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Abstract 

The ever increasing level of penetration of Distributed Generation (DG) in power 

distribution networks is not without its challenges for network planners and operators. 

Some of these challenges are in the areas of voltage regulation, increase of network 

fault levels and the disturbance to the network protection settings. Distributed 

generation can be beneficial to both electricity consumers and if the integration is 

properly engineered the energy utility. Thus, the need for tools considering these 

challenges for the optimal placement and sizing of DG units cannot be over emphasized.  

This dissertation focuses on the application of a soft computing technique based on a 

stochastic optimisation algorithm (Particle Swarm Optimisation or PSO) for the 

integration of DG in a power distribution network. The proposed algorithm takes into 

consideration the inherent nature of the control variables that comprise the search space 

in the optimal DG sizing/location optimisation problem, without compromising the 

network operational constraints.   

The developments of the proposed Multi-Search PSO algorithm (MSPSO) is described, 

and the algorithm is tested using a standard, benchmarking 69-bus radial distribution 

network. MSPSO results and performance are compared with that of a conventional 

PSO algorithm (and other analytical and stochastic methods).  Both single-objective 

(minimising network power loss) and multi-objective (considering nodal voltages as 

part of the cost function) optimisation studies were conducted.  

When compared with previously published studies, the proposed MSPSO algorithm 

produces more realistic results since it accounts for the discrete sizes of commercially 

available DG units. The new MSPSO algorithm was also found to be the most 

computationally efficient, substantially reducing the search space and hence the 

computational cost of the algorithm compared with other methods, without loss of 

quality in the obtained solutions. As well as the size and location of DG units, these 

studies considered the operation of the generators to provide ancillary voltage support to 

the network (i.e. with the generators operating over a realistic range of lagging power 

factors, injecting reactive power into the network). 

The algorithm was also employed to optimise the integration of induction generation 

based DG into the network, considering network short-circuit current ratings and line 

loading constraints. A new method for computing the reactive power requirement of the 
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induction generator (based on the machine equivalent circuit) was developed and 

interfaced with the MSPSO to solve the optimization problem, including the generator 

shunt compensation capacitors. Finally, the MSPSO was implemented to carry out a DG 

integration problem for a real distribution network and the results validated using a 

commercial power system analysis tool (ERACS).   
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CHAPTER 1  

 

Introduction 

 

1.1 Background 

Climate scientists and policy makers in developed countries consider that an 80% 

reduction in greenhouse gas emissions by 2050 is necessary if average global 

temperature rises of more than 2°C are to be avoided [1]. The electrical power sector is 

seen as offering easier and more immediate opportunity to reduce greenhouse gas 

emission than, for example, road or air transport and so likely to bear a large share of 

any emission reductions [1].  

These problems have led to a new trend of generating power locally at the distribution 

voltage level by using non-conventional/renewable energy sources. These sources 

include natural gas, biogas, wind power, solar photovoltaic cells, fuel cells, combined 

heat and power (CHP) systems, microturbines, and Stirling engines and their integration 

into the utility distribution network. This type of power generation is termed Distributed 

Generation (DG) and ranges from few kWs to 50MW for medium size DG units and the 

energy sources are termed as 'distributed energy resources (DERs). The term 

‘Distributed‎Generation’‎has‎been devised to distinguish this concept of generation from 

centralised conventional generation [2].  

There is no accepted definition of distributed generation both in the literature and in 

practice. Several country-specific strict definitions are available for DG all over the 

world, depending upon plant rating, generation voltage level, etc. In broad terms 

“Distributed generation is an electric power source connected directly to the 

distribution network or on the customer site of the meter” [3]. A classification of DG 

units based on their power rating as summarised in [4] is presented in Table 1.1. 

However, irrespective of these differences in definitions, the impact of DG on the power 

system is the same.  
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Table ‎1.1 DISTRIBUTED GENERATION UNIT  CLASSIFICATION [4] 

S/N Type of DGU Power Rating range 

1 Micro DGUs 1 watt < 5kW 

2 Small DGUs 5kW < 5MW 

3 Medium DGUs 5MW < 50 MW 

4 Large DGUs 50MW <  300MW 

 

DG offers a long list of benefits that are highly dependent on the characteristics of each 

installation and the characteristics of the local power system. These benefits can be 

primarily classified into three broad categories [5] namely; economical, technical and 

environmental advantages.  

Economical advantages can be realized when utilities deploy DG to defer investments in 

transmission or distribution infrastructure. These are related to fuel savings as a result of 

reduced over-reliance on fossil fuel, saving transmission and distribution cost and in 

some instances reducing wholesale electricity price. Since DG is typically located closer 

to the load centre in contrast with central generating stations, it can reduce congestion 

and system losses in some instances. On the other hand, environmental advantages 

include low noise and low emission and can be realized by renewable generators such as 

solar photovoltaics (PV), which have no marginal emissions or CHP systems whose use 

of waste heat can result in higher efficiencies than central generation units. The 

magnitudes of emissions benefits associated with DG depend on both the characteristics 

of individual DG units and the characteristics of power system to which they are 

connected. Potential technical advantages cover a wide variety of issues such as peak  

load saving, good voltage profile, reduced system losses, improved continuity and 

reliability, removal of some power quality problems and associated thermal constraints 

of Transmission  and Distribution (T&D) feeders. Furthermore, many benefits accrue to 

particular stakeholders and may not benefit the distribution system operator or the other 

customers of the system [6].  

The proliferation DG in the last decade has brought a tremendous alteration to the 

structure of a typical distribution network, making it an active network. Thus, 

presenting new challenges for distribution system planning and operations, as these 

circuits were designed to supply loads with power flows from the higher to lower 

voltage circuits [1]. Some of these challenges are in the area of voltage regulation, 

power quality, increase of network fault levels and the possible disruption to the 

network protection settings.  
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The integration of DG alters the flows of power in the network and consequently, will 

alter network losses. The location and the size of the distributed generator to the load 

have effect on the network losses; for a small distributed generator located at the 

vicinity of a large load, will reduce network losses and conversely, a large distributed 

generator located far away from network loads is likely to increase distribution system 

losses. Therefore, proper allocation of DG units into an existing distribution system will 

play a crucial role in the improvement of the power system’s‎performance‎and‎meeting‎

the world target of reducing greenhouse gas emissions.  

The optimal allocation of DG is one of the most-important aspects of DG planning; 

Distribution Network Operators (DNOs) will require an effective solution optimisation 

tool for network planning and integration. This thesis focuses on developing and 

implementing an optimisation tool that can be valuable to utilities and DNOs for 

integrating distributed generation into the power system network. The problem of DG 

integration can be considered as a combinatorial, discrete and continuous nonlinear 

problem that involves the determination of the optimal or near optimal overall 

combination of locations and capacities in a network of n buses. Determining the best 

solution is a non-trivial effort beyond the feasibility of manual searches not even for a 

small distribution power network. Artificial intelligence techniques (AI) offer a 

practical alternative for solving such problems. 

 In this current research work, a stochastic optimisation technique based on particle 

swarm optimisation has been used to reach technical conclusions without violating 

distribution system operating constraints. Distribution systems operational constraints 

such as power balance, bus voltage and line loading limits are effectively handled by the 

cost function computation algorithm. Additional constraints such as constraints on the 

discrete size of DG unit and short circuit current level constraints were included are 

handled by the stochastic algorithm preceding the optimisation. The constraints were 

considered either as imperative (hard) or indicative (soft). 

1.2 Statement of the Problem 

A number of Distributed Energy Resources (DERs) technologies are now commercially 

available in different discrete sizes, the most-notable being micro-turbines, combustion 

turbines, reciprocating engines, wind power, photovoltaic, solar thermal systems, 

biomass, and various forms of hydraulic power. DGs are known to inject a constant 

amount of real and reactive power. For a grid-connected synchronous generator, this 
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corresponds to the operation at its continuous power output rating at a range of possible 

lagging power factors up to a maximum reactive power output limited by the current 

rating of the stator or rotor windings. Thus, in optimal DG studies, the variable defining 

DG size can be considered as discrete variable. 

Therefore, in optimal DG studies, while some control variables are inherently integer 

and discrete some are continuous variables. This result in a problem with a mix of 

control variables, referred to in this thesis as multi search space problem. Multi search 

space problem is best solved by an optimisation algorithm that is capable of operating 

integer, discrete and continuous variables (i.e. mixed search spaces). The use of 

continuous optimisation algorithms in such problems can substantially increase the 

search space and hence the computational cost of the algorithm.  

Distributed generation plants with rotating machines will contribute to the network fault 

levels. For instance, both induction and synchronous generators will increase the fault 

level of the distribution system when connected to it. In most existing utility distribution 

networks in the urban areas, where the fault level approaches the ratings of the 

switchgear, the increase in fault level can be a serious bottleneck in the development of 

distributed generation schemes. Increasing the short-circuit rating of the distribution 

network switchgear and cables as an option to overcome such problem can be extremely 

expensive and difficult particularly in congested city substations and cable routes. Also, 

the option of reducing the fault level contribution of distributed generator by 

introducing impedance between the generator and the network, with a transformer or 

reactor will be at the expense of increased losses and wider network voltage variations. 

Therefore, there is the need to appropriately incorporate this effect into the problem of 

DG integration.  

Induction generators are becoming common as a source of distributed generation on 

distribution system. However, DG of type based on induction generator behaves 

differently from synchronous generator based DG. Induction generator requires reactive 

power support for its operation thus, the need to incorporate this requirement into the 

optimisation process. A simultaneous capacitor and induction generator placement 

problem will require an optimisation algorithm capable of handling the discrete size 

nature of both capacitor and induction generator. In addition, induction generator based 

DG is required to remain connected to the grid during low-voltage supply faults [7]. 

This will require that the reactive power requirement of such plant be met fully and 

locally supplied from compensating devices.  
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This research work, intends to explore decision making techniques to determine the 

optimum siting and sizing of distributed generation in an existing distribution utility 

power network. The decision making technique is based on stochastic optimisation 

technique employing particle swarm optimisation (PSO).  

In this work, the major objective of the placement technique is to reduce active power 

loss in the network while ensuring that the operational and security constraints of the 

network are respected. This implies that the study considered both a single and multi-

objective formulation. Minimizing system power losses has a positive impact on 

relieving the feeders, reducing the voltage drop and improving the voltage profile and 

has other environmental and economical benefits.  

In the current methods of formulating DG optimisation problem available in the 

literature, variables representing the sizes of DG units are usually continuous. Their 

solution needs to be rounded to the nearest available commercial generator size, which 

can affect the accuracy of the optimized results. The physical aspects of distribution 

system such as busbar location numbers are normally rounded to their nearest integer 

variables. Rounding-off issues with respect to the DG-unit’s‎ size‎ are‎ overcome‎ by‎

considering DG sizes with a fixed step size increment within a practical range of 

generator sizes. Thus, the solution attained may not be the best available choice since 

some sizes are left out of the search space. In addition, previous optimisation studies on 

IG based DG have calculated the reactive power requirement of IG based on 

approximate empirical formula as discussed in [8]. And shunt compensation capacitors 

are not considered as part of the optimisation process neither is the effect of short circuit 

current considered as part of the optimisation process. 

Optimisation problems in distribution system involve integer, discrete and continuous 

variables. The problem formulation of distributed generation integration leads to 

nonlinear, stochastic equation as objective function or constraints with a mix of these 

variables. Thus, the need for an effective algorithm that operates well on these variables. 

An optimisation tool with such capabilities is considered in this research work. The 

reactive power requirement of IG is computed based on per phase equivalent circuit 

parameters of the induction machine, with both shunt capacitor and effect of short 

circuit current included in the optimisation process. DG short circuit current level 

consideration is to ensure that the interruptible capability of the protective equipment is 

not compromised. 
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 The model of IG considered in this study, facilitates the computation of real and 

reactive power output for a specified generator rating (power output) and operating 

terminal voltage. The slip is varied from zero at certain step intervals and the 

corresponding output power is computed. The process is continued until the difference 

between the computed output power and the specified output power is within a specified 

error tolerance. 

A power system optimisation tool based on stochastic (random search) technique (PSO) 

that operates integer, discrete and continuous variables for the nonlinear optimisation 

problem is developed. A multi-valued discrete PSO (DPSO) is proposed, to effectively 

handle the integer nature of the bus number location. The discrete nature of the size of 

DG and the capacitor is handled by an algorithm capable of searching discrete space 

variables (referred in this thesis as a dichotomy search algorithm), developed mainly for 

this purpose.  

In this study, the algorithm proposed for computing the reactive power requirement of 

the IG based DG is interfaced with the stochastic power system optimisation tool. The 

reactive power of the IG calculated, forms the basis for selecting the required value of 

the shunt compensating device that will provide entirely the reactive power required by 

the generator. Thus, the network voltage profile is enhanced with the integration of IG 

compared to when the reactive power requirement of the generator is to be met by the 

grid. The constraint on fault level considered in the optimisation process is handled by a 

three phase symmetrical fault algorithm interfaced with the developed stochastic 

optimisation tool. The fault algorithm is executed prior to the optimisation process using 

a simple and practical method that is based on the bus impedance matrix by the building 

algorithm. The technique fully accounts for the impact of DG on short circuit current 

rating of the switchgear, allowing the integration of DG within the available switchgear 

rating.  

The proposed algorithm is tested on a standard 69 bus benchmarking network used by 

other researchers [9-13] for power system optimisation problems, including. In addition 

to this network, the algorithm is also implemented on a 47 bus practical Nigerian 

medium voltage distribution network.  
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1.3 Motivation and Objectives of the Study 

Utility deregulation and the growing challenge of system reliability are some of the 

primary reasons for the high level of interest in distributed energy resources in addition 

to economic and environmental pressures. Nigeria like many other developing countries 

has its electricity generating stations centrally located (Centralized Generation) based on 

the bulk power planning methodology. In the recent past, the government has taken a 

bold step to decentralize the power sector into Generation Companies (GenCos), 

Transmission System Companies (TranSysCo) and Distribution Companies (DisCos). 

This was in line with global trends of encouraging the participation of Independent 

Power Producers (IPPs) in the electricity Industry. A deregulated electricity market will 

introduce competition in generation, transmission and distribution, thus, giving DG 

applications a very favourable market. This in no small measure will release the 

government from the burden of investment in the generation sector and could result in a 

reduction in electricity prices and an improvement in the quality of supply. An 

optimisation algorithm of this type can be valuable to the IPPs for finding the best 

location and size of their distributed resources for efficient power loss reduction. 

Optimal allocation of DG units into an existing distribution system will improve the 

power system’s performance and will benefit both the IPPs and the end customers with 

their power supply reliability and adequacy greatly enhanced. 

The major aim of this research work is to develop a power system optimisation tool 

based on the PSO algorithm with applications to integration of distributed generation in 

the power network. The purpose of which is a power loss reduction while ensuring that 

the operational and security constraints of the distribution system are respected. PSO 

algorithm offers many advantages that include; simple implementations, speed of 

convergence, very few algorithm parameters, very efficient global search compared to 

other stochastic methods such as GA.  

The main objectives of the study can be summarised as follows; 

 To develop a Particle Swarm Optimisation procedure for evaluating the best 

locations and injection levels of distributed generation in an existing electric 

power utilities network. In addition to the power flow equality and non 

equality constraints (power balance, bus voltage drop and line capacity 

limits); constraints such as discrete size of DG units and the short circuit 

current level are to be considered.  



Chapter 1: Introduction 

8 

 

 To extend the developed PSO procedure for solving optimisation problems 

of simultaneous placement of shunt capacitor and distributed generation in a 

power distribution network considering both synchronous and induction 

generators based distributed generation. Constraints that can impede the 

development of both DGs are to be considered. 

 To collate necessary and available practical data from an‎ existing‎utilities’‎

network in addition to the available standard benchmark networks, for 

modelling and optimisation study using the proposed optimisation tool. 

1.4 Contributions  

The main contributions of this research are in the development of a novel decision 

making optimisation procedure, based on a stochastic technique using particle swarm 

optimisation (referred to as Multi Search PSO‎ “MSPSO”‎ in‎ this‎ thesis), and its 

applications to power system optimisation problems. First is the development of 

MSPSO which is an ensemble of a multi-valued discrete particle swarm optimisation 

(DPSO) that handles integer variable, a dichotomy search algorithm (an algorithm 

capable of searching through discrete space variables) that handles the discrete 

constraint on the capacitor and DG units and the continuous PSO that handles the 

continuous variable. The dichotomy search algorithm is first proposed and reported by 

this research work for optimal DG integration problems. 

The second is the application of the proposed technique to solve the conventional 

problem of optimum sizes and location of capacitor and distributed generation (that 

include synchronous and induction generators) in a power distribution network.  

The third contribution is in the modelling of the practical network and the application of 

the proposed optimisation technique to solve the optimal location and sizes problem for 

the practical network considering fault current level constraints. And the validation of 

the results with an actual simulation using commercial power system analysis software 

tool ‘ERACS’.  

The research work carried out in this thesis has resulted in the following publications: 

[1] I. Musa, S. M. Gadoue, B.‎ Zahawi,‎ “Integration‎ of‎ Induction Generator Based 

Distributed Generation in Power Networks Using Discrete Particle Swarm 

Optimisation Algorithm”,‎ submitted to Electric Power Components and Systems, 

accepted and re-submitted after minor corrections on 3
rd

 December 2014. 
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[2] I. Musa, S. M. Gadoue, B.‎ Zahawi,‎ “Integration‎ of‎ Distributed‎ Generation‎ in‎

Power‎Networks‎Considering‎Constraints‎on‎Discrete‎Size‎of‎DG‎units”,‎Electric 

Power Components and Systems, vol. 42: 9, pp. 984-994, 2014. 

[3] I. Musa,‎ B.‎ Zahawi,‎ S.‎ M.‎ Gadoue,‎ “Integration‎ of‎ Induction‎ Generator‎ Based‎

Distributed Generation and Shunt Compensation Capacitors in Power Distribution 

Networks”,‎ presented‎ at‎ the‎ 4
th

 International Conference on Power Engineering, 

Energy and Electric Drives (POWERENG), 2013, Istanbul, Turkey, 13th -17th of 

May 2013 doi: 10.1109/PowerEng.2013.6635765 

[4] I. Musa, B. Zahawi, S. M. Gadoue, D. Giaouris, "Integration of Distributed 

Generation    for network loss minimization and voltage support using Particle 

Swarm Optimisation", presented at the  6th IET International Conference on Power 

Electronics, Machines and Drives (PEMD 2012), , Bristol, UK,  27-29 March 2012 

doi: 10.1049/cp.2012.0150 

1.5 Organization of thesis 

Chapter 1 presents the background of the study with highlights focused on the benefits 

of DG, the problem statement for the research work, motivation and objective of the 

study.  Finally the contributions of the research work are presented.   

Chapter 2 provides a basic review of the literature with respect to operational and other 

problems that can critically impact the operation of distribution network with the 

integration of distributed generation. The possible challenges posed to planning and 

operation engineers are briefly discussed. A brief introduction of the conventional and 

stochastic evolutionary computation algorithms techniques (analytical, genetic 

algorithm, PSO and artificial bee colony algorithm) used in power system optimisation 

studies is presented. A State-of-the-art review of the conventional and stochastic power 

system optimisation algorithms is also discussed. The available solution approaches and 

how they have been applied to power distribution systems are summarized.  

Chapter 3 explores the Particle Swarm Optimisation technique. An overview of the 

trend from the original PSO to PSO with inertia weight (PSO-W) is discussed. The 

trend in adopting the PSO, which operates on continuous problems to solve discrete 

optimisation problems, is discussed. The proposed Multi Search Particle Swarm 

Optimisation (MSPSO) procedure specifically meant for DG and shunt capacitors 

integration into distribution network is presented. Features of the MSPSO such as the 

multi-valued DPSO, dichotomy algorithm and few informants PSO implementations are 
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presented. An‎overview‎of‎variant‎PSO‎‘Small‎Population‎Particle‎Swarm‎Optimisation 

(SPPSO)’‎for‎the‎optimal‎DG‎problem‎is‎likewise‎introduced.‎The‎purpose‎of discussing 

the SPPSO algorithm is that its results will be utilised to compare with that of the 

proposed MSPSO. 

Chapter 4 presents simulation study of distributed generation integration in a 

compensated distribution network to provide voltage support for the network. The 

optimisation process is based on the traditional PSO-W algorithm. The study considered 

various scenarios with different test cases and operating power factors. The ancillary 

services of voltage support by DG and the effect of power factor on such services are 

presented considering both single and multi-objective cases. The results of this study are 

used as a benchmark to  assess the improvement obtained with the proposed algorithm.  

Chapter 5 presents the application of the‎proposed‎algorithm‎‘MSPSO’ for distributed 

generation integration in a compensated distribution network to provide ancillary of 

voltage support for the network. The study considered various scenarios with different 

cases and operating power factors. The ancillary services of voltage support by DG and 

the effect of power factor on such services are also presented considering both single 

and multi-objective cases. Finally a comparison of results from previous studies on DG 

integration, the studies in chapter 4 and chapter 5 are presented to demonstrate the 

significance of the proposed algorithm used in the current study.   

Chapter 6 presents the application of MSPSO to the simultaneous integration of 

induction generator based distributed generation and shunt compensation capacitor for 

single and multi-objective cases. The short circuit current and line loading constraints 

are considered in both a single and multi-objective cases. A derivation of the power 

flow procedure based on per phase equivalent circuit parameters of a 3-phase Induction 

Generator (IG) is presented. The developed MSPSO algorithm is combined with an IG 

algorithm procedure and AC power flow to solve the optimisation problem of IGs.  

Chapter 7 presents the application of multi search particle swarm optimisation for 

integration of distributed generation onto the practical distribution network. An 

overview of the Nigeria distribution power system network is presented, highlighting 

the potential for distributed generation integration. In addition, modelling equations for 

computing the line series and shunt elements relating to the practical network are 

discussed. The ERACS power system software is used to validate the results of the 

MSPSO. The chapters end with a summary of the simulation results, findings and some 

conclusions. The final chapter discusses the conclusions drawn from this research work, 
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outlines a summary of the contributions made, and some suggestions for possible areas 

of future research to extend the work. 
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CHAPTER 2  

 

Review of Distributed Generation Integration studies 

 

In this chapter, a general overview of Distributed Generation (DG) is presented. The 

review includes the discussion of the benefits from the application of DG for utility and 

customer, the technical challenges that may impede their development onto the utility 

network. Later in the chapter, some few selected conventional and stochastic 

evolutionary methods employed in power system optimisation problems that are 

considered particularly relevant to the current study are briefly introduced. Moreover, a 

literature review of optimisation techniques used in DG integration studies is presented. 

2.1 Introduction 

Conventional power systems provide several advantages that include [1]: 

1. Large generating units can be made efficient and operated with only 

relatively small staff 

2. The interconnected high voltage transmission network allows the most 

efficient generating plant to be dispatched at any time, bulk power to be 

transported large distances with limited electrical losses and generation 

reserved to be minimised. 

3. The distribution networks can be designed simply for unidirectional flows of 

power and sized to accommodate custom loads only. 

The structure of the centralized large electric power system that exists today is borne out 

of these advantages. The structure is a hierarchical system of voltage levels used to 

transport the electrical power, sometimes over considerable distances from a bulk 

generating station with a limited number of large central generating sources to the 

consumers. The process involves generating and stepping up of voltages at the central 

generation station to high voltages, and stepping down gradually as the power get closer 

to the consumer.  These differences in voltage levels lead to the classification of 

different parts of the power system as depicted in Figure. 2.1. The voltage levels 

depicted are the voltage level used on the Nigerian electrical power system.   
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All major generating stations are interconnected to load centres via the high voltage 

transmission network. The distribution systems are assigned three voltage levels, with 

33kV referred to as high voltage level (HV) distribution, 11kV as medium voltage 

(MV) distribution and 0.240-0.415kV as low voltage (LV) distribution.  The transfer of 

power down to the individual customer is via the distribution network. Power transfer 

between the various transmission and distribution circuits is achieved through electrical 

substations with chains of distribution transformers. The distribution circuits are radially 

operated, with a number of feeders emanating from each substation in common with 

many distribution systems around the world. 

 

Figure ‎2.1: Transmission & Distribution (T&D) Levels in Nigeria 

Radial feeders have the advantages of being simple and less expensive, both to 

construct and in terms of their protection system. Their major disadvantage lies with the 

difficulty of maintaining supply in the event of a fault occurring in the feeder. A fault 

could result in the isolation of a large number of customers until it is located and 

cleared. 

In spite of the advantages of centralized generation, technical, economic and 

environmental benefits have been the three key drivers behind increasing levels of DG. 

Connection of a generation to a distribution network leads to a number of challenges as 

existing distribution networks are passive, in that they were designed and built purely 

for the delivery of electricity to the customer. The introduction of DG is changing the 

characteristics of the distribution network. It has led to increased and bidirectional 
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active and reactive power flows, along with wider variation in voltage levels, both of 

which affect the operation of equipment on the network and the level of losses [14]. 

These technical challenges are impacted by the number of DG connected to distribution 

system network and need to be taken into account in DG problem planning and 

operation. 

2.2 DG Types and Applications 

Distributed generation can come from a variety of sources and technology. DG from 

renewable sources, such as wind, solar, hydro and biomass are often referred to as 

‘Green‎ Energy’.‎ In‎ addition‎ to‎ these,‎ DG‎ from‎ non‎ renewable‎ sources‎ includes‎ fuel‎

cells, micro turbine, internal combustion engine, and combined cycles. Some renewable 

and non-renewable energy sources will require a power conversion system in the form 

of converter for interconnection to the grid, e.g. solar, fuel cell, micro-turbine and some 

wind turbines. Others like rotating synchronous and induction AC machines based DG 

such as a fixed speed induction generator, internal combustion engine directly 

interconnect to the grid (without the need for power converters). 

The applications of DGs are customer related. Some of the major customer applications 

of distributed or dispersed generation include [5]: 

1. Own electricity generation with or without grid backup. 

2. Generating a portion of electricity to save peak period to reduce the cost of 

electricity purchased during the peak hours. 

3. Sell excess generation back into the grid, when there is a surplus of power. 

4. Standby or emergency power. 

5. Improving the quality of supply and increase reliability. 

6. Serving‎niche‎applications,‎such‎as‎“Green‎Power”‎or‎“remote‎Power” 

7. Meeting continuous power, premium power or cogeneration needs of the 

residential market. 

2.3 DG Benefits 

DG provides several potential opportunities, benefits and services to both utility and the 

consumer depending on whether it is used as grid connected DG, dispersed DG (stand-

by generating systems) or both.  For instance using dispersed DG, the consumer will 
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have consumption choices; they can reduce their energy expenditures by incorporating 

DGs that are powered by cheaper fuel sources. As for the utility, it can use the DG 

power to enforce its distribution network voltage stability, as well as to increase its 

peaking capacity without suffering financial costs[15]. 

 

Figure ‎2.2: Charts of Distributed Generation Benefits and Services 

However, grid connected DG has the potential to provide some services that may results 

in specific benefits to the grid and to other customers within the area that is been served 

by the grid. Figure 2.2 show some of these specific services and the potential benefits 

that can be derived from those services. The first lists to the left of the chart are specific 

services DG is capable of providing. The potential benefits derived from those services 

are categorized and listed to right-hand of the chart. For example, new capacity 

investments may be deferred by reducing peak power requirements on the grid, or by 

the provision of ancillary services. Distributed generation available as an emergency 

supply of power can also be used in demand response programs to reduce congestion, or 
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increase system reliability via peak-shaving [16]. The ancillary services include some of 

the following; operating reserves, regulation, black start and reactive power provision. 

2.4 Technical challenges of DG 

The integration of DG presents new challenges for distribution system planning and 

operations,‎principally‎because‎the‎configuration‎of‎power‎lines‎and‎protective‎relaying‎

in most existing distribution systems assume a unidirectional power flow and are 

designed and operated on that assumption. In recognition of the potential adverse 

impacts of DG on distribution systems and the need for uniform criteria and 

requirements for the interconnection of DG, standard interconnection guide are 

developed.  

In UK, the standard guiding the interconnection of DG is the Engineering 

Recommendation (ER) G59/2-1 which is now G59/3 and G83/1-2 which is now G83/2. 

The G59 documents set out standards and guidance on technical requirement for the 

connection of generating plant to the distribution systems of licensed Distribution 

Network Operators (DNOs). These requirements must be met before the local DNO will 

allow generating plant to be connected to its network. On the other hand, G83 

documents set out standards and guidance on technical requirement for the connection 

of Small-Scale Embedded Generators (SSEG) in parallel with low-voltage distribution 

systems [17]. In the US, it is the  IEEE Standard 1547, first released in 2003 and later 

incorporated into the Energy Policy Act of 2005 [6]. The standard applies to the 

interconnection of all generations with aggregate capacity of 10 megavolt amperes (10 

MVA, approximately 10 MW) or less to the distribution system. The primary aim of 

these standards is to ensure that the negative impacts of DG units on other customers or 

equipment connected to the grid are controlled.  

These technical challenges include some of the followings:  

 Network voltage rise 

 Losses 

 Short circuit fault level 

 Protection 
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2.4.1 Network voltage rise 

Supplying customers within a specified voltage limits is an obligation which every 

distribution network operator must fulfil. This voltage limits is typically around ±5% of 

nominal. This requirement often determines the design and capital cost of the 

distribution circuits and so, over the years, techniques have been developed to make the 

maximum use of distribution circuits to supply customers within the required voltages 

[1]. The connection of DG to the circuit, changes the flows of power and reactive power 

and hence the voltage profile of the network. The most familiar case is when the 

customer load on the network is at a minimum, resulting in the output of the DG 

flowing back to the source.  

This voltage rise can be limited by reversing the flow of reactive power, achieved using 

an induction generator, under exciting a synchronous machine or operating an inverter 

so as to absorb reactive power. A very laborious method is carrying out successive 

power solutions, repeated for different load levels.  A technique for evaluating the 

required penetration of DG level that will not increase the steady state voltage rise of 

the network has been shown in recent work [18]. The technique is based on analytical 

solution using Jacobian sensitivities to direct estimation of the amount of active and 

reactive power that DG can inject into each system bus without causing voltage limit 

violation.  

2.4.2 Short circuit level 

Connecting any form of DG to a distribution network can increase the level of fault 

current in the network. This could result in fault levels exceeding the design limit of the 

network, particularly if it is already being operated close to its design limit. The fault 

level contribution from DG is determined by a number of factors [19], including: the 

size, types of DG and the distance of the DG from the fault, whether a transformer is 

present between the fault location and the contributing DG, the configuration of the 

network between the DG and the fault and the method of coupling the DG to the 

network.  

Fault levels are normally calculated at the network planning stage and for operational 

reasons, to ensure that they remain within the design limits of the power network.  The 

solutions for mitigating the impact of DG on fault level are discussed in [19] they 

include; uprating the capability of existing equipment such as Circuit Breaker (CB), 

introducing higher impedances in the network to limit the fault level etc. The 
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significance of considering restriction imposed by switchgear fault rating with the 

connection of DG has been shown in previous work [20], ignoring such constraint the 

capacity of the network to absorb new generation can be  overestimated. 

2.4.3 Losses  

Line losses are a critical consideration when designing and planning electrical power 

network systems. The losses are the results of current flowing through the lines of 

distribution and transmission systems, and they are inevitable on any network. The 

magnitude of the losses depends on the quantity of the current flow and the line 

impedance. Consequently, line losses can be decreased by reducing either line current or 

network impedance or both. Therefore total current flow in a power network is the sum 

of the current flows associated with the real and reactive power components.  

If DG is used to provide energy locally to the load, line losses can be reduced because 

of the decrease in current flow in some part of the network. DG can deliver a portion of 

real and/or reactive power so that the feeder current is reduced and voltage profile can 

be improved with reduction in losses. Line losses occur not only in lines, but also in 

transformers and other transmission and distribution system devices [16]. Previous 

studies have indicated that poor selection of the location and size of DG for serving load 

locally would lead to higher network losses than the losses without DGs [10, 21, 22]. 

2.4.4 Protection  

Distributed generation units can reduce current at the unit protection for the period 

before the DG senses the fault and disconnects, making it harder to detect a fault and 

complicating the coordination among protection devices. In addition, fault currents at 

points of system protection will depend on which DG units are connected and operating 

at the given time. Changing fault currents with the introduction of DG could lead to 

unreliable operation of protective equipment and result in faults propagating beyond the 

first level of protection reducing system reliability and safety.  

It has been suggested that utilities could use real-time information about the operation 

of the network and the nature of connected resources to dynamically change protective 

relay settings [2]. 

2.5 Optimisation Techniques  

In optimisation problems, the task is in choosing the alternative that either maximises or 

minimises an evaluation function which is defined on the selected evaluation criteria. 
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Hence, possible goals of optimisation process are either to find an optimal solution for 

the problem or to find a solution that is better than some predefined threshold (for 

example the current solution) [23]. There is no single method available for solving all 

optimisation problems efficiently. Hence a number of optimisation methods have been 

developed for solving different types of optimisation problems. Optimisation techniques 

such as analytical, genetic algorithms, artificial bee colony, etc., have been used for 

tracking optimal location of DGs in power distribution networks. 

Analytical techniques represent the system by a mathematical model and evaluate it 

using direct numerical solution [24]. Analytical techniques offer the advantage of short 

computing time. However, when the problem becomes complex, the assumptions used 

in order to simplify the problem may override the accuracy of the solution. 

The genetic algorithms (GA) are computerized search and optimisation algorithms 

based on the mechanics of natural genetics and natural selection. John Holland in 1975 

[25], originally proposed the genetic algorithms. The most basic concept of the GA is 

that the strong tend to adapt and survive while the weak tend to die out.  Thus implying 

that, optimisation is based on evolution, and the "Survival of the fittest" concept. The 

basic elements of natural genetics used in the genetic search procedure are reproduction, 

crossover, and mutation. 

PSO is a cooperative population-based global stochastic optimisation technique inspired 

by the behaviour of swarms such as fish schooling and birds flocking proposed by 

Kennedy and Eberhart in 1995 [26, 27]. PSO differs from other evolutionary algorithms 

in that better solutions are evolved through the social interactions of individual particles 

within the group or swarm. The particles move through the problem space, and over 

time converge upon the optimal solution. Unlike in genetic algorithms, where the 

weakest individuals are discarded and replaced by each subsequent generation, with 

PSO individuals is not eliminated, and the best solutions are evolved through 

cooperation and position updates. 

The artificial bee colony (ABC) algorithm is a new meta-heuristic optimisation 

approach inspired by the intelligent foraging behaviour of the honey bee, introduced in 

2005 by Karaboga [28]. It was proposed, initially for unconstrained optimisation 

problems and later extended to handle constrained optimisation problems [29]. The 

ABC algorithm has only two parameters (colony size and max. iteration number) to be 

tuned in comparison with other meta-heuristic algorithms such as PSO and GA with 
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many parameters to tune. The colony of artificial bees consists of three groups of bees: 

employed onlookers and scout bees and are responsible for the exploration and 

exploitation processes of the search space.  

 In the next section, a detailed overview of the optimisation techniques employed in 

optimal DG studies is discussed. 

2.5.1 Literature Review of Optimisation Techniques used in DG Integration 

studies 

The proliferation of the DG in the last decade has brought a tremendous alteration to the 

structure of a typical distribution network. DGs are available in modular units, 

characterized by ease of finding sites for smaller generators, shorter construction times, 

and lower capital costs [30]. However, their integration into a distribution system 

requires in-depth analysis and planning that usually include technical, economical and 

regulatory aspects [31]. These factors can affect the final optimal attained solution. A 

number of Distributed Generation (DG) technologies are now commercially available in 

different discrete sizes. The most notable being micro-turbines, combustion turbines, 

reciprocating engines, wind power, photovoltaic, solar thermal systems, biomass, and 

various forms of hydraulic power. DG can be rotating devices (synchronous or 

asynchronous machines) directly coupled to the network, or they can be rotating or 

static devices interfaced via power electronics devices. The impact of DG technology on 

power system operation, control and stability affect the size and optimal placement of 

DG [30].   A large amount of research has been carried out on DG sizing and placement 

problem. A selection of some of the relevant publications is reviewed here. 

A numerical method based on exhaustive search technique is employed in [32, 33] to 

find DG location (as viewed from an electric utility technical perspective) that optimizes 

a multi-objective performance index for a given DG size. The index estimates the 

benefits of DG insertion by evaluating indices for various technical impacts related to 

power loss, voltage profile, line capacity and short circuit level. The various technical 

impacts were weighted in accordance with their relevance to form a single objective 

function.  

A numerical method based on gradient search is proposed for optimal sizing of multiple 

DG in a meshed network considering fault level constraints [34]. An iterative process is 

used to allocate new capacity using optimal power flow mechanisms and re-adjusts 

capacity to bring fault currents within the specifications of switchgear. Other numerical 
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methods based DG integration are linear programming [14, 35], sequential quadratic 

programming [36], non linear programming [37, 38], dynamic programming[39] and 

ordinal optimisation[40]. The nonlinear programming, the sequential quadratic 

programming and the ordinal optimisation methods have been described to be the most 

efficient of the available numerical methods for problem of optimal DG placement [30].  

Several analytical techniques have also been implemented for optimal DG sizing and 

placement problems. In[10] an analytical method, based on the exact loss formula, is 

proposed to optimally site and size a single DG with the objective of network power 

loss reduction. An analytical method that is applicable to radial feeder with uniformly 

distributed load is suggested in [22] to install a DG of 2/3 capacity of the incoming 

generation at 2/3 of the length of the line. Analytical expressions for finding optimal 

size and power factor of different types of DGs are proposed in [11] with the objective 

of power loss reduction. An analytical method suggested in [9] determines the optimal 

location and size of multiple DGs, considering different types of DGs with the aim of 

power loss reduction. Analytical methods are characterized by ease of implementation 

and fast execution. The major setbacks of these methods is that their results are only 

indicative, since they make simplified assumptions including the consideration of only 

one power system loading snapshot [30]. In addition the capacities of the optimal DG 

sizes calculated using these methods are continuous values that do not always represent 

the practical available DG size units. Their solution need to be rounded to the nearest 

available commercial generator size to fulfil the discrete size of DG units constraints 

which can affect the accuracy of the results.  

Several techniques based on stochastic computing algorithms have been proposed to 

solve the problem of optimal DG sizing and location. The use of evolutionary 

programming to maximise the reduction of load supply costs is presented in [41]. An 

Ant Colony Optimisation (ACO) technique for optimal placement and sizing of DG is 

proposed in [42]. The objective was to minimise the investment and the total 

operational cost of the system. In attempt to address practical concerns in terms of 

available DG-unit sizes, the proposer considered DG sizes in multiples of 1MVA up to 

a maximum of 4MW at unity power factor, based on a fixed step size increment. 

Genetic Algorithm (GA) for optimal DG capacity and location to maximise system 

loading‎margins‎ and‎ the‎ distribution‎ company’s‎ profit‎ is‎ suggested‎ in‎ [43]. A multi-

objective performance index-based size and location determination of DG with different 
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load model based on GA is presented in [44]. In this study, DG sizes are considered 

with a fixed step size increment within a practical range of generator sizes.  

In [45], an Artificial Bee Colony (ABC) algorithm is presented for determination of 

optimal DG size, location and power factor to minimise the total system power loss. 

This study considered discrete size of DG units with 100 step interval between sizes.  A 

hybrid genetic algorithm and Optimal Power Flow (OFP) technique is suggested in [46] 

to efficiently site and size a predefined number of DGs. However, the pre-selection of 

DG sizes using a fixed step size increment [42, 44, 45] implies that there is a likelihood 

of the optimal commercially available DG size being left out of the search space. Thus, 

the solution attained may not be the best choice.  

Particle Swarm Optimisation (PSO) has been previously used in a wide range of power 

system applications [47-51]. It was shown to be an effective tool for solving large-scale 

nonlinear optimisation problems. A stochastic dynamic multi-objective model based on 

Binary PSO is proposed in [52] find the optimal location and size to minimise a multi-

objective cost function. Recent literatures have presented techniques to extend the 

application of PSO to solve discrete problem of DG integration. A multi-objective 

index-based approach using PSO is presented in [53] to optimally determine the size 

and location of multiple DG units. In [54] a hybrid method employing discrete PSO and 

optimal power flow is proposed to find the optimal size and location of a predefined 

number of DG units within a distribution network. This hybrid discrete PSO technique 

determines the location of the DG units and the OPF computes the optimal capacity of 

each DG and the objective function (production cost of generation and cost of network 

power loss). The results of the optimisation process are continuous capacity DG units.  

In [55] a new problem formulation for connecting a predefined number of biomass 

fuelled gas micro-turbines to a distribution network using the algorithm employed in 

[54] is presented. In [56, 57], discrete PSO is proposed for optimal DG placement. 

However, the search for discrete sizes of DG is in step size of 50kW and 100kW. This 

implies that DG sizes not within the range of selected step size would be left out of the 

discrete search space.  

The PSO algorithms used in previous studies have been designed and intended to handle 

continuous optimisation problems. The real value solutions are usually rounded to the 

nearest integer. In optimal DG studies however, the inherent integer nature of some 

control‎variables‎ implies‎ that‎ the‎problem‎of‎DG‎sizing‎and‎placement‎ is‎by‎ its’‎very‎

nature a mixed search space (of integer, discrete and continuous) combinatorial 
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problem. This implies that the problem is best solved using a mixed search space 

optimisation algorithm that can independently handle each of the variables involved. 

The use of continuous optimisation algorithms in such problems can substantially 

increase the search space and hence the computational cost of the algorithm.  

Induction generators have long been used for wind energy applications [58] and are 

currently the standard technology for network connected wind turbines. Several studies 

have been conducted on the integration of induction generator based DG in electrical 

power networks. In [12] an analytical technique for optimal placement of wind turbine 

based DG is presented. A PSO-based technique for optimal placement of wind 

generation in distribution networks is presented in [59]. An optimal multiple DG 

placement study using adaptive weight PSO is presented in [60]. However, in all these 

studies, the reactive power requirement of the induction machine is calculated by an 

approximate empirical formula and no shunt compensation capacitors were considered 

as part of the network optimisation problem. Uncompensated reactive power can cause 

stress on the hosting utility grid with added expenses, which can create in difficulties for 

power purchasing agreements from independent wind energy producers. Providing 

compensation can increase the penetration level of wind power into existing distribution 

networks [61]. 

In [62], a multi-objective methodology for finding the optimal location and size of DG 

is presented.  The optimal location is found using voltage stability index and the optimal 

sizing of the DG and the optimisation is carried out employing genetic algorithm. The 

reactive power compensation for the network was also considered but there are no 

details on how it was achieved. And the use of sensitivity index approach for location 

selection may not lead to the best choice. Consequently, the result obtained may not 

give the optimum result for the optimisation problem considered [10].  

