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Abstract 

Traditionally, identity-by-descent (IBD) sharing among related individuals is estimated 

on the basis of the assumed pedigree structure, possibly combined with genotyping 

information for some or all subjects at a series of genetic markers. Recently, there has 

been interest in using dense SNP genotype data to estimate both average (across the 

genome) and local (at particular locations) IBD sharing by pairs of individuals. 

Although originally intended for inference of pedigree relatedness, these genetically 

estimated IBDs can potentially replace the traditional IBD estimates used in various 

genetic data analysis methods. I compared IBD estimates from various software 

packages (PLINK, KING and linear mixed model (LMM) packages including EMMAX, 

FaST-LMM, GenABEL, GEMMA and MMM) with the theoretical estimates, and 

examined their utility in application to LMM association analysis of real and simulated 

qualitative and quantitative phenotypes from a Brazilian family-based study of visceral 

leishmaniasis (VL) and from the 18th Genetic Analysis Workshop (GAW) data. 

Generally, the results from the different software packages were highly concordant. 

When used to model correlations between individuals in LMM analysis, these 

approaches achieved good control of type 1 error (well beyond that attainable using 

theoretical IBD estimates), while also achieving superior power to comparable non-

LMM methods. Furthermore, although technically misspecified, LMM methods were 

also successfully applied to simulated longitudinal data.  In addition, a new non-

parametric linkage analysis method, Regional IBD Analysis (RIA), is proposed, where 

theoretical IBD estimates are replaced with the average and local genetic IBD 

estimates. This method was compared with traditional methods for non-parametric 

linkage analysis (either exact methods using small pedigrees from a study of 

vesicoureteral reflux disorder (VUR) or simulation-based methods using large 

pedigrees from the VL study) and was found to perform at least equally well while 

taking less time.
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Chapter 1. Introduction 

1.1. Relatedness and IBD Sharing Estimation 

Many aspects of life, such as family, marriage or inheritance rely on establishing 

genetic relatedness among individuals (Weir et al., 2006). Although one’s relatedness 

to another is usually intuitive, there are circumstances where formal quantification of 

relatedness is useful. Methods have been developed for this purpose since the early part 

of the last century. 

A very simple and intuitive approach is perhaps to state that one individual is related to 

another if they both share at least one common ancestor (Malécot, 1969), but this may 

not be very useful. A more informative analytical approach to assess relatedness was 

developed by Sewell Wright in 1922, improving on an earlier idea on inbreeding by 

Pearl (1914) and Ellinger (1920). Under the then prevailing correlation analysis 

framework, Wright defined his coefficient of relationship as the coefficient of genetic 

correlation between two individuals (Wright, 1921; Wright, 1922). The approach 

appeared not so popular (at least among the biologists), however, perhaps because 

Wright’s method requires familiarity with its mathematical framework, and appeared 

to be no longer appropriate for the genes that became available for study by the middle 

of the 20th century (C. C. Li and Sacks, 1954; Morton, 1969). 

By that time, Gustav Malécot had created a different measurement of relatedness using 

a more intuitive probabilistic framework. In his 1948 seminal work, Les 

mathématiques de l’hérédité (translated into English as The Mathematics of Heredity 

in 1969), Malécot defined coefficient of coancestry—also known as kinship coefficient 

or coefficient of consanguinity (Blouin, 2003; Oliehock et al., 2006; Weir et al., 

2006)—as the probability that two homologous alleles, each chosen randomly from 

each of the individuals in the pair of interest, are ‘identical, i.e., are descended from the 

same [allele]’ (Malécot, 1948, as translated by Yermanos in Malécot, 1969). 

The word ‘identical’ on its own is in fact quite ambiguous. Eight years before Malécot 

published his work, Charles Cotterman identified three categories of genetic identity 

sensu lato in his thesis (Cotterman, 1940)—‘identity’ (sensu stricto), which seemed to 

refer to phenotypic effect in what could be loosely described as genocopy in modern 

terminology; ‘derivatives’, i.e. genes that are similar because they are ‘derived’ from a 

single ancestral gene; and ‘alleles’, defined as genes sharing identical locus (i.e. the 

similarity is in the locus, not the sequence). He further observed that these three 

aspects of identity are independent (in a logical sense, i.e. the state of one does not 
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imply the state of the other)—although some combinations could occur only under a 

very extraordinary circumstance (Cotterman, 1940). Cotterman’s ‘derivative’ was the 

first time that what is now known, under Malécot’s terminology, as identity by descent 

(IBD) was identified (Thompson, 1974); it continues with little change today: 

homologous alleles are now said to be IBD if they have descended from a single 

ancestral allele in a recent common ancestor (Blouin, 2003; Weir et al., 2006; Astle 

and Balding, 2009; Powell et al., 2010; Day-Williams et al., 2011a; Ott et al., 2011). 

The word ‘recent’ in current the definition of IBD is worth a little discussion here. There 

is another type of identity in modern usage—identity by state (IBS). Homologous 

alleles that are apparently similar, regardless of their ancestry, are said to be IBS (Ott, 

1999; Blouin, 2003; Powell et al., 2010; Day-Williams et al., 2011a). It follows that, in 

absence of mutation, IBD alleles will also be IBS, but the reverse is not necessarily true 

(C. C. Li and Sacks, 1954; McPeek and Sun, 2000). (The relationship between IBD and 

IBS indeed roughly follows the relationship between derivative and the other two 

identity categories in Cotterman’s original work.) However, the distinction between 

IBD and IBS is in fact somewhat arbitrary: according to the coalescent theory, if one 

looks back far enough in time, most of the so-called IBS alleles would coalesce to some 

certain common ancestors and are therefore IBD; that is, unless they arose from 

separate mutation events, which would be rare (Cotterman, 1940; Blouin, 2003; Powell 

et al., 2010). However, there is utility in making the distinction between the two 

(particularly in linkage analysis), and therefore, in practice, IBD is normally defined by 

recent common ancestors. 

Yet, this definition itself may not resolve the ambiguity as it still begs another 

question—how recent is recent? If the definition of ‘recent’ is arbitrary, then the 

distinction between IBD and IBS will remain arbitrary. Indeed, Cotterman was aware of 

this predicament when he made the distinction between different types of identity. In 

his work, Cotterman (1940) suggested from a mainly biological viewpoint that the limit 

for ‘recent’ could be about 5-6 generations in human, with the main arguments that this 

timeframe is short enough for the chance of mutation to be negligible, but long enough 

that any effect of inbreeding prior to that is removed. He also pointed out a few 

additional practical advantages of this suggestion. Nevertheless, modern approaches 

seem to take an even more pragmatic and utilitarian stance that this should depend on 

the purpose of the estimation, or, in fact, may even be dictated by the data set being 

used (A. D. Anderson and Weir, 2007; Astle and Balding, 2009; Powell et al., 2010). 

It emerged that the idea of relatedness itself relies on the concept of IBD. Even our first, 

simplistic view of relatedness implies IBD sharing: two individuals can be said to be 

related if they share at least one allele IBD (Weir et al., 2006)—the shared ancestry is 
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just a proxy for this. As for the coefficient of relationship and kinship coefficient, both, 

in fact, either explicitly or implicitly reflect the underlying degree of IBD—the kinship 

coefficient does so by definition; the coefficient of relationship, although not apparent 

from its original formulation, can be reformulated under a probabilistic framework as 

the proportion of IBD alleles shared between two individuals (C. C. Li and Sacks, 1954; 

Blouin, 2003). 

Instead of specifying IBD sharing using one of the above summary coefficients, 

probability can alternatively be assigned to each of the possible IBD sharing classes 

between two individuals. To do so fully in a pair of diploid organisms requires 15 such 

classes (Jacquard, 1972). However, if the two chromosomes in each individual are 

treated as unordered (i.e. disregarding the parent of origin), then 6 redundant IBD 

sharing classes can be removed. Furthermore, if inbreeding is assumed to be absent, 

these can further be collapsed to just three classes, representing 0, 1 and 2 IBD alleles 

shared among the individuals (Jacquard, 1972; Thompson, 1974; A. D. Anderson and 

Weir, 2007; Astle and Balding, 2009). 

There are many use of IBD sharing estimates (Oliehock et al., 2006; Weir et al., 2006; 

A. D. Anderson and Weir, 2007; Browning and Browning, 2011; Han and Abney, 2011). 

In context of genetic data analysis (or genetic mapping), IBD probabilities are central to 

linkage analyses (Day-Williams et al., 2011a), and can also be used to control for the 

effect of population substructure in association studies (Bacanu et al., 2000; Balding, 

2006; Purcell et al., 2007; Kang et al., 2008; Thornton and McPeek, 2010). Being able 

to accurately measure IBD sharing probabilities is therefore very useful. 

However, the IBD allele sharing probabilities (and their related coefficients) cannot be 

‘measured’ directly, and have to be estimated (Weir et al., 2006). Traditionally, they are 

estimated analytically from the pedigree structure; alternatively, if genotype data are 

available for a particular genetic location, these can be used in conjunction with the 

pedigree information to estimate the IBD. However, the IBD estimates in the latter case 

will be local to that location, whereas the IBD estimates in the former, which do not 

rely on any genotype data, will be global, i.e. will correspond to the theoretically 

expected IBD at any locus in that pair of individuals (Day-Williams et al., 2011a). These 

two types of relatedness estimates need not be equal. In fact, non-parametric linkage 

analysis is only possible precisely because of the disparity between local and global IBD 

probabilities that can be expected under the conditions of linkage (Elston, 1998; Shih 

and Whittemore, 2001). 

With increasing availability of genetic data, it becomes possible to estimate the IBD 

based only on the genotype data without having to relying on pedigrees (Milligan, 

2003). These ‘empirical’ estimates can be based on maximum likelihood estimators 
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(MLE, e.g. Thompson, 1975; Milligan, 2003; A. D. Anderson and Weir, 2007), method 

of moments estimators (MME, e.g. Ritland, 1996; Purcell et al., 2007; Manichaikul et 

al., 2010), or some other methods (e.g. Queller and Goodnight, 1989; Lynch and 

Ritland, 1999; Wang, 2002; Day-Williams et al., 2011a). These methods have their 

advantages and disadvantages, and there does not seem to be one that is best in all 

situations (Milligan, 2003; Astle and Balding, 2009). Nevertheless, it is not the aim of 

this thesis to compare the relative merits of empirical IBD estimation methods; rather, 

some method-of-moments empirical IBD estimates will be used (mainly for practical 

reasons) to assess the relative merits of analytic methods of interest. 

Originally, genetic data analysis methods that use IBD information were designed for 

use with theoretical IBD estimates. However, there may be some advantages of using 

empirical instead of theoretical IBD probabilities. For example, the pedigrees of the 

samples may not be known, or may not be accurate. Even when the pedigree is known, 

there could still be some advantages in using empirical IBD. Traditionally, the founders 

of the pedigrees are treated as unrelated in this analytical approach (technically, the 

founders form the base population from which the relatedness is measured; this makes 

them unrelated by definition), but there would inevitably be some degree of relatedness 

among them, which could result in some inaccuracies (Weir et al., 2006; Astle and 

Balding, 2009; Powell et al., 2010; Day-Williams et al., 2011a). Furthermore, with 

complex pedigrees, it may be impractical to calculate their theoretical IBD; in which 

case, empirical, genetically estimated IBD may be useful (Han and Abney, 2011). In this 

thesis, the merit of using empirical IBD estimates in various genetic data analysis 

methods will be investigated. 

1.2. Application of IBD sharing estimation in genome-wide association studies 

Genetic association studies examine the association between a particular allelic variant 

and the trait of interest. This association can occur not only when the variant is truly 

causal, but also when it is in linkage disequilibrium with the nearby causal allele 

(Lander and Schork, 1994), so the method could also naturally extend to mapping the 

locus of interest (Astle and Balding, 2009). Technical limitations in the past restricted 

the practicability of this class of methods to a limited set of markers or variants within a 

predetermined set of candidate genes. However, recent ability to genotype a dense set 

of polymorphic markers combined with knowledge about their positions and linkage 

disequilibrium structures has enabled the genome-wide association (GWA) approach, 

which is based on the examination of hundreds of thousands of possible associations 

between the phenotype of interest and markers across the whole genome. Linkage 

disequilibrium association mapping based on genome-wide association consequently 

allows mapping of the causal locus to a much higher theoretical resolution than linkage 

mapping (Hirschhorn and Daly, 2005; Astle and Balding, 2009; Ott et al., 2011; 
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Visscher et al., 2012). Additionally, it has also been demonstrated to be more powerful 

than linkage analysis when investigating common variants with weaker effects (Risch 

and Merikangas, 1996). Association studies are therefore currently more predominant 

than linkage analyses (Astle and Balding, 2009; Ott et al., 2011). However, they can be 

subject to certain biases including that due to population substructure, as will be 

discussed below. 

1.2.1. Effect of population substructure in genome-wide association studies 

The term population substructure or population structure is defined as ‘sample 

structure due to differences in genetic ancestry among samples’ (Price et al., 2010). It 

appears to have two levels of meaning in the literature: in a narrow sense, the 

differences are limited to those originating from distant ancestry and the term is 

essentially synonymous with population stratification (Ewens and Spielman, 1995; 

Pritchard et al., 2000b; Astle and Balding, 2009); in a broader sense, it also includes 

the sample structure caused by much more recent ancestry i.e. close relatedness among 

the samples (McCarthy et al., 2008; Price et al., 2010; Zheng et al., 2010). 

Population stratification refers to the situation where there are subgroups of 

individuals with different ancestry within the population. Usage in the context of  

genetic association studies tends to be consequential, i.e. it implies differences in allele 

frequencies due to systematic ancestry differences between the cases and the controls 

(Freedman et al., 2004; Voight and Pritchard, 2005; McCarthy et al., 2008; Astle and 

Balding, 2009). 

Relatedness among the samples may be known to the researchers in advance through 

relationships within the family (‘familial relatedness’). Alternatively, relatedness 

among some individuals may not be known to the researchers or even to themselves. 

Cryptic relatedness refers to the situation where, as a result of the samples’ relatedness 

which is not known to the researchers, their genotypes are not independent (Devlin and 

Roeder, 1999; Voight and Pritchard, 2005; McCarthy et al., 2008; Astle and Balding, 

2009). 

For clarity, the term population substructure will be used here in its broader sense; 

population stratification will refer specifically to the sample structure caused by 

differences in genetic ancestry within populations; and relatedness will refer to all not-

too-distant (i.e. within the same subpopulation) genetic relatedness, whether apparent 

or cryptic. 

In its simplest form, the design of a genetic association study follows a case-control 

approach, looking for differences in allele frequencies between the cases and the 

controls at each particular locus (Hirschhorn and Daly, 2005). In an outbred 
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population, in which linkage disequilibrium decays rapidly over distance, this 

association implies tight physical linkage between the marker and causative loci 

(Pritchard and Rosenberg, 1999; Pritchard and Donnelly, 2001). However, this is not 

necessarily the case in presence of population stratification (Lander and Schork, 1994; 

Ewens and Spielman, 1995). 

Unlike linkage analyses, in which the subjects are explicitly required to be related and 

are modelled as such, case-control association analyses assume that the subjects are 

from a single, homogeneous population, and that they are not related. Violation of 

these assumptions occurs in the presence of population substructure: violation of the 

former in the presence of population stratification; and violation of the latter in the 

presence of cryptic relatedness (Devlin and Roeder, 1999; Astle and Balding, 2009). 

These two types of population substructure are in fact two extremes of the same 

problem: the unobserved relationships among the samples (Astle and Balding, 2009; 

Kang et al., 2010). Ultimately, alleles in any pair of samples would coalesce into a 

certain ancestor. If that common ancestor is distant, the samples are said to be from 

different populations; if the common ancestor is recent, then the samples are more or 

less related (known or cryptic). The rather arbitrary nature of ‘distant’ and ‘recent’ 

aside, it would appear that, one way or another, there will always be a certain degree of 

population substructure within any data set. However, this is not necessarily 

consequential. 

Any true association observed in an association study ultimately reflects different 

genetic ancestry between the groups at that locus, regardless of the actual linkage 

between that locus and the disease locus (Ewens and Spielman, 1995; Rosenberg and 

Nordborg, 2006; Astle and Balding, 2009). Because population stratification can also 

cause the cases and controls to cluster into different subpopulations, which also reflects 

different ancestry, it could cause apparent association in absence of a true genetic effect 

(Astle and Balding, 2009). 

A famous example of spurious association due to population stratification is that 

between the Gm system haplotype of human immunoglobulin G and risk of type 2 

diabetes in a study in Pima Indians (Knowler et al., 1988).  (For historical accuracy, it 

should be noted here that the issue was identified by Knowler et al. themselves, who 

also performed appropriate analyses to demonstrate this issue). This was, however, a 

rather extreme case. When one locus is considered at a time and known ancestry is 

accounted for, the impact of population stratification observed in most association 

studies has so far been rather modest even for relatively large studies (e.g. Clayton et 

al., 2005; The Wellcome Trust Case Control Consortium, 2007). This has led to an 

assertion that the impact of population stratification would be minimal provided that 
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the cases and controls were appropriately matched for broad ethnicity, and the 

individuals whose genomic data subsequently revealed substantially different ethnicity 

were excluded (McCarthy et al., 2008). 

Nevertheless, the results from the theoretical analyses by Ewens and Spielman (1995) 

and Pritchard and Rosenberg (1999) and a simulation study by Marchini et al. (2004) 

and Zheng et al. (2010) showed that the effect of population stratification increased in 

the same direction as the sample size and the relative risks of the disease among the 

subpopulations. As the size of genome-wide association studies increases to enable the 

detection of smaller genetic effects, population stratification is more likely to become a 

problem (Price et al., 2006; Astle and Balding, 2009). 

In cryptic relatedness, samples are related without the researchers’ necessarily being 

aware of it. Devlin and Roeder (1999) argued that the very act of selecting the cases and 

controls could introduce this error as the cases would necessarily share similar 

genotypes and therefore would be more closely related to each other than to the 

controls; however, Voight and Pritchard (2005) later pointed out that this could be 

mitigated by natural selection. The degree of relatedness increases in small, isolated 

populations as the chance of inbreeding increases, and the limited sample choice means 

that each sample is more likely to be related to the others (Newman et al., 2001; Voight 

and Pritchard, 2005). Nevertheless, some degree of inbreeding exists even in large, 

apparently outbred populations (Broman and Weber, 1999). 

The relatedness of samples implies that their genotypes are not independently sampled. 

Although this should not affect the allele frequency estimates in the cases or controls, 

the variances would be underestimated, leading to inflation of the test statistics (Devlin 

and Roeder, 1999; Voight and Pritchard, 2005; Zheng et al., 2010). Devlin and Roeder 

(1999) suggested that this issue may in fact be more important than population 

stratification in causing the inflation of the results. A study in a founder population has 

empirically confirmed the impact of this (Newman et al., 2001). However, in their more 

detailed study, Voight and Pritchard (2005) concluded that the effect of cryptic 

relatedness is important only in a small, rapidly expanding, or heavily inbred 

populations; it is negligible in large outbred populations. 

1.2.2. Using LMM to mitigate the effect of population substructure 

A large number of methods have been proposed to reduce the effect of population 

substructure in genetic data analyses (perhaps reflecting the importance of the issue). 

Some examples of these include: sample restriction (to similar ethnicity) (McCarthy et 

al., 2008), family-based tests of linkage and association (FBTLA) (e.g. Falk and 

Rubinstein, 1987; Terwilliger and Ott, 1992; Spielman et al., 1993; Rabinowitz and 

Laird, 2000), genomic control (GC) (Devlin and Roeder, 1999; Bacanu et al., 2000; 
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Reich and Goldstein, 2001; Cardon and Palmer, 2003; Astle and Balding, 2009), 

structured association (SA) (Pritchard et al., 2000a; Pritchard et al., 2000b; Purcell et 

al., 2007; Alexander et al., 2009), principal component analysis (PCA) and related 

methods (e.g. Menozzi et al., 1978; S. Zhang et al., 2003; Price et al., 2006; Aulchenko 

et al., 2007b; Purcell et al., 2007; Q. Li and Yu, 2008) and robust association-detection 

test for related individuals with population substructure (ROADTRIPS: see Section 

4.1.2 for detail) (Thornton and McPeek, 2010). 

A theoretically attractive class of methods which has become rather successful in 

controlling for population substructure in GWAS is linear mixed modelling (LMM). 

Mixed modelling derived from earlier works in animal breeding (Henderson et al., 

1959; Kennedy et al., 1992; George et al., 2000; Yu et al., 2006; Kang et al., 2008). It 

captures the effect of population stratification and relatedness in a way very specific to 

the data set being analysed by using the kinship matrix to model the random effect part 

of a standard mixed model, while the candidate SNP and any additional covariates are 

modelled as fixed effects (Astle and Balding, 2009; Price et al., 2010; Yang et al., 2014).  

Generally, methods in this class attempt to fit the model: 

𝒀 = 𝑋𝜷 + 𝑄 + 𝜀 

where 𝒀 = (𝑦1, … , 𝑦𝑛)𝑇 is a vector of responses on 𝑛 subjects, 𝑋 = (𝑥𝑖𝑘) is the 𝑛 × 𝐾 

matrix of predictor values for variables to be modelled as fixed effects (including 

covariates and genotypes at any SNPs currently under test), 𝜷 = (𝛽1, … , 𝛽𝐾)𝑇 are 

regression coefficients (to be estimated) representing the linear effect of the predictors 

on the response, 𝑄 are random effects which follow the multivariate normal 

distribution 𝑄~𝑁(0,2𝜎𝑔
2𝜙), 𝜀 are normally distributed random errors, 𝜀~𝑁(0, 𝜎𝑒

2𝐼) 

where 𝜎𝑔
2 and 𝜎𝑒

2 are parameters (to be estimated) representing the genetic and 

environmental components of variance respectively, 𝜙 is the 𝑛 × 𝑛 matrix of pairwise 

kinship coefficients (‘kinship matrix’) and 𝐼 is the 𝑛 × 𝑛 identity matrix. Originally, the 

kinship matrix used was pedigree-based (Astle and Balding, 2009), and would 

therefore only be useful for correcting for the effect of familial relatedness, or, with an 

explicit additional modelling, of population stratification. Recently, genomic-based 

kinship estimates have also been used (Yu et al., 2006). This enables the correction of 

population stratification as well as both familial and cryptic relatedness without explicit 

modelling effort. 

Apart from its ability to account for both types of population substructure without 

requiring prior knowledge, Yang et al. (2014) also noted that it can have higher power 

even in samples without structure due to the implicit inclusion of the effects of weakly 

associated SNPs, which would not otherwise be included, into the model through the 
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polygenic random effect. Its main disadvantage is the slow speed, as it is 

computationally intense (Kang et al., 2010). Nevertheless, several implementations 

that use certain simplifications or approximations to address this issue are now 

available, such as GenABEL’s polygenic/mmscore functions (Aulchenko et al., 

2007b), which implement the FASTA method proposed by Chen and Abecasis (2007), 

GRAMMAR-Gamma (Svishcheva et al., 2012), EMMA (Kang et al., 2008), EMMAX 

(Kang et al., 2010), TASSEL (Z. Zhang et al., 2010), GEMMA (Zhou and Stephens, 

2012), MMM (Pirinen et al., 2013) and FaST-LMM (Lippert et al., 2011; Listgarten et 

al., 2012; Lippert et al., 2013). 

In general, LMM methods tend to perform well when compared with methods from 

other classes (Kang et al., 2010; Price et al., 2010; Liu et al., 2011; Peloso et al., 2011; 

Sawcer et al., 2011). However, it is more difficult to judge which method is better within 

the LMM class, or if there is any difference at all. Direct comparisons that have been 

made among LMM methods are as follows: 

Lippert et al. (2011) used both synthetic data constructed from Genetic Analysis 

Workshop 14 (GAW14) data and real Crohn’s disease data from the WTCCC to compare 

their program, FaST-LMM, and EMMAX and found the results were comparable 

although FaST-LMM required less resource and run time. 

Using real and simulated data from a young isolated Dutch population (Pardo et al., 

2005), Svishcheva et al. (2012) compared their proposed method, GRAMMAR-

Gamma, with EMMAX, FASTA (as implemented in GenABEL’s mmscore function), 

FaST-LMM and FMM (Astle, 2009, cited by Svishcheva et al., 2012); and also 

compared GRAMMAR-Gamma with FASTA using an Arabidopsis thaliana data set. 

They found that results from all methods were comparable, but GRAMMAR-Gamma 

required much less run time. 

Zhou and Stephens (2012) compared their LMM method, GEMMA, to EMMA, 

EMMAX, FaST-LMM and what they called ‘GRAMMAR’ (in reference to the grammar 

function in GenABEL, although it is not entirely clear if this means GRAMMAR-

Gamma or the original GRAMMAR), using mouse high-density lipoprotein-cholesterol 

(HDL-C) level data from the Hybrid Mouse Diversity Panel (HMDP) (Bennett et al., 

2010) and the Crohn’s disease data from the WTCCC. They found that, in the highly 

related HMDP data set containing strongly associated SNPs, the approximation 

methods (EMMAX and ‘GRAMMAR’) showed deflation of test statistics (which was 

particularly remarkable in ‘GRAMMAR’). In the WTCCC Crohn’s data set, GEMMA and 

EMMAX results were comparable, while results from GRAMMAR showed a slight 

deflation. In terms of speed, GEMMA was the fastest among the exact methods, 

whereas ‘GRAMMAR’ was the fastest among the approximation methods. 
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Pirinen et al. (2013) reported high concordance between the heritability and variance 

estimated from their software, MMM, with EMMA using simulated data sets. In terms 

of run time, MMM, using either the exact method or the GLS approximation, was faster 

than EMMA and FMM. 

At least a few observations can be made here. Firstly, different sets of comparisons 

were using different data sets, so comparison across studies is not possible, except for 

Lippert et al. (2011) and Zhou and Stephens (2012) which both use the WTCCC Crohn’s 

data set as part of their analyses; however, since the methods used in Lippert et al. 

(2011) are also used in Zhou and Stephens (2012), no additional information can be 

gained. It would be useful if all methods could be compared based on a single, similar 

data set. 

Secondly, the data sets with any non-trivial degree of (known) relatedness were all 

rather unusual in some ways: the GAW14 synthetic data set created by Lippert et al. 

(2011) consisted of up to a hundredfold copies of the original GAW14 familial data, 

totalling about 120,000 individuals with high degree of redundancy; however, this data 

set was used only for evaluation of computational resources consumption, so the actual 

redundancy is probably not relevant; the mice in the HMDP (Bennett et al., 2010) were 

heavily related and inbred; the isolated Dutch population were descended from a small 

number of founders and had a substantial inbreeding coefficient (Pardo et al., 2005) 

and the simulated kinships in Pirinen et al. (2013) were completely random, and may 

not necessarily be biologically plausible (by way of example, the simulation did not 

require that the relatedness between individuals A and B be biologically consistent  

with that between A and C and between B and C). 

Furthermore, although the comparisons among the LMM methods generally showed 

good correlation among the results, most did not conduct formal assessment of power 

or type I error rates. 

Finally, none of these studies addressed the issue of usability. Apart from accuracy of 

results and resource requirements, the decision to use one method over the others 

could also be influenced by its usability. 

I shall explore these issues in Chapters 3-5 through the use of real and simulated 

extended family data sets from outbred populations. Additionally, the advantage (or 

not) of using empirical relatedness estimation over theoretical estimation in LMM will 

also be explored. 

1.3. Application of IBD sharing estimation in non-parametric linkage analysis 

By analysing the cosegregation pattern between the disease and marker loci within each 

family, linkage analysis has successfully been used to locate the causal loci of many 
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genetic disorders (Nyholt, 2008; Visscher et al., 2012). This type of study is the most 

suitable for studying a rare Mendelian trait in a large family with unambiguous 

relationships, in which sufficient recombinations can occur, and the genetic effect of 

the variant is strong and can be ascertained with high accuracy. When these conditions 

are satisfied, this approach can be very efficient, requiring only a relatively small set of 

markers to cover the whole genome and no prior knowledge of the likely location or 

type of the causal variant or the disease mechanism (Lander and Schork, 1994; Sham, 

1997; Astle and Balding, 2009). Consequently, such studies have been instrumental in 

the identification of the causes of many high-penetrance genetic disorders (Astle and 

Balding, 2009; Visscher et al., 2012). However, when applied to the study of more 

common complex traits caused by multiple genetic and environmental factors, this 

class of methods was less successful because the effect of each individual locus is 

generally too weak to be detected (Risch and Merikangas, 1996; Hirschhorn and Daly, 

2005). 

The relatively low number of recombinations that normally occur in a given meiosis has 

two important implications in linkage analysis. Historically, this means that relatively 

few markers are required to map the locus of interest to a chromosomal region even 

without any prior knowledge. However, it also means that, despite advances in 

technology which have led to the availability of massively increased number of genetic 

markers over the past decade, the potential for improving the resolution of the mapping 

is limited: once every recombination that occurred in the samples has been identified, 

genotyping of additional markers will not improve the mapping resolution any further 

(Risch and Merikangas, 1996; Astle and Balding, 2009; Visscher et al., 2012). 

With these two disadvantages, and with increasing power of GWAS, the popularity of 

linkage analysis as a tool for genetic mapping has declined, and it is currently less 

favoured than GWAS. However, the move to study rare disease-causing variants has 

again revived interest in linkage analysis, as these rare variants would be likely to 

cluster within particular families (Astle and Balding, 2009; Ott et al., 2011), in which 

case linkage analysis is more advantageous. 

Whilst linkage analyses may not benefit from the advances in technology which have 

increased the availability of genetic markers in terms of increasing their resolution, 

they may still benefit from such advances in another way: by increasing the accuracy 

and practicability of identity-by-descent (IBD) sharing estimation. 

Unlike their parametric cousins, the various forms of traditional non-parametric 

linkage analyses generally compare the observed IBD sharing pattern within a pair or 

group of affected relatives at a particular locus with those expected from individuals 

with similar type of relatedness under the null hypothesis of no linkage between that 
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locus and the trait of interest. This approach has the advantage of not requiring the 

mode of inheritance to be specified (Whittemore and Halpern, 1994; Kruglyak et al., 

1996; Kong and Cox, 1997; Elston, 1998; Ott, 1999; Basu et al., 2008; Nyholt, 2008). 

Nevertheless, these methods require accurate specification of IBD sharing to obtain 

valid results (Boehnke and Cox, 1997; Shih and Whittemore, 2001; Albers et al., 2008; 

Day-Williams et al., 2011a). Traditionally, these methods rely on the theoretical IBD 

estimates based on either the pedigree information alone, or pedigree information 

combined with genotypic information at a series of markers. However, in theory, it 

should be possible to either enhance or completely replace the theoretical IBD 

estimates by using genotype data. 

Indeed, since the late 1990’s, various methods based on an earlier work by Elizabeth 

Thompson (1975) have allowed the use of genotype data in conjunction with pedigree 

data to improve the accuracy of IBD estimation for linkage analysis (e.g. Boehnke and 

Cox, 1997; Ehm and Wagner, 1998; Epstein et al., 2000; McPeek and Sun, 2000; Sun 

et al., 2002). More recently, methods that allow estimation of relatedness based solely 

on genotype data have also been developed (see Section 1.1). Being able to do so is 

appealing as it can bypass the computational problem in complex pedigrees. 

A popular class of non-parametric linkage analyses is affected sib pairs (ASP) methods 

(e.g. Cudworth and Woodrow, 1975; Suarez et al., 1978; Risch, 1990), which has the 

benefits of having good power and not being affected by incomplete penetrance, unlike 

earlier methods, at the expense of not being able to use other type of relatives (Ott, 

1999). For methods in this class, theoretical estimates worked well, as the expected IBD 

probabilities were known with certainty (provided that the relationship had been 

correctly ascertained in the first place), and the estimation of the observed IBD sharing 

probabilities was relatively straightforward. 

A natural extension of ASP methods is to use any arbitrary pairs of affected relatives 

(affected relative pair (ARP) methods (e.g. Weeks and Lange, 1988; Risch, 1990; 

Kruglyak et al., 1996; Kong and Cox, 1997; McPeek, 1999; Shih and Whittemore, 

2001)). This is especially useful in linkage studies of complex disease because the lower 

penetrance makes finding affected sib pairs more difficult (Albers et al., 2008). 

However, accurate IBD estimation in this type of study is more difficult as it requires 

complete knowledge of the pedigree structure, and is computationally more complex 

especially in large pedigrees or when some information is missing (Kong and Cox, 1997; 

Albers et al., 2008; Bellenguez et al., 2009; Day-Williams et al., 2011b). 

The problem arises because the Lander-Green algorithm (Lander and Green, 1987) 

used by many programs for exact enumeration of inheritance vector because of its 

ability to handle large amount of markers from dense SNP chips has a limitation on the 
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size of family it can handle (Lander and Green, 1987; Abecasis et al., 2002; Albers et 

al., 2008). For larger pedigrees, approximation methods using Markov chain Monte 

Carlo (MCMC) sampling are normally used (Shih and Whittemore, 2001; Albers et al., 

2008; Day-Williams et al., 2011b). 

Since the problem lies with the difficulty in estimating IBD in presence of complex 

pedigree structures, a method that can estimate the IBD without using pedigree 

structure and use the estimates in linkage analysis can potentially bypass this. In fact, 

in the last few years, two quantitative non-parametric linkage analysis methods that are 

conceptually similar to this (although in a slightly different context) have been 

proposed. Both involve estimating the local IBD sharing probabilities, which are 

specific to a small area of the chromosome and function as the ‘observed’ IBD sharing 

in the traditional sense of linkage analysis, and the global IBD sharing probabilities, 

which are calculated across the whole genome of each pair of individuals and function 

as the ‘expected’ IBD sharing in the traditional linkage analysis. These are then fed into 

a variance component model as random effects to perform quantitative linkage 

analysis. 

The first method (Day-Williams et al., 2011a) implements fast estimators for global and 

local kinship coefficients (as opposed to the full three IBD states) based solely on 

genomic data. The estimated genetic kinship coefficients are then used in a variance 

component model for quantitative trait locus (QTL) mapping. In this method, the 

kinship coefficient Φ between two individuals, 𝑢 and 𝑣, is expressed in terms of the 

expected number of IBS matches between the two individuals, 𝑒𝑢𝑣, over 𝑚 SNPs, given 

the two allele frequencies, 𝑝𝑖 and 𝑞𝑖, at each SNP 𝑖 (Day-Williams et al., 2011a): 

Φ𝑢𝑣 =
𝑒𝑢𝑣 − ∑ (𝑝𝑖

2 + 𝑞𝑖
2)𝑚

𝑖=1

𝑚 − ∑ (𝑝𝑖
2 + 𝑞𝑖

2)𝑚
𝑖=1

 

This requires the knowledge of the expected number of IBS matches, 𝑒𝑢𝑣, which Day-

Williams et al. equated to the observed number of IBS matches over all SNPs. The 

latter is the sum of the observed proportion of IBS matches in each SNP, 𝑖, which, for 

an autosomal SNP, is defined as: 

𝑜𝑢𝑣
𝑖 =

1

4
[1(𝐼𝑖=𝐾𝑖) + 1(𝐼𝑖=𝐿𝑖) + 1(𝐽𝑖=𝐾𝑖) + 1(𝐽𝑖=𝐿𝑖)] 

where the subscripted condition takes the value of 1 if an allele (𝐼𝑖 or 𝐽𝑖) in individual 𝑢 

is similar to an allele (𝐾𝑖 or 𝐿𝑖) in individual 𝑣, and 0 otherwise. An analogous 

relationship for the sex chromosomes was also described. 

Unlike the global kinships, the local kinships in this method are imputed using a 

dynamic programming procedure which produces long stretches of uniform local IBD 
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states (resembling linkage structure within the chromosomes; see Day-Williams et al. 

(2011a) for details) instead of the method of moments estimator analogous to that used 

in global kinships as it was observed that the latter gave very noisy estimates when used 

with small SNP windows. 

Since the primary motivation of this method was to avoid the difficulty in collecting 

pedigree information, a graph-based clustering algorithm is employed to automatically 

group the samples into families without having to rely on pedigree information. Day-

Williams et al. noted that the use of this clustering algorithm is not strictly necessary 

(the analysis becomes population-based if it is not used), but opted to do so for 

computation efficiency. 

These kinship calculation and clustering algorithms were successfully used in a 

variance component model to perform the QTL mapping of vannin 1 (VNN1) 

expression levels in the San Antonio Family Heart Study (SAFHS) data set (Mitchell et 

al., 1996) without using the pedigree information, although they noted some reduction 

in the maximum LOD scores, which they attributed to the loss of information on 

specific relationship between each pair of individuals (Day-Williams et al., 2011a). 

The second method (Nagamine et al., 2012) was actually developed as a way to perform 

association analysis while also incorporating ‘regional’ effects, although the underlying 

model is quite similar to that used in quantitative trait linkage analysis. Similar to the 

previous method, this method estimates the global and local (‘regional’) kinship 

coefficients from the genotype data. Both of these are calculated using a method of 

moments estimator: 

𝑓𝑖𝑗 =
1

𝑛
∑

(𝑔𝑖𝑘 − 𝑝𝑘)(𝑔𝑗𝑘 − 𝑝𝑘)

𝑝𝑘(1 − 𝑝𝑘)
𝑘

 

where 𝑓𝑖𝑗 is the estimated global or local kinship coefficient between individuals 𝑖 and 𝑗, 

calculated from the total of 𝑛 SNPs, which is the number of genome-wide SNPs for 

global kinship calculation, or the number of SNPs within a small, local window (set to 

100 in their article) for local kinship calculation. For a particular 𝑘-th SNP, 𝑔𝑖𝑘 (or 𝑔𝑗𝑘) 

represents the genotype of individual 𝑖 (or 𝑗), and 𝑝𝑘 the major allele frequency at that 

SNP. 

Since this method was conceived as a GWAS method, no attempt was made to group 

the samples into families, making it effectively a population-based linkage analysis. A 

variance component analysis was performed on the global and local kinship coefficients 

from all pairs of individuals by feeding them as random effects into a mixed effect 

model, which included other non-genetic covariates as fixed effects. Nagamine et al. 
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(2012) demonstrated the success of this method in the analyses of both simulated and 

real data sets. 

Whilst these methods are generally suitable for quantitative trait linkage analysis, using 

a single kinship coefficient instead of full IBD states implicitly ignores the dominance 

effect and may not be suitable when dominance may be possible or when analysing 

qualitative data. 

Additionally, the advantage of methods using genetically estimated IBD over those 

using theoretical IBD is potentially even greater in qualitative trait data analysis based 

on affected relative pairs methods than in quantitative trait data analysis, as the former 

involves the estimation of IBD sharing only among the affected individuals, whereas 

the latter requires the estimation of IBD sharing among all individuals. 

In Chapters 6 and 7 of this thesis, I shall investigate the use of empirical IBD estimates 

in affected relative pairs (ARP) analysis based on maximum likelihood framework, 

which should be suitable for qualitative data.  
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Chapter 2. Material and Methods 

This chapter describes the data sets used in this thesis and also the methods common 

among the remaining chapters, in particular, the phenotype simulations. It also gives a 

brief overview of statistical methods being investigated. However, methods specific to a 

particular part of the thesis will be described in detail in the relevant chapter. 

2.1. GAW18 Data Set 

The 18th Genetic Analysis Workshop (GAW18) data set was used in the early phase of 

this project to assess the performance of various GWAS methods in presence of family 

structure. The strength of this data set was due to its true longitudinal nature and 

readily available simulated phenotypes. This was a smaller data set compared to the 

Brazilian visceral leishmaniasis data set (VL; described in section 2.2), and, although it 

resulted in less power, had the advantage of taking less time and computational 

resources to analyse. 

2.1.1. The GAW18 GWAS data set 

The GAW18 data set was originally provided for use in the 18th Genetic Analysis 

Workshop (GAW18) in 2012, and also subsequently used in the 19th Genetic Analysis 

Workshop (GAW19) in 2014 with slight corrections. It was derived from an earlier 

version of a larger set of data collected as part of project 2 of the Type 2 Diabetes 

Genetic Exploration by Next-Generation Sequencing in Ethnic Samples (T2D-GENES) 

Consortium, and has been described in detail in a recent publication (Almasy et al., 

2014). To summarise, the T2D-GENES project 2 aims to study the low-frequency or 

rare susceptibility variants for type 2 diabetes through the application of whole genome 

sequencing (WGS) in 1,043 Mexican American individuals from 20 families from San 

Antonio, Texas. It is a subset of the larger San Antonio Family Studies (SAFS), chosen 

for the number of potential founder alleles, sequencing efficiency and number of 

individuals with type 2 diabetes. Individuals in this project had been genotyped on a 

variety of Illumina Infinium Beadchips platforms including HumanHap550v3 with 

HumanExon510Sv1, Human660W-Quadv1, Human1Mv1 and Human1M-Duov3 

(although not everybody was genotyped on the same platform). Additionally, whole 

genome sequencing was done in about 600 strategically chosen individuals, with the 

sequences in the remaining individuals imputed based on their high-density SNP data. 

After quality control, 959 individuals (464 sequenced, 495 imputed) remained in the 

data set, from which the sequence (8,348,674 locations) and GWAS (472,049 SNPs) 

data on odd-numbered autosomes were extracted and provided for use in GAW18 
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(Almasy et al., 2014). The analyses presented here used only the GWAS data from this 

data set. 

Phenotype data provided in the GAW18 data set included age, gender, blood pressure, 

use of antihypertensive medications, hypertension status and current smoking status. 

Type-2 diabetes phenotype, which was the main phenotype of the T2D-GENES project, 

was not provided in this data set due to the agreement with the data provider. During 

the study period, participants in the SAFS were examined up to four times, resulting in 

up to four longitudinal measurements for each individual. Additionally, the GAW18 

data provider generated 200 replicates of three measurements of simulated blood 

pressure phenotypes based on over 1,000 ‘causal’ variants from more than 200 genes, 

selected based on real SAFS data, along with gender, age and medication status 

(Almasy et al., 2014). Detail of the simulation model was intentionally withheld from 

general users of the data before the workshop, and the analyses presented in this thesis 

were conducted without this knowledge. Only the real and the first replicate of 

simulated phenotypes were used here. 

The supplied data set was converted into PLINK’s transposed file format (Purcell et al., 

2007) by Richard Howey. These were then converted into PLINK’s binary file format 

for further analysis. 

2.1.2. Quality control 

The GAW18 data set was reported to have already undergone extensive quality control 

procedures (Almasy et al., 2014). However, upon closer inspection, a few issues were 

identified in the GAW18 GWAS data, and a decision was made to conduct another full 

quality control procedure on this data set prior to further analyses. 

The procedure used here was quite similar to that described by Anderson et al (2010), 

with an obvious exception that none of the related individuals was excluded. Also, 

because genotyping data on sex chromosomes were not provided, sex verification could 

not be done. The remaining quality control procedures can be divided broadly into two 

steps: per individual and per SNP quality control. 

The per individual quality control steps consist of missingness and heterozygosity 

checks and ethnicity checks. These resulted in exclusion of four individuals due to their 

total lack of genotype data, and a further individual whose ethnicity seemed different 

from the others (more similar to the Hapmap JPT (‘Japanese in Tokyo, Japan’) or CHB 

(‘Han Chinese in Beijing, China’) populations rather than CEU (‘CEPH [Utah residents 

with ancestry from northern and western Europe]’) according to principal component 

analysis which included these and the YRI (‘Yoruba in Ibadan, Nigeria’) reference 

populations). Thus, 954 individuals remained in the final data set. 
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An interesting problem also arose during the missingness check: since the genotyping 

was done on different platforms among the sample, the maximum number of SNPs that 

can be called necessarily varied among them; however, as the information on the 

genotyping platform used for each individual was not provided, the individual ‘call rate’ 

had to be calculated against the number of SNPs across all platforms. This resulted in 

some individuals having apparently low call rates, only because they were genotyped on 

the less dense platforms. They would have been unnecessarily excluded had the 

standard, globally stringent, threshold been used to exclude individuals with apparently 

low call rates. On the other hand, lowering the threshold to accommodate this effect 

carries the risk of retaining too many individuals who had been genotyped on the 

denser platforms but whose genotyping quality would otherwise have been deemed 

unacceptable. 

Of the 959 individuals in the original data set, 40 appeared to have uniformly ‘low’ call 

rate of approximately 0.56. They can be seen clustering into their own group, with the 

remaining ‘high’ call rate individuals also clustered into another group (Figure 2.1). 

 

Figure 2.1 Heterozygosity rate vs call rate for each individual sample in the GAW18 

data set, excluding the four individuals who have no GWAS data. 
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The per SNP missing rates also seem to corroborate this. The missing rates of the SNPs 

in each chromosome fell into two modes: just above 0.00 and slightly below 0.05 

(Figure 2.2), the latter corresponds well with those SNPs being in the higher density 

platforms and therefore not genotyped in 40 ‘low call’ individuals (44/959 = 0.046; this 

calculation included the 4 non-genotyped individuals). 

 

 

Figure 2.2 Violin plot showing the kernel density of missing rates (F_MISS) for SNPs in 

each chromosome (CHR). The width of the plot represents the kernel density at a 

particular missing rate. 

 

Further checking confirmed that a very large proportion of the missing genotypes in 

these high-missing SNPs occurred in the ‘low-call’ individuals, thus confirming that 

these were the results of differences in genotyping platforms rather than a problem 

during the genotyping stage. It was therefore decided that the appropriate thresholds 

for exclusion should be determined separately between the two groups of individuals. 

Eventually, no sample was excluded on the basis of low call rate. 
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The per SNP quality control procedure involved checking for excessive missing data, 

violation of Hardy-Weinberg equilibrium, differential missingness and violation of 

Mendelian inheritance. The difference in genotyping platforms again posed a potential 

problem here due to the apparently high missing rates in certain SNPs in the denser 

platforms. However, it appeared that hardly any SNP had particularly high missing rate 

compared to their group. An overall missingness threshold of 0.10 was therefore 

chosen just to capture the relatively extreme cases, which resulted in exclusion of 109 

SNPs. 

In addition to these, 43,987 SNPs which either are monomorphic among the samples or 

have the minor allele frequency (MAF) of less than 1% were also excluded. These leave 

427,953 SNPs in the final data set. 

2.1.3. SNP reduction 

In addition to the full genome-wide set of SNPs, the analyses performed also required a 

‘pruned’ set of SNPs for IBD estimation. This was a set of 21,151 SNPs with MAF > 0.4, 

missingness <5% and in approximate linkage equilibrium, which was obtained by 

‘pruning’ the full genotype data using the command ‘--indep 50 5 2’ in PLINK 

(Purcell et al., 2007). 

The benefit of doing so, apart from reducing computational time, is that some methods 

for IBD estimation assume absence of linkage disequilibrium between the markers 

(Purcell et al., 2007; Han and Abney, 2011), and would benefit from using SNPs that 

have been pruned so that no SNPs are in linkage disequilibrium.  

2.2. The Brazilian Family Study of Visceral Leishmaniasis Data Set 

The Brazilian Visceral Leishmaniasis (VL) data set was the main data set used in both 

the GWAS and linkage analysis parts of this thesis. It had much larger sample size 

compared to the GAW18 data set, and with larger families, making it ideal for this 

project. 

2.2.1. The data set 

This data set was collected in a family-based study in the cities of Belém and Natal in 

the north east part of Brazil. Access to this data set has been provided by Professor 

Jenefer Blackwell (University of Cambridge and University of Western Australia). 

