is decomposed into I and Q components, it is then multiplied with the prompt (P), early

(E) and late (L) versions of the locally generated PRN code using a shift introduced

by a shift register. The shift used for the early and late codes is nominally ±0.5 chips.

After the integration and the dump process, the in-phase (IE , IP, IL) and the quadrature

(QL,QP,QE) correlation outputs are then passed to the code loop discriminator to find the

power difference between the early-prompt and late-prompt correlation results. The output

from the discriminator is then passed to the shift register after passing through the code

NCO and code generator to decide whether to introduce a shift in the generated local PRN

code or not.

 

Integrate & 

Dump 

90
o 

Carrier 

NCO Code Loop 

Discriminator 
PRN Code 

Generator 

Shift 

Register 

Integrate & 

Dump 

Integrate & 

Dump 

Integrate & 

Dump 

Integrate & 

Dump 

Integrate & 

Dump 

Sampled IF 

Signal 

I 

Q 

IP 

IL 

IE 

QP 

QL 

QE 

E     P         L 

E      P        L 

Code NCO 

To carrier 

tracking loop 

Figure 2.10: Code tracking loop.

If Cp, CE and CL are the correlations of the prompt, early and late codes respectively

and if the locally generated prompt code is perfectly aligned with the input signal, then the
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ratio CL/CE must be equal to one. However, in case the ratio is more than 1 or less than

1, it means that a shift must be introduced in the prompt code based on some threshold.

The late-early correlation power ratio is the simplest algorithm that can be used for the

discriminator output. There are several other discriminators which are also used for the

decision making process. Some of them are listed in Table 2.1.

Table 2.1: Code loop discriminators

Discriminators Description

(I2
E +Q2

E)− (I2
L +Q2

L) Early minus Late power

(I2
E+Q2

E)−(I2
L+Q2

L)

(I2
E+Q2

E)+(I2
L+Q2

L)
Normalized Early minus Late Power

IP(IE − IL)+QP(QE −QL) It is more like a dot product and uses all the out-
puts from the discriminator for decision making

Carrier Tracking Loop

Once the PRN code is stripped off from the input signal, the carrier tracking loop receives

a signal phase modulated only by the navigation data bits. In the carrier tracking loop,

the sampled IF signal is first decomposed into the in-phase and quadrature components

using the carrier frequency from the NCO which is initially set to the frequency derived

from the acquisition stage. This is the frequency which needs to be adjusted to follow the

input signal frequency. These signals are then multiplied with the prompt replica code

received from the code tracking loop to remove the PRN code from the received signal

which is then integrated over a certain time period and passed to the atan discriminator to

calculate the phase error. A simple form of an atan discriminator is given by (2.3). The

main advantage of using the atan discriminator is its insensitivity to 180o phase shifts

caused by the navigation data which occurs every 20 ms in the GPS signals. The purpose of

the tracking is to keep the I component as large as possible while keeping the Q component

close to zero as the I component is the one which is used to recover the navigation data.

Once the navigation data is demodulated, the ephemeris data is then recovered to find the
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positioning solution. A simple block diagram implementation of the Costas phase locked

loop (PLL) [10] is shown in Fig. 2.11.

atan = tan−1
(

Qp

Ip

)
(2.3)
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Figure 2.11: Costas carrier tracking loop.

2.4.4 Position Estimation

The position of the user can be estimated by either the pseudorange or the carrier phase

[11, 12]. The pseudorange is a measure of the distance between the satellite and the

receiver which contains some errors. The distance between the satellite and the receiver

can be found by computing the time difference between the transmitted and the received

signal. If tsi is the true time of transmission and tr is the true time of reception at the

receiver, the distance between the satellite and the receiver [13] can be found as

ρT = c(tr − tsi) (2.4)
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where ρT is the true range and c is the speed of light in vacuum. It is very difficult to

find the true range between the satellite and the receiver due to the several factors which

introduce errors in the received signal such as the ionospheric delay, tropospheric delay,

user clock error, satellite clock error etc. Thus the equation for the measured pseudorange

[11, 12] will be different from the true range and can be given as

ρ = ρT + c(b−B+ e+E +T + I + vρ) (2.5)

where b is the receiver clock error, B is the satellite clock error, e and E are the time delay

within the receiver and satellite, T is the tropospheric delay, I is the ionospheric range

delay and vρ is the receiver noise error. A more accurate method to determine the range

is through the carrier phase measurements which are potentially more accurate than the

pseudorange mesurements. Mathematically, the observed carrier phase [12] can be given

as

φ =
ρT

λ
+

c
λ
(b−B+ e+E +T − I + vφ )+m (2.6)

where m is the phase ambiguity and vφ is the phase noise. GPS uses trilateration to find

the distance between the satellite and the receiver [13] where a minimum of four satellites

are needed for the positioning solution. In effect, three satellies are required to find the x,y

and z co-ordinates and the fourth one to determine the receiver clock error.

2.5 Sources of Errors in Position Solution

There are several factors which affects the positioning solution in a GPS/GNSS receiver

[14]. Some of them are listed below.

2.5.1 Ionospheric Delay

The ionosphere is the region of the earth’s atmosphere which extends from approximately

50 km to 1000 km above the earth surface. The ionospheric delay refers to the amount

of delay introduced by the ionosphere to the signal passing through it. The ionosphere
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changes the signal propagation group velocity which introduces range delay errors. As

mentioned earlier, the subframe 4 of the navigation message contains the ionosphere delay

terms which can be used in single frequency GPS receivers to reduce the positioning errors

through correction of all the pseudoranges. However, in case of dual frequency receivers

which can acquire both the L1 and L2 frequencies, the time delay, t1, introduced by the

ionosphere at the L1 carrier frequency [15] can be found as

t1 =
f 2
2

f 2
1 − f 2

2
δ (t) (2.7)

where f1 and f2 are the L1 and L2 carrier frequencies and δ t is the time delay between the

two frequencies.

2.5.2 Tropospheric Delay

The troposphere is the bottom-most layer of the earth’s surface that extends up to 50 km

and consists of dry gases and water vapors. The troposphere is a non-dispersive medium for

the GPS frequencies and therefore the delay introduced in both the pseudorange and carrier

phase measurements is identical. The troposphere can introduce up to 2.5 m range errors

at zenith and 28 m if the satellite elevation angle is below 10o [16, 17]. The tropospheric

delay (tp) can be estimated by using the formula in (2.8) [16].

tp =
2.47

sinE +0.0121
meters (2.8)

where E is the elevation angle.

2.5.3 Multipath

Multipath occurs when there are obstacles between the satellite and the receiver (tall

buildings, trees etc) and multiple copies of the signal arrived at the receiver from different

directions in addition to the direct line-of-sight path. These indirect copies of the signal

may add-up destructively to degrade the receiver performance. The mulipath can introduce

errors up to 10 m or more and can also result in decreased receiver sensitivity [10]. As

an extra measure to reduce the multipath error, most high precision GPS receivers use
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choke ring antennas which have the capability to reject the multipath signal based on its

polarization. Another important method which can also reduce the multipath is the use of

a dual polarized antenna which can receive both the right-hand and left-hand circularly

polarized signals.

2.5.4 Satellite and Receiver Clock Errors

The satellite clocks are usually very precise and the navigation message also contains the

satellite clock terms which can be used to fix the errors due to the satellite clock. The

receiver clocks, on the other hand, are not as precise as the satellite clocks and therefore

can introduce major errors. In order to cope with the receiver clock errors, usually it is

estimated as an extra unknown term in the positioning solution in addition to the x,y and

z co-ordinates and therefore a minimum of four satellites are needed for the positioning

solution as mentioned in section 2.4.4.

2.5.5 Satellite Geometry/Shading

Poor relative geometrical locations of the satellite can also increase the range error. A

better positioning solution can be achieved when the satellites involved in the positioning

calculation are position well apart from each other. The range error due to satellite geometry

is also known as the Dilution of Precision (DOP) [14]. A high value of DOP implies a poor

satellite geometry which leads to more error in the positioning solution whereas a small

DOP value refers to a better satellite geometry and therefore a better positioning solution.

2.5.6 Intentional degradation of the satellite signal

GPS signals used to be intentionally degraded by the U.S. Department of Defence through

Selective Availability (SA). This was introduced in the C/A code available to the civilian

users but, subsequently, the decision to implement this was reverted and the SA was

terminated on May 1, 2000.
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2.6 Signal Power Levels

The satellite geometry is one of several factors that directly affect the received signal

power. The GPS satellites are 26,560 km away from the centre of the earth and placed in

circular orbit. The radius of the earth is 6,357 km around the poles and 6,378 km around

the equator. If we normalize and consider 6,368 km as the average radius of the earth, then

the radius of the satellite orbit will become 20,192 km at zenith and the distance between

the user P and the satellite will be 25,785 km (
√

265602 −63682) at the horizon as shown

in Fig. 2.12. This distance is different at different positions as shown in Fig. 2.12 and so is

the received power. From [18], the difference between the power levels of the received

signal at the horizon and at the zenith is

Figure 2.12: Maximum and minimumm distance between the satellite and the user [3].

∆P = 10log
(

257852

201922

)
≈ 2.1 dB (2.9)

The difference in power loss due to satellite-earth geometry can be compensated by

designing a transmitting antenna pattern so that all satellites can generate the same power

level whether their distance to the surface is closest or furthest away. The strength of the

signal at the receiver depends on several factors such as the power of the transmitting

antenna, its beamwidth, the distance between the satellite and the receiver, the effective
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area of the receiving antenna and any atmospheric losses. According to [18], the input

power to the transmitting antenna is 14.3 dBW. The area A on the surface of the earth

covered by the beamwidth of the transmitting antenna by an angle θ can be found as

A =
∫

θ

0
2π(r sinθ)r dθ = 2πr2(1− cosθ) (2.10)

where θ is the satellite angle to cover the radius of the earth which is 13.87o in an ideal

case as shown in Fig. 2.12. However, it is mentioned in [18], that this angle is 21.3o for the

L1 signals and 23.4o for the L2 signals. The gain of the antenna can be found by dividing

the surface area of the sphere by (2.10) using the solid angle of 21.3o.

Gain =
4πr2

2πr2(1− cosθ)
= 29.27 ≈ 14.7 dBW (2.11)

The effective transmitted power of the satellite antenna based on the above calulation

is found to be 29 dbW (14.7 dBW+ 14.3 dBW), but the transmitted power of the antenmna

is listed as 26.8 dBW in [2, 18] which could be due to the transmitter power loss, cable

losses or antenna efficiency. According to the Friis transmission formula, the received

power can be found as

Pr =
Pt Ae f f

4πR2 (2.12)

where R is the distance between the satellite and the user and Ae f f = λ 2/4π for a unity

gain wire antenna. In case of GPS L1 signals, the wavelength of the received signal is

0.19 m. Using 25,785 km as the maximum distance between the satellite and the user and

using 26.8 dBW as the transmitting antenna power, the received power using (2.12) will be

approximately -158 dBW. This is the minimum received signal power when the satellite is

furthest from the user location on the surface of the earth. This can be further reduced by 2

dB due to atmospheric loss. The received signal power is also a function of the elevation

angle and is maximum when the elevation angle is 40 degrees as shown in Fig. 2.13.
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Figure 2.13: Signal power dependence on elevation [2].

The -160 dBw ( -130 dBm) is the minimum received signal power at the user location

including the atmospheric losses. At the input of the receiver, the thermal noise power Ni

can be given as

Ni = kT B (2.13)

where k is the Boltzmann’s constant (1.38×10−23 J/K), B is the bandwidth of the receiver

and T is the temperature of the receiving antenna which is 290o K under normal operating

conditions. Using the above values in (2.13), the thermal noise power per MHz is

Ni =−174 dBm/Hz or −114 dBm/MHz (2.14)

In the case of C/A codes with a null-to-null bandwidth of 2.046 MHz, the Ni is -111

dBm. Since the minimum received signal power is -130 dBm, it means that the GPS

C/A coded signal will be 19dB (-130+111) below the noise floor or in other words the

nominal value of the carrier-to-noise ratio (C/No) will be 44 dB (-130 + 174) under normal

conditions. This nominal value of the C/No is used in chapter 4 in analyzing the detection

performance of the different acquisition methods.
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2.7 Chapter Summary

GPS based navigation is widely used worldwide due to its reliability and avaalability. There

are several components involved which together makes it possible to provide the navigation

services to both the civilian and military users. These components not only involve satellites

at the transmitting end but also involved a number of different configuration receivers which

are used to provide navigation services with minimum errors involved in the positioning

solution. However, the performance of the receiver is affected by several phenomena such

as the satellite geometry, acquisition and tracking models used in the receiver, position

estimation algorithms, the Earth’s atmosphere, satellite/receiver clock errors and multipath.

In the positioning solution, these factors must be considered as they can degrade the

positioning solution.



Chapter 3

Ionosphere and Scintillation

3.1 Introduction

The Earth atmosphere is filled with gases that surrounds the Earth and is therefore divided

into several regions namely the troposphere, stratosphere, mesosphere, thermosphere and

exosphere as shown in Fig. 3.1. The upper part of the mesosphere, the thermosphere and

the lower part of the exosphere is also the extent of the ionosphere (further divided into

D, E and F layers) which extends from approximately 75 km to more than 1000 km as

shown in Fig. 3.1 and is formed due to ionization by solar fluxes. The name ionosphere

was adopted from this well known phenomenon of ionization [19] which affects the radio

waves, propagating through the ionosphere due to the presence of free electrons and

electrically charged atoms and molecules.

The bottom layer, i.e., troposphere has an upper bound of 12 km and is composed

of nitrogen and oxygen with percentages of 78% and 21% respectively. The remaining

1% of the troposphere is composed of other gases. Most of the weather takes place in

the troposphere as it contains all the water vapors and moisture present in the earth’s

atmosphere. The second layer, i.e., the stratosphere extends from 12 to 50 km and also

contains the ozone layer which stretches from 15 to 35 km [19]. The area between the

stratosphere and the mesosphere is known as the stratopause. The mesosphere, which

extends from 50 km to approximately 85 km, is also known as the middle atmosphere where

the temperature decreases with increasing altitude. The area that joins the mesosphere and
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the thermosphere is known as the mesopause. The fourth region of the earth atmosphere,

i.e., the thermosphere, which starts from approximately 85 km and extends up to more

than 600 km, is the layer which is completely free of water vapors and clouds and moslty

contains the electrically charged atoms and molecules and also the free electrons which

affects the radio wave propagation. The aurora borealis and the aurora australis, when

they occur, are also seen in the thermosphere at high latitudes. The last region, i.e., the

exosphere, also the outermost layer of the earth’s atmosphere, is mostly composed of

some heavier molecules such as nitrogen, oxygen and carbon dioxide and some extremely

low density gases such as helium and hydrogen [19]. Some scientists do not consider the

exosphere as part of the earth’s atmosphere as it is almost a vacuum and most of the low

orbiting communcation satellites are also located in the exosphere.

Figure 3.1: Earth’s atmospheric regions.
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3.2 The Ionosphere

The ionosphere which is usually conisdered as the third region from the bottom in the

earth’s atmosphere is mainly composed of free electrons and electrically charged atoms

and molecules that affect the radio wave propagation. The height of the ionosphere starts

at about 75 km and goes up to 1000 km although there are no well defined boundaries for

the ionosphere as it may expand beyond 1000 km depending on the solar activity, the time

of the day and seasons.

The ionosphere is an ionized medium due to the ionization process in which one or

more electrons from atoms or molecules are stripped-off from their outermost shell due

to high energy collision from the cosmic rays or solar radiation and become positively

charged. Another phenomenon, i.e., the recombination process, also takes place in the

ionosphere where the free electrons are then re-captured by positive ions. The ionization

process is the main cause of signal degradation ( attenuation, refraction, delay etc.) of

radio waves passing through the ionosphere [20, 21]. The ionosphere is further divided

into D (60-90 km), E (90-140 km) and F (200-500 km) layers as shown in Fig. 3.1. The

amount of ionization in each layer varies according to the local time, being higher during

the day than at night due to the increased solar activity which further divides the F layer

into the F1 and F2 layers during the day. The ionization process in the D and the E layers

is extremely low during the night time which results in the disappearance of the D layer

while the E layer becomes weakened at night.

3.2.1 D Layer

The D layer whichc extends from 60 km to 90 km is highly dependent on the solar activity

for its existence and normally affects communcation in the low or medium frequency bands

and almost disappears at night.

3.2.2 E Layer

The E layer, which is directly above the D layer exists at an altitude from about 90 km to

140 km and can obliquely reflect radio waves having frequencies up to 10 MHz. The E
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layer is also known as the Kennelly–Heaviside layer as it was predicted by the American

engineer Arthur Edwin Kennelly and the British physicist Oliver Heaviside in 1902 and its

existence was experimentally confirmed by Edward V. Appleton and Miles Barnett in 1924

[19, 22]. Sometimes, the abnormal behaviour of the E layer gives rise to a phenomenon

known as the sporadic-E layer also denoted by Es [19]. The sporadic-E layer arises when

the normal level of ionization is temporarily considerably enhanced in the E layer during

the peak period of the sunspot cycle and can reflect frequencies up to 200 MHz [23] but

the phenomenon lasts for only a few minutes or hours. At mid-latitudes, the sporadic-E

layer usually occurs during the summer, mainly in the months of May to June, whereas in

the equatorial latitudes, it is mostly observed during the daytime. At high latitudes and in

the polar regions, the sporadic E layer phenomenon can take place in the morning hours.

3.2.3 F Layer

The F layer which extends from about 150 km to more than 500 km, also known as the

Appleton-Barnett layer, is the part of the ionosphere where the free electron density is the

greatest. This layer is further divided into the F1 and F2 layers during the daytime due to

increased solar activity.

3.3 Measuring the Ionosphere

There are several methods [23–26] used to measure electron density at different heights in

the ionosphere such as the incoherent scatter radars, vertical sounders, in-situ measurements

etc. However, the ionosonde is the most widely used method.

The ionosonde is a special radar system also known as the ionospheric sounder or

chirpsounde as it utilizes the refractive properties of the ionosphere for measuring the

height of each layer in the ionosphere. The technology was developed by Gregory Breit

and Merle A. Tuve which was then used as a method for measuring the ionosphere in

the late 1920′s by many researchers. The ionosonde consist of a high frequency (HF)

radar which usually covers the frequency range of 1−40 MHz and a tracking receiver to

track the transmitted frequency [25]. The radar send short pulses of varying frequencies
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(low to high) vertically towards the ionosphere and then measure the time delay between

the the transmission and the reception time to determine the height of each layer (D,

E, F) in the ionosphere. A pulse will penetrate a particular layer when its transmission

frequency reaches the maximum plasma frequency of that layer also known as the critical

frequency. The vertical incidence critical frequencies of the ionospheric layers for the

ordinary propagation modes are denoted by foE, foF1, foF2, foEs [20]. The ordinary and

extra-ordinary modes are determined by the +/− signs in the denominator in (3.2) (below)

for the refractive index of the ionosphere and correspond to the two circular/elliptical wave

polarisations.

The data from the ionosondes is represented in the form of ionograms which shows the

approximate height of each layer against the critical frequency. An example of how the

data looks in the ionogram is shown in Fig. 3.2. In this figure the terms h’E, h’F1 and h’F2

shows the approximate heights whereas the terms foE, foF1 and foF1 shows the critical

frequencies of the E, F1 and F2 layers respectively for the ordinary modes.

3.4 Variations in the Ionospheric Layers

The variations in the ionospheric layers and overall ionosphere depends on the number of

free electrons present at any given time and their height distribution which usually follows

seasonal, latitudinal and diurnal variations which are mainly but not exclusively determined

by the solar flux and its variation. The details about these variations are discussed below.

3.4.1 Daily variations

The free electron concentration and the frequencies that are reflected by each layer are

usually at a peak around noon and then gradually decrease resulting in loss of the E and F1

layers. The daily variations in the ionospheric E and F layers are graphically shown in Fig.

3.3.



3.4 Variations in the Ionospheric Layers 35

Figure 3.2: An ionogram representing the ionosonde data [27].

Figure 3.3: Daily variations in the maximum frequency reflected at vertical incidence
from the ionospheric layers [25].
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3.4.2 Seasonal variations

The summertime increase in the ionospheric layers is greater than winter specially from

March to September due to the production of more free electrons during the daytime [25].

This phenomenon is true during the solar minimum period but during the solar maximum

period, the reverse phenomenon takes place and the electron concentration is greater in the

winter than summer also known as the winter anomaly [19].

3.4.3 Latitudinal Variations

The latitudinal variations also result in the increase or decrease in the height of the iono-

spheric layers and the frequencies that reflect from each layer. The maximum frequencies

reflected by each ionospheric layer decrease with increasing latitude as the day gradually

moves towards the night. This is due to the production of less free electrons which results

in the D and the E layers becoming invisible. The latitudinal variations in the E and the

F layers are shown in Fig. 3.4. There is an equatorial anomaly region as well where the

daytime F region peak frequencies occur at around ±20o from the magnetic equator rather

than at equator [25].

 Figure 3.4: Latitudinal variations in the Ionospheric layers [25].
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3.4.4 Variations based on Solar activity

The density of free electrons in the ionosphere normally follows on average the solar cycle

which lasts about 11 years. A relationship between the solar activity based on the sunspot

number and the variations in the frequencies that can be reflected by the E and the F layers

over Canberra, Australia (35.3075o S, 149.1244o E) from 1988 to 2005 is shown in Fig.

3.5. It can be seen that there is no major change in the E and the F1 layer frequencies,

the main variation being between the day and night time activity. However, the F2 layer

shows a great variation of maximum reflection frequencies (foF1 and foF2) with respect to

increasing and decreasing solar activity.

Figure 3.5: Variations in the ionospheric layers based on the solar activity [25].

3.5 Ionospheric Delay and the Total Electron Content

The navigation satellites (such as GPS) are placed in the medium earth orbit (MEO) having

an approximate altitude of 20,000 km from the earth’s surface. The signals from these

satellites may suffer refraction and diffraction while propagating through the ionosphere.
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Most of the navigation satellites uses the frequency bands which are high enough to

penetrate the ionosphere. However, the signals while passing through the ionosphere incur

delays depending on the electron density along the path from the satellite to the receiver

which can be approximated using the total electron content (TEC).

The ionospheric TEC can be defined as the total number of free electrons present

per square metre cross-section along a signal path between, for example, a satellite

transmitter and a ground receiver. The amount of delay incurred from day to day depends

on the changes in the Earth’s atmosphere and sun-spot activity and is increased when the

ionosphere has a higher electron concentration. The delay is also frequency dependent

due to the dispersive nature of the ionosphere where the delay is greatest at the lower

frequencies compared to the higher frequencies [28]. There are several models which

are used to correct the range errors introduced by the ionosphere. Some of the most

commonly used models are: Klobuchar Model [29]; the NeQuick Model [30] developed by

the Aeronomy and Radiopropogation Laboratory of the Abdus Salam International Centre

for the Theoretical Physics in Italy and the University of Graz, Austria; the International

Reference Ionosphere (IRI) model [31] developed by the joint working group of the

Committee on Space Research (COSPAR) and the International Union of Radio Science

(URSI); GAIM (Global Assimilative Ionospheric Model) [32] originally developed in 1999

sponsored by the U.S Department of Defence; and Multi-Instrument Data Analysis System

(MIDAS) Model [33] developed by the University of Bath in 2001.