Wind Power Plant (WPP) can contribute to initial short circuit current fault if fully 

compensated locally such that the air gap flux does not collapse in the event of 

disturbances. The UK national grid codes specify that the generator must exhibit a fault 

ride through capability to remain connected and contributing to network stability during 

a fault [63]. Investigations on the dynamic performance of wind power plants during 

low voltage fault-ride-through are presented in [64, 65]. A dynamic analysis of short 

circuit current contributions of different types of WTGs is presented in [66, 67]. The 

fixed speed induction generator was found to be among the types with the largest three-

phase Short Circuit (SC) current fault [66]. A dynamic performance of wind 
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asynchronous generators using different types and locations of fault is presented in [68], 

the short circuit current contribution considering different types of faults and locations 

were obtained via transient analysis using squirrel cage generator model. Thus, the need 

to include the effect of short circuit current in the optimisation process involving IG 

based DG cannot be overemphasized. 

The Current regulatory interconnection standards for DGs ‘IEEE Standard 1547’, does 

not encourage DG to regulate voltage at their PCC [69], and therefore, they have been 

modelled in power flow studies as a PQ node (i.e., a negative load). However, a recent 

study [6], has recommended that the main standard governing DG interconnection 

(IEEE Standard 1547) be revised to permit voltage regulation by DG units. The 

advantage of which is a reduced voltage variation under high penetrations of DG in 

distribution network. DG units with reactive power control capability provide better 

network voltage profile and lower losses.  

Some studies have also considered the integration of both DG and shunt capacitor to 

provide network voltage support. A numerical method associated with PSO is proposed 

in [70] for strategic placement of DG units and shunt capacitors in a distribution 

network. The target voltage support zones are identified numerically and the PSO 

algorithm solves the overall objective function to minimise the cost of DG units and 

shunt capacitors. In this case, the only source of reactive power is the shunt capacitors 

as the DG units were assumed to be operating at unity power factor. A numerical 

method to determine the optimal DG placement with the objective of maximizing 

voltage support is proposed in [71].  In this case, the DG is modelled to inject real and 

reactive power into the network. The location of the generator is determined using a line 

sensitivity index where the most vulnerable voltage bus is selected as the generator 

location. The generator size is then calculated such that the voltage at the DG bus is 

1p.u. However, this technique results in a generator with a non-optimal output capacity 

connected at a non-optimal location.  

Nevertheless, if DG reactive power capability and control is considered, the node where 

DG is connected should be modelled as a PV node. This represents the DG generator 

capability to keep a voltage reference value while the supplied reactive power is within 

its maximum and minimum limits [72]. 

To address these issues presented in this review and in line with the defined problems of 

this study and to achieve the major objectives of this research work, this thesis proposed 
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a PSO based stochastic optimisation algorithm for DG optimum sizing and location 

study. The proposed algorithm is specifically suited for the solution of mixed search 

spaced optimisation problems. Unlike other approaches, the proposed algorithm is an 

ensemble of techniques to handle variables of mixed search space of integer, discrete 

and continuous variables. This significantly reduces the execution time of the algorithm 

and accelerates convergence due to the much reduced search space of the optimisation 

problem.  

The study takes into consideration network operational and security constraints of 

power, voltage, line loading and short circuit current fault level by incorporating them 

in the optimisation process. The study considered that DG can operate to inject constant 

real and reactive (PQ model) or inject constant real power at a specified voltage 

magnitude (PV model). The current study is carried out on standard 69-bus 

benchmarking network and as well as a 47-bus Nigeria practical medium voltage 

distribution network.  

The effectiveness of the algorithm in solving the two well know optimisation problems 

that are inherently integer, discrete and continuous in nature (optimal DG and shunt 

capacitor sizing and placement problem) are demonstrated. The capability of the 

algorithm to handle optimal integration of induction generator based DG is also 

demonstrated. The results of study on the 47-bus is validated with a commercial power 

system analysis tool ERACS. The results show the proposed algorithm to be an 

efficient, fast and reliable tool capable of solving complex nonlinear optimisation 

problems. 

Inappropriate DG placement may increase power system losses and the capital cost of 

operating the network. Conversely, optimal DG placement can improve the performance 

of the host network in terms of voltage profile, reduce line loading and system losses, 

and improve power quality and reliability of supply for both network operators and the 

customers. So an optimisation technique must be used in order to come up with the 

highest power loss reduction within the best combination of feasible DG size and 

location, without violation of the network constraints.  

In the chapter that follows, the development of the proposed PSO multi search 

optimisation algorithm will be presented. 
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CHAPTER 3  

 

Particle Swarm Optimisation 

 

In this chapter, a general overview of Particle Swarm Optimisation is presented. The 

review includes the variants PSO that forms the basis for the current proposer. The 

proposed Multi-Search Particle Swarm Optimisation (MSPSO) procedure that 

specifically suit DG and shunt capacitors integration onto distribution network is 

developed and discussed. Features of the proposed MSPSO such as the multi-valued 

discrete PSO, dichotomy algorithm and few informants PSO implementations are 

presented.     

3.1 Background 

Natural creatures sometimes behave as a swarm. One of the main streams of artificial 

life research is to examine how natural creatures behave as a swarm and reconfigure the 

swarm models inside a computer [73]. Craig Reynolds in 1986 developed an artificial 

life program, simulating the flocking behaviour of birds called Boids [74]. Reynolds 

employed a set of three vectors as simple rules in his researches on Boid as follows, 

Separation: steer to avoid crowding local flockmates (i.e. step away from the nearest 

agent) 

Alignment: steer to towards the average heading of local flockmates (i.e. go towards the 

destination) 

Cohesion: steer to move toward the average position of local flockmates (i.e. go to the 

centre of the swarm). 

The Boids framework is often used in computer graphics, providing realistic-looking 

representations of flocks of birds and other creatures, such as schools of fish or herds of 

animals. The decision process of human beings was examined by Boyd and Richerson 

they then developed the concept of individual learning and cultural transmission [74]. 

According to their examination, human beings make decisions using their own 

experiences‎ and‎ other‎ persons’‎ experiences.‎ These‎ research‎ efforts‎were‎ the‎ basis‎ for‎

the emergence of new optimisation techniques in the 1990s utilizing an analogy of the 

swarm behaviour of natural creatures. Eberhart and Kennedy developed a PSO as a 
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technique for the optimisation of continuous nonlinear functions  based on the analogy 

of swarms of birds and fish schooling [26]. 

3.2 Basic Particle Swarm Optimisation with Inertia Weight (PSO-W) 

PSO is a cooperative population-based global stochastic optimisation technique inspired 

by the behaviour of swarms such as fish schooling and birds flocking proposed by 

Kennedy and Eberhart in 1995 [26, 27]. PSO has been found to be very robust in 

solving non- linear problems where multiple optima and high dimensionality exists 

[75]. PSO differs from other evolutionary algorithms in that better solutions are evolved 

through the social interactions of individual particles within the group or swarm. The 

particles move through the problem space, and over time converge upon the optimal 

solution. Unlike in genetic algorithms, where the weakest individuals are discarded and 

replaced by each subsequent generation, with PSO individuals is not eliminated, and the 

best solutions are evolved through cooperation and position updates. 

In order to improve the performance of PSO, Shi and Eberhart[76] introduced a new 

parameter‎ ‘w’‎ called the inertia weight into the first part of original PSO equation as 

given in Equation (3.1), so as to improve the  exploration and exploitation ability of the 

swarm optimiser. This parameter plays the role of balancing the global search and local 

search of the swarm [76]. Each individual in a PSO swarm moves in the search space 

with a velocity that is dynamically adjusted according to its own previous experience 

and the experience of other members of the swarm. Each particle keeps track of its 

coordinates in the search space associated with the best fitness it has achieved so far 

(pbest) and the overall best value (and its location) obtained so far by any particle in the 

population (gbest). The particle then calculates its next displacement vector in the 

search space (or velocity if each step in an iterative process is regarded as representing a 

time unit of 1) as‎ a‎ combination‎of‎ three‎ factors:‎ the‎particle’s‎own‎velocity,‎moving‎

towards‎the‎particle’s‎own‎best‎position‎so‎far‎and‎moving‎towards‎the‎best‎position‎of‎

its best informer, giving the following equations of motion for each particle: 
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  Where: 
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v : current velocity of individual i in dimension d at iteration k 
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k
id

x : current position of individual i in dimension d at iteration k  

1k
id

V : new velocity of individual i in dimension d at iteration k+1 

1k
id

x : new position of individual i in dimension d at iteration k+1  

rand1, rand2: are random numbers between 0 and 1 

 pbesti: is the best position to-date of particle i, 

 gbest: is the global best position of the group to-date 

c1, c2: are constants (weighting functions) determining the relative influences of pbesti 

and gbest also called the cognitive and social acceleration constant respectively 

d: is the number of dimensions in the search space 

w: is an inertia constant (or weighting function) determining the relative influence of the 

particle’s‎own‎velocity. For the k
th

 iteration, it is computed as; 
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where, wmin and wmax : are the minimum and maximum inertia weights, respectively, and  

 kmax is the maximum allowable number of iterations before the search is aborted.  

This factor allows the particles to move freely within the search space at the beginning 

of the search process (exploration) while giving greater significance to pbest and gbest 

during the later stages of the search (exploitation).  

If the search space is not infinite, it is necessary to confine the search space to prevent a 

particle leaving the search space altogether. A simple mechanism for such confinement 

is described by the following operations [77]: 
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The particle velocity is limited by the maximum value vmax. Thus, the resolution and 

fitness of the search depend on vmax. If vmax is too high, then the particles will move in 

larger steps and the solution reached may not be optimal. If vmax is too low, then the 
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particles will take a long time to reach the desired solution or even get captured in a 

local minimum. The basic flow chart of PSO is shown in Figure 3.1. 

 

Figure ‎3.1: Basic Flow chart of PSO 

In the past several years, PSO has been successfully applied in many areas of research 

and application related to electrical power systems [47, 73]. Some of the characteristics 

features that make PSO attractive to researchers are related to their high search speed 

with better results in a simple and efficient way when compared with other methods. 

They have few parameters to adjust and are more flexible and works well in a wide 

variety of applications[78]. Particle swarm optimisation can be used for optimisation 

problem that is non-differentiable, non-convex, and highly nonlinear with many local 

optima.     

Different variants of PSO algorithm have been proposed in the literature. Some of these 

variants incorporate the capabilities of other evolutionary computation techniques while 

others adapt the algorithm parameters for enhanced performance [47, 79-81]. In this 

study, two variants PSO algorithms: discrete binary PSO and PSO for Mixed Integer 
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Nonlinear Problems form the basis for which MSPSO algorithms proposed in this thesis 

is developed and are discussed below; 

3.3 Discrete Binary Particle Swarm Optimisation Algorithm 

The basic PSO described in section 3.2 apply to nonlinear optimisation problems with 

continuous variables. However, practical engineering problems are often formulated as 

combinatorial and mixed variables optimisation problem [73]. The first PSO algorithm 

for discrete problems was developed by Kennedy and Eberhart in 1997 [82] where 

particles were encoded as binary sequences. Particle trajectories and velocities were 

defined as probabilities of a bit change from 0 to 1 (no or yes). This binary value can be 

a representation of the real- value (continuous value) in binary search space. 

In‎the‎binary‎PSO,‎the‎particle’s‎personal‎best‎and‎global‎best‎is‎updated‎as‎in‎the‎basic‎

continuous version. The major difference between binary PSO and the basic PSO is that 

the velocities of the particles are rather defined in terms of probabilities that a bit will 

change‎to‎one.‎By‎this‎definition,‎the‎velocity‎‘v’ must be restricted within the range [0, 

1].  If v is higher, the particle is more likely to choose 1, and lower values favour 0 

choices. One of the functions, accomplishing this feature is the sigmoid function 

defined in Equation (3.5) 

         (‎3.5) 

Like the basic continuous version, the velocity update formula for the binary version of 

PSO can be described as follows: 

   (‎3.6)  

 then    ;      (‎3.7)  

   Else  

where; rand is a positive random number drawn from a uniform distribution with a 

predefined upper limit, and  is a vector of random numbers of [0, 1]. Unlike in 

continuous-valued version of PSO where high maximum velocity (Vmax) increase the 

range explored by particle, the opposite occurs in the binary version; smaller Vmax 

allows higher exploration. 
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3.4 PSO for Mixed Integer Non-Linear Problems  

In general, design variables of the object function in optimisation problems are normally 

assumed to be continuous. However, practical engineering problems have design 

variables that are integer, discrete, binary (zero-one) and continuous, with non-linear 

objective functions.  Binary variables are usually required in the formulation of design 

problems with a decision options such as yes or no and in switch selection problems 

(On or off). Problems which contain integer, discrete or zero-one and continuous 

variables are called mixed-variable optimisation problems [83].  

For mixed-variable optimisation problems, however, not so many PSO-based 

approaches have been proposed as for continuous ones, because it is difficult to find an 

appropriate constraint-handling mechanism and a proper non-continuous variables 

handling method simultaneously [83]. The integration of binary and continuous versions 

of PSO is discussed in [84]. The study in [85] demonstrates the application of MINLP 

to power system problem. A continuous version of the PSO was modified to handle 

MINLPs, and used to solve reactive power and voltage control problem in electric 

power systems. The continuous and discrete control variables related to automatic 

voltage regulator (AVR) operating values of generators, tap positions of on-load tap 

changer (OLTC) of transformers, and the number of reactive power compensation 

equipment. 

3.5 Proposed Multi-Search PSO (MSPSO) for DG Integration 

A number of Distributed Generation (DG) technologies are now commercially available 

in different discrete sizes. DG is often limited to a set of standard available sizes 

depending on the manufacturers. The problem of DG integration can be considered as a 

combinatorial nonlinear problem that involves the determination of the optimal or near 

optimal overall combination of locations and capacities in a power network [46]. To 

solve the optimisation problem, the search space consists of mixed-variables that are of 

continuous, integer and discrete in nature. Integer values are commonly used to 

represent the bus number locations for the DG; discrete values are used to represent the 

DG capacities (MVA) or DG rated output power (MW) while the reactive power output 

from the generator is related to continuous variables. This implies that, the DG 

optimisation problem can be classified into the category of mixed integer-discrete-

continuous non-linear optimisation problems.  
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A mixed integer-discrete-continuous, non-linear optimisation problem can be 

mathematically expressed as follows [86];      
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denotes feasible subsets of integers, discrete and continuous variables respectively.  In 

DG optimisation problem, the subsets are related to cases of multiple DG locations and 

sizes. The total number of variables n = ni+ nd+ nc and represents the dimension of the 

optimisation problem.  

The problem also accounts for l equality functions )( Xh and m inequality functions g(X). 

The‎variables‎are‎also‎subject‎to‎lower‎‘L’ and‎upper‎‘U ‘boundary constraints. In DG 

optimisation, the equality constraint is related to the network real and reactive power 

balanced constraint.  This is normally handled by the power flow algorithm that 

computes the objective function. The inequality constraints are related to nodal 

voltages, line flow limits, reactive power limits of the generators, short circuit current 

level constraints, etc. If the voltage and line flow constraints are violated, the absolute 

violated value of the maximum and minimum boundaries is largely weighted and added 

to the objective function.  
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The formulation in Equation (3.8) is general and basically the same for all types of 

variables. The only distinguishing feature of one problem from another is the structure 

of the design domain. It is also worth mentioning that the major differences between the 

integer and the discrete variables are; while integer and discrete variables both have a 

discrete nature, only discrete variables can assume floating point values. In practice the 

discrete value of the feasible set are often unevenly spaced [86] thus, integer and 

discrete variables will require different handling. The techniques employed in this 

current study to handle the various control variables that constitute the mixed search 

space are discussed in the following section. 

3.5.1 Handling Mechanism of Mixed Variables for DG Optimisation Problem 

In this section, the handling mechanism for integer and discrete variables of the optimal 

DG problem is presented. The PSO algorithms used in previous studies have been 

designed and intended to handle nonlinear continuous optimisation problems. 

Generally, values for non-continuous variables are obtained by rounding-off to their 

closest values. Despite the simplicity of the rounding-off principle, the optimal mixed-

variable solutions obtained by this method are probably not the best solution. 

Considering the nature of some control variables in optimal DG problem, implies that 

the problem will be best solved using a multi search optimisation algorithm. The 

consequence of which is a substantial reduction in the search space and hence the 

computational cost of the algorithm.  

Consider a solution vector X in D dimensional space for an individual i as Xi = (xi1, xi2, 

….‎ xiD). In the case of single distributed generator placement problem with three 

dimension, Xi = (xi1, xi2, xi3). The variables, xi1, xi2, xi3 represent the generator location, 

generator output power and VArs, respectively. A multi-valued discrete PSO and a 

dichotomy algorithm are proposed to handle the integer and the discrete variables 

respectively. 

3.5.1.1 Multi- Valued Discrete PSO 

The discrete PSO algorithm proposed in this study to handle the integer variables is an 

extension of the original discrete binary PSO [82]. Similar to the binary PSO, the 

proposed discrete PSO uses probabilistic transition rules to move from one discrete 

value to another in search for the optimum solution. However, it neither requires 

encoding of particles into binary sequences nor the decoding process. This makes it 
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simple to implement and suitable to handle optimal DG and capacitor location and 

sizing problems that are by their very nature integer and discrete optimisation problems. 

For discrete multi valued optimisation problems the range of the discrete variable lies 

between 0 and M-1,‎where‎‘M’‎is‎an‎integer‎[87]. The algorithm uses the same velocity 

update equation as that described in Equation (3.6). However, the position update 

equation is modified as described below. 

First, the velocity is transformed into a number between [0, M] using the 

transformation: 
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A random number is then generated using a normal distribution with a mean of Sid and a 

standard deviation of (M1) i.e. N(Sid, α(M-1)) and the result rounded to the nearest 

discrete value to give the position update: 
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where  is a constant, randn(1) is a random number drawn from the standard normal 

distribution and: 
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 xid is then a discrete value between [0, M-1]. Thus, for any given Sid, there is an 

associated probability of choosing any number between [0, M-1] with the probability of 

randomly selecting a number decreasing as its distance from Sid increases as depicted in 

Figure 3.2. The selection of the value of the constant  is very important to the 

algorithm performance as detailed in [87]. In this current optimisation study, a value of 

0.4 is used [87]. Controlling the  controls the standard deviation of the Gaussian 

distribution and, hence, the probabilities of different discrete variables.  

The expressions in (3.9)-(3.11) are used in this study to handle the integer variables of 

the DG bus number locations.  
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Figure ‎3.2: Transformation of the Particle Velocity to a Discrete Variable [87] 

3.5.1.2 Dichotomy Search Algorithm for Discrete Variables 

In practice, the discrete values of the feasible set representing DG units are often 

unevenly spaced. The dichotomy algorithm [77] is used to restrict the continuous 

variables representing DG sizes to be within a feasible and acceptable predefined search 

list of standard size of DG units. Variables representing DG output power are initially 

treated as continuous variables using Equations (3.1) and (3.2) to update the 

corresponding position vectors.  

To launch this iterative algorithm, it is necessary to have one acceptable position 

defined as X_ admissible (discrete variable). Very generally, it is approximately the 

preceding position of the particle to be tested. X_current is the particle position to be 

tested (continuous variable). The technique involves traversing the search list by 

ascending values and stopping as soon as the found value exceeds or equals the one that 

is tested. This, easily give the closest value as the one that is found or the one that is 

found after. 

In essence, the dichotomy algorithm is used to constraint the continuous variable (the 

active power output of the generator or generator capacity) into a discrete variable 

chosen from unevenly spaced entries in a pre-defined finite search list representing 

practical DG sizes in megawatts.  

The operational flowchart of dichotomy algorithm shown in Figure 3.3  
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Figure ‎3.3: Flowchart of dichotomic search in a list; for handling the constraints on discrete size of DG 

units 

The procedural steps for realizing dichotomic search in a list is discussed below with 

the  

Step 1: Define the preceding positions (X_ admissible /acceptable values of the position 

/ set of acceptable a priori position) in the search list in ascending order as follows:  

T
]

adm(N)
X,

adm(j)
,X

adm2
,X

adm1
[X

adm
X

admissible
X      (‎3.12) 

where: j= 1:N represents the index of the values in the search list (Xadm). 

Step 2:  Define and initialize variables for search algorithm; iteration counter, length of 

list, j_min, and j_max with   j_min & j_max   the minimum and the maximum 

respectively of acceptable value’s index of the found of solution 
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Step 3: Input the value of coordinate to be tested X= X
k
i (the i

th
 particle at k iteration 

whose value is to be tested) 

Note:  X
k
i is admissible if 

dm
X

k
i

X
a

 therefore, we can generally define X
k
i as follows: 

Step 4:  If X
k
i is admissible (i.e is contained in the search list) stop, print its value and 

index 

In other words,  

 if  then       (‎3.13) 

Step 5: Else perform iterative search to compute as follows 
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End subroutine if a solution is found in step 5 and return the accepted value and its 

index.  

Else 
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Step 6:  At maximum iteration, from the computed solution distance return accepted 

value and its index  

Note: the above procedure can be repeated for nd discrete variables. 

The proposed multi-valued DPSO algorithm that handles the integer variable use real 

integer numbers other than 0 and 1. This avoids any increase in the particle dimensions 

and does not require any encoding and decoding of particle position as required in the 

binary version of PSO. The MSPSO algorithm can search evenly and unevenly discrete 

spaces. This avoids loss of accuracy in the results of the optimisation process obtained. 

The final attained optimal solution is a commercially available DG-unit. The mix of 
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different variable types to form one single particle is possible because the PSO 

algorithm operates independently on each dimension.  

3.5.2 Particle Swarm Optimiser with Few Informants 

In the majority of real time problems, the number of times that the function to be 

minimised need to be evaluated is a very relevant criterion. This evaluation requires a 

considerable computational time. To reduce the total number of evaluations needed to 

find a solution, the size of the swarm can be reduced. But if the swarm is too small, the 

swarm is likely to take a longer time to find a solution if at all. A Large swarm size will 

increase the average probability of success. Empirically, researchers proposed sizes of 

20 to 30 particles, which, have proved entirely sufficient to solve almost all classic test 

problems [77]. 

The interaction between particles in the swarm is based on a defined common set of 

links. The set of links is referred to as the swarm topology [88] and is responsible for 

controlling the exchange of information between particles. The traditional topologies 

[89, 90] for classical PSO include; 

The Global best (star) topology: in this topology, the source of social influence on each 

particle is the best performing individual in the entire population. This is equivalent to a 

sociogram or social network where every individual is connected to every other. The 

gbest topology (i.e., the biggest neighbourhood possible) has often been shown to 

converge on optima more quickly than the local best (lbest), but it is also more 

susceptible to the attraction of local optima, as the population rushes unanimously 

toward the first good solution found. 

The Local best (circular) topology: This topology was proposed as a way to deal with 

more difficult problems. In the lbest sociometric structure, each individual is connected 

to (i.e. Influences and is influenced by)  its immediate neighbours in the population 

array. The lbest topology offers the advantage that sub populations could search diverse 

regions of the problem space. 

The Von Neumann (square) topology: This topology results in better performance in the 

basic particle swarm than any of the three previous traditional topologies. It is formed 

by arranging the population in a grid and connecting neighbours above, below, and to 

right and left. 
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And a recently proposed topology is The adaptive random topology [77, 88]: where 

each particle randomly informs K other particles and itself (the same particle may be 

chosen several times), with K usually set to 3 [77]. In this topology the connections 

between particles randomly change when the global optimum shows no improvement. 

In the local best topology, the number of informants (K) is always less than the swarm 

size. And, the smaller the swarm size, the lower the average number of informants of a 

given particle in respect of K. This is relevant when it is required to reduce the swarm 

size with the goal of reducing the total evaluations required to find a solution based on 

the lbest topology.   

 

Figure ‎3.4: PSO topologies: (a) the global best or star (b) the local best or circular (c) the von Neumann or 

square and (d) random informers. 
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The reduction in the average size of the groups of informants encourages exploration 

with increasing diversity. 

The problem of DG integration performs well with the global best PSO topology based 

information links. Where each particle informs all others and the number of informants 

is taking to equal the swarm size. A topology based on an entirely connected swarm of 

particles is more effective if there are no local minima. 

The current research work is based on gbest topology. However, to reduce the total 

evaluations required to find a solution to the optimisation problem, a PSO concept with 

few informants is proposed. In this technique, few informants are randomly selected 

from the main swarm to form a sub-swarm with successive iterations. The source of 

social influence on each particle of the sub-swarm is the best performing individual in 

the entire sub-swarm population. This implies that a social network where every 

individual of the sub-swarm is connected to every other is created. This information is 

then used to update the entire swarm population. The proposed topology is shown in 

Figure 3.5 and is referred to as sub-warm gbest topology. This technique maintains the 

swarm size, but at successive iterations few evaluations are performed using the 

randomly selected informants. Thus, the swarm is able to retain its diversity. The tuning 

of‎ the‎ inertial‎weight‎ ‘w’ to allow balance in the exploration and exploitation of the 

search space is very important to the success of this technique.  
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Figure ‎3.5: PSO sub-swarm global best (gbest)  
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To implement this concept, a sub-routine algorithm based on selecting few informants 

was combined with the proposed stochastic optimisation and used to reduce the 

computational burden of the proposed stochastic optimisation algorithm. Some PSO 

versions have a topology that allows the entire swarm to share information and where 

every particle compares its position with the global best, the algorithm implemented 

here select a certain number of particles from the total swarm to use as informants for 

the entire swarm.  

This study uses only five randomly selected informants at each step (though depending 

on the complexity of the problem, the number informants can be increased or 

decreased). This reduction in the size of the swarm used in fitness computation and 

substantially reduces the total number of evaluations needed to achieve convergence. 

This actually encourages exploration by increasing diversity [77] and speeds up the 

process of execution of the algorithm.  

3.5.3 Procedural Steps and Implementation flow chart of MSPSO 

The capability of the particle swarm optimisation algorithms operator to work 

independently on each dimension makes it possible for mixing different variable types 

into a single particle.  The implementation flow chart is as shown in Figure 3.6 and the 

procedural steps involves; 

 

Figure ‎3.6: Multi-Search PSO (MSPSO) Algorithm flow chart 
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Step1: Read relevant MSPSO parameters. Also relevant power system data required for 

the computational process are actualized from the data files. 

Step 2: Initialize swarm of particles with random positions and velocities. Each 

candidate solution should be within the feasible decision variable space 

Step3: with the swarm size and problem dimension, commence the iteration process 

Step4: Apply velocity update equation (3.6) and limits its magnitude if outside the 

defined range 

Step5: Update position of swarm; if integer, discrete variable use equation (3.9) - 

(3.11), if continuous variable use equation (3.2) 

Step 6: Apply dichotomy search algorithm for continuous variable for transformation 

into unevenly discrete search space  

 Step 7: Apply feasibility constraints if applicable (check discrete variables for short 

circuit current constraints) 

Step 9: Randomly select swarm informants 

Step 10: compute the objective function by running power flow analysis for the swarm 

informants 

Step 11: Apply relevant constraints if applicable (Busbar voltage and line flow limit 

 violations). If the voltage and line flow constraints are violated, the absolute 

 violated value  of the maximum and minimum boundaries should be largely 

 weighted and  added to the objective function  

Step 12: Evaluate the fitness of sub-swarm particles, obtain their personal best and the 

global best. 

Step 13: If necessary update historical information regarding personal and global best 

particles for the entire swarm. 

Step 14: Repeat from step 4 above until preset convergence criteria: maximum 

 number of generations. The parameters of the gbest at the end of the run are 

 returned as the desired optimum discrete DG size and location. 

3.6 Small Population Particle Swarm Optimisation (SPPSO) 

The SPPSO is a classical PSO algorithm using a small population of particles few as 

five for a solution to an optimisation problem [91, 92]. This concept is synonymous to 
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the micro-genetic‎algorithm‎(μGA)‎ [93] and is now been adapted in PSO approaches. 

The algorithm is based on the concept of regeneration of new particles randomly, after a 

certain number of iterations count N to replace all but the gbest particle in the swarm. In 

the‎addition‎to‎keeping‎the‎gbest’s‎particle‎parameters,‎the‎population‎best attributes are 

also transitioning from one set of population to the next every N-iteration. In other 

words, the particles are regenerated after every N iterations retaining their previous 

global best (gbest) and personal best (Pbest) fitness values and positions.  

This concept of particle regeneration was aimed at  giving the particles the ability to 

keep carrying  out the search despite a small population. The regeneration concept is to 

also ensure that faster convergence is achieved as it would be with a large population of 

PSO. The selection of the value of N is crucial in the realizing an efficient SPPSO 

algorithm. If the value of N is low, the new particles may be regenerated too quickly and 

in turn disturb the search process. Thus the particles will move erratically in the search 

space. On the other hand, if the particles are regenerated at a higher value of N the 

search process will be delayed. Randomizing the positions and velocities of the particles 

every N iterations aid the particles in avoiding local minima and finding the global 

minimum. The regeneration concept drastically reduces the number of evaluations 

required to find the best solution and each evaluation is less computationally intensive 

compared to the classical PSO algorithm. The SPPSO algorithm implementation flow 

chart is shown in Figure 3.7. 
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Figure ‎3.7: SPPSO Algorithm flow chart 
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The procedural steps for implementing SPPSO is briefly summarised below; 

Step 1: If the current iteration number is equal to the set regeneration count number N, 

execute proceeding Step 2; else, jump out of this regeneration strategy and keep 

updating the position and velocity of particles.  

Step2: Discard the current particles except the gbest particle parameters and Pbest 

attributes and randomly generate new particles into the searching space.  

Step3: Update the position and velocity of particles if required. If better solution is 

found, the saved global and personal best position and fitness will be replaced. 

Otherwise, continue searching the solution space  

The SPPSO have been used in some power system applications that include optimal 

design of power system stabilizers [91, 92] and recently for short-term hydrothermal 

scheduling [94] and reconfiguration of shipboard power system [95]. The SPPSO 

algorithm results will be utilised to compare with that of the proposed MSPSO. 

3.7 Summary  

In this chapter, a basic overview of PSO and its variants are discussed. The problem of 

DG integration is considered as a mixed integer nonlinear problems, with the search 

space consisting of mixed-variables that are of integer, discrete and continuous in 

nature. The general formulation of the mixed integer nonlinear problems (MINLPs) is 

presented. The relationship between the MINLP and the control variables of the optimal 

DG problem is discussed. The mechanism for handling the mixed search space control 

variables associated with optimal DG problems are presented. Features of the proposed 

MSPSO: the multi-valued discrete PSO, dichotomy algorithm and few informants PSO 

implementations are discussed. A variant PSO called SPPSO that has been used in some 

power system applications is discussed. Its computational burden with application to the 

DG integration will be evaluated for the purpose of comparison with the MSPSO. 

It is this proposed multi-search particle swarm optimisation presented in this chapter 

with the power flow algorithms that evolved into the stochastic power system 

optimisation algorithm that forms the topic of this current research work. To 

demonstrate the significance of this current study, in the chapters that follow the 

applications of PSO-W and the proposed MSPSO to the power system in the area of DG 

(both synchronous and induction machine based) and shunt compensation capacitor 

integrations are presented. 
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CHAPTER 4  

 

Distributed Generation Sizing and Location for Power Loss 

Minimisation and Voltage Support in a Compensated Network 

Using PSO-W 

 

Efficient operation of transmission and distribution networks requires losses 

minimisation and the provision of network voltage support. Reactive power 

compensation is probably the most effective way to provide these services. Among 

various var compensators, shunt capacitors, are the most attractive because they are 

simple and inexpensive when compared to dynamic reactive power sources such as 

generators. The increasing penetration of distributed generation provides an opportunity 

for effective loss reduction and ancillary services such as network voltage support. 

 In this chapter, an optimisation technique based on particle swarm optimisation with 

inertia‎weight‎“PSO-W” is employed to optimally locate and size DG in a network that 

is initially compensated with shunt capacitors. The study considered both single and 

multi-objective problems at different operating power factors. The results obtained will 

be used as a benchmark to assess the improvement obtained with the proposed multi-

search PSO (MSPSO). 

4.1 Problem Formulation 

A major advantage of the connection of DG into a distribution network is the reduction 

in the total real power loss in the network since power is now being generated close to 

the point of consumption thus avoiding or reducing transmission losses.  

The first objective of the integration exercise is to minimise network power loss and 

improved the voltage profile. The objective of both real and reactive power loss 

minimisation is derived as follows; 

Considering a general electrical network with Nb nodes, the complex power injected at 

bus i is given by: 

k

N

k

ikii
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where Si is the complex power injected at node i, Vi & Vk are the voltages at nodes i and 

k, respectively, Yik is the admittance between nodes i and k and 
*
i

S , *

i
V are the complex 

conjugates of Si and Vi, respectively. The unknown variables are the nodal voltage 

magnitudes Vi and load angles i. 

Consider a line l with an admittance Yij connecting nodes i and j. The complex power 

injected into the line from node i is given by: 

  **

ioiijjiiiji

l

ji
YVYVVVIVS 


       (‎4.2) 

Similarly, the complex power injected from bus j is: 

  **
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       (‎4.3)  

The total line loss lS  is the sum of complex power injected over the entire line section 

given as: 


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)( SSS          (‎4.4) 

and the objective function (
obj

f ) to be optimized can be written as:  

Minimise  
L

P
l

)Re( S          (‎4.5)  

Mathematically, the objective is given as in Equation (4.6)  

Minimise      )(

1

l
ij

P

Ll

l
ji

P
L

k
k

Loss
L

P


 








     (‎4.6) 

where, L is the total number of branches, PL is the total real power loss in the network, 

Lossk is the power loss at branch k, l

ji
P


 is the active power flow injected into line l 

from the bus i and l

ij
P


is the active power flow injected into line l from bus j. Equation 

(4.6) is computed using MATPOWER AC power flow [96].  

A second major benefit of the connection of DG is the resulting improvement in 

network voltage profiles, obtained because the generator unit will normally inject 

controlled reactive power as well as real power into the network. The improvement in 

the voltage profile of the network can therefore be used in addition to the reduction in 

network losses when considering multi-objective optimisation problems. 

Additionally, by allowing the DG units to provide power at lower power factors, can 

support the voltage across the network and alleviate voltage problems at the end users. 
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Some practical power factors (PF) values usually used are 0.85, 0.9, 0.95 and unity [45]. 

Power factors of 0.85, 0.95 and unity are used in this study to demonstrate the effect of 

different power factor values on the ancillary of voltage support with the penetration 

DG.  

Even though, PSO is commonly used for single-objective optimisation studies, but its 

application can be extended to finding solution of multi-objective optimisation 

problems by applying weighted aggregate method [97]. The advantage of multi-

objective optimisation over single objective optimisation is that multi-objective 

optimisation can provide a set of promising trade-offs rather than a crisp solution in 

single objective. The selection of optimised design among the derived solutions can be 

effectively determined as per the planner's preference without losing generality [98]. 

The main strength of this aggregate method is its efficiency (Computationally speaking), 

and its suitability to generate a strongly non-dominated solution that can be used as an 

initial solution for other techniques. Its main weakness is the difficulty to determine the 

appropriate weights that can appropriately scale the objectives when there is no  enough 

information about the problem, particularly if it is consider that any optimal point 

obtained will be a function of such weights [97]. 

For the multi-objective optimisation problem, the objective function ( ) can then be 

written as: 
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       (‎4.7) 

The first part of Equation (4.7) describes the objective of power loss reduction while the 

second part represents the objective of voltage optimisation [99]. The values k1 and k2 

are weighting functions whose values must sum to unity. These weights are indicated to 

give the corresponding importance to each objective for the penetration of DG. 

However,‎ these‎values‎may‎vary‎ according‎ to‎engineer’s‎concerns [33]. For the study 

presented in this chapter, both objectives are given equal weighting (values of k1 = k2 = 

0.5 are used). Thus, different settings for k1 and k2 may result in a different results. Vn is 

the nominal voltage of the circuit, and the value of 1.0 pu is used [99].  

Equations (4.8), (4.9) and (4.10) show power, voltage and line current constraints, 

respectively. The Generator’s output reactive power limits [100] are given in (4.11).

  

obj
f
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where PGi is the real power generation at bus i and PDi is the real power demand at bus i. 

min
V , max

V  are the lower and upper bounds on the voltage magnitude at bus i. Iij (Sij) is 

the current (or apparent power) flow between buses i and j  and max

ij
I  ( Sij

max
) is the 

maximum allowable line current (apparent power) flow in branch ij. In practice real 

generator does not have unlimited capacity to supply reactive power and the constraint 

on generator must be respected. lw

it
Q

lim
, u

it
Q

lim
are the lower and upper limits of the 

reactive power output of the generator at bus i and 
generated

Q is the reactive power output 

of the generator at bus i.  

The minimum absolute value of the bus voltage deviation [99] is evaluated using (4.12).  

00.1max)( 
i

i

VxfMin          (‎4.12) 

This measures the deviation of the nodal voltages from the nominal value of 1pu, 

where, 
b

Ni ,...,2,1 and 
b

N  is the total number of buses in the network under 

consideration, 
i

V  is the bus voltage in pu and f(x) is the maximal deviation of the bus 

voltages in the system. The improvement in the voltage profile of the network is 

obtained by computing the Sum of Squared Error Voltage (SSEV) defined as:  

 
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b
N

i

i
VSSEV          (‎4.13) 

The SSEV as an index for the voltage profile enhancement is estimated for the network 

before and after the installation of the DG. The benefit of DG in terms of line power 

loss reduction is evaluated using the ‘per-unit line loss reduction’ (PULR) defined as the 

ratio of loss reduction (LR) to the line loss without DG (LLwoDG) and is given by 

Equation (4.14) [21]. The LR is the difference in the line loss reduction with and 

without DG. This presents the benefit of DG in a normalized form. Consequently, the 

percentage of line loss reduction is then given by Equation (4.15) [21]. 
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PULR           (‎4.14) 

100*% PULRLR           (‎4.15) 

MATPOWER allows for the representation of both PQ load bus and PV generator bus 

for power flow analysis. It solve AC power flow by assuming a balanced and transposed 

three phase system, it can be used for power flow analysis of distribution system when a 

balanced system is assumed. In [101] it was shown that a simplified balanced three 

phase system can be used for the determination of equipment sizing, location and their 

control parameters. By default, the AC power flow solvers in MATPOWER simply 

solve the power flow analysis problem by ignoring any generator limits, branch flow 

limits, voltage magnitude limits, etc. Notwithstanding, the generator reactive power 

limits can be respected on the expense of the voltage set point using, the available 

option provided by MATPOWER. 

In this study, MATPOWER AC power flow is used to analyse DG reactive power 

control capability under a balanced steady state condition, with the DG node model as a 

generator (PV) node. PSO-W Equations (4.6) – (4.9) is then employed to optimize DG 

and the location to minimise the network power losses and provide voltage support. DG 

achieved this by regulating the voltage at the node to which it is connected.  

4.2 The Test System- 69-bus Radial Distribution Network  

The test system is a 69-bus 12.66kV radial distribution network [102] and the one-line 

diagram is shown in Figure 4.1. The system is assumed to be operating under voltage 

limits of ±6% of nominal. The total network load is 3.802MW and 2.69Mvar. The 

network is compensated with four capacitor banks located on buses 15, 61, 63 and 65 

with ratings of 0.3Mvar each. The base case real, and reactive power loss in the system 

are obtained as 0.1531MW and 0.0713Mvar, respectively. The real and the reactive 

power loss for the same network without shunt var compensation are 0.2249MW and 

0.102Mvar respectively. A minimum voltage deviation of 0.073 is calculated at node 

64 for the network with a shunt capacitor while a minimum voltage deviation of -0.0908 

is calculated at node 65 for the network without shunt capacitor compensation.  The 

Network data are provided in appendix A Table A.1 and a system base MVA of 

10MVA is used for the study. 
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Figure ‎4.1: 69-bus radial distribution network [102]  

4.3 Loss Minimisation and Voltage Support Using Basic PSO-W; Single 

Objective Optimisation 

In this campaign, two network cases each with four scenarios are considered. Case I, is 

the network with shunt compensation capacitors already installed. Case II, is the same 

network, but without shunt compensation capacitors. The first scenario is for the base 

case network with no generation (network without DG), the second involved the 

integration of one generator of optimal size and location, the third involves the 

integration of a single generator of optimal size connected at the minimum voltage bus 

whereas the fourth involved the integration of two generators of optimal size and 

location. In each scenario different values of power factors (0.85, 0.95 and unity) are 

considered.  In all scenarios the reactive power output of the generator is restricted to a 

maximum value corresponding to a maximum operating lagging power factor (PF) 

considered. 

The PSO-W results were recorded after 10 independent runs of the algorithm using a 

swarm population of 20 particles and stop criteria of 50 iterations where the objective 

function value remains within a margin of 10
-9

 or a maximum number of 1000 

iterations. The social and the cognitive constants c1and c2 respectively, are set to equal 

with both being assigned a value of 1.47 [77]. The maximum and minimum inertia 
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weight is set to wmax=0.9 and wmin =0.4 respectively  [87]. The objective function is 

computed using Equation (4.6). 

4.3.1 Scenario I: base network with no generation 

Table 4.1 shows a summary of the results for the base network with no generation. Case 

I is the network with shunt compensation capacitors, while case II is the network 

without shunt compensation capacitors. The voltage profiles of the original test network 

are shown in Figure 4.2. Clearly, nodal voltages are an issue in both cases even under 

normal loading conditions and even with shunt capacitor compensation (Case I). 

Table ‎4.1: SUMMARY OF RESULTS; SCENARIO I WITH NO GENERATION (BASE NETWORK) 

Test 

Cases 

 Load 

(MW) 

 Load 

(Mvar) 

 MW Loss Maximum bus 

voltage (pu) 

Minimum bus 

voltage (pu) 

SSEV 

Index 

Case I 3.802 2.690 0.1531 1.0 0.927 0.0665 

Case II 3.802 2.690 0.2249 1.0 0.909 0.0993 

 

The mean voltage value and the standard deviation for Case I are 0.9781pu and 

0.02220, respectively. For case II, the mean voltage and the standard deviation values 

are 0.9734pu and 0.02724, respectively.  

Figure ‎4.2: Voltage profile of 69-bus radial distribution network Scenario I (no generation); Case I (with 

shunt compensation) and Case II (no compensation) 
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Not surprisingly, Case I shows a better voltage profile, better mean voltage with lower 

value of standard deviation and a better value of the SSEV index when compared with 

Case II, because the network for Case I already has shunt compensation capacitors 

installed.  