The sample collection and genotyping process of this data set has been described in 

detail by Fakiola et al (2013). To recap, 348 Brazilian families (65 from sites around 

Belém and 283 from sites around Natal) containing multiple members who had been 

diagnosed with clinical visceral Leishmaniasis were ascertained. The resulting 

pedigrees consist of 3,626 individuals in total; 2,159 of these (from 308 medium to 
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large families, 64 of which were from Belém and 244 from Natal) were genotyped at the 

Wellcome Trust Sanger Institute as part of the Wellcome Trust Case Consortium 2 

(WTCCC2) project, using the Illumina Human660W-Quad chip. Extensive quality 

control procedures were performed on this genotype data to ensure only high quality 

samples were retained, and to exclude individuals whose apparent relatedness—

assessed based on average genome-wide IBD, estimated using 11,177 high-quality 

autosomal SNPs via PLINK’s --z-genome command (Purcell et al., 2007)—was not 

compatible with their known pedigree relationship, and could not be resolved on 

further investigation (Fakiola et al., 2013).  

In the Online Methods section of their article, Fakiola et al. (2013) reported that 189 

genotyped individuals were removed, leaving 1,970 Brazilian individuals for their 

analysis. However, in the demographic description of their samples (Supplementary 

Table 1 of the same article), the total number of samples was given as 1,972. The cause 

of this small discrepancy is not clear: it may be due to the removal of the two 

individuals whose phenotype was missing, or the removal of the two individuals whose 

heterozygosity was unusually low (see also Section 2.2.3 below). Regardless of the 

reason for the discrepancy, the data set being used here is inclusive of these individuals 

and therefore also consists of 1,972 individuals. Of these, 357 were affected, 1,613 

unaffected and 2 were with missing phenotype. 

The data have also undergone marker-wise quality control procedure to select only the 

SNPs that can be expected to be of high quality. In Fakiola et al (2013), SNPs were 

excluded if: their minor allele frequency was <0.01, the Fisher information for the allele 

frequency was <0.98, the call rate was <0.98, or they very clearly deviated from the 

Hardy-Weinberg equilibrium as demonstrated by p-value of <10-20. This resulted in 

553,323 autosomal SNPs being used in that article, out of the original 580,030. 

However, the data I received had undergone a further, slightly more stringent quality 

control by my supervisor, namely, excluding SNPs with call rate of <0.99 or having p-

value of Hardy-Weinberg equilibrium of <10-6. This resulted in my original data set 

containing 545,433 autosomal SNPs. 

A few different subsets of individuals were used in the different analyses described here 

to satisfy the design and computational needs of the various methods. For GWAS or 

alternative methods requiring fully specified pedigree relationship, the entire set of 

3,626 individuals was used, regardless of their genotyping status. For most LMM 

GWAS methods which do not require full pedigree specification, the set of all 1,972 

genotyped individuals who had passed the quality control was used. For power 

comparisons between LMM methods, a subset of 462 ‘founder’ individuals was also 

used, in addition to the previous sets of individuals. These were individuals who were 
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not known to be related and whose estimated kinships were also approximately 

unrelated. For the affected related pair linkage method (i.e. our proposed method RIA, 

described in Section 6.1), a subset of 1,960 genotyped individuals who were from 

families with at least two genotyped individuals who had passed quality control was 

used; for comparison, a subset of 3,370 individuals from those families were used in 

conventional linkage analysis methods. 

2.2.2. Ethics statement 

The local ethics committee at the Instituto Evandro Chagas, Belém, Paras, Brazil, 

granted the original ethical approval for the Belem Family Study. Continued use of 

these samples as well as collection and use of the Natal samples was approved by the 

local Institutional Review Board at the Universidade Federal do Rio Grande do Norte 

(CEP-UFRN 94-2004), and nationally by the Commisão Nacional de Ética em Pesquisa 

(CONEP: 11019). Shipping of samples out of Brazil was approved by the Ministerios 

Cencia e Tecnologia (portaria 617; 28 September 2005). Informed consent for sample 

collection was obtained in writing from adults and from parents of children under 18 

years old (Fakiola et al., 2013).  

2.2.3. Quality control 

As the data have previously passed a very stringent quality control procedure, the 

quality control steps done in this project are primarily to confirm the integrity of the 

data. It was intended that all samples and SNPs would be retained unless a significant 

deviation from any quality control criterion is encountered. 

The procedure again broadly followed that of Anderson et al. (2010). However, sex 

verification was omitted as there was no genotype data on the sex chromosomes. The 

low call rate and outlying heterozygosity check revealed two samples with low 

heterozygosity (Figure 2.3), but this was confirmed to be due to consanguineous family 

history; they were thus retained. 
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Figure 2.3 Heterozygosity rate vs call rate for each individual sample in the VL data set. Note 

the two outlying individuals with low heterozygosity due to consanguinity in their families.  

 

The IBD and relatedness check was performed using 50,129 non-LD SNPs that were 

pruned down from the 100,488 SNPs with minor allele frequency of at least 0.4. This 

revealed that many samples were, as expected, related (Figure 2.4). Of note, five sample 

pairs appeared to be genetically identical. Verification with the pedigree data indicated 

that they were indeed twins, and were thus retained for further analysis. 
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Figure 2.4 Mean and standard error of IBD sharing among the sample pairs in the VL data set. 

 

The samples’ ancestry was checked using 2-dimensional scaling similar to that 

described in the GAW18 data quality control (section 2.1.2 above). As shown in Figure 

2.5, the ethnicity of the samples was between the European (CEU) and African (YRI) 

populations. No outlier was identified. 

The ancestry was also checked using only the founders instead of all samples, as it is 

possible that the samples relatedness could cause problem with the PCA-like methods 

(Patterson et al., 2006; Tian et al., 2008). The results (not shown here) were in fact 

very similar to those in Figure 2.5. 
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For the per-SNP quality control, PLINK was used to identify the founders’ SNPs with 

allele frequency below 0.01, missing rate above 5%, or Hardy-Weinberg equilibrium 

(HWE) p-value below 10-8. None failed the missingness or HWE test, although 172 

SNPs were identified as having minor allele frequency of below 0.01, with the lowest 

being 0.0053. Comparison of the genotype missing rate between the affected and 

unaffected samples revealed one SNP with significantly different missing rates. 

As this is a family-based dataset, a Mendelian error check using PLINK was also 

performed. This identified 79,457 errors which appeared to be inconsistencies caused 

by random genotyping errors averaging 0.1% over 30,928 SNPs, with rs7648971 having 

the highest error rate of 2.6%. 

As all the problems flagged were relatively minor, and probably just reflected the 

slightly different calculations used within an already cleaned dataset, no SNP was 

 

Figure 2.5 Two-dimensional scaling analysis of the VL genotype data with HapMap populations. 

(CEU = Utah residents with northern and western European ancestry, CHB = Han Chinese in 

Beijing, China, JPT = Japanese in Tokyo, Japan, YRI = Yoruba in Ibadan, Nigeria). 
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excluded. A list of the potentially problematic SNPs has been made so that they can be 

scrutinised if they are later found to have significant association. 

2.2.4. SNP reduction 

In addition to the full genome-wide set of SNPs, two reduced sets of SNPs were created 

for use in relatedness estimation. One was the ‘pruned’ set of SNPs, similar to those 

created in Section 2.1.3; the other was a further reduced ‘thinned’ set of SNPs, which 

was intended for investigating the performance of one of the linear mixed-model GWAS 

software packages, FaST-LMM, which has been described as being most efficient when 

the number of SNPs used are less than the number of samples (Lippert et al., 2011). 

The common SNPs (minor allele frequency > 0.4) were pruned using PLINK command 

‘--indep 50 5 2’, so that within each overlapping window of 50 SNPs, recurring at 

every 5 SNP interval, the variance inflation factor never exceeded 2. This reduced the 

number of SNPs down to 50,129. The pruned set of SNPs were then ‘thinned’ down 

using  MapThin (Howey and Cordell, 2011) to create a further subset of 1,900 SNPs—

this number was chosen so that it was less than the total number of samples (1972) and 

would thus allow FaST-LMM to operate at maximum efficiency. The three sets of SNPs 

(full, pruned, and ‘thinned’—i.e. pruned then thinned) were then used for calculation of 

kinship measures in GWAS analyses. 

In the linkage analysis part of this project, the pruned SNP set was also used in our new 

method RIA to estimate of the expected (‘prior’) IBD sharing probabilities among the 

affected individuals, whilst the thinned SNP set was used in standard linkage analyses. 

2.3. The Vesicoureteral Reflux Disease Data Set 

The main difference between the vesicoureteral reflux disease (VUR) data set and the 

other two data sets above was that this was a collection of nuclear families rather than 

extended families. This makes it suitable for use in the early phase of linkage analysis 

method development. 

2.3.1. The data set 

The VUR data set was a combination of data from two projects: the whole genome 

studies of primary, nonsyndromic vesicoureteric reflux in the UK and Slovenia (Cordell 

et al., 2010) and in Dublin, Ireland (Darlow et al., 2014). Both collected DNA samples 

from affected siblings and their parents from families in which at least two siblings had 

been diagnosed and radiologically confirmed with primary, nonsyndromic 

vesicoureteric reflux (Cordell et al., 2010; Darlow et al., 2014). 

The DNA samples from the UK and Slovenia study were genotyped using the 262,264 

SNPs Affymetrix NspI array (Cordell et al., 2010); for the Dublin study, the 834,482 
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SNPs Affymetrix Genome-Wide Human SNP Array 6.0 was used (Darlow et al., 2014). 

The raw fluorescence data from the two studies underwent slightly different genotype 

calling and quality control procedures.  Generally, these involved filtering of call rates 

and heterozygosity rates, and checking for violation of Hardy-Weinberg equilibrium, 

incompatibility between pedigree and genomically-estimated relatedness, outlying 

ethnicity and high Mendelian inheritance error rates (Cordell et al., 2010; Darlow et al., 

2014). The two data sets have since been combined for an aggregate analysis, which 

resulted in a final data set of 2,343 individuals from 555 families (Table 2.1), with 

119,548 high-quality SNPs in common between the two original data sets retained. 

 

Sample set Number of families Affected individuals Total number of 

individuals 

UK 172 303 722 

Slovenia 148 353 614 

Dublin 235 500 1,007 

Total 555 1,156 2,343 

Table 2.1 Number of samples from each subset in the VUR data set. 

 

2.3.2. Ethics statement 

The UK and Slovenia study was approved by the UK Research Ethics Committees and 

the Slovenian National Ethics Committee (Cordell et al., 2010). The Dublin study was 

approved by the ethics committees of two hospitals in Dublin (Our Lady’s Children’s 

Hospital Crumlin and the National Children’s Hospital, Tallaght) where the samples 

were collected (Darlow et al., 2014). Both studies confirmed that informed consent had 

been obtained prior to sample collection (Cordell et al., 2010; Darlow et al., 2014). 

2.3.3. SNP reduction 

Similar to the VL data set, two reduced sets of SNPs were created from this data set. 

The ‘pruned’ SNP set was created from common SNPs (minor allele frequency > 0.4) 

using PLINK command ‘--indep 50 5 2’, reducing the number of SNPs to 13,258. 

This set of SNPs was used for the calculation of the expected (‘global’ or ‘prior’) IBD 

sharing probabilities among individuals for use in RIA and the kinship matrix for use in 

FaST-LMM. 

The ‘thinned’ SNP set was created by my supervisor in a similar manner to the other 

thinned SNP set, that is, it was a thinned down version of an already pruned set of 

SNPs, again using the program MapThin. There were 6,586 independent SNPs in this 

set, which was used for standard linkage analysis in Merlin (Abecasis et al., 2002). 
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2.4. Phenotype Simulations within the VL data set for the purpose of GWAS 

To study the performance of the GWAS programs in identifying true association signals 

under different conditions, several sets of phenotypes were simulated. These include: 

cross-sectional qualitative (binary) traits, cross-sectional quantitative traits and 

longitudinal (repeated-measurement) quantitative traits. The traits were generated for 

the 1,972 individuals from the VL data set who had genotype information, except for 

the longitudinal traits which were generated from 498 individuals further drawn from 

these 1,972 individuals using stratified sampling method (see 2.4.3 below). The 

parameters in each simulation were manually adjusted until clear (but not exceedingly 

strong) association signals could be seen in the LMM software being used for initial 

evaluation of the traits, while still maintaining approximately the same numbers of 

affected and unaffected individuals to the original data set. The software used for this 

initial evaluation was usually FaST-LMM for its shortest computational time under 

optimally parallelised conditions as will be described in section 5.5. Detail of each 

simulation is as follows: 

2.4.1. Cross-sectional qualitative traits  

These are single measurements of qualitative, binary traits, reflecting, for example, the 

disease or non-disease status of an individual. Two different traits—one corresponding 

to a ‘strong’ genetic effect (sim-D1), and the other to a ‘weak’ genetic effect (sim-D2)—

were generated from two similar models, each governed by two SNPs: rs9271252 and 

rs233722, located on chromosomes 6 and 12 respectively. These two SNPs were 

selected from the signal regions previously identified in GWAS studies: rs9271252 from 

this VL data set (Fakiola et al., 2013), and rs233722 from a GWAS study of Tetralogy of 

Fallot in the Europeans (Cordell et al., 2013). 

Furthermore, 22 weaker ‘polygenic’ effects were also modelled based on the genotype of 

the 100th genotyped SNP on each autosome. The selection of these 22 polygenic SNPs 

was mostly arbitrary; the only requirement was that they were sufficiently distant from 

the two main effect SNPs and from one another, so that they were not linked to any 

other SNP within the model. Each SNP in the model contributed multiplicatively to the 

probability of developing disease (‘penetrance’), according to the mathematical model: 

Penetrance = 𝛼 ∏ 𝛽
𝑗

𝑥𝑗

24

𝑗=1

 

where 𝑗 represented each causal SNP, with 𝑗 = 1 corresponding to rs9271252, 𝑗 = 2 

corresponding to rs233722 and 𝑗 = 3, … 24 corresponding to the 100th (‘polygenic’) SNP 

from chromosomes 1 to 22, respectively;  𝑥𝑗 was a variable coded (0, 1, 2) according to 

the number of copies of risk allele presented at the causal SNP 𝑗 (for convenience as 
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well as for biological plausibility, the risk alleles were assumed to be the minor alleles); 

𝛼 was the baseline penetrance and 𝛽𝑗 was the multiplicative effect for each copy of risk 

allele at SNP 𝑗. Penetrances exceeding one were set to one. 

For the ‘strong’ scenario, 𝛼 was set to 0.017, 𝛽1 to 2, 𝛽2 to 1.8 and 𝛽𝑗 (𝑗 = 3, … 24) to 1.1. 

For the ‘weak’ scenario, 𝛼 was set to 0.022, 𝛽1 to 1.6 and 𝛽2 to 1.55, while 𝛽𝑗 (𝑗 =

3, … 24) remained at 1.1. 

Individuals were then assigned ‘disease’ or ‘non-disease’ phenotype through binomial 

sampling with success probabilities (i.e. the ‘disease’ probabilities) set to their 

calculated penetrances. 

2.4.2. Cross-sectional quantitative traits 

The cross-sectional (single measurement) quantitative traits (sim-Q) were based on a 

similar set of SNPs to section 2.4.1 above. Again, rs9271252 and rs233722 were chosen 

as the two strong effect SNPs, with additional polygenic effects from the remaining 22 

SNPs from each chromosome. The traits were generated as a linear combination of the 

effect from each SNP with a normally distributed error component: 

𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ∑ 𝛽𝑗𝑥𝑖𝑗

24

𝑗=3

+ 𝜀𝑖 

where 𝑥𝑖𝑗 was a genotype variable for person 𝑖 at SNP 𝑗, coded as described in section 

2.4.1 above, 𝛼 represents the baseline trait and was set to 100, 𝛽𝑗 was the additive effect 

due to SNP 𝑗, with 𝛽1 set to 3, 𝛽2 to 2 and the remaining polygenic effect 𝛽𝑗(𝑗 = 3, … 24) 

set to 1, 𝜀𝑖 was a randomly generated variable following a normal distribution with 

mean 0 and standard deviation 5. These resulted in a heritability of 0.34. (These values 

were chosen so that the simulated traits resembled adult blood pressure, although this 

is not particularly required in this study.) 

2.4.3. Longitudinal quantitative traits 

To make the analyses feasible while still maintaining the overall degree of relatedness, a 

longitudinal data set was constructed based on a smaller subset of individuals drawn 

using stratified sampling from the 1,972 genotyped VL individuals used in the above 

phenotype simulations. From each extended family, a number of individuals were 

randomly chosen approximately proportional to the family size.  This process yielded a 

data set of 498 individuals whose phenotypes were then generated 20 times to create 

the longitudinal phenotypes. In addition, the genotype data for these individuals were 

repeated 20 times to create a set of 9,960 ‘individual’ genotypes as required by most 
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software. This, in effect, means that the software will treat the observations from each 

individual as having come from 20 monozygotic twins (or ‘vigintuplets’). 

The generation of longitudinal phenotype did not incorporate systematic change over 

time: the traits were assumed to be randomly distributed over each individual’s mean, 

and the models used for their generation were quite similar to the model used in the 

cross-sectional quantitative traits, with the addition of another error term 𝛿𝑖 to account 

for individuals’ non-genetic variation. 

Two longitudinal quantitative traits were generated (the reason for this will become 

apparent in section 5.4). The first (sim-L20) used a model with similar set of SNPs to 

the cross-sectional model: 

𝑦𝑖𝑘
= 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ∑ 𝛽𝑗𝑥𝑖𝑗

24

𝑗=3

+ 𝛿𝑖 + 𝜀𝑖𝑘
 

where  𝑘 = 1, … 20 denotes each measurement in individual 𝑖, the baseline trait 𝛼 

remained 100, 𝛽1 was set to 5, 𝛽2 to 4 and 𝛽𝑗(𝑗 = 3, … 24) set to 1.5, 𝛿𝑖 was a random 

variable following a normal distribution with mean 0 and standard deviation 4, 

generated once for each individual. The residual error term 𝜀𝑖𝑘
 was a randomly 

generated variable following a normal distribution with mean 0 and standard deviation 

2. 

The second trait (sim-P20) was purely polygenic and was contributed to equally by 402 

small effect SNPs 𝑗 = 3, … 404 (400 randomly chosen, and the two former strong 

effects, rs9271252 and rs233722, which no longer had strong effects in this simulation). 

In other words, using the above model, 𝛽1 and 𝛽2 did not exist, and the term ∑ 𝛽𝑗𝑥𝑖𝑗
24
𝑗=3  

was replaced with ∑ 𝛽𝑗𝑥𝑖𝑗
404
𝑗=3  where all polygenic effects 𝛽𝑗(𝑗 = 3, … 404) were set to 

0.75. The background risk 𝛼 was set to 20, 𝛿𝑖 followed a normal distribution with mean 

0 and standard deviation 16 and 𝜀𝑖𝑘
 followed a normal distribution with mean 0 and 

standard deviation 1. 

2.4.4. Replication of Simulated Phenotypes 

For power, type I error and concordance analysis, 1,000 replicates of each of the cross-

sectional phenotypes were generated. Technically, for each trait, 1,972,000 phenotypic 

values were generated from a single random number stream before being split into 

1,000 replicates with 1,972 individuals each. Since the random number seeds similar to 

the original simulations were used for the replication, the first replicate was always 

exactly the same as the original. 
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2.5. Phenotype Simulations within the VL data set for Linkage Analysis 

To study the performance of the proposed linkage analysis method in comparison with 

other linkage and/or association software in identifying true linkage signals, two sets of 

phenotypes were simulated for the 1,960 individuals from the VL data set who had 

genotype information and in whose families there were at least two genotyped 

individuals. The phenotypes for the remaining 1,410 non-genotyped individuals from 

these families were set to missing for use in the conventional linkage analysis 

programs. 

2.5.1. SNP-based qualitative trait simulation  

This was a simple simulation based on the association between one SNP, in this case 

rs9271252 on chromosome 6, and a binary phenotype. This association would also give 

rise to a linkage signal, although this could potentially be weak as similar alleles in a 

single SNP are not necessarily IBD. It was used here as a relatively quick initial step to 

evaluate the proposed method before a more complicated (and time-consuming) 

simulation was implemented. 

Initially, the simulated ‘strong’ qualitative trait from section 2.4.1 was used. However, 

this did not give a satisfactory result when used in linkage analysis, especially for 

linkage methods in which only the affected individuals are informative such as those 

using affected relative pairs, due to the low number of affected individuals. 

In attempt to improve the power for the linkage methods, a multiplicative model 

analogous to the cross-sectional qualitative GWAS simulation (2.4.1 above), but with 

only one strong effect SNP was then tried, namely: 

Penetrance = 𝛼𝛽𝑥 

where 𝑥 represented the number of disease alleles presented in rs9271252, and 𝛽 its 

multiplicative effect. The disease allele was again set to be the minor allele which, 

rather than being merely a matter of convenience (and to a certain extent, biological 

plausibility) as in the previous simulations, was rather a requirement here in order to 

lessen the problem with disease alleles being IBS but not IBD, which could attenuate 

the linkage signal. 

However, this model did not perform well either. Further analysis showed that this was 

because of the conflicting requirements on the value of 𝛽, which can never be fully 

satisfied. For the linkage methods to achieve adequate power from this data set, a 

substantial number of individuals carrying disease allele(s) are required to be affected 

while few, if any, of the individuals not carrying disease allele should be so. This implies 

a low 𝛼 and a relatively high 𝛽. As the disease allele was set to be the minor allele, very 

few individuals in the data set would carry two disease alleles, and most individuals 
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who carried the disease allele would carry just one. To achieve adequate power, it was 

therefore necessary that the penetrance in the heterozygous individuals, 𝛼𝛽, was 

relatively high (in the region of 0.7 to 0.8). On the other hand, the penetrance in the 

homozygous disease individual, 𝛼𝛽2, should preferably be slightly lower than 1 to create 

a realistic complex disease trait. These two requirements are contradictory in presence 

of a low 𝛼. (To satisfy both conditions, 𝛽 needs to be < 1.43 while 𝛼 > 0.49, which 

makes the disease far too common in normal population and thus also results in loss of 

power.) 

To satisfy all the requirements above, a slightly different model was used. This was 

based on a logistic relationship, expressed in exponential form: 

Penetrance

1 − Penetrance
=  𝛼𝛽𝑥 

where 𝛼 then became the background odds, and was set to 0.02; 𝛽 was the marginal 

odds contributed by each disease allele, set to 117. This resulted in the following 

genotype-specific penetrance: 

 

Number of alleles (𝑥) Model odds Calculated odds Penetrance 
0 𝛼 0.02 0.020 
1 𝛼𝛽 2.34 0.701 
2 𝛼𝛽2 273.78 0.996 

Table 2.2 Genotype-specific penetrance for qualitative trait simulation. 

 

After the penetrance was calculated, the phenotypes were then obtained through 

binomial sampling, similar to the GWAS quantitative traits simulation (section 2.4.1). 

2.5.2. Haplotype-based qualitative trait simulation  

To simulate the situation where there is a strong linkage signal, but weak or no 

association signal, a haplotype-based simulation was used. 

Firstly, the haplotypes within a 10 cM range on chromosome 6 (from 47 cM to 57 cM) 

were estimated using the command ‘--rsq 0.1 --cfreq’ in Merlin (Abecasis et al., 

2002). This clustered SNPs within that range such that the pairwise correlation 

between SNPs in each cluster was above 0.1, and then estimated the haplotype 

frequencies of these SNP clusters. A specific cluster containing the SNP rs9271252 was 

chosen to be the cluster carrying the true causal SNP. The estimated haplotype 

frequencies in this cluster are as shown in Table 2.3: 

 



34 
 

Haplotype ID Frequency Haplotype 

1 0.0007 GAGAAACGGGCACdAAACAA 

2 0.2700 GAGAAACGGGCACdAAACAA 

3 0.0745 GAGAAACGGACACdAAACAA 

4 0.0028 GAGAAACGGACACdAAACAA 

5 0.0090 GAGAAAAGGGAGAdAAGCAA 

6 0.0007 GAGAAAAGGGAGAdAGGAGG 

7 0.1414 GAGAAGCGGGAGAdAGGAGA 

8 0.0291 GAGAAGCGGACACdAAACAA 

9 0.0193 GAGAAGCAGACACdAAACAA 

10 0.1906 GAGAAGCAAGAGAdAAGCAA 

11 0.0007 GAGAAGCAAGAGAdAAGCAG 

12 0.0007 GAGAAGCAAGAGAdAGGCAA 

13 0.0009 GAGAAGCAAAAGAdAAGCAA 

14 0.0602 GAGACAAGGGAGAdAGGAGA 

15 0.0007 GAAGAACGGACACdAAACAA 

16 0.0007 CAGAAGCAAGAGAdCAGCAA 

17 0.0007 CGGAAACGGGCACdCAACAA 

18 0.0007 CGGAAAAGGGAGAdAAGAGG 

19 0.0771 CGGAAAAGGGAGAdAGGAGG 

20 0.0097 CGAAAACGGACACdAAACAA 

21 0.0185 CGAAAACAAGAGAdAAGCAA 

22 0.0808 CGAGAACGGACACdAAACAA 

23 0.0007 CGAGAAAGGAAGCdAGGAGG 

Table 2.3 Estimated haplotypes containing rs9271252 and their frequencies. 

SNPs in this cluster were: rs9271252, rs9271255, rs9271256, rs9271366, 

rs34846487, rs9271522, rs17533090, rs3129763, rs3135003, rs9271640, 

rs9271842, rs9271858, rs9271891, rs9272070, rs35242582, rs9272130, 

rs17211510, rs28407322 and rs28693734. The bold letter ‘d’ marks the location 

where the disease locus was simulated. 

 

Some of the rare haplotypes (frequency = 0.0007) from this haplotype cluster table 

were assigned to be the disease haplotype (depending on the simulation set). This was 

done through the modification of the haplotype cluster table by creating a dummy SNP, 

positioned at 32,599,771 BP (52.39 cM) on chromosome 6, between the SNPs 

rs9272070 and rs35242582. The allele on this SNP was set to A if it was on the disease 

haplotype, and to C if it was not. The genotype in this 10cM region was then replaced 

with the genotype simulated using Merlin’s ‘--simulate’ and ‘--cluster’ command, 

which performed gene dropping simulation within the families using the haplotypes 

and haplotype frequencies from the new haplotype cluster table. 

To ensure that the resulting genotypes can be used for linkage analyses, an iterative 

procedure was used to ensure that there were at least two individuals who carry at least 

one disease allele in each family, as the probability of having at least two affected 
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individuals within that family would be very low otherwise. For each family in the data 

set, the genotypes at the disease locus of each individual were assessed after the Merlin 

gene dropping simulation was completed; if there were less than two individuals 

carrying at least one disease allele, the replicate would be discarded and the simulation 

repeated with a different random number seed until this requirement was satisfied, in 

which case the resulting genotypes would be incorporated into the final genotype data 

set for that simulation, which would then be passed on to the phenotype simulation 

phase. 

The phenotype simulation also ensured that there were at least two affected individuals 

in each family. So in a family with only two genotyped individuals, who would also 

carry at least one disease allele because of the way the genotype simulation was done, 

both would need to be assigned affected status. For families with more than two 

genotyped individuals, exactly the same model as in the SNP-based simulation (2.5.1 

above) was used. This was done iteratively until there were at least two affected 

individuals in each family, in a similar manner to the genotype simulation. 

The combined effects of this genotype and phenotype simulation is conceptually quite 

similar to the real-life process of recruiting appropriate families for linkage analysis 

from the population, although the family structure in this case came from a more 

restricted set of samples. 

2.6. Statistical Methods/Software 

2.6.1. Methods for association analysis 

There are two groups of methods used in the association analyses performed in this 

thesis: linear mixed-model (LMM) methods and ‘alternative’ (i.e. non-LMM) methods 

which were designed to handle family data. Table 2.4 below summarises the association 

analysis methods used—some of these analyses, mainly the alternative methods, were 

performed by my supervisor (HJC). The methods will be described in detail in Chapter 

4. 
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Package/method and 
version 

Approach Kinship estimation 
method 

Reference(s) 

EMMAX 
emmax-intel-binary-

20120210.tar.gz 

LMM 
(approximate) 

Estimated internally using 
user-supplied set of SNPs, 
or set to 
theoretical/estimated 
values calculated 
externally 

(Kang et al., 2010) 

FaST-LMM 
v2.04 

LMM 
(approximate or 

exact) 

Estimated internally using 
user-supplied set of SNPs, 
using SNPs selected 
through FaST-LMM-
Select procedure, or set to 
theoretical/estimated 
values calculated 
externally 

(Lippert et al., 2011; 
Listgarten et al., 
2012; Lippert et al., 
2013) 

GEMMA 
v0.91 

LMM 
(exact) 

Estimated internally using 
user-supplied set of SNPs, 
or set to 
theoretical/estimated 
values calculated 
externally 

(Zhou and Stephens, 
2012) 

GenABEL 
v1.7-6 

(FASTA) 

LMM 
(approximate) 

Estimated internally using 
user-supplied set of SNPs, 
or set to 
theoretical/estimated 
values calculated 
externally 

(Aulchenko et al., 
2007b; Chen and 
Abecasis, 2007) 

GenABEL 
v1.7-6 

(GRAMMAR-Gamma) 

LMM 
(approximate) 

Estimated internally using 
user-supplied set of SNPs, 
or set to 
theoretical/estimated 
values calculated 
externally 

(Aulchenko et al., 
2007b; Svishcheva et 
al., 2012) 

GTAM* 
(implemented in 
MASTOR v0.3) 

LMM 
(approximate) 

Calculated externally 
(assumed to reflect 
‘known’ (theoretical) 
pedigree relationship) 

(Abney et al., 2002) 

Mendel* 
v13.2 

LMM 
(approximate or 

exact) 

Estimated internally using 
theoretical pedigree 
relationships, or 
estimated using all SNPs, 
either within estimated 
pedigree clusters or fully 
estimated 

(K. Lange et al., 
2013) 

MMM 
v1.01 

LMM 
(approximate or 

exact) 

Estimated internally using 
user-supplied set of SNPs, 
or set to 
theoretical/estimated 
values calculated 
externally 

(Pirinen et al., 2013) 

FBAT* 
v2.0.4 

Transmission of 
alleles within 

pedigrees 

Method by definition uses 
‘known’ (theoretical) 
pedigree relationships 

(Laird et al., 2000; 
Horvath et al., 2001) 
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Package/method and 
version 

Approach Kinship estimation 
method 

Reference(s) 

MASTOR* 
v0.3 

Retrospective 
quantitative 

trait version of 
MQLS 

Calculated externally 
(assumed to reflect 
‘known’ (theoretical) 
pedigree relationship) 

(Jakobsdottir and 
McPeek, 2013) 

MQLS* 
v1.5 

Adjusted 
version of 

retrospective 
case/control test 

Calculated externally 
(assumed to reflect 
‘known’ (theoretical) 
pedigree relationship) 

(Thornton and 
McPeek, 2007) 

ROADTRIPS* 
v1.2 

(RM test) 

Adjusted 
version of 

retrospective 
case/control test 

Calculated externally 
(assumed to reflect 
‘known’ (theoretical) 
pedigree relationship). 
Further correction based 
on genome-wide set of 
SNPs applied internally 

(Thornton and 
McPeek, 2010) 

Table 2.4 Summary of methods/software packages used in the chapters on association analysis. 

* indicates that the analysis was performed by my supervisor (HJC). 

 

2.6.2. Methods for linkage analysis 

Three linkage analysis methods were used in this thesis as summarised in Table 2.5 

below. Again, a detailed description of these methods will be provided in the relevant 

chapter (Chapter 6). 

 

Package/method and 
version 

Approach Expected IBD sharing 
estimation method 

Reference(s) 

Merlin 
v1.1.2 

(option --exp) 
 

Kong and Cox 
multipoint 
exponential 

likelihood model 

Calculated internally 
using ‘known’ 
(theoretical) pedigree 
relationship 

(Abecasis et al., 
2002; Abecasis and 
Wigginton, 2005) 

MORGAN 
v3.2 

(lm_ibdtests program, 
using the Spairs 
statistics under 

normality assumption) 

MCMC 
estimation of 
Spairs statistics 

Calculated internally 
using ‘known’ 
(theoretical) pedigree 
relationship 

(Basu et al., 2008) 

RIA 
(using PLINK v1.07 
with --Z-genome 

option or KING v1.4 
with --homo option 
for IBD estimation, 

and modified version 
of onelocarp for MLS 

calculation) 

MLS-like 
statistics 

Estimated externally (Cordell et al., 2000; 
Purcell et al., 2007; 
Manichaikul et al., 
2010) RIA itself has 
not yet been 
published.  

Table 2.5 Summary of methods/software packages used in the chapters on linkage analysis. 
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2.7. Computing Facilities 

The data manipulation and computation was done on either stand-alone linux servers 

or one of the high-performance computing (HPC) clusters. 

The stand-alone linux servers each consists of between 8-12 2.59 GHz CPU cores and 

has about 32-64 GB of memory. These were used mainly for data manipulation and 

some simpler calculations. The more complex calculations were done on one of the two 

HPC clusters. 

Most of the GWAS analyses and all formal runtime measurements were done on the 

older HPC cluster, which consists of 20 worknodes, each has 8 2.67 GHz CPU cores. 

Sixteen of the worknodes were older, each with 47 GB of memory; the remaining four 

were the newer ‘high-memory’ worknodes, each of which has 95 GB of memory. 

Most of the linkage analyses were done on the newer HPC cluster, which consists of 20 

worknodes, each has 20 2.8 GHz CPU cores. Two of these are ‘high-memory’ and have 

504 GB of memory each, while the remaining 18 have 126 GB of memory each. 

2.8. Measurement of Computational Time 

Formal computational time was measured for certain analyses (cross-sectional GWAS 

and linkage analyses). These were done by requesting an exclusive execution of a 

dedicated timing script on a whole worknode of the older HPC cluster to prevent 

interference from other tasks. Under the timing condition, tasks were not parallelised 

unless they were natively multi-threaded, in which case they would be allowed to run 

using the maximum available cores (i.e. 8). Run time measurements made by my 

supervisor (alternative GWAS methods) also used a similar method. 

Approximate run times are sometimes given. These are based on normal running 

conditions without exclusive use of the worknode (unless so required due to the 

program’s resource demands), and with parallelisation as appropriate. If parallelisation 

was used, the total run time would be calculated from the sum of the (possibly 

approximate) run time of each task.
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Chapter 3. Analysis of GAW18 Data 

In the last few years, a bewildering number of different methods/software packages 

implementing linear mixed model approaches to account for population structure and 

relatedness among samples in genome-wide association studies has been proposed, but 

no detailed comparison between them has previously been made. Indeed, when a new 

method/package is developed, it is often quite unclear whether or how it differs 

substantially from the methods/software implementations that are already available.  

This and the next two chapters will attempt to address this question by exploring the 

performance of various implementations of such methods in familial and/or 

longitudinal data sets. 

The analysis of GAW18 data in this chapter was done at about the same time as the 

early analyses of the VL data (Chapter 4). It therefore benefited from some of the 

findings from the early analyses of the VL data (e.g. the optimal set of SNPs to use for 

relatedness calculation). On the other hand, because of the smaller size and the innately 

longitudinal nature of the GAW18 data set, the longitudinal analysis in this chapter also 

functioned as a pilot for the more advanced analyses of the VL data set involving 

longitudinal data. 

The GAW18 data set and quality control process has been described in detail in Chapter 

2 (Section 2.1). This chapter will comment on the statistical methods used and the 

results. Although the results presented here are slightly different from those in the 

published article describing this part of the thesis (Eu-ahsunthornwattana et al., 2014a) 

due to an initial data processing error that was later corrected, the main conclusions 

regarding the performance of each LMM method remain the same. 

3.1. Statistical Methods 

A two-step procedure was used to adjust for the effect of the covariates and for familial 

and intra-individual correlations. For each of the two sets of GAW18 phenotypes used 

in this project (the real phenotypes and the first replicate of the simulated phenotypes), 

linear regression of systolic blood pressure (sBP) and diastolic blood pressure (dBP) at 

each time point on age, medication and smoking status was conducted, except for the 

real dBP—which seemed to have a nonlinear relationship with age, as could be 

physiologically expected—for which a quadratic regression including age and age 

squared as predictors was used. The phenotype data from all individuals were used for 

these regressions regardless of their genotyping status. Residuals from these 

regressions in subjects who also have genotype data were then used in the next step. 
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The second step was genome-wide association analysis. To account for the longitudinal 

nature of the data, two approaches were used in this step. 

The first approach (which will be referred to as ‘longitudinal’) was to model the residual 

from each individual observation without regard to its true longitudinal nature in the 

genome-wide association analysis, treating the multiple observations from the same 

individual as if they came from separate individuals. In this approach, genomic data 

was used to adjust for familial as well as intra-individual correlation through the use of 

an estimated kinship matrix, effectively treating the multiple observations from the 

same individual as having been collected from identical twins (or triplets or 

quadruplets). 

The other approach (‘mean’) was to calculate the mean of the residuals for each subject 

and then use each individual as a single observation. The genomically estimated 

kinship matrix in this case adjusts for familial relatedness only. 

This analysis itself was performed using a variety of linear mixed model approaches. 

The approaches vary with respect to precise details of the calculation of kinship or 

‘relatedness’, and with respect to whether an exact method or a fast approximation is 

used. In each case, the 21,151 pruned SNPs (see Section 2.1.3) were used for the 

relatedness calculations. The pruned set of SNPs was chosen based on prior work in the 

VL data set, which showed little difference between results when using such a pruned 

set of SNPs for calculating relatedness compared to using the full set of SNPs (see 

Section 4.2.2 for more detail). 

The methods considered were: 

1. EMMAX (Kang et al., 2010), which implements two methods for relatedness 

calculations: one based on IBS sharing, and one based on the ‘Balding-Nichols’ 

model (Balding and Nichols, 1995; Rakovski and Stram, 2009). 

2. FaST-LMM (Listgarten et al., 2012), which also implements two methods to 

adjust for relatedness: one using a standard covariance matrix, and one using 

the realised relationship matrix (RRM). The GWAS stage of FaST-LMM was 

conducted using the ‘approximate’ calculation (‘-simLearnType Once’, see 

Section 4.1.1 for further detail). 

3. the polygenic/mmscore functions in GenABEL (Aulchenko et al., 2007b), which 

implement the FASTA method (Chen and Abecasis, 2007). 

4. the polygenic/grammar functions in GenABEL, which implement the 

GRAMMAR-Gamma approximation (Svishcheva et al., 2012). 

5. GEMMA (Zhou and Stephens, 2012), which uses an efficient exact method (see 

also Section 4.1). 
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Additionally, simple linear regression without any relatedness adjustment was also 

performed in FaST-LMM. All analyses were performed using both the longitudinal and 

the mean approaches. 

For each analysis, genomic inflation factors (λ) were calculated as proposed by Devlin 

and Roeder (1999). Since this factor was originally based on 𝜒2 values, the equivalent 1 

degree of freedom 𝜒2 values derived from the p-values were used for programs that 

gave only p-values (and not 𝜒2 values). 

3.2. Results 

All LMM methods performed reasonably well in both mean and longitudinal 

approaches (Figure 3.1), controlling the λ to 1.01-1.07 (mean) and 0.98-1.07 

(longitudinal). These values were much less inflated compared with the λ values of 

1.39-1.87 (mean) and 2.27-3.81 (longitudinal) seen in the unadjusted analyses (not 

shown in the plot). In general, the longitudinal analysis tends to be slightly more 

inflated compared with the mean analysis of the same phenotype using the same 

method, with the exception of EMMAX (IBS) in which this trend is reversed. However, 

this reversal seems to be due to the deflation in the longitudinal analyses using 

EMMAX (IBS) rather than the inflation in the mean analyses, as the λ values in the 

latter are quite comparable to those in the other methods (particularly EMMAX (BN)). 
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Figure 3.1 Q-Q plots of χ
2
 statistics and genomic inflation factors (λ) for different LMM methods. 

These were calculated for each phenotype (real diastolic blood pressure [dBP], real systolic blood 

pressure [sBP], simulated dBP and simulated sBP), using either longitudinal (‘long’) or average 

(‘mean’) residuals. EM_BN = EMMAX using Balding-Nichols matrix, EM_IBS = EMMAX using IBS 

matrix, FLM_C = FaST-LMM using standard covariance matrix, FLM_R = FaST-LMM using realised 

relationship matrix, GA_FA = GenABEL/FASTA, GA_GRG = GenABEL/GRAMMAR-Gamma, GMA_C = 

GEMMA using centralised covariance matrix, GMA_S = GEMMA using standardised covariance 

matrix. The black, straight line represents the identity line in each panel. The missing of one and 

two top SNP(s) in both GEMMA methods (in longitudinal and mean analysis of real dBP 

phenotype, respectively) was because the genotype missing rates for these SNPs (one from 

chromosome 5, the other from chromosome 13) reached GEMMA’s default missingness threshold 

for exclusion from its analysis (5%). 

 

Comparisons of individual –log10 p-values (Figure 3.2) also showed highly concordant 

results among the methods, particularly between EMMAX (BN) and GEMMA, while 

the two GenABEL methods were also quite similar to these but not to the same degree.  

In general, the analyses using the mean values were more concordant than those using 
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longitudinal values, and variants of the same methods tended to give more concordant 

results. 

 

 

Figure 3.2 Comparison of –log10 p-values calculated using different methods, based on mean (upper 

triangles) or longitudinal values (lower triangles). EM_BN = EMMAX using Balding-Nichols matrix, 

EM_IBS = EMMAX using IBS matrix, FLM_C = FaST-LMM using standard covariance matrix, FLM_R = 

FaST-LMM using realised relationship matrix, GA_FA = GenABEL/FASTA, GA_GRG = 

GenABEL/GRAMMAR-Gamma, GMA_C = GEMMA using centralised covariance matrix, GMA_S = 

GEMMA using standardised covariance matrix. 

 

The Manhattan plots from all methods were quite similar for each phenotype, although 

the longitudinal data tended to show stronger signals (a selection of these plots is 

shown in Figure 3.3). All methods detected a clear, strong signal at the SNP rs11711953 

in the MAP4 gene in chromosome 3 in the analyses of both simulated phenotypes. This 
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was indeed the SNP used to simulate the strongest effect in both phenotypes in this 

data set. 

 

 

Figure 3.3 A selection of Manhattan plots showing p-values calculated using various methods. 

EM_BN = EMMAX using Balding-Nichols matrix, FLM_R = FaST-LMM using realised relationship 

matrix, GA_FA = GenABEL/FASTA, GA_GRG = GenABEL/GRAMMAR-Gamma, GMA_C = GEMMA 

using centralised covariance matrix, GMA_S = GEMMA using standardised covariance matrix. 

 

Although the results from all packages considered here were similar, and all packages 

completed the analysis in reasonable time (less than one day) on our system, the 

differences in speed were substantial. Precise timings will depend on the computer 

resources and architecture available, but as a rule of thumb, FaST-LMM and 

GRAMMAR-Gamma were found to be the fastest (taking just a few hours), followed by 

EMMAX and GEMMA which took around 12-16 hours and GenABEL/FASTA which 

took around 18-20 hours (see also Section 5.5 for more formal comparison using the VL 

data set, as well as discussion about the various factors affecting speed). 

3.3. Discussion 

It is well known that population substructure and relatedness will cause an inflated 

distribution of genome-wide association test statistics (λ > 1.00) if not appropriately 

modelled (Yu et al., 2006).  All methods performed well in this regard, being able to 

control the genomic inflation to an acceptable level under most circumstances. 
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The higher inflation in longitudinal analyses, even when adjusting for relatedness, 

could be expected from the fact that additional (non-genetic) within-subject correlation 

was not allowed for in these analyses. This was because all methods considered 

attempted to fit a mixed-model with only one individual-specific source of variance, 

that is, the genetically-determined random effect component. This effectively 

disregards the fact that different observations from the same individual also share the 

same individual-specific environmental contribution. Although some of the variance 

from the individual’s environmental component is absorbed in to the genetic 

component, there would still be some correlation left in the residuals, therefore some 

degree of inflation can be expected, albeit much lower than the unadjusted analysis in 

which neither the individuals’ genetic relatedness nor the environmental contribution 

was accounted for. In fact, one may argue that GRAMMAR-Gamma may actually have 

shown the ‘most correct’ statistical behaviour (although this may not necessarily be 

desirable), in that it resulted in the highest inflation (note, however, that the mean 

analyses in GRAMMAR-Gamma were also quite inflated compared with other 

methods). Interestingly, EMMAX using the IBS matrix seemed to have the opposite 

behaviour—that is, deflation rather than inflation was observed in all longitudinal 

analyses using this method, resulting in consistently lower genomic inflation compared 

to the mean analyses. The reason for this is not currently known (but see also the 

results and discussion in Chapter 5). 

That no clearly significant SNP was found in any analysis of the real phenotypes was 

not surprising, given the relatively small size of the GAW18 data set which would be 

under-powered for detecting, at genome-wide levels of significance, anything other 

than strong genetic effects. When the effect was strong enough, as was the case in the 

simulated phenotypes, all methods were equally successful in identifying the true 

signal. The high concordance in significance levels at any given SNP achieved by the 

different software packages (Figure 3.2) indicates that no package is substantially more 

powerful than another, as expected from the fact that all packages implement slightly 

different versions of essentially the same statistical model. Nevertheless, the differences 

in how the methods implement the model would explain the observed increase in 

discrepancies of longitudinal analysis results compared to mean analyses, as specific 

implementation could affect how the environmental variance is absorbed into the 

genetic component and residuals. A more detailed exploration of these differences 

would be an interesting topic for further investigation, although it is beyond the scope 

of this thesis. 

Since all methods performed well and results were similar, particularly at the most 

significant SNPs, it makes little difference to the results—at least for non-longitudinal 
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traits—which method/software package is used. The user can make the choice of 

package on the basis of personal taste, speed or computational convenience.  
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Chapter 4. Application of Genomic IBD Estimates to Account for 

Relatedness in Genome-Wide Association Analyses of the 

Brazilian Visceral Leishmaniasis Data 

Continuing the theme of comparison of LMM GWAS methods introduced in Chapter 3, 

various specific issues pertinent to LMM GWAS analysis will be explored in this chapter 

using the real phenotypes from the Brazilian visceral leishmaniasis (VL) data set. These 

include the differences in the IBD estimates and the resulting test statistics when 

different methods or SNP sets are used for IBD estimation, the effect of using externally 

estimated (and not necessarily correct) IBD probabilities in LMM programs and the 

performances of various LMM and alternative methods in analysing the real phenotype 

data. 

These analysis methods utilise the IBD estimates as summarised into a single ‘kinship 

measure’ for each pair of individuals—which, depending on the method, could be either 

the kinship coefficient or the proportion of alleles shared (which is equivalent to the 

coefficient of relationship and is twice the kinship coefficient)—to model the 

relatedness between individuals. The discussion of IBD in this chapter will therefore be 

in terms of these ‘kinship measures’. 

As the VL data set and quality control process has been described in detail in Chapter 2 

(Section 2.2), this chapter will comment only on the statistical methods used and the 

results. 

4.1. Description of Software/Methods Being Compared 

4.1.1. LMM-based methods 

As previously mentioned, the LMM methods considered here attempt to fit the mixed 

effect model: 

𝒀 = 𝑋𝜷 + 𝑄 + 𝜀 

(see Section 1.2 for description of the variables). In theory, this can be done using a 

variety of generic LMM programs that were not specifically written for genome-wide 

data analysis, such as the nlme (Pinheiro et al., 2013) or lme4 (Bates et al., 2014) 

packages in R. In practice, however, several issues arise when these are used for 

genome-wide LMM analysis incorporating genetically estimated kinships. 

