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And we have underestimated their global number because we, as 

members of a kingdom far more restricted in potential habitation, never 

appreciated the full range of places that might be searched.”- Planet of 
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Abstract 

The search for new specialised metabolites, notably antibiotics, that can be developed 

for healthcare has steadily shifted towards the isolation and screening of rare and novel 

actinobacteria from extreme habitats on the premise that such habitats give rise to 

unique biodiversity that is the basis of novel chemistry.  To this end, a taxonomic 

approach to bioprospecting for bioactive compounds was used to selectively isolate, 

dereplicate and classify actinobacteria from hyper-arid and extreme hyper-arid areas of 

the Atacama Desert in northwest Chile, namely from the Salar de Atacama and Yungay 

regions, respectively.  Sample pretreatment and selective isolation strategies enabled the 

recovery of actinobacteria from each of these habitats and while population sizes were 

small, taxonomic diversity was high. 

Relatively large numbers of Amycolatopsis and Streptomyces strains were isolated from 

the hyper-arid Salar de Atacama soil, as were smaller numbers of Actinomadura, 

Kribbella, Lechevalieria, Nonomuraea and Saccharothrix strains.  In contrast, 

Modestobacter and Streptomyces isolates predominated in the extreme hyper-arid 

Yungay soil, the latter also contained smaller numbers of Blastococcus, Couchioplanes, 

Geodermatophilus and Pseudonocardia strains.  With few exceptions representatives of 

these genera formed distinct phyletic lines in 16S rRNA gene trees.  Polyphasic studies 

carried out on strains of ecological and biotechnological interest showed that isolates 

assigned to the genera Modestobacter and Streptomyces belonged to putative new 

species, as exemplified by the proposal for Streptomyces leeuwenhoekii sp. nov. for 

strains that formed a distinct branch in the Streptomyces 16S rRNA gene tree.  In 

contrast, representatives of the genus Amycolatopsis  were assigned to known species, 

albeit ones classified in a rare taxon, the Amycolatopsis 16S rRNA gene clade. Most of 

the representative isolates examined in standard plug assays inhibited the growth of one 

or more of a panel of five wild type microorganisms.  In addition, some of the 

representative streptomycetes from the hyper-arid Salar de Atacama soil were found to 

inhibit cell envelope, cell wall, fatty acid and RNA synthesis in assays based on the use 

of Bacillus subtilis reporter genes.   

The results of this project demonstrate for the first time that hyper-arid and extreme 

hyper-arid Atacama Desert soils are rich reservoirs of cultivable rare and novel 

actinobacteria with the capacity to produce a broad range of bioactive compounds that 

can be developed as drug leads for medicine.  Indeed, microorganisms, unlike plants 

and animals, have overcome the prevailing harsh conditions of the Desert.  Life abounds 

in the Atacama Desert, but most of it is microbial! 
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Chapter 1. General Introduction 

 

1.1. Background 

The discovery of penicillin in 1929 marked the beginning of the antibiotic era and the 

realisation that microorganisms were a source of clinically significant natural products 

(Betina, 1983).  The discovery and medicinal use of antibiotics over the past sixty years 

has without question conferred one of the greatest benefits to humankind.  At present, 

over a thousand microbial natural products are in use as antibiotics, agrochemicals and 

antitumour agents (Bérdy, 2005, 2012). 

 It is now common knowledge that new drugs, especially antibiotics, are needed 

to control the spread of multi-drug resistant microbial pathogens and to treat patients 

with life-threatening diseases such as cancer (Payne et al., 2007; Fischbach, & Walsh, 

2009; Genilloud, 2014).  Problems caused by drug-resistant microbial pathogens are 

especially serious, as illustrated by infections caused by vancomycin-resistant 

Enterococcus faecium, fluoroquinoline-resistant Pseudomonas aeruginosa and 

methicillin-resistant Staphylococcus aureus strains and even more alarmingly by 

panantibiotic resistant infections attributed to Acinetobacter and carbapenem-resistant 

Klebsiella species (Donadio et al., 2010a).  Somewhat perversely as the prospect of a 

return to the pre-antibiotic days of medicine looms the number of approved therapeutic 

leads is in sharp decline (Donadio et al., 2010b; Butler & Cooper, 2011; Genilloud, 

2014). 