4.3.2 Scenario II: single generator  

PSO-W is employed in this scenario to obtain the optimum size/location of a single 

distributed generator integrated into the network. The results of the PSO-W 

optimisation process for this scenario (considering Cases I and II) are presented in Table 

4.2 for different values of generator operating PF. The resulting network voltage 

profiles are presented in Figure 4.3 (Case I) and Figure 4.4 (Case II). The required 

numbers of function evaluations averaged over 10 consecutive runs of the algorithm are 

presented in Table 4.3. 

The best loss reduction (computed using Equation 4.15) and enhanced voltage support 

for Case I is obtained with one optimally sized (1.8308MW) and located generator 

injecting 0.35Mvars at bus number 61 where a 0.3Mvar shunt capacitor is already 

installed. The generator is able to maintain a 1pu voltage at the node operating at a 

power factor greater than the minimum possible lagging PF of 0.85. The results 

obtained for operating with a minimum lagging power factor of 0.85 or 0.95 are the 

same in this case due to the fact that the network is already compensated and therefore, 

the generator needs to inject less reactive power than its maximum capability to 

maintain the bus voltage at 1pu.  

A 91.69% power loss reduction is achieved for Case I compared with the base case 

network, with a minimum voltage deviation of -0.0235 at bus number 27. An 89.82% 

power loss reduction is obtained with one optimally sized (1.8281MW) and located 

generator at bus number 61 for operating with a unity power factor (Case I). As 

expected, this power loss reduction is lower than that obtained for the generator 

operating with 0.85 PF or 0.95 PF. The voltage of the generator bus (0.9949 Pu) is less 

than 1pu as the generator is operating without injecting var to regulate its terminal 

voltage.   
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Table ‎4.2: DG SIZE AND LOCATION FOR SCENARIO II (SINGLE GENERATOR) 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

61 61 61 61 61 61 

DG output 

MW/Mvar  

1.8308/0.35 1.8308/0.35 1.8281/0.0 1.8909/1.17 2.048/0.67 1.8722/0.0 

Actual 

operating  PF 

0.98 0.98 1.0 0.85 0.95 1.0 

Max. Voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. Voltage 0.9765 pu 0.9765 pu 0.9753 pu 0.9725 pu 0.9718 pu 0.9683 pu 

Mean  (pu) 0.9927  0.9927  0.9916  0.9915 pu 0.9910 pu 0.9874 pu 

Std. Dev 0.008595 0.008595 0.008727 0.01008 0.01022 0.01151 

Total power 

loss [MW] 

0.0187 0.0187 0.0229 0.0238 0.0383 0.0831 

Percent loss 

reduction 

91.69% 91.69% 89.82% 89.41% 82.95% 63.03% 

SSEV index 0.00868 0.00868 0.01008 0.011849 0.01275 0.02001 

 

Table 4.2 also presents the results of the optimisation process when the shunt 

compensation capacitors are removed (Case II). The best loss reduction for Case II 

shows that the generator injects 1.8909 MW and 1.17Mvars at bus 61 giving an 89.41% 

power loss reduction. A minimum voltage deviation of -0.0275 is obtained at bus 

number 26. The voltage (0.9981pu) at the generator bus for operating with a minimum 

PF of 0.95 lagging deviates from 1pu as a result of the constraints placed on the 

generator’s‎ability‎to‎produce‎reactive‎power.‎When‎operating‎with‎a‎minimum lagging 

PF of 0.85, the generator is able to maintain a 1pu voltage at its optimal bus location. In 

both situations, it is evident that the generator needs to inject more reactive power to 

maintain a pre specified voltage of 1pu at the generator bus following the removal of the 

shunt capacitors. The percentage reductions in power losses are lower than the 

corresponding figure for Case I.  

The overall best reduction in power loss for this scenario (91.69% loss reduction) is 

obtained from Case I with the generator operating at a lagging operating power factor of 
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0.85 PF. The least power loss reduction (63% loss reduction) is found with Case II with 

the generator not injecting any reactive power into the network (unity PF operation).  

It is evident from the results presented above that percentage power loss reduction is 

dependent on the operating power factor of the DG. Lower values of operating lagging 

power factor produced better loss reduction figures.  

Figure ‎4.3: Voltage profile Scenario II (single generator); Case I (with shunt compensation) 

Figure ‎4.4: Voltage profile Scenario II (single generator); Case II (without shunt compensation) 
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Thus, allowing generators to provide reactive power locally can relieve the network of 

unnecessary reactive flow resulting in a drastic reduction in overall power loss. The 

resulting network voltage profiles are presented in Figures 4.3 and 4.4. It is evident that, 

the operation of the generator at lower lagging power factors also enhances the network 

voltage profile compared to unity PF operation, as a result of the injection of reactive 

power into the network.  

The improvement in the network voltage profile can be quantified by calculating the 

SSEV defined by equation (4.13) and the results verified by computing the mean 

voltage and standard deviation of the bus voltages. The best voltage profile with a 

calculated SSEV of 0.00868 is obtained for Case I. The removal of the compensation 

capacitors (Case II) results in higher values of SSEV at 0.011849 (best SSEV value 

computed at different power factors). These values are significantly better than the 

SSEV calculated for the base network (0.0665 and 0.0993 for Case I and Case II, 

respectively). 

The convergence of the objective function to the optimal solution is shown in Figures 

4.5 and 4.6. The best (smallest) value of the objective function is obtained with the 

generator operating at a minimum power factor of 0.85 lagging. In Figure 4.5 it is 

evident that the algorithm reaches the same final solution for the generator operation at 

minimum PF of 0.95 or 0.85 lagging. This is due to the facts that the network already 

has shunt compensation devices installed, indicating that the generator only needs to 

inject small quantities of vars to keep its bus voltage at 1pu. However, this is not the 

case when the shunt compensation capacitors were removed (Figure 4.6). The final 

obtained solutions are based on the quantity of reactive power the generator is allowed 

to contribute to support the bus voltage. In Table 4.2, a figure of 0.98 PF is calculated as 

the as the actual operating PF of the generator for both 0.85 and 0.95 minimum lagging 

PF. Thus, when the network is compensated, the actual operating power factor is higher 

than 0.95, hence it does not make any difference if the minimum possible is 0.95 or 

0.95. 

Table 4.3 shows that a substantial number of evaluations of the objective function are 

required to attain a final solution. The number of such iterations is found to increase 

with different values of minimum power factor, with unity power factor operation of the 

generator requiring the least number of iterations (because of the reduced search space). 
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Figure ‎4.5: Convergence characteristic of PSO-W (Scenario II case I) 

 

Figure ‎4.6: Convergence characteristic of PSO-W (Scenario II case II) 
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 PSO –W Case I PSO –W Case II 

Minimum power factor 0.85 0.95 0.85 0.95 0.85 0.95 

Average no. of steps 483.6 384.2 483.6 384.2 483.6 384.2 

No. of function evaluations per step 20 20 20 20 20 20 

No of function evaluations 9672 7684 9672 7684 9672 7684 
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4.3.3 Scenario III: single generator installed at the minimum voltage bus 

The results of the PSO-W optimisation process for this scenario are presented in Table 

4.4 for different values of minimum generator lagging PF. The improvement in network 

voltage profile is shown in Figures 4.7 and 4.8. When the generator is connected at bus 

number 64 (the minimum voltage bus for Case I), the best optimal size of the generator 

is calculated at 1.6053MW injecting an additional 0.28Mvar into the network. A drastic 

power loss reduction of 85.99% is achieved in this case (Case I, generator operating 

with a minimum lagging PF of 0.85) compared with the base network. A minimum 

voltage deviation of -0.0252 is obtained at bus number 27. The generator operates at a 

power factor greater than the minimum of 0.85 lagging, due the fact that the network is 

already compensated.  

Table ‎4.4: DG SIZE AND LOCATION FOR SCENARIO III (ONE GENERATOR INSTALLED AT 

THE MINIMUM VOLTAGE BUS) 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

64 64 64 65 65 65 

DG output 

MW/Mvar  

1.6053/0.28 1.6053/0.28 1.6151/0.0 1.4385/0.89 1.5974/0.53 1.4383/0.0 

Actual 

operating  PF 

0.99 0.99 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. voltage 0.9748 pu 0.9748 pu 0.9740 pu 0.9687 pu 0.9684 pu 0.9656 pu 

Mean (pu) 0.9912 0.9912 0.9904 0.9878 pu 0.9877 pu 0.9854 pu 

Std. Dev 0.009002 0.009002 0.009251 0.01148 0.01157 0.01367 

Total power 

loss [MW] 

0.0315 0.0315 0.0348 0.0622 0.0742 0.1120 

Percent loss 

reduction 

85.99% 85.99% 84.53% 72.34% 66.99% 50.19% 

SSEV index 0.010854 0.010854 0.01242 0.019188 0.019577 0.029807 

 

When the generator is connected at bus number 65 (the minimum voltage bus for Case 

II), the best optimal size of the generator is calculated at 1.4385MW injecting 0.89Mvar 
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into the network. The generator operates at its minimum of 0.85 PF to support its bus 

voltage at 1pu. A power loss reduction of 72.34% is achieved. A minimum voltage 

deviation of -0.0313 is obtained at bus number 27.  

Thus, the location of the generator at the minimum voltage node resulted in a smaller 

generator at the expense of a lower power loss reduction when compared to scenario II. 

Again, the optimisation process resulted in the same DG size and location for operation 

with a minimum lagging PF of 0.85 and 0.95.  

Figure ‎4.7: Voltage profile Scenario III (single generator at minimum voltage bus); Case I (with shunt 

compensation)  

 

Figure ‎4.8: Voltage profile Scenario III (single generator at minimum voltage bus); Case II (without shunt 

compensation) 
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This is because the network is already installed with shunt compensation capacitors so 

that the generator needs to inject less reactive power (than its maximum capability) to 

keep the bus voltage at 1pu. This is evident from the figures of the actual operating PF 

of the generator presented in Table 4.4. A figureof 0.99 PF is calculated for both 0.85 

and 0.95 minimum lagging PF. However, when the generator operates in an 

uncompensated network (Case II), the operating PF drops to the minimum possible 

lagging values of  0.85 and 0.95. Thus, resulting in the difference in the results obtained 

at the different minimum possible lagging PF.  

The overall best reduction in power loss for this scenario is obtained for Case I (85.99% 

loss reduction) when operating with a minimum lagging power factor of 0.85. The 

lowest power loss reduction is found with Case II (50.19% loss reduction) when the DG 

is not injecting any reactive power into the network (unity PF operation).  

The improvement in the network voltage profile can again be quantified by calculating 

the SSEV. The best voltage profile was obtained for Case I with a calculated SSEV of 

0.010854. The removal of the compensation capacitors (Case II) resulted in a higher 

best value of SSEV at 0.019188. Even though these SSEV values are higher than those 

obtained for scenario II, they are still significantly better than the SSEV calculated for 

the base network.  

Table 4.5 shows the number of evaluations of the objective function for the final 

attained optimal solutions. Similar to scenario II, the numbers of iterations are found to 

increase at lower values of minimum power factor, with the case of unity power factor 

operation of the generator requiring the least number of iterations. 

Table ‎4.5: ALGORITHM COMPUTATIONAL BURDEN: SCENARIO III 

 PSO –W Case I PSO –W Case II 

Minimum power factor  0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 522.2 342.8 291 522.2 278 250.4 

No. of function evaluations per step 20 20 20 20 20 20 

No. of function evaluations 6800 6856 5820 10444 5560 5008 
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4.3.4 Scenario IV: two generators  

This scenario involved finding the optimal location and size for two generators 

operating with different reactive power output capabilities (different minimum 

operating power factors), first in the presence of shunt compensation capacitors (Case I) 

and with shunt compensation capacitors removed (Case II).  

The results of the PSO-W optimisation process for this scenario are presented in Table 

4.6. The best loss reduction with enhanced voltage support is obtained with two 

optimally sized (1.7384MW and 0.5276MW) and located generators (Case I) injecting 

additional 0.34Mvars and 0.08Mvars at bus number 61 and 17, respectively.  

Table ‎4.6: DG SIZE AND LOCATION FOR SCENARIO IV (TWO GENERATORS) 

 Case I Case II 

Minimum 

possible  PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 1
 

17 61 61 61 61 17 

DG 1 output 

MW/Mvar  

0.5276/0.08 1.7384/0.34 1.7369/0.0 1.7928/1.11 1.9451/0.64 0.5311/0.0 

Actual  oper- 

rating PF 1 

0.99 0.98 1.0 0.85 0.95 1.0 

Optimal bus 2
 

61 17 17 17 17 61 

DG 2 output 

MW/Mvar  

1.7384/0.34 0.5276/0.08 0.5224/0.0 0.535/0. 33 0.5785/0.19 1.7811/0.0 

Actual oper-

ating PF 2 

0.98 0.99 1.0 0.85 0.95 1.0 

Max. Voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. Voltage 0.9943 pu 0.9943 pu 0.9929 pu 0.9943 pu 0.9934 pu 0.9789 pu 

Mean (Pu) 0.9983 pu 0.9983 pu 0.9968 pu 0.9982 pu 0.9975 pu 0.9928 pu 

Std. Dev 0.001675 0.001675 0.002303 0.001737 0.001973 0.006057 

Total power 

loss [MW] 

0.0076 0.0076 0.0120 0.0079 0.0234 0.0716 

Percent loss 

reduction 

96.62% 96.62% 94.66% 96.45% 89.58% 68.16% 

SSEV index 0.000383 0.000383 0.001051 0.000435 0.000691 0.006095 

 



Chapter 4: Integration of distributed generation in power network using PSO-W 

 

61 

 

A dramatic 96.62% power loss reduction is achieved compared with the base case 

network with a minimum voltage deviation of -0.0057 at bus number 50 and a 

computed SSEV value of 0.000383. The improvement in network voltage profile is 

shown in Figures 4.9.  

The results of the optimisation process when the compensating shunt capacitors are 

removed (Case II) are also presented in Table 4.4. The best results for this case shows 

the generators to inject 1.7928MW/1.11Mvars at bus number 61 and 

0.535MW/0.33Mvars at bus number 17, reducing power loss compared with the base 

network by 96.45%. A minimum voltage deviation of -0.0057 at bus number 50 is 

calculated with a computed SSEV value of 0.000435. Figure 4.10 shows the resulting 

network voltage profiles for this case. 

The voltages at the generator buses deviated from 1p.u (except for 0.85 PF operations) 

as a result of the constraints placed on their ability to produce reactive power. Following 

the removal of the shunt capacitors, it is evident that the generators need to inject more 

reactive power to maintain a voltage of 1p.u at the generator buses. The percentage 

reduction in power loss is lower than that for Case I.  

 

Figure ‎4.9: Voltage profile Scenario IV (two generators); Case I (with shunt compensation) 
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Figure ‎4.10: Voltage profile Scenario VI (two generators); Case II (without shunt compensation) 

Table 4.7 shows the number of evaluations of the objective function for the final 

attained optimal solutions. Similar to other scenarios, the number of iterations was 

found to increase at lower values of power factor (because of the wider search space), 

with the case of unity power factor operation of the generator requiring the least number 

of iterations. 

Table ‎4.7: ALGORITHM COMPUTATIONAL BURDEN; SCENARIO IV 

 PSO –W Case I PSO –W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 807.6 806.9 751.2 839.2 753.8 613.2 

No. of function evaluations per step 20 20 20 20 20 20 

No. of function evaluations 16152 16138 15024 16784 15076 12264 
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generators with the connection of the reactive power compensation capacitors (scenario 

IV, Case I). The best mean voltage values are presented in Figure 4.13. The best value 

of mean voltage (0.9983pu) and standard deviation (0.00167) is also obtained with 

scenario IV, Case I. Thus, the analysis shows that very good results can still be obtained 

with the generators alone (with the capacitors disconnected) as long as they are allowed 

to provide network var support.  

 

Figure ‎4.11: Real power loss reduction chart  

 

Figure ‎4.12: SSEV values 
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Figure ‎4.13: Best of mean voltage values 

4.4 Loss Minimisation and Voltage Support Using Basic PSO-W; Multi-

Objective Optimisation 

In this section, the optimisation analysis presented above in section 4.3 is repeated as a 

multi-objective optimisation exercise considering both the network power loss and the 

voltage profile in the cost function as expressed in Equation (4.7), all other network 

scenarios and algorithm parameters being the same.  

4.4.1 Scenario I: base network with no generation 

This is obviously the same study discussed in section 4.3.1. Results are repeated here in 

Table 4.8 and Figure 4.14 for convenience. 

Table ‎4.8: SUMMARY OF RESULTS; SCENARIO I WITH NO GENERATION (BASE CASE) 

Test 

Cases 

 Load 

(MW) 

 Load 

(Mvar) 

 MW Loss Maximum bus 

voltage (pu) 

Minimum bus 

voltage (pu) 

SSEV 

Index 

Case I 3.802 2.690 0.1531 1.0 0.927 0.0665 

Case II 3.802 2.690 0.2249 1.0 0.909 0.0993 
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Figure ‎4.14: Voltage profile of 69-bus radial distribution network; Scenario I (no generation)  

4.4.2 Scenario II: single generator; multi-objective optimisation  

The results of the PSO-W multi-objective optimisation process for this scenario are 

presented in Table 4.9. The network voltage profiles for case I and II are presented in 

Figures 4.10 and 4.11, respectively. The required number of function evaluations 

computed for 10 consecutive runs are presented in Table 4.10. 

The best loss reduction and enhanced voltage profile for Case I is obtained with one 

optimally sized (1.7977 MW) and located generator injecting 0.43Mvars at bus number 

61. The generator is able to maintain a 1pu voltage at the node operating at a power 

factor greater than the minimum 0.85 lagging. A 91.55% power loss reduction is 

achieved compared with the base case network, with a minimum voltage deviation of -

0.0235 at bus number 27 and a value SSEV of 0.008631.  

Table 4.9 also presents the results of the optimisation process when the compensating 

shunt capacitors are removed (case II). The best loss reduction for this case II is when 

the generator injects 1.8911 MW and 1.17Mvars at bus 61 producing an 89.41% power 

loss reduction. A minimum voltage deviation of -0.0275 is obtained at bus number 26 

with an SSEV value of 0.011849. 
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Table ‎4.9: DG SIZE AND LOCATION FOR SCENARIO II (ONE GENERATOR); MULTI 

OBJECTIVE OPTIMISATION 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

61 61 61 61 61 61 

DG output 

MW/Mvar  

1.7977/0.43 1.7977/0.43 2.1762/0.0 1.8911/1.17 2.0975/0.69 2.5681/0.0 

Actual  oper-

ating PF 

0.97 0.97 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0070 pu 1.0000 pu 1.0000pu 1.0050 pu 

Min. voltage 0.9765 pu 0.9765 pu 0.9773 pu 0.9725 pu 0.9721 pu 0.9723 pu 

Mean (pu) 0.9927 pu 0.9927 pu 0.9939 pu 0.9915 pu 0.9913 pu 0.9920 pu 

Std. Dev 0.008575 0.008575 0.009031 0.01008 0.01022 0.01066 

Total power 

loss [MW] 

0.019 0.019 0.027 0.0238 0.0384 0.0993 

Percent loss 

reduction 

91.55% 91.55% 87.99% 89.41% 82.91% 55.85% 

SSEV index 0.008631 0.008631 0.008109 0.011849 0.012283 0.012107 

 

The percentage reductions in power losses are lower than the corresponding figure for 

Case I due to the removal of shunt capacitors. Without the shunt compensation 

capacitors, the generator needs to inject more reactive power to maintain a pre specified 

voltage of 1pu at the generator bus. Again, the percent power loss reduction is 

dependent on the operating power factor of the DG with lower values of lagging power 

factor producing better loss reduction results. The lowest case of power loss reduction 

(55.85%) is obtained when DG is not injecting reactive power into the network (unity 

PF operation).  
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Figure ‎4.15: Voltage profile Scenario II (single generator); Case I (with shunt compensation), Multi 

Objective Optimisation 

 

Figure ‎4.16: Voltage profile Scenario II (single generator); Case II (without shunt compensation), Multi-

Objective Optimisation 

Comparing the results of the multi-objective optimisation presented in Table 4.9 and 

Figures 4.15 and 4.16 with those obtained for the single-objective study (Table 4.2, 

Figures 4.3 and 4.4) it is interesting to note that the two sets of results are very similar. 

The impact of including the voltage profile in the cost function to be optimized is only 

significant in the case of DG operation at unity power factor resulting in a better 

network voltage profile at the expense of a higher DG size and lower power loss 

reduction figure.  
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The convergence of the multi-objective cost function is shown in Figures 4.17 and 4.18 

for Case I and Case II, respectively. Table 4.10 shows the number of evaluations of the 

objective function required to attain a final optimal solution. The number of such 

iterations is again found to increase with lower values of DG operating power factors. 

These results are also evident from Figure 4.17 and 4.18.  

Figure ‎4.17: Convergence characteristic of PSO-W (Scenario II, Case I); Multi Objective Optimisation 

Figure ‎4.18: Convergence characteristic of PSO-W (Scenario II, Case II); Multi Objective Optimisation 
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Table ‎4.10: ALGORITHM COMPUTATIONAL BURDEN: SCENARIO II, MULTI OBJECTIVE 

OPTIMISATION 

 PSO –W Case I PSO –W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 327.2 338.4 334.4 512 539 320 

No. of function evaluations per step 20 20 20 20 20 20 

No. of function evaluations 6544 6768 6688 10240 10780 6400 

 

4.4.3 Scenario III: single generator connected at the minimum voltage bus; 

multi-objective optimisation 

The results of the PSO-W optimisation process for this scenario are presented in Table 

4.11. The corresponding improvement in network voltage profile is shown in Figures 

4.19 and 4.20. The minimum bus voltages are bus 64 for Case I and bus 65 for Case II. 

Surprisingly for Case I the best optimal size of the generator (with minimum objective) 

is calculated at 2.0352 MW injecting an additional 0.0 Mvar (unity PF) into the 

network. A power loss reduction of 81.55% is achieved compared with the base case 

network. A minimum voltage deviation of -0.0236 is obtained at bus number 27.  

The generator penetration level suddenly increased at the fixed location (bus 64) 

because the network is already compensated. As expected, this increased in the 

penetration level at the fixed location resulted in a lower power loss reduction 

(compared with 0.85 and 0.95 PF operation) but with an improved voltage profile 

(Figure 4.19) for the network. For Case II, the best optimal size of the generator (with 

minimum objective) is calculated at 1.4385MW injecting 0.89Mvar. The generator 

operates at the limit of its reactive power range, i.e. at a power factor of 0.85 lagging to 

keep its bus voltage at 1pu. A power loss reduction of 72.34% is achieved with a 

minimum voltage deviation of -0.0313 at bus number 27.  

The locating of the generator at the minimum voltage node results in a smaller generator 

at the expense of a lower power loss reduction when compared to Case I of this scenario 

and the scenario II.  
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Table ‎4.11: DG SIZE AND LOCATION FOR SCENARIO III (ONE GENERATOR AT MINIMUM 

VOLTAGE BUS); MULTI-OBJECTIVE OPTIMISATION 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

64 64 64 65 65 65 

DG output 

MW/Mvar  

1.5799/0.34 1.5797/0.34 2.0352/0.0 1.4385/0.89 1.6030/0.53 2.2897/0.0 

Actual oper-

ating PF 

0.98 0.98 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0190 pu 

Min. voltage 0.9748 pu 0.9748 pu 0.9764 pu 0.9687 pu 0.9684 pu 0.9703 pu 

Mean (pu) 0.9912 0.9912 pu 0.9932pu 0.9878 pu 0.9877 pu 0.9904 pu 

Std. Dev 0.008989 0.008991 0.009306 0.01148 0.01156 0.01128 

Total power 

loss [MW] 

0.0317 0.0317 0.0415 0.0622 0.0742 0.1437 

Percent loss 

reduction 

85.90% 85.90% 81.55% 72.34% 66.99% 36.11% 

SSEV index 0.010811 0.010816 0.009051 0.019188 0.019476 0.015006 

 

The best of voltage support with a calculated SSEV of 0.009051 is obtained for Case I 

(with unity PF operation). The removal of the capacitors (Case II) resulted in a higher 

value of SSEV at 0.015006 (unity PF operation) as the best of voltage support provided, 

but still significantly better than the SSEV calculated for the base case network (0.0665 

for Case I and 0.0993 for Case II).  

Thus, the best voltage profile for both Case I and II is achieved with unity power factor 

operation (Figures 4.19 and 4.20) when multi-objective is considered. However, this is 

at the expense of increased DG size and lower power loss reduction obtained as 81.55% 

and 36.11% respectively for Case I and  II.  The results also show that savings in the 

generator size at the expense of less power loss reduction are feasible if an optimal size 

generator is located at the bus with the minimum voltage. 

 



Chapter 4: Integration of distributed generation in power network using PSO-W 

 

71 

 

Figure ‎4.19: Voltage profile Scenario III (single generator connected at minimum voltage bus); Case I 

(with shunt compensation), Multi-objective optimisation 

Figure ‎4.20: Voltage profile Scenario III (single generator connected at minimum voltage bus); Case I 

(without shunt compensation), Multi-objective optimisation 

Table 4.12 shows the number of evaluations of the objective function for the final 

attained optimal solutions. These values are based on an average of 10 independent 

executions of the PSO-W algorithm.  
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Table ‎4.12: ALGORITHM COMPUTATIONAL BURDEN: SCENARIO III; MULTI- OBJECTIVE 

OPTIMISATION 

 PSO –W Case I PSO –W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 331.6 286.2 331.4 540.8 573.6 257.4 

No. of function evaluations per step 20 20 20 20 20 20 

No. of function evaluations 6632 5724 6268 10816 11472 5148 

 

4.4.4 Scenario IV: two generators, multi-objective optimisation 

The results of the PSO-W optimisation process for this scenario are presented in Table 

4.13. The best solution (with loss reduction and enhanced voltage support) is obtained 

with two optimally sized (1.7349MW and 0.5242 MW) and located generators (Case I) 

injecting additional 0.34Mvars and 0.09Mvars at bus number 61 and 17, respectively.  

A 96.62% power loss reduction is achieved compared with the base network with a 

minimum voltage deviation of -0.0057 at bus number 50. The improvement in network 

voltage profile is shown in Fig. 4.21. Interestingly, the bus voltages at the optimal bus 

locations is 1pu for unity power factor operation (Case I) despite the fact that there is no 

reactive power exchange between the generator and the network. This is obtained at the 

expense of increased DG capacity (compared with the single objective optimisation 

study) resulting in a slight decrease in the power loss reduction (94.09% compared with 

94.66%). 

When the shunt compensation capacitors are removed (Case II) the best result shows the 

generators injecting 1.7923MW/1.11Mvars at bus number 61 and 

0.5381MW/0.33Mvars at bus number 17, reducing power loss compared with the base 

network by 96.49%. A minimum voltage deviation of -0.0063 at bus number 50 is 

obtained. Figure 4.22 shows the resulting network voltage profiles.  
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Table ‎4.13: DG SIZE AND LOCATION FOR SCENARIO IV (TWO GENERATORS); MULTI-

OBJECTIVE OPTIMISATION 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 1
 

61 17 15 61 17 17 

DG 1 output 

MW/Mvar  

1.7349/0.34 0.5242/0.09 0.6511/0.0 1.7923/1.11 0.5966/0.2 0.7843/0.0 

Actual oper-

ating PF 1 

0.98 0.99 1.0 0.85 0.95 1.0 

Optimal bus 2
 

17 61 61 17 61 61 

DG 2 output 

MW/Mvar  

0.5242/0.09 1.7349/0.34 1.8685/0.0 0.5381/0. 33 1.9905/0.65 2.197/0.0 

Actual oper-

ating PF 2 

0.99 0.98 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0020 pu 1.0000 pu 1.0000pu 1.0020 pu 

Min. voltage 0.9943 pu 0.9943 pu 0.9943 pu 0.9943 pu 0.9941 pu 0.9942 pu 

Mean (pu) 0.9983 pu 0.9983 pu 0.9988 pu 0.9982 pu 0.9981 pu 0.9979 pu 

Std. Dev 0.001673 0.001673 0.001680 0.00173 0.001852 0.002164 

Total power 

loss [MW] 

0.0076 0.0076 0.0133 0.0079 0.0235 0.0808 

Percent loss 

reduction 

96.62% 96.62% 94.09% 96.49% 89.54% 64.09% 

SSEV index 0.000382 0.000382 0.000299 0.000424 0.000484 0.000627 
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Figure ‎4.21: Voltage profile Scenario IV (two generators); Case I (with shunt compensation), Multi-

Objective Optimisation 

Figure ‎4.22: Voltage profile Scenario IV (two generators); Case II (without shunt compensation), Multi-

Objective Optimisation 

For Case II, the generators operate at the limit of their reactive power range.  It is 

evident that the generators need to inject more reactive power to maintain a voltage of 

1pu at the generator buses following the removal of the shunt capacitors. As with all the 

multi-objective optimisation studies presented above, the percentage reduction in power 

loss is lower than that the corresponding single objective study but with a better voltage 

profile. When optimising for a number of objectives, the improvement in one always 

leads to a worsening of another. 
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Table 4.14 shows the number of evaluations of the objective function for the final 

attained optimal solutions.  

Table ‎4.14: ALGORITHM COMPUTATIONAL BURDEN; SCENARIO III, MULTI-OBJECTIVE 

OPTIMISATION 

 PSO –W Case I PSO –W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 628.2 738.6 673. 635.8 825.8 584.2 

No. of function evaluations per step 20 20 20 20 20 20 

No. of function evaluations 12564 14772 13460 12716 16516 11684 

 

Similar to the study presented in section 4.3, the best results are obtained when shunt 

capacitors are employed as compensation devices together with DG to provide reactive 

power support for the network. This allows the generator sizing and placement to be 

optimised for the best overall voltage support and loss reduction. The real power loss 

reduction chart for the best test cases for all the studied scenarios are shown in Figure 

4.23. The overall best of loss reduction from the chart also correspond with the best case 

of voltage support. This is obtained with scenario IV/Case I for the multi-objective 

optimisation.  

 

Figure ‎4.23: Real power loss reduction chart 

Figure 4.24 presents the best SSEV values for all the studied scenarios. The best of 

voltage support with a calculated SSEV value of 2.99010
4

 was obtained with two 

optimally size and located generators in a compensated network (scenario IV/Case I). 

The best of mean voltage values for all the scenarios are presented in Figure 4.25. Not 
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surprisingly, the best values of mean voltage (0.9983pu) and standard deviation 

(0.00167) are also obtained with scenario IV/Case I.  

 

Figure ‎4.24: SSEV values 

 

Figure ‎4.25: Best mean voltage values 
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4.5 Summary   

In this chapter, a PSO-W algorithm was used to optimize the integration of DG into a 

69-bus radial distribution network (with and without shunt capacitor compensation). 

The power loss within the circuit is minimised with the generator modelled as a PV 

node to inject reactive power into the generator node considering different minimum 

operating power factors (lagging). The improvement in network voltage profile is 

assessed by calculating the sum of the squares of the nodal voltage deviations from 1pu.  

Four different scenarios were considered: the first was the base network with no DG. 

The second was to find the optimal size/location of a single DG integrated into the 

network. The third was also with a single DG connected to the bus number with 

minimum voltage. The fourth scenario was to find the optimal sizes and locations of 

two DG connected to the network. In all scenarios, two cases were considered, Case I 

for operation with reactive power compensating capacitors (compensated network) and 

Case II with the compensation capacitors removed. 

The study was carried out in two phases. The first considered a single objective 

optimisation study where the sole objective is to minimise the network overall power 

loss. In the second phase, a multi-objective optimisation study was presented where the 

voltage profile of the network was considered as part of the optimisation cost function 

in addition to the network power loss.  

The best improvement in network loss reduction and voltage support was obtained with 

two generators integrated into the compensated network. Nevertheless, good results in 

terms of overall loss reduction and voltage profile improvement were also obtained with 

the compensation capacitors disconnected, as long as the generators were allowed to 

provide network var support. Savings in the generator size at the expense of less power 

loss reduction were shown to be feasible if an optimal size generator is located at the 

bus with the minimum voltage. The multi-objective study showed how an improvement 

in one of the objectives (improved voltage profile) resulted in a worsening of the other 

(power loss reduction).  

In the chapter that follows, the proposed Multi-Search Particle Swarm Optimisation 

(MSPSO) algorithm is demonstrated. The MSPSO is employed for the solution of 

optimal location and size of DG, using the same network scenarios to allow for direct 

comparisons. 
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CHAPTER 5  

 

Distributed Generation Sizing and Location for Power Loss 

Minimisation and Voltage Support in a Compensated Network 

Using Multi-Search PSO 

 

The values of the optimal DG sizes obtained from the simulation study of chapter 4 are 

continuous values that cannot be obtained in real practical applications. Typically, these 

will be rounded to the nearest standard sizes DG. In some of the reviewed literatures [42, 

44, 45], generator sizes with a fixed step value are used to partially fulfil the discrete 

constraint imposed by the actual size of DG units. For example, the values can be in 

multiples‎of‎100;‎(i.e.‎100,‎200,‎300…‎etc.),‎or‎multiples‎of 50; (i.e. 100, 150, 200, 250, 

300…‎etc.).‎The solutions thus attained will not be the best possible choices as some 

actual generator sizes will be left out of the search space. DG units are commercially 

available in discrete sizes with varying step sizes that are not fixed. This and the discrete 

integer nature of some of the parameters in the distribution network (i.e. busbar location 

numbers) make the DG optimisation problem a mixed search space problem requiring a 

multi-search optimisation algorithm.  

In order to address these issues, this chapter proposes a Multi-Search PSO (MSPSO) 

algorithm, especially suited for the solution of mixed-spaced DG sizing and location 

optimisation problems in a shunt compensated distribution network. The proposed 

algorithm treats the generator sizes as real discrete variables with uneven step sizes that 

reflect the sizes of commercially available generators. The proposed MSPSO algorithm 

can handle a multi-search space of integer (generator location); discrete (generator 

sizes) and continuous (reactive power output) variables while substantially reducing the 

search space and consequently the computational burden of the optimisation problem. 

The validity of the algorithm is tested on the standard 69-bus benchmark distribution 

network, and the results are compared with those obtained in chapter 4 using the 

standard PSO-W algorithm. The MSPSO algorithm is shown to be effective in finding 

the optimal or near-optimal solution to the problem at a fraction of the computational 

cost associated with other PSO algorithms (PSO-W and SPPSO) and is a reliable tool 

capable of solving complex multivariable nonlinear optimisation problems. 
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5.1 Applying the MSPSO algorithm for optimal DG Sizing and Location 

Problems  

In order to check the validity of the results of the MSPSO algorithm and allow 

comparisons with previously published works and the study in chapter 4, the algorithm 

is tested on the same standard benchmarking network (69-bus RDN), and the same 

network scenarios used in Chapter 4. The network data is re-presented and summarized 

in Table 5.1 for convenience. The network is compensated with shunt capacitors of 0.3 

Mvar each at the bus locations 15, 61, 63 and 65. The substation voltage is taken as 

1.0pu, and the voltage profile of the network is shown in Figure 5.1. 

The implementation flow chart and procedural steps of the MSPSO algorithm were 

presented in section 3.5.3. Now consider a solution vector X in D dimensional space Xi 

= (xi1, xi2,‎ ….‎ xiD). In general, for a three-dimensional single distributed generator 

placement problem, xi1, xi2, xi3 represent generator location, generator output power and 

injected vars, respectively. The integration of two generators will involve six 

dimensions in the candidate or the particle solution expressed as Xi = (xi1, xi2, xi3 xi4, xi5, 

xi6).‎Where‎the‎two‎generators’‎locations‎are‎defined‎by‎xi1, xi2, (integer variables), xi3, 

xi4 are the generators’‎sizes‎/output‎power‎(discrete‎variables)‎and‎xi5, xi6 are the reactive 

power outputs (vars) related to the two generators (continuous variables). The 

integration of one generator with one shunt capacitor, will involve five dimensions in 

the candidate, or the particle solution expressed as Xi = (xi1, xi2, xi3 xi4, xi5). The bus 

locations for the generator and capacitor are described by xi1, xi2 (integer variables), xi3is 

the generator output power (discrete variable), xi4 is the vars related to the generator 

(continuous variable) and xi5 is the vars for the shunt capacitor (discrete variable). 

The expressions in (3.9) - (3.11) are used to handle the integer nature of the DG bus 

number locations. The variable representing DG sizes/output power are initially treated 

as continuous variables using Equations (3.1) and (3.2) to update the corresponding 

position and velocity vectors. The dichotomy algorithm (Equations (3.12) – (3.15)) is 

then used to constrain the continuous variable (the active power output of the generator) 

into a discrete variable chosen from unevenly spaced entries in a pre-defined finite 

search list.  

The predefined finite search list represents practical, commercially available DG sizes 

in the range 0 MW-5 MW, with a size of zero corresponds to a network with no DG 

(see Appendix A, Table A.2 for a complete list of generator sizes considered in this 
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study). This ability of the MSPSO to search unevenly spaced discrete spaces avoids the 

loss of accuracy in the results of the optimisation process obtained by other methods 

and algorithms that consider evenly spaced discrete values, missing out on potential 

optimum or near optimum solutions. The mix of different variable types to form one 

single particle is possible because the PSO algorithm operates independently in each 

dimension.  

The implementation flowchart of the MSPSO algorithm was presented in section 3.5.3 

and is again repeated here for convenience (Figure 5.2).  

 

Figure ‎5.1: Multi-Search PSO (MSPSO) implementation flow chart 

MSPSO results are recorded after ten independent runs of the algorithm using a swarm 

population of 20 particles (with five informants) and a stopping criteria of 50 iterations 

where the objective function value remains within the margin of 10
-9

 or a maximum 

number of 1000 iterations.  The social and the cognitive constants c1and c2 are both 

assigned a value of 1.47 [77]. For the 69-bus network, values of M=70, α=0.4 , wmax=0.9 

and wmin =0.4 [87] are used. The MSPSO has one‎more‎parameter‎ (α:‎a‎ constant‎ that‎

controls the probabilities of generating discrete integer variables) to tune compared with 

the PSO-W. With the exclusion of this parameter, the other parameters setting used here 

are the same parameters setting used in chapter 4. 
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5.2 Loss Minimisation and Voltage Support Using MSPSO; Single Objective 

Optimisation 

In this section, the same scenarios studied previously in section 4.3 are investigated 

using the proposed MSPSO algorithm. 

5.2.1 Scenario I: base network with no generation 

The results of this base case network are in common with the results of Table 4.1 and 

Figure 4.2 of section 4.3.1 and are represented here for conveniences (Table 5.1 and 

Figure 5.2). 

Figure ‎5.2: Voltage profile of the 69-bus radial distribution network Scenario I (no generation); Case I 

(with shunt compensation) and Case II (no compensation) 

Table ‎5.1: SUMMARY OF RESULTS; SCENARIO I WITH NO GENERATION (BASE NETWORK)  

Test 

Cases 

 Load 

(MW) 

 Load 

(Mvar) 

 MW Loss Maximum bus 

voltage (pu) 

Minimum bus 

voltage (pu) 

SSEV 

Index 

Case I 3.802 2.690 0.1531 1.0 0.927 0.0665 

Case II 3.802 2.690 0.2249 1.0 0.909 0.0993 
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5.2.2 Scenario II: single generator  

The optimum size/location results for a single generator using the MSPSO algorithm are 

summarized in Table 5.2. The improvement obtained with the network voltage profiles 

are shown in Figures 5.3 and 5.4. The required number of function evaluations 

computed for ten independent runs of the MSPSO is shown in Table 5.3. 

The best loss reduction and enhanced voltage support for Case I is obtained with one 

optimally sized (1.84MW) and located generator injecting 0.33Mvars at bus number 61 

(generator operating with a minimum lagging power factor of 0.85) where a shunt 

capacitor of 0.3Mvar is already installed. The generator can maintain a fixed voltage of 

1pu at its bus location number 61, operating at a power factor greater than the minimum 

allowed 0.85 lagging. A 91.69% power loss reduction is achieved compared with the 

base case network, with a minimum voltage deviation of -0.0236 at bus number 27.  

Table ‎5.2: DG SIZE AND LOCATION FOR SCENARIO II (SINGLE GENERATOR) 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

61 61 61 61 61 61 

DG output 

MW/Mvar  

1.84/0.33 1.84/0.33 1.84/0.0 1.85/1.15 2.0/0.66 1.85/0.0 

Actual oper-

ating PF 

0.98 0.98 1.0 0.85 0.95 1.0 

Max. Voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. Voltage 0.9764 pu 0.9764 pu 0.9754 pu 0.9722 pu 0.9714 pu 0.9682 pu 

Mean (pu) 0.9927  0.9927  0.9916  0.9912 pu 0.9906 pu 0.9872 pu 

Std. Dev 0.008605 0.008605 0.008714 0.01008 0.01024 0.01161 

Total power 

loss [MW] 

0.0187 0.0187 0.0229 0.0238 0.0383 0.0831 

Percent loss 

reduction 

91.69% 91.69% 89.82% 89.35% 82.91% 63.02% 

SSEV index 0.008698 0.008698 0.009975 0.01007 0.013264 0.020427 

 

The results are similar to but slightly different from those obtained in section 4.3.2 

using the PSO-W algorithm where the best loss reduction and enhanced voltage support 
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in Case I is obtained with one optimally sized (1.8308MW) and located generator 

injecting 0.35Mvars at bus number 61 (generator operating with a minimum lagging 

power factor of 0.85). Both algorithms obtain the same optimal locations, however, the 

optimal DG size obtained with PSO-W is a continuous value that do not necessarily 

reflect the size of practical commercially available DG units in contrast to the MSPSO 

algorithm. However, similar to the PSO-W, the optimisation results obtained for 

operating with a minimum lagging power factor of 0.85 or 0.95 (in Case I) are also the 

same due to the fact that the network is already compensated and therefore, the 

generator needs to inject less reactive power than its maximum capability to maintain 

the bus voltage at 1pu. From Table 5.2, the calculated actual PF of the generator shows 

that the generator operates above 0.95 lagging hence it does not make any difference 

whether the minimum PF is 0.85 or 0.95 the results will be identical in both cases. 

Table 5.2 also presents the results of the MSPSO optimisation process when the shunt 

capacitors are removed (Case II). In this case as expected, the operating PF of the 

generator drop to the minimum lagging value of 0.85 PF or 0.95 PF. Hence the results 

with 0.85 minmum PF and 0.95 minmum PF are different (as shown in Table 5.2). The 

best loss reduction for Case II shows that the generator injects 1.85MW and 1.15Mvars 

at bus 61 giving an 89.35% power loss reduction compared with the base case network. 