3.6 Wave Propagation through the Ionosphere

The ionosphere is a dense medium of free moving electrons [24, 34, 35] which not only

affects the signal properties but also results in refraction. The amount of refraction

introduced by the ionosphere can be found through the change in the refractive index. The

refractive index of a medium can be defined as the measure of the amount of refraction

introduced by a medium to a signal passing through it. An example of the refraction

introduced in the signal when it enters from one medium to another is shown in Fig. 3.6.
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According to Snell’s law, the refractive index (n) of a medium can be found through the

angle of incidence and the angle of refraction using (3.1):

Figure 3.6: Snell’s law to define the wave propagation in two different mediums.

sinθ1

sinθ2
=

v1

v2
=

n1

n2
(3.1)

where θ1 is the angle of incidence in Medium 1, θ2 is the angle of refraction in Medium 2,

n1 is the refractive index of Medium 1, n2 is the refractive index of Medium 2, v1 is the

velocity of the light in Medium 1 and v2 is the velocity of light in Medium 2. In the case of

ionosphere, the refractive index is variable which depends mainly on the vertical variation

of the electron density profile. From [36], the refractive index of the ionosphere can be

given as

n2
ion = 1− X

1− Y 2 sin2
θ

2(1−X) ±
1

2(1−X) .
√

Y 4 sin4
θ +Y 2 cos2 θ(1−X)2

(3.2)

where,

X = f 2
p/ f 2, Y = fH/ f
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f 2
p =

Nee2

4π2ε0me
, fH =

B | e |
2πme

where fp is the plasma frequency , f is the wave frequency, B is the magnitude of the

magnetic field vector, θ is the angle between the wave and the magnetic field vector B,

ε0 is the permittivity of free space, e is the charge of an electron, me is the mass of an

electron and Ne is the electron density. There are several approximations of (3.2), one such

approximation adopted from [37] is given in (3.3) where the phase refractive index of the

ionosphere can be represented in the form of increasing function of the wave frequency, f ,

using

nion = 1− CX

2
Ne f−2 ± CXCY

2
NeBcosθ f−3 − CX

8
N2

e f−4 (3.3)

where

CX =
e2

4π2ε0me
, CY =

µ0e
2πme

The last two terms in (3.3) are orders of magnitude smaller than the second term in

(3.3) therefore neglecting the last two terms, (3.3) can be reduced to

nion = 1− CX

2
Ne f−2 (3.4)

Equation (3.4) can be used to determine the phase refractive index of the ionosphere.

The group refractive index can be obtained by differentiating (3.4) (see [37] for further

explanation). Equation (3.4) can be further simplified by putting in the constant values:

nion = 1−40.31
Ne

f 2 (3.5)

From [38], the ionospheric delay between the satellite and the receiver can be estimated

by taking the difference between the measured range s =
∫ sat

rx nionds and the geometric

range s0. The s0 can be obtained by assuming that there is no ionosphere so that the
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refractive index is one along the whole path. Taking the difference between the measured

and the geometric range, the ionospheric delay can be given as

ρ =
∫ sat

rx
nionds−

∫ sat

rx
ds0 (3.6)

where the integral
∫ sat

rx represents the satellite to receiver path. Using (3.5) into (3.6), the

range delay can be given as

ρ =−40.31
f 2

∫ sat

rx
Neds+

∫ sat

rx
ds−

∫ sat

rx
ds0 (3.7)

where
∫ sat

rx ds−
∫ sat

rx ds0 represents the difference between the measured and the geometric

range and is also deonted as the curvature effect [37]. If it is assumed that the integrals in

(3.7) are evaluated along the geometric path s0, then the curvature effect can be neglected

and (3.7) will become

ρ =−40.31
f 2

∫
Neds0 (3.8)

where
∫

Neds0 represents the TEC between the satellite and the receiver path measured in

TECU (1 TECU = 1016 electrons/m2). Assuming a slant path between the satellite and

the receiver, (3.8) can be transformed to

ρ =−40.31
f 2 STEC metres (3.9)

where STEC is the slant TEC. Using (3.9), the ionospheric delay can be estimated using

the phase measurements. For pseudorange measurements, the negative sign will change to

positive as the free electrons reduce the group velocity but increase the phase velocity [37].

A complete derivation of the delay using the pseudorange measurements can be found in

[37].

3.7 Ionospheric Scintillations

The ionosphere is not only a refractive medium but is also a highly ionized medium where

plasma instabilities can give rise to a phenomenon known as the electron density irregulari-
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ties. These irregularities casuses amplitude and phase fluctuations in the transionospheric

signals which can degrade the signal quality and may result in loss of information con-

tent [39–41]. The amplitude and phase fluctuations due to these time varying electron

density irregularities are known as the ionospheric scintillations. The fluctuations in the

phase/amplitude are also termed phase/amplitude scintillation respectively. The amplitude

scintillation is denoted by the S4 index whereas the phase scintillation is quantified by the

σφ index.

The scintillation effects are different at different latitudes and occur predominantly in

the auroral regions and polar caps and between +20 and -20 degrees geomagnetic latitude

particularly around the equatorial anomaly regions [42–44]. At high latitudes, phase

scintillation is more dominant compared to the amplitude scintillation due to the auroral

phenomena [45, 46] whereas at low latitudes, the amplitude scintillation has more severe

affects on the transionospheric signals due to the instabilities in the ionosphere F-layer

[42, 47, 48].

The equatorial scintillations are both longitudinal and seasonal dependent and are high

during the equinox (between April to September) in the Pacific regions while low in the

American, African and Indian regions during these months [46]. By contrast, the reverse

happens from the mid of September to the end of March. The instabilities in the F-region

during the evening hours give rise to the equatorial spread-F phenomenon [35, 47, 48]

where the recombination in the E and the F1 layers is faster than the topside F-layer which

results in the formation of the low density plasma bubbles which move towards the upside

denser region and due to the increase in the vertical plasma velocity results in the formation

of the irregularity regions of the order of 300 m or less in size which cause the scintillation

at L-band frequencies. These low density bubbles form the irregularity patches which can

travel up to 2000 km along the magnetic field lines towards the north and the south and

can accumulate to produce stronger scintillation effects in the equatroial anomaly regions

(±20o) than at the equator. The scintillation at L-band frequencies can also occur during

the daylight hours which can be due to the presence of a sporadic-E layer but this effect is

less common compared to the spread-F phenomenon.
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At high latitudes, the scintillation is produced due to the irregularities which are

asociated with the polar cap patches and auroral phenomena which is at peak during a

geomagnetic storm or increased solar acitivity [45, 46, 49]. Compared to the equatorial

scintillations, the auroral and polar scintillations can occur at any time of the day having a

duration of a few hours or several days.

3.7.1 Measuring Ionospheric Scintillation using a GNSS/GPS Receiver

At low latitudes (±20o geomagnetic latitude), amplitude scintillations are more dominant

and the GNSS/GPS signal passing through the ionosphere may suffer small angle scattering

due to the equatorial spread-F. The scattered signal at the receiver may add destructively to

produce deep power fades. If the power fades are frequent and of sufficient time duration,

the GNSS/GPS signal may fall below the lock threshold and be considered absent at the

receiver [50–52]. The minimmum received power of a GPS L1 C/A coded signal is -130

dBm. The atmospheric attenuation path loss accounts for less than 2 dB in the worst case

[53]. The polarization mismatch loss is 3.4 dB [53]. Imperfect correlation may lead to

a 1 dB loss. Troposphere errors are often small and can be mitigated using the already

existing models such as Hopfield model. All the above mentioned factors add up to a

maximum of 5 to 6 dB loss based on the satellite elevation angle and have no significant

effects on the GPS receiver performance because the signals are still much higher than

their minimum power level of -130 dBm [53]. However, the loss due to the ionospheric

scintillation can be a big problem as the amplitude scintillation can introduce up to 20 dB

fading at L-band frequencies. The fading due to ionospheric scintillation depends both on

the geographic location and time of the day and follows the maxima and minima of the

solar cycle. Worldwide fading variations at L-band frequencies are well shown in Fig. 3.7

for the solar maxima and minimum periods [54, 55]. Two regions are vulnerable to the

L-band fading. i.e., high latitutde (auroral and polar zones) and low latitude regions (±20o

geomagnetic latitude). Low-latitude scintillation poses greater impact on the GPS signals

where fading of up to 20 dB [54] may occur after sunset during the peak period of the

solar cycle (left in Fig. 3.7) whereas it is less than 5 dB during the solar minimum period

(right in Fig. 3.7). At high latitudes, fading is not significant and can only reach up to a
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maximum of 5 dB during the peak period of the solar cycle and is almost negligible during

the solar minimum period.

Figure 3.7: L-band fading due to scinitillation at high and low latitude regions during
solar maximum and minimum [55].

A simplified mathematical form of a GNSS signal modulated by a PRN code sequence

c(t) without scintillation can be given as

s(t) = A d(t)c(t)cos(ωt +φ)+n(t) (3.10)

where A is the signal amplitude, d(t) is the navigation information, ω is the carrier fequency

and n(t) is the noise. If there are amplitude and phase fluctuations in the signal due to

scintillation, (3.10) can be re-written as

s(t) = A.δAd(t)c(t)cos(ωt +φ +δφ)+n(t) (3.11)
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where δA is the amplitude fading due to amplitude scintillation and δφ are the phase

fluctuations due to phase scintillation. The probability density function (PDF) of the phase

scintillations can be modelled as a zero mean Gaussian PDF [56]:

p(δφ) =
1√

2πσφ

e−δφ 2/2σ2
φ (3.12)

where σφ is the phase scintillation index which is the square root of the standard deviation

of the δφ over a certain time interval, generally 60 s. The fading due to amplitude

scintillation, on the other hand, can be modeled as a Nakagami-m distribution [57]:

p(δ I) =
mmδ Im−1

Γ(m) ⟨δ I⟩m e−mδ I/⟨δ I⟩, δ I ≥ 0 (3.13)

where δ I = δA2 is the intensity of the scintillated signal, Γ(.) is the Gamma function and

m is the strength of the scintillation activity given as

m =
[E(δ I)]2

E[δ I2]− (E[δ I])2 =
1

S2
4T

(3.14)

where E[] is the expectation value and S4T is the ampltiude scinitillation index and should

be less than
√

2 according to the properties of the Nakagami-m distribution. From (3.14),

the S4T index can be defined as the normalized standard deviation of the signal intensity

given by

S4T =

√
E[δ I2]− (E[δ I])2

E(δ I)
(3.15)

It should be noted that the S4T index contain the effects of ambient noise.The amplitude

scintillation due to the ambient noise [40] can be given as

S4No =

√
100

S/No

[
1+

500
19S/No

]
(3.16)
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The overall S4 also known as the corrected ampltiude scintillation index can be obtained

by subtracting (3.16) from (3.15):

S4 =

√
E[δ I2]− (E[δ I])2

[E(δ I)]2
− 100

S/No

[
1+

500
19S/No

]
(3.17)

From (3.17), it is clear that the estimation of the S4 index requires the computation of

the scintillation intensity (δ I) and the S/No. Both of these parameters can be calculated by

using the in-phase and the quadrature components of the tracked signal, once the signal is

locked by the tracking loop. From [40], the signal intensity, δ I, can be given as

δ I =
(NBP−WBP)

(NBP−WBP)LPF
(3.18)

where NBP is the narrow band power, WBP is the wide band power and LPF is the low

pass filtered signal. The NBP and the WBP can be given as

NBP =

(
N

∑
k=1

ik

)2

+

(
N

∑
k=1

qk

)2

(3.19)

WBP =
N

∑
k=1

(
i2k + q2

k
)

(3.20)

where i and q are the in-phase and quadrature components respectively of the received

signal and N is the summing length which usually equals to the length of the navigation

data bit. In the case of GPS L1 C/A coded signals, N is taken as 20 ms and the standard

deviation of the signal intensity is computed over one minute for estimating the S4 index.

The WBP can also be used to find the C/No which can then be converted to S/No. The

C/No can be found as

C/No = 10log
[(

WBP
N

−1
)
×50

]
(3.21)

3.7.2 Scintillation Models

There are several methods which are used to model the ionospheric scintillation activity

such as the Wide Band ionospheric scintillation model (WBMOD) [58] and the Global
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Ionospheric Propagation Model (GIM) [59]. These models consists of an ionospheric

model, which provides the model of the background ionosphere and the embedded iono-

spheric irregularities, and a propagation model to determine the effects of the scintillation

on the transmitted signals. The WBMOD is the most widely used scintillation model

developed by the researchers at the Northwest Research Associates, Inc. (NWRA) and in-

corporates a worlwide climatology of the scintillation producing ionospheric irregularities.

The WBMOD provides the amplitude and phase scintillation indices at a given time and

location, spectral index of phase (p), spectral strength of phase (T ) and also the occurence

statistics.

The deterministic and random phase screen models are also widely used to demonstrate

the effects of ionospheric irregularities on the transionospheric signals [60]. These models

are based on the Fresnel-Kirchoff diffraction theory and assume that the irregularities are

concentrated in a thin layer (phase screen) whose height is equivalent to the peak height of

the F2 layer (i.e., 350 to 400 km). In the deterministic phase screen model, the irrgularities

are considered as discrete lenses alighned along the earth’s magentic field lines. The phase

purturbations produced by k such lenses [61] can be given as

Φ(x) =
k

∑
i=1

Φoi exp
[
−(x− x0i)

2

l2
i

]
(3.22)

where Φoi is the peak phase variations, li is the size of the irregularities, x0i is the centre of

the irregularities and x is the horizontal position normal to the earth’s magnetic field lines.

The peak phase variations, Φoi, in (3.22) includes both the diffraction and the refraction

effects and can be calculated through the rate of change of TEC (∆T EC) which could be

both positive (enhancements in TEC) or negative (depletion in TEC).

Φoi = 40.3×2π
∆T EC

c f
radians (3.23)

where f is the wave frequency. The peak phase variations in (3.23) will occur due to the

maximum TEC variations. A more realistic model to determine the effects of scintillation

producing ionospheric irregularities on the signals passing through the ionosphere is the

power law phase screen model. This model assumes that the emergent phase perturbations
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in the received signal, resulting from passing through the phase screen, are random with a

Gaussian distribution whose amplitude and phase power spectra [62] can be given as

ΦI(q) = Φφ (q)sin2
(

q2r2
F

8π

)
(3.24)

ΦP(q) = Φφ (q)cos2
(

q2r2
F

8π

)
(3.25)

where q is the horizontal wave number across the phase screen, φ represents the phase

deviations and rF =
√

2λ r is the Fresnel radius where r is the distance between the phase

screen and the observer and it is assumed that this is a much smaller distance than that

between the satellite and the ionosphere. The Φφ (q) in (3.24) and (3.25) is the power

spectrum of the phase screen and from [62] can be given as

Φφ (q) =
Cs

(q2 + q2
0)

−p/2 (3.26)

where Cs determines the strength of the scintillation activity, q0 = 2π/l0 where l0 is the

outer scale size of the irregularities and p is the spectral index.

3.8 Chapter Summary

The earth’s atmosphere is a major factor which affects the performance of the satellite-

based navigation systems (GPS/GNSS). The earth’s atmosphere consists of several layers

such as the stratosphere, troposphere ionosphere and exosphere. Most of these layers do

not have a significant impact on the satellite-based navigation as the pre-developed models

used in the positioning solution are used to minimize the errors within the pre-defined limit.

However, the ionospheric scintillation introduces amplitude and/or phase fluctuations in the

transionospheric signals due to the time varying electron density irregularties and therefore

can result in reduced S/No or loss of lock at the receiver. In this chapter, a complete

morphology of ionospheric scintillation and its effects on transionospheric signals has been

discussed and it has also been discussed that how the effects of the scintillation producing

ionospheric irregularities can be modelled.



Chapter 4

Scintillation Effects on GNSS/GPS

Receivers

4.1 Introduction

Ionospheric scintillation (amplitude and phase) is the main cause of degraded receiver

performance specifically affecting the signal acquisition and tracking due to rapid random

fluctuations in the amplitude and/or phase of the received signal. The amplitude scintillation

can results in deep and frequent power fades of a few milliseconds up to several hours which

may cause the signal level to drop below the lock threshold and hence it can be considered

absent at the receiver. The other possible implication of amplitude scintillation can be a

reduced detection performance in terms of the probability of detection (Pd). There are

several acquisition methods [63, 64] which are used to increase the detection performance

of a GPS/GNSS receiver by using a combination of coherent and non-coherent integrations

[65]. The phase scintillation, on the other hand, is mainly responsible for loss of lock in

the tracking loop due to cycle slip [50]. To avoid loss of lock, several tracking loop designs

such as the phase locked loop (PLL), frequency locked loop (FLL), FLL-assisted PLL etc.

are used for robust GNSS/GPS signal tracking as discussed in [66–68].

In this chapter, the amplitude and phase scintillation effects on the GPS receiver ac-

quisition and tracking are analyzed and discussed. At acquisition stage, a new acquisition

method known as the Repetitive Block Acquisition (RBA) [69] is proposed whose per-
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formance is compared with the conventional FFT-based circular correlation method and

the zero padding method. At the tracking stage, the scintillation effects on GPS tracking

loops in terms of loss of lock are discussed by estimating the tracking error variance of

2nd and 3rd order PLL’s and a mathematical derivation is given for estimating the tracking

thresholds beyond which loss of lock occurs. A case study is also carried out by imple-

menting the PLL and FLL-assisted PLL tracking loop designs using the simulated GPS

signals containing scintillation effects to determine how the loss of lock occured and how

it affects the carrier phase information and navigation data. Furthermore, a wavelet-based

denoising technique is also used in the PLL and FLL-assisted PLL tracking loop designs

to come up with a more robust design for these loops to reduce the carrier phase error of a

tracking loop.

4.2 Acquisition Methodologies

Several methods are used for acquisition in a GPS receiver such as the serial search method,

the parallel FFT–based circular correlation, data folding method and the Zero Padding

(ZP) method [63, 64, 70]. However, the FFT-based circular correlation method is the most

commonly used acquisition method due to its high detection performance whereas the ZP

method is considered to be the fastest method for acquiring weak signals [63, 70]. In the

next sections, these two methods are discussed in detail and the performance is compared

with the newly designed RBA method.

4.2.1 Parallel FFT-based Circular Correlation Method

The FFT-based circular correlation method [63] uses a two dimentional search strategy

to find the frequency and code phase of the received signal. Here frequency means the

acquired frequency of the received signal and code phase means the starting point of the

PRN code of an acquired satellite in the received signal. The mathematical form of the

GPS L1 C/A coded signal can be given as

s(t) = A dτ(t) cτ(t)× cos(2π( fL1 + fd)t +θ)+n(t) (4.1)
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where A is the signal amplitude, dτ(t) is the navigation data bit at 50 Hz, cτ(t) is the C/A

code, τ is the unknown code phase shift, fL1 is the L1 carrier frequency of the received

signal, fd is the unknown Doppler shift, θ is the phase of the received signal and n(t) is

the noise in the received signal. The received signal is first downconverted to an IF signal

by mixing with the local oscillator signal and then passed through the ADC to produce the

sampled version of the signal given by

sIF [n] = A dτ [n] cτ [n]× cos(2π( fIF + fd)nTs +∆θ)+nIF [n] (4.2)

where fIF is the frequency of the downconverted signal, Ts is the sampling interval, n =

0, 1, 2, ..., Nare the signal samples, nIF [n] are the noise samples and ∆θ is the phase

difference between the incoming signal and the reference oscillator signal after the IF

stage. The IF signal is then passed to the acquisition algorithm for correlating with the

locally generated C/A coded signal. We used the FFT-based circular correlation method

for performing the correlation [63]. A simple block diagram of the FFT-based circular

correlation method is shown in Fig. 4.1.
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Figure 4.1: Block diagram of the FFT-based circular correlation method.

In order to perform correlation, the downconverted IF signal is first multiplied with the

reference sine and cosine signals for carrier removal to produce the in-phase and quadrature

components given as

sI = Adτ [n]cτ [n]cos(2π fdnTs +φ)+nI[n] (4.3)
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sQ = Adτ [n]cτ [n]sin(2π fdnTs +φ)+nQ[n] (4.4)

where φ is the phase offset and nI[n] and nQ[n] are the in-phase and quadrature noise

terms and are treated as Gaussian white noise in the acquisition program with zero-mean

and variance σ2 (nI[n],nQ[n]∼ N(0,σ2)). The in-phase and quadrature signals are then

combined together to produce a complex signal (z(n)) which is then converted to the

frequency domain by taking the FFT. For circular correlation, the FFT of the incoming

complex signal (z(n)) is then multiplied with the conjugate FFT of the locally generated

C/A coded signal. The mathematical form of the C/A coded signal can be given as

cτ̂ = cτ̂ [n] =
+∞

∑
k=−∞

qk,Nc ∏(nTs − ktc) (4.5)

where qk is the locally generated PRN code sequence with Nc chips, ∏ is the rectangular

function, tc is the chip duration and τ̂ is the actual start time of the PRN code. The result

of the multiplication between the FFT of the complex incoming signal and the conjugate

FFT of the local C/A code is then converted to a time domain signal by performing the

inverse FFT (IFFT) and then the absolute is taken to complete the correlation process. If a

peak is found crossing a certain threshold, the signal is said to be present and the index of

the peak value will mark the beginning of the C/A code in the incoming signal. The same

process must be repeated for all the visible satellites to complete the acquisition process.

The FFT-based method explained above was used to acquire real GPS signals using

the experimental setup shown in Fig. 4.2. The received signals were downconverted at

an IF of 1.25 MHz and sampled at 5 MHz (1 ms = 5000 code phase samples) using the

universal software radio peripheral (USRP2) N210 RF front end device [71] connected to

a roof-mounted choke ring antenna. In Fig. 4.2, a NovAtel GISTM (GNSS Ionospheric

Scintillation and TEC Monitor) GSV4004B series dual frequency receiver was also used

to confirm the presence of the acquired satellites. A similar setup is also used to log

the ISMR data containing the S4 and σφ at a 1 min rate and raw TEC data at 1 Hz at

Trondheim receiver station which is used in Chapters 5 and 6. The data for the acquisition

was collected on 21 August 2013 from 13:00 to 15:00 local time at the School of Electrical
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and Electronic Engineering at Newcastle University, UK (54.97o N, 1.61o W). Acquisition

was performed using non-coherent integration on 2 ms of data with a Doppler search space

of ±10 kHz. The acquisition result for one of the PRN′s found, i. e., PRN 16 is shown in

Fig. 4.3. A unique peak can clearly be seen with a code phase of 434. The Doppler offset

was found to be 500 Hz and therefore the acquired frequency was 1.2505 MHz.

Figure 4.2: Experimental setup for capturing GPS data. In this experimental setup
components are numbered as: (1) amplifier to boost the signal strength connected to the
roof mounted antenna; (2) splitter to split the signal between the Novatel receiver and
the USRP2 N210; (3) Novatel GPS receiver; (4) USRP2 N210 RF front end device; (5)
oscillator output from (3) to (4); (6) positioning solution using Novatel receiver; (7) storing
raw GPS data from USRP2 in a binary file to be used by the acquisition program [69].

4.2.2 Zero Padding Method

The zero padding (ZP) method [70, 72] works the same way as the FFT-based circular

correlation method. However, instead of using the complete N selected samples for

acquisition, the received signal and the local C/A code samples are divided into M small

blocks of equal lengths and then correlation is performed between the corresponding blocks

circularly. The overall method can be defined as follows:

1. Divide the N samples of the incoming signal into M blocks of equal lengths and

combine the every two adjacent blocks to extend the block lengths. Name the
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Figure 4.3: Acquisition using the FFT-based circular correlation method for PRN 16.

extended blocks as bm where m = 1,2,3, ...,M represents the block numbers. The

length of each block can be denoted by l.

2. Generate N samples of the local C/A code and divide them into M equally spaced

blocks having the same length as the incoming signal blocks. Now pad each block

with equal number of zeros to double the block lengths and name them as cn where

m = 1,2,3, ...,M.

3. Circular correlate bm and cm in an ordered way such that the correlation will be first

performed between the blocks b1 and c1 and save only the first l/2 correlation results

discarding the rest. The same will be repeated for the rest M−1 blocks. Using the

corresponding output point from each blocks one can perform the M-point FFT to

find the frequency. The total FFT’s must be performed M×M times.
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4. The above procedure will be repeated M − 1 more times using the following

block arrangements; m = 1,2,3, ...,M, the n is arranged as n = 2,3, ...,M,1; n =

3,4, ...,M,1,2; n = M,1,2...,M−1;

5. Searching for the maximum peak will give the code phase of the signal and the

frequency can be found using the FFT.

