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Abstract 

This thesis concerns the material behaviour of architectural fabrics for use in the construction of 

tensile fabric structures, particularly the determination and prediction of biaxial and shear 

behaviour. Original contributions to knowledge include a novel shear test frame design, an 

understanding of the influence of biaxial stress on shear behaviour and an improved predictive unit 

cell model. 

While tensile fabric structures are subject to a combination of biaxial tensile stress and shear stress, 

there is no accepted test methodology for accurately determining shear behaviour of architectural 

fabrics. Shear behaviour is absent from some analysis methodologies used by industry and broad 

assumptions must be made by design engineers. A novel picture frame shear test design and 

associated test protocol is presented that aims to provide a practicable solution for the accurate 

determination of the shear stiffness of architectural fabrics. Strains are shown to be homogeneous 

across the test specimen during shear testing. The influence of biaxial stress on fabric shear 

behaviour is explored through tests conducted on polyvinyl chloride (PVC) coated polyester fabrics, 

PVC coated glass fabrics and polytetrafluoroethylene (PTFE) coated glass fabrics. Results of the 

tests, conducted at increasing levels of biaxial prestress, and the implications for analysis are 

presented.  

Existing predictive fabric models based on constituent material properties are unable to predict 

fabric behaviour with a level of accuracy which is sufficient for their use in design. An improved 

predictive fabric model is proposed using a sinusoidal description of yarn geometry. A system of 

compatibility and equilibrium equations is derived which aims to realistically simulate principal 

deformation mechanisms within real fabrics. The improved model predicts non-linear yarn 

behaviour and hysteresis using input parameters obtained using non-specialist test equipment, i.e. 

test equipment which is available in typical material testing laboratories. The model is validated by 

comparing predicted data with experimentally obtained data for a range of PVC coated polyester 

fabrics, PTFE coated glass fabrics and silicone coated glass fabrics. 

Safer and more efficient structural solutions will be possible if accurate material tests are available 

to characterise material behaviour. Reliable predictive models will make accurate design 

parameters easily accessible to designers. 

 

 

 

 



 

  iii 
 

Acknowledgements 

I thank my supervisors Peter Gosling and Ben Bridgens for their guidance, encouragement and 

patience throughout the project. I also thank Lance Rowell, Alex Heslop (Architen Landrell), 

Matthew Birchall, Jo Renold-Smith (Buro Happold), Françoise Fournier, Farid Sahnoune (Serge 

Ferrari) and David Wakefield (Tensys) for their insight and for generously giving their time to 

support the work. 

I am grateful to Architen Landrell, Buro Happold, Serge Ferrari, Tensys and the Engineering and 

Physical Sciences Research Council for funding the project and to Serge Ferrari, Verseidag Indutex 

and the Taiwan Textile Research Institute for contributing material for testing. 

I thank those at the University who provided practical assistance in the laboratory and who 

fabricated the test frame, particularly Billy Cragie and Dave Innis. I thank Nicola Smithies for her 

help with the shear testing and for her friendship during our studies.  Finally, I thank Cat for her 

love and support during the write up, without which this thesis may never have been finished. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  iv 
 

Outline contents 

Detailed contents with lists of figures and tables are included at the start of each chapter 

Chapter 1: Introduction 1 

1.1 Context 3 

1.2 Aim and objectives 10 

1.3 Structure of the thesis 11 

1.4 Publications 12 

Chapter 2: Literature review 13 

2.1 Architectural fabrics 16 

2.2 Fabric testing 24 

2.3 Predictive fabric modelling 37 

2.4 Summary 50 

Chapter 3: A shear test methodology for architectural fabrics 52 

3.1 Introduction 55 

3.2 Novel picture frame design 56 

3.3 Initial picture frame shear testing 62 

3.4 The influence of biaxial stress on shear behaviour 70 

3.5 Bias shear testing 86 

3.6 Summary 94 

Chapter 4: A predictive model for architectural fabrics 96 

4.1 Introduction 99 

4.2 Summary of the predictive model 102 

4.3 Model formulation 104 

4.4 Programming the model 135 

4.5 Model test cases: checking the model formulation 138 

4.6 Summary 140 

Chapter 5: Validating the predictive model 141 

5.1 Introduction 144 

5.2 Model input data 144 

5.3 Comparative test data 159 

5.4 Model output 163 

5.5 Summary 199 

Chapter 6: Conclusions and recommendations for future work 200 

6.1 Research summary 201 

6.2 Conclusions  201 

6.3 Recommendations for future work 203 

References 204 



 

 

 

Chapter 1: 

Introduction 

“Our times demand lighter, more energy-saving, more mobile 

and more adaptable, in short more natural buildings, without 

disregarding safety and security” 

Otto (2004) 
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1.1 Context 

1.1.1 Background 

 

Figure 1.1 The Moses Mabhida Stadium, Durban, 2010 FIFA World Cup. © SBP/Kurt Knopler 

Architectural fabrics are used in the construction of tensile fabric structures, enabling the creation 

of striking structural engineering projects around the world. Projects range in size from small 

awnings to large span structures, for example sports stadia (Figure 1.1). While simple fabric 

coverings have been used throughout history, a desire to minimise our impact on the natural 

environment by reducing our consumption of energy and materials means that fabric structures 

have modern day relevance. Architectural fabrics are lightweight, translucent to light and require 

minimal support, thus modern fabric structures embody state-of-the–art, structurally efficient 

building solutions. New technologies also allows some architectural fabrics to be recycled (Fournier, 

2013). 

Architectural fabrics comprise a woven base cloth encased in a polymeric coating (Figure 1.2). 

These composite materials resist all applied loads through tension in the plane of the material, as 

they have negligible bending and compression stiffnesses (Bridgens et al., 2004a; Bridgens et al., 

2004b; Bridgens and Birchall, 2012). This differs from conventional forms of construction which 

resist applied loads by arch action or by stiffness in bending. The shape of a fabric canopy is 

fundamental to a structure’s ability to resist loads in the plane of the fabric. Anticlastic (doubly 

curved) forms make possible load resistance through tension, enabling resistance against both 

uplift (wind) and down-force (snow + wind). Prestress must also be applied to ensure that, under 

all anticipated loading conditions, the structure remains in tension. 
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Figure 1.2 Image of an architectural fabric’s cross section, illustrating a fill cross section of Ferrari 

1202 PVC/PES fabric  

Three basic structural forms are the basis of all tensile fabric structures: conics, saddles and hypars. 

More elaborate designs are then possible by combining these fundamental shapes. The necessary 

anticlastic surfaces are achieved by virtue of shear deformation, i.e. flat panels of fabric are sheared 

as prestress is applied during installation. Shearing of the fabric also occurs from deflections due to 

changes in a structure’s surface geometry in response to applied loads. Therefore, understanding 

and quantifying the biaxial and shear behaviour of architectural fabrics is important to design 

engineers. Further, woven materials have a limiting shear deformation after which wrinkling will 

occur (Grosberg and Park, 1966).  

An alternative to tensile fabric structures are pneumatic fabric structures. Pneumatic structures are 

either air supported or air inflated, or a hybrid of both. Air supported structures have a pressurised 

envelope, inhabited by the structure’s occupants, which supports a fabric covering and applied 

loads. Air inflated structures (Figure 1.3) have pressurised elements, i.e. beams, that support a 

covering. Advantages of these structures are possible further weight reductions and temporary or 

demountable applications (Birchall, 2013). An increased understanding of architectural fabric 

material behaviour and improved modelling capabilities will also benefit the analysis and design of 

pneumatic fabric structures. 

0 1mm 
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Figure 1.3 Sports Canopy, National Tennis Centre, London. © George Stowell 

1.1.2 Design practices 

Designing a tensile fabric structure is complicated as both form and function must be considered 

simultaneously as a structure’s shape and stress distribution are interdependent. Further, it is 

desirable that the applied prestress is uniform over the fabric’s surface. Achieving this requires that 

the fabric forms a minimal surface in which all the boundary points are connected with the minimal 

possible area of material. Determination of a tensile fabric structure’s surface shape is through a 

process of ‘form-finding’ using numerical or, traditionally, physical models.  

Traditionally, physical soap film models (Figure 1.4) were used to explore possible minimal surface 

shapes for tensile structures (Otto, 1967). These models produce minimal surfaces with inherent 

uniform tensile stresses. Modern numerical modelling approaches have allowed the creation of 

‘pseudo minimal surfaces’ which reduce limitations of possible shapes. A smoothly varied 

distribution of prestress will exist over a pseudo minimal surface. 

Different designers employ different numerical modelling approaches in the form-finding process, 

as specialist numerical form-finding processes for tensioned fabric structures sit outside the 

capabilities of standard structural analysis software packages. Further, British or European 

standards do not yet exist for the design and analysis of tensile fabric structures and limited 

guidance is available, although the CEN TC250 Working Group has been established to write a 

standard for membrane structures for inclusion in Eurocode 10. The most notable available 

guidance to date is the TensiNet European Design Guide (Mollaert and Foster, 2004) which 

recommends best practice based on the shared knowledge of the tensile fabric structures industry.  
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Figure 1.4 Example of a soap film model. © Net Constructions 

Designers have developed a range of software which is used across the fabric structures industry 

with different analysis methodologies (Table 1.1). The results of an international round robin 

exercise demonstrate the dissimilarity of results for simple analysis problems when designers 

utilise different approaches (Gosling et al., 2013a). Some analysis software will treat the fabric as a 

mesh of disparate elements, or cables, neglecting shear and Poisson’s effects.  Some finite element 

based approaches rely on assumptions of plane stress, requiring a linear representation of material 

behaviour. A high level of uncertainty must exist if results are considered to be correct for all the 

methodologies/software used. 

Design is further complicated by the combination of an architectural fabric’s constituent materials, 

as the woven yarn structure of the base cloths and the interaction of the yarns with the coatings 

results in complex in-plane tensile and shear behaviour. Elastic moduli, Poisson’s ratios and shear 

stiffnesses are not constrained by the same relationships as for homogeneous, isotropic materials 

and are arguably inappropriate for describing this complex behaviour (Gosling and Bridgens, 2008). 

Crimp interchange (the interaction between the woven yarns) results in non-linear stress-strain 

behaviour that is hysteretic and anisotropic (Bridgens et al., 2004a; Bridgens, 2005). Failure to 

accurately identify the material properties and accurately characterise behaviour of architectural 

fabrics results in uncertainty in design and analysis. Other sources of uncertainty exist, including 

degradation of the material in service and tear propagation. Consequently, designers use high 

factors of safety (Table 1.2), typically using values of 3 to 8 (Barnes et al., 2004a; Gosling et al., 

2013b). 
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Table 1.1 Analysis codes used by participants in round robin exercise, reproduced from Gosling 

et al. (2013a) 

Analysis code 
Analysis methodology 
(details as provided by recipients) 
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3D3S 10.1 

Non-linear Finite Element Methods, 
Equations solved using the Newton-
Raphson method; Cable element and 
Trimesh Element.  

 NDP  NDP 
Yes: Vwf = 0.457 
(Note 2) 

Carat++ 
(carat.st.bv.tum.de)  

Form finding using updated Reference 
Strategy; analysis using geometrical 
nonlinear membrane elements (large 
deformations, small strains)  

 Yes  Yes Yes: 0.4 

EASY 9.2 (www.technet-
gmbh.de) 

Force density No No  NDP 

Easy (www.technet-
gmbh.de) 

Force density No No  NDP 

GSA 8.5 
(www.oasys.com) 

Form finding: soap-film with geodesic / 
ratio spacers to control mesh 

Yes Yes  NDP 

GSA 8.5 
(www.oasys.com) 

Form finding using Dynamic Relaxation; 
large displacement, small-strain tension 
only membrane analysis. 

Yes  Yes 
Vfw = 0.457 (Note 
2) 

In house code No details provided  NDP NDP NDP  

inTENS v5i  
Dynamic relaxation. Triangular constant 
strain membrane elements  

 Yes Yes   NDP 

ixForten 4000 release 
4.3.6  

Force density No No  NDP 

Mpanel FEA  Geometrically nonlinear solver  NDP  NDP 
Yes: Vfw=0.8 
Vfw=0.457 (Note 2) 

Not specified 
Form finding using force density cable 
net. Large displacement, small strain 
analysis. 

Yes Yes 
To suit reciprocal 
rule 

PRISM. VERSION 1.00-03.  
3 noded linear stress-strain triangle. 
Equations are solved using the 
conjugate gradient method.  

 NDP  NDP 
Yes: Vwf = 0.457 
(Note 2) 

Research code 
6 node, large strain, linear strain 
triangle 

 Yes Yes   No 

Rhino-Membrane 1.2.7 
(www.ixcube.com) 

Rhino-Membrane uses an algorithm 
based on the update reference strategy. 
Form finding was run for 200 iterations. 

 N/A N/A  N/A 

Sofistik 2010  
4-node quad-elements with membrane 
characteristics (only tension, simplified 
linear-elastic orthotropic material law  

Yes 
Vfw not 
used 

Yes: 0.49 

Sofistik Version 2010 
(11.10-25) 

FE-Analysis : Direct Skyline Solver 
(Gauss/Cholesky)  

 Yes  Yes Yes: 0.4999 

Sofistik Version: 11.17-25  No details provided  Yes Yes  NDP 

Strand7 Non-linear analysis, direct sparse matrix Yes Yes Yes: 0.5 

TENSYL  Dynamic Relaxation Yes Yes Yes: 0.3 

TL_Form & TL_Load  
Dynamic Relaxation using simplex 
elements 

Yes Yes  NDP 

TL_Form & TL_Load  
Dynamic Relaxation using simplex 
elements 

Yes Yes  NDP 

WinFabric Version 7.2  Force density, Newton Raphson No No  NDP 

Notes: (1) E = elastic modulus, v = Poisson’s ratio, w = warp direction, f = fill direction, N/A = not applicable, 
NDP = no details provided 

(2) A value of vfw = 0.457 complies with the reciprocal rule for the specified values of Ew, Ef and Ewf. 
The specified value of vfw intentionally did not comply. 
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Table 1.2 Stress reduction factors of safety for tensile fabric structure design according to different 

organisations and countries, reproduced from Gosling et al (2013b) 

Source Stress factors 
Stated uncertainty incorporated within 
the stress factor 

International Association of Shell and 
Spatial Structures Working Group 7 
recommendation for pneumatic 
structures 

4.2 – 6.0 (warp) 
5.0 – 7.0 (fill) 

Fabric and testing consistency; calculation 
accuracy; loading, fabrication and 
installation uncertainty; environmental 
degradation; unforeseen factors 

American Society of Civil Engineers 4.0 – 7.8 Life cycle factor; strength reduction factor; 
load combination factor 

French Design Guide 4.5 – 7.0 Fabric and seam quality; structure scale 
(probability of defects); pollution & 
environmental degradation (including 
quality of finite element analysis) 

German standard (DIN 4134) with 
reduction factors according to Minte 

Fabric  
4.9 – 6.4 permanent load 
2.9 – 3.2wind load 
4.4 – 5.1 snow load 
Seams 
6.7 – 9.5 permanent load 
3.5 wind load 
4.9 snow load 

Uniaxial strength, modified depending on 
whether structure is loaded biaxially or 
uniaxially; load factor; material factor, 
accounting for seams and connections; 
load duration; pollution and degradation; 
temperature 
 

Draft Italian Code 4.5 wind  
3.75 snow 

No details provided 

Chinese Technical Standard 5 Factor of 2.5 for simultaneous wind and 
snow loading 

Membrane Structures Association of 
Japan guide for ‘Specific Membrane 
Structures’ 

8 for sustained loads 
4 for temporary loads 

No details provided 

 

Uncertainties can be classified as aleatoric or epistemic. Aleatoric uncertainty is the statistical 

variation of the materials and conditions applied to a structure, such as varying strength across a 

roll or between batches of a fabric. It is not possible to suppress such uncertainty, but it can be 

quantified in design and analysis. Epistemic uncertainty is the systematic uncertainty arising from 

factors of the design and analysis that are neglected or inaccurate, such as the shear stiffness in 

some approaches of analysis. Epistemic uncertainties can be eliminated or reduced. In the context 

of tensile fabric structures, epistemic uncertainty can be reduced by achieving a better 

understanding of material behaviour and improving how material properties are represented in 

analysis.  

1.1.3 Testing practices 

Standardised uniaxial tensile testing (ISO 1421:1998) is carried out by material manufacturers to 

determine tensile strength in the yarn directions of architectural fabric products. Standard uniaxial 

test machines are used with commercially available clamping attachments and capstans for fabric 
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specimens. However, the results of this uniaxial testing do not quantify the biaxial or shear 

behaviour of architectural fabrics and it is not possible to infer these behaviours from uniaxial test 

data. Other testing methodologies are required to provide more useful information for design and 

analysis. 

Biaxial tensile testing is specified by design engineers and fabricators in order to understand and 

quantify the in-plane biaxial behaviour of woven materials. These tests are used to establish 

material properties for analysis or compensation values for fabrication. The results of biaxial 

testing explain material behaviour including the effects of crimp interchange. This is vitally 

important as architectural fabrics behave as a mechanism and not as a continuum, a product of the 

interaction between the woven yarns. Biaxial testing of architectural fabrics is a specialist 

laboratory service and is provided by only a few laboratories globally. Testing is time consuming 

and expensive, prohibitively so for smaller tensile fabric structure projects. 

Shear testing of architectural fabrics is rarely specified by engineers or fabricators. Rule of thumb 

methods are suggested instead, such as taking 1/20 of the direct strength (Barnes et al., 2004b). 

Shear test methodologies for architectural fabrics should be capable of simultaneously applying 

shear deformations biaxial tensile load to a specimen. Ensuring the homogenous deformation is 

difficult and subsequently complex interpretation of the results can be required in order to infer 

shear stress and quantify shear stiffness (Colman et al., 2014).  

As with the design and analysis, there exists limited available guidance regarding the testing of 

architectural fabrics. The Membrane Structures Association of Japan has produced standards for 

determining the elastic constants of membrane materials (MSAJ, 1995) and in-plane shear stiffness 

(MSAJ, 1993). The American Society of Civil Engineers has also produced a short standard which 

states biaxial testing should be carried out by material manufactures, but does not detail how to 

conduct the testing (ASCE/SEI, 2010). Test methodologies (both for shear and biaxial behaviour) 

must be appropriate to capture the complex material behaviour of architectural fabrics so as to 

provide accurate values for design. 
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1.2 Aim and objectives 

The aim of this research project is to develop an analytical/numerical tool to enable the 

accurate prediction of the non-linear stiffness characteristics of architectural fabrics for 

analysis of tensile fabric structures.  

The key hypothesis is that the non-linear stiffness characteristics of coated woven fabrics can be 

predicted from information which is easily obtainable, i.e. using typical material testing equipment, 

from a small sample of the material in question. 

Achieving the aim has been divided into two parts. The first part is the development of a novel test 

apparatus and associated test protocol to accurately quantify shear behaviour of biaxially tensioned 

architectural fabrics. Existing knowledge drawn from methodologies in related fields of work will 

be used. The second part is the formulation of an analytical predictive model that can characterise 

architectural fabric material behaviour without the need for specialist experimental testing. This 

will extend the work in this area by Bridgens (2005) by advancing a unit cell predictive model to be 

more representative of the woven geometries of architectural fabrics and their complex material 

behaviour. 

Making accurate representation of fabric behaviour readily available to design engineers reduces 

the uncertainty in design. Reduced uncertainty improves the accuracy of structural analysis, 

making possible safer and more efficient solutions and allows designers to explore more innovative 

structural forms.  

Specific objectives are to: 

1. Design and fabricate a shear test apparatus suitable for architectural fabrics; 

2. Investigate the in-plane shear behaviour of architectural fabrics, including the effect of 

different levels of biaxial tension; 

3. Improve the accuracy of the predictive model unit cell model proposed by Bridgens 

(2005) to determine biaxial stress-strain behaviour. Improvement to be made by 

incorporating non-linear, inelastic load response and hysteresis; 

4. Develop the model to include shear response; 

5. Develop suitable testing to provide the improved predictive model with input 

parameters; and 

6. Demonstrate the accuracy of the predictive model developed through a series of 

comparative biaxial and shear tests. 
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1.3 Structure of the thesis 

Chapter 2 provides a literature review. After a brief overview of architectural fabrics and the 

biaxial behaviour of coated woven materials, a detailed appraisal of shear behaviour is presented. 

This is followed by an evaluation of available test apparatuses and associated methodologies, which 

involves a review of work concerning both biaxial and shear testing. A review of fabric modelling is 

also provided with a focus on unit cell models and shear modelling approaches.  The review 

identifies limitations and benefits of previous work and presents the rational for the testing and 

modelling approaches adopted in the current study. 

Chapter 3 describes the design of a novel picture frame test apparatus suitable for characterising 

shear behaviour of architectural fabrics (objective 1). A picture frame test apparatus has been 

developed following a comparison of shear testing methodologies presented in Chapter 2.  Chapter 

3 also presents an investigation of the influence of biaxial tensile stress on the shear response of 

architectural fabrics through a series of experimental tests performed on PVC coated polyester 

fabrics, PVC coated glass fabrics and PTFE coated glass fabrics (objective 2). Linear approximations 

are calculated and their appropriateness for use in design and analysis is discussed. A comparison 

of the linear approximations with current rule-of-thumb methods used in industry is also made. 

Chapter 4 presents the development of an analytical unit cell model for predicting the biaxial 

stiffness characteristics of architectural fabrics (objective 3).  First, a description of the woven yarn 

geometry is established and a quantitative assessment of the accuracy of the description is made. 

Subsequently, a novel system of non-linear equilibrium and compatibility equations is derived 

which modifies the yarn description when it is subject to imposed biaxial load. Further, a novel 

look-up function is described which replicates a fabric’s non-linear, inelastic load response and 

hysteresis. A revised set of equations, based on existing approaches identified in Chapter 2, is 

presented for modelling shear of woven fabrics with asymmetric orthogonal yarns (objective 4).  

Chapter 5 establishes suitable methods for obtaining input parameters for the model developed in 

Chapter 4 (objective 5). Methods of determining material properties using standard testing 

equipment are described, as is a macro photography methodology for making measurements of a 

fabric’s yarn geometry. Subsequently, validation of the predictive model is presented which 

involves comparison of different model formulations against biaxial test data. A series of 

experimental tests on PVC coated polyester fabrics, PTFE coated glass fabrics and Silicone coated 

glass fabrics are described for generating comparative test data performed (objective 6). 

Chapter 6 presents a brief research summary and the main conclusions of the project. Suggestions 

for future work are also made. 

References are listed alphabetically by first author at the end of the thesis using the Harvard 

reference system. 
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1.4 Publications 

Journal papers 

Colman, A.G., Bridgens, B.N., Gosling, P.D., Jou, G.T. and Hsu, X.Y. (2014) 'Shear behaviour of 
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DOI: http://dx.doi.org/10.1016/j.compositesa.2014.07.015.  

A copy of the journal paper is included in the appendices. 

Conference papers/presentations 

Colman, A.G., Bridgens, B.N. and Gosling, P.D. (2013) ‘A predictive biaxial meso-mechanical model 

for characterising architectural fabrics’, Structural Membranes. 9-11 October 2013, Munich, 

Germany. 

Colman, A.G., Bridgens, B.N. and Gosling, P.D. (2013) 'A picture frame shear test methodology to 

determine accurate shear properties of architectural fabrics', TensiNet Symposium: [Re]Thinking 
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2.1 Architectural fabrics 

 

Figure 2.1 Typical composition of an architectural fabric, reproduced from Blum et al. (2004a) 

Architectural fabrics are composite materials which generally comprise a base cloth of woven yarns 

encased in a polymeric coating (Figure 2.1). Yarns are made from twisted bundles of fibres and the 

mechanical properties of the fibres influence the behaviour of a single yarn and the fabric as whole 

(Hearle et al., 1972; Blum et al., 2004a). Architectural fabrics are normally plain woven (Figure 

2.2a), i.e. the yarns are woven in a one-over-one-under fashion, although other weave types are 

possible, for example satin weave (Figure 2.2b) and twill weave (Figure 2.2c). 

Typically, polyester (PES) or glass fibres are used in the manufacture of base cloths for 

architectural fabrics, although cotton, nylon, aramid and polytetrafluoroethylene (PTFE) fibres are 

also used. These alternatives are used less extensively owing to drawbacks which are highlighted 

by Bridgens (2005): cotton and nylon are limited by their short lifespans, as cotton is prone to 

moisture damage and fungal attack and nylon has poor resistance to ultraviolet light; the use of 

aramid fibres can also be problematic as they exhibit very low levels of elastic strain; and PTFE 

fibres have low tensile strength.  

Polyester base cloths are generally paired with polyvinyl chloride (PVC) coatings and glass fibre 

fabrics typically have PTFE coatings. Increasingly, silicone coatings are also used in combination 

with glass fibre cloths. PVC coated polyester (PVC/PES) fabrics may be classified as one of five 

distinct types in view of their tensile strength and material composition (Table 2.1). Similarly PTFE 

coated glass fibre (PTFE/glass) fabrics may be classified as one of seven different types (Table 2.2).  

The extreme low weight of these materials and their smaller amount of embodied energy compared 

to conventional materials, for example steel or glass, makes them desirable to building designers 

(Berger, 1999; Bridgens et al., 2004b). Architectural fabrics with different constituent materials 

have different material properties (Table 2.3) to suit different applications and budgets.  
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Figure 2.2 Basic weave patterns: (a) plain weave; (b) satin weave; and (c) twill weave, 

reproduced from MSAJ (1995)  

Table 2.1 Classification of PVC/PES fabrics, reproduced from Blum et al. (2004a) 

 Type 1 Type 2 Type 3 Type 4 Type 5 

Surface weight (g/m2)      

French design guide 720 1 000 1 200 1 400 2 000 

WG Messe Frankfurt 800 900 1 050 1 300 1 450 

Yarn linear density (dtex)      

French design guide      

WG Messe Frankfurt 1 100 1 100 1 670 1 670 2 200 

Tensile strength warp/weft (kN/m)      

French design guide 60/60 84/80 110/104 120/130 160/170 

WG Messe Frankfurt 60/60 88/79 115/102 149/128 196/166 

Trapezoidal tear test (N)      

French design guide      

WG Messe Frankfurt 310/350 520/580 800/950 1 100/1 400 1 600/1 800 

Yarn number per cm warp/weft      

French design guide      

WG Messe Frankfurt 9/9 12/12 10.5/10.5 14/14 14/14 

 

Table 2.2 Classification of PTFE/glass fabrics, reproduced from Blum et al. (2004a) 

Type G1 G2 G3 G4 G5 G6 G7 

Tensile strength warp/weft (kN/m) 26/22 43/28 70/70 90/72 124/100 140/120 170/158 

Filament diameter (micrometer) 9 6 3 6 3 3 or 6 3 

Surface weight (g/m2) 500 420 800 1 00 1 200 1 500 1 600 

Trapezoidal tear test (N)   300/300 300/300 400/400 500/500 450/450 

 

(a) (b) (c) 
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Table 2.3 General comparative properties of materials for architectural fabrics, reproduced from 

Blum et al. (2004a) 

 

PVC 

coated 

polyester fabrics 

PTFE 

coated 

glass fabrics 

Silicone 

coated 

glass fabric 

PTFE 

coated 

PTFE fabrics 

Tensile strength warp/weft (kN/m) 115/102 124/100 107/105 84/80 

Fabric weight (g/m2) 1 200 (type 3) 1 200 (G5) 1 100 830 

Trapezoidal tear test (N) 800/950 400/400 960/700 925/925 

Visible light transmission (%) 10-15 10-20 < 80 19-38 

Flexibility/crease recovery high low high high 

Fire reaction 
M2 (NFP 92 503) 

B1 (DIN 4102) 
M1 (NFP 92 503) 
B1/A1 (DIN 4102) 

A (ASTM E-108) 
no toxic smokes 

 

Cleaning 
easier with top 

coats 
self cleaning self cleaning self cleaning 

How to make the seams by high frequency thermally vulcanisation stitching 

Life span > 15-25 > 25 > 25  

Cost low high high  

 

2.1.1 Biaxial behaviour 

Woven fabrics are well known to be anisotropic materials with complex non-linear stress-strain 

behaviour (Peirce, 1937; Menges and Meffert, 1976; Schock, 1991). Testa et al. (1978) identified 

that biaxial behaviour is governed by crimp interchange and elongation of the yarns. Crimp 

interchange can result in negative strains under applied biaxial load (Schock, 1991) and bending 

stiffnesses are negligible and neglected in design as it is very low compared to the tensile stiffness 

(Testa et al., 1978; Boisse et al., 2001). Bridgens (2005) presents a comprehensive review of biaxial 

behaviour and other investigators also detail the phenomena (Nguyen et al., 1999; Mohammed et al., 

2000; Page and Wang, 2000; Potter, 2002; Boisse et al., 2005; Pargana et al., 2007; Zhu et al., 2007; 

Hivet and Duong, 2011; Nguyen et al., 2013).  

Coatings set the yarns in place and limit the relative movement of the yarns and yarn interactions 

(Skelton and Freeston, 1971; Testa et al., 1978). In this way, the coatings can greatly reduce the 

deformability of the fabric and tear propagation as they impregnate effecting yarn behaviour the 

yarns and binds the yarn fibres together and prevent yarns from sliding relatively to one another 

(Naik and Madhavan, 2000; Farboodmanesh et al., 2005). The coatings will also reduce tear 

propagation.  
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2.1.2 Shear behaviour 

Shearing occurs in the plane of a flat panel of fabric when it is bent into double curvature (Mack and 

Taylor, 1956; Cusick, 1965). Shearing of architectural fabrics is thus a necessary and fundamental 

deformation mechanism to form the anticlastic forms required when building tensile fabric 

structures. However, it is asserted that woven materials have a limiting shear deformation after 

which wrinkling will occur (Grosberg and Park, 1966; Skelton, 1976). Wrinkling is unacceptable 

both aesthetically if it occurs during installation and as a potential cause of failure if it occurs under 

imposed loading, but neither the shear deformations that occur in membrane structures, nor the 

values of limiting shear angle for coated fabrics, have been quantified.  To avoid wrinkling, fabric 

structures are discretised into multiple panels (Figure 2.3). 

 

Figure 2.3 Longitude 131, Ulurur-Kata Tjuta National Park, Australia, underside of a double conic 

tensile fabric structure in which multiple fabric panels which are required to achieve the desired 

curvature are visible, reproduced from Drew (2008) 

It is important to distinguish between shear of fabrics with and without yarn rotation. Typically, 

shear of woven fabrics refers to a change in angle between perpendicular yarn directions (Figure 

2.4a). However, shear can be measured with respect to any perpendicular axis in the plane of the 

fabric (§2.3.3) and can occur with no change in angle between perpendicular yarn directions 

(Figure 2.4b). The latter circumstance is observed when strain occurs in the perpendicular yarn 

directions and the strain in one direction does not equal that in the other. This project is concerned 

with shear with yarn rotation.  
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Figure 2.4 Shear of architectural fabrics. (a) Shear of biaxial specimen with yarn rotation; (b) shear 

of biaxial specimen without yarn rotation, (c) pure shear, where area reduces but yarn length 

stays constant; and (d) simple shear, where constant area but yarns extend 

Further, shear of woven fabrics is pure shear (Figure 2.4c) and not simple shear (Figure 2.4d) 

(Spivak and Treloar, 1968; Leaf and Sheta, 1984); deformation occurs with constant side lengths 

and not with constant areas. Therefore, shear of fabric test specimen or a panel of fabric will cause 

a reduction in the fabric’s area. 

Shear stiffness of coated fabrics is predominantly governed by the protective polymeric coating 

with the contribution of the yarns being relatively insignificant (Skelton and Freeston, 1971; Testa 

et al., 1978). To date, the shear stiffness of coated fabrics is routinely assumed to be linear (Pargana 

et al., 2007; Bridgens and Birchall, 2012; Gosling et al., 2013a). This is despite it being long known 

that shear behaviour of coated fabrics is in fact highly non-linear (Skelton and Freeston, 1971) 

(Figure 2.5).  The relatively lower values of shear stiffness observed in uncoated fabrics arise from 

the gaps between the individual woven yarns, and this also accounts for hysteresis of shear force 

(Culpin, 1979; Matsudaira et al., 1985) 
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Figure 2.5 Comparison of shear stress-strain curves for a woven fabric having no coating against 

the same fabric with a polythene coating, reproduced from Skelton and Freeston (1971)  

Grosberg and Park (1966) established three distinct stages of shear deformation through studies on 

uncoated fabrics. The first is characterised by lateral bending of the yarns, which occurs as the 

result of rigid yarn intersections (Figure 2.6a). Grosberg and Park (1966) posit that this is only true 

for very small angles of shear when shear force is large enough to overcome static friction at the 

yarn intersections due to a normal force acting at the cross over. This is supported by later works 

(Grosberg et al., 1968; Page and Wang, 2000; Sun and Pan, 2005). For example, Page and Wang 

(2000) calculate that for a range of fabrics shear deformation without rotation of the yarns is 

negligible and will occur at angles of less than 0.05. However, the latter study concerned fabrics for 

composite forming, so normal forces at the yarn intersections will be lower than compared to those 

of architectural fabrics where there will tension in the yarns.  Consequently, lateral bending of the 

yarns may occur at higher angles when shearing tensioned fabrics, although the coating is likely to 

interact with this mechanism.  