A minimum voltage deviation of -0.0278 is obtained at bus number 26. The voltages at 

the generator bus deviated from 1pu as a result of the constraint placed on the 

generator’s‎ ability‎ to‎ produce‎ reactive‎ power.‎ The‎ lowest‎ power‎ loss‎ reduction‎

(63.02%) is found with Case II, when the generator is not injecting reactive power into 

the network (unity PF operation).  

The corresponding results obtained with PSO-W (section 4.3.2) show that, the best loss 

reduction and enhanced voltage support for Case II is also achieved with one optimally 

sized (1.8909MW) and located generator injecting 1.17Mvars at bus number 61 

(generator operating with a minimum lagging power factor of 0.85). An 89.41% power 

loss reduction was achieved compared with the base case network. Both algorithms 

obtained the same optimal locations, but the optimal DG sizes and the computed percent 

loss reductions differ slightly.  

The PSO-W shows a higher percentage real power loss reduction (89.41%). However, 

since the optimal DG size obtained with PSO-W is a continuous value that does not 

reflect the size of commercially available DG units; this percentage reduction is not 

realistic and the rounding up process to the next available generator size will naturally 
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affect the accuracy of the results obtained by the PSO-W algorithm. Thus, the PSO-W 

algorithm solutions can sometimes result in the overestimation of the percent power loss 

reduction in the network. 

 

Figure ‎5.3: Voltage profile Scenario II (single generator); Case I (with shunt compensation) 

Figure ‎5.4: Voltage profile Scenario II (single generator); Case II (without shunt compensation) 

The improvement in the network voltage profile quantified by the SSEV shows that the 

best voltage support is obtained from Case I, with a calculated SSEV of 0.008698. The 

removal of the capacitors (Case II) resulted in a higher value of SSEV at 0.01007. 

Again, these are slightly different from the corresponding SSEV values presented in 

section 4.3.2. 
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The MSPSO convergence to the optimal solution is as shown in Figures 5.5 and 5.6. 

The best (smallest) objective function is obtained with the generator operating at a 

minimum power factor of 0.85 lagging (Figures 5.5 and 5.6). Tables 5.3 and 5.4  show 

that fewer numbers of evaluations of the objective function are required to attain a final 

solution with MSPSO compared with the PSO-W algorithm. The results are based on 

average values with ten independent runs of the algorithms. From both Tables, it is 

evident that the MSPSO algorithm has the advantage of fewer function evaluations 

compared with the PSO-W algorithm.  

 

Figure ‎5.5: Convergence characteristic of MSPSO (Scenario II Case I) 

 

Figure ‎5.6: Convergence characteristic of MSPSO (Scenario II Case II)  
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The required number of function evaluations for the smallest objective cost function (at 

minimum PF of 0.85 lagging) is reduced by 95.34% and 94.76% for Case I and Case II, 

respectively, compared with the PSO-W algorithm. The discrete nature of the search 

space means quicker solution with fewer iterations due to the reduced size of the search 

space without loss of accuracy in the obtained solution.  

 

Table ‎5.3: COMPARISION OF ALGORITHMS COMPUTATIONAL BURDEN; SCENARIO II, CASE 

I (SINGLE GENERATOR)  

 MSPSO Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 90.2 117.2 102.4 483.6 384.2 327.8 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 451 586 512 9672 7684 6556 

 

Table ‎5.4: COMPARISION OF ALGORITHMS COMPUTATIONAL BURDEN; SCENARIO II, CASE 

II (SINGLE GENERATOR) 

 MSPSO Case II PSO-W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 104 144.2 113.2 496 329.6 283.8 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 520 721 566 9920 6592 5676 

 

5.2.3 Scenario III: single generator installed at the minimum voltage bus 

The results of the MSPSO optimisation process for this scenario are summarized in 

Table 5.5. The improved network voltage profiles shown in Figures 5.7 and 5.8. When 

the generator is connected with bus number 64 (the minimum voltage bus for Case I), 

the best optimal size of the generator is calculated at 1.6MW injecting an additional 

0.29Mvar into the network. A power loss reduction of 85.99% is achieved compared 

with the base network.  

The corresponding results using PSO-W (section 4.3.3) show that the best loss 

reduction and enhanced voltage support is obtained with one optimally sized 

(1.6053MW) and located generator injecting 0.28Mvars at bus number 64.When the 

generator is connected at bus number 65 (the minimum voltage bus for Case II), the best 

optimal size of the generator is calculated at 1.42MW injecting 0.88Mvar into the 
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network. A power loss reduction of 72.28% compared to the base network is achieved. 

The best of voltage support with a calculated SSEV of 0.010846 is obtained for Case I. 

The removal of the capacitors (Case II) resulted in higher SSEV values.  

Table ‎5.5: DG SIZE AND LOCATION FOR SCENARIO III (ONE GENERATOR INSTALLED AT 

THE MINIMUM VOLTAGE BUS) 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

64 64 64 65 65 65 

DG output 

MW/Mvar  

1.60/0.29 1.60/0.29 1.60/0.0 1.42/0.88 1.60/0.53 1.42/0.0 

Actual oper-

ating PF 

0.98 0.98 1.0 0.85 0.95 1.0 

Max. Voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. Voltage 0.9748 pu 0.9748 pu 0.9739 pu 0.9685 pu 0.9684 pu 0.9652pu 

Mean  0.9912 pu 0.9912 pu 0.9902 pu 0.9877 pu 0.9877 pu 0.9845 pu 

Std. Dev 0.009000 0.009000 0.009284 0.01157 0.01157 0.01379 

Total power 

loss [MW] 

0.0315 0.0315 0.0348 0.0623 0.0742 0.1120 

Percent loss 

reduction 

85.99% 85.99% 84.53% 72.29% 66.99% 50.18% 

SSEV index 0.010846 0.010846 0.012429 0.019604 0.019542 0.029584 
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Figure ‎5.7: Voltage profile Scenario III (single generator at minimum voltage bus); Case I (with shunt 

compensation) 

 

 

Figure ‎5.8: Voltage profile Scenario III (single generator at minimum voltage bus); Case II (without shunt 

compensation) 

The results of a similar scenario in section 4.3.3 with PSO-W show that, the best loss 

reduction and enhanced voltage support for Case II is obtained with one optimally sized 

(1.4385MW) and located generator injecting 0.89Mvars at bus number 65. The 

optimum generator size and SSEV values obtained with both algorithms differ very 

slightly. 

Tables 5.6 and 5.7 show that fewer numbers of evaluations of the objective function are 

required to attain a final solution with MSPSO compared with the PSO-W algorithm. 
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The results are again based on the average values after ten independent runs of the 

algorithms. The best optimal solution is obtained with an average value of 295 

evaluations of the objective function in Case I. While an average value of 307 

evaluations of the objective function is required for the best optimal solution in Case II. 

The corresponding PSO-W results presented in section 4.3.3 and repeated here in 

Tables 5.6 and 5.7 for comparison purposes show that the best optimal solution is 

obtained with an average value of 6800 evaluations of the objective function in Case I 

and 10444 evaluations in Case II. This represents a reduction of 95.66% (Case I) and 

97.06% (Case II) in the required numbers of function evaluations compared with the 

PSO-W algorithm. 

Table ‎5.6: COMPARISION OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO III, 

CASE I (SINGLE GENERATOR AT MINIMUM VOLTAGE BUS) 

 MSPSO  Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 59 56.2 55.5 522.2 342.8 291 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 295 281 276 6800 6856 5820 

 

Table ‎5.7: COMPARISION OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO III, 

CASE II (SINGLE GENERATOR AT MINIMUM VOLTAGE BUS) 

 MSPSO Case II PSO-W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 61.4 54.2 52.8 522.2 278 250.4 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 307 271 264 10444 5560 5008 

 

5.2.4 Scenario IV: two generators  

This scenario involved finding the optimal location and size for two generators 

operating with different reactive power output capabilities, first in the presence of shunt 

compensation capacitors (Case I) and with the shunt compensation capacitors removed 

(Case II).  

The results of the MSPSO optimisation process for this scenario are presented in Table 

5.8. The improvement in network voltage profile is shown in Figures 4.9 and 4.10 for 
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Case I and Case II, respectively. The best loss reduction is obtained with two optimally 

sized (1.75MW and 0.53MW) generators (Case I) injecting additional 0.31Mvars and 

0.08Mvars located at bus number 61 and bus number 17, respectively. A 96.62% power 

loss reduction is achieved compared with the base case network. 

The results presented in section 4.3.2 with PSO-W show that, the best solution was 

obtained with 1.7384MW injecting 0.34Mvar at bus 61 and 0.5276MW injecting 

0.08Mvar at bus 17 for Case I. A 96.62% power loss reduction compared with the base 

case network was also achieved.  

Table ‎5.8: DG SIZE AND LOCATION FOR SCENARIO IV (TWO GENERATORS) 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 1
 

61 61 61 61 61 61 

DG 1 output 

MW/Mvar  

1.75/0.31 1.75/0.31 1.75/0.0 1.8/1.11 1.9/0.64 1.8/0.0 

Actual oper-

ating PF 1 

0.99 0.99 1.0 0.85 0.85 1.0 

Optimal bus 2
 

17 17 17 17 17 17 

DG 2 output 

MW/Mvar  

0.53/0.08 0.536/0.08 0.52/0.0 0.5/0. 31 0.576/0.19 0.536/0.0 

Actual oper-

ating  PF 2 

0.99 0.99 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0000 pu 1.0000 pu 1.0000pu 1.0000 pu 

Min. voltage 0.9943 pu 0.9943 pu 0.9929 pu 0.9930 pu 0.9943 pu 0.9930 pu 

Mean (pu) 0.9983 pu 0.9983 pu 0.9968 pu 0.9969pu 0.9983 pu 0.9969 pu 

Std. Dev 0.001684 0.001679 0.002303 0.002238 0.001679 0.002238 

Total power 

loss [MW] 

0.0076 0.0076 0.0120 0.0080 0.0235 0.0716 

Percent loss 

reduction 

96.62% 96.62% 94.66% 96.45% 89.55% 68.15% 

SSEV index 0.000387 0.000387 0.001001 0.000589 0.000895 0.00576 
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The results for both algorithms are not an exact match, but produced the same percent 

power loss reduction. This is because the optimal continuous value generator size 

obtained with PSO-W is very close to the available realistic generator size. 

The results of the optimisation process when the compensating shunt capacitors are 

removed (Case II) are also presented in Table 5.8. The best results for this case show the 

generators to inject 1.80MW/1.11Mvars at bus number 61 and 0.5MW/0.31Mvars at 

bus number 17, reducing power loss compared with the base network by 96.45%. The 

best of voltage support with a calculated SSEV of 0.000387 is obtained by Case I. 

Figure ‎5.9: Voltage profile Scenario IV (two generators); Case I (with shunt compensation) 

 

Figure ‎5.10: Voltage profile Scenario VI (two generators); Case II (without shunt compensation) 
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The removal of the capacitors (Case II) resulted in higher values of SSEV. The results 

obtained with PSO-W (section 4.3.4) for Case II show that the best optimal pair of 

generators was obtained as 1.7928MW injecting 1.11Mvar at bus 61 and 0.535MW 

injecting 0.33Mvar at bus 17. A 96.45% power loss reduction compared with the base 

case network was again achieved. Similar to Case I results of both algorithms produced 

the same percent power loss reduction.    

Tables 5.9 and 5.10 shows the numbers of evaluations of the objective function for the 

final attained optimal solutions with both algorithms. The results are also based on the 

average values after ten independent executions of the algorithms. It is evident from the 

Tables 5.9 and 5.10 that the MSPSO algorithm is faster with a smaller computational 

burden compared with PSO-W algorithm. The required number of function evaluations 

for the smallest objective cost function (at minimum PF of 0.85 lagging) is reduced by 

95.46% and 96.35%, respectively, for Case I and Case II compared with the PSO-W 

algorithm for this scenario. 

Table ‎5.9: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO IV, CASE 

I (TWO GENERATORS) 

 MSPSO Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 146.8 118.8 108 807.6 806.9 751.2 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 734 594 540 16152 16138 15024 

 

Table ‎5.10: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO IV, 

CASE II (TWO GENERATORS) 

 MSPSO Case II PSO-W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 122.4 100.6 138 839.2 753.8 613.2 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 612 503 690 16784 15076 12264 

 

In conclusion, the best results are obtained when shunt capacitors are employed as 

compensation devices with DG to provide reactive power support for the network. 

Increasing the penetration level of DG and permitting voltage regulation at its bus 
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location resulted in the significant improvements in both loss reduction and voltage 

profile in contrast to a single DG deployment.  

The real power loss reduction chart for the best test cases for all the studied scenarios 

and cases are shown Figure 5.11. Similar to the investigation in section 4.3, the best loss 

reduction is obtained with scenario IV/Case I  i.e. when two generators are allowed to 

operate in a compensated network. Figure 5.12 presents the best of SSEV values for all 

the studied scenarios. Again the best voltage support with a calculated SSEV of 

3.87010
4

 was obtained with two optimally size and located generators with the 

connection of the reactive power compensation capacitors (scenario IV, Case I).  

 

Figure ‎5.11: Real power loss reduction chart; MSPSO results 

 

Figure ‎5.12: SSEV values; MSPSO results 
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Figure ‎5.13: Best of mean voltage values; MSPSO results 

The best value of the mean voltage (0.9983pu) and the voltage standard deviation 

(0.00168) are also obtained with scenario IV, Case I (Figure 5.13).  

Finally, a summary of comparison of the best of optimal DG size and location results 

using PSO-W and the MSPSO are presented in Tables 5.11 and 5.12. It is evident that 

both algorithms obtained the same optimal locations with small variations in the optimal 

generator sizes. The optimal DG sizes obtained with PSO-W are continuous values that 

may not reflect the size of practical commercially available DG units. The MSPSO 

algorithm, on the other hand, uses a pre-defined list of commercially available generator 

sizes (see appendix A, Table A.2) to define the discrete DG size variable. Thus, its 

results reflect the practical commercial available DG units. The computed percent loss 

reductions are found to be practically the same, especially when the continuous optimal 

DG value obtained with PSO-W is not far from the available realistic generator size. 

The MSPSO algorithm has the advantage of the lower computational burden due to 

fewer function evaluations compared with the PSO-W. This accomplishd with the use 

of fewer particles in the computation of the cost function. 

The summary of the MSPSO algorithm computational burden evaluated and compared 

with the PSO-W algorithm from Tables 5.11 and 5.12 clearly show the advantage of the 

former. In case I, the required number of function evaluations is reduced by 95.34%, 

95.66%, and 95.46% for scenarios II, III and IV, respectively, compared with the PSO-

W algorithm.  

 

0.88 

0.9 

0.92 

0.94 

0.96 

0.98 

1 

1.02 

 I  II  III IV 

M
ea

n
 v

o
lt

ag
e 

(p
u
) 

Scenarios 

Case I Case II 



Chapter 5: Integraton of distributed generation in power network using MSPSO 

 

95 

 

Table ‎5.11: SINGLE OBJECTIVE; COMPARISON OF PSO-W AND MSPSO OPTIMAL DG SIZE 

AND LOCATION RESULTS (CASE I)  

 Optimal bus 

location(s) 

Optimum DG 

size (s) 

(MW/Mvar) 

Power loss 

reduction 

(%) 

SSEV No. of 

function 

evaluations 

 

 

PSO-W 

 

 

Scenarios 

I - - - 0.0665 - 

II 61 1.8308/0.35 91.69 0.00868 9672 

III 64 1.6053/0.28 85.99 0.010854 6800 

IV 61/17 1.7384/0.34; 

0.5276/0.08 

96.62 0.000383 16152 

 

 

MSPSO 

 

Scenarios 

I - - - 0.0665 - 

II 61 1.84/0.33 91.69 0.008698 586 

III 64 1.6/0.29 85.99 0.010846 307 

IV 61/17 1.75/0.31; 

0.53/0.08 

96.62 0.000387 734 

 

Table ‎5.12: SINGLE OBJECTIVE; COMPARISON OF PSO-W AND MSPSO OPTIMAL DG SIZE 

AND LOCATION RESULTS (CASE II)  

 Optimal bus 

location(s) 

Optimum DG 

size (s) 

(MW/Mvar) 

Power loss 

reduction 

(%) 

SSEV No. of 

function 

evaluations 

 

 

PSO-W 

 

 

Scenarios 

I - - - 0.0993 - 

II 61 1.8909/1.17 89.41 0.011849 9920 

III 65 1.4385/0.0.89 72.34 0.019188 10444 

IV 61/17 1.7928/1.11; 

0.535/0.33 

96.49 0.000435 16784 

 

 

MSPSO 

 

 

Scenarios 

I - - - 0.0993 - 

II 61 1.85/1.15 89.35 0.01007 520 

III 65 1.42/0.88 72.29 0.019542 295 

IV 61/17 1.80/1.11; 

0.50/0.31 

96.45 0.000576 612 

 

In case II, the required number of function evaluations is reduced by 94.76%, 97.06%, 

and 96.35% for scenarios II, III and IV respectively, compared with the PSO-W 

algorithm. 
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5.3 Loss Minimisation and Voltage Support Using MSPSO; Multi-Objective 

Optimisation 

In this section, the optimisation analysis presented above is repeated as a multi-

objective optimisation exercise considering both the network power loss and the voltage 

profile in the cost function as expressed in Equation (4.7). All other network scenarios 

and algorithm parameters being the same as in section 5.2. The weighting factors k1 and 

k2 in (4.7) are set equal to 0.5 each. With‎the‎exclusion‎of‎the‎constant‎parameter‎α,‎the‎

other parameters setting is the same as parameters setting used for the multi-objective 

optimization in section 4.4. 

5.3.1 Scenario I: base network with no generation 

This scenario is obviously the same study discussed in section 5.2.1. Results were 

presented in Table 5.1 and Figure 5.2. 

5.3.2 Scenario II: single generator; multi-objective optimisation  

The results of the MSPSO multi-objective optimisation process for this scenario are 

presented in Table 5.13. The network voltage profile for Case I and Case II are shown in 

Figures 5.14 and 5.15, respectively. The required number of function evaluations 

computed after ten independent runs with both algorithms are presented in Tables 5.14 

and 5.15. 

The best minimum Multi-Objective cost Function (MOF) for Case I is obtained with 

one optimally sized (1.8 MW) and located generator injecting 0.43Mvars at bus number 

61 at 0.85 minimum lagging operating PF. A 91.60% power loss reduction is achieved 

compared with the base network, and a SSEV index of 0.008635 is computed. The 

corresponding study in section 4.4.2 with PSO-W, showed that the best minimum 

objective was obtained with one 1.7977 MW optimally sized and located generator 

injecting 0.43Mvars at bus number 61, also operating with a minimum PF of 0.85 

lagging. A 91.55% power loss reduction was achieved compared with the base case 

network and a SSEV index of 0.008631was computed. 

Thus, both algorithms obtained the same optimal location with variation in the optimal 

generator size. The power loss reduction with MSPSO is slightly better than that 

obtained with PSO-W but at the expense of the lower value of SSEV when compared 

with PSO-W. 
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Table ‎5.13: DG SIZE AND LOCATION FOR SCENARIO II (ONE GENERATOR); MULTI 

OBJECTIVE OPTIMISATION 

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

61 61 61 61 61 61 

DG output 

MW/Mvar  

1.8/0.43 1.8/0.43 2.2/0.0 1.9/1.15 2.1/0.68 2.6/0.0 

Actual oper-

ating  PF 

0.97 0.97 1.0 0.85 0.95 1.0 

Max. Voltage 1.0000 pu 1.0000 pu 1.0070 pu 1.0000 pu 1.0000pu 1.0060 pu 

Min. Voltage 0.9765 pu 0.9765 pu 0.9775 pu 0.9725 pu 0.9721 pu 0.9725 pu 

Mean (pu) 0.9927 pu 0.9927 pu 0.9941 pu 0.9915 pu 0.9913 pu 0.9922 pu 

Std. Dev 0.008578 0.008578 0.009095 0.01008 0.01023 0.01072 

Total power 

loss [MW] 

0.0189 0.0189 0.0275 0.0241 0.0387 0.1008 

Percent loss 

reduction 

91.60% 91.60% 87.77% 89.30% 82.78% 55.19% 

SSEV index 0.008635 0.008635 0.008053 0.011867 0.01229 0.011971 

 

The results of the MSPSO optimisation process when the shunt compensation capacitors 

are removed (Case II), show that the best minimum MOF value is obtained with one 

optimally size and located generator (1.9MW) injecting 1.15Mvars at bus number 61. 

The power loss was reduced by 89.30% compared with the base network with a 

computed SSEV of 0.011867. The corresponding Case II PSO-W results (section 4.4.2) 

show that the best minimum MOF value was obtained with one optimally size generator 

of 1.8911MW injecting 1.17Mvar at bus 61. An 89.41% power loss reduction compared 

with the base case network was achieved with an SSEV of 0.011849. Both algorithms 

achieved same optimal location, but with small differences in optimal generator size, 

percentage power loss reduction and SSEV value.  
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Figure ‎5.14: Voltage profile Scenario II (single generator); Case I (with shunt compensation), Multi-

Objective Optimisation 

Figure ‎5.15: Voltage profile Scenario II (single generator); Case II (without shunt compensation), Multi-

Objective Optimisation 

The convergence of the multi-objective cost function is shown in Figures 5.16 and 5.17 

for Case I and Case II, respectively. A comparison with the convergence characteristics 

of the PSO-W algorithm for the same exercise (section 4.42, Figures 4.17 and 4.18) 

shows the MSPSO algorithm is quicker and requires much less iteration to attain the 

optimal solution.Table 5.14 shows the numbers of evaluations of the objective function 

required to attain a final optimal solution for both MSPSO and PSO-W. The required 

number of function evaluations for the best MSPSO result is reduced by 92.92% and 

95.41%, respectively, for Case I and Case II when compared with PSO-W algorithm.  
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Figure ‎5.16: Convergence characteristic of MSPSO (Scenario II, Case I); Multi-Objective Optimisation  

Figure ‎5.17: Convergence characteristic of MSPSO (Scenario II case II) with Multi-Objective 

Optimisation  

Table ‎5.14:COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO II, CASE 

I (ONE GENERATOR); MULTI OBJECTIVE OPTIMISATION  

 MSPSO Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 92.6 92.8 128 327.2 338.4 334.4 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 463 464 640 6544 6768 6688 
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Table ‎5.15:COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO II, CASE 

II (ONE GENERATOR); MULTI OBJECTIVE OPTIMISATION  

 MSPSO Case II PSO-W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 94 86 97.6 512 539 320 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 470 430 488 10240 10780 6400 

 

5.3.3 Scenario III: single generator connected at the minimum voltage bus; 

multi-objective optimisation  

The results of the MSPSO optimisation process for this scenario are presented in Table 

5.16. The corresponding improvement in network voltage profile is shown in Figures 

5.18 and 5.19. The minimum bus voltages are bus 64 for Case I and bus 65 for Case II.  

Table ‎5.16: DG SIZE AND LOCATION FOR SCENARIO III (ONE GENERATOR AT MINIMUM 

VOLTAGE BUS); MULTI-OBJECTIVE OPTIMISATION 

 Case I Case II 

Minimum  

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 
 

64 64 64 65 65 65 

DG output 

MW/Mvar  

1.6/0.29 1.6/0.29 2/0.0 1.50/0.75 1.60/0.53 2.3/0.0 

Actual 

operating PF 

0.98 0.98 1.0 0.89 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0110 pu 1.0000 pu 1.0000pu 1.0190 pu 

Min. voltage 0.9748 pu 0.9748 pu 0.9764 pu 0.9686 pu 0.9684 pu 0.9704 pu 

Mean (pu) 0.9912 0.9912 0.9930pu 0.9878 pu 0.9877 pu 0.9905 pu 

Std. Dev 0.0090 0.0090 0.009229 0.01150 0.01157 0.01129 

Total power 

loss [MW] 

0.0315 0.0315 0.0404 0.0649 0.0742 0.1444 

Percent loss 

reduction 

85.99% 85.99% 82.04% 71.13% 66.99% 35.77% 

SSEV index 0.010846 0.010846 0.009178 0.019273 0.019542 0.014927 
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For Case I the best MOF (i.e. Minimum objective function value) is obtained with one 

optimally size generator calculated at 2.0 MW injecting an additional 0.0 Mvar into the 

network. A power loss reduction of 82.04% is achieved compared with the base case 

network and a SSEV 0.009178 is computed. The results of the optimisation process 

when the compensating shunt capacitors are removed (Case II) show that the best 

minimum MOF value is obtained with one optimally size generator (1.5MW) injecting 

0.75Mvars. 

 

Figure ‎5.18: Voltage profile Scenario III (single generator connected at minimum voltage bus); Case I 

(with shunt compensation), Multi-objective optimisation

 

Figure ‎5.19: Voltage profile Scenario III (single generator connected at minimum voltage bus); Case I 

(without shunt compensation), Multi-objective optimisation 
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The power loss is reduced by 71.13% compared with the base network with a computed 

SSEV of 0.019273. Comparing these results with those presented in section 4.4.3 (Case 

I, PSO-W) shows that the calculated optimal generator sizes are at variance. The 

MSPSO results produced a better power loss reduction at the expense of higher value of 

SSEV. The results of MSPSO are obtained for realistic generator sizes, while the PSO-

W use continuous generator sizes and thus the results are not necessarily realistic.    

Tables 5.17 and 5.18 show the number of evaluations of the objective cost function 

required to attain a final optimal solution with both algorithms for Case I and II, 

respectively. The number of evaluations of MSPSO for the best optimal solution when 

compared with those obtained with the PSO-W algorithm in section 4.4.3 shows a 

reduction of 95.77% for Case I and 97.32% for Case II.  

Table ‎5.17: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO III, 

CASE I (ONE GENERATOR AT MINIMUM VOLTAGE BUS); MULTI OBJECTIVE 

OPTIMISATION  

 MSPSO Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 55.8 64.4 53 331.6 286.2 331.4 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 279 322 265 6632 5724 6268 

 

Table ‎5.18: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN: SCENARIO III, 

CASE II (ONE GENERATOR AT MINIMUM VOLTAGE BUS); MULTI OBJECTIVE 

OPTIMISATION  

 MSPSO Case II PSO-W Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 58 60.2 58.4 540.8 573.6 257.4 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 290 301 292 10816 11472 5148 
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5.3.4 Scenario IV: two generators; multi-objective optimisation 

This scenario involved finding the optimal location and size for two generators 

operating with different minimum operating power factors, first in the presence of shunt 

compensation capacitors (Case I) and with shunt compensation capacitors removed 

(Case II).  

The results of the MSPSO optimisation process for this scenario are presented in Table 

5.19. The MOF values are shown in Figure 5.20. The improvement in network voltage 

profile is shown in Figures 5.21 and 5.22 for Case I and Case II, respectively.  

Table ‎5.19: DG SIZE AND LOCATION FOR SCENARIO IV (TWO GENERATORS); MULTI-

OBJECTIVE OPTIMISATION  

 Case I Case II 

Minimum 

possible PF  

0.85 0.95 1.0 0.85 0.95 1.0 

Optimal bus 1
 

61 61 61 61 61 61 

DG 1 output 

MW/Mvar  

1.75/0.31 1.75/0.31 1.9/0.0 1.8/1.09 2/0.63 2.2/0.0 

Actual oper-

ating PF 1 

0.98 0.98 1.0 0.85 0.95 1.0 

Optimal bus 2
 

17 17 15 17 17 17 

DG 2 output 

MW/Mvar  

0.536/0.06 0.53/0.08 0.625/0.0 0.536/0. 33 0.6/0. 19 0.8/0. 0 

Actual oper-

ating PF 2 

0.99 0.99 1.0 0.85 0.95 1.0 

Max. voltage 1.0000 pu 1.0000 pu 1.0020 pu 1.0000 pu 1.0000pu 1.0020 pu 

Min. voltage 0.9943 pu 0.9943 pu 0.9943 pu 0.9943 pu 0.9941 pu 0.9942pu 

Mean (pu) 0.9983 pu 0.9983 pu 0.9987 pu 0.9982 pu 0.9981 pu 0.9981 pu 

Std. Dev 0.001679 0.001679 0.0016680 0.001736 0.001864 0.002211 

Total power 

loss [MW] 

0.0076 0.0076 0.0135 0.0081 0.0248 0.0812 

Percent loss 

reduction 

96.62% 96.62% 94.0% 96.40% 88.97% 63.90% 

SSEV index 0.000385 0.000385 0.000208 0.000433 0.00049 0.000589 
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The best loss reduction with enhanced voltage support is obtained with two optimally 

sized (1.75MW and 0.536MW) and located generators (Case I) injecting additional 

0.31Mvars and 0.06Mvars at bus number 61 and 17, respectively. A 96.62% power loss 

reduction is achieved compared with the base case network with a SSEV value of 

0.000385.  

The results of the optimisation process when the compensating shunt capacitors are 

removed (Case II) are also presented in Table 5.19. The best results for this case show 

the generators to inject 1.80MW/1.09Mvars at bus number 61 and 0.536MW/0.33Mvars 

at bus number 17. A power loss reduction of 96.40% compared with the base network 

and a SSEV of 0.000208 are computed. As with previous scenarios, these results differ 

slightly from those obtained using the PSO-W algorithm for the reasons outlined above. 

 

 

Figure ‎5.20: Scenario IV: minimum objective cost function values  
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Figure ‎5.21: Voltage profile Scenario IV (two generators); Case I (with shunt compensation), Multi-

Objective Optimisation  

 

Figure ‎5.22: Voltage profile Scenario IV (two generators); Case II (without shunt compensation), Multi-

Objective Optimisation  

Tables 5.20 and 5.21  shows the number of evaluations of the objective function 

required for the final optimal solution to be attained for both algorithms. Similar to 

other scenarios, the number of evaluations is substantially reduced with MSPSO when 

compared with the PSO-W results (Table 4.14) summarised and represented in Tables 

5.20 and 5.21.  
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Table ‎5.20: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN; SCENARIO IV, 

CASE I (TWO GENERATORS); MULTI-OBJECTIVE OPTIMISATION  

 MSPSO Case I PSO-W Case I 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 116.8 96 93.8 628.2 738.6 673. 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 584 480 469 12564 14772 13460 

 

Table ‎5.21: COMPARISON OF ALGORITHMS COMPUTATIONAL BURDEN; SCENARIO IV, 

CASE I (TWO GENERATORS); MULTI-OBJECTIVE OPTIMISATION  

 MSPSO Case II PSO Case II 

Minimum power factor 0.85 0.95 1.0 0.85 0.95 1.0 

Average no. of steps 106.2 94.4 102.8 635.8 825.8 584.2 

No. of function evaluations per step 5 5 5 20 20 20 

No. of function evaluations 531 472 514 12716 16516 11684 

 

The real power loss reduction chart for the best test cases for all the studied scenarios 

and cases are shown Figure 5.23. Similar to the investigation in section 4.4, the best loss 

reduction with improved voltage profile is obtained with scenario IV/Case I (i.e. when 

two generators are allowed to operate in a compensated network). This is evident from 

the loss reduction and the SSEV charts of Figures 5.24 and 5.25. 

 

 

Figure ‎5.23: Real power loss reduction chart  
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Figure ‎5.24: SSEV values 

 

Figure ‎5.25: Best of mean voltage values 

Finally, a summary of the results using PSO-W and the MSPSO for the multi-objective 

optimisation investigation are presented in Tables 5.22 and 5.23.  It is evident that the 

both algorithms obtained the same optimal location with small variations in the optimal 

generator sizes and the percent power loss reduction figure. This is because the optimal 

DG sizes obtained with PSO-W are continuous values that may not represent actual 

generator sizes. The MSPSO algorithm, on the other hand, employs a pre-defined list of 

commercial generator sizes (see appendix A, Table A.2). The MSPSO algorithm, 

however, has clear advantages in terms of the speed of convergence, lower 

computational burden due to fewer function evaluations and the capability to explore 

discrete search space composed of realistic generator sizes.  

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

 I  II  III  IV 

S
S

E
V

 

Scenarios 

Case I Case II 

0.88 

0.9 

0.92 

0.94 

0.96 

0.98 

1 

1.02 

 I  II  III IV 

M
ea

n
 v

o
lt

ag
e 

(p
u
) 

Scenarios 

Case I Case II 



Chapter 5: Integraton of distributed generation in power network using MSPSO 

 

108 

 

Table ‎5.22: COMPARISON OF PSO-W AND MSPSO OPTIMAL DG SIZE AND LOCATION 

RESULTS CASE I (MULTI OBJECTIVE)  

 Optimal bus 

location(s) 

Optimum DG 

size (s) 

(MW/Mvar) 

Power loss 

reduction 

(%) 

SSEV No. of 

function 

evaluations 

 

 

PSO-W 

 

 

Scenarios 

I - - - 0.0665 - 

II 61 1.7977/0.43 91.55 0.00868 6544 

III 64 1.5797/0.34 85.90 0.010854 6800 

IV 61/17 1.7349/0.34; 

0.5242/0.09 

96.62 0.000383 16152 

 

 

MSPSO 

 

Scenarios 

I - - - 0.0665 - 

II 61 1.8/0.43 91.60 0.008053 463 

III 64 1.6/0.29 85.99 0.009178 279 

IV 61/17 1.75/0.31; 

0.536/0.08 

96.62 0.000208 584 

 

Table ‎5.23: COMPARISON OF PSO-W AND MSPSO OPTIMAL DG SIZE AND LOCATION 

RESULTS CASE II (MULTI OBJECTIVE)  

 Optimal bus 

location(s) 

Optimum DG 

size (s) 

(MW/Mvar) 

Power loss 

reduction 

(%) 

SSEV No. of 

function 

evaluations 

 

 

PSO-W 

 

 

Scenarios 

I - - - 0.0993 - 

II 61 1.8911/1.17 89.41 0.011849 10240 

III 65 1.4385/0.69 72.34 0.015006 10816 

IV 61/17 1.7923/1.11; 

0.5381/0.33 

96.49 0.000424 12716 

 

 

MSPSO 

 

 

Scenarios 

I - - - 0.0993 - 

II 61 1.9/1.15 89.35 0.011867 470 

III 65 1.5/0.75 71.13 0.014927 295 

IV 61/17 1.80/1.09; 

0.536/0.33 

96.40 0.000433 531 

 

From Tables 5.22 and 5.23, for case I, the required number of function evaluations for 

best minimum MOF is reduced by 92.92%, 95.77%, and 95.35% for scenarios II, III 

and IV, respectively, compared with the PSO-W algorithm. While for case II, the 

required number of function evaluations for best minimum MOF is reduced by 95.41%, 

97.32%, and 95.82% for scenarios II, III and IV respectively, compared with the PSO-

W algorithm. 
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5.4 Comparative Study: Scenario II Case II: Single generator at unity PF 

In addition to the above studies, this test scenario is considered to allow direct 

comparisons of the results obtained from the MSPSO algorithm with previously 

published solutions obtained using analytical techniques [10], genetic algorithms [103], 

the Artificial Bee Colony (ABC) algorithm [45] and SPPSO as well as the PSO-W 

algorithm.  The optimisation studies in [10], [45] and [103] were limited to the single-

objective function of minimizing network losses. These studies are similar to that 

presented in section 5.2 (scenario II, case II). Table 5.24 shows the optimal solutions (in 

terms of network loss reduction) achieved by all six optimisation methods. 

Table ‎5.24: COMPARISON OF OPTIMAL DG SIZE AND LOCATION RESULTS (SCENARIO II 

CASE II: MINIMUM NETWORK LOSSES)  

 69-bus network 

Analytical 

Method 

[10] 

GA 

[103] 

ABC 

Algorithm[45] 

Proposed 

MSPSO 

Algorithm 

Implemented 

PSO-W 

Implemented 

SPPSO 

Optimum bus 

location 

61 61 61 61 61 61 

Optimum DG 

size (MW) 

1.810 1.827 1.900 1.850 1.8722 1.8726 

% MW loss 

reduction 

62.86% 62.91% 62.97% 63.02% 63.03% 63.0% 

 

The results obtained from the six methods are identical in terms of the optimal location 

of the DG unit. However, an improvement in loss reduction is achieved by the proposed 

MSPSO algorithm and other variants PSO (PSO-W and SPPSO) when compared with 

Analytical, GA and ABC methods. The result of ABC algorithm like the proposed 

MSPSO considered constraints on the discrete size of DG units.  A slight improvement 

is achieved with MSPSO when compared with the ABC method which misses out the 

1850kW generator size because it only considers generator sizes in even steps of 

100kW. The proposed MSPSO avoids the rounding up errors inherent in analytical and 

GA methods. For the results of analytical and GA methods to reflect the realistic 

generator sizes), the solutions will need to be rounded to the nearest available size. 

Thus, it is evident from Table 5.24 that such approximation will affect the accuracy of 

the obtained optimal solution.  

In Table 5.25, the performance of the proposed MSPSO algorithm is compared with the 

two other variants PSO algorithms for scenario II case II in terms of the computational 
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burden of the optimisation process. All the three algorithms produce the same final 

solution, but the MSPSO algorithm has the advantage of fewer function evaluations 

compared with the other versions. The results shown in Table 5.25 are average values 

based on ten independent runs of the algorithm. The advantage of the proposed MSPSO 

algorithm is clearly demonstrated. The required number of function evaluations is 

reduced by 90% compared with the standard PSO-W algorithm and by 69.73% 

compared with a small population PSO algorithm [91, 92]. 

Table ‎5.25: ADDITIONAL ALGORITHM COMPARISON; SCENARIO II CASE II (MINIMUM 

NETWORK LOSSES AT UNITY PF )  

 Proposed 

MSPSO 

algorithm 

PSO-W 

algorithm 

SPPSO 

algorithm 

Average no. of steps 113.2 283.8 374 

No. of function evaluations per step 5 20 5 

No. of function evaluations 566 5676 1870 

 

5.5 Summary   

In this chapter, the MSPSO optimisation algorithm proposed in this research work has 

been applied to optimise the integration of DG into a 69-bus radial distribution network 

(with and without shunt compensation capacitors). The proposed algorithm is a multi-

search PSO in which the swarm particles are allowed to move in a mixed search space 

composed of integer variables (bus location numbers); continuous variables constrained 

to discrete unevenly spaced variables (generator active power output) and continuous 

variables (generator reactive power output). The MSPSO study was standardised to the 

study in chapter 4 (based on PSO-W) for validation purpose. In addition, the 

significance of the proposed scheme is demonstrated by comparing its results with the 

results of previously published works (where such studies exist).  

It has shown that the MSPSO and the PSO-W algorithms obtained the same optimal 

locations with small variations in the optimal generator sizes and the percent power loss 

reduction figure at some instances. The divergence between the two algorithms is due to 

the ability of MSPSO to operate on mixed search variables of integer, discrete and 

continuous variable. MSPSO results are thus obtained for realistic, commercially 

available generator sizes (see appendix A, Table A.2) with no loss of accuracy. Quicker 

results due to fewer iterations, lower computational burden due to fewer function 
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evaluations using few informants and the capability to explore discrete search space 

composed of realistic generator sizes using a dichotomic search algorithm are the many 

advantages of MSPSO in contrast with the PSO-W algorithm.  

Additionally, it is shown that an improvement in the network power loss reduction is 

achieved by the proposed MSPSO algorithm compared with other optimisation 

algorithms (analytical, GA and ABC) used previously in the literature. The MSPSO 

avoids the rounding up errors inherent in analytical and GA methods and is found to be 

robust and efficient method for solving the DG optimisation problem.  

In the chapter that follows, the application of the proposed MSPSO to the problem of 

integrating induction machine based DG is introduced. 
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CHAPTER 6  

 

Induction Generator Based DG and Shunt Compensation 

Capacitors Integration Using MSPSO Algorithm 

 

Wind driven Induction Generators (IGs) are becoming common sources of Distributed 

Generation (DG) in distribution systems. This IG-based DG supplies real power and in 

turn absorbs reactive power from the system. It is, therefore, necessary to account for 

this reactive power requirement in any network integration exercise involving induction 

generators. Moreover, just like an induction motor, re-magnetization of an induction 

generator following a fault consumes a large amount of reactive power. If the grid to 

which the wind power plant (WPP) is connected is not strong, reactive demands of 

induction wind turbine generators (WTGs) can suppress voltage recovery and 

potentially cause voltage collapse. Hence, it is often necessary to provide some means 

of dynamic or static reactive compensation, such as STATCOMs or SVCs to meet low-

voltage ride-through requirements with induction generators of type fixed speed [7]. 

In this chapter, a technique is proposed and formulated for induction generator 

integration to determine the reactive power required for its operation. The technique that 

is based on per phase equivalent circuit of the induction machine is employed to 

compute machine steady state output characteristics. General formulations to handle the 

impact of DG on the rating of the protective switchgear and the network line capacity 

limits are presented. These formulations are incorporated with the MSPSO algorithm to 

allow the enforcement of these constraints.  

Induction generator based DG units like its synchronous counterparts (discussed in 

chapters 4 and 5) are also commercially available in a non-fixed discrete step sizes. 

Additionally, the shunt capacitors are known to be available in a fixed discrete step size.  

Thus, the problem of IG DG integration, also involved mixed search space variables 

that require a multi-search space optimisation algorithm. The capability of the MSPSO 

algorithm to solve this optimization problem is demonstrated in this study.  
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6.1 Modelling of IG for Distribution Network Integration 

The modelling of the induction generator for network integration and power flow 

analysis based on conventional per phase equivalent circuit of induction machine is 

presented in this section. The model developed here applies to a fixed speed induction 

generator that is directly connected to the grid. Usually in this induction generator, a 

fixed shunt capacitor is required to provide reactive power compensation. Given the 

generator’s‎ characteristics,‎ rated‎ output‎ power‎ and‎ operating‎ voltage‎ an‎ iterative‎

procedure is used to find the reactive power required by the generator. 

6.1.1 Induction Machine Model 

A conventional line-to-neutral equivalent circuit of a three-phase induction machine is 

shown in Figure 6.1 

 

Figure ‎6.1: a per-phase induction machine equivalent circuit 

Where Rs, Xs are stator resistance and reactance, respectively, Xm is the magnetizing 

reactance; Rr and Xr is the referred rotor resistance and reactance, respectively. The 

operating slip of the machine s is given by: 

sn

rnsn
s


            (‎6.1) 

Where ns is the synchronous speed of the generator and nr is the actual rotor speed. 

If the operating slip of the generator is known, the complex power drawn from the 

supply network can be readily obtained as: 

The input impedance for the network is determined from Figure 6.1 as 

)(/

)/)((

XrXmjsRr

jXrsRrjXm
jXsRsZM




        (‎6.2) 

The input admittance is given by 

ZM
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1
           (‎6.3) 
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*
. tYM

LN
YM            (‎6.4) 

Where, t is the phase to neutral transformation from Line to Line [104]  and is given by 

 30.

