
D E S I G N O F R O B U S T A S Y N C H R O N O U S
R E C O N F I G U R A B L E C O N T R O L L E R S F O R PA R A L L E L
S Y N C H R O N I Z AT I O N U S I N G E M B E D D E D G R A P H S

james sebastian guido

Doctor of Philosophy(Ph.D.)
School of Electrical, Electronic, and Computer Engineering

Newcastle University

February 2015

James Sebastian Guido: Design of Robust Asynchronous Reconfigurable Controllers for
Parallel Synchronization using Embedded Graphs, , © February 2015

D E C L A R AT I O N

I, James Sebastian Guido, confirm that this thesis and the work presented in it are
my own achievement.

I have read and understand the penalties associated with plagiarism.

Newcastle, February 2015

James Sebastian Guido

D E D I C AT I O N

Dedicated to the memory of my grandfather Joseph Nicholas Guido, who once
found himself on a similar path to the one that I now walk. Though you left too

early to share your insights with me, thanks for treading the ground first and
making the trip feel less lonely.

April 5, 1923 – June 19, 1986

And to his brother, Carmelo Basil Guido, who was also walking the path as well,
but had his trip cut short. I didn’t know you, but I wish that I had.

May 10, 1915 – December 12, 1944

And to my grandmother Rosalia Anne Guido, who was always ready with words
of encouragement and sage advice. You taught me to always look forward and
not dwell too closely on the foibles and fallacies of the past, but rather to learn
from them and make better decisions in the future. Thanks for being one of the

major pillars in my life, and for helping to shape me into the man that I am today.

September 7, 1923 – December 1, 2014

v

A B S T R A C T

Synchronization is a key System-on-Chip (SoC) design issue in modern technolo-
gies. As the number of operating points under consideration increases, specifica-
tions which are capable of altering key parameters such as the time available for
synchronization and Mean Time Between Failures (MTBF) in response to input from
the user/system become desirable. This thesis explores how a combination of par-
allelism and scheduling, referred to as wagging, can be utilized to construct sched-
ulers for synchronizer designs which are capable of pooling the gain-bandwidth
products of their composite devices, in order to satisfy this requirement.

In this work, we explore the ways in which the areas of graph theory and recon-
figurable hardware design can be applied to generate both combinational and se-
quential scheduler designs, which satisfy the behavior requirement above. Further
to this point, this work illustrates that such a scheduler is primarily comprised of
an interrupt subsystem, and a reconfigurable token ring. This thesis explores how
both of these components can be controlled in absence of a clock signal, as well as
the design challenges inherent to each part.

The final noteworthy issue in this study is with regard to the flow control of
data in a parallel synchronizer that incorporates a First-In First-Out (FIFO) buffer
to decouple the reading and writing operations from each other. Such a structure
incurs penalties if the data rates on both sides are not well matched. This work
presents a method by which combinations of serial and parallel reading operations
are used to minimize this mismatch.

vii

P U B L I C AT I O N S

Some ideas and figures have appeared previously in the following publications:

Guido, James Sebastian, and Alexandre Yakovlev. “Reconfigurable controllers for
synchronization via wagging.” In Proceedings of the 21st edition of the great lakes
symposium on Great lakes symposium on VLSI, pp. 175-180. ACM, 2011.

Guido, James Sebastian, and Alexandre Yakovlev. “Design of Self-Timed Recon-
figurable Controllers for Parallel Synchronization via Wagging.” In IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 23(2):292-305, Feb. 2015 doi:
10.1109/TVLSI.2014.2306176

ix

In my experience, finding design simplicity which copes with the demands of underlying
complexity tends to yield the best rewards. I can also say that the quest for simplicity, is
also usually anything but simple.

A C K N O W L E D G M E N T S

It’s been a lot of fun working at Newcastle University over the past few years. As
my time here draws to a close, my thoughts turn to all of the people that have
helped me over the years. First and foremost is my supervisor Alex Yakovlev, who
helped me navigate from being a fresh out of college Masters student into a decent
researcher. Ghaith Tarawneh assited me in developing a script which formed the
front-end of my SPECTRE logical analysis experiments, and was generally beyond
helpful during the course of my studies. Andrey Mokhov also deserves mention
for his useful discussions which led to one optimization later in this thesis. Robin
Emery also deserves mention, for reminding me to always try and see the big pic-
ture with regards to my work by asking me the all-important question“So what?”

On the more personal side of things, I’d like to thank my mother, Michaelanne,
my father, James, my sister, Rochelle, and my niece and nephews, Magnus, Argyle,
and Iona for being steadfast in their support. I’d also like to thank my good friend
John Parry, for always being there to lend a sympathetic ear when times got rough
or when things didn’t quite go my way. More to that, I’d also like to thank his
brother Richard, Anthony Pearson, and Thomas James for several years’ worth of
wonderful memories.

I could go on and on, but I’ll always be the first to admit that I’m here because
I had the encouragement and support of others. Thanks for making these some of
the best years of my life.

xi

C O N T E N T S

i phd thesis 1

1 introduction 3

1.1 Motivation . 3

1.2 Contributions . 6

1.2.1 Algorithms for Load Balancing in Token Rings via Distributed
Embedded Graphs . 6

1.2.2 Manipulation of Parallelism in a Self-Timed Reconfigurable
Control Device via One-Hot Coding 6

1.2.3 Tolerance of Hard Faults in a Self-Timed Reconfigurable Con-
trol Device via Bypass Paths 7

1.2.4 Flow Control in a FIFO Synchronizer based on Wagging . . . 7

1.3 Organization of Thesis . 7

2 background literature & models 9

2.1 Introduction(Asynchronous Circuits) 9

2.1.1 Properties of Asynchronous Circuits 9

2.1.2 Asynchronous Control Circuits 11

2.1.3 Asynchronous Circuit Primitives 12

2.2 Petri Nets . 15

2.2.1 Pre-sets and Post-sets . 16

2.2.2 Enabling and Firing . 16

2.2.3 Reachability . 17

2.2.4 Other Petri Net Properties . 17

2.3 Signal Transition Graphs . 18

2.3.1 Relation to Petri Nets . 18

2.3.2 State Graphs and Reachability Graphs 19

2.3.3 Complete State Coding . 20

2.3.4 Relative Timing in Signal Transition Graphs 21

2.4 Metastability . 21

2.5 Embedded Cycle Graphs . 24

2.5.1 Basic Graph Definitions . 24

2.5.2 Applications of an Embedded Cycle Graph 25

3 overview of wagging synchronization 27

3.1 Introduction(Synchronization Methods) 27

3.1.1 Synchronization Overview . 27

3.1.2 Cascaded Flip-Flop Synchronization 28

3.1.3 Mean-Time Between Failures in a Cascaded Flip-Flop Syn-
chronizer . 29

3.1.4 FIFO Synchronization . 31

3.2 Wagging Synchronization . 33

3.2.1 Two-way Wagging Buffer . 35

3.2.2 Wagging Synchronizer Concept 35

xiii

xiv contents

3.2.3 Effect of Wagging on the Failure Rate of Cascaded Flip-Flop
Synchronizers . 36

3.2.4 Impact of Incorporating Reconfigurable Hardware Capabil-
ity into a Wagging Synchronizer Design 38

3.2.5 Overheads of Incorporating Reconfigurable Hardware Capa-
bility into a Wagging Synchronizer Design 40

3.2.6 Basic Operation of the Reconfigurable Control Device 41

3.3 Topology of a Reconfigurable Token Ring 43

3.3.1 Cyclic Behavior of Token Rings 43

3.3.2 Sub-Optimal Distribution Algorithm Specification 46

3.3.3 Optimal Distribution Algorithm Specification 48

3.4 Token Ring Designs . 51

3.4.1 Ring Oscillators . 52

3.4.2 Fast David Cells . 52

3.4.3 Muller Pipeline . 55

3.4.4 Performance Comparison . 56

3.4.5 Distributed Token Ring Implementation 57

4 parallelism in a reconfigurable controller for wagging

synchronization 63

4.1 Introduction (Arbitration & Reconfiguration) 63

4.2 Related Work (Overview of Arbitration) 63

4.2.1 The Mutual Exclusion Element (MUTEX) 64

4.2.2 Token Ring Arbiters . 64

4.2.3 Arbitration via Pausible Clocks 65

4.2.4 Relation to a Reconfigurable Control Device for a Wagging
Synchronizer . 66

4.3 Reconfiguration Protocol . 66

4.3.1 Mathematical Foundations (Assumptions) 69

4.4 UCOM Threading . 70

4.4.1 Enforcing Firing Order in Cyclic Independent Loops 70

4.4.2 Control of End Behavior in Cyclic Independent Loops 71

4.5 Basic Controller Design . 71

4.5.1 Circuit Synthesis . 72

4.5.2 Performance Comparison . 75

4.6 Output Data Merging in Reconfigurable Controller 77

4.6.1 Circuit Synthesis & Results Analysis 77

5 robustness in a reconfigurable controller for wagging

synchronization 79

5.1 Introduction (Principle of Exclusion) 79

5.2 Fault Model Definitions . 79

5.2.1 Fault types . 79

5.3 Related Work (Johnson Counter) . 80

5.4 Chordal Ring Networks (Algorithm Reinterpretation) 81

5.4.1 Chordal Bypass Path Algorithm 82

5.4.2 Results Analysis . 83

5.5 UCOM Thread Forwarding . 84

contents xv

5.5.1 Theoretical Overview (Why Forward?) 85

5.5.2 Applications to Robust Controller Design 86

5.6 Advanced Controller Design (Hierarchy & Crossbar Plug-in) 86

5.6.1 Theoretical Overview (System Hierarchy) 86

5.6.2 Derivation of the Petri Net (PN) Model 88

5.6.3 PN Model & Simulation . 90

5.7 Validating Configurations via a Nearest Neighbor Checking Algo-
rithm . 92

5.7.1 Validation Algorithm . 92

6 flow control in wagging synchronizers incorporating fifo

buffers 95

6.1 Introduction (Flow Control in FIFO Synchronizers) 95

6.2 Related Work (STARI) . 95

6.2.1 Applications to Wagging Synchronization 96

6.3 FIFO Testing Methodology . 98

6.3.1 Top-level Design Considerations 98

6.3.2 FIFO I/O Considerations . 100

6.4 VHDL Experimental Setup . 101

6.4.1 VHDL Design Flow . 101

6.4.2 Test Vector Generation . 101

6.4.3 State Machine Logic for a Wagging Scheduler 102

6.5 VHDL Simulations . 104

7 conclusions 109

7.1 Main Contributions . 109

7.2 Future Work . 110

ii appendix 111

a appendix 113

a.1 INTMUX Boolean Logic Minimization 113

a.2 CADENCE PWL Waveform Generation Example 114

bibliography 117

L I S T O F F I G U R E S

Figure 1.1 Cascaded Two-Flop Synchronizer 4

Figure 1.2 Parallel Two-Flop Synchronizer 5

Figure 2.1 Behavioral representation of a D flip-flop 13

Figure 2.2 Behavioral representation of a Muller C-Element (MCE) . . . 13

Figure 2.3 Annotated Muller C-Element schematic with signal transi-
tions representing 1 operating cycle 14

Figure 2.4 Annotated David Cell schematic with signal transitions rep-
resenting 1 operating cycle . 14

Figure 2.5 Petri Net Symbols . 15

Figure 2.6 Petri Net of a 3-cell token ring 16

Figure 2.7 Reachability Graph of a 3-cell token ring 17

Figure 2.8 Annotated Signal Transition Graph (STG) of a 3-cell token ring 19

Figure 2.9 Annotated STG of a 3-cell token ring (CSC Conflict Resolved) 20

Figure 2.10 Abstract view of a butterfly curve. From [44] 22

Figure 3.1 Overview of clocking methods: (a) Synchronous, (b) Ratio-
nally related clocks, (c) Multiple clocks 28

Figure 3.2 Synchronizing interface. From [44] 29

Figure 3.3 Cascaded flip-flop synchronizer 30

Figure 3.4 FIFO synchronizer. From [44] 32

Figure 3.5 Conceptual diagram illustrating the wagging principle. . . . 33

Figure 3.6 Annotated diagram of a two-way wagging buffer. 34

Figure 3.7 Block diagram of an N-wagging synchronizer 37

Figure 3.8 Data flow from the transmitter end of a wagging synchro-
nizer to the input of the FIFO in Fig. 3.7 with j = 3 and a
50% duty cycle. 38

Figure 3.9 Block diagram of a reconfigurable controller suitable for a
wagging synchronizer. 42

Figure 3.10 Cycle graphs of a token ring 44

Figure 3.11 Results of the sub-optimal distribution algorithm 48

Figure 3.12 Optimized distributed feedback algorithm overview 51

Figure 3.13 Ring oscillator with ngate = 5, and an active-low reset signal 52

Figure 3.14 Annotated fast David Cell schematic with signal transitions
representing 1 operating cycle 53

Figure 3.15 Four-way sequential token ring based on fast David Cells (DCs) 54

Figure 3.16 4-way sequential token ring based on MCEs 55

Figure 3.17 8-way reconfigurable token ring implementation based on
sequential logic (5 possible configurations) 58

Figure 3.18 Transient response of the self-timed reconfigurable token
ring control circuit based on DCs illustrating the effect of
increased parallelism on the time available for synchroniza-
tion (path: CTR4) . 58

xvi

List of Figures xvii

Figure 3.19 Distributed graph which models the behavior of the 8-way
reconfigurable token ring circuit. 59

Figure 3.20 Basic reconfigurable control circuit based on hardware repli-
cation and select signals. 59

Figure 3.21 Area comparison of a self-timed reconfigurable token ring
control circuit based on fast DCs. (cycle(min)(even) = 4) . . 60

Figure 4.1 The mutual exclusion element 64

Figure 4.2 STGs of token ring arbiters . 65

Figure 4.3 Pausible clock arbiter overview 66

Figure 4.4 Behavior graph of an 8-way reconfigurable controller with
several cycles. 67

Figure 4.5 Interrupt block diagram. 67

Figure 4.6 Signal transition graph (FWD PATH). 68

Figure 4.7 Signal transition graph (REV PATH). 71

Figure 4.8 Top view of three 16-bit interrupt modules tied together via
Unidirectional Communication (UCOM) threads. Solid lines
represent the connectivity of the signal lines present in this
section. Grayed out portions and dotted lines represent the
connections and blocks which will be discussed in Section 4.6. 73

Figure 4.9 Internal view of an individual 16-bit interrupt module (i.e.
module #1 in the example). 74

Figure 4.10 Transient response of the control signals for the subsystem
of three interrupt devices, which demonstrates the firing be-
havior of the design. Reconfiguration data, UCOM, FLAG,
and MEM signals have been omitted. 75

Figure 4.11 INTMUX boolean logic minimization 78

Figure 5.1 Eight-way ring network based on chordal bypass paths . . . 81

Figure 5.2 Chordal Bypass Path Algorithm Overview 82

Figure 5.3 Schematic of the self-timed reconfigurable token ring con-
trol circuit based on DCs illustrating the effect of exclu-
sion on the time available for synchronization in the system
(path: CTR6) . 84

Figure 5.4 Transient response of the self-timed reconfigurable token
ring control circuit based on DCs illustrating the effect of
exclusion on the time available for synchronization in the
system (path: CTR6) . 85

Figure 5.5 Conceptual overview of the token ring based on chordal
graphs. 87

Figure 5.6 Overview of the reconfigurable interrupt an XBAR select at
vertex 0. 87

Figure 5.7 PN of building blocks for the reconfigurable control device. . 88

Figure 5.8 PN of the interrupt subsystem. 90

Figure 5.9 PN representation of chordal reconfiguration protocol. 91

Figure 6.1 Four-cell STARI interface schematic. From [12] 96

Figure 6.2 Data flow of a four-cell STARI interface, assuming that the
transmitter and receiver clocks are in phase. From [12] . . . 96

Figure 6.3 Top view of a FIFO synchronizer incorporating wagging at
the transmitter and receiver. 97

Figure 6.4 FIFO standard cell. From [82] 99

Figure 6.5 Serialized input from the transmitter to the input of the FIFO

buffer. 100

Figure 6.6 Four-bit Pseudorandom Binary Sequence (PRBS) generator. . 102

Figure 6.7 Four-bit signature analyzer. 103

Figure 6.8 State machine for four-bit wagging control device. 104

Figure 6.9 VHDL Experimental Setup. 105

Figure 6.10 Transient response of the flow control in the complete self
checking circuit. 106

L I S T O F TA B L E S

Table 3.1 MTBF of a Cascaded Two-Flop Synchronizer. From [2] 29

Table 3.2 MTBF of a Fixed 3-Way Wagging Synchronizer. From [2] . . . 39

Table 3.3 Differences in the Cycle Lists of a Multi-cycle Token Ring
with Distributed Edges vs. an Undistributed Ring (Maxi-
mum Cycle Length = 8 Vertices) 45

Table 3.4 Differences in the Cycle Lists of Two Different Multi-cycle
Token Rings Implementations with Distributed Edges (Max-
imum Cycle Length = 8 Vertices) 50

Table 3.5 Average Power Consumption per Cell across Process Cor-
ners at VDD = 1.0 V and tcycle = 1 ns (TN/TP) 57

Table 3.6 Average Time Available for Synchronization across Process
Corners at tcycle = 1 ns (TN/TP) 57

Table 4.1 Duration of the Active Region of the Interrupt Subsystem
for Different Configurable Modes at a TN-TP Corner with
VDD = 1.0 V . 75

Table 4.2 Average Power Consumption of the Active Region of the
Interrupt Subsystem for Different Configurable Modes at a
TN-TP Corner with VDD = 1.0 V 76

Table 5.1 Variations in the Time Available for Synchronization in the
Reconfigurable Token Ring Control across 3 Major Process
Corners @VDD = 1.0 V and at a Temp = 27 ◦C 84

Table 5.2 Variations in the Time Available for Synchronization in the
Reconfigurable Token Ring Control across Temperature Re-
gions @VDD = 1.0 V and a TN/TP Transistor Process 85

Table 5.3 XBAR Select Signals . 92

Table 5.4 Nearest Neighbor Checking Algorithm 93

Table 6.1 Read Sequence Generated by Equation 6.1 per Cycle, where
i < j < 2i . 104

xviii

Table 6.2 Effect of the Connectivity of the Serializing Multiplexer (MUX)
on the Time Available for Synchronization in the Device . . 107

L I S T O F A L G O R I T H M S

Figure 1 Sub-optimal Distribution Algorithm for a Static Token Ring
(Part 1) . 46

Figure 2 Sub-optimal Distribution Algorithm for a Static Token Ring
(Part 2) . 49

L I S T I N G S

Listing 1 MATLAB .PWL Cadence Vector File Generator Core 115

Listing 2 MATLAB .PWL Cadence Vector File Generator Sample Input 116

A C R O N Y M S

CSC Complete State Code

DC David Cell

DEMUX Demultiplexer

FIFO First-In First-Out

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

LUT Look-Up Table

MCE Muller C-Element

MTBF Mean Time Between Failures

MUTEX Mutual Exclusion Element

MUX Multiplexer

xix

xx acronyms

NoC Network-on-Chip

PLL Phase-Locked Loop

PN Petri Net

PRBS Pseudorandom Binary Sequence

RG Reachability Graph

RO Ring Oscillator

RTC Relative Timing Constraint

SG State Graph

SoC System-on-Chip

STG Signal Transition Graph

TS Transition System

UCOM Unidirectional Communication

VHDL VHSIC Hardware Description Language

VCO Voltage Controlled Oscillator

VTC Voltage Transfer Characteristic

Part I

P H D T H E S I S

1 I N T R O D U C T I O N

1.1 motivation

Synchronization is a prominent issue in the design of modern digital systems. As
the diversity of components, clock frequencies, and voltages on a chip increases,
so does the importance of synchronization in order to reliably pass data across the
regions of variation. Both the methodologies of Globally Asynchronous Locally
Synchronous (GALS) signaling, and Network-on-Chips (NoCs) require synchroniza-
tion. The former case requires the presence of an asynchronous wrapper in order to
reliably pass data between two clock regions, which must then be synchronized at
each end of the transfer [10]. While in the latter case, the interconnection network
is shared between devices via the use of packets, and synchronization is necessary
in order to perform the handshakes between the network and the system resources
[7].

A common method for performing synchronization across two clock domains
involves the use of a cascaded flip-flop synchronizer. Let us begin with a brief
exploration of such a synchronizer, while highlighting the limitations and short-
comings of the same to bring the primary issues discussed in this thesis into sharp
relief. A basic two-flop synchronizer, as shown in Fig. 1.1(a), operates by using
pair of flip-flops in a master-slave configuration to synchronize data items. A syn-
chronization operation, as shown in 1.1(b) consists of two phases: sampling, and
resolution.

During the sampling phase, when the Clock signal is high, the master latch sam-
ples Data items, while the slave latch remains opaque to changes. When the Clock
signal transitions from high to low, the synchronizer enters the resolution phase,
and master latch becomes opaque to changes, while the slave latch becomes trans-
parent. During the resolution phase, the output signal from the master latch is
pulled to either the supply voltage level or ground from an initial analog voltage
level (i.e., it becomes a digital output signal). When the Clock signal transitions
from low to high, the synchronizer re-enters the sampling phase and the output
of the slave latch becomes opaque, thus retaining the resolved value from the pre-
vious sampling phase (i.e., it transmits the prior value from the master latch).

With the prior explanation in hand, we can now address the shortcomings of
this design. When the Data input to the master latch changes state “sufficiently
close” to the Clock transition marking the end of the sampling phase of the master
latch, it results in longer than normal resolution times. If the output from the
master latch does not resolve to a clear digital high or low before the end of the
resolution phase (i.e., when the slave latch becomes opaque) the synchronization
operation fails. The reliability of a two-flop synchronizer is thus directly related
to the resolution time allotted to the synchronization operation, which is itself
dependent on the duty cycle. Moreover, it will be shown in Chapters 2 and 3 of

3

4 introduction

D Q D Q

 Clock

Data Slave OutMaster Out

M S

SEN
D

ER

R
EC

EIV
ER

(a) Schematic

MASTER SAMPLING
(SLAVE OPAQUE)

MASTER RESOLUTION
(SLAVE TRANSPARENT)

Clock

Data

Slave
Out

(b) Waveform

Figure 1.1: Cascaded Two-Flop Synchronizer

this thesis that the relationship between the failure rate of the synchronizer and
the time available for synchronization is exponential.

Because of the aforementioned relationship, the reliability of the synchronizer
can be impacted by variations in the duty cycle of Clock signal. Of specific note
are:

1. Variations in the delays of the CMOS transistors which comprise the Clock
signal, due to process, voltage, and temperature dependencies.

2. Variations in the duty cycle due to the presence of multiple operating modes.

Typically, a cascaded flip-flop synchronizer is designed to meet the requirements of
the worst-case operating mode only (i.e., the minimum time available for synchro-
nization). In most cases, additional flip-flops are placed in series with the original
two-flop master-slave latch pair to accomplish this. However, as additional flops
are added, modelling the reliability characteristics of the synchronizer becomes
more difficult [42].

By integrating a combination of parallelism and task scheduling, known as wag-
ging, into the design of a cascaded flip-flop synchronizer, as shown in Fig. 1.2, the
worst case reliability requirements mentioned above can be met while using sim-
pler two-flop equation models. Furthermore, if the parallelism and task schedul-
ing in the cascaded flip-flop synchronizer of Fig. 1.2 can be altered by utilizing
the practices of reconfigurable hardware design, the reliability characteristics of
the synchronizer can be dynamically changed on an as needed basis via the use of
control codes.

The parallel synchronizer of Fig. 1.2 operates by sharing the input data from
the transmitter between the parallel master-slave flip-flop pairs, while the con-
troller generates the Clock/Enable (CTR) signals used to schedule the sampling
and resolution phases of each flip-flop pair. Resolved data items from the parallel
master-slave flip-flop pairs are then merged back together and sent to the receiver.
The tasks are shared evenly between master-slave flip-flop pairs, which results in
an increase in the time available synchronization that is directly proportional to

1.1 motivation 5

Split Merge

Data Slave Out

D
M

Q

...

Data
(Task 0)

Data
(Task N)

Slave Out
(Task 0)

Slave Out
(Task N)

 (Task 0)

(Task N)

Clock/Enable (CTR 0)

Configuration Data

(÷ N) (x N)

Clock/Enable (CTR N)

fClock/N

fClock

D
M

Q D
S
Q

D
S
Q

Controller

TR
A

N
SM

ITTER

R
EC

EIV
ER

Figure 1.2: Parallel Two-Flop Synchronizer

the number of parallel flip-flop pairs used, which will be discussed in greater de-
tail during Chapter 3. When comparing the synchronizer design of Fig. 1.2 to that
of Fig. 1.1, the trade-offs to are divided into two categories:

1. Delays due to additional hardware components along the datapath from the
transmitter to the receiver.

2. Power and area overheads due to the control hardware, replicated master-
slave latch pairs, and additional hardware components along the datapath.

Achieving the aforementioned design goals of reconfigurability and parallel syn-
chronization requires that the issues of scalability, reliability, and fault tolerance
be addressed within the context of the control hardware. Scalability issues, within
this context, stem from the sharing of devices within a multi-mode reconfigurable
controller. More specifically, it is necessary to maintain a limit on the maximum
fan-in or fan-out of the control hardware regardless of the number of configurable
modes available in the system. Reliability issues, within this context, refer to the
protocols by which configurable modes are changed and functional correctness
is guaranteed. Fault tolerance issues, within this context, concern how to route
around faulty devices within the controller, which is useful as devices may be
shared between more than one configurable mode. Additionally, if the transmitter
and receiver are decoupled from each other via the use of a First-In First-Out (FIFO)
buffer, as in prior literature by Chelcea, then data flow issues, such as data accu-
mulation of starvation within the buffer, must also be considered as well [15].

With that in mind, the central aspects of this thesis will focus on the following
issues:

1. Limitation of capacitive loading within the devices which comprise a multi-
mode reconfigurable controller (Chapter 3).

2. Development of an asynchronous reconfiguration protocol which guarantees
the functional correctness of the reconfigurable controller (Chapter 4).

6 introduction

3. Methods for excluding faulty components within the reconfigurable con-
troller (Chapter 5).

4. Amelioration of data accumulation/starvation in parallel synchronizer incor-
porating a FIFO buffer (Chapter 6).

1.2 contributions

This thesis presents and explores a framework for the design of reconfigurable con-
trol devices for parallel synchronizers through the use of distributed embedded
graphs. Core to the work are the control of metastability within a parallel synchro-
nizer through the application of one-hot codes, the issues of fault-tolerance within
the parallel control structure via the use of bypass paths, as well as an of how
the wagging paradigm affects the behavior of a FIFO synchronizer, and how to
overcome the common pitfalls of data accumulation and reduced MTBF at higher
clock frequencies.

It functions as a natural extension of work on parallel synchronization previ-
ously presented by Jex and Dike in 1995, Suk-Jin et. al in 2004, and work on wag-
ging synchronization that was presented in 2010 by Alaskih [41] [43] [2]. Principle
to this work are the following topics:

1.2.1 Algorithms for Load Balancing in Token Rings via Distributed Embedded Graphs

A basic algorithm for distributing the number of adjacent connections in an em-
bedded cycle graph which models a multi-cycle token ring construct with several
cycles is presented. Thereafter, It is optimized to improve the redundancy inherent
to the graph and reduce overhead. Both the sub-optimal and optimized algorithms
place concrete limitations on the maximum adjacency possible at a given vertex.

Such algorithms are useful in minimizing the capacitance and fan in/out of the
connections of the resulting physical token ring implementation. As an example,
embedded token rings based on ring oscillators, Muller pipelines, and David cells
are simulated in UMC 90nm technology using CADENCE in Section 3.4. Abstract
versions of the algorithms are also modeled in C++ in Section 3.3 [56] [21].

1.2.2 Manipulation of Parallelism in a Self-Timed Reconfigurable Control Device via
One-Hot Coding

A design for a controller device is presented which is suitable for manipulating
the parallelism contained within a token ring based on embedded graphs. Uni-
directional Communication (UCOM) threading is shown to be useful in exerting
control over asynchronous circuits based on a cyclic graph composed of indepen-
dent loops, where the individual loops already possess Complete State Code (CSC).
Merging of output data from multiple interrupt devices through the use of K-maps
is shown to be essential in linking the interrupt devices together.

This method is useful in that it gives the designer direct control over the time
available for synchronization inherent in a synchronizer composed of multiple par-

1.3 organization of thesis 7

allel cascaded flip-flops at the cost of additional hardware. CADENCE simulations
charting the performance of the control device across various process and temper-
ature parameters in a UMC 90nm technology are used as a proof of concept.

1.2.3 Tolerance of Hard Faults in a Self-Timed Reconfigurable Control Device via Bypass
Paths

The specification of the basic control device is modified by incorporating bypass
paths into the underlying behavior graph. This allows faulty nodes to be excluded
from the system, thereby facilitating recovery from hard faults at the cost of re-
duced performance. The concept of UCOM thread forwarding is introduced in or-
der to ensure that the underlying Signal Transition Graph (STG) of the control de-
vice remains valid if a path is bypassed. The consistency of the graph is analyzed
using a nearest neighbor checking algorithm and completion detection.

The utility of this method lies in overcoming the limitations of a Johnson counter,
which tends to suffer either state-space locking in the case of stuck-at faults or
unpredictable behavior in the case of intermittent hard faults [52]. This process
is evaluated through simulations on both Petri Net (PN) and STG models of the
system in Workcraft, as well as circuit simulations in CADENCE.

1.2.4 Flow Control in a FIFO Synchronizer based on Wagging

A VHDL analysis of a FIFO synchronizer based on wagging is tested in Xilinx
using automated test methods such as PRBS input vectors, and signature analysis.
It is shown that while the MTBF can be manipulated via the use of shift register
control signals, care must be taken when the parallel lines are serialized or the
designer might not see the anticipated MTBF gains of the wagging method.

1.3 organization of thesis

The thesis is organized as follows:

Chapter 1 “Introduction.” Describes the motivation, contributions, and organiza-
tion in the thesis.

Chapter 2 “Background Literature & Models.” Presents a review of the relevant
theory on asynchronous circuits and metastable events. Discusses conceptual mod-
els useful in understanding the content of subsequent thesis chapters such as PNs,
STGs, and embedded cycle graphs.

Chapter 3 “Overview of Wagging Synchronization.” Presents a brief review of
prior synchronization literature. Introduces the concept of synchronization via
wagging, and discusses its effects on relevant synchronization parameters. Intro-
duces the abstraction of a token ring, and compares various combinational and
sequential circuit topologies suitable for the realization of the same. Applications
of embedded cycle graphs to arbitrary token rings are also discussed, which focus

8 introduction

on the algorithms for the balanced distribution of edges in the ring construct.

Chapter 4 “Parallelism in a Reconfigurable Controller for Wagging Synchroniza-
tion.” Presents a brief review of the concepts of arbitration and reconfigurability,
as it pertains within the context of a token ring based on embedded graphs. De-
fines a protocol for reconfiguration based on STGs which uses both interrupts and
one-hot codes to control the parallelism in a reconfigurable controller device via
the selection of valid embedded configurations within the behavior graph. Illus-
trates how UCOM threads can be used to control both the firing order and end
behavior of independent interrupt devices. Addresses issues such as the reacha-
bility of different embedded specifications, the process by which the output data
from separate interrupt devices is merged together, and the optimization of the
one-hot control data via encoding to limit the number of input signal lines to a
logarithmic growth function. A basic controller design is simulated across 5 pro-
cess corners in a CADENCE UMC 90nm technology, and the results are presented
as a proof of concept.

Chapter 5 “Robustness in a Reconfigurable Controller for Wagging Synchroniza-
tion.” Explores how the fault tolerance of the parallel controller device in Chapter
4 can be improved by excluding faulty nodes from the embedded behavior graph,
as well as touching on the limitations of prior work regarding Johnson Counters.
The STG of Chapter 4 is extended through the incorporation of bypass paths, which
are necessary for the exclusion process. The concept of UCOM thread forwarding
is defined, which is used to maintain the validity of the underlying STG in the
presence of such bypass paths. A PN model is used to simulate the reconfiguration
and selection process of the system via Workcraft. A nearest neighbor checking
algorithm is also presented, which is used to validate the consistency of the cycle
graph produced via reconfiguration and chordal bypass paths.

Chapter 6 “Flow Control in Wagging Synchronizers incorporating FIFO Buffers.”
Analyzes the flow control issues present in a wagging synchronizer which utilizes
a FIFO to decouple read and write operations from each other. Introduces key
design considerations in the FIFO synchronizer architecture. Discusses the VHSIC
Hardware Description Language (VHDL) design flow and test bench used to simu-
late and verify the flow control algorithm in the chapter.

Chapter 7 “Conclusions.” The work in the thesis is summarized, and future re-
search directions are discussed.

2 B A C K G R O U N D L I T E R AT U R E & M O D E L S

2.1 introduction(asynchronous circuits)

While the design and implementation of asynchronous circuits has been a topic of
discourse for several years now and a complete overview is the subject of a text-
book in and of itself, the work explored in the later body of this thesis is best served
by providing a general overview of the main concepts which both motivate and
underpin the concepts that will be discussed later, punctuated by a few well cho-
sen examples. In the introductory section of this chapter the benefits, drawbacks,
and differences between standard synchronous and asynchronous controller de-
sign are assessed. Major building blocks in asynchronous design used in the later
portions of this thesis will also be presented. In Section 2.2, the theoretical concept
of Petri nets will be presented with emphasis on how these nets can be used to
model the behavior of asynchronous systems. Continuing onward, Section 2.3 will
link the concept of a Petri net with that of a signal transition graph, which are
used to further describe the internal workings of an asynchronous specification.
Section 2.4 will discuss the concept of metastability, which is useful for describing
the failure behavior of the synchonizer circuits covered in later chapters. Finally,
Section 2.5 will cover the concept of an embedded cycle graph, which is a useful
construct for handling the designs presented in the further chapters of this work.