During the second stage, slippage at the yarn intersections occurs, i.e. the yarns rotate, and the 

yarns undergo elastic deformation. There exists space between the yarns that permits relative 

rotation of the warp and fill yarns until the free space is taken up (Grosberg and Park, 1966; Culpin, 

1979). Grosberg and Park (1966) observed this stage up to approximately 10° of shear. (Mack and 

Taylor (1956) proposed an early simplification of this shear deformation mechanism which 

assumes that yarns rotate about pin jointed constraints at the yarn intersections, thus idealising the 

yarns as inextensible ridged beam elements with no slippage occurring at the yarn intersections 

(Figure 2.6b).  
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Figure 2.6 Shear deformation mechanisms: (a) yarn bending due to rigid intersection; (b) trellis 

shear, i.e. rotation at the intersection; and (c) translation at the yarn intersections 

Later work concerning woven fabrics routinely assumes this simplification of shear deformation 

(Skelton and Freeston, 1971; Potter, 1979; Nguyen et al., 1999; Mohammed et al., 2000; Page and 

Wang, 2000; Liu et al., 2004; Liu et al., 2005; Sun and Pan, 2005). Slippage of the yarns is observed 

during deformation of uncoated fabrics (Figure 2.6c) (Page and Wang, 2000; Harrison et al., 2004). 

However, in a uniform shear condition, slippage at the yarn intersections will hardly occur owing to 

the symmetry of the weave (Page and Wang, 2000). However, slippage of coated architectural 

fabrics is unlikely to occur as coating penetration has been shown to inhibit the base cloth will no 

longer be a freely rotating material and act as a rigid embedded reinforcement (Farboodmanesh et 

al., 2005). 

Finally, the third stage is defined by jamming of the woven yarns, which is also termed lock up. Lock 

up occurs as adjacent yarns come into contact with one another as the gaps between the individual 

yarns reduce with increasing shear angle (Figure 2.7). This results in the build-up of in-plane 

compressive forces which cause wrinkling in the fabric (Grosberg and Park, 1966).  

 

Figure 2.7 Shear deformation of woven fabric approaching the shearing limit where adjacent 

yarns will come into contact and cause buckling of the material , reproduced from Skelton (1980) 

(a) (b) (c) 
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The shear resistance of uncoated fabrics may be considered negligible until lock up occurs (Boisse 

et al., 2001). Shear strain is observed increase significantly thereafter (Boisse et al., 2005; Cao et al., 

2008; Launay et al., 2008).  

However, the concept of lock up, as it is applied to uncoated fabrics, cannot apply to coated fabrics 

as the coating will “jam” the weave structure.  Further, lock up will not occur instantaneously upon 

side-by-side contact of the yarns. Rather, the three-dimensional woven yarns must gradually 

deform and compress for the fabric to undergo shear deformation. A reduction in stiffness when 

observing stress strain test data for uncoated fabric indicates the onset of buckling (Leaf and Sheta, 

1984). This observation may equally apply to coated fabrics and would be expected at lower angles 

of shear due to the presence of the coating. 

As mentioned above, early work suggests that yarn behaviour does not significantly impact the 

shear behaviour of coated fabrics (Skelton and Freeston, 1971; Testa et al., 1978). Further, modern 

analysis of fabric structures may neglect the influence of tensile behaviour on shear behaviour, i.e. 

the two behaviours are considered to be uncoupled (Xue et al., 2003; Bögner-Balz and Blum, 2008). 

However, picture frame tests (§2.2.2) performed on uncoated woven reinforcements have indicated 

an increase in shear stiffness with increasing pre-tension (Harrison et al., 2002; Willems et al., 

2007). While Harrison et al. (2012) noted problems with these studies, namely large variability in 

test data making assessment of the interaction between shear and tensile behaviour difficult, 

tension in the yarns will increase the normal force acting at the cross overs which will in turn 

increase frictional resistance. Sharma et al. (2003) also investigated shear-tension coupling. Results 

indicated only minor coupling and it was suggested that biaxial tension does not need to be 

included when modelling shear. However, these studies concern uncoated fabrics for use in draping 

processes for composite forms, so no low tensile loads are applied in the plane of the fabric.  

There is at least coupling between in-plane tension and the onset of wrinkling when a woven fabric 

is subject to shear deformation (Launay et al., 2008; Willems et al., 2008; Harrison et al., 2012). This 

is reasonable to expect with uncoated fabrics as tension applied in one yarn direction will increase 

the spacing between adjacent yarns in the orthogonal direction. However, the effect of tensile loads 

applied to architectural fabrics on the materials’ shear behaviour has not been quantified. This is 

necessary to determine the limits of shear deformation, i.e. double curvature, that can be achieved 

in design and to fully quantify fabric behaviour. 
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2.2 Fabric testing 

2.2.1 Biaxial testing 

Biaxial tensile testing is necessary to characterise the biaxial behaviour of structural fabrics. Early 

biaxial testing was conducted by Haas and Dietzius (1917), whose work involved specimens that 

were either flat or cylindrical. Biaxial testing on cylinders of fabric (Figure 2.8) uses inflation 

pressure to apply load in the circumferential direction and displacement of the end of the cylinder 

to apply load in the axial direction. Other investigators have adopted similar cylinder test 

methodologies (Eeg-Olofsson, 1955; MacRory and McNamara, 1967; Skelton and Freeston, 1971; 

Mott et al., 1985). When testing permeable fabrics, a bladder may be inserted inside the fabric 

cylinder and inflated (Cusick, 1965; Mott et al., 1985), but in such arrangements it may be possible 

that the material properties of the bladder could influence the results of the tests. While biaxial 

tensile behaviour and shear behaviour are normally investigated separately (Bassett et al., 1999; 

Bögner-Balz and Blum, 2008), the fabric permits application of shear stress to the cylinder by the 

application of torsional force to the end of cylinder (Turner et al., 2008). 

 

Figure 2.8 Example biaxial tensile test set up using a cylindrical test specimen, N.B the set up 

illustrated shows a rubber bladder inside the fabric cylinder, reproduced from Mott et al. (1985) 
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However, the specimen would require a seam in order to construct the cylinder. While it is possible 

to weave a complete cylinder, it would not be possible to coat the woven cylinder as coating is 

applied to an architectural fabric. Therefore, the influence of the seam must be accounted for. 

The only international standard concerning the biaxial testing of architectural fabrics is produced 

by the Membrane Structures Association of Japan (1995) and prescribes a cruciform test specimen 

with slits cut in the arms of the specimen (Figure 2.9). The specimen can be restrained at the ends 

of the arms by a single clamp plate or with the slits separated and fixed separately.  According to 

standard, stress developed in the centre of the specimen is approximately 92.1% of the applied load 

(MSAJ, 1995). With a specimen made to the dimension used in the project the stress developing in 

the centre of the specimen is 95.3% (Bridgens, 2005; Bridgens et al., 2011). The difference in the 

two results may be attributed to the different dimensions of the specimens.  

 

Figure 2.9 Cruciform biaxial specimen with slits cut in arms of the specimen, reproduced from 

MSAJ (1995) N.B. width and length of arms ≥ 16cm and distance between clamps ≥ 48cm 

Other types of biaxial test specimen have been used and Bassett et al. (1999) reviewed available 

biaxial test methods and the different specimens employed therein (Figure 2.10).  While squares of 

fabric have been used (Reichardt et al., 1953), such specimens have given way to the typical 

cruciform specimens which are used in early work by  Klein (1959) and  Clulow and Taylor (1963).  
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Figure 2.10 Different kinds of fabric gripping in biaxial fabric test rigs: (a) point gripping, (b) grab 

test, (c) cruciform test, and (d) segmented clamps, reproduced after  Bassett et al. (1999) 

Slits were introduced to allow for large strains without distorting the specimen along the clamped 

edge (Reinhardt, 1976). The use of slits increases stress in the centre of the specimen, as without 

slits, stresses in the aforementioned studies were found to be between 72.1% and 90.3% of the 

applied loads (MSAJ, 1995; Bridgens, 2005). Biaxial cruciform tests have become the industry 

standard (Barnes et al., 2004b; Blum et al., 2004b; Bridgens et al., 2011). 

Biaxial testing is to be carried out using the floating biaxial test rig developed by Newcastle 

University and  Bridgens (2005) based on a design by Architen Landrell (Figure 2.11). These rigs 

have an upper “floating” frame that is free to translate and rotate in the plane of a fabric test 

specimen. When load is applied to a test specimen, the axis of floating upper frame will translate 

and rotate to provide balanced loading and alignment relative to the lower frame. Further, this 

frame design permits application of load using only two actuators.  

 

Figure 2.11 Floating biaxial test rig developed by Architen Landrell  

(a) 

(b) 

(c) (d) 
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2.2.2 Shear testing 

The only standardised methodology for the shear characterisation of architectural fabrics has been 

produced by the Membrane Structures Association of Japan (MSAJ, 1993). Therefore, further 

development of test equipment and methodologies must look to this standard, previously published 

experimental work, and industry best practice. Much of the up-to-date literature concerning shear 

testing relates uncoated fabrics for use in composite forming (Bassett et al., 1999; Mohammed et al., 

2000; Page and Wang, 2000; Lebrun et al., 2003; Zhu et al., 2007; Cao et al., 2008; Launay et al., 

2008; Lomov et al., 2008). This work is useful in the development of methodologies for the testing 

of architectural fabrics, but it is important to recognise that differences exist when considering 

shear of coated fabrics. Uncoated fabrics are typically tested to large angles of shear and have low 

shear stiffness, compared to architectural fabrics which are tested at small angles and have 

relatively high shear stiffness (Table 2.4). 

Table 2.4 Maximum angles of deformation and approximated linear shear stiffness for uncoated 

and coated fabrics 

 
Authors Test methodology Max. γ (°) G (kN/m) 

U
n

co
at

e
d

 s
tu

d
ie

s 

Page and Wang  (2000) Bias extension 55 0.005* 

Zhu et al. (2007) Bias extension 50 0.01*† 

Launay et al. (2008) Picture frame and bias extension 50 0.23-1.09* 

Cao et al. (2008) Picture frame and bias extension 55 0.04-0.09* 

C
o

at
e

d
 s

tu
d

ie
s 

Vysochina et al. (2005) T-shaped specimen 15 50.4 and 51.5 

Bögner-Balz and Blum (2008) 45° biaxial cruciform 15 1.3-2.4 

Jackson et al.(2009) Picture frame 15 5.0-143.2 

Galliot and Luchsinger (2010b) Shear Ramp 15 8.9-57.8 

* Approximate linear stiffness to 15° 
† Calculated  with use using the method proposed by (Launay et al., 2008) from crosshead load 

To accurately simulate the in situ behaviour of an architectural fabric it is necessary to 

simultaneously apply predetermined biaxial tension and shear deformation. It is desirable to apply 

a homogenous strain field to the fabric specimen as this allows simple calculation of the stresses 

resulting from the applied load. 
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Figure 2.12 Appearance of specimen in the “Planoflex” at three stages during the measurement: 

(left to right) specimen before deflection; wrinkles and end point; and wrinkles 1 degree beyond 

end point, reproduced from Dreby (1941) 

Dreby (1941) developed an early example of shear test apparatus for measuring the extent to 

which a fabric can be deformed (Figure 2.12).  However, this and other early test apparatus designs 

did not enable simultaneous application of biaxial tensile and shear stress and failed to produce a 

homogeneous stress distribution in the plane of the fabric (Kawabata, 1980; Leaf and Sheta, 1984). 

Thus, early test apparatus are unsuitable for characterising shear behaviour of architectural fabrics. 

Galliot and Luchsinger (2010a) highlight some of the more recent methodologies for shear testing 

of woven materials (Figure 2.13). The KES-F shear test (Kawabata, 1989; Lo and Hu, 2002; Lomov 

et al., 2003b; Lomov and Verpoest, 2006), the T-shaped specimen test (Vysochina et al., 2005) and 

the extensively used bias extension test (Mohammed et al., 2000; Zhu et al., 2007; Cao et al., 2008; 

Launay et al., 2008; Lomov et al., 2008) cannot apply biaxial tension whilst shearing the specimen.  

A stress analysis of the specimen during a KES-F shear test has also demonstrated that the 

specimen is not subject to pure shear deformation (Hu and Zhang, 1997).  

The biaxial cruciform test with 45° yarns (Blum et al., 2004b; Bögner-Balz and Blum, 2008) applies 

biaxial tension, but the level of tension varies with shear deformation, and cannot be independently 

controlled. This method also requires a specimen that is difficult to prepare and can only apply 1:1 

biaxial stress ratios. The aforementioned inflated cylinder test used in relation to shear Turner et al  

(2008) does allow independent control of biaxial tension and shear (through axial tension, inflation 

pressure and torsion, respectively), but no procedure to quantify the influence of the seam is 

presented.  



 

Chapter 2: Literature review   29 
 

 

Figure 2.13 Test methods used for the investigation of fabric shear response: (a) bias test; (b) 

picture frame shear test; (c) KES-F tester; (d) fabric cylinder shear device; (e) T-shaped specimen 

test; and (f) 45 cruciform test, reproduced from Galliot and Luchsinger (2010a) 

An alternative methodology, the ‘shear ramp’ method, utilises a cruciform specimen in a biaxial test 

rig (Galliot and Luchsinger, 2010a; Galliot and Luchsinger, 2010b). This approach to shear 

characterisation produces a non-homogeneous shear strain field and consequently a non-

homogeneous shear stress field. Therefore, the complex calculation of a correction factor is 

required to analyse the test results.  

Recently, Harrison et al. (2012) developed a biaxially stressed bias test, by applying a load to each 

side of a bias test specimen by means of an arrangement of clamps and weights. However, in its 

present form the approach cannot control the load applied by the weights and no assessment of 

homogeneity of the strain field has been undertaken. A combined test apparatus has also been 

proposed by Cavallaro et al. (2007), but again no demonstration of the homogeneity of the strain 

field has been presented.  

 

(e) 

(c) 

(a) 

(d) 

(b) 

(f) 
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Figure 2.14 Schematic of biaxial test machine used for the shear ramp method and application of 

shear deformation: (1) actuators; (2) linear bearings; (3) grips; (4) specimen; and (5) 

extensometers, 0 is biaxial pretension and  ΔR is variation of tensile stress in the shear ramp, 

reproduced from Galliot and Luchsinger  (2010b) 

 

Figure 2.15 Shear strain εxy in the cruciform specimen obtained with digital image correlation for 

the shear ramp method (F1002 sample), reproduced from Galliot and Luchsinger (2010b) 

It has been suggested that assumptions regarding homogeneity of strain fields during shear 

deformation should always be validated and optical methods, such as digital image correlation 

(DIC), may be the only way of assuring homogenous deformation during the testing of woven 

materials (Lomov et al., 2008).  DIC has become a frequently used technique to observe the in-plane 

deformation of test specimens (Blum and Bögner, 2001; Boisse et al., 2005; Zhu et al., 2007; Cao et 

al., 2008; Lomov et al., 2008). 

Galliot and Luchsinger  (2010b) use a DIC technique to assess the homogeneity of the shear strain 

field in a shear ramp test (Figure 2.15). The investigators consider the strain to be homogenous 
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over a central area of interest where the deviation in strain is less than 4% of the average strain (of 

the area). Therefore the stress in this area is also assumed to be homogenous. 

The picture frame shear test (Figure 2.13b) (Culpin, 1979; Nguyen et al., 1999; Lebrun et al., 2003; 

Peng et al., 2004; Farboodmanesh et al., 2005; Cao et al., 2008; Launay et al., 2008; Jackson et al., 

2009) allows application of biaxial prestress, which, subject to stress relaxation, can be maintained 

during a subsequent shear test by clamping the shear specimen along its edges. The frame is 

intended to subject the specimen to a uniform deformation that should result in a homogenous 

state of pure shear. Homogenous deformation allows for calculation of the shear stress-strain 

relationship and definition of the shear stiffness. A further benefit of this method is that the fabric 

can be biaxially mechanically conditioned (Bridgens et al. 2004a) prior to shear testing, to enable 

medium to long term fabric behaviour to be explored.  

Assuming homogenous shear deformation, shear force may be calculated from the kinematics of the 

frame (Equation 2.1). The shear force is typically normalised with respect to the side length of the 

specimen (Harrison et al., 2002; Harrison et al., 2004; Peng et al., 2004; Cao et al., 2008). Peng et al. 

(2004) propose a normalisation method based upon an energy method, which for test set ups 

where the specimen fully fits the frame reduces to the method proposed by Harrison et al. (2004) 

(Equation 2.2). 

𝐹𝑠 =
𝑃

2𝑐𝑜𝑠𝜃
 Equation 2.1 

 

𝐹𝑠 =
𝑃

2𝐿𝑐𝑜𝑠𝜃
 

Equation 2.2 

(Harrison et al., 2004) 

 

A number of different picture frame designs currently exist and frame and specimen dimensions 

vary between laboratories (Cao et al., 2008). All designs have common features, including pinned 

corner connections and clamping mechanisms to secure the specimens. Typical practice is to mount 

specimens such that the material is clear of a frame’s corners (Figure 2.16a). This prevents localised 

buckling of the specimen and disruption to the stress field. However, removing the corners is 

undesirable as it requires the arms and fingers of the sample (which are only subject to uniaxial 

stress) to transfer shear from the frame to the centre of the specimen (Lebrun et al., 2003). This can 

result in a high degree of ‘lag’ between the shear angle of the frame and the shear deformation of 

the test specimen and deformation may not be homogenous (Figure 2.16b).  

Alternatively, the specimen can be fitted such that it fills the frame, though with material removed 

around the hinged corner connections (Figure 2.16c). Lebrun et al. (2003) demonstrated that in 

this configuration the bending of the yarns near to the clamped edge impacts on the shear angle 

transferred from the frame into the specimen. 
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Figure 2.16 Picture frame set-up options: (a) undeformed picture frame with fabric cut away from 

the corners; (b) deformed picture frame showing retarded biaxial shear deformation; and (c) 

deformed picture frame with specimen more tightly fitted in frame, illustrations after test 

photographs by Launay et al. (2008) 

Bending of the yarns could generate additional tension in the yarns and Hivet and Duong (2011) 

observed that results of the picture frame test are not repeatable when such tension is induced. 

However, these tests were for uncoated non-tensioned fabrics and shear testing of architectural 

fabric is performed with applied pretension on materials with typically higher shear stiffnesses. 

Consequently, it is anticipated that this effect will be negligible, though nevertheless deformation 

will be examined for this possible occurrence.  

Lebrun et al. (2003) propose a modified picture frame test specimen in which tensile loads are 

applied over a reduced portion of the shearing surface (Figure 2.17). The purpose it to reduce 

tension in the fibres during shear, i.e. to allow yarn slip (§2.1.2). In the case of architectural fabrics 

it is necessary to maintain tension. Further, shear force is not transferred from the frame into the 

specimen along the length of the specimen and no assessment of the homogeneity of the strain field 

is presented.  

 

Figure 2.17 Comparison of a typical and a modified picture frame test specimen, reproduced 

from Lebrun et al. (2003) 

(a) (b) (c) 
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Two previous studies have used picture frames that allowed for specimen to be fitted such that they 

completely fill the frame, with no material removed in the corners (Culpin, 1979; Jackson et al., 

2009). However, these frame designs which intend the specimen to be fully fitted fail to correctly 

consider the kinematics of the frame. The centre of the pinned corner connections (about which the 

frame hinges) are not aligned with the clamped edges of the specimen. This causes a ‘scissor effect’ 

resulting in loss of biaxial stress across the specimen and local buckling or crushing of the fabric in 

the corners of the frame.  

To achieve the desired homogenous shear strain, and therefore allow accurate calculation of shear 

stress, the centre of the pinned connections must align with the clamped edges of the specimen, as 

described by Bassett et al. (1999) (Figure 2.19). However, no practical implementation of a frame 

design capable of fully fitting a specimen with correct alignment of the hinges has been proposed. 

Mohammed et al. (2000) investigated the effects of cross-head speed on shear stress strain 

response and found no dependence. Further, shear behaviour has been shown to be independent of 

the size of picture frame test used (Liu et al., 2005). However, these are for uncoated materials and 

do not consider the effect of coating. 

 

Figure 2.18 Partial view of the frame used by Jackson et al. (2009) illustrating the scissoring of the 

frame with increasing shear angle resulting in a reduction in area bound by the frame and a 

reduction is clamped edge. 
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Figure 2.19 Principles of picture frame shear test apparatus proposed, which also illustrates the 

location of pivot in the design by Culpin (1979), reproduced from Bassett et al. (1999)  

As mentioned above, the bias extension test cannot apply biaxial tension while shearing the 

specimen, though for uncoated fabrics tests it is extensively used for investigating shear behaviour 

(Mohammed et al., 2000; Potter, 2002; Wang, 2002; Zhu et al., 2007; Cao et al., 2008; Launay et al., 

2008; Lomov et al., 2008; Hivet and Duong, 2011).  Further, several studies considering uncoated 

fabrics have compared results of bias and shear tests (Boisse et al., 2001; Lebrun et al., 2003; 

Sharma et al., 2003; Cao et al., 2008). 

A comparative study performed by Cao et al. (2008) suggests that deformation mechanisms are 

more accurately reproduced in the picture frame test, but that bias testing is an adequate 

methodology for determining locking angles. The investigators performed a bench mark study of 

shear test set ups and bias test set ups at different institutions and observed similar shear 

behaviours for the different test methods for uncoated fabrics. However, the methodologies impose 

different loading conditions of the test specimens and biaxial load has been shown to influence the 

locking angles. Further, the concept of lock up is not expected to be the same with coated materials 

(§2.1.2). 
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Figure 2.20 Schematics showing the underformed (left) and deformed (right) shapes of the 

specimen in the bias extension test, reproduced from Lebrun et al. (2003) 

Lebrun et al.  (2003) identified distinct regions of deformation in the plane of the bias test specimen 

(Figure 2.20). The shear angle in region C is assumed to be double that in region B and no shear 

occurs in region A.  

An expression for the shear angle can be derived from the height and width of the test specimen, H, 

W, and the displacement applied by the test rig during a test, δ (Equation 2.3). Launay et al. (2008)  

propose an iterative approach to calculate the shear force as a function of changing shear angle, γ, 

from the applied load, P (Equation 2.4). This calculation permits comparison of picture frame and 

bias extension results as it determines normalised shear force per unit length i.e. is the same the 

normalised picture frame shear force (Equation 2.2). The approach accounts for the different 

regions of shear. Different aspects of the specimen are used in the bias test (Table 2.5). The groups 

that performed tests on unbalanced fabrics did so only with 2:1 samples.  

 

𝑐𝑜𝑠𝜃 =
(𝐻 + 𝛿) − 𝑊

2(𝐻 − 𝑊)𝑐𝑜𝑠𝜃0
 

Equation 2.3 

(Lebrun et al., 2003) 
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(Launay et al., 2008)   
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Table 2.5 Bias test specimen size, adapted from Cao et al. (2008) 

Group Material Height, H (mm) Width, W (mm) W:L 

Hong Kong University of 
Science and Technology 

Plain weave 230 115 2:1 

INSA-Lyon, France Plain weave 230 115 2:1 

  300 100 3:1 

  450 150 3:1 

 Balanced twill weave 300 150 2:1 

  300 100 3:1 

  450 150 3:1 

 Unbalanced  400 200 2:1 

Northwestern University, USA Plain weave 230 115 2:1 

 Balanced twill 240 120 2:1 

University of Nottingham, UK Plain weave 200 100 2:1 

  250 100 2.5:1 

  300 100 3:1 

 Unbalanced 200 100 2:1 

 Twill weave  250 100 2.5:1 

  300 100 3:1 
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2.3 Predictive fabric modelling 

Generally, biaxial fabric models are developed to suit one of two purposes. The first purpose is to 

represent biaxial test data, with predictions made only between experimental data points obtained 

through biaxial testing. The second purpose is to predict the biaxial fabric behaviour without 

having biaxial test data available. It is the second of these two types of model that is of interest here, 

as models which require biaxial test data inherently do not reduce the need for biaxial testing.  

2.3.1 The unit cell 

Fabric models describe woven materials at one or more hierarchical levels (Table 2.6) (Lomov et al., 

2001; Lomov et al., 2003a). Models which establish a description of the woven yarns typically 

describe a repeatable area of the weave pattern known as the unit cell and will simplify the shape of 

the yarns and the crimp (Kemp, 1958; Grosberg and Park, 1966; Menges and Meffert, 1976; Testa et 

al., 1978; Lomov et al., 2003a; Boisse et al., 2005; Bridgens, 2005; Liu et al., 2005; Badel et al., 2007; 

Pargana et al., 2007; Potluri and Sagar, 2008; Dolatabadi and Kovař, 2009b; Grujicic et al., 2009). 

Different investigators consider different areas of the weave pattern (Figure 2.21). 

Table 2.6 Hierarchy of fabric structure and models, adapted from Lomov et al. (2001) 

Structure Elements Model 

Yarn Fibres Fibre distribution in the yarn and its change under load/strain 

Mechanical properties of the yarn 

Unit cell Yarns Geometry of the yarns and its change under load/strain 

Mechanical behaviour of the fabric under repeat loading 

Fabric Unit cell Mechanical properties (stiffness/strength) 

Permeability tensor 

 

Models which describe the internal woven architecture follow on from an early work by Peirce  

(1937), who defined the unit cell using measurements of the yarn geometry (Figure 2.22). Peirce 

(1937) also defined crimp as “the percentage excess length of the yarn axis over the cloth length” and 

identified crimp interchange as a fundamental mechanism governing lateral contraction and 

elongation of a woven material.  
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Figure 2.21 Examples of area of weave pattern used in unit cell representations, from (a) Pargana 

et al. (2007), (b) McBride and Chen  (1997), (c) Skelton (1980) and (d) Nguyen et al. (1999) 
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Figure 2.22 Early description of the fabric unit cell with circular yarn cross sections, illustrating the 

notation for a plain weave fabric, reproduced from Peirce (1937)  

 

Figure 2.23 Racetrack yarn geometry used as the basis for an extension of the work of Peirce 

(1937), reproduced from Kemp (1958) 

 

Figure 2.24 Elliptical yarn geometry employed in a model to determine geometry from 

experimental test data of fabric behaviour, reproduced from Dolatabadi and Kovař  (2009a) 
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The circular yarn cross sections proposed by Peirce (1937) are not a realistic approximation of real 

yarns, at least for architectural fabrics which are substantially flat (Figure 1.2). Subsequent models 

have sought to improve the representation of yarn geometry: Kemp (1958) proposes racetrack 

cross sections (Figure 2.23); Hearle and Shanahan (1978) develop and early lenticular model; 

Dolatabadi and Kovař (2009a) employ elliptical cross sections (Figure 2.24); and Pargana et al. 

(2000) propose rhomboids (Figure 2.27). However, none of these representations offer the most 

realistic approximation of the weave structure of typical architectural fabrics, at least by visual 

inspection. Note that due to gaps between adjacent yarns, sections of the undulating yarn which are 

not in contact with an orthogonal yarn’s cross section are provided within the models of the 

aforementioned works as straight sections of yarn (Figure 2.22 to Figure 2.24). 

Sinusoidal representation (McBride and Chen, 1997; Wang, 2002; Bridgens, 2005) offers the best 

visual approximation for architectural fabrics. Further, sinusoidal representation permits 

consistent description of the yarn cross section and the undulating yarn (Figure 2.25 and Equation 

2.5 to Equation 2.8). This allows for relationships between yarn geometry and applied forces. 

However, by using a continuous sine waveform the sections between the yarns are not straight. 

Straight sections could be included, but this may be unnecessary in the case of architectural fabrics 

as the yarns are tightly woven and the non-contact lengths are substantially non-existent. Further, 

where orthogonal yarns are not in contact the curvature of the sine curve is low. 

 

Figure 2.25 Cross sectional view of a sinusoidal unit cell in which four curves are used to describe 

the yarn cross section and the yarn waveform, reproduced from McBride and Chen (1997) 

𝑦1(𝑥) =
ℎ

2
[𝑐𝑜𝑠

𝜋𝑥

𝑠
+ 1] (0 < 𝑥 < 𝑠) 

Equation 2.5 

(McBride and Chen, 1997) 

𝑦2(𝑥) =
ℎ

2
[𝑐𝑜𝑠

𝜋𝑥

𝑠
− 1] (0 < 𝑥 < 𝑠) 

Equation 2.6 

(McBride and Chen, 1997) 

𝑦3(𝑥) = −ℎ 𝑐𝑜𝑠 [
𝜋𝑥

𝛽
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𝑤

2
) 

Equation 2.7 

(McBride and Chen, 1997) 

𝑦4(𝑥) = −ℎ 𝑐𝑜𝑠 [
𝜋(𝑥 − (𝑠 − 𝛽))

𝛽
] (𝑠 −

𝑤

2
< 𝑥 < 𝑠) 

Equation 2.8 

(McBride and Chen, 1997) 
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Sawtooth models (Kawabata et al., 1973a; Menges and Meffert, 1976; Stubbs and Fluss, 1980; 

Bridgens, 2005) offer a simplified representation of the unit cell in which the yarn waveforms are 

represented as bar linkages (Figure 2.27). Geometric parameters which define sawtooth models 

can be easily defined, but these models cannot realistically describe the yarn extension and change 

in geometry of a continuously undulating yarn. 

 

Figure 2.26 Sawtooth model for PVC coated polyester fabrics under biaxial stress, the model 

comprises bars connected by flexible joints, reproduced from Menges and Meffert (1976) 

2.3.2 Modelling biaxial behaviour 

Methods to carry out the analsysis of woven fabrics fall into two main catergories: analytical 

models and numical models. Considering first analyitical models, Peirce (1937) developed 

mathematical expressions to relate changes to the fabric geometry to strains applied in the plane of 

the fabric with the assumption that the yarns are axially ridged. Models which are built on the work 

of Peirce (1937) include yarn extension (Olofsson, 1964; Freeston et al., 1967; Menges and Meffert, 

1976; Testa et al., 1978) and later models attempt to incorporate further deformation mechanisms 

(Kawabata et al., 1973a; Kato et al., 1999; Pargana et al., 2000; Lomov et al., 2003a; Pargana et al., 

2007; Dolatabadi and Kovař, 2009a). For example, Lomov et al. (2003a) develops a mathematical 

model which incorporates tension, friction, vertical and lateral compression and torsion of the 

yarns.  

It is suggested that yarn crushing stiffness is important to accurately predict real fabric behaviour 

(Pargana et al., 2000). Despite this, crushing stiffness is considered by only a few models (Kawabata 

et al., 1973a; Kato et al., 1999; Pargana et al., 2007). By way of example, Pargana et al. (2007) 

incorporate yarn crushing as an elastic link across the thickness of a yarn (Figure 2.27). The models 

which do include yarn crushing stiffness are calibrated against test data, so the modelling 

approaches they present are not suitable for this project. 
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Figure 2.27 Unit cell model incorporating yarn crushing stiffness element, reproduced from 

Pargana et al. (2007) 

Additionally, there is no standard method for determining crushing stiffness, which at least in part 

may explain why it is often negated.  However, methods for determining crushing are described by 

Sasai and Kawabata (1985), so considering coated fabrics, such tests could be performed on as-

produced yarns or yarns removed from their polymeric coating. This would be problematic, as yarn 

behaviour is affected by the coating as it impregnates and encapsulates the yarns (§2.1.1), thus the 

results of tests on yarns without coating would not represent the behaviour of the yarns in situ.  

Further, yarns are likely to be damaged in the case where the coating is removed. Determination of 

crushing stiffness for architectural fabrics is unlikely to be easily achieved. 

Menges and Meffert (1976) propose a simplified analytical approach to model the relationship 

between forces and geometry of a woven fabric (Figure 2.26) in which only “principal” deformation 

mechanisms: crimp interexchange, yarn extension and coating extensions, are modelled. The 

investigators’ sawtooth model represents the deformation of yarns and the coating under biaxial 

load. Secant moduli are used to model the viscoelastic behaviour of the yarns and a spring constant 

represents the restraint imposed by the coating. Springs representing the coating are aligned with 

the warp and fill yarn directions. This model forms the basis of later analytical models (Testa et al., 
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1978; Bridgens, 2005). Spring constants are not accurately determined for coating stiffness and the 

models do not predict the non-linear behaviour. As mentioned above, these models cannot 

realistically describe yarn extension. Further, they also represent the out of plane force at the yarn 

cross over as a point load act. However, despite their simplification these sawtooth models achieve 

good correlation with test data.  

In an attempt to improve upon the sawtooth approach, Bridgens (2005) proposes a sine curve 

discretised into straight linkages. A sinusoidal representation of the model having a similar 

formulation to the sawtooth models is also adopted by Wang (2002). These models also typically 

neglect bending stiffness of the yarns (Menges and Meffert, 1976; Testa et al., 1978; Bridgens, 2005; 

Pargana et al., 2007). 

Considering numerical models, Blackletter et al. (1993) presented an early application of the finite 

element method to evaluate the mechanical behaviour of woven fabrics. Representing the unit cell 

as 256 20-noded hexahedral elements, Blackletter et al. (1993) developed model which achieved 

good agreement with comparative test results. This model relied up on a further FE model to 

determine the behaviour of individual yarns and determination of a single load condition required 

30mins of computing time with available 1990’s computer hardware. Subsequent numerical 

models successfully sought to reduce solution times (Chapman and Whitcomb; Woo and Whitcomb, 

1996) any many more numerical models have since been developed for woven materials, 

particularly woven fabrics used in reinforced composite forming (Glaessgen et al., 1996; Gasser and 

Hivot 2001; Durville 2003; Šejnoha and Zeman, 2008; Ivanov et al., 2011, Green et al., 2014).  

Ansar et al. (2011) recently presented an exceptionally thorough review of the numerical modelling 

techniques for characterising the geometry, mechanical behaviour and impact behaviour woven 

composites. An earlier review was also presented by Crookston et al. (2005).  The principal 

advantage of these numerical FE models is that they offer realistic representation of the yarn 

waveforms and the yarn contact, as they do not require the simplifications of the analytical models 

described above. However, it has been long established that determination of yarn crushing 

stiffness and the relationship between transverse yarns compress and longitudinal tension is an 

essential requirement of numerical models (Boisse et al., 2001, Bridgens, 2005).  