3

1
t          (‎6.5) 

The machine terminal line-to-neutral voltage 

t
s

V
LN

V .           (‎6.6) 

The per phase motor current from the equivalent machine is  

tsV
LN

YM
s

I ..
1




          (‎6.7) 

With Equations (6.6) and (6.7); machine terminal line-to-neutral voltage and current, 

known, the input phase complex power and total three-phase input complex power can 

be computed: 

*
)..(.

1
tsV

LN
YM

LN
VS 


        (‎6.8) 

*
)..(.3 tsV

LN
YM

LN
V

Total
S         (‎6.9) 

The above machine model is used for the induction generator with the value of slip been 

negative. This means the generator will be driven at speed in excess of synchronous 

speed. The generator is modelled with the equivalent admittance matrix Equation (6.3). 

The IG reactive power requirement calculation procedure is implemented in MATLAB 

and interfaced with MSPSO and MATPOWER AC power flow algorithm for the IG DG 

optimization problem. 

6.1.2 Computation of slip 

In distributed generation placement problem, the discrete variables representing the DG 

sizes, are the specified output power of the induction generators. The slip values for the 

induction generators are not known. The goal is to find iteratively the value of slip that 

will force the real part of the complex output power to be computed for the generator 

using Equations (6.1) – (6.9) to be within some small tolerance of the specified output 

power. In this study, a tolerance value of 0.001 is used. The procedure starts with the 

assumption of initial values of the slip (Sold) and change in slip (ds) as [104]: 

0.0
old

S           (‎6.10) 
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01.0sd  

The value of the slip used in the first iteration is then 

sd
old

SnewS           (‎6.11) 

where, Snew is the new value of positive sequence slip. 

When the new value of the slip is known, the input shunt admittance matrix (YM) in 

Equation (6.3) is computed.  The given line-to-line voltage is transformed into Line-to-

neutral and used to compute the stator currents Equation (6.6). The per-phase and the 

total three-phase input complex power are computed using Equations (6.8) - (6.9). The 

computed three-phase input power is compared to the specified three-phase output 

power and error is computed as 

computed
P

specified
PError         (‎6.12) 

If the error is negative, the slip needs to be increased so that the computed power will 

increase. This is done using Equations (6.11) & (6.13) 

newS
old

S            (‎6.13) 

The new value of slip is used to repeat the calculations for the output power to the 

generator. If the error is positive, that means that a bracket has been established. The 

required value of slip lies between the Sold and Snew. In order to zero in on the required 

slip, the old value of the slip will be used, and the change in slip will be reduced by a 

factor of 10 Equation (6.14): 

10sdsd            (‎6.14) 

The new slip is recomputed using Equation (6.11) when the slip has produced the 

specified output power, then the reactive power required can be obtained. The 

imaginary of the computed complex power obtained at this value of slip represent the 

reactive power required by induction generator. That need to be compensated for locally 

at the PCC to avoid unnecessary reactive power flows and hence losses in the network. 

The above procedure for the computation of the reactive power requirement of the 

induction generator is summarized in the flowchart in Figure 6.2. 

To sum up, the IG power flow algorithm procedure that determines the IG steady state 

analysis, operate iteratively to find the required slip that will force the real value of the 
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computed complex output power of the generator to be within a small tolerance band of 

the specified output power. MSPSO is then employed as a global optimization tool to 

find the globally optimal solution, allowing for the use of shunt compensation to 

provide the reactive power required by the induction generator locally at the point of 

connection to the hosting utility grid.  

Start

Initialize parameters

Compute stator current & 

complex  power 

Calculate error in P

Convergence?

Increase slip 

Return complex output 

power 

End routine

No

Yes

Error < 0?

Reduce slip

Yes

No

 

Figure ‎6.2:Flowchart for induction generator output power & reactive power calculation 

6.2 Fault Level / Short Circuit Current and Line Loading Capacity Constraints  

The fault level constraint refers to the operational limitations of protection equipment 

(e.g. switchgear) during a fault. If the specification of the protection equipment is not 

adequate to clear or isolate a fault, then not only the equipment itself will possibly be 

damaged, but the operation of the broader part of the power system will become 

insecure [14]. The magnitude of the fault current is, usually, used to select the rating 

(breaking capacity) of the protective device. In this study, bus impedance matrix by the 

building algorithm [105] is formulated and used to compute the fault current. This 

method is based on the classical impedance method [106] and is undemanding and 

practical. 
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Figure 6.3(a) shows a typical bus of a n bus power system network. The system is 

assumed to be operating under a balanced condition, and per phase circuit model is 

used. Each machine is represented by a constant voltage source behind subtransient 

reactance (Xd”).Branches/ lines are represented by their equivalent pi model with all 

impedances expressed on a common MVA base. 

Figure ‎6.3: Typical Bus of a Power System [105]: (a) per phase model of a balanced power system, (b) 

Thevenin’s equivalent circuit of (a) 

The balanced three-phase current at fault bus k is given by 

f
Z

kk
Z

k
V

F
k

I




,

)0(
)(          (‎6.15) 

Vk(0) is the pre-fault bus voltage at the fault bus k, Zkk is the element of the bus 

impedance‎matrix‎and‎is‎the‎element‎of‎the‎Thevenin’s‎‎impedance‎as‎viewed‎from‎the‎

faulted bus. Zf is the fault impedance to earth and for bolted fault as considered in this 

study, its value is zero.  

The constraint on fault level imposed by the breaking capacity of the switchgear is 

given as  
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specIF
k

I )(          (‎6.16) 

Equation (6.17) gives the coordination of the protective switchgear due to the 

connection of  DG 

specI
fDG

IF
k

I )(

        (‎6.17) 

Ik(F) is the current at the faulted bus and the current that flows in the line ij following 

the occurrence of a fault. While IfDG is the fault current due to the impact of the new 

generation and Ispec is the maximum allowed by the specifications of the switchgear at 

the terminal bus i and j. 

This method for computing the short circuit current involves adding the various 

resistances and reactance of the fault loop separately and then calculating the 

corresponding impedance. These include network feeders as well as the synchronous 

and asynchronous machines that are replaced by their respective impedances, from (and 

including) the source to a given point. 

Equations (6.16) & (6.17) are checked by PSO algorithm and handled as constraints on 

the swarm. Each particle of the swarm is checked against the constraints (6.16) & (6.17) 

ensuring only those particles that respect the constraints are used in the evaluation of the 

objective function. Particles that violate the constraints are rejected and never forms part 

of the solution. This approach means that the constraint on short circuit current is 

applied prior to the optimisation process. This will make it easier for the effect of the 

constraint on DG integration to be assessed.  

6.2.1 Short-circuit current constraint with induction generator DG 

In the real situation, the number of DG connected to the distribution system network can 

impact adversely on the distribution system operation.  One of the technical impacts of 

DG is that it can adversely affect the protection setting and the rating of the switchgear 

that‎ could‎ destabilize‎ the‎ hosting‎ network‎ system’s‎ operation.‎The‎ fault‎ of‎ interest‎ to‎

this study is a balanced three-phase fault. It is the most severe type of fault encountered 

in power system. 

The initial current contribution to a three-phase fault is defined by the sum of the 

generator sub transient reactance and the system impedance from the machine terminals 

to the fault. For IG, this initial fault current decreases as the flux in the machine 
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collapses and will eventually reach zero unless there is sufficient reactive compensation 

to maintain the generator excitation during the fault [7]. Even though, this type of fault 

is known to be the least likely to occur, but power system planners usually, used this 

fault to calculate the circuit breakers duty and other switchgear devices.  

In this research work, the short circuit current is evaluated at the busbar of the infeeding 

substation. In radial distribution network (with or without DG), the maximum value of 

short circuit current/ fault level, usually, occurs at the infeeding substation busbars. This 

is as a result of substantial contributions from the upstream grid and it rapidly decreases 

downstream the network. In a network with DG, the overall fault is the sum of the 

maximum fault currents due to the upstream grid through the network line and 

transformer, DGs and large motors connected to the radial distribution network if 

present. 

In this study, to simplify the computation of short circuit calculations, the following 

assumptions are made; 

1. A 3-phase balanced bolted fault is considered, with the network system assumed 

to be operating under a balanced condition, and per phase circuit model is used.  

2. Each machine is represented by a constant voltage source behind proper 

reactance given as Xd” (sub transient reactance). 

3. The various correction factors recommended in the IEC60909 standard are 

neglected (voltage and impedance factor) 

4. Loads current are assumed to be negligible compared to short–circuit current 

thus, neglected.  

5. Arc resistances are not taken into account  and all line capacitances are 

neglected 

6. For the entire duration of the short-circuit, the voltages responsible for the flow 

of the current and the short-circuit impedance do not change significantly 

These assumptions above impose limits for which the calculations are valid, but, 

usually, will provide good approximations [105], for the goal of this study.  

6.2.1.1 Calculation of network feeders (upstream) impedance 

The procedure algorithm for determining the maximum short-circuit current of the 

breaker commence with the computation of upstream grid impedance. This impedance 
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is made up everything upstream of the substation Busbar including the series connected 

network cable/conductor and transformers. The approximate fault level of the upstream 

grid at the connection point is used to calculate the impedance (resistance and 

reactance) of the network feeder as follows [107]: 

SCMVA

U

up
Z

2

           (‎6.18) 

up
Z

up
R  0995.0           (‎6.19) 

up
Z
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X  995.0          (‎6.20) 
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Xj
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R
grd

Z          (‎6.21) 

Where, Zup , Rup, and Xup are respectively the upstream impedance, resistance  and 

reactance. With Zgrd and U are the complex value of the upstream grid impedance and 

the nominal voltage of the system at the feeder connection point respectively.  A value 

of 10 is used for the ratio X/R [107] and a three phase fault level of 250MVA is 

assumed for the study. 

6.2.1.2 Relationship between generator size and fault currents 

Fault currents are computed using the pre-fault voltage at the fault location, and the 

network impedances: distribution lines, transformer serial impedances, and the 

generator reactance where applicable, using Equation (6.15). Switchgear, usually, 

operates during the sub-transient‎ period‎ of‎ generator’s‎ response‎ after‎ a‎ fault.‎ This‎

reactance represents the output impedance of the generator within the first few cycles 

after a short- circuit‎ occurs‎ at‎ the‎ generator’s‎ terminal.‎ In‎ this‎ study,‎ generators’‎

reactance is set equal to their sub-transient values. The sub-transient reactance of 

induction generators is assumed to be about 15%–25% on the generator reactance base 

with an average value of 16.7% [108]. The average value (16.7%) is used for this study. 
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The sub-transient reactance of new generators "

dnew
X is estimated as a function of their 

capacity 
g

S  using the following expression 

 

g
S

b
S

d
X

dnew
X 

''"          (‎6.25) 

where  

 "

d
X  is the per-unit sub-transient reactance of the generator (pu) 

g
R is the resistance of the generator (pu) 

"

d
x  is the average per-unit sub-transient reactance of the generator (pu) 

gS is the rated generator capacity (MVA) 

b
S is the system MVA base 

The 
R

X
is the X/R ratio, typically 10 for medium voltage [109]. The smaller the 

generator’s‎ capacity,‎ the‎ higher‎will‎ be‎ the‎ sub-transient reactance and the lower the 

fault current. 

6.2.1.3 Procedural steps and implementation flow chart of short-circuit constraint 

The short circuit current constraint incorporated with the MSPSO is implemented prior 

to the optimisation process. After the application of dichotomy algorithm, the sub-

routine algorithm on symmetrical fault is executed to compute the short circuit current 

for each DG at their specified locations. The implementation flow chart is as shown in 

Figure 6.4 and the procedural steps to compute the short-circuit current are discussed 

below:  

Step1: load the discretized DGs and their corresponding bus number locations 

Step2: Define relevant feeder network (upstream grid) parameters and compute 

upstream impedance.  

Step3: Determine sub-transient reactance for the DGs, and set k=1 to start the 

computation process 

Step4: Compute the generator impedance, the resistance and the reactance 

Step5: Load relevant power system network impedance data and locate DG at its 

specified bus location number 
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Step6: Run three-phase symmetrical fault algorithm to obtain the short circuit current at 

the substation Busbar 

 

Figure ‎6.4: Flowchart for short-circuit current calculation 

Step7: If k< Swarm size repeats step 4 -6   

Step8: Else stop the routine and return to the MSPSO procedure algorithm 

At the end of the subroutine, the computed short circuit current resulting from the 

location of DG (IfDG) in the network is compared with the rated short circuit current of 

the switchgear (Ispec) as expressed by Equations (6.16) through (6.17).  

The DGs that violate the constraint at their generated locations are rejected and will not 

form part of the optimal solution. If Ik (F) is considered as the current at the fault bus 

without DG and this represents the designed fault current (base network short-circuit 

current). Since the switchgear short circuit current rating capacity is standardized, a 

standard value for the designed fault current is normally specified. The difference 

between the designed fault current and the specified switchgear rating represent the 

available headroom for short-circuit current at the substation feeder. 
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6.2.2 Line loading capacity constraint 

One of the consequences of supplying power near to loads is that MVA flows may 

diminish in some sections of the network, thus realising more capacity. However, in 

other sections the may also increase to levels beyond distribution line limits thus the 

need to consider line limits constraint [53]. The line loading constraint expressed in 

Equation (4.10) can be enforced by evaluating a quadratic index f(IC) given by Equation 

(6.26). 

2max
)()(  

Ll

ll
SSICf



         (‎6.26) 

Where, Sl (Sij) and Sl
max

 (Sij
max

) defines the apparent power (MVAflowmax) in a line 

section l and the maximum allowable apparent power flow (MVAflowrated) in section l 

respectively. In order to enforce the constraint of Equation (4.10), the index in (6.26) is 

computed, weighted and added to the objective function. The line overloads are 

computed as:  

 edMVAflowratMVAflowOverloads  maxmax      (‎6.27)  
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MVAflowmax and MVAflowrated denote the nl × 1 vector of apparent power flow 

related to all sections (branches) of the network, nl the total number of sections of the 

distribution system under consideration. Implementation of the line loading constraint 

ensures that the location of DG is such that the MVA flows in network sections are 

within the maximum allowable rating of the sections/branches.  

6.3 The Test System- 69-bus Radial Distribution Network  

The capability of the MSPSO algorithm to solve this optimization problem of IG 

integration is demonstrated on the standard 69-bus benchmarking network used in the 

previous two chapters. This is the same network of Figure 4.1, but with the shunt 

compensation capacitors removed. The data of this base network are repeated here in 

Table 6.1 for convenience. The substation voltage is taken as 1.0pu, and the voltage 

profile of the network is shown in Figure 6.1. The electrical parameters of the induction 

generators used in this study are taken from [110-113] and are presented in Appendix B, 

Table B.1.  
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Two studies: a single-objective optimisation and a multi-objective optimization are 

carried out, each involving five different network scenarios. In all scenarios (except the 

base case scenario I), two different cases are considered: Case I entail the integration of 

one DG and Case II involves the integration of two DGs. The second scenario considers 

the simultaneous connection of generator units with shunt compensation capacitors, 

neglecting the constraints on short circuit current and line loading. In the third scenario, 

only the constraint on short circuit current is enforced while the fourth scenario 

considers the constraint on line loading only. Both short circuit current and line loading 

constraints are considered in scenario five. 

The single Objective (SO) optimisation study is focused on the determination of the 

optimum size and location of the generator unit with shunt capacitors in order to 

minimize the total real power loss in the network. While the second investigation 

considers a Multi-Objective (MO) function formulation in which the network voltages 

are taken into account in the optimization process alongside the total real power loss. In 

these investigations, unlike synchronous generator studies presented in chapters 4 and 5, 

the generator unit injects real power into the network while consuming reactive power 

from the network. It is assumed that there will be sufficient reactive power 

compensation to maintain the generator excitation during a network fault. Thus, the 

shunt capacitor is required to provide the entire reactive power demand of the generator 

locally. The shunt capacitor size is set to vary between 150kvar and 4050kvar with a 

step size increment of 100kvar. 

6.4 Optimal Size/Location of IG with Shunt Capacitors Compensation; Single 

Objective Optimisation 

Induction Generator based Distributed generators are known to inject real power into 

the grid and consume reactive power from the grid. The goal of this optimization 

problem is to minimize the network power loss by simultaneously integrating an 

optimally sized induction generator and shunt capacitors at optimal locations in the 

network. The Connection of an IG DG unit to the bus is modelled as a negative P and 

positive Q load. The objective function (minimisation of power loss) was presented in 

Equation (5.1) and repeated here in Equation (6.29) for convenience.  

Minimize )(

1

l

ij

Ll

l

ji

L

k

kL
PPLossP





 


     (‎6.29)  
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Equations (6.16) - (6.17) and (6.26) are employed to enforce the constraints on short-

circuit current and line loading, respectively. The power flow algorithm procedure for 

computing the reactive power required by the IG is based on Equations (6.1) – (6.14). 

In this MSPSO optimisation study of IG, Equations (3.9) - (3.11) of section 3.5.3 are 

used to handle the integer nature of the DG bus number locations. Similar to the study 

in chapter 5, the variable representing DG size/output power is initially treated as a 

continuous variable using Equations (3.1) and (3.2) to update the corresponding position 

and velocity vectors. The dichotomy algorithm (Equations  (3.12) – (3.15) ) is then used 

to constrain the continuous variable (the active power output of the IG) into a discrete 

variable chosen from unevenly spaced entries in a pre-defined finite search list 

representing practical IG sizes in megawatts (Appendix B, Table B.1). The IG power 

flow algorithm is then applied to determine the reactive power required by the IG. For 

the shunt capacitor, the sizes are generated in a fixed step interval of 100. The 

implementation flowchart for IG DG integration is as shown in Figure 6.5.  

The MSPSO results are recorded after ten independent runs of the algorithm using a 

swarm population of 20 particles (with five informants), and a stopping criteria of 50 

iterations where the objective function value remains within the margin of 10
-9

 or a 

maximum number of 1000 iterations.  The social and the cognitive constants c1and c2 

are set equals with both being assigned a value of 1.47 [77]. For the 69-bus network 

M=70, maximum particle velocity (mv)=1, α=0.4 , wmax=0.9 and wmin =0.4 [87] are 

used. 
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Figure ‎6.5: MSPSO implementation flowchart for IG DG integration 

6.4.1 Scenario I: base network with no generation 

Table 6.1 shows a summary of the results for the base test network with no generation. 

The voltage profile of the original test network (Figure 6.6) clearly shows that nodal 

voltages are an issue under normal loading condition with an SSEV index 0.0992. The 

short-circuit current for the base test network is computed as 11.4073kA. In order to 

demonstrate the importance of short-circuit current constraint in this study, the short-

circuit current with the integration of IG DG is set to the assumed value of 11.9kA.  

Table ‎6.1: SUMMARY OF RESULTS; SCENARIO I WITH NO GENERATION (BASE CASE) 

 Load 

(MW) 

 Load 

(Mvar) 

 MW 

Loss 

Mvar 

Loss 

Max bus 

voltage 

(pu) 

Min bus 

voltage 

(pu) 

Mean 

voltage  

Std. 

Dev 

SSEV Short 

circuit-

current 

(kA) 

3.802 2.690 0.2249 0.1020 1.0000 0.9092 0.9734 0.02724 0.0992 11.4073 
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Figure ‎6.6: Voltage profile of the 69-bus radial distribution network; Scenario I (base case network) 

6.4.2 Scenario II: ignoring constraints on short-circuit current and line loading 

The results of the MSPSO optimization process for this scenario considering Case I 

(one generator) and Case II (two generators) are presented in Table 6.2. In Case I, the 

optimal generator size/location is obtained as 1.85MW (consuming 0.9071Mvar) 

located at bus number 61. A 63.32% power loss reduction is achieved compared with 

the base network with the shunt capacitor (0.950Mvar) providing the reactive power 

demand of the generator entirely locally at the optimal location.  For case II, the optimal 

size/location pair is obtained with two generators sized at 1.85 MW and 0.33MW 

(consuming 0.9071Mvar and 0.2155 Mvar) located at bus number 61 and 22, 

respectively. A 68.43% power loss reduction is achieved compared with the base 

network with the shunt capacitors injecting 0.950Mvar and 0.250Mvar respectively at 

the optimal bus locations 61 and 22.  The entire reactive power demands of the 

generators are locally provided thus, avoiding unnecessary reactive power flow from the 

grid. 
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Table ‎6.2: MSPSO RESULTS; 69-BUS NETWORK SCENARIO II, CASE I (SINGLE GENERATOR) 

AND CASE II (TWO GENERATORS) 

 Single DG Without constraints;  

Case I 

Two DG Without constraints; 

 Case II 

Optimal bus location 1 61 61 

DG 1 MWs generated  1.85 MW 1.85 MW 

DG 1 Mvars consumed  0.9071 Mvar 0.9071 Mvar 

Shunt capacitor var 1 0.950 Mvar 0.950 Mvar 

Optimal bus location 2 - 22 

DG 2 MWs generated  - 0.33 MW 

DG 2 Mvars consumed  - 0.2155 Mvar 

Shunt capacitor var 2 - 0.250 Mvar 

 MW loss 0.0825 MW 0.071MW 

 Mvar loss 0.0402 Mvar 0.0356 Mvar 

Min bus voltage 0.9682pu 0.9804pu 

Max bus voltage 1.0000 pu 1.0000pu 

Mean voltage 0.9873pu 0.9914pu 

Standard deviation 0.01159 0.006932 

SSEV 0.020344 0.008387 

 MW loss reduction 63.32% 68.43% 

 Mvar loss reduction 60.59% 65.10% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

11.9kA 

Isc with DGs (IfDG)
 

11.9664kA 11.9913kA 

 

The improvement in the network voltage profiles for this scenario is presented in Figure 

6.7. The minimum bus voltage is improved from 0.9092pu in the base case to 0.9682pu 

(Case I) and 0.9804pu (Case II). The best improvement in voltage profile is obtained by 

Case II (with the connection of two generators and shunt capacitors) resulting in a better 

value of a SSEV (0.008387) compared with the value computed for Case I (0.020344) 

and the base case (0.0992).  
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Figure ‎6.7: Voltage profile of the 69-bus radial distribution network Scenario II (no constraints); Case I 

(single DG) and Case II (two- DG) 

The results in Table 6.2 also show that the final values of short-circuit current (Isc) of 

11.9664kA and 11.9913kA (Case I and II, respectively) following the connection of the 

induction generators, are greater than the computed or design value of the short-circuit 

current (11.4073kA) for the base case network (without DG). Moreover, these values 

are equally higher than the presumed allowable short-circuit current (11.9kA). Thus, the 

connection of the generators resulted in an unacceptable increase in the value of short-

circuit current, something that would have to be addressed in practice. 

Figures 6.8 and 6.9 show the apparent power (MVA) flow for all branches of the 

network for Case I and Case II, respectively. It is evident that the connection of DG 

drastically reduced the apparent power flow in some branches of the network. 

Moreover, some branches are operating close to their maximum limits with one 

overloaded branch in the network (Case II, branch 21). There is also a drastic reduction 

in the apparent power injected from the grid due to the connection of distributed 

generation as shown in Figures 6.8 and 6.9. Case II resulted in a higher reduction in 

apparent power flow (due to the connection of two DGs instead of one) when compared 

with Case I.  
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Figure ‎6.8: Branch apparent power flow/line loading; Scenario II (no constraints), Case I (single DG) 

Figure ‎6.9: Branch apparent power flow/line loading; Scenario II (no constraints), Case II (two-DG) 

6.4.3 Scenario III: considering the short-circuit current constraint only 

The results of the MSPSO optimization process for this scenario are presented in Table 

6.3. In Case I, the optimal size/location is obtained with one optimally sized 1.65MW 

generator (consuming 0.7635Mvar) located at bus number 63. A 62.96% power loss 
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reduction is achieved compared with the base case with the shunt capacitor (0.850Mvar) 

providing the entire of the reactive power requirement of the generator locally. For Case 

II, the optimal size/location pair is obtained with two optimally sized 0.843 MW 

generators (each consuming 0.4001Mvar) located at bus number 60 and bus number 64. 

A 63.36% power loss reduction is achieved compared with the base case. The shunt 

capacitors (0.450Mvar each) provide the entire reactive power requirement of the 

generators locally at the optimal locations 60 and 64. A comparison of scenarios II and 

III show that the percent loss reduction obtained in scenario II (63.32% and 68.43% 

Case I and II, respectively), is higher than the corresponding figures in scenario III (with 

a short-circuit constraint). The enforcement of the short-circuit constraint resulted in a  

Table ‎6.3: MSPSO RESULTS; 69-BUS NETWORK SCENARIO III, CASE I (SINGLE GENERATOR) 

AND CASE II (TWO GENERATORS) 

 Single DG With short-circuit    

constraint Only;  Case I 

Two DG With short-circuit 

constraint only; Case II 

Optimal bus location 1 63 64 

DG 1 MWs generated  1.65 MW 0.843MW 

DG 1 Mvars consumed  0.7635 Mvar 0.4001 Mvar 

Shunt capacitor var 1 0.850 Mvar 0.450 Mvar 

Optimal bus location 2 - 60 

DG 2 MWs generated  - 0.843 MW 

DG 2 Mvars consumed  - 0.4001 Mvar 

Shunt capacitor var 2 - 0.450 Mvar 

 MW loss 0.0833 MW 0.0824MW 

 Mvar loss 0.0411 Mvar 0.0407 Mvar 

Min bus voltage 0.9672pu 0.9674pu 

Max bus voltage 1.0000pu 1.0000pu 

Mean voltage 0.9861pu 0.9863pu 

Standard deviation 0.01237 0.01229 

SSEV 0.023701 0.023318 

 MW loss reduction 62.96% 63.36% 

 Mvar loss reduction 59.70% 60.10% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

11.90kA 

Isc with DGs (IfDG)
 

11.894kA 11.7285kA 
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reduction in the optimal size of the IG and a new optimal location compared with 

scenario II, to satisfy the limitation imposed on switchgear rating. 

The improvement in the network voltage profiles with both cases is presented in Figure 

6.10. The minimum bus voltage is improved from 0.9092pu in the base case to 

0.9672pu (Case I) and 0.9674pu (Case II). Case II resulted in a slightly better voltage 

profile compared with Case I due to the slight difference in the DG penetration level in 

both cases (43.40% and 44.35% for Case I and Case II, respectively). However, both 

these minimum bus voltage values are lower than those obtained in scenario II for the 

above outlined reasons. Similar to scenario II, the best loss reduction and voltage profile 

improvement are obtained with the connection of two optimally sized and located 

generators (Case II). 

 

Figure ‎6.10: Voltage profile of the 69-bus radial distribution network Scenario III (with short-circuit 

constraint); Case I (single DG) and Case II (two- DG)   

The results in Table 6.3 also show that the final values of short-circuit current (Isc) of 

11.894kA and 11.7285kA (Case I and Case II, respectively) following the connection of 

DG are lower than the specified value of the short-circuit current (11.90kA) limit for the 

network. This is because of the enforcement of short-circuit constraint to ensure that the 

limitation imposed by the switchgear rating is respected (Equations 6.16 and 6.17). 

However, the enforcement of the short-circuit current constraint resulted in the 

violations of the line loading constraint as shown Figure 6.11 and 6.12. The connection 
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of DG drastically altered the apparent power flows of the network with some branches 

now operating close to their maximum limits, and some branches (62 and 63 in Case I 

and 62, 63 and 64 in Case II) exceeding these limits.  

Figure ‎6.11: 69-bus branch apparent power flow/ line loading Scenario III (with short-circuit constraint), 

Case I (single DG) 

Figure ‎6.12: 69-bus branch apparent power flow/ line loading Scenario III (with short-circuit constraint), 

Case I (two- DG) 
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6.4.4 Scenario IV: considering line loading constraint only 

The results of the MSPSO optimization process for this scenario are presented in Table 

6.4. In Case I, the optimal size/location is obtained with one 1.85MW generator 

consuming 0.9071Mvar located at bus number 61. A 63.32% power loss reduction is 

achieved compared with the base network. The shunt capacitor (0.950Mvar) again 

provides the entire reactive power demand of the generator locally at the optimal 

location. Scenario IV (Case I) resulted in the same results as those obtained in scenario 

II, Case I when both short-circuit current and line loading constraints were neglected.  

Table ‎6.4: MSPSO RESULTS; 69-BUS NETWORK SCENARIO IV, CASE I (SINGLE GENERATOR) 

AND  CASE II (TWO GENERATORS) 

 Single DG With line loading 

constraint Only;  Case I 

Two DG With line loading 

constraint only; Case II 

Optimal bus location 1 61 61 

DG 1 MWs generated  1.85 MW 1.85MW 

DG 1 Mvars consumed  0.9071 Mvar 0.9071 Mvar 

Shunt capacitor var 1 0.950 Mvar 0.950 Mvar 

Optimal bus location 2 - 9 

DG 2 MWs generated  - 1.50 MW 

DG 2 Mvars consumed  - 0.6589 Mvar 

Shunt capacitor var 2 - 0.750 Mvar 

 MW loss 0.0825 MW 0.0756MW 

 Mvar loss 0.0402 Mvar 0.0368Mvar 

Min bus voltage 0.9682pu 0.9774pu 

Max bus voltage 1.0000 pu 1.0000pu 

Mean voltage 0.9873pu 0.9926pu 

Standard deviation 0.01159 0.007986 

SSEV 0.020344 0.008151 

 MW loss reduction 63.32% 66.39% 

 Mvar loss reduction 60.59% 63.92% 

Designed Isc (Ik)
 

11.4073kA 11.4073kA 

Specified Isc (Ispec)
 

- 

Isc with DGs (IfDG)
 

11.9664kA 12.461kA 

 

In Case II, the optimal size/location pair is obtained with two optimally sized 1.85 MW 

and 1.5 MW generators consuming 0.9071Mvar and 0.6589Mvar located at bus number 
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61 and 9, respectively. A 66.39% power loss reduction is achieved compared with the 

base case. The shunt capacitors 0.950Mvar (located at bus 61) and 0.750Mvar (located 

at bus 9) provide all the reactive power demands of the generators locally.  

The enforcement of line loading constraint ensured that the limitation imposed by the 

line capacity rating is respected. The constraint on line loading Equation (4.10) is 

implemented by giving an appropriate weighting coefficient to the line loading index of 

Equation (6.26). In this case, the real power loss is given a higher weighting of 0.9 and 

the line loading index is given 0.1 thus, the power loss reduction has been given a 

higher preference. The enforcement of the line loading constraint resulted in the 

removal of the overload conditions noticed in the branches of the network (Figures 6.11 

and 6.12). However, this also resulted in an increase in the values of short-circuit 

current for both cases. The final values of short-circuit current (11.9664kA and 

12.461kA for Case I and Case II, respectively) following the connection of IG are 

higher than the specified value of the short-circuit current (11.90kA) limit for the 

network.  

The network voltage profiles are presented in Figure 6.13. An improvement in the 

network voltage profiles is obtained by the simultaneous integration of IG and shunt 

compensation capacitors in both Cases (the minimum bus voltage is improved from 

0.9092pu in the base case to 0.9682pu in Case I and 0.9771pu in Case II). Case II 

resulted in a better voltage profile compared with Case I due the increased in the 

penetration level of DG (88.11%). The best loss reduction and voltage profile 

improvement are obtained with the connection of two optimal DG size and fixed shunt 

compensation capacitors at the optimal locations (Case II). 
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Figure ‎6.13: Voltage profile of the 69-bus radial distribution network Scenario IV (with line loading 

constraint),  Case I (single DG) and Case II (two-DG) 

The results in Table 6.4 also show that the final values of short-circuit current 

(11.9664kA and 12.461kA for Case I and Case II, respectively) following the 

connection of IG are higher than the specified value of the short-circuit current 

(11.90kA) limit for the network.  

The apparent power (MVA) flow for all branches of the network is presented in Figures 

6.14 and 6.15. Clearly, the overloading of lines that occurs in the branches has been 

removed with the enforcement of constraints on line loading. There is also a drastic 

reduction in the apparent power injected from the grid due to the connection of 

distributed generation as shown in Figures 6.14 and 6.15. Case II resulted in a higher 

reduction in the apparent power flow (from the connection of two DG) compared to 

Case I.  
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Figure ‎6.14: 69-bus branch apparent power flow/ line loading Scenario IV (with line loading constraint), 

Case I (single DG) 

 

Figure ‎6.15: 69-bus branch apparent power flow/ line loading Scenario IV (with line loading constraint), 

Case II (two- DG) 

6.4.5 Scenario V: considering both constraints on short-circuit current and line 

loading 

The results of the MSPSO optimization process for this scenario involving Case I and II 

are presented in Table 6.5. In Case I, the optimal size/location is obtained with one 

1.45MW generator consuming 0.9217 Mvar located at bus number 61. A 58.69% power 

loss reduction is achieved compared to the base case. The shunt capacitor (0.950Mvar) 

provides above 100% reactive power of the generators locally at the optimal location. In 
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Case II, the optimal size/location pair is obtained with two 1.0 MW generators, each 

consuming 0.6389 Mvar located at bus number 61 and bus 60. A 61.85% power loss 

reduction is achieved compared to the base case. The shunt capacitors (0.650Mvar each) 

provide above 100% reactive power demands of the generators locally at the optimal 

locations. A comparison of scenarios II and V shows that the percent loss reduction 

(63.33%) obtained in scenario II, Case I is higher than the corresponding scenario V, 

Case I (58.69%). Similarly, for scenario II, case II the percent loss reduction (68.43%) 

is higher than that of scenario V, case II (61.85%). The lower figures of percent loss 

reductions obtained with scenario V are due to the enforcement of both short-circuit 

current (specified as 11.90kA) and line loading constraints.  

Table ‎6.5: MSPSO RESULTS; 69-BUS NETWORK SCENARIO V, CASE I (SINGLE GENERATOR) 

AND  CASE II (TWO GENERATORS) 

 Single DG With both short-circuit 

and line loading constraints;             

Case I 

Two DG With both short-

circuit and line loading 

constraints;   Case II 

Optimal bus location 1 61 61 

DG 1 MWs generated  1.45 MW 1.0MW 

DG 1 Mvars consumed  0.9217 Mvar 0.6389 Mvar 

Shunt capacitor var 1 0.950 Mvar 0.650 Mvar 

Optimal bus location 2 - 60 

DG 2 MWs generated  - 1.0 MW 

DG 2 Mvars consumed  - 0.6389 Mvar 

Shunt capacitor var 2 - 0.650 Mvar 

 MW loss 0.0929 MW 0.0858MW 

 Mvar loss 0.0452 Mvar 0.0414 Mvar 

Min bus voltage 0.9636pu 0.9690pu 

Max bus voltage 1.0000pu 1.0000pu 

Mean voltage 0.9843pu 0.9879pu 

Standard deviation 0.01399 0.01118 

SSEV 0.030308 0.018524 

 MW loss reduction 58.69% 61.85% 

 Mvar loss reduction 55.68% 59.41% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

11.90kA 

Isc with DGs (IfDG)
 

11.8312kA 11.8273kA 
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The enforcement is to satisfy the limitations imposed by switchgear rating and the line 

loading capacity. An improvement in the network voltage profiles are obtained by the 

simultaneous integration of IG DG and shunt compensation capacitors with both cases 

as shown in Figure 6.16. The minimum bus voltage is improved from 0.9092pu in the 

base case to 0.9636pu and 0.9690pu for Case I and II, respectively. Case II resulted in a 

better voltage profile compared to Case I with an SSEV value of 0.018524. This result 

is in agreement with the best mean voltage and standard deviation values (0.9879pu and 

0.01118, respectively) obtained again by Case II. The best loss reduction and voltage 

profile improvement are obtained with the connection of two optimal DG size and fixed 

shunt capacitor compensation at the optimal locations (Case II). 

Figure ‎6.16: Voltage profile of the 69-bus radial distribution network Scenario V (with both constraints) 

Case I (single DG) and Case II (two- DG) 

Table 6.3 also shows that the final values of short-circuit current (11.8312kA and 

11.8273kA for Case I and II, respectively) following the connection of IG are lower 

than the specified value of the short-circuit current (11.90kA) limit for the network. The 

enforcement of short-circuit constraint ensured that the limitation imposed by the 

switchgear rating is respected (Equations 6.16 and 6.17). In addition, the enforcement of 

the constraints of line loading ensured that the apparent power flow in the branches 

remains within their allowable limits as shown Figure 6.17 and 6.18.  

It is evident that the connection of DG resulted in a drastic reduction in the apparent 

power injected from the grid and the apparent power flow in some branches of the 

network. Some branches operate close to their maximum limits, but with no branch of 
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the network overloaded. Case II resulted in a higher reduction in the apparent power 

injected from the grid compared to the Case I (due to the connection of two DG).  

Figure ‎6.17: 69-bus branch apparent power flow/ line loading Scenario V (with both constraints) Case I 

(single DG) 

 

Figure ‎6.18: 69-bus branch apparent power flow/ line loading Scenario V (with both constraints) Case I 

(single DG) 

A summary of MSPSO results for the single optimization process is presented in Table 

6.6 for all the studied scenarios. It is evident from the Table 6.6 that neglecting the 

constraint imposed by switchgear rating and the line loading limits, the capacity of the 

network to absorb new generations and thus the technical benefits of the connection of 

DG is overestimated.   
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Table ‎6.6: MSPSO SUMMARY RESULTS; 69-BUS NETWORK SINGLE OBJECTIVE 

 Optimal 

bus 

location(s) 

Optimum DG size (s) 

(MW/Mvar) 

Power 

loss redu- 

ction (%) 

SSEV Short-

circuit 

current 

 

 

Case 

I 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 61 1.85/0.9071 63.32 0.020344 11.9664 

III 63 1.65/0.7635 62.96 0.023701 11.894 

IV 61 1.85/0.9071 63.32 0.020344 11.9664 

V 61 1.45/0.9217 58.69 0.03038 11.8312 

 

Case 

II 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 61/22 1.85/0.9071;0.33/0.2155 68.43 0.008387 11.9913 

III 64/60 0.843/0.4001;0.843/0.4001 63.36 0.023318 11.7285 

IV 61/9 1.85/0.9071;1.5/0.6589 66.39 0.008151 12.461 

V 60/61 1/0.6389;1/0.6389 61.85 0.018524 11.8273 

 

6.5 Optimal Size/Location of IG with Shunt Capacitors Compensation; Multi-

Objective Optimisation 

Renewable DG of the type with electronic converter interfaced to the electric grid can 

provide voltage support and regulate the voltage at the PCC in a similar way to that of 

synchronous generator based DG (studies in chapters 4 and 5). However, this is not 

possible with a fixed speed induction generator DG that is directly interfaced with the 

grid. Asynchronous induction machines rely on reactive power support from the 

network to which they are connected. Thus, a fixed speed IG cannot be modelled as PV 

generator to contribute to network voltage support since it does not have enough 

reactive power capability to hold its terminal voltage at a specified value. A multi-

objective (MO) implementation (considering the improvement in the voltage profile as 

one of the objectives) can help improve the network voltage profile when IG based 

distributed generation is employed in the network. Multi-objective problems are likely 

to be associated with conflicting objectives requiring a trade-off solution. 

In this multi-objective formulation, the MSPSO algorithm minimizes the real power 

loss and network voltage deviations while enforcing the constraints of short circuit-

current rating of switchgear and line loading capacity.   

The objective function ( ) to be optimized can be written as: 
obj

f
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Minimise  )(
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            (‎6.30)  

where: PL is the objective of real power loss reduction given in Equation (6.29),  f(v) 

and f(IC) are the objective of voltage optimisation and the quadratic index that 

transformed the inequality constraint of line loading into an objective  as defined in 

Equations (5.2) and (6.29) respectively. These objectives are repeated here in Equations 

(6.31) - (6.34) for convenience.  
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Where k1, k2 and k3 are weighting factors selected such that their values must sum to 

unity. These are used to assign a certain importance to each of the objectives considered 

in the study and their values may vary according to engineering judgment [33]. In this 

section, when the objectives of loss reduction and voltage optimization only are 

considered, they are given equal weighting (values of k1 = k2= 0.5 are used) similar to 

the studies in chapters 4 and 5. The voltages at the buses are bound by the constraints in 

Equation (4.9) related to upper and lower voltage limit violations. The constraint on 

short-current rating of the switchgear and line loading capacity are also enforced where 

applicable. When it is required to enforce the line loading constraint, the weighting 

factors are adjusted accordingly to accommodate such additional constraint such that 

their values must sum to unity (values of k1 = k2= 0.45 and k3 = 0.10 are used).   

This investigation involves the same five scenarios (and Cases) considered previously in 

the single objective study of section 6.4. The optimization results are recorded after ten 

independent runs of the MSPSO algorithm using the same parameters setting of section 

6.4. 
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6.5.1 Scenario I: base network with no generation 

This scenario is common to both single and multi-objective studies. The results for the 

base test network are as presented in Table 6.1 (section 6.4).  

6.5.2 Scenario II: ignoring constraints on short-circuit current and line loading; 

multi-objective optimisation  

The results of MSPSO for this scenario are presented in Table 6.7. In Case I (one 

generator), the optimal size/location is obtained with one 3.0MW generator consuming 

1.509 Mvar located at bus number 59. A 46.42% power loss reduction is achieved 

compared to the base case and the shunt capacitor (1.550 Mvar) provides all the reactive 

power demand of the generator locally at the optimal location.  

Table ‎6.7: MSPSO RESULTS; 69-BUS NETWORK SCENARIO II, CASE I (SINGLE GENERATOR) 

AND CASE II (TWO GENERATORS); MULTI-OBJECTIVE OPTIMISATION  

 Single DG Without constraints; 

Case I 

Two DG Without constraints; 

Case II 

Optimal bus location 1 59 63 

DG 1 MWs generated  3.0 MW 2.0 MW 

DG 1 Mvars consumed  1.509 Mvar 0.9955 Mvar 

Shunt capacitor var 1 1.550 Mvar 1.050 Mvar 

Optimal bus location 2 - 18 

DG 2 MWs generated  - 0.843 MW 

DG 2 Mvars consumed  - 0.4001 Mvar 

Shunt capacitor var 2 - 0.450 Mvar 

 MW loss 0.1205 MW 0.0762MW 

 Mvar loss 0.0542 Mvar 0.0375 Mvar 

Min bus voltage 0.9750pu 0.9918pu 

Max bus voltage 1.0150 pu 1.0060pu 

Mean voltage 0.9938pu 0.9996pu 

Standard deviation 0.01031 0.0040 

SSEV 0.009904 0.001316 

 MW loss reduction 46.42% 66.12% 

 Mvar loss reduction 46.86% 63.24% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

- 

Isc with DGs (IfDG)
 

12.2539kA 12.1348kA 
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In Case II (two generators), the optimal size/location pair is obtained with two 2.0 MW 

and 0.843 MW generators consuming 0.9955Mvar and 0.4001 Mvar located at bus 

number 63 and 18, respectively. A 66.12% power loss reduction is achieved in this case 

compared with the base case. Moreover, the shunt capacitors (1.550 Mvar and 

0.450Mvar) provide the entire reactive power demand of the generators locally at the 

optimal locations 63 and 18 respectively.  