2.1.1 Properties of Asynchronous Circuits

Asynchronous circuits function in the absence of a global time reference which
is a hallmark of standard synchronous circuit design. In synchronous circuit de-
signs, glitches are allowed at all times during circuit operation excepting the times
at which a clock transition occurs and all signals are assumed to be stable. Only
knowledge of the final system state and the time allotted to complete its operation
are required. By contrast, asynchronous circuits require knowledge of not only the
final state of the system but also the partial states as well, in addition to a requirement
that all transitions be glitch-free during the entire time continuum of its operation.
For this reason, asynchronous designs do not generally enjoy the ubiquity of their
synchronous counterparts. However, asynchronous circuits do possess certain ad-
vantageous properties which merit consideration.

Modularity From the perspective of the individual circuit, having a global clock
simplifies the design process. However, this requirement becomes restrictive as the
number of transistors on a chip increases. In a synchronous system, both the phase
and frequency of the global clock are assumed to be known quantities. However,
the arrival time of the clock observed by separate components in the system varies
from one end of the chip to the other, due to both the spatial distance of the
components from the distribution network itself, as well as differences in both the

9

10 background literature & models

passive interconnect and active device parameters [22]. This variance is referred to
as the clock skew of the system, and it places constraints on both the maximum and
minimum permissible operating frequency [29].

Because of the aforementioned timing constraints and the tightly interconnected
relationship between the clock distribution network and intellectual property (IP)
blocks present in a large scale synchronous designs, frequency scalability and
reuse are not inherent features. Initiatives in previous years dealt with how to
increase the plug and play characteristics of synchronous designs, such as creat-
ing standardized interfaces for Virtual Components [1]. By contrast, modularity
is an inherent property of asynchronous circuits. Asynchronous blocks communi-
cate with each other through protocols called handshakes, which will be discussed
in more detail in subsection 2.1.2. No timing assumptions exist between the blocks,
and as a consequence the asynchronous blocks can be frequency scaled and reused
elsewhere without loss of functionality.

In more recent years, asynchronous design practices have been adapted in ef-
forts to improve the modularity between synchronous designs. In one case, the
modularity of System-on-Chip (SoC) designs can be improved by constructing the
system with several different voltage/frequency islands (each with their own local
clock) and then synchronizing the data items between regions using handshakes.
While the topic of synchronization will be covered in Chapter 3, this principle
forms the basis of the GALS signaling paradigm. GALS requires the presence of an
asynchronous wrapper in order to reliably pass data between two clock regions,
which must then be synchronized at each end of the transfer [14].

Continuing forward on the point above, there has also been a drive to partially
decouple the component blocks in a SoC from the clock distribution network, as
in the NoC paradigm [20]. For reference, a NoC routes transmitted data items as
packets (called flits) along the wires of a homogeneous interconnection network,
and carries out data transfers between the interconnection network and the local
components using a network interface circuit. This network interface handles syn-
chronization and flow control at the endpoints, while arbitration placed at regular
intervals along the interconnection network handle the routing and flow control
of flits across the chip [20].

Both of these examples serve to illustrate that modularity is a major design
concern, and as stated above asynchronous circuits and design methods are well
suited to handling it.

Power The advantageous power considerations which factor into circuits built
from asynchronous designs can be broken down into two general categories.

The first category is tied to the discussion on modularity above. More specif-
ically, in systems where no global clock exists and each locally clocked module
communicates system-wide via asynchronous handshakes (i.e. GALS) there is also
no global power consumption attributed to a system wide clock distribution net-
work. The clock distribution network can have a significant impact on the global
power consumption of a system. As an example, 33% of the system power in the
Intel Itanium 2 processor was consumed by the clock distribution network back
in 2002, which serves to highlight the statement above [59]. More recently in 2005,

2.1 introduction(asynchronous circuits) 11

this emphasis on power consumption led to the development of an asynchronous
NoC which demonstrated reduced power consumption in the clock distribution
network when compared against a synchronous design [7]. The only drawback is
the additional complexity incurred as a result of utilizing asynchronous design
methods [53].

The second power consideration is the reduced electromagnetic emissions of
asynchronous designs. To clarify, the switching tranitions of control and data sig-
nals in a synchronous system are often correlated to the clock itself, which lead to
draws in the supply current at the frequency of the clock signal and related har-
monics [78], [18]. These harmonics impact the frequency domain characteristics of
the system and can prove detrimental in applications where such characteristics
must be precise [78]. As asynchronous designs are event-driven systems, no such
harmonics are present which lead to reduced emissions in the frequency domain.

It is the former category that has garnered more attention in recent years though,
with self-timed microprocessors like the ARM AMULET series becoming preva-
lent in low power designs where asynchronous processing is prevalent [31], [33],
[32]. However, it should be noted that the dynamic power consumption savings in-
curred as a result of asynchronous design methods, must be weighted against the
increased standby power consumption resulting from the increased complexity of
asynchronous implementations.

Latency and Throughput The final distinctive property that separates logical cir-
cuits implemented using synchronous methods from their asynchronous counter-
parts is the difference between the global latency and throughput characteristics of
each respective implementation. To clarify, the modeling the latency and through-
put behavior of a synchronous design relies on computing the worst-case latency
of the system, and attaching worst-case maximum (and sometimes minimum) fre-
quency requirements to the finished product, thereby specifying where the design
can be applied. Asynchronous designs, by contrast, only rely on the average-case la-
tency between their components. Due to the aforementioned modularity property,
as long as the asynchronous communication protocols connecting the modules
together are satisfied functional correctness of the system is maintained. To be suc-
cinct, the latency and throughput of synchronous design is limited by the slowest
component in the system, while an asynchronous design is limited by the aver-
age delay of all the components in the system at the cost of possibly unbounded
circuit delays. Appropriately, the differences between latency and throughput of
synchronous and asynchronous designs are mirrored in the control methodology
discussed in the next subsection.

2.1.2 Asynchronous Control Circuits

Conveying the distinctions between asynchronous control circuits and their syn-
chronous counterparts, first requires a brief overview of the structural characteris-
tics of a sequentials circuits composed using synchronous methods. The abstract
model segregates the design into two parts, which are as follows:

12 background literature & models

• data path - refers to the individual blocks within a system that perform ma-
nipulations and transformations on the data they receive. These blocks can either
perform arithmetic operations (e.g., adders, multipliers), or communication and
storage operations (e.g., muliplexers, registers).

• control - refers to the signals that determine the data used by each block (e.g.,
multiplexer select signals), or the operations that each block performs (e.g. ALU
operation codes).

In a synchronous design, the clock signal acts as a trigger for all of the control
and data path operations that occur within a given clock period. As long as a final
state is reached within a single clock cycle functional correctness is assured. From
a control perspective, it can be said that the control within the system is central-
ized, and synchronization is implict across all blocks in the system. By contrast,
in an asynchronous design control is distributed, as no global clock is present.
Each block only synchronizes with its relevant neighbors, regardless of what other
blocks in the system are doing. Because of this, the behavior of the entire system
must be modeled with these concurrent executions in mind. The communication
between neighboring blocks is accomplished via a handshaking protocol, which is
composed of two parts:

• request - refers to a signal issued from the environment to the input of a block
indicating that data is ready at that device operation is requested.

• acknowledge - refers to a signal issued from the output of a block to the en-
vironment indicating that the device has finished its operations and that the data
results are stable.

The weaknesses of this control method stems from the increased number of data
lines used to implement completion detection, as is the case with delay-insensitive
coding styles such as a dual rail code [70]. Alternatively, the delay of individual
lines can be adjusted to ensure that the propagation delay of signals lines in the
system exceeds the worst case combinational operation of any given block [18].
The later method is less robust because of the additional timing assumptions that
hinder the modularity and portability of the design. The only other pitfall is the re-
quirement that the signals are free of hazards (i.e., deviations from specified circuit
behavior).

2.1.3 Asynchronous Circuit Primitives

Given the discussion above, we can now examine some of the fundamental sequen-
tial circuit primitives that will be used throughout the course of this work. Two
major primitives common to asynchronous controller designs are readily apparent.

2.1 introduction(asynchronous circuits) 13

D

CLK/EN

Q

Q

(a) Schematic (b) Truth table

Figure 2.1: Behavioral representation of a D latch

A

B Z

(a) Schematic. From [51]. (b) Truth table.

Figure 2.2: Behavioral representation of a Muller C-Element (MCE)

2.1.3.1 Latches and Flip-flops

Latches A latch is defined as a level-sensitive circuit which is used to transmit and
retain state information in a sequential process, as shown in Fig. 2.1(a). The state
of the latch is altered when a differential voltage is applied to the inputs of the
two cross-coupled NAND gates in the circuit. When the enable signal (CLK/EN)
is high, the output signal of the latch (Q) follows the input signal (D). When the
enable signal is low, the latch output retains its previous value. The truth table
illustrating this process is shown in Fig. 2.1(b).

Flip-flops When two latches are placed in series, they form what is known as
a flip-flop. The most prevalent example of a flip-flop is a D flip-flop (though oth-
ers exist, such as the JK flip-flop), where the two latches forming the flip-flop are
triggered on opposite edges of the clock in what is commonly known as a master-
slave configuration [66]. Depending on how it is used it can either function as a
data storage element, or as a synchronization element. In this work, we will focus
on the latter application.

2.1.3.2 Muller C-Elements

Muller C-Element (MCE) A MCE is a circuit that changes its state information only
when all of its signal inputs (A, B, Z) are either logic high or logic low values, as
in Fig. 2.2(a). All other input combinations result in the circuit outputting its last
valid state. The truth table illustrating this process is shown in Fig. 2.2(b).

The operation of an individual cell is defined by both the output signal that the
cell produces (Zn), and the input signals to the cell (An(Zn−1), Bn(Zn+1)) which
are generated by adjoining MCEs. Fig. 2.3(a) depicts a schematic of an individual
MCE, where the circled numbers in the figure represent the individual transitions
generated internal to the cell, starting at transition 1. External signals generated by

14 background literature & models

C

0 1 0
1 4

Zn

0 1 0
2 7

Bn

1 0 1
3 6

An

(a) Annotated Symbol. From [51]. (b) Timing Diagram.

Figure 2.3: Annotated Muller C-Element schematic with signal transitions representing 1

operating cycle

0 1 0

2 11
1 0 1

3 10

1 0 1

7 12
1 0 1

1 6

1 0 1

9 16
xn yn

zn

yn+1

zn-1

(a) Standard DC. From [21]

zn-1

xn

yn

zn

yn+1

1 6

2 11

3 10

7 12

9 16

(b) Timing Diagram.

Figure 2.4: Annotated David Cell schematic with signal transitions representing 1 operat-
ing cycle

the adjoining MCEs are shown in Fig. 2.3(a), and also appear in the timing diagram
of Fig. 2.3(b).

2.1.3.3 David Cells

David Cell (DC) A DC, as shown in Fig. 2.4, can be thought of as a distributed
circuit, where the state information or “token” is stored within the pair of comple-
mentary stable states formed by the cross-coupled NAND gates in the cell. If the
CTR is high, then a token is present, and vice-versa if a token is absent.

The operation of an individual cell is defined by both the output signals that
the cell produces (yn, zn), and the input signals to the cell (zn−1, yn+1) which
are generated by adjoining DCs. Fig. 2.4(a) depicts a schematic of an individual
DC, where the circled numbers in the figure represent the individual transitions
generated internal to the cell, starting at transition 1. External signals generated by
the adjoining DCs are shown in Fig. 2.4(a), and also appear in the timing diagram

2.2 petri nets 15

Transition Place Marking

Figure 2.5: Petri Net Symbols

of Fig. 2.4(b). For reference purposes, in Fig. 2.4(a) these unmarked transitions are
{4}, {5} for the previous DC in the token ring chain, and {8}, {13} for the next DC in
the chain.

It should be noted that the “token” within the DC of Fig. 2.4(a) is atomic (i.e.,
the token is only “present” in a single cell at any given time). However, this does
not have to be the case. In fact, the number of transitions which are required to
complete the operation of an individual DC can be reduced if the atomicity of the
token is violated and it is allowed to simultaneously exist in multiple DCs of the
token ring. This concept has been referred to in prior literature as token spreading
[73].

2.2 petri nets

Accurately modeling and specifying the behavioral characteristics of an asynchronous
circuit is of vital importance to the design process of the same. In a traditional syn-
chronous design, the behavior of the system is only analyzed around the rising
and falling edges of a clock signal. The periodicity between the successive rising
or successive falling edges of the clock signal is referred to as the duty cycle of the
circuit. The inputs and outputs of the system are allowed to vary at any point in
between these edges, but are assumed to resolve prior these evaluation points. By
contrast, in an asynchronous design, the behavior of the system must be known
for the entire time continuum of the duty cycle. As a consequence, the design
of an asynchronous circuit is often more complex than the design process of any
synchronous counterpart.

As a consequence of the design challenges listed above, the design flow needed
to visualize the system as a whole is best done using a formal model known
as a Petri Net (PN). This model was originally developed by Carl Adam Petri in
1962, where he depicted the behavior of a system in terms of concurrent events,
the causalities between these events (called transitions), and the dynamic state
of the net itself (called markings) [63], [58], [62]. Where a traditional finite state
machine (FSM) depicts the behavior of a synchronous digital circuit using a single
global state (i.e., all actions take place on the rising or falling edge of a global clock
signal), Petri Nets define the behavior of an asynchronous system as a composition
of the local states in the system which alter themselves via synchronization and
communication.

Let us define the symbols used in this formal model, which are depicted in Fig.
2.5. Informally, the transitions in the PN represent the events in an asynchronous
system. Places can be thought of as the conditions necessary for these events to
occur. If a place contains a token (i.e., if it is enabled) it is said to have a marking.

16 background literature & models

t0

t1

t2

p0

p1

p2

(a) Initial state.

t0

t1

t2

p0

p1

p2

(b) Firing transition t0.

t0

t1

t2

p0

p1

p2

(c) Firing transition t1.

Figure 2.6: Petri Net of a 3-cell token ring

The global state of the asynchronous system is composed of all the marked places
in the PN. With that in mind, the behavior of the PN can be thought of as a token
game, where the markings change position (state) according to the enabling and
firing rules in the net.

In the remainder of this Section, the formal definitions for the basic properties
and behavior of a generic PN will be covered. Furthermore, the PN a 3-cell token
ring, as shown in Fig. 2.6, will be used to provide additional insight.

Definition 2.1 A Petri Net is a quadruple, PN = (P, T , F,m) where:
P is a finite set of places,
T is a finite set of transitions: (T ∩ P = ∅),
F: (T × P)∪ (P× T)→N is a flow relation,
m: P →N is the marking (or state) of the net.

These nets are governed by a series of rules which will be shortly codified in the
following subsections.

2.2.1 Pre-sets and Post-sets

Definition 2.2 The pre-set of a transition t, as denoted by •t, is the set of places
p ∈ •t ⊆ P such that p ∈ •t ⇒ F(p, t) > 0. Symmetrically, the pre-set of place p,
denoted by •p, is the set of transitions t ∈ •p ⊆ T such that p ∈ •t ⇒ F(t,p) > 0.
Similarly, the post-set of a transition (or place) x, denoted x•, is the set of all places
(or transitions) y, such that y ∈ x• ⇒ F(x,y) > 0.

Speaking less formally, the post-set of a transition corresponds to all of its out-
put places, while the pre-set corresponds to all of its input places via similar argu-
ments. As an example, in Fig. 2.6(a) •p0 = t2, and p0• = t0

2.2.2 Enabling and Firing

Definition 2.3 A transition t ∈ T is enabled at marking m1 if for any place p ∈ •t,
m1(p) > F(p, t). This enabled transition may produce a new marking,m2, by firing

2.2 petri nets 17

p0, p1, p2
<1, 0, 0>

p0, p1, p2
<0, 1, 0>

p0, p1, p2
<0, 0, 1>

Figure 2.7: Reachability Graph of a 3-cell token ring

such that:

∀p ∈ P : m2(p) = m1(p) − F(p, t) + F(t,p),

where + and − are defined component-wise, as denoted bym1
t→ m2 orm1 → m2.

Thus for each p ∈ •t, firing t subtracts F(p, t) tokens from •t, and adds F(t,p) to-
kens to t• for each p ∈ t•.

In the 3-cell token ring of Fig. 2.6(a), the only transition enabled in the Petri
net is at t0 due to the presence of the token at place p0. After firing, the token
marking is subtracted from place p0 and then added to place p1 using the flow
relation specified above.

2.2.3 Reachability

Definition 2.4 The new marking m2, produced from the firing of m1, can enable
further transitions. Consequently, we can now define sequences of transitions that
are reachable from the firing of an initial marking, denoted m0. These transition
sequences are referred to as traces. The set of all markings reachable from marking
m is denoted as [m〉. The set of all markings reachable from the initial marking of
the PN, denoted [m0〉, defines the Reachability Graph (RG) of the net, which consists
of nodes corresponding to the reachable markings in the graph, and edges that
correspond to the firing transitions between pairs of markings. Two nodes, mi
and mj, in the graph are connected by an arc if mi → mj holds.

The RG of the 3-cell token ring depicted in the PN of Fig. 2.6, is illustrated in Fig.
2.7. The markings in the RG use vector encodings of the form 〈p0,p1,p2〉. From

the initial marking 〈1, 0, 0〉 the RG is traversed as follows 〈1, 0, 0〉 t0→ 〈0, 1, 0〉 t1→
〈0, 0, 1〉 t2→ 〈1, 0, 0〉. When t2 fires, the PN returns to its initial marking. However, as
there are no concurrent paths in the original PN, this particular RG is only useful
in a pedagogical capacity.

2.2.4 Other Petri Net Properties

Boundedness

The behavior of a circuit specifcation must to be finite. A PN is called bounded
if the net only accumulates a finite number of tokens at any given place. If the
number of tokens accumuated is equal to k, then the PN is called k-bounded. If k is

18 background literature & models

equal to 1 then the PN is called safe. Due to the binary nature of signal transitions
in many digital circuits, 1-safe nets are the nets that are the most applicable to
logical synthesis.

Deadlocks If a firing pattern results in a marking where no PN transitions are
enabled, it is referred to as a deadlock state. If no such reachable markings exist, the
PN is called deadlock-free.

2.3 signal transition graphs

While the description of a PN above yielded a basis for formal description of an
asynchronous circuit, in the following sections another model for the description of
an asynchronous circuit known as a Signal Transition Graph (STG) will be covered.
While many of the same properties are shared between STGs and PNs, the following
are of particular note [18]:

1. Rules for the enabling and firing of transitions.

2. Notions of reachable markings and traces.

3. Temporal relationships between transitions (i.e., choice, conflict, precedence,
and concurrency).

However, the transitions in a STG are defined in terms of the rising and falling
edges of a binary signal, rather than in terms of the presence or absence of a mark-
ing (token) in the pre-set or the post-set of a choice place of a PN. It is precisely
this distinction that allows automated tools such as PETRIFY or Workcraft to de-
rive complex gate equations necessary for logical synthesis from an asynchronous
STG specification, but render them unable to do so when the same system is speci-
fied using a PN.[17] [18] [65]

First, Section 2.3.1. will provide a brief overview of the relationship between STGs

and PNs, while Section 2.3.2 will provide a similar overview for State Graphs (SGs)
and RGs. Next, Section 2.3.3. will cover the STG concept of CSCs. Finally, Section
2.3.4 will briefly touch on the concept of Relative Timing Constraints (RTCs).

2.3.1 Relation to Petri Nets

Definition 2.5 A Signal Transition Graph (STG) is a triple G = (PN,X, λ), where:
• PN is a Petri net PN = (P, T , F,m),
• X is a finite set of binary signals, which generates a finite alphabet AX =

X× {+,−} of signal transitions,
• λ : T → AX is a labeling function.

Let us briefly unpack this definition. The first and third bullet points that indicate
that the transitions, T, in the PN are replaced using the labeling function, λ. The sec-
ond bullet point indicates that each transition in the old PN is split into a positive
(rising edge, +) transition and negative (falling edge, -) transition.

2.3 signal transition graphs 19

t0+
000

t0-
100

t1+
000

t1-
010

t2+
000

t2-
001

t0 t1 t2

Figure 2.8: Annotated STG of a 3-cell token ring

Highlighting the differences between STGs and PNs is best illustrated with a
concrete example, and the annotated STG of Fig. 2.8 will serve in this capacity. As
with the PN of Fig. 2.6, the STG will represent the a 3-cell token ring. The initial
marking of the STG is indicated by the black dot on Fig. 2.8, while dotted lines
represent CSC conflicts (i.e., points of identical state encoding).

2.3.2 State Graphs and Reachability Graphs

A STG is also known as an interpreted PN, which is to say the transitions in the
PN are labeled according to definition 2.5. Similarly, a SG is a RG with interpreted
automata, which means that the markings and transitions in the RG have a 1-to-1
mapping with the (binary) states and events of a SG. To understand this relation-
ship, we it must first note that a SG is defined by a Transition System (TS), rather
than a Net like in a RG. A transition system is defined as follows [18]:

Definition 2.6 A TS is a quadruple TS = (S,E, T , s0), where:
• S is a non-empty set of states,
• E is a set of events (E and S must be disjoint sets),
• T ⊆ S× E× S is a transition relation, and
• s0 is an initial state.
Note: The elements of T are referred to as the transitions of TS, and will often be

denoted by s e→ s ′ instead of (s, e, s’).

If S and E are finite, then the TS is finite. With the definition of a TS in hand, we
can now formally define a State Graph [18]:

Definition 2.7 A State Graph (SG) is a quadruple SG = (TS,X, λS, λE), where:
• TS = (S,E, T , s0) is a transition system,
• X = XI ∪XO is a set of binary signals X = x1, x2, ..., xn,
• λS : S→ {0, 1}|X| is a state assignment function,
• λE : E→ X× {+,−} is an event assignment function.

Within the context of the individual states, each node s ∈ S in the SG is labeled
with a binary vector (s(1),s(2), ..., s(n)) by λS, where s(i) ∈ {0, 1}, in an order which
corresponds to the original order of the signals in X. In other words, s(i) refers

20 background literature & models

t0+
000

t0-
100

t1+
000

t1-
010

t2+
000

t2-
001

t0 t1 t2

CSC0+
001

CSC2-
101

CSC1+
100

CSC0-
110

CSC2+
010

CSC1-
011

CSC0

CSC2

CSC1

Figure 2.9: Annotated STG of a 3-cell token ring (CSC Conflict Resolved)

to the i-th component of s, which corresponds to the (binary) value of the signal
xi ∈ X. If all of the identifiers in the signals are unique, the notation s(x) ∈ {0, 1}
may be used to refer to the value of signal x in states. Within the context of the
transition arcs, let us note that (s, xi∗, s ′) ∈ T refers to (s, e, s ′) ∈ T and λE(e) = xi∗.

With those definitions in hand, we are now equipped to understand the relation-
ship between a RG and a SG. A labeled RG of a particular STG G = (N,m0,X, λ), is
formally a SG SG = (TS,X, λS, λE), defined on the TS = (S,E, T , s0) that is gener-
ated by the full reachability analysis of Net N starting from the initial marking m0.
Reachable markings of Net N are used to obtain the states s ∈ S in SG. Transitions of N
that fire between corresponding markings are similarly used to obtain the names
of events e ∈ E in SG.

The state encodings of the 3-cell token ring are already listed in both Fig. 2.8, and
Fig. 2.9, and all codes take the form 〈s0, s1, s2〉. As will be shown in the following
subsection, the state encoding of the STG will provide insight on hot to both detect
and resolve CSC conflicts.

2.3.3 Complete State Coding

Definition 2.8 A state graph SG = (TS,X, λS, λE), where TS = (S,E, T , s0), satis-
fies the complete state coding property if for every pair of states s ′ ∈ S possessing
the same binary code, λS = λE, the sets of enabled output signals are the same [16].

To paraphrase Definition 2.8, a SG contains CSC if there is no ambiguity as to
the next-state behavior in the SG for any state. Observing the state encoding of the
signals in the STG that comprise the 3-cell token ring in Fig. 2.8 provides us with
insight into the nature of a CSC conflict. In the STG of Fig. 2.8, there are 3 separate
instances where the state encoding not unique. Prior to transitions t0+, t1+, and

2.4 metastability 21

t2+, the binary state encoding (〈s0, s1, s2〉) is 〈0, 0, 0〉. As the state encoding for t0+
(〈1, 0, 0〉), t1+ (〈0, 1, 0〉), t2+ (〈0, 0, 1〉) represent three semantically different (i.e., not
equivalent) states which are reachable from the 〈0, 0, 0〉 state encoding, there is an
ambiguity in the next-state behavior of the SG. In other words, once the 〈0, 0, 0〉
encoding is reached, the SG “can not decide” whether to fire t0+, t1+, or t2+,
without additional information.

Because the encoding conflict at state 〈0, 0, 0〉 stems from a lack of information
about the next-state behavior of the SG, the conflict can be resolved by inserting
new signals into the SG using bi-partition [18]. Let us examine Fig. 2.9 to get
an understanding of how signal insertion can be used to resolve encoding con-
flicts within SG. As we can see, three distinct signal lines (CSC1, CSC2, and CSC3)
have been added to the graph. In order to fire, the STG now requires information
from the CSC signals. Note that at all three previously conflicting locations now
have unique CSC signal combinations associated with them (〈1, 0, 1〉 , 〈1, 1, 0〉, and
〈0, 1, 1〉). Also note that the state encoding of all CSC signals are unique as well
(i.e., there are no CSC conflicts in the CSC resolution signals). Thus, we can say
that the insertion of the CSC signals have resolved the encoding conflict in Fig. 2.9.

There is one more important point that bears mentioning: The interleaving of
the CSC lines in Fig. 2.9 follows what is known as a lock relation (i.e., A∗ → B∗ →
A∗̄ → B∗̄ → A∗). It has been established if A and B are single-cycle signals, and a
lock relation exists between A and B, then that is sufficient to guarantee Complete
State Coding for A and B [49]. However, a because a lock relation is, by definition,
a strongly connected sequence, it can also be used as a sequencer in between in-
dependent STGs which already possess Complete State Coding (i.e. asynchronous
communication can be performed in the absence of a typical request/acknowledge
handshake). Chapter 4.3 will utilize this principle to implement an asynchronous
reconfiguration protocol.

2.3.4 Relative Timing in Signal Transition Graphs

One of the primary issues with STG synthesis, where all components in a system
are assumed to have arbitrary delays, is the inefficiency of the resulting implemen-
tations. In an effort to ensure functional correctness, STG synthesis tools can factor
in signal combinations into the final implementation which have no real physical
meaning. In order to increase the efficiency of the resulting synthesis, timing as-
sumptions can be employed which place limits on the reachability of certain firing
patterns in the SG, thereby making sure the conditions of complete state coding in
the STG are easier to satisfy [18], [73]. These assumptions are referred to as RTCs.
Systems incorporating relative timing constraints are simpler in design than those
which make no assumptions at all. However, care must be taken to ensure that
such assumptions are reasonable.

2.4 metastability

In this section, we will discuss an asynchronous design concept known as metasta-
bility. At the most abstract level, a metastable event can be thought of as a con-

22 background literature & models

1

0

0 1

V1

V2

1

0

0 1

V2

V1

1

0

0 1
V1

V2

V1=0

V1=1

Metastable

V1 V2

Figure 2.10: Abstract view of a butterfly curve. From [44]

tention between two equally valid choices. The classic example of this is a ball
standing at the apex of a hill which can roll down either side when given a tiny ex-
ternal stimulus. From a digital circuit perspective, the metastable state is induced
in a logic gate when the arrival times of two or more signals at the gate input
lead to a longer than normal resolution time at the gate output. Analog logic can
also exhibit metastability as well, but the trigger is sufficiently close differential
voltage, rather than sufficiently close differential time as analog circuits are level-
sensitive rather than edge sensitive. For the purposes of this work, we will restrict
the review of this topic to the circuits discussed in section 2.1.3, as sequential logic
elements (i.e. latches, flip-flops, MCEs).

In the case of a flip-flop, metastability manifests itself when the butterfly curve
of the storage nodes reaches a crossing point. To form such a curve, the Voltage
Transfer Characteristic (VTC) graph of one of the storage nodes is flipped over and
superimposed on top of the VTC of the other node, as in Fig. 2.10. The resulting
graph contains 2 stable states and one metastable state. At the metastable point,
both of the latches comprising the flip-flop can be modeled as linear amplifiers
using small signal analysis, which results in the KCL equations of (1):

−C2
dV2
dt

= G2V2 +AG2V1, −C1
dV1
dt

= G1V1 +AG1V2 (1)

2.4 metastability 23

where G is the output gate conductance (i.e., 1/R) of the circuit, -A is the small-
signal gain of the linear amplifiers, and the output time constants, τ are dependent
on C/G as shown in (2) [80].

τ1 =
C1
AG1

, τ2 =
C2
AG2

(2)

Eliminating V1 gives us a second order differential equation which has a solu-
tion (3) of the form:

V1 = Kae
−t
τa +Kbe

t
τb (3)

Under the assumption that the inverters are identical to each other have a gain
where A»1, thereby making τa = τb =

√
τ1τ2. We are only interested in the

metastable term in the equation, so the Ka term is discarded which gives us an
output volage (4) of:

V1 = Kbe
t
τb (4)

The initial term Kb depends on the differential between the arrival times of the
clock and data signals at the latch input. If the signals are well separated, then Kb is
large and the latch resolves quickly from the linear/metastable region. Conversely,
if the time differential between the clock and data signals is small, then Kb will
be close to zero and the latch remain in the metastable state for quite some time.
Theoretically, it can be infinite time if Kb is exactly zero, but this doesn’t occur in
practice as there will always be some time differential between the arrival times of
the input signals (though it can still lead to failures if it is sufficiently small). Kb is
modeled by (5)

Kb = Θ∆tin (5)

where ∆tin is the time differential from the Kb = 0 balance point, and Θ is a
circuit parameter modeling the rate at which this differential converts to a voltage
difference between the cross-coupled nodes of the latch. It is typically modeled as
VDD/2τs, where τs is the RC delay constant of a capacitive load placed on the
output nodes of the latch. The time taken to reach a stable exit voltage, Ve can be
found by setting V1 = Ve in (4), yielding:

t = τ ln
[

Ve

Θ ∆tin

]
(6)

which will be used in the next chapter to help calculate the Mean Time Between
Failures (MTBF) of a synchronizer circuit.

24 background literature & models

2.5 embedded cycle graphs

This chapter will close with a discussion of the basic graphical terminology which
will form The basis of what we will refer to throughout the remainder of this
work as an embedded cycle graph, which is similar to (but not necessarily the same
as) what has been referred to as a pancyclic graph or sub-tournament in prior
work [38][54][3][9]. This graphical construct can be used to model the abstract
connectivity of the controller specifications that will be presented in Chapter 3 and
beyond. Section 2.5.1 will address the basic graph theoretic terms and definitions
necessary to understand an embedded graph in the mathematical sense, while
section 2.5.2 will place these graphs in a context which is useful for the remainder
of this work.

2.5.1 Basic Graph Definitions

A graph is a mathematical construct composed of vertices and edges. Vertices are
defined as the corner points of the graph, and formed via the intersection of edges.
Edges refer to the set of unordered pairs (i.e., lines) which link together the vertices
within the graph. If the edges are ordered (i.e., directed) they tend to be referred to
as arcs. Formally,

Definition 2.9 A graph G = (V,E), where V is the set of vertices, and E is the set
of edges. Each edge is a pair (v,w) where v, w ∈ V .

Definition 2.10 A graph G = (V,E), is referred to as a directed graph or diagraph if
the edges are ordered.

Definition 2.11 The number of edges incident to a vertex v in the graph G =
(V,E), is referred to as the degree of the vertex, deg(v), where loops between the
same vertex are counted twice. In this work, the maximum degree of the graph G
will be denoted as ∆(G), and the minimum degree will be denoted as δ(G).

Definition 2.12 In a directed graph G = (V,E), vertex w is adjacent to vertex v if
and only if there exists an edge from v to w.

Definition 2.13 A cycle in a directed graph G = (V,E) is defined as a path (i.e., a
sequence of vertices connected by edges) that begins and ends at the same vertex,
and contains at least one edge.

Definition 2.14 A graph G = (V,E), is referred to as a cycle graph if the number of
vertices and edges in the graph are equal |V | = |E|, every vertex has degree 2, and
all vertices are connected via a single path.

Definition 2.15 A graph G = (V,E), is referred to as a chordal graph if every cycle
of length 4 or more contains a chord. A chord is defined as an edge which is not

2.5 embedded cycle graphs 25

part of the cycle, but which also connects two vertices of the cycle[23].

Definition 2.16 A graph G = (V,E), is referred to as a pancyclic graph if the graph
contains n vertices and for every k in the range 3 6 k 6 n, G contains a cycle of
length k[9].

Definition 2.17 A graph G = (V,E), is referred to as a polycyclic graph if the graph
contains n vertices and there exist a finite number (> 2) of k in the range 3 6 k 6 n,
where G contains a cycle of length k.