Firstly, unlike linear models, LMMs do not have closed form solutions and therefore 

have to be solved numerically. This is computationally demanding, especially when 
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analysing a data set with a large number of individuals, as the required run time is a 

cubic function of the number of individuals (Kang et al., 2010; Lippert et al., 2011). 

Furthermore, this computationally expensive procedure needs to be repeated for each 

SNP under investigation, because full fitting of a mixed model requires complete re-

estimation of the model parameters (Chen and Abecasis, 2007; Svishcheva et al., 2012). 

In context of modern GWAS, where data on a very large number of SNPs need to be 

analysed, this could result in a prohibitively long run time, and is the main motivation 

for the development of the various LMM approximation/simplification methods 

described here. 

Secondly, generic LMM programs may not allow the use of externally constructed 

variance-covariance matrices. Both nlme and lme4 internally construct their variance-

covariance matrices following a set of pre-defined forms and do not provide a means to 

incorporate an externally constructed matrix. Interestingly, another ‘generic’ program, 

lmekin (from R package coxme (Therneau, 2012)), allows the use of an externally 

constructed, fully specified variance-covariance matrix; however, this was in fact 

because it was written primarily for genetic data analysis, although it is generic enough 

to be used in other situations as well. 

Even for programs that permit the use of an external variance-covariance matrix, the 

externally constructed kinship matrices can still pose a problem. This is because 

standard LMM requires the variance-covariance matrix to be positive semidefinite, 

which may not necessarily be satisfied with standard genetic-based kinship estimation 

methods (Kang et al., 2008; Astle and Balding, 2009). This tends to trigger a fatal error 

in most generic LMM programs, which is appropriate as the results in this case will be 

ill-defined. 

Specialised programs for LMM GWAS analysis employ various techniques to 

circumvent these limitations. For example, most use (or permit) two stage 

approximation whereby the more time-consuming estimation of certain model 

parameters is done only once, before using them in subsequent simplified SNP-wise 

analyses. Some software packages (FaST-LMM (Lippert et al., 2011), GEMMA (Zhou 

and Stephens, 2012) and MMM (Pirinen et al., 2013)) also implement a speed up of the 

exact calculation through spectral decomposition. Furthermore, most programs 

considered here provide ways to make kinship estimation quicker (or even bypass it 

altogether such as in FaST-LMM), some of these also result in a kinship matrix that is 

always positive semidefinite (Kang et al., 2008; Kang et al., 2010). Programs that do 

not guarantee their estimated kinship matrices to be positive semidefinite seem to be 

implemented in such a way that this is handled without causing a fatal error. For 
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example, FaST-LMM sets any negative eigenvalue to zero, which is equivalent to 

forcing the kinship matrix to be positive semidefinite, thus eliminating the problem. 

The description of each LMM software package considered in this thesis and its 

method(s) for kinship estimation is provided below: 

GenABEL (FASTA) 

The mmscore and polygenic functions of the GenABEL package (Aulchenko et al., 

2007b) together allow implementation of the FAmily based Score Test Approximation 

(FASTA) method proposed by Chen and Abecasis (2007). Although the FASTA method 

is also implemented in the --fast-Assoc option of the MERLIN package (Abecasis et 

al., 2002), MERLIN’s kinship matrix is calculated internally on the basis of known 

(theoretical) kinships constructed from known pedigree relationships rather than 

allowing the pairwise kinship coefficients to be estimated using genome-wide SNP 

genotype data (Amin et al., 2007) as is the case in GenABEL’s kinship calculation. 

GenABEL was therefore the preferred software for the FASTA method in this thesis. 

Rather than fitting the full linear mixed model 𝒚 = 𝑋𝛽 + 𝑄 + 𝜀 and estimating 𝛽, 𝜎𝑔
2 and 

𝜎𝑒
2 by maximum likelihood for each SNP across the genome, FASTA implements an 

‘approximate’ two-stage approach. At the first stage a reduced model is fitted, where 

the regression coefficient 𝛽1 (corresponding to the effect at the SNP currently under 

test) is assumed to equal 0, but all other covariates (if desired) are included. At the 

second stage, a score statistic for testing the null hypothesis that 𝛽1 does indeed equal 0 

is constructed as: 

𝑇FA =
([𝒙1 − 𝐸(𝒙1)]𝑇Ω−1[𝒚 − 𝐸(𝒚)])2

[𝒙1 − 𝐸(𝒙1)]𝑇Ω−1[𝒙1 − 𝐸(𝒙1)]
 

where 𝐸(𝒚) refers to an 𝑛-dimensional vector of fitted values of the response from the 

reduced model, 𝐸(𝒙1) refers to an 𝑛-dimensional vector of unconditional expectations 

of genotype scores at the test SNP (each element of which equals twice the allele 

frequency of the particular allele being counted, as it is the expected allele count in a 

pair of individuals under the assumption of Hardy-Weinberg equilibrium), and Ω refers 

to the estimated variance/covariance matrix Ω = 2Φ𝜎𝑔
2 + 𝜎𝑒

2𝐼, with 𝜎𝑔 and 𝜎𝑒 taking 

their maximum likelihood estimates as calculated under the reduced model. The score 

statistic is calculated repeatedly using the appropriate 𝑛-dimensional vector 𝒙1 for each 

test SNP (typically between 500,000 and several million SNPs) across the genome, but 

the time-consuming maximum likelihood step for estimating 𝜎𝑔
2, 𝜎𝑒

2 and (𝛽2, … , 𝛽𝑗) 

need only be performed once, at the start. 



50 
 

GenABEL’s polygenic function, which performs the first stage of FASTA analysis, can 

read in any user-specified kinship matrix as long as the matrix is conformed to its input 

format. In practice, the ibs function in GenABEL package can readily be used to 

calculate a kinship matrix based on average pairwise IBS for use with the polygenic 

function. This can be done with or without allele frequency weighting. The method used 

in this thesis, which is also the default method in GenABEL, is to estimate the pairwise 

IBS with allele frequency weighting: 

𝑓𝑖,𝑗 =
1

𝑁
∑

(𝑥𝑖,𝑘 − 𝑝𝑘)(𝑥𝑗,𝑘 − 𝑝𝑘)

𝑝𝑘(1 − 𝑝𝑘)

𝑁

𝑘=1

 

where 𝑓𝑖,𝑗 is the average pairwise IBS (and therefore the estimated kinship coefficient) 

between individuals 𝑖 and 𝑗; 𝑁 is the number of SNPs used in the estimation; 𝑥𝑖,𝑘 is the 

genotype of the 𝑖-th individual at the 𝑘-th SNP, coded as 0, 0.5 and 1; and 𝑝𝑘 is the 

frequency of the allele being assessed. This is equivalent to excess allele-sharing 

estimator of kinship coefficient, which is more precise and is closer to true IBD sharing 

than the unweighted estimator (Astle and Balding, 2009). 

Recently, Fabregat-Traver et al. (2014) proposed OmicABEL, an improvement to 

GenABEL which allows efficient LMM analysis of multiple phenotypes. However, the 

use of OmicABEL is beyond the scope of this thesis. 

GenABEL (GRAMMAR-Gamma) 

The grammar function of the GenABEL package (Aulchenko et al., 2007b) implements 

the GRAMMAR-Gamma method proposed by Svishcheva et al. (2012), which can be 

considered as an extension of the original GRAMMAR method (Amin et al., 2007; 

Aulchenko et al., 2007a) to produce a test that is essentially a fast approximation to 

FASTA. 

Similar to FASTA, the first step of GRAMMAR is to fit a reduced version of the full 

linear mixed model in which 𝛽1 is set to 0. Phenotype residuals  𝒚̃ = (𝑦̃1, 𝑦̃2, … , 𝑦̃𝑛)𝑇 may 

be constructed as   𝑦̃𝑖 = 𝑦𝑖 − 𝐸(𝑦𝑖) where 𝐸(𝑦𝑖) refers to the fitted value of the response 

for individual 𝑖 from the reduced model. These residuals are then used as the 

independent trait in a simple linear regression model: 

𝑦̃𝑖 = 𝜇 + 𝛽̃1𝑥𝑖1 + 𝑒𝑖 

where the error term 𝑒𝑖 is assumed to be independently normally distributed. 

Estimation of 𝛽̃1 and testing of the null hypothesis that 𝛽̃1 = 0 can be accomplished 

through maximum likelihood or least squares approaches. Alternatively, a rapid test of 
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𝛽̃1 = 0 can be achieved (Amin et al., 2007; Svishcheva et al., 2012) through 

construction of a score statistic: 

𝑇GR =
𝑛([𝒙1 − 𝐸(𝒙1)]𝑇[𝒚̃∗])2

[𝒙1 − 𝐸(𝒙1)]𝑇[𝒙1 − 𝐸(𝒙1)][𝒚̃∗]𝑇[𝒚̃∗]
 

where 𝒚̃∗ = (𝑦̃1
∗, 𝑦̃2

∗, … , 𝑦̃𝑛
∗) are transformed version of the residuals 𝒚̃∗ = 𝜎𝑒

2Ω−1 𝒚̃ . Again, 

the time-consuming maximum likelihood step for estimating 𝜎𝑔
2, 𝜎𝑒

2 and (𝛽2, … , 𝛽𝑗) 

need only be performed once. 

In the original GRAMMAR publication (Aulchenko et al., 2007a), the assumption was 

that pedigree relationships between individuals would be known and so Φ would be 

constructed on the basis of theoretical kinship coefficients. Subsequently it was 

suggested that the use of estimated kinship coefficients (estimated on the basis of 

genome-wide SNP data) could perform as well or better (Amin et al., 2007). Regardless 

of which kinship coefficients are used, GRAMMAR was found to be conservative and to 

result in biased regression coefficients representing the SNP effects of interest (Amin et 

al., 2007). It was therefore suggested that the final 𝜒2 test statistics should be ‘re-

inflated’ by multiplying by an appropriate estimated correction factor (in a procedure 

analogous to the ‘deflation’ of 𝜒2 test statistics via genomic control (Devlin and Roeder, 

1999)) to result in a final test statistic with the appropriate null distribution. This 

‘genomic control corrected’ version of GRAMMAR was denoted GRAMMAR-GC (Amin 

et al., 2007). 

The GRAMMAR-Gamma method (Svishcheva et al., 2012) improves on the original 

GRAMMAR so that it produces unbiased SNP effect estimates and test statistics that do 

not require any deflation. This is achieved through rewriting the FASTA score test 

statistic as: 

𝑇FA =
([𝒙1 − 𝐸(𝒙1)]𝑇Ω−1[𝒚 − 𝐸(𝒚)])2

[𝒙1 − 𝐸(𝒙1)]𝑇[𝒙1 − 𝐸(𝒙1)]

[𝒙1 − 𝐸(𝒙1)]𝑇Ω−1[𝒙1 − 𝐸(𝒙1)]

[𝒙1 − 𝐸(𝒙1)]𝑇[𝒙1 − 𝐸(𝒙1)]
⁄  

The numerator then becomes a new statistic, which is similar to the GRAMMAR 

statistic: 

𝑇NEW =
([𝒙1 − 𝐸(𝒙1)]𝑇Ω−1[𝒚 − 𝐸(𝒚)])2

[𝒙1 − 𝐸(𝒙1)]𝑇[𝒙1 − 𝐸(𝒙1)]
 

This can be calculated from a standard linear regression analysis of  Ω−1[𝒚 − 𝐸(𝒚)] on 

[𝒙1 − 𝐸(𝒙1)]. 
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The denominator is effectively the ratio between the new score test and the FASTA 

score test, which, when averaged across all markers, becomes a constant known as the 

GRAMMAR-Gamma factor, 𝛾, and can be simplified to: 

𝛾 =
1

𝑛 − 1
∑ 𝜔𝑖𝑗

−1𝑟𝑖𝑗

𝑛

𝑖,𝑗=1

 

where 𝑖 and 𝑗 refer to a relative pair, 𝜔−1 is an element of  Ω−1 and 𝑟𝑖𝑗 refers to the 

genomic kinship between the pair. This needs to be calculated only once at the 

beginning, and is used to adjust subsequent 𝑇NEW statistic for each marker to obtain the 

GRAMMAR-Gamma score statistic: 

𝑇GRG =
𝑇NEW

𝛾
 

which is approximately equivalent to the FASTA statistic 𝑇FA (Svishcheva et al., 2012). 

Svishcheva et al. (2012) argue that their GRAMMAR-Gamma method has similar 

computational complexity to alternative methods such as FASTA, EMMAX and FaST-

LMM at stage 1, while achieving computational savings over these methods at stage 2 

(achieving a stage 2 computational complexity of 𝑂(𝑠𝑛) where 𝑛 is the sample size and 𝑠 

the number of SNPs to be tested). 

Similar to GenABEL’s FASTA implementation, GenABEL’s GRAMMAR-Gamma 

implementation also requires the use of the polygenic function, and therefore shares 

the same kinship calculation step through the ibs function with GenABEL FASTA. 

EMMAX 

Kang et al. (2010) proposed a method that appears to be essentially equivalent to the 

FASTA method proposed by Chen and Abecasis (2007), except for the following 

caveats: 

1. In the approach of Kang et al. (2010), there is no expectation that the 

individuals will be closely related. Indeed, the method is motivated as an 

alternative to principal component based approaches when adjusting for 

population substructure in genome-wide association studies of unrelated 

individuals. Thus, the kinship coefficients used to construct Φ are not based on 

any ‘known’ pedigree relationships but are estimated based on genome-wide 

SNP data (using either a simple estimated based on the proportion of alleles 

idenical-by-state (IBS) measure, or else an estimated that Kang et al. (2010) 

describe as a Balding-Nichols (BN) estimate, which, in practice, is equivalent to 
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FaST-LMM’s covariance matrix (Rakovski and Stram, 2009)), resulting in a 

procedure essentially identical to that proposed by Amin et al. (2007). 

2. In the approach of Kang et al. (2010), rather than applying the method solely to 

quantitative traits as had been done previously (Amin et al., 2007; Aulchenko et 

al., 2007a; Chen and Abecasis, 2007), the method is also proposed to apply to 

case/control data (with the response coded as 0 or 1, but analysed as if it were, 

in fact, a quantitative trait, i.e. assuming a normally distributed random 

environmental/error term 𝜀). Kang et al. argue that this is computationally 

more convenient than the usual way to analyse binary response data by fitting a 

generalised linear mixed model with a logit or probit link function, and should 

not result in increased type 1 error for testing the null hypothesis. 

3. Although not entirely clear from the description in Kang et al. (2010), it appears 

that, at the second stage, in contrast to Chen and Abecasis (2007), any 

covariates other than the SNP currently under test are re-estimated i.e. the 

entire vector of fixed effect predictors 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑗) is estimated, rather 

than fixing (𝛽2, … , 𝛽𝑗) at their estimated values from the first stage. 

The method of Kang et al. (2010) has been implemented in the software package 

EMMAX. As pointed out by Lippert et al. (2011), over and above the computational 

efficiency achieved by simply estimating parameters 𝜎𝑔
2 and 𝜎𝑒

2 only once, EMMAX, 

along with its predecessor EMMA (Kang et al., 2008), achieves additional 

computational efficiency by reparameterising the likelihood in terms of a parameter 

𝛿 = 𝜎𝑒
2/𝜎𝑔

2, which is estimated only once, and by making clever use of spectral 

decompositions. This results in a computational complexity of 𝑂(𝑛3 + 𝑟𝑛) at stage 1 

(where r is the number of iterations i.e. the number of evaluations of the likelihood 

required) together with a computational complexity of 𝑂(𝑠𝑛2) at stage 2, resulting in a 

total computational complexity of 𝑂(𝑛3 + 𝑠𝑛2 + 𝑟𝑛). 

A similar approach to EMMAX and FASTA was proposed by Z. Zhang et al. (2010) and 

implemented in a software package TASSEL. The main focus of the paper by Z. Zhang 

et al. (2010) was to describe a clustering algorithm that results in an approximation to 

the kinship matrix with lower effective dimensionality, which can be used in place of 

the full known or estimated kinship matrix. Similarly to EMMAX, in TASSEL the values 

of 𝜎𝑔
2 and 𝜎𝑒

2 (as well as a cluster membership variable 𝐶) are estimated under the null 

hypothesis that 𝛽1 = 0 at stage 1 and are then held fixed while estimating 𝛽 =

(𝛽1, 𝛽2, … , 𝛽𝑗) at stage 2. The motivation for the clustering approximation is to reduce 

computation time. However, existing software packages (e.g. EMMAX and the 

mmscore and polygenic function in GenABEL) that address the problem without 

making such an approximation are not computationally prohibitively time consuming; 
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therefore, the practical advantage of this approximation is not clear. Given the extreme 

similarity between the methods implemented in EMMAX and TASSEL when no 

clustering is performed, comparison with TASSEL is not included in this thesis. 

FaST-LMM 

Lippert et al. (2011) developed FaST-LMM, a fast ‘exact’ LMM implementation which 

utilises factorisation and spectral decomposition (thus the ‘Fa’ and ‘ST’ in its name) to 

reduce the calculation complexity. In common with EMMAX, FaST-LMM 

reparameterises the likelihood in terms of a parameter 𝛿 = 𝜎𝑒
2/𝜎𝑔

2, which, due to the 

factorisation of the likelihood calculation, is the only parameter that need to be 

optimised. It requires only a single spectral decomposition at the first stage of the 

algorithm (rather than for each tested SNP as in EMMA, and without the need to 

assume that the variance parameters are constant as in EMMAX), resulting in a total 

time complexity of 𝑂(𝑛3 + 𝑠𝑛2 + 𝑟𝑠𝑛). This exact method is the default in the current 

versions of FaST-LMM (from at least version 2.04). 

FaST-LMM also provides an ‘approximate’ method through the –simLearnType 

Once option, in which 𝛿 is fixed to its value from fitting a null model containing no 

fixed SNP effects, as is done in EMMAX, TASSEL and FASTA, which further reduces 

the complexity to 𝑂(𝑛3 + 𝑠𝑛2 + 𝑟𝑛). This used to be the default method in the earlier 

versions of FaST-LMM. 

FaST-LMM can base its calculation of maximum likelihood (ML) or restricted 

maximum likelihood (REML). The default option used to be the former (ML) in earlier 

versions, but has since been replaced with REML. After some experimentation, the ML 

option seemed to be more reliable than REML in the presence of strong genetic effects. 

All results presented in this thesis are therefore based on ML estimation. 

Two types of kinship estimation are implemented in FaST-LMM: realised relationship 

matrix (RRM) (Goddard et al., 2009; Hayes et al., 2009) and EIGENSTRAT 

‘covariance’ matrix (Price et al., 2006). The difference between these is that the latter 

uses the mean-centred and standardised genotype data for calculation, and should be 

quite similar to GenABEL’s weighted IBS calculation. 

An interesting feature of these kinship matrices is that they were chosen because they 

are constructed as a product of a genotype-based matrix, which also means that the 

kinship matrices can always be factorised to the form 𝐾 = 𝑊𝑊𝑇 .  Because of this, the 

spectral decomposition products of a kinship matrix 𝐾 can be obtained directly from 

singular value decomposition (SVD) of the genotype-based matrix 𝑊 without the need 

to calculate the kinship matrix first (Lippert et al., 2011). Since FaST-LMM uses these 

spectral decomposition products rather than the actual kinship matrix in its GWAS 
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calculation, it can bypass the calculation of the kinship matrix altogether if this will be 

more efficient—a unique feature among the LMM packages considered here. As the 

time required for kinship matrix calculation is 𝑂(𝑠𝑛2), and for spectral decomposition 

of the matrix is generally 𝑂(𝑛3), whereas the time required for SVD of the genotype 

matrix is 𝑂(𝑠2𝑛), FaST-LMM will bypass the computation of kinship matrix whenever 

the number of SNPs 𝑠 is less than the number of samples 𝑛 (Lippert et al., 2011). 

Because of FaST-LMM’s computational advantage when 𝑠 ≪ 𝑛, it is quite natural to 

attempt to use the smallest set of SNPs that could still yield accurate results. In their 

original article, Lippert et al. (2011) used just 200 SNPs, selected based on their 

association with the phenotype, to successfully control the analysis of Wellcome Trust 

Case Control Consortium (WTCCC) data for Crohn’s disease. This idea seems to have 

developed further in subsequent versions of FaST-LMM (version 2.00 and later), in 

which a class of methods (“FaST-LMM-Select”) is implemented for selection of a small 

number of SNPs for kinship calculation. The actual implementation of these seems to 

differ among different versions of FaST-LMM. In an earlier version (2.00), SNPs were 

first ordered according to their linear regression p-values, after which kinship matrices 

were constructed iteratively with an increasing number of the top-ranking SNPs for use 

in LMM analysis, until the first minimum genomic control factor λ is obtained 

(Listgarten et al., 2012). In a later version (2.05), a fully automated but slightly 

different procedure was implemented. This involves 𝑘-fold cross validation (Lippert et 

al., 2013), with the ordering of SNPs and calculation of genomic control factors as 

varying numbers of SNPs are included in the kinship calculation carried out within the 

training data (and then used to predict the test data) within each cross-validation fold. 

The final number of SNPs to be used in the kinship calculation for the entire data set is 

that which minimises the mean-squared error summed over all folds. Both of these 

procedures were investigated in this thesis. 

Another unique feature of FaST-LMM is that it is implemented as a multithreaded 

program. This allows parallelisation without needing explicit intervention from the 

user, thus gaining further advantage when used on a multi-core system. 

GEMMA 

Zhou and Stephens (2012) implemented an exact approach extremely similar to that of 

FaST-LMM in their package GEMMA. Indeed, they point out that GEMMA should give 

essentially identical inference to FaST-LMM in the same time complexity 𝑂(𝑛3 + 𝑠𝑛2 +

𝑟𝑠𝑛), but note that the number of iterations 𝑟 required to reach convergence in 

GEMMA is expected to be slightly smaller than in FaST-LMM, owing to the use of a 

more efficient optimisation method. GEMMA also has an attractive practical advantage 
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of allowing the input of imputed (Marchini et al., 2007) genotype data, rather than real 

measured genotype data, if desired. 

GEMMA provides two methods for relatedness matrix calculation: that based on 

centred genotype, and that based on (centred and) standardised genotypes. The latter is 

mathematically similar to GenABEL’s weighted IBS, EMMAX’s Balding-Nichols and 

FaST-LMM’s covariance matrices. 

Mendel 

An approximate (score test) LMM implementation, suitable for analysis of GWAS data, 

has also been implemented in the software package Mendel (K. Lange et al., 2013) 

(versions 13.0 and higher). A slower (exact) LMM implementation is also available, but 

only the approximate test is considered here. The resulting tests should be conceptually 

extremely similar to the LMM tests implemented in other software packages such as 

EMMAX and FaST-LMM. 

For kinship estimation, Mendel can: 

 calculate kinship coefficients on the basis of known pedigree relationships 

 use the full set of genome-wide SNP data to cluster people into apparent 

pedigrees and then estimate kinship coefficients within those pedigree clusters; 

or 

 use kinship coefficients estimated for all pairs of genotyped individuals on the 

basis of their full set of genome-wide SNPs. 

The results presented in this thesis are based on the last option (kinship estimated from 

all genotyped individuals using full set of SNPs), and the analysis was performed by my 

supervisor. Results based on the other options are not presented here, but are available 

in our published article (Eu-ahsunthornwattana et al., 2014b). 

MMM 

Pirinen et al. (2013) have implemented approximate and exact approaches similar to 

the approximate and exact approaches of FaST-LMM (and the exact approach of 

GEMMA) in their package MMM. An advantage of MMM in comparison to the other 

packages is that it allows the output of regression coefficients and standard errors for 

the SNP effects on the (log) odds ratio scale, making it convenient to compare or 

combine the results with results from traditional case/control studies analysed via 

logistic regression. In addition, MMM allows the input of imputed genotype data rather 

than real measured genotype data, if desired. MMM was used in the original analysis of 

the Brazilian VL family data described in Fakiola et al. (2013). For more details on the 

methodology implemented in MMM, see Pirinen et al. (2013). 
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MMM can read any positive semi-definite kinship matrix or its spectral decomposed 

products (likely to be from the previous run) for its calculation. Within the MMM 

package, the program ‘generateR’ provided can be used to calculate such matrix based 

on standardised genotype data in a similar manner to EMMAX’s Balding-Nichols 

matrix. 

4.1.2. Alternative methods 

The results from the above LMM analyses were compared with those from the non-

LMM methods that are designed specifically for analysis of family-based data or to 

allow for relatedness described below. (Analyses in this section were conducted by my 

supervisor.) 

FBAT 

Traditional approaches for family-based association analysis focus on the transmission 

of high-risk alleles through pedigrees, in an approach that is closely related to 

traditional linkage analysis. Indeed, the well-known transmission disequilibrium test 

(TDT) (Spielman et al., 1993), which tests whether a particular allele is transmitted 

preferentially from heterozygous parents to affected offspring, was originally developed 

as a test of linkage in the presence of association, rather than as a test of association per 

se. In this context, ‘linkage’ means the transmission from parent to offspring of alleles 

in coupling at a test (marker) locus and an unobserved causal locus, i.e. the 

phenomenon whereby alleles that are in coupling (on the same haplotype) in the parent 

tend to be transmitted together to the offspring, whereas ‘association’ means 

population-level correlation between alleles at the two loci (usually referred to as 

linkage disequilibrium (LD)), i.e. the tendency for alleles at the two loci to occur in 

coupling in the founders of a pedigree. 

The TDT was originally designed for the analysis of case/parent trios (i.e. units 

consisting of an affected child together with their parents) but has been extended to 

allow analysis of nuclear families and larger pedigrees (Laird et al., 2000; Martin et al., 

2000; Rabinowitz and Laird, 2000; Horvath et al., 2001; C. Lange et al., 2004; 

Dudbridge, 2008; Dudbridge et al., 2011). The focus here is on the family-based 

association test (FBAT) (Laird et al., 2000; Horvath et al., 2001), as implemented in 

the FBAT software package. FBAT can be thought of as a general class of test statistics 

of the form: 

𝑆 − 𝐸(𝑆)

√Var(𝑆)
 

where 𝑆 = ∑ 𝑇𝑖𝑗𝑋𝑖𝑗𝑖𝑗  and 𝑋𝑖𝑗 is some genotype variable and 𝑇𝑖𝑗 some trait variable for 

offspring 𝑖 in nuclear family 𝑗. The exact form of FBAT thus depends on the genotype 
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and trait coding used. Genotype is generally coded in allelic fashion with a variable 

coded (0, 1, 2) according to the number of copies of the high-risk allele possessed. The 

trait variable is constructed as 𝑇𝑖𝑗 = 𝑌𝑖𝑗 − 𝜇𝑖𝑗  where 𝑌𝑖𝑗 is coded 0/1 (for binary traits 

such as disease status) and 𝜇𝑖𝑗 is an offset that can be chosen to consider transmissions 

to affected offspring only (the default), or else to contrast transmissions to affected 

offspring with transmissions to unaffected offspring, either weighted equally (𝜇𝑖𝑗 = 0.5) 

or with 𝜇𝑖𝑗 chosen to minimise the variance of test statistic. For quantitative traits, 𝑌𝑖𝑗 

would generally correspond to the measured trait for offspring 𝑖 in nuclear family 𝑗, 

with 𝜇𝑖𝑗 set to equal the mean trait value or else chosen to minimise the variance of test 

statistic. 

Although, for binary traits, contrasting transmissions to affecteds with transmissions to 

unaffecteds seems an attractive idea, in practice this results in comparing the 

probability of transmission of high-risk alleles to affected individuals (which is 

expected, under the alternative hypothesis, to exceed 0.5) with an estimate of the 

probability of transmission of high-risk alleles to unaffected individuals (which is 

expected, under both null and alternative hypotheses, to approximately equal 0.5, 

unless the effect of the risk allele is large), rather than  comparing the transmission 

probability to affecteds with  an assumed fixed value of 0.5. For complex diseases, 

where the effects of risk alleles are likely to be modest (allelic odds ratios in the order of 

1.2-1.5), this means that greater power would be expected from the default offset that 

considers transmissions to affected offspring only, without paying a penalty for 

(imperfect) estimation of the expected 0.5 transmission probability (along with a 

measure of uncertainty in the estimate) from the data at hand. 

By default, FBAT divides larger pedigrees into nuclear families and constructs a test 

that corresponds to testing ‘linkage in the presence of association’ (Horvath et al., 

2001). The ‘-e’ option in FBAT allows the alternative construction of a test for 

‘association in the presence of linkage’ (Lake et al., 2000) through the use of an 

empirical variance/covariance estimator that adjusts for the correlation among sibling 

genotypes and for different nuclear families within a single pedigree. Use of the ‘-e’ 

option is expected to give smaller test statistics (larger p-values) than the default 

analysis, since it accounts for the fact that the effective sample size is smaller when 

considering FBAT as a test of association than as a test of linkage. Since, for complex 

diseases, one is more interested in maximising the power for detection of an effect, 

rather than in ensuring that the detection is genuinely driven by association (rather 

than linkage) between alleles at the test locus and the underlying unobserved causal 

locus, the default option was used in all analyses presented here. From a practical point 

of view, this means that any signal detected may in fact be marking a true effect that 
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lies some distance away, rather than necessarily being located in the immediate vicinity 

of the detected signal. 

ROADTRIPS and MQLS 

Thornton and McPeek (2010) implemented a ‘RObust Association-Detection Test for 

Related Individuals with Population Substructure’ in a package called ROADTRIPS. 

ROADTRIPS can be thought of as an extension of their previously-proposed Maximum 

Quasi-Likelihood Statistic (MQLS) (Thornton and McPeek, 2007). Both MQLS and 

ROADTRIPS construct adjusted versions of standard case/control 𝜒2 (or Armitage 

Trend) tests, adjusting for the known relatedness between individuals (that would 

ordinarily cause an inflation in standard case/control tests) through a kinship matrix 

that models the known pedigree relationships. ROADTRIPS (but not MQLS) 

additionally makes use of a covariance matrix based on estimated kinships (as 

estimated from genome-wide SNP data) to further correct for additional unknown 

relatedness and population stratification. 

The ROADTRIPS test statistic takes the form: 

(𝑽𝑇𝒀)2

𝜎̂2𝑽𝑇Ψ̂𝑽
~𝜒1

2 

Thornton and McPeek note that many commonly-used case/control statistics can be 

coerced into this form. Here 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑛)𝑇 is genotype vector at a test SNP for 𝑛 

individuals (coded using an allelic coding), 𝑽 is a vector of length 𝑛 coding for 

phenotype information (disease status) and known (or externally estimated) 

relationships (see Thornton and McPeek (2010) for details of its construction), 𝜎̂2Ψ̂ is 

an estimate of the null variance/covariance matrix of 𝒀 (so that 𝜎̂2𝑽𝑇Ψ̂𝑽 is an estimate 

of null variance/covariance of (𝑽𝑇𝒀)2), 𝜎̂2 is an estimate of Var(𝒀) in an outbred 

population and Ψ̂ is an internally estimated matrix used to simultaneously adjust for 

unknown relatedness/pedigree relationship errors and population stratification. 

MASTOR and GTAM 

Jakobsdottir and McPeek (2013) proposed a retrospective approach (MASTOR) for 

analysis of quantitative traits that can be considered essentially as a quantitative trait 

version of MQLS. Jakobsdottir and McPeek compared MASTOR to a previously-

proposed LMM method, GTAM (Abney et al., 2002), and found MASTOR to have some 

advantages. The main advantage of MASTOR over GTAM (and many other approaches) 

is that, in common with MQLS and ROADTRIPS, MASTOR allows information to be 

gained from individuals who are phenotyped but not genotyped. Both MASTOR and 

GTAM are implemented within the MASTOR software package. Although designed for 

analysis of quantitative (rather than binary) traits, given that the spirit of recent LMM 
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approaches has been to apply approaches originally designed for quantitative traits to 

binary traits (coded as 0 and 1), the performance of MASTOR and GTAM when applied 

to both binary and quantitative traits was investigated here. 

In common with MQLS, kinships used in the MASTOR package are assumed to be 

estimated on the basis of known pedigree relationships. Although in principle kinships 

estimated from genome-wide SNP data could be read in instead, the results presented 

in this thesis were analysed using pedigree relationships. 

4.1.3. Methods used only for kinship calculation 

Unlike the native methods for kinship calculation used in the above LMM packages, 

which attempt to estimate a kinship measure (which would also reflect the extent of 

IBD sharing among the individuals) from genotype data for the purpose of subsequent 

LMM analysis, methods presented in this section explicitly attempt to infer the IBD 

sharing among individuals based on genomic data. This was intended for use, for 

example, in GWAS quality control (Purcell et al., 2007), or to infer pedigree 

relationships (Manichaikul et al., 2010), but can also be used to calculate the kinship 

matrix for use in LMM analysis. 

The kinships thus estimated were fed into an LMM software package (FaST-LMM) to 

investigate the effect of different types of kinship estimation on the LMM results. 

PLINK 

The --genome (and its variant --Z-genome) command in PLINK (Purcell et al., 

2007) estimates the pairwise IBD among homogeneous samples given the IBS 

information, which can be readily estimated from genotype data. Purcell et al. (2007) 

start by calculating the probability that a pair of individuals share 0 allele IBD: 

𝑃(𝑍 = 0) =
𝑁(𝐼 = 0)

𝑁(𝐼 = 0|𝑍 = 0)
 

where 𝑁(𝐼 = 0) is the count of SNPs with IBS state 𝐼 = 0 (which can only occur if the 

two individuals are opposite homozygotes at that particular locus) and 𝑁(𝐼 = 0|𝑍 = 0) 

is the expected count of SNPs with IBS state 𝐼 = 0 given that the pair share 0 allele IBD 

at each locus, which, under the assumption of Hardy-Weinberg equilibrium, depends 

only on the allele counts in the samples. Having obtained this, the probability that the 

pair share 1 allele IBD can then be estimated as: 

𝑃(𝑍 = 1) =
𝑁(𝐼 = 1) − 𝑃(𝑍 = 0)𝑁(𝐼 = 1|𝑍 = 0)

𝑁(𝐼 = 1|𝑍 = 1)
 

The remaining IBD state 𝑃(𝑍 = 2) can then be analogously estimated once 𝑃(𝑍 = 0) 

and 𝑃(𝑍 = 1) are known. 
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PLINK automatically bounds and constrains the resulting IBD probabilities to 

biologically plausible values, which can then be used to calculate the proportion of 

alleles shared IBD (which equals twice the kinship coefficient). 

KING 

Manichaikul et al. (2010) proposed two alternative methods for kinship inference 

which are implemented in their Kinship-based INference for Genome-wide association 

studies (KING) software package. One of these, ‘KING-homo’, assumes that the 

samples come from a single, homogenous population, in a similar manner to PLINK; 

the other, ‘KING-robust’, does not make that assumption and is therefore robust 

against population structure. Instead of sequentially estimating each IBD state 

probability, KING estimates the IBD sharing probability 𝑃(𝑍 = 0) using similar 

algorithm to PLINK, but then proceeds to estimating the kinship coefficient directly 

from the allele counts using a simplified and optimised algorithm, after which the 

probabilities of the two remaining IBD states can be derived. This results in a much 

faster calculation than that used in PLINK (Manichaikul et al., 2010). 

Unlike PLINK, the results from KING do not appear to be bounded to biologically 

plausible values, which could cause problems when fed into certain programs. 

4.2. Comparison of Different SNP Sets and Different Methods/Software for 

Kinship Measure Estimation 

Most software packages considered here allow a separation between the kinship matrix 

estimation and the actual GWAS analysis incorporating the desired kinship matrix. 

This is useful, perhaps in a rather unintended way, as it allows comparisons of the 

kinship matrices obtained from various LMM methods, as well as those from the 

software used only for kinship calculation, and based on various sets of SNPs; it also 

allows comparisons of the GWAS analysis results from the same LMM methods, using 

kinship matrices estimated using different sets of SNPs, or even estimated using 

different methods of kinship estimation. 

The ability to do this is crucial in addressing two important questions that needed to be 

answered before attempting further exploration of the LMM methods in GWAS 

analysis: whether there is any significant difference in kinship measures estimated 

from various methods; and what would be the optimal set of SNPs, if any, to use for 

kinship estimation for the purpose of LMM GWAS analysis. Conclusions made from 

this section were used in all (GAW18 and VL) subsequent LMM GWAS analyses. 
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4.2.1. Comparison of different kinship measure estimation methods using similar 

sets of SNPs 

To answer the first question, kinship measures were estimated using the various LMM 

and kinship calculation methods being considered, using each set of SNPs (full, pruned 

and thinned; see Section 2.2.4 for detailed description). The kinship measures 

estimated from each method using a similar set of SNPs were then compared. 

Although the scale on which the kinship estimates were measured differed between 

different packages, the measures themselves were highly correlated for each SNP set 

(Figures 4.1-4.3). Nevertheless, the estimates based on the thinned SNP set appear to 

be slightly less correlated when compared to those based on the other two sets. 

The correlation was particularly high among kinship measures from EMMAX (Balding-

Nichols), FaST-LMM (both methods), GenABEL, GEMMA and MMM, as could be 

theoretically expected. Also quite correlated, but slightly different from those in the 

previous group, were the kinship measures from EMMAX (IBS) and PLINK. However, 

the calculated correlation coefficients were somewhat lower between these two 

compared to between each of these and the other methods; this was despite the 

correlation plots of the kinship measures from these two methods showing high degree 

of concordance. This was due to the discrepancy among the more distantly related pairs 

of individuals, which can be seen near the origin of the plots. 
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Figure 4.1 Comparison of kinship measures estimated from full genome-wide SNP set using 

different software packages. Plots above the diagonal show a comparison of the kinship 

measures estimated by two of the methods being compared, with correlation between the 

kinship measure estimates indicated below the diagonal. EM_BN = EMMAX (Balding-Nichols), 

EM_IBS = EMMAX (IBS method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = 

FaST-LMM using realised relationship matrix, GA = GenABEL, GMA_C = GEMMA using centred 

genotypes, GMA_S = GEMMA using standardised genotypes, KING_H = KING with 

homogeneous population assumption, KING_R = KING with robust estimation. Unlike the 

other methods, KING did not constrain negative values to zero, which resulted in apparently 

low correlation coefficients, particularly for KING_R. 

 



64 
 

 

Figure 4.2 Comparison of kinship measures estimated from pruned SNP set using different 

software packages. Plots above the diagonal show a comparison of the kinship measures 

estimated by two of the methods being compared, with correlation between the kinship 

measure estimates indicated below the diagonal. EM_BN = EMMAX (Balding-Nichols), EM_IBS 

= EMMAX (IBS method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM 

using realised relationship matrix, GA = GenABEL, GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, KING_H = KING with homogeneous 

population assumption, KING_R = KING with robust estimation. Unlike the other methods, 

KING did not constrain negative values to zero, which resulted in apparently low correlation 

coefficients, particularly for KING_R. 
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Figure 4.3 Comparison of kinship measures estimated from thinned SNP set using different 

software packages. Plots above the diagonal show a comparison of the kinship measures 

estimated by two of the methods being compared, with correlation between the kinship 

measure estimates indicated below the diagonal. EM_BN = EMMAX (Balding-Nichols), EM_IBS 

= EMMAX (IBS method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM 

using realised relationship matrix, GA = GenABEL, GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, KING_H = KING with homogeneous 

population assumption, KING_R = KING with robust estimation. Unlike the other methods, 

KING did not constrain negative values to zero, which resulted in apparently low correlation 

coefficients, particularly for KING_R. 

 

KING tended to give kinship estimates that differ most from the other methods, with 

frequent output of negative kinship estimates among the less related individuals (these 

were bounded at 0 in most other methods). This was more pronounced for KING 

(robust) than for KING (homogeneous). The possible implications of this for LMM 

analysis will be considered in Section 4.4. 



66 
 

4.2.2. Comparison of kinship measures estimated based on different sets of 

SNPs 

To identify a robust set of SNPs for use in subsequent kinship measure estimation, each 

of the kinship measure estimation methods was applied to the three sets of SNPs (full, 

pruned and thinned; see Section 2.2.4 for detailed description). The results of these are 

shown in Figure 4.4. 

The kinships estimated by any method, using any of the three SNP sets, correlated well 

with the theoretical kinship coefficients calculated using the pedigree relationship, 

considering the discrete nature of theoretical kinship coefficients (Figure 4.4 A). The 

kinships estimated using the full, genome-wide SNP set and the pruned SNP set were 

highly concordant in all methods, whereas the estimates based on the thinned SNP set 

tended to be slightly different from these (Figure 4.4 B). The implication of this for 

LMM GWAS analysis will be addressed in Section 4.2.3. 
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Figure 4.4 Comparison of estimated kinship measures based on full, pruned and thinned SNP sets 

against theoretical (pedigree-based) kinship coefficients (A) and against each other (B). F = full set, P = 

pruned set, T = thinned set. EM_BN = EMMAX (Balding-Nichols), EM_IBS = EMMAX (IBS method), 

FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised relationship matrix, 

GA = GenABEL, GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised 



68 
 

genotypes, KING_H = KING with homogeneous population assumption, KING_R = KING with robust 

estimation. 

 

4.2.3. Comparison of LMM results based on kinship measures estimated using 

different sets of SNPs 

When the kinship measures estimated using different sets of SNPs were used in LMM 

GWAS analysis, the resulting p-values appeared to follow a similar pattern to that 

observed in the previous section (4.2.2) in relation to the measures themselves, that is, 

the results based on kinships estimated using the pruned SNP set were very similar to 

those based on kinships estimated using full, genome-wide SNP set, whereas the results 

based on kinships estimated using the thinned SNP set, whilst still highly correlated 

with the other two, differ somewhat from them (Figure 4.5). 
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Figure 4.5 Comparison of –log10 (p-values) obtained based on full, pruned and thinned SNP sets 

against theoretical (pedigree-based) kinship coefficients (A) and against each other (B). F = full set, P = 

pruned set, T = thinned set. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), 

FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised relationship matrix, 
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GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred 

genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed model 

(exact) calculation, MMM_G = MMM using GLS approximation. 

 

In terms of controlling the genome-wide type 1 error rate, i.e. controlling the genomic 

inflation factor λ (Devlin and Roeder, 1999) to the desired level of λ = 1, all methods 

performed well when using full or pruned set of SNPs, with λ of 0.99-1.00, but less so 

when the thinned set was used (Figure 4.6). The λ achieved when the thinned set of 

SNPs was used were mostly between 1.08-1.10, with the exception of GenABEL 

(GRAMMAR-Gamma), which had the most inflated λ of 1.16. 

Nevertheless, even when the thinned set of SNPs was used, the genomic inflation 

control achieved was still superior to when the theoretical kinship was used (λ = 1.11), 

which in turn was substantially superior to when no adjustment was made, in which 

case the λ was 1.23 (Figure 4.6). 
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Figure 4.6 Q-Q plots of real VL phenotype GWAS results, using different LMM software 

packages and different SNP sets for kinship estimation. The black diagonal lines represent the 

line of equality. Where a method gave only the p-values, the equivalent 1-degree of freedom χ
2
 

values were used. The ‘theoretical’ set used pedigree structure to derive theoretical kinship 

coeffi cients. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_C = 

FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised relationship matrix, 
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GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using 

centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using 

full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = 

unadjusted analysis. For methods with two ways to estimate the kinships, the same ‘theoretical’ 

results were plotted twice. Unadjusted analysis results were plotted once in each column only 

for comparison, and did not use the kinship estimates for adjustment. 

 

The above observation that the adjustment using either the full or pruned SNP sets was 

mostly equivalent can be seen graphically in Figure 4.7. Although adjustment using the 

thinned SNP set tended to be better than using pedigree information alone (with the 

exception of GenABEL GRAMMAR-Gamma), marked improvement was seen when the 

pruned set was used instead of the thinned set. 

 

 

Figure 4.7 Genomic control factors obtained using different software packages, different 

strategies for modelling kinships and different sets of SNPs. PLINK = analysis in PLINK with no 

adjustment made for relatedness, EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS 

method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised 

relationship matrix, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), 

GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, 

MMM_E = MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS 

approximation. 
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The more recent versions of FaST-LMM provide a class of methods to select the most 

appropriate set of SNPs to use for kinship estimation when testing for association in a 

LMM framework (‘FaST-LMM-Select’; see Section 4.1.1 for description). The common 

scheme among the methods in this class is to successively introduce SNPs, according to 

their nominal, unadjusted association with the phenotype, into the kinship estimation 

until an optimal inflation control has been reached. However, neither version of this 

approach seems to have performed satisfactorily in our data set. 

The older version of this approach (implemented in FaST-LMM version 2.0), which 

involves systematic search for the set of SNPs (and therefore kinship matrix) that 

results in the first minimum of the genomic control factor λ (Listgarten et al., 2012), 

gave λ that remained substantially higher than 1 at the first minimum (λ = 1.14 achieved 

with 3 ordered SNPs when starting from full SNP set, and λ = 1.11 achieved with 6 SNPs 

when starting from pruned SNP set). To explore this further, more SNPs were added to 

the kinship calculation after the first minimum had been reached, which resulted in 

subsequent decreasing of the λ to considerably less than 1, and then increasing back, 

eventually to 1, when all (pruned or full) SNPs had been included (Figure 4.8). 
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Figure 4.8 Performance of FaST-LMM-Select (v2.0). Genomic control factor (λGC) achieved in 

analysis of the real disease phenotype as different numbers of ordered SNPs are added in when 

calculating the kinship matrix (= realised relationship matrix, RRM). Method performed 

manually in FaST-LMM v2.0. 

 

The newer version of FaST-LMM-Select, which is fully automated and involves 

minimizing the mean-squared error summed over 𝑘 cross-validation folds (Lippert et 

al., 2013), resulted in no SNP being selected for adjustment when starting from the full 

SNP set (and therefore would result in the maximum, unadjusted λ of 1.23), and 2 SNPs 

being selected for adjustment when starting from the pruned SNP set, which resulted in 

the genomic control value of 1.17. 

Since these procedures seem to work less well than simply using all pruned or full SNPs 

for estimating pairwise kinships, while being practically more complicated, the 

remaining analyses involving FaST-LMM will be focused on the results obtained using 

the pruned SNP set for kinship estimation. Similarly, the pruned SNP set was also used 

in other methods, because of the substantially shorter computational time and the 

theoretical superiority compared with using the full SNP set due to the absence of 
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linkage disequilibrium between markers (although in practice the observed difference 

was minimal, LMM analyses using the pruned SNP set never performed worse than 

those using the full set). 

4.3. Comparison of Association Analysis Results from LMM and Alternative 

Methods 

The next questions to be addressed are how similar the results from the various LMM 

methods are when the same set of SNPs is used for controlling the relatedness among 

the samples, and how similar or different they are to the alternative methods. 

The success (or otherwise) of the various methods in controlling the overall genome-

wide type 1 error rate, as indicated by the ability to control the genomic inflation factor 

(Devlin and Roeder, 1999) λ to the desired level of λ = 1, is shown in Figures 4.9 and 

4.10. All methods that made use of estimated kinships apart from MQLS (‘MQLS_E’ in 

Figure 4.10) performed well, being able to reduce the genomic inflation factor to 

around 1, compared to 1.23 in unadjusted analysis. For MQLS, the use of estimated 

kinships from 1972 genotyped individuals appeared to result in a slightly deflated 

genomic inflation factor (0.94). 