The improvement in the network voltage profiles is presented in Figure 6.19. The 

minimum bus voltage is improved from 0.9092pu in the base case to 0.9938pu and 

0.9996pu in Case I and II, respectively. The best improvement in the voltage profiles is 

obtained by Case II with a calculated SSEV value of 0.001316. This result is consistent 

with the best mean voltage and standard deviation (0.9996pu and 0.0040, respectively) 

achieved in Case II with the voltages virtually improved to 1pu.  

The voltage profile improvement is greater than that obtained in the corresponding 

scenario in a single objective study (section 6.4.2). The loss reduction figures, however, 

are lower, reflecting the fact that, in multi-objective optimization study, the 

improvement in one objective (voltage minimisation) would usually result in the 

worsening of another objective (power loss reduction). 

 

Figure ‎6.19: Voltage profile of the 69-bus radial distribution network Scenario II (no constraints),  Case I 

(single DG) and Case II (two-DG); multi-objective optimisation  
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The results in Table 6.7 also show that the final values of short-circuit current 

(12.2539kA and 12.1348kA for Case I and II, respectively) following the connection of 

IG are greater than the computed value of the short-circuit current (11.4073kA) for the 

base case network. Thus, the connections of IG DG results in an increase in the value of 

short-circuit current.  

Figures 6.20 and 6.21 show the apparent power (MVA) flow for all branches of the 

network for Case I and Case II, respectively. The connection of DG drastically alters the 

apparent power flow in the network and with some branches operating close to their 

maximum limits. In Figure 6.24, it is evident that the inclusion of voltage optimization 

in the objective function results in the overloading of some branches of the network 

(branches 61 and 62). There is also a drastic reduction in the apparent power injected 

from the grid due to the connection of DG.  

 

Figure ‎6.20: 69-bus branch apparent power flow/ line loading Scenario II (no constraints), Case I(single 

DG); multi-objective optimisation  
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Figure ‎6.21: 69-bus branch apparent power flow/ line loading Scenario II (no constraints), Case II (two- 

DG); multi-objective optimisation  

6.5.3 Scenario III: considering the short-circuit current constraint only; multi-

objective optimisation  

The optimal size/location results for this scenario using MSPSO are presented in Table 

6.8. In Case I, the optimal size/location is obtained with one 2.0MW generator 

consuming 0.9955Mvar located at bus number 65. A 46.95% power loss reduction is 

achieved compared to the base case, with a shunt capacitor (1.05Mvar) providing 

slightly above 100% reactive power of the generator locally at the optimal bus location. 

In Case II, the optimal size/location pair is obtained with two 1.0 MW generators, each 

consuming 0.6389Mvar connected at bus number 61 and bus number 64. A 61.23% 

power loss reduction is achieved compared to the base case. Two shunt capacitors 

(0.650Mvars each) provide all the reactive power demands of the generators at the 

optimal locations.  

The network voltage profiles are presented in Figure 6.23. The minimum bus voltage is 

improved from 0.9092pu in the base case to 0.9690pu (Case I and Case II). The best 

SSEV value (0.017415) is obtained by Case I. This is in agreement with the best mean 

voltage and a standard deviation (0.9903pu and 0.0113, respectively) also obtained in 

Case I.  

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

branch number

a
p
p
a
re

n
t 
p
o
w

e
r 

flo
w

 (
M

V
A

)

 

 

max apparent power flow without DG

max apparent power flow with DG

max allowable apparent power flow of branches



Chapter 6: Induction Generator Based DG and Shunt Compensation Capacitors 

Integration Usng MSPSO Algorithm 

 

147 

 

Table ‎6.8: MSPSO RESULTS; 69-BUS NETWORK SCENARIO III, CASE I (SINGLE GENERATOR) 

AND  CASE II (TWO GENERATORS); MULTI-OBJECTIVE OPTIMISATION 

 1DG With short-circuit constraint 

Only   

Case I 

2DG With short-circuit 

constraint only 

 Case II 

Optimal bus location 1 65 64 

DG 1 MWs generated  2.0 MW 1.0MW 

DG 1 Mvars consumed  0.9955 Mvar 0.6389 Mvar 

Shunt capacitor var 1 1.050 Mvar 0.650 Mvar 

Optimal bus location 2 - 61 

DG 2 MWs generated  - 1.0 MW 

DG 2 Mvars consumed  - 0.6389 Mvar 

Shunt capacitor var 2 - 0.650 Mvar 

 MW loss 0.1193 MW 0.0872MW 

 Mvar loss 0.0591 Mvar 0.0422 Mvar 

Min bus voltage 0.9690pu 0.9690pu 

Max bus voltage 1.008pu 1.0000pu 

Mean voltage 0.9903pu 0.9884pu 

Standard deviation 0.0113 0.01103 

SSEV 0.017415 0.017537 

 MW loss reduction 46.95% 61.23% 

 Mvar loss reduction 42.06% 58.63% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

11.90kA 

Isc with DGs (IfDG)
 

11.8875kA 11.8111kA 

 

From the results in Table 6.8 it is obvious that the final values of short-circuit current 

(11.8875kA and 11.8111kA for Case I and Case II, respectively) with the connection of 

the generators are lower than the specified value of the short-circuit current (11.90kA) 

limit for the network. The enforcement of short-circuit constraints ensured that the 

limitation imposed by the switchgear rating is respected. 
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Figure ‎6.22: Voltage profile of the 69-bus radial distribution network Scenario III (with short-circuit 

constraints), Case I (single DG) and Case II (two-DG); multi-objective optimisation 

This, however, results in violations of the line loading constraint as shown Figure 6.26 

(branches 61 and 62, 63 and 64 for case I) and 6.27 (branches 61, 62 and 63 for case II). 

It is also evident that the connection of DG drastically alters the apparent power flow in 

some branches of the network with some branches operating close to their maximum 

limits.  

 

Figure ‎6.23: 69-bus branch apparent power flow/ line loading Scenario III( with short-circuit constraint), 

Case I (single DG); multi-objective optimisation  

10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

1.1

bus number

v
o

lt
a

g
e

 (
p

u
)

 

 

min bus voltage

max bus voltage

Scenario I (base case)

MO-Scenario III Case I

MO-Scenario III Case II

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 branch number

a
p
p
a
re

n
t 
p
o
w

e
r 

flo
w

 (
M

V
A

)

 

 

max apparent power flow without DG

max apparent power flow with DG

max allowable apparent power flow of branches



Chapter 6: Induction Generator Based DG and Shunt Compensation Capacitors 

Integration Usng MSPSO Algorithm 

 

149 

 

 

Figure ‎6.24: 69-bus branch apparent power flow/ line loading Scenario III (with short-circuit constraint), 

case II (two-DG); multi-objective optimisation 

There is also a substantial reduction in the apparent power injected from the grid due to 

the connection of distributed generation as shown in Figures 6.26 and 6.27.  

6.5.4 Scenario IV: considering line loading constraint only; multi-objective 

optimisation 

The results of the MSPSO optimization process for this scenario are presented in Table 

6.9. In Case I, the optimal size/location is obtained with one 3.0 MW generator 

consuming 1.509 Mvar located at bus number 59. A 46.42% power loss reduction is 

achieved compared with the base case. Moreover, the shunt capacitor (1.550Mvar) 

provides the entire reactive power demand of the generator at the optimal location 

locally. In Case II, the optimal size/location pair is obtained with two 2.0MW and 

3.0MW generators consuming 0.9955 Mvar and 1.509Mvar located at bus number 61 

and bus number 9, respectively. A 54.82% power loss reduction is achieved with the 

shunt capacitors (1.05Mvar and 1.550Mvar) providing the entire reactive power 

demands of the generators at their optimal locations locally. 
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Table ‎6.9: MSPSO RESULTS; 69-BUS NETWORK SCENARIO IV (WITH LINE LOADING CONST- 

RAINT), CASE I (SINGLE DG) AND CASE II (TWO-DG); MULTI-OBJECTIVE OPTIMISATION 

 Single DG With line loading 

constraint Only; Case I 

Two DG With line loading 

constraint only; Case II 

Optimal bus location 1 59 61 

DG 1 MWs generated  3.0 MW 2.0MW 

DG 1 Mvars consumed  1.509 Mvar 0.9955 Mvar 

Shunt capacitor var 1 1.550 Mvar 1.050 Mvar 

Optimal bus location 2 - 9 

DG 2 MWs generated  - 3.0 MW 

DG 2 Mvars consumed  - 1.509 Mvar 

Shunt capacitor var 2 - 1.50 Mvar 

 MW loss 0.1205 MW 0.1016MW 

 Mvar loss 0.0542 Mvar 0.0507Mvar 

Min bus voltage 0.9750pu 0.9868pu 

Max bus voltage 1.0150 pu 1.007pu 

Mean voltage 0.9938pu 0.9985pu 

Standard deviation 0.01031 0.006069 

SSEV 0.009904 0.002651 

 MW loss reduction 46.42% 54.82% 

 Mvar loss reduction 46.86% 50.29% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

- 

Isc with DGs (IfDG)
 

12.2539kA 13.635kA 

 

The network voltage profiles are presented in Figure 6.25. An improvement in the 

network voltage profiles is obtained with the minimum bus voltage improved from 

0.9092pu in the base case to 0.9750pu and 0.9868pu, for case I and II respectively. The 

best SSEV figure of 0.002651 is obtained in Case II. This is in agreement with the best 

of the mean voltage and the voltage standard deviation figures of 0.9985pu and 

0.006069 respectively also obtained with Case II.  
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Figure ‎6.25: Voltage profile of the 69-bus radial distribution network Scenario IV (with line loading 

constraint):  Case I (single generator) and Case II (two generators); multi-objective optimisation  

The line loading constraint Equation (4.10) is implemented by giving an appropriate 

weighting coefficient to the line loading index of Equation (6.26). The real power loss is 

assigned a weighting of 90%, and the line loading index is assigned a 10% weighting. 

The apparent power (MVA) flows for all branches of the network are presented in 

Figures 6.26 and 6.27. The enforcement of line loading constraints ensured that the 

limitation imposed by the line capacity rating (Equation 4.10) is respected. It is evident 

from Figures 6.26 and 6.27 that the enforcement of the line loading constraints resulted 

in the removal of the overload noticed previously in Figures 6.23 and 6.24.  

The results in Table 6.9 also show that the final values of short-circuit current of 

12.2539kA and 13.635kA (for Case I and Case II, respectively) with the connection of 

the induction generators are higher than the specified value of the short-circuit current 

(11.90kA) limit for the network. The enforcement of line loading constraint only 

resulted in the increased in the short-circuit current of the network because of the 

relocation of the DG to a new optimal location. There is also a substantial reduction in 

the apparent power injected from the grid due to the connection of distributed 

generation as shown in Figures 6.26 and 6.27.  
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Figure ‎6.26: 69-bus branch apparent power flow/ line loading Scenario IV (with line loading constraint), 

Case I (single DG); multi-objective optimisation  

Figure ‎6.27: 69-bus branch apparent power flow/ line loading Scenario IV (with line loading constraint), 

Case II (two- DG); multi-objective optimisation  
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6.5.5 Scenario V: considering both constraints on short-circuit current and line 

loading; multi-objective optimisation 

The results of the MSPSO optimization process for this scenario are presented in Table 

6.10. In Case I, the optimal size/location is obtained with one 1.45MW generator 

consuming 0.9217 Mvar located at bus number 61. A 58.69% power loss reduction is 

achieved with the shunt capacitors providing the entire reactive power of the generators 

locally. In Case II, the optimal size/location pair is obtained with two optimally 1.0 MW 

generators, each consuming 0.6389 Mvar located at bus number 61 and bus number 60. 

A 61.85% power loss reduction is achieved in this case with the shunt capacitors 

providing the entire reactive power requirement of the generators locally.  

Table ‎6.10: MSPSO RESULTS; 69-BUS NETWORK SCENARIO IV (WITH BOTH CONSTRAINTS), 

CASE I (SINGLE DG) AND CASE II (TWO-DG); MULTI-OBJECTIVE OPTIMISATION  

 1DG With both short-circuit and 

line loading constraints:             

Case I 

2DG With both short-circuit 

and line loading constraints:   

Case II 

Optimal bus location 1 61 61 

DG 1 MWs generated  1.45 MW 1.0MW 

DG 1 Mvars consumed  0.9217 Mvar 0.6389 Mvar 

Shunt capacitor var 1 0.950 Mvar 0.650 Mvar 

Optimal bus location 2 - 60 

DG 2 MWs generated  - 1.0 MW 

DG 2 Mvars consumed  - 0.6389 Mvar 

Shunt capacitor var 2 - 0.650 Mvar 

 MW loss 0.0929 MW 0.0858MW 

 Mvar loss 0.0452 Mvar 0.0414 Mvar 

Min bus voltage 0.9636pu 0.9690pu 

Max bus voltage 1.0000pu 1.0000pu 

Mean voltage 0.9843pu 0.9879pu 

Standard deviation 0.01399 0.01118 

SSEV 0.030308 0.018524 

 MW loss reduction 58.69% 61.85% 

 Mvar loss reduction 55.68% 59.41% 

Designed Isc (Ik)
 

11.4073kA
 

 

 

11.4073kA 

Specified Isc (Ispec)
 

11.90kA 

Isc with DGs (IfDG)
 

11.8312kA 11.8273kA 
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The network voltage profiles are shown in Figure 6.28. An improvement in the network 

voltage profiles is achieved with the minimum bus voltage improved from 0.9092pu in 

the base case to 0.9636pu and 0.9690pu for Case I and Case II, respectively. The best 

SSEV, mean voltage and standard deviation values of 0.018524, 0.9879pu and 0.01118, 

respectively, are obtained with Case II.  

Figure ‎6.28: Voltage profile of the 69-bus radial distribution network Scenario V (with both constraints), 

Case I (single generator) and Case II (two generators); multi-objective optimisation 

Figure ‎6.29: 69-bus branch apparent power flow/ line loading Scenario V (with both constraints), Case I 

(single DG); multi-objective optimisation  
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The results in Table 6.10 show that the final values of short-circuit current following the 

connection of DG are now lower than the specified value of the short-circuit current 

(11.90kA) limit for the network. 

 

Figure ‎6.30: 69-bus branch apparent power flow/ line loading Scenario V (with both constraints), Case II 

(two- DG) 

In addition, the enforcement of the constraint on line loading ensured that the apparent 

power flow in the branches remains within their allowable limits as shown in Figures 

6.29 and 6.30. Some branches are still operating close to their maximum limits, but with 

no branch of the network overloaded. Case II resulted in a higher reduction in the 

apparent power injected from the grid, compared to the Case I, due to the connection of 

two DGs. 

A summary of MSPSO results of the multi-objective optimization investigation is 

presented in Table 6.11 for all the studied scenarios. It is clear from these results that the 

capacity of the network to absorb new generations and the technical benefits of DG can 

be overestimated if the constraints imposed by switchgear rating and the line loading 

limit are neglected.  

Finally, a comparison of the results of the single-objective and multi-objective 

optimisation studies is presented in Tables 6.12 and 6.13. It is evident from both tables 

that the multi-objective study resulted in a higher penetration level of the IG DG in 

almost all the scenarios of Case I and II compared to a single objective study. In 

scenario V of Case I, both single and multi-objective produced the same results while 
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scenario V of Case II also produced the same results for single and multi-objective 

optimisation.  

Table ‎6.11: MSPSO SUMMARY RESULTS; 69-BUS NETWORK MULTI OBJECTIVE 

 Optimal 

bus 

location(s) 

Optimum DG size (s) 

(MW/Mvar) 

Power 

loss redu- 

ction (%) 

SSEV Short-

circuit 

current 

(kA) 

 

 

Case 

I 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 59 3/1.509 46.42 0.009904 12.2539 

III 65 2.0/0.9955 46.95 0.017415 11.8875 

IV 59 3/1.509 46.42 0.009904 12.2539 

V 61 1.45/0.9217 58.69 0.03038 11.8312 

 

Case 

II 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 63/18 2.0/0.9955;0.843/0.4001 61.12 0.001316 12.1348 

III 64/61 1.0/0.6389;1.0/0.6389 61.23 0.017537 11.8111 

IV 61/9 2/0.9955;3/1.509 54.82 0.002651 13.6350 

V 60/61 1/0.6389;1/0.6389 61.85 0.018524 11.8273 

 

Table ‎6.12: MSPSO SUMMARY RESULTS; 69-BUS NETWORK SINGLE AND MULTI-OBJECTIVE 

OPTIMISATION CASE I 

 Optimal 

bus 

location(s) 

Optimum DG size (s) 

(MW/Mvar) 

Power loss 

reduction (%) 

SSEV Short-

circuit 

current 

 

 

Case 

I SO 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 61 1.85/0.9071 63.32 0.020344 11.9664 

III 63 1.65/0.7635 58.74 0.024907 11.894 

IV 61 1.85/0.9071 63.32 0.020344 11.9664 

V 61 1.45/0.9217 58.69 0.03038 11.8312 

 

 

Case 

I MO 

 

 

Scenarios 

I - - - 0.80993 11.4073 

II 59 3/1.509 46.42 0.009904 12.2539 

III 65 2.0/0.9955 46.95 0.017415 11.8875 

IV 59 3/1.509 46.42 0.009904 12.2539 

V 61 1.45/0.9217 58.69 0.03038 11.8312 
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Table ‎6.13: MSPSO SUMMARY RESULTS; 69-BUS NETWORK SINGLE AND MULTI-OBJECTIVE 

CASE II 

 Optimal 

bus 

location(s) 

Optimum DG size (s) 

(MW/Mvar) 

Power 

loss redu- 

ction (%) 

SSEV Short-

circuit 

current 

 

Case 

II 

SO 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 61/22 1.85/0.9071;0.33/0.2155 68.43 0.008387 11.9913 

III 64/60 0.843/0.4001;0.843/0.4001 63.36 0.023318 11.7285 

IV 61/9 1.85/0.9071;1.5/0.6589 65.41 0.008099 12.461 

V 60/61 1/0.6389;1/0.6389 61.85 0.018524 11.8273 

 

Case 

II 

MO 

 

 

Scenarios 

I - - - 0.0993 11.4073 

II 63/18 2.0/0.9955;0.843/0.4001 61.12 0.001316 12.1348 

III 64/61 1.0/0.6389;1.0/0.6389 61.23 0.017537 11.8111 

IV 61/9 2/0.9955;3/1.509 54.82 0.002651 13.6350 

V 60/61 1/0.6389;1/0.6389 61.85 0.018524 11.8273 

 

6.6 Additional Test case for Comparative Study 

This simple study is considered to allow direct comparisons of the results obtained from 

the MSPSO algorithm with previously published solutions obtained using analytical 

techniques [12, 59, 114] and PSO algorithm [59, 114]. The optimization studies in [12], 

[59] and [114] were limited to a single-objective function study minimising network 

losses (Equation 6.29). In all these studies, the reactive power requirement of the 

induction machine was calculated by an approximate empirical formula given by 

)04.05.0(
2


DGDG

PQ        (‎6.35). 

Where, QDG and PDG are the reactive power consumed and real power injected into the 

grid by the IG, respectively. Thus, given the generator output power, the reactive power 

requirement can be computed. Additionally, no shunt compensation capacitors were 

considered in these studies as part of the network optimization problem. Table 6.12 

shows the optimal solutions (in terms of network loss reduction) achieved by all four 

studies. 
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Table ‎6.14: COMPARISON OF OPTIMAL DG SIZE AND LOCATION RESULTS TO THOSE OF 

PREVIOUS STUDIES 

 69-bus network 

Analytical 

Method 

[12] 

Analytical 

Method 

[59] 

Analytical 

Method 

[114] 

PSO-W 

Algorithm 

[59] 

PSO-W 

Algorithm 

[114] 

Proposed 

MSPSO 

Algorithm 

Optimum bus 

location 

56 56 61 56 61 61 

Optimum DG size 

(MW) 

1.78 1.36 1.43 1.72 1.72 1. 50 

Reactive power 

consumed (Mvar) 

0.630 0.574 0.583 0.618 0.618 0.6589 

% MW loss reduction 36.86% 25.33% 28.62% 24.73% 29.78% 24.68% 

 

Comparisons of the results obtained by the three methods show that [12] and [59] give 

identical results in terms of the optimal location of the DG unit. While the proposed 

MSPSO algorithm and [114] produce a different optimal location of the DG unit. The 

three previous studies [12, 57 and 116] considered the induction generator size as a 

continuous variable and computed the reactive power requirement of the generator from 

the approximate empirical formula of Equation (6.35). This results in an 

underestimation of the reactive power required by the generators and an overestimation 

of the percentage power loss reduction figure. The proposed multi search PSO 

algorithm uses a pre-defined list of practical induction generator sizes to define the 

discrete DG size variable. The computation of the reactive power required by the 

generator is based on the per phase equivalent circuit of the machine using the 

generator’s‎ parameters.‎ The‎ result‎ is‎ a‎ substantially‎ more‎ accurate‎ estimated‎ of‎ the‎

reactive power required by the induction generator when compared with the use of the 

approximate empirical formula.  

In conclusion, it is worth mentioning that the model of the induction generator 

implemented in this study differs from those proposed in [115, 116]. In these previous 

studies, the models for each class of wind turbine generator units were developed to 

facilitate the computation of real and reactive power outputs for a specified wind speed 

and terminal voltage.  This implies that both methods suppose prior knowledge of the 

WT‎ features‎ using‎ the‎ turbine’s‎ power‎ curve,‎ usually,‎ supplied‎ by‎ the‎ manufacturer. 

The model considered in this work, facilitates the computation of real and reactive 

power output for a specified generator rating (power output) and operating terminal 
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voltage. The slip is varied from zero at certain step intervals, and the corresponding 

output power is computed. The process is continued until the difference between the 

computed output power and the specified output power is within a specified error 

tolerance thus providing a simple and effective technique that can easily be incorporated 

into a network integration exercise involving induction generator based DG. 

6.7 Summary 

The integration of induction generator based DG in a power distribution network was 

investigated in this Chapter using the proposed MSPSO coupled with an algorithmic 

procedure that computes the reactive power requirement of the induction generator. The 

induction generator reactive power calculation procedure was interfaced with 

MATPOWER AC power flow software and the MSPSO to execute the optimization 

process. Unlike most previous studies, this investigation also considered the integration 

of shunt compensation capacitors as part of the optimization problem. The shunt 

compensation capacitors provided the reactive power requirement of the machine 

locally, resulting in a lower network reactive power flow and improved network losses.  

The proposed algorithm was tested on the standard 69-bus benchmarking medium 

voltage radial distribution network used previously in Chapters 4 and 5. The 

investigation was conducted considering relevant network security constraints. Two 

studies were carried out: a single-objective study considering network loss reduction 

only and a multi-objective study considering network loss reduction and voltage profile 

improvement. Five scenarios were considered in each study, each with two Cases (Case 

I with one DG and Case II with two DGs). Shunt compensation capacitor is included as 

part of the optimization process so as to provide the entire reactive power required by 

the induction generator locally at the point of connection. The Results show that the best 

loss reduction and enhanced voltage profile is obtained when more than one optimally 

sized and located generators and shunt compensation capacitors are considered. The 

results of the study with enforcement of network constraints of short-circuit and line 

loading show that the capacity of the network to absorb new generations and the 

technical benefits of DG can be overestimated if these constraints are neglected. 

In order to allow direct comparison of the MSPSO results with those of previously 

published studies, a mere single-objective study was also considered (minimising 

network real power loss). Results have shown that the consideration of the generator 
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size as a continuous variable and the use of an approximate empirical formula in those 

previous studies to compute the reactive power requirement of the generator lead to the 

underestimation/overestimation of the reactive power requirement of the machine and 

thus an overestimation/underestimation of the benefits of DG. In contrast, the proposed 

MSPSO was shown to be a useful optimization tool that can accurately handle this 

category of problem. 

In the chapter that follows, the application of the proposed MSPSO to an actual 

distribution network in Nigeria is presented.  
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CHAPTER 7  

 

Integration of DG in Nigerian Distribution Network  

 

7.1 Background 

The‎ Nigerian‎ Electricity‎ Regulatory‎ Commission‎ (NERC)‎ is‎ Nigeria’s‎ independent‎

regulatory agency for the Nigeria Electricity Supply Industry (NESI) established by the 

Electric Power Sector Reform Act (EPSRA) 2005. The Act provides the legal and 

regulatory framework for the electricity supply industry in Nigeria. It empowers NERC 

to regulate the NESI, comprising the Generation, Transmission and Distribution/Retail 

sectors[117]. The distribution system company (Disco) was unbundled into 11 

independent companies which are free to procure additional (non-grid) power for their 

customers. A new procurement of power into a particular distribution network is 

governed‎ by‎ NERC’s‎ Embedded Generation (EG) regulation. The regulation covers 

issues such as distribution planning, connection requirements, technical and non-

technical losses, commissioning procedure, commercial arrangement, and so forth.  

In Nigeria DG is referred to as Embedded Generation (EG) simply, defined as a 

generator that is directly connected to the distribution network operated by a 

distribution licensee. Here, the generators are connected directly to or near the load 

centre on the distribution network, i.e., at 33kV, 11kVor 0.415kV[118]. The local 

industry‎ definition‎ of‎ embedded‎ generation‎ is‎ “The generation of electricity that is 

directly connected to and evacuated through a distribution system which is connected to 

the transmission network operated by a System Operations License”[119].  

In Nigeria, there are currently 3 EG Licenses with a total licensed capacity of 374 MW 

but are yet to come into operation, and their current locations are depicted in Figure 7.1. 

The part 3 section (1) (a) of the NERC regulations on EG, allows the connection of 

small size units having a nameplate rating greater than 1MW and not more than 6MW 

to be connected to 11kV medium distribution voltage. Moreover, large size units having 

a nameplate rating greater than 6MW and not more than 20MW is to be connected to 

33kV medium distribution voltage. 
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Figure ‎7.1: Nigeria Power Sector Outlooks – National [120] 

7.2 Prospect for DG Integration in the Nigerian Network  

In response to the problem of epileptic power supply besieging the country, the 

Nigerian government has set an aspiration power generation target of 40,000MW by the 

year 2020.  The country currently relied on its bulk power generation from hydro and 

thermal stations with a total installed capacity of 6,504 MW and total licensed capacity 

of 10,552 MW. These bulk power stations are augmented with additional generations of 

the grid independent power producers (IPPs), National Integrated Power Projects 

(NIPPs), and Embedded Generation (EG). The On-Grid IPPs with total installed 

capacity of 1,899MW and total licensed capacity of 12,324 MW, the off-grid IPPs with 

total estimated installed capacity of 111.15MW and total licensed capacity of 274.5 

MW. The NIPP projects with a total installed capacity of 750 MW and total licensed 

capacity of 4,180 MW. The EG licences have a total installed capacity of 374 MW but 

are yet to be in operation. Thus, the total estimated generating (operating and non-

operating) capacity stood at 27,704.5 MW [120].  The daily peak delivery is estimated 

to be 4300 MW.  
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From the above analysis, EG constitutes only about 1.35% of the estimated total 

generation. The inabilities of the expected generations to be delivered are highly linked 

to some of the following hurdles; 

 Access to gas, gas prices and gas supply framework 

 Transmission network- losses and dilapidated infrastructure 

 Maintenance turnaround of the existing national DISCOs 

 Funding for the NIPP projects and  

 Financing for the IPPs 

The integration of DG (EG) in the existing networks will help the government achieve 

the national aspirations within a shorter time, reduce technical losses because of the 

proximity of DG to the network load, facilitating exchange of power between IPPs and 

DISCOs as excess power from the IPPs can be sold to DISCOs. In addition, there will 

be healthy competition in the market, resulting in the probable reduction of electricity 

prices with improved quality of services for the consumers. 

In line with the advantages highlighted above, a fieldwork study was conducted on one 

of the existing Nigerian DISCOs MV distribution networks. Relevant network data 

were collated for the purpose of modelling and simulation of the network. The network 

was modelled and simulated with the proposed MSPSO algorithm and results validated 

with‎commercial‎power‎system‎analysis‎software‎‘ERACS'. 

7.3 Modelling Lines Series impedance and Shunt admittance for Nigerian 

Network   

The determination of the series and the shunt impedances of for overhead and 

underground lines are critical steps before the analysis of a distribution feeder can begin 

[104].‎ The‎ available‎ lines’‎ data‎ obtained‎ from‎ the‎ fieldwork‎ study‎ are‎ related‎ to‎ the‎

conductor types and sizes. This section presents the mathematical formulations used in 

the computation of the lines (overhead and underground) impedance.     

7.3.1 Series impedance for overhead and underground lines 

The series impedance of the distribution line consists of the resistance of the conductors 

and the self- and mutual inductive reactance resulting from the magnetic fields 

surrounding the conductors [104]. The resistance component for the conductors is 

commonly obtained from a table of conductor data provided by the manufacturers of 
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such conductors. This data are also available from alternative literature sources[121] 

and[104] an example of which is provided in appendix C Table C.8. 

7.3.1.1  Series impedance for overhead lines   

The‎ phase‎ impedance‎ of‎ the‎ overhead‎ line‎ can‎ be‎ computed‎ using‎ the‎ Carson’s‎

equations [121] based on the general overhead construction configuration given in [121] 

as in appendix C Table C.8.  Equation (7.1) gives the phase impedance matrix for a 

three-wire delta line determined by the application of Carson's equations 



























ccz
cb

zcaz

bc
z

bb
z

bc
z

acz
ab

zaaz

abc
z  Ω/mile.        (‎7.1) 

The self- and mutual impedances for the phase impedance matrix of Equation (7.1) 

derived from the computation of inductive reactance [104] at an assumed frequency of 

50Hz, and conductor length of 1 mile are given by the Equations (7.2) and (7.3) 

respectively. 

mile

i
GMR

j
i

r
ii

z /
1

ln10111.0         (‎7.2)  

mile

ij
D

j
ij

z /
1

ln10111.0          (‎7.3) 

Where, r is the resistance in ohm/mile, and GMRi is the Geometric Mean Radius of 

conductor i in foot obtained from a table of standard conductor data. Dij is the distance 

between‎ conductors’‎ positions‎ on‎ the‎ pole.‎ It‎ is‎ also‎ known‎ as‎ the‎ Geometric‎Mean‎

Distances (GMDs) between phases. The GMDs are used to form the distance matrix 

specifying the distant relationship between conductor i and j with each position on the 

pole in Cartesian coordinates using complex number notation. In the current study, the 

distribution line is assumed to be transposed. This assumption will require the 

modification of the phase impedance matrix of (7.1), by simulating the transposition. In 

a modification, the three diagonal terms of the Equation (7.1) are equal, and all of the 

off-diagonal terms are similar.  This achieved by setting the three diagonal terms of the 

phase impedance matrix equal to the average of the diagonal terms of Equation (7.1) 

and the off-diagonal terms equal to the average of the off-diagonal terms of Equation 

(7.1) [104].   

 Thus, the self- and mutual impedances are defined respectively by the following 

Equations  
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The modified phase impedance matrix is then given as in Equation 7.6 























szmzmz

mzszmz

mzmzsz

abc
Z ,‎Ω/mile.        (‎7.6) 

The modified phase impedance matrix (transposed impedance matrix) is then used in 

the symmetrical component transformation of (7.7) resulting in the modified sequence 

impedance matrix  

        sA
abc

ZsAZ 



1

012
       (‎7.7)  

The (1,1) term of the resulting sequence impedance matrix is the zero sequence 

impedance, the (2,2) term is the positive sequence impedance while the (3,3) term is the 

negative sequence impedance. The off-diagonal terms are zero thus indicating that there 

is no mutual coupling between sequences due to symmetrical spacing between phases. 

The (2,2) and (3,3) terms are equal, thus, the value representing any of this term can be 

used as the impedance value for the transposed network in distribution feeder analysis. 

7.3.1.2 Series impedance for underground lines   

The‎ phase‎ impedance‎ of‎ the‎ underground‎ line‎ can‎ be‎ computed‎ using‎ the‎ Carson’s‎

equations [104] based on the general underground cable construction configuration 

given in [121]as shown in appendix C Table C.8.  The cable considered is a three-wire 

delta line. The procedural steps are also based on the Equations (7.1) to (7.7). 

7.3.2 Shunt admittance for overhead and underground lines 

The shunt admittance of a line consists of the conductance and the capacitive 

susceptance. The conductance is small compared to the susceptance and thus, usually, 

ignored. The capacitance of a line is the result of the potential difference between 

conductors [104]. A charged conductor creates an electric field that emanates outward 

from the centre of the conductor.  
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7.3.2.1 Shunt admittance of overhead lines   

The computation of shunt capacitance of overhead lines employed the method of 

conductors and their images [104]. Equation (7.8) gives the total voltage drop between 

conductor i and its image  
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       (‎7.8) 

where 

Sii is the distance from conductor i to its image i’ (ft) 

Sij is the distance from conductor i to its image j’ (ft) 

Dij is the distance from conductor i to conductor j’ (ft) 

RDi is the radius of conductor i in (ft) 

ro
  is the permittivity of the medium, o

 is the permittivity of free space 

rmF
o

 ,/
12

1085.8


 is the relative permittivity of the medium 

ji
qq , are the charge density on conductor i and j, respectively in cb/m 

The voltage drop between conductor i and ground will be one-half of that given in 

Equation (7.8) as shown in Equation (7.9) 
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Equation (7.9) can be written in general form as  

j
q

ij
P

i
q

ii
P

ig
V           (‎7.10) 

where Pii and Pij are the self- and‎mutual‎“potential‎coefficients.”‎ 

Assuming a relative permittivity 1.0 for air in the case of overhead lines [104], the self- 

and mutual potential coefficients are redefined as in the Equations (7.11) and (7.12) 

 Fmile

i
RD

ii
S

ii
P /ln17689.11ˆ         (‎7.11) 
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For an overhead line of ncond conductors, the Equations (7.11) and (7.12) are used to 

construct‎ the‎“primitive‎potential‎coefficient‎matrix”  
primitive

P̂ .  The Primitive Potential 

Coefficient Matrix (PPCM) will be an ncond × ncond matrix.  The PPCM for a three-

wire delta overhead lines is an n-phase × n-phase matrix with n-phase=3. 






































ccP
cb

PcaP

bc
P

bb
P

bc
P

acP
ab

PaaP

primitive
P

ˆˆˆ

ˆˆˆ

ˆˆˆ

ˆ         (‎7.13) 

Because there is no neutral conductor, the PPCM is the same as n-phase × n-phase 

phase potential coefficient matrix  
abc

P : 

 









primitive
P

abc
P ˆ           (‎7.14) 

The inverse of the potential coefficient matrix will give the n-phase × n-phase 

capacitance matrix  
abc

C : 

    1


abc
P

abc
C           (‎7.15) 

Neglecting the shunt conductance, the phase shunt admittance matrix is given by  

    mileS
abc

Cj
abc

y /0          (‎7.16) 

where  

1593.3142  f , at Hzf 50  

The simulation of network transposition is carried out in a similar manner as in section 

7.3.1.1 to obtain the modified phase admittance matrix  
abc

Y (transposed matrix) that is 

used in the symmetrical component transformation of Equation (7.17) resulting in the 

modified and symmetrical sequence admittance matrix.  
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abc

YsAY 



1

012
       (‎7.17) 

The positive or negative sequence admittance value can be used as the per phase 

admittance value for the transposed network in distribution feeder analysis. 

7.3.2.2 Shunt admittance of underground lines   

Most underground distribution lines make use of concentric neutral or tape shield 

cables. The concentric neutral cable has one centre conductor as the phase conductor 
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and concentric neutral strands that are equally displaced around a circle of radius Rb 

(radius of a circle passing through the centres of the neutral strands). Tape-shield 

conductors can be seen as concentric neutral cables with an infinite number of strands 

[104]. The electric field of both concentric neutral and tape shield cables are confined to 

the insulation material. There are various types of insulation material in use, with each 

having a range of values for the relative permittivity. The neutral strands of concentric 

neutral conductors are all grounded. Therefore, the voltage drop between the phase 

conductor and the ground is given as in Equation (7.18). 
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The capacitance from phase to ground for a concentric neutral cable is given by  
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
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

     (‎7.19) 

Assuming a popular insulation of type Cross-linked polyethylene with a minimum 

relative permittivity of 2.3 [104], the shunt admittance matrix for the concentric neutral 

cable is given as  

mileS

b
R

s
RDkk

c
RD

b
R

jagy /

)ln()1()ln(

3619.77
0 



     (‎7.20) 

In the tape-shielded conductor, when k in (7.20) approaches infinity, the second term in 

the denominator of Equation (7.20) approaches zero. Thus, Equation 7.21 gives the 

shunt admittance of a tape –shielded conductor 

mileS

c
RD

b
R

jagy /

)ln(

3619.77
0  .       (‎7.21) 

Where, 2/cdcRD   and dc, is the diameter of the phase conductor. 

The ncond × ncond matrix of phase shunt admittance to ground can be computed using 

Equation (7.20) for concentric neutral cable and Equation (7.21) for tape-shield cable. 

The simulation of network transposition to compute the per phase shunt admittance is 

carried out in a similar manner as in section 7.3.1.1. The positive or negative sequence 

shunts admittance value can be used as the per phase shunt admittance value for the 

transposed network in distribution feeder analysis. 
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7.4 Computation of Lines Series Impedance and Shunt Admittance for Nigerian 

Network   

The computation of the lines (overhead and underground) parameters used in the 

analysis of the practical distribution feeder is based on the modelling equations of 

section‎7.3.‎The‎available‎lines’‎data‎from‎a‎fieldwork‎study‎relating‎to‎the‎conductor‎or‎

cable types and sizes used are shown in column 1 Table C.1, appendix C. The 

conductors and cables are made of aluminium (AL). The detail schematic layout of the 

network is shown in appendix C Figure C.1.  

 For the purpose of this study, the equivalent values in column 4 of Table C.1 are used.  

The resistance in ohms per mile, the Geometric Mean Radius (GMR) and the amperage 

capacity of the conductors and cables [104] are as presented in Table C.1 of appendix C. 

The series impedances for conductor and cable lines were computed using Equations 

(7.1) - (7.7) for conductors and cables. The results are presented in Tables C.2 and C.3, 

appendix C. From the modified sequence impedance matrix (transposed network 

impedance) of Tables C.2 and C.3, the (1,1) term of the resulting sequence impedance 

matrix is the zero sequence impedance, the (2,2) term is the positive sequence 

impedance while the (3,3) term is the negative sequence impedance. The off-diagonal 

terms are zero thus indicating that there is no mutual coupling between sequences due to 

symmetrical spacing between phases. The (2,2) and (3,3) terms are equal. Thus, the 

value representing any of this term can be used as the impedance value for the 

transposed network. 

The shunt admittances for the line conductors and underground cables were computed 

using Equations (7.8) - (7.17) and Equations (7.18) to (7.21) respectively. The results 

are presented in Tables C.4 and C.5, appendix C. It is evident that the elements of the 

transposed phase admittances are very small and therefore were neglected in this study. 

Using the computed line parameters in appendix C, Tables C.2 and C.3, a complete 

network line parameters were computed, and the network data are as presented in 

appendix C, Table C.6. 

The network load data are based on the quarterly meter reading of all substation loads 

for‎ both‎ utility‎ and‎ the‎ dedicated‎ consumers’‎ substations.‎The‎ peak‎ annual‎ load‎ from‎

each substation was adopted as the substation loads and used in the distribution feeder 

analysis. The details of load data are presented in appendix C, Table C.6. The loads are 

constant power load, modelled as a specified quantity of real and reactive power 

consumed at the bus. 
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7.5 The Test Network: Kaduna Distribution System Company (KADISCO) 

33/11kV Injection Substation Network, Doka District 

This proposed system‎is‎a‎practical‎Nigeria‎feeder‎network‎fed‎from‎one‎of‎the‎utility’s‎

2x15MVA, 33/11kV injection substation feeder shown in Figure 7.2. The transformers 

TX1 and TX2 have percent impedance (Z) of 9.71% and 12.07% respectively.  

 
 
Figure ‎7.2: Single line diagram of 33/11kV injection substation 
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Figure ‎7.3: Single line diagram of 62 bus radial distribution network (Feeder 6) 

The feeder considered for this study (feeder 6) is a 62-bus 11 kV radial primary 

distribution system [122]. The feeder has a short circuit current breaking capacity of 

15.0 kA for 3seconds. A system base MVA of 10.0MVA is used for this study with 

system data as given in Table C.3, appendix C. The total substation loads is 7.25MW 
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and 3.12Mvar, the single line diagram of the network is shown in Figure 7.3. The base 

case real and reactive power loss in the system are 0.3146MW and 0.4952Mvar 

respectively. 

The voltage profile of the base case system is lower than the nominal lower limit of 0.95 

per unit for bandwidth of ±5% nominal voltage of 1.0 per unit assigned by the NERC 

Distribution code for 11kV operational voltage [118]. The mean voltage value of the 

network is 0.9467pu and a standard deviation of 0.01961 was computed.  This implies 

that the network voltage profile is poor as shown in Figure 7.4. 

 
Figure ‎7.4: Voltage profile of 62 bus radial distribution network (Feeder 6) base case with no generation 

The allocation of Distributed Generation operating with and without reactive power 

support is expected to improve the adequacy of power supply, reduce power loss and 

improve the voltage profile of the network. The proximity of the Distributed Generation 

will resultantly improve the quality of power supply and enhanced its reliability.  

The country is adequately endowed with large quantities of renewable and 

nonrenewable sources of generation [123-125]. The power requirement of the country 

can only be met when these energy resources are strategically harnessed. DG aimed at 

full application of these natural resources to provide adequate power and sustain 

reasonable growth in the manufacturing, commercial, domestic and services sector of 

the economy.  
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7.5.1 Modification of the 62-bus Nigeria network for DG integration  

The ERACS software available for validation of the results of the practical network is a 

50- bus Version that only allows networks up to 50 bus bars to be simulated. Due to this 

licence limitation, the 62-bus practical network of Figure 7.3 is slightly modified to a 

47-bus network using the following procedure steps; 

Step 1: all laterals with only one bus (substation) are absorbed into the main lateral 

(ML) from where they emerged. Thus, bus 20, 27 and 28 are absorbed into bus 5, 9 and 

11 respectively, with their load added to their sending end nodes. 