2.5.2 Applications of an Embedded Cycle Graph

So what is an embedded cycle graph? First, it must be noted that the terminology
itself is almost certainly a point of contention. The term itself arose based on how
the primary researcher viewed the graphs he worked on. Several cycles in the
distributed multi-cycle token rings that he worked with, and which will feature
prominently in Chapter 3, shared a large number of vertices between cycles. After
speaking with other researchers, a more accurate terminology might be something
along more along the lines of a multi-cycle graph or polycyclic graph.

On the surface, an embedded cycle graph, as it is used in this work, bears heavy
resemblance to a pancyclic graph, as discussed in earlier work by Bondy [9]. How-
ever, unlike a pancyclic graph, which requires the possession of a cycle of every
length from 3 to N, as per Definition 2.16, the embedded cycle graph described in
Section 3.3.2 does not. That particular algorithm allows the user to specify whether
to add or omit feedback paths based on user defined parameters (specifically the
entries in a pair of configuration arrays). In a true pancyclic graph, there is no
choice. On the other hand, from a hardware perspective, “omitting a path” might
be the equivalent of just not using a route that might exist regardless. In short, it
is easy to muddy this definition.

Chapter 5 does not make this task any easier. While referring to an embedded
cycle graph in the context of a chordal ring network, we must qualify that the
chordal ring network that was used as an example was a symmetric chordal ring
network. By no means does this imply that symmetric chordal ring networks are
equivalent pancyclic graphs. Having said that, Chapter 5 deals with configuration
and bypass operations which act to both control and restrict the movement of a
control token throughout the ring. Therefore, while a chordal ring network is not
a pancyclic graph by definition, it can certainly be made to emulate the behavior
of a pancyclic graph, as is demonstrated by comparing the results in Fig. 3.18, to
those of Fig. 5.4 (both of which were obtained using CADENCE).

3 O V E RV I E W O F WA G G I N G S Y N C H R O N I Z AT I O N

3.1 introduction(synchronization methods)

Continuing forward from the concepts discussed in Chapter 2, we can now present
a discourse on synchronization. As synchronization plays a prominent role in the
remainder of the thesis, we shall approach the issue from both a general perspec-
tive via a brief summary of prior work, and the more specific context of synchro-
nization as it applies to a concept known as wagging.

An overview of prior work on synchronization will be discussed in Section 3.1.
Section 3.2 will discuss the issue of wagging synchronization in detail. Section 3.3
will illustrate how to design a reconfigurable token ring which incorporates the
material covered previously in Section 2.5. Finally, Section 3.4 will compare and
contrast differing designs for both combinational and sequential token rings and
lay the groundwork for the information contained in Chapters 4 and 5.

3.1.1 Synchronization Overview

As stated previously in Section 2.4, metastability can be thought of as a contention
between two equally valid choices. It was also shown that this contention had
real consequences when applied to circuit implementations. In one case, it arose
because of the uncertainty in the arrival times of digital signals at the inputs to
flip-flop, and the clock signal used to sample the input values. Synchronization
can be thought of as a way to deal with this uncertainty by allowing the system to
sample only the input at times where the input signal is assumed to be at a stable
logic level.

Whether or not synchronization is necessary in a given scenario depends on the
situation. We shall start by considering Figure 3.1(a). If A,B, C, and D are general
processing elements, which pass data between each other in an electronic system,
and all of the processing elements are driven by a single clock which possesses the
same phase and frequency at all points, then synchronization is unnecessary as the
entire system is synchronous.

If the system is driven by clocks that share rationally related frequencies with
a limited phase variance at all points, such as with a phase-locked loop, then the
system is referred to as mesochronous. This is the case in Figure 3.1(b). Synchroniza-
tion might not be necessary provided that the data transfers occur at times which
are mutually compatible for both the sender and receiver. If the clock frequencies
are rationally related, but the phase drift is unbounded, then the system is referred
to as plesiochronous. Since the clocks are rationally related the phase difference is
to some extent predictable in advance, conflicts can be detected and resolved with-
out the need for synchronization provided that the frequencies of the sender and
receiver are not dissimilar enough that data is either missed on the receiver end
(i.e. the receiver clock is much slower than the sender clock), or sampled more

27

28 overview of wagging synchronization

A B

C D

A B

C D

A B

C D

Clock
High Frequency

Clock

f/2 f/3

f/5

DATA DATA DATA

(a) (b) (c)

Clock 1 Clock 2

Clock 3 Clock 4

Figure 3.1: Overview of clocking methods: (a) Synchronous, (b) Rationally related clocks,
(c) Multiple clocks

than once (i.e. is receiver clock is much faster than the sender clock) [28]. Other-
wise, synchronization is necessary, as in Figure 3.1(c). If the clock domains have
an unknown phase and frequency relationship with respect to each other, then the
system is referred to as heterochronous and synchronization is required for every
data transfer.

3.1.2 Cascaded Flip-Flop Synchronization

To transact communication reliably between components forming a sender/re-
ceiver pair on a SoC where synchronization is required, an interface must be con-
structed which synchronizes the write data value from the clock domain of the
sender to that of the receiver, and thereafter synchronize the acknowledgement
from the receiver back to the sender indicating that the sender is free to write the
next data value (if any exist), as depicted in Figure 3.2. The most basic circuit which
provides the synchronization functionality within this interface is commonly re-
ferred to as a cascaded flip-flop synchronizer, which is depicted in Figure 3.3(a). In a
cascaded flip-flop synchronizer, synchronization is performed using two or more
flip-flops in a master-slave configuration as depicted in Figure 3.3, which are situ-
ated at each end of the a transmitter/receiver device pair, as in Figure 3.2. When
the master device is transparent, the slave is opaque, and vice versa.

Using the example of Figure 3.3(b), the master latch becomes opaque on the
rising edge of the clock signal, Clock, at which point it stops sampling the instanta-
neous value of the input voltage from the data line, Data, and begins its resolution
phase, while the slave latch begins sampling the instantaneous voltage of the mas-
ter latch. On the falling edge of the clock the slave latch becomes opaque thereby
transferring the instantaneous voltage value from the master latch, while the mas-
ter latch becomes transparent and begins sampling voltage values from the input
data line again. If the voltage values of the slave latch are stable when it becomes

3.1 introduction(synchronization methods) 29

SENDER RECEIVERDATA

D Q D Q

Read Clock

Write Data
Available

Read Data
Available

DQDQ

Write Clock

Read doneFree to Write

Figure 3.2: Synchronizing interface. From [44]

Table 3.1: MTBF of a Cascaded Two-Flop Synchronizer. From [2]

Parameters Nominal Low VDD Worst Case Worst Case

& Low VDD

VDD 1.0 V 0.3 V 1.0 V 0.3 V

fc = fd 1 GHz 5 MHz 1 GHz 5 MHz

τ 8.9 ps 1.95 ns 13.76 ps 4.12 ns

TW 10 ps 50 ns 10 ps 50 ns

t 846.4 ps 80.2 ns 825.6 ps 44 ns

MTBF 6.5× 1026 2.1× 104 3.6× 1011 38 ms

years years years days

opaque, the data has been synchronized to the clock signal. If not, the master-slave
flip-flop suffers a synchronization failure.

3.1.3 Mean-Time Between Failures in a Cascaded Flip-Flop Synchronizer

Having just mentioned synchronization failures, we are left with a query: How of-
ten do such failures occur? In general, this query is expressed in the form of a design
concept known as the Mean Time Between Failures (MTBF). This concept is broadly
defined as follows:

Definition 3.1: The Mean Time Between Failures (MTBF) of a system is the pre-
dicted time elapsed between inherent failures of a system during normal opera-
tion. In the context of a synchronizer, the MTBF is defined as the probability that
the arrival of concurrent transitions on the clock and data lines fall within a “win-
dow of vulnerability” such that the synchronizer does not resolve to a logical high

30 overview of wagging synchronization

D Q D Q
Slave OutMaster Out

Clock

Data

Master Slave

(a) Schematic

Clock

Data

Slave Out

Slave
Metastable

Master Metastable
Slave Transparent

(b) Operational waveform

Figure 3.3: Cascaded flip-flop synchronizer

or low value in the time allotted to it by the system.

So, again, how often does failure occur? It is actually dependent on several
factors, however it is most strongly impacted by the supply voltage. Using data
that was provided by Alshaikh et. al, and has been reproduced in Table 3.1, we can
see that the MTBF for a cascaded two-flop synchronizer in can vary from 6.5× 1026
years all the way down to 38 milliseconds [2].

Now that the MTBF has been expressed in specific terms above, let us illustrate
how to characterize and derive it. In Section 2.4, an equation for the time necessary
to reach an exit voltage,Ve, from the metastable region of operation within a latch
was defined. Using the same concepts, we can define an equation to ascertain
the MTBF for the cascaded flip-flop synchronizer that was just discussed. First, we
must define terms to represent the data rates of the sender, fd, and receiver, fc,
circuits. If the frequency relationship between the two regions is unknown, then
the distribution of the input arrival times is assumed to be uniform between 0

and 1/fc. Then we must define a window of vulnerability, ∆tin, during which
concurrent transitions between the data and clock (or enable) signals lead to longer
than normal resolution times in the latches of the synchronizer. Rewriting (6) in
Section 2.4 yields the following for ∆tin:

∆tin = Twe
−t
τ , Tw =

Ve

θ
(7)

3.1 introduction(synchronization methods) 31

where t is the time available for synchronization allotted for recovery from metasta-
bility (also referred to hereafter as tMSR), Tw is a parameter known as the metasta-
bility window, τ is the metastability time constant, and θ was defined previously
in Section 2.4, all of which are dependent on various circuit parameters. Within a
given time T, fdT data values will be transmitted, and of those values fc∆tin will
have input arrival times at or less than ∆tin, which will result in synchronization
failures. Thus, the MTBF for a latch based synchronizer is as follows:

MTBF =
1

fdfc∆tin
=

e
t
τ

fdfcTw
(8)

However in an cascaded flip-flop synchronizer, the time available for synchro-
nization t is changed to t/2, as only half of the clock cycle is alloted for resolution,
which changes the MTBF equation. Thus (7) becomes the following:

∆tin = Twe
−t
2τ (9)

The MTBF of a cascaded flip-flop synchronizer can be found by counting the
total number of times that the output of the slave latch resolves from metastable
behavior within a given δt over the course of t events, in a given time interval T.

δt

τ
[fdfcT∆tin] =

δt

τ

[
fdfcTTwe

−t
2τ

]
(10)

In order to find the total number of events that lead to synchronizer failures, δt
must be set equal to ∆tin = Twe

−t
2τ .

Twe
−t
2τ

τ

[
fdfcTTwe

−t
2τ

]
=
Tw

τ
fdfcTTwe

−t
τ =

T

MTBF
(11)

As a result, the MTBF equation in (8) becomes

MTBF =
e
t
τ

fdfcTw

τ

Tw
(12)

for a cascaded flip-flop synchronizer. Thus, the Tw term in (8), is replaced by
T2w/τ in (12).

3.1.4 FIFO Synchronization

One limitation in interfaces utilizing cascaded flip-flop synchronization is that the
throughput of any data transfer is governed by the roundtrip delay through both
the transmitter and receiver ends of the synchronizer [24]. However, by incorpo-
rating a FIFO buffer in between the sender and receiver device pair in Figure 3.2,
the reading and wring operations can be decoupled from each other, thereby al-
lowing both operations take place as soon as the system is ready [15], as depicted

32 overview of wagging synchronization

FIFO

Full Empty

WRITE READ

DATA DATA

DQDQ D Q D Q

Write Data Read done

Write Clock Read Clock

Free to
Write

Data
Available

(a) Schematic

Write Pointer

Read Pointer

Data Buffer

Empty

Full

Data In Data Out

(b) Abstract behavior model

Figure 3.4: FIFO synchronizer. From [44]

in Figure 3.4(a). The read operation can take place as long as there is valid data
stored in the FIFO, while the write operation can be performed as long as the FIFO

has space available in the buffer.
A basic FIFO buffer suitable for synchronization applications is composed of a

set of registers, which are referenced via read and write pointers, as shown in
Figure 3.4(b). The write pointer points to a free location within the buffer, and is
advanced by one after each new data item is written. Similarly, the read pointer
points to previously written valid data items, and is advanced by one upon a
successful read operation. To guarantee that the writing function in the buffer
occurs without error the write pointer must both point to location that is presently
free (i.e. writeable), and also ensure that the next location is free as well, so that
the write pointer can be advanced by one when the operation is completed. By
a similar argument, the read pointer must not only point to data item that is
presently readable (i.e. previously written with valid data), but also ensure that
the next data location is readable as well. For this reason, the write pointer must
always lead the read pointer by two data locations.

3.2 wagging synchronization 33

DEVICE/LOGIC

SLICE 0
(DEVICE/LOGIC)

SLICE N
(DEVICE/LOGIC)

. . .

Non-Wagging
Design

Wagging Design

INPUT OUTPUT

Mixer
(Split)

Mixer
(Merge)

INPUT OUTPUT

Figure 3.5: Conceptual diagram illustrating the wagging principle.

The buffer in Figure 3.4(b) also contains flags Empty and Full, which indicate
if the FIFO buffer has either an unacceptable absence or abundance of data items
by comparing the position of the read and write pointers. Full is set to true if
there is not sufficient space within the buffer to accept incoming data items that
might be written before the sender can be halted. Similarly, Empty is set to true
if there are an insufficient number of valid data items in the buffer which might
be read before the receiver can be halted. While the read and write pointers are
synchronized to the clocks of the receiver and sender, respectively, neither the Full
or Empty flags are synchronized at all. This necessitates that the Full and Empty
signals, be synchronized to the clocks of the sender and receiver, respectively.

Thus, there must always be at least n to n+1 valid data items in the FIFO buffer
before reading operations can commence, where n represents number of cycles nec-
essary to synchronize the Empty signal to the receiver clock. By similar arguments,
there must always be between k and k+1 spaces in the buffer for writing operations
to occur, where k represents number of cycles necessary to synchronize the Full sig-
nal to the sender clock. Further to that point, if the clock frequencies of the sender
and receiver are vastly different, then the throughput of a synchronizer which in-
corporates a FIFO buffer is actually worse than using a simple cascaded flip-flop
synchronizer due to the extra communication latency incurred from buffer under-
flowing if the receiver clock is faster than the sender, or overflowing if the sender
clock is faster than the receiver. Thus, both synchronization methods carry various
benefits and tradeoffs.

3.2 wagging synchronization

With the previous discourse on the concept of MTBF in Section 3.1 in hand, we can
now discuss refinements that others have made in an effort to motivate the need
for the primary synchronization method discussed in this thesis. Jones, Yang, and
Greenstreet refined the basic equations in (9) and (12) to incorporate the effects of

34 overview of wagging synchronization

a

Normal

Start

DATA

FLOW

CONTROL

M
ixer (D

EM
U

X
)

M
ixer (M

U
X

)

Mixer
(MUX)

Split Merge

c

1

23|

T

|

x

|

T

TT

y

(a) Schematic

a

x

CTR

0 1 2 3 4

y

0 2

c

1 3

0 1 2 3

4

t1 t2 t3 t4 t5

1 2 3 2 3

(b) Timing diagram

Figure 3.6: Annotated diagram of a two-way wagging buffer.

a sizing mismatch between the latching elements within a cascaded flip-flip syn-
chronizer [42]. Ginosar et al. showed that the metastability time constant, τ, fails
to track the FO4 delay at low feature sizes [6]. Perhaps most importantly though,
Zhou demonstrated how τ degrades (becomes larger) with reduced supply volt-
ages in an unmodified jamb latch [83].

While many solutions exist to resolve the issues of data synchronization, the
solutions which employ parallelism (i.e. using many components to perform one
specific task) remain of particular interest to this work. Employing parallelism in
the context of a synchronizer circuit has two useful properties:

1. With appropriate scheduling of parallel tasks, mismatches between the trans-
mitter and receiver ends of a synchronizer can be minimized.

2. The Mean Time Between Failures (MTBF) can be manipulated by adjusting the
degree of parallelism employed.

These two properties have appeared in other bodies of literature in one form or
another. Of specific interest is prior work by Kees van Berkel, on handshaking cir-
cuits where he defined a concept known as wagging (i.e. employing parallelism,
in tandem with the scheduling of tasks via time division) [77]. Ebergen also ex-
perimented with the scheduling of tasks in parallel compositions of finite state
machines in his own work [25]. More recently, Brej used the concept of wagging
to compose a system of parallel logic wherein he used the phrase wagging level to
denote the number of replicated parallel components in the system to which the
input data was given. Each parallel component, called a slice, was then assigned a
slice number for the purposes of task scheduling [11].
A design incorporating wagging will always contain two properties, as in Fig.

3.5, regardless of whether or not the design is controlled via synchronous control
signals or asynchronous communication signals called handshakes.

3.2 wagging synchronization 35

1. Usage of parallel components to share the workload of a task.

2. Scheduling of said tasks via time division.

In Section 3.2.1 we will explore an example of a 2-way wagging buffer, then extend
the discussion to a cascaded flip-flop synchronizer in Section 3.2.2. Thereafter, Sec-
tion 3.2.3 examination of the effects of wagging on the failure rates in a cascaded
flip-flop synchronizer. Next, Section 3.2.4 and 3.2.5 will comment on the impacts
and overheads of incorporating reconfigurable hardware design methods into a
wagging synchronizer design. Finally, Section 3.2.6 will conclude with an overview
of a reconfigurable control device suitable for use in a wagging synchronizer.

3.2.1 Two-way Wagging Buffer

To understand the concept of wagging we must look to prior literature on the
subject. In 1992, Kees van Berkel presented work on asynchronous handshaking
circuits, including work on a two-way buffer which he referred to as a wagging
buffer, reproduced in Fig. 3.6 [77]. Active ports in Fig. 3.6(a) are indicated by black
dots, while passive ports are indicated by white dots.

The data flow aspect of the buffer is composed of mixers (|), transferrers (T), and
variables x, and y which function as memory. Transferrers are components which
pass values through their active ports when triggered along their passive ports,
while mixers are components which pass handshakes from their passive ports to
their active ports, and can either act as demultiplexers (DEMUX) or multiplexers
(MUX).

Let us explore the operation of the circuit with a concrete example, as in Fig.
3.6(b). Let a be the data input of the 2-way wagging buffer, c be the data output of
the buffer, and CTR be the asynchronous control/enable signals used to sequence
the operations in the buffer. Furthermore, let ti be the time intervals upon which
the the specific control operations (represented by the squared numbers) are per-
formed, where 1 6 i 6 5.

The operation of the circuit is as follows.

1. x← a @t1 (x is written with the value of a at time t1).

2. c ← x (i.e., a @t1 is passed to the output of the buffer), and y ← a @t2 (y
gets the value of a at time t2).

3. c← y (i.e., a @t2), and x← a @t3

Step 1 only occurs at the start-up of the circuit, in order to place valid data on
x prior to its read out during the next step. Thereafter, only steps 2 and 3 are
executed. Thus, even though x and y in Fig. 3.6 are placed in parallel, functionally
they act as if they were placed in series due to the scheduling of tasks[77].

3.2.2 Wagging Synchronizer Concept

With that discussion in hand, we can now apply the principle of wagging to the
cascaded flip-flop synchronizer discussed earlier. In Fig. 3.7, we explore a synchro-

36 overview of wagging synchronization

nizer example in which the path from the transmitter to the receiver incorporates
wagging, and where the reverse path does not. By juxtaposing the two halves
of the synchronizer circuit in this manner, it is easier to illustrate the impacts of
wagging.

The wagging portion of the circuit divides the workload across N slices, where
each slice represents a pair master-slave latches. Each of these slices, operates at
a frequency of fclk(READ)/N. The slices are scheduled by the wagging controller,
which is also responsible for configuring the mixers which encapsulate the parallel
data paths used for wagging. The controller also contains an interrupt subsystem
which is used during reconfiguration operations, which will be discussed further
in the next subsection. For now, let us just assume that N is fixed and configuration
operations are unnecessary.

By contrast, the reverse path only consists of a single pair of master-slave latches,
which operate at a frequency of fclk(WRITE). If we assume the simplest plesiochronous
case where fclk(READ) and fclk(WRITE) are equal in frequency with an unbounded
phase drift between the arrival times, then the time available for synchronization
between the two halves of the circuit can be directly compared.

As the data slices in the wagging portion of the circuit operate at a frequency
of fclk(READ)/N, the time available for synchronization is N times greater than
in the half of the circuit in which wagging is not employed. Recall, that in (6)
the time it takes for a latch to exit from the metastable state is dependent on the
temporal difference, ∆tin between the arrival times of the clock and data signals
at the gate inputs. From (6) we can see that a linear increase in the time allotted
for metastability has an exponential impact on the Ve necessary to remain in a
metastable state beyond the time given. More accurately, Ve must be exponentially
smaller to cause the output to remain metastable beyond the new time available
for synchronization. Thus, we can say that wagging has a net effect of reducing the
probability that a synchronization operation will fail, thereby resulting in a more
reliable circuit.

Using parallel hardware components to increase the throughput and metasta-
bility characteristics of a synchronizer circuit was previously put forth by Jex and
Dike in 1995, and further characterized by Suk-Jin et. al in 2004, but there were
still design concerns which were not addressed [41], [43]. One such concern was
the limited nature of the ring counter used in the original works which acted as
a control device for the interconnect lines. More specifically, in both works, the
parallelism in the simulations and resulting circuits was fixed, and the could not
be dynamically adjusted at run-time. This was also true in more directly related
work on the subject by Alshaikh et. al, in 2010 on a three-phase synchronizer de-
sign, which also incorporated the wagging concept [2].

3.2.3 Effect of Wagging on the Failure Rate of Cascaded Flip-Flop Synchronizers

In the last subsection, we touched briefly how the time available for synchroniza-
tion in a cascaded flip-flop synchronizer circuit was affected, or more specifically
extended, by incorporating wagging of a fixed degree of N parallel components.
Now, we will explore both how this change in the time available for synchroniza-

3.2 wagging synchronization 37

Mixer
(Split)

Mixer
(Merge)

Write Data
Available

Read
Data

AvailableD
M

Q

...

Write Data
Available
(Slice 0)

DATA

Read doneFree to Write

Write Data
Available
(Slice N)

Read Data
Available
(Slice 0)

Read Data
Available
(Slice N)

 (Slice 0)

(Slice N)

Scheduler

Mixer
Configuration

Clock/Enable (CTR 0)

Configuration Data
(UDATA)

(÷ N) (x N)

Interrupt
Subsystem

Reconfiguration Request

Subsystem
Acknowledgement

Clock/Enable (CTR N)

fclk(READ)/N

fclk(READ)

D
M

Q D
S
Q

D
S
Q

Q
M

DQ
S
D

Write Clock

fclk(WRITE)

Wagging Controller

TR
A

N
SM

ITTER

R
EC

EIV
ER

Figure 3.7: Block diagram of an N-wagging synchronizer

tion affects the failure rate in a cascaded flip-flop synchronizer, and also discuss
the benefits and trade-offs of incorporating reconfigurable hardware capability
into the circuit. While reconfigurable hardware design is a broad topic, in this con-
text reconfiguration will refer to the ability of a circuit to modify itself around an
external stimulus. In the case of the controller in Fig. 3.7, this stimulus takes the
form of an asynchronous handshake and associated configuration data, and the
modification will refer to the change in the number of parallel components (i.e.,
slices) which contribute to the synchronization operation.

Let us briefly touch on the first topic. We can modify the failure equation for a
cascaded flip-flop synchronizer shown in (12) to account for the effects of increased
parallelism. The number of slices, N, was fixed in the previous example, but now
let us assume that the number of slices can be varied. Let j be an integer 1 6 j 6 N,
where j represents number of slices (i.e., master-slave latch pairs) which are active
in a given configuration. Parallelism functions to linearly increase the value of t (i.e.
the time available for synchronization) by splitting the synchronization “workload”
across j slices, as in Fig. 3.8. Thus, j affects the numerator in the exponential portion
of (12) as shown in (13).

MTBF(parallel) =
e
jt
τ

fdfcTw

τ

Tw
(13)

38 overview of wagging synchronization

tsample(1)

tsample(2)

tMSR(0)

tMSR(1)

tMSR(2)

INPUT

DATA

CTR0

CTR1

CTR2

tsample(0)

CLK/EN

tMSR(orig)

tsample(orig)

0 1 2 0

Figure 3.8: Data flow from the transmitter end of a wagging synchronizer to the input of
the FIFO in Fig. 3.7 with j = 3 and a 50% duty cycle.

A linear increase in the time available for synchronization results in an expo-
nential improvement in the MTBF of each parallel cascaded flip-flop synchronizer
component in the system. Consequently, the master-slave latch pairs which com-
prise each slice are less likely to suffer a synchronization failure. Assuming that
the scheduling of the slices is uniform, the MTBF of the wagging portion of the
synchronizer circuit is the same as the MTBF of the individual slices. However, the
denominator in the exponential portion of (13) (i.e. τ) exponentially increases with
a linear decrease in voltage[83]. Thus, while the impact of parallelism on the ex-
ponential portion of (13) is linear, the impact of voltage on the exponential portion
of (13) is exponential (at low voltages). For this reason, robust latches such as those
defined by Zhou et al. can be used instead of regular jamb latches in the design
of a wagging synchronizer if low voltage operation is desired, but this is by no
means a design constraint [83].

Once again, we can use a data set that was provided by Alshaikh et. al, which has
been reproduced in Table 3.2, to support our case [2]. In that study, he compared
the MTBF of a (fixed) 3-way wagging synchronizer to that of a cascaded two-flop
synchronizer (the results of which were shown earlier in Table 3.1). Note that the
parameters of interest are identical, except for the time available for synchroniza-
tion which was extended via the use of the wagging paradigm. By comparing the
two tables, we can see that the MTBF of the WorstCase, Low VDD has improved
from 38 milliseconds in the cascaded two-flop synchronizer to 72 days 3-way wag-
ging synchronizer design.

3.2.4 Impact of Incorporating Reconfigurable Hardware Capability into a Wagging Syn-
chronizer Design

Moving forward, it is now possible to discuss the practical motivations for in-
cluding reconfigurable hardware capability into a parallel synchronizer design.

3.2 wagging synchronization 39

Table 3.2: MTBF of a Fixed 3-Way Wagging Synchronizer. From [2]

Parameters Nominal Low VDD Worst Case Worst Case

& Low VDD

VDD 1.0 V 0.3 V 1.0 V 0.3 V

fc = fd 1 GHz 5 MHz 1 GHz 5 MHz

τ 8.9 ps 1.95 ns 13.76 ps 4.12 ns

TW 10 ps 50 ns 10 ps 50 ns

t 923.2 ps 140.1 ns 912.8 ps 122.2 ns

MTBF 3.7× 1030 4.9× 1017 2.0× 1014 72

years years years days

Conceptually, the strongest reason for incorporating such functionality lies in the
treatment of the MTBF itself. More specifically, we can alter the context in which
the MTBF is addressed. In general, the MTBF of the system is fixed at design time
(i.e., it is a static parameter). By allowing the designer to control the MTBF by mod-
ifying the degree of wagging in the system on-the-fly, the MTBF can be treated as a
variable parameter (i.e., the system can alter itself to suit the MTBF needs of a given
situation).

There are two scenarios in which wagging synchronization can be usefully em-
ployed in tandem with reconfiguration:

1. Adjusting for subtle timing variations introduced via processing parameters,
which are unknown at tape out.

2. Enabling the synchronizer to maintain a pre-defined MTBF value when the
duty cycle of either the write clock (transmitter) or read clock (receiver) are
altered in a way that would otherwise negatively impact the MTBF.

In the former case, the process parameters of CMOS transistors in a region local
to the wagging synchronizer can be deduced through the use of a clock recovery
circuit, such as Costas loop [19]. The input to the recovery circuit is the oscillation
generated by one of the Clock/Enable (CTR) outputs in the scheduler potion of
the Wagging controller of Fig. 3.7, provided that the output signal selected is ac-
tively participating in the present configurable mode. If the number of slices in the
synchronizer, N, is set to a fixed reference value, R, then the operating frequency
of the scheduler portion of the Wagging controller can be tested against a reference
frequency, which is equal to the operating frequency of the scheduler under the
typical-typical process corner.

If the Phase-Locked Loop (PLL) achieves lock (i.e., if the phase detector reaches
its minimum value), then the output frequency of the Voltage Controlled Oscilla-
tor (VCO), and by proxy the scheduler portion of the Wagging controller, can be
found using either a Look-Up Table (LUT) of the VCO output frequency vs. VCO

control voltages, or a suitable approximation [47]. This output frequency can then

40 overview of wagging synchronization

be directly compared to the reference frequency to ascertain whether or not the
transistors which comprise the wagging synchronizer are faster or slower than
in the typical case, and by how many standard deviations, thus yielding the pro-
cess parameters for the Wagging controller and the transistors in the area local to
it. This information can then be stored in memory, and later used to adjust the
number of active nodes in the control device at run-time based on internal condi-
tions within the die. The objective is to minimize the timing variations and phase
drift between the transmitter and receiver ends of the synchronizer under varying
conditions.

In the latter case, when the clock frequency of the write clock (transmitter) or
read clock (receiver) in a cascaded flip-flop synchronizer is increased (i.e., when
the duty cycle is reduced) it has a negative impact on the MTBF, as illustrated in
the last subsection. For example, if the frequency of the read clock in Fig. 3.7 is
increased by a factor of two (effectively halving the time available for synchro-
nization) , then the MTBF of the synchronization path from the transmitter to the
receiver degrades exponentially, as specified by (19), assuming that the number
of slices, j, is constant. However, if the number of parallel components (i.e., slices)
which contribute to the synchronization operation is increased by a factor of two,
the MTBF of the synchronization path from the transmitter to the receiver returns
to its previous value. Thus, by employing reconfiguration in tandem with wag-
ging synchronization, the designer can select the amount of parallelism that they
require to maintain a specific MTBF value as the clock domains of the transmitter
and receiver are varied.

3.2.5 Overheads of Incorporating Reconfigurable Hardware Capability into a Wagging
Synchronizer Design

The benefits of utilizing reconfiguration in tandem with wagging synchronization
must be balanced against the costs of employing such techniques. These costs
come in the come in two forms:

1. Additional delays along the critical path due to the addition of the mixers
necessary for the wagging functionality

2. Additional power and area overheads due to the aforementioned mixers,
control hardware, and replicated master-slave latch pairs.

While the delay component of the reconfiguration hardware is solely defined by
the delay across the mixer elements in Fig 3.7, the power overheads can be char-
acterized in terms of the dynamic and standby leakage power of the additional
components in the wagging synchronizer. For reference purposes, the dynamic
and standby leakage power, PDYN and PLEAK respectively, of the individual tran-
sistors are characterized by the following two well-known equations[66] [69]

PDYN = αfCVDD
2 (14)

PLEAK = ILEAK × VDD (15)

3.2 wagging synchronization 41

where α represents the switching factor, f is the clock frequency of the circuit, C is
the load capacitance, and VDD is the supply voltage in (14). In (15), ILEAK repre-
sents the standby leakage current of the transistor, and VDD is the supply voltage.
When looking at the power in those terms, the excess dynamic and standby power
overheads, PDYN(OVER) and PLEAK(OVER) respectively, incurred as a result of in-
corporating parallelism and reconfigurability into the synchronizer design, as in
Fig. 3.7, can be characterized as follows:

PDYN(OVER) = PDYN(MIXER) + PDYN(CTRL) (16)

PLEAK(OVER) = (N− 1)PLEAK(M/S) + PLEAK(MIXER) + PLEAK(CTRL) (17)

where PDYN(MIXER) and PDYN(CTRL) in (16) are the dynamic power contribu-
tions of the mixer and control hardware, respectively. When looking at the leakage
power overhead, PLEAK(OVER) in (17), the contributing factors are the leakage
power of the master-slave latch pair, PLEAK(M/S), the mixer, PLEAK(MIXER), and
the control hardware, PLEAK(CTRL), and where N is the maximum number of
slices in the synchronizer.

Because of these overheads, incorporating both wagging and reconfigurable
hardware design into the synchronizer specification becomes impractical when
the bit-width of the original datapath is large. However, in the cases where the
bit-width of the original datapath is small, the reliability benefits of the extra hard-
ware may outweigh the aforementioned power and area costs.

3.2.6 Basic Operation of the Reconfigurable Control Device

Having covered the concepts of wagging, reconfigurability, and reliability within
the context of a cascaded flip-flop synchronizer in preceding subsections, we will
now explore how to design a control circuit which achieves these three design
criteria. Such a control circuit is shown in Fig. 3.9.

The control circuit is divided into two parts, one being a token ring composed
of several embedded cycles which selects its cycle length based on a control code
(RDATA) generated by the interrupt subsystem. In this chapter, a one-hot code was
used, though others could conceivably be used as well. The ring determines the
number of parallel master-slave latches present in the synchronizer, and outputs
the delayed clock/enable (CTR) signals to each of the flip-flops in the synchronizer,
thereby partitioning the input data into slices [11]. The second part is an interrupt
subsystem responsible for halting the operation of the token ring (and by proxy
the synchronizer) while the system undergoes reconfiguration, ensuring the func-
tional correctness of the synchronizer by preventing loss of the control token. The
control circuit also outputs the configuration information for the mixer, which is
also derived from the RDATA signal.