Bridgens’ (2005) review of fabric models identified the means to determine yarn parameters, 

namely: 1) yarn testing by removal of the yarns from the fabric; 2) test data form as produced yarns; 

and 3) calibration of the model against test data. However, removal of the yarn from the fabric is 

time consuming and difficult for a coated fabric, notwithstanding the fact that the in situ behaviour 

will differ to the behaviour of the yarns once removed from the fabric. Further, as produced yarn 

behaviour will also differ from that of the yarn once it is incorporated in a matrix of coating and 

interwoven with other yarns, therefore these two methods of yarn testing cannot easily and reliably 
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determine the yarn behaviour of the in situ yarns of a woven fabric. Further, calibration is not an 

option if the purpose of the model is to negate the need for biaxial testing.  

Moreover, FE models are constructed having specific geometric descriptions and material inputs 

for specific fabrics, so they are inherently difficult to modify for different fabrics. Consequently, 

numerical FE models cannot provide design engineers with a model which requires only easily to 

obtain input parameters, nor model which is capable of reverse engineering fabric, i.e. enable 

designers to determine the yarn properties for a fabric with particular biaxial mechanical 

behaviour. Therefore, an analytic mechanical model will be developed here. 

2.3.3 Modelling shear behaviour 

A number of meso-scale shear models have been developed to predict the shear properties of 

uncoated woven materials (Mack and Taylor, 1956; Grosberg and Park, 1966; Kawabata et al., 

1973b; Skelton, 1976; Leaf and Sheta, 1984; McBride and Chen, 1997; Nguyen et al., 1999; Liu et al., 

2004; Liu et al., 2005; Sun and Pan, 2005; Lomov and Verpoest, 2006). Early analytical shear 

models seek to identity the limit of shear deformation, i.e. the onset of wrinkling, for uncoated 

fabrics using geometrical parameters (Mack and Taylor, 1956; Grosberg and Park, 1966; Skelton, 

1976). The model by Mack and Taylor (1956) allows unlimited rotations of the yarns about the 

yarn cross overs and later work introduces mechanisms to limit the degree of shear deformation, 

such as modelling side-by-side yarn contact (Figure 2.28) (Skelton, 1976; Skelton, 1980). 

 

Figure 2.28 Shearing of interwoven incompressible cylinders in which a limiting shear deformation 

is imposed, reproduced from Skelton (1980) 
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The modelling of side-by-side contact imposes a simplification which does not consider the out-of-

plane dimension. In reality, yarns will contact one another at lower angles of shear than such 

models will predict. Prodromou and Chen (1997) demonstrate that if yarns are represented in this 

way, i.e. as rigid beam elements, models may not accurately represent deformation at higher angles 

of shear or beyond the angle at which the onset of wrinkling will occur. However, this may not be 

relevant in the context of architectural fabrics were angles of deformation are relatively lower than 

for rigid composite forming. Further, models which assume rigid beam elements achieve good 

correlation with test results (Grosberg and Park, 1966; Skelton, 1980; Liu et al., 2004; Liu et al., 

2005). 

Sun and Pan (2005) developed a shear model based on the deformation modes described by 

Grosberg and Park (1966), but which incorporates the out-of-plane dimension of the yarns. 

However, while the model more closely reflects the behaviour of real woven fabrics compared to 

the model of Grosberg and Park (1966), the later model relies upon a constant for the torsional 

rigidity of the yarns about their longitudinal axis which is difficult to accurately determine. McBride 

and Chen  (1997) develop a sinusoidal model (Figure 2.24) for predicting elastic properties of 

woven yarns by calculating changes in the yarn cross sections upon deformation of the unit cell for 

uncoated fabrics. The calculated deformations are used in a fibre bundle model (Cai and Gutowski, 

1992) to determine the elastic properties. 

Building on the model proposed by McBride and Chen (1997), Liu et al. (2004) and Liu et al. (2005) 

propose analytical shear models for uncoated fabrics that predict lateral compaction (Equation 2.9) 

and frictional resistance (Equation 2.10), respectively. The models consider moment equilibrium of 

the forces acting about the centre of each yarn intersection (Figure 2.29). Yarn compaction is also 

refers to compaction in the out of place direction as if the fabric is compressed between to plates 

fabric is compressed between two plates (Potluri and Sagar, 2008). The compaction force, Fc, is a 

function of the width of the yarn, which chances with change in shear angle, and the fibre volume 

fraction. The width of the yarn changes with the shear angle. 

The compaction force is the product of stress in the transverse direction of the yarn is obtained 

from the inverse of the compliance tensor, calculated after Cai and Gutowski (1992). A coefficient of 

friction, μ, is required for calculating the moment due to compaction. The limitation of these models 

is that they have identical warp and fill yarn geometries. 

All of the aforementioned analytical models require either calibration against test data or 

experimental determination of empirical values at the yarn and coating level. 
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(Liu et al., 2005) 
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(Liu et al., 2004) 
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Figure 2.29 Integration over the area of the crossover to calculate the friction shear resistance 

moment (left), reproduced from Liu et al. (2004) and deformed unit cell for plain weave to 

calculate shear compaction resistance moment (right), reproduced from Liu et al. (2005) 

Relatively fewer analytical models consider shear of coated materials (Yu et al., 1994; Nguyen et al., 

1999; Pargana et al., 2000; Tanov and Brueggert, 2003; Pargana et al., 2007; Ramgulam et al., 2008). 

Shear of the coating may be modelled using a spring which acts diagonally between yarn crossovers 

(Yu et al., 1994; Tanov and Brueggert, 2003).  Spring have also been be added at the contact edge 

(Nguyen et al., 1999). The latter approach is more realistic, though spring constants must be 

determined experimentally or calibrated against data. 

 

Figure 2.30 Point bearing loads acting at the edge of the cross-over contact length on a unit cell: 

(a) point shown on fabric; and (b) Representation in the form of a beam deflection, reproduced 

from Nguyen et al. (1999) 

Ramgulam et al. (2008) developed an coated shear model for balanced fabrics to predict shear 

beyond the initial region described by Grosberg and Park (1966).  However, the formulation 

(Equation 2.11) requires determination of the bending stiffness of the yarns, Eb. Determining 

bending stiffness would have the same problems as for crushing stiffness (§2.3.2). Further, the 

work does not address how to accurately determine the normal force at the yarn crossovers, Fy.  

Spring 

bearing load 

mechanism 

acting at the 

edge of the 

yarn contact 

length, dc. 
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For architectural fabrics, normal forces arising from yarn tension at the crossover and the influence 

of the coating is likely to be more significant than the influence of yarn bending, which is assumed 

to be negligible (§2.1.1).   

𝐹 𝑠𝑖𝑛𝜃 = 𝐸𝑏𝑠𝑖𝑛2(45 − 𝜃) ∙ 𝑝 +
1

3
𝜇𝐹𝑦𝑎 

Equation 2.11 

(Ramgulam et al., 2008) 

Macroscopic models have been developed that do not consider the internal woven geometry (Lo 

and Hu, 2002; King et al., 2005; Peng and Cao, 2005). These models have the advantage as they 

allow modelling of complex components, i.e. 3D composite moulded parts, while maintaining an 

adequate level of computational efficiency. Macro models consider the fabric as a continuum, a 

typical example is proposed by Lo and Hu (2002) in which behaviour is derived from theoretical 

transformations of compliance in the principal and bias directions of the fabric to give an 

expression for the shear modulus of the fabric in any axes direction (Equation 2.12). While 

comparison of the results with experimentally obtained data demonstrate good agreement (Figure 

2.31), the model is dependent upon the availability of accurate test data. Thus, though such models 

may be useful to fill in gaps between test data, they are not capable of truly predicting shear 

characteristics. For any given fabric of interest, testing is needed. 

1

𝐺𝜃
= (

4

𝐺45
) 𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃 +

1

𝐺
(𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃)2 

Equation 2.12 

(Lo and Hu, 2002) 

where Gθ is the shear modulus in a given axis direction denoted by θ, G45 the shear modulus in the bias 

direction, G is the shear modulus in the principal axes (defined by the yarn direction) and θ is the angle 

between the yarn directions and the axes of interest 

 

Figure 2.31 Theoretical and experimental results of fabric shear moduli: (a) plain weave, (b) twill 

weave, and (c) satin weave, Eq. 3 is Equation 2.12, reproduced from Lo and Hu (2002)    
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A further alternative to analytical approaches is to assume linear approximation accounting for 

constant torque, Tr, and frictional resistance as a linear function of the shear angle (Kawabata et al., 

1973b; Kawabata, 1989). Kawabata et al. (1973b) derived formulations for both relaxed fabrics 

(Equation 2.13) and fabrics where tension is applied to the yarns (Equation 2.14). The obvious 

drawback is that calibration constants, C1 to C4, must be matched against real test data. 

𝑇𝑟 = 𝑇𝑟0 ± 𝐶1𝐹𝑐 ± 𝐶2𝐹𝑐 ± 𝐶2𝐹𝑐𝜑 + 𝐶3𝜑 + 𝐶4𝜑𝐹𝑐 
Equation 2.13 

(Kawabata et al., 1973b) 

𝑇𝑟 = 𝑇𝑟0 ± (𝐶1 + 𝐶2𝜑)𝐹𝑐 + (𝐶3 + 𝐶4𝐹𝑐)𝜑 
Equation 2.14 

(Kawabata et al., 1973b) 

Finite element models are also used to simulate the complex yarn interactions (Page and Wang, 

2000; Tanov and Brueggert, 2003; Cavallaro et al., 2007; Durville, 2008; Potluri and Sagar, 2008; 

Grujicic et al., 2009; Nguyen et al., 2013). The advantage of these models is they do not require the 

necessary simplifications of analytical models, i.e. there is no requirement to assume a description 

of the yarn waveform or represent the coating as a spring. However, finite element models require 

accurate determination of the yarn and coating properties and are developed for specific fabrics. 

Establishing the required yarn tensile and crushing properties is critical, although difficult as 

described in §2.3.2. Therefore, an analytical model will be developed for ease of use and to be used 

more generally for many architectural fabrics. 
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2.4 Summary 

Biaxial and shear behaviour of architectural fabrics is non-linear, inelastic and hysteretic due to 

interactions of the woven yarns and the polymeric coatings. Coatings limit yarn movements causing 

the behaviour of coated fabrics to be fundamentally different to the behaviour of uncoated fabrics. 

Much of the work concerning testing and modelling of woven fabrics is directed to uncoated 

materials, particularly materials used for rigid composites. Uncoated fabrics exhibit lower shear 

stiffnesses and are tested to higher angles of shear deformation which are required to form 

complex three-dimensional composite parts. 

Accurate and reliable testing methodologies are needed to reduce uncertainty associated with 

material behaviour in the design and analysis of tensile fabric structures. In-plane biaxial testing is 

the de facto industry standard for determining biaxial behaviour of architectural fabrics. A biaxial 

test rig developed by Bridgens (2005) and Newcastle University is to be used for determining 

biaxial behaviour of materials used in the course of this project. However, there is no British or 

European standard and little published guidance for characterising shear behaviour of coated 

woven fabrics. Consequently, shear behaviour is poorly understood and broad assumptions are 

made regarding shear of these materials. Shear stiffness is routinely assumed to be linear for coated 

fabrics despite it being know that this not the case. Understanding the limits of shear deformation is 

required determine the limits of shear deformation, i.e. the double curvature, that can be achieved. 

Further, while architectural fabrics when in use are subject to biaxial stress and shear deformation, 

there have been no studies to investigate the effect of the level biaxial pretension on these materials.  

Comparing the available shear methodologies demonstrates the suitability of the picture frame test 

for characterising shear behaviour of architectural fabrics. The picture frame test apparatus 

enables the simultaneous application of biaxial tension and shear deformation necessary to 

accurately simulate the in situ behaviour of architectural fabrics. The comparison also highlights 

tests which designers may wish to avoid, such as the KES-F test, the bias test and T-shaped 

specimen test, which cannot apply biaxial tension during shearing. Bassett et al. (1999) proposed a 

conceptual picture frame design of which no practical embodiment has been developed. 

Comparative testing of the picture frame test and the bias extension test for uncoated fabrics has 

shown similar material behaviour despite the methodologies imposing different loading conditions 

upon test specimens. No such comparison has been perform with coated woven fabrics. 

An alternative to using expensive experimental testing to determine the necessary material 

properties are predictive models. Existing mechanical unit cell models have been used to replicate 

test data and predict in-plane biaxial and shear behaviour of woven materials. However, data 

produced using existing predicted models is not currently used in design of tensile fabric structures 

and many models are not intended to predict the stress-strain behaviours of coated architectural 
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fabrics.  Bridgens (2005) developed a predictive unit cell model for architectural fabrics based on 

sawtooth model proposed by Menges and Meffert (1976). Although, these models cannot model the 

yarn waveforms as realistically as finite element models, they enable the development of more 

general models that do not require against calibration against test data. Models that can sufficiently 

replicate the results of experimental testing offer time and cost savings to designers. 
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3.1 Introduction 

 

Figure 3.1 Milk Market, Limerick, a conic fabric structural form showing the anticlastic (doubly 

curved with opposite curvature in perpendicular directions) shape achieved by shearing the flat 

fabric panels during installation. © Schlaich Bergermann und Partner 2011 

Flat panels of fabric must undergo shear deformation to achieve the curved anticlastic forms 

required when constructing a tensile fabric structure (Figure 3.1). Understanding and quantifying 

shear behaviour of architectural fabrics is important to design engineers as large shear 

deformations are inherent in fabric structures, both during installation and under imposed loading 

(§2.1.2).  

Accurate determination of shear stiffness will allow for the improved simulation (e.g. though finite 

element analysis) of deflection and formability of tensile fabric structures as well as the avoidance 

of wrinkling. Therefore, safer and more efficient structural solutions will be possible and designers 

will be able to explore more innovative architectural forms. 

This chapter presents the design of a novel picture frame shear apparatus. The picture frame test is 

suitable for replicating the in situ behaviour of architectural fabrics as it is capable of applying 

biaxial stress to a shear test specimen (§2.2.2). The novel frame design applies biaxial stress while 

aiming to subject the test specimen to homogenous shear deformation and eliminate distortion of 

the specimen by the frame itself. The chapter also presents a series of tests performed using the 

novel frame design on a range of fabrics at increasing levels of biaxial stress. These tests explore the 

interaction between biaxial tension and shear behaviour for the coated materials used in the 

construction of tensile fabric structures. A further series of tests compare bias test results with 

picture frame test results for architectural fabrics. 
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3.2 Novel picture frame design 

The proposed design is a practical embodiment of the frame design presented by Bassett et al. 

(1999). The design of Basset has not before been practically realised. The novel frame design does 

not require the undesirable practice of removing material in the corners of a test specimen (§2.2.2). 

Further, correct positioning of the pinned connections is maintained while providing optimum 

transfer of shear force from the frame to the test specimen by a space in the centre of the pinned 

connection which accommodates the fabric. The novel design achieves this by allowing for free 

yarn rotation in the corners of the specimen, as the pinned connections do not penetrate the plane 

of the fabric. The frame (Figure 3.2a) comprises four pairs of aluminium bars with a machined steel 

grip inlaid into each bar, each pair of bars comprising an upper bar and a lower bar. Yokes formed 

at the ends of the bars provide the hinges at each corner of the frame when the equipment is 

assembled. The yokes are centred to align with the perimeter of the area bound by the frame, i.e. 

the inside edge of the frame, so as the area bound by the frame and the area of test specimen are 

coterminous at any angle of shear deformation. Further, the yokes of adjacent bars are machined to 

interlock with one another when the frame is assembled. The steel grips protrude from the bars to 

achieve an interference fit with a test specimen and are machined to fit around the yokes to provide 

an area behind the pin, relative to the specimen, which enables the edge of the specimen to be 

secured along its entire length.  

The upper and lower bars are connected by a series of fasteners, provided as Allen bolts and nuts, 

which pass through elongated slots within the bars. The elongated slots are positioned to coincide 

with slits cut in a biaxial cruciform fabric specimen, wherein the slits form fingers in the arms of the 

specimen (Figure 3.7). The elongated slots provide a tolerance to accommodate deviation in the 

location of the slits in a given fabric specimen.  In use, a fabric specimen is positioned between the 

front and rear bars with the corner of the specimen coincident with the centre of the yokes, i.e. the 

axis of the rotation of each hinge, (Figure 3.2b). Tightening of the fasteners draws the front and rear 

bars together, thus clamping the specimen between the front and rear bars.  

The pairs of bars are connected at each corner by front and rear pins (or stub shafts) inserted into 

the yokes of the front and rear bars, respectively. By providing separate front and rear pins, rather 

than a single pin passing all the bars at each corner of the frame, a gap is created between the front 

and rear pins which coincides with the plane of a fabric specimen held in the frame at each of the 

pinned connections (Figure 3.3 and Figure 3.4). This feature of the novel design allows the 

specimen to be fully restrained, whilst still permitting free yarn rotation at the corners of the frame. 

The front and rear pins at two of the corners are formed as part of a two-part bracket which 

ensures that the centres of the all the yokes align when the frame is assembled. Alignment is 

ensured with two-part brackets provided at only two opposing corners of the frame as, when 

assembled correctly, the other corners will align by virtue of the frame’s geometry (Figure 3.2c). 

Small lugs (Figure 3.4) are used to pin the connections at the remaining two corners.  
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Figure 3.2 The novel picture frame design, showing (a) assembled frame with a fabric test 

specimen fully restrained; (b) cut-away view illustrating the specimen’s position in the frame; and 

(c) aligning the upper and lower bars during assembly 
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Figure 3.3 Three-dimensional views of the frame’s corner detail: (top) an exploded view illustrating, 

from top to bottom, upper part of corner bracket, adjacent upper bars, corresponding adjacent 

lower bars and lower part of corner bracket; and (bottom) assembled view, note the gap running 

through a central horizontal plane of the hinge 
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Figure 3.4 Corner detail of the frame shown in use, front and rear pins allow the creation of a gap 

in the plane of the fabric thus enabling free yarn rotation in the corners of the specimen whilst the 

specimen is fully restrained by the frame. 

 

 

Figure 3.5 Novel shear test picture frame in use, a floating biaxial test rig applies biaxial load to a 

fabric specimen as the picture frame is installed, linear extensometers are shown affixed to the 

surface of the specimen for measuring deformation of the fabric surface (§3.3.2) 
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The frame was constructed from 6082-T5 aluminium alloy. This alloy was chosen for the design as 

it is readily available, is a high strength alloy, exhibits good resistance to cyclic loading and has good 

machinability. A 3D model of the proposed design was implemented in Autodesk Inventor to 

analyse the stresses that would occur in the frame during testing. To prevent failure of the frame, a 

limit on the allowable level of stress was imposed of 50% of the 0.2% proof stress (referred to as 

the offset yield point). This condition limits the maximum allowable stress in the frame to 115MPa. 

The 3D Inventor model predicts that a maximum value of 111.4MPa will occur in the frame at a 

biaxial stress of 25kN/m. Values of prestress for the strongest PTFE/Glass fibre fabrics are typically 

around 5kN/m (Balz and Dencher, 2004). Further, as factors of safety used in design are typically 

between 5 and 8 (§1.1.2) and the typical tensile strength of type 5 PVC/PES and G7 PTFE/glass 

fabrics is 170kN/m (§2.1), design loads will range between 20 and 35kN/m for the strongest 

materials. A maximum value of biaxial stress of 25kN/m is therefore suitable for initial 

investigation of the materials at the loading conditions expected in situ. However, to test at the 

maximum values of design load a more substantial frame may be needed.  

 
 

Figure 3.6 Inventor analysis of the proposed frame design; (top left) UDL load applied to each bar 

represents tensile force in a restrained specimen (Inventor visualises UDLs as a point acting in the 

centre of the UDL); (top right) displacement; (bottom left) stress in the frame; and (bottom right) 

stress at corner between the yoke and the bar 
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The dimensions of the frame accommodate a 300x300mm biaxial cruciform specimen (§3.3.1), 

though frames of other dimensions could take the same form. The dimensions of the shear test 

frame allow the frame to be used with Newcastle University’s existing biaxial test rig (Figure 3.5). 

The frame had to be compatible with a test specimen which suited the existing rig and did not clash 

with any features of the rig when in use. It was also desirable for the bars to be lightweight for ease 

of handling and to prevent the self-weight of the frame having an adverse effect on the behaviour of 

a fabric specimen. In addition, the steel grips which are required for an interference fit with a test 

specimen were found to be a time consuming component to fabricate. Therefore, it was necessary 

that a set of existing grips were used in the fabrication of the new test frame. This requirement 

placed a further limitation on the frame’s design. The exact frame design is specified in the 

workshop drawings provided in the Appendices. 
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3.3 Initial picture frame shear testing 

A series of initial shear tests were conducted using the materials detailed in Table 3.1. Three tests 

were performed on each of the materials in order to assess the repeatability of the method. Biaxial 

tensile stresses of 5.87kN/m (5.25% of the measured UTS) and 3.55kN/m (2.5% of the measured 

UTS) were applied to the F1202 and B18089 fabrics respectively. These tensile stresses were 

chosen as they were of interest to the project’s sponsors. The exact values of prestress were 

unimportant at this stage of the project and the effect of the level of prestress was subsequently 

investigated (§3.4). 

Table 3.1 Fabrics used for initial shear testing 

Fabric Manufacturer 
Material Weight 

(g/m2) 
Thickness 

(mm) 
Tensile strength* 

(kN/m) Base cloth Coating 

F1202 Serge Ferrari PES PVC 1050 0.78 112/112 

B18089 Verseidag Glass fibre PTFE 1150 0.70 140/120 

*as specified by the manufacturer 
PET = Polyethylene terephthalate; PVC = Polyvinylchloride; PTFE = Polytetrafluoroethylene 

3.3.1 Specimen preparation 

The manufacturing process can cause fill yarns to bow or skew causing warp and fill yarns to 

intersect with one another at angles other than 90 (Skelton and Freeston, 1971). Consequently, 

fabric cruciform specimens were prepared with the arms cut parallel to the yarn directions 

(Bridgens and Gosling, 2004), i.e. not necessarily orthogonal to one another (Figure 3.7). This 

preparation method enables the biaxial stress to be correctly applied to the yarns, as load is 

resisted in-line with the yarns without inducing undesired shear deformation. Axis centrelines 

were carefully drawn onto virgin fabric by tracing a single yarn in each axis direction. All other 

dimensions of each specimen were then offset from the centrelines, including the fingers of each 

specimen. 

All specimens to be placed in the biaxial test rig used in this research project required elongate 

sleeves or “pockets” to be formed at the ends of the specimens’ arms. During testing, each pocket 

holds a circular steel bar to enable the specimen to be held in specially designed clamps which 

allow loading of the specimen up to a fabric’s failure load while minimising crushing of the yarns 

(Bridgens, 2005). The pockets were formed by folding over the specimen at the ends of the arms 

and bonding the fabric to itself using a means suitable for a given fabric type. PVC coated fabrics 

were easily bonded using a strong adhesive. PTFE and Silicone coated fabrics required welding at 

high temperatures, ranging from 150 to 200C, with the provision of a strip of thermosetting 

material placed within the weld. 
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Figure 3.7 Cruciform biaxial specimen prepared with arms parallel to the yarn directions (angle 

between warp and fill is exaggerated) as described by Bridgens and Gosling (2004). Dimensions 

are the same for each arm. Top and left arms are un-bonded; bottom and right arms show 

pockets formed by folding and bonding the specimen to itself 

3.3.2 Determination of shear stress and strain 

Deformation measurements were obtained during testing from an arrangement of three contact 

extensometers affixed to the surface of the centre of the cruciform specimens (Figure 3.8). The 

sensors used were Penny and Giles potentiometric linear position sensors (2 x SLS095/40 and 1 x 

SLS095/50). The measurements obtained were used to calculate an estimate of the strains in the 

directions of the yarns and the shear strain. The extensometers were affixed to the test specimen by 

aluminium mounts comprising a 2mm threaded bar which was used penetrate the fabric. The 

mounts also comprise Ø25mm discs, which hold each mount perpendicular to the plane of the 

fabric. A similar arrangement of extensometers was used by Galliot and Luchsinger (2010b) who 
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calculated the shear strain using a formula suitable only for orthogonal starting angles, i.e. samples 

with orthogonal yarns. As non-orthogonal initial angles were expected to be encountered owing the 

method of specimen preparation (§3.3.1), a revised formulation for deriving the shear angle was 

used (Equation 3.1). This approach offers a straightforward means for determining the strain in a 

specimen which can easily be setup using conventional laboratory equipment. 

𝛾 = 𝑐𝑜𝑠−1 (
(𝐿2(1 + 𝜀2))

2
+ (𝐿3(1 + 𝜀3))

2
− (𝐿1(1 + 𝜀1))

2

2(𝐿2 + (1 + 𝜀2))(𝐿3(1 + 𝜀3))
) Equation 3.1 

 

where  is the change in angle (shear angle), L is the initial length measured by each linear 

extensometer and ε is the strain calculated in the direction of each extensometer from 

measurements obtained during testing. Subscripts 1, 2 denote the extensometers in the warp and 

fill directions, respectively, and subscript 3 denotes the remaining extensometer affixed to the 

specimen at approximately 45 to the yarn directions. 

An approximation of the shear force, Fs, applied to the fabric was resolved from the crosshead load 

of the uniaxial test machine (Harrison et al., 2004; Peng et al., 2004). 

𝐹𝑠 =
𝑃

2× cos (
𝛼 − 𝛾

2 ) × 𝐿
 Equation 3.2 

 

where Fs is shear force, P is crosshead load, α is the initial angle of the top/bottom inside corner of 

the shear frame and  is the change in angle (shear angle) 

 

Figure 3.8 Arrangement of linear extensometers on the surface of a fabric test specimen, showing 

placement of the extensometers in relation to the warp and fill centrelines  
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3.3.3 Test protocol 

A floating biaxial test rig, (Bridgens and Gosling, 2004; Bridgens, 2005) was used to apply and 

maintain biaxial pretension prior to and during installation of the frame (Figure 3.2). The 

pretension was held for a period of one hour to minimise loss of prestress in the shear frame due to 

relaxation.  After preloading, the shear frame was then fitted to the specimen being tested while the 

level of biaxial stress was maintained by the biaxial test rig. The shear frame was fitted around the 

specimen with the bars of the frame parallel to the yarn directions. The upper bars of the frame are 

placed on top of the specimen while it is held in the biaxial test rig. The lower bars were then 

secured beneath the specimen using the fasteners which were placed through the bars and the slits 

cut in the arms of the specimen. The fasteners were first loosely tightened to allow for final 

positioning of the shear frame and attachment of the corner brackets and lugs. After fully tightening 

the fasteners, the test specimens could be removed from the biaxial test rig and placed in a uniaxial 

test machine for shearing with the frame maintaining the applied pretension in the fabric. 

The project’s industrial sponsors were interested in shear deformations of approx. 5-6°, as these 

are the anticipated deformation in situ. However, the profile used to validate the frame was 

specified to subject the fabric specimen to higher shear angles, so as to observe the ability of the 

corner connections to allow for yarn rotation. Therefore, the shear test profile used achieved a 

maximum angle of 15° (Figure 3.9).  

 

Figure 3.9 Shear test profile for initial shear tests, the profile is based on that of the Membrane 

Structures Association of Japan shear test standard MSAJ (1993) and discussion with the project’s 

sponsors 
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The shear test profile comprises a positive and negative half of each shear cycle, where the frame is 

extended and compressed in the axis of the uniaxial test rig, respectively. The rate of deformation 

applied was 2mm/min of crosshead displacement. At this rate of displacement, the total test time 

for the profile was approximately 22 hours. Owing to the kinematics of the frame, a constant rate of 

crosshead displacement does not result in constant rate of angular change. While it would be 

preferable to perform the shear tests at a constant rate of angular change, it was not possible with 

the testing equipment used. However, at the 2mm/min rate of crosshead displacement, the range of 

rates of angular change is small, ranging from 0.51/min to 0.58/min at –‘ve 15 and +‘ve 15, 

respectively.  

3.3.4 Results of initial shear testing  

 

Figure 3.10 Corner details of picture frame test apparatus during shearing at approximately 15° of 

shear displacement, showing (left) the frame deign of Jackson et al. (2009) and (right) the 

proposed novel frame design 

From visual inspection made during the shear testing, no out-of-plane deformation was observed as 

the result of the frame’s design. No pinching or jamming of the specimen occurred as the yarns, 

indicating that the yarns were free to rotate, thus preventing wrinkling of the specimen in the 

corners of the frame, as was seen when using an existing frame design (Figure 3.10). The tension in 

the specimen appeared to be maintained during the shear testing. However, while being able to 

quantify the level of stress in the specimen during shearing is desirable, there is no apparent way to 

achieve this in practice. The linear positon sensors can show reduction in strain, but without any 

means to measure the force along the clamped edges of the frame, it is not possible to quantity the 

tension in the specimen.   
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It has been suggested that the picture frame test methodology is non-repeatable when tension is 

present in yarns (Hivet and Duong, 2011). However, the shear stress-strain plots indicate that the 

novel frame design and the test methodology, when used in combination, are capable of producing 

repeatable results (Figure 3.12 and Figure 3.13). The results show increasing non-linearity of the 

response to shear deformation, though the response does not exhibit a stiffening associated with 

lock-up (§2.1.2). This is despite wrinkling being visible at high angles of shear for the PTFE/glass 

fabrics (Figure 3.11). The average shear modulus, G, of each cycle set (Table 3.2) is linearly 

approximated between the uppermost and lowest point of each cycle (tip-to-tip), as described in 

the Japanese standard (MSAJ, 1993). Further, to compare positive and negative gradients, linear 

approximations are obtained for the final 1/3 of each loading and unloading curve to compare the 

gradients. The average values do not include the initial cycles of each set, which are visibly stiffer, 

although stiffness of the initial curves would be of interest, for example if modelling installation. 

 

Figure 3.11 Wrinkling at approximately 12 of shear deformation B18089, the appearance of the 

wrinkles has been exaggerated by illuminating the surface of the specimen at an acute angle 

The constant stiffness values show good agreement between the tests performed on the same fabric 

and corresponding values of stiffness are observed for positive and negative halves of the shear 

cycles. Shear stiffness is observed to decrease with each set of increasing shear angle. It is not clear 

which measure of the shear stiffness, i.e. at which angle, best represents the shear behaviour.   
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Figure 3.12 Shear test results for Ferrari F1202, with cycles at 1 shown separately for clarity 
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Figure 3.13 Shear test results for Verseidag B19089, with cycles at 1 shown separately for clarity 
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Table 3.2 Shear stiffness, G, for all cycle sets for each test 

 
Shear Stiffness, G (kN/m) 

Test 1  Test 2  Test 3 

 
Cycle set 

+’ve 
curve 

-’ve 
curve 

Tip - 
Tip 

+’ve 
curve 

-’ve 
curve 

Tip - 
Tip 

+’ve 
curve 

-’ve 
curve 

Tip - 
Tip 

Fe
rr

ar
i 1

2
0

2
 (

P
V

C
/P

ES
) 

1 (1°) 14.6 14.9 23.1 14.9 14.4 22.2 13.0 14.3 21.4 

2 (1°) 17.2 11.5 23.8 17.7 11.5 23.7 16.1 10.9 22.2 

3 (1°) 10.3 12.6 20.3 10.5 12.4 19.5 9.9 12.4 19.1 

4 (1°) 10.5 16.3 23.6 10.1 15.7 22.5 10.2 15.8 22.0 

5 (1°) 10.2 10.3 19.1 11.1 10.4 18.8 9.7 9.9 17.9 

6 (5°) - - - 8.8 8.9 10.6 8.3 8.8 10.3 

7 (10°) - - - 6.5 6.7 7.3 6.2 6.5 7.1 

8 (15°) - - - 5.7 6.0 6.0 4.7 5.3 6.0 

V
e

rs
e

id
ag

 B
1

8
0

8
9

 (
P

TF
E/

gl
as

s)
 

1 (1°) 39.5 39.5 59.7 38.7 39.0 59.7 38.9 39.8 58.9 

2 (1°) 35.7 28.1 52.6 35.4 28.4 52.8 35.5 27.8 52.1 

3 (1°) 27.3 33.3 48.3 26.5 32.7 48.3 26.2 33.3 47.5 

4 (1°) 24.7 34.7 50.1 23.2 33.6 49.5 23.7 33.8 48.9 

5 (1°) 28.4 27.0 44.1 27.6 26.4 44.2 27.6 26.4 43.0 

6 (5°) - - - 12.8 12.8 19.1 12.4 12.7 18.7 

7 (10°) - - - 9.4 9.3 12.4 9.1 9.3 12.1 

8 (15°) - - - 8.9 9.3 10.3 8.5 9.4 10.1 

 

The shear stiffness approximations for the F1202 PVC/PES fabric derived through the experimental 

testing are substantially lower than rule-of-thumb values suggested in the European design guide 

for use in analysis (Mollaert and Foster, 2004). For the F1202 the rule-of-thumb estimate for the 

shear stiffnesses is 42kN/m (compared to a maximum value determined from testing of 23.8kN/m 

and minimum value of 4.7kN/m). The PTFE/glass fabric rule-of-thumb measure is 38kN/m and is 

similar to the values determined through testing for the initial 1 cycles. However, with increasing 

shear deformation the values obtained through testing become markedly lower (minimum value is 

8.5kN/m). These differences suggest that the rule-of-thumb measures can only provide very 

approximate measures of shear stiffness and should be used in design and analysis with caution. 

The values of elastic moduli used to calculate the rule-of-thumb estimates were obtained through 

commercial biaxial testing undertaken by Newcastle University based on a biaxial test standard 

(MSAJ, 1995).  
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3.4 The influence of biaxial stress on shear behaviour 

With a frame design and methodology capable of producing repeatable results established, three 

plain woven architectural fabrics (SCC200, CMX220 and FGT1000) were used to investigate the 

influence of biaxial stress on fabric shear behaviour (Table 3.3). These fabrics were chosen to 

represent a range of strengths, shear stiffnesses and constituent materials. Biaxial stress of 3%, 6% 

and 9% of each fabric’s ultimate tensile strength were applied prior to, and maintained during, 

shear testing (Table 3.4). 3% of ultimate tensile strength corresponds to a typical prestress value, 

with 6% and 9% values being used to explore how the shear behaviour varies with increasing 

biaxial stress. Shear behaviour at other biaxial stress ratios would also be of interest, but was 

beyond the scope of the project. 