 Microbial natural products are still considered to be the most promising source 

of new drugs (Bull & Stach, 2007; Cragg & Newman, 2013).  This is partly because 

alternative strategies, such as combinational chemistry and fragment-based drug design, 

have been found to be disappointing (Newman, 2008) and partly because culture-

independent molecular procedures have shown that natural habitats contain an 

astonishing diversity of prokaryotes, an unknown majority that constitutes an enormous 

genetic resource for exploitable biology (Whitman et al., 1998; Bull, 2004).  Indeed, it 

is now widely recognized that < 1.0% of microorganisms in natural ecosystems have 

been cultivated (Bull et al., 2000; Kennedy et al., 2010). 
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 The ability of members of the microbial world to synthesize bioactive secondary 

metabolites is discontinuously distributed.  Amongst prokaryotes, organisms classified 

in the phylum Actinobacteria, notably in the genus Streptomyces, remain the most 

abundant source of natural products, including clinically significant antibiotics, 

antimetabolites and antitumour agents (Bérdy, 2005; Olano et al., 2009; Newman & 

Cragg, 2013).   The number of bioactive compounds synthesised by filamentous 

actinobacteria assigned to the class Actinobacteria account for nearly half of microbial 

secondary metabolites with around 8,000 of them derived from streptomycetes (Bérdy, 

2005).  Despites this amazing-actinobacterial productivity it has been estimated that 

only about 10% of the natural products that can be produced by streptomycetes have 

been discovered (Watve et al., 2001).  Members of other actinobacteria taxa, such as the 

genera Actinomadura, Amycolatopsis, Nonomuraea, Saccharothrix and 

Streptosporangium, have featured in drug discovery programmes (Lazzaruni et al., 2000; 

Genilloud et al., 2011; Tiwari & Gupta, 2012a); such taxa are often referred to as “rare 

genera” (Tiwari & Gupta, 2012a). 

 The resurgence of interest in actinobacteria as a source of novel specialised 

(secondary) metabolites comes from the application of genomic technologies 

(Goodfellow & Feidler, 2010; Genilloud, 2014). Whole-genome sequencing studies 

have shown that  the genomes of filamentous actinobacteria, unlike those of almost all 

other prokaryotes, are rich in biosynthetic gene clusters that code for known or 

predicted specialised metabolites (Goodfellow & Fiedler, 2010) while culture-

independent survey have shown that large numbers of  novel actinobacterial taxa are 

present in natural ecosystems (Stach et al., 2003a, b; Das et al., 2007; Sun et al., 2010).  

Even so, it is becoming increasingly difficult to find new chemical entities from 

common actinobacteria isolated from well studied habitats as screening such organisms 

leads to the costly rediscovery of known bioactive compounds (Busti et al., 2006; Lam, 

2007; Williams, 2008).  Consequently, new approaches are being developed for the 

selective isolation, dereplication and recognition of novel actinobacteria from neglected 

and unexplored ecosystems, as illustrated by the bioprospecting strategy recommended 

by Goodfellow and Fiedler (2010) and outlined in Figure 1.1.  This taxonomic approach 

to bioprospecting has been used to isolate actinobacteria from extreme biomes, notably 

marine habitats, on the premise that harsh environmental conditions give rise to unique 

taxa which are likely to have a novel chemistry (Bull & Stach, 2007; Bull, 2011).  

Novel actinobacteria from deep sea sediments have been found to be a prolific 

source of specialised metabolites, as exemplified by the discovery of a new family of 
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polycyclic polyketides, the abyssomicins, from Verrucosispora maris (Bister et al., 

2004; Riedlinger et al., 2004; Keller et al., 2007; Goodfellow et al., 2012b); the 

anticancer drug, salinosporamide, from Salinispora tropica (Jensen et al., 2007; Fenical 

et al., 2009) and the demacozines from Dermacoccus abysii, a piezotolerant strain 

isolated from the Challenger Deep of the Mariana Trench (Pathom-aree et al., 2006; 

Abdel-Mageeb et al., 2010).  Such studies have sparked a flurry of interest in marine 

actinobacteria as a source of natural products (Imhoff et al., 2011; Blunt et al., 2012; 

Zotchev, 2012; Manivasagan et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 1.1.  Culture-dependent bioprospecting strategy (taken from Goodfellow, 2013). 