The conditions for initiating a reconfiguration operation were mentioned in Sec-
tion 3.2.4. To review, if the time available for synchronization is reduced below
a (user-defined) threshold as a result of either local PVT variations, or via a de-
liberate change in the operating frequency at the transmitter or receiver ends the

42 overview of wagging synchronization

Embedded Token
Ring

Subsystem
ACK

Reconfig
 RQ

UDATA Interrupt Subsystem

R
D

A
TA

(O
n

e-
H

o
t)

CTR

(CLK Enable)

MUTEX

RQ
Denied

Resource
RQ

Issued

R
Q

G

ran
ted

Token
Present

Resource
Reserved

j

C
TR

(
j)

 =
 C

TR
(

j-
1

)
+t

d

...TO M/S LATCH PAIRS

...TO
 R

EC
O

N
FIG

 ISSU
IN

G

H
A

R
D

W
A

R
E

Figure 3.9: Block diagram of a reconfigurable controller suitable for a wagging synchro-
nizer.

synchronizer, then a reconfiguration operation is required. Generally, this requires
some a priori knowledge about the system itself (i.e., operating voltages, tempera-
ture, relative phase/frequency relationships between two clock domains). Regard-
less, once the need for reconfiguration has been identified via an external stimulus
from the environment (i.e., changing PVT or frequency parameters), then a recon-
figuration request (RQ) is issued to the interrupt subsystem of the controller bun-
dled with the relevant one-hot control data (UDATA) generated external to the
controller, which will be used in the ensuing reconfiguration operation. This re-
quest is then fed to a Mutual Exclusion Element (MUTEX) that determines whether
or not the token ring can be safely halted, issuing a grant when successful. Once
the request has been granted, reconfiguration proceeds. The subsystem then al-
ters the one-hot code, RDATA, currently being sent to both the embedded token
ring and the mixer, issuing an acknowledgement (ACK) signal when the process
is complete, whereupon the MUTEX is released and the synchronizer resumes its
operation. Due to the bundled data assumption, which states that the causality of
asynchronous signals is to be enforced at the physical level during circuit layout
(i.e., the RQ and UDATA are assumed to arrive together), the RQ and UDATA sig-
nals are prevented from becoming metastable due to a hazard (i.e., a race between
two asynchronous signals) [18]. In theory, it would also be possible to employ dual-
rail coding in tandem with completion detection to avoid a hazard between the RQ
and UDATA signals, but such a method would require additional hardware and
is not the focus of this work [44].

3.3 topology of a reconfigurable token ring 43

3.3 topology of a reconfigurable token ring

In Section 3.2 it was mentioned that while the concepts of parallelism or even
wagging are not unheard of in the context of synchronizer design, incorporating
the principles of reconfigurable hardware design in tandem with wagging is [41],
[43], [2]. It was shown that a combination of wagging and reconfigurable hardware
design could be used to augment the MTBF characteristics of a cascaded flip-flop
synchronizer. Furthermore, an overview of a controller suitable for accomplishing
this task was presented in Section 3.2.6. The controller was divided into two parts:

1. A reconfigurable token ring, which acts as a scheduler for the parallel master-
slave latch pairs in the wagging synchronizer.

2. An interrupt subsystem responsible for halting the operations in the synchro-
nizer, which guarantees that the reconfiguration operations in the wagging
synchronizer occur without error.

While Chapter 4 will deal with the latter topic, the former topic will be discussed
throughout the remainder of this chapter.

In this Section, we will explore the design considerations of the scheduler, with
emphasis on the topology of the reconfigurable token ring responsible for the
generation of the CTR signals in Fig. 3.8(b). Of primary interest is the issue of
the capacitive loading on the individual devices which comprise the token ring.
More specifically, the maximum number of fan-in and/or fan-out connections for
each device in the token ring comprising the scheduler must be limited to a small
number (i.e., less than 5) regardless of the length of the token ring or the number of
configurable modes. In basic terms if the number of fan-in or fan-out connections
on a single device becomes too large, then it can lead to both uneven delays relative
to the other devices in the token ring due to capacitive differences, as well as
problems with device fabrication when using standard-cell libraries [76].

To that end, we will explore how the vertices in the embedded cycle graph
composing the reconfigurable token ring can be distributed to support several
configurable modes while simultaneously limiting the maximum degree of input
and output connections present at each vertex. First, Section 3.3.1 will cover the...
Second, Section 3.3.2 will illustrate a distribution algorithm which generates an
interesting, yet sub-optimal, token ring topology that will recur again in Chapter
4.3. Finally, Section 3.3.3 will present a distribution algorithm which generates an
optimized variant of the token ring topology in Section 3.3.2.

3.3.1 Cyclic Behavior of Token Rings

Cycles were discussed briefly in Chapter 2. Recall, cycle graphs are composed from
a closed set of vertices linked together by edges. The connectivity and direction-
ality of the edges in the cycle, are defined by the adjacency of the vertices in the
graph. If the cycle forms a closed loop where each element has a single input and a
single output, then it is referred to as a ring. If the vertices in the ring are traversed
via the use of a specific bit pattern, called a token, then it is referred to as a token

44 overview of wagging synchronization

(a) with a single cycle of 8 vertices (b) with several cycles and a maxi-
mum cycle length of 8 vertices

(c) with several cycles, a maximum degree equal to 4, and
a maximum cycle length of 8 vertices

Figure 3.10: Cycle graphs of a token ring.

ring. Via the use of token ring cycle graphs, we can create a visual representation
of the configurable modes in the control device of Fig. 3.8(b).

A cycle graph of a token ring with eight vertices is depicted by Fig. 3.10(a).
In Fig. 3.10(a), vertices 0 and 1 are adjacent since the token travels from 0 to 1
as it travels around the loop. The path from vertex 0 to 7 within the token ring
constitutes a cycle. However the token ring in Figure 3.10(a) only contains a single
cycle. If a single token ring contains more than one cycle, the cycles are said to be
embedded within the token ring. Figure 3.10(b) shows the same token ring as Figure
3.10(a), but now instead of having just one cycle of length 8, it now contains cycles
of length 3, 4, 5, 6, 7, and 8. As vertex 0 exists as a part of all the cycles in Fig.
3.10(b), we can say that 0 is a shared vertex between all of the configurable modes
in the cycle graph of Fig. 3.10(b).

However, in Fig. 3.10(b) vertex 0 also accumulates a disproportionately high
number of input connections relative to the other vertices in the cycle graph. Fur-
thermore, because the number of cycles necessary to implement reconfiguration
increases with the number of configurable modes desired in the scheduler, we can
say that both the capacitive loading and delay associated with vertex 0 will be
negatively impacted as the number of cycles and configurable modes in the cy-
cle graph of Fig. 3.10(b) grows larger [76]. Thus, the cycle graph of Fig. 3.10(b) is
insufficient for the reconfiguration needs of the wagging synchronizer defined in
Section 3.2, due to the aforementioned scalability issue. In order to overcome this
issue, another cycle graph must be defined in which the number of incoming and

3.3 topology of a reconfigurable token ring 45

Table 3.3: Differences in the Cycle Lists of a Multi-cycle Token Ring with Distributed Edges
vs. an Undistributed Ring (Maximum Cycle Length = 8 Vertices)

Simple Distributed

(sub-optimal)

Cycles 0, 1, 2→ 3 Odd Cycles 6, 7, 8→ 3

0, 1, 2, 3→ 4 5, 6, 7, 8, 9→ 5

0, 1, 2, 3, 4→ 5 4, 5, 6, 7, 8, 9, 10→ 7

0, 1, 2, 3, 4, 5→ 6 Even Cycles 2, 3, 4, 5→ 4

0, 1, 2, 3, 4, 5, 6→ 7 1, 2, 3, 4, 5, 6→ 6

0, 1, 2, 3, 4, 5, 6, 7→ 8 0, 1, 2, 3, 4, 5, 6, 7→ 8

Shared 0, 1, 2 None

Vertices

outgoing connections (i.e., the maximum degree) at any given vertex is limited
regardless of how large the cycle graph grows. In other words, we must create
an embedded cycle graph with distributed connections. An example of such a cycle
graph is shown in Fig. 3.10(c).

Before proceeding further, let us examine the properties of the cycle graph of
Fig. 3.10(c). First, let us note that the maximum number of edges at any given
vertex in Fig. 3.10(c) is equal to 4 (though it might be less than that). Second, let us
note that by distributing the number of edges within the cycle graph of the token
ring in Fig. 3.10(c), while preserving the same number of embedded cycles as in
Fig. 3.10(b), we incur additional overhead in terms of the total number of vertices
necessary to realize the cycle graph of the token ring (i.e., 11 vertices in Fig. 3.10(c)
vs. 8 in Fig. 3.10(b)).

Let us further examine the differences between Fig. 3.10(b) and Fig. 3.10(c) via
the use of Table 3.3, which compares the cycle lists of each graph to one and
another. In Table 3.3, we will refer to the entries regarding Fig. 3.10(b) as the
Simple case, while the entries regarding Fig. 3.10(c) will be referred to the Dis-
tributed (sub-optimal) case. The term sub-optimal is used because, as will be shown
in Section 3.3.3, there is a more efficient way to construct a distributed cycle graph
than shown in Fig. 3.10(c). The overbars in Table 3.3, represent the shared vertices
between multiple cycles. This point bears mentioning because if there are config-
urable modes in the cycle graph of Fig. 3.10(c) which are disjoint from each other
(i.e., there exist modes which share no common vertices), then it poses an interest-
ing problem. Namely, how can a control token reach disjoint configurable modes
in the absence of a shared vertex? The mathematical properties of the cycle graph
in Fig. 3.10(c) garner some insight into this issue:

1. If graph, G, is a multi-cycle token ring, then for all vertices ∆G (i.e., ddeg(G)e)
= 4.

46 overview of wagging synchronization

Algorithm 1 Sub-optimal Distribution Algorithm for a Static Token Ring (Part 1)

Input: X :=
∣∣cycle(max)(odd)∣∣ , L :=

∣∣cycle(max)(even)∣∣,
E := [an] , a0 to an are binary, |E| := L/2
O := [bm] , b0 to bm are binary, |O| := floor (X/2)
Let L be even, L > X

Output: Collection of objects (memory addresses) whose connections model a dis-
tributed token ring of length X+L/2, with many cycles, and maximum adja-
cency k = 4

1: object *list, *current
2: list ← new object // get a pointer to the first object in the list
3: for i = 0 to L− 1 do
4: current→ index← i

5: current→ norm_tail← new object

6: if i > L/2 then
7: if E [i− (L/2)]← true then
8: current→ even_fb_tail← find_index (list,L− i)
9: else

10: do nothing
11: else
12: do nothing // no feedback paths prior to L/2− 1
13: current← current→ norm_tail // advance to the next object in the list
14: increment i

2. If graph, G, is a multi-cycle token ring, then the intersection of the set of
vertices cyclemin(even) and cyclemin(odd) may be equal to the null set. (i.e.,
some cycles have independent sets of vertices)

3. If graph, G, is a multi-cycle token ring, then the intersection of the set of
vertices cyclemin(even) and cyclemax(odd) can not be equal to the null set,
and vice versa. (i.e., there will always be a route between these two sets).

While property 2 states that there may not be a direct path between the minimum
length odd (cyclemin(odd)) and even (cyclemin(even)) cycles in Fig. 3.10(c), prop-
erty 3 indicates that, in this topology, there will always be an indirect path between
them via the maximum length odd (cyclemax(odd)) and even (cyclemax(even))
cycles. Chapter 4.3 will discuss how to construct a reconfiguration protocol which
makes use of this observation.

3.3.2 Sub-Optimal Distribution Algorithm Specification

In Section 3.3.1, we explored the properties of a (sub-optimal) embedded cycle
graph for a distributed multi-cycle token ring which satisfies the requirements for
the scheduler aspect of the wagging controller discussed in Section 3.2.6. As stated
earlier, distributing the edges in a multi-cycle token ring, serves two core purposes.
By limiting the maximum number of vertices in the graph, we can:

3.3 topology of a reconfigurable token ring 47

1. Reduce the capacitance of the fan-in and fan-outs of the resulting circuit
implementations.

2. Equalize the delays between the devices/nodes of the resulting circuit.

The algorithms for generating the embedded cycle graph for a distributed multi-
cycle token ring, in the same vein as the specific example depicted in Fig. 3.10(c),
are outlined below. Both of them require four pieces of information a priori:

1. The cycle length containing the maximum number of even vertices (L).

2. The cycle length containing the maximum number of odd vertices (X).

3. An array of length L/2 containing the information used to construct the
distributed feedback paths for the even cycles (E).

4. An array of length bX/2c containing the information used to construct the
distributed feedback paths for the odd cycles (O)

E and O contain information of a binary type, indicating either the presence
(true) or absence (false) of a feedback path at that index location. Using this infor-
mation, it is possible to dynamically construct a linked list of objects, where the
connectivity between the memory addresses in the list models the connectivity of
a distributed token ring. Figure 3.10(c) used the following parameters: L=8, X=7,
E = [0,1,1,1], O = [1,1,1].

The objects themselves are data structures which contain the following 4 pieces
of information:

1. index: integer data type.

2. norm_tail: pointer data type

3. even_fb_tail: pointer data type

4. odd_fb_tail: pointer data type

Part 1 of the algorithm deals with the construction of the even cycles within the
distributed token ring, where it is assumed that L > X. The algorithm begins by
getting a pointer to the first object in the list, and then enters the initial for loop.
The index value of the current data object is then assigned a unique number, which
is equal to the present value of the loop counter i. Additionally, the norm_tail
(normal tail) data field of the present object is linked to a new object of the same
type for later use when the loop is incremented. If the current value of the loop
counter is greater than or equal to L/2, then the data entry at location i-(L/2) in
the E array is checked for the presence of a feedback path. If one exists, then a
linear search function find_index() is called which accepts a pointer to the head
node of the list, and a location (L-i in this case) as its inputs. The return value of
the function is a pointer to the location in the list which contains an index value
equal to L-i. This result is then assigned to data field even_fb_tail (even feedback
tail) in the present object. The loop then advances the pointer to the next object
in the list and increments i by 1. It is worth noting, that checking does not occur

48 overview of wagging synchronization

0 1 2 3 4 5 6 7

a0 a1 a2 a3

0 1 1 1

L/2

E

(a) after building the even cycles in the token ring (L=8,
X=7, E=(0,1,1,1), O(1,1,1))

0 1 2 3 4 5 6 7

a0 a1 a2 a3

0 1 1 1

L/2

b0 b1 b2

1 1 1

E
8 9 10

O
{}

CM

(b) after building the odd cycles and linking them to the
list of previously created objects

Figure 3.11: Results of the sub-optimal distribution algorithm

before i = L/2-1, because no feedback paths can exist prior to that point. Figure
3.11(a) depicts the results of employing this algorithm with the same parameters
as Figure 3.10(c).

Continuing onward, the second half of this algorithm incorporates some addi-
tional constants. C is a control invariant used to indicate whether or not the pointer
has reached the “end of the list”, while M represents the midpoint of the odd cycle
list (serving as an equivalent to the L/2 control term in part 1). Lines 5-11 in part 2

are equivalent to lines 4 & 5 in the above algorithm. The test as to whether or not
j has exceeded L is intended to prevent aliasing with previously created objects,
while the test for j < C is used to decide whether to create a new object, or to set
the next pointer location to null (if the end of the list has been reached). Similarly,
line 13 & 14 in Algorithm 2 are equivalent to line 7 & 8 in algorithm 1. Array O is
checked for presence of feedback paths now, the odd_fb_tail is being used instead
of the even_fb_tail, and the find_index() function searches for an index value of
C-j+L/2 instead of L-i. The resulting distributed token ring is shown in Figure
3.11(b), which matches the results of Section 3.3.1. The overhead associated with
this method is the addition of an extra (X+L/2) - L new vertices to the maximum
cycle length (cycle(max)(even)) of the original behavior graph.

3.3.3 Optimal Distribution Algorithm Specification

While the algorithms in Section 3.2.2 create balanced distributed feedback paths
as described, they do not form the basis of an optimal solution. It was Dr. Andrey
Mokhov who suggested that it is also possible to create an embedded cycle graph
based on pancyclic rings, which possesses the same end behavior as the embedded

3.3 topology of a reconfigurable token ring 49

Algorithm 2 Sub-optimal Distribution Algorithm for a Static Token Ring (Part 2)

1: C := X+ L/2− 1 // control invariant used in second for loop
2: M := C/2+ L/4 // conditional control invariant used in midpoint calculation
3: current← find_index (list, L/2) // set current index to L/2
4: for j = L/2 to C do
5: if j > L then
6: current→ index← j

7: if j < C then
8: current→ norm_tail← new object

9: else
10: current→ norm_tail← null // at end of list
11: else
12: do nothing // prevent aliasing with previously created objects
13: if j > M then
14: if O [j− (M+ 1)]← true then
15: current→ odd_fb_tail← find_index (list, [C− j+ (L/2)])

16: else
17: do nothing
18: else
19: do nothing // no feedback paths prior to M
20: if j < C then
21: current← current→ norm_tail // advance to the next object in the list
22: else
23: do nothing // at end of list
24: increment j

cycle graph in Section 3.3.2, but which lack the drawback of not having a set of
shared vertices as the cycle graph grows an arbitrary size with an arbitrary number
of configurable modes. As these shared vertices can be used as interrupt points for
the reconfiguration protocol discussed in Section 4.3, this optimized algorithm al-
lows reconfiguration to be performed in a single configuration operation, without
the need for intermediate configuration steps.

As before, we can compare the differences in the embedded cycle graphs pro-
duced by the two algorithms by comparing their cycle lists via the use of Table 3.4.
In Table 3.4, we will refer to the entries regarding Fig. 3.12(b) as the Distributed
(optimal) case, while the entries regarding Fig. 3.11(b) (or alternatively 3.10(c), as
they are the same) will be referred to the Distributed (sub-optimal) case. As before,
the overbars in Table 3.3, represent the shared vertices between multiple cycles.

The properties of the sub-optimal case of Fig. 3.11(b) (Fig. 3.10(c)) in Table 3.4
are the same as they were in Table 3.3 in Section 3.3.1. However, when taking a
look at the optimal case of Fig. 3.12(b) it can be observed that vertices 0, 2, 3, and 7
are shared between all configurable modes. . As a result, properties 2 and 3 of the
embedded cycle graph of Fig. 3.11(b) (i.e., Fig. 3.10(c)) are no longer applicable to
this algorithm. Thus, the mathematical properties of the embedded cycle graph in
Fig. 3.12(b) are as follows:

50 overview of wagging synchronization

Table 3.4: Differences in the Cycle Lists of Two Different Multi-cycle Token Rings Imple-
mentations with Distributed Edges (Maximum Cycle Length = 8 Vertices)

Distributed Distributed

(optimal) (sub-optimal)

Cycles Does Not Exist Odd Cycles 6, 7, 8→ 3

0, 2, 3, 7→ 4 5, 6, 7, 8, 9→ 5

0, 1, 2, 3, 7→ 5 4, 5, 6, 7, 8, 9, 10→ 7

0, 2, 3, 5, 6, 7→ 6 Even Cycles 2, 3, 4, 5→ 4

0, 1, 2, 3, 5, 6, 7→ 7 1, 2, 3, 4, 5, 6→ 6

0, 1, 2, 3, 4, 5, 6, 7→ 8 0, 1, 2, 3, 4, 5, 6, 7→ 8

Shared 0, 2, 3, 7 None

Vertices

1. If graph, G, is a multi-cycle token ring, then for all vertices ∆G (i.e., ddeg(G)e)
= 3.

Comparing this property to property 1 in Section 3.3.1, it can be stated that the
maximum degree of any vertex in the embedded graph of the multi-cycle token
ring of Fig. 3.12(b) is less than that of 3.11(b) (i.e., Fig. 3.10(c)). Hence the algorithm
in Section 3.3.3. is optimized in terms of capacitive loading on the vertices of the
embedded cycle graph (i.e., the capacitive load is reduced).

The optimized distribution algorithm in this section can be modeled by taking a
basic linked list of objects, as shown in Figure 3.12(a) and adding a few parameters.
The objects themselves are data structures which contain the following 3 pieces of
information:

1. index: Integer data type. Used to order the entries in the linked list.

2. norm_tail: Pointer data type. Contains the initial path to the next object in
the list.

3. jump_tail: Pointer data type. Contains the secondary path to the next object
in the list.

On the first pass, the objects in in the list from 0 to L will be created and linked
along the normal tails. When the final entry is created, the norm_tail of this entry
will be given a pointer to the head of the list, as in Figure 3.12(a). Using this linked
list, the jump tails can be constructed via the application of a few observations.
When the second pass begins, index entry 0 is given a pointer to object 2. This is a
property of the graph. This tiny portion of the graph functions almost like a query,
with the pertinent question being “odd or even?” As for the subsequent jump tails,
the index values of the resulting connections can be computed as follows. If we
consider object 3 to be the starting point of the graph after the omission of the
aforementioned query, which will hereafter be referred to as S, then it turns out

3.4 token ring designs 51

0 1 2 3 4 5 6 7

(a) Basic linked list

0 1 2 3 4 5 6 7

a0

1D

a1 a2

0 1

LS

M=floor((L+S)/2)

Y/N?

M

(b) Anotated diagram outlining the methodology for creat-
ing abstract distributed feedback loops

Figure 3.12: Optimized distributed feedback algorithm overview

that the values of the target indexes for the jump tails can be statically calculated
as follows.

1. Add S to the highest index value and divide by 2 (take the floor function of
the result). This will yield M (the midpoint of the graph).

2. Since M is located in the middle of the graph and the feedback (feedforward)
path target is located a symmetric distance away on the other side of the
midpoint, the target index, T, at any given moment can be calculated as T =
M + (M-i) where i represents the current position of the list pointer.

In this manner, all of the paths can be constructed in a total of two complete
iterations. Further to the above information, one point bears mentioning. Namely,
if the total number of vertices in the system is odd the graph will contain two
possible midpoints. However, since M is defined by the floor function of the calcu-
lation in step 1 of the above procedure, the path target ,T, defined in step 2 can be
adjusted by adding substituting M in the first operand with M+1 (i.e. T = (M+1) +
(M-i)).

We also require one more piece of information to complete the algorithm. More
specifically, we require an array variable D[an] to store the state of the distributed
feedback paths in the system, where n ranges from 0 to M-S. D controls whether
or not a secondary path is active (if D = 1) after the initial creation of the graph,
as in Figure 3.12(b). D[a0] is always linked to the object with an index value 0,
whereas entries D[a1] to D[an] are linked to objects with index values of S to M-1.

3.4 token ring designs

While Section 3.3.2 dealt with the construction of a distributed token ring through
the use of a linked list of objects, where the directed connections between the mem-
ory addresses modeled the connectivity of the underlying embedded behavior

52 overview of wagging synchronization

*10 01 1

RST

CTR1 CTR2 CTR3 CTR4 CTR0

Figure 3.13: Ring oscillator with ngate = 5, and an active-low reset signal

graph, the following subsection illustrates how the same token ring is constructed
using both combinational and sequential circuit elements. As stated in the intro-
duction, each of the implementations shall be compared and contrasted against
each other in terms of both power and latency, to illustrate the tradeoffs present
between them.

3.4.1 Ring Oscillators

The first token ring implementation under study is a ring oscillator. A ring oscillator
is token ring which is constructed from an odd number of inverting elements (the
minimum number is 3). All of these elements are built using combinational logic
, which means that the outputs from the inverting gates of the token ring are a
function of the present inputs only (i.e. the circuit is memoryless). Consequently,
the resulting token ring circuit is simpler than its sequential counterparts and uses
less area on the die [66]. As an example, Figure 3.13 depicts a ring oscillator where
the number of gates, ngate, in the inverter chain is equal to 5. The ring oscillator
has a cycle time, tcycle , which is governed as follows:

tcycle = n×
(
tpLH + tpHL

2

)
(18)

in which tpLH and tpHL are the low-to-high and high-to-low propagation delays
of each inverter, respectively. The duty cycle of this token ring design is 50% of the
clock period, which allows only half of the cycle time to be used for synchroniza-
tion. The oscillator is set by forcing a zero on the reset line, RST, which determines
the default values at each of the other gates as shown in Figure 3.13. The "token"
in this ring of inverters is represented by the [1, 1] output signal pair which begins
to propagate through the chain of devices once RST goes high.

3.4.2 Fast David Cells

We briefly touched on David Cells back in Section 2.1.3, and now we will continue
the discussion [21]. In contrast to the combinational token ring implementation
based on ring oscillators from Section 3.4.1, token ring control circuits based on
sequential logic use both the present and prior inputs of the system to determine
their output values. While such systems are more difficult to design and verify,
they also offer additional time available for synchronization when compared to

3.4 token ring designs 53

CTR(n)

0 1 0

2 7
1 0 1

3 6

1 0 1

1 4 1 0 1

5 8

xn yn
yn-1

yn+1

(a) Fast DC. From [73].

yn-1

xn

yn

yn+1

1 4

2 7

3 6

5 8

(b) Timing diagram.

Figure 3.14: Annotated fast David Cells schematic with signal transitions representing 1

operating cycle

their combinational counterparts. Primarily, this is due to the sampling time of
the master latch, tsample, being governed by the so-called mark to space ratio as
defined by the underlying STG. Figure 2.4(a) shows the progression of the signal
transitions in a standard DC, while Fig. 2.4(b) shows its timing diagram. As stated
previously, the circled numbers in Fig. 2.4(b) represent the individual transitions
generated internal to the cell, starting at transition 1. The “mark” is represented as
the number of transitions during which the CTR signal is high, while the “space”
corresponds to the time where it is low. Using Figure 2.4(a) as a reference, we can
see that the mark lasts for 9 transitions (i.e. from {2} to {11}), while the space is
a variable length. As it takes 7 transitions for the signal in {1} to reach the same
relative location in the next DC (at transition{7}), the space can be expressed as 7
* (L− 1) where L is equal to the number of DCs in the token ring. It is useful to
note that the mark is actually invariant to changes in the cycle length of the token
ring, and this property holds for all the sequential token ring implementations.
Consequently, the time allotted to recover from metastability (i.e. the time available
for synchronization) increases as the number of devices in the chain increases,
assuming that the system samples on the mark, and recovers on the space.

As it turns out, the latency of the DCs in the token ring can be improved by
incorporating relative timing constraints (as previously mentioned in Section 2.3.4)
into the specification. If the lower NAND gate in Figure 2.4(a) is removed, it al-
lows a token to propagate forward to the next DC in the system concurrently with
the reset phase of the current DC (i.e. transitions {4} to {8}. This circuit structure
is commonly referred to as a fast DC, and is depicted in Fig. 3.14(a), while its tim-
ing diagram is shown in 3.14(b) [73]. The set phase of a fast DC occurs during
transitions {1} to {3}, while the reset phase occurs during transitions {4} to {8}.

Thus, two additional fast DCs are required in order to provide the 5 transitions
necessary for the CTR signal to reset [73]. This latency requirement has been re-
ferred to as token spreading in prior literature. This is somewhat misleading though

54 overview of wagging synchronization

0 1 0
1 6

1 0 1
2 5

0 1 0
3 8

1 0 1
4 7

0 1 0
5 10

1 0 1
4 7

0 1 0
3 8

1 0 1
6 9

x0x1x2x3

y0y1y2

CTR0CTR1CTR2CTR3

y3

1
9

0
10

(a) Annotated schematic with 10 signal transitions

CTR0

CTR1

CTR2

CTR3

1 6

3 8

5 10

4 7 12

9

11

(b) Waveform illustrating the output (CTR)

signals

Figure 3.15: Four-way sequential token ring based on fast DCs

because a fast DC takes 8 transitions to completely stabilize from an initial per-
turbation when placed in a token ring configuration. Consider the diagram in
Figure 3.15, which depicts a token ring based on fast DCs where L=4. One possi-
ble path through the system is [x0+,y0-,x1+,y1-,x2+,y2-/x0-,x3+,y3-] which takes
8 transitions to complete before returning to position x0+ on transition 9. Another
(reverse) path through the system is [x0+,y0-,x1+,y1-,x2+,y2-,y1+] which takes 7

transitions, and is invariant to changes in the length of the token ring. If the token
ring only had L=3 it would return to x0+ on transition 7, where both x0+ and y1+
act as inputs to the y0 NAND gate on its falling (y0-) transition. Also note that
an input vector of [1 1] causes the state of the NAND gate to change from 1 to 0.
In short, a token ring using fast DCs with L=3 results in a race condition, which
is made worse by the symmetry inherent to the system. Simply put, if this race
condition occurs during the reset phase of y0, then is also guaranteed to occur in
y1, y2, and y3 during the same portion of their reset phase. Furthermore, because
the token ring is cyclic this race condition will always happen.

By contrast, since the number of transitions necessary to traverse the token
ring of length L=4 in the forward direction exceeds 8, the race condition de-

3.4 token ring designs 55

A0

B0

Z0

A1

B1

Z1

A2

B2

Z2

A3

B3

Z3

0 1 0
1 4

1 0 1
3 6

0 1 0
2 7

0 1 0
5 8

CTR0

CTR1

CTR2

CTR3

C

C

C

C

(a) Annotated schematic with eight signal transi-
tions

CTR0

CTR1

CTR2

CTR3

1 4

2 7

5 8

3 6 11

9 12

10

(b) Waveform illustrating the output (CTR)

signals

Figure 3.16: Four-way sequential token ring based on MCEs

scribed above can not happen, as illustrated in Figure 3.15. The fast DC has a
few advantages over its standard counterpart. Reduction in the latency of the
sampling interval (mark) by 44% is one such advantage, though more will be
discussed in section 3.4.4. Initializing the token ring in Figure 3.15 requires that
the two-input NAND gates labeled [y0,y1,y2, and x3] be replaced with three-
input NAND gates so that the token ring can be initialized and driven by and
active-low control signal. The circuit is initialized with the following data from
〈x0,y0〉 to 〈x3,y3〉 : 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈1, 0〉

3.4.3 Muller Pipeline

In Chapter 2.1.3, the MCE was introduced. [56]. In this subsection, we shall explore
the utility of a sequential token ring controller that is constructed from MCEs. With
that in mind, Figure 3.16(a) depicts a 4-way sequential token ring composed of
MCEs, while Fig. 3.16(b) represents its timing diagram. As before with Fig. 2.3(b)
in Section 2.1.3, the circled numbers in Fig. 3.16(b) represent the individual transi-
tions generated internal to the cell, starting at transition 1. The one marked differ-
ence between this sequential implementation and that of 3.4.2 is that the “mark”
in a MCE token ring isn’t a precise value. Using the example of Figure 3.16(b), the
duration of time where the control signals are high varies from 3 transitions, to 5

transitions. To characterize it more plainly, the average time available for synchro-
nization in a tends to converge to a mean value rather than being cast in stone
like in sections 3.4.1, and 3.4.2 The control signals in the token ring are tapped
from the inverter outputs (i.e. Z0 to Z3). The default initializations, values for the
control lines from Z0 to Z3 are [0001], respectively.

56 overview of wagging synchronization

3.4.4 Performance Comparison

Before comparing the token ring designs to each other it is necessary to specify the
objective of these tests. In Section 3.2.4, it was mentioned that one of the applica-
tions of a wagging synchronizer that incorporates reconfigurable hardware design
is to adjust for subtle variations in timing variations introduced by PVT parame-
ters. However, because the circuit structures which comprise the cells in the token
ring chains all have differing propagation delays, the number of cells necessary to
approximate a target duty cycle is different for each design style.

In order to fairly compare the combinational and sequential token rings to each
other, each token ring design must:

1. Target a fixed duty cycle which will act as frequency reference for every
token ring implementation.

2. Operate at a fixed supply voltage.

3. Operate at a fixed temperature.

If those three conditions are met, then a corner-analysis can be used to observe the
impacts of processing parameters on both the power consumption and the time
available for synchronization in the scheduler portion of the wagging controller
introduced in Section 3.2.6. The examples in Table 3.5 and 3.6 used the following
parameters:

1. Target duty cycle = 1 ns (Typical-Typical Case, UMC 90nm SP Technology)

2. Supply voltage = 1.0V

3. Temperature = 27 ◦C

All of the designs employ optimal sizing rules and are simulated via CADENCE.
The numerals at the front of each design entry correspond to the number of cells in
the token ring chain (i.e. 12, 16, 19, etc.) required to meet the 1 ns target frequency
in the Typical-Typical case, followed by the design style under consideration (i.e.
Ring Oscillator (RO), Muller Pipeline (MP), and fast DCs (DC)). The number of
cells impacts the natural frequency of the physical implementation. For example,
in order to approximate the 1 ns target frequency the ring oscillator requires 37

cells in the device chain, while the sequential implementations based on the Muller
Pipeline and fast DCs require 12 and 19 cells, respectively. However, these results do
not take capacitive loading into account, and therefore the number of cells required
in the actual token ring to approximate the target frequency of interest can be
lower in practice than stated above. As shown in Table 3.5, the combinational logic
implementation of the token ring has the lowest average power consumption per
cell, due to the simplicity of the underlying physical implementation. The average
power values in Table 3.5 were measured over a time interval of 1 ns. Data values
in Table 3.5 can be extended to a token ring of arbitrary length by multiplying
the average power per cell by the number of cells in the token ring configuration
of interest. Therefore, the power consumption is proportional to the number of
devices in the token ring chain.