Table 3.3 Fabrics shear tested at different values of biaxial stress 

Fabric Manufacturer 
Material Weight 

(g/m2) 
Thickness 

(mm) 
Tensile strength* 

(kN/m) Base cloth Coating 

SCC200 Taiyo Kogyo, Japan PET PVC 832 0.68 76/81 

CMX220 Taiyo Kogyo, Japan Glass fibre PVC 813 0.55 115/111 

FGT1000 Chukoh, Japan Glass fibre PTFE 1700 1.00 207/177 

*as specified by the manufacturer (warp direction/fill direction) 
PET = Polyethylene terephthalate; PVC = Polyvinylchloride; PTFE = Polytetrafluoroethylene 

 

Table 3.4 Stresses applied to test specimens prior to shearing 

Fabric % UTS 
Prestress (kN/m) 

Warp/FIll 

Taiyo Kogyo SCC200 (PVC/PET) 

3 2.25 x 2.43 

6 4.50 x 4.86 

9 6.75 x 7.29 

Taiyo Kogyo CMX220 (PVC/glass) 

3 3.45 x 3.33 

6 6.90 x 6.66 

9 10.32 x 9.99 

Chukoh FGT1000 (PTFE/glass) 

3 6.18 x 5.31 

6 12.36 x 10.72 

9 18.54 x 15.93 
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3.4.1 Test protocol 

The shear test profile used for the initial shear testing was revised to limit shear deformation to a 

maximum value of -6 and +6 (Figure 3.14). Given the weight of the materials to be tested, and that 

wrinkling was only observed at angles greater than 10 for the B18089 during the initial tests, -6 

and +6 was assumed to be a suitable maximum value which would avoid inducing wrinkling. The 

revised profile comprises 13 sets of cycles, each set containing three cycles.  Unlike the profile used 

for conducting the initial tests (Figure 3.9), the revised profile applies shear deformation to a 

specimen in sets of increasing shear deformation followed by sets in which the shear deformation is 

reduced. This was to observe the effect of shear stress at large angles of deformation on the shear 

stiffness at relatively lower angles of deformation. Cycles are repeat to condition the specimen such 

that the behaviour measured is representative of the fabric in situ, as this is the behaviour required 

to model tensile fabric structure designs.  

At crosshead displacement of 2mm/min, the duration of the revised shear test profile is 

approximately 17 hours. The range of rate of angular change is reduced, ranging from 0.53/min to 

0.55/min at –‘ve 6 and +‘ve 6, respectively.  

 

Figure 3.14 Revised shear test profile, with maximum shear deformation at 6 
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3.4.2 Digital Image Correlation 

To assess the suitability of the use of linear extensometers and the overall suitability of the picture 

frame design and the test method employed, a Digital Image Correlation (DIC) technique was used 

during one of the shear tests performed on a specimen of CMX220 fabric. DIC is an optical 

technique for measuring deformation of an object’s surface. DIC has been used to assess the 

homogeneity of strain fields in previous textile deformability studies (Zhu et al., 2007; Lomov et al., 

2008; Galliot and Luchsinger, 2010b) and enables the full-field strain measurement of the entire 

specimen. DIC is a non-contact measurement solution and does not impact the stiffness of a 

material under inspection. Strains are calculated from images of the deformed specimen, which is 

covered in a stochastic pattern (Figure 3.15). Commercially available software (Correlated Solutions’ 

Vic-Snap and Vic-3D) is used to capture and process images from stereo camera set-up (Figure 3.16) 

to provide a three-dimensional field deformation, from which a two-dimensional strain field may by 

derived.  The grey value pattern in small areas of the sample is tracked using DIC software. Images 

taken during the DIC test were recorded every 30 seconds and a modified profile was used which 

includes higher shear angles to assess the limitations of the shear frame. Higher angles of shear 

deformation were added to the end of the revised test profile (§3.4.1). 

 

Figure 3.15 Biaxial cruciform specimen (CMX220) prepared for shear test with stochastic speckle 

pattern for Digital Image Correlation (DIC) analysis. The pattern has been applied to the 

specimen with a permanent marker pen. While more rapid methods of applying the pattern are 

available, e.g. spray paint, the pen method reduces the risk of scrapping the specimen. 
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Figure 3.16 Digital image correlation set up, green light is used to illuminate the specimen as this 

improves the contrast of the stochastic pattern as view by the DIC system’s cameras 

3.4.3 Strain field homogeneity 

The shear strain results obtained from DIC analysis show that that the shear deformation is not 

absolutely uniform across the sample (Figure 3.17 and Figure 3.18). However, the variation is small, 

as standard deviations of the shear strain across the entire sample do not exceed 5% of the average 

shear strain (Table 3.5). This 5% criterion is passed on a previous study by Galliot and Luchsinger 

(2010b) in which it was only valid for a small central area of the specimen and was only 

demonstrated for large angles, i.e. 15°, where the deviation is divided over a larger average strain. 

Here it is true across the entire specimen for each of the angles prescribed up to the maximum 

shear deformation applied: γ = 15°. The variation is likely to be the result of bending of the yarns 

near to the clamped edge. The DIC results also show agreement with the shear angles calculated 

from extensometer readings (Figure 3.19) and thus the extensometers provided a suitable means to 

obtain the shear deformation of the specimen during testing. While the shear strain can be 

considered to be homogeneous across the specimen, the shear strain induced in the specimen is 

less than the shear angle of the frame (due to yarn rotation at the clamps). This is not problematic if 

the shear strain is calculated from extensometer readings, but it does mean that crosshead 

movement cannot be used as an accurate measure of shear strain.  
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Figure 3.19 Comparison of the shear angle derived from linear extensometers and DIC images 

(over the area of the extensometers). CMX220 at 3% UTS with modified shear profile shown. 

3.4.4 Shear stress-strain cycles and calculation of the shear modulus 

Plots of the test results (Figure 3.20 to Figure 3.23) separate sets of shear cycles by angle of shear 

deformation and fabric type and allow for a visual comparison of the shear behaviour between tests 

at different biaxial stresses. Each cycle can be seen to consist of a positive and negative half, with 

each half having a portion of loading (increasing absolute shear stress) and unloading (decreasing 

absolute shear stress). The cycles in Figure 3.20 to Figure 3.23 progress in the clockwise direction 

and each cycle set consists of 3 cycles (as previously shown in Figure 3.14). Initially,  values of shear 

stiffness were calculated as described in the MSAJ standard (MSAJ, 1993) (Figure 3.20 and Table 3.6) 

– currently the only available test standard. The standard describes tip-to-tip measures of stiffness 

at  1° of shear and is an average of the stiffnesses derived for the second and third cycles. 

Installation behaviour is captured in the initial cycle. Tip-to-tip stiffness is determined from the 

gradient of a line that connects the point of maximum shear stress-strain (the tip) of the positive 

half of a shear cycle with the point of maximum absolute shear stress-strain (the tip) of the negative 

half.  Results show increasing shear stiffness with increased biaxial stress across the three fabrics 

tested. Accounting for shear at different biaxial stress states should be considered for accurate 

prediction of material behaviour, as differences of these magnitudes in shear stiffness have been 

shown to significantly impact the results of fabric structure analysis (Bridgens and Birchall, 2012).  
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Figure 3.20  Shear stress-strain plots for initial +/- 1° cycles. Results show increasing shear required 

to achieve 1° of deformation with increasing biaxial stress 

Table 3.6 Shear moduli at initial +/-1 of shear deformation 

Fabric Material 
Shear moduli, G (kN/m) 

3% UTS 6% UTS 9% UTS 

SCC200 PVC/PET 21.8 25.7 28.0 

CMX220 PVC/glass 22.6 24.3 29.6 

FGT1000 PTFE/glass 99.2 109.9 120.3 

 

Elastic constants have been determined for SCC200 and CMX220 by Bridgens et al. (2011) and can 

be compared with rule-of-thumb measures. Using the rule-of-thumb method that the states shear 

modulus is typically elastic modulus/20 (Barnes et al., 2004b), the shear modulus would be 15-

17kN/m for SCC200 and 43-58kN/m for CMX220 (the range of values reflects a measure derived 

from either of the unequal warp and fill stiffness). It is immediately apparent that the rule-of-thumb 

stiffness measures and the stiffness measures determined through experimental testing are not 

similar in magnitude.  At 3% UTS (typical prestress) the rule-of-thumb measure for the SCC200 

fabric is 22-31% less, and for the CMX220 fabric is 90-157% higher than that obtained through 

testing. It would be interesting to quantify the influence or significance of these differences, say, 

through comparative structural analysis, but this is beyond the scope of this research project. As in 

the previous section, these differences suggest that the rule-of-thumb measures can only provide 

very approximate measures of shear stiffness and should be used in design and analysis with 

caution. 
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Figure 3.21 Picture frame shear test results for SCC200 (PVC/PET) 
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Figure 3.22 Picture frame shear test results for CMX220 (PVC/glass) 
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Figure 3.23 Picture frame shear test results for FGT1000 (PTFE/glass) 
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There are several ways to make a linear approximation. While tip-to-tip measures of stiffness 

effectively ignore the gradient of any part of the shear cycle, they provide an approximation of 

overall behaviour. However, it is observed that a portion of each half of a cycle is approximately 

linear after an initial period of shear deformation that occurs either 1) after a change in the 

direction of shearing; or 2) when shear deformation occurs at an angle that has not yet been 

prescribed by the test profile. The latter observation is apparent only in the positive half of any 

cycle and that the linear parts of the positive and negative halves of all cycles are substantially 

parallel to one another. For the second and third cycles within each cycle set, the approximately 

linear part is seen to extend for the loading portion of each half of the cycle. A linear approximation 

of this linear part of the data is proposed as an alternative constant measure of the non-linear shear 

stress-strain behaviour.  

Approximations of shear stiffness were calculated from the second and third cycles (Table 3.7). All 

tip-to-tip measures show increasing shear stiffness for all angles of shear deformation with 

increasing biaxial stress. However, the alternative linear approximations show no consistent 

discernible increase in shear stiffness with increasing biaxial stress for the parts of the cycles 

considered. The measures of shear stiffness are similar for both the positive and negative halves of 

the shear stress-strain cycles. The rule-of-thumb measures compared to the approximations for the 

positive loading portion of the shear cycles (again for the initial 1 cycles) are as follows: for the 

SCC200 fabric the rule-of-thumb measure is between 8.5% less and 3.7% more than the 

approximation of the test data; and for the CMX220 fabric the rule-of-thumb measure is 196-300% 

more than the approximation of the test result. Whilst the rule-of-thumb measures for the SCC200 

fabric is comparable to the approximate measure, such closely matched results were not achieved 

from the CMX220 fabric. 

Shear deformation observed in coated woven fabrics is resisted by rotation at yarn intersections, 

yarn bending, shear of the coating and coating compaction (§2.1.2). The observed increase in shear 

stiffness is likely to be the result of increased rotational friction at the yarn intersections, which is 

caused by an increase in out-of-plane contact forces. This is the only shear deformation mechanism 

that is likely to be affected by increasing levels of tension in the yarns. The differences observed 

between the cycles at increasing biaxial stress can be seen to arise during the initial shear 

deformation. The phenomenon is best seen in the plots of the initial shear stress-strain behaviour 

to 1° (Figure 3.20).  
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Table 3.7 Shear stiffnesses, G, for all cycle sets for all fabrics tested 

 
Shear Stiffness, G (kN/m) 

SCC200  CMX220  FGT1000 

Cycles % UTS 
+’ve 

curve 
-’ve 

curve 
Tip - 

Tip 
+’ve 

curve 
-’ve 

curve 
Tip - 

Tip 
+’ve 

curve 
-’ve 

curve 
Tip - 

Tip 

1 
(1°) 

3% 16.4 16.4 21.8 14.5 14.5 22.6 66.8 63.2 99.2 

6% 16.8 18.0 25.7 14.2 14.5 24.3 67.0 62.6 109.9 

9% 17.6 18.0 28.0 16.1 16.2 29.6 67.3 63.7 120.5 

2 
(1°) 

3% 18.1 12.9 21.8 16.6 11.2 22.7 56.2 51.4 89.6 

6% 18.3 15.3 26.0 16.3 11.2 24.6 55.2 57.6 98.3 

9% 17.0 15.1 27.0 18.0 12.9 30.1 58.0 57.4 109.4 

3 
(1°) 

3% 13.0 14.8 19.2 10.9 12.6 19.5 52.7 56.0 85.6 

6% 14.7 16.7 23.9 11.5 14.1 23.0 53.2 58.4 98.0 

9% 15.2 16.7 26.1 12.9 15.1 27.9 53.8 58.6 106.2 

4 
(1°) 

3% 12.2 16.4 21.0 10.0 15.5 21.6 42.9 51.4 82.0 

6% 13.9 19.1 25.8 11.2 16.5 25.4 46.3 53.8 95.2 

9% 13.5 16.7 26.4 13.1 17.4 29.1 48.8 55.1 102.9 

5 
(1°) 

3% 12.5 12.8 17.8 10.6 10.3 18.0 51.7 49.4 79.3 

6% 13.8 14.9 22.3 10.7 10.9 20.7 48.8 50.0 88.1 

9% 14.4 14.8 24.5 12.0 11.9 25.3 51.2 51.0 97.4 

6 
(3°) 

3% 12.1 12.3 14.2 10.3 10.6 13.1 29.4 28.3 46.3 

6% 13.0 13.4 16.5 10.2 11.1 14.2 26.2 29.4 47.8 

9% 11.5 11.9 16.3 10.6 11.2 15.8 27.9 29.0 51.6 

7 
(1°) 

3% 11.9 12.1 17.1 10.0 10.1 17.2 47.4 46.6 74.3 

6% 13.2 14.4 21.7 10.0 10.6 20.0 44.9 46.9 82.5 

9% 14.2 14.3 23.8 11.3 11.5 24.4 47.3 48.5 91.6 

8 
(6°) 

3% 10.1 10.2 11.4 8.6 9.0 10.1 18.7 16.5 28.3 

6% 10.8 10.8 12.8 8.0 8.9 10.4 16.2 17.9 28.8 

9% 8.9 8.9 11.9 8.5 8.7 11.3 17.5 17.1 30.6 

9 
(1°) 

3% 9.9 10.1 15.1 8.4 8.1 14.6 38.8 36.2 62.8 

6% 11.1 12.6 19.2 7.9 8.1 17.2 37.3 36.3 69.5 

9% 11.8 12.2 21.2 9.3 8.9 21.5 39.1 37.0 77.6 

10 
(3°) 

3% 8.8 8.9 11.2 6.9 6.9 9.7 22.3 21.0 36.5 

6% 9.8 9.9 13.4 6.7 7.1 10.6 20.0 21.3 37.4 

9% 9.1 9.2 13.7 7.4 7.2 12.3 21.3 20.8 40.6 

11 
(1°) 

3% 10.1 10.3 15.2 8.5 8.6 14.6 39.5 37.2 62.4 

6% 11.4 12.2 19.4 8.1 8.5 17.4 37.5 37.9 69.1 

9% 12.5 12.6 21.6 9.6 9.2 21.7 38.9 38.3 76.8 

12 
(6°) 

3% 9.6 9.9 10.7 8.2 8.5 9.3 19.3 17.6 27.3 

6% 10.4 10.6 12.2 7.3 8.3 9.4 16.6 19.7 27.8 

9% 8.9 9.2 11.6 7.9 8.2 10.4 18.2 18.8 29.5 

13 
(1°) 

3% 9.5 9.6 14.6 8.2 7.6 14.1 37.5 34.3 60.6 

6% 10.7 11.6 18.7 7.6 7.9 16.8 35.8 35.0 67.1 

9% 11.5 11.9 20.8 9.0 8.6 21.2 37.6 35.2 74.2 
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Additional energy is required to overcome the frictional resistance in order to deform the fabric. 

The correlation between strain energy and biaxial stress is seen from the increasing area within the 

stress-strain curves (Figure 3.20 to Figure 3.23). The results indicate that biaxial tension and shear 

behaviour are linked for architectural fabrics.  

Increasing biaxial stress in the fabric will increase contact forces at the pins in the corners of the 

frame, with a corresponding increase in rotational friction of the hinges. The effect of frame friction 

with applied biaxial loading is difficult to isolate from the overall response of the frame plus the 

fabric, and has not been considered in previous studies using picture frame shear testers. To 

investigate the effects, biaxial load must be applied to the frame to simulate a shear test in a manner 

that does not introduce any shear resistance. Preliminary testing involved clamping two 

perpendicular strips of individual yarn bundles into the shear test frame (Figure 3.24), the yarn 

bundles having been first subjected to uniaxial loading in the biaxial test rig (Figure 3.25). The 

applied biaxial loading corresponds to the 3%, 6% and 9% biaxial load ratios considered in this 

study (Table 3.4). A shear test was then conducted in the normal manner and the results compared 

to the results of the actual tests. 

This preliminary testing indicated that friction in the hinges of the frame accounts for 

approximately 10% of the total shear resistance recorded for any level of biaxial pretension. This 

means that the fabric is subjected to 90% of the expected level of shear stress. Further testing is 

required to accurately determine a ‘stress reduction factor’ that could be used in the calculation of 

shear moduli.  

 

 

Figure 3.24 Strips of yarn bundles clamped in the picture frame as part of preliminary testing to 

establish the influence of biaxial tension on the frictional resistance of the hinged shear frame 
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Figure 3.25 Strips of yarn bundles in held in the biaxial test rig having, the perpendicular strips 

subject to uniaxial loading 

3.4.5 Modelling shear stiffness 

Any increase in shear stiffness with increasing biaxial stress has implications for the analysis 

methodology used for tensile fabric structures. Material properties used for analysis of tensile 

fabric structures are typically defined within a plane stress orthotropic framework, using elastic 

moduli and interaction terms (Barnes et al., 2004b) (Equation 3.3). 
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Equation 3.3 

where, ε = strain,  = stress, E = direct stiffness G = shear stiffness and subscripts w and f denote warp 

and fill directions, respectively. 

The plane stress framework is used to approximate complex non-linear behaviour with linear 

parameters. This approach has the benefit of making fabric material behaviour compatible with 

commercial analysis software. The zero terms in the stiffness matrix indicate an assumed non-

interdependence between biaxial and shear behaviour. However, the results of shear tests suggest 

that non-zero terms may be required to account for the influence of biaxial tension on shear 

behaviour when designer engineers use the assumption of plane stress behaviour in analysis. Due 

to the non-linear, hysteretic nature of the test results a different analysis framework may be more 

appropriate, as previously demonstrated for biaxial behaviour (Gosling and Bridgens, 2008). 
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3.5 Bias shear testing 

A series of tests were proposed in which bias shear test data would be compared to picture frame 

test data obtained using the novel frame design. A comparative bench mark study identified similar 

behaviours for uncoated fabrics without the application of biaxial tension (Cao et al., 2008). If the 

behaviour of coated fabric exhibited by the two tests was observed to be similar, it was posited that 

the bias test data could be used as input data for a predictive shear model. Advantages of the bias 

shear test (§2.2.2) include that it is simple and fast to implement and there is no requirement for 

large and complex to prepare test specimens. 

It is important to consider how the specimen is held during bias testing. Clamps used for uniaxial 

testing of architectural fabrics may have coarse teeth (Figure 3.26), which are intended to grip the 

specimen without crushing the yarns (as this may reduce the tensile strength of the specimen and 

cause failure during a test). However, the fabric may slip through the clamp. The situation is not a 

problem in uniaxial testing performed in the yarn direction, as deformation may be measured using 

instrumentation attached to a specimen between the clamps. As bias test methodologies require a 

fixed gauge length between clamps, a set of bias testing clamps suitable for testing of architectural 

fabrics were design and fabricated. The bias clamps (Figure 3.27) were designed around the same 

fine teeth used in the picture frame design. The exact clamp design is specified in the workshop 

drawings provided in Appendix B. 

 

Figure 3.26 Existing clamp design with coarse teeth, in which test specimens are observed to slip 

though clamp during testing 
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Figure 3.27 Existing clamp design (left) and revised design (right) suitable for bias testing 

The results of the comparative testing (Figure 3.28 to Figure 3.33) indicted that the shear stress-

strain behaviour between the two test methods is not similar for the fabrics tested. The bias test 

fails to capture the initial stiffnesses observed in the picture frame results. Further, the stiffnesses 

according to bias test are lower throughout the deformation of the specimen, which is to be 

expected.  There appears to be no relationship between stress-strain response obtained when using 

the picture frame test and the bias test methodologies. Therefore, normalisation methods used 

when testing uncoated fabrics (Lebrun et al., 2003; Cao et al., 2008; Launay et al., 2008) should be 

used with caution by investigators using the bias test to explore behaviour of coated and 

architectural fabrics.  
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Figure 3.28 Picture frame and bias shear test results for Ferrari 702 (PVC/PES) 
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Figure 3.29 Picture frame and bias shear test results for Ferrari 1202 (PVC/PES) 
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Figure 3.30 Picture frame and bias shear test results for Verseidag B10089 (PTFE/glass) 
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Figure 3.31 Picture frame and bias shear test results for Verseidag B18059 (PTFE/glass) 
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Figure 3.32 Picture frame and bias shear test results for PD Interglas ATEX3000 (silicone/glass) 
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Figure 3.33 Picture frame and bias shear test results for PD Interglas ATEX5000 (silicone/glass) 
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3.6 Summary 

There are no British or European standards for shear testing of architectural fabrics and there is 

little available guidance. However, development of European standards for fabric testing and fabric 

structures design are underway, with the CEN TC250 Working Group established to write a 

standard for membrane structures for inclusion in Eurocode 10. Therefore, identifying accurate 

methods for characterising shear behaviour is important. 

A methodology based on a novel picture frame design has been proposed which allows 

determination of the shear stress-strain relationship. Achieving a homogenous strain field during 

testing allows for accurate determination of an architectural fabric’s response to shear deformation. 

There is no requirement for correction factors to account for non–homogeneity of the strain field.  

Methods for shear characterisation are important but interpretation of the results must also be 

addressed. The use of linear approximations of the stiffness values may be problematic for the 

design and construction of tensile surface structures. From the results of the test performed on PVC 

coated polyester fabrics, PVC coated glass fabrics and PTFE coated glass fabrics, short and medium 

term behaviour is different and materials are softer at higher angles of deformation (further testing 

would be required to investigate other materials). However, uncertainty over a choice of a single 

stiffness value could be dealt with, with the use of a statistical approach that considers variability of 

all parameters, such as described by Gosling et al. (2013). It would be useful to extend recent 

comparative biaxial testing studies by Bridgens et al. (2011) to include shear test methods and 

protocols in multiple locations.  

The novel picture frame has been employed to subject a test specimen to a known biaxial stress 

state, which is maintained whilst a homogenous shear deformation is applied. The homogeneity of 

the shear strain across the specimen makes determination of the shear stress in the fabric 

straightforward, however friction in the frame hinges does mean that a reduction factor is required 

to determine the shear force from the applied load. Given the difficulty of accurately determining 

the hinge friction with applied biaxial load, a pragmatic approach would be to minimise the friction 

in the frame to avoid the need for a reduction factor. For the frame presented here, replacement of 

the self-lubricating bushes with needle roller bearings could provide a significant reduction in 

friction.  

Shear behaviour is shown to change with increasing biaxial stress, with greater strain energy 

required to mobilise shear deformation in a highly tensioned fabric. Whether biaxial pretension 

affects constant values of the shear stiffness of the fabric depends on how the stiffness is evaluated 

from the non-linear, hysteretic shear response. The tip-to-tip value of shear stiffness varies with 

biaxial stress, but the effect on the gradient of an approximately ‘linear’ part of the curve is minimal. 
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To include interaction of biaxial and shear stresses in the plane stress framework requires non-zero 

interaction terms, but further testing, and a consensus on how the shear stiffness should be 

calculated, would be required before values could be proposed. Given that the validity of using the 

plane stress framework to describe fabric behaviour is limited, it is proposed that further 

development should focus on methods that can fully capture the complex tensile and shear 

response of coated woven fabrics. One option currently being developed uses neural networks to 

relate stresses to strains with no assumptions about the form of the material response, with 

potential to incorporate stress history to capture hysteretic, visco-elastic behaviour (Bartle et al., 

2013). 
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4.1 Introduction 

 

Figure 4.1 Biaxial test apparatus with cruciform sample 

To reduce uncertainty in the analysis and design of tensile fabric structures, design engineers 

require accurate material properties for modelling and calculations. While complex specialist 

testing methodologies, such as biaxial testing (Figure 4.1), can supply the required properties, the 

testing is time consuming and expensive. Specialist testing can be prohibitively expensive for small 

tensile fabric structure projects. An alternative to experimental testing is analytical predictive 

modelling, whereby a model is used to accurately predict the results of experimental tests. Such 

models benefit designers by reducing the time and cost associated with obtaining material 

properties through testing. Easy and rapid determination of fabric properties would allow for many 

possible fabrics to be compared for a project and to evaluate their performance for a given design. 

Currently, results generated by predictive fabric models are not used in tensile fabric structure 

design. 

Much of the existing body of work focuses on predicting the mechanical response of a given fabric 

used for rigid composite forming (2.2.2). However, these models are typically for a specified 

uncoated fabric. Designers of tensile fabric structures utilise a wide range of different architectural 

fabrics, fabricated from different constituent materials and with disparate material behaviour and 

properties. This is due to varying material performance, design requirements and financial 

constraints. While material properties and a material’s response to load will differ between fabrics 

and fabric types, basic underlying mechanisms of deformation are the same. Therefore, it is 

desirable that in developing a predictive fabric model it should be suitable for a wide range of 

architectural fabrics.  
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This chapter describes the further development of the sawtooth model of Bridgens (2005) which 

was based upon early work by Menges and Meffert  (1976). Bridgens (2005) developed a model 

comprising a unit cell and models crimp interchange and the interaction between the yarns and the 

coating for a plain weave fabric.  

4.1.1 Model requirements 

The model shall: 

 Predict the in-plane biaxial and shear behaviour of coated woven fabrics used in the design 

and construction of tensile fabric structures; 

 Be suitable for a range of fabrics; 

 Require no calibration against a data set; 

 Rely only on easily obtainable input parameters, using standard equipment and test methods 

available to designers and fabricators; 

 Produce repeatable results by removing subjective interpretation of input data; and 

 Be demonstrated as valid through comparison with experimentally obtained test data. 
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4.1.2 Model nomenclature 

Similar nomenclature has been adopted to that used by Bridgens (2005). Units used throughout the 

predictive model are specified against the definitions below. 

Subscripts 1 and 2 denote warp and fill yarn directions, respectively. When a relationship between 

variables is the same in both yarn directions, the respective formulae are combined and presented 

as a single formula, with the subscripts denoting the yarn direction of each variable within the 

formulation, for example: 

𝑦1 = 𝐴1𝑐𝑜𝑠 (
𝜋𝑥1

𝑙1
) Example 1 

𝑦2 = 𝐴2𝑐𝑜𝑠 (
𝜋𝑥2

𝑙2
) Example 2 

𝑦1,2 = 𝐴1,2𝑐𝑜𝑠 (
𝜋𝑥1,2

𝑙1,2

) 
Example 1 and Example 2 

expressed as a single formula 

 

’ Modified value with applied load, e.g. A = crimp amplitude, A’ = modified crimp amplitude  

0 Initial value, e.g. A0 = initial crimp amplitude 

a Amplitude of the surface defining the cross section (mm) 

c Contact length between intersection yarns (mm) 

f Total force applied to the unit cell (N) 

fy Out of plane force (N) 

l Unit cell length, half yarn wavelength (mm) 

s Yarn length (mm) 

t Yarn thickness (mm) 

v Poisson’s ratio 

w Yarn width (mm) 

x In plane direction, cross section coordinates 

y Out of plane direction, cross section coordinates 

A Crimp amplitude (mm) 

AREA Yarn cross sectional area (mm2) 

E Young’s modulus (N/mm) 

F Applied load (N/mm) 

Fc Compressive force (N/mm2) 

Ff Frictional force (N) 

Fk Force acting on coating (N/mm width), Fk1,2 acts over l2,1 

RATIO Ratio between yarn width and unit cell length, w1,2 with respect to l2,1  

ε Strain 
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4.2 Summary of the predictive model 

The chapter presents the development of a novel predictive fabric model. A system of compatibility 

and equilibrium equations (Equation 4.1 – Equation 4.10) is derived which aims to realistically 

simulate principal deformation mechanisms within a range fabrics used in the construction of 

tensile fabric structures. These equation make up the model’s objective function. Each equation is 

present below with reference to the subsequent pages in which the derivation of the respective 

equation is described. The model has been formulated to predict non-linear yarn behaviour and 

hysteresis using input parameters obtained using non-specialist test equipment, i.e. test equipment 

which is available in typical material testing laboratories. 

The principal advantages of implementing the above model over existing models is 1) providing 

design engineers with a model which does not require difficult to obtain input parameters, i.e. input 

which can only be obtain from time consuming/expensive testing and 2) providing a model which 

is capable of reverse engineering fabric, i.e. enable designers to determine the yarn properties for a 

fabric with particular biaxial mechanical behaviour. 

A sinusoidal description of the yarn geometry is first developed (§4.3.1, 103). Subsequently, the 

interdependent relationships which govern how the model predicts fabric behaviour are combined 

sequentially, starting with ensuring equilibrium of the crimp interchange by maintaining the sum of 

the out of plane forces, fy1,2, equal to zero (Equation 4.1) and the sum of the amplitudes, a1,2, equal 

to the sum of the half yarn thicknesses, t1,2 (Equation 4.2) (§4.3.2, 113).  

0 = 𝑓1

[
 
 
 
 
 

2𝐴1𝜋 𝑠𝑖𝑛 (
𝜋𝑤2

2𝑙1
)

𝑙1,2√(1 + (
𝐴1𝜋
𝑙1

 𝑠𝑖𝑛 (
𝜋𝑤2

2𝑙1
)

2

))
]
 
 
 
 
 

− 𝑓2

[
 
 
 
 
 

2𝐴2𝜋 𝑠𝑖𝑛 (
𝜋𝑤1

2𝑙2
)

𝑙1,2√(1 + (
𝐴2𝜋
𝑙2

 𝑠𝑖𝑛 (
𝜋𝑤1

2𝑙2
)

2

))
]
 
 
 
 
 

 Equation 4.1 

 

0 = 𝐴1 + 𝐴2 −
𝑡1 + 𝑡2

2
 

Equation 4.2 

(adapted after Peirce (1987)) 

It is also necessary to constrain the relationships between the lengths of the unit cell, l1, 2, the yarn 

lengths, s1, 2, and the crimp amplitudes, A1, 2 (Equation 4.3 and Equation 4.4) (§4.3.2, 113).  

0 = 𝑙1,2 −
𝑠1,2 + √𝑠1,2

2 − 𝐴1,2
2𝜋2

2
 

0 = 𝑙1,2 −
𝑠1,2 + √𝑠1,2

2 − 𝐴1,2
2𝜋2

2
 

Equation 4.3 

Equation 4.4 
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Further constraints are required by the model’s formulation to maintain constant cross sectional 

area (Equation 4.5 and Equation 4.6) and the ratio of yarn width to the length of the unit cell in the 

orthogonal yarn direction (Equation 4.7 and Equation 4.8) (§4.3.2, 113).   

0 = 𝐴𝑅𝐸𝐴1 − 
−𝐴2𝑤1(𝜋 − 2)𝑐𝑜𝑠 (

𝜋𝑤1

2𝑙2
) + 2𝐴2𝑙2𝑠𝑖𝑛 (

𝜋𝑤1

2𝑙2
) − 2𝑤1(𝐴2 − 𝑡1)

𝜋
 

0 = 𝐴𝑅𝐸𝐴2 − 
−𝐴1𝑤2(𝜋 − 2)𝑐𝑜𝑠 (

𝜋𝑤2

2𝑙1
) + 2𝐴1𝑙1𝑠𝑖𝑛 (

𝜋𝑤2

2𝑙1
) − 2𝑤2(𝐴1 − 𝑡2)

𝜋
 

Equation 4.5 

Equation 4.6 

0 =
𝑤0 1

𝑙0 2

−
𝑤1

𝑙2
 

0 =
𝑤0 2

𝑙0 1

−
𝑤2

𝑙1
 

Equation 4.7 

Equation 4.8 

Finally, the model must calculate yarn elongation due to force in the yarn (Equation 4.9 and 

Equation 4.10) (§4.3.2, 119).   

0 = 𝑠1 − 𝑠0 1 [1 + 𝑤𝑓𝑢𝑛 (
𝑓1
𝑙2

− 𝑠𝑡𝑟𝑒𝑠𝑠𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡1) + 𝑠𝑡𝑟𝑎𝑖𝑛𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡1] 

0 = 𝑠2 − 𝑠0 2 [1 + 𝑓𝑓𝑢𝑛 (
𝑓2

𝑙1
− 𝑠𝑡𝑟𝑒𝑠𝑠𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡2) + 𝑠𝑡𝑟𝑎𝑖𝑛𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡2] 

Equation 4.9 

Equation 4.10 

This system of equations is solved for given force applied to the unit cell in each yarn direction, f1,2, 

to predict the deformation, and thus the stain, of the unit cell. The model is implemented in 

MATLAB and uses MATLAB’s built in solver, fsolve, to evaluate the system of equations.  
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4.3 Model formulation 

4.3.1 Yarn geometry 

Existing fabric models have proposed different approaches to describing the shape of yarn cross 

sections and crimp (§2.2). These approaches achieve different levels of accuracy in representing 

yarn geometry and will also vary in complexity for implementation within a numerical model. Of 

the aforementioned studies, only Gong et al. (2009) quantitatively assessed the appropriateness of 

the choice of representation, but only for the yarn cross sections.  