Step 2: all minor laterals (ml) with only one bus (substation) are absorbed into their 

corresponding sublateral (sl) from where they emerged. Thus, bus 43, 44, 45, 50 and 52 

are absorbed into bus 29, 30, 39, 41, and 48 respectively with their load added to their 

sending end nodes. 

Step 3: some receiving end nodes at short distance from their sending end nodes were 

merged with their sending end nodes and their load absorbed into their respective 

sending end nodes.  Thus, bus 51 absorbed in 47, bus 42 and 41 were absorbed into 40. 

Bus 55, 62, 26, and 61 are absorbed into bus 54, 58, 25 and 60 respectively. 

The modified feeder is presented in Figure 7.5. So instead of the original 62-bus 

distribution system, having sixty-one (61) sections, it is reduced to 47 buses with forty- 
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Figure ‎7.5: Single line diagram of 47 bus modified radial distribution network (Feeder 6) 
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six (46) sections. The loads are all three phase spot loads and the positive sequence 

impedance is used as the impedance of the feeder sections. After the modification, the 

total substation loads remained as 7.25MW and 3.12Mvar. The base case real and 

reactive power loss in the system is now 0.3046MW and 0.4876Mvar respectively.  

7.6 Relationship between Generator Size and Fault currents 

The short circuit current constraint is implemented as described in section 6.2, using 

Equations (6.15)-(6.17). The sub-transient reactance of generators is assumed to be 

about 15%–20% on the generator reactance base; the sub-transient reactance is then 

obtained by computing the percent reactance using the expression that evaluate the 

reactance of generator [20] given by Equation (7.22). 

)
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In the above expression, X
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g
max=20% on the generator reactance base 

[20].  The function f computes the per unit sub-transient reactance of the generator with 

size S
g
. Generators are considered to be small when their capacity is well below S

smallGen
 

=150MVA. Equation (7.22) can be translated into a graphical representation as shown 

in Figure 7.6. The pu reactance of the generator with respect to its capacity is obtained 

by dividing Equation (7.22) by the generator capacity (S
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The sub-transient reactance of the generator on the system base MVA is computed as  

g
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.

       (‎7.24) 

The DGs considered are in the commercially available sizes from 0kW to 5000kW as 

shown in appendix A, Table A.4. 
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Figure ‎7.6: Per unit reactance of generators with respect to their MVA base 

7.7 Integration of DG in Nigeria Network Using MSPSO; Objective Function 

Formulation 

The study presented in this chapter and in common with previous chapters, is for the 

multi search PSO to find the optimal size and location of the DG unit (or units) in order 

to minimize the total real power loss in a network. Additionally, in common with 

previous chapters, the improvement in the voltage profile of the network is used in 

addition to the reduction in network power losses to solve the multi-objective 

optimization problems. 

The network security constraints of short-circuit current rating of switchgear and line 

loading capacity are enforced where applicable. The constraint on switchgear rating is 

to ensure that with the penetration of DG, the consequence of upgrading the switchgear 

rating to accommodate new generation is evaded. Additionally, supplying power near to 

the loads may results in the diminishing of  MVA flows in some sections of the network, 

realising more capacity, but in other sections the may also increase to levels beyond 

distribution line limits thus the need to consider line limits constraint [53]. The short 

circuit constraint is handled by a three-phase symmetrical fault algorithm prior to the 

optimization process. The fault algorithm operates on the swarm with the individuals 

swarm /solutions (DG sizes) violating the short circuit constraint rejected. 
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The objective function ( ) to be optimized is given in Equation (6.30) and repeated 

here in Equation (7.25) for convenience. 

Minimise )(
3

)(
21

ICfkvfk
L

Pk
obj

f              (‎7.25) 

where: PL is as given in Equation (6.31),   f(v) is as given in Equation (6.32)  and f(IC) 

is the quadratic index representing the objective of  the line loading constraints to be 

minimised given in Equation (6.33) and repeated here in Equation (7.26) for 

convenience: 

 2max
)()(  
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SSICf
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       (‎7.26) 

Sl (Sij) and Sl
max

 (Sij
max

) define the apparent power (MVAflowmax) in a line section l and 

the maximum allowable apparent power flow (MVAflowrated) in section l respectively. 

In order to enforce the constraint of Equation (5.6), the index in (7.26) is computed, 

weighted and added to the objective function. The line overloads are computed as:  

 edMVAflowratMVAflowOverloads  maxmax      (‎7.27)  
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MVAflowmax and MVAflowrated denote the nl × 1 vector of apparent power flow 

related to all sections (branches) of the network, with nl the total number of sections of 

the distribution system under consideration. Implementation of the line loading 

constraint ensures that the location of DG is such that the MVA flow in network 

sections are within the maximum allowable rating of the sections/branches. The 

objectives of the study are therefore to minimize network power loss and voltage 

deviation to improve the voltage profile. Mathematically, the objective of both power 

loss and voltage optimization with the inclusion of line loading constraint can be 

expressed as:  

Thus, to minimise 
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   (‎7.29)  

k1, k2 and k3 defined the weighting factors that transformed the multi-objective problem 

to a single one: the different objective functions are weighted and added to form a single 

obj
f
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objective function to be optimized as already discussed in section (6.3.2.1). In a single 

objective optimization, the first part of the equation (7.29) is used.  

The MSPSO optimization results are recorded after 10 independent runs of the 

algorithm using a swarm population of 20 particles (with five informants) and a 

stopping criteria of 50 iterations where the objective function value remains within a 

margin of 10
-9

 or a maximum number of 1000 iterations.  The social and the cognitive 

constants c1and c2 are set equals with both being assigned a value of 1.47 [77]. For the 

69-bus network M = 70, maximum particle velocity (mv) = 1.5, α = 0.4 , wmax= 0.9 and 

wmin = 0.4 [87] are used. 

7.8 Optimal Location and Sizing of One Generator in a 47 bus RDN Using 

MSPSO 

NERC regulations on DG [119], allows the connection of small size units having name 

plate rating greater than 1MW and not more than 6MW to be connected to 11kV 

medium distribution voltage. The NERC Distribution code [118] allows generators 

connected to distribution system to provide ancillary services for reactive power and 

such generators should be capable of contributing to voltage control by continuous 

regulation of the reactive power supplied to the distribution system. The generators are 

allowed to operate and maintain a power factor of not less than 0.85 lagging. In line 

with the regulation, the study considered DG sizes in the range of 0kW to 5MW with a 

total installed capacity of less than 6MW. 

This study involves the integration of one generator of optimal size at the optimal 

location, considering four scenarios (with two cases for scenarios III and IV). The study 

is based on 100% feeder load demand for the 47-bus RDN network of Figure 7.5. The 

first scenario is the base network with no DG connected. The second Scenario involves 

the integration of one DG with a single objective of power loss reduction and ignoring 

any network constraints. The third scenario also involves the connection of a single DG 

while the fourth scenario considers the connection of one DG unit operating at full rated 

power, but with a range of possible power factors of unity down to 0.85 lagging. For 

scenarios III and IV, a single objective function study that considered the enforcement 

of only short-circuit current constraint is used as Case I, while Case II is a multi-

objective function that considered the enforcement of both short-circuit and line loading 

constraints.   
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7.8.1 Scenario I: base network with no generation 

Table 7.1 shows a summary of the results for the base test network with no generation. 

The voltage profile of the original test network shown in Figure 7.4 clearly shows that 

nodal voltages are an issue under normal loading condition with an SSEV index 

0.15105. The mean voltage value and the standard deviation for the base case network 

are 0.9467pu and 0.01961, respectively. The short circuit current of the base network is 

computed as 13.1223 kA and this value is typically used to select the standard rating of 

the switchgear required for the network. The switchgear rating for the feeder at the main 

substation is 15.0 kA. In order to demonstrate the importance of short-circuit current 

constraint in this study, it is assumed that the short-circuit current with the integration of 

DG should not exceed the rating of the switchgear (15.0 kA).  

Table ‎7.1: SUMMARY OF RESULTS; 47-BUS SCENARIO I WITH NO GENERATION (BASE 

CASE)  

 Load 

(MW) 

 Load 

(Mvar) 

 MW 

Loss 

 Mvar 

Loss 

Max. 

bus 

voltage 

(pu) 

Min. 

bus 

voltage 

(pu) 

Mean 

voltage 

(pu) 

Std. 

Dev 

SSEV Short 

circuit-

current 

(kA) 

7.25 3.12 0.3046 0.4876 1.0000 0.9233 0.9467 0.01961 0.151051 13.1223 

 

7.8.2 Scenario II: single generator neglecting short-circuit current and line 

loading constraints 

The results of the optimization process using MSPSO for the optimum size / location of 

DG integrated into this network is presented in Table 7.2. The optimal size and location 

is obtained with one optimally sized 5.0MW and located generator at bus number 38. A 

78.44% power loss reduction is achieved. The voltage profile of the network is 

presented in Figure 7.7.  The mean voltage is computed as 0.9745pu with a standard 

deviation of 0.008334. The integration of 5.0MW generator resulted in the overall 

improvement of the voltage profile. The mean voltage and standard deviation are 

improved from 0.9467pu and 0.01961 respectively in the base case to 0.9745pu and 

0.008334 respectively in scenario II. 

The short-circuit current with the integration of one DG is computed as 15.7038 kA. 

The switchgear rating of the feeder at the main substation is 15.0kA. Thus, taking into 

consideration the practical constraint on short-circuit current capacity of the switchgear 

on feeder six at the substation bus (bus 1), implies that the location of 5MW at bus 38 

will require the upgrading of the switchgear. 



Chapter 7: Integration of DG in Nigerian Distribution Network  

178 

 

Table ‎7.2: MSPSO SUMMARY RESULTS; 47-BUS NETWORK SCENARIO II (NO CONSTRAINTS) 

 One DG, single objective without 

short-circuit current and line 

loading Constraints 

Optimal bus location  38 

DG  MWs generated  5 MW 

 MW loss  0.0657 MW 

 Mvar loss  0.1038 Mvar 

Min bus voltage 0.9642 pu 

Max bus voltage 1.000 pu 

Mean voltage 0.9745 pu 

Standard deviation 0.008334 

 MW loss reduction 78.44% 

 Mvar loss reduction 78.71.0% 

Designed Isc (Ik)
 

13.1223 kA 

Specified Isc (Ispec)
 

15.0 kA 

Isc with DGs (IfDG)
 

15.7038 kA 

  

 

Figure ‎7.7: Voltage profile of the 47-bus radial distribution network (Feeder 6), Scenario II (single DG 

without constraints) 

Figure 7.8 shows the apparent power (MVA) flows for all branches of the network for 

scenario II when all the network constraints are neglected. It is evident that the 
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connection of one DG drastically reduced the apparent power flow in some branches of 

the network. While some branches are found to be operating close to their maximum 

limits. It is obvious from Figure 7.8 that no branch of the network is shown to be 

overloaded following the inclusion of DG. 

Figure ‎7.8: 47-bus branch apparent power flow/ line loading Scenario II (one DG, without constraints) 

Additionally, the connection of DG resulted in a drastic reduction in the apparent power 

injected from the grid. Thus, the implementation of the optimal solution of scenario II 

will require only the upgrading of the switchgear rating of feeder six at the substation 

(bus 1).   

7.8.3 Scenario III: I single generator, Case I and II (single and multi-objective) 

The results of the MSPSO optimization process are presented in Table 7.3. In Case I, 

the optimal size generator is obtained as 3.4 MW located at optimal bus number 44, 

resulting in a 68.82% power loss reduction. For case II, the optimal size and location is 

obtained with one optimally sized 3.2 MW and located generator at bus number 41 

producing a 67.24% power loss reduction.  

The improvement obtained in the network voltage profiles with the integration of DG 

(Case I and II) are presented in Figure 7.9. The minimum bus voltage is improved from 

0.9233pu in the base case to 0.9561pu and 0.95255pu for Case I and II, respectively. 
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Table ‎7.3: MSPSO SUMMARY RESULTS; 47-BUS NETWORK SCENARIO III, CASE I AND II 

(ONE DG, SINGLE AND MULTI-OBJECTIVE) 

 One DG, a single objective 

with short-circuit current 

Constraint only 

Case I 

One DG, multi-objective with 

short-circuit current and line 

loading Constraints  

Case II 

Optimal bus location  44 41 

DG  MWs generated  3.40 MW 3.2 MW 

 MW loss  0.095 MW 0.0998 MW 

 Mvar loss  0.1491 Mvar 0.1556 Mvar 

Min bus voltage 0.9561 pu 0.9525 pu 

Max bus voltage 1.000 pu 1.000 pu 

Mean voltage 0.9668 pu 0.9655 pu 

Standard deviation 0.01115 0.01178 

 MW loss reduction 68.82% 67.24% 

 Mvar loss reduction 69.42.11% 67.88% 

Designed Isc (Ik)
 

13.1223 kA 

Specified Isc (Ispec)
 

<15.0 kA 

Isc with DGs (IfDG)
 

14.9153 kA 14.8883 kA 

 

The mean voltage and the voltage standard deviation are improved from 0.9467pu and 

0.01961 respectively in the base case to 0.9668pu and 0.01115 respectively in Case I 

and 0.9655pu and 0.01178 respectively in Case II. It is evident from Table 7.3 that the 

percent loss reduction in Case I (68.82%) is higher than the percent loss reduction 

obtained in Case II (67.24%). This is as a result of the enforcement of both short-circuit 

current and line loading constraints, resulting in a smaller DG size for Case II when 

compared with Case I.  

Figures 7.10 and 7.11 show the apparent power (MVA) flow for all branches of the 

network for case I and II respectively. It is evident in both cases that the connection of 

DG drastically reduced the apparent power flow in some branches of the network. 

Additionally, in Case I some branches operate close to their maximum limits while 

branches 42 and 43 of the network are found to be overloaded. The enforcement of the 

network constraint of line loading in addition to short-circuit current constraint (case II) 

resulted in the removal of the overload experienced in branches 42 and 43 of Figure 

7.10 as shown in Figure 7.11. However, this is obtained at the expense of smaller 
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optimal DG size (3.2 MW) at a new optimal bus location (bus number 41) compared 

with case I. 

 

Figure ‎7.9: Voltage profile of the 47-bus radial distribution network (Feeder 6) Scenario III, Case I and II 

(single and multi-objective) 

Figure ‎7.10: 47-bus branch apparent power flow/ line loading Scenario III, Case I (one DG, a single 

objective with short-circuit constraint) 
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short-circuit current (in Case II) is also lower than the value computed for Case I 

(14.9153 kA). Thus, the branch/ line loading is kept within their maximum allowable 

loading limits. It can be deduced that the realistic solution for the utility will be the 

implementation of all the relevant constraints. 

 

Figure ‎7.11: 47-bus branch apparent power flow/ line loading Scenario III Case II (one DG, multi- 

objective with short-circuit and line loading constraints) 

7.8.4 Scenario IV: single generator operating at minimum PF of 0.85 lagging 

This scenario involved finding the optimal location and size for a single generator 

operating with reactive power output capability (minimum operating power factor of 

0.85 lagging). The results of the optimization process using MSPSO for the optimum 

size / location of the generator integrated into this network are presented in Table 7.4. 

The improvement in the network voltage profiles with the both cases is presented in 

Figure 7.12. The generator injects 3.075 MW/1.9057 Mvar at bus number 46 in Case I 

with a 77.45% power loss reduction. For Case II, 2.75 MW/1.7043 Mvar are injected in 

at bus number 41 producing a 75.38% reduction in power loss. It is apparent that in both 

cases the DG unit operates at the limit of its reactive power output. Significant 

improvements in terms of loss reduction and voltage profile (compared with previous 

scenarios III) are obtained because the generator is now producing both active and 

reactive power.  
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Table ‎7.4: MSPSO SUMMARY RESULTS; 47-BUS NETWORK SCENARIO IV, CASE I AND II 

(ONE DG AT 0.85 PF, SINGLE AND MULTI-OBJECTIVE) 

 One DG, a single objective 

with short-circuit current 

Constraint operating at 0.85 

PF: Case I 

One DG, multi-objective with 

short-circuit current and line 

loading Constraints operating 

at 0.85 PF: Case II 

Optimal bus location  46 41 

DG  MWs generated  3.075 MW 2.75 MW 

DG Mvar generated 1.9057 Mvar 1.7043 MW 

 MW loss  0.0687 MW 0.075 MW 

 Mvar loss  0.1072 Mvar 0.1164 Mvar 

Min bus voltage 0.9776 pu 0.9721 pu 

Max bus voltage 1.000 pu 1.000 pu 

Mean voltage 0.9816 pu 0.9777 pu 

Standard deviation 0.005335 0.006546 

 MW loss reduction 77.45% 75.38% 

 Mvar loss reduction 78.01% 76.13% 

Designed Isc (Ik)
 

13.1223 kA 

Specified Isc (Ispec)
 

< 15.0 kA 

Isc with DGs (IfDG)
 

14.9020 kA 14.9064 kA 

 

The improvement obtained in the network voltage profiles shows that the minimum bus 

voltage is improved from 0.9233pu in the base case to 0.9776pu and 0.9721pu for Case 

I and II respectively. The mean voltage and voltage standard deviation are improved 

from 0.9467pu and 0.01961 respectively in the base case to 0.9816pu and 0.005335 

respectively in Case I and 0.9777pu and 0.006546 respectively in Case II. 

It is evident from Table 7.4 that the percent loss reduction obtained for Case I (77.45%) 

is higher than the percent loss reduction obtained for case II (75.38%). Thus, the 

enforcement of both short-circuit current and line loading constraints in Case II, again 

resulted in a decrease in the capacity and the relocation of the optimal DG obtained in 

order to satisfy the constraints.  

Figures 7.13 and 7.14 show the apparent power (MVA) flow for all branches of the 

network for Case I and II respectively. It is evident in both cases that the connection of 

DG drastically reduced the apparent power flow in some branches of the network. 

Moreover, some branches operate close to their maximum limits. Due to the 

enforcement of constraint on short-circuit current, the optimal size/location DG for Case 
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I resulted in the overloading of some branches of the network (branches 42-45) as 

shown in Figure (7.13). 

Figure ‎7.12: Voltage profile of 47 bus radial distribution network (Feeder 6) Scenario IV (one DG at 0.85 

PF), case I and II (single and multi-objective) 

 

Figure ‎7.13: 47-bus branch apparent power flow/ line loading Scenario IV (one DG at 0.85 PF), Case I 

(single objective) 
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Figure ‎7.14: 47-bus branch apparent power flow/ line loading Scenario IV (one DG at 0.85 PF), Case II 

(multi- objective) 

The enforcement of network constraint of line loading in addition to short-circuit 

current constraint in Case II resulted in the removal of the overload experienced in 

branches 42-45 as shown in Figure 7.14. However, this is obtained at the expense of 

smaller optimal DG size (2.75 MW) at a new optimal bus location (bus number 41) 

compared with Case I. The short circuit current (14.9064kA) computed at bus 1 is still 

within the specified short-current rating of the switchgear (< 15.0 kA). However, this 

value of short-circuit current (in Case II) is slightly higher than the value computed in 

Case I (14.9020 kA). However, the branch/line loading is kept within their maximum 

allowable loading limits. 
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7.9 Optimal Location and Sizing of Two Generator in a 47-bus RDN Using 

MSPSO 

The problem of multiple DG deployment, considering the reliability of single large DG 

in contrast to multiple smaller DG units is considered in this section. Dispersing of 

smaller units of DG has a better advantage in terms of enhancing the reliability of the 

network, even though smaller capacity DG units may cost, higher than the larger 

capacity DG units. However, the failure of the large single DG unit in a network can be 

catastrophic if it is installed to meet the increased demand in growth of electricity 

consumption. In this section, three scenarios are considered based on 100% loading to 

demonstrate the capability of the MSPSO to solve the optimization problem. The first 

scenario is the base case network with no DG connected. The second Scenario involves 

the integration of two DG with a single objective of power loss reduction and ignoring 

any network constraints. The third scenario involves the connection of two DG 

considering two test cases. Case I involves a single objective function study with only 

short-circuit current constraint enforced. While Case II is a multi-objective function 

study with both short-circuit and line loading constraints enforced. For the operational 

constraints of voltage and line loading the weighting factors in Equation (7.29) are set to 

k1=0.45, K2=0.45 and k3=0.10.Thus, significant priorities are given to the objectives of 

power loss reduction and voltage optimization compared to line loading objective. 

7.9.1 Scenario I: base network with no generation 

A summary of results for this scenario is presented in Table 7.1. The voltage profile of 

the original test network is the same as that shown in Figure 7.4. Similar to the study in 

7.8.1, the specification of the switchgear rating is 15.0 kA. 

7.9.2 Scenario II: two generator neglecting short-circuit current and line loading 

constraints 

This scenario involved finding the optimal location and size for two generators 

operating at unity power factor with network constraints ignored. The results of the 

optimization process using MSPSO are presented in Table 7.5. The optimal size and 

location is obtained with two optimally sized 2.2683MW and 4.1MW generators located 

at bus number 5 and 38, respectively. An 81.94% power loss reduction is achieved in 

the process. The voltage profile of the network is presented in Figure 7.15. The 

integration of two optimal size generators resulted in the overall improvement of the 

voltage profile. The mean voltage and voltage standard deviation are improved from 
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0.9467pu and 0.01961 respectively in the base case to 0.9782pu and 0.007921 

respectively in scenario II. 

The short circuit current with the integration of two generators is computed as 16.4507 

kA. This value (16.4507 kA) is higher than the allowable short-circuit current rating of 

the switchgear (15.0kA) set in section 7.9.1. It is also apparent from Table 7.5 that the 

total installed DG exceeded the 6MW allowed by the NERC regulations on DG for 

11kV medium distribution voltage. Thus, taking into consideration the practical 

constraint on the short-circuit current capacity of the switchgear on feeder six at the 

substation bus (bus 1), the location of the 2.2683MW and 4.1MW generators at bus 

number 5 and 38, respectively, will require the upgrading of the switchgear rating. 

Table ‎7.5: MSPSO SUMMARY RESULTS; 47-BUS NETWORK SCENARIO II (TWO DG, NO 

CONSTRAINTS) 

 Two DG, a single objective without short-circuit 

current and line loading Constraints 

Optimal bus location 1 5 

DG1  MWs generated  2.2683 MW 

Optimal bus location 2 38 

DG1  MWs generated  4.1 MW 

 MW loss  0.0550 MW 

 Mvar loss  0.0877 Mvar 

Min bus voltage 0.9669 pu 

Max bus voltage 1.000 pu 

Mean voltage 0.9782 pu 

Standard deviation 0.007921 

 MW loss reduction 81.94% 

 Mvar loss reduction 82.01.0% 

Designed Isc (Ik)
 

13.1223 kA 

Specified Isc (Ispec)
 

< 15.0 kA 

Isc with DGs (IfDG)
 

16.4507 kA 
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Figure ‎7.15: Voltage profile of 47-bus radial distribution network (Feeder 6), Scenario II (two DG 

without constraints) 

Figure 7.16 shows the apparent power (MVA) flow for all branches of the network. The 

connection of DG drastically reduced the apparent power flow in some branches of the 

network with some branches operating close to their maximum limits. It is also obvious 

from Figure 7.15 that no branch of the network is overloaded following the location of 

two optimal DG.  

 

Figure ‎7.16: 47-bus branch apparent power flow/ line loading Scenario II (two DG without constraints)   
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Additionally, the connection of two DG resulted in a drastic reduction in the apparent 

power injected from the grid compared to integration of one DG (section 7.8.2, Figure 

7.8). However, the optimal solution obtained for this scenario will require the upgrading 

of the switchgear rating at the substation to accommodate the 16.4507kA due to the 

location of two generators.   

7.9.3 Scenario III: two generators Case I and II (single and multi-objective) 

This scenario involved finding the optimal location and size for two generators 

operating at unity power factor, first with a single objective and considering only short-

circuit current constraint (Case I) and with multi-objective where both short-circuit 

current and line loading constraints are considered (Case II). The results of the 

optimization process using MSPSO for this scenario are presented in Table 7.6.  

Table ‎7.6: MSPSO SUMMARY RESULTS; 47-BUS NETWORK SCENARIO III (TWO 

GENERATORS), CASE I AND II (SINGLE AND MULTI-OBJECTIVE) 

 Two DGs  operating at unity 

PF, a single objective with 

short circuit Constraint only: 

Case I 

Two DGs  operating at unity 

PF, multi-objective  with short 

circuit, and line loading 

Constraints: Case II 

DG1 Optimal bus location  44 23 

DG1 MWs generated  2.5 MW 1.42 MW 

DG2 Optimal bus location  40 41 

DG2 MWs generated  2.26 MW 2.75 MW 

 MW loss  0.0657 MW 0.0728 MW 

 Mvar loss  0.1034 Mvar 0.1139 Mvar 

Min bus voltage 0.9655 pu 0.9572 pu 

Max bus voltage 1.000 pu 1.000 pu 

Mean voltage 0.9738 pu 0.9700 pu 

Standard deviation 0.008384 0.0102 

 MW loss reduction 78.43% 76.10% 

 Mvar loss reduction 78.79% 76.64% 

Designed Isc (Ik)
 

13.1223 kA 

Specified Isc (Ispec)
 

15.0 kA 

Isc with DGs (IfDG)
 

14.9992 kA 14.9074 kA 

 



Chapter 7: Integration of DG in Nigerian Distribution Network  

190 

 

The optimal size and location is obtained with two optimally sized 2.26 MW and 2.5 

MW and located generator at bus number 40 and 44 respectively in Case I. A 78.43% 

power loss reduction is achieved. For case II, the optimal size and location is obtained 

with two optimally sized 1.42 MW and 2.75 MW and located generator at bus number 

23 and 41 respectively. Moreover, a 76.10% power loss reduction is achieved. 

The integration of two generators resulted in the overall improvement of the network 

voltage profiles as shown in Figure 7.17. The mean voltage and standard deviation are 

improved from 0.9467pu and 0.01961 respectively in the base case to 0.9738pu and 

0.008334 respectively in Case I. While in Case II, the mean voltage and the voltage 

standard deviation are improved to 0.9700pu and 0.01020 respectively, when compared 

with the base case. 

Figures 7.18 and 7.19 show the apparent power (MVA) flow for all branches of the 

network for case I and II respectively. It is evident in both cases that the connection of 

two DG as expected drastically reduced the apparent power flow in some branches and 

with others operating close to their maximum limits. It is apparent that, the enforcement 

of the constraint on short-circuit current only (Case I) resulted in the overloading of two 

branches of the network (branches 39 and 40) as shown in Figure 7.18. The 

enforcement of the network constraint of line loading constraint in addition to the 

constraint of short-circuit current (Case II) resulted in the removal of the overload 

experienced in branches 39 and 40 of Figure 7.18 as shown in Figure 7.19. 

Figure ‎7.17: Voltage profile of 47 bus radial distribution network (Feeder 6) Scenario III (two generators), 

Case I and II (single and multi-objective) 
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However, this achievement is obtained at the expense of slightly lower penetration level 

of DG for Case II (57.5%) compared with Case I (65.7%). The short circuit current 

(14.9074kA) computed at bus 1 for Case II with the enforcement of both constraints is 

still within the specified short-current rating of the switchgear (< 15.0 kA). However, 

this value (in Case II) as expected is lower than the value computed for Case I (14.9992 

kA).  

 

Figure ‎7.18: 47-bus branch apparent power flow/ line loading Scenario III (two DG), Case I (single 

objective with only short-circuit constraint) 

 

Figure ‎7.19: 47-bus branch apparent power flow/ line loading Scenario III (two DG), Case II (multi-

objective with o short-circuit and line loading constraints) 
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Notwithstanding, the branch/line apparent power flows are kept within their maximum 

allowable loading limits with the enforcement of both constraints (Case II, Figure 7.19). 

The overall results of the studies show that magnificent results in terms of overall loss 

reduction and voltage profile improvement are obtained with the optimal size and 

location of two generators. There is also a drastic reduction in the apparent power 

injected from the grid due to the connection of two distributed generation. This 

reduction in apparent power flow is higher than the case of a single DG integration. The 

enforcement of short-circuit current ensures that the location of DG does not result from 

the flow of fault current above the breaking capacity of the switchgear at the substation 

during a fault. The enforcement of line loading constraint ensures the location of DG 

does not result in the overloading of the network branches. The advantages of which 

include, minimizing the needs for both upgrading of switchgear and reconductoring. 

Thus, an optimisation process that considers the constraints of switchgear and line 

loading can be useful to both the utilities and the network operators to plan deferment in 

switchgear upgrading and network reconductoring.   
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7.10 MSPSO Solution Validation by ERACS using 47-bus RDN 

ERACS‎ is‎an‎ERA‎Technology’s‎suite of power system analysis software that allows 

modelling and simulation of electrical power system networks quickly and efficiently 

and judging their correct, safe and timely operation under user defined, and sometimes 

arduous situations [107].  The benefits associated with the use of ERACS software 

include reduced study times and improved technical capability for users.  Thus, it meets 

the specific needs of engineers with practical problem to solve. The GUI forms the core 

of ERACS making it user-friendly with flexibility and up to 1500 bus bars can be 

simulated. The programs operational include some of the followings; load flow, short 

circuit, harmonics, transient stability and protection coordination. ERACS software has 

been used to solve power system problems [126-130] with an efficient solution. 

7.10.1 Modelling and simulation of 47 bus radial distribution network using 

ERACS 

This section presents the simulation results from ERACS software used for validating 

the solution of MSPSO on the 47 bus RDN. The first two scenarios and case I of third 

and fourth scenarios of section 7.8 from MSPSO simulation results based on a single 

DG integration are considered for validation. The first scenario was the base case with 

no generation. The second scenario was the integration of a single DG with the 

objective of power loss reduction and ignored any network constraints. The third 

scenario (with Case I) was based on the second scenario, considering only the constraint 

on short-circuit current. The fourth scenario (with Case I) was based on the third 

scenario with the generator allows to inject reactive power at a lagging power factor of 

0.85. 

7.10.2 Network modelling in ERACS 

ERACS simulate a balanced and transposed 3phase network by using a per phase 

representation of the network. The balanced network Figure 7.5 is modelled as shown in 

Figure 7.20 with the following parameters;  

The voltage source is modelled as External Grid (Grid Infeed) with the following 

parameters: Short Circuit (SC) MVA =250MVA for connection to 11kV and X/R=10 

[107].  The upstream grid impedance (resistance and reactance) is computed using these 

parameters. A base apparent power (BaseMVA) of 10MVA is used with a base voltage 

of 11kV and a frequency of 50Hz. All loads connected to the busbars are spot load 

connected‎as‎‘shunt’‎element‎and‎are‎modelled‎as‎constant real and reactive power (PQ) 
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loads. All generators are modelled as fixed voltage behind source impedance (with their 

positive sequence impedance set equal to sub-transient value). The branches impedance 

of the network is represented by their per unit positive sequence impedance. ERACS 

allows representation of synchronous generator in different types such as Slack, PV, PQ 

and VA [107]. In this investigation, the generator can be modelled either as PV or PQ. 

In the PV model, the real power and the voltage magnitude of the generator are 

specified, and the load flow, calculates the reactive power and the voltage angle. In the 

PQ model, the real and the reactive power of the generator are specified, and the load 

flow calculates the voltage magnitude and angle. 

. 

Figure ‎7.20: ERACS Model of 47 bus radial distribution network (Figure 7.5) 

7.11 ERACS Load Flow and Fault Level Calculations 

The purpose of the ERACS program load flow calculations used in this study is to 

determine the steady state voltage profile for the network and the associated branch and 

shunt flows under specified constraints. ERACS program by default after running the 

load flow will calculate both three-phase and single-phase to earth fault levels at every 

busbar in the network provided there is sufficient data for the network. Provided the 

positive sequence impedance has been specified for every synchronous machine the 

program will calculate three-phase fault levels. If, in addition to this, zero sequence 

impedance is specified for all lines, cables, transformers, and synchronous machines, 
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the program will also calculate the single phase to earth fault. In this investigation, only 

a balanced three-phase fault is considered.  

In ERACS, the load flow three phase fault MVA, three phase fault current (kA), and X 

to R ratio at every busbar are calculated using the following equations [107]: 

drv
Z

lf
v

I

1

3   

I
N

VF 333   

drv
R

drv
X

XR

1

1
3            (‎7.30) 

where; 

 3I: is the  three -phase fault current (kA). 

 3F: is the three-phase fault level (MVA). 

 3XR: is the three-phase X to R ratio. 

 VN: is the nominal voltage at the busbar. 

 Z1drv: is a positive sequence driving point impedance. 

 R1drv: is a positive sequence  driving point resistance. 

 X1drv: is a positive sequence driving point reactance. 

7.12 Simulation Results 

The network of Figure 7.5 is modelled in ERACS as shown in Figure 7.20 based on the 

known parameters. 

7.12.1 Comparison of Scenario I: base case network no generation 

The summary of results (load flow and short circuit current level) using ERACS for the 

base case network compared with that of MSPSO is presented in Table 7.7. 

The maximum short circuit current in the base case network (designed ISC) evaluated 

with ERACS is 13.122 kA and occurs at bus 1 which is in agreement with the computed 

value using the MSPSO symmetrical fault algorithm as shown in Table 7.6. The short-

circuit current computed for each bus using the MSPSO is compared with those from 

ERACS, and an average absolute error of 0.5% is recorded in the base case with no DG. 
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Table ‎7.7: SUMMARY OF RESULTS; SCENARIO I, WITH NO GENERATION (BASE NETWORK) 

 47- Bus Network ERACS 

 

47- Bus Network MSPSO 

  MW loss 0.305 MW 0.3046 MW 

 Mvar loss 0.448 Mvar 0.4876 Mvar 

Min bus voltage 0.9233 pu 0.9233 pu 

Max bus voltage 1.000 pu 1.000 pu 

  Load MW 7.254 MW 7.25 MW 

 Load Mvar 3.1230 Mvar 3.12 Mvar 

Designed Isc (Ik) 13.122 kA 13.1223 kA 

 

7.12.2 Comparison of results of Scenario II and III 

These scenarios are validated with the following set of generators from ERACS 

reference Library having the following parameters; 

1. A typical 11kV private generator with the key name G110; this  is a 5MW, 

5.88MVA 11kV  50Hz generator  with a positive sequence impedance of  

 162.000343.0 j pu on rating 

2. A G8ME,  5MW, 6.25MVA 3.3kV  50Hz generator  with a positive sequence 

impedance value of   01.00010.0 j  pu on rating and transformer rated 

11/3.3kV, 5MVA, Yy0, 7.08%, ONAN with sequence impedance of  

 53.325.0 j  % on rating 

3. A GTRU, 3.4MW, 4.25MVA 11kV GAS Turbine generator with positive 

sequence impedance value of   11.00064.0 j  pu on rating 

These generators sizes correspond to the optimal DG sizes obtained using the MSPSO. 

The values of the positive sequence impedances giving above are the default values of 

ERACS library and therefore replaced with values computed by the optimization 

process using Equations (7.27) - (7.24). These values are  0303.00021.0 j pu on 

rating for 5MW generator and  0444.00031.0 j pu on rating for 3.4MW generator. 

In scenario II, 5MW DG is located on bus 38. In scenario III, 3.4MW DG is placed in 

its optimal location (bus 44) as was determined by the MSPSO optimization process. 

The network is simulated, and the summaries of ERACS load flow results involving 

scenarios II and III are presented in Tables 7.8 and 7.9.   
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The maximum short circuit current obtained for the Scenario I using ERACS is 

15.665kA while a value of 15.7038kA was computed at bus 1, using MSPSO. An 

absolute difference (error) of about 0.2% is obtained, showing that the two results are in 

agreement. In addition, result of total power loss after the integration of DG for ERACS 

(0.066MW) is in agreement with that obtained using MSPSO (0.0657MW). 

Table ‎7.8: E ERACS LOAD FLOW STUDY 47-BUS; SCENARIO II (SINGLE DG WITH NO 

CONSTRAINTS) VS MSPSO 

 47- Bus Network ERACS 47- Bus Network MSPSO 

 MW loss 0.066 MW 0.0657 MW 

 Mvar loss 0.104 Mvar 0.1038 Mvar 

Min bus voltage 0.9640 pu 0.9640 pu 

Max bus voltage 1.0000 pu 1.0000 pu 

  Load MW 7.254 MW 7.25 MW 

 Load Mvar 3.1230 Mvar 3.12 Mvar 

Isc with DGs (IfDG)
 

15.665 kA 15.7038 kA 

 

In a realistic situation, the DG output is limited by the current rating of the stator or 

rotor windings. Thus, the group assigned power of the DG is set at 4.995MW as against 

5.0MW, resulting in a slight variation in the result of power loss computed with ERACS 

The maximum short circuit current obtained with scenario III using ERACS is 

14.896kA, while a value of 14.9153kA is computed using MSPSO.  An absolute 

difference of 0.13% is recorded.   

Table ‎7.9: ERACS LOAD FLOW STUDY 47-BUS; SCENARIO III (SINGLE DG), CASE I (WITH 

ONLY SHORT-CIRCUIT CONSTRAINT) VS MSPSO 

 47- Bus Network ERACS 47- Bus Network MSPSO 

 MW loss 0.095 MW 0.0948 MW 

 Mvar loss 0.149 Mvar 0.1487 Mvar 

Min bus voltage 0.9560 pu 0.9520 pu 

Max bus voltage 1.0000 pu 1.0000 pu 

  Load MW 7.254 MW 7.25 MW 

 Load Mvar 3.1230 Mvar 3.12 Mvar 

Isc with DGs (IfDG)
 

14.896 kA 14.9153 kA 
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The result of total power loss after the integration of DG with ERACS (0.095MW) for 

this scenario is in agreement with that obtained using MSPSO (0.095MW). 

The connection of 5MW, 3.3kV generator through a transformer to the grid resulted in 

the reduction of the maximum short circuit current (13.998 kA) of the network (scenario 

III, with transformer) at the infeed bus 1. On the other hand, this resulted in an increase 

in power loss (0.108MW) compared to 0.095MW (scenario III, without transformer) as 

shown Table 7.10 due to the inclusion of transformer impedance. 

Table ‎7.10: ERACS LOAD FLOW STUDY 47-BUS; SCENARIO III (WHEN DG IS CONNECTED TO 

GRID VIA TRANSFORMER) 

 47- Bus Network ERACS 

with connection 

Transformer 

47- Bus Network ERACS 

without connection 

Transformer 

 MW loss 0.108 MW 0.095 MW 

 Mvar loss 0.506 Mvar 0.149 Mvar 

Min bus voltage 0.9590 pu 0.9560 pu 

Max bus voltage 1.0000 pu 1.0000 pu 

  Load MW 7.254 MW 7.254 MW 

 Load Mvar 3.1230 Mvar 3.1230 Mvar 

Isc with DGs (IfDG)
 

13.998 kA 14.896 kA 

 

From the results in Table 7.10, it is evident that the presence of a transformer between 

the fault location and the contributing DG introduces high impedance in the network 

that reduced the fault level. However, this resulted in an increase in the network power 

loss due to increased network impedance and consequently impacted positively on the 

network voltage profile. The minimum voltage in Table 7.10 improved from 0.9560pu 

to 0.9590pu (without and with the connection transformer respectively).   

7.12.3 Comparison of results of Scenario IV, Case I 

This scenario was based a single generator operating at a minimum PF of 0.85 lagging, 

with constraint on short-circuit current only considered. In this validation, Scenario IV 

considered the optimal 3.075 MW DG located at its optimal location (bus 46) with the 

DG injecting reactive power to support the network. A 3.4 MW generator from ERACS 

library is used, and the group assigned real power (MW) output of the generator is set to 

3.075 MW. The generator bus was modelled as PQ generator. The summary of results 

using ERACS simulation in this case is presented in Table 7.11. The group assigned 
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reactive power is set at 1.9057 Mvar. When DG is injecting var support of 1.9057Mvar 

to the network, the total real power loss after the  integration of DG for ERACS reduces 

to 0.069MW, and the reactive power loss reduces to 0.107Mvar which is in agreement 

with the results obtained using MSPSO (0.0687MW and 0.1072Mvar). 

Table ‎7.11: ERACS LOAD FLOW STUDY 47-BUS; SCENARIO IV (SINGLE DG OPERATING AT 

0.85 PF LAGGING) CASE I (WITH ONLY SHORT-CIRCUIT CURRENT CONSTRAINT) 

 47- Bus Network ERACS 47- Bus Network MSPSO 

 MW loss 0.069 MW 0.0687 MW 

 Mvar loss 0.107 Mvar 0.1072 Mvar 

Min bus voltage 0.9780 pu 0.9776 pu 

Max bus voltage 1.0000 pu 1.0000 pu 

  Load MW 7.254 MW 7.25 MW 

 Load Mvar 3.1230 Mvar 3.12 Mvar 

Designed Isc (Ik) 14.335 kA 14.9020 kA 

 

However, it is also possible to represent the 3.075MW optimal generator in ERACS 

using the value of the computed sub-transient reactance of the generator

 418.00029.0 j pu on rating from the MSPSO optimisation process. Thus, the group 

assigned power of the DG is set at 3.072MW as against 3.075MW (about 0.1% less than 

the actual generator rating) and the group assigned reactive power of the generator is set 

to 1.8 MW (about 94% of the generator reactive power capability). The total real power 

loss after the integration of DG using ERACS reduces to 0.069 MW, and the reactive 

power loss reduces to 0.108 Mvar confirming the accuracy of the previous result using 

3.4MW generator.  

The computed short circuit current and fault level MVA for all bus locations are 

presented in Figures 7.21 and 7.22 respectively. It is evident that in all the scenarios 

considered in this investigation, the results are in agreement with those from ERACS. 

The results of the validation exercise have so far shown that the developed MSPSO tool 

is a useful optimization tool for integration of DG into the power distribution system.  

Moreover, the proposed three-phase symmetrical fault algorithm (based on classical 

fault calculation method) implemented with the MSPSO can provide an acceptable 

solution to the problem of integration of DG within allowable fault level headroom.  
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Figure ‎7.21: Short circuit current at different bus for cases I and II (MSPSO and ERACS) 

Figure ‎7.22: Fault level at different buses for cases I and II (MSPSO and ERACS) 

The tool can be used to determine the optimal penetration level of DG in the distribution 

network that will minimize the need for upgrading of switchgear capacity/rating. In 
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addition, considering line loading constraints as part of the optimization process can 

defer the need for upgrading of network conductors.  