3.4 token ring designs 57

Table 3.5: Average Power Consumption per Cell across Process Corners at VDD = 1.0 V
and tcycle = 1 ns (TN/TP)

Design SN/SP FN/SP TN/TP SN/FP FN/FP

(µW) (µW) (µW) (µW) (µW)

12MP 5.049 7.143 7.493 7.765 10.182

19DC 1.869 3.050 2.744 2.785 3.817

37RO 0.675 1.397 1.326 1.329 1.719

Table 3.6: Average Time Available for Synchronization across Process Corners at tcycle =
1 ns (TN/TP)

Design SN/SP FN/SP TN/TP SN/FP FN/FP

(ps) (ps) (ps) (ps) (ps)

12MP 1046.0 841.65 784.64 729.57 618.03

19DC 1,132.4 862.94 842.30 836.81 677.27

37RO 691.58 510.82 502.65 503.50 396.71

On the other hand, the values in Table 3.6 illustrate that the sequential token
ring implementations exhibit additional time available for synchronization when
compared to their combinational counterparts. The fast DC design outperforms
the Muller Pipeline in terms of time available for synchronization and power con-
sumption, due to the simplicity of the former design. It should be noted that the
above results in Table 3.6 do not take into account the setup and hold times of the
slave latch, which must be deducted from the time available for synchronization
above in order to ensure that the design satisfies the required MTBF.

3.4.5 Distributed Token Ring Implementation

Given the prior discussion on token ring topologies, let us now examine a practical
example of how an embedded token ring controller changes its synchronization
parameters based on application of various one-hot codes. An implementation of
an 8-way reconfigurable token ring controller based on fast DCs with 5 configura-
tions is shown in Figure 3.17. The output behavior of the controller is modeled by
the graph in Figure 3.19. Signals CTRLA, CTRLB, CTRLC, CTRLD, and CTRLE
relate to the 4, 5, 6, 7, and 8 cell token ring configurations, respectively. As an
example, the outputs of the 7 cell configuration are [CTR3, CTR4, CTR5, ..., CTR9]
while the outputs of the 8 cell configuration are [CTR0, CTR1, CTR2, ..., CTR7]. The
feedback paths within the circuit are controlled via one-hot codes (RDATA) which
are generated via an INTMUX element, which will be discussed in Section 4.5.
The operation of the system is also similar to the graphs shown in Figures 3.10(c)
and 3.11(b), with a few exceptions. Due to the relative timing constraints imposed

58 overview of wagging synchronization

0

1

DC

8

DC

6

0

1

DC

4

0

1

DC

7

0

1

DC

5

0

1

0

1

DC

4

DC

6

0

1

DC

8

0

1

DC

5

0

1

DC

7

0

1

C A D B

C A D B

A C E B D

A C E B D

CTR0 CTR1 CTR2 CTR3 CTR4

CTR5 CTR7CTR6 CTR8 CTR9

MUX

DEMUXDEMUXDEMUXDEMUX

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

MUX MUX MUX MUX

DEMUXDEMUXDEMUXDEMUXDEMUX

DEMUX

MUX MUX MUX MUX MUX

Figure 3.17: 8-way reconfigurable token ring implementation based on sequential logic (5
possible configurations)

Figure 3.18: Transient response of the self-timed reconfigurable token ring control circuit
based on DCs illustrating the effect of increased parallelism on the time avail-
able for synchronization (path: CTR4)

on token ring circuits utilizing fast DCs, the 3-cell path (CTRL5, CTRL6, CTRL7)
does not exist (i.e. b0 = 0 in Figure 3.11(b)). Recall that token rings constructed
using fast DCs require a minimum of 4 elements in order to both satisfy the re-
quirements of the underlying STG, and also to avoid the data racing conditions
outlined in Section 3.4.2 [73]. Furthermore, the graph in this subsection differs
from those discussed in section 3.3, by using the absent location present in the
graphs of Figures 3.10(c) and 3.11(b) to reduce the overhead associated with the
process of distribution. This is a topic which will merit further discussion later on
in the thesis. In all cases, the average distance between successive output elements
is uniform and equal to 1.

Figure 3.18 depicts the transient response of a single output (CTR4) of the token
ring over a time interval of 20 ns, where each one-hot code is active for a time
of 4 ns. As the one-hot codes move from CTRLA to CTRLE the distance between
the falling edge of Out4 (CTR4) and its next rising edge increases. This region

3.4 token ring designs 59

CTRL0 CTRL1

CTRL2

CTRL3CTRL4

CTRL9

CTRL5

CTRL8

CTRL6

CTRL7

A

C

E

B

D

In
va
lid

Figure 3.19: Distributed graph which models the behavior of the 8-way reconfigurable
token ring circuit.

0 1

2

0 1

3 2

0 1

4 3

2

SELECT

A B C

0 1

N N-1

2

D

N-2

...

CONFIGNO VERTICES
ARE SHARED

BETWEEN
CONFIGS

Figure 3.20: Basic reconfigurable control circuit based on hardware replication and select
signals.

(tMSR(4), tMSR(5), tMSR(6), etc.) represents the time available for synchroniza-
tion of the master latch in a cascaded flip-flip synchronizer, neglecting the setup
and hold times of the slave devices. The interrupt module was tested separately
from the token ring in these tests. In lieu of generating the control signals from
the interrupt module, a reset signal (RST_Bar) is triggered directly after perform-
ing reconfiguration. This process flushes the old control token out of the system,
and initializes a new control token for use along the new configuration. This reset
signal is unnecessary when the token ring is connected to the interrupt modules,
but it is useful for testing purposes. The time available for synchronization of each
master latch increases with an increasing number of devices in the chain and Fig-
ure 3.18 still demonstrates that tMSR can be controlled via the use of one hot codes.
Thus, the foundation of the design is sound. Furthermore, though a combinational
implementation of the token ring has not been discussed, the operation is similar
to the sequential design. The only noticeable difference is that there are no even
configurations in the graph of the system as defined by Figures 3.10(c) and 3.11(b),
due to ring oscillators requiring an odd number of elements to function.

This Chapter will close with a discussion on the general area costs of the of the
distributed token ring controller described in Section 3.3.2. The multiplexer (MUX)
and de-multiplexer (DEMUX) elements,constitute the extra hardware overhead
along the critical path when using this structure. To put this in perspective, the

60 overview of wagging synchronization

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
re

a
 C

o
s
t
(t

ra
n

s
is

to
rs

)

Number of Configurations

Brute Force CTRL Self-Timed Reconfigurable CTRLBasic CTRL Embedded CTRL

Figure 3.21: Area comparison of a self-timed reconfigurable token ring control circuit
based on fast DCs. (cycle(min)(even) = 4)

overhead costs of using a distributed token ring can be compared against the costs
of implementing the reconfigurable control circuit by using separate token rings
for each configurable mode and using a control signal to switch between them, as
in Fig. 3.20. The cost function of this method in terms of total vertices (devices),
Vtotal, is defined as follows:

Vtotal(Basic) = Vconfig(k−1) + Vconfig(k−2) + Vconfig(k−1) (19)

+ ... + Vconfig(k−i) + ... + Vconfig(1)Vconfig(0)

where 0 6 i < k, k is the total number of possible configurations, and Vconfig(k−1)
and Vconfig(0) are the number of vertices in the maximum and minimum length
configurations, respectively. As this is a cumulative summation, the solution will
have the following form [75]:

Vtotal =
k(k+ 1)

2
(20)

By contrast, when using embedded cycle graphs, such as the sub-optimal al-
gorithm in Section 3.3.2, vertices are shared between many configurations. The
total number of vertices when using the algorithm described in Section 3.3.2,
Vtotal(Embedded) is defined as follows:

Vtotal(Embedded) = Vconfig(k−1) +

(⌊
1

2
(numconfig(total))

⌋
− 1

)
(21)

where Vconfig(k−1) is, as above, equal to the number of vertices present in the
maximum length controller configuration, and numconfig(total) is the total num-
ber of configurations in the system. Fig. 3.21 quantifies the area cost in transistors
of both methods as the number of available configurations in the controller in-
creases 1 to 20.

One conclusion that can be drawn from Fig. 3.21 is that while building each con-
figurable mode separately might be the best choice if the number of configurable

3.4 token ring designs 61

modes is small (i.e., less than 3) the benefits of sharing hardware (vertices) become
apparent in short order. Because of the limit equation in (20), we can also say that
the complexity of the Basic control device is O(n2) while it is O(n) for an Embedded
control device.

4 PA R A L L E L I S M I N A R E C O N F I G U R A B L E C O N T R O L L E R
F O R WA G G I N G S Y N C H R O N I Z AT I O N

4.1 introduction (arbitration & reconfiguration)

With the aforementioned discussion on token ring topologies in the previous chap-
ter, we can now pursue a discourse regarding the protocols which govern the re-
configuration process as well as the design and simulation of circuits that enforce
them.

This chapter will begin with a brief overview of a class of circuits known as
arbiters in Section 4.2, which serve as a useful foundation from which to render
our examination ofthe main body of work contained herein. Thereafter, Section
4.3 will examine the mathematical foundations of the reconfiguration protocol in
detail. Next, the control concept of UCOM threading will be introduced and exam-
ined in Section 4.4. Section 4.5 will examine the design and synthesis of a basic
reconfigurable control design which incorporates the concepts in the aforemen-
tioned sections of the chapter. Finally, Section 4.6 will examine methods to ensure
that the output data of the reconfiguable controller to the token ring is consistent
in the presence of multiple data inputs from the attached interrupt devices.

4.2 related work (overview of arbitration)

Before we can touch on the design of a subsystem which controls the distributed
token rings discussed in the previous chapter, we must first introduce the concept
of arbitration. Arbitration refers to the process by which resources are shared in
an asynchronous system via the use of requests and grants issued to and from
their clients. This is done via handshaking protocols such as those discussed in
Section 2.1.2. In short, a client issues a request to the arbiter, which is then granted
sometime later. After the operation is completed the resource is released, and an
acknowledgement signal is sent back to the client.

Modeling these types of systems requires us to employ the some of the concepts
that were introduced back in Chapter 2. Specifically, it requires the use of STGs and
PNs. Petri nets can be used to model aspects of the design abstraction related to
functionality and behavior, such as concurrent events, non-deterministic choices,
and unbounded component delays. Signal Transition Graphs are useful in translat-
ing these functional models into a set of signal transitions which allow the internal
logic equations to be derived via synthesis tools like Petrify, and Workcraft [17],
[65].

However, before the topic of arbitration can be properly addressed, we must
first introduce one of the key circuit designs typically utilized in the creation of
asynchronous arbiters. The component to which we allude is referred to in prior
literature as a mutual exclusion element, or MUTEX. And while a full review of
arbiters would be cumbersome and unwieldy, it is instructive to analyze three

63

64 parallelism in a reconfigurable controller for wagging synchronization

(a) MUTEX element. From [51]. (b) MUTEX element using standard
FPGA gates. From [44].

Figure 4.1: The mutual exclusion element

specific methods of arbitration due to their relationship with the material in the
rest of the chapter. Namely, arbitration based on busy and lazy token rings and
pausible clocks, respectively.

4.2.1 The Mutual Exclusion Element (MUTEX)

A MUTEX, as shown in Fig. 4.1(a), is a circuit which satifies the client-resource
relationship stated above. In a MUTEX, if access is granted to a single request, then
all other requests are disabled until the operation is completed and the resource is
released.

This component has gone through several iterations over the years. An early
attempt by Plummer was made to solve the issue of mutual exclusion in asyn-
chronous requests [64]. However, that design could still fall into metastability if
the requests occurred too close together, which is a possibility if the distribution
of request arrival times is assumed to be uniform [45], [13]. Shortly thereafter
Patil proposed a MUTEX based on threshold filters [61]. Seitz also proposed his
own variation in 1980 based on an NMOS analog diffence circuit, but was later
contested by several others including A.J. Martin who proposed his own version
based on CMOS in 1985 [71], [50].

The circuit representation of a MUTEX generally consists of an S-R latch tied to a
metastability filter, composed of low threshold inverters, which prevents changes on
the output from appearing until the voltage differential between the cross coupled
nodes is sufficiently different. Fig. 4.1(b) represents a variation of this design which
is useful in FPGA environments where low-threshold components might not be
available [44]. The only difference is that the circuit in Fig. 4.1(b) exhibits a higher
latency.

4.2.2 Token Ring Arbiters

In the case of a busy ring arbiter, the term “busy” is used to denote the tendency of
a token ring arbiter, composed of cells similar to those Fig. 4.2(a) to move the control
token to its nearest neighbor as long as there is no associated client request. If the
client request “wins” the arbitration, then the token is halted as soon as it arrives

4.2 related work (overview of arbitration) 65

(a) Busy Ring Arbiter. From [34].

(b) Lazy Ring Arbiter. From [34].

Figure 4.2: STGss of token ring arbiters

at the MUTEX input. If the client request loses the arbitration, then a round-trip
penalty of one cycle is incurred until the token arrives back at the MUTEX resource
again (where the client wins the arbitration automatically).

By contrast, a lazy ring arbiter composed of cells similar to those in Fig. 4.2(b)
moves the control token along the cells in the ring only when a request from the client
is detected. If such a request is issued, the request propagates through the ring until
it reaches its destination (i.e. the cell holding the token), after which the token is
“grabbed” and moved backwards through the ring until it reaches its source (i.e.
the cell that issued the request).

4.2.3 Arbitration via Pausible Clocks

A pausible clock refers to a time reference that can be halted via the addition of
MUTEX element, as shown in Fig. 4.3(a), but which will otherwise oscillate normally
interrupted by a data request (Req) [55], [57]. Fig. 4.3(b) shows a receiver interface
published by Mullins, based on the principle of pausible clocks [55]. On the rising
edge of the data request, an attempt is made to reserve the MUTEX resource in
the pausible clock portion ot the circuit. The grant signal of MUTEX serves as an
enable signal to the first register input. When the grant signal goes high, the local
clock is paused while both the data present at the input of the register (DATA), and
the asynchronous request, are passed to the register output. The request signal at
this point is fed back to the MUTEX via an exclusive or (XOR) gate that deasserts
the request input to the MUTEX, releasing the resource and causing the local clock
to resume its operation. The local clock then serves as an enable to the second
register, which synchronizes the data to the local clock region and transmits it at
the output of the second register. At this point the synchronized data is passed

66 parallelism in a reconfigurable controller for wagging synchronization

(a) Pausible Clock Circuit.
From [57].

(b) Data-driven Rx interface. From [55].

Figure 4.3: Pausible clock arbiter overview

to the output of the second register along with the data acknowledge signal (Ack),
which is just a tap of the data request signal at that juncture.

4.2.4 Relation to a Reconfigurable Control Device for a Wagging Synchronizer

With the above discourse on arbiters in hand, we can now explore the association
between the arbitration methods mentioned above, the material covered thus far in
prior chapters, and the material covered in the rest of this chapter. In the previous
chapter rules were established outlining the connectivity of an embedded token
ring suitable for use in the control hardware of a parallel synchronizer based on
wagging. However, that connectivity alone is insufficient to produce a meaning-
ful control device. Because there are several ways that the embedded token ring
might be implemented, including the ones presented in Section 3.3 in which the
connectivities of certain embedded token rings are implied to contain a increasing
number of mathematically disjoint configurations as the number of nodes and con-
figurations in the token ring increases, arbitration is necessary to link the disjoint
configurations together via a series of intermediate steps, which will be discussed
in depth in Section 4.3.

4.3 reconfiguration protocol

We can now move onto an examination of the protocols governing the reconfigu-
ration process. The process is contingent on the ability of the circuit to direct the
flow of a control token as it passes between the graphs of two separate configurable
modes, and to ensure that the operation occurs without failure. Fig. 4.4 depicts the
graph of an 8-way reconfigurable controller with several cycles, as in Fig. 3.19. The
vertices of the graph are represented by the control (CTR) signals, while the token
request (RQ) and token acknowledge (ACK) signals represent the edges. The RQ sig-

4.3 reconfiguration protocol 67

CTR0

CTR1
CTR2

CTR3

CTR4

CTR9

CTR8
CTR7

CTR6

CTR5

Interrupt Device (Odd Tail Node)

Interrupt Device

(Even Tail Node)

Interrupt Device

(Odd Head Node)

RQ/

ACK0

RQ/

ACK1

RQ/

ACK2

RQ/

ACK3

RQ/

ACK4

RQ/

ACK5

RQ/

ACK6
RQ/

ACK7

RQ/

ACK8

(E
)R

Q
/A

C
K
7

(C
)R

Q
/

A
C
K
6

(A
)R

Q
/A

C
K
5

(B)RQ

/ACK8

(D)RQ/

ACK9

cy
cl

e
(m

a
x
) (

o
d
d
)

(f
ee

d
b
a
ck

)

cy
cl

e (m
in

)
(e

ve
n
)

cycle(min) (o
dd)

(X)RQ

/ACK7

Figure 4.4: Behavior graph of an 8-way reconfigurable controller with several cycles.

R
EC

FG

C
TR

L
R

EC
FG

C

TR
L

R
EC

FG

C
TR

L

M
U

TEX
M

U
TEX

M
U

TEX

TO
K

EN
 R

IN
G

RC_EN1

RC_EN2

RC_EN3

RC_RQ1TKN_RQ1

RC_ACK1CFG_GR1TKN_GR1

RC_RQ2TKN_RQ2

RC_ACK2CFG_GR2TKN_GR2

RC_RQ3TKN_RQ3

RC_ACK3CFG_GR3TKN_GR3

R
EC

O
N

FIG
 P

R
O

C
ESS

Figure 4.5: Interrupt block diagram.

nals of the token ring move clockwise around the graph, while the ACK signals
move in the opposite direction. The paths denoted A, B, C, D, and E represent the
valid feedback paths in the system, while X denotes an invalid path, as previously
discussed in Section 3.4.5. Unfortunately, the exact position of the control token
is unknown at the time of reconfiguration. If the system reconfigures when the
token is located in a region of the present configuration which is not covered by
the graph of the subsequent configuration, then the token will be lost.

Arbitration is therefore necessary to ensure that the token is passed between
configurations without incident. This is similar to prior work used to arbitrate
between configurations in a system with pausible clocks [57]. It also shares com-
monalities with prior work on lazy-ring arbiters [51]. However, while a lazy ring
arbiter stalls the system and sends the token backward to the point of an initial re-
quest signal, the proposed design stalls the control circuit and waits for the token
to traverse forward through ring of vertices until it arrives at the request point. In

68 parallelism in a reconfigurable controller for wagging synchronization

TOKEN RING LOOP

1 2

3

Figure 4.6: Signal transition graph (FWD PATH).

short, the control token can only flow in one direction. Stalling the control device
requires the use of a MUTEX element, as shown in Fig. 4.5. A MUTEX has the prop-
erty that if access is granted to a single request, then all other requests are disabled
until the operation is completed and the resource is released. Therefore, if such a
device is inserted into the token ring at a location which is common to both the
old configuration and the new one, then the token can be stalled until the recon-
figuration operation has finished and then released along the new configuration
without error. The protocol itself functions as follows, denoted by the black dotted
portion of Fig. 4.6:

1. The reconfiguration request arrives at RC_RQ1 (RC_RQ1 goes high), and the
MUTEX resource is reserved (CFG_GR1 goes high).

2. The control token arrives at the MUTEX element along TKN_RQ1, and is
halted from continuing.

3. System reconfiguration is performed. (RC_EN1 goes high)

4. An acknowledge signal is generated by the interrupt hardware.* (RC_ACK1

goes high)

5. The reconfiguration acknowledgement arrives, the MUTEX resource is released
(RC_RQ1 goes low), and the token is allowed to continue along TKN_GR1.
(All other signals become low thereafter).

4.3 reconfiguration protocol 69

* If necessary, intermediate reconfiguration is used to pass the token to the cor-
rect configuration of interest.

4.3.1 Mathematical Foundations (Assumptions)

Intermediate reconfiguration is not required if the protocol is implemented across
systems which contain either an exclusively odd or an exclusively even number of
vertices, as defined by the embedded behavior graph of the token ring (similar
to the one shown in Fig. 3.19 and Fig. 4.4). Assume cycle(g)(even) is a valid
configuration (set of vertices) where g is even. The embedded nature of our ring
construct is such that for all valid configurations with an even number of vertices
the following holds:

cycle(g)(even) ⊂ cycle(h)(even) (22)

where g < h. As a consequence, only one interrupt device is required in the
above case, which is to be placed at the tail vertex of the minimal even (cycle(min)(even))
configuration of vertices. The argument follows similarly for the valid configu-
rations in the system with an odd number of vertices. Conversely, intermediate
reconfiguration is mandatory if any two valid configurations are mathematically
disjoint from each other. If (23) holds

numconfig(odd) >
∣∣cycle(min)(even)∣∣ , or (23)

numconfig(even) >
∣∣cycle(min)(odd)∣∣

where numconfig(odd) (numconfig(even)) is equal to the total number of valid
odd (even) configurations in the behavior graph, then the intersection of the el-
ements in the sets of cycle(min)(even)) and cycle(min)(odd)) are equal to the
empty set (i.e. the two configurations are disjoint). Thus, a series of intermediate steps
are required to link these configurations together.

In order to minimize the hardware overhead in the final control device, care
must be taken when placing the interrupt devices in the system. Interrupt devices
should be placed at the tail vertices of the minimal odd and even configurations,
while an interrupt device must also be placed at the head vertex of either the
maximal length odd or even configuration, as shown in Fig. 4.4. Mathematically,
(24) must be true

cycle(max)(odd)∩ cycle(min)(even) 6= {} (24)

cycle(max)(even)∩ cycle(min)(odd) 6= {}

where cycle(max)(odd) (cycle(max)(even)) is the valid configuration which
contains the maximum number of odd (even) elements, and cycle(min)(odd)

(cycle(min)(even)) represents the valid configuration which contains the mini-
mum number of even (odd) elements. Thus, the vertices within the graph of the
largest odd (even) configuration and the smallest even (odd) configuration are not

70 parallelism in a reconfigurable controller for wagging synchronization

mutually exclusive, as shown in Fig. 3.10(c) and Fig. 4.4. Because of (24) and the
containment property in (22), the control token can now be successfully passed be-
tween any valid configuration (set of vertices) in the behavior graph through the
use of only three interrupt devices. In this manner, the control token is contained
when switching between even and odd configurations. This will be true for con-
trol circuits with an arbitrary number of vertices (devices). Therefore, it is possible to
create an interrupt system which covers a complete range of cases with only three interrupt
devices.

4.4 ucom threading

With the above discussion in hand, we can now discuss the concept of UCOM thread-
ing, which is central Chapters 4 and 5 of this thesis. Recall, that in Section 2.3.3.
we touched on the concept of a lock relation, which was a relationship between
two or more single-cycle signals, where the order of signals takes the form of
(A∗ → B∗ → A∗̄ → B∗̄ → A∗). Such a relationship has been used in the past to sat-
isfy the CSC condition in asynchronous circuits. However, the locking relationship
can be used for more than just resolving state encoding ambiguities in the SG of
an asynchronous STG.

In this section we will explore how signals that employ the locking relation can
function as UCOM threads, and be used to sequence the operations in an STGs that
already satisfies the CSC property. Furthermore, we will utilize these UCOM threads
as a core aspect of the control theory in the logic of the interrupt subsystem which
implements the reconfiguration protocol outlined in Section 4.3 on the embedded
token rings described in Chapter 3.

4.4.1 Enforcing Firing Order in Cyclic Independent Loops

As stated above, when a the STG representation of a circuit is composed of indepen-
dent loops, a secondary loop of UCOM signals can be used to link them together
and enforce the firing order of the device. Fig. 4.6 and 4.7 illustrate the STGs (both
forward and reverse) of a circuit which implements the reconfiguration protocol
in Section 4.2. They are both composed of one token propagation loop (blue dotted
lines), three interrupt module loops (black dotted lines), and one UCOM control loop.
The UCOM control loop formed from the rising and falling edges of the threads (sig-
nals) UCOM1, UCOM2, and UCOM3, respectively, which are encapsulated within
the green boxes in both figures.

The rising edges of the UCOM threads are triggered by the rising edges of the
request lines in each interrupt module (RC_RQ1, RC_RQ2, and RC_RQ3), while
the falling edges of the threads are triggered by these same signals. However, the
request lines in each module act along different UCOM threads. RC_RQ1 controls
UCOM1+ and UCOM3- transitions in the forward direction, and UCOM1+ and
UCOM2- in the reverse. Similarly, RC_RQ2 and RC_RQ3 control the other UCOM

threads in the loop, thereby interleaving them into a secondary cyclic graph. As
the STGs of each interrupt module are dependent on the states of the UCOM threads

4.5 basic controller design 71

1

2

3

TO
K

EN
 R

IN
G

 LO
O

P

Figure 4.7: Signal transition graph (REV PATH).

in the control loop, we can say that the firing order of each module is both defined
and enforced by these threads.

4.4.2 Control of End Behavior in Cyclic Independent Loops

While the information in the prior subsection was sufficient to illustrate that the
control loop of UCOM threads is sufficient to enforce the firing order of the sig-
nal transitions in the STG representations of the interrupt subsystem, it should be
noted that the control loop is itself also a cyclic graph. As such, a termination con-
dition can only be invoked by manipulating the UCOM signals in the control loop.
This is accomplished by logically masking the UCOM signals generated by the final
interrupt module from the other modules in the loop, thereby making the other
interrupt modules in the system “think” that the final module has not completed
its operation when it finally does finish. This renders the UCOM control loop inac-
tive until the system decides to reactivate the control loop by removing the logical
mask placed on the signals.

4.5 basic controller design

Continuing forward from the prior discussion, the underlying implementation of
the interrupt subsystem in this work can now be explored. As stated previously,
the reconfiguration system acts as a set of individual modules linked together via
UCOM threads. Each interrupt module uses a MUTEX to stall the token ring while
reconfiguration is performed, in accordance with the protocol of Section 4.3. For
each module added to the system, a delay equal to the propagation time across a
single MUTEX element is added to the critical path of the embedded token ring.

72 parallelism in a reconfigurable controller for wagging synchronization

When an external reconfiguration request arrives at the controller bundled with
reconfiguration data, the interrupt subsystem issues a resource request to the rele-
vant MUTEX element, and waits for a grant. The subsystem also waits for the head
of control token to arrive at the other MUTEX input (indicating that the embedded
token ring has been halted). Once both conditions are met, the reconfiguration pro-
cess begins. Old reconfiguration data is then flushed from the interrupt hardware
and updated with new data, which is then fed to the Multiplexer (MUX) inputs of
the embedded token ring. When the new data has finished settling, an acknowl-
edgement signal is generated, indicating and the subsystem is free to proceed to
the next stage of the reconfiguration process (if any exist). The cost of the subsys-
tem is proportional to the number of MUX elements present in the system, which
also depends on the total number of configurations in the system.

4.5.1 Circuit Synthesis

The following example documents the operation of three 16-way reconfigurable in-
terrupt devices linked together via UCOM threading as discussed previously, albeit
with some notable differences. MUX elements have been inserted into the UCOM

threads, which make it possible to reverse the directionality of the reconfiguration
with a single signal line, FLAG, as shown in Fig. 4.8. When the FLAG signal is
high, the token traverses the interrupts in order from module 1 to 3 (FWD direc-
tion), and vice versa when FLAG is low (REV direction). If the FLAG and MEM
signals have initial logic values which are different, then the token traverses all three
interrupt devices (multi-mode operation), whereas only one interrupt module is ac-
tivated if the initial values are the same (single-mode operation). Perhaps one of
the most interesting points in Fig. 4.8 deals with the activation and termination of
the interrupt subsystem. The STG of Fig. 4.6 is cyclic (i.e. the first and final states
are identical), which means that forcing the interrupt modules to halt their opera-
tion and terminate is problematic. In order to force the system to stop operating, a
specific UCOM line must be de-asserted (UCOM3 in the FWD mode, and UCOM1
in REV mode).

In Fig. 4.8, RC_ACK2 acts as an enable to the FLAG MEMORY block, and copies
the current value of the FLAG into MEM if the initial values the two signals were dif-
ferent. Once the current value of FLAG has been copied, an XOR gate is triggered
which causes either the UCOM3 (FWD) or UCOM1 (REV) signal observed at inter-
rupt module 2 to be forced low, shutting down the system. The only signals which
persist after the reconfiguration process is complete are the RDATA outputs and
the FLAG signal. It should be noted that the FLAG signal (whether ‘0’ or ‘1’) must
persist after the reconfiguration operation is complete in order to guarantee that the system
remains off.

Fig. 4.9 depicts the circuit of an individual interrupt module. In the following
example, it is responsible for the signals UCOM1, RC_RQ1, and the reconfigu-
ration data, RDATA, associated with the leftmost interrupt module in Fig. 4.8.
The UDATA arrow represents the unencoded 16-bit reconfiguration input data,
while the UCOM_OUT (UCOM1) signal depicts the UCOM thread which is gener-
ated inside the module by the UCOM GENERATE block. It is a function of itself,

4.5 basic controller design 73

1
6

UDATA

IN
TER

R
U

P
T M

O
D

U
LE

#1

UCOM1_INJ

RC_RQ1_INJ

RC_RQ+UCOM_EN

RC_RQ_EXT(FWD)

RC_RQ_EXT(REV)

FLAG

RC_ACK1(IN)

UCOM_EXT(FWD)

UCOM_EXT(REV)

TKN1_IN

RC_RQ1

TKN1_OUT

RC_ACK1(OUT)

UCOM1

1
6

UDATA

IN
TER

R
U

P
T M

O
D

U
LE

#2

UCOM2_INJ

RC_RQ2_INJ

RC_RQ+UCOM_EN

RC_RQ_EXT(FWD)

RC_RQ_EXT(REV)

FLAG

RC_ACK2(IN)

UCOM_EXT(FWD)

UCOM_EXT(REV)

TKN2_IN

RC_RQ2

TKN2_OUT

RC_ACK2(OUT)

UCOM2

1
6

UDATA

IN
TER

R
U

P
T M

O
D

U
LE

#3

UCOM3_INJ

RC_RQ3_INJ

RC_RQ+UCOM_EN

RC_RQ_EXT(FWD)

RC_RQ_EXT(REV)

FLAG

RC_ACK3(IN)

UCOM_EXT(FWD)

UCOM_EXT(REV)

TKN3_IN

RC_RQ3

TKN3_OUT

RC_ACK3(OUT)

UCOM3

R
C

_R
Q

1

R
C

_R
Q

2

R
C

_R
Q

3

FLA
G

U
C

O
M

2
U

C
O

M
3

U
C

O
M

3

FLAG MEMORY
BLOCK

FLA
G

R
C

_A
C

K
2

(W
R

ITE_EN
)

M
_IN

J_D

M
_IN

J_EN

M
EM

U
C

O
M

1

U
C

O
M

2
U

C
O

M
1

R
C

_R
Q

 +
U

C
O

M
_EN

IN
TM

U
X

 M
O

D
U

LE

1
6

RDATA
(MUX)

M
U

X
_A

C
K

1

M
U

X
_A

C
K

2

M
U

X
_A

C
K

3

1
6

RDATA

1
6

RDATA

1
6

RDATA

FLAG

MEM

Figure 4.8: Top view of three 16-bit interrupt modules tied together via UCOM threads.
Solid lines represent the connectivity of the signal lines present in this section.
Grayed out portions and dotted lines represent the connections and blocks
which will be discussed in Section 4.6.

74 parallelism in a reconfigurable controller for wagging synchronization

0

1

0

1

0

1

M
U

T
E

X

RC_RQ

TKN_RQ

CFG_GR

TKN_GR

N N

UDATA RDATA

RC_EN RC_ACK

R
E

C
O

N
F

IG

M
O

D
U

L
E

0

1

RC_RQ_EXT(REV)

RC_RQ_EXT(FWD)

UCOM_EXT(REV)

UCOM_EXT(FWD)

UCOM_INJ

RC_ACK(IN) RC_RQ+UCOM_EN

RC_RQ_INJ TKN_IN TKN_OUT

RC_ACK(OUT)

UCOM_OUT

FLAG

RC_RQ_OUT

U
C

O
M

 G
E

N
E

R
A

T
E

M
O

D
U

L
E

UCOM_EXT

RC_RQ_FB

RC_RQ_EXT

UCOM_OUT

UCOM_FB

R
C

 R
E

Q
U

E
S

T

M
O

D
U

L
E

RC_ACK(BAR)

UCOM_OUT(BAR)

UCOM_EXT

RC_RQ_OUTRC_RQ_FB

Figure 4.9: Internal view of an individual 16-bit interrupt module (i.e. module #1 in the
example).

UCOM_FB, the request signal specific to that module, RC_RQ_FB (RC_RQ1), the
external UCOM thread, UCOM_EXT, and the external request line, RC_RQ_EXT,
as defined by Fig. 4.8 (which are selected via the FLAG signal). The output of the
UCOM generation module for the signal UCOM1 is defined in (25).

UCOM1 = (UCOM1 ∗UCOM2) + RC_RQ1+ RC_RQ2 (FWD) (25)

UCOM1 = (UCOM1 ∗UCOM3) + RC_RQ1+ RC_RQ3 (REV)

The request signal specific to the module RC_RQ_OUT (RC_RQ1) is generated
from the RC REQUEST block. The block uses the acknowledgement signal gener-
ated from the output of the interrupt module (RC_ACK1), the internally generated
UCOM signal UCOM_OUT (UCOM1), the externally generated UCOM signal used
above (UCOM_EXT), and its own feedback signal (RC_RQ_FB). The output of the
request module for the signal RC_RQ1 is characterized in (26).

RC_RQ1 = RC_ACK1(UCOM1 ∗UCOM2+ RC_RQ1)

+ (RC_RQ1 ∗UCOM1)(FWD) (26)

RC_RQ1 = RC_ACK1(UCOM1 ∗UCOM3+ RC_RQ1)

+ (RC_RQ1 ∗UCOM1)(REV)

The rest of the system follows the reconfiguration protocol defined in Section 4.3.
The request and grant signals RC_RQ and CFG_GR represent the path of the con-
trol token taken during reconfiguration, while the signals TKN_RQ and TKN_GR
define the path taken during normal system operation. The signal RCMOD16_EN
(RC_EN1) represents the enable signal used to update the 16-bit reconfiguration
data, RDATA, of the module while RC_ACK (RC_ACK1) represents acknowledge-
ment signal used to indicate when the update operation has completed. Interrupt
modules 2 and 3 are constructed similarly.