Apart from FBAT, methods that used only theoretical kinships based on ‘known’ 

pedigree information (MASTOR and the other two MQLSs) tended not to be as 

successful in controlling the genomic inflation factor, resulting in a genomic inflation 

factor of about 1.15. Although they appeared to be quite well controlled for inflation, 

results from FBAT suffered from a different problem: they were very much in line with 

the theoretical distribution right up to the very top SNPs, suggesting little power to 

detect true effects. This will be more clearly demonstrated in the Manhattan plots. 
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Figure 4.9 Q-Q plots of real VL phenotype GWAS results and genomic inflation factors (λ) for 

different LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), 

FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact 

calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), 

GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, 

MMM_E = MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS 

approximation, Unadj = unadjusted analysis. 
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Figure 4.10 Q-Q plots of real VL phenotype GWAS results and genomic inflation factors (λ) for 

different LMM/alternative methods. FLMM_E = FaST-LMM using exact calculation with RRM, 

FBATaff = FBAT using transmissions to affecteds only, FBATboth = FBAT using transmissions to 

both affecteds and unaffecteds, MQLS1972/3626 = MQLS using theoretical kinships of either 

the 1,972 genotyped individuals or all 3,626 individuals in the pedigree, MQLS_E = MQLS using 

estimated kinships (1,972 individuals), RT1972/3626 = ROADTRIPS using 1,972 or 3,626 

individuals. FaST-LMM is an LMM method and is included here for comparison; GTAM and 

Mendel are also LMM methods, but included here due to their unique characteristics (see 

Section 4.1) 

 

The Manhattan plots of the results from LMM and alternative methods (Figures 4.11 

and 4.12) appear to be quite similar for most methods, with a noticeable signal in the 

HLA region on chromosome 6, consistent with the main finding in the previous 

publication of these data (Fakiola et al., 2013). Obvious exceptions to this are the plots 

from FBAT analyses, which show no association signal at all, consistent with the above 

observation. Furthermore, it can be seen from these plots that the results from the 

other alternative methods also produced much weaker signals than those from the 

LMM methods. 
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Figure 4.11 Manhattan plots for real VL data set using various LMM methods. The points 

marked in red (appear as dark grey area near the beginning of chromosome 6 if printed in black 

and white) denote the confirmed significant region form Fakiola et al. (Fakiola et al., 2013). 

EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM 

using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, 

GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using 

centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full 

mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted 

analysis. 
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Figure 4.12 Manhattan plots for real VL data set using various LMM/alternative methods. The 

points marked in red (appear as dark grey area near the beginning of chromosome 6 if printed in 

black and white) denote the confirmed significant region form Fakiola et al. (Fakiola et al., 2013). 

FLMM_E = FaST-LMM using exact calculation with RRM, FBATaff = FBAT using transmissions to 

affecteds only, FBATboth = FBAT using transmissions to both affecteds and unaffecteds, 

MQLS1972/3626 = MQLS using theoretical kinships of either the 1,972 genotyped individuals or 

all 3,626 individuals in the pedigree, MQLS_E = MQLS using estimated kinships (1,972 individuals), 

RT1972/3626 = ROADTRIPS using 1,972 or 3,626 individuals. 
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Although the LMM (and several alternative) approaches seem to show similar overall 

levels of power, an interesting separate question is the degree of concordance between 

the different methods with respect to the association signals detected. As can be seen 

from Figure 4.13 and the top-left part of Figure 4.14, GWAS results from all LMM 

methods using the pruned set of SNPs to estimate the pairwise kinships were highly 

concordant. 

 

 

Figure 4.13 Comparison of -log10(p-values)  using different LMM software packages, real disease 

phenotypes, and using pruned set of SNP for adjustment. Plots above the diagonal show a 

comparison of -log10(p-values), with correlation between the -log10(p-values) indicated below the 

diagonal. The grey solid lines represent the line of equality; the black dashed lines the linear 

regression line of the variable on the y asix on the variable on the x axis. EM_BN = EMMAX 

(Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate 

calculation, FLMM_E = FaST-LMM using exact calculation, GA_FA = GenABEL (FASTA), GA_GRG = 

GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA 
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using standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, 

MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 

 

 

Figure 4.14 Comparison of -log10(p-values)  using different LMM/alternative software 

packages, real disease phenotypes. Plots above the diagonal show a comparison of -log10(p-

values), with correlation between the -log10(p-values) indicated below the diagonal. The red dots 

represent the top 12 SNPs (p < 10
-4

) in the HLA region in chromosome 6. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y asix on the variable on the x axis. FLMM_E = FaST-LMM using exact calculation with RRM, 

FBATaff = FBAT using transmissions to affecteds only, FBATboth = FBAT using transmissions to both 

affecteds and unaffecteds, MQLS1972/3626 = MQLS using theoretical kinships of either the 1,972 

genotyped individuals or all 3,626 individuals in the pedigree, MQLS_E = MQLS using estimated 

kinships (1,972 individuals), RT1972/3626 = ROADTRIPS using 1,972 or 3,626 individuals. FaST-

LMM is an LMM method and is included here for comparison; GTAM and Mendel are also LMM 

methods, but included here due to their unique characteristics (see Section 4.1) 
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GTAM, which itself is also an LMM method, produced slightly less concordant results 

to the other LMM methods, which probably reflects the fact that theoretical rather than 

genetically estimated kinship matrix was used.  As for the results from alternative 

methods, most were also concordant with the LMM results (but to a lesser degree than 

had been seen for methods within the LMM class including GTAM), with the exception 

of FBAT which showed little concordance to the other methods at the vast majority of 

(presumably null) SNPs. 

Figure 4.14 also shows that methods that use phenotype information from non-

genotyped family members (MQLS3626 and RT3626, which use all 3,626 individuals 

regardless of whether or not they have genotype data) are most similar to each other 

and less similar to methods that use information only from the genotyped individuals. 

4.4. Feeding Externally Estimated Kinship Measures into LMMs 

The separation between the ‘kinship estimation’ and ‘association testing’ steps in most 

LMM packages enable the user to read in theoretical or estimated kinships as desired, 

and to consider using an alternative package for estimating kinships to the one used for 

the actual association testing. This raises the issue of to what extent this would affect 

the final outcome, and, perhaps more interestingly, what would happen if the externally 

estimated kinships are substantially less accurate than the native ones. 

In this section, various sets of kinships are read into FaST-LMM for use in GWAS 

analysis using an exact calculation. These include: FaST-LMM’s own realised 

relationship matrix (RRM), KING using homogeneous population assumption (‘KING-

homo’), KING using robust estimation (‘KING-robust’), PLINK IBD estimation, 

‘theoretical’ pedigree-based relatedness (calculated using KinInbcoef version 1.1 

(Bourgain and Zhang, 2009)) and ‘wrong’ kinship calculated as an inverse of the 

theoretical kinship i.e. 0.5 − 𝑘 (but with intra-individual ‘kinship’ set to the correct 

outbred value of 0.5). The results were also compared with results from simple, 

unadjusted linear regression in FaST-LMM, as shown in Figure 4.16. 

Use of the ‘wrong’ kinship estimates resulted in very similar results to unadjusted 

analysis (λ = 1.23). Results based on kinship estimates from the two KING methods 

were very similar to those obtained using FaST-LMM’s own RRM, and provided good 

control of the genome-wide error rate (λ ≈ 1) in spite of the unusual pattern in KING’s 

estimated kinship that had been noted in Section 4.2.1. Although still better than the 

unadjusted analysis, estimation of kinships using PLINK was less satisfactory, leading 

to inflated genomic control factor of 1.18, which was substantially worse than RRM or 

KING. Nevertheless, there was high degree of concordance in the association analysis 

results from all types of kinship matrices, especially between FaST-LMM and the two 

KING matrices, and between the ‘wrong’ kinship and unadjusted analysis (Figure 4.16). 
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Figure 4.15 Q-Q plots of real VL phenotype GWAS results and genomic inflation factors (λ) 

obtained from FaST-LMM using alternative kinship estimates. FLMM_R = FaST-LMM’s own 

realised relationship matrix, KING_H = KING homogeneous method, KING_R = KING robust 

method, Ped = theoretical kinship estimates based on pedigree information, Unadj = 

unadjusted, Wrong = misspecified kinships, chosen to be inversely related to the true kinship 

value. 
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Figure 4.16 Comparison of -log10(p-values) obtained from FaST-LMM using alternative kinship 

estimates, real disease phenotypes. Plots above the diagonal show a comparison of –log10(p-

values), with correlations between the –log10(p-values) indicated below the diagonal. The grey 

solid lines represent the line of equality; the black dashed lines the linear regression line of the 

variable on the y axis on the variable on the x axis. FLMM_R = FaST-LMM’s own realised 

relationship matrix, KING_H = KING homogeneous method, KING_R = KING robust method, Ped 

= theoretical kinship estimates based on pedigree information, Unadj = unadjusted, Wrong = 

misspecified kinships, chosen to be inversely related to the true kinship value. 

 

4.5. Discussion 

This chapter demonstrates that various LMM methods can be used in family-based 

GWAS of binary trait to control the overall genomic inflation factor while also offering 

higher power than traditional family-based association analysis approaches such as 

those implemented in FBAT. Similar inference is also provided by related and 

alternative approaches implemented in the software packages Mendel, ROADTRIPS, 

MQLS and MASTOR. The inferior power in FBAT is likely to be caused by the smaller 

effective sample size (357 cases and 357 ‘pseudo’ controls in FBAT, versus 357 cases 

and 1613 genuine control in the other approaches) due to the way the FBAT test 

statistics are constructed. 

All LMM GWAS methods considered here as well as the alternative methods such as 

MQLS, ROADTRIPS, MASTOR and GTAM model the relatedness between individuals 

based on one or more kinship matrices, constructed either on the basis of known 

(hypothesised) pedigree relationships between individuals, or through estimating 

kinships on the basis of genome-wide SNP data (or their subset). Most methods allow 
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separation between the kinship matrix estimation and the analysis step. This is 

convenient for several reasons. Firstly, it allows the set of SNPs used for estimating the 

kinship matrix to be different from that used for genome-wide association testing. It 

also means that kinships estimated using one package can potentially be used in 

another package at the analysis stage, if desired. Furthermore, this allows better 

parallelisation as the kinship matrix needs to be calculated only once and subsequently 

(or concurrently) read into multiple association analysis tasks, without each having to 

calculate its own kinship matrix. 

The ability to use a different set of SNPs to estimate the kinship matrix can improve the 

performance of a method in the situation where the set of SNPs being tested for 

association is not suitable for kinship estimation. An obvious example would be when 

the data are from a very dense GWAS chip, calculating the kinship matrix based on the 

whole data set would require much more computational time than would otherwise be 

required if a smaller set of SNPs can be used, provided that the use of estimations based 

on the smaller set does not cause significant deterioration of the results. It is also useful 

in the reverse situation in which only a small subset of SNPs needs to be analysed. If 

the kinship is also calculated based on this subset of SNPs, this may not be very 

accurate and could result in higher inflation of results than would otherwise be 

achievable (analogous to the situation where the thinned set of SNPs was used, Figures 

4.6-4.7). 

As there was not much difference in performance between kinships estimated from the 

pruned and the full SNP sets, the choice of one or the other may depend on the data 

already on hand. It should also be noted that the time required to estimate kinships 

from a pruned SNP set is significantly shorter than from a full SNP set. 

The significant performance deterioration when the thinned set of SNPs was used could 

be because there were too few SNPs in the thinned set to accurately model the 

relationships within the data set. Although 1,900 SNPs may be sufficient to accurately 

model close relationships such as full sib or parent-offspring, many more SNPs will be 

required to accurately model distant relationships within pedigrees (such as cousins, 

second cousins, third cousins etc) or even more distant relationships between 

pedigrees. 

The inflation of results obtained using theoretical kinships suggests the presence of 

additional relatedness/population structure in these data that is not well accounted for 

by known family relationships. In this situation, genetically estimated kinships can be 

expected to perform better than theoretical kinships. 
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Traditional methods for family-based association analysis make use of pedigree 

relationships, either (e.g. FBAT) through direct use of known pedigree structure or else 

(e.g. MQLS, ROADTRIPS and all LMM methods) through use of a covariance matrix 

that involves the known kinship between each pair of individuals (which is the 

probability that a randomly chosen allele at a randomly chosen allele at a locus in each 

individual is identical by descent). The assumption that all founders in a pedigree share 

no alleles identical by descent is clearly unrealistic, given human population history, 

while the assumption that all pedigrees are correctly specified and unrelated to one 

another is also likely to be violated in most real studies. The use of estimated kinships 

based on SNP data rather than theoretical kinships based on known pedigree 

relationships removes the reliance on these untenable assumptions, and allows 

essentially the same analysis approaches to be applied to apparently unrelated 

individuals, who may nevertheless display distant levels of shared ancestry. 

A key point when using estimated kinships to structure the covariance matrix in an 

association analysis is that the goal is not relationship estimation (whether close or 

distant) in its own right, but rather to adjust the analysis for phenotypic correlations 

between individuals due to genetic factors—usually assumed to be polygenic effects—

that would otherwise result in inflated association test statistics. Therefore, the extent 

to which the estimated kinship measures reflect the genuine relationships between 

individuals is arguably irrelevant. The important issue here is whether or not the use of 

such kinships succeeds with respect to adequately modelling phenotypic correlations 

between individuals. On that note, in the analyses performed here there was no large 

difference between the results obtained using different kinship measures, although use 

of the kinship measures output by PLINK (as well as use of completely incorrect 

kinship measures) did perform worse than the other kinship measures investigated. 

Although FaST-LMM-Select has been reported to show some advantage over using all 

SNPs when applied to simulations that included population stratification (but not 

familial relatedness) of quantitative phenotypes in randomly ascertained individuals 

(Lippert et al., 2013), application of this procedure to this highly ascertained set of 

Brazilian pedigrees resulted in substantially worse inflation than the simpler method of 

using all pruned or full SNPs for estimating pairwise kinships. This may be because the 

procedure tends to identify only a very small subset of SNPs, which may be adequate 

for capturing population stratification (as this should require relatively few principal 

components, which could be adequately approximated using these SNPs), but may not 

be sufficient to model family relatedness. 

Regardless of the method or SNP set used, adjustment always resulted in substantially 

lower inflation than was seen in unadjusted analysis. At worst, the adjusted results 
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would still be comparable to unadjusted analysis, as seen when the kinships were 

incorrectly estimated. So on the grounds of accuracy alone, there is little rationale for 

unadjusted analysis (however, in practice, the increase in complexity of the adjusted 

analysis will have to be taken into account). 

Using kinships estimated from a different package may be beneficial if, for example, the 

estimation from one package is substantially superior (or inferior) to another, or if the 

calculation time is substantially shorter or longer in one package compared to another. 

The former is unlikely to be the case (at least in practice) as has been demonstrated in 

Sections 4.2.1 and 4.2.3; the latter point will be investigated in Section 5.5. 

Although their precise algorithms vary (Aulchenko et al., 2007b; Rakovski and Stram, 

2009; Kang et al., 2010; Lippert et al., 2011; Zhou and Stephens, 2012; Pirinen et al., 

2013), the kinship measures calculated from the various LMM methods tended to be 

highly correlated, the main difference being the scale on which they are measured. This 

should not be too important for the purpose of LMM analysis, as the kinship measures 

are used within the LMM framework to structure the variance/covariance matrix of the 

genetic random effect. Any rescaling of this will be compensated for by a similar 

rescaling of the estimated genetic variance parameter 𝜎𝑔
2 (see Section 1.2). 

Although kinship estimates from both KING methods tended to differ from most other 

methods, this does not seem to affect the final results much. This could be because 

adequate control could genuinely be achieved with these estimates, but might also be 

because of the way FaST-LMM was designed to handle non-postive semidefnite 

covariance matrices which may have eliminated the differences. Regardless of the 

reason, the implication seems to be that KING’s kinship estimates can be used 

successfully in LMM GWAS analysis—at least with software that can handle non-

positive semidefinite matrix. 

The same cannot be said for the kinship estimates from PLINK, which resulted in 

substantial inflation. This is consistent with previous results (Manichaikul et al., 2010) 

suggesting that PLINK performs less well than KING for relationship estimation. 

Interestingly, although KING-robust has been shown to have an advantage over KING-

homo in non-homogeneous populations when the goal is relationship estimation for its 

own sake (Manichaikul et al., 2010), this advantage is not apparent here, where the 

goal is instead to adjust for potentially different levels of relatedness, from close family 

relationships to more distant relationships—perhaps mimicking population 

membership—while performing association testing. 

One caveat in interpreting the results in this chapter is that there is no guarantee that 

the HLA region signal detected by all but one method is genuine: it is possible that this 
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signal was false, in which case FBAT would be the only method that gives correct 

results. However, given the strength of the signal, the consistency across most methods, 

the biological plausibility and the independent confirmation in a different (Indian) data 

set (Fakiola et al., 2013), it is very likely that the observed signal is genuine. The next 

chapter will take a different approach and investigate the performance of these 

methods when the SNP effects are known through the use of simulations.
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Chapter 5. Application of Genomic IBD Estimates to Account for 

Relatedness in Genome-Wide Association Analyses of the 

Simulated Brazilian Visceral Leishmaniasis Data Set  

This chapter continues to investigate the performance of various LMM GWAS methods 

as applied to the family-based VL data set. However, instead of analysing the real 

binary phenotype, various types of simulated phenotypes (as described in Section 2.4) 

are used. This allows investigation of application of the LMM GWAS methods to 

different types of phenotypes, including longitudinal measurements, while also 

ensuring that the true effect locations are known. Furthermore, this also allows 

assessment of power and type I error which would not be possible with the real 

phenotype. 

5.1. Performance with Simulated Strong Qualitative Phenotype 

With the simulated strong qualitative phenotype, all LMM and alternative methods 

performed well in terms of controlling the genomic inflation, with λ = 0.99 for all LMM 

methods that use genetically estimated kinships, and ranging from 0.99 to 1.01 for 

other methods, compared with λ = 1.12 in unadjusted analysis (Figures 5.1-5.3). 

Nevertheless, it is quite clear from these Q-Q plots that, although successful in 

controlling the inflation, FBAT could not detect the effect of the two simulated SNPs. 

This is confirmed in the Manhattan plots (Figures 5.4-5.5), in which all methods but 

FBAT gave clear, strong signals at the simulated strong effect loci. 
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Figure 5.1 Q-Q plots of simulated strong qualitative phenotype GWAS results and genomic 

inflation factors (λ) for different LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = 

EMMAX (IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E 

= FaST-LMM using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL 

(GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using 

standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, MMM_G 

= MMM using GLS approximation, Unadj = unadjusted analysis. The dots at the upper border of 

the panels (FLMM and MMM) represent the SNPs where the equivalent 𝝌𝟐 values are ∞ (i.e. p-

value = 0). 
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Figure 5.2 Q-Q plots of simulated strong qualitative phenotype GWAS results and genomic 

inflation factors (λ) for different LMM/alternative methods. FLMM_E = FaST-LMM using exact 

calculation with RRM, FBATaff = FBAT using transmissions to affecteds only, FBATboth = FBAT using 

transmissions to both affecteds and unaffecteds, MQLS = MQLS using theoretical kinships of the 

1,972 genotyped individuals, RT = ROADTRIPS using 1,972 individuals. FaST-LMM is an LMM 

method and is included here for comparison; GTAM and Mendel are also LMM methods, but 

included here due to their unique characteristics. The dots at the upper border of the panels 

(FLMM_E and MQLS) represent the SNPs where the equivalent 𝝌𝟐 values are ∞ (i.e. p-value = 0). 
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Figure 5.3 Q-Q plots of simulated strong qualitative phenotype GWAS results and genomic 

inflation factors (λ) for different LMM/alternative methods, with each panel plotted on its own 

scale. FLMM_E = FaST-LMM using exact calculation with RRM, FBATaff = FBAT using transmissions 

to affecteds only, FBATboth = FBAT using transmissions to both affecteds and unaffecteds, MQLS = 

MQLS using theoretical kinships of the 1,972 genotyped individuals, RT = ROADTRIPS using 1,972 

individuals. FaST-LMM is an LMM method and is included here for comparison; GTAM and Mendel 

are also LMM methods, but included here due to their unique characteristics. The dots at the upper 

border of the panels (FLMM_E and MQLS) represent the SNPs where the equivalent 𝝌𝟐 values are 

∞ (i.e. p-value = 0). Unlike the previous plot, each panel in this plot has its own y-axis scale to 

better depict the distribution within its own panel. 
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Figure 5.4 Manhattan plots for VL data set with simulated strong qualitative phenotype using 

various LMM methods. The points marked in red (appear as dark grey area near the beginning of 

chromosome 6 and the end of chromosome 12 if printed in black and white) denote the simulated 

strong effect loci. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = 

FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation 

with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = 

GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = 

MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj 

= unadjusted analysis. 
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Figure 5.5 Manhattan plots for VL data set with simulated strong qualitative phenotype using 

various LMM/alternative methods. The points marked in red (appear as dark grey area near the 

beginning of chromosome 6 and the end of chromosome 12 if printed in black and white) denote 

the simulated strong effect loci. FLMM_E = FaST-LMM using exact calculation with RRM, FBATaff = 

FBAT using transmissions to affecteds only, FBATboth = FBAT using transmissions to both affecteds 

and unaffecteds, MQLS = MQLS using theoretical kinships of the 1,972 genotyped individuals, RT 

= ROADTRIPS using 1,972 individuals. FaST-LMM is an LMM method and is included here for 

comparison; GTAM and Mendel are also LMM methods, but included here due to their unique 

characteristics. 

 



96 
 

To formally compare the power and type I error for the different analysis methods, 

1,000 simulation replicates as described in Section 2.4.4 were used. Technically, for 

each of these replicates, adjusted association analyses were conducted for each SNP 

from a limited set consisting of two groups of SNPs: the ‘effect’ SNPs, defined as any 

SNP within 40 kb from either of the two simulated disease loci; and the ‘null’ SNPs, 

defined as the 100th SNP from the q-terminal (that is, the 100th SNP before the last SNP 

available in each chromosome) of the remaining 20 chromosomes without the main 

effect SNPs. Power was defined as the proportion of replicates in which both simulated 

loci are detected, that is, at least one SNP within 40 kb of each simulated disease locus 

reaches the specified p-value threshold. Type I error rate was calculated in a simpler 

way—by just pooling the 20 null SNP results from all replicates (so this became a 

20,000 SNPs sample) and calculating the proportion of these null SNPs which had 

achieved significance at the specified level. 

The results of this power and type I error analysis is shown in Figure 5.6. All methods 

apart from an unadjusted analysis show acceptable levels of type 1 error—although that 

for FBAT appears to be slightly conservative. In terms of power, all LMM approaches—

including GTAM and Mendel—and MASTOR show similar performance. ROADTRIPS 

and MQLS show slightly lower power than the LMM approaches, while the approaches 

implemented in FBAT appear to be considerably less powerful than those implemented 

in the LMM and other packages (even allowing for FBAT’s slightly conservative levels of 

type I error). This appears to be in line with the findings from the previous chapter as 

well as the comparison shown in Figure 5.5. 

 

 

Figure 5.6 Power and type 1 error of different methods when applied to strong binary (disease) 

phenotype. Powers (left hand plot) are defined as the proportion of replicates (out of 1,000) in 

which both simulated disease loci are detected, with ‘detection’ corresponding to any SNP within 

40 kb of the simulated disease locus reaching the specified p-value threshold. Type 1 errors (right 

hand plot) are defined as the proportion of null SNPs (out of 20,000 = 20 null SNPs times 1,000 
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simulation replicates) that reach the specified p-value threshold. Horizontal dashed lines indicate 

the target p-value thresholds (i.e. the expected type 1 error rates). 

 

Similar to the findings from the analysis of the real VL phenotype (Section 4.3), all 

LMM methods and also MASTOR gave very concordant results (Figures 5.7-5.8). 

Interestingly, the concordance between GTAM (which used pedigree information) and 

other LMM software results was better than that seen in the real phenotype analysis. 

The results from FBAT and other alternative methods also seem to be more concordant 

with the LMM analyses, although still to a lesser extent than the concordance within 

the LMM class itself. 

 

 

Figure 5.7 Comparison of -log(p-values) using various LMM software packages, simulated strong 

binary (disease) phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 
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the y axis on the variable on the x axis. The colours denote: red = the two strong effect SNPs, 

magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. EM_BN = EMMAX 

(Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate 

calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, GA_FA = GenABEL 

(FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed model (exact) 

calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 

 

 

Figure 5.8 Comparison of -log(p-values) using various LMM software packages, simulated strong 

binary (disease) phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y axis on the variable on the x axis. The colours denote: red = the two strong effect SNPs, 

magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. FLMM_E = FaST-LMM 

using exact calculation with RRM, FBATaff = FBAT using transmissions to affecteds only, FBATboth = 

FBAT using transmissions to both affecteds and unaffecteds, MQLS = MQLS using theoretical 

kinships of the 1,972 genotyped individuals, RT = ROADTRIPS using 1,972 individuals. FaST-LMM is 
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an LMM method and is included here for comparison; GTAM and Mendel are also LMM methods, 

but included here due to their unique characteristics. 

 

A formal comparison of the concordance between ‘top hits’ identified by the different 

methods in the simulated data (1,000 simulation replicates, comparison restricted to 

true and null simulated regions) is shown in Table 5.1. Using EMMAX (Balding-

Nichols) as reference (the choice of reference is quite arbitrary here, as there is no 

method that is innately a gold standard), the concordance between the top SNPs 

identified is seen to be extremely high for all methods except FBAT, suggesting again 

that all methods except FBAT provide essentially the same inference. 

 

 Mean (standard deviation) in 1,000 replicates of proportion of top t SNPs within 

null and true regions that overlap with top t SNPs from EM_BN 

method t = 5 t = 10 t = 15 t = 20 t = 25 

Unadjusted 0.991 (0.042) 0.990 (0.030) 0.981 (0.033) 0.975 (0.032) 0.973 (0.027) 

EM_IBS 0.999 (0.017) 0.999 (0.009) 0.997 (0.015) 0.996 (0.013) 0.996 (0.012) 

FLMM_A 1.000 (0.009) 1.000 (0.003) 1.000 (0.007) 1.000 (0.004) 1.000 (0.003) 

FLMM_E 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004) 

GA_FA 0.998 (0.018) 1.000 (0.005) 0.999 (0.011) 0.999 (0.008) 0.998 (0.008) 

GA_GRG 0.998 (0.021) 0.999 (0.011) 0.996 (0.017) 0.998 (0.010) 0.998 (0.008) 

GMA_C 0.998 (0.021) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004) 

GMA_S 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004) 

GTAM 0.998 (0.022) 0.995 (0.022) 0.990 (0.025) 0.988 (0.022) 0.987 (0.020) 

MENDEL 0.997 (0.025) 0.996 (0.019) 0.991 (0.024) 0.989 (0.021) 0.989 (0.018) 

MMM_E 0.991 (0.041) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004) 

MMM_G 0.993 (0.036) 1.000 (0.003) 1.000 (0.007) 1.000 (0.005) 0.999 (0.005) 

FBATaff 0.684 (0.253) 0.790 (0.115) 0.773 (0.090) 0.771 (0.080) 0.760 (0.072) 

FBATboth 0.859 (0.130) 0.844 (0.084) 0.811 (0.078) 0.795 (0.075) 0.777 (0.071) 

MASTOR 0.993 (0.038) 0.994 (0.024) 0.989 (0.027) 0.985 (0.024) 0.985 (0.022) 

MQLS 0.978 (0.062) 0.981 (0.040) 0.960 (0.043) 0.951 (0.041) 0.941 (0.038) 

RT 0.981 (0.059) 0.984 (0.037) 0.962 (0.042) 0.952 (0.041) 0.942 (0.038) 

Table 5.1 Concordance between top SNPs identified by different methods analysing simulated strong 

binary (disease) phenotype. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), 

FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact 

calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = 

GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM 

using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, FBATaff = FBAT 

using transmissions to affecteds only, FBATboth = FBAT using transmissions to both affecteds and 

unaffecteds, MQLS = MQLS using theoretical kinships of the 1,972 genotyped individuals, RT = 

ROADTRIPS using 1,972 individuals. 
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The genomic inflation factor of 1.12 in the unadjusted analysis was substantially lower 

that the value of 1.23 in the unadjusted analysis of the real VL phenotype. Furthermore, 

feeding alternative kinship estimations into a FaST-LMM (Exact) analysis of the 

simulated phenotype in a similar manner to Section 4.4 showed that, unlike in the 

analysis of the real phenotype, the inflation in this case can be well controlled using 

theoretical kinship estimates alone (λ = 1.00; Figure 5.9). These observations seem to 

further support the assertion in Section 4.5 that there may be additional 

relatedness/population structure in the real data set, and may explain the higher 

concordance between GTAM and other LMM software when analysing this phenotype 

data. Interestingly, analysis using PLINK’s estimated IBD seems to have performed 

even worse here, with the degree of inflation exactly the same as that of the unadjusted 

analysis (λ = 1.12). 
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Figure 5.9 Q-Q plots of simulated strong qualitative phenotype GWAS results and genomic 

inflation factors (λ) obtained from FaST-LMM using alternative kinship estimates. FLMM_R = 

FaST-LMM’s own realised relationship matrix, KING_H = KING homogeneous method, KING_R = 

KING robust method, Ped = theoretical kinship estimates based on pedigree information, Unadj = 

unadjusted, Wrong = misspecified kinships, chosen to be inversely related to the true kinship value. 

The dots at the upper border of the FLMM_R panel represent the SNPs where the equivalent 𝝌𝟐 

values are ∞ (i.e. p-value = 0). 

 

5.2. Performance with Simulated Weak Qualitative Phenotype 

The performance of LMM and alternative methods when applied to simulated weak 

qualitative phenotype did not differ much from when they were applied to the 

simulated strong qualitative phenotype. The genomic inflation factors from all methods 

were between 0.99 to 1.01, compared with 1.04 in the unadjusted analysis (Figures 

5.10-5.11). Unsurprisingly, FBAT was again unable to detect the effect of the two 

simulated SNPs (Figures 5.12-5.13). 
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Figure 5.10 Q-Q plots of simulated weak qualitative phenotype GWAS results and genomic 

inflation factors (λ) for different LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = 

EMMAX (IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = 

FaST-LMM using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL 

(GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using 

standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, MMM_G = 

MMM using GLS approximation, Unadj = unadjusted analysis. 
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Figure 5.11 Q-Q plots of simulated weak qualitative phenotype GWAS results and genomic 

inflation factors (λ) for different LMM/alternative methods. FLMM_E = FaST-LMM using exact 

calculation with RRM, FBATaff = FBAT using transmissions to affecteds only, FBATboth = FBAT using 

transmissions to both affecteds and unaffecteds, MQLS = MQLS using theoretical kinships of the 

1,972 genotyped individuals, RT = ROADTRIPS using 1,972 individuals. FaST-LMM is an LMM 

method and is included here for comparison; GTAM and Mendel are also LMM methods, but 

included here due to their unique characteristics. 
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Figure 5.12 Manhattan plots for VL data set with simulated weak qualitative phenotype using 

various LMM methods. The points marked in red (appear as dark grey area near the beginning of 

chromosome 6 and the end of chromosome 12 if printed in black and white) denote the simulated 

weak effect loci. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = 

FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation 

with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = 

GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = 

MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj 

= unadjusted analysis. 
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Figure 5.13 Manhattan plots for VL data set with simulated weak qualitative phenotype using 

various LMM/alternative methods. The points marked in red (appear as dark grey area near the 

beginning of chromosome 6 and the end of chromosome 12 if printed in black and white) denote 

the simulated weak effect loci. FLMM_E = FaST-LMM using exact calculation with RRM, FBATaff = 

FBAT using transmissions to affecteds only, FBATboth = FBAT using transmissions to both affecteds 

and unaffecteds, MQLS = MQLS using theoretical kinships of the 1,972 genotyped individuals, RT = 

ROADTRIPS using 1,972 individuals. FaST-LMM is an LMM method and is included here for 

comparison; GTAM and Mendel are also LMM methods, but included here due to their unique 

characteristics. 
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The formal power and type I error analysis (Figure 5.14) again show the similarity 

among the LMM methods and MASTOR, while ROADTRIPS and MQLS also show 

slightly less power. FBAT again appeared to be conservative and considerably less 

powerful than other methods. 

  

 

Figure 5.14 Power and type 1 error of different methods when applied to weak binary (disease) 

phenotype. Powers (left hand plot) are defined as the proportion of replicates (out of 1,000) in 

which both simulated disease loci are detected, with ‘detection’ corresponding to any SNP within 

40 kb of the simulated disease locus reaching the specified p-value threshold. Type 1 errors (right 

hand plot) are defined as the proportion of null SNPs (out of 20,000 = 20 null SNPs times 1,000 

simulation replicates) 

 

Results from all LMM methods as well as MASTOR were highly concordant (Figures 

5.15-5.16). MQLS and ROADTRIPS were also quite concordant with the LMM results, 

but to a lesser extent. FBAT again showed little concordance to the other methods. 
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Figure 5.15 Comparison of -log(p-values) using various LMM software packages, simulated weak 

binary (disease) phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y axis on the variable on the x axis. The colours denote: red = the two weak effect SNPs, 

magenta = SNPs within 2 Mb of the weak effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. EM_BN = EMMAX 

(Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate 

calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, GA_FA = GenABEL 

(FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed model (exact) 

calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 

 



109 
 

 

Figure 5.16 Comparison of -log(p-values) using various LMM software packages, simulated weak 

binary (disease) phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y axis on the variable on the x axis. The colours denote: red = the two weak effect SNPs, 

magenta = SNPs within 2 Mb of the weak effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. FLMM_E = FaST-LMM 

using exact calculation with RRM, FBATaff = FBAT using transmissions to affecteds only, FBATboth = 

FBAT using transmissions to both affecteds and unaffecteds, MQLS = MQLS using theoretical 

kinships of the 1,972 genotyped individuals, RT = ROADTRIPS using 1,972 individuals. FaST-LMM is 

an LMM method and is included here for comparison; GTAM and Mendel are also LMM methods, 

but included here due to their unique characteristics. 

 

Formal comparison of concordance between the ‘top hits’ identified by each method 

again showed extremely high concordance in all methods except FBAT (Table 5.2), 

similar to that seen in the simulated strong binary phenotype. 

 



110 
 

 Mean (standard deviation) in 1,000 replicates of proportion of top t SNPs within null 

and true regions that overlap with top t SNPs from EM_BN 

method t = 5 t = 10 t = 15 t = 20 t = 25 

Unadjusted 0.982 (0.060) 0.984 (0.041) 0.979 (0.039) 0.974 (0.040) 0.973 (0.036) 

EM_IBS 0.997 (0.029) 0.997 (0.024) 0.995 (0.025) 0.994 (0.028) 0.994 (0.024) 

FLMM_A 0.998 (0.027) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026) 

FLMM_E 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026) 

GA_FA 0.992 (0.044) 0.998 (0.024) 0.997 (0.026) 0.996 (0.030) 0.996 (0.026) 

GA_GRG 0.994 (0.038) 0.997 (0.026) 0.996 (0.027) 0.995 (0.030) 0.996 (0.026) 

GMA_C 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026) 

GMA_S 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026) 

GTAM 0.988 (0.050) 0.990 (0.036) 0.983 (0.037) 0.982 (0.036) 0.982 (0.032) 

MENDEL 0.988 (0.051) 0.992 (0.033) 0.986 (0.035) 0.984 (0.036) 0.987 (0.031) 

MMM_E 0.995 (0.037) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026) 

MMM_G 0.998 (0.028) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026) 

FBATaff 0.413 (0.255) 0.571 (0.201) 0.614 (0.157) 0.639 (0.128) 0.651 (0.102) 

FBATboth 0.664 (0.246) 0.718 (0.146) 0.699 (0.111) 0.691 (0.099) 0.686 (0.088) 

MASTOR 0.971 (0.075) 0.988 (0.038) 0.981 (0.038) 0.978 (0.039) 0.979 (0.033) 

MQLS 0.934 (0.107) 0.962 (0.056) 0.942 (0.053) 0.928 (0.051) 0.917 (0.047) 

RT 0.943 (0.099) 0.965 (0.055) 0.943 (0.053) 0.930 (0.052) 0.919 (0.047) 

Table 5.2 Concordance between top SNPs identified by different methods analysing simulated weak 

binary (disease) phenotype. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), 

FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact 

calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = 

GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM 

using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, FBATaff = FBAT 

using transmissions to affecteds only, FBATboth = FBAT using transmissions to both affecteds and 

unaffecteds, MQLS = MQLS using theoretical kinships of the 1,972 genotyped individuals, RT = 

ROADTRIPS using 1,972 individuals. 

 

5.3. Performance with Simulated Quantitative Phenotype 

The findings from applying the LMM and alternative methods to simulated (strong) 

quantitative phenotype are similar to those observed in the two simulations above. All 

methods were very successful in controlling the genomic inflation to 0.99-1.00, 

compared with 1.43 in unadjusted analysis (Figures 5.17-5.18). All methods except 

FBAT detected clear signals at the simulated loci (Figures 5.19-5.20). FBAT appeared to 

have detected a weak signal at the stronger effect locus (chromosome 6) in this 

particular simulation set (Figure 5.20), but had almost no power in the formal power 

analysis (Figure 5.21), probably due to its failure to detect the weaker effect locus 

(chromosome 12), which resulted in its overall result being classed as non-detection. 
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Figure 5.17 Q-Q plots of simulated quantitative phenotype GWAS results and genomic inflation 

factors (λ) for different LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX 

(IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-

LMM using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL 

(GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using 

standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, MMM_G = 

MMM using GLS approximation, Unadj = unadjusted analysis. The dots at the upper border of the 

MMM panels represent the SNPs where the equivalent 𝝌𝟐 values are ∞ (i.e. p-value = 0). 
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Figure 5.18 Q-Q plots of simulated quantitative phenotype GWAS results and genomic inflation 

factors (λ) for different LMM/alternative methods. FLMM_E = FaST-LMM using exact calculation 

with RRM, FBAT = FBAT using transmissions to all individuals. FaST-LMM is an LMM method and is 

included here for comparison; GTAM and Mendel are also LMM methods, but included here due 

to their unique characteristics. 
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Figure 5.19 Manhattan plots for VL data set with simulated quantitative phenotype using various 

LMM methods. The points marked in red (appear as dark grey area near the beginning of 

chromosome 6 and the end of chromosome 12 if printed in black and white) denote the simulated 

strong effect loci. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = 

FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation 

with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = 

GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = 

MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj 

= unadjusted analysis. 

 

 

Figure 5.20 Manhattan plots for VL data set with simulated quantitative phenotype using various 

LMM/alternative methods. The points marked in red (appear as dark grey area near the beginning 

of chromosome 6 and the end of chromosome 12 if printed in black and white) denote the 

simulated strong effect loci. FLMM_E = FaST-LMM using exact calculation with RRM, FBAT = FBAT 

using transmissions to all individuals. FaST-LMM is an LMM method and is included here for 

comparison; GTAM and Mendel are also LMM methods, but included here due to their unique 

characteristics. 
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Figure 5.21 Power and type 1 error of different methods when applied to quantitative 

phenotype. Powers (left hand plot) are defined as the proportion of replicates (out of 1,000) in 

which both simulated disease loci are detected, with ‘detection’ corresponding to any SNP within 

40 kb of the simulated disease locus reaching the specified p-value threshold. Type 1 errors (right 

hand plot) are defined as the proportion of null SNPs (out of 20,000 = 20 null SNPs times 1,000 

simulation replicates) 

 

The concordance of the results was extremely high across all methods except FBAT 

(Figures 5.22-5.23; but then MQLS and ROADTRIPS, which showed slightly less degree 

of concordance in the previous simulations, were not included in this simulation as 

they were not applicable to quantitative trait analysis). FBAT’s results were actually 

quite concordant with other methods near the simulated loci, but less so at the other 

SNPs. This is also reflected in the top SNPs comparison (Table 5.3), where, unlike the 

previous simulations, FBAT showed a reasonable degree of concordance to EMMAX 

when only a small number (5) of the very top SNPs were compared, this then 

deteriorated when more SNPs were included for comparison, which again suggests 

higher discrepancies among the less associated SNPs. Interestingly, MMM also appears 

to behave slightly differently from the previous simulations, and in the opposite way to 

FBAT: with small number of the very top SNPs, the degree of concordance with 

EMMAX was lower than most other methods and was quite comparable with FBAT at 

about 0.90; this then quickly improved when more SNPs were included in the 

comparison and reached 1.00 with just 10 top SNPs. This suggests only a minor 

discrepancy of the p-values of some of the top SNPs. 
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Figure 5.22 Comparison of -log(p-values) using various LMM software packages, simulated 

quantitative phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y axis on the variable on the x axis. The colours denote: red = the two strong effect SNPs, 

magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. EM_BN = EMMAX 

(Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate 

calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, GA_FA = GenABEL 

(FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed model (exact) 

calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 
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Figure 5.23 Comparison of -log(p-values) using various LMM software packages, simulated 

quantitative phenotype. Plots above the diagonal show a comparison of –log10(p-values), with 

correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on 

the y axis on the variable on the x axis. The colours denote: red = the two strong effect SNPs, 

magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs 

were plotted before the magenta/red SNPs, they may be obscured by the latter. FLMM_E = FaST-

LMM using exact calculation with RRM, FBAT = FBAT using transmissions to all individuals. FaST-

LMM is an LMM method and is included here for comparison; GTAM and Mendel are also LMM 

methods, but included here due to their unique characteristics. 

 

 Mean (standard deviation) in 1,000 replicates of proportion of top t SNPs within 

null and true regions that overlap with top t SNPs from EM_BN 

method t = 5 t = 10 t = 15 t = 20 t = 25 

Unadjusted 0.987 (0.049) 0.983 (0.038) 0.962 (0.040) 0.963 (0.034) 0.954 (0.033) 

EM_IBS 0.998 (0.020) 0.998 (0.016) 0.993 (0.020) 0.994 (0.017) 0.993 (0.015) 

FLMM_A 1.000 (0.000) 1.000 (0.000) 1.000 (0.004) 1.000 (0.005) 1.000 (0.004) 

FLMM_E 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005) 

GA_FA 1.000 (0.006) 0.999 (0.010) 0.998 (0.010) 0.998 (0.010) 0.996 (0.012) 

GA_GRG 0.994 (0.034) 0.999 (0.010) 0.995 (0.018) 0.996 (0.014) 0.996 (0.012) 

GMA_C 1.000 (0.009) 1.000 (0.007) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004) 

GMA_S 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005) 

GTAM 0.995 (0.032) 0.991 (0.028) 0.984 (0.030) 0.985 (0.024) 0.984 (0.022) 

MENDEL 0.998 (0.021) 0.996 (0.020) 0.987 (0.027) 0.988 (0.022) 0.988 (0.019) 

MMM_E 0.899 (0.100) 0.999 (0.008) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004) 

MMM_G 0.903 (0.100) 1.000 (0.003) 1.000 (0.003) 1.000 (0.004) 1.000 (0.003) 

FBAT 0.906 (0.101) 0.896 (0.067) 0.869 (0.059) 0.844 (0.067) 0.814 (0.066) 

MASTOR 0.998 (0.020) 0.992 (0.027) 0.984 (0.030) 0.984 (0.025) 0.983 (0.023) 

Table 5.3 Concordance between top SNPs identified by different methods analysing simulated 

quantitative phenotype. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A 

= FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with 

RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using 
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centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed 

model (exact) calculation, MMM_G = MMM using GLS approximation, FBAT = FBAT using transmissions 

to all individuals. 

 

The pattern of inflation when various methods of kinship estimations were used was 

very similar to that seen in the strong binary phenotype simulation: FaST-LMM’s RRM 

and both KING methods were very successful in controlling the inflation, as was the 

theoretical kinships calculated only from pedigree information (λ = 0.99-1.00; Figure 

5.24). On the contrary, adjustment using PLINK’s kinship estimation resulted inflation 

as high as in the unadjusted analysis or analysis using the ‘wrong’ kinship estimates (λ 

= 1.43). 

 

 

Figure 5.24 Q-Q plots of simulated strong qualitative phenotype GWAS results and genomic 

inflation factors (λ) obtained from FaST-LMM using alternative kinship estimates. FLMM_R = 

FaST-LMM’s own realised relationship matrix, KING_H = KING homogeneous method, KING_R = 

KING robust method, Ped = theoretical kinship estimates based on pedigree information, Unadj = 

unadjusted, Wrong = misspecified kinships, chosen to be inversely related to the true kinship 

value. 
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5.4. Performance with Simulated Longitudinal Quantitative Phenotype 

In Chapter 3, a strategy for analysing longitudinal traits (repeated measures) in a linear 

mixed model framework simply by treating each measurement as if it came from a 

different individual and expanding out the genetic data set accordingly—resulting in an 

expanded data set containing many apparent twins, triplets, quadruplets etc., 

depending on how many measurements are available for each person—was investigated 

using the GAW18 data. It will now be investigated in the current data set using a single 

replicate of data (498 individuals) simulated under either a longitudinal (sim-L20) or 

longitudinal polygenic (sim-P20) model (see Section 2.4.3 for details), which, at 20 

measurements per person, have much higher degree of repetition than the GAW18 

data.  

The results from the longitudinal (sim-L20) simulation (Figures 5.25-5.26) showed that 

EMMAX, FaST-LMM, GEMMA and MMM were successful in maintaining the genomic 

inflation factor to about 1, whereas GenABEL (FASTA) showed some inflation (λ = 

1.06) but was far better than the unadjusted analysis (λ = 20.82). Interestingly, 

GenABEL (GRAMMAR-Gamma) showed strong deflation (λ = 0.66), unlike other 

methods; in particular this was opposite to that seen in GenABEL (FASTA) to which it 

is supposed to be equivalent. 

The Manhattan plots (Figure 5.27) showed that all LMM methods were successful in 

separating the true signals from background noise. Similarly, comparison of the 

concordance in –log10 p-values achieved by the different methods (Figure 5.28) 

indicated that the results from different methods were highly correlated. However, the 

actual p-values achieved were very different, consistent with the differences seen in 

overall distribution of test statistics. 
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Figure 5.25 Q-Q plots of simulated longitudinal quantitative phenotype GWAS results and 

genomic inflation factors (λ) for different LMM methods. EM_BN = EMMAX (Balding- Nichols), 

EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, 

FLMM_E = FaST-LMM using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = 

GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA 

using standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, 

MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. The dots at the upper 

border of the MMM panels represent the SNPs where the equivalent 𝝌𝟐 values are ∞ (i.e. p-value 

= 0). 
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Figure 5.26 Q-Q plots of simulated longitudinal quantitative phenotype GWAS results and 

genomic inflation factors (λ) for different LMM methods, with each panel plotted on its own 

scale. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-

LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with 

RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA 

using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM 

using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = 

unadjusted analysis. The dots at the upper border of the MMM panels represent the SNPs where 

the equivalent 𝝌𝟐 values are ∞ (i.e. p-value = 0). Unlike the previous plot, each panel in this plot 

has its own y-axis scale to better depict the distribution within its own panel. 
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Figure 5.27 Manhattan plots for VL data set with simulated longitudinal qualitative phenotype 

using various LMM methods. The points marked in red (appear as dark grey area near the 

beginning of chromosome 6 and the end of chromosome 12 if printed in black and white) denote 

the simulated strong effect loci. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS 

method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM 

using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-

Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised 

genotypes, MMM_E = MMM using full mixed model (exact) calculation, MMM_G = MMM using 

GLS approximation, Unadj = unadjusted analysis. 