A description of the yarn cross section which is consistent with the waveform of the interlacing 

orthogonal yarn will make for simpler implementation within a mechanical model. Circular, 

elliptical, racetrack and sawtooth representations offer an inaccurate representation of the 

continuously undulating woven yarns, and polynomial and surface functions are too complex for 

initial development of a mechanical analytical model. The appropriateness of sinusoidal waveforms 

has been suggested by Bridgens (2005). An assessment of the accuracy of using sinusoidal yarn 

descriptions was the first step in the development of the improved predictive model.  

A series of curve fits were used to compare sine waves against the yarn waveforms of architectural 

fabrics. Images of fabric cross sections for three fabrics (Table 4.1) with differing crimp 

characteristics and production methods have been obtained using a macro lens with a digital SLR 

camera (using the methodology described in §5.2.2). Images in each of the warp and fill directions 

were obtained for each fabric which were then processed in MATLAB using a custom processing 

tool (Figure 4.2). Multiple images were captured to ensure that the fits obtained were repeatable.  A 

series of 13 points (x, y coordinates) were determined along the yarn’s centreline to define a single 

yarn wavelength by first selecting the start and the end of the yarn waveform. The processing tool 

would then add 11 divisions which enabled the subsequent selection of points along the top and 

bottom of a yarn’s profile from which the yarn centreline was determined. MATLAB’s built-in curve 

fitting toolbox was then used to fit one and two term sine waveforms to the selected points allowing 

for the calculation of measures of goodness of fit (Table 4.2 and Table 4.3).  These measures allow 

for a quantitative assessment of the representation of the yarns. 
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Table 4.1 Architectural fabrics used for fitting sine waves 

Fabric Manufacturer 
Material Weight 

(g/m2) 
Thickness 

(mm) Base cloth Coating 

702† Serge Ferrari, France PES PVC 750 0.56 

B18059 Verseidag, Germany Glass fibre PTFE 1550 1.00 

ATEX5000 PD Interglas, UK Glass fibre Silicone 685 0.90 

† Précontraint® 

PES = Polyester, PVC = Polyvinylchloride, PTFE = Polytetrafluoroethylene 

 

The measures of goodness of fit show good correlation between the selected points and the 

approximating sinusoidal curves when using only a single sine term. Normalised root mean square 

error (NRMSE) values (root mean square error (RMSE) values normalised over the yarn amplitudes) 

are less than 5% for every curve measured. The highest average and single values are only 3.6% 

and 4.6%, respectively. These numbers amount to very small differences between the fitted sine 

curves and the collected data points. All of the average R2 values exceed 0.99, i.e. 99% of the 

variance is explained by the points which define the centrelines of the yarns. 

The sum of squared error (SSE) values show small discrepancies between the data points and sine 

waveforms. These small differences are to be expected, as random variations, for example from 

yarns bedding into one another, would produce deviation from a mathematical description. It is 

also possible that yarns are disturbed when the samples are cut and/or discrepancies are 

introduced as the result of inaccuracies when selecting the data points. 

Improvements in the measured values are observed when two sine terms are used to fit the data 

points. Average NRMSE values all fall below 3% and adjusted R2 values show that improvement is 

made in accounting for the variance of the data points, when compared to the fit using a single sine 

term. However, in developing the model, the use of additional sine terms in formulating the 

predictive model must be considered against the need to determine an increased number of 

coefficients from measurements of the yarn cross section, which would also make the model more 

mathematically complex. Curve fits using only a single sine term are determined from only the 

amplitude and wavelength. This can be done quickly and easily from the images of the fabric cross 

sections. With the measures of goodness of fit reported using a single sine term, additional terms 

were not used in the initial formulation. Additional terms could be included subsequently to 

improve accuracy following the development of a working predictive model. Plotting the results 

(Figure 4.3 and Figure 4.4) demonstrates the strong similarity between the yarns and sinusoidal 

waveforms.  
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Figure 4.2 Ferrari 702 warp yarn cross section showing selection of the top and bottom yarn edges, 

and the subsequently determined centreline, points in the top right of the image allow calculation 

of the image scale 

Table 4.2 Summary of measures of goodness of fit when using one sine term (mean values) 

  
SSE R2 Adj. R2 RMSE Range NRMSE 

  
(μm) 

  
(μm) (mm) (%) 

Ferrari 702 
(PVC/PES) 

Warp 0.05 0.997 0.997 2.32 0.117 2.0 

Fill 0.33 0.991 0.989 5.64 0.158 3.6 

Verseidag B18059 
(PTFE/Glass) 

Warp 0.86 0.995 0.995 8.85 0.350 2.5 

Fill 1.59 0.994 0.993 12.49 0.408 3.1 

Interglas ATEX5000 
(Silicone/Glass) 

Warp 0.70 0.997 0.996 9.07 0.408 2.2 

Fill 0.32 0.996 0.995 5.84 0.240 2.4 

 

Table 4.3 Summary of measures of goodness of fit when using two sine terms (mean values) 

 
 

SSE R2 Adj. R2 RMSE Range NRMSE 

 
 

(μm) 
  

(μm) (mm) (%) 

Ferrari 702 
(PVC/PES) 

Warp 0.02 0.999 0.998 1.66 0.117 1.4 

Fill 0.14 0.996 0.993 4.42 0.158 2.8 

Verseidag B18059 
(PTFE/Glass) 

Warp 0.33 0.998 0.997 6.59 0.350 1.9 

Fill 0.40 0.999 0.998 7.14 0.408 1.7 

Interglas ATEX5000 
(Silicone/Glass) 

Warp 0.74 0.996 0.996 7.95 0.367 2.2 

Fill 0.21 0.998 0.996 5.42 0.240 2.3 

 

Where yarns are not in contact with the orthogonal yarns, the yarn will be straight (Peirce, 1937; 

Kemp, 1958). Straight sections could be inserted into a sinusoidal profile, but this was deemed to be 

unnecessary owing to the goodness-of-fit achieved.  This finding could result from small or non-

existent lengths of the yarn where there is no contact between orthogonal yarns and/or the low 

curvature of the sine waveforms midway between the yarn intersections. 
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Figure 4.3 Sine fits for Ferrari 702 warp yarn (chosen as 702 warp samples exhibited best fit), 

curves are offset for clarity 

 

Figure 4.4 Sine fits for Ferrari 702 fill yarn (chosen as 702 fill samples exhibited worst fit), curves are 

offset for clarity 

For a sine waveform to be implemented within a predictive unit cell model, the sinusoidal 

description must be capable of being incorporated within a system of equilibrium and compatibility 

equations. The work of Liu et al. (2004), which proposes an analytical model with elliptical yarn 

cross sections that calculates the normal force at the yarn intersections, forms the basis of a 

suitable approach. By defining a function to describe the surface of an elliptical yarn (Equation 4.11) 

and considering the equilibrium of an infinitesimal length yarn (Figure 4.5) subjected to force in the 

yarn, Liu et al. (2004) derived an expression for normal force acting over the yarn intersection 

(Equation 4.12 - Equation 4.14).  
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Figure 4.5 An infinitesimal length of warp yarn over a fill yarn or vice versa for an elliptical yarn, 

from Liu et al.  (2004) (top), and a sinusoidal yarn (bottom) 

If this approach could be implemented within a model using a sinusoidal description, it was posited 

that is may be possible to adapt the formulation to provide the out-of-place force required to model 

crimp interchange. The normal force acting over the yarn intersection for a sinusoidal yarn 

waveform was similarly calculated by defining a sine function to describe the yarn surface 

(Equation 4.15) and considering the equilibrium of an infinitesimal length yarn subjected to force 

in the yarn. The expression for the normal force can be shown to be unchanged by altering the yarn 

description (Equation 4.16 - Equation 4.23).  

𝑦(𝑥) = 𝑡√0.25 −
𝑥2

𝑤2
 

𝑁(𝑥) =
−𝐹

𝑤
 

𝑦′′

√(1 + 𝑦′(𝑥)2)3
 

 
 

Equation 4.11 

(Liu et al., 2004) 

Equation 4.12 

(Liu et al., 2004) 

where, 

𝑦′(𝑥) = −
𝑡𝑥

√0.25 −
𝑥2

𝑤2  𝑤2

 

𝑦′′(𝑥) = −
𝑡𝑥2

(0.25 −
𝑥2

𝑤2)

3
2
 𝑤4

−
𝑡

√0.25 −
𝑥2

𝑤2  𝑤2

 

Equation 4.13 

 

Equation 4.14 
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𝑦(𝑥) =
𝑡

2
𝑐𝑜𝑠 (

𝜋𝑥

𝑤
) 

𝑦′(𝑥) = −
𝑡𝜋

2𝑤
𝑠𝑖𝑛 (

𝜋𝑥

𝑤
) 

𝑦′′(𝑥) = −
𝑡𝜋2

2𝑤2
𝑐𝑜𝑠 (

𝜋𝑥

𝑤
) 

Equation 4.15 

Equation 4.16 

Equation 4.17 

The equilibrium equations of the infinitesimal yarn length are, 

∑𝐹𝑥 = 𝐹
1

√1 + 𝑦′(𝑥 + 𝛿𝑥)2
− 𝑁(𝑥)𝑤𝛿𝑠

𝑦′(𝑥)

√1 + 𝑦′(𝑥)2
− 𝐹

1

√1 + 𝑦′(𝑥)2
= 0 

∑𝐹𝑦 = 𝐹
𝑦′(𝑥 + 𝛿𝑥)

√1 + 𝑦′(𝑥 + 𝛿𝑥)2
+ 𝑁(𝑥)𝑤𝛿𝑠

1

√1 + 𝑦′(𝑥)2
− 𝐹

𝑦′(𝑥)

√1 + 𝑦′(𝑥)2
= 0 

Equation 4.18 

(Liu et al., 2004) 

Equation 4.19 

(Liu et al., 2004) 

 

where, 

𝑑𝑠 = √1 + 𝑦′(𝑥)2 𝑑𝑥 
Equation 4.20 

(Liu et al., 2004) 

 

Substituting the expression for ds (Equation 4.20) into either of the equilibrium equations 

(Equation 4.18 or Equation 4.19) and solving for N gives,  

𝑁(𝑥) =
𝐹

𝑦′(𝑥)𝑤

(1 √1 + 𝑦′(𝑥 + 𝛿𝑥)2⁄ ) − (1 √1 + 𝑦′(𝑥)2⁄ )

𝛿𝑥
 

=
𝐹

𝑦′(𝑥)𝑤
𝑔′(𝑥) 

 

Equation 4.21 

(Liu et al., 2004) 

where, 

𝑔(𝑥) =
1

√1 + 𝑦′(𝑥)2
 

Equation 4.22 

(Liu et al., 2004) 

 

Substituting the first order differential of the sinusoidal yarn description, y (Equation 4.16), into the 

expression for g (Equation 4.22) and differentiating allows the subsequent substitution into the 

expression for N (Equation 4.21) which can then be simplified (Equation 4.23). Removing the 

expressions for the first and second order differentials of y (Equation 4.16 and Equation 4.17) 

results in the original expression for the normal force, N, as required (Equation 4.12). By 

substituting arbitrary values into the expression for the normal force, the shape of the force 

distributions were compared (Figure 4.6) ( 10N yarn force, F, was applied to yarn cross sections 

with a thickness, t, of 2mm and a width, w, of 7mm). 
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𝑁(𝑥) =
𝐹

−
𝑡𝜋
2𝑤

𝑠𝑖𝑛 (
𝜋𝑥
𝑤

)𝑤
∙ − 

2𝑡2𝜋3𝑠𝑖𝑛 (
𝜋𝑥
𝑤

) 𝑐𝑜𝑠 (
𝜋𝑥
𝑤

)

𝑤3 (4 +
𝑡2𝜋2𝑠𝑖𝑛2 (

𝜋𝑥
𝑤

)

𝑤2 )

3
2

 

𝑁(𝑥) =   
4𝐹 𝑡 𝜋2𝑐𝑜𝑠 (

𝜋𝑥
𝑤

)

𝑤3 (4 +
𝑡2𝜋2𝑠𝑖𝑛2 (

𝜋𝑥
𝑤

)

𝑤2 )

3
2

 

𝑁(𝑥) =
𝐹 𝑡 𝜋2𝑐𝑜𝑠 (

𝜋𝑥
𝑤

)

2𝑤3 (1 +
𝑡2𝜋2𝑠𝑖𝑛2 (

𝜋𝑥
𝑤

)

4𝑤2 )

3
2

 

=
𝐹

𝑤
∙

 𝑡 𝜋2𝑐𝑜𝑠 (
𝜋𝑥
𝑤

)

2𝑤2√(1 + (±
𝑡𝜋
2𝑤

𝑠𝑖𝑛 (
𝜋𝑥
𝑤

))
2

)

3
 

 

 

 

 

 

Equation 4.23 

 

 

 

Figure 4.6 Distribution of the normal force over the yarn cross section for (left) an elliptical yarn 

and (right) a sinusoidal yarn, using the same yarn width, yarn thickness force in the yarn 
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As the gradient of the curve defining the elliptical cross section approaches infinity, so does the 

value of the normal force. The maximum normal forces are at the edges of the yarn cross section 

with the minimum values over the yarn centreline. This distribution is counterintuitive, as the 

distribution represents a situation where a stiff, bar-type intersecting yarn is being bent over the 

surface of the yarn cross section. In contrast, the sinusoidal representation of the yarn cross section 

results in a far more intuitive distribution of the forces. The maximum normal force is over the yarn 

centreline and tends toward zero at the yarn edges, which is to be expected where the interwoven 

yarn is being pulled parallel to horizontal axis of the yarn cross section.  

A unit cell model was proposed in which the shape of the yarn cross section was consistent with the 

shape of the interwoven yarn (Figure 4.7). The yarn waveform and contact surface with the cross 

section of the intersecting yarn are defined by a single sinusoidal curve. The analytical predictive 

model describes this unit cell as two orthogonal cross sections, considering the yarn properties, 

geometries and applied forces independently for each of the yarn directions. A second sinusoidal 

curve was used to describe the surface of the yarn cross section which is not in contact with the 

intersecting yarn. Both of the sinusoidal waveforms can be defined in terms of the crimp 

amplitudes, unit cell lengths (half yarn wavelengths), yarn widths and thicknesses of real fabrics 

(Figure 4.8 and Equation 4.24 to Equation 4.27). Unlike the sinusoidal model proposed by Wang 

(2002) the normal force is calculated over the orthogonal yarn cross section. Yarn properties are 

held constant along the length of the yarns, as varying the properties would introduce a level of 

complexity too great and is beyond the scope of this research project. However, further work could 

incorporate the capability to vary the yarn properties if required.  
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Figure 4.7 Sinusoidal representation of the fabric unit cell model, cross sections are orthogonal to 

each other about their centrelines 

 



 

Chapter 4: A predictive model  for architectural fabrics   113 
 

  

Figure 4.8 Simplified view of the unit cell geometry showing the dimensions required to define 

sinusoidal waveforms 

The first curve, which defines the shape of waveform over the length of the unit cell, was derived as 

a function of the unit cell length, l1,2, and is expressed in terms of values which can be obtained from 

real fabrics (Equation 4.24), namely unit cell length, yarn widths and yarn amplitudes. The second 

curve, which defines the surface of the orthogonal yarn not in contact with the undulating yarn, was 

then derived as a function of the width of the orthogonal yarn cross section (Equation 4.25). The 

second term in Equation 4.25 translates the curve in the y direction such that the ends of second 

curve are coterminous with the first curve where x1,2 = ±w2,1/2. 

𝑦1,2 = 𝐴1,2𝑐𝑜𝑠 (
𝜋𝑥1,2

𝑙1,2

)   for  (−
𝑙1,2

2
< 𝑥1,2 <

𝑙1,2

2
) 

𝑦1,2 = −𝑎2,1𝑐𝑜𝑠 (
𝜋𝑥1,2

𝑤2,1

) + 𝐴1,2𝑐𝑜𝑠 (
𝜋𝑤2,1

2𝑙1,2

)   for  (−
𝑤2,1

2
< 𝑥1,2 <

𝑤2,1

2
) 

Equation 4.24 

 

Equation 4.25 

 

The amplitude a1,2 can be expressed in terms of yarn thickness t2,1 (Equation 4.26) and can be 

substituted into the expression of the second curve to provide an expression which is also in terms 

of values which can be obtained from real fabrics (Equation 4.27). 

𝑎2,1 = 𝑡2,1 − 𝐴1,2 (1 − 𝑐𝑜𝑠 (
𝜋𝑤2,1

2𝑙1,2

)) 

𝑦1,2 = −(𝑡2,1 − 𝐴1,2 (1 − 𝑐𝑜𝑠 (
𝜋𝑤2,1

2𝑙1,2

)))𝑐𝑜𝑠 (
𝜋𝑥1,2

𝑤2,1

)

+ 𝐴1,2𝑐𝑜𝑠 (
𝜋𝑤2,1

2𝑙1,2

)   for  (−
𝑤2,1

2
< 𝑥1,2 <

𝑤2,1

2
) 

Equation 4.26 

 

 

 

Equation 4.27 
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4.3.2 Crimp interchange 

The application of in-plane biaxial load to a fabric will result in crimp interchange. Changes to the 

measurements taken from real fabrics that define the yarn geometry will occur as force equilibrium 

within the weave is maintained. This complex interaction between the orthogonal sets of yarns is 

responsible for a fabric behaving as a mechanism, rather than as a continuum, and is the 

fundamental deformation mechanism that is considered by the predictive model. The changing 

yarn lengths, yarn widths, and crimp amplitudes are constrained within the model by two 

fundamental geometrical relationships. Firstly, assuming negligible yarn bending stiffnesses (Peirce, 

1937), the sum of out-of-plane forces (a product of the yarn geometry and applied load) must equal 

zero (Equation 4.28). Secondly, in order that the yarns remain in contact and that applied loads act 

in a single plane, the sum of the amplitudes must equal the sum of half of each yarn thickness 

(Equation 4.29). 

 𝑓𝑦1 = 𝑓𝑦2 

𝐴1 + 𝐴2 =
𝑡1 + 𝑡2

2
 

Equation 4.28 

Equation 4.29 

(adapted after (Peirce, 1937)) 

 

The crimp amplitudes and thicknesses are determined directly from measurements of a fabric’s 

cross section. As in the calculation of normal forces presented by Liu et al. (2004), out-of-plane 

forces may be calculated by considering equilibrium of an infinitesimal length of yarn cross section 

(Figure 4.9). However, the required expression was obtained by resolving the previously revised 

calculation of the normal force (Section 4.3.1) and subsequently integrating over the width of the 

yarn cross sections (Equation 4.30). 

 

Figure 4.9 Out-of-plane forces acting on an infinitesimal length of warp/fill yarn over a fill/warp 

yarn cross section  
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𝑓𝑦1,2 = ∫ 𝑁1,2

1

√1 + 𝑦′
1,2

2

𝑤1,2 𝑑𝑠

𝑠1,2
2

−
𝑠1,2
2

 

= ∫
−𝑓1,2𝑦

′′
1,2

𝑤1,2√(1 + 𝑦′
1,2

2)
3

1

√1 + 𝑦′
1,2

2

𝑤1,2 √1 + 𝑦′
1,2

2 𝑑𝑥

𝑤2,1
2

−
𝑤2,1

2

 

= −𝑓1,2 ∫
𝑑 (𝑦′

1,2
)

√(1 + 𝑦′
1,2

2)
3
 

𝑦′
1,2(

𝑤2,1
2

)

𝑦′
1,2(−

𝑤2,1
2

)

 

= −𝑓1,2

[
 
 
 (1 + 𝑦′

1,2
2
)  𝑦′

1,2

√(1 + 𝑦′
1,2

2)
3

]
 
 
 

𝑦′
1,2(−

𝑤2,1
2 )

𝑦′
1,2(

𝑤2,1
2

)

 

= −𝑓1,2

[
 
 
 𝑦′

1,2

√1 + 𝑦′
1,2

2

]
 
 
 

𝑦′
1,2(−

𝑤2,1
2 )

𝑦′
1,2(

𝑤2,1
2

)

 

= −𝑓1,2

[
 
 
 
 
 

−

𝐴1,2𝜋 𝑠𝑖𝑛 (
𝜋𝑤2,1

2𝑙1,2
)

𝑙1,2√1 + (
𝐴1,2𝜋
𝑙1,2

 𝑠𝑖𝑛 (
𝜋𝑤2,1

2𝑙1,2
))

2
+

𝐴1,2𝜋 𝑠𝑖𝑛 (−
𝜋𝑤2,1

2𝑙1,2
)

𝑙1,2√1 + (
𝐴1,2𝜋
𝑙1,2

 𝑠𝑖𝑛 (−
𝜋𝑤2,1

2𝑙1,2
))

2

]
 
 
 
 
 

 

= 𝑓1,2

[
 
 
 
 
 

2𝐴1,2𝜋 𝑠𝑖𝑛 (
𝜋𝑤2,1

2𝑙1,2
)

𝑙1,2√(1 + (
𝐴1,2𝜋
𝑙1,2

 𝑠𝑖𝑛 (
𝜋𝑤2,1

2𝑙1,2
)

2

))
]
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation 4.30 

where, 

𝑦1,2 = 𝐴1,2𝑐𝑜𝑠 (
𝜋𝑥1,2

𝑙1,2

)  for (−
𝑤2,1

2
< 𝑥1,2 <

𝑤2,1

2
) 

𝑦′1,2 = −
𝐴1,2𝜋

𝑙1,2

𝑠𝑖𝑛 (
𝜋𝑥1,2

𝑙1,2

) 

𝑦′′1,2 = −
𝐴1,2

2𝜋

𝑙1,2
2 𝑐𝑜𝑠 (

𝜋𝑥1,2

𝑙1,2

) 

Equation 4.31 

Equation 4.32 

Equation 4.33 
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It is also necessary to establish a relationship between the length of the unit cell, the yarn lengths 

and the crimp amplitudes, as these parameters are interdependent. Therefore, an expression to 

calculate the length of the intersecting yarns within the unit cell from the measured values of crimp 

amplitude and cell length was required.  An elliptical integral (Equation 4.34) by Stroud (1996) may 

be used to define the length of a sinusoidal curve. However, the solution of an elliptical integral is 

not straightforward. Instead, a Taylor series expansion by Stroud (2011) was used which allows for 

an approximation for the sinusoidal length to be more easily calculated (Equation 4.35) (McBride 

and Chen, 1997).  Before considering yarn extension, yarn lengths can be determined and held 

constant whilst the unit cell lengths and crimp amplitudes are varied to satisfy the fundamental 

geometric relationships (Equation 4.28 and Equation 4.29) when load is applied to the model. 

Rearranging the approximating expression (Equation 4.36) permits the calculation of the unit cell 

lengths from the yarn lengths and crimp amplitudes (Equation 4.27) by means of the quadratic 

equation. This approach makes possible the later inclusion of an update for the yarn lengths, thus 

enabling the incorporation of yarn extension into the model (§4.2.3). 

𝑠1,2 = ∫ √1 + (𝑦′1,2)
2

𝑙1,2
2

−
𝑙1,2
2

𝑑𝑥 

≈ ∫ 1 +
1

2
(𝑦′1,2)

2
𝑙1,2
2

−
𝑙1,2
2

𝑑𝑥 

≈ ∫ 1 +
1

2
(−

𝐴1,2𝜋

𝑙1,2

𝑠𝑖𝑛 (
𝜋𝑥1,2

𝑙1,2

))

2𝑙1,2
2

−
𝑙1,2
2

𝑑𝑥 

≈ 𝑙1,2 +
𝐴1,2

2𝜋2

4𝑙1,2

 

Equation 4.34 

 

 

 

 

 

Equation 4.35 

 

 

0 ≈ 4𝑙1,2
2 − 4𝑠1,2𝑙1,2 + 𝐴1,2

2𝜋2 

 

𝑙1,2 ≈
𝑠1,2 + √𝑠1,2

2 − 𝐴1,2
2𝜋2

2
 

Equation 4.36 

 

 

Equation 4.37 
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As load is applied to the model, the shape of the yarn cross sections will remain consistent with the 

shape of the orthogonal interwoven yarns (Section 4.3.1). Therefore, changes in the yarn cross 

sections occur simultaneously with changes in the crimp and elongation of the unit cell in the 

orthogonal yarn directions. The model requires constraints to govern the interdependent changes 

in geometry. While it is possible to constrain the deformation of the cross sectional areas, the yarn 

widths and the yarn thicknesses, the imposed constraints needed to be compatible with one 

another or the model will be over constrained. 

In addition to crimp interchange, Poisson’s ratios and crushing stiffnesses of the yarns will 

influence changes in the yarn cross section (§2.1). However, fibre bundle models may be needed to 

predict changes resulting from such effects (Cai and Gutowski, 1992). This extra modelling would 

require experimental data from as spun yarns, tested prior to weaving and coating, and would need 

to be subsequently modified to account for the weaving and coating processes. It is possible that 

yarns could be removed from the coating for testing, although removing yarns from a fabric for 

testing would be problematic and it would be likely to cause damage to the yarns (§2.3.2). A need to 

determine Poisson’s ratio values and yarn crushing stiffnesses through experimental testing would 

not be compatible with the requirements of the predictive model (Section 4.1.1). Furthermore, any 

testing of individual yarns removed from the weave and coating may not be representative of the 

yarns in situ (§2.3.2). Consequently, an attempt to accurately attribute a proportion of the changes 

in the yarn cross sections to yarn crushing would be prohibitively complex. Therefore, for the 

modelled to be developed, compressive deformation and Poisson’s effects of the yarns have been 

not be considered, although the model could be extended later to include these effects. 

The adopted approach assumes that changes in yarn cross section (i.e. area and waveform) arise 

from rearrangement of the fibres comprising the yarns only. This was modelled by allowing the 

yarn to vary in cross sectional shape while maintaining constant area (Glaessgen et al., 1996; 

Bridgens, 2005). The approach also maintains the proportion of the yarn width with respect to the 

cell length (Equation 4.38). The combination of these two constraints causes the yarn to crush with 

increasing load in the perpendicular yarn direction (Figure 4.10). By having consistent yarn 

geometry, the elongation of yarns and changing crimp amplitudes are implicitly linked with 

transverse yarn widths and thicknesses which negates a requirement to determine a crushing 

stiffness value. 

𝑤1

𝑙2
=

𝑤2

𝑙1
 Equation 4.38 
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Figure 4.10 Deformation of the yarn cross section due to applied load, showing the undeformed 

cross section (top), and deformation of the cross section with constant area (bottom) 

To define the yarn cross sectional areas, integrals of the bounding sinusoidal curves can be 

calculated and added together. However, any part of the integrals that overlap (Figure 4.11) must 

be subtracted from the result. The final expression is in terms of parameters which can be obtained 

from real fabrics (Equation 4.39) by substituting in the expression for a1,2 (Equation 4.16). 

 

∫ 𝑨𝟐,𝟏𝒄𝒐𝒔 (
𝝅𝒙𝟐,𝟏

𝒍𝟐,𝟏

)

𝒘𝟏,𝟐
𝟐

−
𝒘𝟏,𝟐

𝟐

𝒅𝒙𝟐,𝟏 ∫ 𝒂𝟏,𝟐𝒄𝒐𝒔 (
𝝅𝒙𝟐,𝟏

𝒘𝟏,𝟐

)

𝒘𝟏,𝟐
𝟐

−
𝒘𝟏,𝟐

𝟐

𝒅𝒙𝟐,𝟏 𝑨𝟐,𝟏𝒘𝟏,𝟐𝒄𝒐𝒔 (
𝝅𝒘𝟏,𝟐

𝟐𝒍𝟐,𝟏

) 

Figure 4.11 Expressions for calculating the yarn cross sectional area with corresponding 

illustrations of the areas derived by each 
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2𝐴2,1𝑙2,1𝑠𝑖𝑛 (
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−𝐴2,1𝑤1,2𝜋𝑐𝑜𝑠 (
𝜋𝑤1,2

2𝑙2,1
)

𝜋
+
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)
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+

2𝐴2,1𝑙2,1𝑠𝑖𝑛 (
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𝜋

−
2𝑤1,2(𝐴2,1 − 𝑡1,2)
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−𝐴2,1𝑤1,2(𝜋 − 2)𝑐𝑜𝑠 (
𝜋𝑤1,2

2𝑙2,1
) + 2𝐴2,1𝑙2,1𝑠𝑖𝑛 (

𝜋𝑤1,2

2𝑙2,1
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Equation 4.39 
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4.3.3 Yarn behaviour 

Yarns will strain axially when load is applied in the plane of a woven fabric. However, strain of the 

unit cell, and the fabric as a whole, will be the sum of the crimp interchange and the axial extension 

of the yarns. The significantly lower stiffnesses of the coatings compared to the yarns means that a 

coating will not limit the maximum biaxial strain of the fabric. Yarn extension was initially 

incorporated into the predictive model by assuming yarn behaviour to be linearly elastic (Equation 

4.40). This relationship calculates yarn length, s1,2, as the original yarn, s0 1,2, length plus the strain in 

the yarn as a function of a constant value of the yarn’s elasticity, E1,2. Therefore, the predicted yarn 

strain was initial a linear function.  However, an objective of this project was to improve the model 

proposed by Bridgens (2005) which assumed linear or multi-linear elasticity of the yarns.  

𝑠1,2 = 𝑠0 1,2 [1 +
𝑓𝑦1,2

𝑙2,1 𝐸1,2

] Equation 4.40 

Owing to the non-linear behaviour exhibited by architectural fabrics (§2.1), it was proposed that 

uniaxial test results could be used to create a ‘look-up function’ that would determine yarn strain 

from applied stress, i.e. a non-linear expression relating yarn stress and yarn strain from empirical 

data. Bi-linear and multi-linear approaches were briefly considered, but were dismissed in favour 

of a novel look-up approach that could incorporate the complex non-linear, elastic load response 

and hysteresis. A look-up function also held the benefit that it could remove judgment on the part of 

the model’s user, i.e. there would be no need for a user to define linear approximations of stiffness. 

The model must be capable of predicting stress-strain behaviour for any maximum stress value up 

to the values used in biaxial testing. Furthermore, multiple values of maximum stress may be 

required to match biaxial test profiles which comprise multiple cycles to different values of 

maximum stress. In order to achieve this using a look-up of uniaxial test data, the uniaxial data 

must match the load path of the biaxial test data/profile. This would require a complex and possibly 

long uniaxial test profile or, alternatively, a series of uniaxial tests to different maximum stresses. 

To avoid these complex requirements, it was proposed to scale a single uniaxial profile to match its 

maximum loads to the maximum loads of the biaxial cycles. The model would be able to scale the 

test results to match the desired stress profile, i.e. loading curve to be predicted, as the maximum 

stresses for any loading curve change. 

This approach of scaling uniaxial cycles is demonstrated by comparing experimentally obtained 

data obtained from a uniaxial test profile with stress-strain cycles of increasing maximum stress 

(Figure 4.12) against a series of cycles which have scaled from a uniaxial test having set of stress-

strain cycles at a single maximum stress. A warp specimen of Ferrari 702 (PVC/PES) was used for 

the tests. The stress-strain response was recorded for three load cycles between a maximum 

30kN/m stress (50% UTS) and zero displacement.  
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Figure 4.12 Comparison of experimental data and adjusted cycles, specimen used was Ferrari 

702 (PVC/PES) cut in the warp direction 

The scaling factor is the ratio between the maximum stress of the test data and the desired value of 

maximum stress, i.e. 25kN/m, 20kN/m and 10kN/m. The scaling is applied to both the stresses and 

strains. The adjusted cycles were then compared to experimental data from the profile with load 

cycles of increasing maximum stress (the “complex” test). 

Comparing the test results to the scaled cycles shows that the 30kN/m stress-strain cycles appear 

largely unaffected by the preceding cycles at lower maximum stress values. The shape of the cycles 

is unaltered with subsequent cycles at increasing maximum stress values, thus the shape of the 

curves at lower stress values, including residual strain, is reflected by the scaled cycles. It is the 

shape of the curves that is important, as it is the gradient which determines the stiffness. The 

shapes of the cycles capture the nonlinearity, hysteresis and residual strain. This approach is more 

accurate than a linear approximation i.e. a secant modus. 

By using the look-up approach, predictions of strain at a given biaxial stress ratio are no longer 

made independently of a materials’ strain history. The model attempts to characterise the nonlinear 

stress-strain behaviour that occurs during the increasing deformation until a prescribed stress 

state is achieved in a fabric. In other words, the model predicts the entire stress-strain history of a 

biaxial load profile up to a given load. This is a novel approach which has not been suggested or 

incorporated in existing modelling approaches. The use of MATLAB allowed for this process to be 

implemented, the first stage of which is the identification of the loading cycles in the biaxial profiles 

being predicted (Figure 4.13). 

            Experimental data (single cycle)             Experimental data (single cycle) 
            Experimental data (multi cycle) 
            Scaled cycles 
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Figure 4.13 Automated biaxial load cycle identification, the MATLAB script generates an array of 

the locations of the turning points in the biaxial load profile, shown in red circles. 

To enable scaling of the stress-strain curves, the model first requires the user to import a biaxial 

load (stress) profile so it can determine the range of stresses it will be required make stain 

predictions. The biaxial profile is either a user generated profile, i.e. a profile of interest, for which 

the model will predict the strains, or the recorded loads of a real biaxial test. The code then 

searches for minima and maxima in both the warp and fill load profiles by evaluating data points 

within a moving search window. This identifies minimum and maximum values of stress within a 

portion of the test data. Once the turning points have been found for each of the warp and fill 

profiles, the two lists of points (one for each yarn direction) are merged to remove coincident 

points in the two lists and to locate cycle start/end points in data where there is no turning point, 

i.e. when no load is applied in one yarn direction.   

With the turning points in the biaxial load profile identified, the model now has a series of cycles for 

which strain predictions will be made. The first cycle includes the initial loading curve. There is no 

need to scale the initial uniaxial loading curve to determine the stress-strain relationship of the 

yarns for the loading portion of the first biaxial load cycle. This is because the initial uniaxial 

loading curve is representative of the behaviour of the yarns in a yet to be tested biaxial sample. 