4.5 basic controller design 75

IN
IT

IA
LI

ZE
 F

W
D

3
 C

A
SE

 (
R

C
_R

Q
, T

K
N

, U
C

O
M

, F
LA

G
, M

EM
)

IN
IT

IA
LI

ZE
 F

W
D

1
 C

A
SE

 (
R

C
_R

Q
 &

 U
C

O
M

 O
N

LY
)

IN
IT

IA
LI

ZE
 R

EV
3

 C
A

SE
 (

R
C

_R
Q

, U
C

O
M

, &
 F

LA
G

 O
N

LY
)

IN
IT

IA
LI

ZE
 R

EV
1

 C
A

SE
 (

R
C

_R
Q

 &
 U

C
O

M
 O

N
LY

)

EN
D

 O
F

TE
ST

RC_RQ1

RC_ACK1

RC_RQ2

RC_ACK2

RC_RQ3

RC_ACK3

FW
D

3
 C

A
SE

 (
EV

EN
 T

O
 O

D
D

)

FW
D

1
 C

A
SE

 (
O

D
D

 T
O

 O
D

D
)

R
EV

3
 C

A
SE

 (
O

D
D

 T
O

 E
V

EN
)

R
EV

1
 C

A
SE

 (
EV

EN
 T

O
 E

V
EN

)

IN
TER

R
U

P
T M

O
D

U
LE

#1
IN

TER
R

U
P

T M
O

D
U

LE
#2

IN
TER

R
U

P
T M

O
D

U
LE

#3

WRITE “1” TO
MEMORY

WRITE “0” TO
MEMORY

Figure 4.10: Transient response of the control signals for the subsystem of three interrupt
devices, which demonstrates the firing behavior of the design. Reconfigura-
tion data, UCOM, FLAG, and MEM signals have been omitted.

Table 4.1: Duration of the Active Region of the Interrupt Subsystem for Different Config-
urable Modes at a TN-TP Corner with VDD = 1.0 V

Temp. FWD3 FWD1 REV3 REV1

(◦C) (ns) (ns) (ns) (ns)

0 3.669 1.391 4.822 1.686

27 3.817 1.479 5.009 1.775

100 4.068 1.657 5.473 1.982

4.5.2 Performance Comparison

Fig. 4.10 shows the transient response of the control signals in the circuit when the
three interrupt modules are connected together in a ring of 15 inverting elements,
via their TKN_IN/TKN_OUT ports, with each interrupt module being placed a uni-
form distance of 5 inverting elements apart from each other. It illustrates how the
request and acknowledgement signals in the interrupt devices can be controlled to
both fire in a specific order and then terminate their operations, as discussed previously.
The duration of the simulation is 33 ns, testing 4 cases. The initialization time is
2 ns for the first configuration and 1 ns for each configuration thereafter. Cases
FWD3 (FLAG = ‘1’, UCOM = ‘110’, MEM = ‘0’) and REV3 (FLAG = ‘0’, UCOM =
‘011’) simulate the operation of the system in the forward and reverse directions
where intermediate reconfiguration is necessary. Similarly, cases FWD1 (FLAG = ‘1’,
UCOM = ‘011’) and REV1 (FLAG = ‘0’, UCOM = ‘110’) simulate the operation
of the system in the forward and reverse directions where it is not. The duration
of each reconfiguration operation is characterized in Table 4.1 while the energy
consumed is depicted in Table 4.2.

76 parallelism in a reconfigurable controller for wagging synchronization

Table 4.2: Average Power Consumption of the Active Region of the Interrupt Subsystem
for Different Configurable Modes at a TN-TP Corner with VDD = 1.0 V

Temp. FWD3 FWD1 REV3 REV1

(◦C) (µW) (µW) (µW) (µW)

0 291.93 267.64 232.19 223.72

27 290.39 260.12 227.88 214.10

100 281.04 245.86 226.40 211.82

However, it should be noted that since the interrupts are connected via a ring
of inverting elements, intermediate reconfiguration is not necessary. The ring of
inverters only serves to tie the interrupt modules together. The placement of the
devices is not the same as the protocol in Section 4.3 either. Fortunately, the place-
ment of the devices does not affect the functionality of the control device, as that
is defined only by the STGs of Figs. 4.6 and 4.7. While placement of the interrupt
modules might have consequences on the duration of each reconfiguration oper-
ation as shown in Table 4.1, it has no impact on the power consumption of the
interrupt devices for reasons which will be discussed shortly.

As shown in Table 4.1, the duration of the reconfiguration operation varies based
on the number of interrupt devices required to complete the reconfiguration pro-
cess as well as whether the directionality of the control token opposes the flow of
the UCOM threading in the system. Table 4.1 assumes that the forward (i.e. FWD1,
FWD3) direction corresponds to when the flow of both the UCOM threads and the
control token operate in the same direction, and vice versa in the reverse (i.e. REV1,
REV3) direction. Consequently, the control token always “hits” in the forward di-
rection (the token arrives after the request has been issued to the next interrupt
device), while in the opposite case it always “misses” (it arrives before), resulting
in higher latencies in the reverse direction.

Table 4.2 characterizes the average power consumption of the system during
the active portions of the reconfiguration process across varying temperature pa-
rameters. The system consumes an average power which varies between 212 and
292 µW with a maximum variance of 72.5% when tested using a corner analysis.
The worst case corner was the fast-fast case at a temperature of 100◦C. Durations
similar to those supplied in Table 4.1 were used in order to adjust the intervals
over which the average power consumption was measured in order to ensure the
fairness of the testing procedure. However, these results are confounded by two
factors.

First, the power consumption of the 15 inverting elements which form the token
ring used for the test bench need to be considered. In order to ascertain the power
of the interrupt subsystem alone, the values in Table 4.2 must be adjusted. This is
done by taking the average power consumption values in Table 3.5, and multiply-
ing values by the number of cells in a given configuration, and then subtracting
this estimate from the appropriate values in Table 4.2. In this case, we must sub-
tract the power consumption of a 15 cell ring oscillator from the results in Table

4.6 output data merging in reconfigurable controller 77

4.2. After adjustment, the average power consumption of the interrupt subsystem
alone during active operation is found to range from 194 to 270 µW with a variance
of 48.6% across process corners at a nominal temperature of 27◦C.

Second, the interrupt subsystem used in the test bench of Fig. 10 requires the
interaction of three separate interrupt devices. Therefore, the power consumption
of the subsystem is spread across every interrupt device, even in single mode
operation. Therefore the adjusted values listed above need to be divided by three
in order to find the power consumption for each individual interrupt module.
Using the above method, the average power consumption of each interrupt module
during active operation is found to range from 64.7 to 90.0 µW across process
corners at a nominal temperature of 27◦C. The variance remains unchanged from
above.

When the system is inactive (i.e. not receiving requests) the interrupt devices
only consume an average power equal to the cumulative summation of the standby
leakage currents across the individual transistors in the module multiplied by the
supply voltage applied to them. Thus, the power consumption of the interrupt
subsystem will vary in proportion to the frequency of reconfiguration requests
received. As stated previously, it should be noted that the token ring control and
interrupt devices were tested separately. Thus, interactions between token rings of
varying length and the power consumptions of the interrupt modules have yet to
be documented.

4.6 output data merging in reconfigurable controller

As the interrupt modules are tied together via UCOM threads and each module
generates its own output signals based on the reconfiguration data provided by its
bundled data lines, it is necessary to both select the appropriate output signals dur-
ing the reconfiguration process and also ensure that the final configuration persists
once the interrupt device has powered down. To accomplish this a different multi-
plexer element, hereafter referred to as INTMUX, has to be constructed which not
only provides a single output signal to the MUX elements in the token ring but also
produces separate acknowledgement signals specific to each interrupt module (in
the event of multiple configuration steps).

4.6.1 Circuit Synthesis & Results Analysis

The INTMUX must be programmed with the control signal combinations which
correspond to each respective configuration (CFG) so that acknowledgement sig-
nals are generated which enforce the behavior specified in Fig. 4.6 and Fig. 4.7.
Furthermore, the INTMUX must also contain redundant configurations that store
the last known system state and persist once the system operation has ceased.
Thus, the INTMUX module also requires memory which allows the device to “re-
member” the interrupt module which contains the last known output signals. In
this way the behavior outlined by Fig. 4.6 and Fig. 4.7 is maintained, and the
system does not lose its output signals when the interrupt module completes its
operation.

78 parallelism in a reconfigurable controller for wagging synchronization

E

H
0 1

0

1

1

1 1

0

(a) CFG #0. Sel
= A B C D F G.

AE

FH
00 01 11 10

00

01

11

10

0 0 11

0 0 11

0 0 00

1 0 10

(b) CFG #1. Sel = B C D G.

BD

FG
00 01 11 10

00

01

11

10

0 0 10

1 1 11

0 0 10

0 0 00

(c) CFG #2 (FWD). Sel =
A C E H.

BD

EF
00 01 11 10

00

01

11

10

0 0 01

0 0 01

1 1 11

0 0 00

(d) CFG #2 (REV). Sel =
A C G H.

CF

GH
00 01 11 10

00

01

11

10

0 1 11

0 0 10

0 0 10

0 0 10

(e) CFG #3. Sel = A B D E.

G

H
0 1

0

1

1 1

1 0

(f) CFG #4. Sel
= A B C D E F.

Figure 4.11: INTMUX boolean logic minimization

The complete definition of the transient input signal combinations for which the
INTMUX module is sensitized is elaborated in Appendix A, which also lists the
associated Boolean logic minimization used in the circuit synthesis. Once the INT-
MUX module had been programmed with the values listed therein it was tested
using a control sequence generated from an external waveform editing program
written by both myself and Ghaith Tarawneh, also elaborated in Appendix A. He
handled the file open commands, while I got it to generate the timing information
for the SPECTRE waveforms. Manual synthesis was used due to the possibility of
hazards being introduced into the circuit via automated synthesis tools. In a syn-
chronous system, glitches do not affect the correct operation of the circuit, but as
this was an asynchronous design glitch-free operation is a requirement [18]. The
signal sets for which the outputs of MUX_ACK1, MUX_ACK2, and MUX_ACK3

are asserted or de-asserted in Fig. 4.8, directly correspond to the locations where
RC_ACK1, RC_ACK2, and RC_ACK3 are asserted or de-asserted in the transient
simulation of Fig. 4.10, respectively.

However, in order to fully validate the INTMUX module an exhaustive search
of all the possible signal combinations was also performed. The number of antic-
ipated sensitized control outputs in the partial sequence was then compared to
the number of sensitized outputs in the exhaustive search, to see if they matched.
While the outputs did match the expectation of the truth table in Fig. 4.11 when
the module was tested independently, the module failed when it was connected
to the entire system. An attempt was then made to remedy this by extending the
INTMUX module by incorporating the UCOM control signals into the truth table
of the INTMUX as well. Unfortunately, the INTMUX remained inoperative.

5 R O B U S T N E S S I N A R E C O N F I G U R A B L E C O N T R O L L E R
F O R WA G G I N G S Y N C H R O N I Z AT I O N

5.1 introduction (principle of exclusion)

While the material in the Chapter 4 illustrated how an interrupt subsystem based
on STGs could be utilized to control an embedded token ring, such as those defined
in Chapter 3, a major limiting factor in the design is the sensitivity of the controller
to permanent failures. In this chapter, we will explore how the robustness of the
solutions presented in prior chapters of this work can be improved by incorporat-
ing the ability to exclude failed nodes and vertices from the connectivity graph of
the token ring control device.

Section 5.2 will define the fault models used in this chapter and briefly explore
the concept of exclusion and related work in circuit theory.

Section 5.3 will expand on the concept of UCOM threading presented in Section
4.4 to account for the existence of multiple paths in the STG when exclusion is
utilized. Section 5.4 will apply the above the principles discussed to the token ring
controller presented in Chapter 4.

5.2 fault model definitions

Before we can properly address how the principle of exclusion can be used to
ameliorate faults and failures in the controller presented in Chapter 4, we must
first define what is meant by faults and failures. For the purposes of this review, we
will restrict the discussion to those faults which are most commonly encountered.

5.2.1 Fault types

There are generally three classes of faults commonly seen in digtial circuits, regard-
less of whether or not they are constructed using synchronous or asynchronous
logic.

1. Transient faults

2. Permanent faults

3. Intermittent faults

Transient faults occur when radioactive particles strike the inputs of a gate with
sufficient energy to momentarily change the state of a line from logic ‘0’ to logic ‘1’,
or when there is a momentary drop in the supply voltage the gate of a causes the
signal inputs/outputs temporarily to dip below a certain logical threshold (which
sometimes referred to as a “brown out”), or when signal lines are placed close
enough together that they erroneously communicate (i.e. crosstalk) via capacitive
coupling during signal transitions [72].

79

80 robustness in a reconfigurable controller for wagging synchronization

Permanent faults occur as a consequence of either defects in the circuit manufac-
turing process, or as a consequence of aging within the component. In practice the
latter is more important, as commercial chips are heated at the time of manufactur-
ing to prevent infant mortality (i.e. when a fabricated chip fails after a short period
of time into the product life cycle due to processing defects). Electromigration is
the most common cause of transistor failures related to age, and it occurs when
prolonged application of direct currents to the signal lines in a circuit results in the
diffusion of atomic material (more specifically the interconnect metal) via momen-
tum transfer from the conducting electrons [39]. Historically, hot-carrier injection
into the gate-oxide of CMOS transistors was also an issue, where “sufficiently en-
ergetic” electrons or holes traveling between the source and drain regions of the
transistor could embed themselves into the gate-oxide thereby causing permanent
damage by altering the characteristics of the threshold voltage in the transistor
[27], [26]. Nowadays, gate-oxides are so thin that quantum tunneling is of greater
concern, necessitating the use of high-k dielectrics in the gate [68].

Intermittent faults, as with permanent ones, can be caused by malformed CMOS
transistor devices or interconnect lines, and may even evolve into permanent faults
given time. However, as the name suggests, the errors an induced by an intermit-
tent fault share the properties of unpredictability, as with transient faults, while
remaining systematic in nature, as with permanent faults. Typically such faults
manifest themselves in error bursts which are localized at a specific point. IDDQ
tests are typically employed to find such faults, which are conducted by powering
down a circuit after it has remained on for a “sufficiently long time” and then
analyzing the circuit for nodes which remain highly capacitive [48], [67].

5.3 related work (johnson counter)

To set this work in the proper context, we must first compare it to other archi-
tectures that possess similar functionality. The most notable example of a cyclic
counter that possesses the capacity for error recovery is that of a twisted ring
counter, which is also sometimes referred to as a Johnson counter or a Moebius
counter. Rather than counting in a one-hot manner, as does a normal ring counter,
it cycles between 2n different states where n is the number of bits in the counter. A
standard ring counter only possesses n different states, therefore a Johnson counter
only uses half the number of flops to implement the same number of states, though
the states require decoding in order to map them to their associated state number
[46].

However, the source of the error recovery capabilities within the counter is de-
rived from the fact that the counter changes its states in a circular manner, and
only one bit changes at a time. Because of this, it is possible to use a binary re-
flected code, more commonly referred to as a Gray code, to implement forward
error correction to recover from single bit errors in the system [35]. This is com-
monly used to recover from transient errors induced within the counter. While
this functionality is no doubt useful, in the case of a permanent fault the error
correcting hardware will be activated on every iteration of the system, simply to
ensure normal operation. And if a transient error then occurs at that point, the

5.4 chordal ring networks (algorithm reinterpretation) 81

7 0

1

2

α7

α0

α1

3
α2

4

5

6

α3

α4

α5

α6

β0

β1

β2β3

β4

β5

β6 β7

Figure 5.1: Eight-way ring network based on chordal bypass paths

system will fail. As subsequent sections will show, by excluding faulty nodes from
the system it is possible to recover from such a malady at the cost of permanently
reducing the number of states in the system.

5.4 chordal ring networks (algorithm reinterpretation)

In Chapter 3, we dealt with how an embedded cycle graph based on token rings
controlled its adjacency and parallelism via distributed feedback paths. However, that
method is not without some limitations. Most prominent among those limitations
is that the system is still very susceptible to permanent faults. This particular issue
also not unique to the design. Johnson counters also get permanently locked into
a ’subset of their entire state space if a hard fault occurs on one of the signal lines,
assuming no forward error correction is employed, but even if it is a permanent
failure will remove the capability of the Johnson counter to recover from transient
SEUs. In that case, it is because a Johnson counter is designed to recover from tran-
sient faults and is incapable of ascertaining whether the prior fault was caused by
a transient α-particle strike, or whether it is because electromigration has eroded
the line, or whether negative biasing has just made the PMOS transistors inca-
pable of switching. Therefore it is desirable to build a token ring controllers that
can adapt to the non-idealities present in modern technology nodes. With that in
mind, this subsection will introduce a method of robust design known as a chordal
bypass path. The name is derived from a 1981 paper by Arden where he explored
how to connect LAN microcomputers together using a ring of degree 3 [5]. In his
original paper α-moves and β-moves were defined as routing movements in the
clockwise and counter-clockwise directions, respectively. Since a token ring can be
thought of as a diagraph (directed graph), these definitions aren’t useful in this
context.

For the purposes of this work we will define an α-move as the absence of a
chordal jump when the token traverses through a vertex in the embedded cycle

82 robustness in a reconfigurable controller for wagging synchronization

0 1 2 3 4 5 6 7

L

W

(k
 +

 W
)
–

L
>0

,
k

=
#

a0 a1 a2 a3

0 1 0 1C

a4 a5 a6 a7

0 1 0 1

(a) Annotated diagram outlining the methodology for creating abstract chordal bypass
paths

Figure 5.2: Chordal Bypass Path Algorithm Overview

graph, and a β-move as the presence of a jump when traversing through a vertex,
as in Fig. 5.1. The number of spaces that the signal “jumps over” when traveling
through the bypass path is referred to as the width of the chord. In Fig. 5.1 the
width, W, is equal to 2. It should be noted that W-1 represents the maximum num-
ber of subsequent faulty nodes that a system can handle before failure. In other
words, Fig. 5.1 is tolerant of single bit faults, but if the system suffers from 2 per-
manent faults in a row at any point, then the faults can no longer be bypassed and
the circuit fails There is also a minimum limit on the number of nodes which must
be present in the graph of the system in order for it to function. This limit is equal
to the cardinality of the system in the absence on any β paths (i.e. only α paths
are present), divided by the width of the bypass chords plus the modulo result (i.e.
the remainder) resulting from the division. Assume L =

∣∣cycle(max)even∣∣, where
cycle(max)even is the valid configuration which contains the maximum number
of even elements. In the case of Figure 5.1, L=8 so 8/2 = 4. In terms of the un-
derlying graph if the number of nodes in the system is fewer than the results of
the calculation outlined above, it isn’t possible to traverse the system. The system
requires that both the source and destination nodes in the system must presently
exist in the graph for it to function properly.

5.4.1 Chordal Bypass Path Algorithm

Similar to the above subsection if one begins with the basic figure for a linked list,
as in 3.12(a), it can be modified to incorporate the characteristics of an embedded
cycle graph based on chordal bypass paths. In order to extend the functionality of
this list, a few pieces of information are required. Additionally each object in the
array must have the following properties.

5.4 chordal ring networks (algorithm reinterpretation) 83

1. int index: Integer data type. Used to order the entries in the linked list.

2. *pointer α_tail: Pointer data type. Contains the initial path to the next object
in the list.

3. *pointer β_tail: Pointer data type. Contains the secondary path to the next
object in the list.

4. C[ak]: Array variable used to store the state of the bypass paths in the system,
which must be large enough to contain a unique position for each entry in
the list (i.e. |C[ak]| = L).

As with the distributed feedback algorithm of Section 3.3.3, the creation of this
graph is process is simpler to understand if it is performed via iteration. On the
first pass the objects in in the list from 0 to L will be created and linked along
the α tails. When the final entry is created, the α_tail of this entry will be given
a pointer to the head of the list, as in Figure 3.12(a) (effectively creating the α
paths after one full iteration). On the second pass, the β paths can be constructed
by utilizing a priori knowledge of the width, W, of the β chords. The β paths are
created by linking the β_tail of the current object (index value = k) to its target
object (index value = k + W). The only complication in this process is ascertaining
when to “jump backwards” (i.e. when the next β jump will loop the target index
value back to the beginning of the list, or near it). Fortunately, these locations can
be deduced by adding the width of the β chord to the value of the index at the
present location, and then subtracting the highest index value in the linked list
from the result. If the result is not strictly greater than zero, then there is still room
to “move forward.” On the other hand, if the check fails, then the destination index
can be found by subtracting 1 from the result of the check (assuming that the list is
counting in ascending order, and also by 1). The result should be the graph shown
in Fig. 5.2. The array variable C can be used to control the path selection in the
linked list in a manner similar to D in the previous subsection. The only caveat
is that the destination index must not have been bypassed by a previous β chord.
This is a condition for the resulting graph to be consistent.

5.4.2 Results Analysis

Let us now examine the testing results of a chordal ring network of Fig. 5.3 which
was generated using the methods above, in a CADENCE UMC90nm technology.
The token ring is composed of fast DCs. RST_BAR is an active-low signal used to
inject a control token at Out6 by inducing a 〈1, 0〉 vector pair on signals x6 and y6
and the reverse on all of the on and also flush any remnants of the prior token in
the system. It should also be noted that signals 〈BYP0,BYP1, ...,ByP7〉 are actually
〈β7,β0, ...,β6〉 , which made it phasing out nodes more intuitive because nodes
are excluded from the system by the decisions of their “previous” neighbor.

The transient response of the system is depicted in Figure5.4. It ran for a dura-
tion of 24 ns in which the number of fast DCs present in the system was gradually
reduced from 8 cells to 4 (the absolute minimum as discussed in the beginning of
this section). The tests were repeatedly run across the SN/SP, TN/TP, and FN/FP

84 robustness in a reconfigurable controller for wagging synchronization

Figure 5.3: Schematic of the self-timed reconfigurable token ring control circuit based on
DCs illustrating the effect of exclusion on the time available for synchronization
in the system (path: CTR6)

Table 5.1: Variations in the Time Available for Synchronization in the Reconfigurable Token
Ring Control across 3 Major Process Corners @VDD = 1.0 V and at a Temp =
27 ◦C

ProcessCorner L = 8 L = 7 L = 6 L = 5 L = 4

@27 ◦C (ps) (ps) (ps) (ps) (ps)

SN/SP 931.1 775.1 609.6 383.8 213.7

TN/TP 692.4 564.8 447.5 270.4 159.1

FN/FP 553.1 455.1 364.7 242.3 116.0

process corners at a constant temperature of 27◦C as well as additional tests in
which the temperature was varied from 0 to 100◦C while holding the process cor-
ner at TN/TP. All results indicated that the time available for synchronization
(tMSR) decreased as the number of fast DCs were excluded via induced control
signals (which was expected). The control signals were auto-generated using a
MATLAB front-end and fed into cadence via a series of vpwlf (piecewise linear
voltage source) elements. The simulated rise and fall times of these test signals
was 5ps, and each vector had a duration of 1ns.

5.5 ucom thread forwarding

In the previous chapter, UCOM threads were used to demonstrate how an interrupt
subsystem could be controlled by a cyclic loop composed of interleaved UCOM

5.5 ucom thread forwarding 85

tMSR(5) tMSR(4)tMSR(6)tMSR(7)tMSR(8)

L=7
 BYP1(β0)

HIGH

L=6
 BYP1(β0),BYP3(β2)

HIGH

L=5
 BYP1(β0),BYP3(β2),

BYP5(β4)
HIGH

L=4
 BYP1(β0),BYP3(β2),
BYP5(β4), BYP7(β6)

HIGH

L=8
 ALL BYP

SIGNALS LOW

Figure 5.4: Transient response of the self-timed reconfigurable token ring control circuit
based on DCs illustrating the effect of exclusion on the time available for syn-
chronization in the system (path: CTR6)

Table 5.2: Variations in the Time Available for Synchronization in the Reconfigurable To-
ken Ring Control across Temperature Regions @VDD = 1.0 V and a TN/TP
Transistor Process

Temperature L = 8 L = 7 L = 6 L = 5 L = 4

(◦C) (ps) (ps) (ps) (ps) (ps)

0 636.5 530.5 414.5 258.7 137.3

27 692.4 564.8 447.5 270.4 159.1

100 790.8 663.1 515.2 337.9 182.4

signals. However, in that chapter, all of the nodes were visited in a deterministic
manner. In order to achieve UCOM locking and control in a reconfigurable token
loop incorporating chordal jumps as discussed above, it is also necessary to utilize
UCOM signals within the token loop in a reconfigurable manner. That is to say, the
assertion and de-assertion of UCOM signals must also be contingent on the path
taken through the token ring.

5.5.1 Theoretical Overview (Why Forward?)

As discussed in Chapter 2, adding CSC signals to a STG is required when the pro-
gression of signal transitions within the behavior graph of the a circuit leads to
state encodings which are not unique. CSC signals also require conditions for their
assertion and de-assertion within the system, as do the other signals the STG repre-
sentation of an asynchronous circuit. In a graph where all paths are deterministic
in nature, these conditions are easily met even when the encodings are interleaved
as they were in the previous chapter.

86 robustness in a reconfigurable controller for wagging synchronization

However, when the circuit is constructed as in Fig. 5.1, the situation becomes
more complex. The interleaved nature of the UCOM signals within our token ring
construct implies that it is possible when bypassing vertices within a STG using
chordal jumps, some of the interleaved UCOM transitions will also be bypassed.
Therefore the STG of the system needs to be modified to do either one of two
things.

1. Replace the UCOM signals bypassed through exclusion via chordal jumps
with an alternate set of UCOM signals depending on the path taken through
the STG.

2. Forward the UCOM signals bypassed through exclusion via chordal jumps to
their appropriate destinations in the STG, to ensure consistency.

In this work we will focus on the latter.

5.5.2 Applications to Robust Controller Design

The above discussion only pertains to the connectivity and implementability of
the token ring itself. As stressed in the prior chapter, the reconfiguration protocol
defined earlier requires that the control token traversing the ring be halted at a
known location when a reconfiguration action is performed. This is necessary to
both ensure that the device starts and stops at known locations, as well as ensur-
ing that the control token is not lost during reconfiguration. Token spreading as
discussed in Chapter 3, further exacerbates this problem, as it places additional
restrictions on the reconfigurability of the system by requiring that the locations
occupied by the control token remain untouched during a reconfiguration opera-
tion. Thus, more than one reconfiguration operation will be required to configure
all of the paths in the system graph, even if the optimization in Section 3.3.3 is
used.

5.6 advanced controller design (hierarchy & crossbar plug-in)

With the above discussion in hand, we can now present a new design for a re-
configurable control device which addresses the concerns raised earlier. In order
to accomplish this, we will first discuss the organization of the controller from
a theoretical standpoint in Section 5.3.1. Thereafter, Section 5.3.2 will provide a
derivation of the building blocks that feature prominently in the PN model of Sec-
tion 5.3.3. Finally, Section 5.3.3. will examine the operation of a PN which behaves
in the manner that we desire.

5.6.1 Theoretical Overview (System Hierarchy)

On an abstract level the token ring of Fig. 5.1 can be viewed in a manner analogous
to a one-way train track formed by three concentric circles with differing radii, as
in Fig. 5.5. At each station (i.e., vertex) a decision is made as to whether or not to
continue along the outer or the inner track, depending on which track the train

5.6 advanced controller design (hierarchy & crossbar plug-in) 87

7 0

1

2

α7

α0

α1

3
α2

4

5

6

α3

α4

α5

α6

β0

β1

β2β3

β4

β5

β6 β7 0

β0

α0α7

β6

6

7 1

2

0

1

2

3

4

5

6

7 β6

β7
β0

β1

β3

β5

α7 α0

α1

α2

α6

α3

α5

α4

INNER
RINGS

OUTER RING

β0

β2

β2β4

β4

β6

Figure 5.5: Conceptual overview of the token ring based on chordal graphs.

7 0

1

2

α7

α0

α1

3
α2

4

5

6

α3

α4

α5

α6

β0

β1

β2β3

β4

β5

β6 β7

0

β0

α0α7

β6

7

6

1

2

Interrupt
Subsystem

MUTEX

MUTEX XBAR

CONFIG DATA (NEXT)

CONFIG
DATA
(PRES)RECONFIG RQ

Subsystem ACK

Figure 5.6: Overview of the reconfigurable interrupt an XBAR select at vertex 0.

(i.e., control token) arrived on, or whether to switch tracks using a junction box
(i.e., crossbar). While the train runs uninterrupted through the track (i.e., token
ring) the path traveled through the junctions is not allowed to change. Otherwise
the train might derail (i.e. the control token will be lost).

Continuing with that analogy, the outer and inner tracks have different proper-
ties. The outer track visits the greatest number of stations, but has a longer path as
a result. By contrast, each of the two inner tracks only visit a subset of the stations
that the outer track does, but arrive at their destination faster as a result, because
they both bypasses certain stations (vertices). The arrival times (i.e. duty cycle) of
the train depend on the number of stations visited. However, if the stations on
the outer track go out of service (i.e. suffer a permanent fault), the inner track
(i.e. the bypass path) must be used to ensure that the train can still visit the other
stations (i.e. the vertices from the non-faulty devices must maintain their reach-
ablility). However, the arrival time (duty cycle) of the train (control token) will be
permanently altered as a result.

The following sections will be concerned with the construction of the stations
(vertices) in the behavior graph of the system.

88 robustness in a reconfigurable controller for wagging synchronization

(a) MUTEX element (b) 2x2 XBAR element

Figure 5.7: PN of building blocks for the reconfigurable control device.

5.6.2 Derivation of the PN Model

Moving away from analogies, let us explore the practicalities of what a circuit
satisfying the criteria mentioned above entails. Fortunately, a fair bit of insight
can be gleaned from the material listed in prior chapters of this work. In order
to safely perform a reconfiguration operation, the progress of the control token
must be halted at a known location, just as it was in Chapter 4. The path that the
control token takes throughout the ring must be a function of the configuration
data output from the interrupt subsystem. This path data took the form of a (one-
hot) control code being input to the MUX and DEMUX elements of an embedded
cycle graph in Chapter 3. Now that we are dealing with chordal graphs in this
chapter, this control data will take the form of a crossbar selection signal, as in Fig.
5.6. From Fig. 5.6 it can be observed that the only appreciable difference between
this control device and that of Fig. 3.9 is with regard to the handling of the requests
and grants from multiple MUTEX elements, instead of a single one as in Fig. 3.9.

While the next subsection will present a PN which models the behavior of re-
configurable control device suitable for use in a chordal graph, such a Net is un-
wieldy to examine in isolation. The model can be better understood if the PNs for
each module in the control device are discussed individually beforehand. To that
end, in this subsection we will review the operation of the PNs for a MUTEX, a 2x2

crossbar, and the interrupt subsystem of the control device.

5.6.2.1 Petri Nets for the MUTEX and Crossbar

The PN of the MUTEX element in Fig. 5.7(a) can be analyzed as follows:

Before delving into the progression of the transitions in the PN MUTEX, we should
first define the important labels in the Net. The places ME and ME_BAR are in-

5.6 advanced controller design (hierarchy & crossbar plug-in) 89

verses which represent whether the interrupt (ME = 1) or token ring (ME_BAR
=1) portions of the PN are enabled. Similarly, the places TKN and TKN_BAR rep-
resent whether a control token is present (TKN=1) at the input to the MUTEX

(TKN_MUTEX) or not (TKN_BAR=1). The final set of paired inverse places are
PRES and ABS, which indicate whether or not a token was present at place TKN
and consumed during the interrupt operation. PRES and ABS do not have much
meaning in this context, however they become important when considered in tan-
dem with Fig. 5.8 and Fig. 5.9 where they act as control places in the PN.

Let us now walk through a MUTEX operation. When RC_RQ fires, a control to-
ken is removed from the read arcs of both ME_BAR and RESET, and the token
ring transition at TKN_MUTEX is disabled. If a token is present at place TKN
then transition TKN_PRES is enabled, otherwise transition TKN_ABS is enabled.
If TKN_PRES (TKN_ABS) fires, then a token is placed on PRES (ABS) and a to-
ken is also placed on DONE. If PRES (ABS) is high then, RST_PRES (RST_ABS)
is enabled, which consumes the token at DONE and places a token at REPLACE
(RESET) thus re-enabling token ring.

The PN of the 2x2 crossbar in Fig. 5.7(b) can be analyzed as follows:

The XBAR_INPUT (INNER) and XBAR_INPUT (OUTER) represent the inputs
to the crossbar along the inner and outer token rings, respectively, while XBAR
_OUTPUT (INNER) and XBAR_OUTPUT (OUTER) similarly represent the out-
puts. The select signals XBAR_SEL(OUT/OUT), (OUT/IN), (IN/OUT), (IN/IN)
are controlled, respectively, by the read arcs of A, B, C, and D. In the example of
Fig. 5.7(b) read arcs A, B, C, and D are altered by firing the transitions ADD_NEW
(B), (C), (D), and (A) respectively. In short, adding a token to A removes one from
D, adding a token to B removes one from A, etc. The only other points which bear
mentioning are that the inner ring can only be accessed via the outer ring while B
is asserted, and vice versa for C.