 

 

Figure 5.28 Comparison of –log10(p-values) using various LMM software packages, simulated 

longitudinal quantitative phenotype. Plots above the diagonal show a comparison of –log10(p-

values), with correlations between the –log10(p-values) indicated below the diagonal. The grey solid 

lines represent the line of equality; the black dashed lines the linear regression line of the variable 

on the y axis on the variable on the x axis. The colours denote: red = the two strong effect SNPs, 

magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, green = SNPs 

within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the black/green/blue SNPs were 

plotted before the magenta/red SNPs, they may be obscured by the latter. EM_BN = EMMAX 
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(Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM using approximate 

calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, GA_FA = GenABEL 

(FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, 

GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed model (exact) 

calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 

 

Because the longitudinal polygenic simulation (sim-P20) was constructed using a 

smaller effect size over a very large number of SNPs, the resulting phenotypes were 

expected to be highly correlated among family members, but much less so at any 

individual SNP. This is in contrast to the above longitudinal simulation (sim-L20) 

where the effects were spread over a more limited number of SNPs, including two with 

strong effects. The use of a larger number of SNPs would also mean that the 

distribution of the phenotypes more closely follows the genetic relatedness of the 

samples, and also is influenced by more distant relatedness and population 

substructure. 

Despite these differences, a rather similar (but more extreme) pattern was also 

observed in this simulation (Figures 5.29-5.30): EMMAX (Balding-Nichols), FaST-

LMM and GEMMA were again successful in maintaining the genomic inflation factor to 

about 1, whilst GenABEL (FASTA) showed even stronger inflation (λ = 2.39), and the 

deflation in GenABEL (GRAMMAR-Gamma) worsened (λ = 0.47), compared with the 

genomic inflation factor of 21.53 in the unadjusted analysis. However, some differences 

to the sim-L20 results were also noted: in this simulation, both MMM methods resulted 

in strong inflation, even exceeding that of GenABEL (FASTA) (λ = 3.52 compared with 

2.39), whereas EMMAX (IBS) now showed a slight deflation (λ = 0.97), perhaps similar 

to that observed in the analysis of GAW18 data (Section 3.2). 

Comparison of the concordance in –log10 p-values achieved by different methods 

(Figure 5.32) again showed high correlation among different methods, although the 

actual p-values were again different. 
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Figure 5.29 Q-Q plots of simulated longitudinal polygenic phenotype GWAS results and genomic 

inflation factors (λ) for different LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = 

EMMAX (IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = 

FaST-LMM using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL 

(GRAMMAR-Gamma), GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using 

standardised genotypes, MMM_E = MMM using full mixed model (exact) calculation, MMM_G = 

MMM using GLS approximation, Unadj = unadjusted analysis. 
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Figure 5.30 Q-Q plots of simulated longitudinal polygenic phenotype GWAS results and genomic 

inflation factors (λ) for different LMM methods, with each panel plotted on its own scale. 

EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-LMM 

using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with RRM, 

GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using 

centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full 

mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted 

analysis. Unlike the previous plot, each panel in this plot has its own y-axis scale to better depict 

the distribution within its own panel. 
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Figure 5.31 Manhattan plots for VL data set with simulated longitudinal polygenic phenotype using 

various LMM methods. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A 

= FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with 

RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using 

centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM using full mixed 

model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = unadjusted analysis. 

 

 

Figure 5.32 Comparison of -log(p-values) using various LMM software packages, simulated 

longitudinal quantitative phenotype. Plots above the diagonal show a comparison of –log10(p-values), 

with correlations between the –log10(p-values) indicated below the diagonal. The grey solid lines 

represent the line of equality; the black dashed lines the linear regression line of the variable on the y 

axis on the variable on the x axis. The colours denote: blue = 402 polygenic SNPs, green = SNPs within 2 

Mb of the polygenic SNPs, black = all other SNPs. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX 

(IBS method), FLMM_A = FaST-LMM using approximate calculation with RRM, FLMM_E = FaST-LMM 

using exact calculation with RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), 

GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = 

MMM using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = 

unadjusted analysis. 
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To investigate the performance of these naive analyses against a ‘proper’ longitudinal 

analysis, the results from the FaST-LMM (Exact) analysis was compared with those 

from the R software package longGWAS (Furlotte et al., 2012), which allows an extra, 

within-individual variance component to be fitted, while also making use of a two-stage 

approach (similar to FASTA) with a linear time search algorithm to estimate the 

components in the first stage so that the calculations can finish in a reasonable time for 

GWAS analysis. Results from both types of analysis appeared to be very similar (Figure 

5.33), with longGWAS achieving the genomic inflation of 1.00 in the longitudinal 

phenotype, and 0.97 in the longitudinal polygenic phenotype. The marginal deflation in 

longGWAS’s analysis of the longitudinal polygenic phenotype may in fact be in line with 

that observed in the EMMAX (IBS) analysis above. 

Although the ‘proper’ analysis implemented in longGWAS may be considered 

theoretically most appealing, longGWAS was considerably slower than FaST-LMM, 

taking approximately 19 hours (in comparison to 5.5 minutes for FaST-LMM) when run 

in parallel for each of 22 chromosomes. If run as a single process (all chromosomes), 

this translates to about 9.5 days for longGWAS versus 7.6 hours for FaST-LMM. Thus, 

given the satisfactory performance of FaST-LMM, and the high correlation between the 

results obtained from FaST-LMM and those from longGWAS, from a practical point of 

view, FaST-LMM (or possibly EMMAX and GEMMA) would seem the more attractive 

option. 

 



130 
 

 

Figure 5.33 Comparison of results obtained from analyses of simulated 

longitudinal/longitudinal polygenic phenotypes using FaST-LMM (Exact) and longGWAS. A) 

Manhattan plot of results obtained from FaST-LMM (Exact) on longitudinal (sim-L20) phenotype, 

and B) on longitudinal polygenic (sim-P20) phenotype; C) Manhattan plot of results obtained from 
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longGWAS on longitudinal (sim-L20) phenotype, and D) on longitudinal polygenic (sim-P20) 

phenotype; E) comparison of –log10(p-values) using FaST-LMM and longGWAS on longitudinal 

(sim-L20) phenotype, and F) on longitudinal polygenic (sim-P20) phenotype; G) Q-Q plot of GWAS 

results and genomic inflation factor (λ) for longGWAS on longitudinal (sim-L20) phenotype, and H) 

on longitudinal polygenic (sim-P20) phenotype. 

 

In addition to longGWAS, another program that can, in theory, implement a ‘proper’ 

longitudinal analysis is the lmekin function within the R package coxme (Therneau, 

2012). In fact, lmekin is more generic than longGWAS as it can, in theory, handle any 

number of random effect components, which are not required to be polygenic or 

individual effects. The disadvantage of lmekin when applied to GWAS analysis is that, 

because it was designed as a generic mixed model method, it does not implement any 

speed up algorithm which can be found in methods designed for GWAS analysis. For 

this reason, it was found to be computationally infeasible for analysis of genome-wide 

data. For the purpose of comparing lmekin to other methods, a set of 2,423 SNPs of 

different effect sizes (2 strong/polygenic SNPs, 22 additional sim-L20 polygenic SNPs, 

400 additional sim-P20 polygenic SNPs and 1,999 randomly chosen null SNPs) was 

extracted from the longitudinal data set. Application of lmekin to this set of SNPs in the 

sim-L20 data suggested that the results were very similar to those obtained from 

GenABEL (FASTA), EMMAX (Balding-Nichols), FaST-LMM, GEMMA and MMM 

(Figures 5.34-5.35). However, it did not give meaningful results (most were “NA”) 

when applied to the sim-P20 data. 
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Figure 5.34 Q-Q plots of simulated longitudinal quantitative phenotype (sim-L20), restricted 

GWAS results and genomic inflation factors (λ) for different LMM methods compared with 

lmekin. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-

LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with 

RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA 

using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM 

using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = 

unadjusted analysis. The dots at the upper border of the MMM and LMEKIN panels represent the 

SNPs where the equivalent 𝝌𝟐 values are ∞ (i.e. p-value = 0). The apparent genomic inflation 

factor in this case would be higher than usual due to the way the subset of 2,423 SNPs were 

chosen for analysis. 

 



133 
 

 

Figure 5.35 Comparison of –log10(p-values) from lmekin and various LMM software packages 

when applied to simulated longitudinal quantitative phenotype, on a restricted set of 4,323 

SNPs. The black solid lines represent the line of equality. The colours denote: red = the two strong 

effect SNPs, magenta = SNPs within 2 Mb of the strong effect SNPs, blue = 22 polygenic SNPs, 

green = SNPs within 2 Mb of the polygenic SNPs, black = all other SNPs. Because the 

black/green/blue SNPs were plotted before the magenta/red SNPs, they may be obscured by the 

latter. EM_BN = EMMAX (Balding- Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-

LMM using approximate calculation with RRM, FLMM_E = FaST-LMM using exact calculation with 

RRM, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA 

using centred genotypes, GMA_S = GEMMA using standardised genotypes, MMM_E = MMM 

using full mixed model (exact) calculation, MMM_G = MMM using GLS approximation, Unadj = 

unadjusted analysis. Dots at the borders of the panels represent the SNPs where the –log10(p-

values) are ∞ (i.e. p-value = 0), or in the unadjusted analysis, where the given p-values were ∞ 

(therefore their –log10 values were −∞). Note that this means the red ‘strong effect’ dots are 

really much further to the right than were plotted here. 

 

5.5. Computational Efficiency and Ease-of-use 

Given that many of the software implementations investigated, and in particular all the 

various LMM implementations, showed similar levels of power and type 1 error, and 

gave rather similar inference in terms of localisation of signals and –log10 p-values 

achieved, an important practical consideration when deciding what implementation to 

use is the ease-of-use and computational efficiency. Ease-of-use is necessarily 

somewhat subjective as it depends on a user’s prior experience and software/operating 

system preferences. Computational efficiency can, in theory, be examined more 

objectively. However, in practice, the total time required to perform an analysis is 
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dependent on the computer architecture available (in particular the ability of the 

system and of any given program to allow multithreading), demands of competing 

users and the availability of (and ability of any given program to make use of) facilities 

for parallel processing e.g. a multi-node compute cluster. These considerations make it 

hard to perform a genuine ‘head-to-head’ comparison between different packages. 

Table 5.4 presents an approximate comparison (carried out on the same machine, 

without use of parallel (i.e. multi-node) processing, but with multithreading allowed if 

native to that program) together with some comments concerning ease-of-use. Since 

PLINK (Purcell et al., 2007) is commonly used to perform initial quality control of 

genome-wide association data, programs that could use PLINK files, either directly or 

with just a few easily-implemented transformation steps, were considered to be the 

easiest to use, while programs that required more extensive data transformation, 

creation of additional input files and/or external estimation of kinships were 

considered harder. 

With respect to computational speed, as a rule of thumb, FaST-LMM (approximate) 

and GenABEL (GRAMMAR-Gamma) were found to be the fastest LMM 

implementations, taking between 2 minutes and a quarter of an hour to analyse 

545,433 SNPs in 1,972 genotyped individuals. These were closely followed by EMMAX 

and MMM (approximate) which took around half an hour, GenABEL (FASTA), 

GEMMA, FaST-MMM (Exact) and MMM (Exact) which typically took 1-2 hours, 

Mendel (estimated kinships) which took around 2.5 hours (but see footnote of Table 5.4 

and discussion), and GTAM which took around 4 hours. Of the non-LMM methods, 

FBAT, MQLS and MASTOR were the fastest, taking a few hours to perform the 

analysis, while ROADTRIPS was the slowest, taking several days. 

Although slightly slower than FaST-LMM in absolute terms, it should be pointed out 

that GenABEL (GRAMMAR-Gamma) is a single-threaded application whereas FaST-

LMM is natively multithreaded and, in this measurement, ran on all 8 CPU cores. This 

means that on a single core system, GenABEL (GRAMMAR-Gamma) may be 

marginally quicker than FaST-LMM. 

The fastest LMM methods were all approximate. In practice, it should not matter if an 

exact or approximation method was used as the results should be very similar. 

However, if an exact LMM calculation is required, then GEMMA could potentially be 

the fastest program to run naively, i.e. without further user-enforced parallelisation. 
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 Time take to perform whole GWAS  

Package/method Data 

conversion 

from PLINK 

Kinship 

calculation 

Association 

analysis 

Total Ease of use 

EMMAX (BN)* 8m 19s 38s 14m 40s 23m 37s Easy 

EMMAX (IBS)* 8m 19s 43s 14m 04s 23m 06s Easy 

FaST-LMM (Approx)*  (7-9s) 14m 15s 14m 23s 

(2m 14s†) 

Easy 

FaST-LMM (Exact)*  (7-9s) 1h 53m 52s 1h 54m 00s 

(1h 51m 18s†) 

Easy 

GEMMA (GMA_C)  2m 49s 1h 06m 54s 1h 09m 43s Easy 

GEMMA (GMA_S)  2m 48s 1h 06m 54s 1h 09m 42s Easy 

GenABEL (FASTA) 4m 25s 11m 44s 41m 05s 57m 14s Requires 

familiarity with R 

GenABEL 

(GRAMMAR-Gamma) 

4m 25s 11m 44s 25s 16m 34s Requires 

familiarity with R 

Mendel 

(Estimated kinships)‡ 

   2h 27m 02s‡ Medium 

MMM (Approx) 18m 01s 5m 31s 29m 33s 35m 05s Medium 

MMM (Exact) 18m 01s 5m 06s 1h 17m 24s 1h 40m 31s Medium 

FBAT (Affected only) 25m  1h 11m 1h 36m Medium 

FBAT (Both) 25m  1h 22m 1h 47m Medium 

GTAM (implemented 

in MASTOR v0.3) 

Varies  3h 59m 3h 59m 

+conversion 

File conversion 

fiddly 

MASTOR Varies  1h 02m 1h 02m 

+conversion 

File conversion 

fiddly 

MQLS (1972) 14m  26m 40m Medium 

MQLS (3626) 25m  36m 1h 01m Medium 

ROADTRIPS (1972) Varies  15h 36m 15h 36m 

+conversion 

File conversion 

fiddly 

ROADTRIPS (3626) Varies  39h 01m 39h 01m 

+conversion 

File conversion 

fiddly 

Table 5.4 Computational speed and ease of use of various packages in analysis GWAS data consisting 

of 545,433 SNPs in 1,972 individuals. 
*
 These programs are either documented to be multithreaded (FaST-LMM) or observed to be 

multithreaded (EMMAX). FaST-LMM appeared to run single-threaded when using exact calculation. 
†
 These numbers represent the total run time required in the FaST-LMM’s default ‘run-through’ mode, in 

which kinship estimation and GWAS calculation were performed in a single run. There appeared to be 

substantial time saving, particularly for approximate calculation, compared with doing these in two 

separate steps, probably because it can use the genotype data directly without having to calculate the 

kinship matrix first. 
‡
 A new version of Mendel was released after the publication of the article describing this part of the 

thesis, which allows multithreading and also substantially improves the calculation efficiency. A 

comparable analysis in the new version of Mendel would now take 6 minutes and 38 seconds. 
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It is possible to further speed up, at least in theory, the computation in most LMM 

software packages by imposing another layer of parallelisation. Due to the two-stage 

nature of most programs, the kinship matrix calculation (or spectral decomposition of 

the genotype matrix), which is normally implemented in a way that would require a 

substantial effort to parallelise, needs to be performed only once, and its products can 

then be fed into the LMM analysis step, which can often be highly parallelised 

(depending on the computational resources available). However, the ease of 

parallelisation in the second stage also varies among different programs. FaST-LMM 

seems to facilitate this best by providing an option to automatically split the calculation 

into a specified number of tasks (through the specification of the task index and the 

total number of the tasks required, which can be easily implemented as an array job in 

the cluster environment), whereas GenABEL (both FASTA and GRAMMAR-Gamma) 

allows specification of SNPs to be used in each calculation, which still needs to be 

determined by the user (or the script). Neither EMMAX, GEMMA nor MMM provides a 

means to do this, and any attempt to parallelise these programs would require direct 

extraction of the required set of SNPs for each task, which could be time-consuming 

and likely to negate the benefit of parallelisation. 

When parallelised, exact analysis of the equivalent data set to the above can typically be 

achieved by FaST-LMM in about 10 minutes. Exact analysis of a large longitudinal data 

set (equivalent to 19,720 individuals (not presented in this thesis)), which would 

normally take about a day for most programs, took just a few hours even in presence of 

moderate cluster load (the equivalent parallelised approximate analysis took about 50 

minutes). This makes FaST-LMM, when optimally parallelised, the fastest exact LMM 

method in absolute terms. 

5.6. Discussion 

In general, all LMM programs were successful in controlling the inflation due to sample 

relatedness and gave very similar results in most simulations apart from the 

longitudinal simulations. 

Analysing each repeated measure as if it comes from a different individual treats the 

data set as a larger ‘pseudo data set’ containing many apparent 

twins/triplets/quadruplets (or, in this case, vigintuplets (20-tuplets)). Although less 

satisfactory than a proper longitudinal analysis that takes into account correlations due 

to both relatedness between individuals and repeated measures within individuals 

(Furlotte et al., 2012; Therneau, 2012), the LMM framework should intuitively be able 

to absorb the effect of repeated measures within individuals into the genetic component 

of variance estimated, resulting in an overall correct distribution of test statistics. For 

EMMAX (especially when using Balding-Nichols matrix), FaST-LMM and GEMMA, 
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this intuition appears to be correct. Although for GenABEL (FASTA) and MMM the 

resulting distribution of test statistics is inflated, the linear relationship between the 

observed and desired test statistics means that test statistics following the desired 

distribution could be obtained simply by dividing the observed 𝜒2 test statistics by the 

observed genomic control inflation factor, in an approach akin to standard genomic 

control (Devlin and Roeder, 1999). Similarly, for GenABEL (GRAMMAR-Gamma) 

which showed gross deflation in a similar manner to that found by Zhou and Stephens 

(2012) in their highly-related mouse data set, re-inflating the results with the observed 

genomic control inflation factor may also yield the desired distribution. (Of note, 

results from the GRAMMAR-Gamma method have actually been re-inflated once using 

the gamma correction factor. It may be that, in presence of repeated measurements in 

this data set, correction by gamma factor alone is not adequate.) 

An interesting conclusion here, in common with the finding from Chapter 3, was that 

longitudinal traits (repeated measures) could be successfully analysed in an LMM 

framework simply by treating each measurement as if it came from a separate person 

and expanding out the genetic data set accordingly (resulting in an expanded data set 

containing many apparent twins, triplets, quadruplets etc). This led to the conclusion in 

our article describing this part of the thesis (Eu-ahsunthornwattana et al., 2014b) that, 

from a practical point of view, this strategy is (or was) useful: analysis of an expanded 

data set in standard LMM software is computationally convenient, while a ‘proper’ 

analysis using software such as longGWAS (Furlotte et al., 2012) or lmekin (Therneau, 

2012) tends to be prohibitively slow (if at all feasible) when applied to this data set. 

That said, this may no longer be the case, since while our article was being published, a 

new version (version 14.2+) of Mendel (K. Lange et al., 2013) was released, which 

implements a more computationally efficient, parallelised version of LMM analysis, 

and also allows an additional variance component to be added to the analysis. 

Longitudinal data can therefore be directly modelled in this version using the extra 

variance component, and can potentially be analysed in a reasonable amount of time, 

making the approximation for longitudinal data analysis used here obsolete, unless 

these naive methods are significantly more resource-efficient than full analysis in 

Mendel, while still giving reasonably accurate results. Any conclusion in this regard 

cannot be made from this thesis, and could be a topic for further exploration. 

Another feature which has been demonstrated in this chapter was the success of using 

estimated kinships to adjust for the inflation due to sample relatedness. Although the 

results in this chapter appeared to suggest that this is equivalent to using theoretical 

kinships, this seems to be due to the lack of the more distant relatedness/population 

structure in the simulation, and, taking into account the results from the previous 
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chapters, the conclusion should be that using estimated kinships is at least as good as 

using theoretical kinships. 

Although all the results presented in this and the previous chapter relate to genotypes 

derived from a single data set (Fakiola et al., 2013), high concordance between different 

LMM implementations seen here, as well as their performance from when applied 

naively to longitudinal data, should hold more generally for genetic studies of diverse 

phenotypes carried out in diverse human populations. Essentially the same pattern of 

results described here was observed when a more limited set of LMM implementations 

were applied to GWAS data from Genetic Analysis Workshop 18, as described in 

Chapter 3, and also when these approaches were applied to GWAS data from 402 

Aboriginal Australian individuals that cluster loosely into 4 large nominal pedigrees (D. 

Anderson et al., 2015). Therefore, although it is possible that highly structured 

populations such as those encountered in plant or animal breeding experiments may 

uncover subtle differences between the various LMM approaches, little difference is 

expected between the results seen from one approach over another for researchers 

carrying out complex genetic disease studies in human populations, and the choice of 

which method/software package to use is likely to be dictated by personal taste and 

convenience. 

On this note, it should be pointed out that each package has its own particular 

advantages (as well as disadvantages). These include the ability of EMMAX, GEMMA 

and MMM to read in the dosages derived from imputed (in addition to real) genotypes; 

MMM has the advantage of allowing the output of regression coefficients and standard 

errors for the SNP effects on the (log) odds ratio scale, making it convenient to compare 

or combine the results with results from traditional case/control studies analysed via 

logistic regression; GenABEL (GRAMMAR-Gamma) has the advantage of scaling 

linearly with sample size, which makes it attractive for the analysis of very large data 

sets; FaST-LMM has the advantage, along with EMMAX and Mendel, of internally 

imputing missing data at any (genetic or non-genetic) covariates, which can make it 

convenient for implementing stepwise conditional analyses; and, unlike most LMM 

implementations, ROADTRIPS, MQLS and MASTOR have the advantage of using all 

phenotype information, including that for individuals that have not been genotyped, 

which can in theory generate a small increase in power. 

One of the main differences between the different software implementations 

investigated was the time taken to perform the analysis (not including the time 

required to re-format data into an appropriate format for a given package). Although 

care was taken to measure the programs run time in similar circumstance (see Section 

2.8), various factors that could not be totally controlled means that this was not a strict 
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head-to-head comparison. However, rough comparison in Section 5.5, assuming that 

kinships are to be estimated on the basis of SNP data, implicated FaST-LMM 

(approximate calculation) GenABEL (GRAMMAR-Gamma), EMMAX and Mendel as 

generally the fastest implementations. 

In conclusion, linear mixed model approaches are convenient and powerful for family-

based GWAS of quantitative or binary traits. They are successful in controlling the 

overall genome-wide error rate and perform well in comparison to competing 

approaches.
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Chapter 6. Application of Genomic IBD Estimates in Non-

parametric Linkage Analyses of the Brazilian Visceral 

Leishmaniasis Data 

This chapter will continue with the overall theme of this thesis by investigating the use 

of genetically estimated IBD in non-parametric linkage analysis. A new method, 

Regional IBD Analysis (RIA) is proposed, and will be compared with methods 

implemented in other standard non-parametric analysis software. 

6.1. Statistical Methods and Software 

6.1.1. Regional IBD Analysis (RIA) 

Following the core principle of comparing the observed and expected IBD sharing 

patterns in non-parametric linkage analysis, a new method, ‘Regional IBD Analysis’ 

(‘RIA’), is proposed here. This method uses genetically estimated IBD sharing 

probabilities instead of the theoretical estimates, which should eliminate the 

aforementioned (Section 1.3) problems of IBD estimation in large, complex pedigrees,  

as well as potentially allowing the analysis to be extended to apparently unrelated 

individuals from different families (if so desired, but see also discussion in Section 6.5). 

This can be implemented as a two-stage approach using readily available software 

packages. 

The first stage of RIA is the estimation of the IBD sharing probabilities, currently 

implemented using either PLINK (Purcell et al., 2007) or KING (Manichaikul et al., 

2010). The estimated IBD probabilities are then fed into the second stage program for 

calculation of the non-parametric linkage statistic. 

In theory, the second stage of RIA could be any non-parametric linkage analysis 

program that does not assume the expected IBD sharing probabilities to follow a pre-

defined pattern (as is the case in the affected-sib-pair method); but in practice, most 

programs internally calculate theoretical IBD for use in their own analysis, thus 

precluding the implementation of RIA using those programs. The current 

implementation of RIA uses the program Onelocarp (Cordell et al., 2000), which allows 

(in fact, requires) externally estimated IBD sharing probabilities in to be read in for 

analysis. 

The methods for IBD estimation in PLINK and KING have been described in Chapter 4 

(Section 4.1.3). Note, however, that only the ‘homogeneous’ estimations (KING-homo) 
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were used here as KING’s robust method gives only IBS estimations. Onelocarp will be 

described in the next section. 

6.1.2. Onelocarp 

The actual program that calculates the non-parametric linkage statistic in RIA is 

Onelocarp, which was originally part of a program package that accompanied an article 

describing a multilocus affected relative pair linkage analysis method (Cordell et al., 

2000); however, unlike the two other programs in that package, Twolocarp and 

Threelocarp, Onelocarp was designed for single locus analysis (which is just a special 

case of the proposed multilocus method). 

All programs in the package require externally calculated ‘prior’ and ‘posterior’ IBD 

sharing probabilities to be read in for their analyses. The prior IBD sharing 

probabilities are the expected probabilities of each IBD sharing state between each of 

the affected pairs of individuals based on their type of relatedness. In context of 

affected relative pair analysis, these are equivalent to the IBD sharing probabilities of 

the pair under the null hypothesis of no linkage, and were originally assumed to be 

derived from pedigree information. However, these can, in theory, be replaced with any 

other appropriate estimates. The posterior IBD sharing probabilities are the 

probabilities of each IBD sharing state between the pair, given the observed genotype at 

the locus (or loci) of interest. The estimation of these traditionally requires pedigree 

knowledge, but again can be replaced with other appropriate estimates. 

Provided with the externally estimated prior and posterior IBD probabilities, Onelocarp 

calculates a non-parametric maximum-likelihood statistic (MLS)-like test of linkage of 

the form (Cordell et al., 2000): 

MLS = ∑ log10 (∑
𝑧̂𝑖𝑗𝑓𝑖𝑗

𝑓𝑖𝑗

2

𝑖=0

)

𝑗

 

where 𝑧̂𝑖𝑗 is population parameter (to be estimated) corresponding to the probability 

that an ARP of the same type as pair 𝑗 shares 𝑖 allele(s) IBD at that locus, 𝑓𝑖𝑗 is the 

posterior probability that pair 𝑗 shares 𝑖 allele(s) IBD at that locus given the observed 

marker data and 𝑓𝑖𝑗 the prior probability that pair 𝑗 shares 𝑖 allele(s) IBD. 

Internally, Onelocarp simplifies the estimation of 𝑧̂𝑖𝑗, which is specific to each type of 

ARP, by instead parameterising in terms of overall additive and dominance variances 

which need to be estimated only once, given that the population prevalence of the 

disease is specified (see Cordell et al. (2000) for details). Additionally, if the effect is 

assumed to be purely additive, the dominance variance can a priori be set to zero, thus 

further simplifying the calculation. 
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The version of Onelocarp used here was slightly modified by my supervisor (HJC) from 

the original version to accommodate the use of empirical IBD estimates in the following 

ways: 

1. Onelocarp handles the situation where the prior probability of any IBD sharing 

state 𝑖 is 0 by setting the corresponding likelihood term 𝑧̂𝑖𝑗𝑓𝑖𝑗/𝑓𝑖𝑗 to 0, and uses 

the remaining terms for MLS calculation. Since the theoretical posterior IBD 

probability will also be 0 when the prior is 0, this procedure was reasonable and 

worked successfully in the original version of Onelocarp. However, with 

genetically estimated IBD, the posterior IBD probabilities are now 

computationally independent of the prior probabilities, and may not necessarily 

be 0 when their corresponding prior probabilities are 0. The original procedure 

would then lead to a situation where the sum of posterior probabilities in the 

remaining likelihood terms is not 1, which results in incorrect MLS estimation. 

The procedure implemented in the modified version of Onelocarp is that, when 

it encounters a 0 prior, Onelocarp will set the corresponding likelihood term to 

0 and also rescale the posterior probabilities in the remaining terms so that 

their sum is 1. 

2. The maximum numbers of affected relative pairs and markers that can be 

analysed in a single run have been increased from 2,000 pairs and 300 markers 

to 80,000 pairs and 600 markers, respectively. 

A variant of Onelocarp (‘Onelocarp-ndv’, for ‘no dominance variance’) was also created. 

In addition to the above modifications, this program fixes the dominance variance to 0 

(so the genetic effect is purely additive). This is a reasonable assumption in complex 

diseases, and can speed up the calculation further. The performance of RIA was 

investigated here using both Onelocarp and Onelocarp-ndv (designated ‘RIA’ and ‘RIA-

ndv’, respectively). 

6.1.3. Global and local genomic IBD estimation 

The IBD sharing probabilities used in RIA are estimated solely based on genomic data 

using either PLINK (Purcell et al., 2007) or KING (Manichaikul et al., 2010). Two types 

of estimation are used: ‘global’ and ‘local’ IBD estimates (Figure 6.1). 
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Figure 6.1 Example of how RIA selects SNPs for its IBD estimation. Circles (both black 

and white) represent SNPs in the data set. Number underneath each circle (SNP) 

denotes the order of that SNP in the data set for that chromosome. White circles (e.g. 

SNPs 38 and 88 here) are the pruned SNPs; only these are used in global IBD estimation 

(estimated from all available autosomes). In this example, the window size for local IBD 

estimation is 2,000 SNPs, moving 50 SNPs at a time. 

 

The global IBD probabilities are estimated using genome-wide SNP data, which may 

have undergone a SNP reduction process (such as pruning or thinning) but still retain 

their genome-wide coverage. For both theoretical (due to independency among the 

SNPs) and practical reasons, pruned sets of SNPs were used to calculate the global IBD 

estimates in this thesis. Because of their global nature, the global IBD estimates reflect 

the overall degree of relatedness of each pair of individuals, and are suitable for use as 

the prior IBD probabilities in RIA. 

The local IBD probabilities reflect the IBD sharing probabilities at the locus of interest 

and are used as the posterior probabilities in RIA. They are estimated using adjacent 

SNPs of a certain length (‘window’), with the location of the window represented by its 

mid-point SNP. The window for IBD estimation moves along each chromosome at a 

certain pre-specified number of SNPs (‘step’), except for the last window in each 

chromosome which may begin earlier than this so that the number of SNPs in it 

remains correct. Setting the step size less than the window size creates a series of 

overlapping windows on each chromosome. 

The appropriate window size for local IBD estimation depends on the data set, 

particularly its number (or density) of SNPs, and I carried out a smaller scale trial run 

to optimise this. Empirically, a window size of 500 SNPs seems appropriate for a 

genome-wide data set of about 100,000 SNPs, and that of 2,000 SNPs seems 

appropriate for a data set of about 500,000-600,000 SNPs (see also Sections 6.2 and 

6.4). The RIA analyses in this thesis therefore used a window size of 500 SNPs for the 

... ... ... ... ... ...
1 2 38 51 88 101 2000 2050

global IBD (pruned SNPs only)

local IBD, window 2

local IBD, window 1
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all-sample VUR data set, and 2,000 SNPs for the Dublin-only VUR data set and for the 

VL data set. The step size was fixed at 50 SNPs in all analyses. 

With a relatively small window size like this, it is possible that two individuals in a pair 

do not share any non-missing SNPs within a particular window. This can occur even in 

quality-controlled data set with reasonably low individual and marker missing rates. 

PLINK and KING respond differently to this. 

When a pair which does not share any non-missing SNP is encountered during the 

pair-wise IBD estimation, PLINK immediately stops. This may in fact be the correct 

behaviour for its intended use (i.e. for data quality control, using genome-wide data for 

estimation), but causes a serious problem for RIA, as it means the remaining pairs in 

which IBD estimation should be possible do not have their IBD estimated, and this 

occurs at a rather unpredictable point in the calculation (in a sense that there is no 

fixed pattern in the data set; it only occurs as and when the condition is satisfied). To 

circumvent this problem, a dummy SNP was inserted into each local IBD window, with 

its value set to heterozygous (A/B) in all individuals. This allows PLINK to complete its 

calculation in all individuals, but could potentially introduce some bias into the 

analysis. The extent of this will be seen in the subsequent sections. 

KING responds to this problem in a more desirable manner: it will just produce 

missing values for those pairs. In RIA analysis, any missing posterior probability is 

replaced by the corresponding prior probability, which would result in a slightly 

conservative analysis. 

Unlike PLINK, the IBD probabilities from KING are not automatically constrained to 

biologically plausible ranges. This could also cause problem with Onelocarp, which, 

being originally written for pedigree-based data analysis, assumes that it will be given 

biologically valid probabilities. To prevent this issue, a simple constraining procedure 

was applied to KING’s output: first constrain the kinship coefficient to the range of [o, 

0.5] and the 0 IBD sharing probability to [0, 1] (these are the two output values from 

KING); then calculate the 1 and 2 IBD sharing probabilities from the constrained 

kinship coefficient and the 0 IBD probability; finally, constrain both 1 and 2 IBD 

sharing probabilities to [0, 1]. Incidentally, this leads to IBD probabilities that do not 

necessarily add to one. However, since the modified version of Onelocarp automatically 

rescales the IBD probabilities, no further adjustment is required here. 

Another problem peculiar to KING is that, in its current implementation, it does not 

allow allele frequencies from external source to be used in its IBD estimation: the allele 

frequencies used in IBD estimation in KING is based solely on the data being fed in. 

This probably makes sense if one is also implementing a population-robust method, but 
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seems to be overly restrictive under homogeneity assumption, and could potentially 

lead to inaccuracies in RIA, where only genotype data from affected relative pairs are 

used. A possible method to circumvent this is to feed the full data set to KING, then 

select the IBD probabilities from only the relevant affected relative pairs. However, this 

is inefficient, less practical and, depending on the data set available, may not even be 

possible. In this thesis, the simple method of feeding the ARP data set to KING will be 

used. 

6.1.4. Other linkage analysis software used 

The results from RIA were compared to those from a set of traditional non-parametric 

linkage analysis methods, chosen to represent both the exact and simulation-based 

methods. These have different merits and are suitable for different situations, as 

described below. 

Merlin 

One approach to non-parametric linkage analysis is to view this as a test for excess IBD 

sharing (Kong and Cox, 1997). Whittemore and Halpern (1994) proposed two IBD 

scoring functions for use in affected relative pairs analysis: Spairs and Sall. The former is 

based on a simple count of allele pairs that are shared IBD in each affected relative pair, 

the latter takes into account the IBD sharing in all affected individuals within the same 

family (Whittemore and Halpern, 1994; Kruglyak et al., 1996; Kong and Cox, 1997; 

McPeek, 1999). When these scores are standardised and weight-averaged across all 

pedigrees, the resulting statistic will be normally distributed with mean 0 and variance 

1 under the null hypothesis of no linkage, given that the IBD sharing information is 

completely known. However, if the information on IBD sharing is incomplete, as would 

normally be the case, the test can become conservative (Kruglyak et al., 1996; Kong and 

Cox, 1997; McPeek, 1999). (A side effect of this is that the test statistics tend to be lower 

between markers (since the information there will be less complete), which is in 

contrast to what would be expected in standard parametric linkage analysis (Cordell et 

al., 2000)).  

To correct for this behaviour, Kong and Cox (1997) proposed a class of likelihood ratio 

tests based on Spairs and Sall, using either a linear or an exponential single-parameter 

likelihood model. Both of these can give LOD scores as well as a normally distributed Zlr 

statistic, with the exponential model having an advantage over the linear model when 

the number of families is small and the excess IBD sharing is high, at the expense of 

higher computational cost. 

Merlin (Abecasis et al., 2002) uses sparse binary trees to allow the Lander-Green 

algorithm (Lander and Green, 1987) to estimate the inheritance vectors using a large 
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number of markers in relatively large families (compared with what can be achieved 

using the standard Lander-Green algorithm). These can then be used to produce 

several non-parametric linkage test statistics. Among these, the Kong and Cox 

exponential model LOD score (Kong and Cox, 1997) based on the Spairs statistic was 

chosen here as it most resembles RIA’s MLS method. 

The Lander-Green algorithm, although capable of handling a large number of markers, 

is known to be resource-demanding and cannot handle large families (Lander and 

Green, 1987; Abecasis et al., 2002; Albers et al., 2008). The extension in Merlin relaxes 

this limitation, but in practice the family size that can be successfully analysed is still 

limited, as will be demonstrated. 

MORGAN (lm_ibdtests) 

The program lm_ibdtests (Basu et al., 2010) in the software package MORGAN 

(http://www.stat.washington.edu/~thompson/Genepi/MORGAN/Morgan.shtml) uses 

a Markov chain Monte Carlo (MCMC) method to estimate the inheritance vectors in 

complex pedigrees, which can then be used for calculation of various IBD scoring 

statistics. The level of significance can be assessed using either by performing 

phenotype permutation or by using a standard normality assumption (Sieh et al., 2005; 

Basu et al., 2008; Basu et al., 2010). For the purpose of comparison with RIA’s results, 

the standardised Spair statistics (Whittemore and Halpern, 1994; Kruglyak et al., 1996) 

obtained under normality assumption was used here. (However, it should be noted that 

this is likely to be overly conservative, as described for the tests above, and under 

normal circumstances the permutation test is likely to be a better option.) 

The use of MCMC sampling allows lm_ibdtests to handle complex pedigrees, but at the 

expense of not providing an exact calculation. 

6.2. Comparison with Exact Non-parametric Linkage Analysis, Using a Pilot 

(VUR) Data Set 

As a proof of concept before embarking on more complex analyses, RIA analyses using 

various IBD estimation methods were performed on the VUR data set. Because this is a 

data set of small nuclear families, aimed specifically for linkage analysis, it allows 

comparison with exact linkage analysis using Merlin. Additionally, the results were also 

compared with the standard transmission disequilibrium test (TDT) (Spielman et al., 

1993) as implemented in PLINK (Purcell et al., 2007), and with LMM GWAS 

implemented in FaST-LMM (Lippert et al., 2011). 

Using all samples in this data set, the Manhattan plots (which, for genome-wide linkage 

analyses, tend to have much sparser data points than GWAS analyses, and function 

quite similarly to traditional linkage analysis plots) show that RIA was able to detect 
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linkage signals quite similar to those detected by Merlin (Figures 6.2 and 6.3). The 

results were especially similar when Merlin’s theoretical IBD estimates were used in 

RIA, demonstrating the concordance of the MLS calculated using Onelocarp and the 

Kong and Cox exponential model LOD scores from Merlin. With RIA using genetically 

estimated IBD, the plots become more noisy. Although most of the ‘true’ signals (i.e. 

concordant with Merlin) could still be seen, particularly the top signals, these methods 

have also detected substantial ‘extra’ signals (which Merlin did not detect and could 

therefore potentially be false, but without the complete knowledge of the true effect 

locations, they could not be labelled as such with certainty). For example, in Figure 6.3 

which focuses on chromosome 10, and contains the strongest signal peak in Merlin 

analysis, the peak toward the end of the chromosome detected by Merlin was also 

detected by all RIA methods; however, RIA using genetic IBD estimation also produced 

another peak before that, which was not detected by Merlin. Interestingly, this seems to 

coincide roughly with a (non-significant) peak seen in the TDT, as well as a rather 

extreme data point in FaST-LMM. Whether this is a genuine signal or whether RIA just 

gave a false signal is difficult to judge without complete knowledge of the genetic 

causality of VUR. There was no noticeable difference between RIA using IBD estimates 

from PLINK and KING (even with the problems discussed in the previous section), nor 

between the standard and the ‘no dominance variance’ (‘NDV’) versions of RIA. TDT 

and FaST-LMM results seem to be generally different from Merlin, although some of 

their peaks (or outlying points) seem to coincide with RIA’s. 
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Figure 6.2 Manhattan plots for real VUR data set (all samples) using various non-parametric 

linkage analysis and association methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with 



150 
 

dominance variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = 

using IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous 

population assumption, TDT = transmission disequilibrium test implemented in PLINK. 
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Figure 6.3 Comparisons of test statics for chromosome 10 of the real VUR data set (all samples) 

using various methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance variance set 

to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = using IBD estimated by 
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PLINK, (KING) = using IBD estimated by KING under homogeneous population assumption, TDT = 

transmission disequilibrium test implemented in PLINK. 

 

The comparisons of the test score at each individual marker (Figure 6.4) also show 

similar pattern: high concordance between Merlin and RIA using Merlin’s IBD 

estimates, and among RIA using various methods for genetic-based IBD estimation; 

and less concordance between Merlin and RIA using genetically estimated IBD. In fact, 

a pattern that can be seen here, and in subsequent similar comparisons, is that the 

lower values from methods using genetically-estimated IBD correspond well to those 

from the methods using theoretically estimated IBD, whereas the higher values from 

the genetic-based methods may not necessarily correspond to those from the 

theoretical methods. 

 

 

Figure 6.4 Comparison of MLS/LOD scores obtained from VUR data set (all samples) using RIA 

with various IBD estimation methods and using Merlin. Plot above the diagonal show a 

comparison of the scores, with correlation between them indicated below the diagonal. The grey 

solid lines represent the line of equality; the black dashed lines the linear regression line of the 

variable on the y axis on the variable on the x axis. RIA = Regional IBD Analysis, RIA-ndv = RIA with 

dominance variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = 

using IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous 
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population assumption. Note that these are rather crude comparisons: because different sets of 

markers were used in different classes of analysis, these plots can only show the approximate 

matching between them, and will have additional discrepancies as a result of this. 

 

A little caveat when looking at the plots similar to Figure 6.4 in this chapter is that, 

unlike this type of plots from the previous chapters, the marker locations in each class 

of methods may not correspond exactly to the locations in the other classes. This is 

because different sets of markers—or in RIA, ‘pseudo-markers’, defined as the mid-

position of each window—were used in the analyses by different classes of methods. 

The comparison plots were then constructed by mapping each marker from the 

methods with the least number of markers to the nearest marker (in terms of map 

distance, which must also be within 1 cM) from the methods with more markers. This 

inevitably led to some further discrepancies in the plots due to the slight mismatch of 

markers alone. However, even in presence of these discrepancies, all methods still seem 

quite concordant. 

To investigate the performance of RIA when a denser chip, more comparable to 

modern standards, is used, the methods were also applied to a subset of VUR samples, 

namely, those from the Dublin cohort, who had been genotyped on a higher resolution 

platform (see Table 2.1 on page 28 for details of this cohort). This increases the number 

of SNPs after quality control from the 119,548 common to all samples to 644,006, and 

would also mean the samples are more homogeneous, although at the expense of a 

smaller sample size. 

As the number of SNPs on the chip increases, the size of the window for IBD estimation 

also has to be increased if the window is to span a similar distance. It appears that a 

window of 2,000 SNPs gives a reasonably smooth baseline in this denser data set 

without losing sensitivity. (Given that the number of SNPs increased by about 5.4 fold 

whilst the window size only by 4 fold, this actually means that each window is expected 

to span a slightly smaller distance than in the all-sample analysis.) 

The findings in this analysis are quite similar to the all-sample analysis, although the 

concordance between the methods using theoretical IBD estimates and methods using 

genetically estimated IBD seems to be slightly lower (Figures 6.5-6.7). Interestingly, 

Merlin now produced further signals before the end of chromosome 10, which seem to 

correspond to the signals detected by RIA in the all-sample data set (Figure 6.6, cf. 

Figure 6.3 on page 151). As for RIA using genetic IBD estimation, these signals are now 

more prominent than that at the end of the chromosome. With these observations, it 

could be that the signals detected by RIA in both data sets are real, and perhaps 

contributed more by the Dublin group. 
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Figure 6.5 Manhattan plots for real VUR data set (Dublin samples) using various non-parametric 

linkage analysis and association methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with 
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dominance variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = using 

IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous population 

assumption, TDT = transmission disequilibrium test implemented in PLINK. 

 



156 
 

 

Figure 6.6 Comparisons of test statics for chromosome 10 of the real VUR data set (Dublin 

samples) using various methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance 

variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = using IBD 
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estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous population 

assumption, TDT = transmission disequilibrium test implemented in PLINK. 

 

 

Figure 6.7 Comparison of MLS/LOD scores obtained from VUR data set (Dublin samples) using RIA 

with various IBD estimation methods and using Merlin. Plots above the diagonal show a 

comparison of the scores, with correlation between them indicated below the diagonal. The grey 

solid lines represent the line of equality; the black dashed lines the linear regression line of the 

variable on the y axis on the variable on the x axis. RIA = Regional IBD Analysis, RIA-ndv = RIA with 

dominance variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) = using 

IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous population 

assumption. Note that these are rather crude comparisons: because different sets of markers were 

used in different classes of analysis, these plots can only show the approximate matching between 

them, and will have additional discrepancies as a result of this. 

 

Comparisons were also made between RIA using two different windows sizes on this 

data set. The finding was similar across all methods of estimation: background noise in 

RIA tends to increase when the window size for IBD estimation becomes smaller, to the 

point that it obscures the ‘true’ signals whilst at the same time gives out many ‘false’ 

signals. Interestingly, the magnitude of the test statistics also seems to be highly 

dependent on the window size in a similar fashion. An example of this using IBD 

estimates from PLINK in standard version of Onelocarp is shown in Figure 6.8. 
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Figure 6.8 Manhattan plots for real VUR data set (Dublin samples) using RIA with IBD 

estimation from PLINK with different window sizes. 

 

6.3. Comparison with Exact and Simulation-based Non-parametric Linkage 

Analysis, Using VL Data with Reduced Pedigree Complexity 

With the VL data set, RIA is being applied to the type of data it is intended for: large, 

complex pedigrees, and with affected individuals who are less related. However, the 

attempt to use the full VL data set presented a complication—it was not possible (for 

comparison purposes) to perform the full analysis using the exact method implemented 

in Merlin. 

Although using sparse trees instead of full binary trees in the Lander-Green algorithm 

should in theory allow Merlin to handle relatively large families, Merlin was not able to 

complete its analyses in many families in the VL data set. This was despite its having 

been compiled as a 64-bit application (so that it is not subjected to the 4 GB memory 

limit inherent to 32-bit applications) and supplied with more than adequate physical 

memory. The problem seems to be due to the actual program code, which, at least for 

the family tree construction module, is still coded using 32-bit data structure. Without 

significant modification, Merlin would not be able to analyse the full VL data set.  

To enable comparisons between RIA and ‘standard’ non-parametric linkage analysis 

using the full VL data set, an alternative analysis using simulation method was used. 

The results of this will be presented in the next section. However, if RIA is to be 

compared to the exact method, then the complexity of the pedigrees in the VL data set 

needs to be reduced. Although this slightly defeats the purpose of using the VL data set 

in the first place, it was hoped that the reduced data set would still retain some of its 
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complex family structure—presumably, it should not be necessary to reduce the family 

size to the point that they effectively become nuclear families. 

Merlin does in fact provide the --trim option which removes individuals without 

genotype or phenotype information who are not required to define pedigree relatedness 

between other individuals. However, this automated procedure did not completely 

resolve the problem as there remained several families that were still too complex. 