Therefore, a curve is fitted to the initial uniaxial loading curve (Figure 4.14-A) and the non-linear 

equation of the fitted curve is used by the model to determine the yarn strains for the initial loading 

of the biaxial sample. The curve fit is performed using MATLAB’s build in curveFit function. 
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Figure 4.14 Stages of the uniaxial look-up depicting how the model adjusts uniaxial load cycles to 

predict yarn stress-strain behaviour 
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For the subsequent biaxial load cycles there is a maximum and minimum value of stress. These 

stress values correspond to the turning points identified in the biaxial load profile (the red circles 

shown in Figure 4.13). To use the uniaxial stress-strain data in determining yarn strain for any 

biaxial profile, the uniaxial data is scaled such that the maximum value of uniaxial stress is equal to 

difference between the maximum stress and the minimum desired biaxial stress for a given cycle, 

i.e. the difference between the maximum turning point and the minimum turning point (Figure 

4.14-B).  The scaled data is assumed to represent the stress-strain relationship exhibited by the 

yarns of the biaxial sample for after the initial loading curve.  

Following the scaling of the uniaxial data, the maximum stress/strain value for the scaled uniaxial 

test data need matching to the maximum stress/strain value of the initial loading curve, otherwise 

there will be jumps in the predicted data between adjacent cycles. When the uniaxial data is scaled 

the maximum stress/strain value for the scaled uniaxial test data will not correspond to the 

maximum stress/strain value of the initial loading because the minimum stress/strain value is set 

to zero/zero to enable subsequent curve fitting.  Therefore, the differences in stress/strain values 

are calculated and stored by the model as variables “stressAdjustment1,2” and “strainAdjustment1,2”. 

These adjustment values have the effect of correctly “locating” the scaled uniaxial data in relation to 

the initial loading curve (Figure 4.14-C).  

A further curve is then fitted to the unloading portion of the first cycle of the scaled uniaxial data 

(Figure 4.14-D). This curve fit determines a non-linear equation relating the stresses and strains for 

the first unloading curve. This equation can then be used to determine the yarn strains for the 

unloading portion of the first biaxial load cycle. Yarn strains are then used to update the yarn 

lengths in two of the model’s equilibrium and compatibility equations (Equation 4.41 and Equation 

4.42). wfun and ffun are the equations determined by the curve fitting for the warp and fill yarns, 

respectively. 

𝑠1 = 𝑠0 1 [1 + 𝑤𝑓𝑢𝑛 (
𝑓1
𝑙2

− 𝑠𝑡𝑟𝑒𝑠𝑠𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡1) + 𝑠𝑡𝑟𝑎𝑖𝑛𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡1] 

𝑠2 = 𝑠0 2 [1 + 𝑓𝑓𝑢𝑛 (
𝑓2

𝑙1
− 𝑠𝑡𝑟𝑒𝑠𝑠𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡2) + 𝑠𝑡𝑟𝑎𝑖𝑛𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡2] 

Equation 4.41 

 

Equation 4.42 

The model then works though the loading and unloading portions of each cycle of the biaxial test 

profile, matching subsequent biaxial cycles to corresponding uniaxial cycles and fitting curves to 

each of the loading and unloading parts of the uniaxial data (Figure 4.14-E shows fitting of the next 

loading curve).  Any residual strain between subsequent cycles is added to the strainAdjustment1,2 

variable. The model will continue to use the last cycle of the uniaxial test data when the number of 

biaxial cycles exceeds the number of uniaxial cycles.    

However, if a given cycle has a different maximum stress value compared to the previous cycle, for 

example the first cycle in a set of 1:2 load ratio cycles following a set of 1:1 cycles, the maximum 

stress value of the uniaxial data will no longer be equal to the difference between the maximum 
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stress and the minimum stress for that given cycle as observed in the biaxial test profile (Figure 

4.13). Therefore, the scaled uniaxial data will no longer be appropriate for determining the 

relationship between stresses and strains. Consequently, the stress differences between the 

maximum turning point and the minimum turning point must recalculated and uniaxial test data re-

scaled (Figure 14.4-F) before the model can continue with it predictions. 

Decrimping of the yarns has also been considered. Decrimping is the straightening of yarns (a 

reduction in crimp amplitude) resulting in positive strain of the fabric in the decrimped yarn 

direction. “Decrimping strain” occurs without tensile extension of the decrimped yarns. 

Simultaneously, orthogonal yarns will increase in crimp to accommodate the straightening yarns, 

thus causing the high levels of lateral contraction exhibited by woven fabrics. Decrimping will be 

present in the uniaxial data obtained to generate the look-up functions. Consequently, a value of 

decrimping strain should be removed from the uniaxial test data if it is to be used to determine 

yarn elongation in the predictive model because the model explicably includes decrimping.  

It is extremely difficult to determine decrimping strains experimentally as decrimping will occur 

simultaneously with uniaxial extension. However, the predictive model may be used to calculate 

theoretical maximum values of decrimping strains, and respective negative strains due to crimp 

interchange, from changes in the yarn geometry. This is achieved by imposing the straightening of a 

yarn in one direction. This was performed for all fabrics used in validating the model (Table 4.4). 

These values of strain, if determined, could then be removed from the uniaxial test data in order to 

remove decrimping strain from the measured values of uniaxial extension of the test specimens. 

The proposed approach replies on the assumption that the yarns in uniaxial specimens achieve 

maximum decrimping, i.e. become totally straight, during a uniaxial test. However, the maximum 

possible values (total straightening) might not be achieved in practice, at least not for all fabrics.  

Plotting the theoretical decrimping strains against uniaxial data (the data obtained in chapter 5) 

shows that the maximum value of theoretical decrimping strain is not always achieved by the fabric 

(Figure 4.15 to Figure 4.17). It is not possible to determine a value of decrimping strain to be 

removed from the test data or where in the initial cycle to remove it from. It was posited that 

decrimping strains may be limited by a maximum value of crimp that occurs in the orthogonal yarn 

direction. A limiting value might then be calculated and removed from the initial cycle. 

Table 4.4 Theoretical decrimping and respective negative strains due to crimp interchange 

  702 1202 B18089 B18059 ATEX3000 ATEX5000 

Decrimped 
warp yarn 

Warp strains (%): 0.7 0.7 3.4 5.1 2.4 5.1 

Fill strains (%): -0.5 -0.3 -0.1 -0.4 -0.3 -0.2 
 

 

Decrimped 
fill yarn 

Warp strains (%): -0.5 0.0 -0.7 -0.6 -0.6 -0.5 

Fill strains (%): 1.2 2.3 7.3 9.0 2.3 3.8 



 

Chapter 4: A predictive model  for architectural fabrics   126 
 

 

Figure 4.15 Uniaxial test data for F702 (PVC/PES) shown with maximum theoretical values of 

decrimping strain 

 

Figure 4.16 Uniaxial data for B18089 (PTFE/glass) shown with maximum theoretical values of 

decrimping strain 

 

Figure 4.17 Uniaxial data for ATEX5000 (silicone/glass) shown with maximum theoretical values of 

decrimping strain 
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A series of uniaxial tests with digital image correlation were performed to explore the possible limit 

of maximum crimp, as measuring the transverse strain which arises due to crimp interchange is not 

straightforward by conventional means. The narrow width of the sample makes instrumenting the 

specimen difficult. However, DIC makes the tests possible, though such tests would not be a suitable 

requirement to provide input of the predictive model. A common factor, e.g. a limit of 70% 

maximum theoretical decrimp, that was consistent for all fabrics or a group of fabrics would need 

to be deduced from the range of fabrics tested.  

If a relationship could be established, it was anticipated that negative strains due to crimp 

interchange would be smaller than those which were theoretically calculated by the model (Table 

4.4). However, the results did not show this and were instead larger across all fabrics (Table 4.5). 

The results are inconclusive and it is not apparent how best to incorporate/remove a value of 

decrimping strain from the test data. A solution may be to remove the first cycle from the uniaxial 

data. 

Table 4.5 Measured crimping strains, decrimp values are not possible to obtain from these test as 

values will include axial yarn strain 

  702 1202 B18089 B18059 ATEX3000 ATEX5000 

Decrimped 
warp yarn 

Warp strains (%): 4.9 1.6 2.1 1.8 0.5 1.3 

Fill strains (%): -0.8 -0.4 -2.6 -3.3 -0.9 -2.4 
 

 

Decrimped 
fill yarn 

Warp strains (%): -0.8 -1.0 -3.8 -5.1 -0.8 -1.7 

Fill strains (%): 5.6 1.7 5.8 7.5 0.7 1.5 

 

4.3.4 Coating behaviour 

The previous model by Bridgens (2005) adopted the approach of Menges and Meffert (1976) by 

including coating resistance as a spring between the peaks of the sawtooth wave forms. An 

alternative approach has been developed for the improved model that sought to encompass both 

direct and shear stiffness of the coating, as shear deformation of the coating is likely to occur with 

biaxial deformation. In the proposed approach, the coating is modelled as a thin plate using the 

finite element method. A four noded quadrilateral isoparametric finite element (Figure 4.18) was 

selected as in future developments, i.e. for modelling whole structures, it may be desirable to 

incorporate curved sides to the element. 
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Figure 4.18 Deformation of the coating in the unit cell, represented as four noded quadrilateral 

isoparametric finite element showing (left) load applied prior to deformation and (right) load 

applied with deformation 

This work was conducted prior to the look-up function being developed which accounts for strain 

in the coating and strain in the yarn. Therefore, it is not used in the final model formulation but is 

used in the sawtooth and linear model approaches that were modelled for comparison with the 

final formulation).  

The model calculates load applied to the yarn being equal to load applied to the unit cell minus any 

load that is resisted by the coating. Prior to the model’s initial iteration for predicting strain at a 

given load ratio it is assumed that no load is resisted by the coating. With each subsequent iteration 

the parametric element provides a force in the coating for the strain in the unit cell. This coating 

force is removed from the force applied to yarn in the next iteration where an updated strain in the 

cell is calculated and subsequently an updated coating force.  This process will continue until a split 

of the load between the yarn and coating yields a strain of the cell that is consistent with the force 

in the coating. 
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4.3.5 Shear behaviour 

Shear behaviour has not been incorporated in the predictive model. However, a possible approach 

to predicting the shear response of the architecture fabrics is proposed on the basis of existing 

work. A suitable approach has to be compatible with the biaxial unit cell model and its underlying 

description of the yarn geometry (§4.2.1). The proposed formulation adopts some assumptions of 

other investigators (Mack and Taylor, 1956; McGuinness and ÓBrádaigh, 1998; Nguyen et al., 1999; 

Liu et al., 2004; Liu et al., 2005), namely assuming yarns to be: 

 ridged beam elements; 

 pin-jointed at every yarn intersection (allowing rotation between the yarns); and 

 inextensible during shearing (no change in amplitude or length occurs). 

Consequently, the resistance to shear deformation is limited to friction arising from contact of 

interwoven yarns at the yarn intersections and lateral compaction of adjacent yarns. When 

shearing a coated fabric, compaction of the coating will also occur.  This approach fails to account 

for the three dimensional deformation of the woven yarns. 

The works of Liu et al. (2004) and Liu et al. (2005) have been used as the starting point in 

developing a predictive unit cell shear model for architectural fabrics. Liu et al. (2004) and Liu et al. 

(2005) propose modelling approaches for predicting frictional resistance and lateral compaction, 

respectively (§2.3.3). The limitation of these models is that they have identical warp and fill yarn 

geometries. Therefore, the formulations were revised for different geometries in the orthogonal 

yarn directions and combined in a single model. The revised formulations consider moment 

equilibrium of the forces acting about the centre of each yarn intersection (Figure 4.19). In 

combining the two formulations, the moment due to shear force, Ms, must equal the sum of the 

moment due to friction, Mf, and the moment due to compaction, Mc (Equation 4.43). 

𝑀𝑠 = 𝑀𝑐 + 𝑀𝑓 
Equation 4.43 

In the revised formulation a new dimension, the contact length, c1,2, is used to allow for non-equal 

yarn lengths and yarns widths in orthogonal yarn directions (Figure 4.20). The contact length is a 

measurement across the width of the yarn and is the smallest measurement between a yarn’s 

parallel sides. This dimension defines how much of one yarn is in contact with the other in the 

orthogonal direction. When the intersecting yarns are orthogonal the contact length equals the 

width of the yarn and decreases with increasing shear deformation. Moment due to yarn compact is 

then derived considered dissimilar orthogonal yarn dimensions (Equation 4.44). 
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𝑀𝑐 = 2∫ 𝐹𝑐1

1
2
(𝑐1𝑠𝑖𝑛(𝛾 2⁄ ) + 𝑙1)

1
2
(𝑐1𝑠𝑖𝑛(𝛾 2⁄ ) − 𝑙1)

 𝑥1 𝑑𝑥1  +  2∫ 𝐹𝑐2

1
2
(𝑐2𝑠𝑖𝑛(𝛾 2⁄ ) + 𝑙2)

1
2
(𝑐2𝑠𝑖𝑛(𝛾 2⁄ ) − 𝑙2)

 𝑥2 𝑑𝑥2 
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= 𝐹𝑐1 𝑐1 𝑙1 𝑠𝑖𝑛 (
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2
) + 𝐹𝑐2 𝑐2 𝑙2 𝑠𝑖𝑛 (

𝛾

2
) 

 

 

Equation 4.44 

 

The earlier approach to predicting moment due to friction requires that the yarn intersection has 

four equal side lengths (Liu et al., 2004). In the revised formulation a value of frictional force, Ff, is 

integrated over the area of a triangle that forms one quarter of the yarn intersection (Figure 4.21 

and Equation 4.35 - Equation 4.39). 
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Figure 4.19 Forces acting about the centre unit cell, plan views of moment due to (top) shear 

resistance, (middle) lateral yarn compaction (adapted from Liu et al. (2004)), and (bottom) 

friction at yarn intersection (adapted from Liu et al. (2005)), N.B yarns have identical geometric 

properties in the warp and fill 
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Figure 4.20 Moment in the shear model due to lateral compaction, showing forces acting about 

the centre of the unit cell in both (top) warp and (bottom) fill directions allowing for different yarn 

geometry in each the directions 
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Figure 4.21 Determining the frictional force acting at the yarn intersection for non-square 

intersections, showing (left) the yarn intersection made up of four triangles and (right) one of the 

triangles over which the friction force is integrated 

𝑀𝐹 = 2∫ ∫ 𝐹𝑓𝑅
2𝑑𝑅

𝐷𝐴𝑠𝑖𝑛(𝛼𝐴)
2𝑠𝑖𝑛(𝛼𝐴+𝜙)

0

 𝑑𝜙
𝜙𝐴

0
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Equation 4.45 

where, 

𝜙𝐴,𝐵 = 𝑐𝑜𝑠−1 (
𝐷𝐴

2 + 𝐷𝐵
2 − 4𝑐1,2

2

2𝐷𝐴𝐷𝐵
) Equation 4.46 



 

Chapter 4: A predictive model  for architectural fabrics   134 
 

𝛼𝐴,𝐵 = 𝑐𝑜𝑠−1 (
𝑐1,2

2 + 𝐷𝐴
2 − 2𝑐2,1

2

2𝑐1,2𝐷𝐴
) 

𝐷𝐴 = √𝑐1
2 + 𝑐2

2 − 2𝑐1𝑐2𝑐𝑜𝑠(𝜃 + 𝛾) 

𝐷𝐵 = √𝑐1
2 + 𝑐2

2 − 2𝑐1𝑐2𝑐𝑜𝑠(𝜃 − 𝛾) 

Equation 4.47 

Equation 4.48 

Equation 4.49 

The friction force, Ff1,2, is calculated by integrating the normal force multiplied by the yarn width 

and a coefficient of friction, µ, over the cross section (Equation 4.50).  

𝐹𝑓1,2 = ∫𝜇 𝑁1,2(𝑥)𝑤1,2 𝑑𝑠 
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Equation 4.50 

 

where, 

𝑦′′ =
𝑑

𝑑𝑥
(𝑑(𝑦′)) 

∴ 𝑦′′𝑑𝑥 = (𝑑(𝑦′)) 

∫
1

1 + 𝑥2
= 𝑡𝑎𝑛−1(𝑥) 

 

Equation 4.51 

Equation 4.52 

 

 

 



 

Chapter 4: A predictive model  for architectural fabrics   135 
 

4.4 Programming the model 

The unit cell model is a non-linear system of equilibrium and compatibility equations that must be 

solved to predict biaxial strains. To solve the system of equations, the unit cell model was 

developed in MATLAB, a computing environment for numerical computation, visualisation and 

programming. The use of MATLAB to develop the model allows for ease of future adaptations and 

expansion of the model’s capabilities, interfacing with other applications created by different 

researchers and to make use of MATLAB’s built in functions, i.e. solvers. 

4.4.1 The predictive model in MATLAB 

The model comprises a number of MATLAB program files (sequences of executable commands) 

which take the form of either scripts or functions. Scripts are used for sequences of commands that 

occur only once following each execution of the model and functions are used where the model 

must perform the same sequence of commands with different variables and/or at different stages 

of the modelling process. The architecture of the principal program files (Figure 4.22) has evolved 

as the predictive model has developed to maintain the most efficient arrangement of commands, i.e. 

repeated commands were programed as functions. The following sections define the principal 

program files and relate them to the model’s formulation. 

The arrangement of the program files and the order of steps constitutes the methodology employed 

by the model in arriving at a prediction. The steps and their order form a novel modelling approach 

in addition to the formulations described in the forgoing sections. 
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Figure 4.22 Process flow diagram of the model’s principal programme files. A short description of 

each function/script illustrated is provided overleaf 

 

wfun/ffun 



 

Chapter 4: A predictive model  for architectural fabrics   137 
 

adjustCycles Identifies each load cycle in the uniaxial input data and scales the cycles in 

both the stress and strain axes. The scale factor is determined as the ratio of 

the maximum stress of the biaxial load cycle to be predicted (in the yarn 

direction in question), minus the value of prestress to be applied in the 

prediction, to the maximum stress of the uniaxial data. 

curveFit Calls MATLAB’s built in curve fitting toolbox to fit a smoothing spline curve 

to uniaxial load data in order to define the look-up functions. Plots of the 

curve fits can be shown to the user when running the model, so the user can 

ensure that the turning points are being found. 

modelGUI The model’s graphical user interface (GUI).  

objective The model’s objective function. MATLAB’s built in solver, fsolve, calls 

objective to solve the system of equilibrium and compatibly equations that 

define the model for each load ratio for which strain are to be predicted. This 

is performed iteratively until a solution is found (or until the solver fails to 

find a solution for a given load ratio). The objective function for the model’s 

final formulation is shown in Box 4.1. 

removeResidual Calculates the strain difference (residual strain) between the beginning and 

end of each cycle and removes the strain difference calculated.  

loadBiaxData From data supplied by the user through the model’s GUI, loadBiaxData 

imports the biaxial input data (load profile) for which predictions are to be 

made and identifies each load cycle. When test data is used, to prevent a 

large number of data points being predicted loadBiaxData will sample the 

data. 

model Calculates data required to pass to MATLAB’s solver, fsolve, and calls the 

objective function. This script also calls the different model formulations. 

fsolve is MATLAB’s only solver for systems of non-linear equations. 

run The model’s core script, run initiates the predictive model, loads the GUI and 

loads the input data into MATLAB. run performs initial calculations before 

calling model to make strain predictions at every load case (data point in the 

test data) of interest. It generates the look-up function for the initial loading 

curves and calls curvefit. Run also handles post processing and plots results 

for the model’s user. 

wfun/ffun Determines the strain the in the respective yarns using the novel look up 

function. 
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4.5 Model test cases: checking the model formulation 

A series of special case model runs have been executed to check for errors in the formulation of the 

model and in its implementation within MATLAB. These runs are special cases as they do not 

concern data relating to real architectural fabrics. Instead they use input parameters for ‘pseudo 

fabrics’ with prescribed yarn properties such that the fabric has identical properties in the warp 

and fill or different properties which can swapped between the two yarn directions. By prescribing 

yarn properties in this way it is possible to check that the model can: 

 obtain symmetrical results in the warp and fill yarn directions for a fabric with identical warp 

and fill properties and cross sectional geometries, i.e. identical strain behaviour in the warp 

and fill (Case 1); and 

 produce opposing results for two separate model runs with different warp and fill yarn 

properties and cross sectional geometries interchanged between the two yarn directions, i.e. 

identical strain behaviour in the warp and fill when comparing warp and fill between the two 

separate model runs (Cases 2 and 3). 

These special cases are of course not intended to provide evidence that the model is suitable for 

predicting the behaviour of specific architectural fabrics. Instead the special cases check for 

typographical errors in the code and for any differences in the predicted behaviour between yarn 

directions due to the order of the calculations performed. The special cases ensure the model’s 

formulation is correct and that it produces anticipated fabric behaviours. Observing the anticipated 

behaviours from execution of the special cases means the model is fit for subsequent validation 

against experimentally obtained data from real fabrics (Chapter 5). The pseudo fabrics’ properties 

and yarn geometries (Table 4.6) are based upon those for a Ferrari 702 PVC/PES fabric. For the test 

case with identical yarn behaviours, warp uniaxial behaviour will be used for both yarn directions. 

The choice of the 702 fabric and warp uniaxial behaviour is inconsequential, any fabric or data from 

the fill yarn direction would be equally acceptable for the creating the special cases. Plots of the 

model results for the special cases (Figure 4.23) show that the model is correctly formulated. RMSE 

values of zero were obtained and are shown on each plot against the respective data. 

Table 4.6 Pseudo fabric yarn geometries used for test cases 

 A1 A2 l1 l2 w1 w2 t1 t2 

Case 1 0.100 0.100 1.200 1.200 1.000 1.000 0.100 0.100 

Case 2* 0.063 0.078 1.250 1.221 0.911 1.129 0.183 0.146 

Case 3 0.078 0.063 1.221 1.250 1.129 0.911 0.146 0.183 

*Ferrari 702 yarn geometry 
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Figure 4.23 Results plots of special cases for checking implementation model’s formulation 
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4.6 Summary 

Predictive fabric models are not used in the design and analysis of tensile fabric structures and 

design engineers rely on specialist testing methodologies to provide material properties for use in 

design. A model which accurately predicts the results of these specialist tests would reduce the time 

and cost associated with experimentally obtaining the necessary material properties. 

A predictive unit cell model has been developed for determining the biaxial behaviour of 

architectural fabrics without requiring input from biaxial testing. The model is a development of 

existing sawtooth models and builds upon the earlier model of Bridgens (2005). A realistic 

description of the yarn geometry has been implemented within the model following a quantitative 

assessment demonstrating the accuracy of using a sinusoidal representation of the undulating 

yarns. Goodness of fit measures show a strong correlation between the shape of the yarns of the 

architectural fabrics used and the approximating sine curves. It is hypothesised that a more 

realistic yarn description will allow for more accurate representation of the deformation 

mechanisms when load is applied to the fabric.  

A series of sine curves, each with a single sine term, has been used to define the yarn waveforms 

and the cross sections of the orthogonal intersecting yarns, thus providing consistent geometry 

between each of the yarns. A more accurate representation may be achieved by increasing the 

number of sine terms used, but for the fabrics of interest here it was deemed unnecessary. 

Equilibrium and compatibility equations have been derived based upon the sinusoidal yarn 

description to model the key interactions of crimp interchange and yarn elongation. Changes in the 

yarn cross section are assumed to occur by rearrangement of the yarn fibres so that yarn crushing 

stiffnesses do not need to be determined. Unlike previous sinusoidal models, the improved unit cell 

utilises the shape of the yarn by applying the normal force over the length of yarn in contact with 

the orthogonal yarn to more accuracy replicate the real fabrics. While here the normal force is 

uniformly distributed, in future developments of the model the normal force could be varied over 

the yarn cross section. Importantly, no calibration factors are used in the proposed model.  

A significant development of the proposed model is the inclusion of a novel look-up function which 

enables prediction of a fabric’s non-linear, inelastic load response and hysteresis. The look up 

function dispenses with the requirement to subjectively determine constant yarn moduli. Further, 

each prediction at a given biaxial stress ratio is not made independently of the materials stress-

strain history. Consequently, the intention of the model is to exactly replicate a biaxial test. A 

revised set of equations has been presented for modelling shear of woven fabrics with asymmetric 

base cloths.  
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5.1 Introduction 

This chapter first details the methodologies developed for obtaining input data as well as for 

obtaining data needed for the validation of the predictive model. Subsequently, the validation of the 

model is described. This involves comparing predicted fabric behaviour to experimentally obtained 

test data. 

Results from the final model formulation, which incorporates the look-up function, are presented in 

contrast with experimental results. Additionally, results obtained using a sawtooth model 

formulation (Bridgens, 2005) and the sinusoidal formulation with isotropic coating element (§4.2.4) 

are also presented. These latter two models require a linear stiffness for the yarns and coating as 

they do not use the look-up function.   

5.2 Model input data 

A range of fabrics were tested to provide data required for validation of the predictive model. The 

fabrics tested (Table 5.1) represent a range of constituent materials, weights, thicknesses, tensile 

strengths and manufacturing methods used in tensile fabric structures. Uniaxial test results and 

images of the fabric cross section are required for the predictive model and the methodologies for 

obtaining these inputs are presented in this section. 

Table 5.1 Summary of architectural fabrics used for model implementation 

Fabric Manufacturer 
Material Weight 

(g/m2) 
Thickness 

(mm) 

Tensile strength† 

Base cloth Coating (kN/m) (N/5cm) 

702‡ Serge Ferrari, France PES PVC 750 0.56 60/56 3000/2800 

1202‡ Serge Ferrari, France PES PVC 1050 0.78 112/112 5600/5600 

B18089 Verseidag, Germany Glass fibre PTFE 1150 0.70 140/160 7000/6000 

B18059 Verseidag, Germany Glass fibre PTFE 1550 1.00 160/180 8000/7000 

ATEX3000 P-D Interglas, UK Glass fibre Silicone 340 0.45 60/60 3000/3000 

ATEX5000 P-D Interglas, UK Glass fibre Silicone 685 0.90 100/100 5000/5000 

†as specified by the manufacturer (warp direction/fill direction) 
‡Précontraint® 
PES = Polyester, PVC = Polyvinylchloride, PTFE = Polytetrafluoroethylene 
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5.2.1 Uniaxial testing 

Uniaxial testing of coated woven fabrics is described in BS EN ISO 1421:1998 ‘Rubber- or plastics-

coated fabrics – Determination of tensile strength and elongations at break’ (BSI, 1998). The standard 

specifies test specimen dimensions of 200 x 50mm, a rate of displacement of 100mm/min and that 

cross head displacement and load are to be recorded for the calculation of elongation and strength 

at failure. BS 3424-21:1993 ‘Testing coated fabrics – Part 21: Method 24. Method for determination 

of elongation and tension set’ also details the uniaxial testing of coated fabrics (BSI, 1993). The latter 

standard describes a method that can be used to quantify residual strain. The specimen dimensions 

are the same as for BS EN ISO 1421:1998, the displacement rate specified is 5mm/min and crosshead 

displacement and load are recorded. 

As the predictive model requires cyclic uniaxial test data in the warp and fill yarn directions, adhering 

to either of the aforementioned test standards would not provide the required information. 

Therefore, an alternative procedure was developed, based upon the two standards. The standard 

200x50mm specimen dimensions were used to prepare uniaxial specimens. Further, the uniaxial test 

specimens were removed from the fabric roll directly adjacent to the biaxial specimen that was used 

to obtain the comparative results (Figure 5.1). 

 

Figure 5.1 Biaxial and uniaxial test specimens to be removed from the fabric roll, showing the 

proximity of uniaxial specimens for input data to the biaxial specimen for comparative data 
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The rate of displacement was set at 10mm/min. While the standards mentioned above set a rate of 

100mm/min, uniaxial testing on PVC/PES and PTFE/glass fibre fabrics has indicted that extension 

rates above 50mm/min result in a variable stress-strain response (Bridgens, 2005). A consistent 

stress-strain response exhibited by all specimens tested is necessary for uniaxial data to be used to 

predict biaxial behaviour. As extension rates in the warp and fill directions during a biaxial test will 

differ (§5.3.2), an extension rate lower than 50mm/min was necessary. 

Capstans (cylinders around which a flexible material can be wound) were used to secure the uniaxial 

test specimens into a uniaxial test machine. The use of capstans is preferred to conventional clamping 

fixtures as yarn fibres will be damaged if clamped or loaded over an edge, thus becoming crushed or 

broken. Such damage will have the effect of reducing the ultimate tensile strength of the fabric and 

design loads may not be achieved during testing. Each end of a fabric specimen was secured in a 

respective capstan by winding the end of the specimen no fewer than two times around the cylinder 

of the capstan, the end having been first placed through a slot in the cylinder and folded back on itself 

(Figure 5.2).  

The capstans were positioned approximately 200mm apart (Figure 5.3), in line with the specimen 

dimensions, and specimens were cut with a total length of 900mm to provide the material required 

to wrap around the capstans. However, the capstans cannot provide an accurate specimen length and 

slippage of the specimen was encountered when testing, notably with the PVC/PES fabrics. Measured 

displacement of the test machine crosshead will include any slippage of the specimen that may occur, 

and will appear as fabric strain. Therefore, displacement was measured using a linear extensometer 

affixed to the surface of the specimen with aluminium mounts, as this will not measure only strain in 

the fabric and not slippage of specimen. The use of a linear extensometer will avoid the influence of 

end effects in the stress strain response. The mounts have a threaded pin which penetrates the fabric 

and screws through a backing disc. This arrangement sandwiches the specimen between the mount 

and the backing disc and ensures the axis of the mount remains perpendicular to the plane of the 

specimen. The gauge length of the extensometer used was 110mm. Excessive slippage is still 

undesirable when using a surface mounted extensometer, as slippage will cause a reduction in 

applied load and a reduction in the strain rate.  

When testing a non-PTFE coated specimen, it is desirable to wrap a strip of PTFE coated fabric around 

the capstan along with the specimen. The coated PTFE fabric reduces friction between the layers of 

non-PTFE material and the capstan, which ensures that the specimen is pulled tight about the capstan 

when setting up the test. Consequently, this reduces slippage during testing.  
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Figure 5.2 Uniaxial testing apparatus showing the fabric wound around the capstans, viewed from 

both the side (left) and the front (right)  

The final model formulation requires experimentally obtained stress-strain behaviour in both yarn 

directions, which incorporates both yarn and coating behaviour. However, the sawtooth and linear 

sinusoidal formulations require a constant values of Young’s modulus for each of the warp and fill 

directions, Ey1,2, and coating stiffness, Ek. The test methodology differed slightly between that for 

determining yarn behaviour and values of stiffness in the yarn directions and that for determining 

coating stiffness, as will now be described. 
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Figure 5.3 Uniaxial test apparatus set up, surface mounted linear extensometer are shown attached 

to specimen which is mounted in capstans 

Uniaxial testing in the yarn directions was performed to a predetermined maximum stress greater 

than was applied during biaxial testing but less than the material’s ultimate tensile strength (UTS). 

This ensured that stress-strain behaviour was captured for a sufficiently large envelope of values but 

that the fabric was prevented from being loaded to failure, which was undesirable as failure of the 

specimen would damage the extensometer. A maximum load of 40% of the UTS was applied to the 

uniaxial specimen for the testing in the yarn directions. As biaxial testing was performed to 25% of a 

material’s UTS (§5.3.2), loads to 40% UTS provided a large enough stress-strain response for 

comparison of predicted behaviour with recorded behaviour, as well as scope for predictions to be 

made at higher values of biaxial stress (i.e. up to 40% UTS).  

The look-up function has been implemented within the predictive model so as to allow a user to input 

an unlimited number of uniaxial test cycles. However, the number of cycles was limited to six for the 

fabrics tested for validation of the predictive model. This was because six cycles was observed to be 

a sufficient number of cycles for the residual strain, i.e. the non-recoverable strain at zero load, 

between each cycle to reduce to negligible amount. While further cycles would have been possible, 

limiting the number of cycles to six was also a practical consideration to limit the duration of the 

testing. 

The standard approach for determining constant values of Young’s moduli from uniaxial test results 

(required for the linear and sawtooth model formulations) is that adopted by previous researchers 

(Menges and Meffert, 1976; Testa et al., 1978; Bridgens, 2005). The approach, although the 

application of standardised method, requires judgment when interpreting the results.  Coating 
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stiffness is approximated using an initial shallow gradient of an initial loading curve for a fill test 

specimen and a subsequent, steeper gradient at higher stress to determine yarn stiffness. The 

difficulty of this approach is observed by comparing uniaxial test data for a PTFE/glass fabric with 

that of a PVC/PES fabric (Figure 5.4). As is typical, the glass fibre fabric exhibits the shallow initial 

gradient and subsequent steeper gradient, making it is possible to determine approximations for 

both yarn and coating. However, the polyester fabric does not exhibit the initial shallower gradient. 

A constant stiffness value is an approximation of fabric behaviour, so determining the most 

appropriate value is essential if the results of the predictive model are to be accurate. 

 

Figure 5.4 Best fit elastic constants determined from uniaxial test data where testing has been 

carried out in the direction of the yarns, note that for the PVC/PES specimen it is not readily apparent 

what part of the stress-strain response represents the coating stiffness  

Uniaxial bias shear tests were proposed as an alternative approach for determining values of coating 

stiffnesses. This novel approach assumes the shear resistance of the specimen is governed by the 

axial coating stiffness at low angles of shear (i.e. shear resistance mechanisms of the yarns, such as 

friction and compaction have not yet active). Axial deformation of the bias specimen during testing 

was measured over the portion of the specimen subject to pure shear (§2.2.2) (Figure 5.5) and the 

initial loading curve used to determine the value of Young’s modulus. This alternative approach was 

proposed to make identifying an accurate value easier for all fabrics.  