5.6.2.2 PN for the Interrupt Subsystem

The PN of the interrupt subsystem in Fig. 5.8 can be analyzed as follows:

CFG_EN (START) represents the configuration grant from one of the MUTEX

elements in the inner and outer ring (i.e., it is assumed that only one control token
exists, therefore only one MUTEX issue the grant). CFG_FLUSH enables one of the
RM_OLD (A), (B), (C), (D), or (E) transitions, depending on whether the token is
at location A (OUT/OUT), B (OUT/IN), C (IN/OUT), D (IN/IN), or E (ABS/ABS).
Once the RM_OLD transition fires a token is removed from A, B, C, D, or E, and
is placed at the location CFG_STORE. The transitions enabled from CFG_STORE
depend on the whether the token is at the outer ring (PRES(OUT) = 1, ABS(IN) = 1),
the inner ring ((PRES(IN) = 1, ABS(OUT) = 1), or neither (ABS(OUT) = 1, ABS(IN)
= 1). If the token is at the outer ring, then ADD_NEW (A) and (B) are enabled.
Similarly, if token is at the inner ring, then ADD_NEW (C) and (D) are enabled.
Finally, if the token is at neither the outer ring, nor the inner ring, then ADD_NEW
(E) is enabled. Once ADD_NEW (A) (B) (C) (D) or (E) fires, a new token is placed at

90 robustness in a reconfigurable controller for wagging synchronization

Figure 5.8: PN of the interrupt subsystem.

the corresponding location A (OUT/OUT), B (OUT/IN), C (IN/OUT), D (IN/IN),
or E (ABS/ABS) and a token is placed at RC_ACK (DONE), which indicates that
the reconfiguration operation has concluded.

5.6.3 PN Model & Simulation

With the building blocks in Section 5.6.2 in hand, the PN of Fig. 5.9 can now be
discussed in detail. Due to the modularity property mentioned during Chapter 2,
the PN of Fig. 5.9 inherits the characteristics of the modules which compose it. All
of the individual modules in Figs. 5.7(a) 5.7(b) 5.8 had PNs that were both 1-safe,
and deadlock-free. Thus, the PN of Fig. 5.9 must also be 1-safe, and deadlock-free
as well. It should be noted that the RESET read arc feeding into TKN_MUTEX in
Fig. 5.7(a) has been substituted with a read arc from RC_ACK which feeds into
both TKN_MUTEX (OUT) and TKN_MUTEX (IN) in Fig. 5.9. However as this is
a functionally equivalent operation, no behavior or PN properties in Fig. 5.9 are
altered.

As the individual behavior of each module that composes the PN of Fig. 5.9 was
just discussed in Section 5.6.2, there is no need to re-iterate it again. Looking at
this PN in more detail, we can see that the underlying circuit consists of two MUTEX

elements, one for the outer ring (α-path) and one for the inner one (β-path), a re-
configurable interrupt subsystem used to switch between and “remember” config-
urations, and a crossbar which is responsible for routing the control token and its
UCOM signals through the chordal ring construct. Because the location of the token
is unknown at the time of reconfiguration, all of the MUTEX elements in the token
ring need to poll for the presence or the absence of the control token. As stated
earlier, if the control token is present at a location (or locations if token spread-

5.6 advanced controller design (hierarchy & crossbar plug-in) 91

M
U

TE
X

 (
O

U
TE

R
 R

IN
G

)

M
U

TE
X

 (
IN

N
ER

 R
IN

G
)

B
EG

IN
IN

TE
R

R
U

P
T

TK
N

?
(Y

/N
)

TK
N

?
(Y

/N
)

C
O

N
FI

G
D

A
TA

LO
A

D
 N

EX
T

C
O

N
FI

G

X
B

A
R

SE
LE

C
T

TO
 N

EX
T

O
U

TE
R

 R
IN

G
 C

EL
L

TO
 N

EX
T

IN
N

ER
 R

IN
G

 C
EL

L

ST
O

R
E

C
O

N
FI

G

FR
O

M
 L

A
ST

IN

N
ER

 R
IN

G

C
EL

L

ST
A

R
T

R
EC

O
N

FI
G

FR
O

M
 L

A
ST

IN

N
ER

 R
IN

G

C
EL

L

A
B

C
D

E

R
EC

O
N

FI
G

D

O
N

E

Figure 5.9: PN representation of chordal reconfiguration protocol.

92 robustness in a reconfigurable controller for wagging synchronization

Table 5.3: XBAR Select Signals

CODE PATH

0001 INNER/INNER

0010 INNER/OUTER

0100 OUTER/INNER

1000 OUTER/OUTER

ing is involved), that locale is forbidden from participating in the reconfiguration
process.

If it is desirable for the control token to start or stop from a specific vertex in the
token ring, the interrupt subsystem can be designed to give priority to that vertex
by manipulating the firing order of the interrupt devices in the control subsystem
using UCOM threads, as in the last chapter. By doing so it is possible to implement
reconfiguration on the entire token ring without having to poll every vertex in the
token ring as stated above, but it comes at the cost of introducing a set failure
point into the circuit.

5.7 validating configurations via a nearest neighbor checking

algorithm

A final aspect of the controller design which bears mentioning is the verification
that reconfiguration operations result in no discontinuities in the path traversed
by the control token through the ring. The purpose of this check is to test whether
of not the new configuration is valid prior to releasing the control token along the
ring.

5.7.1 Validation Algorithm

The algorithm that checks the validity of the configurations asserted on the token
ring functions as follows. After a reconfiguration operation is complete, each ver-
tex checks the configurations induced on either its left or right hand neighbors in a
round-robin fashion. When the check is complete, a completion signal is sent to a
MCE along with a dual-rail code indicating whether or not the logical check evalu-
ated to a high (valid) or low (invalid) result. When all of the vertices have reported
(i.e. when the MCEs go high), the results of the logical check are evaluated. If all
of the results returned valid (high), the configuration is accepted, and the control
token is released to traverse along its new path. If the results of the check returned
false, the a flag is sent back to the system indicating that the configuration infor-
mation was invalid, and the prior configuration will have to be reinstated before
the control token can be released.

We use one hot-state assignment to give unique values to the four possible out-
puts of the 2 x 2 crossbar in Fig. 5.9, as in Table 5.3. The entries in Table 5.4 are
used to perform the checks on the nearest left-hand (LEFT) or right-hand (RIGHT)

5.7 validating configurations via a nearest neighbor checking algorithm 93

Table 5.4: Nearest Neighbor Checking Algorithm

PRES LEFT FUNC

0001 0001 1

0001 0010 0

0001 0100 1

0001 1000 0

0010 0001 1

0010 0010 0

0010 0100 1

0010 1000 0

0100 0001 0

0100 0010 1

0100 0100 0

0100 1000 1

1000 0001 0

1000 0010 1

1000 0100 0

1000 1000 1

PRES RIGHT FUNC

0001 0001 1

0001 0010 1

0001 0100 0

0001 1000 0

0010 0001 0

0010 0010 0

0010 0100 1

0010 1000 1

0100 0001 1

0100 0010 1

0100 0100 0

0100 1000 0

1000 0001 0

1000 0010 0

1000 0100 1

1000 1000 1

neighbors, using the entries in Table 5.3 as a key. After reduction they yield the
following equations, where [A,B,C,D] correspond to the [0,1,2,3] vector entries of
the XBAR select signal at the present node (PRES), and [E,F,G,H] correspond to
the [0,1,2,3] vectors of either the nearest left-hand (LEFT) or right-hand (RIGHT)
neighbors.

VRHS = A ′C ′E ′F ′(GH ′ +G ′H)(BD ′ +B ′D) (27)

+ B ′D ′G ′H ′(EF ′ + E ′F)(AC ′ +A ′C)

VLHS = A ′B ′E ′G ′(FH ′ + F ′H)(CD ′ +C ′D) (28)

+ C ′D ′F ′H ′(EG ′ + E ′G)(AB ′ +A ′B)

6 F L O W C O N T R O L I N WA G G I N G S Y N C H R O N I Z E R S
I N C O R P O R AT I N G F I F O B U F F E R S

6.1 introduction (flow control in fifo synchronizers)

In the final chapter of this work we will address the issue of flow control in par-
allel synchronizers that incorporate FIFO buffers to decouple their read and write
operations. As stated in section 3.1.3, FIFO synchronizers decouple read and write
operations from each other by using a FIFO buffer. From the perspective of a write
operation, the FIFO only exists as a black box to sink data items, ideally without
limit. Conversely, the read operation only sees the buffer as a data source from
which values can be read out, also without limit in an ideal scenario. The com-
plications as stated in earlier in this thesis arise from the fact that the memory
storage space is finite, and that mismatches between the transmitter and receiver
ends of the synchronizer eventually lead to either data overflow if the transmitter
writes data into the buffer faster than the receiver can read it out, or data starvation
if the situation is the reverse [15].

Section 6.2 will introduce the issue of data accumulation and starvation and
provide a brief review of a prior FIFO synchronizer design that has attempted to
address this issue in the past. Continuing forward, Section 6.3 will discuss the
relevant methods for analyzing the flow control in a FIFO synchronizer, and also
comment on the quality of the VHDL tests that follow later in the chapter. Finally,
Section 6.4 will define the experimental setup that will be used to test the VHDL

design in question, while Section 6.5 and analyze the results of the final VHDL

design and simulation.

6.2 related work (stari)

Managing the data flow in a FIFO synchronizer was the topic of prior discourses in
1993 and 1995 when Greenstreet implemented a mesochronous interface that was
Self-Timed At the Receiver Input (STARI), as shown in Fig. 6.1 [36], [37].

This interface mandates that the FIFO be initialized in a half-full state, whereafter
the reset signal is released and the read and write pointers both count from 0 to 2

offset from each other by two entries, as shown in 6.2. If the clock frequency of both
sides matches exactly and is in phase, then the Four-cell FIFO buffer never starves
or gets full. It can even tolerate the case where the transmitter and receiver clocks
fall out of phase with one and another, contingent on the requirement that the read
and write pointers do not overlap. Using this approach also avoids the necessity
of synchronizing the full and empty signals of the FIFO as in other designs [15].

While this design is simple and has been used before in architectures like the
Intel TeraFLOPS chip, it does have some inherent limitations [79]. First, the clocks
at the transmitter and receiver ends of the system must match (otherwise overflow
and underflow can occur), though the phase relationship of each end may vary.

95

96 flow control in wagging synchronizers incorporating fifo buffers

Figure 6.1: Four-cell STARI interface schematic. From [12]

A

-

-

-

A

B

-

-

A

B

C

-

A

B

C

D

A

-

B

-

C

A

D

B

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

Figure 6.2: Data flow of a four-cell STARI interface, assuming that the transmitter and
receiver clocks are in phase. From [12]

As a mesochronous design, this is to be expected. Second, the transmitter requires
that the transmitter use self-timed (i.e., dual-rail) codes at its output, presumably
so that the signals arriving at the input of the receiver are atomic.

6.2.1 Applications to Wagging Synchronization

Let us take a look at a FIFO synchronizer which incorporates the principles of the
prior subsection, as in Fig. 6.3. Central to this design are two major points. First, is
the maximization of the synchronization performance from the input data channel
to the input of the FIFO by pooling the gain-bandwidth products of the parallel
master-slave flip-flops, as illustrated in prior work by Horstmann [40]. Second
is the manipulation of the data flow mismatch between the transmitter (Tx) and
receiver (Rx) ends of the synchronizer. However, before proceeding further it must
be understood that the example used throughout this chapter is only a single case
of a larger problem, rather than a comprehensive solution. With that in mind, Fig.
6.3 provides a general overview of the synchronizer that will be used throughout
the remainder of the chapter.

First, let us assume the FIFO is asynchronous, and that reads and writes occur
independently of each other, where fclk(Tx) and fclk(Rx) represent the local data
rates of the transmitter and receiver regions of the synchronizer, respectively. Let

6.2 related work (stari) 97

Split Control

D

M S
Q D Q

Transmitter fclk(Tx)

FIFO INPUT

DATA D[0:n-1]

D
A

TA

n or 2n

WRITE

1 or 2

DATA

WRITE

(n or 2n) x j

j or 2j

SYNC(xj)

Sp
litter

C
o

n
fig.

CTR (M/S Latch)

fclk(Tx)/j (n or 2n) x j

j or 2jj or 2j

W
R

ITE

M
erge (x i)

Merge Control

Q

S M
D Q D

Receiver fclk(Rx)

FIFO OUTPUT

DATA D[0:m-1]

D
A

TA

m or 2m

READ

1 or 2
DATA

READ

m x (i or 2i)

i or 2i

SYNC(xi)

M
erge

C
o

n
fig.

CTR (M/S Latch)

fclk(Rx)/i
m or 2m

i or 2ii or 2i R
EA

D

(x2)

W
R

ITE D
O

M
A

IN
R

EA
D

 D
O

M
A

IN

WAGGING CTRL

FIFO
 B

U
FFER

(x2)

Sp
lit (÷ j)

Figure 6.3: Top view of a FIFO synchronizer incorporating wagging at the transmitter and
receiver.

us further assume that i and j are multiples of a common base frequency f0, and
that i < j < 2i (i.e., the transmitter is faster than the receiver, but not by more than
a factor of 2).

With those assumptions in hand we can step through the operation of Fig. 6.3 as
follows. The serial input data and write validation signals (DATA, WRITE) from
the transmitter arrive at the splitter module at a rate of j × f0 where they are
both split into j identical signals using mixers. These signals are then broken into
j tasks (slices), through sampling via the use of j parallel master-slave flip-flops
which act as synchronization (SYNC) elements. Thereafter, these SYNC elements
are triggered using control signals which all operate at a base frequency of f0, but
are offset from each other by j divisions as shown in Fig. 6.3 (though only DATA is
shown). Finally, the DATA and WRITE signals arrive at the FIFO input in j parallel
lines operating at rate of f0. Subsection B will illustrate the impact of this process
on the synchronizer MTBF.

98 flow control in wagging synchronizers incorporating fifo buffers

Continuing forward, we can now examine the operation of the synchronizer
from the output of the FIFO to the input of the receiver. Because i < j < 2i, the FIFO

is still subject to data accumulation. In order to minimize such accumulation, the
receiver needs to be designed to allow for the data being read out from the FIFO to
temporarily exceed the amount of data being written in when certain conditions
are met. This is accomplished by allowing the read operations to be done either
serially, or in parallel.

Both read operations can use the same hardware. During a serial read, i parallel
data lines from the FIFO are sent to a mixer that recombines them along dataprime
at a rate of i × f0, in a manner which is identical to the recombination of the
signals in the wagging buffer discussed earlier. A parallel read operation functions
similarly, except that data is simultaneously read out along both dataprime and
datasec.

Whether or not a serial or parallel data read is necessary depends on the present
memory differential between the transmitter and receiver ends of the FIFO synchro-
nizer, (j− i)cur as defined by (29).

If (j− i) +
∑

(j− i)cur < i, then increase∑
(j− i)cur by (j− i), (serial read)

If (j− i) +
∑

(j− i)cur > i, then decrease∑
(j− i)cur by i− (j− i), (parallel read)

(29)

When the conditions for a parallel read are met, the system continues parallel read
operations until the memory differential reaches 0, whereafter it resumes serial
operation. It should also be noted that read acknowledgement signal (READ) is
processed in vectors of length i or 2i depending on whether a serial or parallel
read operation was last performed.

6.3 fifo testing methodology

This subsection will provide an overview of the theory which underlies the VHDL

tests performed later in this chapter. Section 6.3.1 will discuss the relevant top-
level design considerations of the parallel FIFO synchronizer introduced earlier.
Thereafter, Section 6.3.2 will address design concerns in the FIFO I/O ports.

6.3.1 Top-level Design Considerations

With the discussion of the last section in hand, we can now discuss some important
top-level issues in the synchronizer design outlined above.

First, we must examine the priority that the reconfiguration request takes in the
system and behavioral requirements which surround it. When a reconfiguration
request is issued there are a few prerequisites that must be satisfied. If the trans-
mitter in the system is still sending data, then it must be asked to stop doing
so via a handshake before reconfiguration is performed. Concurrently with the
request to stop sending data, the FIFO buffer must be allowed to empty itself of
data. Both of these measures are intended to prevent data loss as the system un-

6.3 fifo testing methodology 99

Figure 6.4: FIFO standard cell. From [82]

dergoes the reconfiguration process. After the EMPTY signal is asserted, then the
reconfiguration request can proceed as normal. Though these assumptions lead
to a communication penalty upon reconfiguration that is greater than the penalty
incurred on the start-up of a baseline FIFO synchronizer, if reconfiguration opera-
tions are sufficiently infrequent then the total communication penalties incurred
over a prolonged period of time will be less than in the baseline design, assuming
that the sender and receiver clocks are not well matched.

Second and finally, the FIFO synchronizer requires a method for deciding when
to minimize data accumulation and starvation through the application of serial
and parallel writes discussed in Section 6.2.1. Fortunately, there are standard cell
designs for FIFOs which not only generate the FULL and EMPTY signals necessary
for proper implementation, but also allow for the definition of optional user de-
fined signals ALMOSTFULL and ALMOSTEMPTY, as in Fig. 6.4 [81]. The vector
combination of these four signals can be used to ascertain how full or empty the
FIFO buffer is at any given moment. If we assume that the signals are all active high
and that the threshold for ALMOSTFULL and ALMOSTEMPTY are set to 60% and
40% of the buffer’s capacity, then the vector combination [0, 0, 0, 0] serves the same
function as initialization did in the STARI interface (i.e., ensuring that the buffer
starts close to half-full) [37]. Once the [0, 0, 0, 0] state is reached, the parallel read
and write operations proceed as defined by (29).

If the buffer is almost full [0, 0, 1, 0], then only parallel reads are enabled until the
almost empty flag is triggered [0, 1, 0, 0] where after serial reads are performed
until almost empty flag is de-asserted again. Once again, this assumes that the
transmitter is faster than the receiver.

100 flow control in wagging synchronizers incorporating fifo buffers

Sp
lit

 (
÷

j)

Split Control

D

M S
Q D Q

Transmitter fclk(Tx)

M
ER

G
E

FIFO INPUT

DATA D[0:n-1]

D
A

TA

n

WRITE

1

DATA

WRITE

DATA
n x j

j

SYNC(xj)

n x j

WRITE

j

Sp
lit

te
r

C
o

n
fi

g. CTR (M/S Latch and MERGE)

fclk(Tx)/j

n

1

j

W
R

ITE

Figure 6.5: Serialized input from the transmitter to the input of the FIFO buffer.

6.3.2 FIFO I/O Considerations

The top-level specification of the FIFO buffer in Fig. 6.3 requires that the data width
of the input and output ports attached to the attached memory space be freely ad-
justable. In practice, there is a finite limit to this sort of configurability. As the sim-
plest FIFOs possess serial data inputs and outputs, it is useful to explore methods
by which these parallel inputs and outputs may be serialized to aid in synthesis
using simpler devices.

From the output of the transmitter to the input of the FIFO, the parallel data input
(DATA) and valid (WRITE) signals can both be serialized through the use of MUX

elements immediately prior to the FIFO inputs, as shown in Fig. 6.5. The MUX can
be controlled using atomic signals generated by the vector combination of the CTR
signals which act as enable signals for the SYNC elements. Whether combinational
or sequential, the atomicity of these signals is guaranteed by consequence of the
underlying token ring structure. The only caveat to this method is that the latency
of the MUX becomes part of the specification itself and must be accounted for, to
ensure that it samples data from the slave latches of the SYNC elements during
the stable portion of their duty cycle (i.e., at the closest transition prior to the
next sampling period of the slave latch). The mapping function of the inputs and
outputs of the MUX also changes depending on the type of code used, however
modern synthesis tools render the issue pedantic.

Satisfying the requirements for serial and parallel operations from the output
of the FIFO to the input of the receiver is more challenging. Because parallel oper-
ation is necessary, the memory space needs to be split between two independent
serial-output FIFO devices.The serial output of the secondary FIFO must be sent to
a Demultiplexer (DEMUX) element, where one path leads to the input of a MUX that
ties together the serial outputs of both FIFOs, and the other path leads to the sec-
ondary SYNC element. During serial operations, the MUX acts as a toggle, while
during parallel operations it functions as a straight path. During parallel opera-

6.4 vhdl experimental setup 101

tions the output DEMUX acts as a straight path to the SYNC element, while during
serial operations it leads to the MUX.

If the FIFOs are split as described above, then a DEMUX needs to be added to the
FIFO input to toggle the DATA and WRITE signals between themThe last point of
note is that the read acknowledgement signal also needs to be toggled between the
two FIFOs during serial operation, and issued to both FIFOs simultaneously during
parallel operations.

6.4 vhdl experimental setup

In this section we will explore a VHDL implementation of the FIFO design presented
earlier. Section 6.4.1 will touch on the VHDL design process. Thereafter, Section
6.4.2 will address the concept of automatic test pattern generation. Next, Section
6.4.3 will examine state machine logic which underlies the VHDL synthesis of the
design. Finally, Section 6.4.4 will discuss and analyze the final VHDL simulation
results.

6.4.1 VHDL Design Flow

VHSIC Hardware Description Language is a programming language developed in
1988, which is used to generate gate-level net lists of circuit specifications [74]. At
the abstract level, every VHDL circuit description contains an ENTITY statement
which defines the I/O ports of the device, and an ARCHITECTURE statement
which defines its behavior. Blocks are then connected together using PORT MAP
statements. From these basic principles, complex hierarchies can be constructed.
A net list is generated upon successful program compilation. These net lists can
either be functionally simulated, imported into other tools for further optimization,
or placed and routed on a field programmable gate array (FPGA).

6.4.2 Test Vector Generation

When testing systems in VHDL, it is necessary to generate appropriate input stimuli.
While it is feasible to produce input signals using a series of successively divided
clock signals thereby approximating the sequential input combinations of a basic
truth table, it is more useful from a testing perspective to automatically generate
repeating pseudo-random patterns at the input of a circuit which can then be
automatically checked and verified at the at the output to ensure correctness.

A four-bit PRBS generator, as shown in Fig. 6.6(a), was used to generate the
input test patterns. It produces 2n − 1 combinations before repeating , with n = 4
in this case. The test sequence is depicted by Figure 6.6(b). It has a characteristic
equation depicted by (29)

1+X0
1 +X21 +X

3
2 +X3

4, where Xn = D(n) (30)

The terms present in the equation are determined by the connectivity of Fig.
6.6(a), which makes the characteristic equation 1 +D01 +D34. The NOR logic

102 flow control in wagging synchronizers incorporating fifo buffers

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

D0 D1 D2 D3

CLK

RST

(a) Schematic

(b) Truth table. *-only happens at start-up

Figure 6.6: Four-bit PRBS generator.

associated with the final term has the net effect of adding the code 〈0, 0, 0, 0〉 to the
sequence of binary numbers, which allows the PRBS generator to operate without
external input stimuli aside from the clock (CLK) and reset (RST) signals.

At the opposite end, the outputs from the PRBS generator (D0 to D3) are fed
to in parallel to the inputs of a four-bit signature analyzer (B0 to B3), as shown
in Fig. 6.7(a). When connected in this fashion the signature analyzer divides the
gate inputs by the characteristic polynomial above resulting in the output values
shown in Fig. 6.7(b) [30][8]. A FIFO is then placed in between the PRBS generator
and signature analyzer components. If the FIFO overflows or starves (resulting
in a communication penalty), the I/O sequence contained within the buffer is
disturbed. As a consequence, the outputs of the signature analyzer will change in
response when the offending portion of the sequence is read out on the next cycle
(if the buffer is empty) or fCLK(Tx) ∗ FIFOWIDTH cycles later (if the buffer is full),
where FIFOWIDTH is the maximum number of words that the buffer can store.
As such, this is a useful construct for verifying flow control experiments within a
FIFO.

6.4.3 State Machine Logic for a Wagging Scheduler

The controller responsible for scheduling the tasks in the parallel synchronizer
can be modeled in VHDL via the use of finite state machine logic. The control
device will have j states, where j is equivalent to the number of tasks, or wagging

6.4 vhdl experimental setup 103

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

B0 B1 B2 B3

Q0 Q1 Q2 Q3

CLK

RST

(a) Schematic

(b) Output response to PRBS test patterns

Figure 6.7: Four-bit signature analyzer.

level, desired in the synchronizer. The transitions at the CLK/EN inputs of the
master and slave latches in the parallel array of SYNC elements can be modeled
via binary state assignment, with logic 1 and 0 corresponding to the positive and
negative transitions of each device.

The state table of the transitions in present at the CLK/EN inputs of the flip-flop
array correspond to the entries in the truth table of either a j-bit Overbeck counter
(i.e. a straight ring counter) when modeling control device which uses a one-hot
code, or a j-bit Johnson (i.e., twisted ring counter) if modeling a synchronous clock
signal with a 50% duty cycle (neglecting the 〈0, 0, 0, 0〉 state [60]. In the latter case,
it should be noted that even though the 〈0, 0, 0, 0〉 state has no physical meaning it
still needs to point to the initial state in the event of it being induced as a result of
transient errors. Given that ring counters can be used to synthesize basic finite state
machines on a Field Programmable Gate Array (FPGA) via the selective mapping
of the ring outputs to a given logic function, and that the counters are also shift
registers too, this is hardly surprising.

The state mapping of the four-bit wagging controller used in the subsequent
experiments in of the chapter is depicted in Fig. 6.8(a) where C is the default
state. MSTR(0 to 3) represents the transitions of the master latches in the SYNC
element array. MUX_OUT indicates which n-bit pair is currently being passed

104 flow control in wagging synchronizers incorporating fifo buffers

M
STR(0) <= '0'

M
STR(2) <= '1'

M
ST

R(1
) <

= '0
'

M
ST

R(3
) <

= '1
'

M
STR(2) <= '0'

M
STR(0) <= '1'

M
ST

R(3
) <

= '0
'

M
ST

R(1
) <

= '1
'

SPL_EN <= 0

SPL_EN <= 0

SPL_EN <= 0

SPL_EN <= 0

A
“1100”

B
“0110”

C
“0011”

D
“1001”

MUX_OUT <= MUX_IN

(0 to 3)

MUX_OUT <= MUX_IN

(8 to 11)

M
U
X
_
O
U
T

<
=

M
U
X
_
I
N

(
1
2

t
o

1
5
)

M
U
X
_
O
U
T

<
=

M
U
X
_
I
N

(
4

t
o

7
)

(a) Model for a synchronous control signal.

M
STR(1) <= '0'

M
STR(2) <= '1'

M
ST

R(2
) <

= '0
'

M
ST

R(3
) <

= '1
'

M
STR(3) <= '0'

M
STR(0) <= '1'

M
ST

R(0
) <

= '0
'

M
ST

R(1
) <

= '1
'

SPL_EN <= 0

SPL_EN <= 0

SPL_EN <= 0

SPL_EN <= 0

A
“0100”

B
“0010”

C
“0001”

D
“1000”

MUX_OUT <= MUX_IN

(0 to 3)

MUX_OUT <= MUX_IN

(8 to 11)

M
U
X
_
O
U
T

<
=

M
U
X
_
I
N

(
1
2

t
o

1
5
)

M
U
X
_
O
U
T

<
=

M
U
X
_
I
N

(
4

t
o

7
)

(b) Model for a one-hot control signal.

Figure 6.8: State machine for four-bit wagging control device.

Table 6.1: Read Sequence Generated by Equation 6.1 per Cycle, where i < j < 2i

Cycle (j− i)cur Check ReadType;

1∗ 0 Pass(+1) Serial

2 1 Fail(+0) Parallel

3 1 Pass(+1) Parallel

4 0 Fail(+0) Serial

from the output of the serializing MUX depicted in Fig. 6.5 to the input of the
FIFO buffer. Finally, SPL_EN acts an enable line for the controller. As for state
transitions of the slave latches in Fig. 6.8(a), they are simply the inverse of the
master latch transitions. If the code is one-hot, as in 6.8(b), the situation becomes
more complex. At that point it is the decision of the designer whether to latch the
slave device earlier or later in the duty cycle. To match the performance above,
the slave latch should be take its result bj/2c cycles later than the master latch.
However, to maximize the time available for synchronization of the individual
slice and by proxy the MTBF of the synchronizer, the slave device should be latched
1 cycle after the master latch takes its sample, and the serializing MUX at the FIFO

input should take its result 1 cycle before the master latch samples its next result.

6.5 vhdl simulations

Having covered the topics of test pattern generation and state machine logic as it
applies to this work, we can now carry out a behavioral analysis of the parallel
FIFO synchronizer circuit which will shed some light on a couple of important
properties. First, we will analyze the general behavior of the circuit itself using the

6.5 vhdl simulations 105

Sp
lit

 C
o

n
tr

o
l

D

M
S

Q
D

Q

4
-b

it
 P

R
B

S
f c

lk
(W

R
IT

E)

MERGE

FI
FO

P
R

B
S_

 O
[3

:0
]

MUX_O[3:0]

n

W
R

IT
E

1
@

f c
lk

(W
R

IT
E)

SP
LI

T_
O

[1
5

:0
]

W
R

IT
E

SP
LI

T_
O

[1
5

:0
]

n
 x

 j=
1

6

j =
 4

@
f c

lk
(W

R
IT

E)

SY
N

C
(x

 j)
, j

=4
n

 x
 j

=
1

6
@

f c
lk

(W
R

IT
E)

/4

W
R

IT
E

j =
 4

@
f c

lk
(W

R
IT

E)
/4

Splitter
Config.

M
U

X
_C

O
D

E[
3

:0
]

(M
/S

 L
at

ch
 a

n
d

 M
ER

G
E)

f c
lk

(W
R

IT
E)

/j

n
 =

 4

j =
 4

@
fc

lk
(W

R
IT

E)

WRITE

4-bit Signature
Analyzer f c

lk
(R

EA
D

)

Split (÷ j), j=4

READ

FI
FO

_O
[3

:0
]

n

1
 @

f c
lk

(R
EA

D
) (

se
ri

al
)

o
r

1
@

2
fc

lk
(R

EA
D

)(
p

ar
al

le
l)

Assume:
2fclk(READ)<fclk(WRITE)<fclk(READ)

CLOCK_PERIOD(WRITE)=20ns
CLOCK_PERIOD(READ)=15ns

CLOCK_PERIOD(DOUBLE READ)=30ns

1@fclk(WRITE)

SI
G

A
_O

[3
:0

]

Output to
Testbench

full

Figure 6.9: VHDL Experimental Setup.

test bench shown in Fig. 6.9. There are a few key points in this test bench that are
worthy of note.

First, serial and parallel read operations at the output can be performed using
an appropriately chosen clock signal, fclk(READ, in lieu of either parallel memory
access operations or serialization of the FIFO output. This is acceptable due to the
established relationship between throughput and latency, as outlined by others
such as Gene Ahmdahl in his paper discussing the effect of multiprocessing on a
sequential computer program [4]. In terms of data processed over a given period
of time, a serial circuit with a single output port operating at a given frequency
processes the same amount of data as a parallel implementation with two output
ports operating a half that frequency, assuming that data is always available and
that the circuit can be completely parallelized [4]. Verification of the flow control
algorithm stated in (29) also become easier as well due to fewer required test
components.

Second, the number of data copies present in the parallel synchronizer (i.e., the
wagging level of the synchronizer) remains fixed at j=4 over the course of the
testing process, rather than setting j as a variable, as it was in the one-hot code of
Section 3.4.5. However, as the control device present in Fig. 6.9 can be modeled as
a special case of a four-bit one-hot counter, where the delays between the rising

106 flow control in wagging synchronizers incorporating fifo buffers

Figure 6.10: Transient response of the flow control in the complete self checking circuit.

6.5 vhdl simulations 107

Table 6.2: Effect of the Connectivity of the Serializing MUX on the Time Available for Syn-
chronization in the Device

State ∆tMSR ∆tMSR ∆tMSR ∆tMSR

〈(MSB)3, 2, 1, 0(LSB)〉 = 3 cycles = 2 cycles = 1 cycles = 0 cycles

A(1100) 0 to 3 4 to 7 8 to 11 12 to 15

B(0110) 4 to 7 8 to 11 12 to 15 0 to 3

(default) C(0011) 8 to 11 12 to 15 0 to 3 4 to 7

D(1001) 12 to 15 0 to 3 4 to 7 8 to 11

edges of successive ring outputs are merely scaled versions of the single gate
delays seen previously, this is also not a major concern.

Our primary interest is assessing whether or not the flow control algorithm pre-
sented in section 6.2.1. prevents data accumulation from occurring within the FIFO

buffer under ideal conditions, thereby minimizing the accumulation or starvation
under non-ideal scenarios, and also to provide a commentary on the effects of wag-
ging as it pertains a FIFO synchronizer. The clock periods chosen for the test bench
were 30 ns and 20 ns for the read and write domains, respectively.The FIFO used for
testing was automatically generated by the Xilinx LogiCORE FIFO generator [82]. It
had a BUFFER WIDTH = 32 words and a WORD LENGTH = 4, and ISim was used
to simulate the behavior of the VHDL netlist. Because fclk(READ)< fclk(WRITE) <
2 ∗ fclk(READ), the basic conditions (29) are satisfied and the progression of the
corresponding sequence of serial reads and writes asserted by fclk(READ) are as
shown in in Table 6.1. The resulting transient analysis of the test bench, depicted
in Fig. 6.10, reveals a couple useful results.