Further reduction of pedigree complexity in these families was done through manual 

trimming. As an example, in family 245 (see Figure 6.9, next page, for annotated 

pedigree), there are 4 affected individuals (drawn in black, also marked A-D) in what 

appears to be a very large family. However, upon closer inspection, it is apparent that 

this family actually consists of 3 ‘subfamilies’ (SF1-SF3) linked only through two 

marriages. Affected individual A from subfamily SF1 is only related to the other 

subfamilies (and affected individuals) through marriage. He is therefore biologically 

unrelated to them (as C. C. Li and Sacks (1954) remarked: “one’s relatives are not 

necessarily still relatives.”), except perhaps for cryptic relatedness, and cannot be used 

for (family-based) linkage analysis. This also means the whole SF1 subfamily is 

irrelevant to the analysis and can be excluded. Subfamily SF2 cannot be used either, but 

for a different reason. Although B who is a daughter of a member of this subfamily is 

also a cousin to C in subfamily SF3, she is not genotyped. And because neither of her 

parents or grandparents or in fact most members of SF2 have been genotyped, there is 

little to be gained from including B in the analysis while the memory cost is likely to be 

very large. With B excluded, the whole SF2 can also be excluded. This leaves only SF3 

(without B’s immediate family members) for the analysis. However, even this still 

caused problems with Merlin; and further removal of non-genotyped individuals who 

do not contribute to IBD estimation (R1 and R2 groups) was required before the family 

could be successfully analysed. 

In some families, it was not possible to trim down without losing information. For 

example, in family 15 (Figure 6.10), there are 4 affected individuals who are all related 

and genotyped and the family appears to be a true single, large family. Most of the 

family members are also genotyped. In this type of family, removing any member 

potentially reduces the accuracy of theoretical IBD estimation, but is necessary for the 

reduction of pedigree complexity. Repeated ‘random’ trimming, while still attempting 

to keep all affected individuals and preserve overall family structure, was used in this 

situation, until the family could be analysed in Merlin. 
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Figure 6.9 Pedigree of family 245 from the VL data set and example of manual trimming process. This pedigree was plotted using Madeline 2.0 PDE (Trager et al., 2007) with 

slightly modified colour scheme to match conventional usage, i.e. black denotes affected individuals and white unaffected individuals. Individuals plotted in grey are those 

whose phenotype is missing. Although they may be too small to be read properly here, the first line of labels underneath each individual symbol is the individual ID, and the 

second line reflects the genotyping status: either ‘OK’ (appears as shorter text) for genotyped individuals or ‘Missed’ (appears as longer text) for non-genotyped individuals. 

See text for descriptions of the various annotations. 
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Figure 6.10 Pedigree of family 15 from the VL data set. This pedigree was plotted using Madeline 2.0 PDE (Trager et al., 2007) with slightly modified colour scheme to match 

conventional usage, i.e. black denotes affected individuals and white unaffected individuals. Individuals plotted in grey are those whose phenotype is missing. Although they 

may be too small to be read properly here, the first line of labels underneath each individual symbol is the individual ID, and the second line reflects the genotyping status: 

either ‘OK’ (appears as shorter text) for genotyped individuals or ‘Missed’ (appears as longer text) for non-genotyped individuals. 
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Figure 6.11 Pedigree of family 83 from the VL data set and example of manual trimming process. This pedigree was plotted using Madeline 2.0 PDE (Trager et al., 2007) with 

slightly modified colour scheme to match conventional usage, i.e. black denotes affected individuals and white unaffected individuals. Individuals plotted in grey are those 

whose phenotype is missing. The curved lines linking two ‘individuals’ signify that they are in fact a single individual drawn twice in two separate locations to enable the 

pedigree to be plotted (as would be the case when one member of an extended pedigree marries into another extended pedigree). Although they may be too small to be read 

properly here, the first line of labels underneath each individual symbol is the individual ID, and the second line reflects the genotyping status: either ‘OK’ (appears as shorter 

text) for genotyped individuals or ‘Missed’ (appears as longer text) for non-genotyped individuals. See text for descriptions of the various annotations. 
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The situation with family 83 (Figure 6.11, previous page) was more complicated. This 

family consists of 5 subfamilies (SF1-SF5). However, whilst SF1, SF3 and SF5 are each 

connected to SF2 through a single marriage at a non-strategic branch and can be 

readily removed, the same cannot be said for the relationship between SF2 and SF4. 

The marriage between the two members of SF2 and SF4 connects the affected 

individual A in SF2 to the three other affected individuals (B-D) in SF4. This makes 

them potentially informative for linkage analysis. However, because among these four 

biologically-related affected individuals, only D is genotyped, the application of both 

Merlin and RIA to this pedigree is precluded. This pedigree (or any other pedigrees 

similar to it) was therefore excluded. 

The manual trimming was done for every family that Merlin still reported as too 

complex after the --trim option was used. This resulted in a final reduced data set of 

816 individuals from 82 families, 198 of whom are affected. 

Although not strictly necessary in this reduced data set, a simulation-based non-

parametric linkage analysis using lm_ibdtests was also performed, so that its results 

could also be compared with those from Merlin before being used as a sole reference in 

the next section. 

The results from these analyses again show rough similarities among all methods 

(Figures 6.12-6.13), although Merlin and RIA using Merlin’s theoretical IBD estimates 

appear to have better discriminatory power than RIA using genetically estimated IBD 

and the simulation-based lm_ibdtests (which also uses theoretical IBD estimates). In 

fact, results from RIA using genetically estimated IBD appear to be quite similar to 

those from lm_ibdtests, taking into account the apparently more random nature of the 

latter. 
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Figure 6.12 Manhattan plots for the reduced-complexity VL data set with real phenotype using 

various non-parametric linkage analysis methods. RIA = Regional IBD Analysis, RIA-ndv = RIA 

with dominance variance set to 0, (Merlin) = using theoretical IBD estimates from Merlin, (PLINK) 

= using IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous 

population assumption. 
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Figure 6.13 Comparison of MLS, LOD and Spairs scores obtained from the reduced-complexity VL 

data set with real phenotype using RIA with various IBD estimation methods and using Merlin 

and lm_ibdtests. Plot above the diagonal show a comparison of the scores, with correlation 

between them indicated below the diagonal. The grey solid lines represent the line of equality; 

the black dashed lines the linear regression line of the variable on the y axis on the variable on 

the x axis. RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance variance set to 0, (Merlin) = 

using theoretical IBD estimates from Merlin, (PLINK) = using IBD estimated by PLINK, (KING) = 

using IBD estimated by KING under homogeneous population assumption. Note that these are 

rather crude comparisons: because different sets of markers were used in different classes of 

analysis, these plots can only show the approximate matching between them, and will have 

additional discrepancies as a result of this. 

 

6.4. Comparison with Simulation-based Non-parametric Linkage Analysis, Using 

VL Data with Full Pedigree Complexity 

Most families in the VL data set are included in this ‘full complexity’ data set. The 

exceptions are the families with less than two individuals that are both affected and 

genotyped, which cannot be used in family-based linkage analysis methods. After the 

exclusion of these families, 1114 individuals from 84 families remain in the final data 

set, 203 of them affected and genotyped. 
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With full pedigree complexity, Merlin can no longer be used. Instead, the simulation-

based lm_ibdtests was used as the reference method. This poses a slight problem as 

results from lm_ibdtests tend to be rather noisy (as can be seen from the previous 

analysis) and conservative (see Section 6.1.4). Furthermore, since neither of the 

methods detected any signal in this data set (Figure 6.14), it could be said that the 

comparisons were being made here only with regard to the degree of concordance of 

the background noise. Nevertheless, as can be seen from Figures 6.14 and 6.15, results 

from these methods appear to be at least roughly concordant, with RIA appearing to 

have slightly better discriminatory ‘power’. 

 

 

Figure 6.14 Manhattan plots for the full complexity VL data set with real phenotype using 

various non-parametric linkage analysis methods. RIA = Regional IBD Analysis, RIA-ndv = RIA 

with dominance variance set to 0, (PLINK) = using IBD estimated by PLINK, (KING) = using IBD 

estimated by KING under homogeneous population assumption. 
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Figure 6.15 Comparison of MLS and LOD scores obtained from the full complexity VL data set 

with real phenotype using RIA with various IBD estimation methods and using lm_ibdtests. Plot 

above the diagonal show a comparison of the scores, with correlation between them indicated 

below the diagonal. The grey solid lines represent the line of equality; the black dashed lines the 

linear regression line of the variable on the y axis on the variable on the x axis. RIA = Regional IBD 

Analysis, RIA-ndv = RIA with dominance variance set to 0, (PLINK) = using IBD estimated by PLINK, 

(KING) = using IBD estimated by KING under homogeneous population assumption. Note that 

these are rather crude comparisons: because different sets of markers were used in different 

classes of analysis, these plots can only show the approximate matching between them, and will 

have additional discrepancies as a result of this. 

 

The effect of different window size for IBD estimation on this data set is demonstrated 

in Figure 6.16. Again, the larger window size resulted in less noisy results as well as in 

the decrease in magnitude of test statistics, with 2,000 SNPs appearing to be an 

optimal window size for this data set, similar to the Dublin VUR data set. 
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Figure 6.16 Manhattan plots for full complexity, real VL data set using RIA with IBD estimation 

from PLINK with different window sizes. 

 

6.5. Discussion 

This chapter demonstrates the use of RIA, a new non-parametric linkage analysis 

method based entirely on genetically estimated IBD, in both small and large family data 

sets. It is particularly advantageous in a data set with larger families, where an exact 

method cannot be used. It also seems to give better results than simulation-based 

linkage analysis, and should in theory have more computational advantage when 

pedigree becomes larger, as, unlike traditional linkage analysis methods, it is not 

affected by pedigree complexity. An additional advantage is that it does not require 

prior knowledge of the family structure, and can be used even when the pedigree 

information is absent or incorrect. 

For efficiency reasons, only family-based linkage analysis was performed here. 

However, in theory, RIA should be applicable for population-based linkage analysis 

(that is, analysis using individuals who are not known to be related) as well, provided 

that a suitable IBD estimation method is used. 
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For non-nuclear family data such as the VL data set, it is possible that some of the 

affected relative pairs are not actually biologically related. An example of this can be 

seen in family 245 (Figure 6.9, page 160): affected individual A is related to the two 

other affected and genotyped individuals C and D only through a series of marriages, 

yet will be analysed as affected relative to them. Strictly speaking, linkage analysis 

using the pairs A-C and A-D is in fact population-based. However, RIA is capable of 

handling this; and such pairs were included in the analysis presented here as this would 

resemble the realistic analysis of this type of data sets. 

The current implementation of KING only allows the allele frequencies to be estimated 

from the data set in use. This poses a particular theoretical problem when applied to 

affected relative pairs methods like RIA, as the genotype data could potentially be 

available only from these individuals, which could affect the allele frequency estimation 

and consequently the accuracy of the IBD and ultimately the MLS calculations. With a 

more inclusive data set like those used here, it is possible to let KING estimate the IBD 

based on the whole data set, so that more accurate allele frequency estimation can be 

achieved, and then select only the relevant affected individual pairs for the MLS 

calculation. However, doing so is inefficient and more complicated practically. The 

method actually used here allowed KING to estimate the IBD based only on the affected 

individuals, which is computationally more efficient and could resemble more extreme 

data sets (perhaps those collected with the aim of using only affected relative pairs 

analysis or case-only analysis), at the cost of potentially less accurate IBD estimation. 

The results from this approach are in fact reassuringly similar to PLINK, perhaps 

because the aim was not to accurately estimate the IBD in itself, but rather to compare 

downstream analysis from two sets of estimated IBD, in which case any bias from 

inaccurate allele frequencies may have cancelled each other out. 

Another issue affecting the accuracy of IBD estimation is the size of SNP windows used. 

As has been demonstrated here, smaller window size results in more noisy results, 

probably because the IBD estimates are less stable and subject more to local 

fluctuations. This, however, needs to be balanced against using too many SNPs in each 

window, which could average out any local effect thus defeat the purpose of the test 

itself. There is no established rule as to how large the windows should be, and this is 

likely to depend on at least a few factors such as the density of the chip and the 

complexity of the pedigrees. In practice, it may be useful to perform a few trial runs 

with varying window sizes on a chromosome to optimise the size of the window to be 

used in the full analysis. Empirically, based on the data sets used here, a window size of 

500 SNPs on the 100K chip, or 2,000 SNPs on the 600K chip, both corresponding 

approximately to the median span of 10 cM /10 million base pairs, seems to have given 

the best results. 
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On this note, it may be worth comparing these window sizes to another study which 

used a similar concept of global and local (or ‘regional’ in their terminology) 

relatedness estimated from windows of SNPs, but using different analytic framework. 

Nagamine et al. (2012) demonstrated the use of a mixed model method for quantitative 

trait analysis that incorporated genetically estimated global relatedness (in a manner 

similar to that in the previous chapters, but using the ‘full’ instead of ‘pruned’ set of 

SNPs) and ‘regional’ relatedness—representing the genetic block under test, and 

calculated from a short window of up to 100 adjacent SNPs—as two separate random 

effect components. Since the total number of SNPs in their data set was 275,564, the 

maximum window size of 100 SNPs means that their SNP windows would span 

approximately a tenth of the windows used here (or about 1 cM / 1 Mbps). The smaller 

window size would presumably be appropriate for their purpose of finding ‘association’ 

effect (although the method also shares a common characteristic of being able to 

integrate over multiple allelic effects with linkage analysis; the association in this case 

operates at the window level). However, this window size seems to lead to very ‘noisy’ 

signals in the data sets used in this thesis; for example, in Figure 6.16, the 100-SNP 

windows used by RIA on the full VL data set, which would be approximately equivalent 

to 50-SNP windows in Nagamine et al. (2012), gave many presumably false signals, and 

it would require much larger number of SNPs in a window to produce linkage signals 

analogous to those achieved by traditional linkage analysis software. One factor which 

may contribute to this phenomenon is that the method by Nagamine et al. uses a single 

summary measure for relatedness, whereas RIA uses all three IBD states, and would 

therefore be able to detect more variation. (As a very simplified hypothetical example: 

suppose the global IBD states between all affected pairs in the data set are (¼, ½, ¼) 

for 0, 1, and 2 alleles shared IBD, respectively (as is the case in ‘ideal’ full-sibs), but the 

local IBD states at a particular window in all pairs are (0, 1, 0), then RIA would detect 

these as very different; on the contrary, the global and regional summary kinship 

measures in the method by Nagamine et al. would both be equal at 0.25, and would 

imply no additional contribution from the regional window.) 

The window size also affects the magnitude of the test statistics. This could be because 

the larger windows are more likely to include non-effect area, which dilutes the effect of 

the true SNPs. This dependence of the magnitude of the test statistics on the window 

size can complicate the calculation of the theoretical distribution for the test statistics, 

and therefore the calculation of the p-values. 

A related problem with the current implementation of RIA, which is actually specific to 

most affected relative pairs methods, is that the calculated MLS could be 

anticonservative as the relative pairs are not jointly independent (Meunier et al., 1997; 

Greenwood and Bull, 1999; Cordell et al., 2000). To address this, Cordell et al. (2000) 
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proposed that the calculated MLS be used as pseudolikelihood instead, and calculate 

the significance level by using simulation. This issue is beyond the scope of this thesis. 

Nevertheless, the current usage of RIA depends on analysing the visual patterns for 

linkage signals rather than the numerical MLS or p-values (which are not currently 

calculated), and so is not affected by this issue. 

Although RIA using genetically estimated IBD appeared to have detected positive 

signals as identified by Merlin, the baseline seemed rather noisy. Nevertheless, it seems 

that the strongest signals could still be separated from the background noise by visual 

inspection. This could potentially mean that RIA would have less power than exact 

methods, as many weaker signals would be obscured by the background noise. 

However, the aim here is to develop a method that is practical for complex pedigrees 

rather than to develop a superior method for small pedigree analysis; as such, RIA 

should be useful in certain circumstances. 

Although attempted, it was not possible to properly compare the performance of RIA to 

the simulation-based method (lm_ibdtests) using the current VL data set, as it 

appeared that it may not actually contain a linkage signal, but at least the ‘baselines’ 

seemed quite similar among the methods. A different problem arose in the VUR 

analyses, as the true effect loci are not really known, so the relative merit of each 

method could not be judged. The next chapter will attempt to address these issues by 

means of phenotype and genotype simulations. 
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Chapter 7. Application of Genomic IBD Estimates in Non-

parametric Linkage Analyses of Simulated Visceral 

Leishmaniasis Data Sets 

In this chapter, the performance of RIA will be compared with a traditional non-

parametric linkage analysis method using simulated data sets. In the same spirit as the 

LMM GWAS comparisons using simulated data sets in Chapter 5, this ensures that 

there is an effect locus, and its location is known, so that the relative merit of each 

method can be assessed. Because of the complexity of the pedigrees in this data set, 

Merlin cannot be used, and the simulation-based method lm_ibdtests is once again 

used for comparison. 

Additionally, the results were also compared to those from FaST-LMM, as the ultimate 

goal of this chapter is to study the performance of RIA when there is linkage but no 

association signal in the data. The simulation settings were chosen to try to ensure a 

situation where there was linkage but no visible association signal in the region. 

Unfortunately, as will be seen later, I was not entirely successful at achieving this goal. 

7.1. Comparison with Simulation-based Non-parametric Linkage Analysis of a 

SNP-based Qualitative Trait 

The first simulation is a simple SNP-based qualitative trait simulation as described in 

Section 2.5.1. To briefly recap, this is an ‘association’-type simulation with logistic 

additive effect based on the minor allele of SNP rs9271252 on chromosome 6, using 

unmodified genotype data from the VL data set. The window size for local IBD 

estimation used in this section as well as the next is 2,000 SNPs, advancing by 50 SNPs 

at a time, similar to that used in the VL data set analysis in the previous chapter. 

As can be seen from Figures 7.1 and 7.2, results from RIA are roughly similar to those 

from lm_ibdtests, although RIA seems to have better discriminatory power (notice, in 

particular, the height of the ‘signal’ peak in chromosome 6 relative to the other ‘false’ 

peaks). However, what seems to be the top signal in both linkage methods (RIA and 

lm_ibdtests) is actually ‘false’, in a sense that it occurred about 20 cM before the 

simulated locus, while FaST-LMM detected this signal correctly (Figure 7.2). 

Nevertheless, RIA—and to a lesser extent, lm_ibdtests—detected the simulated locus as 

a weaker, secondary signal. This concordance between lm_ibdtests and RIA seems to 

suggest that the main signal detected by the linkage methods may, after all, be the true 
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linkage signal; and was perhaps caused by the simulation process combined with the 

genetic linkage structure in that area. 

 

 

Figure 7.1 Manhattan plots for VL data set, SNP-based simulated qualitative phenotype, using 

various non-parametric linkage analysis and association methods. RIA = Regional IBD Analysis, 

RIA-ndv = RIA with dominance variance set to 0, (PLINK) = using IBD estimated by PLINK, (KING) = 

using IBD estimated by KING under homogeneous population assumption. 
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Figure 7.2 Comparisons of test statics for chromosome 6 of the VL data set, SNP-based 

simulated qualitative phenotype, using various non-parametric linkage analysis and association 

methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance variance set to 0, (PLINK) = 

using IBD estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous 

population assumption. 

 

Because of the uncertainty surrounding the accuracy of the MLS statistic to represent 

the true likelihood, and its sensitivity to the window size used, as described in the 

previous chapter (Section 6.5), it is not possible to assign the significance level to the 

test, and therefore not possible to perform a formal power and type I error evaluation 

for RIA. However, some intuition regarding RIA’s discriminatory power can be gained 

from the following experiments: 

Using the same model as the original simulation, 1,000 phenotype replicates were 

generated (using a very similar procedure to the generation of replicates for the GWAS 

data set, as described in Section 2.4.4). These simulated qualitative phenotypes were 

then used in very restricted RIA analyses involving just two loci: the first was the five 

adjacent local IBD windows surrounding the simulated effect SNP (‘effect locus’); the 

other, another five adjacent local IBD windows in chromosome 7 (‘null locus’: this was 
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chosen at random). Additionally, for each replicate of the simulated phenotypes, a set 

of permutated phenotypes was created. These comprise ‘null’ phenotypes, which have 

no genetic contribution, and the 1,000 replicates of these were used in restricted RIA 

analysis involving only the ‘effect locus’. The maximum MLS among the five local IBD 

windows was then selected from each analysis. The histograms of these maximum MLS 

are shown in Figure 7.3, which clearly demonstrate the discriminatory power of RIA: 

the distribution of RIA MLS test statistics under the alternative (when there is a 

genuine simulated effect) is seen to be well separated from their distribution under the 

null. As a side note, the MLS from the simulated phenotype / null locus replicates tend 

to be slightly higher than those from the null phenotype / effect locus replicates. This 

may be because in the null phenotype set, the phenotypes were completely uncoupled 

from the genotypes, whereas in the simulated phenotype set, some effects may still be 

seen in other loci due to random correlation of the genotypes. 
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Figure 7.3 Histograms of MLS statistics from various RIA analyses of VL data set with SNP-based 

simulated qualitative phenotypes. Each panel shows histograms of the MLS statistics calculated 

using respective RIA methods (standard or no-dominance-variance (NDV)) and IBD estimation 

methods (PLINK or KING), with either simulated ‘association’ or ‘null’ phenotypes, at either the null 

or the simulated effect locus; each with 1,000 simulation replicates. 

 

The analysis time for this data set was also measured on a standard memory worknode 

of the older HPC cluster (with similar caveats to Section 5.5). The results show a clear 

advantage of RIA, especially when using KING for IBD estimation (Table 7.1). 
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Method Analysis time (hours) 

lm_ibdtests 66 

RIA (PLINK) 43 

RIA (KING) 2 

Table 7.1 Analysis time for various non-parametric linkage 

analysis methods used in this section. Based on a computer 

with a single 2.67 MHz CPU running a single process. 

 

In attempt to create a situation where a linkage signal is present without an association 

signal, a slightly different simulation strategy was tried: the families in the data set 

were randomly split into two groups; in one group the phenotype was simulated based 

on the minor allele count similar to the above, but in the other group, the phenotype 

was based on the major allele count. The reason for this was that doing so should result 

in the association pattern in the two groups cancelling each other out, while having 

little impact on the linkage signal. However, the results actually showed marked 

reduction in the power of the linkage methods, whereas the association method (FaST-

LMM) was relatively unaffected. With hindsight, this actually makes sense. Because the 

major allele is by definition more common than the minor allele (usually by a large 

margin), and combined with the way the simulation model works, most cases in the 

simulation were caused by the major rather than the minor allele. However, because 

the major allele is less likely to have been inherited IBD, this means that the linkage 

effect was severely diluted. On the contrary, because LMM GWAS methods make 

adjustment for genetic relatedness, it seems that FaST-LMM has successfully captured 

the family effect imposed in this simulation and adjusted for it. This simulation was 

therefore abandoned in favour of the more sophisticated simulations described in the 

next section. 

7.2. Comparison with Simulation-based Non-parametric Linkage Analysis of a 

Haplotype-based Qualitative Trait 

In further attempt to create a situation where the linkage signal is strong but the 

association signal is weak or absent, a more ‘proper’ linkage model was used. This has 

been described in detail in Section 2.5.2. Very briefly, this involves determining the 

haplotypes of a SNP cluster surrounding rs9271252, and inserting a disease SNP into 

this cluster. In certain haplotypes, the disease SNP allele was set to an ‘affected’ allele 

(effectively assigning those haplotypes as ‘affected’), while in the remaining haplotypes, 

it was set to an ‘unaffected’ allele (thus assigning those haplotypes as ‘unaffected’). 

With affected and unaffected haplotypes defined, the genotype data in the 10 cM range 

on chromosome 6 (47 cM to 57 cM, which contains the simulated SNP cluster) were 

generated by gene dropdown process. The simulated genotype data were then used for 
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phenotype simulation, based on the disease SNP, using exactly the same model as in 

the previous section, before removing the disease SNP from the data set. 

What remained to be determined at this stage was which haplotypes were to be 

assigned as affected or unaffected. Several strategies of assignment (with increasing 

degree of sophistication) were tried, including, but not limited to: 

1. Setting haplotypes 2 and 7 (see Table 2.3 on page 34 for details) as affected 

haplotypes. These were chosen for the low correlations among their alleles. 

2. Setting haplotypes 16 and 17 as affected haplotypes. These are two of the rarer 

haplotypes, with estimated frequency of 0.0007 each, which were least 

correlated. The rationale was that their rarity would ensure they were inherited 

IBD, and so should the SNPs surrounding them, thus creating a strong linkage 

signal around them. 

3. Setting haplotypes 6, 16 and 17 as affected haplotypes. The addition here of 

another rare haplotype (haplotype 6, which was chosen to be as much different 

to the other two haplotypes as possible) was an attempt to further dilute the 

association signal from each individual SNP. 

4. Randomly divide families into three groups, then remove one of the above 

affected haplotypes from each group (so, for example, group 1 would only have 

haplotypes 16 and 17 as their affected haplotypes). This was also an attempt to 

better balance the allelic association in each SNP. 

5. Assigning each affected haplotype from strategy 3 as the affected haplotype for 

each group of families from strategy 4. This has similar rationale to strategy 4. 

6. Randomly assign one of the 9 rare haplotypes (see Table 2.3) as the affected 

haplotype for each family. The randomisation process was in fact stratified, so 

that each haplotype was assigned roughly equally among the larger and the 

smaller families. 

Despite the attempts, none of these strategies successfully produced a data set with a 

strong linkage effect but little or no association effect. Neither could this be achieved 

through adjustment of model parameters: it appeared that the linkage methods lost 

their power faster than FaST-LMM when the model parameters were changed. 

As an example, results from the simulation using strategy 2 are shown here (Figures 7.4 

and 7.5). All methods were able to detect a signal at the simulated locus, with RIA again 

appearing to have slightly better power than lm_ibdtests, but not as good as FaST-

LMM. Results from simulations using other strategies follow a similar pattern and are 

not shown. 
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Figure 7.4 Manhattan plots for VL data set, haplotype-based simulated qualitative phenotype 

with gene dropdown, using various non-parametric linkage analysis and association methods. 

RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance variance set to 0, (PLINK) = using IBD 

estimated by PLINK, (KING) = using IBD estimated by KING under homogeneous population 

assumption. The lone, extreme dot (-log10(p) = 89.94) in chromosome 6 of the FaST-LMM plot 

represents rs9271252, which is close to the simulated locus, and is not a plotting artefact. 
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Figure 7.5 Comparisons of test statics for chromosome 6 of the VL data set, haplotype-based 

simulated qualitative phenotype with gene dropdown, using various non-parametric linkage 

analysis and association methods. RIA = Regional IBD Analysis, RIA-ndv = RIA with dominance 

variance set to 0, (PLINK) = using IBD estimated by PLINK, (KING) = using IBD estimated by KING 

under homogeneous population assumption. The lone, extreme dot (-log10(p) = 89.94) in 

chromosome 6 of the FaST-LMM plot represents rs9271252, which is close to the simulated locus, 

and is not a plotting artefact. 

 

An analogous procedure to the previous section was used to assess RIA’s overall power 

on this simulation. However, the gene dropdown had to be performed in each replicate 

before its phenotype can be simulated, with similar constraints to the original 

simulation, namely, the gene dropdown and phenotype simulation was repeated in 

each family until there were at least two affected individuals in that family. The null 

phenotype replicates were also created on a family-based basis: for each replicate, the 

phenotypes were permutated only within each family. This was done to preserve the 

total number of affected relative pairs that can be analysed, but a consequence is that 
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the null phenotypes are slightly correlated with the respective simulated phenotypes as 

there are limited ways to permutate the phenotypes in smaller families. An extreme 

case is a family with only two individuals (who both need to be affected due to the 

simulation constraint) in which permutation is not possible. 

The null loci in this simulation were also selected differently. The second SNP window 

from each chromosome apart from chromosome 6 (which contains the effect locus) 

were analysed in each replicate, and all of their MLS statistics were used. 

The histograms of these are shown in Figure 7.6. Again, the discriminatory power of 

RIA can be clearly seen. One difference between this and Figure 7.3 in the previous 

section is that, in this figure, the MLS from the simulated phenotype / null locus tend to 

be lower than those from the null phenotype / effect locus replicates. This is because of 

the restriction in the phenotype permutation which means there is still some effect 

remaining in the null phenotypes. On the other hand, because the null loci now came 

from 21 independent locations, the correlation with the effect locus is much less than 

that seen in the previous section where only a single null locus was used.  
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Figure 7.6 Histograms of MLS statistics from various RIA analyses of VL data set with haplotype-

based simulated qualitative phenotypes. Each panel shows histograms of the MLS statistics 

calculated using respective RIA methods (standard or no-dominance-variance (NDV)) and IBD 

estimation methods (PLINK or KING), with either simulated ‘disease’ or ‘null’ phenotypes, at either 

the null or the simulated effect locus; each with 100 simulation replicates. 

 

7.3. Discussion 

This chapter demonstrates the success of RIA in detecting linkage signals from 

different type of simulations. However, there are two rather striking and unintended 

observations to be made here. 

Firstly, it was not possible, by using the various strategies employed here, to recreate a 

situation similar to that observed in the original VUR data set, namely, the presence of 

a linkage signal without an association signal. To achieve this may require a more 

drastic measure such as artificially constructing haplotypes so that the affected 
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haplotypes are totally uncorrelated. However, this was decided against in this thesis, as 

the aim was also to use ‘realistic’ genotypes, so that RIA’s performance can be studied 

in ‘real life’ data. 

Secondly, regardless of the simulation settings, FaST-LMM (and, by extension, LMM 

GWAS programs) always outperformed both RIA and lm_ibdtests. This was of course 

because the association signal was still present. In fact, this observation and the fact 

that the linkage analysis methods lost power faster than FaST-LMM when model 

parameters were adjusted may be seen as analogous to the analysis made by Risch and 

Merikangas (1996) that association analysis tended to be more powerful than linkage 

analysis (however, their analysis was based on an affected sib pairs method vs 

transmission disequilibrium and with a moderate effect locus, so may not be fully 

applicable here). Nevertheless, if there is a data set in which there is linkage but not 

association, RIA is expected to perform well and probably better than lm_ibdtests, with 

an additional advantage of being more computationally efficient. 

An additional advantage of RIA is that, at least in theory, it does not require any 

knowledge about the pedigrees. This could be useful, perhaps, in a situation where 

accurate determination of pedigree relatedness is difficult. In fact, this also seems to be 

the motivation for a method proposed by Day-Williams et al. (2011a), which also uses 

genetically estimated global and local kinships in variance component analysis of a 

quantitative trait (in an approach quite similar to that of Nagamine et al. (2012), 

although the motivation and the methods used for kinship calculation differ) 

At present, RIA is still a work in progress. The idea seems promising, but there are still 

many aspects to explore. 

One issue with RIA that may need to be explored is the assessment of significance, 

although in practice this may not be entirely necessary, as previously discussed (Section 

6.5). Another is the IBD estimation. Although both PLINK and KING seemed to work 

reasonably well here, there are both theoretical and practical issues with them. The 

theoretical issue is that the current methods used for IBD estimation assume that the 

markers are independent—which is likely to be wrong when estimating local IBD using 

dense genome-wide data—and also requires accurate allele frequency estimation 

(Purcell et al., 2007; Manichaikul et al., 2010; Browning and Browning, 2011; Han and 

Abney, 2011). The practical issues, which are specific to PLINK (abrupt termination 

upon encountering a pair of individuals without any non-missing SNP in common) and 

KING (inability to use externally-estimated allele frequencies for population-based IBD 

estimations), have been described in the previous chapter (Section 6.1.3). To solve 

these would require modification of the programs. An alternative is perhaps to try other 

IBD estimation methods that allow linkage disequilibrium between markers such as 
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those proposed by Browning and Browning (2011) or Han and Abney (2011). However, 

since these methods use hidden Markov models (HMMs) and may take longer to run, a 

good compromise may be to use them only for local IBD estimation where each set of 

markers will be smaller but are more likely to be in linkage disequilibrium, while the 

global IBD can be calculated using simpler methods based on a pruned set of SNPs 

which will be in linkage equilibrium (an approach conceptually similar to that of Day-

Williams et al. (2011a) where different procedures were used for the estimation of 

global and local kinship coefficients).  

Another area that could be explored is the application of genetically estimated IBD to 

other non-parametric linkage analysis methods, particularly the ‘score’ methods as 

these only require a single IBD measure (instead of three IBD states as in the MLS 

methods), and would allow more IBD estimation methods to be used. 
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Chapter 8. Discussion and Conclusion 

This chapter will focus on discussing issues regarding the use of theoretical and 

empirical IBD estimates that are relevant to more than one chapter. Discussion specific 

to any analysis method is in the relevant chapter. 

8.1. Discussion 

In this thesis, the utility of empirical (genetically estimated) and theoretical IBD—

either as probabilities of IBD states or as kinship coefficients—in two principal types of 

genetic data analysis method has been demonstrated. It would appear that empirical 

relatedness estimates have outperformed pedigree relatedness, clearly for the 

association studies, and also in some of the linkage analyses. This is perhaps due to the 

slight difference between theoretical (pedigree) relatedness and realised relatedness 

(which empirical relatedness directly measures) caused by Mendelian segregation 

(Guo, 1996; Weir et al., 2006; Hayes et al., 2009). As discussed in Chapter 4, the 

reason why this may cause an issue could be that—unlike when attempting to 

categorise individuals’ relationships into a pedigree where empirical relatedness is only 

an approximation of pedigree relatedness— the concern in genetic data analysis is with 

the modelling of the genetic relatedness itself. Pedigree relatedness is then only an 

approximation and may not necessarily be correct (Nordborg, 2001), which may then 

lead to inaccuracies in downstream analyses. 

Studies from the field of animal breeding have indeed shown that realised relatedness 

predicts trait values better than pedigree relatedness (Nejati-Javaremi et al., 1997; 

Hayes et al., 2009). Perhaps the situation here is similar. The best IBD estimators for 

use in genetic data analysis should, then, be ones that most precisely estimate the IBD 

based on the observed IBS data rather than ones that correlate most to pedigree 

relatedness (although the latter would of course have their own utility in some other 

ways), and relative merits of the methods should be judged accordingly. 

Although the aim of this thesis is not to compare the merits of methods of kinship 

estimation (and therefore only some convenient selections of them were included), it 

can be seen that all kinship estimation methods used for the LMM GWAS analysis in 

Chapters 3-5 (including the LMM software’s own methods) performed quite well in that 

context—perhaps with the exception of PLINK, which resulted in a higher inflation of 

test statistics than was obtained using other empirical methods or theoretical kinships 

(Section 4.4). This was quite puzzling, as the algorithm used in PLINK is more 

elaborate and should give better estimation of IBD than those used in other programs 
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except, perhaps, for KING; and since, according to Kang et al. (2008), the kinship 

estimates based directly on IBS (such as those from the various LMM GWAS software) 

tend to capture distant relatedness better, while those estimated based on IBD (such as 

those from PLINK) tend to capture recent relatedness better. In this data set, which 

contains strong family structure, LMM using PLINK’s IBD estimates should have 

performed at least as well as other methods, even in presence of additional population 

stratification. Nevertheless, as discussed briefly in Chapter 4, the reason for this could 

be that PLINK’s IBD estimates deviate most from the realised genetic correlations 

among pairs of individuals. More detailed discussion now follows. 

The differences between PLINK and other methods of IBD estimation considered here 

(KING and native methods in each LMM GWAS software) are that PLINK estimates the 

probabilities of the three IBD sharing states first and constrains them so that their 

values are between 0 to 1, then uses these for the calculation of the proportion of alleles 

shared IBD (which under a probabilistic viewpoint is equivalent to the coefficient of 

relationship and equals twice the kinship coefficient (C. C. Li and Sacks, 1954; Ritland, 

1996; Blouin, 2003)), which is again constrained to biologically plausible values 

(Purcell et al., 2007) whereas other methods including KING derived their ‘kinship 

coefficients’ directly from the genotype data without constraint (Aulchenko et al., 

2007b; Kang et al., 2010; Manichaikul et al., 2010; Lippert et al., 2011; Zhou and 

Stephens, 2012; Pirinen et al., 2013). 

Although it was first proposed under a probabilistic viewpoint, kinship coefficients can 

also be viewed as reflecting genetic correlation between two individuals (Ritland, 1996). 

It is in fact under this latter viewpoint that it is used in LMM modelling—to model the 

polygenic effect, and therefore the genetic correlation between a pair of individuals. 

Since a pair of individuals intuitively can never be less related than unrelated (this is 

not strictly true: individuals from different populations can be less related than 

unrelated individuals from the same population; the assumption of homogeneity is 

implicit in this statement), their theoretical genetic correlation can never be less than 

zero. However, this is not the case for the realised genetic correlation: due to 

population stratification as well as the stochastic nature of Mendelian segregation, a 

pair of individuals may have negative genetic correlation, which can be interpreted as 

their sharing fewer alleles than can be expected in unrelated individuals (Astle and 

Balding, 2009). Constraining the estimated probabilities of empirical IBD states also 

introduces similar types of errors. Hence, when PLINK attempts to reconcile its 

empirical kinship coefficients to the theoretical ones, the adjusted values may no longer 

accurately reflect the realised genetic correlations; and when used in LMM—which 

requires genetic correlations—some degrees of error can be expected in the results. The 

discrepancies between theoretical and realised genetic correlation could also be the 
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explanation of the inferior performance of LMM using theoretical kinship to that using 

PLINK’s empirical kinship estimates: although constrained to realistic values, PLINK’s 

IBD estimates would still reflect the underlying genetic correlation better than the 

theoretical kinship estimates, which could be more affected by population stratification 

as well as cryptic relatedness. 

Purcell et al. (2007) in fact suggested that unconstrained IBD sharing estimates from 

PLINK be used for diagnosing sample and genotyping error or for detection of 

misspecification of family relationship. These estimates may also be more suitable for 

use in LMM GWAS analysis and may give the best results from this data set; however,  

it is not clear from PLINK’s documentation how these estimates could be obtained. 

Nevertheless, perhaps the conclusion that can be drawn from this is that empirical 

kinship coefficients estimated from the genotype data (whether IBD or IBS) without 

constraint are the best to use in LMM GWAS analysis, and methods that attempt to 

recreate pedigree relatedness should be avoided in this context. 

A different problem arises when the empirical IBD estimates are used in RIA’s MLS 

calculation. This time, the IBD sharing estimates are used under the probabilistic 

paradigm: Onelocarp expects probabilities, and feeding negative values to Onelocarp 

gives undefined results. But because these IBD estimates are intrinsically calculated as 

genetic correlations, certain transformations and constraints are needed. For PLINK, 

this was done automatically through its own algorithm; For KING, this was done 

through a user-defined algorithm. Both gave similar results, and resulted in similar 

MLS scores among the RIA methods. However, this process could give rise to small 

inaccuracies, which could result in a slight disadvantage when compared with the exact 

methods that can calculate the IBD probabilities directly, but may be comparable with 

the MCMC methods which are also at a disadvantage due to their stochastic nature. 

In the cross-sectional VL data set (Chapters 4 and 5), LMM GWAS programs performed 

quite similarly to each other when provided with the same set of SNPs for kinship 

coefficient estimation, but the performance of each program was significantly affected 

by the choice of SNPs used or by the use of theoretical kinship estimates (Section 

4.2.3). As discussed in Chapter 4, this could be because the thinned set of SNPs did not 

have enough information to accurately model complete relationships within or between 

the pedigrees, whereas the theoretical kinships were affected by additional relatedness 

or population structure. Intuitively, the equivalence between the analyses using the full 

and the pruned sets of SNPs suggests that pruning only remove redundant markers 

from the full set while still retaining most of the information (in other words, the 

effective number of independent markers (Yang et al., 2014) remains the same). 

However, when more SNPs were removed from the pruned set of SNPs, some 
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information would also be removed, which eventually leads to underperformance in the 

thinned SNP set. 

On this note, it appears that the choice of SNPs to be used in kinship estimation may be 

more important than the estimation method itself. The SNPs used in kinship 

estimation should contain adequate information to capture the genetic relatedness 

within the data set. For practical reasons, I believe a pruned set of SNPs is the set that 

should be used in LMM GWAS if possible as it contains similar amount of information 

to the full data set, while requiring less computational time. This choice is of course 

also governed by the availability of each set of SNPs, given the similar performance 

between the full and pruned sets. 

This, however, seems to be somewhat contradictory to the various strategies proposed 

by the developers of FaST-LMM to reduce the amount of SNPs that are required for 

kinship estimation (Lippert et al., 2011; Listgarten et al., 2012; Lippert et al., 2013). 

Nevertheless, results from Zhou and Stephens (2012), using a strategy similar to the 

earlier version of FaST-LMM-Select (selecting top SNPs that are associated with the 

phenotype in unadjusted analysis), also showed inadequate control of the inflation of 

test statistics; and a detailed analysis of the effect of population stratification by Yang et 

al. (2014) showed that, with subtle population stratification, the SNPs provided by 

either the randomly selected, reduced SNPs (equivalent to the thinned set in this thesis) 

or the equivalent of the earlier version of FaST-LMM-Select (selecting top 𝑛 SNPs 

according to unadjusted association) were inadequate to correct for the population 

stratification, whereas the later version of FaST-LMM-Select (based on out-of-sample 

prediction accuracy) tends to select a set of SNPs that maximises power rather than 

providing effective population structure correction. Yang et al. (2014)  therefore 

recommended the use of all available pruned SNPs in analyses that are concerned 

about population stratification. It seems that the lower number of SNPs produced by 

these strategies did not adequately correct for the high degree of relatedness seen in the 

VL data set used in this thesis either. In fact, this could be expected, given that 

relatedness has higher dimensionality than population stratification (Hoffman, 2013). 

Given that the computational advantage of using the thinned set of SNPs is not 

noticeable, using the pruned set would be a more prudent choice. 

When the empirical IBD estimates are used in non-parametric linkage analyses, there 

are two further issues that are worthy of consideration: linkage disequilibrium and 

uncertainty surrounding IBD estimation. 

Although all the global IBD estimates (including those from the LMM chapters) were 

theoretically valid, the same could not be said for the local IBD. Apart from the issues 

discussed in Chapter 6, both PLINK and KING, being method of moments estimators, 
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require that the SNPs are in linkage equilibrium (Browning and Browning, 2011). 

Additionally, they also require a sufficient number of SNPs for the estimation to be 

stable. This is generally not a problem in global IBD estimation, where genome-wide 

SNPs are available and can be pruned down so that they are independent, but in local 

IBD estimation there are competing demands between using only SNPs that are in 

linkage equilibrium and having an estimation window that contain sufficient number of 

SNPs while not spanning too great distance. All these demands may not necessarily be 

satisfied at the same time. An interesting option to resolve this could be to use methods 

that can handle (or even utilise) linkage disequilibrium (e.g. Albers et al., 2008; 

Browning and Browning, 2011; Han and Abney, 2011). 

Since RIA needs to estimate both the global and local IBD probabilities from the 

genotype data, there is more uncertainty in its input than in a traditional linkage 

analysis method where prior IBD estimates can be obtained exactly from the pedigree, 

provided that the pedigree is accurate. This may put RIA at a slight disadvantage. On 

the other hand, if the pedigree is misspecified, or if there is cryptic relatedness among 

the founders, then RIA may perform better than the traditional methods. 

8.2. Conclusions 

This thesis has investigated the use of theoretical and empirical IBD estimates in LMM 

GWAS analyses and in a new non-parametric linkage analysis method. In LMM GWAS 

analyses, the IBD estimates are used in the form of kinship matrix to model genetic 

relatedness between individuals. This is an area where the empirical kinship estimates 

performed much better than the theoretical estimates. Under standard conditions, all 

LMM GWAS programs investigated appeared to work well, especially when given 

empirical kinship estimates. However, when encountering model misspecification 

through the use of simulated longitudinal data, differences among the programs began 

to show; even so, most were still successful at controlling type I error. 

In RIA, a new non-parametric linkage analysis method, both the globally and locally 

estimated IBD probabilities are used for the calculation of MLS statistics in affected 

relative pairs. This has the advantage of being able to completely bypass even the most 

complex pedigree structure, resulting in a substantial improvement in speed, with an 

additional advantage of not requiring pedigree information and not affected by 

pedigree misspecification. Compared with exact methods of non-parametric linkage 

analysis, RIA seemed to have less power; but in large, complex pedigrees where exact 

method can no longer be used, RIA performed well and seemed slightly more powerful 

than an MCMC-based method which would otherwise be the only class of programs 

that can operate in that condition. 
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In all, empirical IBD estimates have been shown to be useful in genetic data analysis, 

and in most cases resulted in better performance than theoretical IBD estimates. 

Considering the continuous improvement in methodology as well as the rapid advance 

in computational capability, it is foreseeable that they will become a powerful tool in 

genetic data analysis in the near future. 
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Abstract

In the last few years, a bewildering variety of methods/software packages that use linear mixed models to account
for sample relatedness on the basis of genome-wide genomic information have been proposed. We compared
these approaches as implemented in the programs EMMAX, FaST-LMM, Gemma, and GenABEL (FASTA/GRAMMAR-
Gamma) on the Genetic Analysis Workshop 18 data. All methods performed quite similarly and were successful in
reducing the genomic control inflation factor to reasonable levels, particularly when the mean values of the
observations were used, although more variation was observed when data from each time point were used
individually. From a practical point of view, we conclude that it makes little difference to the results which
method/software package is used, and the user can make the choice of package on the basis of personal taste or
computational speed/convenience.

Background
A number of different methods/software packages have
been proposed in the last few years that implement linear
mixed-model approaches to account for population struc-
ture and relatedness among samples in genome-wide asso-
ciation studies (GWAS), but no detailed comparisons
among them have been made before our effort. Indeed,
when a new method/package is developed, it is often quite
unclear whether or how it differs substantially from those
already available. To address this question, we explored
the performance of various implementations of such
methods in the longitudinal Genetic Analysis Workshop
18 (GAW18) data set.