For performing the acquisition on the GPS signals using the ZP method, we used the

same data set as collected using the experimental setup shown in Fig. 4.2. Following steps

1 to 5, the acquisition results for PRN 16 are shown in Fig. 4.4. It should be noted that

rather than presenting the results of each block separately, we combine all the correlation

results obtained in step 5 to show the position of the correct code phase and then found the

frequency using the FFT. The peak was found at the code phase index of 434 which is the

same as founded in the case of the FFT-based method and the frequency was found to be

1.2505 MHz.
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4.2.3 Acquisition using the Block Repetition Method

As discussed previously, the received GPS signals can be affected by several phenomena

such as the ionospheric delay, satellite and receiver clock errors, multipath errors, satellite

geometry and the ionospheric scintillation. At acquisition level, the effect is usually seen in

the form of signal fading which can reduce the input S/No of a signal and hence can lead to

reduced detection performance in terms of the probability of detection. To overcome this

problem and to increase the detection performance, one strategy is to increase the coherent

integration time in the acquisition process. However, this also increases the acquisition

time. Due to long coherent integration times, the FFT-based method is the most commonly

used acquisition method due to its high detection performance [63]. The ZP method, on

the other hand, is a faster one but at the expense of reduced detection performance [63]. In

order to improve the detection performance and speed up the acquisition process overall, a

new Repetitive Block Acquisition (RBA) method is here proposed [69]. The RBA method

uses a parallel overlapping block structure rather than padding zeros as in the case of

the ZP method. In the RBA method, after dividing the incoming signal and the local

PRN code into M equally spaced blocks, every two neighbouring blocks are combined

together and then correlation is performed. A simple block diagram of the overlapping

block formation using the RBA method is shown in Fig. 4.5. The symbols s1,s2, ...,sM

represent the extended signal blocks whereas c1,c2, ...,cM represents the local C/A code

blocks formed using the RBA method.

Figure 4.5: Block formation using the RBA method [69].
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The block diagram of the RBA method is shown in Fig. 4.6 and the complete algorithm

is defined below.

1. Choose N samples of the received GPS signal and divide them into M+1 blocks

each having length L/2.

2. Starting from the first block, combine every two adjoining blocks to generate M new

blocks of length L and then perform FFT on all the blocks.

3. Generate N samples of the local C/A code and form M new blocks of length L by

following the same procedure as in step 2 and perform the FFT and conjugation.

4. Multiply the FFT results of all the corresponding blocks of step 2 and step 3 and

perform IFFT. Keep the first L/2 correlation results from each block and discard the

rest of the L/2 results and perform non-coherent integration.

5. Check for the maximum peak against a predetermined threshold (γ). If the peak is

above the threshold, acquisition can be declared.

6. If no peak is found, shift C/A code blocks to the left by one step and repeat steps 4

and 5. This process must be repeated M times overall if no peak is found in the first

M−1 searches .

7. For unsuccessful acquisition, the old data block is shifted out and the new data block

is shifted in to start the acquisition process from step 1.

The acquisition results using the RBA method for PRN 16 are shown in Fig. 4.7. The

code phase (434) and the acquired frequency (1.2505 MHz) were both found to be the same

as found in the case of the FFT-based and ZP methods which shows that the RBA method

provides the correct acquisition results. In the next sections, the detection performance

and the computational complexity involved in each method is analyzed and discussed

and it is shown that how the detection performance can be improved in case the signal

is weakened by the fading which can occur due to both the increased levels of noise or

amplitude scintillation.
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Figure 4.6: Block diagram of signal acquisition process using the RBA method.
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Figure 4.7: Acquisition results using the RBA method for PRN 16.

4.3 Detection Performance and the Probability of Detec-

tion

The correlation between the in-phase and quadrature components of the incoming signal

and the locally generated C/A coded signal can be given as

I = Ãdτ [n]R(θ̃)sinc(( fd − f̂d)TI)cos(θi)+nIi (4.6)
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Q = Ãdτ [n]R(θ̃)sinc(( fd − f̂d)TI)sin(θi)+nQi (4.7)

where R[θ̃ ] is the autocorrelation function, θ̃ = τ − τ̂ is used to represent the correlation

loss due to error in estimating the code delay, fd − f̂d is the error in estimating the Doppler

offset in the transmission frequency, TI is the coherent integration time and θi is the average

phase error over the correlation interval. Assuming that the navigation data bit, dτ [n], is

constant during the coherent integration time as the C/A is 1 ms long whereas navigation

message is 20 ms long and setting up a hypothesis test with hypothesis H1 that the signal

is present and hypothesis H0 that the signal is absent. Under hypothesis H1, the envelope

of the signal E =
√

I2 +Q2 after power detection will be Rician with a probability density

function (PDF) [73] given as

pH1(E) =
E

σ2
H1

.exp
(
−E2 + Ã2

2σ2
H1

)
Io

(
EÃ
σ2

H1

)
(4.8)

where Ã = σH1

√
2TIC/N0 is the signal amplitude after the correlator integrator, σ2

H1
is the

noise variance and Io

(
EÃ/σ2

H1

)
is the zero order modified Bessel function of the first kind

and can be given as

In(x) =
∞

∑
c=0

(x/2)2c+n

c!Γ(c+n+1)
(4.9)

where Γ(c+n+1) = (c+n)!. The probability that the envelope, E, will exceed a prede-

termined threshold, γ , can be given as

Pd =
∫

∞

γ

pH1(E)dE =
∫

∞

γ

E
σ2

H1

.exp
(
−E2 + Ã2

2σ2
H1

)
Io

(
EÃ
σ2

H1

)
(4.10)

where Pd is the probability of detection. According to [73], if we neglect the terms > Ã3,

assume EÃ/σ2
n >> 1 , Ã >> |E − Ã| and applying series approximation, the detection

probability can be given as
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Pd =
1
2

[
1− er f

(
γ − Ã√
2 σH1

)]
+

exp
[
−(γ − Ã)2/2σ2

H1

]
2
√

2π
(
Ã/σH1

)


×

1− γ − Ã
4Ã

+
1+
[
(γ − Ã)2/σ2

H1

]
8Ã2/σ2

H1

 (4.11)

From [73], using Ã2/σ2
H1

as the post detection signal-to-noise ratio, (S/N) f , (4.11) can

be used to find the probability of detection as a function of the (S/N) f . Equation (4.11)

also shows that the Pd is a function of the signal characteristics and can be affected by

the scintillation if there are strong amplitude fluctuations in the signal. From hypothesis

testing, under hypothesis H0, the Ã2 will be 0 and the envelope, E, of the signal will follow

a Rayleigh distribution with PDF [73] given as

pH0(E) =
E

σ2
H0

e−(γ2/2σ2
H0

) (4.12)

where σ2
H0

is the noise variance under hypothesis H0. The probability that the envelope

of the noise alone will cross the threshold γ , also known as the probability of false alarm

(Pf a) can be given as

Pf a =
∫

∞

γ

pH0(E)dE = e−(γ2/2σ2
H0

) (4.13)

In (4.13) settting a suitable value of the Pf a, the detection threshold, γ , can be found as

γ =
√

−2σ2
H0

ln(Pf a) (4.14)

From (4.13), it can be seen that the Pf a is not a function of the signal amplitude and

therefore will not be affected by the scintillation. Suppose, the received signal is affected

by the scintillation and Ã is the purturbed signal amplitude then the relationship between

the purturbed and unpurturbed signal amplitude can be given as AN = Ã/A, where A is the

actual unpurturbed signal amplitude and AN is the normalized amplitude. In the presence

of scintillation, the detection probability in (4.11) will be dependent on the amplitude,
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Ã, and the PDF of the signal envelope as a function of the signal amplitude [74] under

hypothesis, H1, will be given by

pH1(E) = pH1,Ã(E | Ã)pÃ(A)dA (4.15)

where pÃ(A) represents the degradation in the detection probability due to amplitude

scintillation and from [74] can be modelled as a Nakagami-m distribution

pÃ(A) =
2mm.A2m−1

Γ(m)⟨A2⟩
e−mA2/⟨A2⟩ (4.16)

where m = 1/S2
4. The Pd in the presence of amplitude scintillation [74] can be given as

Pd =
∫

∞

0
pH1,Ã(E | Ã)pÃ(A)dA (4.17)

Using the above assumptions and by setting Pf a = 0.01, the Pd is plotted as a function

of S4 for different C/No values as shown in Fig. 4.8. As discussed in chapter 3, the

amplitude scintillation can introduce up to 20 dB fading in the received signal. This will

affect the input S/No of the signal and will lead to poor detection performance. This can

also be seen in Fig. 4.8 where the increasing S4 value is leading to a reduced detection

probability.

4.4 Improving the Detection Performance

The coherent and non-coherent integrations are the two approaches which can be used to

increase the detection probability at the acquisition stage. As discussed in section 2.6, the

noise floor of the received signal is - 114 dBm/MHz using a front end having a noise figure

of 2 dB. The bandwidth of the C/A code receiver is approximately 2 MHz. Based on this

bandwidth, the noise floor of the received signal will be -111 dBm. Since the miminum

received signal strength of the received GPS L1 signal is -130 dBm, then the S/No of

the received signal will be -19 dB (-130+111). However, if we are using 1 ms signal for

acquisition with the frequency steps of 1 kHz then the noise floor will be - 144 dBm and

the S/No of the received signal will be 14 dB (-130 + 144). It is reported by [8] that an
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Figure 4.8: Pd plotted against the S4 for different C/No values [74].

input S/No of 14 dB is a reasonable value for achieving 90% detection probability. The

coherent integration gain, Gc(n), of n ms of data over 1 ms is

Gc(n) = 10log(n) (4.18)

For acquisition, a maximum of 19 ms of data can be processed coherently because there

will be a navigation data bit transition every 20 ms in the case of GPS signals. For weak

signals, a long data record is needed and the coherent processing becomes impractical if

the signal is very weak. In that case, the input S/No can be increased by accomplishing

the acquisition using a combination of coherent and non-coherent integrations.The non-

coherent integration gain [8], Gi(n), can be obtained by subtracting the non-coherent

intergration loss, L(n), from the coherent intergration gain, Gc(n), given as

Gi(n) = Gc(n)−L(n) (4.19)
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where n is the non-coherent integration number and L(n) is the non-coherent integration

loss and can be given as

L(n) = 10log

[
1+
√

9.2n/Dc(1)

1+
√

9.2/Dc(1)

]
(4.20)

where Dc(1) is the ideal detectability factor given as

Dc(1) = [ er f−1(1−2Pf a)− er f−1(1−2Pd) ]
2 (4.21)

where er f−1 is the inverse of the error function er f (er f = 2√
π

∫ z
0 e−t2

dt ). Equation (4.19)

shows that non-coherent integration gain is a function of the Pd . If we set a suitable value

for the Pf a, then increasing the non-coherent intgeration length will lead to an increased

detection probability. A plot of the S/No gain and loss versus the non-coherent integration

length, n, is shown in Fig. 4.9. From this figure, it can be seen that by performing

1000 non-coherent integrations for a given coherent data length, 20 dB extra gain can be

achieved. Suppose, the received signal is at -151 dBm and acquisition is performed using

the 10 ms coherent length. The input S/No of the signal will be 0 dB. In order to achieve

90% detection probability, 14 dB more gain is required which can be achieved by using

100 non-coherent integrations or 1 s of data. A similar approach was also used by [75]

to show that an overall 26 dB gain can be achieved by processing 4 s of data. From Fig.

4.9, we observed that a 16.2 dB gain can be achieved by performing 200 non-coherent

integrations for a given coherent length. The remaining 800 integrations only add up to a

3.8 dB gain, so it is impractical to perform 400% more operations for the extra 3.8 dB gain.

In the next section, the detection performance of the FFT-based, ZP and RBA methods is

analyzed using the non-coherent integration for the improved detection performance.

4.5 Performance Comparison between the FFT-based,

RBA and ZP methods

In this section, the detection probability of the RBA, ZP and the FFT-based methods

is analyzed using the simulated GPS L1 C/A coded signals generated using the Spirent
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Figure 4.9: Non-coherent integration loss and gain.

GSS8000 multi-GNSS constellation simulator. The GPS signals from the Spirent simulator

were collected and downconverted at an intermediate frequency, fIF , of 1.25 MHz and

sampled at 5 MHz using the USRP2 (universal software radio peripheral) N210 front end

device. The experimental test-bed for generating the GPS signals is shown in Fig. 4.10.

Since the C/A code is 1 ms long, then, based on the sampling frequency of 5 MHz there will

be 5000 code phase samples in 1 ms. For this analysis, a controlled environment was used

in which the S/No of the received signal was degraded by adding white Gaussian noise. A

study of the hardware computational load in terms of the number of FFT multiplications

and additions has also been carried out to show the computational complexity involved

in each method. The acquisition was performed by selecting the short and long coherent

lengths (code phase lengths).

The detection probabilities of the RBA, ZP and FFT-based methods are shown in Fig.

4.11. For calculating the detection probability, (4.11) was used and the Pf a was chosen

as 10−7. It can be seen in Fig. 4.11 that the RBA method has achieved better detection

probability than the ZP method when compared for code phase lengths of 20,000, 40,000,

60,000, 150,000 and 200,000. On average, the RBA method achieved 25% to 30% better
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Figure 4.10: Experimental test bed for simulating the GPS signals using the Spirent
simulator.

performance than the ZP method. On the other hand, the detection probability of the

RBA method was found to be less than the FFT-based circular correlation method when

compared using the same code phase lengths. This can be due to performing correlation

by dividing the large data sets into small blocks in the case of the RBA method which

affects the correlation properties of the C/A codes. However, if we compare the detection

probability of the FFT-based method with 60,000 code phase length to the RBA method

with 200,000 code phase length, both of them share the same detection performance

in terms of Pd . This shows that, in the case of the RBA method, to achieve the same

detection performance as the FFT-based method, the integration time must be increased

by more than a factor 3. However, if we compare the computational load of the two

methods in Fig. 4.12, it was found that RBA method with 200,000 code phase lengths

was taking only 1.88416×108 computations compared to the 5.2147×108 computations

using 60,000 code phase length in the case of the FFT-based method. This shows that to

achieve better detection proabaility with less computational time, the RBA is better than

both the FFT-based method and the ZP methods.

The acquisition speed in the case of the FFT-based, RBA and ZP methods depends

on the number of FFT and IFFT operations involved in a correlation process. An N-point

FFT contains (N/2)log2N complex multiplications and Nlog2N complex additions. This
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Figure 4.12: Number of Additions and Multplications for the FFT-based, RBA and ZP
methods

criteria was used to find the combined number of additions and multiplications involved in

each method in Fig. 4.12.

4.6 Scintillation Activity and the Receiver Performance

To monitor the scintillation activity, several GPS receiver stations are established at different

high latitude regions as part of the the EPSRC (Engineering and Physical Science Research

Council) funded project through the grant EP/H004637/1. The location of these receiver

stations is shown in Fig. 4.13. The receivers used for monitoring the scintillation activity

are the Novatel GISTM GSV-4004B series which can log scintillation indices (S4,σφ ) at

a 60 s rate. The amplitude and phase scintillation activity at Trondheim, Norwy (63.42o

N, 10.4o E) on 24 April, 2014 is shown in Fig. 4.14. The K p plot for the day is shown

in the lower panel of Fig. 4.14 which shows that during 00:00 to 09:00 UT and between

21:00 to 24:00 UT, there was a strong geomagnetic storm with K p reaching as high as

7 during 00:00 to 03:00 UT. This resulted in strong phase scintillation on most of the

PRN’s visible during this time whereas no significant amplitude scintillation activity was

observed. It should be noted that the amplitude scintillation is more dominant at the
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equatorial regions compared to the high latitude regions. However, since we do not have

suitable data available from equatorial latitudes, we are using the high latitude data to

observe the scintillation effects on receiver tracking loop loss of lock performance.

The scintillation acitivity for one of the PRN′s, i. e., PRN 19, is shown in Fig. 4.15

where the amplitude and phase scintillation is plotted in the top panel, loss of lock in

the middle panel and the C/No is plotted in the lower panel of Fig. 4.15. Strong phase

scintillation was observed between 01:00 to 03:00 UT which resulted in frequent loss of

lock at the L2 frequency. However the L1 signal did not observe any loss of lock during

this time which shows that for this case the higher frequency was more vulnerable to

scintillation. On the other hand, no significant decrease in the C/No was observed on both

frequencies. The small variations were due to the effect of the changing elevation angle.

This shows that the cycle slips due to phase scintillation are the main cause of loss of lock

compared to the amplitude scintillation which mostly results in decreased signal power

due to deep and frequent power fades [65, 75]. In the next sections, the scintillation effects

on the carrier phase tracking loops are analyzed and discussed.
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Figure 4.13: GNSS receiver stations for recording the scintillation activity.
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2012.
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Figure 4.15: Scintillation plot of PRN 19 at Trondheim, Norway on 24 April, 2012.
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4.7 Scintillation Effects on Carrier Tracking Loops

The main purpose of the tracking loop in a GNSS/GPS receiver is to lock and track the

incoming signal. The phase lock loop (PLL) is the most commonly used method for

tracking the GNSS/GPS signals. The PLL finds the difference between the phase of the

incoming signal and the local reference signal and then use it to adjust the frequency of

the local oscillator to match frequency of the incoming signal. A block diagram of a

conventional PLL design taken from [76] is shown in Fig. 4.16 where Φi(s) is the input

signal in the s-domain which can be obtained using the Laplace transform, Φ f (s) is the

output signal, N(s) = k1 is the gain of the voltage conrolled oscillator (VCO), ε(s) is

the phase error between Φi(s) and Φ f (s), ∑ is the phase comparator, ko is the amplifier

gain and F(s) is the transfer function of the loop filter. Adopted from [9], the s-domain

representation of the second and third order PLL’s are shown in Fig. 4.17 and Fig. 4.18

respectively. In these figures, aPLL and bPLL are the filter coefficients and ωn is the natural

frequency (the frequency at which the loop frequency will oscillate until not disturbed

by outside effects). In a conventional GPS receiver, a second order PLL is used which

employs a first order loop filter. The transfer function of the loop filter to make a second

order PLL can be given as

F(s) =
sτ2 +1

sτ1
(4.22)

From Fig. 4.16, the transfer function of the PLL tracking loop can be found as

H(s) =
Φ f (s)
Φi(s)

=
kok1F(s)

s+ kok1F(s)
(4.23)

Using (4.22) in (4.23):

H(s) =
kok1

sτ2+1
sτ1

s+ kok1

(
sτ2+1

sτ1

) (4.24)

and simplifying (4.24) will give

H(s) =
2ζ ωns+ω2

n
s2 +2ζ ωns+ω2

n
(4.25)
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Figure 4.16: S-domain representation of a Phase lock loop.

Figure 4.17: 2nd order PLL design.

Figure 4.18: 3rd order PLL design.
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where ζ is the damping ratio and from [76], the ωn and ζ can be given as

ωn =

√
kok1

τ1
(4.26)

ζ =
ωnτ2

2
(4.27)

Equation (4.25) is an analog representation of the transfer function of a PLL for

continuous time systems. In order to convert it into a discrete time system for digitized

data, the z-transform can be used. To convert the s-domain into a z-domain, the bilinear

transform given in (4.28) can be used

s =
2
ts

1− z−1

1+ z−1 (4.28)

where ts is the sampling time. Using the bilinear transform and simplifying, the loop

transfer function, F(s), in z-domain can be given as

F(z) =C1 +
C2

1− z−1 (4.29)

where C1 and C2 are the filter coefficients given as

C1 =
2τ2 − ts

τ1
, C2 =

ts
τ1

Similarly, the transfer function N(s) = k1/s of the VCO in z-domain, using the bilinear

transform, can be given as

N(z) =
k1z−1

1− z−1 (4.30)

The transfer function of the PLL in z-domain is

H(s) =
kok1F(z)N(z)

1+ kok1F(z)N(z)
(4.31)
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Substituting N(z) and F(z) in (4.31) gives

H(z) =
kok1(C1 +C2)z−1 − kok1C1z−2

1+[kok1(C1 +C2)−2]z−1 +(1− kok1C1)z−2 (4.32)

In (4.32), to find the filter coefficients C1 and C2, certain parameters needs to be

estimated beforehand such as ωn , ζ and the gain of the loop filter (kok1). From [76], ωn

for a 2nd order PLL can be found as

Bn =
∫

∞

0
| H(w) |2 d f =

ωn

2

(
ζ +

1
4ζ

)
(4.33)

ωn =
4ζ Bn

4ζ 2 +1
(4.34)

where Bn is the noise bandwidth (see Appendix B for derivation). The damping factor,

ζ , is usually taken as 0.707 as it is close to the optimum value as mentioned by [76] and

we have also used the same in tracking the signals. The loop gain (kok1) can be set to an

arbitrary value but from [76] we have used 4π×100 in this thesis, however other values

can also be used depending on the application. From the PLL block diagram in Fig. 4.17,

the overall transfer function after the phase comparator for a second order PLL can be

given as

G2(s) = kok1F(s)N(s) = kok1

(
sτ2 +1

sτ1

)(
1
s

)
(4.35)

Putting the values of τ1 and τ2 in (4.35), it will be reduced to

G2(s) =
ω2

n +aPLLωns
s2 (4.36)

Using a Costas PLL implementation, the overall tacking loop design is shown in

Fig. 4.19. The parameters Ip and QP are the in-phase and quadrature correlation results

respectively derived using the prompt replica code. The reason for choosing the Costas

discriminator is its insensitivity to 180o phase shift. The equations for the Ip and Qp

correlations can be given as
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Figure 4.19: Carrier tracking using a 2nd order Costas PLL.

Ip = ANR(θ)sinc(( fd − f̂d)TI)cos(θi)+nI (4.37)

Qp = ANR(θ)sinc(( fd − f̂d)TI)sin(θi)+nQ (4.38)

where N is the total number of samples, TI is the predetection integration time and nI and

nQ are the noise terms in the in-phase and quadrature components respectively. From the

PLL block diagram in Fig. 4.18, the transfer function after the phase comparator for a third

order PLL can be given as

G3(s) =
ω3

n +aPLLω2
n s+bPLLωns2

s3 (4.39)

The 3rd order PLL tracking loop implementation design using a Costass PLL is shown

in Fig. 4.20. In the next section, the amplitude and phase scintillation effects on the 2nd

and 3rd order PLL are discussed based on the explanation given above for the 2nd and 3rd

order PLL’s.

4.7.1 Phase Scintillation Effects

The phase tracking error variance is an important parameter which is not only used to

determine the performance of a GNSS/GPS receiver during the scintillation and non-
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Figure 4.20: Carrier tracking using a 3rd order Costas PLL.

scintillation conditions but is also used to update the tracking loop parameters for robust

signal tracking [77–79] and further used to define the tracking thresholds for updating

the tracking loop paramters in the receiver beyond which loss of lock occurs. The phase

tracking error variance at the output of a PLL [80] can be given as

σ
2
φε = σ

2
φs +σ

2
φT +σ

2
φ ,osc (4.40)

where σφs, σφT , σφ ,osc are the tracking error variances from the phase scintillation, thermal

noise and the oscillator noise respectively. From [80], the σφ ,osc is assumed to be 0.1 rad.