Values obtained for all uniaxial tests are shown in Table 5.2. Values for coating were also obtained 

for the glass fibre fabrics using the aforementioned standard approach and this method can be seen 

to produce higher values of coating stiffness. Another deformation mechanism is supplementing the 

coating stiffness. Further, the results of the ATEX fabric is counter intuitive as the thinner of the two 

fabrics appears to have the higher coating stiffness. It is not clear why this is the case, though the 

results make the novel approach for determining coating stiffness the preferred choice over the 

typical approach. 
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Figure 5.5 Bias testing of specimen to determine coating stiffness, illustrating an untested specimen 

(left) and an elongated specimen (right) 

Table 5.2 Stiffness values determined from uniaxial tests 

Fabric 
Warp yarn stiffness, 

E1 (kN/m) 
Fill Yarn stiffness, E2 

(kN/m) 
Coating, Ek from bias 
cut specimen (kN/m) 

Coating, Ek (kN/m) 
from fill specimen 

702 485 425 33 - 

1202 880 810 37 - 

B18089 4270 3970 36 60 

B18059 4610 4770 54 86 

ATEX3000 3120 3190 12 194 

ATEX5000 4109 6302 21 112 
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5.2.2 Fabric imaging and measurement 

 

Figure 5.6 Example of an image of a Ferrari 1502 fabric cross section obtained by assembling 

multiple photomicrographs, reproduced from (Eddleston, 2007) 

For the model to be used in the design of fabric structures, the methodology for collecting images of 

fabric cross sections must be easy to implement, without the need for prohibitively expensive 

specialist equipment and must be repeatable. Macrophotography has been used previously to 

provide images for predictive modelling where the same requirement existed (Bridgens, 2005). 

However, a subsequent study (Mellor, 2006) failed to capture images with adequate contrast and 

sharpness when following the macrophotography methodology. Sophisticated imaging technologies, 

synchrotron radiation X-ray imaging (Gong et al., 2009) and X-ray micro-computed tomography (X-

ray micro CT) (Desplentere et al., 2005), have been shown to produce highly detailed images of a 

woven fabric’s yarn cross section. However, such methodologies are not available to design engineers 

when designing tensile fabric structures, owing to the expense of the X-ray equipment, thus despite 

their advantages these methods are unsuitable for use here. 

Photomicroscopy has also been used to obtain images (photomicrographs) of sufficient quality to 

obtain measurements of architectural fabric yarn geometry (Eddleston, 2007) (Figure 5.6). 

Consequently, the development of a photomicroscopy methodology was initially used for producing 

images required for the predictive model. However, such an approach was employed only briefly as 

it was immediately apparent that obtaining a photomicrograph of reasonable quality was difficult 

and time consuming. Furthermore, multiple photomicrographs were required to construct an image 

containing a complete yarn wavelength (as shown in Figure 5.6). Such processing of images has 

additional, undesirable, time costs. For the predictive model to meet its requirements, an easier more 

rapid means to capture images of the yarn cross section was required. The appropriate method will 

need to provide a field of view, at sufficient magnification, large enough capture a complete yarn 

wavelength, i.e. up to 2mm. 
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An alternative was to develop a macrophotography methodology that addressed possible causes of 

poor image quality.  Causes of poor image quality include: 

 insufficient depth of field; 

 inappropriate selection of exposure (aperture size and shutter speed) and sensitivity (ISO); 

 insufficient illumination of the fabric specimen; and 

 movement of the camera (camera shake). 

Capturing very high quality images was made possible by following some general photographic 

principles and complementing the camera and lens with some inexpensive additional equipment. 

The macrophotographs were readily and easily obtained using a Canon EOS 50D digital SLR camera 

coupled with a Canon MP-E 65mm 1-5x extreme macro lens, a LED ring light, a copy stand and a 

computer which was used to control the camera (Figure 5.7 and Figure 5.8).  

Small aperture settings (higher f-stop values) were selected to maximise the depth of field. The depth 

of field is the distance, parallel to the axis of the lens, between the nearest and farthest feature within 

an image that is in focus. Maximising the depth of field is important when taking such close up 

macrophotographs where the depth of field will be extremely small. The depth of field of the Canon 

MP-E 65mm lens ranges from 2.240mm (1x, f/16) to only 0.048mm (5x, f/2.8). If the 

macrophotography set up fails to ensure a sufficient depth of field then parts of the captured images 

of the fabric cross sections may not be in focus, making it difficult to obtain reliable measurements. 

However, a small aperture setting reduces the amount of light that passes through the aperture to 

the camera’s image sensor, thus degrading the clarity of the image. The shutter speeds and ISO 

settings were subsequently chosen to compensate for the use of smaller aperture sizes. However, 

selecting a slow shutter speed allows more light to pass through the lens to the image sensor, but can 

result in image blur where the camera or the subject moves when the shutter is open. Further, a 

higher ISO setting will increase the sensitivity of the digital light sensor, but will increase image noise 

and reduce contrast and sharpness (Garrett and Harris, 2008). A suitable balance between the ISO 

setting and the exposure was determined for the fabrics photographed.  

The camera settings that were used to produce the macrophotographs were: 

 Focal length:   f/9 

 Exposure/shutter speed:  1/13 sec 

 ISO setting:    ISO-1000 

 White balance:   Auto 

 



 

Chapter 5: Validating the predictive model   153 
 

 

Figure 5.7 Macrophotography setup, a steel edge has been secured to the copy stand allowing 

the sample mount to be quickly positioned 

 

Figure 5.8 Canon EOS 50D digital SLR camera coupled with a Canon MP-E 65mm 1-5x extreme 

macro lens, a LED ring light is shown mounted on the front of the lens 
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Providing a sufficient light source and the use of a copy stand dramatically improved the ease at 

which images could be obtained. At 5x magnification the distance of the fabric specimen from the 

front of the lens when focused is approximately 40mm. A LED ring light was mounted onto the front 

of the lens to improve the illumination of the fabric specimens. The use of a copy stand coupled with 

a computer to control the camera eliminated camera shake, enabling slower shutter speeds, as the 

camera is not touched when capturing the images. 

The setup also allows for rapid and easy focusing of the lens. As the Canon MP-E 65mm lens is manual 

focus lens, it is possible to focus the lens by adjusting the focus ring, though this will alter the 

magnification. Alternatively, selecting the required magnification and adjusting the distance to the 

fabric specimen will also bring the image into focus.  It was found to be easier to focus the lens using 

the focus ring, though this sacrifices the choice of magnification. Therefore, a combined approach is 

advisable. Images were roughly focused by adjusting the distance of the lens from the specimen using 

the copy stand and then fine-tuned using the focus ring, resulting in very small changes to the 

magnification of the image. This allows the magnification to be approximately selected whilst 

ensuring the lens can be successfully focused for every image with ease. 

Comparing the images obtained using the macrophotography approach (Figure 5.9 – Figure 5.11) 

with an image constructed from multiple microphotographs (Figure 5.6) illustrate that the former 

offers a suitable means to readily obtain cross sectional images of the types of fabric used in this 

research. The macrophotographs are sharp with good contrast.  

With a suitable methodology for obtaining images established, the dimensions required to define the 

yarn’s internal architecture were determined from measurements taken from captured images. 

Previously, only a small number of images have been measured due to limitations regarding image 

processing. Obtaining representative dimensions of the fabric cross sections was important to ensure 

accurate representations of the materials in the predictive model. Therefore, many images were 

required to be measured. To make the measurement of many images of fabric cross sections 

practicable, an automated tool with a graphical user interface (GUI) was implemented in MATLAB 

(Figure 5.12). The tool enables rapid and precise on-screen selection of a series of 14 predefined 

points (x,y coordinates), from which fabric geometry is determined. A warp cross sectional image 

shows the warp yarn cross section and the undulating fill yarn; a fill cross sectional image shows the 

fill yarn cross section and the undulating warp yarn. The tool also allows a user to rotate the image 

so the centreline of the undulating yarn is horizontal by performing a coordinate transformation. 
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Figure 5.9 Example macrophotograph of PVC/PES fabric cross section, Ferrari 702 

 

Figure 5.10 Example macrophotograph of PTFE/glass fabric cross section, Verseidag B18059 

 

Figure 5.11 Example macrophotograph of silicone/glass fabric cross section, Interglas ATEX5000 

 

0 1mm 

0 1mm 

0 1mm 
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Figure 5.12 Geometry tool GUI with points that are selected to define a fabric’s cross section, 

crosshairs (visible in the screenshot) aid point selection, note: brightness of original fabric image 

has been increased to aim clarity of the points 

The units of the image measurements are pixels, requiring a scale factor to establish the correct 

dimensions in mm. A graduated steel rule forms part of the specimen mount and is visible in each 

image and this allows the calculation of the required factor (Equation 5.1). Crimp amplitudes are 

calculated from the inflection points on the undulating yarn (Equation 5.2). Points on the yarn cross 

sections for calculating thickness (Equation 5.3) could also be used in determining the cross section. 

However, the yarn cross sections visible in each image do not form part a single yarn and so they 

have not been used. With many images being processed, enough data will be obtained to determine 

the necessary dimensions. Unit cell lengths are defined by selecting the start and end of single yarn 

wavelength (Equation 5.4) and yarn width is taken from the visible cross sections (Equation 5.5). 

imageScale1,2 = 1/(B(x)1,2 – A(x)1,2) Equation 5.1 

(Bridgens, 2005) 

Crimp amplitude, A2,1 = (J(y)2,1–E(y)2,1  +  K(y)2,1–F(y)2,1) / 4  *  imageScale1,2 Equation 5.2 

Yarn thickness, t1,2 = ( G(y) 1,2–F(y) 1,2  +  J(y) 1,2–H(y) 1,2  ) / 2  *  imageScale1,2 Equation 5.3 

Unit cell length, l2,1 = ( D(x) 2,1 – C(x) 2,1 ) / 2  *  imageScale1,2 Equation 5.4 

Yarn width, w1,2 = ( M(x) 1,2–L(x) 1,2  +  P(x) 1,2–N(x) 1,2 ) / 2  * imageScale1,2 Equation 5.5 

(Bridgens, 2005) 

N.B. Bold letters denote points shown in Figure 5.12 and should not be confused with the model’s 

nomenclature. (x) and (y) denote coordinate axes, and subscripts 1 and 2 denote warp cross sectional 

and fill cross sectional images, respectively. 
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Using the macrophotography setup and the image processing tool developed in MATLAB, 50 cross 

sectional images of each of the fabrics used for validation were analysed. Images were obtained in 

sets of five from ten specimens cut from each of the fabrics, five in the warp direction and five in the 

fill. The 50 measurements for each of the principal dimensions have been summarised and plotted 

(Table 5.3 and Figure 5.13). Boxplots of the data show the spread of the measurements for the fabrics 

analysed and highlight which dimensions of each fabric’s weave geometry vary more widely. For 

example, yarn widths were observed to vary more than other dimensions and amplitudes are largely 

consistent. Examination of the raw data revealed that the outliers for the unit cell length, l2, 

measurements for ATEX5000 are from one of the five fabric samples, indicating that the sample may 

not have been representative of the fabric. This indicates, more than a single set of measurements 

should be used to provide the model with dimensions of the fabric geometry. Owing to skew and 

outliers observed in the measurements for some of the dimensions, the median values were chosen 

to be used when running the model, as they are more representative of the measurements than mean 

values. 

An alternative could be to perfect a cutting methodology to provide a single representative image of 

the fabric cross section. However, it would be unrealistic to expect such an approach to yield 

repeatable results. While care can be taken when preparing a specimen to be photographed, some 

variation is to be expected and is likely to occur due to human error during measurement and 

disturbance of the yarn when the sample is cut. 

Table 5.3 Summary of fabric measurements for all fabrics obtained from macrophotography 

 Fabric type   A1 A2 l1 l2 w1 w2 t1 t2 

Ferrari 
702 
(PVC/PES) 

Mean 0.064 0.077 1.249 1.222 0.911 1.128 0.183 0.149 

Median 0.063 0.078 1.250 1.221 0.911 1.129 0.183 0.146 

S.D. 0.008 0.007 0.025 0.023 0.032 0.051 0.010 0.011 

Ferrari 
1202 
(PVC/PES) 

Mean 0.066 0.197 1.289 2.163 1.568 1.344 0.338 0.237 

Median 0.066 0.199 1.290 2.163 1.571 1.345 0.337 0.237 

S.D. 0.009 0.011 0.016 0.039 0.040 0.033 0.016 0.014 

Verseidag 
B18089 
(PTFE/glass) 

Mean 0.116 0.144 1.000 0.847 0.827 0.733 0.264 0.276 

Median 0.115 0.143 0.996 0.843 0.828 0.731 0.263 0.273 

S.D. 0.010 0.009 0.018 0.017 0.018 0.025 0.013 0.014 

Verseidag 
B18059 
(PTFE/glass) 

Mean 0.210 0.219 1.447 1.150 1.040 1.031 0.407 0.459 

Median 0.207 0.219 1.452 1.149 1.033 1.024 0.403 0.455 

S.D. 0.024 0.015 0.028 0.022 0.035 0.058 0.026 0.040 

Interglas 
ATEX3000 
(Silicone/glass) 

Mean 0.083 0.073 0.902 0.782 0.728 0.672 0.172 0.179 

Median 0.083 0.070 0.899 0.778 0.731 0.669 0.171 0.180 

S.D. 0.014 0.013 0.018 0.021 0.031 0.026 0.016 0.011 

Interglas 
ATEX5000 
(Silicone/glass) 

Mean 0.182 0.141 1.363 1.191 1.133 1.033 0.357 0.366 

Median 0.183 0.137 1.359 1.169 1.127 1.035 0.362 0.365 

S.D. 0.010 0.023 0.020 0.069 0.055 0.031 0.028 0.013 
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Figure 5.13 Boxplots of fabric measurements for all fabrics obtained using macrophotography, 

boxes indicate the upper and lower quartiles of the measurements with the mean value indicated 

by a horizontal bar, variability outside the upper and lower quartiles is illustrated by the vertical 

lines (“whiskers”) and outliers are shown in black 
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5.3 Comparative test data 

The predictive model has been developed to provide information to designers that would otherwise 

be obtained through experimental testing. Model predictions were compared to experimentally 

obtained results produced by following a test protocol that a designer may specify to determine 

design values. Biaxial tensile testing is conducted for the purpose of determining design values, 

namely elastic constants and Poisson’s ratios. As no British or European standards exist for the 

biaxial testing of architectural fabrics, the biaxial testing conducted to provide comparative test data 

is based upon a single available international standard MSAJ (1995) and previously published work 

(Blum and Bögner, 2001; Blum et al., 2004; Bridgens and Gosling, 2004; Bridgens, 2005).  

5.3.1 Biaxial test rig and specimen preparation 

A ‘floating’ biaxial test rig (§2.2.1) has been used to perform all the biaxial testing undertaken in the 

course of this research project. The design of the rig used allows each of the loading axes of the rig to 

be aligned with the warp and fill axes of a specimen where the angle between the warp and fill yarn 

directions is not necessarily orthogonal (Skelton and Freeston, 1971). As load is applied to the 

specimen, the axes of the floating upper frame will both translate and rotate, to provide balanced 

loading of the specimen, relative to the lower frame. This ensures the axis of the applied loads 

coincide with the warp and fill yarn directions (Figure 5.14). The purpose of this approach is to not 

introduce shear effects. The test rig can be load controlled or displacement controlled. Applied loads 

are measured with load cells positioned at the ends of the actuators. Strains were calculated from 

displacements measured be extensometers mounted on the surface of the fabric, in the same way as 

for the shear testing (§3.3.2). Loads and displacements are recorded every two seconds.  

 

Figure 5.14 Biaxial test rig with frame aligned with yarn direction, (left) before application of load 

and (right) with load applied to the specimen 
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5.3.2 Biaxial load profile 

 

Figure 5.15 Membrane Structures Association of Japan (MSAJ) biaxial test profile showing load 

cycles, profile shown is for Ferrari 702 (PVC/PES) fabric, conditioning cycles in italics, minimum load 

is equal to prestress 

The load profile used was intended to reflect those which are currently used in industry, such as the 

profile described in the Membrane Structures Association of Japan (MSAJ) test standard for 

determining elastic constants of membrane materials (MSAJ, 1995). The standard presents a method 

for applying load to a biaxial cruciform specimen in both axes for multiple sets of cycles at different 

load ratios/stress states: 1:1, 2:1,  1:2, 1:0 and 0:1 (Figure 5.15). The stress-strain relationship at 

each different load ratio is then used to determine elastic constants for the test specimen. Similar 

methodologies used in industry also exist (Blum et al., 2004). 

A revised version of the MSAJ biaxial test profile was used to obtain comparative test data for the 

validation of the predictive model (Figure 5.16). Cycling the applied load for each of the different 

stress states was included in the profile in order to mechanically condition the specimen (Bridgens, 

2005). Conditioning results in the same strains being exhibited in the fabric for repeated cycles a 

given stress state.  This process ensures that the behaviour used to calculate an elastic constant is 

not the initial behaviour, but the behaviour that more closely represents the medium to long term 

response of a fabric in service, e.g. wind and snow acting on a fabric structure. This is important as it 

is medium to long term behaviour that is considered when a designing fabric structure.  
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Figure 5.16 Modified Membrane Structures Association of Japan (MSAJ) biaxial test profile showing 

load cycles, profile shown is for Ferrari 702 (PVC/PES) fabric, conditioning cycles in italics 

Sets of cycles at the 1:1 load ratio are repeated between each of the non 1:1 load ratios. By performing 

the tests in this way, the stress-strain behaviour for one set of non 1:1 cycles are not influenced by a 

preceding set of non 1:1 cycles (Bridgens, 2005). This allows for multiple biaxial stress ratios to be 

applied to a single test specimen. 

Load is controlled during a biaxial test because the ranges of stress are known and the ranges of 

strains are unknown. Minimum and maximum loads in both yarn directions for each fabric were 

determined to create the load profile for each of the fabrics tested (Table 5.4). Typically, biaxial tests 

are performed to a maximum stress of 25% of the ultimate tensile strength (UTS) of the material 

being tested, as this is approximately the level of stress at which tear propagation occurs (Happold 

et al., 1987) and is therefore the maximum value that would be allowed in design. This criterion was 

applied to the testing performed and the profile increases the stress to a value not exceeding 25% of 

the UTS in either the warp or fill directions. Note that the maximum stress can vary between load 

ratios when a fabric has different UTSs in the warp and fill.  

The load is then returned to the minimum stress, which is no less than 1% of the UTS in the weaker 

of the warp or fill directions, or a minimum stress of 1kN/m. The 1kN/m limit upon the minimum 

stress was imposed by the capabilities of the test rig used. The minimum load the test rig is capable 

of maintaining in each axis is 0.25kN which, owing to the dimensions of the specimens, is equivalent 

to a stress 0.83kN/m. This value was rounded to 1kN/m to ensure that the applied load stayed in the 

range of values that could be stabilised by the test rig.  
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Table 5.4 Determining minimum and maximum biaxial loading for load ratios 

Fabric Yarn direction 
UTS 1% UTS 25% UTS Min. load Max. load Duration 

(kN/m) (kN/m) (kN/m) (kN/m) (kN/m) (Hours) 

702 
Warp 60 0.60 15 

1.00 
15 

6.6 
Fill 56 0.56 14 14 

1202 
Warp 112 1.12 28 

1.12 
28 

13.4 
Fill 112 1.12 28 28 

B18089 
Warp 140 1.40 35 

1.20 
35 

14.8 
Fill 120 1.20 30 30 

B18059 
Warp 160 1.60 40 

1.40 
40 

17.2 
Fill 140 1.40 35 35 

ATEX3000 
Warp 60 0.60 15 

1.00 
15 

7.0 
Fill 60 0.60 15 15 

ATEX5000 
Warp 100 1.00 25 

1.00 
25 

12.0 
Fill 100 1.00 25 25 

 

Load rates in each yarn direction will differ as the maximum load applied to each axis in a single cycle 

can differ. To ensure a consistent stress strain response at different rates (§5.2.1), a load rate of 

2kN/m per min in the axis undergoing loading to 25% UTS was applied to all tests. This loading rate 

was chosen as it results in a low displacement rate (i.e. below 50mm/min) for all fabrics tested. This 

loading rate resulted in individual cycle times of between 7 and 15 minutes, depending on the fabric.  

Careful manual loading of the test specimen was required up to the 1kN/m value. However, by 

performing this procedure, strain is not zero at the start of the test profile, as a small amount of strain 

will occur at 1kN/m of stress. As the data is to be used for comparison with the model, the magnitudes 

of the strains are important and it is not appropriate to use an arbitrary value of strain which can be 

used when it is only the gradient that is of interest. Therefore, it was necessary to record a value of 

displacement which corresponded to zero strain at zero load before the loading of the specimen up 

to 1kN/m. This value of displacement was then used in calculating the strains during the test.  

A load  factor of 0.95 was required to adjust the applied load to ensure the level of stress in the centre 

of the specimen is as expected (Bridgens, 2005). This factor is required to account for higher biaxial 

stress around the periphery of the specimen, i.e. a variation over the surface of the specimen, which 

is caused by the arms of the specimen. While slits cut in the arms of specimen reduce this variation 

of stress, the load applied during testing must be adjusted to account for any variation, which is 

determined using an FE model for each specimen size (Bridgens, 2005). 

Three biaxial tests were performed on each of the six different fabrics to ensure that the data was 

representative of the materials, i.e. did not contain experimental error. Testing was conducted at 23°C 

± 0.5°C and 50% ± 1% relative humidity in a room with environmental controls. Results of all of the 

tests are included in the Appendices. 
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5.4 Model output 

5.4.1 Evaluating model output 

The model was run for data points over all cycles recorded during a biaxial test performed on each 

of the six fabrics. Comparative time-strain plots for the test data and the model output provide a good 

visual assessment of the quality of the models (Figure 5.17 – Figure 5.24). Time-strain, as opposed to 

stress-strain plots, help to draw visual comparisons between the model results and test data. 

Comparisons have been made both with and without residual strain included in consecutive cycles. 

Residual strains have been removed by a process of 1) subtracting the value of strain observed or 

predicted at the first point in a given load cycle from every point in the cycle, and  2) subtracting a 

proportion of the difference between the strains at the start and end of each load cycle from every 

point in the cycle. Therefore, the first and last point of each cycle is set to zero strain.  

The time-strain plots provide an overview of the results for all model formulations, allowing 

comparison between the formulations by comparing the magnitude of the strains for given stress 

ratios. The magnitude of the strains at any point in the profile can be compared between the test data 

and model outputs. It is these plots that will allow the success of the look-up function to be observed, 

as hysteresis is present in the plots of test results and model output. Presenting the results in this 

manner also allows the relative magnitude of the strains between different load ratios to be 

compared, determining whether increases seen in test data are comparable to increases in model 

predictions.  

A numerical assessment has also been performed which provides a quantitative means to examine 

the models’ predictions of stress-strain behaviour by comparing the magnitude of strains. A 

numerical comparison of the results obtained using the different formulations allows for assessment 

of the quality of the model between cycles at different load ratios, yarn directions, fabrics tested and 

results overall. This is particularly useful should results include good and poor predictions at 

different load ratios as it can help identify particular load conditions where model performance is 

more accurate compared to others. Root mean square error (RMSE) values (Equation 5.6) have been 

calculated to provide a measure of quality of the model’s output and to compare the predictions 

between the different model formulations. Normalised root mean square error (NRMSE) allows for 

comparison between the results of different fabric types and yarn directions as results are 

normalised over the range of strains exhibited by the tested material in each yarn direction. 

𝑅𝑀𝑆𝐸 = √
∑ (𝜀𝑡𝑒𝑠𝑡 − 𝜀𝑚𝑜𝑑𝑒𝑙)2𝑛

1

𝑛
 Equation 5.6 

where n = total number of strain values being compared, εtest = measured strains obtained from test 

data, and εmodel = predicted strains 
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Response surfaces (Figure 5.25 – Figure 5.30) have also been used to visualise the predicted data. As 

the models generate stress-strain response at a number of different load ratios, response surfaces 

offer a means to visualise the data in a single plot. However, when viewing the surfaces, it is important 

to note that values of strain corresponding to stresses between the ratios actually recorded during 

testing are derived by interpolating between the recorded strains. This approximation may not be 

representative of the true fabric behaviour and the surface may be misleading. Calculating 

differences in strains from interpolated values would not provide a reliable means of comparison, 

thus the time-strain plots used for this purpose. However, response surfaces are useful for comparing 

the relative error of the stress-stress-strain interaction between test data and predicted data. 

Surfaces presented here have been generated using the loading half of the third cycle in each cycle 

set at the five different load ratios: 1:1, 2:1, 1:1, 1:0 and 0:1. Mean values of the loading and unloading 

predictions and test data have been used to compare results in this way (Bridgens, 2005). However, 

an approach using mean values was not used as the novel non-linear (look-up) formulation predicts 

loading and unloading differently unlike the linear model formulations. Comparison of loading data 

was chosen over unloading (or both) as it is loading data that is typically used in design. 

5.4.2 Comparison with test data and previous predictive models 

The predicted strain histories for the Ferrari 702 and 1202 PVC/PES fabrics (Figure 5.17 and Figure 

5.18) appear very well correlated with test data for all model formulations. The correlation that is 

observed between the test data and predictions made by the final (look-up model) formulation is 

extremely good for both of the PVC/PES fabrics tested. The model is performing the novel function 

of predicting the non-linear load response and hysteresis of the materials. The 702 fill and 1202 warp 

strains are especially well correlated with test data, where the model has performed well in 

predicting the initial loading curve. 

The accuracy of the look up model in predicting the residual strain must be emphasised. Comparisons 

of the initial 1:1 cycles show that the magnitude of the residual strains occurring during biaxial 

testing is replicated in the model’s predictions for the Ferrari PVC/PES fabrics (Figure 5.19 and 

Figure 5.20). Existing linear models cannot do this. However, if the look-up model is unable to 

replicate the residual strain in the first cycle then the accuracy of the model in subsequent cycles is 

reduced. With accurate prediction of the initial load cycle, agreement of residual strains for 

subsequent cycles is highly accurate. This is demonstrated by matching the observed and predicted 

strains at the end of the first cycle and then comparing the residuals for the subsequent cycles (Table 

5.7). Values of strain are small, ranging from 0.7% to 7.4% of the maximum strain recorded during 

testing for the initial cycles compared. Note that these values are absolute error expressed as a 

percentage of the range, not NRMSE values.  
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Comparing the calculated RMSE values confirms the observation made of the visual results for the 

PVC/PES fabrics (Table 5.5 and Table 5.6). Without removing the residual strain from the model 

predictions and test results, the final model formulation is more accurate than the two linear 

formulations. For example, NRMSE values for the entire fill strain history for Ferrari 702 is only 6.8% 

compared to 39.7% and 38.2% for the linear sinusoidal and sawtooth representations, respectively. 

Note that the two linear yarn stiffness models cannot predict the large strain encountered in the 

initial loading cycle. The RMSE/NRMSE values for the final look-up model formulation are influenced 

by the model’s accuracy in predicting the initial loading curve.  

An alternative comparison of the different formulations can be made with the residual strain 

removed. This assesses model accuracy at different load ratios and for all cycles after the first cycle. 

This will improve the observed accuracy of linear model formulations. 

The NRMSE values calculated for the entire test profile indicate that the sawtooth and linear 

sinusoidal model formulations are more accurate when compared to the final formulation if residual 

strains are removed. For both the PVC/PES fabrics, the predictions are well correlated with the 

experimentally obtained data for the load ratios other than the 1:0 and 0:1 in both the warp and fill 

yarn directions. The inaccuracy of the final formulation overall can be attributed to its predictions of 

negative strains at 1:0 and 0:1 load ratios, where the NRSME values can be seen to be high for the 

final model (see highlighted values in Table 5.5 and Table 5.6). The result indicates that the final 

formulation is not replicating the mechanisms that resists compression in the yarn directions, but 

that is represented in the liner formulations, for example compression of the coating or compression 

of the yarns.  

It should be noted that the linear formulations also make good strain predictions despite the best fit 

input data they rely upon. NRMSE values for the linear yarn stiffness models range between 9.3% 

and 11.1%. The linear formulations more accurately predict negative strains during the 1:0 and 0:1 

load ratios in three of the four instances such strains occur for the two materials. 
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Figure 5.17 Comparison with test and model data for Ferrari 702 (PVC/PES) 
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Table 5.5 Comparison of test and model data for Ferrari 702 (PVC/PES), Root Mean Square Error 

(RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of strains 

(NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 

Load ratio (w:f)  1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 
 

LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 1.2 1.3 1.3 1.3 1.5 1.2 1.2 1.5 2.1 1.4 1.4 1.3 

NRMSE 18.7 21.7 20.3 20.6 23.8 20.0 18.6 23.9 33.6 21.8 22.6 21.4 

Fill 
RMSE 0.5 0.4 0.2 0.4 0.4 0.2 0.7 0.4 0.4 0.2 0.4 0.4 

NRMSE 8.5 6.8 3.7 6.8 7.4 3.7 11.1 6.0 6.5 2.8 6.8 6.0 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.2 0.1 0.3 0.2 0.2 0.2 0.6 0.3 0.9 0.2 0.4 0.2 

NRMSE 3.5 2.4 7.0 4.9 3.4 4.0 12.7 5.8 19.2 3.9 8.4 4.6 

Fill 
RMSE 0.2 0.1 0.3 0.2 0.3 0.2 1.3 0.2 0.5 0.3 0.5 0.2 

NRMSE 3.9 3.0 5.8 4.9 6.8 4.9 27.1 4.6 10.0 5.8 10.5 5.1 
 

SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 2.6 3.1 3.2 3.5 3.7 3.5 3.4 3.7 4.1 3.6 3.4 3.4 

NRMSE 41.9 49.5 51.2 56.2 59.3 55.7 54.5 60.0 66.3 58.1 55.5 54.2 

Fill 
RMSE 1.8 2.2 2.4 2.2 2.2 2.4 2.8 2.3 2.3 2.6 2.3 2.3 

NRMSE 31.3 36.9 40.7 37.7 37.2 41.2 47.5 39.7 38.8 43.6 39.7 38.7 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.5 0.3 0.5 0.4 0.1 0.4 0.8 0.4 0.6 0.3 0.5 0.4 

NRMSE 10.9 6.2 10.9 7.4 2.0 7.3 16.0 9.0 13.6 6.4 9.9 8.1 

Fill 
RMSE 0.5 0.4 0.1 0.4 0.6 0.4 0.9 0.3 0.7 0.5 0.5 0.4 

NRMSE 10.2 7.8 2.8 8.3 12.1 9.3 18.8 7.1 15.2 10.3 11.1 8.9 
 

SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 2.6 3.0 3.2 3.4 3.5 3.4 3.5 3.7 3.8 3.6 3.4 3.3 

NRMSE 41.3 49.0 51.9 55.7 57.1 55.2 56.1 59.4 61.3 57.5 54.7 53.6 

Fill 
RMSE 1.8 2.1 2.2 2.1 2.2 2.3 2.4 2.3 2.4 2.5 2.2 2.2 

NRMSE 30.1 35.6 37.3 36.4 37.9 39.8 41.5 38.4 41.1 42.2 38.2 37.3 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.5 0.3 0.5 0.4 0.2 0.4 0.7 0.5 0.3 0.4 0.4 0.4 

NRMSE 10.8 7.1 10.4 8.5 3.5 8.4 14.4 10.1 6.8 7.5 9.3 8.6 

Fill 
RMSE 0.5 0.4 0.2 0.4 0.5 0.5 0.6 0.4 0.6 0.5 0.5 0.4 

NRMSE 10.2 8.8 4.3 9.2 10.9 10.5 12.1 7.9 11.9 11.3 10.0 9.4 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Figure 5.18 Comparison with test and model data for Ferrari 1202 (PVC/PES) 
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Table 5.6 Comparison of test and model data for Ferrari 1202 (PVC/PES), Root Mean Square Error 

(RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of strains 

(NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 

Load ratio (w:f)  1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 
 

LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 0.2 0.3 0.6 0.6 1.1 0.6 0.8 0.9 4.6 0.7 1.6 0.7 

NRMSE 2.5 3.9 7.0 7.7 12.6 7.4 9.2 10.5 55.2 8.7 19.1 8.1 

Fill 
RMSE 0.6 0.9 1.4 1.0 0.8 1.3 1.4 1.1 0.6 1.5 1.1 1.1 

NRMSE 6.8 10.3 16.4 11.7 9.8 14.9 16.5 13.5 7.1 17.4 13.0 13.0 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.2 0.2 0.4 0.3 0.3 0.3 0.4 0.6 4.2 0.3 1.4 0.3 

NRMSE 2.1 2.4 4.8 3.5 3.4 3.9 5.1 7.4 51.0 3.1 16.6 4.1 

Fill 
RMSE 0.2 0.3 0.2 0.4 0.6 0.4 0.6 0.2 1.2 0.4 0.5 0.4 

NRMSE 3.0 4.9 2.8 7.1 10.9 7.1 9.8 4.0 20.8 7.0 9.3 6.4 

 
SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 4.1 4.7 4.8 5.0 5.2 5.0 5.0 5.2 5.2 5.1 4.9 4.9 

NRMSE 48.7 56.2 57.0 59.9 62.5 59.7 60.5 62.6 62.0 60.9 59.1 58.6 

Fill 
RMSE 3.6 4.1 4.4 4.2 4.1 4.5 4.5 4.4 4.1 4.7 4.3 4.2 

NRMSE 41.8 48.5 51.4 49.6 47.8 52.8 52.9 51.5 48.6 55.4 50.1 50.0 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.8 0.3 0.4 0.3 0.3 0.3 0.5 0.4 0.9 0.3 0.5 0.4 

NRMSE 10.1 3.7 5.1 3.6 3.1 3.5 5.8 4.9 10.7 3.6 6.0 5.2 

Fill 
RMSE 0.7 0.4 0.2 0.4 0.7 0.5 0.6 0.4 1.0 0.5 0.6 0.5 

NRMSE 12.8 6.9 3.3 7.6 12.7 8.5 11.1 6.4 17.8 8.7 10.4 8.9 

 
SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 4.1 4.7 4.8 5.0 5.2 5.0 5.1 5.2 5.4 5.1 5.0 4.9 

NRMSE 48.8 56.3 57.5 60.1 62.1 59.9 61.1 62.8 64.2 61.0 59.5 58.7 

Fill 
RMSE 3.4 3.9 4.1 4.0 4.0 4.3 4.2 4.2 4.2 4.5 4.1 4.1 

NRMSE 39.9 46.5 48.1 47.5 47.7 50.8 48.9 49.5 49.8 53.4 48.3 48.0 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.8 0.3 0.5 0.4 0.2 0.4 0.5 0.5 1.0 0.3 0.5 0.4 

NRMSE 9.7 4.1 5.5 4.5 2.2 4.3 6.2 5.9 11.7 3.9 6.4 5.4 

Fill 
RMSE 0.7 0.4 0.2 0.5 0.7 0.6 0.4 0.4 0.8 0.6 0.6 0.5 

NRMSE 12.5 7.6 3.4 8.3 11.3 9.5 7.4 6.8 14.2 9.9 9.6 9.1 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Figure 5.19 Initial load cycles for 702 (PVC/PES) indicating increasing residual strain 
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Figure 5.20 Initial load cycles for 1202 (PVC/PES) indicating increasing residual strain 
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Table 5.7 Difference in minimum strain between of initial cycles 

Fabric End of cycle No. 
Difference in strain (%) 

Difference strain as % of maximum 
test strain (%) 

Warp Fill Warp Fill 

702 

1 0.00 0.00 - - 

2 0.12 0.07 2.3 1.4 

3 0.15 0.04 2.8 0.7 

4 0.19 0.10 3.6 2.0 

1202 

1 0.00 0.00 - - 

2 0.15 0.15 2.0 2.2 

3 0.55 0.38 7.5 5.4 

4 0.35 0.15 4.7 2.2 

 

Observing the results of the Verseidag B18089 and B18059 PTFE/glass fabrics (Figure 5.21 and 

Figure 5.22) it appears that all model formulations have reduced accuracy when compared to that 

achieved in predicting the behaviour of PVC/PES fabrics. For the B18059, the final formulation is 

failing to find a solution for the 1:0 cycles, resulting in spikes in the predicted strains at this load ratio. 