One, the signature patterns are correctly reproduced, and the buffer neither
starves, nor gets full using the flow control described above. This was verified by
checking the test patterns at the output of the signature analyzer (SIG_O). The
test patterns remain the same under ideal conditions, even long after (50µs) the
unmodified FIFO has become full and changed its test patterns. For reference pur-
poses, the unmodified FIFO becomes full at around 3.3 µs.

Two, if a MUX is used to serialize the inputs of the FIFO using the state diagram of
Fig. 6.8(a), then the connectivity of the j n-bit inputs to the MUX is very important,
where both j and n are equal to 4 in this case. Because the sampling of the MUX

outputs MUX_O is controlled via the state machine in 6.8(a), the amount of time
available for synchronization gained, ∆tMSR, is dependent on the connectivity of
these lines, as depicted in Table 6.2. To put it more simply, if ∆tMSR = 0 then
nothing has been gained through the use of wagging, whereas if ∆tMSR = j− 1

then j-1 extra cycles have been gained for metastability recovery.

7 C O N C L U S I O N S

In closing, synchronization remains a key SoC design issue in modern technolo-
gies. As the number of operating points under consideration increases, specifica-
tions which are capable of altering key parameters such as the time available for
synchronization (and MTBF) in response to input from the user/system become
desirable. If a combination of parallelism and scheduling, referred to as wagging,
is utilized, then schedulers can be constructed for synchronizer designs which are
capable of pooling the gain-bandwidth products of their composite devices.

In this work, we explore the ways in which the areas of graph theory and recon-
figurable hardware design can be applied to generate both combinational and se-
quential scheduler designs, which satisfy the behavior requirement above. Further
to this point, this work illustrates that such a scheduler is primarily comprised of
an interrupt subsystem, and a reconfigurable token ring. This thesis explores how
both of these components can be controlled in absence of a clock signal, as well as
the design challenges inherent to each part.

Synchronizers may also require flow control, especially if the reading and writ-
ing operations are decoupled from each other via the use of a FIFO buffer. Such
structures incur penalties if the data rates of both sides are not well matched [15].
As this can often be the case in designs which incorporate both reconfiguration
and parallelism, it is sometimes necessary to implement aspects of both serial and
parallel data transmission to minimize this mismatch.

7.1 main contributions

• An interrupt subsystem for a reconfigurable control circuit suitable for use in a
wagging synchronizer was simulated in a UMC 90nm technology via CADENCE,
which demonstrated a power consumption of for each interrupt module, which
was found during active operation to range from 64.7 to 90µW across process cor-
ners at a temperature of 27◦C.

• Token ring designs suitable for use as schedulers in the reconfigurable control
circuit mentioned above were explored in Chapters 3 and 5, and simulated using
CADENCE with the following results:

o At a length of 19 elements (duty cycle = 1ns), a token ring based on fast
David Cells was found to have 84.23% of the cycle time available for synchroniza-
tion.

o At a length of 12 elements (duty cycle = 1ns), a token ring based on Muller
Pipeline was found to have 78.46% of the cycle time available for synchronization.

o At a length of 37 elements (duty cycle = 1ns), a token ring based on Ring Os-
cillator was found to have 50.26% of the cycle time available for synchronization.

o At a length of 8 elements, a token ring based on Chordal graphs was found
to have 692.4 ps available for synchronization.

109

110 conclusions

• A VHDL flow control experiment for a 4-way wagging synchronizer was per-
formed in chapter 6 using a Xilinx ISE test bench, and the time available for syn-
chronization (tMSR) was shown to be variable from 0 to 3 cycles. Additionally, the
FIFO buffer did not accumulate excess data values or starve, as this was an ideal
case (in real life data accumulation or starvation would occur, but the rate would
be minimized).

7.2 future work

This work leaves many open venues. First and foremost, among them relates to
whether or not the parallel synchronization methods used throughout the body
of this work can be adapted to further enhance other synchronization methods.
Prior work on predictive synchronizers indicated that there is an upper limit to
the applicability of the method based on the fundamental frequency of the conflict
detector circuit [28]. It is within reason that if parallelism/wagging is employed,
this fundamental limit can be overcome at the cost of power, area, and complexity.

On a more abstract level, the concept of utilizing cyclic embedded graphs to
create more flexible specifications (i.e., specifications which encompass a range of
parameters rather than just one) and using interleaved CSC signals as a fundamen-
tal aspect of the control theory in the STG representation of the same, has many
potential applications. Perhaps specifications which schedule events using graph
theory can yield benefits over synchronous methods relying on local clocks and
watchdog timers to handle event-driven transmissions under certain conditions.

Further to the point of scheduling, creating graphical specifications where the
directedness of each node can be controlled based on externally generated user
stimuli can be used to meet operating points which fall outside the traditional
power, speed, and area metrics which are common to many designs. Case in point,
3D integrated circuit designs have issues with thermal extraction. Creating speci-
fications as listed above can be used to construct protocols, which could be useful
in meeting thermal constraints, given the development of proper tools to analyze
such behavior. And finally, using parallelism to assist in the creation of interfaces
which link together technologies with vastly different gain-bandwidth products
remains a promising avenue of research.

Part II

A P P E N D I X

A A P P E N D I X

a.1 intmux boolean logic minimization

FORWARD DIRECTION

1 〈0, 0, 0, 0, 0, 0, 0, 1〉, INTERRUPT IS ACTIVATED (FWD3) (↑ FLAG)

2 〈0, 0, 0, 0, 1, 0, 0, 1〉, TOKEN IS STOPPED AT TKN_RQ1 (↑ RC_RQ1)

3 〈1, 0, 0, 0, 1, 0, 0, 1〉, CHANGE FROM CFG#0 to CFG#1 (↑ RC_ACK1)

4 〈1, 0, 0, 0, 0, 0, 0, 1〉, TOKEN IS GRANTED ALONG TKN_GR1 (↓ RC_RQ1)

5 〈1, 0, 0, 0, 0, 1, 0, 1〉, TOKEN IS STOPPED AT TKN_RQ2 (↑ RC_RQ2)

6 〈0, 0, 0, 0, 0, 1, 0, 1〉, ACK FROM INTERRUPT #1 COMPLETES (↓ RC_ACK1)

7 〈0, 1, 0, 0, 0, 1, 0, 1〉, CHANGE FROM CFG#1 to CFG#2 (↑ RC_ACK2)

8 〈0, 1, 0, 0, 0, 0, 0, 1〉, TOKEN IS GRANTED ALONG TKN_GR2 (↓ RC_RQ2)

9 〈0, 1, 0, 0, 0, 0, 1, 1〉, TOKEN IS STOPPED AT TKN_RQ3* (↑ RC_RQ3)

10 〈0, 0, 0, 0, 0, 0, 1, 1〉, ACK FROM INTERRUPT #2 COMPLETES (↓ RC_ACK2)

11 〈0, 0, 0, 1, 0, 0, 1, 1〉, WRITE “1” TO MEM (↑MEM)

12 〈0, 0, 1, 1, 0, 0, 1, 1〉, CHANGE FROM CFG#2 to CFG#3 (↑ RC_ACK3)

13 〈0, 0, 1, 1, 0, 0, 0, 1〉, MEMORY BECOMES OPAQUE** (↓ RC_RQ3)

14 〈0, 0, 0, 1, 0, 0, 0, 1〉, INTERRUPT SHUTS DOWN (CHANGE TO CFG#4) (↓
RC_ACK3)

REVERSE DIRECTION

1 〈0, 0, 0, 1, 0, 0, 0, 0〉, INTERRUPT IS ACTIVATED (REV3) (↓ FLAG)

2 〈0, 0, 0, 1, 0, 0, 1, 0〉, TOKEN IS STOPPED AT TKN_RQ3 (↑ RC_RQ3)

3 〈0, 0, 1, 1, 0, 0, 1, 0〉, CHANGE FROM CFG#4 to CFG#3 (↑ RC_ACK3)

4 〈0, 0, 1, 1, 0, 0, 0, 0〉, TOKEN IS GRANTED ALONG TKN_GR3 (↓ RC_RQ3)

113

114 appendix

5 〈0, 0, 1, 1, 0, 1, 0, 0〉, TOKEN IS STOPPED AT TKN_RQ2 (↑ RC_RQ2)

6 〈0, 0, 0, 1, 0, 1, 0, 0〉, ACK FROM INTERRUPT #3 COMPLETES (↓ RC_ACK3)

7 〈0, 1, 0, 1, 0, 1, 0, 0〉, CHANGE FROM CFG#3 to CFG#2 (↑ RC_ACK2)

8 〈0, 1, 0, 1, 0, 0, 0, 0〉, TOKEN IS GRANTED ALONG TKN_GR2 (↓ RC_RQ2)

9 〈0, 1, 0, 1, 1, 0, 0, 0〉, TOKEN IS STOPPED AT TKN_RQ3* (↑ RC_RQ1)

10 〈0, 0, 0, 1, 1, 0, 0, 0〉, ACK FROM INTERRUPT #2 COMPLETES (↓ RC_ACK2)

11 〈0, 0, 0, 0, 1, 0, 0, 0〉, WRITE “0” TO MEM (↓MEM)

12 〈1, 0, 0, 0, 1, 0, 0, 0〉, CHANGE FROM CFG#2 to CFG#1 (↑ RC_ACK1)

13 〈1, 0, 0, 0, 0, 0, 0, 0〉, MEMORY BECOMES OPAQUE** (↓ RC_RQ1)

14 〈0, 0, 0, 0, 0, 0, 0, 0〉, INTERRUPT SHUTS DOWN (CHANGE TO CFG#0) (↓
RC_ACK1)

a.2 cadence pwl waveform generation example

A.2 cadence pwl waveform generation example 115

Listing 1: MATLAB .PWL Cadence Vector File Generator Core

%MATLAB .PWL Cadence Vector File Generator

%Created by Ghaith Tarawneh & Jim Guido

%Last modified on 2/9/2011

%Version 2.0

%This program is designed to generate valid SPECTRE input vector files for

%independent piecewise linear voltage sources.

max_pulse_width = 1e-9;

pulse_width_var = 1e-10;

num_pulse_steps = max_pulse_width/pulse_width_var; %MUST BE RATIONAL INTEGER

RESULT

rise_time = 5e-12;

fall_time = 5e-12;

file_template = ’bit%i_%ips_ud1.pwl’;

high_voltage = 1;

low_voltage = 0;

DATA GOES HERE

for bit=1:columns

for pulse_step=1:num_pulse_steps

pulse_width = (max_pulse_width) - (pulse_width_var * (pulse_step-1));

filename_pulse = round(pulse_width * 1e12);

filename = sprintf(file_template, bit, filename_pulse);

fid = fopen(filename, ’w’);

t = 0;

for i=1:rows

v = sequence(i, bit);

if (v)

fprintf(fid, ’%1.6e %1.3e\n’, t, high_voltage);

t = t + (pulse_width - rise_time - fall_time) + rise_time;

fprintf(fid, ’%1.6e %1.3e\n’, t, high_voltage);

t = t + fall_time;

else

fprintf(fid, ’%1.6e %1.3e\n’, t, low_voltage);

t = t + (pulse_width - rise_time - fall_time) + rise_time;

fprintf(fid, ’%1.6e %1.3e\n’, t, low_voltage);

t = t + fall_time;

end

end

fclose(fid);

end

end �

116 appendix

Listing 2: MATLAB .PWL Cadence Vector File Generator Sample Input

% bit1 = UDATA0(1) (LSB)

% bit2 = UDATA1(1)

% bit3 = UDATA2(1)

% bit4 = UDATA3(1)

% bit5 = UDATA4(1)

% bit6 = UDATA5(1)

% bit7 = UDATA6(1)

% bit8 = UDATA7(1)

% bit9 = UDATA8(1)

%bit10 = UDATA9(1)

%bit11 = UDATA10(1)

%bit12 = UDATA11(1)

%bit13 = UDATA12(1)

%bit14 = UDATA13(1)

%bit15 = UDATA14(1)

%bit16 = UDATA15(1) (MSB)

%BLANK DATA FOR MEM_INJECT

f1 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f2 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

%UNENCODED RECONFIG DATA (EVEN DEVICE)

f3 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f4 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f5 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f6 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f7 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f8 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f9 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f10 = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0];

f11 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f12 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f13 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f14 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f15 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f16 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f17 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

f18 = [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0];

sequence = [f1; f2; f3; f4; f5; f6; f7; f8; f9; f10;

f11; f12; f13; f14; f15; f16; f17; f18

[rows,columns] = size(sequence); �

B I B L I O G R A P H Y

[1] V.S.I. Alliance. System-Level Interface Behavioral Documentation Standard
(SLD 1 1.0), 2000. URL http://www.vsi.org.

[2] Mohammed Alshaikh, David Kinniment, and Alexandre Yakovlev. A synchro-
nizer design based on wagging. IEEE International Conference on Microelectron-
ics (ICM ‘10), pages 415–418, December 2010.

[3] Brian Alspach. Cycles of each length in regular tournaments. Canad. Math.
Bull, 10(2), 1967.

[4] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, pages 483–485. ACM, 1967.

[5] Bruce W. Arden and Hikyu Lee. Analysis of chordal ring network. IEEE
Transactions on Computers, 100(4):291–295, April 1981.

[6] Salomon Beer, Ran Ginosar, Michael Priel, R. Dobkin, and Avinoam Kolodny.
The Devolution of synchronizers. IEEE Symposium on Asynchronous Circuits
and Systems (ASYNC ‘10), pages 94–103, May 2010.

[7] Edith Beigne, Fabien Clermidy, Pascal Vivet, Alain Clouard, and Marc Re-
naudin. An asynchronous NOC architecture providing low latency service
and its multi-level design framework. IEEE International Symposium on Asyn-
chronous Circuits and Systems (ASYNC ‘05), pages 54–63, March 2005.

[8] Dilip K Bhavsar. System for polynomial division self-testing of digital net-
works, February 1985. US Patent 4,498,172.

[9] J.A Bondy. Pancyclic graphs i. Journal of Combinatorial Theory, Se-
ries B, 11(1):80 – 84, 1971. ISSN 0095-8956. doi: http://dx.doi.org/10.
1016/0095-8956(71)90016-5. URL http://www.sciencedirect.com/science/

article/pii/0095895671900165.

[10] David S. Bormann and Peter Y.K. Cheung. Asynchronous wrapper for het-
erogeneous systems. IEEE International Conference on Computer Design: VLSI
in Computers and Processors (ICCD ‘97), pages 307–314, October 1997.

[11] Charlie Brej. Wagging Logic: Implicit Parallelism Extraction Using Asyn-
chronous Methodologies. IEEE International Conference on Application of Con-
currency to System Design (ACSD ‘10), pages 35–44, June 2010.

[12] Jean-Michel Chabloz. Globally-Ratiochronous, Locally-Synchronous Systems. PhD
thesis, KTH, School of Information and Communication Technology, 2012.

117

http://www.vsi.org
http://www.sciencedirect.com/science/article/pii/0095895671900165
http://www.sciencedirect.com/science/article/pii/0095895671900165

118 bibliography

[13] Thomas J. Chaney and Charles E. Molnar. Anomalous behavior of synchro-
nizer and arbiter circuits. IEEE Transactions on Computers, 100(4):421–422,
April 1973.

[14] Daniel M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD
thesis, Stanford University, Dept. of Computer Science, 1984.

[15] Tiberiu Chelcea and Steven M. Nowick. Robust interfaces for mixed-timing
systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(8):
857–873, August 2004.

[16] Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifica-
tions. PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical
Engineering and Computer Science, 1987.

[17] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno,
and Alexandre Yakovlev. Petrify: a tool for manipulating concurrent spec-
ifications and synthesis of asynchronous controllers. IEICE Transactions on
Information and Systems, 80(3):315–325, 1997.

[18] Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno,
and Alexandre Yakovlev. Logic Synthesis of Asynchronous Controllers and Inter-
faces, volume 8 of Springer Series in Advanced Microelectronics. Springer, Berlin,
DE, 2002.

[19] J.P. Costas. Synchronous Communications. Proceedings of the IRE, 44(12):1713–
1718, Dec 1956. ISSN 0096-8390. doi: 10.1109/JRPROC.1956.275063.

[20] William J. Dally and Brian Towles. Route packets, not wires: On-chip intercon-
nection networks. Proceedings of the IEEE Design Automation Conference (DAC
‘01), pages 684–689, 2001.

[21] Rene David. Modular Design of Asynchronous Circuits Defined by Graphs.
IEEE Transactions on Computers, C-26(8):727–737, Aug 1977.

[22] Sanjay Dhar, Mark A. Franklin, and D.F. Wann. Reduction of clock delays
in VLSI structures. IEEE International Conference on Computer Design, pages
778–783, 1984.

[23] G.A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathematischen
Seminar der UniversitÃ€t Hamburg, 25(1-2):71–76, 1961. ISSN 0025-5858. doi:
10.1007/BF02992776. URL http://dx.doi.org/10.1007/BF02992776.

[24] Rastislav Dobkin and Ran Ginosar. Zero latency synchronizers using four and
two phase protocols. Technical Report CCIT TR642, VLSI Systems Research
Center, Technion, IL, October 2007.

[25] Jo Ebergen. Squaring the fifo in gasp. IEEE International Symposium on Asyn-
chronus Circuits and Systems (ASYNC ‘01), pages 194–205, March 2001.

http://dx.doi.org/10.1007/BF02992776

bibliography 119

[26] Boaz Eitan and D. Frohman-Bentchkowsky. Hot-electron injection into the
oxide in n-channel MOS devices. IEEE Transactions on Electron Devices, 28(3):
328–340, March 1981.

[27] Fausto Fantini. Reliability problems with VLSI. Microelectronics Reliability, 24

(2):275–296, 1984.

[28] Uri Frank, Tsachy Kapshitz, and Ran Ginosar. A predictive synchronizer
for periodic clock domains. Formal Methods in System Design, 28(2):171–186,
March 2006.

[29] Eby G. Friedman. Clock distribution networks in synchronous digital inte-
grated circuits. Proceedings of the IEEE, 89(5):665–692, May 2001.

[30] Robert A. Frohwerk. Signature analysis: A new digital field service method.
Hewlett-Packard Journal, 28(9):2–8, 1977.

[31] Stephen B. Furber, Paul Day, Jim D. Garside, Nigel C. Paver, and John V.
Woods. AMULET1: a micropipelined ARM. Compcon Spring’94, Digest of
Papers, pages 476–485, February/March 1994.

[32] Stephen B. Furber, Jim D. Garside, and David A. Gilbert. AMULET3: A high-
performance self-timed ARM microprocessor. IEEE International Conference on
Computer Design: VLSI in Computers and Processors (ICCD ‘98), pages 247–252,
October 1998.

[33] Stephen B. Furber, James D. Garside, Peter Riocreux, Steven Temple, Paul Day,
Jianwei Liu, and Nigel C. Paver. AMULET2e: An asynchronous embedded
controller. Proceedings of the IEEE, 87(2):243–256, February 1999.

[34] Stanislavs Golubcovs. Multi-resource approach to asynchronous SoC: design and
tool support. PhD thesis, University of Newcastle Upon Tyne, 2011.

[35] Frank Gray. Pulse code communication, March 1953. US Patent 2,632,058.

[36] Mark R. Greenstreet. Implementing a STARI chip. IEEE International Confer-
ence on Computer Design: VLSI in Computers and Processors (ICCD ‘95), pages
38–43, October 1995.

[37] Mark Russell Greenstreet. Stari: a technique for high-bandwidth communication.
PhD thesis, Princeton University, Dept. of Computer Science, 1993.

[38] Frank Harary and Leo Moser. The theory of round robin tournaments. The
American Mathematical Monthly, 73(3):pp. 231–246, 1966. ISSN 00029890. URL
http://www.jstor.org/stable/2315334.

[39] C.S. Hau-Riege and C.V. Thompson. Electromigration in Cu interconnects
with very different grain structures. Applied Physics Letters, 78(22):3451–3453,
January 2001.

[40] Jens U. Horstmann, Hans W. Eichel, and Robert L. Coates. Metastability be-
havior of CMOS ASIC flip-flops in theory and test. IEEE Journal of Solid-State
Circuits, 24(1):146–157, February 1989.

http://www.jstor.org/stable/2315334

120 bibliography

[41] Jerry Jex and Charles Dike. A fast resolving BiNMOS synchronizer for par-
allel processor interconnect. IEEE Journal of Solid-State Circuits, 30(2):133–139,
February 1995.

[42] Ian W. Jones, Suwen Yang, and Mark Greenstreet. Synchronizer behavior and
analysis. IEEE Symposium on Asynchronous Circuits and Systems (ASYNC ‘09),
pages 117–126, May 2009.

[43] Suk-Jin Kim, Jeong-Gun Lee, and Kiseon Kim. A parallel flop synchronizer
for bridging asynchronous clock domains. IEEE Asia-Pacific Conference on Ad-
vanced System Integrated Circuits, pages 184–187, August 2004.

[44] David J Kinniment. Synchronization and Arbitration in Digital Systems. John
Wiley & Sons, 2008.

[45] David J. Kinniment and D.B.G. Edwards. Circuit technology in a large com-
puter system. Radio and Electronic Engineer, 43(7):435–441, July 1973.

[46] Gideon Langholz, Abraham Kandel, and Joe L. Mott. Foundations of digital
logic design, volume 1. World Scientific, 1998.

[47] Thomas H Lee. The design of CMOS radio-frequency integrated circuits. Cam-
bridge University Press, 2004.

[48] M.W. Levi. CMOS is most testable. International Test Conference, pages 217–220,
1981.

[49] Kuan-Jen Lin, Jih-Wen Kuo, and Chen-Shang Lin. Direct synthesis of
hazard-free asynchronous circuits from STGs based on lock relation and MG-
decomposition approach. In Proceedings of 1994 European Design and Test Con-
ference EDAC-ETC-EUROASIC, pages 178–183, Feb 1994. doi: 10.1109/EDTC.
1994.326879.

[50] Alain J. Martin. On Seitz’ Arbiter. Technical Report 5212:TR:86, California
Institute of Technology, Dept. of Computer Science, Pasadena, CA, USA, 1986.

[51] Alain J. Martin. Synthesis of asynchronous VLSI circuits. Technical Report
CALTECH-CS-TR-93-28, California Institute of Technology, Dept. of Com-
puter Science, Pasadena, CA, USA, March 2000.

[52] K. Meena. Principles of Digital Electronics. Prentice-Hall Of India Pvt. Limited,
Connaught Circus, New Delhi, IN, 2009.

[53] Ivan Miro-Panades, Fabien Clermidy, Pascal Vivet, and Alain Greiner. Phys-
ical Implementation of the DSPIN Network-on-Chip in the FAUST Architec-
ture. Proceedings of the Second ACM/IEEE International Symposium on Networks-
on-Chip, pages 139–148, April 2008.

[54] JW Moon. On subtournaments of a tournament. Canad. Math. Bull, 9(3):297–
301, 1966.

bibliography 121

[55] Simon Moore, George Taylor, Robert Mullins, and Peter Robinson. Point to
point GALS interconnect. IEEE International Symposium on Asynchronous Cir-
cuits and Systems (ASYNC ‘02), pages 69–75, April 2002.

[56] David E. Muller and W. Scott Bartkey. A theory of asynchronous circuits.
Proceedings of an International Symposium on the Theory of Switching, pages 204–
243, 1959.

[57] Robert Mullins and Simon Moore. Demystifying data-driven and pausible
clocking schemes. IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC ‘07), pages 175–185, March 2007.

[58] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541–580, April 1989.

[59] Samuel D. Naffziger, Glenn Colon-Bonet, Timothy Fischer, Reid Riedlinger,
Thomas J. Sullivan, and Tom Grutkowski. The implementation of the Ita-
nium 2 microprocessor. IEEE Journal of Solid-State Circuits, 37(11):1448–1460,
November 2002.

[60] Wilcox P Overbeck. Vacuum tube cycle counter, February 1939. US Patent
2,147,918.

[61] Suhas Shrikrishna Patil. Synchronizers and arbiters. Massachusetts Institute of
Technology, project MAC, 1973.

[62] James L. Peterson. Petri nets. ACM Computing Surveys (CSUR), 9(3):223–252,
September 1977.

[63] Carl A. Petri. Communication with Automata, Supplement 1 to Technical Report
RADC-TR-65-337, NY, 1965. Translation by CF Greene of Kommunikation mit Au-
tomaten. PhD thesis, University of Bonn, 1962.

[64] William Wharton Plummer. Asynchronous arbiters. IEEE Transactions on Com-
puters, 100(1):37–42, January 1972.

[65] Ivan Poliakov, Danil Sokolov, and Andrey Mokhov. Workcraft: A Static Data
Flow Structure Editing, Visualisation and Analysis Tool. International Confer-
ence on Applications and Theory of Petri Nets and Other Models of Concurrency
(ICATPN ‘07), pages 505–514, 2007.

[66] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolic. Digital In-
tegrated Circuits: A Design Perspective. Prentice Hall, Upper Saddle River, NJ,
USA, 2003.

[67] Rochit Rajsuman. Iddq testing for CMOS VLSI. Proceedings of the IEEE, 88(4):
544–568, April 2000.

[68] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy,
E. Vincent, and Ge Ghibaudo. Review on high-k dielectrics reliability issues.
IEEE Transactions on Device and Materials Reliability, 5(1):5–19, March 2005.

122 bibliography

[69] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand. Leakage current
mechanisms and leakage reduction techniques in deep-submicrometer CMOS
circuits. Proceedings of the IEEE, 91(2):305–327, Feb 2003. ISSN 0018-9219. doi:
10.1109/JPROC.2002.808156.

[70] Charles L. Seitz. System timing. Introduction to VLSI systems, pages 218–262,
1980.

[71] Charles L. Seitz. Ideas about arbiters. Lambda, 1(1):10–14, 1980.

[72] Premkishore Shivakumar, Michael Kistler, Stephen W. Keckler, Doug Burger,
and Lorenzo Alvisi. Modeling the effect of technology trends on the soft
error rate of combinational logic. IEEE International Conference on Dependable
Systems and Networks (DSN ‘02), pages 389–398, 2002.

[73] Danil Sokolov. Automated synthesis of asynchronous circuits using direct mapping
for control and data paths. PhD thesis, University of Newcastle Upon Tyne,
Dept. of Electrical, Electronic and Computer Engineering, 2006.

[74] IEEE Standard. VHDL Language Reference Manual. IEEE Std, pages 1076–
1987, 1988.

[75] James Stewart. Calculus: Early Transcendentals. Brooks/Cole, Belmont, CA,
USA, 5th edition, 2003.

[76] Ivan E. Sutherland and Robert F. Sproull. Logical effort: Designing for speed
on the back of an envelope. In Proceedings of the University California/Santa
Cruz Conference on Advanced Research in VLSI, pages 1–16. MIT Press, 1991.

[77] Kees van Berkel. Handshake circuits: An intermediary between communicating
processes and VLSI. PhD thesis, Technische Univ., Eindhoven (Netherlands).,
1992.

[78] Kees van Berkel, Mark B. Josephs, and Steven M. Nowick. Applications of
asynchronous circuits. Proceedings of the IEEE, 87(2):223–233, February 1999.

[79] Sriram R. Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wil-
son, James Tschanz, David Finan, Arvind Singh, Tiju Jacob, Shailendra Jain,
et al. An 80-Tile Sub-100-W teraFLOPS Processor in 65-nm CMOS. IEEE
Journal of Solid-State Circuits, 43(1):29–41, January 2008.

[80] Harry JM Veendrick. The behaviour of flip-flops used as synchronizers and
prediction of their failure rate. IEEE Journal of Solid-State Circuits, 15(2):169–
176, 1980.

[81] Xilinx. UG070 Virtex-4 FPGA User Guide, December 2008. URL http://www.

xilinx.com/support/documentation/user_guides/ug070.pdf.

[82] Xilinx. LogiCORE IP FIFO Generator v9.3 Product Guide, De-
cember 2012. URL http://www.xilinx.com/support/documentation/ip_

documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf.

http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/user_guides/ug070.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf
http://www.xilinx.com/support/documentation/ip_documentation/fifo_generator/v9_3/pg057-fifo-generator.pdf

bibliography 123

[83] Jun Zhou, David Kinniment, Gordon Russell, and Alexandre Yakovlev. A
robust synchronizer. IEEE Computer Society Annual Symposium on Emerging
VLSI Technologies and Architectures (ISVLSI ‘06), pages 442–443, March 2006.

	Declaration
	Dedication
	Abstract
	Publications
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Acronyms

	PhD Thesis
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Algorithms for Load Balancing in Token Rings via Distributed Embedded Graphs
	1.2.2 Manipulation of Parallelism in a Self-Timed Reconfigurable Control Device via One-Hot Coding
	1.2.3 Tolerance of Hard Faults in a Self-Timed Reconfigurable Control Device via Bypass Paths
	1.2.4 Flow Control in a FIFO Synchronizer based on Wagging

	1.3 Organization of Thesis

	2 Background Literature & Models
	2.1 Introduction(Asynchronous Circuits)
	2.1.1 Properties of Asynchronous Circuits
	2.1.2 Asynchronous Control Circuits
	2.1.3 Asynchronous Circuit Primitives

	2.2 Petri Nets
	2.2.1 Pre-sets and Post-sets
	2.2.2 Enabling and Firing
	2.2.3 Reachability
	2.2.4 Other Petri Net Properties

	2.3 Signal Transition Graphs
	2.3.1 Relation to Petri Nets
	2.3.2 State Graphs and Reachability Graphs
	2.3.3 Complete State Coding
	2.3.4 Relative Timing in Signal Transition Graphs

	2.4 Metastability
	2.5 Embedded Cycle Graphs
	2.5.1 Basic Graph Definitions
	2.5.2 Applications of an Embedded Cycle Graph

	3 Overview of Wagging Synchronization
	3.1 Introduction(Synchronization Methods)
	3.1.1 Synchronization Overview
	3.1.2 Cascaded Flip-Flop Synchronization
	3.1.3 Mean-Time Between Failures in a Cascaded Flip-Flop Synchronizer
	3.1.4 FIFO Synchronization

	3.2 Wagging Synchronization
	3.2.1 Two-way Wagging Buffer
	3.2.2 Wagging Synchronizer Concept
	3.2.3 Effect of Wagging on the Failure Rate of Cascaded Flip-Flop Synchronizers
	3.2.4 Impact of Incorporating Reconfigurable Hardware Capability into a Wagging Synchronizer Design
	3.2.5 Overheads of Incorporating Reconfigurable Hardware Capability into a Wagging Synchronizer Design
	3.2.6 Basic Operation of the Reconfigurable Control Device

	3.3 Topology of a Reconfigurable Token Ring
	3.3.1 Cyclic Behavior of Token Rings
	3.3.2 Sub-Optimal Distribution Algorithm Specification
	3.3.3 Optimal Distribution Algorithm Specification

	3.4 Token Ring Designs
	3.4.1 Ring Oscillators
	3.4.2 Fast David Cells
	3.4.3 Muller Pipeline
	3.4.4 Performance Comparison
	3.4.5 Distributed Token Ring Implementation

	4 Parallelism in a Reconfigurable Controller for Wagging Synchronization
	4.1 Introduction (Arbitration & Reconfiguration)
	4.2 Related Work (Overview of Arbitration)
	4.2.1 The Mutual Exclusion Element (MUTEX)
	4.2.2 Token Ring Arbiters
	4.2.3 Arbitration via Pausible Clocks
	4.2.4 Relation to a Reconfigurable Control Device for a Wagging Synchronizer

	4.3 Reconfiguration Protocol
	4.3.1 Mathematical Foundations (Assumptions)

	4.4 UCOM Threading
	4.4.1 Enforcing Firing Order in Cyclic Independent Loops
	4.4.2 Control of End Behavior in Cyclic Independent Loops

	4.5 Basic Controller Design
	4.5.1 Circuit Synthesis
	4.5.2 Performance Comparison

	4.6 Output Data Merging in Reconfigurable Controller
	4.6.1 Circuit Synthesis & Results Analysis

	5 Robustness in a Reconfigurable Controller for Wagging Synchronization
	5.1 Introduction (Principle of Exclusion)
	5.2 Fault Model Definitions
	5.2.1 Fault types

	5.3 Related Work (Johnson Counter)
	5.4 Chordal Ring Networks (Algorithm Reinterpretation)
	5.4.1 Chordal Bypass Path Algorithm
	5.4.2 Results Analysis

	5.5 UCOM Thread Forwarding
	5.5.1 Theoretical Overview (Why Forward?)
	5.5.2 Applications to Robust Controller Design

	5.6 Advanced Controller Design (Hierarchy & Crossbar Plug-in)
	5.6.1 Theoretical Overview (System Hierarchy)
	5.6.2 Derivation of the PN Model
	5.6.3 PN Model & Simulation

	5.7 Validating Configurations via a Nearest Neighbor Checking Algorithm
	5.7.1 Validation Algorithm

	6 Flow Control in Wagging Synchronizers incorporating FIFO Buffers
	6.1 Introduction (Flow Control in FIFO Synchronizers)
	6.2 Related Work (STARI)
	6.2.1 Applications to Wagging Synchronization

	6.3 FIFO Testing Methodology
	6.3.1 Top-level Design Considerations
	6.3.2 FIFO I/O Considerations

	6.4 VHDL Experimental Setup
	6.4.1 VHDL Design Flow
	6.4.2 Test Vector Generation
	6.4.3 State Machine Logic for a Wagging Scheduler

	6.5 VHDL Simulations

	7 Conclusions
	7.1 Main Contributions
	7.2 Future Work

	Appendix
	A Appendix
	A.1 INTMUX Boolean Logic Minimization
	A.2 CADENCE PWL Waveform Generation Example

	Bibliography