Assuming that the amplitude scintillation is almost negligible, the error variance due to

thermal noise component [80] can be given as

σ
2
φT =

Bn

C/No

(
1+

1
2TIC/No

)
(4.41)

where TI is the integration time. The tracking error variance due to phase scintillation [80]

can be given as

σ
2
φs =

∫ −∞

∞

| 1−H( f ) |2 Sφ ( f )d f (4.42)

where | 1−H( f ) |2 is the closed loop transfer function of the PLL given as

| 1−H( f ) |2= f 2k

f 2k + f 2k
n

(4.43)
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where f is the signal frequency, fn is the natural frequency and k is the loop order. In

(4.42), the term Sφ ( f ) is the power spectral density (PSD) of the phase scintillation given

as

Sφ ( f ) =
T

( f 2
0 + f 2)p/2 (radians2/Hz) (4.44)

where fo is the outer scale cut-off, T is the spectral strength at 1 Hz and p is the slope of

the PSD. Using (4.43) and (4.44) in (4.42) and integrating, the error variance due to phase

scintillation can be given as

σ
2
φs =

πT

k f p−1
n sin

(
(2k+1−p)π

2k

) , 1 < p < 2k (4.45)

Using (4.41) and (4.45) in (4.40) and neglecting the oscillator noise, as we are consid-

ering the software-based models for PLL, the total phase tracking error variance in the

presence of phase scintillation and thermal noise is

σ
2
φε =

πT

k f p−1
n sin

(
(2k+1−p)π

2k

) +
Bn

C/No

(
1+

1
2TIC/No

)
(4.46)

In Fig. 4.21, the phase tracking error due to thermal noise and phase scintillation (σφs)

is plotted as a function of the spectral strength (T ) using varying noise bandwidths (Bn) for

the 2nd and 3rd order PLL’s. Following parameter values were used for the two tracking

loops in Fig. 4.21 to generate this figure: TI = 0.02, C/No = 42 dBHz, p = 2.5. Fig. 4.21

shows, that as T increases, the tracking error also increases. The tracking error in Fig. 4.21

is higher for small noise bandwidths due to the fact that although narrower tracking loop

(and hence also noise) bandwidths can be used to reduce the noise entering the receiver

tracking loops in order to improve the S/No, they cannot accomodate the large random

phase fluctuations due to scintillation when there is a high probability that the receiver

will most likely lose lock due to tracking loop treating these phase fluctuations as noise

and hence can lead to large errors when this exceeds the narrower receiver bandwidth.

The error contribution due to thermal noise was almost negligible and was less than 0.01

radians due to the high C/No value used and therefore was not of any great concern. The
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reason for using the high C/No is due the fact that we were only interested in seeing the

effects of phase scintillation on the tracking loops.
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Figure 4.21: Tracking error (σφε ) in the presence of phase scintillation and thermal noise
for the 2nd and 3rd order PLL’s.

In order to evaluate the performance of a receiver regarding the loss of lock state, a

threshold for the spectral strength (T ) must be defined based on the noise bandwidth and

the spectral index (p). From [61], the linear phase tracking error threshold for the Costas

loop can be given as

σ
2
φε |T h=

(
π

12

)2
radians2 (4.47)

Equation (4.47) suggest that the phase tracking error, σφε |T h, should not exceed π/12

otherwise the receiver is likely to loose lock. Comparing (4.46) and (4.47), the threshold

spectral strength is found as

T |T h=
1
π

(
σ

2
φε |T h −σ

2
φT

)
.k f p−1

n sin
(
(2k+1− p)π

2k

)
(4.48)

The threshold spectral strength (T ) is plotted in Fig. 4.22 as a function of the noise

bandwidth, Bn, and the spectral index, p, for a second and third order PLL. The same

parameter values were used for this graph as used to generate Fig. 4.21. In Fig. 4.22, it can

be seen that the loop performance is more dependent on the noise bandwidth compared

to the spectral index (p). It was also found that T |T h was higher for the 2nd order loop

compared to the 3rd which shows that, during phase scintillation, the 2nd order loop will
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give more robust performance compared to the 3rd order loop due to accommodating a

high threshold spectral strength. It was also reported by [61] that for minimum phase error,

the 2nd order loop is better than the 3rd order loop.

Figure 4.22: Threshold spectral strength (T |T h) as a function of the noise bandwidth and
spectral index for the 2nd and 3rd order PLL’s.

4.7.2 Amplitude Scintillation Effects

In the previous section, the effects of the phase scintillation and thermal noise on the carrier

tracking loops were observed. In this section, the tracking error variance equations for the

Costas tracking loop will be derived as a function of the amplitude scintillation, S4. Since

the joint statistics of the amplitude and phase scintillations are unknown, so both of these

components are usually dealt with separately and therefore amplitude scintillation effects

are translated to the thermal noise due to the amplitude fluctuations degrading the C/No

of the received signal. Neglecting the oscillator noise, the tracking error from phase and

amplitude scintillation is

σ
2
φε = σ

2
φs +σ

2
φT (4.49)
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In the case that there are amplitude fluctuations due to scintillation, the thermal noise

tracking error variance will be a function of the purturbed signal amplitude, Ã, and from

[61] can be given as

σ
2
φT (Ã) = 2TIBn(Ã)σ2(Ã) (4.50)

where σ2(Ã) is the noise variance of the Costas discriminator [61] and can be given as

σ
2(Ã) =

No

TIÃ2

(
1+

No

TIÃ2

)
(4.51)

Using (4.51) in (4.50), the tracking error variance in the presence of amplitude fluctua-

tions can be give as

σ
2
φT (Ã) = 2TIBn(Ã)×

No

TIÃ2

(
1+

No

TIÃ2

)
(4.52)

Normalising the signal amplitude with ÃN = Ã/A where A is the unpurturbed signal

amplitude and using the definition C/No = A2/2No, (4.52) can be transformed to

σ
2
φT (Ã) =

Bn(Ã)
C/No

(
1

ÃN
2 +

1

2TIC/NoÃN
4

)
(4.53)

where Bn(Ã) is the noise bandwidth as a function of the perturbed signal amplitude and is

1. Second order loop:

Bn(Ã) =
ωn

2

(
ÃN

2

gN
ζ +

1
4ζ

)
(4.54)

2. Third order loop:

Bn(Ã) =

(
ÃN

2

gN

)
ωn

1.2
(4.55)
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where gN = g/A is the normalised gain factor of the tracking loop [61] and for an ideal case,

gN = ÃN
2. The overall tracking error variance in the presence of amplitude scintillation

can be given as

σ
2
φT =

∫
∞

0
σ

2
φT (ÃN) fÃN

(AN)dAN (4.56)

Using (4.53) in (4.56)

σ
2
φT =

Bn(Ã)
C/No

[∫
∞

0

1

ÃN
2 fÃN

(AN)dAN +
1

2TIC/No

∫
∞

0

1

ÃN
4 fÃN

(AN)dAN

]
(4.57)

where fÃN
(AN) is the PDF of the signal amplitude and is assumed to follow a Nakagami-m

distribution given by

fÃN
(AN) =

2mmA2m−1
N

Γ(m)
.exp(−mA2

N)dAN (4.58)

Using (4.58) in (4.57) and integrating (see Appendix A for complete derivation), the

final form of (4.57) gives

σ
2
φT =

B̄n

C/No

[
1

1−S2
4
+

1
2TIC/No(1−3S2

4 +2S4
4)

]
, radians2 (4.59)

where B̄n is the loop design bandwidth and can be adopted from (4.54) and (4.55). Equation

(4.59) is only valid for S4 < 1/
√

2. If we use gN = ÃN
2, the outcome of (4.59) will be

same regardless of the loop order as only the noise bandwidth, B̄n, needs to be selected in

(4.59). The tracking error variance as a function of the amplitude scintillation is plotted in

Fig. 4.23 for different C/No values. It can be seen that for S4 < 0.7, the effect of amplitude

scintillation is very low and not of great concern. However, as the S4 approaches 0.7

there is a sudden increase in the error variance which points out to the fact that the strong

amplitude scintillation may cause some problems and signals with low C/No are more

likely to be affected by the scintillation.
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Figure 4.23: Thermal noise tracking error variance in the presence of amplitude scintilla-
tion.

4.8 Mean Cycle Slip Time & the Probability of Loss of

Lock

From [81], the mean cycle slip time for the 1st order PLL can be given as

Tslip =
π2

2B̄n
ρeI2

o (ρe) (4.60)

where ρ = 1/σ2
φT . The function Io(.) is the modified Bessel function of the first kind and

zero order. From [81], the mean cycle slip time for the higher order loops can be given as

Tslip =
π

4 ¯̄Bn
e2αρ (4.61)

where α represents the S/No loss and α = 0.891 for the 2nd order loop and α = 0.794 for

the 3rd order loop [81]. In Fig. 4.24, the mean cycle slip time of the 2nd and 3rd order

loops is plotted as a function of the tracking error variance for different noise bandwidths.

It can be seen that the 3rd order loop is more vulnerable to cycle slips and therefore

can loose lock more quickly than the 2nd order loop for large tracking error variances.
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Another observation that can be deduced from Fig. 4.24 is that the 2nd order loop has

more tolerance towards tracking error variance in terms of the mean time to loose lock and

therefore can perform better during scintillation conditions than the 3rd order loop. Using

the thermal noise error variance definition in the presence of amplitude scintillation from

(4.59), the mean cycle slip time can be given as

Tslip(scintillation) =
π

4B̄n
exp
[

2α.
C/No

B̄n
.

(
2TIC/No(1−S2

4)(1−3S2
4 +2S2

4)

2TIC/No(1−3S2
4 +2S2

4)+(1−S2
4)

)]
(4.62)

In [61], it is mentioned that if we consider the slipping process as a Poisson distribution,

the probability of cycle slip can be given as
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Figure 4.24: Mean cycle slip time as a function of the thermal noise tracking error variance
for a 2nd and 3rd order tracking loop.

Pslip = 1− exp(−τ/Tslip) (4.63)

where τ is the time in seconds and is used to define the duration of the fade in the signal.

Since fading affects the C/No of the received signal, the relationship between the unfaded

C/No and the faded C/No is (C/No) f aded = F ×C/No where F is the fade depth. In Fig.

4.25, the Pslip is plotted as a function of the fade duration, τ , for different fade depths
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for the 2nd and 3rd order tracking loops. Fig. 4.25 shows that, during scintillation, the

probability of loss of lock for a 3rd order loop is approximately 10 to 15 % higher than

the 2nd order loop which further confirms the fact that the 2nd order loops can provide

more robust tracking during scintillation conditions than the 3rd order loop. In the next

section, a case study is carried out by implementing these tracking loop designs in Matlab

and then tracking the GPS signals to observe how scintillation affects the tracking loop

performance.
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Figure 4.25: Probability of cycle slip in the presence of amplitude scintillation

4.9 Case Study for comparing the tracking loop perfor-

mance

In order to observe how the scintillation affects the peformance of a GPS receiver, a case

study was carried out by using simulated scintillated GPS L1 C/A coded signals. For this

case study, we used the stand alone PLL and FLL-assisted PLL tracking loop designs by

implementing them in Matlab R2011a. The reason for choosing the FLL-assisted PLL in

addition to the PLL is due to its robust GPS signal tracking compared to the conventional

tracking loops which can help improve the tracking performance as mentioned by many

researchers [68, 82]. Apart from these two tracking loop designs, a new method of wavelet
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denoising is also used in tracking the GPS signals and the performance is then compared

with the PLL and the FLL-assisted PLL.

The 2nd and 3rd order PLL designs are adopted from Fig. 4.19 and Fig. 4.20 whereas

the FLL-assisted PLL tracking loop design is explained below.

4.9.1 FLL-aasissted PLL

The PLL uses a phase discriminator to find the difference between the phase of the incoming

signal and the local refence signal and uses this in the NCO to find the frequency of the

incoming signal. The frequency locked loop (FLL), on the other hand, uses a frequency

discriminator to follow the frequency of the incoming signal. The FLL can be implemented

using the same tracking loop designs as used for the PLL. The only difference is that the

phase discriminator will be replaced by a frequency discriminator. One type of frequency

discriminator that can be used to implement an FLL is the maximum likelihood estimator

[68] given as

∆ f =
1

2πTI
tan−1

(cross
dot

)
(4.64)

where

cross = Ip−1Qp − IpQp−1

dot = Ip−1Ip −QpQp−1

The subscripts p and p−1 denote the in-phase and quadrature correlation results at

the current and previous integration times. The FLL-assisted PLL loop design works

on the principle of simultaneously estimating the frequency and phase errors using the

frequency and phase discriminators respectively. These parameters are then passed through

the two separate loop filters and the outputs combined together to generate a local replica

of the incoming signal. The performance of the FLL-assisted PLL tracking loop is better

than the conventional PLL or FLL due to following both the frequency and phase of the

incoming signal. If there are rapid phase fluctuations due to phase scintillation or deep

power fades due to amplitude scintillations, the PLL or FLL loses lock rapidly compared
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to the FLL-assisted PLL tracking loop which can switch to a pure FLL or PLL under

scintillation conditions and can thus provide robust signal tracking [82]. A block diagram

of the FLL-assisted PLL tracking loop design using a 2nd order FLL and a 3rd order PLL

adopted from [68] is shown in Fig. 4.26. The ∆φ and ∆ f represents the phase and the

frequency error from the phase and frequency discriminators respectively. These errors

are then passed through the two separate loop filters and combined together to generate

the local replica of the incoming signal through the carrier generator. The output of the

FLL-assisted PLL can be written as

y(s) =
w3

n +aPLLw2
ns+bPLLwns2

s3 .∆φ +
w2

n +aFLLwns
s2 .∆ f (4.65)
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Figure 4.26: FLL-assisted PLL tracking loop design.

4.9.2 Reducing the Carrier Phase Noise using Wavelet-denoising

In order to improve the performance of the tracking loops, a wavelet denoising method is

used to improve the carrier phase measurements [83]. It was observed that this technique

can provide robust tracking by reducing the noise in estimating the tracking loop parameters

but overall is not helpful in recovering the loss of lock during scintillation. The wavelet

denoising method uses a wavelet transform for denoising the carrier phase measurements.

Wavelet denoising can be accomplished in three steps. Signal decomposition through the

discrete wavelet transform (DWT), denoising using soft or hard thresholding or by scales
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selection and finally signal reconstruction through the inverse discrete wavelet transform

(IDWT).

The wavelet transform can be defined as the multiplication of a signal x(t) by the

scaled and shifted versions of a function ψ(t) known as a mother wavelet summed over

the complete time interval [84]. Mathematically, it can be expressed as

ω(s,τ) =
1√
s

∫
∞

−∞

x(t) ψ
∗
(

t − τ

s

)
dt (4.66)

In the case of a discrete time signal, the discrete wavelet transform can be implemented

using the Mallat algorithm [85] or discretizing the mother wavelet and then performing

the wavelet tranform through the FFT [84]. In the DWT, the mother wavelet [11] can be

discretized as

ψm,n(t) = s−m/2
0 ψ

(
t −nτ0

sm
0

)
(4.67)

where m and n are the integer values used to sample the ψm,n(t). For denoising the carrier

phase measurementss, we used the Morlet wavelet as a low pass filter to remove the high

frequency noise from the phase measurements. Once denoising is done, the original signal

can be reconstructed using the IDWT. A complete explanation concerning the wavelet

transform and the Morlet wavelets is given in Chapter 6. The block diagrams of the

PLL and the FLL-assisted PLL tracking loops, using the wavelet denoising are shown

in Fig. 4.27 and Fig. 4.28 respectively. It should be noted that the wavelet denoising

was implemented through post processing where the tracked signal was passed through

the wavelet blocks for denoising. The main advantage that can be achieved through the

wavelet denoising is that it can further reduce the noise in the carrier phase measurements

without changing the tracking loop design. A further investigation is needed to implement

this in real time which requires the change in the tracking loop design.

4.9.3 Performance Comparison

To compare the performance of the PLL and the FLL-assisted PLL tracking loops, simu-

lated GPS signals were generated by using the Spirent GSS800 multi-GNSS constellation
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Figure 4.27: PLL tracking loop using wavelet denoising.
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Figure 4.28: FLL-assisted PLL tracking loop using wavelet denoising [83].

simulator. Before the signal generation, the time series of the phase and log-amplitude

of varying S4 and σφ were simulated using the SPLN (St. Petersburg-Leeds-Newcastle)

trans-ionospheric propagation simulator [86] capable of modeling all the scintillation

effects. The SPLN simulator uses the following parameters as an input for simulating the

scintillation effects: the background electron density profile, the outer scale, the variance

of the electron density and the aspect ratios (transverse and longitudinal) of the irregu-

larities, the spectral index of the irregularity anisotropic spatial spectrum, the elevation

and azimuth angles and altitude of the satellite, the dip angle of the geomagnetic field

and the carrier frequency of the signal. The scintillation parameters were then used in

the Spirent simulator for GPS signal generation. The signals at the receiving side were

collected using the USRP2 N210 front end device and saved in the binary file format for
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post processing. A software development toolkit GNU radio was used to collect the data

from the USRP2 running in the Linux environment. The IF frequency and the sampling

rate of the USRP2 can be controlled using the GNU radio.The experimental test bed for

simulating the scintillated GPS signal is shown in Fig. 4.29.

Figure 4.29: Experimental test bed for simulating the scintillated GPS signals using the
Spirent and SPLN simulators.

For this particular case study, a 15 minute long GPS L1 C/A coded signals were

generated in which the amplitude scintillation was less than 0.2 whereas phase scintillation

was found to be as high as 0.6 rad. The signals were downconverted at an IF of 2 MHz and

sampled at 8 MHz. Tracking was then performed on the collected signal using the PLL

and FLL-assisted PLL tracking loop designs by implementing them in Matlab R2011a.

For a standalone PLL, a 2nd order PLL design is used whereas, for an FLL-assisted PLL,

a 3rd order PLL with a 2nd order FLL is used. The carrier tracking loop parameters used

for the PLL and the FLL-assisted PLL are shown in Table 4.1 and Table 4.2 respectively.

The code tracking loop parameters for both the designs are shown in Table 4.3.

Table 4.1: Tracking loop parameters for PLL design.

IF frequency fIF = 2 MHz
Sampling frequency 8 MHz
Damping ratio (ζ ) ζ = 0.7

Noise bandwidth (Bn) Bn = 10 - 15 MHz (adjustable)
Predection Integration Time (TI) TI = 1 ms

Discriminator atan(Qp/Ip)
PLL order 2nd
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Table 4.2: Tracking loop parameters for the FLL-assisted PLL design.

IF frequency fIF = 2 MHz
Sampling frequency 8 MHz
Damping ratio (ζ ) ζ = 0.7

PLL Noise bandwidth (Bn,PLL) Bn,PLL = 10 - 15 MHz (adjustable)
FLL Noise bandwidth (Bn,FLL) Bn,FLL = 2 MHz (adjustable)

Predection Integration Time (TI) TI = 1 ms
PLL discriminator atan(Qp/Ip)
FLL discriminator 1

2πTI
tan−1 (cross

dot

)
PLL order 3rd

FLL order 2nd

Table 4.3: Code tracking loop parameters for the PLL and FLL-assisted PLL.

Correlator spacing 0.5 chips
Noise bandwidth (Bn,DLL) Bn,DLL = 2 MHz

Predection Integration Time (TI) TI = 1 ms

Discriminator
√

I2
E+Q2

E−
√

I2
L+Q2

L√
I2
E+Q2

E+
√

I2
L+Q2

L

The data was tracked successfully with no loss of lock until the 9th minute. However,

during the 9th and 10th minute, a loss of lock occured for about a few milliseconds for both

the PLL and FLL-assisted PLL, as can be seen in Fig. 4.30 showing the phase discriminator

error of the two aforementioned tracking loops. It can be seen that both the PLL and the

FLL-assisted PLL suffered loss of lock but the FLL-assisted PLL tended to recover more

quickly than the PLL due to following the phase of the incoming signal more precisely

than the PLL after the loss of lock. This was also discussed by [82] concluding that the

FLL-assisted PLL is more robust for signal tracking during scintillation. The PLL, on the

other hand, did not follow the phase as precisely as the FLL-assisted PLL and resulted

in the loss of 4 to 5 data points after cycle slip recovery. The in-phase component of

the navigation data was then extracted using both the PLL and FLL-assisted PLL and

the results are shown in Fig. 4.31. In both cases, the navigation data was recovered

successfully. The wavelet denoising was then applied to the PLL and FLL-assisted PLL

carrier phase measurements and the results are shown in Fig. 4.32. The difference between
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the results of the tracking using the wavelet denoising and the actual tracking loops is the

reduction of the noise in the carrier phase error which can help in improving the C/No

of the received signal as can be seen in Fig. 4.33 showing the C/No derived using (3.21)

for the four tracking loops. In this case study, only a limited data set was used but, in the

future, this study will be extended by generating more data sets for different scintillation

conditions and then checking the tracking loop performances.
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Figure 4.30: Phase error of the PLL and FLL-assisted PLL tracking loops.
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Figure 4.31: In-phase component of the navigation data for the PLL and FLL-assisted
PLL tracking loops.
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Figure 4.32: Phase error comparison of the PLL and FLL-assisted PLL tracking loops
using wavelet denoising.
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Figure 4.33: C/No of the PLL, FLL-assisted PLL, PLL (wavelet denoising) and FLL-
assisted PLL (wavelet denoising).

4.10 Chapter Summary

In satellite-based navigation systems, the reliability of the receiver plays an important

role in providing the navigation services. Acquistion and tracking are the two main

parts responsible for signal acquisition, tracking and extracting the navigation data from

the received signals and are both affected by amplitude and phase scintillation. At the

acquisition part, the scintillation, particularly of the amplitude, results in deep and frequent

power fades which results in poor detection probability. In this chapter, a new acquisition

method, i. e., the RBA method is presented which can be used for faster signal acquisition
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with improved detection perfromance. Apart from this, scintillation effects on the tracking

loops and tracking thresholds for tracking loop loss of lock are also discussed. A case

study is also presented in which the performance of the different tracking loops such as

the PLL, FLL-assissted PLL, PLL using wavelet denoising and FLL-assissted PLL using

wavelet denoising is also carried out and assessed.



Chapter 5

TEC-based Scintillation Indices

5.1 Introduction

The rapid variations of the small scale irregular structures in the ionosphere plasma density

not only affects the GNSS signals but also affects satellite communication over a wide

range of frequencies and therefore has drawn the interest of researchers from many fields to

tackle this problem. The effect is more severe near the auroral zone [87, 88] and equatorial

regions [62, 89, 90] during a geomagnetic storm. The occurence of these small scale

structures, also known as the ionospheric electron density irregularites, normally follows,

on average, the solar cycle being greater at higher levels of geomagnetic activity [91, 92].

These irregularities can range from a few metres to several kilometers in length and can last

for long period of times [91]. At low latitudes, the ionospheric irregularities are associated

with the equatorial spread F bubbles [93, 94] which cause amplitude and phase fluctuations

on signals pass through them [95]. These bubbles are formed shortly after sunset when the

low density ionosphere moves towards the upper high density ionosphere and create holes

known as bubbles [96]. By contrast, the irregularities at high latitudes are associated with

the polar cap patches and auroral arcs which are regions having plasma densities 5 to 10

times larger than the low density F region within the polar cap [92, 97].