However, the 1:1 fill cycles predicted by the final model formulation for both the B18089 and B18059 

fabrics show very similar magnitude of strains when compared to test data. NRMSE values (Table 5.8 

and Table 5.9) for these 1:1 fill cycles, where test fill strains are positive and warp strains are negative 

or small, are more accurate than the linear models by a margin exceeding that of the PVC/PES 

comparisons.  

The NRMSE values are best overall for the sawtooth model, 13.7% and 13.8%, for the warp and fill, 

respectively, excluding the 1:0 fill data and 0:1 warp data. However, poor accuracy when predicting 

negative fabric strain is exhibited by all model formulations for the PTFE/glass fabrics tested. A 

coating compressive stiffness factor was used by Bridgens (2005) to improve the prediction at 

negative strains. However, factors calibrated against comparative data are not being used to compare 

model formulations here. Better understanding of the compressive mechanisms and the ability to 

determine them through simple tests is needed to incorporate such mechanisms in a truly predictive 

model.  

The magnitude of the strains PD Interglas ATEX3000 and ATEX5000 silicone/glass fabrics (Figure 

5.23 and Figure 5.24) is also more accurately predicted by the linear model formulations when 

compared to the final look-up model formulation. Again, for the 1:1 cycles the RMSE/NRMSE values 

show that the look-up model is more accurate when small or negative strains are not occurring. 

While the final model formulation does not need biaxial test data in order to make predictions, results 

of the PTFE- and silicone glass fabrics indicate that negative stains are not always adequately 

predicted and, therefore, the underlying mechanisms need to be modelled more accurately. 
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Figure 5.21 Comparison with test and model data for Verseidag B18089 (PTFE/glass) 
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Table 5.8 Comparison of test and model data for Verseidag B18089 (PTFE/glass), Root Mean Square 

Error (RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of strains 

(NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 

Load ratio (w:f)  1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 

 
LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 2.0 1.7 0.6 1.8 4.6 1.5 1.8 2.1 12.0 1.3 4.3 2.2 

NRMSE 25.0 22.0 7.7 23.3 58.0 19.3 22.6 26.0 151.2 16.9 53.9 28.0 

Fill 
RMSE 0.7 0.4 2.3 0.6 2.7 0.2 4.3 1.4 8.2 0.2 3.2 1.4 

NRMSE 10.6 5.7 34.7 8.7 40.8 3.6 65.1 21.6 122.8 3.7 48.3 21.6 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.7 0.4 2.3 0.6 2.7 0.2 4.3 1.4 8.2 0.2 3.2 1.4 

NRMSE 10.6 5.7 34.7 8.7 40.8 3.6 65.1 21.6 122.8 3.7 48.3 21.6 

Fill 
RMSE 0.6 0.2 2.6 0.4 2.0 0.8 22.8 1.2 0.8 0.2 7.8 1.3 

NRMSE 7.3 2.4 31.8 5.6 24.2 10.5 282.2 14.6 9.6 2.3 96.7 16.4 

 
SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 2.4 2.3 0.8 2.5 4.4 2.2 0.8 2.6 6.9 2.0 3.1 2.6 

NRMSE 29.8 29.3 9.7 31.0 55.7 27.5 9.6 33.5 87.6 25.7 39.7 32.3 

Fill 
RMSE 1.6 1.8 4.0 1.7 1.1 2.1 6.9 1.5 1.0 2.3 3.1 2.2 

NRMSE 15.7 17.3 39.0 16.9 10.9 20.7 67.6 14.7 9.7 22.2 30.1 21.7 

2) Residual strain removed (No residual) 

Warp 
RMSE 1.2 1.1 0.7 1.2 3.6 1.4 2.0 0.6 5.7 1.2 2.4 1.6 

NRMSE 17.5 16.8 10.8 17.6 53.6 20.7 30.3 9.3 86.1 17.6 35.9 24.1 

Fill 
RMSE 1.1 1.5 1.1 1.5 3.0 1.9 6.3 0.8 2.4 1.4 2.7 1.7 

NRMSE 13.8 18.1 13.4 18.8 37.2 23.1 78.2 9.4 29.4 17.9 33.4 20.5 

 
SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 1.6 1.5 0.7 1.7 2.6 1.4 0.8 1.9 3.5 1.2 1.8 1.6 

NRMSE 19.7 19.3 8.4 21.0 33.4 17.5 10.4 23.5 44.5 15.6 23.3 20.7 

Fill 
RMSE 2.6 2.8 4.2 2.7 2.2 3.1 5.4 2.5 2.2 3.3 3.3 3.0 

NRMSE 25.5 27.2 41.1 26.7 22.1 30.5 52.9 24.7 21.4 32.1 32.4 29.5 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.6 0.6 0.6 0.6 2.0 0.8 1.6 0.3 2.9 0.7 1.3 0.9 

NRMSE 9.6 8.8 8.9 9.0 30.3 11.8 23.7 4.3 43.4 10.8 19.9 13.7 

Fill 
RMSE 0.9 0.9 0.9 0.9 2.0 1.2 4.5 0.6 1.7 1.0 1.9 1.1 

NRMSE 10.6 11.0 11.0 10.8 24.8 14.8 55.5 8.0 21.4 12.1 23.4 13.8 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Figure 5.22 Comparison with test and model data for Verseidag B18059 (PTFE/glass) 
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Table 5.9 Comparison of test and model data for Verseidag B18059 (PTFE/glass), Root Mean Square 

Error (RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of strains 

(NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 

Load ratio (w:f)  1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 

 
LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 2.3 2.1 1.5 2.3 6.7 1.8 6.6 2.6 19.9 1.6 7.1 3.0 

NRMSE 22.9 21.3 14.9 22.7 67.7 18.5 65.9 26.1 200.3 16.5 71.6 30.6 

Fill 
RMSE 2.1 1.9 2.3 2.2 3.3 1.7 19.3 2.5 3.1 1.4 6.8 2.2 

NRMSE 16.7 14.6 18.1 17.5 25.4 13.1 150.7 19.4 24.1 10.7 53.3 17.5 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.7 0.5 3.6 0.8 3.6 1.0 8.8 1.6 16.8 0.4 6.3 2.0 

NRMSE 9.5 6.2 47.1 10.3 47.4 13.3 116.9 21.6 222.5 5.8 83.2 26.5 

Fill 
RMSE 0.7 0.4 3.9 0.5 1.5 0.4 22.7 1.0 1.6 0.7 7.8 1.7 

NRMSE 7.0 4.0 38.0 5.2 15.1 4.3 222.0 10.1 15.9 6.8 75.9 16.2 

 
SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 1.5 1.5 0.5 1.6 3.8 1.3 0.8 1.9 5.6 1.2 2.4 1.9 

NRMSE 15.2 15.0 5.1 16.4 38.6 12.9 7.6 19.0 56.5 12.5 24.5 19.0 

Fill 
RMSE 2.2 2.5 4.8 2.4 1.9 3.0 5.6 2.2 2.2 3.3 3.3 3.0 

NRMSE 17.5 19.3 37.6 18.6 15.0 23.4 43.7 17.4 17.1 26.0 25.8 23.2 

2) Residual strain removed (No residual) 

Warp 
RMSE 1.5 1.6 0.7 1.6 4.3 1.8 1.7 1.3 7.4 2.3 3.0 2.1 

NRMSE 20.3 21.6 9.1 20.7 57.3 23.3 22.6 17.5 97.8 30.2 40.2 28.2 

Fill 
RMSE 1.7 2.2 0.9 2.1 3.6 2.4 4.7 1.7 4.5 2.8 2.9 2.3 

NRMSE 16.7 21.4 9.1 20.7 35.6 23.3 46.0 16.2 43.7 27.1 28.7 22.4 

 
SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 0.6 0.5 0.6 0.7 1.7 0.4 0.7 1.0 2.3 0.5 1.1 0.8 

NRMSE 6.0 5.4 5.5 7.0 17.0 3.7 7.3 9.9 22.9 5.2 10.6 8.4 

Fill 
RMSE 3.3 3.5 5.0 3.4 3.1 4.0 5.5 3.3 3.3 4.3 4.0 3.8 

NRMSE 25.5 27.3 38.9 26.5 23.9 31.2 42.9 25.4 25.9 33.8 31.0 29.6 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.6 0.7 0.7 0.7 2.2 0.9 1.7 0.5 3.9 1.4 1.7 1.1 

NRMSE 8.5 9.6 9.4 8.8 29.5 11.4 22.2 6.9 51.8 18.7 22.1 14.6 

Fill 
RMSE 1.0 1.1 1.0 1.0 2.2 1.3 4.5 1.1 3.1 1.7 2.2 1.4 

NRMSE 10.2 10.9 9.7 10.2 21.7 12.9 44.2 10.3 30.0 16.6 21.2 13.4 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Figure 5.23 Comparison with test and model data for Interglas ATEX3000 (silicone/glass) 
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Table 5.10 Comparison of test and model data for PD Interglas ATEX3000 (silicone/glass), Root Mean 

Square Error (RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of 

strains (NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 
Load ratio (w:f) 

 
1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 

 
LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 0.8 0.7 1.4 0.7 0.4 1.0 1.8 0.8 2.1 1.0 1.2 0.9 

NRMSE 15.5 14.3 27.4 13.5 6.9 18.9 35.4 16.2 39.9 20.0 23.1 17.5 

Fill 
RMSE 1.2 1.2 0.5 1.6 2.0 1.6 2.2 1.8 2.0 1.5 1.6 1.5 

NRMSE 18.5 18.1 7.2 24.7 29.5 23.5 32.5 26.2 29.5 22.5 24.3 22.2 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.9 0.8 1.4 0.8 0.3 0.8 1.9 1.1 2.0 0.8 1.2 0.9 

NRMSE 19.6 17.2 29.5 17.1 7.2 16.5 40.3 23.4 42.2 15.9 25.4 19.3 

Fill 
RMSE 0.4 0.5 0.7 0.4 0.7 0.5 3.6 0.3 0.8 0.5 1.3 0.5 

NRMSE 6.0 7.4 10.9 6.5 11.8 8.0 57.3 4.3 13.2 8.3 20.1 8.3 

 
SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 0.6 0.7 0.2 0.8 1.5 0.7 0.3 0.9 2.6 0.7 1.1 0.9 

NRMSE 12.5 13.2 4.1 14.7 29.7 14.4 5.9 17.9 49.4 13.2 21.5 16.4 

Fill 
RMSE 0.3 0.3 1.1 0.3 0.1 0.4 2.1 0.3 0.2 0.5 0.8 0.5 

NRMSE 4.7 4.9 15.8 4.7 1.7 5.8 31.9 4.0 2.7 7.0 12.1 7.2 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.1 0.0 0.7 0.1 0.8 0.1 1.1 0.2 1.8 0.1 0.8 0.4 

NRMSE 1.3 0.8 13.7 1.6 16.4 1.1 22.8 4.8 37.7 1.4 15.7 7.8 

Fill 
RMSE 0.3 0.1 0.9 0.2 0.3 0.1 2.4 0.4 0.3 0.1 0.8 0.4 

NRMSE 4.8 1.6 14.4 2.6 4.3 1.2 38.3 5.7 5.5 1.1 13.5 6.1 

 
SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 0.4 0.4 0.2 0.5 1.0 0.5 0.4 0.7 1.4 0.4 0.7 0.6 

NRMSE 7.9 8.6 3.7 10.1 18.5 9.8 7.2 13.3 27.3 8.6 13.2 10.8 

Fill 
RMSE 0.5 0.6 1.0 0.5 0.4 0.6 1.2 0.5 0.4 0.7 0.7 0.6 

NRMSE 8.1 8.5 14.9 8.2 5.5 9.5 17.6 7.3 6.6 10.6 10.4 9.4 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.1 0.1 0.4 0.1 0.4 0.0 0.6 0.2 0.9 0.0 0.4 0.2 

NRMSE 2.0 1.1 9.3 1.9 9.1 0.7 13.1 4.7 18.7 0.7 8.5 5.0 

Fill 
RMSE 0.3 0.1 0.7 0.2 0.1 0.1 1.3 0.4 0.2 0.1 0.5 0.3 

NRMSE 5.4 2.2 10.8 3.2 2.2 1.7 20.4 5.9 3.1 1.5 8.0 5.1 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Figure 5.24 Comparison with test and model data for Interglas ATEX5000 (silicone/glass) 
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Table 5.11 Comparison of test and model data for PD Interglas ATEX5000 (silicone/glass), Root Mean 

Square Error (RMSE) (percentage strain) and Root Mean Square Error Normalised over the range of 

strains (NRMSE) (percentage of range) 

Load cycle  1 2 3 4 5 6 7 8 9 10 All All’† 
Load ratio (w:f) 

 
1:1 1:1 2:1 1:1 1:2 1:1 1:0 1:1 0:1 1:1 - - 

 

LOOK-UP MODEL 

1) Raw data 

Warp 
RMSE 2.7 2.7 4.4 2.7 0.4 3.5 5.3 3.0 4.8 3.5 3.6 3.1 

NRMSE 30.7 30.9 50.0 30.2 4.6 39.0 59.4 33.8 54.1 39.6 40.1 34.6 

Fill 
RMSE 1.7 1.7 0.8 2.3 3.0 2.2 14.7 2.6 2.9 2.0 5.1 2.1 

NRMSE 14.0 13.9 6.6 19.2 25.4 18.0 122.2 21.5 24.4 16.9 42.6 17.8 

2) Residual strain removed (No residual) 

Warp 
RMSE 1.7 1.4 2.9 1.4 0.9 1.2 3.8 2.2 5.8 1.3 2.7 1.8 

NRMSE 21.9 17.8 36.9 17.2 11.8 15.7 47.3 28.0 73.3 15.9 34.0 22.1 

Fill 
RMSE 0.7 0.6 2.1 0.8 1.1 0.6 17.0 0.6 1.3 0.8 5.5 1.0 

NRMSE 6.1 5.4 19.4 7.2 10.2 5.8 158.6 5.8 11.7 7.1 51.2 9.5 

 
SINUSOIDAL MODEL 

1) Raw data 

Warp 
RMSE 0.6 0.6 0.9 0.7 2.5 0.6 0.8 1.1 4.5 0.6 1.8 1.1 

NRMSE 6.4 6.8 10.1 8.2 28.5 6.5 9.2 12.0 50.4 6.3 19.8 12.8 

Fill 
RMSE 0.8 0.9 2.6 0.8 0.3 1.0 3.4 0.6 0.3 1.1 1.5 1.2 

NRMSE 6.8 7.1 21.3 6.5 2.3 8.2 28.0 5.1 2.9 9.1 12.5 9.8 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.1 0.2 1.5 0.2 2.0 0.2 1.9 0.3 4.1 0.3 1.6 0.9 

NRMSE 1.4 1.9 18.4 2.4 24.7 2.4 24.1 3.8 51.0 3.3 20.5 11.1 

Fill 
RMSE 0.4 0.1 2.0 0.1 0.7 0.1 3.9 0.7 0.8 0.1 1.4 0.8 

NRMSE 3.5 1.1 18.8 1.3 6.4 0.9 36.2 6.3 7.5 1.3 13.5 7.5 

 
SAWTOOTH MODEL 

1) Raw data 

Warp 
RMSE 0.2 0.2 0.7 0.3 1.2 0.1 0.5 0.6 2.1 0.1 0.8 0.6 

NRMSE 1.7 2.0 7.5 3.3 13.7 1.6 5.4 7.2 23.6 1.5 9.5 6.3 

Fill 
RMSE 1.3 1.3 2.3 1.2 0.8 1.4 2.0 1.0 0.9 1.5 1.5 1.4 

NRMSE 10.5 10.8 19.1 10.2 6.9 11.9 16.7 8.6 7.5 12.8 12.1 11.8 

2) Residual strain removed (No residual) 

Warp 
RMSE 0.2 0.2 1.1 0.2 0.9 0.1 1.3 0.5 2.0 0.1 0.9 0.5 

NRMSE 2.8 2.0 13.6 2.1 11.4 1.3 16.1 5.9 24.5 1.1 11.1 6.8 

Fill 
RMSE 0.6 0.3 1.6 0.3 0.3 0.2 2.3 0.9 0.4 0.2 1.0 0.7 

NRMSE 5.8 3.1 14.6 2.9 2.7 1.9 21.6 8.5 4.1 1.5 9.2 6.6 

All’† = All strain data modified so not to include 1:0 and 0:1 load ratio data 
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Response surfaces (Figure 5.25 – Figure 5.30) compare the accuracy achieved by the final model 

formulation at different load ratios, as well as the relative accuracy in the warp and fill yarn directions. 

The impact of the 1:0 and 0:1 load ratios on the overall accuracy of the model is disproportionately 

large. Therefore, if the biaxial test profiles had contained more load ratios, i.e. 1:3, 2:3 etc., the 1:0 

and 0:1 ratios would not account for such a large proportion of the data and the accuracy of the 

overall accuracy of the final model might have been higher. 
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Figure 5.25 Response surfaces for Ferrari 702 (PVC/PES), model, test data and error 
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Figure 5.26 Response surfaces for Ferrari 1202 (PVC/PES), model, data and error 
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Figure 5.27 Response surfaces for Verseidag B18089 (PTFE/glass), model, data and error 
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Figure 5.28 Response surfaces for Verseidag B18059 (PTFE/glass), model, test and error 
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Figure 5.29 Response surfaces for PD Interglas ATEX3000 (silicone/glass), model, test and error 
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Figure 5.30 Response surfaces for PD Interglas ATEX3000 (silicone/glass), model, test and error 
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5.4.3 Comparisons with plane stress approximations 

Stress-strains plots have been prepared for the third cycle in each cycles set (Figure 5.31 – Figure 

5.36). The RMSE/NRMSE values and the strain history plots only compare the magnitude of the 

strains at each point. This is useful for comparing the different model formulations and to give a 

measure of the overall success of the models. However, calculating average differences in the 

magnitude of the strains over sets of cycles does not provide an indication of model accuracy in 

predicting a single cycle, which could be better or worse over a single cycle. A high average deviation 

of the magnitude of the strains between the test data and the predictions could result from poor 

predictive capabilities at initial/low stress values, i.e. inaccurate predictions at low stress values 

could affect the magnitude of the strains at higher stress values. The stress-strain plots allow for 

comparison of single cycles to be made between test data and model predictions. These plots have 

also been used to compare the model against data fitted to a plane stress framework, i.e. comparison 

with best fit data (§5.4.3). 

Typically, design engineers will use biaxial test results in design and analysis within a plane stress 

framework defined by elastic moduli and Poisson’s ratios. A plane stress framework is used to 

approximate the non-linear hysteretic fabric behaviour with two ‘best fit’ surfaces determined by 

four elastic constants (Equation 5.7). Note that while a linear elastic orthotropic material under 

biaxial load conditions satisfies the reciprocal relationship (Equation 5.8) between stiffnesses and 

Poisson’s ratios, thereby having only three interdependent elastic constants, plane stress theory is 

arguably inappropriate of accurately represent in the material behaviour of architectural fabrics 

(§3.4.3).  As coated woven materials are not homogeneous materials and behave more like a 

mechanism (§4.3.2), values of Young’s’ moduli and Poisson’s ratios determined for architectural 

fabrics do not satisfy reciprocal relationship (Gosling and Bridgens, 2008).  Therefore, while stiffness 

values and Poisson’s ratios are used for approximating best fit surfaces they are essentially four 

arbitrary parameters which are useful to determine planes of best fit to allow design engineers to 

model fabric structure behaviour in analysis software.  

{
𝜀𝑤

𝜀𝑓
} =

[
 
 
 
 

1

𝐸𝑤

−𝑣𝑓𝑤

𝐸𝑓

−𝑣𝑤𝑓

𝐸𝑤

1

𝐸𝑓 ]
 
 
 
 

∙ {
𝜎𝑤

𝜎𝑓
} Equation 5.7 

where ε = strain; σ = stress; E = Young’s modulus; subscripts w and f denote warp and fill respectively; 

Poisson’s ratios vwf = fill direction strain caused by unit strain in the warp direction and vfw = warp direction 

strain caused by unit strain in the fill direction. 

𝜐𝑤𝑓

𝐸𝑤
=

𝜐𝑓𝑤

𝐸𝑓
 Equation 5.8 
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Stress-strain plots have been used to compare test data, predictions made by the final formulation 

and the best fit approximations of the test data (Figure 5.31 – Figure 5.36). Presenting the data in this 

way allows for better visual comparison of the gradients at each of the stress ratios when compared 

to surface plots. In order for the comparisons to be made, and for the best fit approximations to be 

computed for the test data, residual strain is removed from the data and model predictions. Best fit 

constant were calculated using a methodology described by the Membrane Structures Association of 

Japan (MSAJ, 1995) (Table 5.12 – Table 5.17). Lines representing the constant value of stiffness can 

be seen on the stress-strain plots. The best fit elastic constants of the predicted test data are lower 

than for the experiential data. 

Across all the fabrics tested, the linear approximations of plane stress more accurately represent the 

architectural fabrics’ response to load than the predictive model by visual comparison of the data. 

Generally, gradients of the predicted data are well aligned with those of the test data at higher values 

of stress. However, inaccuracies are present in the predictions at low values of stress, indicating that 

while the uniaxial look up function is replicating yarn elongation, the model is failing to accurately 

replicate crimp interchange. As above, the inclusion of a mechanism that resists contraction in the 

yarn direction is missing from the model. 
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Figure 5.31 Stress-strain loading curves used in determining stiffnesses for Ferrari 702 (PVC/PES) 
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Figure 5.32 Stress-strain loading curves used in determining stiffnesses for Ferrari 1202 (PVC/PES) 
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Table 5.12 Best fit elastic moduli for Ferrari 702 (PVC/PES), loading data only 
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All load ratios 

Test 
Y 614 515 0.42 0.35 0.0630 

N 602 524 0.38 0.39 0.0618 

Model 
Y 392 354 0.65 0.59 0.4116 

N 398 350 0.68 0.56 0.4101 

All load ratios 
minus 0 loading 

curves 

Test 
Y 591 499 0.32 0.27 0.0580 

N 586 502 0.31 0.28 0.0580 

Model 
Y 419 376 0.40 0.36 0.1768 

N 423 374 0.41 0.35 0.1767 

 

 

Table 5.13 Best fit elastic moduli for Ferrari 1202 (PVC/PES), loading data only 
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Test 
Y 916 792 0.48 0.42 0.3750 

N 815 887 0.26 0.65 0.2931 

Model 
Y 538 450 0.80 0.66 4.3879 

N 427 575 0.31 1.28 3.3438 

All load ratios 
minus 0 loading 

curves 

Test 
Y 988 858 0.25 0.22 0.0795 

N 975 868 0.24 0.24 0.0794 

Model 
Y 695 574 0.35 0.29 0.3641 

N 662 599 0.28 0.35 0.3613 
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Figure 5.33 Stress-strain loading curves in determining stiffnesses for Verseidag B18089 (PTFE/glass) 
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Figure 5.34 Stress-strain loading curves in determining stiffnesses for Verseidag B18059 (PTFE/glass) 
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Table 5.14 Best fit elastic moduli for Verseidag B18089, loading data only 
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Test 
Y 1537 892 1.27 0.73 0.4334 

N 1418 937 1.06 0.87 0.4128 

Model 
Y 212 202 1.35 1.29 65.2178 

N 268 169 2.09 0.77 58.4740 

All load ratios 
minus 0 loading 

curves 

Test 
Y 1897 1065 0.74 0.41 0.1863 

N 1866 1075 0.71 0.43 0.1863 

Model 
Y 306 325 0.73 0.78 6.3883 

N 332 300 0.88 0.63 6.3379 

 

 

Table 5.15 Best fit elastic moduli for Verseidag B18059, loading data only 
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Test 
Y 1758 1061 1.21 0.73 0.3868 

N 1671 1095 1.08 0.81 0.3796 

Model 
Y 192 210 1.17 1.29 90.1665 

N 185 220 1.08 1.42 89.8264 

All load ratios 
minus 0 loading 

curves 

Test 
Y 2320 1303 0.71 0.40 0.1502 

N 2308 1307 0.70 0.40 0.1502 

Model 
Y 256 313 0.67 0.82 15.9462 

N 269 294 0.76 0.70 15.9074 
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Figure 5.35 Stress-strain loading curves for PD Interglas ATEX3000 (silicone/glass) 
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Figure 5.36 Stress-strain loading curves for PD Interglas ATEX5000 (silicone/glass) 
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Table 5.16 Best fit elastic moduli for PD Interglas ATEX3000, loading data only 
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All load ratios 

Test 
Y 602 489 1.08 0.88 0.3286 

N 643 465 1.26 0.76 0.3165 

Model 
Y 230 254 0.93 1.03 3.0414 

N 252 232 1.16 0.81 2.8847 

All load ratios 
minus 0 loading 

curves 

Test 
Y 802 614 0.66 0.50 0.2179 

N 791 620 0.64 0.52 0.2179 

Model 
Y 266 300 0.58 0.65 0.9053 

N 262 305 0.55 0.68 0.9047 

 

 

Table 5.17 Best fit elastic moduli for PD Interglas ATEX5000, loading data only 
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Test 
Y 632 533 1.14 0.96 1.3928 

N 686 500 1.36 0.80 1.3420 

Model 
Y 168 188 1.13 1.26 42.6615 

N 218 150 1.92 0.70 36.7183 

All load ratios 
minus 0 loading 

curves 

Test 
Y 1079 809 0.57 0.43 0.6316 

N 962 891 0.39 0.58 0.6262 

Model 
Y 252 285 0.64 0.72 4.0259 

N 232 315 0.50 0.91 3.9779 
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5.5 Summary 

Input parameters for the predictive fabric model have been obtained through test methods available 

in typical material testing laboratories. Biaxial testing has been performed on a range of fabrics which 

represent the most common materials used in the construction of tensile fabric structures to 

generate test data for validation of the model.  

The model has been implemented with no modification factors or calibration against biaxial test data. 

The test data has been compared to stress-strain predictions made by different model formulations: 

the improved unit cell model including the novel look-up function; a sinusoidal linear stiffness model; 

and a sawtooth linear stiffness model. For the PVC/PES fabrics, the improved model is more accurate 

than the linear models overall. The improved model replicates the non-linear, hysteric behaviour of 

real fabric behaviour. With residual strains removed, the improved model achieves greater accuracy 

than then linear stiffness models across all fabrics tested for 1:1 load ratios. However, at load ratios 

other than 1:1 the model fails to replicate a mechanism which resists contraction in the yarn 

directions. Further work is needed to identify the mechanisms which limit contraction of the fabric 

and to incorporate them into the predictive model.   
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6.1 Research summary 

This project has focused on the determination and prediction of the material behaviour of 

architectural fabrics. Detailed summaries are provided at the end of the preceding chapters 

and this chapter provides a concise overview of the project’s main conclusions. 

The literature review described the existing level of knowledge regarding architectural fabrics 

and relevant associated testing and modelling practices. Key areas of limited knowledge are: 

1. Although a number of fabric models exist, the majority concern uncoated fabrics and fabric 

deformation for rigid composite forming. There is a lack of models which accurately 

predict the non-linear stiffness characteristics of coated architectural fabrics. Further, 

many existing models require experimental determination of yarn properties, for example 

transverse yarn stiffness, or calibration against test data. 

2. There is a lack of understanding of shear behaviour of architectural fabrics and the 

influence of biaxial tension on shear stiffness.   

3. While shear testing has been performed on woven materials for decades, many shear test 

methodologies are unsuitable for testing of architectural fabrics as they cannot 

simultaneously apply biaxial deformation and shear to a test specimen. Of the methods 

which are suitable for shear testing of architectural fabrics, achieving homogeneity of the 

strain field is an issue.  

6.2 Conclusions 

The aim of this research was to develop an analytical/numerical tool to enable the accurate 

prediction of the non-linear stiffness characteristics of architectural fabrics for analysis of tensile 

fabric structures. A predictive fabric model has been developed using a unit cell modelling 

approach and experimental testing has been carried out to provide model input data and data for 

validation of the model. The conclusions related to the research objectives presented in Chapter 1 

are outlined below. 

Design and fabricate a shear test apparatus suitable for architectural fabrics: 

Comparison of available shear methods demonstrated the suitability of the picture frame shear test 

for characterising shear behaviour of architectural fabrics. A novel picture frame design has been 

fabricated which avoids crushing of the fabric in the corners of the frame and which applies a 

homogenous strain field during testing. The shear angle experienced by a test specimen is less than 

the angle applied by the frame, so instrumentation mounted to the surface of the test specimen is 

required to measure strains. Friction of the corners of the frame should be accounted for when 

determining shear stiffness.  
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Investigate the in-plane shear behaviour of architectural fabrics: 

An improved understanding of shear behaviour has been established. Shear behaviour is shown to 

change with increasing biaxial stress, with greater strain energy required to mobilise shear 

deformation in a highly tensioned fabric. Whether biaxial pretension affects constant values of the 

shear stiffness of the fabric depends on how the stiffness is evaluated from the non-linear, 

hysteretic shear response. The use linear approximations may be problematic for designers as 

consensus is needed on how shear test results should be interpreted. 

Improve the accuracy of the predictive model unit cell model proposed by Bridgens (2005): 

A significant development of the proposed model is the development of a novel look up function 

which uses cyclic uniaxial stress-strain data to enable the model to predict biaxial non-linear, 

inelastic load response and hysteresis. The look up function disposes with the requirement to 

subjectively determine a representation of the yarn moduli, such as linear or multi linear 

representation. Further, each prediction at a given biaxial stress ratio is not made independently of 

a material’s stress-strain history.  

Develop the model to include shear response: 

A shear model was not fully implemented. At the project’s outset, it was not envisaged that 

development of a suitable shear test apparatus would be required. Initial shear testing, and the 

literature review, demonstrated that the existing shear test equipment at Newcastle University was 

unsuitable for use in this project. Following the development of a reliable shear frame, there was 

not time to fully develop a shear model. However, an initial approach has been identified from 

existing shear models. 

Develop suitable testing to provide the model with input parameters: 

Uniaxial testing is used to provide the model with input data and a macrophotography methodology 

has been developed for obtaining measurements of yarn cross sections. Where values of coating 

stiffness are required, bias testing achieves more accurate values than interpretation of uniaxial 

test results. 

Demonstrate the accuracy of the predictive model through a series of comparative tests: 

The predictive unit cell model can replicate the non-linear load response and hysteresis of the 

PVC/PES fabrics tested. Although, without the inclusion of a coating or yarn compression factor, 

such as that used in the earlier model by Bridgens (2005), the model cannot accurately predict 

strains at non 1:1 load ratios. 
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6.3 Recommendations for future work 

There are several ways in which the work presented in this thesis can be taken forward: 

 Further development of the predictive unit cell model. Further developments should 

include accounting for resistance to negative strains, i.e. a mechanism which replicates coating 

and/or yarn compression stiffnesses. This may require development of methods to accurately 

determine yarn and coating compressive properties. The shear model should also be fully 

implemented. 

 Assessment of fabric variability. The predictive model could be used to investigate the 

variability of woven materials by accounting for variability in the properties of the yarns and 

the coating. Values for use in design could then be specified as an envelope of values 

accounting for variation in the materials. The measurements of fabric cross sections collected 

in this study could be used to undertake such an assessment. 

 Reverse engineering of architectural fabrics. The model could be further developed to 

design architectural fabrics with specified material properties, i.e. for given stiffness values the 

model would determine required yarn and coating properties. A project is underway at 

Newcastle University to develop such a model. 

 Interpretation of shear test data. Uncertainty over a choice of a single stiffness value should 

be addressed. This could be achieved with the use of a statistical approach. 

 Comparative shear testing studies. A comparative study of the various shear test 

apparatuses and protocols used in multiple laboratories would quantify the level of 

consistency achieved by the various methods. The studies could also include interpretation of 

shear test results.  

 Picture frame modifications. To reduce or remove friction in the hinges of the frame, 

modification to the frame could include replacement of the self-lubricating bushes with needle 

roller bearings. 
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