Methods
We analyzed the GAW18 GWAS data [1] using the real
phenotypes and the first set of simulated phenotypes.
This analysis was performed without knowledge of the
underlying simulating model. The genotype data were

cleaned using standard procedures [2]. This resulted in 4
individuals being excluded because of their total lack of
genotype data, and another individual being excluded
because of outlying ethnicity (Chinese [CHB] or Japanese
[JPT]), leaving 954 individuals whose genotype data were
used. We removed 43,987 monomorphic or low-fre-
quency (minor allele frequency [MAF] <1%) single-
nucleotide polymorphisms (SNPs), 109 SNPs with miss-
ing rate above 10% (this criterion took into account the
apparently high missing rate in some SNPs likely to be
caused by the differences in genotyping technology used
in the samples), and 1 SNP that failed Hardy-Weinberg
equilibrium testing in the control founder population.
A total of 427,952 SNPs were retained for analysis.
We conducted linear regression of the real and simu-

lated systolic blood pressure and simulated diastolic
blood pressure at each time point regressed on age, med-
ication, and smoking status. For the real diastolic blood
pressure–which, as could be physiologically expected,
seemed to have a nonlinear relationship with age–we
used a quadratic regression, including age and age
squared as predictors. The phenotype data from all indi-
viduals were used for these regressions. Residuals from
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these regressions in subjects who also had genotype data
were then used for the genome-wide analyses.
Genome-wide association analyses, adjusting for famil-

ial relatedness using genomic data, were performed using
a variety of linear mixed model approaches. All
approaches attempt to fit the model Y=b+Q+ε, where Y=
(y1, ..., yn)

T is a vector of responses on n subjects; X= (xik)
is the n × K matrix of predictor values for variables to be

modeled as fixed effects (including covariates and geno-
types at any SNPs currently under test); b=(b1, ... bK)

T

are regression coefficients (to be estimated) representing
the linear effects of the predictors on the response; Q are
random effects, Q~N(0,2sg

2F), and ε are random errors,
ε~N(0,se

2I), where sg
2 and se

2 are parameters (to be esti-
mated) representing the genetic and environmental com-
ponents of variance respectively; F is the n × n matrix of

Figure 1 Q-Q plots and genomic inflation factors for different methods. These were calculated for each phenotype (real diastolic blood
pressure [DBP], real systolic blood pressure [SBP], simulated DBP, and simulated SBP), using either longitudinal ("long”) or average ("mean”)
residuals. EM_BN, EMMAX using Balding-Nichols matrix; EM_IBS, EMMAX using IBS matrix; FLM_C, FaST-LMM using standard covariance matrix;
FLM_R, FaST-LMM using realized relationship matrix; GA_FA, GenABEL/FASTA; GA_GRG, GenABEL/GRAMMAR-Gamma; GMA_C, Gemma using
centralized covariance matrix; GMA_S, Gemma using standardized covariance matrix. The diagonal line represents the identity line in each panel.
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pairwise kinship coefficients; and I is the n × n identity
matrix. The approaches vary with respect to precise
details of the calculation of kinship or “relatedness” and
with respect to whether an exact method or a fast
approximation is used (for more details, see descriptions
in references [3-9]). In each case we used a subset of
21,153 SNPs to perform the relatedness calculations,
namely SNPs with MAF >0.4, <5% missing data, and

“pruned” to be in approximate linkage equilibrium via
the PLINK command “-indep 50 5 2”. In analyses of
other data sets we have found little difference between
results when using such a pruned set of SNPs for calcu-
lating relatedness and when using the full set of SNPs
(data not shown).
The methods considered were: (a) EMMAX [3], which

implements 2 methods for relatedness calculations: one

Figure 2 Comparison of −log10 p values at each SNP calculated using different methods. The upper triangles show the values based on
mean residuals, while the lower triangles show the values calculated using longitudinal data. DBP, diastolic blood pressure; EM_BN, EMMAX
using Balding-Nichols matrix; EM_IBS, EMMAX using IBS matrix; FLM_C, FaST-LMM using standard covariance matrix; FLM_R, FaST-LMM using
realized relationship matrix; GA_FA, GenABEL/FASTA; GA_GRG, GenABEL/GRAMMAR-Gamma; GMA_C, Gemma using centralized covariance matrix;
GMA_S, Gemma using standardized covariance matrix; SBP, systolic blood pressure.
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based on identity-by-state (IBS) sharing and one based on
the Balding-Nichols method [4]; (b) FaST-LMM [5],
which also implements 2 methods to adjust for related-
ness: one using a standard covariance matrix and one
using the realized relationship matrix; (c) the polygenic/
mmscore functions in GenABEL [6], which implement
the FASTA method [7]; (d) the polygenic/grammar func-
tions in GenABEL, which implement the GRAMMAR-
Gamma approximation [8]; and (e) Gemma [9], which
uses an efficient exact method. Simple linear regression
without any relatedness adjustment was also performed
in FaST-LMM. All analyses were performed using both
the residual from each individual observation (modeled
without regard to its true longitudinal nature, or longitu-
dinal) and the mean of the residuals for each subject, or
mean. Genomic inflation factors (l) were calculated as
proposed by Devlin and Roeder [10]. We also assessed
the genomic inflation factors for unadjusted c2 and
Cochran-Armitage trend tests of hypertension status at
each time point as calculated using PLINK [11].

Results and discussion
Figure 1 shows the Q-Q plots and genomic inflation fac-
tors for different methods. It is well known that population
substructure and relatedness will cause an inflated distri-
bution of genome-wide association test statistics (l > 1.00)
if not appropriately modeled. All methods performed rea-
sonably well for the mean residuals, controlling the l to
0.99 to 1.03. For longitudinal data, most methods also per-
formed well, with l in the range of 0.95 to 1.05, except
perhaps for GRAMMAR-Gamma, which achieved ls of
approximately 1.08 to 1.09 for the simulated phenotypes.
However, even these values were much less inflated com-
pared to the l values of 1.22 to 1.68 (mean) and 2.04 to
3.41 (longitudinal) seen in the unadjusted analyses. The
higher inflation in longitudinal analyses (even when
adjusting for relatedness) could be expected from the fact
that additional (nongenetic) within-subject correlation was
not allowed for in these analyses; indeed, one could argue
that this behavior is statistically the “correct” behavior,
with GRAMMAR-Gamma (which gave the highest

Figure 3 A selection of Manhattan plots showing p values calculated using various methods. DBP, diastolic blood pressure; EM_BN,
EMMAX using Balding-Nichols matrix; FLM_R, FaST-LMM using realized relationship matrix; GA_FA, GenABEL/FASTA; SBP, systolic blood pressure.
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inflation) showing the “most correct” behavior. Interest-
ingly, EMMAX using the IBS matrix seemed to have the
opposite behavior, for reasons we are currently unable to
determine.
For the analyses using hypertension status, the unad-

justed genomic inflations were between 1.21 and 1.55
for the Cochran-Armitage trend test and between 1.01
and 1.27 for the c2 test.
Figure 2 compares the individual −log10 p values from

different methods. Most methods gave highly concor-
dant results, particularly EMMAX (BN) and Gemma,
whereas the 2 GenABEL methods were similar but less
concordant. This is analogous to findings on single-
observation data by Zhou and Stephens [9]. FaST-LMM
tended to perform slightly differently from the other
methods at SNPs with lower significance, although the
results overall were still quite similar.
Figure 3 shows a selection of Manhattan plots. For

each phenotype, the results from all methods were quite
similar, although the longitudinal data tended to show
stronger signals. No clearly significant SNP was found
in any phenotype, which is not surprising given the rela-
tively small size of the GAW18 data set, which is under-
powered for detecting (at genome-wide levels of
significance) anything other than strong genetic effects.
The high concordance in significance levels (at any
given SNP) achieved by the different software packages
(see Figure 2) indicates that no package is substantially
more powerful than another, as expected from the fact
that all packages implement slightly different versions of
essentially the same statistical model.
Although the results from all packages considered

here were similar, the implementations did vary in
speed. All packages performed the analysis in reasonable
time (less than 1 day) on our system. Precise timings
will depend on the computer resources and architecture
available, but as a rule of thumb we found FaST-LMM
and GRAMMAR-Gamma to be the fastest (taking just a
few hours), followed by EMMAX and Gemma, which
took 12 to 16 hours, and GenABEL/FASTA, which took
18 to 20 hours.

Conclusions
All methods performed well and results were similar,
particularly at the most significant SNPs. We conclude
that (at least for nonlongitudinal traits) it makes little
difference to the results which method/software package
is used, and the user can make the choice of package on
the basis of personal taste, speed, or computational con-
venience. For longitudinal traits (modeled without
regard to their longitudinal nature) the slight differences
seen between the methods would be an interesting topic
for further investigation, but it is beyond the scope of
the current article.
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Abstract

Approaches based on linear mixed models (LMMs) have recently gained popularity for modelling population
substructure and relatedness in genome-wide association studies. In the last few years, a bewildering variety of different
LMM methods/software packages have been developed, but it is not always clear how (or indeed whether) any newly-
proposed method differs from previously-proposed implementations. Here we compare the performance of several
LMM approaches (and software implementations, including EMMAX, GenABEL, FaST-LMM, Mendel, GEMMA and MMM)
via their application to a genome-wide association study of visceral leishmaniasis in 348 Brazilian families comprising
3626 individuals (1972 genotyped). The implementations differ in precise details of methodology implemented and
through various user-chosen options such as the method and number of SNPs used to estimate the kinship
(relatedness) matrix. We investigate sensitivity to these choices and the success (or otherwise) of the approaches in
controlling the overall genome-wide error-rate for both real and simulated phenotypes. We compare the LMM results to
those obtained using traditional family-based association tests (based on transmission of alleles within pedigrees) and
to alternative approaches implemented in the software packages MQLS, ROADTRIPS and MASTOR. We find strong
concordance between the results from different LMM approaches, and all are successful in controlling the genome-wide
error rate (except for some approaches when applied naively to longitudinal data with many repeated measures). We
also find high correlation between LMMs and alternative approaches (apart from transmission-based approaches when
applied to SNPs with small or non-existent effects). We conclude that LMM approaches perform well in comparison to
competing approaches. Given their strong concordance, in most applications, the choice of precise LMM
implementation cannot be based on power/type I error considerations but must instead be based on considerations
such as speed and ease-of-use.
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Introduction

Recently, linear mixed models based approaches have been

proposed as appealing alternatives to principal component based

approaches when adjusting for population substructure in genome-

wide association studies of apparently unrelated individuals [1–4].

These methods build upon work originally described in the animal

breeding literature, and subsequently developed in the human

genetics literature, in which a genetic effect of interest (e.g. the

number of copies of a particular allele at a particular test SNP) is

included as a fixed effect in a regression model, with an additional

random effect also included to model genetic correlation between

individuals. The covariance structure for the random effect is

generally assumed to correspond to that implied by a polygenic

model, incorporating the genetic relationship (kinship) between

each pair of individuals. Although use of this linear mixed model

(LMM) was originally proposed for pedigrees with known relation-

ships [5–10], this approach has recently gained popularity for use

with samples of unknown or uncertain relationship [1–3,11–13],

including apparently unrelated samples who may nevertheless

display distant levels of common ancestry. For this purpose, the

kinship coefficients between all pairs of individuals modelling either

close or distant relatedness are estimated (prior to fitting the linear

mixed model) on the basis of genome-wide genotype data, rather

than being fixed at their known theoretical values.

Fitting a full linear mixed model for each SNP in turn across the

genome is computationally challenging. These computational

considerations have led to the development of several faster
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approximations for constructing tests of the fixed SNP effects of

interest in the linear mixed model [1,2,9,10,14]. These approx-

imate tests have been implemented in various software packages

including MERLIN, GenABEL, EMMAX, TASSEL, FaST-

LMM, Mendel and MMM. The MMM [15] and FaST-LMM

[4] packages, in common with the package GEMMA [16], also

provide fast implementations of an exact (rather than an

approximate) model, which in principle can lead to a small

increase in power [15,16], depending on the true underlying level

of relatedness.

A limited comparison of several LMM implementations, via

application to real and simulated data from Genetic Analysis

Workshop 18 (GAW18) [17], was performed by Eu-ahsunthorn-

wattana et al. [18]. In the GAW18 data, which comprised 959

Mexican-American individuals from 20 families, the LMM

implementations investigated performed rather similarly to one

another in terms of the association test statistics and p-values

achieved; however, no formal quantification of power or type 1

error was performed. Eu-ahsunthornwattana et al. [18] also

investigated the performance of the various LMM implementa-

tions when applied naively to longitudinal traits (repeated

measures) available in GAW18, simply by treating each measure-

ment as if it came from a separate person and expanding out the

genetic data set accordingly (resulting in an expanded data set

containing many apparent twins, triplets, quadruplets etc.,

depending on how many measurements are available for each

person). Although this approach is not strictly ‘correct’ (as it does

not distinguish between correlations in trait values due to genetic

factors and correlations due to non-genetic within-individual

factors), Eu-ahsunthornwattana et al. found this procedure

generated only minimal inflation in the resulting distribution of

genome-wide test statistics.

Here we expand the investigation of Eu-ahsunthornwattana et

al. [18] to perform a more comprehensive comparison of LMM

approaches (involving a larger number of software implementa-

tions) and to conduct a formal investigation of power and type 1

error. We also compare the LMM approaches to traditional

family-based approaches (‘within-family association tests’ based on

the transmission of high-risk alleles within pedigrees [19–23]), and

to alternative previously-proposed approaches based on extending

standard case/control tests (such as the Armitage trend test) to

allow for either known [24,25] or known and unknown [26]

relatedness. The programs compared (see Table 1) differ in the

precise details of the methodology implemented (such as whether

an LMM approach is used, and, if so, whether an exact method or

an approximation is used) and through various user-chosen

options such as the specific method and number of SNPs used

to estimate the kinship matrix. We investigate the sensitivity to

these choices and the success (or otherwise) of the approaches in

controlling the overall genome-wide error-rate in both real and

simulated data (into which artificial simulated disease loci have

been inserted).

The approaches are compared via application to real and

simulated data derived from a genome-wide association study of

visceral leishmaniasis (VL) in 348 Brazilian families comprising

3636 individuals (1970 with both genotype and phenotype data).

This Brazilian family data set was used (together with a larger

Indian case/control data set) by Fakiola et al. [13] to identify, at

genome-wide levels of significance, a replicable association

between variants in the HLA region on chromosome 6 and

visceral leishmaniasis. Although in [13] the HLA locus (analysed

using the LMM package MMM [15]) did not achieve genome-

wide levels of significance in the Brazilian data set alone (p-value

~2|105), this locus was the only one to show strong evidence of

association in both Brazilian and Indian data sets, and achieved

convincing replication in a separate Indian cohort.

Results

Estimation of kinship coefficients using genome-wide
SNP data

Before embarking on a detailed comparison of different

methods, we explored the use of different SNP sets (containing

different numbers of SNPs) for estimating pairwise kinship

measures, in order to identify a robust set of SNPs that could be

used for subsequent comparisons. We considered using either the

full genome-wide set of SNPs (545,433 SNPs), a ‘pruned’ set of

50,129 SNPs selected to have minor allele frequencies w0:4 and

chosen to be in approximate linkage equilibrium via the --indep

50 5 2 command in PLINK [27]), or a ‘thinned’ set of 1900

evenly-spaced SNPs that were selected from the ‘pruned’ SNPs

based purely on physical position using the software package

MapThin (http://www.staff.ncl.ac.uk/richard.howey/mapthin/).

In addition to exploring the kinship estimates provided by various

LMM software packages, we also investigated those provided by

the software packages PLINK [27] and KING [28]. KING

implements two different kinship estimation methods: KING-

homo (KING_H), which assumes population homogeneity, and

KING-robust (KING_R), which provides robust relationship

inference in the presence of population substructure.

A comparison of the kinship estimates output by different

software packages based on the pruned set of SNPs is shown in

Figure 1 (similar results were seen for the full and thinned SNP

sets, data not shown). Although the scale on which the kinship

estimates are measured differs between different packages, the

measures themselves are highly correlated, particularly those from

EMMAX-BN, FaST-LMM, GenABEL, GEMMA and MMM.

Kinship measures from EMMAX-IBS and PLINK were also quite

well correlated, although they tended to differ slightly from those

in the previous group. Kinship measures are used within the LMM

framework to structure the variance/covariance matrix of the

genetic random effect (see Methods). Thus, the scale of measure-

ment (i.e. whether the kinship measure actually reflects an estimate

of the kinship per se, or a rescaled measure such as twice the

Author Summary

Recently, statistical approaches known as linear mixed
models (LMMs) have become popular for analysing data
from genome-wide association studies. In the last few
years, a bewildering variety of different LMM methods/
software packages have been developed, but it has not
always been clear how (or indeed whether) any newly-
proposed method differs from previously-proposed imple-
mentations. Here we compare the performance of several
different LMM approaches (and software implementations)
via their application to a genome-wide association study of
visceral leishmaniasis in 348 Brazilian families comprising
3626 individuals. We also compare the LMM results to
those obtained using alternative analysis methods. Overall,
we find strong concordance between the results from the
different LMM approaches and high correlation between
the results from LMMs and most alternative approaches.
We conclude that LMM approaches perform well in
comparison to competing approaches and, in most
applications, the precise LMM implementation will not
be too important, and can be chosen on the basis of speed
or convenience.

Accounting for Relatedness in Genome-Wide Association Studies
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kinship) should not be too important, as any rescaling will be

compensated for by a similar rescaling of the estimated genetic

variance parameter s2
g (see Methods). Kinship estimates from both

KING methods tended to differ most from the other methods,

with the frequent output of negative kinship estimates (compared

to most other methods for which the kinship estimates are

bounded at 0) among the less related individuals. This was more

pronounced for KING_R than for KING_H. We consider later

the possible implications of these (rather small) differences in

estimated kinships for subsequent association testing.

Within any given method, we found the kinship measures (for

each pair of individuals) and p-values obtained (in the real data set)

based on the full SNP set to be very similar to those based on the

pruned set, whereas those calculated based on the thinned set were

less similar (see Figure S1). The performance of the different SNP

sets in terms of controlling the genome-wide type 1 error rate (i.e.

controlling the genomic inflation factor l [29] to the desired level

of l~1) in the real data set is shown in Figure 2 (see Figure S2 for

full QQ plots). All packages performed well when using the full or

pruned set of SNPs (l= 0.99–1.00), but performance deteriorated

when the thinned set was used (l mostly about 1.08–1.10). This

was most pronounced for GenABEL (GRAMMAR-Gamma), for

which l was 1.16. Our intuition is that, although 1900 SNPs may

be sufficient to accurately model close relationships (such as full sib

or parent-offspring), many more SNPs will be required to

accurately model distant relationships within pedigrees (such as

cousins, second cousins, third cousins etc.) or even more distant

relationships between pedigrees. Results obtained using theoretical

kinships were inflated for all methods (l&1:11), suggesting the

presence of additional relatedness/population structure that is not

well accounted for by known family relationships. Regardless of

the method or SNP set used, adjustment always resulted in

substantially lower inflation than was seen (l= 1.23) in unadjusted

analysis.

Listgarten et al. [30] proposed an automated method, FaST-

LMM-Select, to select the most appropriate set of SNPs to use for

kinship estimation when testing for association in a LMM

framework. The method proceeds by ordering SNPs according

to their linear regression p-values and then constructing kinship

matrices with an increasing number of ordered SNPs, until the first

minimum genomic control factor l is obtained. We investigated

this strategy within the FaST-LMM package using either the full

or pruned set of SNPs as a starting point (see Figure S3). We found

that the first minimum genomic control factor (achieved using 3–

10 ordered SNPs) was generally higher than the desired value of

l~1, the genomic control factor subsequently decreased to

considerably less than 1, and then increased back to 1 once all

(pruned or full) SNPs had been included.

The automated version of FaST-LMM-Select available as an

option within the current version of the FaST-LMM package uses

a slightly different strategy involving k-fold cross-validation [31],

with the ordering of SNPs and calculation of genomic control

factors as varying numbers of SNPs are included in the kinship

calculation carried out within the training data (and then used to

predict the test data) within each cross-validation fold. The final

number of SNPs to be used in the kinship calculation for the entire

data set is that which minimizes the mean-squared error summed

over all folds. (See FaST-LMM documentation and [31] for more

Table 1. Summary of methods/software packages investigated.

Package/method
and version Approach Kinship estimation method Reference(s)

EMMAX emmax-intel-
20120210.tar.gz

LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[1]

FaST-LMM v2.04 LMM (approximate or exact) Kinship matrix estimated internally using user- supplied set of SNPs,
using SNPs selected through FaST-LMM-Select procedure, or set to
theoretical/estimated values calculated externally

[4] [30] [31]

GEMMA v0.91 LMM (exact) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[16]

GenABEL v1.7-6 (FASTA) LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[9] [39]

GenABEL v1.7-6
(Grammar-Gamma)

LMM (approximate) Kinship matrix estimated internally using user-supplied set of SNPs,
or set to theoretical/estimated values calculated externally

[14] [39]

GTAM (implemented
in MASTOR v0.3)

LMM (approximate) Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[8]

Mendel v13.2 LMM (approximate or exact) Kinship matrix estimated internally using theoretical pedigree
relationships, estimated within estimated pedigree clusters
(using all SNPs), or fully estimated (using all SNPs)

[35]

MMM v1.01 LMM (approximate or exact) Kinship matrix estimated internally using user-supplied set of
SNPs, or set to theoretical/estimated values calculated externally

[15]

FBAT v2.0.4 Transmission of alleles within
pedigrees

Method by definition uses ‘known’ (theoretical) pedigree
relationships

[21] [23]

MASTOR v0.3 Retrospective quantitative trait
version of MQLS

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[25]

MQLS v1.5 Adjusted version of
retrospective case/control
test

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships)

[24]

ROADTRIPS v1.2 (RM test) Adjusted version of
retrospective case/control
test

Kinship matrix calculated externally (assumed to reflect ‘known’
(theoretical) pedigree relationships). Further correction based on
genome-wide set of SNPs applied internally.

[26]

doi:10.1371/journal.pgen.1004445.t001
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details). Lippert et al. [31] found this procedure to show some

advantage over using all SNPs (including a large number of

presumably irrelevant SNPs) in simulations that included popu-

lation stratification (but not familial relatedness) of quantitative

phenotypes in randomly ascertained individuals. Application of

this automated procedure to the real disease phenotype in our

highly ascertained set of Brazilian pedigrees resulted in no SNPs

selected for calculation of kinships when applied to the full SNP

set, or two SNPs selected when applied to the pruned SNP set,

resulting in a genomic control value of l~1:17 when these two

SNPs were used to adjust for relatedness in the subsequent

association analysis. We conclude that, at least for our data set,

there is no particular advantage in using the FaST-LMM-Select

procedure, indeed this procedure seems to work less well than

simply using all pruned or full SNPs for estimating pairwise

kinships. For the remainder of the manuscript we therefore focus

on results obtained using the pruned set of SNPs to estimate

kinships (apart for genome-wide analysis in the program Mendel,

which by default always uses the entire set of SNPs that has been

read in).

Comparison of LMM and alternative analysis approaches
We compared the performance of the different LMM and

alternative approaches listed in Table 1 through their application

to real and simulated data derived from the Brazilian family data

set of Fakiola et al. [13]. The simulation scenarios (see Methods)

included a binary disease trait influenced by either two strong (sim-

D1) or two weak (sim-D2) genetic effects or a quantitative trait

(sim-Q) influenced by two strong genetic effects. In all cases the

genetic effects were governed by two SNPs (rs9271252 and

rs233722) located on chromosomes 6 and 12 respectively. In

addition to the effects at rs9271252 and rs233722, we also allowed

for 22 weaker ‘polygenic’ effects caused by genotype at the 100th

SNP on each autosomal chromosome. Where applicable, we used

either the default analysis options within each program, or else

explored the use of different options as indicated below. The

program FaST-LMM uses either maximum likelihood (ML) or

restricted maximum likelihood (REML). (In early versions of

FaST-LMM the default was ML but in later versions the default

became REML). After some experimentation, we deemed the ML

option to be the most reliable in the presence of strong genetic

effects, and have therefore used ML for all results presented here.

The success of the various approaches in controlling the overall

genome-wide type 1 error rate (i.e. controlling the genomic

inflation factor [29] l to the desired level of l~1) is shown in

Table 2. All methods that made use of estimated kinships

performed well, apart from Mendel when estimation was restricted

only to estimated pedigree clusters (which gave l~1:10) and

MQLS, for which use of estimated kinships (in the 1972 genotyped

individuals) appeared to result in slightly deflated genomic

inflation factors. For all other methods, use of estimated kinships

reduced the genomic inflation factor to around 1, compared to a

value of l~1:23 in the real data (and up to 1.43 in the simulated

data) when performing an unadjusted analysis. Methods that used

only theoretical kinships based on ‘known’ pedigree information

performed well in the simulated data sets, but were less successful

at controlling inflation for the real data set, suggesting that our real

data contains additional, more complicated, relatedness or

population substructure that is not accounted for by known family

relationships.

The Brazilian populations studied here are believed to be long-

term (w200 years) admixtures of Caucasian, Negroid and Native

Indian ethnic backgrounds, as confirmed in recent analysis of a

subset of our families [32]. The discrepancy between the genomic

inflation factors seen in our real and simulated data results suggests

that our (relatively simplistic) simulation scenarios have not been

able to fully mimic the underlying population structure existant in

the real data; although our simulation strategy (see Methods) was

designed to generate trait correlations that reflect close familial

relationships, we did not specifically endeavour to generate

correlations due to population stratification or more distant/

cryptic relationships. To investigate the relative contributions of

phenomena such as admixture/population stratification/cryptic

relationships to the inflation observed in our real data when using

theoretical (pedigree-based) kinships, we applied the ADMIX-

TURE program [33] to our pruned set of SNPs to estimate

ancestry proportions (assuming 3 ancestral populations) in each

individual. Although the variation in ancestry proportion estimat-

ed within each individual was quite large (standard deviation

&0:08{0:15 depending on ancestral population) there was no

evidence (Pw0:14) for a relationship between estimated ancestry

proportion and disease status, suggesting that the inflation in test

statistics observed when using theoretical kinships is more likely to

be due to unmeasured cryptic relationships and/or subtle

population substructure, than to population substructure or

admixture directly related to the Caucasian, Negroid and Native

Indian ethnicities. This conclusion was supported by the fact that

logistic regression analysis allowing for the ancestry proportions as

covariates resulted in a genomic control inflation factor of 1.17,

only slightly reduced from the unadjusted genomic control

inflation factor of 1.23.

We also used as covariates in a logistic regression analysis the

first nine coordinates obtained from a multidimensional scaling

(MDS) analysis of the pruned SNPs in PLINK (having considered

between one and ten coordinates, nine was the number that

minimised the genomic control inflation factor). The resulting

genomic control inflation factor was 1.08, considerably smaller

than the unadjusted inflation factor of 1.23, but still not perfectly

controlled. Inclusion of MDS coordinates as covariates, similar to

including principal components scores, might be expected to

account for more subtle levels of population substructure than are

accounted for by the use of the ADMIXTURE program (and may

possibly also indirectly account for relatedness), which perhaps

explains the greater success of this procedure. However the fact

that LMM approaches based on estimated kinships still do better

(with respect to controlling l) than does the MDS approach

suggests there may still be levels of known or cryptic relatedness

that are not well-captured by these first nine coordinates.

An intuitive overview of the expected power provided by the

different (real and simulated) data sets can be obtained from Figure

S4, which shows Manhattan plots from a FaST-LMM analysis of a

single replicate of real or simulated data. The real phenotype data

shows a noticeable signal in the HLA region on chromosome 6,

consistent with the main finding in [13], while for all simulated

traits the primary associated regions are correctly identified

without any obvious false signals. A formal comparison of power

and type 1 error for the different analysis methods using 1000

simulation replicates is shown in Figure 3. All methods apart from

an unadjusted analysis show acceptable levels of type 1 error

(although note that the type 1 error rate for FBAT appears to be

slightly conservative). In terms of power, all LMM approaches

(including GTAM and Mendel) and MASTOR show similar

performance, apart from MMM which shows slightly higher

power than other methods for detection of loci involved in the

(strong) simulated quantitative trait. ROADTRIPS and MQLS

show slightly lower power than the LMM approaches, while the

approaches implemented in FBAT appear to be considerably less

powerful than those implemented in the LMM and other packages
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(even allowing for FBAT’s slightly conservative levels of type 1

error). The lower power of FBAT is likely to be caused by the

smaller effective sample size (357 cases compared to 357 ‘pseudo’

controls in FBAT, versus 357 cases compared to 1613 genuine

controls in the LMM and other alternative approaches), due to the

way the FBAT test statistics are constructed. These results are

consistent with a visual examination of the Manhattan plots

obtained from the different methods using either the real data or a

single replicate of the simulated data (Figure 4, Supplementary

Figures S5–S6), with FBAT achieving much lower levels of

significance around the true or simulated phenotype-associated

SNPs than do the other methods. (The results from all LMM

methods not displayed in Figure 4 and Supplementary Figures S5–

S6 were indistinguishable from FLMM_E, data not shown).

Although the LMM (and several alternative) approaches show

similar overall levels of power, an interesting separate question is

the degree of concordance between the different methods with

respect to the association signals detected. In the real data set we

found the p-values obtained at each SNP from the different LMM

methods to be highly concordant (Figure S7), while the

concordance between the LMM methods and alternative

approaches (Figure S8) is high for all methods other than FBAT

Figure 1. Comparison of kinship estimates (pruned SNPs) using different software packages. Plots above the diagonal show a
comparison of kinship measures, with correlations between the kinship measures indicated below the diagonal. EM_BN = EMMAX (Balding-Nichols),
EM_IBS = EMMAX (IBS method), FLMM_C = FaST-LMM using covariance matrix, FLMM_R = FaST-LMM using realised relationship matrix, GA = GenABEL,
GMA_C = GEMMA using centred genotypes, GMA_S = GEMMA using standardised genotypes, KING_H = KING with homogeneous population
assumption, KING_R = KING with robust estimation.
doi:10.1371/journal.pgen.1004445.g001
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(although lower than is observed among methods within the LMM

class). The test implemented in FBAT is statistically uncorrelated

with that implemented in the LMM and other alternative

approaches, therefore it is not surprising that little concordance

is seen between the test statistics achieved at the vast majority of

(presumably null) SNPs. Figure S8 also shows that methods that

use phenotype information from non-genotyped family members

(MQLS3626 and RT3626, which use all 3626 individuals

regardless of whether or not they have genotype data) are most

similar to each other and less similar to methods that use

information only from the genotyped individuals.

The high concordance between the different LMM methods

(and, to a slightly lesser extent, between LMM methods and all

methods other than FBAT) is also seen for the simulated (weak

disease) trait (Figure S9); similar results were found for the other

simulated traits and other LMM methods (data not shown). A

formal comparison of the concordance between ‘top hits’ identified

by the different methods in the simulated data (1000 simulation

replicates, comparison restricted to true and null simulated regions)

is shown in Table 3. Using EM_BN as reference, the concordance

between the top SNPs identified is seen to be extremely high for all

other methods except FBAT, suggesting again that all methods

except FBAT provide essentially the same inference.

Feeding externally estimated kinship coefficients into
LMMs

Most LMM packages (although not Mendel) allow a separation

between the ‘estimation of kinships’ step and the ‘association

testing’ step. This is convenient as it allows the user to read in

theoretical or estimated kinships as desired, and to consider using

an alternative package for estimating kinships to the one used for

the actual association testing. We investigated performing an

analysis in FaST-LMM (exact calculation), but with the kinships

estimated from various different software packages (see Figure S10

and Table S1). Use of the ‘wrong’ kinship estimates (chosen to be

inversely related to the theoretical kinship value) resulted in very

similar results to unadjusted analyses (l= 1.23 in the real trait,

1.12 in the simulated strong disease trait, and 1.43 in the simulated

quantitative trait). Results based on kinship estimates from

KING_R and KING_H were very similar to those obtained

using FaST-LMM’s own realised relationship matrix (FLMM-R)

for all traits, and provided good control of the genome-wide error

rate (l&1) in spite of the unusual pattern in KING’s estimated

kinships that had been noted in Figure 1. Estimation of kinships

using PLINK was less satisfactory, leading to inflated genomic

control factors in both real and simulated data sets. This is

consistent with previous results [28] suggesting that PLINK

Figure 2. Genomic control factors obtained using different software packages and different strategies for modelling kinships.
PLINK = analysis in PLINK with no adjustment made for relatedness. Other methods/software packages are listed in Table 1 (see Table 2 for
abbreviated names of methods). Pedigree = theoretical kinships based on known pedigree relationships used to adjust for relatedness. Thinned =
kinships based on 1900 ‘thinned’ SNPs used to adjust for relatedness. Pruned = kinships based on 50,129 ‘pruned’ SNPs used to adjust for
relatedness. Full = kinships based on 545,433 SNPs used to adjust for relatedness.
doi:10.1371/journal.pgen.1004445.g002
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performs less well than KING for relationship estimation.

Interestingly, although KING_R has been shown to have an

advantage over KING_H in non-homogeneous populations when

the goal is relationship estimation for its own sake [28], this

advantage is not apparent here, where the goal is instead to adjust

for potentially different levels of relatedness, from close family

relationships to more distant relationships (perhaps mimicking

population membership), while performing association testing.

Computational efficiency and ease-of-use
Given that many of the software implementations we investi-

gated (and in particular all the various LMM implementations)

showed similar levels of power and type 1 error, and gave rather

similar inference in terms of localisation of signals and {log10

p-values achieved, an important practical consideration when

deciding what implementation to use is the ease-of-use and

computational efficiency. Ease-of-use is necessarily somewhat

subjective as it depends on a user’s prior experience and

software/operating system preferences. Computational efficiency

can, in theory, be examined more objectively, however, in

practice, the total time required to perform an analysis is

dependent on the computer architecture available (in particular

the ability of the system and of any given program to allow multi-

threading), demands of competing users and the availability of

(and ability of any given program to make use of) facilities for

parallel processing e.g. a multi-node compute cluster. These

considerations make it hard to perform a genuine ‘head-to-head’

comparison between different packages. In Table S2 we present an

approximate comparison (carried out on the same machine,

without use of parallel processing) together with some comments

concerning ease-of-use. Since many groups (including ourselves)

use PLINK [27] to perform initial quality control of genome-wide

association data, we considered programs that could use PLINK

files directly (or with just a few easily-implemented transformation

steps) to be the easiest to use, while those programs that required

more extensive data transformation, creation of additional input

files and/or external estimation of kinships were considered

harder.

With respect to computational speed, as a rule of thumb we

found Mendel (theoretical kinships), FaST-LMM (approximate)

and GenABEL (GRAMMAR-Gamma) to be the fastest LMM

implementations, taking between 3 minutes and a quarter of an

hour on our system to analyse 545,433 SNPs in 1972 genotyped

individuals. These were closely followed by EMMAX and MMM

(approximate) which took around half an hour, GenABEL

(FASTA), GEMMA, FaST-LMM (exact) and MMM (exact)

which typically took 1–2 hours, Mendel (estimated kinships) which

took around 2.5 hours, and GTAM which took around 4 hours.

Of the non-LMM methods, FBAT, MQLS and MASTOR were

the fastest, taking a few hours to perform the analysis, while

ROADTRIPS was the slowest, taking several days. Inputting

estimated (rather than theoretical) kinships into MQLS increased

the time taken to around 4 days (and appeared to over-correct the

genomic inflation, see Table 2), while an analysis inputting

estimated (rather than theoretical) kinships into ROADTRIPS was

still running (with analysis completed for only 38,926 of the desired

545,433 SNPs) after more than 2 months. Neither MQLS nor

ROADTRIPS were designed for analysis of unrelated individuals

and so are most likely optimised for reading in and working with

relatively sparse kinship matrices (in which individuals from

different pedigrees are assumed to have kinships equal to 0); to

force the programs to consider estimated kinships between all

individuals we had to recode the pedigree names to pretend that

everyone comes from the same pedigree, which most likely

considerably increases processing and memory requirements.

Analysis of longitudinal phenotypes
Eu-ahsunthornwattana et al. [18] investigated a strategy for

analysing longitudinal traits (repeated measures) in a linear mixed

model framework simply by treating each measurement as if it

came from a different individual, and expanding out the genetic

data set accordingly (resulting in an expanded data set containing

many apparent twins, triplets, quadruplets etc., depending on how

many measurements are available for each person). We investi-

gated this strategy in the current data set using a single replicate of

data (498 individuals) simulated under either a longitudinal (sim-

L20) or longitudinal polygenic (sim-P20) model (see Methods).

Results (Table 4) showed that EMMAX, FaST-LMM and

GEMMA were successful in maintaining the genomic inflation

factor to about 1, whereas GenABEL (FASTA) and MMM

showed some inflation, particularly in the polygenic longitudinal

simulation, and GenABEL (GRAMMAR-Gamma) showed strong

deflation. Comparison of the concordance in {log10 p-values

achieved by the different methods (data not shown) indicated that,

although the results from different methods were highly correlated

(in terms of the top SNPs identified), the actual p-values achieved

were very different, consistent with the differences seen in overall

distribution of test statistics.

Analysing each repeated measure as if it comes from a different

individual treats our data set as a larger ‘pseudo data set’

containing many apparent twins/triplets/quadruplets (actually, in

this case, 20-tuplets). Although less satisfactory than a proper

longitudinal analysis that takes into account correlations due to

both relatedness between individuals and repeated measures

within individuals [34], our intuition was that the LMM

framework would absorb the effect of repeated measures within

individuals into the genetic component of variance estimated,

resulting in an overall correct distribution of test statistics. For

EMMAX, FaST-LMM and GEMMA, this intuition appears to

have been correct. Although for GenABEL (FASTA) and MMM

the resulting distribution of test statistics is inflated, the linear

relationship between the observed and desired test statistics means

that test statistics following the desired distribution could be

obtained simply by dividing the observed x2 test statistics by the

observed genomic control inflation factor, in an approach akin to

standard genomic control [29].

We also investigated a ‘proper’ longitudinal analysis imple-

mented within the R software package longGWAS [34]. QQ plots

from longGWAS (data not shown) indicated acceptable genomic

control inflation factors (l~1:00 and 0.97 for sim-L20 and sim-

P20 respectively). A comparison of longGWAS with our (improp-

er) approach using FaST-LMM (data not shown) indicated that

the results (in terms of the {log10 p-values obtained at each SNP)

from longGWAS and FaST-LMM were highly correlated for both

sim-L20 and sim-P20. Although the ‘proper’ analysis implemented

in longGWAS might be considered theoretically most appealing,

we note that longGWAS was considerably slower than FaST-

LMM, taking approximately 19 hours (in comparison to 5.5

minutes for FaST-LMM), when run in parallel for each of 22

chromosomes. If run as a single process (all chromosomes), this

translates to about 9.5 days for longGWAS versus 7.6 hours for

FaST-LMM. Thus, given the satisfactory performance of FaST-

LMM, and the high correlation between the results obtained from

FaST-LMM and those from longGWAS, from a practical point of

view, FaST-LMM (or possibly EMMAX or GEMMA) would seem

the more attractive option.
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Another program that can, in theory, implement a ‘proper’

longitudinal analysis is the lmekin function within the R package

coxme. We found this function to be computationally infeasible for

analysis of genome-wide data, but application to a selected set of 2423

SNPs (of different effect sizes) in the sim-L20 data suggested that the

results were very similar to those obtained from GenABEL (FASTA),

EMMAX, FaST-LMM, GEMMA and MMM. However, we were

unable to get lmekin to give meaningful results (most results were

‘‘NA’’) when applied to the sim-P20 data. We also speculated that a

‘proper’ longitudinal analysis should, in theory, be implementable in

the package Mendel [35], through making use of Mendel’s ability to

include household effects. (Effectively one would trick Mendel into

fitting the correct model by designating all ‘individuals’ (with each

timepoint considered as a separate individual) to be members of a

single pedigree, with the individuals corresponding to separate

timepoints within a single real individual designated as belonging to

the same household). We attempted to fit this model in Mendel for our

sim-L20 and sim-P20 data sets, but were unable to obtain reliable

Table 2. Genomic control inflation factors achieved in real data or in a single replicate of the simulated data sets.

Trait analysed

Method Description Kinships used Real disease (VL)
Simulated strong
(sim-D1)

Simulated weak
(sim-D2)

Simulated
quantitative
(sim-Q)

Unadjusted Standard linear or logistic
regression

None 1.23 1.12 1.04 1.43

EM_BN EMMAX (Balding-Nichols kinships) Estimated 0.99 0.99 1.00 0.99

EM_IBS EMMAX (IBS kinships) Estimated 0.99 0.99 1.00 1.00

FLMM_A FaST-LMM (approximate
calculation)

Estimated 0.99 0.99 1.00 1.00

FLMM_E FaST-LMM (exact calculation) Estimated 1.00 0.99 1.01 1.00

GA_FA GenABEL (FASTA) Estimated 0.99 0.99 1.00 0.99

GA_GRG GenABEL (GRAMMAR-Gamma) Estimated 0.99 0.99 1.00 1.00

GMA_C GEMMA using centred
genotypes

Estimated 1.00 0.99 1.01 1.00

GMA_S GEMMA using standardised
genotypes

Estimated 1.00 0.99 1.01 1.00

GTAM GTAM (implemented in
MASTOR)

Pedigree 1.20 1.00 0.99 0.99

Mendel_T Mendel with theoretical
kinships

Pedigree 1.11 1.00 0.99 0.99

Mendel_P Mendel with kinships estimated
within estimated pedigree clusters

Estimated 1.10 1.00 0.99 0.99

Mendel Mendel with fully estimated
kinships

Estimated 1.03 0.99 1.00 1.00

MMM_E MMM (exact calculation) Estimated 1.00 0.99 1.01 1.00

MMM_G MMM (GLS approximation) Estimated 0.99 0.99 1.00 0.99

FBATaffa FBAT (transmissions to affecteds
only)

Pedigree 1.02 1.01 1.00 –

FBATboth FBAT (transmissions to all
individuals)

Pedigree 1.01 1.00 1.01 1.00

MASTOR MASTOR (implemented in
MASTOR)

Pedigree 1.15 1.00 0.99 0.99

MQLS1972a MQLS (using 1972 genotyped
individuals)

Pedigree 1.15 1.01 0.99 –

MQLS3626a,b a,bMQLS (using all 3626
individuals with or without
genotype data)

Pedigree 1.16 – – –

MQLS1972_E MQLS using 1972 genotyped
individuals and estimated
kinships

Estimated 0.94 0.90 0.91 –

RT1972a ROADTRIPS (using 1972
genotyped individuals)

Pedigree &
estimated

1.00 1.00 0.99 –

RT3626a,b ROADTRIPS (using all 3626
individuals with or without
genotype data)

Pedigree &
estimated

1.00 – – –

aFBATaff, MQLS and ROADTRIPS are only applicable to binary traits and so do not have results in the ‘Simulated quantitative’ column.
bIn the simulated data sets, MQLS and RT could only be based on the 1972 individuals with simulated phenotypes, and so no simulated trait results are displayed in the
MQLS3626 and RT3626 rows.
doi:10.1371/journal.pgen.1004445.t002
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results. (If included, household effects were continually estimated at 0,

and, regardless of whether or not household effects were included, the

SNP association tests showed highly inflated significance values, with

no correct localisation of true sim-L20 signals as had been seen for

FaST-LMM (Figure S4) and little correlation between {log10 p-

values from Mendel and those from these other packages). We

speculate that the algorithm used by Mendel may be adversely affected

by the presence of many highly-related individuals (e.g. repeated

measures that in actuality pertain to a single individual), causing the test

statistics generated to be unreliable.

Discussion

Here we have demonstrated, through simulations and applica-

tion to real data, that linear mixed model approaches such as those

implemented in the packages GenABEL, EMMAX, FAST-LMM,

Figure 3. Power and type 1 error of different methods. Powers (left hand plots) are defined as the proportion of replicates (out of 1000) in
which both simulated disease loci are detected, with ‘detection’ corresponding to any SNP within 40 kb of the simulated disease locus reaching the
specified p-value threshold. Type 1 errors (right hand plots) are defined as the proportion of null SNPs (out of 20,000 = 20 null SNPs times 1000
simulation replicates) that reach the specified p-value threshold. Horizontal dashed lines indicate the target p-value thresholds (i.e. the expected type
1 error rates).
doi:10.1371/journal.pgen.1004445.g003

Figure 4. Manhattan plots for the real phenotype using FaST-LMM exact and alternative software packages. The points marked in red
denote the confirmed significant region from Fakiola et al. (2013). FLMM_E = FaST-LMM using exact calculation, MQLS1972 = MQLS using 1972
genotyped individuals, RT1972 = ROADTRIPS using 1972 genotyped individuals, FBATaff = FBAT using transmissions to affecteds only,
FBATboth = FBAT using transmissions to both affecteds and unaffecteds. Results from all other LMM methods were indistinguishable from FLMM_E
and so are not shown.
doi:10.1371/journal.pgen.1004445.g004
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Table 3. Concordance between top SNPs identified by different methods.

Mean (standard deviation) in 1000 replicates of proportion of top t SNPs within null and true regions that overlap with top t
SNPs from EM_BN

Trait Methoda t = 5 t = 10 t = 15 t = 20 t = 25

sim-D1 Unadjusted 0.991 (0.042) 0.990 (0.030) 0.981 (0.033) 0.975 (0.032) 0.973 (0.027)

EM_IBS 0.999 (0.017) 0.999 (0.009) 0.997 (0.015) 0.997 (0.013) 0.996 (0.012)

FLMM_A 1.000 (0.009) 1.000 (0.003) 1.000 (0.007) 1.000 (0.004) 1.000 (0.003)

FLMM_E 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004)

GA_FA 0.998 (0.018) 1.000 (0.005) 0.999 (0.011) 0.999 (0.008) 0.998 (0.008)

GA_GRG 0.998 (0.021) 0.999 (0.011) 0.996 (0.017) 0.998 (0.010) 0.998 (0.008)

GMA_C 0.998 (0.021) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004)

GMA_S 0.998 (0.021) 1.000 (0.005) 0.999 (0.008) 0.999 (0.005) 1.000 (0.004)

GTAM 0.998 (0.022) 0.995 (0.022) 0.990 (0.025) 0.988 (0.022) 0.987 (0.020)

Mendel 0.997 (0.025) 0.996 (0.019) 0.991 (0.024) 0.989 (0.021) 0.989 (0.018)

MMM_E 0.991 (0.041) 1.000 (0.004) 0.999 (0.009) 0.999 (0.005) 1.000 (0.004)

MMM_G 0.993 (0.036) 1.000 (0.003) 1.000 (0.007) 1.000 (0.005) 0.999 (0.005)

FBATaff 0.684 (0.253) 0.790 (0.115) 0.773 (0.090) 0.771 (0.080) 0.760 (0.072)

FBATboth 0.859 (0.130) 0.844 (0.084) 0.811 (0.078) 0.795 (0.075) 0.777 (0.071)

MASTOR 0.993 (0.038) 0.994 (0.024) 0.989 (0.027) 0.985 (0.024) 0.985 (0.022)

MQLS 0.978 (0.062) 0.981 (0.040) 0.960 (0.043) 0.951 (0.041) 0.941 (0.038)

RT 0.981 (0.059) 0.984 (0.037) 0.962 (0.042) 0.952 (0.041) 0.942 (0.038)

sim-D2 Unadjusted 0.982 (0.060) 0.984 (0.041) 0.979 (0.039) 0.974 (0.040) 0.973 (0.036)

EM_IBS 0.997 (0.029) 0.997 (0.024) 0.995 (0.025) 0.994 (0.028) 0.994 (0.024)

FLMM_A 0.998 (0.027) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026)

FLMM_E 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GA_FA 0.992 (0.044) 0.998 (0.024) 0.997 (0.026) 0.996 (0.030) 0.996 (0.026)

GA_GRG 0.994 (0.038) 0.997 (0.026) 0.996 (0.027) 0.995 (0.030) 0.996 (0.026)

GMA_C 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GMA_S 0.995 (0.035) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

GTAM 0.988 (0.050) 0.990 (0.036) 0.983 (0.037) 0.982 (0.036) 0.982 (0.032)

Mendel 0.988 (0.051) 0.992 (0.033) 0.986 (0.035) 0.984 (0.036) 0.987 (0.031)

MMM_E 0.995 (0.037) 0.997 (0.025) 0.997 (0.025) 0.996 (0.030) 0.997 (0.026)

MMM_G 0.998 (0.028) 0.998 (0.024) 0.997 (0.025) 0.997 (0.029) 0.997 (0.026)

FBATaff 0.413 (0.255) 0.571 (0.201) 0.614 (0.157) 0.639 (0.128) 0.651 (0.102)

FBATboth 0.664 (0.246) 0.718 (0.146) 0.699 (0.111) 0.691 (0.099) 0.686 (0.088)

MASTOR 0.971 (0.075) 0.988 (0.038) 0.981 (0.038) 0.978 (0.039) 0.979 (0.033)

MQLS 0.934 (0.107) 0.962 (0.056) 0.942 (0.053) 0.928 (0.051) 0.917 (0.047)

RT 0.943 (0.099) 0.965 (0.055) 0.943 (0.053) 0.930 (0.052) 0.919 (0.047)

sim-Q Unadjusted 0.987 (0.049) 0.983 (0.038) 0.962 (0.040) 0.963 (0.034) 0.954 (0.033)

EM_IBS 0.998 (0.020) 0.998 (0.016) 0.993 (0.020) 0.994 (0.017) 0.993 (0.015)

FLMM_A 1.000 (0.000) 1.000 (0.000) 1.000 (0.004) 1.000 (0.005) 1.000 (0.004)

FLMM_E 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005)

GA_FA 1.000 (0.006) 0.999 (0.010) 0.998 (0.010) 0.998 (0.010) 0.996 (0.012)

GA_GRG 0.994 (0.034) 0.999 (0.010) 0.995 (0.018) 0.996 (0.014) 0.996 (0.012)

GMA_C 1.000 (0.009) 1.000 (0.007) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004)

GMA_S 1.000 (0.009) 0.999 (0.008) 1.000 (0.005) 1.000 (0.005) 0.999 (0.005)

GTAM 0.995 (0.032) 0.991 (0.028) 0.984 (0.030) 0.985 (0.024) 0.984 (0.022)

Mendel 0.998 (0.021) 0.996 (0.020) 0.987 (0.027) 0.988 (0.022) 0.988 (0.019)

MMM_E 0.899 (0.100) 0.999 (0.008) 1.000 (0.004) 1.000 (0.004) 1.000 (0.004)

MMM_G 0.903 (0.100) 1.000 (0.003) 1.000 (0.003) 1.000 (0.004) 1.000 (0.003)

FBAT 0.906 (0.101) 0.896 (0.067) 0.869 (0.059) 0.844 (0.067) 0.814 (0.066)

MASTOR 0.998 (0.020) 0.992 (0.027) 0.984 (0.030) 0.984 (0.025) 0.983 (0.023)

aSee Table 2 for description of methods.
doi:10.1371/journal.pgen.1004445.t003
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GEMMA and MMM offer a convenient and robust approach for

family-based GWAS of quantitative or binary traits, are successful

in controlling the overall genomic inflation factor to an

appropriate level, and offer higher power than traditional

family-based association analysis approaches such as those

implemented in FBAT. Similar inference is also provided by

related and alternative approaches implemented in the software

packages Mendel, ROADTRIPS, MQLS and MASTOR, al-

though our results from analysis of the real data suggest that, for

Mendel, MQLS and MASTOR, care may need to be taken to use

estimated kinships based on SNP data rather than known pedigree

relationships, if one is to avoid any inflation in the test statistics.