In order to explain the propagation of GPS/GNSS signals through an irregular electron

density medium in the ionosphere, the theory of wave propagation in a random scattered

medium is used by many researchers and different mathematical derivations are used to



5.1 Introduction 95

relate the wave propagation in a random medium with the wave propagation in the irregular

electron density region in the ionosphere [93, 98, 99]. However, for transionospheric

signals, it is commonly and conveniently described by using a phase screen model as used

in [99, 100] which assumes that the ionospheric irregularities are concentrated within a

thin layer (phase screen) at a particular height (often considered as 350 km). From [60, 61],

if we consider the phase screen as discrete rod like structures aligned with the Earth’s

magnetic field lines, then the phase deviations produced by k such structures can be given

as

Φ(x) =
k

∑
i=1

Φoi exp
[
−(x− x0i)

2

l2
i

]
(5.1)

where Φoi is the maximum phase variations, li is the scale size of the irregularities and x is

the horizontal position along the Earth’s magnetic field lines. Then the maximum phase

perturbations are associated with the maximum TEC variations [61] and can be given as

Φoi = 2π ×40.3
∆T ECmax

c f
(5.2)

Another approach based on the power law phase screen model was used by [62],

according to which the power spectra of the received signal intensity (ΦI(q)) and phase

deviations (ΦP(q)) can be given as

ΦI(q) = Φφ (q)sin2
(

q2r2
F

8π

)
(5.3)

ΦP(q) = Φφ (q)cos2
(

q2r2
F

8π

)
(5.4)

where q is the horizontal wave number of the phase fluctuations, q0 = 2π/l0 is an outer

scale wavenumber, l0 is the outer scale size of the irregularities, rF =
√

2λ r is the Fresnel

radius and r is the distance between the phase screen and the ground observer which is
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usually taken as about 350 km. The parameter Φφ (q) is the spectrum of the phase screen

given as

Φφ (q) =
Cs

(q2 + q2
0)

−p/2 (5.5)

where Cs is the strength of the phase fluctuations and is proportional to the rms of the

electron density fluctuations in the ionosphere. According to [93], phase perturbations in

the received signal are both refractive and diffractive in nature, however only the phase

deviations produced by the diffraction effect are responsible for phase scintillation and

this happens when the transionospheric signals pass through the scintillation producing

ionospheric irregularities. The phase perturbations at the receiver due to diffraction effect

are typically produced by these irregularities near the first Fresnel radius (rF/
√

2) at small

wave numbers and occur when different phases exciting the phase screen interfere with

each other [93]. From (5.5), which relates the strength of the phase fluctuations to the

electron density variations also termed as the TEC variations (rate of change of TEC), if

the change in TEC is known then it can be used to find the phase perturbations as discussed

by many researchers [34, 91, 101, 102]. From section 3.6, if we denote φ as the phase,

then the TEC can be found from the carrier phase measurements using

φ =− q2

2cεme f (2π)2

sat∫
rx

Neds0 (5.6)

where q is the charge of an electron, c is the speed of light, ε is the permitivity of free space

and f is the carrier frequency of the signal. The term
sat∫
rx

Neds0 is the TEC between the

satellite and the receiver path. After substituting constant values, (5.6) can be simplified to

φ =−2π
40.3
c f

T EC (radians) (5.7)

From [62], the strength of the phase fluctuations, δφ , can be found if the change in

TEC, i.e., δT EC over a certain time interval is used in (5.7). The index used to define the

phase perturbations in the received signal is the phase scintillation index denoted by σφ

and can be defined as the standard deviation of δφ over a certain time interval.
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The study of TEC variations and their association to scintillation goes back several

decades [91, 98, 101, 103] but the TEC derived scintillation index was first proposed

by [102]. The index proposed by [102] was denoted by IRoT and derived from the dual

frequency GPS observations using RINEX data from the International GPS Geodynamics

Service (IGS). [102] used the rate of change of TEC (RoT ) at a 1 min interval using the

difference between the GPS L1 and L2 carrier phase observations for quantifying the IRoT

values. The RoT calculated by [102] was given by

RoT = S. [ ( φ1(ti)−φ1(ti−1) ).λ1 − ( φ2(ti)−φ2(ti−1) ).λ2 ] (5.8)

where S is a constant, ti and ti−1 represents the two consecutive epochs and subscripts 1

and 2 are the phase observations from the GPS L1 and L2 signals. After removing the low

frequency TEC fluctuaions from (5.8) by using a HPF, a new scintillation index, IRoT , in

(5.9) was calculated by using the 15 min data blocks to show the percentage occurence of

phase scintillation.

IRoT = 10.rms(RoT ) (5.9)

It was suggested by [34] that the RoT used for computing IRoT in (5.9) is not sufficient

to represent the phase deviations due to small scale irregularities and therefore used the

standard deviation of RoT using 5 min time intervals given by

ROT I =
√
⟨RoT 2⟩−⟨RoT ⟩2 (5.10)

The work on TEC was then further followed by [104] in which the author proposed an

hourly index Fp(hr) using low latitude data. The Fp(hr) index was computed by taking

the mean of an index fp(n,hr, i) which is the index of the individual satellites using four

15 min intervals given as

fP(n,hr, i) = median
∆T EC

1 min

 (5.11)



5.1 Introduction 98

where n is the satellite number, hr is the hour and i = 1 to 4 is the 15 min time section

within an hour. The Fp(hr) hourly index was then calculated by taking the mean value of

the fp index of all the satellites in an hour given as

Fp(hr) =
∑

nsat
n

(
∑

k
i

fp(n,hr,i)
k

)
nsat(hr)

(5.12)

where nsat is the total number of satellites visible in a particular hour in which the mean

was taken. The correlation of TEC variations and the occurence of scintillation was then

further investigated by [88, 94, 105, 106]. In this regard, [106] suggested that the TEC

variations are the best fit for re-defining the new indices for ionospheric perturbations and

therefore proposed a new disturbance ionospheric index (DIX) using the temporal and

spatial variations of TEC. The DIX proposed by [106] was given as

DIX = SF.

√√√√ 1
Np.α2 ∑

k,l

{
1
4

(
∆Φk

Mk∆t
+

∆Φl

Ml∆t

)2

+η

(
∆Φk

Mk∆t
− ∆Φl

Ml∆t

)2
}

(5.13)

where ∆Φ is the differential phase, M is the elevation mapping function, Np is the number

of IPP pairs, SF is the scaling factor, η is the tuning factor and k, l are the adjacent

epochs. In [106], the DIX was used as an alternate index to represent the phase scintillation

activity which was then compared with the conventional phase scintillation index, σφ , for

performance evaluation. The investigation on TEC-based scintillation indices was then

furthered by [107] who proposed a new analogous phase scintillation index, σφa, derived

using the time and spatial variations of TEC to represent the phase scintillation activity at

high latitudes. It was suggested by [107], that the σφa index can be used as an alternative

to the conventional phase scintillation index, σφ , as there was found to exist a strong

correlation between the two indices. The index was also successfully used in estimating

the tracking error variance of a GPS receiver and hence it was suggested that this index can

be used to mitigate the effects of scintillation in GPS receivers and particularly useful due

to its low computational cost and easy implementation. In this chapter, the derivation and

a comprehensive explanation of the TEC-based analogous phase scintillation index, σφa,
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will be given and it will be validated by using the GPS data from a high latitude region,

i.e., Trondheim, Norway (63.41o N, 10.41o E ) and its performance will then be compared

with the conventional phase scintillation index, σφ , to indicate whether or not it can be

used as an alternate to represent the phase scintillation activity.

5.2 TEC measurements from GPS

Pseudorange (ρ) and carrier phase (φ ) are the two observables in a GPS receiver which

can be used to determine the TEC present along a satellite and receiver path. From [108],

the pseudorange using single frequency GPS observations can be given as

ρ = D+ c(b−B+ e+E +T + I + vρ) (5.14)

where D is the true range, c is the speed of light in a vacuum, b is the receiver clock

bias, B is the satellite clock bias, e and E are the time delays within the receiver and

satellite, T is the tropospheric delay, I is the ionospheric range delay and vρ is the noise.

The ambiguities in the pseudorange estimation can be removed by taking the difference

between the pseudorange observations from the L1 and L2 carrier frequencies using

ρ1 −ρ2 = ∆ρ = c(∆e+∆E +∆I +∆vρ) (5.15)

where the subscripts 1 and 2 represents the pseudoranges of the L1 and L2 frequencies

respectively and the terms with ∆ sign are: ∆e = e1 − e2, ∆E = E1 −E2 , ∆I = I1 − I2,

∆vp = vp1 − vp2. Re-arranging (5.15) will give

∆I =
∆ρ

c
−∆e−∆E −∆vρ (5.16)

Equation (5.6) can also be used to find the delay incurred by the ionosphere into the

signals passing through it. If we use group delay measurements, then the negative sign
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in (5.6) will replaced by the positive sign and the term φ can be replaced by the term I

representing range delay and can be given as

I =
q2

2cε0me f 2(2π)2 TEC (5.17)

where T EC =
∫ sat

rx Neds0 is the total electron content along a slant path between the satellite

and receiver and f is the carrier frequency of the received signal. If the range delay is

estimated using the L1 and the L2 carrier frequencies, then the difference between the two

can be given as

∆I = I1 − I2 =
q2

2cε0me f 2
1 (2π)2 T EC− q2

2cε0me f 2
2 (2π)2 T EC (5.18)

∆I =
q2

8π2cε0me

(
f 2
2 − f 2

1
f 2
1 f 2

2

)
T EC (5.19)

where f1 is the L1 frequency and f2 is the L2 frequency. After combining (5.16) and (5.19),

the TEC using the dual frequency GPS observations can be found as

T EC =
8π2ε0me

q2

(
f 2
1 f 2

2
f 2
2 − f 2

1

)
[∆ρ − c(∆e−∆E −∆vρ)] (5.20)

Equation (5.20) can be used to measure the TEC using the pseudorange observations.

Analogously, it can also be measured using the carrier phase measurements. From [108],

the carrier phase of the received signal can be found as

λφ = D+ c(b−B+ e+E +T − I + vφ )+mλ (5.21)

where λ is the wavelength, mλ is the phase ambiguity and vφ is the phase noise. The

difference between the carrier phases of the L1 and L2 signals can be given as

∆λφ = λ1φ1 −λ2φ2 = c(∆e+∆E +∆vφ −∆I)+∆mλ (5.22)
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where ∆vφ = vφ1 − vφ2 and ∆mλ = ∆m1λ1 −∆m1λ1. Re-arranging (5.22) will give

∆I = − ∆λφ

c
+

∆mλ

c
+ ∆e+∆E +∆vφ (5.23)

Comparing (5.18) and (5.23), the TEC using the carrier phase measurements an be

given as

T EC =
8π2ε0me

q2

(
f 2
1 f 2

2
f 2
2 − f 2

1

)
[ c(∆e+∆E +∆vφ )+∆mλ −∆λφ ] (5.24)

Equation (5.20) and (5.24) can be used to find the TEC using either the pseudorange or

carrier phase observations in a receiver. It should be noted that the TEC calculated using

(5.20) and (5.24) will be along a slant path.

5.3 Analogous Phase Scintillation Index

The TEC estimated from the dual frequency GPS observations using (5.20) and (5.24) are

based on the slant path and therefore the TEC estimated from these equations can also

be termed as slant TEC (STEC). In order to convert the TEC measurements made along

the slant path to vertical TEC (VTEC), an elevation mapping function M(E) [106] is used

given as

M = 1/M(E) =
(

1−
(

Re cos2 E
Re +hIPP

))1/2

(5.25)

where Re is the radius of the earth (6378.1 km) and hIPP is the height of the ionospheric

pierce point generally taken as 350 km [109]. The relationship between the TEC measued

along the slant path and the vertical TEC can be given as

V T EC = M×T EC (5.26)

Upon taking the time derivative of VTEC:

∆V T EC
∆t

= M
∆T EC

∆t
+ T EC

∆M
∆t

(5.27)
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From [107], if we assume that the IPP is moving along a horizontal direction x, the

TEC differential can be given as

∆T EC =
∂T EC

∂x
∆x+

∂T EC
∂ t

∆t (5.28)

Upon taking the time derivative, (5.28) will be transformed to

∆T EC
∆t

=
∂T EC

∂x
.
∆x
∆t

+
∂T EC

∂ t
(5.29)

Assuming vpp = ∆x/∆t as the velocity of the IPP, (5.29) will be reduced to

∆T EC
∆t

=
∂T EC

∂x
.vpp +

∂T EC
∂ t

(5.30)

Using (5.30) in (5.27)

∆V T EC
∆t

= M
[

∂T EC
∂x

vpp +
∂T EC

∂ t
dt
]
+T EC

∆M
∆t

(5.31)

The term T EC(∆M/∆t) in (5.31) represents the very low frequency TEC fluctuations

and can be neglected [107]. The remaining part of (5.31) not only represents the high

frequency TEC fluctuations due to scintillation producing ionospheric irregularities but also

contain the low frequency TEC fluctuations due to slowly varying background ionosphere,

satellite-receiver clock errors, Doppler shift etc. In order to remove the low frequency TEC

fluctuations, (5.31) was high pass filtered [107]. The high pass filter used here was the

2nd order Butterworth filter with a cut-off frequency of 0.1 Hz. The HPF version of (5.31)

[107] can be represented as

V T ECHPF = M (E)
[

∂T EC
∂x

vpp +
∂T EC

∂ t
dt
]

HPF
(5.32)

It was mentioned by [34] that the change in TEC due to small scale irregularities is

often very small and fluctuates around a very small value. Therefore, to identify the effect
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of scintillation producing ionospheric irregularities, the standard deviation of (5.32) was

taken:

σV T ECHPF =

[
1

n−1

n

∑
i=1

(
V T ECHPF −V T ECHPF

)2
] 1

2

(5.33)

It should be noted that (5.33) will still be effected by the noise at low elevation angles.

In order to reduce this noise, (5.33) was multiplied by the elevation weighting function

ϖ (χ (M) ,vp) to derive the final equation for the analogous phase scintillation index σφa

[107] given as

σφa = [ϖ (χ (M) ,vp)×σV T ECHPF ] (5.34)

From [107], the elevation weighting function, ϖ (χ (M) ,vp), is given as

ϖ (χ (M) ,vp) =
2πS 40.3

c f
× [χ (M) ,vpp] (5.35)

where S is constant whose value is taken as 0.003 from [107], vpp is the IPP velocity (see

Appendix C for explanation) and χ(M) is the elevation mapping given as

χ (M) =
1

( Mi(E)Mi+1(E) )
2 (5.36)

where Mi(E) and Mi+1(E) represents the elevation angle from the current and future states

respectively.

5.4 Methodology

In order to validate the proposed TEC-based analogous phase index (σφa) and to compare

its performance with the standard phase scintillation index, σφ , we used the data from a

GPS receiver station installed in Trondheim, Norway (63.41o N, 10.4o E) shown in Fig.

5.1. This receiver station is one of the many receiver stations (shown in Fig. 5.1) installed

at high latitudes for recording the scintillation activity as part of the EPSRC (Engineering

and Physical Science Research Council) Grant EP/H004637/1. The GPS receiver used to
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record the data was a NovAtel GISTM-based GSV 4004B dual frequency GPS receiver

which can log data for both the L1 (1575.42 MHz) and L2 (1227.6 MHz) GPS signals.

Figure 5.1: Locations of GPS receiver stations installed at various high latitude regions.

Two types of data were logged for analysis. One was the RAWSINB files containing

the raw phase and amplitude at 50 Hz and the TEC measurements at 1 Hz used in deriving

the σφa. The other was the ISMR files containing the scintillation indices (σφ and S4) at a

1 min rate. The experimental used for recording the data at one of the receiver station, i. e.,

Newcastle Upon Tyne is shown in section 4.2. The same experimental setup was used to

record the data at Trondheim. In order to validate the σφa as an alternate to represent the

phase scintillation intensity for high latitudes and also to compare its performance with the

phase scintillation index σφ , the recorded data was parsed based on different geomagnetic

conditions. The geomagnetic conditions were defined based on the planetary index K p. In

the results and discussion section, K p < 4 is considered as the absence of a geomagnetic

storm, K p = 4 and 5 are considered as a geomagnetic disturbance corresponding to a minor

storm and K p ≥ 6 is considered as strong storm conditions.
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The K p data used in this analaysis is taken from the World Data Center (WDC) for

Geomagnetism, Japan. Since K p is a global index that can only be used to observe the

global geomagnetic activity, in order to confirm the effect of a storm locally at Trondheim,

the H component of the magnetic field from the Tromso Geophysical Observatory, UiT -

the Arctic University of Norway, Norway was used.

5.5 Results and Discussion

A comparison of the the standard phase scintillation index (σφ ) and the analogous phase

index (σφa) for two different days are shown in Fig. 5.3 and Fig. 5.5. The reason for

selecting two different days for the comparison was to judge the performance of the two

indices during a strong geomagentic storm (K p > 5) and also when there was no storm or

a minor geomagnetic storm (K p ≤ 5). Fig. 5.3 shows the performance of the two indices

when K p was less than or equals to 5 whereas Fig. 5.5 shows the comparison when K p

was greater than 5.

For the K p < 5 case, the K p and the H and Z components of the earth’s magnetic field

are plotted in Fig. 5.2 on 26 April, 2012. It can be seen that between 00:00 to 00:09 UT, the

K p value varies between 1 to 5 with a minor geomagnetic storm commencing from 00:03

UT and continuing to about 06:00 UT. This led to a disturbance in the earth’s magnetic

field regionally at Dombass between 00:02 to 00:05 UT as can be seen in the lower panel

of Fig. 5.2. The comparison between the σφ and σφa indices of some of the visible PRN’s

during this time are shown in Fig. 5.3. Although, there was a minor geomagnetic storm for

sometime between 00:00 to 09:00 UT, no scintillation activity was observed on any visible

PRN during this time. The scintillation occurence pattern, on the other hand, of both the

σφ and σφa indices was found to be roughly same for all the PRN’s although at certain

times they differ in terms of the intensity of scintillation as in the case of PRN’s 3, 4, 6, 14,

20, 23 and 32 when the σφa is giving over estimated scintillation values compared to the

σφ index. It was also mentioned by [107] that there exists a strong correlation between the

σφa and σφ indices for strong geomagnetic storm conditions but that was found to be poor

for weak scintillation conditions, i.e., K p < 5.
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Figure 5.2: K p plot and the H and Z components of the earth’s magnetic field at Dombass,
Norway on 26 April 2012.

The σφ and σφa indices were then further compared on 24 April, 2012 during strong

geomagnetic storm conditions when K p was greater than 5 as can be seen in Fig. 5.4.

The strong disturbance in the earth’s magnetic field in the lower panel of Fig. 5.4 further

confirmed that there was a strong geomagnetic storm on 24 April, 2012 started at 00:00 UT

and continued to about 04:00 UT. A similar scintillation occurence pattern was also found

between the two indices for the PRN’s visible between 00:00 to 06:00 UT as shown in Fig.

5.5. Although, an elevation cut-off of 20o was used in estimating the two indices, it was

observed in Fig. 5.5 that when the elevation angle was between 20o and 30o, σφ was giving

high scintillation values compared to the σφa values which indicates that there is still a

noise factor involved in estimating the σφ values at low elevation angles. This noise factor

could be due to the non-optimal filtering or high multipath which was not fully removed

and was leading to high scintillation values which cannot be taken as the true scintillation

values. distinguishing between the actual scintillation and the noise at low elevation angles.



5.5 Results and Discussion 107

3 4 5 6
0

0.2

0.4

ra
d

PRN:  1

3 4 5 6
0

50

100

1 2 3
0

0.1

0.2
PRN:  3

1 2 3
0
20
40
60
80
100

6.5 7 7.5
0

0.1

0.2
PRN:  4

6.5 7 7.5
20

40

60

E
le

v 
A

n
g
le

0.5 1 1.5 2 2.5
0

0.1

0.2

ra
d

PRN:  6

0.5 1 1.5 2 2.5
0
20
40
60
80
100

2 3 4 5 6
0

0.2

0.4 PRN:  11

2 3 4 5 6
0

50

100

3 4 5
0

0.1

0.2 PRN:  14

3 4 5
20

30

40

50

60

E
le

v 
A

n
g
le

5 6 7
0

0.1

0.2

ra
d

PRN:  17

5 6 7
20

40

60

0.5 1 1.5 2 2.5
0

0.2

0.4 PRN:  18

0.5 1 1.5 2 2.5
20

30

40

50

60

1 2 3 4
0

0.1

0.2
PRN:  19

1 2 3 4
0

50

100

E
le

v 
A

n
g
le

5 6 7
0

0.1

0.2

ra
d

PRN:  20

5 6 7
0
20
40
60
80
100

1 2 3 4
0

0.1

0.2 PRN:  22

1 2 3 4
20

30

40

50

60

6 6.5 7 7.5
0

0.1

0.2 PRN:  23

6 6.5 7 7.5
0
20
40
60
80
100

E
le

v 
A

n
g
le

2.5 3 3.5 4 4.5
0

0.5

1

ra
d

PRN:  28

2.5 3 3.5 4 4.5
20

30

40

6 6.5 7 7.5
0

0.1
PRN:  31

6 6.5 7 7.5
20

30

40

4 5 6 7
0

0.1

0.2 PRN:  32

 

 

Trondheim, Norway    26 April, 2012 

4 5 6 7
0
20
40
60
80
100

E
le

v 
A

n
g
le

σφ σφ a

Time (UT)Time (UT)Time (UT)

Figure 5.3: Comparison of σφa and σφ on 26 April, 2012 for the visible satellites between
00 : 00 and 09 : 00 UT during a severe geomagnetic storm.
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It was also reported by [110], that the σφ index is incapable of distinguishing between the

actual scintillation and the noise which is worse at low elevation angles (due to multipath)

during weak to strong scintillation conditions.
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Figure 5.4: K p plot and the H and Z components of the earth’s magnetic field at Dombass,
Norway on 24 April 2012.

The similarity of the scintillation occurence pattern between the two indices is then

extended by counting the number of occurences of scintillation values greater than 0.2

from October 2011 to September 2012 as shown in Fig. 5.6. This is done for all the

satellites that were visible from 00:00 to 23:59 MLT. In Fig. 5.6, high scintillation values

can be seen pre-midnight and post midnight due to auroral activity. A strong correlation

was found between σφa and σφ pre-mignight and post-night. However, between 13:00 to

17:00 MLT the number of event counts in the case of σφa was much higher than that of σφ .

Although several researchers have shown the occurence of scintillation in the post noon

period [111], it was considered that, in this case, this was due to a strong geomagnetic

storm on 7th March, 9th March, 4th April and 15th July 2012 when large variations in the
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earth’s H and Z components were observed along with K p values of greater than 5 and

hence was resulting in high scintillation values for σφa. The number of occurences of the

scintillation events for the σφ index, on the other hand, were low during the pre and post

noon preiods and this may be due to missing data and frequent loss of lock in the NovAtel

receiver PLL during those days which resulted in loss of scintillation values.
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Figure 5.5: Comparison of σφa and σφ on 24 April, 2012 for the visible satellites between
00 : 00 and 06 : 00 UT.
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Figure 5.6: Number of occurences of scintillation values for σφa and σφ from Spetember
2011 to October 2012 at Trondheim, Norway [107].

To further validate the σφa as a good alternative to the standard phase scintillation

index, σφ , for high latitude regions, a comparison is made between the two indices in

Fig. 5.7 by plotting all the scintillation values from October 2011 to September 2012 by

parsing the scintillation values of the two indices based on three geomagnetic conditions; no

geomagnetic storm (K p< 4), geomagnetic disturbance (K p= 4), and a strong geomagnetic

storm (K p ≥ 5).

The scintillation pattern shows a good correlation between the two indices in all three

geomagnetic conditions. The corresponding correlation factors between the σφa and σφ

indices are shown in the lower panel of Fig. 5.7. In the case of K p ≥ 5, 78.19 % correlation

was found between σφa and σφ compared to 59.09 % for the case of K p = 4. By contrast,

only 11.26 % correlation was found between σφa and σφ for the K p < 4 case. The low

correlation between σφa and σφ for K p < 4 was due to the unexpected high scintillation

values both for σφa and σφ which may have been due to non-optimal filtering both for σφa

and σφ as the indices are derived from two different data sources with different sampling

rates.
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At high latitudes, the intenstiy of scintillation depends on the increasing K p value. The

higher is the K p the greater will be the scintillation [95]. To validate this fact using σφa,

the average values of σφa with respect to increasing K p values are shown in the upper

panel of Fig. 5.8 for a period of 12 months from October 2011 to September 2012. The

increasing values of σφa with increasing K p values validates the dependency of σφa on the

geomagnetic activity at high latitudes and is also well correlated with the σφ values and

the spectral index, p, which is shown in the lower panel of Fig. 5.8. The increasing value

of the spectral index, p, can be used to indicate the increasing levels of scintillation.