7.13 Summary 

In this chapter, MSPSO algorithm has been used to optimize the integration of 

distributed generation into a 47-bus Nigeria distribution system. The optimal 

size/location problem is solved taking into considerations pertinent, practical and 

network operational security constraints that could mitigate the development of the DG 

in power distribution networks. The study is carried out in three phases. The first phase 

considered the modelling of the network based on the data collated during the fieldwork 

study. The network is modelled with the assumption of a balanced and transposed 

system, paving ways for the determination of network parameters. The positive 

sequence impedance and admittance are adopted as the impedance and admittance 

parameters of the network, respectively.  

 In the second phase, MSPSO algorithm is used to study various network scenarios. The 

network scenarios are related to solving the optimal size and location problem based on 

a single and multi-objective formulation with one or two DG. The formulations 

considered a constraint on short circuit current of the protective switchgear at the infeed 

substation and the operational constraint of line loading capacity.  

In the third phase, the validation of the MSPSO results with ERACS is carried out using 

the first four studied scenarios related to a single objective in the second phase. The 

results using ERACS are compared with those of the MSPSO and are found to be in 

agreement with each other. The slight difference in the results obtained with ERACS is 

because, in the real practical situation, the DG output is limited by the value of stator 

and rotor winding resistance. Thus, the group assigned power of the DG is, usually, set 

lower than the value used in the MSPSO simulation. The setting is to ensure that the 

current drawn from the generator does not exceed 100% of its rating.  

The results of the studied scenarios revealed that considering the capacity of switchgear 

and line loading as part of the optimization process can defer the need for upgrading of 

network protective switchgear and reconductoring of the network lines while still 

achieving significant benefits in terms of reduce power loss and improve the voltage 

profile of the network. 

The inclusion of the objective of voltage optimization into the objective power loss 

minimization to form a multi-objective has shown that DG can simultaneously 



Chapter 7: Integration of DG in Nigerian Distribution Network  

202 

 

minimize network power loss and effectively provide voltage support for the network. 

However, as expected, the improvement in one objective results in the worsening of the 

other objective. The developed multi search PSO implemented with the three-phase 

symmetrical fault algorithm shows it is a useful optimization tool for DG integration 

within the acceptable fault level. Thus, allowing DG to be integrated within the 

allowable fault level headroom without the need for upgrading of switchgear 

capacity/rating.  

In Chapter 8, the conclusions and recommendation for this research work are presented.  
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CHAPTER 8  

 

Conclusions and Future Work 

 

This chapter provides the conclusions of the work presented in this thesis and 

suggestions for further research related to the developed stochastic power system 

optimisation tool with applications to distributed generation integration in the power 

distribution network.  

8.1 Conclusions 

The ever increasing level of penetration of distributed generation in power distribution 

networks is not without its challenges for distribution system planning and operations 

engineers. Some of these challenges are in the areas of voltage regulation, increase of 

network fault levels and the disturbance to the network protection settings. One of the 

most-significant aspects of DG planning, however, is its optimal allocation. Thus, 

Distribution Network Operators (DNOs) will require an effective optimisation tool for 

network planning and integration of DG considering these challenges. DG can be 

beneficial to both electricity consumers and if the integration is properly engineered the 

energy utility. Hence, the demand for tools for their optimal placement cannot be over 

emphasised. Further, DG technologies are nowadays commercially available in compact 

and modular form with varying discrete sizes. The problem of DG sizing and 

arrangement is by its' very nature a multivariable search space (of integer, discrete and 

continuous variables) that calls for a multi search optimisation tool. 

The aim of this thesis is to develop a power system tool based on the particle swarm 

optimisation algorithm (a stochastic search algorithm based on natural bird or bee 

swarm behaviour) with applications to planning and integration of distributed 

generation (both synchronous and induction machine based DG) in the power network. 

Furthermore, the proposed tool is to consider some pertinent and practical challenges 

(such as voltage, short circuit current level and line overloading constraints) that may 

impede the development of distributed generation in the power system distribution 

network. The developed optimisation tool (the multi-search particle swarm optimisation 
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or MSPSO) has been shown to be an effective and efficient method for DG planning 

and integration studies.  

Considerable research has been carried out into the problem of distributed generation 

integration using several optimisation techniques where variables are continuous. These 

continuous-variables unnecessary increase the search space and hence the 

computational cost of the algorithm when finding the optimal or near-optimal solution 

of an optimisation problem. Previous studies will either round-up the continuous 

variable to define integer variable or used a fixed step size to represent discrete variable 

of the multi-search space problem. This will affect the accuracy of the optimisation 

results as the solutions are not likely to be the best-available practical choice as a 

consequence of missing out some generator sizes. A multi-search space problem of this 

nature will require an optimisation tool that will operate on the multi-control variables 

of the DG optimal integration problem.  

A general overview of the proposed MSPSO tool (with the capability of handling multi-

search space problem of both synchronous and induction machine based DG) was 

presented in Chapter 3. Appropriate handling techniques were developed for the 

different variables of the DG integration problem. These handling techniques include 

the multi-valued discrete PSO that handles the integer variable (bus location number) 

and the dichotomy algorithm that transform the continuous variable into a discrete 

variable used for generation and capacitor sizes. Further, to reduce the computational 

burden of the MSPSO, a few informants sub-routine algorithm was implemented. The 

concept is based on using few numbers of agents (particles) for fitness evaluations 

during the course of the optimisation process, thus, drastically reducing the number 

times the objective function needs to be evaluated.  

The application of the developed multi-search particle swarm optimisation (with 

application to synchronous generator based DG integration problem) was presented in 

Chapters 4 and 5 using a standard compensated 69-bus radial distribution network as a 

benchmark test network. For the purposes of comparison, a study based on the particle 

swarm optimisation algorithm with inertia weight (PSO-W) was conducted first 

(Chapter 4). The problem was formulated both as a single-objective study to minimise 

network power loss and a multi-objective optimisation study to minimise power loss 

and provide voltage support for the network. Unlike in most-previous steady state 

optimisation studies in the literature, the objective functions were assessed with the DG 

node modelled as a PV node to inject reactive power into the network up to a given 
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minimum operating lagging power factor, thus allowing the DG reactive power control 

capability to be included in the analysis. 

The investigation has shown that the best improvement in network loss reduction and 

voltage support (for a single objective study) are obtained when more than one 

generator are connected in the compensated network. Good results in terms of overall 

loss reduction and voltage profile improvement are obtained even when operating with 

the compensating capacitors disconnected since the generators are allowed to inject 

reactive power to provide network support. It is likewise demonstrated that the network 

power loss reduction is dependent on the operating power factor of the DG. Higher 

power loss reduction figures were obtained when operating at lagging power factors 

compared to unity operating power factor. The multi-objective optimisation study 

resulted in a conflict of interest with improvement in the voltage profile of the network 

resulting in a lower power loss reduction (compared with the single-objective study). 

The impact of voltage improvement was found to be most significant in the case of DG 

operating at unity power factor and when the network reactive power compensation 

devices were removed. 

The application of the proposed multi-search particle swarm optimisation (MSPSO) 

algorithm to the same network scenarios and test cases is presented in Chapter 5. Unlike 

the PSO-W studies presented in Chapter 4 (where the DG sizes are treated as 

continuous variables), the MSPSO used a list of commercially available DG units to 

define the discrete size of DG units. Similar final results were obtained with small 

differences in optimum DG sizes and network loss reduction and voltage values because 

of the practical restriction imposed on the size of available DG units. Both algorithms 

found the same optimal locations for the DG units. The comparison showed that the 

conventional PSO-W algorithm results, in some instances, resulted in an overestimation 

(or underestimation) of the percentage power loss reduction and the SSEV (sum of the 

squared of error voltages) index used to quantify the network voltage profile 

improvement.  This is a result of the rounding-off process of the DG sizes obtained with 

PSO-W and other optimisation methods affecting the accuracy of the obtained results. 

The multi-search PSO algorithm shows the advantage of fewer function evaluations as 

it uses few numbers of agents in the evaluation of the objective function compared to 

PSO-W. Other advantages of MSPSO include reduced search space with quicker results 

due to fewer iterations and the ability to explore discrete search space of DG control 

variables compared with the PSO-W for the same optimisation problem. 
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The benefit of the proposed MSPSO algorithm is further demonstrated by the 

comparison of its results with those obtained using other optimisation methods available 

in the literature that use either continuous variables or binary representation of the real 

variables. The MSPSO algorithm produced a better power loss reduction result 

compared with previous studies since it avoids the rounding up errors inherent in some 

methods. A slight improvement is also achieved when compared with other discrete 

algorithms that miss out some generator sizes because they only consider the DG sizes 

in even steps of 100kW.  

The results have also shown that permitting voltage regulation by the distributed 

generation units will aid in realizing some of the theoretical or practical benefits of 

distributed generation. Such benefits include reduced voltage variation and relief from 

unnecessary reactive power flows resulting in a drastic reduction in network power loss 

and improved voltage profile.  

In both chapter 4 and 5 it was found that, when the generator operates in a compensated 

network, the actual power factor is always higher than 0.95 lagging (compared with the 

minimum lagging possible operating power factors of 0.85 or 0.95). Thus, resulted in 

identical optimal results for both 0.85 and 0.95 minimum lagging operating PF, as there 

will be no need for the generators to go down to these power factors. Nevertheless, this 

situation was found to be different when the generator operates in an uncompensated 

network: the operating power factor will drop below 0.95 PF if necessary. Hence, there 

was a difference between the results for 0.85 and 0.95 minimum lagging PF.  

The implementation of the proposed MSPSO algorithm for the integration of the 

induction generator based DG was demonstrated in Chapter 6, using the same standard 

69-bus radial distribution network. Induction generators behave differently from the 

synchronous generator based DG units. An induction generator requires reactive power 

support from the network for its operation. In previously published studies, the reactive 

power requirement of this generator is commonly computed using an approximate 

empirical formula, resulting in the underestimation or overestimation of the reactive 

power requirement of the generator. In this work, an algorithm for computing the 

reactive power requirement of the induction generator is proposed based on the per 

phase equivalent circuit of the machine. The proposed MSPSO and the IG reactive 

power requirement calculation procedure are interfaced to perform the optimisation 

procedure. The outcomes have shown that the proposed technique can account for the 

reactive power requirement of the generator better than the approximate formula used in 
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the previous studies. The technique gives a more accurate estimation of the induction 

machine reactive power demand as a guaranteed leading to more accurate optimum 

solutions.  

Unlike previous studies, the simultaneous integration of shunt compensation capacitors 

and induction generator DG units is considered.  This reactive power requirement of the 

generator is usually supplied locally via var compensation capacitors and must be 

accounted for in the optimisation process. In this investigation, the shunt compensation 

capacitors are included as part of the optimisation problem, to compensate the reactive 

power drawn on the grid when the unit is delivering output at rated power. It is shown 

that this approach results in a lower reactive power flow in the network leading to 

improved network loss and improved voltage profile. 

In previous steady state optimisation studies involving the integration of induction 

generator based distributed generation, the impact of the short circuit current rating of 

switchgear and line loading limits are not considered. In this research work, an 

algorithm procedure for computing a three-phase symmetrical fault current based on 

classical fault calculation method is implemented alongside the MSPSO algorithm. This 

fault algorithm is used to enforce the constraint on short-circuit rating of the switchgear, 

while the constraint on line loading capacity is enforced using a quadratic index. By 

considering the capacity of switchgear and line loading as part of the optimisation 

process, the need for upgrading of network protective switchgear and reconductoring of 

the network lines can be considered and avoided. The results show that when the 

constraints imposed by switchgear rating and the line loading limit are neglected, the 

capacity of the network to absorb new generation will be overestimated. This resulted in 

the overestimation of the technical benefits of DG.   

In chapter 7, the effectiveness of the proposed MSPSO algorithm tested on a real 47-bus 

radial distribution network in Nigeria. Pertinent and practical network security 

constraints are considered in the optimisation process and the results checked and 

validated using the ERACS power system analysis software package. 

In summary, the proposed stochastic multi-search particle swarm optimisation (MSPSO) 

algorithm has been shown to be an effective tool for power system optimisation studies 

involving the connection of distributed generation. The algorithm is capable of 

operating simultaneously with the integer, discrete and continuous variables that 

comprise the search space in the optimal DG sizing/location optimisation study, thus, 
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overcoming some of the limitations associated with the continuous optimisation 

algorithms used for solving this complex nonlinear optimisation problem.  The search 

space and the computational cost of the algorithm are substantially reduced compared 

with other PSO methods used, without loss of quality in the attained optimal solution. 

The inclusion of the fault current calculation procedure alongside the MSPSO algorithm 

in conjunction with the enforcement of pertinent network security and operational 

constraints allows for a realistic optimisation solution.  

8.2 Scope for future work 

The techniques developed in this thesis are used to solve the problems of DG and shunt 

capacitor integration onto the radial distribution system. The concept can also be 

applied to meshed distribution network without any modification. Further, the algorithm 

can be extended to the problem of finding optimal substation location/size with a 

different mix of DG technologies for integration into a microgrid network as well as 

other power system optimisation problems such as the sizing and location of static 

reactive power compensation equipment and other FACTS devices. 

In the current study, only operational, technical objectives and constraints were 

considered. It would be worthwhile in any future study to also consider economic 

considerations such as investment, revenues, income generation from ancillary services 

and operation and maintenance costs. Such an economic optimal strategy would 

naturally be non-generic because of the involvement of various stakeholders. For 

example, clients who want to improve self-sustainability, power producers, who desire 

to diversify their production peak, power system operators, who choose to plan grid 

investments and, last but not least, regulators and governments, who need to have a 

benchmark and a tool to assess the impact of support mechanisms [131]. Nevertheless, 

this is still a mixed integer, discrete and continuous problem that calls for the solution of 

complex optimisation functions and there is no reason why the proposed MSPSO 

algorithm cannot be extended to such a problem.  

In chapter 6 and 7, a three-phase symmetrical fault calculation was implemented 

together with the MSPSO algorithm based on classical fault calculation methods. It 

would be worthwhile in the future subject to perform the fault calculation based on IEC 

60909. A comparison can then be drawn between the two techniques (IEC 60909 is a 

standard established to give a general approach for the computation of short circuit 

current, providing conservative results, but with sufficient accuracy [106]).  
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In Chapters 6 and 7, the multi-objective formulation of the problem is effectively 

transformed into a single objective study by using the weighted aggregate method. The 

single objective function is constructed as the sum of objective functions multiplied by 

their weighting factors. In such cases, there is always the difficulty of determining the 

appropriate weights that can be assigned to different objectives when there is not 

enough information about the problem. It would be worthwhile in the future to compare 

the results of this study with an algorithm that can inherently handle multiple objective 

problems such as the newly developed modernized particle swarm optimisation 

‘Differential‎ Search‎ Algorithm'‎ (DSA).‎ DSA‎ is‎ a‎ novel‎ and‎ efficient‎ evolutionary‎

algorithm for resolving real-valued numerical optimisation problems, inspired by the 

migration of super-organisms utilizing the concept of stable-motion [132].  
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Appendix A: Feeder Network Data for 69-bus RDN 

Table A. 1: Line and load data for the 69-bus radial distribution network of Figure 4.1  

Line 

numbers 

Sending Bus Receiving 

Bus 

Resistance     

(Ω) 

Reactance 

(Ω) 

 Load at Receiving End Bus 

Real Load 

(KW) 

Reactive 

Load 

(KVAr) 

1 1  2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.3660 0.1864 2.60 2.20 

6 6 7 0.3811 0.1941 40.40 30.0 

7 7 8 0.0922 0.0470 75.0 54 

8 8 9 0.0493 0.0251 30.0 22.0 

9 9 10 0.8190 0.2707 28.0 19 

10 10 11 0.1872 0.0619 145.0 104.0 

11 11 12 0.7114 0.2351 145.0 104.0 

12 12 13 1.0300 0.3400 8.0 5.50; 

13 13 14 1.0440 0.3450 8.0 5.50 

14 14 15 1.0580 0.3496 0.0 0.0 

15 15 16 0.1966 0.0650 45.50 30.0 

16 16 17 0.3744 0.1238 60.0 35.0 

17 17 18 0.0047 0.0016 60.0 35.0 

18 18 19 0.3276 0.1083 0.0 0.0 

19 19 20 0.2106 0.0696 1.0 0.60 

20 20 21 0.3416 0.1129 114.0 81.0 

21 21 22 0.01040 0.0046 5.3 3.50 

22 22 23 0.1591 0.0526 0.0 0.0 

23 23 24 0.3463 0.1145 28.0 20.0 

24 24 25 0.7488 0.2475 0.0 0.0 

25 25 26 0.3089 0.1021 14.0 10.0 

26 26 27 0.1732 0.0572 14.0 10.0 

27 3 28 0.00400 0.0108 26.0 18.60 

28 28 29 0.0640 0.1565 26.0 18.60 

29 29 30 0.3978 0.1315 0.0 0.0 

30 30 31 0.0702 0.0232 0.0 0.0 

31 31 32 0.3510 0.1160 0.0 0.0 

32 32 33 0.8390 0.2816 14.0 10.0 

33 33 34 1.7080 0.5646 19.50 14.0 

34 34 35 1.4740 0.4873 6.0 4.0 

35 3 36 0.0044 0.0108 26.0 18.55 

36 36 37 0.0640 0.1565 26.0 18.55 

37 37 38 0.1053 0.1230 0.0 0.0 

38 38 39 0.0304 0.0355 24.0 17.0 

39 39 40 0.0018 0.0021 24.0 17.0 

40 40 41 0.7283 0.8509 1.20 1.0 

41 41 42 0.3100 0.3623 0.0 0.0 

42 42 43 0.0410 0.0478 6.0 4.30 

43 43 44 0.0092 0.0116 0.0 0.0 

44 44 45 0.1089 0.1373 39.22 26.30 

45 45 46 0.0009 0.0012 39.22 26.30 

46 4 47 0.0034 0.0084 0.0 0.0 

47 47 48 0.0851 0.2083 79.0 56.40 

48 48 49 0.2898 0.7091 384.70 274.5 

49 49 50 0.822 0.2011 384.70 274.5 

50 8 51 0.0928 0.0473 40.50 28.30 
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51 51 52 0.3319 0.1114 3.6 2.7 

52 9 53 0.1740 0.0886 4.35 3.50 

53 53 54 0.2030 0.1034 26.4 19.0 

54 54 55 0.2842 0.1447 24.0 17.2 

55 55 56 0.2813 0.1433 0.0 0.0 

56 56 57 1.5900 0.5337 0.0 0.0 

57 57 58 0.7837 0.2630 0.0 0.0 

58 58 59 0.3042 0.1006 100.0 72.0 

59 59 60 0.3861 0.1172 0.0 0.0 

60 60 61 0.5075 0.2585 1244.0 888.0 

61 61 62 0.0974 0.0496 32.0 23.0 

62 62 63 0.1450 0.0738 0.0 0.0 

63 63 64 0.7105 0.3619 227.0 162.0 

64 64 65 1.0410 0.5302 59.0 42.0 

65 11 66 0.2012 0.0611 18.0 13.0 

66 66 67 0.0047 0.0014 18.0 13.0 

67 12 68 0.7394 0.2444 28.0 20.0 

68 68 69 0.0047 0.0016 28.0 20.0 

69* 52 67 0.0047 0.0016 - - 

70* 15 69 0.0047 0.0016 - - 

71* 10 65 0.0047 0.0016 - - 

72* 46 50 0.0047 0.0016 - - 

73* 35 27 0.0047 0.0016 - - 

*Tie Lines, Substation Voltage =11.0 kV & Base MVA =10.0 MVA 

 

Table A. 2: Commercially available generator sizes used in the study 

No. DG(MW) No. DG(MW) No. DG(MW) No. DG(MW) No. DG(MW) No. DG(MW) 

1 0 27 0.113 53 0.350 79 0.813 105 1.680 131 3.000 

2 0.011 28 0.115 54 0.355 80 0.830 106 1.700 132 3.075 

3 0.012 29 0.117 55 0.360 81 0.880 107 1.750 133 3.100 

4 0.013 30 0.120 56 0.372 82 0.900 108 1.754 134 3.150 

5 0.015 31 0.128 57 0.390 83 0.912 109 1.760 135 3.200 

6 0.016 32 0.136 58 0.400 84 0.960 110 1.800 136 3.204 

7 0.018 33 0.140 59 0.403 85 1.000 111 1.840 137 3.300 

8 0.020 34 0.150 60 0.440 86 1.056 112 1.850 138 3.350 

9 0.024 35 0.160 61 0.443 87 1.100 113 1.900 139 3.400 

10 0.025 36 0.170 62 0.450 88 1.120 114 2.000 140 3.500 

11 0.030 37 0.176 63 0.475 89 1.144 115 2.100 141 3.600 

12 0.032 38 0.180 64 0.480 90 1.200 116 2.200 142 3.700 

13 0.036 39 0.200 65 0.500 91 1.210 117 2.260 143 3.800 

14 0.040 40 0.214 66 0.515 92 1.250 118 2.235 144 3.900 

15 0.048 41 0.216 67 0.520 93 1.264 119 2.300 145 4.000 

16 0.050 42 0.228 68 0.530 94 1.300 120 2.339 146 4.100 

17 0.056 43 0.230 69 0.536 95 1.350 121 2.400 147 4.200 
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18 0.058 44 0.240 70 0.576 96 1.360 122 2.500 148 4.300 

19 0.060 45 0.250 71 0.600 97 1.400 123 2.600 149 4.400 

20 0.068 46 0.260 72 0.625 98 1.420 124 2.648 150 4.500 

21 0.075 47 0.280 73 0.670 99 1.500 125 2.700 151 4.600 

22 0.080 48 0.300 74 0.700 100 1.525 126 2.750 152 4.700 

23 0.090 49 0.310 75 0.720 101 1.600 127 2.800 153 4.800 

24 0.100 50 0.320 76 0.740 102 1.636 128 2.845 154 4.900 

25 0.106 51 0.325 77 0.750 103 1.660 129 2.865 155 5.000 

26 0.108 52 0.335 78 0.800 104 1.670 130 2.900   
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Appendix B: Induction Generator Parameters 

Table B. 1 Electrical Parameters of induction generators based distributed generation used in the study 

[110-113] 

S. No 

Induction Generator 
output power rating and 

Voltage Rr‎(Ω) Xr‎(Ω) Rs(Ω) Xs(Ω) Xm(Ω) 

  

 

          

1 0.33MW , 660V 0.010032 0.307428 0.009372 0.100584 4.553736 

2 0.35MW , 690V 0.004444 0.04642 0.051736 0.083318 3.730561 

3 0.50MW, 690V 0.009332 0.058941 0.003333 0.045134 1.405447 

4 0.60MW, 690V 0.007221 0.10006 0.008094 0.083318 3.730561 

5 0.843MW,  690V 0.004 0.066 0.00450 0.0513 2.2633 

6 0.855MW, 575V 0.001547 0.069257 0.001856 0.04826 2.617931 

7 1MW, 690V 0.002831 0.085929 0.002512 0.035169 1.340018 

8 1.45MW,  575V 0.00139 0.01565 0.001354 0.03279 0.55605 

9 1.5MW,  690V 0.000965 0.039453 0.001066 0.027569 1.492224 

10 1.65MW, 690V 0.001635 0.021998 0.002031 0.018385 0.911052 

11 1.85MW,  690V 0.00204 0.022898 0.00136 0.016323 0.775816 

12 2MW, 690V 0.000238 0.002381 0.000238 0.002381 0.71415 

13 2.3MW, 690V 0.001497 0.0204 0.001102 0.0204 0.67052 

14 2.5MW, 575V 0.001542 0.0149 0.001447 0.023749 0.81645 

15 3.0MW, 3300V 0.018152 0.2949 0.016623 0.2949 10.2421 

16 4.0MW, 4000V 0.023152 0.532 0.022104 0.532 10.555 
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Appendix C: Feeder Network Data for 62-bus and 47 -bus Nigerian 

RDN  

Table C. 1: DEFAULT LINE PARAMETERS [104] 

Conductors/ 

Cables 

Current(A) Conversion Std. Eqv. 

American size 

(cmils/AWG)  

Resistance 

(ohms/mile) 

GMR (ft) Current 

(A) 

150mm2  ACSR 470 269100 336400 0.306 0.0244 530 

100mm2 ACSR 410 197400 266800 0.385 0.0217 460 

70mm2 ACSR 290 138180 3,0 0.723 0.006 300 

35mm2 ACSR 170 69090 #2 1.69 0.00418 180 

Note: 1mm2=1974cmils  

 

 

Figure C. 1: Single line diagram of 11kV Nigerian feeder 
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Table C. 2: Computed series impedance for different conductors 

Conductors (cmils/AWG) Series impedance  Z(R+ j X) ohms/km 

336400  0.1901 + 0.0504i  -0.0000 + 0.0000i   0.0000 + 0.0000i 

  -0.0000 + 0.0000i   0.1901 + 0.3247i  -0.0000 - 0.0000i 

        0             0.0000 + 0.0000i   0.1901 + 0.3247i 

266 800 0.2392 + 0.0578i  -0.0000 + 0.0000i   0.0000 + 0.0000i 

  -0.0000 + 0.0000i   0.2392 + 0.3321i  -0.0000 - 0.0000i 

   0.0000 - 0.0000i   0.0000 + 0.0000i   0.2392 + 0.3321i 

3,0  0.4493 + 0.1385i  -0.0000 + 0.0000i   0.0000 - 0.0000i 

  -0.0000             0.4493 + 0.4129i  -0.0000 - 0.0000i 

        0 + 0.0000i   0.0000 - 0.0000i   0.4493 + 0.4129i 

Note: 1 mile =1.609344km  

Table C. 3: Computed series impedances for different cables 

Cables Series impedance  Z(R+ j X) ohms/km 

336400     0.3678 + 1.7868i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 

  -0.0000 - 0.0000i   0.1901 + 0.2043i   0.0000 - 0.0000i 

   0.0000 - 0.0000i  -0.0000 - 0.0000i   0.1901 + 0.2043i 

3,0     0.6269 + 1.8749i  -0.0000 - 0.0000i  -0.0000 + 0.0000i 

   0.0000             0.4493 + 0.2924i   0.0000 - 0.0000i 

   0.0000 - 0.0000i  -0.0000 - 0.0000i   0.4493 + 0.2924i 

 

Table C. 4: Computed hunt admittances for different conductors  

Conductors (cmils/AWG) Shunt‎admittance‎‎Y(0+‎j‎B)‎μ‎Siemens/km 

336400  1.0e-005 * 

        0 + 0.1370i  -0.0000 - 0.0000i   0.0000 + 0.0000i 

        0 - 0.0000i   0.0000 + 0.3580i   0.0000 - 0.0000i 

  -0.0000 - 0.0000i   0.0000 - 0.0000i  -0.0000 + 0.3580i 

266 800 1.0e-005 * 

        0 + 0.1358i  -0.0000 - 0.0000i   0.0000 + 0.0000i 

        0             0.0000 + 0.3496i   0.0000 - 0.0000i 

        0                  0 - 0.0000i  -0.0000 + 0.3496i 
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3,0  1.0e-005 * 

        0 + 0.1332i  -0.0000 + 0.0000i   0.0000 + 0.0000i 

        0 + 0.0000i   0.0000 + 0.3329i   0.0000 - 0.0000i 

        0 + 0.0000i   0.0000 + 0.0000i  -0.0000 + 0.3329i 

 

Table C. 5: Computed shunt admittances for different cables 

Cables (cmils/AWG) Shunt‎admittance‎‎Y(0+‎j‎B)‎μ‎Siemens/km 

336400  1.0e-003 * 

        0 + 0.1380i  -0.0000 - 0.0000i   0.0000 + 0.0000i 

        0             0.0000 + 0.1380i   0.0000 - 0.0000i 

        0 + 0.0000i   0.0000 - 0.0000i  -0.0000 + 0.1380i 

3,0  1.0e-004 * 

        0 + 0.5211i  -0.0000 - 0.0000i   0.0000 + 0.0000i 

        0             0.0000 + 0.5211i   0.0000 - 0.0000i 

   0.0000 + 0.0000i   0.0000 - 0.0000i  -0.0000 + 0.5211i 

 

Table C. 6: Line and load data for the 62-bus radial distribution network figure 8.2 

Line 

number 

Sending 

Bus 

Receivin

g Bus 

  

Distance 

(Km) 

Resistance     

(Ω) 

Reactanc

e‎(Ω) 

 Load at Receiving 

End Bus 

Installed 

Transfor-

mer  

(kVA) 
Real 

Load 

(KW) 

Reactive 

Load 

(KVAr) 

1 1 2 0.45 
   0.0856  0.1461 0 0  

2 2 3 1.2 
   0.2282     0.3897 343.2 147.8 500 

3 3 4 0.1 
   0.0190     0.0325 247.2 106.5 500 

4 4 5 0.8 
   0.1521    0.2598 0.0 0.0  

5 5 6 0.11 
   0.0209     0.0357 23.2 10.0 315 

6 6 7 0.11 
   0.0209    0.0357 132.8 57.2 300 

7 7 8 0.3 
   0.0570     0.0974 0.0 0.0  

8 8 9 0.16 
   0.0304     0.0520 0.0 0.0  

9 9 10 0.63 
   0.1198     0.2046 132.8 57.2 300 

10 10 11 0.05 
   0.0095    0.0162 0.0 0.0  

11 11 12 0.07 
   0.0133     0.0227 73.8 31.8 200 

12 12 13 0.13 
   0.0247    0.0422 59.0 25.8 200 

13 13 14 0.14 
   0.0266    0.0455 0.0 0.0  

14 2 15 0.12 
   0.0228   0.0390 265.7 114.4 500 

15 15 16 0.08 
   0.0152    0.0260 298.9 128.7 500 

16 4 17 0.15 
   0.0285     0.0487 163.8 70.5 200 
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17 17 18 0.4 
   0.0761   0.1299 0.0 0.0  

18 18 19 0.15 
   0.0285   0.0487 0.0 0.0  

19 5 20 0.4 
   0.0761     0.1299 66.4 28.6 300 

20 8 21 0.07 
   0.0133     0.0227 20.7 8.9 100 

21 21 22 0.08 
   0.0152    0.0260 22.1 9.5 100 

22 22 23 0.1 
   0.0190   0.0325 143.9 62.0 300 

23 23 24 0.69 
   0.1312     0.2241 0.0 0.0  

24 24 25 0.2 
   0.0380    0.0649 221.4 95.3 300 

25 25 2 0.2 
   0.0380     0.0649 141.8 61.1 315 

26 9 27 0.3 
   0.0570    0.0974 36.9 15.9 100 

27 11 28 0.1 
   0.0190    0.0325 66.4 28.6 300 

28 18 29 0.15 
   0.0285    0.0487 0.0 0.0  

29 29 30 0.25 
   0.0475     0.0812 203.7 87.7 500 

30 30 31 0.15 
   0.0285    0.0487 88.6 38.1 200 

31 23 32 0.125 
   0.0238     0.0406 110.7 47.7 300 

32 32 33 0.125 
   0.0238   0.0406 132.8 57.2 300 

33 33 34 0.3 
   0.0570     0.0974 221.4 95.3 500 

34 34 35 0.43 
   0.0818     0.1396 18.5 7.9 100 

35 35 36 0.07 
   0.0133  0.0227 9.2 4.0 50 

36 24 37 0.12 
   0.0228     0.0390 36.9 15.9 100 

37 37 38 0.08 
   0.0152     0.0260 22.1 9.5 100 

38 38 39 0.1 
   0.0190     0.0325 262.0 112.8 500 

39 39 40 0.3 
0.0570     0.0974 12.9 5.6 50 

40 40 41 0.2 
   0.0380     0.0649 0.0 0.0  

41 41 42 0.1 
   0.0761  0.1299 36.9 15.9 200 

42 29 43 0.2 
   0.0380     0.0649 243.5 104.9 300 

43 30 44 0.1 
   0.0190     0.0325 168.3 72.4 200 

44 39 45 0.2 
   0.0380     0.0649 25.8 11.1 100 

45 39 46 0.15 
   0.0285  0.0487 166.1 71.5 300 

46 46 47 0.15 
   0.0285     0.0487 0.0 0.0  

47 47 48 0.25 
   0.0475     0.0812 0.0 0.0  

48 48 49 0.07 
   0.0133  0.0227 402.2 173.2 500 

49 41 50 0.1 
   0.0190  0.0325 143.9 62.0 300 

50 47 51 0.2 
   0.0380     0.0649 225.8 97.2 300 

51 48 52 0.3 
   0.0570     0.0974 347.6 149.7 500 

52 51 53 0.4 
   0.0761  0.1299 0.0 0.0  

53 53 54 0.4 
   0.0761 0.1299 409.6 176.4 500 

54 54 55 0.4 
   0.0761     0.1299 0.0 0.0  

55 53 56 0.2 
   0.0380   0.0649 250.4 107.8 500 

56 56 57 0.15 
   0.0285    0.0487 413.3 177.9 500 

57 57 58 0.4 
   0.0761   0.1299 0.0 0.0  

58 58 59 0.1 
   0.0190    0.0325 36.9 15.9 100 
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59 59 60 0.25 
   0.0475     0.0812 428.8 184.6 500 

60 60 61 0.3 
   0.0570   0.0974 214.3 92.3 315 

61 58 62 0.3 
   0.0570    0.0974 159.4 68.6 300 

 Substation Voltage =11.0 kV & Base-MVA =10.0 MVA   

 

Table C. 7:Line and load data for the Modified 62-bus (47-bus) radial distribution network figure 7.2 

Line 

numbers 

Sending 

Bus 

Receiving 

Bus 

  Resistance     

(Ω) 

Reactance 

(Ω) 

 Load at Receiving 

End Bus 

Distance 

(Km) 

Real 

Load 

(KW) 

Reactive 

Load 

(KVAr) 

1 1 2 0.45    0.0856  0.1461 

  2 2 3 1.2 
   0.2282     0.3897 0.344 0.147 

3 3 4 0.1 
   0.0190     0.0325 0.247 0.106 

4 4 5 0.8 
   0.1521    0.2598 0.066 0.028 

5 5 6 0.11 
   0.0209     0.0357 0.023 0.01 

6 6 7 0.11 
   0.0209    0.0357 0.133 0.058 

7 7 8 0.3 
   0.0570     0.0974 0.0 0.0 

8 8 9 0.16 
   0.0304     0.0520 0.037 0.016 

9 9 10 0.63 
   0.1198     0.2046 0.133 0.058 

10 10 11 0.05 
   0.0095    0.0162 0.066 0.028 

11 11 12 0.07 
   0.0133     0.0227 0.074 0.032 

12 12 13 0.13 
   0.0247    0.0422 0.059 0.025 

13 13 14 0.14 
   0.0266    0.0455 0.0 0.0 

14 2 15 0.12 
   0.0228   0.0390 0.266 0.114 

15 15 16 0.08 
   0.0152    0.0260 0.299 0.129 

16 4 17 0.15 
   0.0285     0.0487 0.164 0.070 

17 17 18 0.4 
   0.0761   0.1299 0.0 0.0 

18 18 19 0.15 
   0.0285   0.0487 0.0 0.0 

19 8 20 0.07 
   0.0133     0.0227 0.021 0.009 

20 20 21 0.08 
   0.0152    0.0260 0.022 0.010 

21 21 22 0.1 
   0.0190   0.0325 0.144 0.062 

22 22 23 0.69 
   0.1312     0.2241 0.0 0.0 

23 23 24 0.2 
   0.0380    0.0649 0.363 0.156 

24 18 25 0.15 
   0.0285    0.0487 0.244 0.104 

25 25 26 0.25 
   0.0475     0.0812 0.371 0.160 

26 26 27 0.15 
   0.0285    0.0487 0.089 0.038 

27 22 28 0.125 
   0.0238     0.0406 0.111 0.048 

28 28 29 0.125 
   0.0238   0.0406 0.133 0.058 

29 29 30 0.3 
   0.0570     0.0974 0.221 0.095 

30 30 31 0.43 
   0.0818     0.1396 0.019 0.008 

31 31 32 0.07 
   0.0133  0.0227 0.009 0.004 
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32 23 33 0.12 
   0.0228     0.0390 0.037 0.016 

33 33 34 0.08 
   0.0152     0.0260 0.022 0.010 

34 34 35 0.1 
   0.0190     0.0325 0.289 0.124 

35 35 36 0.3 
0.0570     0.0974 0.194 0.083 

36 35 37 0.15 
   0.0285  0.0487 0.166 0.071 

37 37 38 0.15 
   0.0285     0.0487 0.226 0.097 

38 38 39 0.25 
   0.0475     0.0812 0.348 0.150 

39 39 40 0.07 
   0.0133  0.0227 0.403 0.173 

40 38 41 0.4 
   0.0761  0.1299 0.0 0.0 

41 41 42 0.4 
   0.0761 0.1299 0.410 0.177 

42 41 43 0.2 
   0.0380   0.0649 0.250 0.108 

43 43 44 0.15 
   0.0285    0.0487 0.413 0.178 

44 44 45 0.4 
   0.0761   0.1299 0.159 0.069 

45 45 46 0.1 
   0.0190    0.0325 0.037 0.016 

46 46 47 0.25 
   0.0475     0.0812 0.643 0.277 

 Substation Voltage =11.0 kV & Base-MVA =10.0 MVA  
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Table C. 8:Conductor and Cable Configuration for  radial distribution network [121] 
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Appendix D: ERACS Feeder Network Data 47 -bus Nigerian RDN 

Table D. 1: ERACS Study Parameters for Modified 62-bus (47-bus) radial distribution network figure 7.3 

BUSBAR 

NAME 

NOMINAL 

VOLTS 

(kV) 

NOMINAL 

FREQ (Hz) 

THREE PHASE 

FAULT MVA 

SINGLE PHASE 

FAULT MVA 

BUS-0001     11 50 250 250 

BUS-0002     11 50 250 250 

BUS-0003     11 50 250 250 

BUS-0004     11 50 250 250 

BUS-0005     11 50 250 250 

BUS-0006     11 50 250 250 

BUS-0007     11 50 250 250 

BUS-0008     11 50 250 250 

BUS-0009     11 50 250 250 

BUS-0010     11 50 250 250 

BUS-0011     11 50 250 250 

BUS-0012     11 50 250 250 

BUS-0013     11 50 250 250 

BUS-0014     11 50 250 250 

BUS-0015     11 50 250 250 

BUS-0016     11 50 250 250 

BUS-0017     11 50 250 250 

BUS-0018     11 50 250 250 

BUS-0019     11 50 250 250 

BUS-0020     11 50 250 250 

BUS-0021     11 50 250 250 

BUS-0022     11 50 250 250 

BUS-0023     11 50 250 250 

BUS-0024     11 50 250 250 

BUS-0025     11 50 250 250 

BUS-0026     11 50 250 250 

BUS-0027     11 50 250 250 

BUS-0028     11 50 250 250 

BUS-0029     11 50 250 250 

BUS-0030     11 50 250 250 

BUS-0031     11 50 250 250 

BUS-0032     11 50 250 250 

BUS-0033     11 50 250 250 

BUS-0034     11 50 250 250 

BUS-0035     11 50 250 250 

BUS-0036     11 50 250 250 

BUS-0037     11 50 250 250 

BUS-0038     11 50 250 250 

BUS-0039     11 50 250 250 

BUS-0040     11 50 250 250 

BUS-0041     11 50 250 250 
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BUS-0042     11 50 250 250 

BUS-0043     11 50 250 250 

BUS-0044     11 50 250 250 

BUS-0045     11 50 250 250 

BUS-0046     11 50 250 250 

BUS-0047     11 50 250 250 

BUS-0048     3.3 50 250 250 
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Figure D. 1: ERACs Model of 47-bus 11kV Nigerian feeder (Figure C.1) 
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Figure D. 2: 47-bus 11kV Nigerian feeder ERACS Base case (Load flow with no Distributed Generation) 
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Table D. 2: ERACS Equipment and Grid Study Parameters for 47-bus RDN Test System 

CABLE FIRST SECOND No. OF CABLE LIBRARY RATING POS/NEG POS/NEG POS/NEG ZERO ZERO ZERO

ID BUSBAR BUSBAR CIRCUITS LENGTH KEY (kA) R (pu) X (pu) B (pu) R (pu) X (pu) B (pu)

CAB-0001    BUS-0001    BUS-0002    1 1 UG_Cable    1 0.007 0.008 0 0.01 0.01 0

CAB-0002    BUS-0004    BUS-0017    1 1 UG_Cable2   1 0.002 0.002 0 0.01 0.01 0

TRANSFORMER LIBRARY WINDING BUSBAR RATED WINDING ANGLE POS/NEG POS/NEG ZERO ZERO NEUTRAL NEUTRAL VOLTAGE OFF-NOMINAL

ID KEY NUMBER NAME MVA TYPE (DEG.) R (pu) X (pu) R (pu) X (pu) R (pu) X (pu) RATIO TAP (%)

TX-0001     T039        1 BUS-0038    5 Y 0 0.005 0.0706 0.005 0.0706 0 0 1 0

TX-0001     T039        2 BUS-0048    5 Y 0 0.005 0.0706 0.005 0.0706 0 0 1 0

INFINITE GENERATOR BUSBAR RATED RATED RATED ASSIGNED POS. SEQ POS. SEQ NEG. SEQ NEG. SEQ ZERO SEQ ZERO SEQ

ID NAME S (MVA) P (MW) V (kV) V (pu) R (pu/r) X (pu/r) R (pu/r) X (pu/r) R (pu/r) X (pu/r)

GRID-0002   BUS-0001    250 24.8759 11 1 0.0995 0.995 0.0995 0.995 0.0995 0.995

SYNCHRONOUS MACHINE BUSBAR TYPE NO. OF LIBRARY RATED RATED RATED ASSIGNED ASSIGNED ASSIGNED NEUTRAL NEUTRAL POS. SEQ POS. SEQ NEG. SEQ NEG. SEQ ZERO SEQ ZERO SEQ

ID NAME UNITS KEY S (MVA) P (MW) V (kV) V (pu) P (MW) Q (MVAr) R (pu/r) X (pu/r) R (pu/r) X (pu/r) R (pu/r) X (pu/r) R (pu/r) X (pu/r)

GS-0001     BUS-0038           P.Q. 1 G011        5.88 5 11 0 4.995 0 0 0 0.0021 0.0303 0.0141 0.238 0.007 0.172

GS-0003     BUS-0044           P.Q. 1 GTRU        4.25 3.4 11 0 3.395 0 0 0 0.0064 0.11 0.0141 0.265 0.007 0.172

GS-0005     BUS-0048           P.Q. 1 G8ME2       6.25 5 3.3 0 4.995 0 0 0 0.005 0.17 0.003 0.22 0.005 0.05
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