Our current study focused mostly on family data in which

genuine close relationships between many individuals exist.

Nevertheless we found similar results with respect to the LMM

methods investigated (adequate control of type 1 error and

extremely similar performance in terms of power and concordance

between top findings) when applied to a subset of 462 founder

individuals from our pedigrees, selected to be approximately

unrelated to one another (see Figure S11 and Table S3). Therefore,

we believe that our results highlighting the concordance between

different LMM methods are equally relevant to researchers carrying

out genome-wide association studies of apparently unrelated

individuals as to researchers carrying out family-based studies.

Traditional methods for family-based association analysis make

use of pedigree relationships either (e.g. FBAT) through direct use of

known pedigree structure or else (e.g. MQLS, ROADTRIPS and

all LMM methods) through use of a covariance matrix that involves

the known kinship between each pair of individuals (the probability

that a randomly chosen allele at a locus in each individual is

identical by descent i.e. is a copy of a common ancestral allele,

under the assumption that the pedigrees are correctly specified and

all founders in a pedigree are completely unrelated i.e. share no

alleles identical by descent). The assumption that all founders in a

pedigree share no alleles identical by descent is clearly a fiction,

given human population history, while the assumption that all

pedigrees are correctly specified and unrelated to one another is also

likely to be violated in most real studies. The use of estimated

kinships based on SNP data rather than theoretical kinships based

on known pedigree relationships removes the reliance on these

untenable assumptions, and allows essentially the same analysis

approaches to be applied to apparently unrelated individuals (who

may nevertheless display distant levels of shared ancestry). The

question then arises as to what exactly these estimated kinships (or

related measures) are actually measuring? We consider a detailed

discussion of this issue to be beyond the scope of the current

manuscript, but we refer the reader to the more detailed expositions

given in [36] and [37] which discuss some differences between

different kinship measures as well as pointing out the difficulty of

directly modelling identity by descent in the absence of an explicit

pedigree. A key point when using estimated kinships to structure the

covariance matrix in an association analysis (as here) is that our goal

is not relationship estimation (close or distant) in its own right, but

rather to adjust our analysis for phenotypic correlations between

individuals due to genetic factors (usually assumed to be polygenic

effects) that would otherwise result in inflated association test

statistics. Therefore, one could argue that the extent to which the

estimated kinship measures do or do not reflect genuine relation-

ships between individuals (and how one should interpret such

relationships) is largely irrelevant; the important issue is whether or

not use of such kinships succeeds with respect to adequately

modelling phenotypic correlations between individuals. On that

note, in the analyses performed here we did not find large

differences between the results obtained using different kinship

measures, although use of the kinship measures output by PLINK

(as well as use of completely incorrect kinship measures) did perform

worse than the other kinship measures investigated.

The recent popularity of LMM approaches for the analysis of

apparently unrelated individuals [1–4] has been partly motivated

by a desire to correct for more complicated models of population

structure including population stratification, rather than (or in

addition to) correcting for relatedness between individuals.

Population stratification can be thought of as a type of relatedness

in that members of the same sub-population are effectively more

closely related to one another than to individuals in other sub-

populations, although it has been noted [36] that this sub-

population or ‘island model’ underlying the traditional view of

population stratification may be unduly simplistic. The observa-

tion that LMM approaches have sometimes worked better than

traditional principal component approaches at correcting for

apparent population structure [1] may reflect the fact that the

inflation seen in genome-wide test statistics (in the absence of any

correction) results not from population stratification under an

‘island model’ per se, but rather from more complicated

Table 4. Genomic control factors achieved in naive analysis of a single replicate of the simulated longitudinal data sets.

Trait analysed

Methoda Longitudinal (sim-L20) Longitudinal polygenic (sim-P20)

Unadjusted 20.82 21.53

EM_BN 1.01 1.01

EM_IBS 0.99 0.97

FLMM_A 1.01 1.01

FLMM_E 1.01 1.01

GA_FA 1.06 2.39

GA_GRG 0.66 0.47

GMA_C 1.01 1.01

GMA_S 1.01 1.01

MMM_E 1.01 3.52

MMM_G 1.01 3.52

aSee Table 2 for description of methods.
doi:10.1371/journal.pgen.1004445.t004
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population structure (involving distant ancestral relationships

between individuals). A recent paper by Wang et al. [38] showed

that, in the presence of cryptic relatedness between study subjects

(but no population stratification), both principal component and

LMM methods are valid (in the sense of generating test statistics

with the desired distribution under the null hypothesis), but LMM

approaches are more powerful for detecting association. In

contrast, in the presence of population stratification, neither

principal component nor LMM methods are strictly valid, but

LMM methods seem to display better overall performance.

An interesting finding of our current study was the fact that

longitudinal traits (repeated measures) could be successfully

analysed in an LMM framework simply by treating each

measurement as if it came from a separate person and expanding

out the genetic data set accordingly (resulting in an expanded data

set containing many apparent twins, triplets, quadruplets etc.). From

a practical point of view this is useful as analysis of an expanded data

set in standard LMM software is computationally convenient; we

found a ‘proper’ analysis using software such as longGWAS [34] to

be prohibitively slow when applied to our data set.

A caveat to all the results presented here is that they relate to

genotypes derived from a single data set, our Brazilian family study

of visceral leishmaniasis [13]. (Although the results in terms of the

performance and power of different methods were comparable

across both real and simulated data sets, even in the simulated data

all genotypes were held fixed and only phenotypes were re-

simulated). However, we have good reason to believe that the high

concordance between different LMM implementations seen here

(as well as their performance from when applied naively to

longitudinal data) will hold more generally for genetic studies of

diverse phenotypes carried out in diverse human populations. We

observed essentially the same pattern of results described here

when we applied a more limited set of LMM implementations to

GWAS data from Genetic Analysis Workshop 18 (959 Mexican-

American individuals from 20 families, with real and simulated

phenotypes) [18] as well as when we applied these approaches to

GWAS data from 402 Aboriginal Australian individuals that

cluster loosely into 4 large nominal pedigrees (unpublished data).

Therefore, although it is possible that highly structured popula-

tions (such as those encountered in plant or animal breeding

experiments) may uncover subtle differences between the various

LMM approaches, for researchers carrying out complex genetic

disease studies in human populations, we anticipate there will be

little difference between the results seen from one approach over

another, and the choice of which method/software package to use

will be largely dictated by personal taste or convenience.

On this note, we point out that each package has its own

particular advantages (and disadvantages). These include the fact

that EMMAX, GEMMA and MMM allow the input of dosages

derived from imputed (in addition to real) genotypes; MMM has

the advantage of allowing the output of regression coefficients and

standard errors for the SNP effects on the (log) odds ratio scale,

making it convenient to compare or combine the results with

results from traditional case/control studies analysed via logistic

regression; GenABEL (GRAMMAR-Gamma) has the advantage

of scaling linearly with sample size, which makes it attractive for

the analysis of very large data sets; FaST-LMM has the advantage,

along with EMMAX and Mendel, of internally imputing missing

data at any (genetic or non-genetic) covariates, which can make it

convenient for implementing stepwise conditional analyses; and,

unlike most LMM implementations, ROADTRIPS, MQLS and

MASTOR have the advantage of using all phenotype information,

including that for individuals that have not been genotyped, which

can in theory generate a small increase in power.

One of the main differences between the different software

implementations we investigated was the time taken to perform the

analysis (not including the time required to re-format data into an

appropriate format for a given package). We were unable to do a

strict head-to-head comparison as the precise timings depend on a

number of factors including the computer architecture available

(in particular the ability of the system and of any given program to

allow multi-threading and/or parallel processing), however our

rough comparison (Table S2), assuming that kinships are to be

estimated on the basis of SNP data, implicated FaST-LMM

(approximate calculation), GenABEL (GRAMMAR-Gamma) and

EMMAX as generally the fastest implementations.

In conclusion, we recommend linear mixed model approaches

as a convenient and powerful approach for family-based GWAS of

quantitative or binary traits. We find these approaches to be

successful in controlling the overall genome-wide error rate and to

perform well in comparison to competing approaches.

Materials and Methods

Ethics statement
Ethical approval for the Belem Family Study was obtained

originally from the local ethics committee at the Instituto Evandro

Chagas, Belém, Para, Brazil. Approval for continued use of the

Belem Family Study samples, and for collection and use of the

samples from Natal, has been granted from the local Institutional

Review Board at the Universidade Federal do Rio Grande do

Norte (CEP-UFRN 94–2004), nationally from the Comissão

Nacional de Ética em Pesquisa (CONEP: 11019), and from the

Ministerios Cencia e Tecnologia for approval to ship samples out

of Brazil (portaria 617; 28 September 2005). Informed written

consent for sample collection was obtained from adults, and from

parents of children v18 years old.

Subjects and genotyping
Sample collection and genotyping of the Brazilian subjects used

here is described in detail in [13]. In brief, we ascertained 348

families comprising 65 families collected from sites around Belém

and 283 families collected from sites around Natal in north east

Brazil. All families were ascertained on the basis of containing

multiple individuals that had been diagnosed with clinical visceral

leishmaniasis. DNA from 2159 family members was genotyped at

the Wellcome Trust Sanger Institute using the Illumina Human660-

Quad chip. Extensive quality control checks were employed to

retain only high quality samples [13], and to exclude samples whose

apparent relatedness (as assessed based on estimated genome-wide

average identity by descent, calculated using a subset of 11,177

high-quality autosomal SNPs via the –Z-genome command in

PLINK [27]) was incompatible with their known pedigree

relationships (and for whom such discrepancies could not be

resolved on further investigation). SNP quality control checks were

used to retain only a subset of the genome-wide SNPs that could be

expected to be of high quality. For the current investigation, we used

slightly more stringent SNP exclusion thresholds than had been used

in [13], namely SNPs were excluded if their minor allele frequency

was v0:01, if the Fisher information for the allele frequency

v0:98, if call rate v0:99, or if the p-value for a test of Hardy

Weinburg Equilibrium v10{6. These quality control checks

resulted in the retention of 1972 genotyped individuals (357 cases,

1613 controls and two individuals of unknown phenotype) from 308

families (244 from Natal, 64 from Belém), each genotyped at

545,433 autosomal SNPs.

For the majority of analyses considered here, we used either the

1972 genotyped individuals or else the entire set of 3626
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individuals (with or without genotype data) that are required to

define the ‘known’ (theoretical) pedigree relationships. For power

comparisons between LMM methods, we also investigated use of a

subset of 462 ‘founder’ individuals, chosen on the basis of

theoretical relationships and estimated kinships to be approxi-

mately unrelated to one another.

Generation of simulated phenotypes
We generated simulated phenotypes for the 1972 individuals

that had genome-wide SNP data available. We used two different

models for generating binary (disease) traits, one corresponding to

‘strong’ genetic effects (sim-D1) and one corresponding to ‘weak’

genetic effects (sim-D2), with the trait in both cases governed by

two SNPs (rs9271252 and rs233722) located on chromosomes 6

and 12 respectively. In addition to modelling genetic effects at

rs9271252 and rs233722, we allowed for 22 weaker ‘polygenic’

effects caused by genotype at the 100th SNP on each autosomal

chromosome. Each effect contributed multiplicatively to the

probability of developing disease. Thus, the mathematical model

for generating the simulated phenotype was

Penetrance~a P
24

j~1
bj

xj

where xj was a variable coded (0, 1, 2) according to the number of

copies of the risk allele possessed at causal SNP j (with j = 1

corresponding to rs9271252 and j = 2 corresponding to rs233722),

the baseline penetrance a was set to equal 0.017 for the ‘strong’

scenario and 0.022 for the ‘weak’ scenario, b1 was set to equal 2

for the ‘strong’ scenario and 1.6 for the ‘weak’ scenario, b2 was set

to equal 1.8 for the ‘strong’ scenario and 1.55 for the ‘weak’

scenario, and bj (j~3, . . . 24) was set to equal 1.1 under both

scenarios. Resulting penetrances greater than 1.0 were assigned to

equal 1.0.

We also simulated a model (sim-Q) for quantitative traits, again

governed by rs9271252 and rs233722 on chromosomes 6 and 12.

The traits were generated as a linear combination of the effect

from each of the strong and polygenic effect SNPs, with a normally

distributed error component, thus:

yi~azb1xi1zb2xi2z
X24

j~3

bjxijzEi

where xij was a genotype variable for person i at SNP j coded as

above, a represents the baseline trait and was set to 100, b1 was set

to 3, b2 to 2, bj (j~3, . . . 24) which correspond to polygenic

contributions for SNP i were set to 1, and Ei was a randomly

generated variable following a normal distribution with mean 0

and standard deviation 5.

We simulated a model (sim-L20) for longitudinal quantitative

traits (with k = 20 repeated measures for each individual) in a

rather similar manner, with individuals’ non-genetic variation

accounted for by another error term di:

yik
~azb1xi1zb2xi2z

X24

j~3

bjxijzdizEik

The baseline trait a remained 100, b1 was set to 5, b2 to 4, bj

(j~3, . . . 24) were set to 1.5, di was a random variable following a

normal distribution with mean 0 and standard deviation 4,

generated once for each individual. The residual error term Eik was

a randomly generated variable following a normal distribution

with mean 0 and standard deviation 2.

To make the analyses feasible whilst still maintaining the overall

degree of relatedness, the longitudinal data set was constructed

based on a subset of 498 individuals selected through stratified

sampling from the original data set, with number of individuals

randomly selected from each extended family approximately

proportional to their family size while also ensuring that every

family is represented by at least one individual. Phenotypes for

these 498 individuals were then generated 20 times to create the

final longitudinal data set.

In addition we simulated a purely polygenic longitudinal model

(sim-P20) in which the strong effects b1 and b2 did not exist, and

the 22 polygenic effects bj (j~3, . . . 24) were replaced by 402

polygenic effects bj (j~3, . . . 404) which were set to 0.75. In this

model, a was set to 20, di followed a normal distribution with

mean 0 and standard deviation 16, and Eik followed a normal

distribution with mean 0 and standard deviation 1.

We generated 1000 replicates of each simulated data set, apart

from the longitudinal and polygenic longitudinal data sets for

which we only simulated a single replicate. For visualisation of

results from a whole genome scan, we analysed only a single

replicate (replicate 1). For investigation of power, type 1 error and

concordance, to reduce computation time we analysed all 1000

replicates but only generated test statistics at 40 SNPs that lay

within 40 kb of the simulated disease loci (for evaluation of power)

and 20 SNPs that lay well outside the region of any simulated

disease loci (for evaluation of type 1 error). By default, the

programs Mendel and ROADTRIPS require all SNPs that are

being used to estimate genome-wide relatedness to also be read in

and tested for association; to perform the analysis of all 1000

replicates in reasonable time we therefore included the 50,129

‘pruned’ SNPs rather than the full genome-wide set of SNPs that

would normally be used by these programs.

Linear mixed models methods and software
All the LMM implementations evaluated here attempt to fit

either an exact or an approximate version of the standard linear

mixed model:

y~XbzQzE

where y~(y1,y2,:::,yn)T is a vector of responses (either quantita-

tive traits or binary traits coded 1/0 for case/control status) on n
subjects, X~(xij) is the n|J matrix of predictor variables to be

modelled as fixed effects, including variables representing genetic

and/or non-genetic covariates as well as a vector of variables x1

representing the genotypes at a particular SNP currently being

tested (generally coded as (0,1,2) according to the number of copies

of a particular allele possessed), b~(b1,b2,:::,bJ ) are regression

coefficients (to be estimated) representing the linear effects of

predictors on response, and Q and E are random effects assumed to

follow the distributions Q*N(0,2Ws2
g) and E*N(0,s2

eI) respec-

tively (where s2
g and s2

e are parameters to be estimated

representing genetic and environmental components of variance,

I is the n|n identity matrix and W is an n|n matrix of pairwise

kinship coefficients).

GenABEL (FASTA). The mmscore and polygenic functions

of the GenABEL package [39] together allow implementation of

the FAmily based Score Test Approximation (FASTA) method

proposed by Chen and Abecasis [9]. The FASTA method is also

implemented in the --fast-Assoc option of the MERLIN [40]
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package, however MERLIN calculates the kinship matrix W
internally on the basis of known (theoretical) kinships constructed

from known pedigree relationships, rather than allowing the

pairwise kinship coefficients to be estimated using genome-wide

SNP genotype data [12]. We therefore preferred to use GenABEL,

which can read in a user-specified matrix W constructed on the

basis of either theoretical or estimated kinship coefficients.

Rather than fitting the full linear mixed model y~XbzQzE
and estimating b, s2

g and s2
e by maximum likelihood for each SNP

across the genome, FASTA implements an ‘approximate’ two-

stage approach. At the first stage a reduced model is fitted, where

the regression coefficient b1 (corresponding to the effect at the

SNP currently under test) is assumed to equal 0. At the second

stage, a score statistic for testing the null hypothesis that b1 does

indeed equal 0 is constructed as:

TFA~
(½x1{E(x1)�TV{1½y{E(y)�)2

½x1{E(x1)�TV{1½x1{E(x1)�

where E(y) refers to an n-dimensional vector of fitted values of the

response from the reduced model, E(x1) refers to an n-

dimensional vector of unconditional expectations of genotype

scores at the test SNP (each element of which equals twice the

allele frequency of the particular allele being counted), and V
refers to the estimated variance/covariance matrix,

V~2Ws2
gzs2

eI , with sg and se taking their maximum likelihood

estimates as calculated under the reduced model. The score

statistic is calculated repeatedly using the appropriate n-dimen-

sional vector x1 for each test SNP (typically between 500,000 and

several million SNPs) across the genome, but the time-consuming

maximum likelihood step for estimating s2
g, s2

e and (b2,:::,bJ ) need

only be performed once, at the start.

GenABEL (Grammar-Gamma). The grammar function of

the GenABEL package [39] implements the GRAMMAR-

Gamma method proposed by Svishcheva et al. [14]. This method

can be considered as an extension of the original GRAMMAR

method [10,12] to produce a test that is essentially a fast

approximation to FASTA.

In GRAMMAR [10], similarly to FASTA, the first step is to fit a

reduced version of the full linear mixed model in which b1 is set to

0. Phenotype residuals ~yy~(~yy1,~yy2,:::,~yyn)T may be constructed as

~yyi~yi{E(yi) where E(yi) refers to the fitted value of the response

for person i from the reduced model. These residuals are then used

as the independent trait in a simple linear regression model:

~yyi~mz~bb1xi1zei

where the error term ei is assumed to be independently normally

distributed. Estimation of ~bb1 and testing of the null hypothesis that
~bb1~0 can be accomplished through maximum likelihood or least

squares approaches. Alternatively, a rapid test of ~bb1~0 can be

achieved [12,14] through construction of a score statistic:

TGR~
n(½x1{E(x1)�T ½~yy��)2

½x1{E(x1)�T ½x1{E(x1)�½~yy��T ½~yy��

where ~yy�~(~yy�1,~yy�2,:::~yy�n) are transformed version of the residuals

~yy�~s2
eV

{1~yy. Again, the time-consuming maximum likelihood

step for estimating s2
g, s2

e and (b2,:::,bJ ) (and thus for calculating

the transformed residuals ~yy�) need only be performed once.

In the original GRAMMAR publication [10], the assumption

was that pedigree relationships between individuals would be

known and so W would be constructed on the basis of theoretical

kinship coefficients. Subsequently it was suggested [12] that the use

of estimated kinship coefficients (estimated on the basis of genome-

wide SNP data) could perform as well or better. Regardless of

which kinship coefficients are used, GRAMMAR was found to be

conservative and to result in biased regression coefficients

representing the SNP effects of interest [12], and so it was

suggested that the final x2 test statistics should be ‘re-inflated’ by

multiplying by an appropriate estimated correction factor (in a

procedure analogous to the ‘deflation’ of x2 test statistics via

genomic control [29]) to result in a final test statistic with the

appropriate null distribution. This ‘genomic control corrected’

version of GRAMMAR was denoted GRAMMAR-GC by [12].

The GRAMMAR-Gamma method [14] is similar to GRAM-

MAR but, unlike GRAMMAR, produces unbiased SNP effect

estimates and test statistics that do not require any deflation. The

method involves calculating a GRAMMAR-Gamma correction

factor c (see [14] for details) that is used to adjust a new statistic

Tnew~
(½x1{E(x1)�TV{1½y{E(y)�)2

½x1{E(x1)�T ½x1{E(x1)�

which can be calculated from a standard linear regression analysis

of V{1½y{E(y)� on ½x1{E(x1)�. This results in a final

GRAMMAR-Gamma statistic TGRG = Tnew/c that can be shown

to be approximately equivalent to the FASTA statistic TFA.

Svishcheva et al. [14] argue that their GRAMMAR-Gamma

method has similar computational complexity to alternative

methods such as FASTA, EMMAX and FaST-LMM at stage 1,

while achieving computational savings over these methods at stage

2 (achieving a stage 2 computational complexity of O(sn), where n
is the sample size and s the number of SNPs to be tested).

EMMAX. Kang et al. [1] proposed a method that appears to

be essentially equivalent to the FASTA method proposed by Chen

and Abecasis [9], except for the following caveats:

1. In the approach of Kang et al. [1], there is no expectation that

the individuals will be closely related, indeed the method is

motivated as an alternative to principal component based

approaches when adjusting for population substructure in

genome-wide association studies of unrelated individuals. Thus,

the kinship coefficients used to construct W are not based on

any ‘known’ pedigree relationships but are estimated based on

genome-wide SNP data (using either a simple estimate based

on the proportion of alleles identical-by-state (IBS) measure, or

else an estimate that Kang et al. [1] describe as a Balding-

Nichols (BN) estimate), resulting in a procedure essentially

identical to that proposed by Amin et al. [12].

2. In the approach of Kang et al. [1], rather than applying the

method solely to quantitative traits as had been done previously

[9,10,12], the method is also proposed to apply to case/control

data (with the response coded as 0 or 1, but analysed as if it

were, in fact, a quantitative trait, i.e. assuming a normally

distributed random environmental/error term E). Kang et al.

argue that this is computationally more convenient than fitting

a generalized linear mixed model with a logit or probit link

function (which would be the usual way to analyse binary

response data) and should not result in increased type 1 error

for testing the null hypothesis.

3. Although not entirely clear from the description in Kang et al.

[1], it appears that, at the second stage, in contrast to [9], any
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covariates other than the SNP currently under test are re-

estimated i.e. the entire vector of fixed effect predictors

b~(b1,b2,:::,bJ ) is estimated, rather than fixing (b2,:::,bJ ) at

their estimated values from the first stage.

The method of Kang et al. [1] has been implemented in the

software package EMMAX. As pointed out by Lippert et al. [4],

EMMAX, along with its predecessor EMMA [41], achieves

additional computational efficiency (over and above that achieved

by simply estimating parameters s2
g and s2

e only once) by

reparameterising the likelihood in terms of a parameter

d~s2
e=s2

g (which is estimated only once) and by making clever

use of spectral decompositions. This results in a computational

complexity of O(n3zrn) at stage 1 (where r the number of

iterations i.e. the number of evaluations of the likelihood required)

together with a computational complexity of O(sn2) at stage 2,

resulting in a total computational complexity of O(n3zsn2zrn).

A similar approach to [1] and [9] was proposed by Zhang et al.

[2] and implemented in a software package TASSEL. The main

focus of the paper by Zhang et al [2] was to describe a clustering

algorithm that results in an approximation to the kinship matrix

with lower effective dimensionality, which can be used in place of

the full known or estimated kinship matrix. Similarly to EMMAX,

in TASSEL the values of s2
g and s2

e (as well as a cluster

membership variable C) are estimated under the null hypothesis

that b1~0 (at stage 1) and are then held fixed while estimating

b~(b1,b2,:::,bJ ) (at stage 2). The motivation for the clustering

approximation is to reduce computation time. However, existing

software packages (e.g. EMMAX and the mmscore and poly-

genic functions in GenABEL) that address the problem without

making such an approximation are not computationally prohib-

itively time consuming. Therefore it is unclear why use of this

approximation should be preferred. For this reason, given the

extreme similarity between the methods implemented in EMMAX

and TASSEL when no clustering is performed, we have not

included TASSEL in our comparisons.

FaST-LMM. Lippert et al. [4] developed a fast ‘exact’ LMM

implementation that, in common with EMMAX, reparameterises

the likelihood in terms of a parameter d~s2
e=s2

g, and also requires

only a single spectral decomposition at the first stage of the

algorithm, resulting in a total time complexity of O(n3zsn2zrsn).
This exact method is the default in the current (2.04) version of

FaST-LMM. (In previous versions the default was to use an

approximate method in which d is fixed to its value from fitting a

null model containing no fixed SNP effects, as is done in

EMMAX, TASSEL and FASTA, resulting in a reduced

complexity of O(n3zsn2zrn). This approximate method is now

available in FaST-LMM as an optional alternative to the exact

method). A further speed-up can be achieved in FaST-LMM by

restricting the number of SNPs used to construct the kinship

matrix W to a number less than the number of individuals.

FaST-LMM uses either maximum likelihood (ML) or restricted

maximum likelihood (REML). In early versions of FaST-LMM the

default was ML but in later versions the default became REML.

After some experimentation, we deemed ML to be the most

reliable and have used that for all results presented here.

GEMMA. Zhou and Stephens [16] implemented an exact

approach extremely similar to that of FaST-LMM in their package

GEMMA. Indeed, Zhou and Stephens themselves point out that

GEMMA should give essentially identical inference to FaST-

LMM in the same time complexity O(n3zsn2zrsn), but note that

the number of iterations (r) required to reach convergence in

GEMMA is expected to be slightly smaller than in FaST-LMM,

owing to the use of a more efficient optimization method.

GEMMA also has an attractive practical advantage of allowing the

input of imputed [42] genotype data, rather than real measured

genotype data, if desired.

MMM. Pirinen et al. [15] have implemented approximate

and exact approaches similar to the approximate and exact

approaches of FaST-LMM (and the exact approach of GEMMA)

in their package MMM. An advantage of MMM in comparison to

the other packages is that it allows the output of regression

coefficients and standard errors for the SNP effects on the (log)

odds ratio scale, making it convenient to compare or combine the

results with results from traditional case/control studies analysed

via logistic regression. In addition, MMM allows the input of

imputed genotype data rather than real measured genotype data,

if desired. MMM was used in the original analysis of the Brazilian

VL family data described in [13]. For more details on the

methodology implemented in MMM, see [15].

Mendel. An approximate (score test) LMM implementation,

suitable for analysis of GWAS data, has also been implemented in

the software package Mendel [35] (versions 13.0 and higher). A

slower (exact) LMM implementation is also available, but we only

considered the approximate test here. Mendel can a. calculate

kinship coefficients on the basis of known pedigree relationships, b.

use the full set of genome-wide SNP data to cluster people into

apparent pedigrees and then estimate kinship coefficients within

those pedigree clusters, or c. use kinship coefficients estimated for

all pairs of genotyped individuals on the basis of their full set of

genome-wide SNPs. The resulting tests should be conceptually

extremely similar to the LMM tests implemented in other software

packages such as EMMAX and FaST-LMM.

Alternative methods and software
FBAT. Traditional approaches for family-based association

analysis focus on the transmission of high-risk alleles through

pedigrees, in an approach that is closely related to traditional

linkage analysis. Indeed, the well-known transmission disequilib-

rium test (TDT) [19], which tests whether a particular allele is

transmitted preferentially from heterozygous parents to affected

offspring, was originally developed as a test of linkage in the

presence of association, rather than as a test of association per se.

In this context, by ‘linkage’ we mean the transmission from parent

to offspring of alleles in coupling at a test (marker) locus and an

unobserved causal locus, i.e. the phenomenon whereby alleles that

are in coupling (on the same haplotype) in the parent tend to be

transmitted together to the offspring, whereas by ‘association’ we

mean population-level correlation between alleles at the two loci

(usually referred to as linkage disequilibrium (LD)), i.e. the

tendency for alleles at the two loci to occur in coupling in the

founders of a pedigree.

The TDT was originally designed for the analysis of case/

parent trios (i.e. units consisting of an affected child together with

their parents) but has been extended to allow analysis of nuclear

families and larger pedigrees [20,21,23,43–46]. Here we focus on

the family-based association test (FBAT) [21,23], as implemented

in the FBAT software package. FBAT can be thought of as a

general class of test statistics of the form

S{E(S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(S)

p

where S~
P

ijTijXij and Xij is some genotype variable and Tij

some trait variable for offspring i in nuclear family j. The exact

form of FBAT thus depends on the genotype and trait coding
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used. Genotype is generally coded in allelic fashion with a variable

coded (0, 1, 2) according to the number of copies of the high-risk

allele possessed. The trait variable is constructed as Tij~Yij{mij

where Yij is coded 0/1 (for binary traits such as disease status) and

mij is an offset that can be chosen to consider transmissions to

affected offspring only (the default), or else to contrast transmis-

sions to affected offspring with transmissions to unaffected

offspring, either weighted equally (mij~0:5) or with mij chosen to

minimize the variance of test statistic. For quantitative traits, Yij

would generally correspond to the measured trait for offspring i in

nuclear family j, with mij set to equal the mean trait value or else

chosen to minimize the variance of test statistic.

Although, for binary traits, contrasting transmissions to affecteds

with transmissions to unaffecteds seems an attractive idea, in

practice this results in comparing the probability of transmission of

high-risk alleles to affected individuals (which is expected, under

the alternative hypothesis, to exceed 0.5) with an estimate of the

probability of transmission of high-risk alleles to unaffected

individuals (which is expected, under both null and alternative

hypotheses, to approximately equal 0.5, unless the effect of the risk

allele is large), rather than comparing the transmission probability

to affecteds with an assumed fixed value of 0.5. For complex

diseases, where the effects of risk alleles are likely to be modest

(allelic odds ratios in the order 1.2–1.5), this means that greater

power would be expected from the default offset that considers

transmissions to affected offspring only, without paying a penalty

for (imperfect) estimation of the expected 0.5 transmission

probability (along with a measure of uncertainty in the estimate)

from the data at hand.

By default, FBAT divides larger pedigrees into nuclear families

and constructs a test that corresponds to testing ‘linkage in the

presence of association’ [23]. The ‘-e’ option in FBAT allows the

alternative construction of a test for ‘association in the presence of

linkage’ [22], through use of an empirical variance/covariance

estimator that adjusts for the correlation among sibling genotypes

and for different nuclear families within a single pedigree. Use of

the ‘-e’ option is expected to give smaller test statistics (larger p-

values) than the default analysis, since it accounts for the fact that

the effective sample size is smaller when considering FBAT as a

test of association than as a test of linkage. Since, for complex

diseases, we are interested in maximizing the power for detection

of an effect, rather than in ensuring that the detection is genuinely

driven by association (rather than linkage) between alleles at our

test locus and the underlying unobserved causal locus, we use the

default option in all analyses presented here. From a practical

point of view, this means that any signal we detect may in fact be

marking a true effect that lies some distance away, rather than

necessarily being located in the immediate vicinity of the detected

signal.

ROADTRIPS and MQLS. Thornton and McPeek [26]

implemented a ‘RObust Association- Detection Test for Related

Individuals with Population Substructure’ in a package called

ROADTRIPS. ROADTRIPS can be thought of as an extension

of their previously-proposed Maximum Quasi-Likelihood Statistic

(MQLS) [24]. Both MQLS and ROADTRIPS construct adjusted

versions of standard case/control x2 (or Armitage Trend) tests,

adjusting for the known relatedness between individuals (that

would ordinarily cause an inflation in standard case/control tests)

through a kinship matrix that models the known pedigree

relationships. ROADTRIPS (but not MQLS) additionally makes

use of a covariance matrix based on estimated kinships (as

estimated from genome-wide SNP data) to further correct for

additional unknown relatedness and population stratification.

The ROADTRIPS test statistic takes the form:

(VT Y)2

ŝs2VTŶYV
*x2

1

Thornton and McPeek note that many commonly-used case/

control statistics can be coerced into this form. Here

Y~(Y1,Y2, . . . ,Yn)T is genotype vector at a test SNP for n
individuals (coded using an allelic coding), V is a vector of length n
coding for phenotype information (disease status) and known (or

externally estimated) relationships (see [26] for details of its

construction), ŝs2ŶY is an estimate of the null variance/covariance

matrix of Y (so that ŝs2VTŶYV is an estimate of null variance/

covariance of (VT Y)2), ŝs2 is an estimate of Var(Y) in an outbred

population and ŶY is an internally estimated matrix used to

simultaneously adjust for unknown relatedness/pedigree relation-

ship errors and population stratification.

MASTOR and GTAM. Recently, Jakobsdottir and McPeek

[25] proposed a retrospective approach (MASTOR) for analysis of

quantitative traits that can be considered essentially as a

quantitative trait version of MQLS. In common with MQLS,

kinships are assumed to be estimated on the basis of known

pedigree relationships, but in principle kinships estimated from

genome-wide SNP data could be read in instead. Jakobsdottir and

McPeek compared MASTOR to a previously-proposed LMM

method, GTAM [8], and found MASTOR to have some

advantages. The main advantage of MASTOR over GTAM

(and many other approaches) is that, in common with MQLS and

ROADTRIPS, MASTOR allows information to be gained from

individuals who are phenotyped but not genotyped. Both

MASTOR and GTAM are implemented within the MASTOR

software package. Although designed for analysis of quantitative

(rather than binary) traits, given that the spirit of recent LMM

approaches has been to apply approaches originally designed for

quantitative traits to binary traits (coded as 0 and 1), we

investigated the performance of MASTOR and GTAM when

applied to both binary and quantitative traits.

Calculation of kinship coefficients
The LMM approaches considered here, as well as methods such

as MQLS, ROADTRIPS, MASTOR and GTAM, all involve

modelling the relatedness between individuals through one or

more kinship matrices, constructed either on the basis of known

(hypothesized) pedigree relationships between individuals, or

through estimating kinships on the basis of genome-wide SNP

data (or from a subset of available genome-wide SNPs). The

precise algorithms used to estimate kinships on the basis of

genome-wide SNP data vary [36,37,47], although we have found

the kinship matrices from the different packages we considered to

be largely comparable (see Results). Most packages allow a

separation between the estimation of the kinship matrix step and

the analysis (incorporating the desired kinship matrix) step. This is

convenient as it allows a potentially different set of SNPs to be used

for estimating the kinship matrix as is used for genome-wide

association testing. It also means that kinships estimated using one

package can potentially be read in to another package at the

analysis stage, if desired. For the majority of analyses performed

here, we used the same software package (or a recommended

accompanying software package) to calculate the kinship matrix as

we used for subsequent association testing, and to estimate the

kinship matrix we used a subset of 50,129 ‘pruned’ SNPs with

minor allele frequencies w0:4 and ‘pruned’ to be in approximate
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linkage equilibrium via the - -indep 50 5 2 command in PLINK

[27]). (We found little difference between the results obtained

when using such a pruned set of SNPs and using the full genome-

wide set of SNPs, see Results).

We also explored the use of a smaller set of 1900 ‘thinned’ SNPs

to estimate kinships. This number was chosen to capitalise on the

speed-up that can be achieved in FaST-LMM by restricting the

number of SNPs used to construct the kinship matrix W to a number

less than the number of individuals. The ‘thinned’ SNPs comprised

an evenly-spaced subset of the ‘pruned’ SNPs selected based purely

on physical position using the software package MapThin (http://

www.staff.ncl.ac.uk/richard.howey/mapthin/). In addition we ex-

plored the use of the FaST-LMM-Select procedure [30], imple-

mented within the FaST-LMM package, that uses an iterative

procedure to select SNPs for inclusion in the construction of the

kinship matrix on the basis of their nominal association with

phenotype (as evaluated through a fixed effects linear regression

analysis). However, we did not find this procedure to be superior to

using either the pruned or the full set of SNPs (see Results).

Several alternative packages exist for estimating genetic

relationships from genome-wide SNP data, either for subsequent

use in LMM type analyses [48] or in order to infer pedigree

relationships as an end in itself [28]. We investigated use of the

kinship estimates output by the packages PLINK [27] and KING

[28], in comparison to those calculated internally by the various

LMM packages we had used. Another popular package is GCTA

[48]; we note that the realised relationship matrix (RRM) kinship

estimation approach used internally by FaST-LMM is theoreti-

cally equivalent to that used by GCTA.

Supporting Information

Figure S1 Comparison of estimated kinship measures and

2log10(p-values) obtained based on full, pruned and thinned

SNPs. (A) Estimated kinship measures (B) {log10 p-values

obtained. F = full set, P = pruned set, T = thinned set.

EM_BN = EMMAX (Balding-Nichols), EM_IBS = EMMAX

(IBS method), FLMM_C = FaST-LMM using covariance matrix,

FLMM_R = FaST-LMM using realised relationship matrix,

GA = GenABEL, GA_FA = GenABEL (FASTA), GA_GRG =

GenABEL (GRAMMAR-Gamma), GMA_C = GEMMA using

centred genotypes, GMA_S = GEMMA using standardised geno-

types, KING_H = KING with homogeneous population assump-

tion, KING_R = KING with robust estimation, MMM_E =

MMM using full mixed model (exact) calculation, MMM_G =

MMM using GLS approximation.

(TIF)

Figure S2 QQ plots of real VL phenotype GWAS results, using

different LMM software packages and different SNP sets for kinship

estimation. The black diagonal lines represent the line of equality.

The ‘‘theoretical’’ set used pedigree structure to derive theoretical

kinship coefficients. EM_BN = EMMAX (Balding-Nichols), EM_IB-

S = EMMAX (IBS method), FLMM_C = FaST-LMM using covari-

ance matrix, FLMM_R = FaST-LMM using realised relationship

matrix, GA_FA = GenABEL (FASTA), GA_GRG = GenABEL

(GRAMMAR-Gamma), GMA_C = GEMMA using centred geno-

types, GMA_S = GEMMA using standardised genotypes,

MMM_E = MMM using full mixed model (exact) calculation,

MMM_G = MMM using GLS approximation, Unadj = unadjust-

ed analysis. For methods with two ways to estimate the kinships, the

same ‘‘theoretical’’ results were plotted twice. Unadjusted analysis

results were plotted once in each column only for comparison, and

did not use the kinship estimates for adjustment.

(TIF)

Figure S3 Performance of FaST-LMM-Select. Genomic control

factor (lGC ) achieved in analysis of the real disease phenotype as

different numbers of ordered SNPs are added in when calculating

the kinship matrix ( = realised relationship matrix, RRM). Method

implemented manually in FaST-LMM v2.0.

(TIF)

Figure S4 Manhattan plots for real and simulated data sets using

FaST-LMM. The points marked in red denote either the

confirmed significant region from Fakiola et al. (2013) (real

phenotype), or the regions close to the simulated strong/weak

effect SNPs (simulated phenotypes). real = real VL phenotype,

sim-D1 = simulated strong binary (disease) trait, sim-D2 =

simulated weak binary (disease) trait, sim-Q = simulated quanti-

tative trait, sim-L20 = simulated longitudinal quantitative trait

with 20 observations, sim-P20 = simulated polygenic longitudinal

quantitative trait with 20 observations.

(TIF)

Figure S5 Manhattan plots for the simulated weak binary

(disease) phenotype using FaST-LMM exact and alternative

software packages. The points marked in red denote the regions

close to the simulated weak effect SNPs. FLMM_E = FaST-LMM

using exact calculation, RT = ROADTRIPS, FBATaff = FBAT

using transmissions to affecteds only, FBATboth = FBAT using

transmissions to both affecteds and unaffecteds. Results from all

other LMM methods were indistinguishable from FLMM_E and

so are not shown. MQLS and RT gave identical results with either

1972 or 3626 individuals, as phenotypes could only be simulated

for the 1972 genotyped individuals.

(TIF)

Figure S6 Manhattan plots for the simulated strong binary

(disease) phenotype using FaST-LMM exact and alternative

software packages. The points marked in red denote the regions

close to the simulated weak effect SNPs. FLMM_E = FaST-LMM

using exact calculation, RT = ROADTRIPS, FBATaff = FBAT

using transmissions to affecteds only, FBATboth = FBAT using

transmissions to both affecteds and unaffecteds. Results from all

other LMM methods were indistinguishable from FLMM_E and

so are not shown. MQLS and RT gave identical results with either

1972 or 3626 individuals, as phenotypes could only be simulated

for the 1972 genotyped individuals.

(TIF)

Figure S7 Comparison of 2log10(p-values) using different

LMM software packages, real disease phenotypes. Plots above

the diagonal show a comparison of 2log10(p-values), with

correlations between the -log10(p-values) indicated below the

diagonal. The grey solid lines represents the line of equality; the

black dashed lines the linear regression line of the variable on the y

axis on the variable on the x axis. EM_BN = EMMAX (Balding-

Nichols), EM_IBS = EMMAX (IBS method), FLMM_A = FaST-

LMM using approximate calculation, FLMM_E = FaST-LMM

using exact calculation, GA_FA = GenABEL (FASTA),

GA_GRG = GenABEL (GRAMMAR-Gamma), GMA_C =

GEMMA using centred genotypes, GMA_S = GEMMA using

standardised genotypes, MMM_E = MMM using full mixed

model (exact) calculation, MMM_G = MMM using GLS approx-

imation, Unadj = unadjusted analysis.

(TIF)

Figure S8 Comparison of 2log(p-values) using LMM and

alternative software packages, real disease phenotypes. Plots above

the diagonal show a comparison of 2log10(p-values), with

correlations between the 2log10(p-values) indicated below the

diagonal. The grey solid lines represent the line of equality; the
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black dashed lines the linear regression line of the variable on the y

axis on the variable on the x axis. FLMM_E = FaST-LMM using

exact calculation, MQLS1972 = MQLS using 1972 genotyped

individuals, MQLS3626 = MQLS using all 3626 individuals with

or without genotype data, RT1972 = ROADTRIPS using 1972

genotyped individuals, RT3626 = ROADTRIPS using all 3626

individuals with or without genotype data, FBATaff = FBAT using

transmissions to affecteds only, FBATboth = FBAT using trans-

missions to both affecteds and unaffecteds, MQLS_E = MQLS

using estimated (rather than theoretical) kinships.

(TIF)

Figure S9 Comparison of 2log(p-values) using LMM and

alternative software packages, simulated weak binary (disease)

phenotype. Plots above the diagonal show a comparison of

–log10(p-values), with correlations between the –log10(p-values)

indicated below the diagonal. The grey solid lines represent the

line of equality; the black dashed lines the linear regression line of

the variable on the y axis on the variable on the x axis. The colours

denote: red = the two weak effect SNPs, magenta = SNPs within

500 kb of the weak effect SNPs, blue = 22 polygenic SNPs, green

= SNPs within 500 kb of the polygenic SNPs, black = all other

SNPs. Because the black/green/blue SNPs were plotted before

the magenta/red SNPs, they may be obscured by the latter.

FLMM_E = FaST-LMM using exact calculation, MQLS =

MQLS using 1972 or 3626 individuals, RT = ROADTRIPS

using 1972 or 3626 individuals, FBATaff = FBAT using transmis-

sions to affecteds only, FBATboth = FBAT using transmissions to

both affecteds and unaffecteds. MQLS and RT gave identical

results with either 1972 or 3626 individuals, as phenotypes could

only be simulated for the 1972 genotyped individuals.

(TIF)

Figure S10 Comparison of 2log10(p-values) obtained from

FaST-LMM using alternative kinship estimates, real disease

phenotypes. Plots above the diagonal show a comparison of

–log10(p-values), with correlations between the –log10(p-values)

indicated below the diagonal. The grey solid lines represents the

line of equality; the black dashed lines the linear regression line of

the variable on the y axis on the variable on the x axis.

KING_H = KING homogeneous method, KING_R = KING

robust method, Ped = theoretical kinship estimates based on

pedigree information, FLMM_R = FaST-LMM’s own realised

relationship matrix, Unadj = unadjusted, Wrong = misspecified

kinships, chosen to be inversely related to the true kinship value.

(TIF)

Figure S11 Power and type 1 error of different LMM methods

applied to 462 Brazilian founders. Powers (left hand plots) are

defined as the proportion of replicates (out of 1000) in which both

simulated disease loci are detected, with ‘detection’ corresponding

to any SNP within 40 kb of the simulated disease locus reaching

the specified p-value threshold. Type 1 errors (right hand plots) are

defined as the proportion of null SNPs (out of 20,000 = 20 null

SNPs times 1000 simulation replicates) that reach the specified p-

value threshold. Horizontal dashed lines indicate the target p-value

thresholds (i.e. the expected type 1 error rates).

(TIF)

Table S1 Genomic control factors achieved in analysis of the

real data, or a single replicate of the simulated data, when feeding

externally estimated kinships into FaST-LMM.

(PDF)

Table S2 Computational speed and ease of use of various

packages.

(PDF)

Table S3 Concordance between top SNPs identified by different

LMM methods when using 462 founder individuals.

(PDF)

Text S1 Membership of Wellcome Trust Case Control Consor-

tium 2.

(DOC)
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