The seasonal variations of the σφa with σφ with respect to increasing K p values are

shown in Fig. 5.9. For this comparison, the one year data (October 2011 to September

2012) was parsed into the following four seasons; autumn (1st October to 21st December),

winter (22nd December to 21sr March), spring (22nd March to 21st June), and summer

(22nd June to 30th September). The seasonal variations of the spectral index, p, are also

shown in Fig. 5.10. The seasonal variations of the σφa values in Fig. 5.9 shows their

dependence on the K p values more during spring and autumn than during winter and

summer. On the other hand, the spectral index, p, in Fig. 5.10 is also showing a similar

kind of behaviour as the σφa index during spring and autumn. The seasonal variation

dependence of the σφa index on the K p value and its comparison with the σφ index and the

p index shows that σφa index is a good alternative for representing the phase scintillation

activity at high latitudes.
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5.6 Chapter Summary

Most scintillation monitoring receivers (e.g., GISTM receivers) use 50 Hz amplitude and

phase observations for quantifying the amplitude and phase scintillation values respec-

tively. These methods are not only computationally intensive but also affect the hardware

processing speed and increases the computational cost and therefore are not feasible to

implement in the generic GNSS/GPS receivers. In order to overcome this problem, the new

analogous phase index was derived as an alternate index to represent the phase scintillation

values which was validated by using the data from a receiver station installed at Trondheim,

Norway. The main advantage of the analogous phase index is its low implementation

cost as it uses dual frequency-based TEC 1 Hz observations. This makes it suitable to

implement in the generic geodetic receivers due to the much less processing speed in-

volved compared to the GISTM receivers. This can help in modelling the regional/global

ionospheric scintillation and its effects on the GNSS/GPS receivers.



Chapter 6

An Improved TEC-based Phase

Scintillation Index

6.1 Introduction

The estimation of amplitude (S4) and phase (σφ ) scintillation indices involves a detrending

process which requires filtering of the raw signal intensity and phase before estimation

of the S4 and σφ indices [112, 113]. In estimating the S4 index, the detrending is done

by low pass filtering (LPF) the signal intensity whereas in determining the σφ index, the

phase is detrended by using a high pass filter (HPF). In scintillation monitoring receivers,

usually fixed cut-off frequencies are used for filtering the raw GPS observations (intensity

and phase) which are not entirely appropriate for filtering the signals affected by the

scintillation and sometimes may result in the estimation of spurious values specially during

geomagnetic storm conditions [114]. Several researchers [110, 115] have tried different

cut-off frequencies in detrending the raw intensity and phase observations but this either

resulted in under estimation, over estimation or mis-interpretation of the scintillation values

as mentioned by [110, 114, 115]. In this regard, several other methods have also been tried

to solve the filtering problem and also by designing new scintillation indices such as those

discussed in [114, 116, 117] based on wavelet tranform based filtering. However, there

are certain problems that still need to be addressed such as the upper limit of the cut-off

frequency, sampling rate, computational complexity and, in this respect, we will consider
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the wavelet method which can lead to the estimation of appropriate scintillation values

involving minimum error.

In this chapter, a new TEC-based phase scintillation index is presented [118] which is

an improved version of the analogous phase index, σφa, and derived using the time and

spatial variations of TEC at 1 Hz. The designed index is denoted by σw
φa performance of

which is validated by comparing it with the previously proposed σφa and σφ indices using

the data from a European high latitude region, i.e., Trondheim, Norway. The estimation of

both the σφa and σφ indices involve filtering the raw signal using digital HPF’s with a fixed

cut-off frequency of 0.1 Hz. In deriving the σw
φa, rather than using the time-invariant digital

HPF’s, a wavelet transform is used. Since the σw
φa uses the time and spatial variations of

TEC in quantifying the scintillation values, the low frequency TEC fluctuations need to

be removed to use only the high frequency TEC fluctuations which can then be used to

represent the phase deviations due to the scintillation producing ionospheric irregularities.

In order to remove the low frequency TEC fluctuations, a wavelet-based filtering approach

is used here. The reason for using the wavelet transform for estimating the σw
φa is due to the

fact that it not only preserves the local features of the signal which helps in reconstructing

the original signal without any loss of useful information but can also be used for time-

frequency representation of a signal which can help in distinguishing the scintillation and

non-scintillation events before quantifying the scintillation values. In this chapter, the

wavelet-based time-frequency representation of a signal is also used to define the cut-off

frequency limits for filtering the data in case 1 Hz sampling rate is used for quantifying the

scintillation values. Another feature of the designed σw
φa index is its low computational

cost compared to the previously used wavelet-based methods [110, 114, 115] which makes

it suitable for use in the tracking error variance estimation.

The wavelet transform was first used in the present context by[116] for generating

the scalograms of the amplitude time series to distinguish the background noise and

scintillation. This study was focused on amplitude scintillation only which was then further

progressed by [114], who proposed a new technique for deriving the amplitude and phase

scintillation indices using raw GPS obervations at 50 Hz. In the [114] method, the raw

signal intensity and phase were filtered using a continuous wavelet transform rather than
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using the high pass filters. However, in the [114] method, the main problem was the

use of high sample rate data (50 Hz) which makes this process very complex and time

consuming and cannot be considered appropriate to use in the estimation of tracking error

variance. Also, the analysis was limited and done only for weak scintillation conditions. In

deriving σφa, the use of low sample rate data (1 Hz) makes it computationally intensive for

estimating the phase scintillation values and its performance is also validated under both

the weak and strong geomagnetic conditions by using a long data set.

6.2 Problem of Filtering the Scintillated GPS Signals

The σφa is shown to be a good index for quantifying the phase scintillation values at

high latitudes [107]. However, filtering the non-stationary raw TEC observations using

time-invariant digital HPF’s can directly affect the σφa performance which can result in

overestimated scintillation values. The problem of filtering in processing the raw GPS

signals affected by the scintillation has been discussed by many researchers [110, 114, 115]

and it is generally found that the GPS signals received at high latitudes are sensitive to the

way the filtering is accomplished in computing the scintillation indices [110, 115].

In the derivation of amplitude and phase scintillation indices (S4,σφ ), a default cut-off

frequency of 0.1 Hz is used for filtering. This frequency was first used by [119] where

the data from auroral and equatorial latitudes were used to study the effects of structured

plasmas in the ionosphere on radio wave propagation as part of a study program known as

the DNA wideband satellite experiment. In this experiment, the received data was filtered

using a 6th order Butterworth filter. The cut-off frequency of 0.1 Hz was then subsequently

used by [112, 113] for monitoring the ionospheric scintillation using NovAtel GISTM

receivers. In [112], only the raw phase observations were used for filtering but it was

also suggested that using the same frequency for filtering the raw signal intensity may

not be a good choice and therefore a different cut-off frequency should be used although

no further information was given on this. The same cut-off frequency (0.1 Hz) was then

used in scintillation receivers [113] for estimating the scintillation indices (S4,σφ ) without

any performance evaluation testing. [110] was the first worker to carefully consider the
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filtering problem in computing the amplitude and phase scintillation indices. He concluded

that the fixed filtering windows, based on fixed cut-off frequencies, is responsible for

erroneous data detrending which may result in over estimation of the phase scintillation

values compared to the amplitude scintillation. He also found that the high latitude data is

more likely to be affected by the filtering problem compared to low latitudes. In general,

the actual cut-off frequency in filtering the raw intensity and phase should be based on the

Fresnel frequency (Ff ) [114]:

Ff =
Vr√
2λ r

(6.1)

where Vr is the drift velocity of the irregularities and r is the distance between these

irregularites in the ionosphere and the receiver. Due to difficulty in estimating the Vr and

r at every given location, typical scintillation receivers uses 0.1 Hz as a default cut-off

value in detrending the raw intensity and phase but due to much higher electron density

irregularity drift at high latitudes compared to the low latitudes, this value may not be the

optimum choice for filtering. [110, 115] have also discussed this in detail by presenting

some case studies from high latitudes and also proposed a new phase scintillation index,

Sφ . The performance of Sφ was evaluated using cut-off freqeuncies greater than 0.1 Hz and

it was found to be a better indicator of the phase scintillation values compared to the σφ

for high latitude regions. The problem of filtering the raw GPS signals was also addressed

by [114, 116, 117, 120] who used a totally different appraoch which obviates the use of

time-invariant digital filters. The approach used by [114, 116, 117, 120] for quantifying the

scintillation values were based on detrending the raw signal intensity and phase using the

wavelet transform and it was found to be a better approach than the conventional filtering

approaches. In this regard, [114] proposed a new phase scintillation index σCHAIN for

high latitudes in which the wavelet-based filtering was used for detrending the raw phase

observations at 50 Hz.

The various scintillation indices (S4,σφ ,σCHAIN ,Sφ ) proposed above are all computa-

tionally intensive due to the use of high sample rate data (e.g. 50 Hz) and the use of the

wavelet transform may not be a good choice as it significantly increases the computational

cost. For example, if 1 hour of data is to be processed using the wavelet tranform at 50
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Hz, then it would require processing 180,000 samples which is not an optimal choice if

the scintillation indices are to be used in tracking error variance calculation for using in

tracking loop parameters estimation. Further, these indices were tested using a very small

data set without considering any changing scintillation conditions which further puts a

questions mark whether they can be used to replace the standard indices for quantifying

the scintillation values. The σw
φa index uses low sample rate data (1 Hz) and uses TEC

variations rather than raw phase observations for quantifying the scintillation values which

makes it quite suitable to be used as an alternate source of quantifying the phase scintil-

lation values. The performance of the σw
φa index is validated by using an year long data

set from a high latitude region considering different geomagnetic conditions. Another

important thing which is covered in this chapter are the wavelet scalograms generated by

using the wavelet statistical energy. The wavelet scalograms are a useful tool for identifying

the strength of the TEC variations due to time varying electron density irregularities. The

filtering of the signal using the wavelet transform is actually based on these scalograms

which are used to separate out the scintillation and the non-scintillation based on high and

low frequency TEC fluctuations even before deriving the σw
φa index.

6.3 History of Wavelet Transform

The history of the wavelet transform goes back to 1909, when Alfred Haar worked on the

orthogonal systems of functions as part of his PhD work which led to the development of

the Haar basis function. This was then used by [121] for image compression. However,

the work that originally led to the development of the wavelet transform was initiated in

the 1970’s by J Morlet, an engineer in the French oil company Elf Acquitaine, who used

the technique of scaling and shifting of the window functions as an alternate to the short

time Fourier transform (STFT) [122]. Morlet, while studying acoustic echoes, found that

a fixed window size in the STFT is not appropriate for studying the signal properties in

both time and frequency and therefore used varying widths for the window size. In order

to give a mathematical basis to his work, Morlet later teamed up with Alex Grossmann

[123] to provide a mathematical proof that a signal can be decomposed into wavelet
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coefficients by using a waveform of a limited time duration known as a wavelet and can be

reconstructed again into its orginial shape from the decomposed wavelet coefficients. The

wavelet transform was then used by Mallat and Meyer in 1986 to develop a multi-resolution

analysis using wavelets by defining the scaling function for the wavelets. This set the basis

for other researchers to design their own wavelets. This idea was then picked up by Ingrid

Daubechies [124] to form an important family of wavelets known as db wavelets named

after herself.

6.4 Wavelet Transform

From [123], the wavelet transform can be defined as the multiplication of a signal x(t)

by the scaled and shifted versions of a mother wavelet, ψ(t), summed over a given time

interval. A wavelet can be defined as a waveform of a limited duration having an average

value of zero. Mathematically, the wavelet transform can be given as

c(a,b) =
1√
a

∫
∞

−∞

x(t) ψ
∗
(

t −b
a

)
dt (6.2)

where

• c(a,b) are the wavelet coefficients

• a is the scaling/dilation parameter which determines the time and frequency resolu-

tion

• b is the position/translation parameter used to move the wavelet along time t.

• ψ∗(.) is the complex conjugate.

In (6.2), scaling means stretching or compressing the wavelet whereas positioning

means multiplying the wavelet, ψ(.), with a signal x(t) at different times by moving along

the time axis t. The wavelet transform produces a time-scale view of a signal which can

also be represented as a time-frequency view by converting the scale parameters, a, to their

corresponding frequency values. The scale parameter, a, is usually defined as the inverse

of the frequency. An example of the time-scale view of a wavelet function is shown in
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Fig. 6.1 where the wavelets shown in red are represented as a function of the translation

parameter b and the scale parameter a.

 

 

 

Translation parameter  b 

S
ca

le
 p

ar
am

et
er

  
 a

 

1    2    3    4    5    6    7    8     9     10 

3  

  

2 

 

   

1 

  

Figure 6.1: Time-scale view of a wavelet as a function of the position/translation parameter
b and scale parameter a.

In Fig. 6.1, a high scale implies a more stretched out wavelet which can be used to

achieve fine frequency resolution. Similary, a low scale value implies a more compressed

wavelet which leads to a better time resolution. Fig. 6.2 shows the time-frequency view

of the wavelet transform and the STFT. The only difference between the two is that the

wavelet is using variable window sizes rather than fixed window sizes as in the case

of STFT. With the STFT, once a window size is chosen, it remains fixed througout the

analysis. However, this approach may not be useful for the signals which require a more

flexible approach for analyzing both the time as well as the frequency information due to a

discontinuity, noise or fast amplitude or frequency variations.

In Fig. 6.2, it can be seen that, for the wavelet transform, the long time regions

provide more precise low frequency information whereas the short time regions provide

information related to the high frequencies. On the other hand, the STFT only provides

constant frequency information. The wavelet transform results in wavelet coefficients
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which can then be used to reconstruct the original signal using the inverse wavelet transform

(IWT) given below

x(t) =
a

Cδ

∫
∞

−∞

∫
∞

−∞

1√
a

c(a,b)ψ
(

t −b
a

)
dadb

a2 (6.3)

where Cδ is the admissibility constant. For the IWT to hold, the Cδ must obey the following

condition

Cδ =
∫

∞

−∞

|ψ̂(ω)|2

|ω|
dω < ∞ (6.4)

where ψ(ω) is the Fourier transform of the wavelet function. There are several wavelet

functions which are used for computing the wavelet transform. The most well-known

wavelets used are Morlet, Paul, Haar, Meyer and Daubechies. In our analysis we used

the Morlet wavelet as our mother wavelet for computing the wavelet transform whose

complete description is given below.

6.5 Morlet Wavelet

The Morlet wavelet is composed of an exponential function which is multiplied by a

Gaussian window [125]. The main advantage of using the Morlet wavelet is its non-

orthogonality and fine time-frequency resolution which are very helpful in observing

the high and low frequency variations in the time series of a signal. This property can

Figure 6.2: Time-frequency view of the STFT and the wavelet transform.
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help in distinguishing between the scintillated and non-scintillated signals [114, 118].

This property of the Morlet wavelet is very userful in our case as the σw
φa uses the high

frequency TEC fluctuations for quantifying the phase scintillation values. The Morlet

wavelet, in our case, can be used to distinguish the high frequency TEC fluctuations from

the low frequency ones which represent noise in the signal and need to be removed. The

mathematical form of the Morlet wavelet can be given as

ψ(t) = π
−0.25exp

(
iω0t − 1

2
t2
)

(6.5)

where w0 is the non-dimensional frequency which is taken as 6 Hz from [84]. The real

and complex part of the Morlet wavelet are shown in Fig. 6.3. In frequency domain, the

Fourier transform of the scaled Morlet wavelet taken from [84] can be given as
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Figure 6.3: Real and imaginary parts of the Morlet wavelet.

ψ(aω) = π
−0.25 H(ω).exp

(
−(aω −ω0)

2

2

)
(6.6)

where ω is the angular frequency and H(ω) is the Heaviside step function. H(ω) = 1 if

ω > 0 and is zero otherwise. Using the frequency domain form of the wavelet in (6.6),

the wavelet transform can also be implemented using the FFT algorithm. A complete

description of how to impmlement the wavelet transform using the FFT algorithm is

explained in the next section.
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6.6 Wavelet Transform as a Filtering Technique

Equation (6.1) is the wavelet transform for continuous time signals, in case of the discrete

time sequence x[n] having N samples, the wavelet transform can be given as

cb[a] =
N−1

∑
n=0

x[n]ψ∗
[
(n−b)

a

]
(6.7)

Equation (6.7) can also be represented as a convolution sum if we define

ψa[n] =
1√
a

ψ
∗
[
−n
a

]
(6.8)

Then (6.7) can be re-written as

cb[a] =
N−1

∑
n=0

x[n]ψa[b−n] (6.9)

Equation (6.9) defines the wavelet transform as a convolution sum between two signals.

Since it is computationally intensive to compute the wavelet transform as a convolution

sum, a more efficient way, using the discrete Fourier transform (DFT) can be employed

instead. If we define X(k) as the DFT of the signal x[n] and ψ(k) as the DFT of the wavelet

function ψ[n] having N samples, then the wavelet transform using the DFT can be given as

Cb(a) =
1
N

√
2πa
δ t

N−1

∑
k=0

X
(

2πk
Nδ t

)
ψ

∗
(

a.
2πk
Nδ t

)
e j2πkb/N (6.10)

where δ t is the sampling interval and the term
√

2πa/δ t is the normalization factor which

is used for the wavelet function, ψ[n], to have unit energy at every given scale a. The

selection of scales is the most important factor for proper time-frequency representation

of a signal using wavelet transform. Although arbitrary values for the scales can be used

for estimating the wavelet coefficients, Cb(a), here the method as described in [84] was

adopted, according to which the scale parameter a can be written as a fractional power of

2:

a j = a02 jδ j , j = 0,1, ..., J (6.11)
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J = 2( δ j−1log2(Nδ t/s0) ) (6.12)

where a0 is the smallest scale, J is the largest scale, δ t is the sampling time and δ j is

the scale increment parameter having a maximum value of 0.5 in the case of the Morlet

wavelet. For this wavelet, the scale equivalent frequencies can be calculated as

f requency =
ω0 +

√
2+ω2

0

4π ×a
(6.13)

The filtering of the signal using the wavelet transform can be done by reconstruction

of the signal using the inverse wavelet transform in the discrete time domain. The scale

parameter a sets the basis for using the wavelet transform either as a highpass, lowpass

or bandpass filter. Since the wavelet transform results in complex values, the IWT can

be obtained by taking the sum over all scales of the real values of the wavelet cofficients

Cb(a). Mathematically, the filtering using the IWT can be given as

xn =

(
δ jδ t0.5

Cδ ψ0(0)

) j2

∑
j= j1

ℜ(Cb(a j))

(a j)0.5 (6.14)

where xn is the reconstructed original signal, ψ0(0) is a constant with a value of π0.25 [84]

and is used for removing the energy scaling, Cδ is a reconstrcution constant with a value

of 0.776 and j1 and j1 are the lower and upper boundary limits for the selected scales for

signal reconstruction.

6.7 Improved Analogous Phase Scintillation Index

From (5.34), the mathematical form of the analogous phase index σφa can be given as

σφa = [ϖ (χ (M) ,vp)×σV T ECHPF ] (6.15)
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The term σV T ECHPF in (6.15) is the standard deviation of the high pass filtered VTEC

output which from [107] can be given as

σV T ECHPF =

[
1

n−1

n

∑
i=1

(
V T ECHPF −V T ECHPF

)2
] 1

2

(6.16)

The term V T ECHPF represents both the high frequency TEC fluctuations due to

scintillation producing ionospheric irregularities however due to improper filtering also

contain the noise and the diffraction effect which is not fully removed as discussed in

chapter 5 in the results section. The non-filtered high and low frequency TEC fluctuations

which are based on the time and spatial variations of vertical TEC can be written as

V T EC′ = M
[

∂T EC
∂x

vpp +
∂T EC

∂ t
dt
]
+T EC

∆M
∆t

(6.17)

The term T EC ∆M
∆t represents the very low frequency TEC fluctuations, is almost

negligible, and can neglected as it is varying with a frequency 3× 10−4 Hz. The term

M
[

∂T EC
∂x vpp +

∂T EC
∂ t dt

]
in (6.17) not only contains the high frequency TEC fluctuations

due to small scale irregularites but also contains the low frequency TEC fluctuations

which need to be removed as they are refractive in nature due to the slowly varying

background ionosphere, Doppler shift due to satellite and receiver motion etc. After using

wavelet-based filtering [118], (6.17) can be represented as

V T EC′
wav =

[
M
[

∂T EC
∂x

vpp +
∂T EC

∂ t
dt
] ]

wav
(6.18)

where the subscript wav represents the fact that the term in (6.18) is wavelet filtered. The

final equation for the analogous phase index after wavelet filtering [118] can be given as

σ
w
φa =

[
ϖ (χ (M) ,vp)×σV T EC′

wav

]
(6.19)

where σV T EC′
wav

is the normalized standard deviation of V T EC′
wav over a 1 min interval.

In (6.18), the main to consider when estimating the σV T EC′
wav

, is how the high frequency

TEC variations due to the diffraction effect are filtered out from the low frequency TEC

variations due to refractive effect. This can be accomplished by using the suitable scales
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for filtering out the low frequency TEC fluctuations in the estimation of σV T EC′
wav

which

is done through (6.14) by generating the wavelet scalograms to represent the high and

low frequency TEC fluctuations. The wavelet scalogram represents the percentage of

wavelet statistical energy (E(a,b) = |Cb(a)|2) for each wavelet coefficient over all scales.

However, if the scales are wrongly chosen, it will cause the wrong interpretation of the

wavelet statistical energy used to generate the wavelet scalograms for identifying the

scintillation and non-scintillation events and, therefore will affect the filtering process. In

the next section, the scalograms of scintillation and non-scintillation events are generated

to distinguish between the background noise and TEC fluctuations due to scintillation

producing ionospheric irregularities and also to set the limits for filtering using the wavelet

transform.

6.8 Wavelet Scalograms for Identifying the Scintillation

Signatures

The data used for the scalogram generation was collected using the NovAtel GISTM

GSV4004B dual frequency GPS receivers installed at Trondheim, Norway (63.41o N,10.4o E).

The complete experimental setup at one of the receiver station, i. e., Newcastle Upon Tyne

is shown in section 4.2. A similar kind of setup was used to log the raw TEC observations

at 1 Hz at Trondheim. Ignoring the second term, the first term in (6.17) can be written as:-

x[n] = M
[

∂T EC
∂x

vpp +
∂T EC

∂ t
dt
]

(6.20)

In order to compute the wavelet transform of x[n], the Morlet wavelet was used as a

mother wavelet as given in (6.5) and the frequency domain approach was used for easier

and computationally efficient implementation of the wavelet transform. The scales are

calculated based on the fractional power of 2 as defined in section 6.6. Since the data that

we are using has a sample rate of 1 Hz, the following values for the scale parameters were

set; δ t = 1, so = 2, δ j = 0.125 and J was calculated using (6.12) and depends on the δ t,

so and N (total number of data samples).
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The scalograms of the TEC fluctuations of different PRN’s generated based on different

geomagnetic conditions (K p ≤ 5, K p ≥ 6 ) are shown in Fig. 6.4 and Fig. 6.5 for 26 and

24 April, 2012 respectively. The reason for choosing the different geomagnetic conditions

for scalogram generation was to show the wavelet statistical energy associated with the

high and low frequency TEC fluctuations when there was no geomagnetic storm/minor

storm (K p ≤ 5) and when there was a strong storm (K p ≥ 6).

For K p ≤ 5 case, the K p plot for 26 April, 2012 is shown in Fig. 5.2 where it can be

seen that there was a minor geomagnetic storm (red bar) in the early hours of the day from

03:00 to 06:00 UT followed by a geomagnetic disturbance from 00:00 to 03:00 UT (shown

by the yellow bar). The regional geomagnetic disturbance in the H component of the earth’s

magnetic field is also shown in Fig. 5.2. The scalograms of the PRN’s on 26 April 2012

that were visible between 00:00 and 09:00 are shown in Fig. 6.4. For these scalograms, the

scales were converted to their equivalent frequencies using (6.13). As mentioned earlier,

for the Morlet wavelets the scales are inversely propotional to frequencies, so in Fig. 6.4,

high scales imply small frequencies whereas small scales imply high frequencies. The

colour bar on the right hand side shows the wavelet power associated with the high and

low frequency TEC variations. In Fig. 6.4, it can be seen that most of the high power TEC

variations are associated with the large-scales/low frequencies ( f requencies < 0.15 Hz

) which can be due to the slowly varying background ionosphere, Doppler shift due to

satellite/receiver motion, and satellite/receiver clock offsets. These need to be eliminated

as they do not represent the presence of true scintillation signatures. Some medium power

TEC fluctuations can also be seen for PRN 7, 12, 19 and 28 between 02:00 to 06:00 for

small-scales/high frequencies ( f requencies > 0.17 Hz) as there was a minor geomagnetic

storm during this time. However, these TEC variations lasted only for a fraction of a time

(few minutes) and therefore did not have a significant effect when further analyzed after

estimating the scintillation values as no high scintillation activity was observed during this

time.

A further analysis during the strong geomagnetic storm conditions was also carried

out in Fig. 6.5 to determine the presence of scintillation signatures due to small scale

ionospheric irregularities by generating the scalograms of the PRN’s on 24 April, 2012



6.8 Wavelet Scalograms for Identifying the Scintillation Signatures 129
F

re
q

u
e

n
cy

 (
H

z)

(a)      PRN 1

3 4 5 6 7
0

0.1

0.2

0.3

0.4

(b)      PRN 3

1 2 3
0

0.1

0.2

0.3

0.4

(c)      PRN 4

6 7 8
0

0.1

0.2

0.3

0.4

F
re

q
u

e
n

cy
 (

H
z)

(d)      PRN 6

1 2 3
0

0.1

0.2

0.3

0.4

(e)      PRN 11

2 3 4 5 6
0

0.1

0.2

0.3

0.4

(f)      PRN 12

5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

F
re

q
u

e
n

cy
 (

H
z)

(g)      PRN 14

3 4 5 6
0

0.1

0.2

0.3

0.4

(h)      PRN 17

4 5 6 7
0

0.1

0.2

0.3

0.4

(i)      PRN 18

1 2 3
0

0.1

0.2

0.3

0.4

F
re

q
u

e
n

cy
 (

H
z)

(j)      PRN 19

1 2 3 4 5
0

0.1

0.2

0.3

0.4

(k)      PRN 20

5 6 7 8
0

0.1

0.2

0.3

0.4

Time      HH      UT

F
re

q
u

e
n

cy
 (

H
z)

(m)      PRN 23

6 7 8
0

0.1

0.2

0.3

0.4

Time      HH      UT

(n)      PRN 28

2 3 4 5
0

0.1

0.2

0.3

0.4

Time      HH      UT

(o)      PRN 31

 

 

6 7 8
0

0.1

0.2

0.3

0.4

 W
a

ve
le

t p
o

w
e

r

 Trondheim, Norway           26−Apr−2012           Kp <= 5

0

0.1

0.2

0.3

0.4

0.5

(l)      PRN 22

1 2 3 4
0

0.1

0.2

0.3

0.4

Figure 6.4: Wavelet scalograms of the selected PRN’s on 26, April 2012 when K p ≤ 5.
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when K p was greater than 5 from 00:00 to 06:00 UT ( see Fig. 5.4). In Fig. 6.5, it

can be seen that almost all the PRN’s faced medium to high TEC variations for small-

scales/ high frequencies ( f requencies > 0.17 Hz ) depicting the presence of strong

scintillation signatures. Some high power TEC variations were also seen for large-scales/

low frequencies ( f requencies < 0.15 Hz). However most are probably due to the slowly

changing background ionosphere, satellite/receiver motion and other noise effects and

need to be eliminated. After carefully observing the scalograms of scintillation and non-

scintillation events between August 2011 and September 2012 at Trondheim, Norway,

the large scale wavelet coefficients associated with the low frequencies ( f requencies <

0.15 Hz) were eliminated for filtering the low frequency TEC fluctuaions and for signal

reconstruction, only the small scale wavelet coefficients associated with the high frequency

TEC variations ( f requencies > 0.16 Hz) were used.

The scale boundaries were then used in (6.14) for accomplishing the fitlering process

using the wavelet transform and the signal was finally reconstructed and used in (6.19) for

deriving the σw
φa values. A complete flow chart for the σw

φa determination process [118] is

shown in Fig. 6.6. The process starts by logging the raw binary TEC data at 1 Hz which

was then converted to ASCII. Once the data was in readable form, it was examined for

cycle slip detection. If the cycle slip was fixable, the program fixed it, otherwise it skipped

the cycle slip data. After calculating the VTEC and the time derivative of VTEC, filtering

was then performed by estimating the wavelet coefficients, skipping the large scale wavelet

coefficients ( scales > 6s, f requencies < 0.16 Hz) and the IWT. The final phase of the

derivation involves determining the standard deviation of the filtered VTEC over 60 s

which is multiplied by the elevation weighting function.

6.9 Results and Discussion

Aftre estimating the σw
φa using the above defined criteria, its performance was then com-

pared with the σφ and σφa indices on 26 and 24 April as shown in Fig. 6.7 and Fig. 6.8

respectively for the PRN’s who’s scalograms are shown in Fig. 6.4 and Fig. 6.5.
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Figure 6.5: Wavelet scalograms of the selected PRN’s on 24, April 2012 when K p > 5.
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In Fig. 6.7, on 26 April 2012 for K p ≤ 5 case , no strong scintillation was observed

for any PRN apart from PRN 28 where the σφ values were higher compared to both the

σw
φa and σφa values. Further investigation revealed that the elevation angle of this PRN

was below 30o all the time which may have led to high scintillation values in the case of

σφ and could most probably be the result of improper filtering which failed to distinguish

between the noise and the scintillation in the estimation process. On the other hand, in

the case of σφa, the scintillation values for PRN’s 3, 4, 6, 23 and 32 are higher than both

the σw
φa and σφ values. Although, the over estimation factor of σφa is small here this is

further highlighted in Fig. 6.10 for a complete one year period which gives more detailed

results about this over estimation factor. It was also mentioned by [107] that for weak

geomagnetic conditions, the σφa may give some over estimated scintillation values which

may not be truely representative of the scintillation activity.

In Fig. 6.8, for K p> 5 case on 24 April, 2012, strong scintillation activity was observed

for most of the PRN’s that were visible during 00:00 to 00:06 UT during the course of

a geomagnetic storm. The K p plot of the day is shown in Fig. 5.4. One interesting

thing to note here is that there existed a good correlation between the three indices for all

PRN’s except in the case of σφ , very high scintillation values were seen for low elevation

satellites. It was also mentioned by [110] that the σφ cannot distinguish between the actual

scintillation and the background noise at low elevation angles during weak to moderate

scintillation conditions. It should be noted that, apart from the elevation angle effect, these

values could also be the result of improper filtering or wrong data processing in estimating

the scintillation values using σφ .

The performance of the three indices was then compared by calculating the number

of occurences of scintillation values greater than 0.3 in Fig. 6.9 with respect to the

magnetic local time (MLT) for a whole one year from October 2011 to September 2012 at

Trondheim, Norway. The scintillation activity is strongly associated with the MLT due to

coupling between the solar wind, the magnetosphere and the ionosphere as mentioned by

[126]. In Fig. 6.9, during the post-midnight period, σφ index has the highest number of

occurences of scintillation values greater than 0.3. The post-midnight is the period when

the scintillation activity is usually at its peak due to the auroral phenomena. By contrast, for
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Figure 6.7: σw
φa, σφ and σφa comparison on 26 April, 2012.
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Figure 6.8: σw
φa, σφ and σφa comparison on 24 April, 2012 [118].
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Figure 6.9: Number of occurences of scintillation values of σw
φa, σφ and σφa for a whole

one year from October 2011 to September 2012.

the pre-midnight period, the σφa has the highest number of scintillation occurence values

greater than 0.3 compared to both the σw
φa and σφ . It can be further seen in Fig. 6.9 that

after 10:00 MLT, the σφa index has reported high scintillation activity compared to both the

σw
φa and σφ indices. Further investigation showed that the σφa index was well correlated

with the σw
φa and σφ indices when there was a strong scintillation activity. However some

high scintillation values were also observed during this time for σφa whose pattern was

not matching those of both the σw
φa and σφ . For the case of the σφ index, it was observed

that between 11:00 and 17:00 MLT, the number of scintillation events greater than 0.3 was

very low. It was found that on 7, 8, 9, 15 March, 4 April, 3 and 3 September 2012, the post

noon value of K p was greater than 5 and the reason for σφ being very low on these days

was due to the frequent loss of lock in the GPS receiver which resulted in low scintillation

values. This is because during the re-acquisition time the NovAtel GISTM receiver usually

rejects 240 to 300 s of phase data to avoid spurious values in the estimation of the σφ

index but this also results in loss of useful information due to unavailability of information
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during this time and therefore during this time the scintillation values were either small or

unavailable for the σφ index.

In Fig. 6.10, scintillation values and the correlation between the σw
φa and σφa and

also between σw
φa and σφ are plotted for two different geomagnetic conditions (K p < 5;

K p ≥ 5) by using the data from a GPS receiver installed at Trondheim, Norway for a

whole 1 year from October 2011 to September 2012. The correlation between the indices

is calculated by using the definition of Pearson’s correlation coefficient which is denoted

by R.

For the K p < 5 case, the scintillation values for σw
φa and σφa are shown in Fig. 6.10

(a) whereas Fig. 6.10 (b) contain the scintillation values for σw
φa and σφ . The right hand

side panels adjacent to Fig. 6.10 (a) and (b) contain the corresponding correlation plots.

Although, the correlation coefficient of 0.83 was found between the σw
φa and σφa indices

( Fig. 6.10(a) ), the number of counts of scintillation events in the case of σφa was far

more than either of these. On the other hand, when σw
φa was compared and correlated with

σφ in Fig. 6.10 (b), an R value of 0.69 was found between the two indices. The reason

for this poor correlation could be due to the fact that these indices were derived from

different data sources and the filtering effect can be different for both cases. At certain

times, the behaviour of both the indices was found to be different which was due to some

unexpected high scintillation values in the case of σφ but, nevertheless, overall a similar

scintillation occurence pattern was found. It was also mentioned by [110] that, σφ is not a

good indicator to distinguish between the actual scintillation and the background noise for

weak to moderate scintillation conditions as, during these conditions, improper filtering

along with other factors lead to spurious scintillation values which can be considered as

outliers.

For the K p ≥ 5 case, Fig. 6.10 (c) shows the scintillation values for σw
φa and σφa

whereas Fig. 6.10 (d) contain the scintillation values for σw
φa and σφ . The right hand side

panels opposite to each subplot contain the corresponding correlation subplots. A very

good correlation was found between the σw
φa and σφa and also between the σw

φa and σφ

with R values of 0.91 and 0.76 respectively. The scintillation pattern between the indices
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Figure 6.10: Scintillation activity and correlation coefficient R for K p < 5 and K p ≥ 5
between σw

φa and σφ and between σw
φa and σφa
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was also found to be very similar and no unexpected change in the scintillation pattern was

observed for the K p ≥ 5 case.

The existence of a good correlation and the similarity of the scintillation occurence

pattern of σw
φa with those of the σφa and σφ indices shows that it can serve as a good

alternative for representing the phase scintillation activity at European high latitudes. The

performance comparison of σw
φa index with the other two indices shows that it has not only

reduced the over estimation factor involved in the estimation of the σφa and σφ indices for

both the weak and strong scintillation conditions but has also shown a very good correlation

with the σφ values during the weak geomagnetic activity which the σφa failed to do.

6.10 Seasonal Variations and Statistical Significance of

the σ w
φa Index

In the previous section, the performance of the σw
φa index was compared with σφa and

σφ indices based on two different geomagnetic conditions, i. e., K p ≥ 5 and K p < 5.

The discussion is further proceeded here by comparing the seasonal variations of the

σw
φa index with those of σφa and σφ indices for the two geomagnetic conditions which is

then validated by using the statistical significance test to confirm the presence of a linear

correlation between the three indices.

Fig. 6.11 and Fig. 6.12 shows the seasonal variation comparison of the scintillation

values between the σw
φa and σφa and between σw

φa and σφ respectively for the K p ≥ 5 and

K p < 5 cases by using the data from Trondheim receiver station for a whole 1 year from

October 2011 to September 2012. For this comparison, the seasons are defined as follows:

autumn (21 September to 20 December), winter (21 December to 20 March), spring ((21

March to 20 June), and summer (21 June to 20 September). The Pearson’s correlation

coefficient value in each case is also determined and is shown in the respective subfigure.

In order to eliminate the effect of the noise at low elevation angles, an elevation angle

cutoff of 20o was used in estimating the scintillation values for the above indices.

For the K p ≥ 5 case, Fig. 6.11(a) shows the comparison between the σw
φa and σφa

indices whereas Fig. 6.11(b) shows the comparison between the σw
φa and σφ indices for
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the four seasons. A very good correlation was found between the σw
φa and σφa with an

average correlation value of 0.92 whereas it was 0.78 between the σw
φa and σφ indices. The

scintillation occurence pattern between the σw
φa and σφ indices was almost similar due to

the fact that both of these indices were derived from the same sources and σw
φa claims to be

a better indicator of the scintillaiton activity during both the weak and strong geomagnetic

conditions. The scintillation occurence pattern of σw
φa and σφ indices was also quite similar

apart from some high values in the case of σφ in all the four seasons which could most

likely be the result of inappropriate filtering or failure to distinguish between the noise and

scintillation during the estimation process.

For the K p < 5 case, Fig. 6.12(a) shows the scintillation values comparison between

the σw
φa and σφa indices whereas Fig. 6.12(b) shows the comparison between the σw

φa and

σφ indices for the four previously defined seasons. In this case, the correlation coefficient

values of σw
φa with that of σφa and σφ indices in all four seasons were found to be less

than the K p ≥ 5 case. Further investigation revealed that the over estimation factor in

the case of σφa was quite high at certain times especially during the winter and spring

seasons although there was no geomagnetic disturbance or storm during those times. This

resulted in low correlation coefficient values between the σw
φa and σφa. On the other hand,

when comparing the σw
φa index with the σφ index in Fig. 6.12(b), some high scintillation

values were observed in the case of σφ having an inconsistent pattern especially during

the autumn, spring and summer seasons when K p was less than 5 and there was no

geomagnetic disturbance regionally during those times when σφ was reporting scintillation

values as high as 1.5. These values of σφ cannot be considered as the true representative of

the scintillation activity.

The statistical significance of the correlation between the σw
φa and σφa and also between

σw
φa and σφ indices is then carried out to check the significance of the correlation existed

between the indices in all the four seasons for the K p ≥ 5 and K p < 5 cases. The

significance test was accomplished using the population correlation coefficient, i. e., p-

value by setting a significance level of α = 0.01. The p-value defines the probability of

getting a correlation as large as the observed value by a random chance.The results of the

statistical significance test are shown in Fig. 6.13 for both the K p ≥ 5 and K p < 5 cases.
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Figure 6.13: Statistical significance of the Pearson’s correlation coefficient (R) between
the σw

φa and σφ and between the σw
φa and σφa using 1 % significance level [118].

In all the four seasons, in both cases, the p-value was found to be less than 0.01 which

shows that the correlation of the σw
φa index with both the σφa and σφ indices is highly

significant at the 0.01 level.

The work on designing scintillation indices which can be used as true representatives

of the scintillation activity has been done by many researchers and in this regard some

new scintillation indices [114, 116, 117, 120] have also been proposed using the wavelet

transform method. However, the analysis presented in the previous work was very limited

and without considering any varying geomagnetic conditions which could verify that the
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methods used by them are a better estimate of scintillation values and can used under all

conditions. Based on a large scale analysis and results presented here based on varying

geomagnetic conditions and seasonal variations, it is shown that σw
φa can be used as a better

alternative of representing the phase scintillation activity. So far the performance of the

σw
φa index is validated using the data from a single statios from European high latitudes.

However, in future, the study will be extended by using the data from several stations from

both the European and Canadian high latitude regions.

6.11 Chapter Summary

At present, most scintillation estimation approaches uses 50 Hz raw phase observations

using GISTM receivers which are quite computationally time consuming and are also

expensive to purchase. In this regard, a new TEC-based analogous phase index (σφa)

was designed which can be implemented using generic dual frequency GPS receivers

without employing any additional hardware or software. However, the main problem in

estimating the scintillation values using the σφa index was the improper filtering and its poor

correlation with the standard phase scintillation index, σφ , during the weak geomagnetic

conditions. In this chapter, a new improved form of the σφa index is presented using the

wavelet transform based filtering approach. The new index, σw
φa, proved to be a good

alternative to both the σφa and σφ indices for representing the phase scintillation activity

under both weak and strong geomagnetic conditions. The performance of the designed

index was validated by using the GPS data from a European high latitude but, in the future,

it will be tested using additional data from both the low and high latitudes.



Chapter 7

On Determining the Tracking Phase

Jitter from TEC observations

7.1 Introduction

The phase jitter acts as a dominant source of phase error that affects the receiver perfor-

mance during both the scintillation and non-scintillation conditions. If the phase jitter

(standard deviation of the phase perturbations) exceeds the tracking threshold, the receiver

loses lock. The PLL arctangent discriminator that was used in the GPS tracking loop

designs in the previous chapters has a pull-in range of 180o. From [9], one method of

setting up the receiver tracking thresholds for the loss of lock is that the 3-sigma phase

jitter must not exceed 1/4 of the pull-in range of the PLL discriminator given as

3σPLL = 3σ j +θe ≤ 45o (7.1)

where σ j is the phase jitter from all sources and θe is the dynamic stress error. From [9],

the σ j can be given as

σPLL =
√

σ2
tPLL +σ2

V +σ2
A (7.2)

where σtPLL is the tracking jitter due to thermal noise given in (7.3) and in [9] σtPLL is

considered as the only source of tracking error in the absence of scintillation. σV is the
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vibration induced oscillator jitter and σA is the Allan variance induced oscillator jitter.

Upon using these values in (7.1) and simplifying, the 1-sigma phase jitter can by (7.4).

σtPLL =

√
Bn

C/No

[
1+

1
2TIC/No

]
, radians (7.3)

σPLL =
√

σ2
tPLL +σ2

V +σ2
A +

θe

3
≤ 15o (7.4)

Equation (7.4) shows that, if 1-sigma phase jiiter exceeds 15o [9], the receiver will

most likely lose lock. In estimating the phase jitter using (7.1), the ionospheric scintillation

effects were not considered but are the major source of carrier phase tracking errors respon-

sible for tracking loop loss of lock. In this chapter, the wavelet-based phase scintillation

index, σw
φa, will be used to estimate the phase jitter which can then be used for setting up

the tracking threshold to update the tracking loop parameters in a GPS receiver during

scintillation conditions. Another advantage of using the σw
φa index as an alternate method of

estimating the tracking phase errors is due to its simplistic computational approach which

can also be used in geodetic receivers if a combination of both the hardware and software

is employed in the receiver design which will obviate the use of expensive components as

in the case of the scintillation monitoring receivers.

7.2 Carrier Tracking Phase Errors in the Presence of Scin-

tillation

The ionospheric scintillation is the main cause of error in GPS tracking loop carrier

phase measurements and therefore in order to set up equations for estimating the tracking

thresholds for the carrier tracking loop, the ionospheric scintillation effects needs to

be considered. From [80], the tracking error variance in the presence of ionospheric

scintillation is

σ
2
φe = σ

2
φs +σ

2
φT +σ

2
φosc (7.5)
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where σ2
φs is the error variance due to phase scintillation, σ2

φT is the thermal noise error

variance including the amplitude scintillation effects and σ2
φosc is the variance due to

oscillator noise and usually taken as 0.1. From (4.45) and (4.59), the σ2
φs and σ2

φT in the

presence of scintillation can be given as

σ
2
φs =

πT

k f p−1
n sin

(
(2k+1−p)π

2k

) , 1 < p < 2k (7.6)

σ
2
φT =

B̄n

C/No

[
1

1−S2
4
+

1
2TIC/No(1−3S2

4 +2S2
4)

]
, radians2 (7.7)

where T is the spectral strength at 1 Hz, p is the slope of the phase PSD, k is the loop order,

fn is the loop natural frequency and B̄n is the loop design bandwidth. Using (7.6) and (7.7)

in (7.5), the overall tracking error variance is

σ
2
φe =

πT

k f p−1
n sin

(
(2k+1−p)π

2k

) +
B̄n

C/No

[
1

1−S2
4
+

1
2TIC/No(1−3S2

4 +2S4
4)

]
+σ

2
φosc

(7.8)

The formula in (7.8) is only valid for S4 less than 0.7 as dicussed in section 4.7. To

find the phase jitter, the spectral parameters p and T needs to be estimated which are not

readily available from the ordinary geodetic and conventional scintillation receivers and

involve a complex process such as determining the PSDs from the time series of high

sample rate phase data which may not be available. A simple method to determine the

spectal parameters (p,T ) was proposed by [127] and further validated in [128] which we

also used in this chapter for estimating the spectral parameters (p,T ) which were then used

in Conker formula [80] for estimating the phase jitter. Using [127] method, the spectral

parameters can be estimated by using the known values of the scintillation indices (S4,σφ ).
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From [127], the relationship between p, T , and the phase scintillation index, σφ , can be

given as

σ
2
φ = 2T

(
f r
u − f r

c
r

)
(7.9)

where r = 1− p, fu is the upper cutoff frequency of the detrended data (generally taken

as half the sampling frequency) and fc is the lower cutoff frequency (usually taken as the

HPF cutoff used for detrending the phase measurements). From [127], the variance of the

normalized amplitude scintillation index, σ2
χ can be given as

σ
2
χ = 2T

[(
fF − fc

f p
F

)
+

(
f r
u − f r

F
r

)]
(7.10)

where fF is the Fresnel frequency and S4 ≈ 2σχ . From the phase and log amplitude spectra

graph given in [127], the area between the phase and log amplitude PSDs can be given as

σ
2
φ −σ

2
χ = 2T

[(
f r
F − f r

c
r

)
−
(

fF − fc

f p
F

)]
(7.11)

Using T from (7.9) in (7.11):

σ
2
φ −σ

2
χ =

(
rσ2

φ

f r
u − f r

c

)[(
f r
F − f r

c
r

)
−
(

fF − fc

f p
F

)]
(7.12)

Equation (7.12) can be used to find p (r = 1− p). Once p is known, T can be found

using (7.9). In order to find the p and T , the σφ and S4 indices needs to be estimated first.

Once p and T are known, they can then be used in (7.8) to find the tracking error variance.

Another more simplistic approach to find the tracking error variance was given by [129]

which does not require the knowledge of the spectral parameters (p,T ). The approach used

by [129] was derived using the raw TEC 1 Hz data from high latitudes which replaced

the term σ2
φs in (7.5) with the standard deviation of the HPF vertical ROT over a 1 min
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interval multiplied by the scaling factor, r′. The tracking error variance using [129] method

is given as

σ
2
φe = r′×σ

2
V T EC′

HPF
+

B̄n

C/No

[
1

1−S2
4
+

1
2TIC/No(1−3S2

4 +2S4
4)

]
+σ

2
φosc (7.13)

where σV T EC′
HPF

is the normalized standard deviation of the HPF vertical ROT and r′ is the

scaling factor which can be obtained from the straight line fitting of σ2
V T EC′

HPF
as defined

in [130]. This method of estimating the tracking error variance was also validated by using

the data from high latitudes. In this chapter, instead of using [129] method in (7.13) or

using Conker method, the σw
φa is used for estimating the phase jitter by employing both the

Conker formula and [129] method.

In the first case, the σw
φa was first used to calculate the spectral parameters (p,T ) using

(7.9) and (7.12) by replacing the σφ index with the σw
φa index. These spectral parameters

were then used in (7.8) for estimating the phase jitter (σφe). It should be noted when using

σw
φa in (7.9) and (7.12), the parameter values ( fu Hz, fc, fo, fF ), which will be defined

in the next section, will be changed because, the σw
φa and σφ indices are derived from

different data sources which involve a different filtering process and a different sampling

rate which are very important quantities when using (7.9) and (7.12) as using wrong values

for these parameters will lead to false phase jitter values.

On the other hand, when estimating the phase jitter (σφe) using [129] method, the

σ2
V T EC′

HPF
in (7.13) was replaced by σ2

V T EC′
wav

where σV T EC′
wav

is the standard deviation of

the wavelet filtered vertical ROT over a 1 min interval given in (6.19). Using σ2
V T EC′

wav
in

(7.13), the new equation for estimating the tracking phase jitter can be given as

σ
2
φ = r′×σ

2
V T EC′

wav
+

B̄n

C/No

[
1

1−S2
4
+

1
2TIC/No(1−3S2

4 +2S4
4)

]
+σ

2
φosc (7.14)

Here, the phase jitter estimated using (7.8), in which the spectral parameters were

estimated using the σφ index, is named the Conker Model, whereas the tracking jitter

estimated using (7.13) employing the [129] method is termed the Tiwari Model. For
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the case of the new phase jitter estimation process discussed above, the phase jitters are

named as Ahmed Model 1 and Ahmed Model 2. In Ahmed Model 1, (7.14) was used for

estimating the phase jitter which uses the [129] method. In Ahmed Model 2, the phase

jitter was estimated using the Conker formula given by (7.8) but, the spectral parameters

were calculated by replacing the σφ index with the σw
φa index in (7.9) and (7.12). In the

next section, these two methods are used to estimate the phase jitter and the performance is

then compared with the previously proposed Conker model and Tiwari model phase jitters.

7.3 Results and Discussion

In this section, the results of the tracking phase jitters estimated using the Conker model,

Tiwari method, Ahmed mode 1 and Ahmed model 2 are presented. For this analysis, the

data from the receiver station installed at Trondheim, Norway (63.41o N, 10.4o E) was

used to log the σφ and S4 indices at the 50 Hz rate. The same was also used to record the 1

Hz raw TEC data which was used to calculate the σ2
V T EC′

HPF
, σ2

V T EC′
wav

and σw
φa used in the

Tiwari model, Ahmed model 1 and Ahmed model 2 respectively.

For the Conker model phase jitter, the following parameter values were used: fu = 25

Hz, fc = 0.1 Hz and fF = 2.5 Hz. Similarly, in the case of the Ahmed model 2, the

following parameter values were used: fu = 0.5 Hz, fc = 0.17 Hz, fF = 1 Hz. For

performance testing, a third order tracking loop (k = 3) is considered as an example with

a noise bandwidth, Bn, of 10 Hz and TI = 20 ms. The natural frequency, fn, of the third

order tracking loop can be found as

fn =
1.2Bn

2π
(7.15)

In the case of the Tiwari method [129] and Ahmed model 1, the scaling factor, r′, is

taken as 0.05 although it may vary depending on the application [130]. The above methods

were then used to estimate the phase jitters of the PRN’s on 24 April, 2012, that were

visible during the time of a strong geomagnetic storm which occured in the early hours of

the day as shown in Fig. 5.4. The K p value on this day was recorded as high as 7 during

the coarse of the storm.
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In Fig. 7.1, the phase jitter calculated using the Ahmed Model 1 is compared with

the Conker model ( Fig. 7.1a) and Tiwari model phase jitters (Fig. 7.1b). In Fig. 7.1(a),

the solid red line represents the phase jitter using the Ahmed mode 1 whereas the solid

black line represents the phase jitter using the Conker model. Similarly, in Fig. 7.1(b),

the solid red line is the phase jitter using Ahmed model 1 and the blue line represents the

phase jitter using the Tiwari model. It can be seen that the Ahmed model 1 phase jitter

( solid red line in Fig. 7.1(a) and (b) ) has a very similar pattern to both the Conker and

Tiwari model phase jitters. The Ahmed model 1 showed a good correlation with the Tiwari

model (Fig. 7.1b). However, in the case of the Conker model (Fig. 7.1a), it was found

that although there existed a good correlation between the two, the Conker model seems

to underestimate the phase jitter values especially in the case of PRN’s 3, 6, 18 and 19

between 01:00 and 03:00 UT when there was strong scintillation present as can be seen in

Fig. 6.8 showing the scintillation activity of these PRN’s on 24 April 2012. For example,

in the case of PRN’s 3, 6 and 19, Fig. 6.8 shows that the scintillation values reached as

high as 1.2 during 01:00 and 03:00 but, the phase jitter values estimated using the Conker

model are mostly within the range of 8o to 9o which falls in the same range as those phase

jitter values for which the scintillation was less than 0.3 , i. e., before 01:00 and after 03:00

UT. On the other hand, when the phase jitter values estimated using the Ahmed model

2 were compared with the Conker and Tiwari model in Fig. 7.2, a similar pattern was

also found but both the Conker and Tiwari models seem to overestimate the phase jitter

values at low elevation angles and this over estimationfactor was higher in the case of the

Tiwari model. Here, comparing the phase jitters of the Ahmed model 2 and Conker model

during the presence of the strong scintillation (01:00 to 03:00 UT) further validates the

fact that the Conker model gives somewhat underestimated values during times of strong

scintillation.

The comparison of the phase jitters made in Fig. 7.1 and Fig. 7.2 was for a single day.

To further extend this analysis and to validate the phase jitter performance estimated using

the Ahmed models 1 and 2, a statistical study was carried out by estimating the phase

jitters for all the scintillation events from October 2011 to September 2012 on the days and

times when K p was greater than or equal to 5. A comparison was then made between the
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Figure 7.1: Phase jitter of a third order tracking loop using the Ahmed model 1, Conker
and Tiwari models.
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Figure 7.2: Phase jitter of a third order tracking loop using the Ahmed model 2, Conker
and Tiwari models.



7.3 Results and Discussion 154

phase jitters estimated from the Ahmed models 1 and 2 and those from the Tiwari model

and Conker model as shown in Fig. 7.3 and Fig. 7.4. The scintillation activity is also

shown in the bottom panel in each figure.

In Fig. 7.3(a), it can be seen that Ahmed model 1 and Conker model have a very similar

pattern which is correlating well with the Conker model. However, a few high phase jitter

values can be seen in the case of Ahmed model 1 between 00:00 and 04:00 UT but, looking

at the scintillation plot in Fig. 7.3(c), it can be seen that these phase jitter values were in

a well defined period of high σφ values depicting that these are due to the presence of

strong scintillation and therefore can be used to set tracking thresholds for the tracking

loops with a minimum probability of resulting in a false alarm. Another important thing

found here was that from 05:00 to 16:00, when the scintillation activity was at the lowest

level, on average, the phase jitter values in the case of Conker model were 1o to 2o higher

than the Ahmed model 1. Similarly, when the Ahmed model 1 was compared with the

Tiwari model in Fig. 7.3(b), both were following a similar pattern apart from the fact that

the phase jitter values in the the case of Tiwari model were quite overestimated during both

the scintillation and non-scintillation conditions. This was also discussed by [129] where it

was mentioned that the phase jitter estimated using the Tiwari model may be higher which

sometimes can lead to a false alarm in setting up tracking loop thresholds.

Then also in Fig. 7.4, the phase jitter calculated using the Ahmed model 2 was

compared with the Conker and Tiwari models. Here, the Ahmed model 2 occurence pattern

was correlating well with the Conker model (Fig. 7.4a) but this was found to be not as

good when compared with the Tiwari model (Fig. 7.4b). This is due to the overestimation

factor involved using the Tiwari model. From the phase scintillation graph in (Fig. 7.4c), it

can be deduced that the Ahmed model 2 and Conker model are depicting more accurate

phase jitter values.

Based on the analysis presented above, it cannot be said for sure which model (Ahmed

models 1 or 2) depicts more accurate phase jitter values. This also applies to the Conker and

Tiwari models as well. However, both the Ahmed models 1 and 2 tend to give values which

reflect true picture of the presence of the scintillation. This should be further investigated

by implementing the two methods in a real time GPS application such as in GPS/GNSS
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receivers for setting up the tracking loop thresholds for defining the tracking loop loss

of lock states during scintillation conditions and this is considered a future goal for this

research work.

Figure 7.3: Phase jitter comparison between the Ahmed model 1 and Conker model and
also between the Ahmed model 1 and Tiwari model for all the scintillation events from
October 2011 to September 2012 for K p ≥ 5.
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Figure 7.4: Phase jitter comparison between the Ahmed model 2 and Conker model and
also between the Ahmed model 2 and Tiwari model for all the scintillation events from
October 2011 to September 2012 for K p ≥ 5.
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7.4 Chapter Summary

Determining the tracking phase jitter plays a very important role in mitigating the effects

of scintillation on GPS/GNSS receivers. The phase jitter is usually used to define the

tracking thresholds for the tracking loops beyond which loss of lock is most likely to occur

during both scintillation and non-scintillation conditions. In this chapter two different

models, namely Ahmed model 1 and Ahmed model 2, were used to calculate the phase

jitter. In Ahmed model 1, the Conker formula was used but the tracking jitter due to phase

scintillation was replaced with the standard deviation of the wavelet filtered vertical ROT

over a 1 min interval multiplied with the scaling factor. In Ahmed model 2, the standard

Conker formula was used but the spectral parameters (p,T ) were estimated using the σw
φa

index by a method explained in section 7.1. The phase jitter, estimated using the Ahmed

model 1 and Ahmed model 2 was then compared with both the Conker and Tiwari model

phase jitters. Based on the results presented in this chaper, it can be deduced that both

the Ahmed models 1 and 2 can be quite useful in yielding accurate values of the phase

jitter, closer to the actual values and therefore could be successfully used in GPS/GNSS

receivers for defining the tracking loop thresholds during the scintillation conditions.



Chapter 8

Conclusions and Future

Recommendations

8.1 Conclusion

The research work presented in this thesis can be divided into three main parts; (i) studying

the effects of scintillation on GPS receivers specifically at the acquisition and tracking

stages, (ii) designing a computationally intensive improved TEC-based analogous phase

scintillation index for high latitudes which can also be implemented using low cost geodetic

receivers and (iii) using the TEC-based observations and the improved TEC-based phase

scintillation index for estimating the tracking phase jitter. Although, a general summary

is given at the end of each chapter, the major conclusions that have been drawn from the

thesis work are summarized here.

The first part of the thesis starts with the literature review in which the effects of

scintillation on the satellite-based navigation are discussed. In this regard, scintillation

effects on the GPS receiver acquisition process are analyzed in terms of the probability of

detection (Pd) due to the fact that the amplitude scintillation results in the reduction of the

Pd at acquisition stage. Several acquisition methodologies were implemented for analyzing

the detection performance such as the parallel FFT-based circular correlation method, ZP

method and a newly designed RBA method. The detection probability and the number of

computations involved in each method was computed and compared and it was found that in
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order to achieve a better detection performance with a reduced number of computations, the

RBA method proved to be better than both the FFT-based and ZP methods. The discussion

of scintillation effects on GPS receivers was then further enhanced by explaining the loss

of lock in the GPS tracking loop during the scintillation conditions. This was done by

estimating the tracking error variance of second and third order tracking loops. This was

then used to define the tracking thresholds for the tracking loop designs of 2nd and 3rd

orders beyond which the receiver loses lock. However, it was found that there were several

parmeters that needed to be considered in order to define the tracking thresholds. These

parameters are the spectral strength, T , at 1 Hz, the slope p of the PSD plotted on log-log

axis, loop order, C/No, noise bandwidth and the amplitude scintillation, given by S4. Here,

it was also found that during the scintillation conditions (both weak and strong), the second

order tracking loop provides more robust tracking than the third order loop as it was less

likely to loose lock than the third order loop and gave 25 to 30 % better performance. A

case study was also carried out using the simulated GPS signals by implementing several

tracking loop designs in Matlab R2011. The first tracking loop was the conventional

2nd order PLL, the second was the FLL-assisted PLL employing a 3rd order PLL with

a 2nd order FLL, the third was the 2nd order PLL using the wavelet denoising and the

fourth was the FLL-assisted PLL using the wavelet denoising. Here, the wavelet denoising

was introduced by modifying the PLL and FLL-assisted PLL tracking loop designs to

observe whether the modified designs using wavelet denoising could improve the receiver

performance or not during scintillation conditions. The results of the comparison between

these tracking loop designs showed that, although the wavelet denoising may help in

decreasing the errors in the estimation of the carrier phase, overall the wavelet denoising is

not useful in recovering from the loss of lock state during scintillation. It was also found

that the FLL-assisted PLL was better than the conventional PLL and that its performance

can be further improved by using the wavelet denoising method.

The second part of the thesis was focused on developing the new indices which

could be used to better represent the phase scintillation activity at high latitudes. A

relationship between the TEC variations produced due to ionospheric irregularities and

their association to scintillation was discussed. The rate of change of TEC (ROT) has
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been used by many researchers to link with the scintillation activity. In this regard,

several TEC-based scintillation indices are proposed and in this part of the thesis, a

fair amount of literature review was done to highlight the advantages of using the TEC-

based scintillation indices and also the drawbacks of the previously proposed indices for

deriving the scintillation values. A new TEC-based phase scintillation index, known as the

analogous phase scintillation index, was also presented and its performance was compared

with the standard phase scintillation index by using the data from a European high latitude

region. It was found that the designed index correlates well with the standard index during

the strong geomagnetic conditions but, for weak geomagnetic conditions, the correlation

was found to be poor. The reason behind this poor correlation maybe due to the fact that

the two indices were derived from different data sources for which the filtering effect using

the time invariant digital filters could be different.

A complete analysis of the results using the large amount of data from a high latitude

region showed that both the analogous phase index and the standard phase scintillation

index were giving overestimated values either during the strong geomagnetic or weak

geomagnetic conditions. It was also found that most of these overestimated values were

due to the improper filtering effects which were more visible at low elevation angles (due to

high multipath) as the indices were unable to distinguish between the noise and the actual

scintillation. To address this issue, a totally new wavelet transform based filtering approach

was used to design a new index known as the wavelet-based analogous phase scintillation

index which removed the discrepancies involved in the estimation of the analogous phase

index. This new index showed a very good correlation with both the analogous phase index

and the standard phase scintillation index during both the weak and strong geomagnetic

conditions. The index was validated by testing its performance with data from a European

high latitude and it was found that it can be used as a good alternative to the previously

proposed indices for representing the phase scintillation activity.

The third and last part has covered the practical aspects of the work presented in this

thesis. This involves estimating the tracking phase jitter using the raw TEC observations

and the wavelet-based analogous phase index through two different phase jitter estimation

methods. These were then compared with the previous phase jitter estimation methods
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which employs the analogous phase index and the standard phase scintillation index. Apart

from the comparison, the main focus of estimating the tracking jitter here was to show that

the new methods presented can be used in updating the tracking loop parameters during the

scintillation conditions which could help in mitigating the effects of scintillation on GPS

receivers but such applications comes under the future development of this research work.

8.2 Future Work

The work presented in this thesis has shown promising results which in future can be used

to mitigate the effects of scintillation on GNSS/GPS receivers both at the acquisition and

tracking levels. There are several issues that still needs attention and are recommended for

future research:

• The designed RBA acquisition method is implemented and validated using the

simulated GPS signals for varying C/No values in which there was no scintillation.

The work is already proceeding to use the RBA method in the software-based GPS

receivers designed at Newcastle University for acquiring the real GPS signals. In

future, the designed software-based receiver will be used to acquire the signals

affected by strong amplitude scintillation to check the performance of the RBA

method along with other acquisition methods.

• The work on the TEC-based phase scintillation indices showed very good results and

confirmed that these indices can be used to represent the phase scintillation activity

but the performance of these indices was only validated using the data from a single

high latitude region from Europe. In future, the data from both the European and

Canadian high latitudes will be used to validate the wavelet-based phase scintillation

index as an alternate method for representing the phase scintillation activity.

• Based on the new phase jitter estimation methods, which uses the TEC-based

observations and the wavelet-based analogous phase index, it is suggested that

these new methods can be used efficiently in GPS/GNSS receivers for updating

the tracking loop parameters for scintillation mitigation due to low computational
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cost. In this regard, the work is almost in a completion phase as the analogous

phase index has already been implemented in the real GPS receivers for monitoring

the scintillation activity. Regarding using the phase jitter estimation methods in

GPS/GNSS receivers, the work is already in progress.

In addition to the above mentioned research areas, future work should also include the

testing of the above methods in the low latitude regions as the scintillation statistics are

different there from those at high latitudes.
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Appendix A

Thermal Noise Tracking Error Variance

in the Presence of Amplitude

Scintillation

From (4.57), the thermal noise tracking error variance in the presence of amplitude

scintillation is given as

σ
2
φT =

Bn(Ã)
C/No

[∫
∞

0

1

ÃN
2 fÃN

(AN)dÃN +
1

2TIC/No

∫
∞

0

1

ÃN
4 fÃN

(AN)dÃN

]
(A.1)

where ÃN = Ã/A is the normalized amplitude, A is the unpurturbed amplitude and Ã

is the purturbed signal amplitude affected by the scintillation. The term fÃN
(AN) is the

Nakagami-m distrbution which from (4.58) is

fÃN
(AN) =

2mmÃN
2m−1

Γ(m)
.exp(−mÃN

2
) (A.2)

Using (A.2) in (A.1) we have:

σ
2
φT =

2Bn(Ã)mm

C/NoΓ(m)

[∫
∞

0
ÃN

2m−3exp(−mÃN
2
)dÃN +

1
2TIC/No

∫
∞

0
ÃN

2m−5exp(−mÃN
2
)dÃN

]
(A.3)
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Substituting x = Ã2
N and also dx = 2ÃNdÃN in (A.3) inside the integral terms:

σ
2
φT =

2Bn(Ã)mm

C/NoΓ(m)

[
1
2

∫
∞

0
xm−2exp(−mx)dx+

1
4TIC/No

∫
∞

0
xm−3exp(−mx)dx

]
(A.4)

Again substituting y1 = m−1 and y2 = m−2 in (A.4):

σ
2
φT =

2Bn(Ã)mm

C/NoΓ(m)

[
1
2

∫
∞

0
xy1−1exp(−mx)dx+

1
4TIC/No

∫
∞

0
xy2−1exp(−mx)dx

]
(A.5)

From table of integrals we have

∫
∞

0
xv−1exp(−zx)dx =

1
zv Γ(v) (A.6)

Using this integral property in (A.5) and solving the integrals:

σ
2
φT =

2Bn(Ã)mm

C/NoΓ(m)

[
1
2
.
Γ(y1)

my1
+

1
4TIC/No

.
Γ(y2)

my2

]
(A.7)

Using the substitute values of y1 and y2 in (A.7):

σ
2
φT =

2Bn(Ã)mm

C/NoΓ(m)

[
1
2
.
Γ(m−1)

mm−1 +
1

4TIC/No
.
Γ(m−2)

mm−2

]
(A.8)

Further simplifying (A.8) will give

σ
2
φT =

Bn(Ã)
C/No

[
mΓ(m−1)

Γ(m)
+

m2Γ(m−2)
2TIC/NoΓ(m)

.

]
(A.9)

Using the property, Γ(m) = (m−1)Γ(m−1), (A.9) will be transformed to

σ
2
φT =

Bn(Ã)
C/No

[
m

m−1
+

m2

2TIC/No(m2 −3m+2)
.

]
(A.10)

From [61], using m = 1
S2

4
, (A.10) will become

σ
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1

(1−S2
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+
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.

]
(A.11)
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The above equation is valid for S4 < 0.707 only.



Appendix B

Derivation of the Noise Bandwidth for

the second order loop

From (4.25), the transfer function of the second order tracking loop is

H(s) =
2ζ wns+w2

n
s2 +2ζ wns+w2

n
(B.1)

The noise bandwidth, Bn, can be found as

Bn =
∫

∞

0
| H(w) |2 d f =

wn

2π

∫
∞

0

1+
(

2ζ w
wn

)2

(
1−
(

w
wn

)2
)2

+
(

2ζ
w
wn

)2
dw (B.2)

Simplifying (B.2) will give

Bn =
wn

2π

∫
∞
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1+4ζ 2
(

w
wn
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(
w
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)4
+(4ζ 2 −2)

(
w
wn

)2
+1

dw (B.3)

Substituting x =
(

w
wn

)
in (B.3):

Bn =
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2π
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dx+
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The two integrals above can be found using the integration from the table of integrals

given as

∫
∞

0

xu−1dx
x4 +(B+A)x2 +BA

=
π

2
Au/2−1 −Bu/2−1

B−A
csc(

uπ

2
) (B.5)

Comparing the (B.4) and (B.5), u1 = 1 and u2 = 3 are the alternate values of u in the

first and second integral terms in (B.4) respectively and

B+A = 4ζ
2 −2

BA = 1

Simaltaneously solving the above equations will give

B = (ζ +
√

ζ 2 −1)2 (B.6)

A = (ζ −
√

ζ 2 −1)2 (B.7)

Using (B.5), the first and the second integrals terms in (B.4) can be represented as

Bn =
wn

2π

[
π

2
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u1π

2
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π

2
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u2π
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)

]
(B.8)

Using the values of u1 and u2 in (B.8)

Bn =
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2π
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where csc(π

2 ) = 1 and csc(3π

2 ) =−1 :
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Upon using the values of A and B in (B.10) and simplifying, (B.10) will be transformed

to

Bn =
wn

2π

[
π

2
.

1
2ζ

−4ζ
2.

π

2
.

(
− 1

2ζ

)]
(B.11)

Further simplification will give

Bn =
wn

2π

[
π

4ζ
+πζ

]
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Appendix C

Ionosphere Pierce Point Velocity

From [61], the ionosphere pierce point velocity, vpp, can be given as

v
′′
pp = RT × vECEF (C.1)

where RT is the transformation/rotational matrix used to convert the satellite coordinates

to local level coordinates and vECEF is the velocity of the of the IPP in Cartesian Earth

Centred Earth Fixed (ECEF) coordinate system which is converted to the local coodinates

by multiplying with the RT in order to get the velocity in meters per second. The vECEF

can be given as

(vECEF)i =
(
vpx ,vpy ,vpz

)
=

(−→r IPP)i+1 − (−→r IPP)i

ti+1 − ti
(C.2)

where (−→r IPP) = (xIPP,yIPP,zIPP) in (C.2) is the position of the IPP in ECEF coordi-

nates at two consecutive epochs i and i+1. The rotational matrix, RT , [61] can be given

as

RT =


−sin(λIPP) cos(λIPP) 0

−sin(φIPP)cos(λIPP) −sin(φIPP)sin(λIPP) cos(φIPP)

cos(φIPP)cos(λIPP) cos(φIPP)sin(λIPP) sin(φIPP)

 (C.3)



181

where φIPP is the latitude and λIPP is the longitude of the IPP and can be given as

φIPP = φR +Ψcos(a) (C.4)

λIPP = λR +
Ψsin(a)

cos(φIPP)
(C.5)

where φR and λR are the receiver latitude and longitude respectively and can be obtained

by converting the ECEF coordinates to geodetic coordinates, a is the azimuth angle and Ψ

is the earth’s centered angle given as

Ψ = 90− e− sin−1
(

cos(e)Re

Re +hIPP

)
(C.6)

where e is the elevation angle, Re = 6378 km is the radius of the earth and hIPP is the

IPP height generally taken as 350 km. Using the RT and vECEF in (C.1), the final form of

the vpp is

v
′′
pp =

[
vpx vpy vpz

]


−sin(λIPP) cos(λIPP) 0

−sin(φIPP)cos(λIPP) −sin(φIPP)sin(λIPP) cos(φIPP)

cos(φIPP)cos(λIPP) cos(φIPP)sin(λIPP) sin(φIPP)

 (C.7)

Equation (C.1) will give the velocity component of the vpp in easting, northing and up

directions whose absoltue value can be taken to find the veolcity of the IPP as

vpp = |v
′′
pp| m/s (C.8)
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