 

Taxonomically diverse actinobacteria, notably streptomycetes, have been 

isolated from marine environments using the strategy shown in Figure 1.1, and  

representatives of dereplicated groups found to be a good source of novel antibiotics 

with unique modes of action (Bull et al., 2005; Fiedler et al., 2005; Goodfellow & 

Fiedler, 2010).  Particular strong support for culture-dependent approaches to 

bioprospecting comes from extensive surveys of obligate marine actinobacteria 

classified in the genus Salinispora (Jensen et al., 2005; Jensen, 2010; Freel et al., 2012; 
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Ahmed et al., 2013), notably those which show strong evidence of a coupling between 

taxonomic and chemical diversity. 

 Another neglected ecosystem that has recently attracted the attention of 

microbiologists is the temperate Atacama Desert in northern Chile (Azura-Bustos et al., 

2012; Bull & Asenjo, 2013).  Most Atacama Desert soils are either hyper-arid, that is, 

the ratio of mean annual rainfall to mean annual evaporation is < 0.005 or extreme 

hyper-arid where the corresponding value is < 0.002.  The harshness of these conditions 

is compounded by very low concentrations of organic carbon, high UV radiation, the 

presence of inorganic oxidants and in some areas by high salinity.  Despite these 

unfavourable conditions for microbial life both culture-dependent and culture-

independent studies have revealed the presence of small populations of taxonomically 

diverse bacteria, including actinobacteria, in Atacama Desert soils (Drees et al., 2006; 

Demergasso et al., 2008; Fletcher et al., 2012; Bull & Asenjo, 2013). 

 Okoro and her colleagues (2009) isolated small numbers of filamentous 

actinobacteria from heat-pretreated samples of hyper-arid and extreme hyper-arid 

Atacama Desert soils using a range of selective isolation media.  Most of the isolates 

were assigned to putatively novel Streptomyces species, the remainder formed new 

centres of taxonomic variation within two “rare taxa”, the genera Amycolatopsis and 

Lechevalieria.  In subsequent studies, the Lechevalieria strains were classified into three 

new species (Okoro et al., 2010) while four of the Streptomyces isolates have been 

given species status (Santhanam et al., 2012a, b, 2013; Busarakam et al., 2014).  In 

addition, a further two Streptomyces isolates were found to produce new ansamycin and 

22-membered macrolactones that showed a range of antibacterial and antitumour 

properties (Nachtigall et al., 2011; Rateb et al., 2011a, b).  Another putatively novel 

Streptomyces strain isolated from a high altitude Atacama Desert soil produces novel 

aminobenzoquinones, the abenquines, which show inhibiting activity against bacteria 

and dematophytic fungi (Schulz et al., 2011).  These initial studies show that Atacama 

Desert soils contain novel filamentous actinobacteria with the ability to synthesise new 

natural products. 

 

1.2.  Aims and content of thesis 

The present study was designed to build upon and extend the pioneering investigations 

of Atacama Desert actinobacteria by generating a high quality library of taxonomically 

diverse strains of biotechnological and ecological interest.  To this end, the taxonomic 
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approach to bioprospecting for novel bioactive compounds was used to selectively 

isolate, dereplicate and classify representative actinobacteria from two contrasting 

Atacama Desert environments, namely hyper-arid and extreme hyper-arid soils from the 

Chaxa de Laguna of the Salar de Atacama and the Yungay regions, respectively.  

Strains found to be of biotechnological or ecological interest were the focus of 

polyphasic studies in order to provide genotypic and phenotypic data for the formal 

description of new taxa.  Representative strains, notably streptomycetes, were screened 

for bioactivity against panels of wild type organisms and Bacillus subtilis reporter  

strains in plug assays and extracts of interest sent to Professor Marcel Jaspars 

(University of Aberdeen) to be screened for novel chemistry.  The thesis includes the 

following chapters. 

Chapter 1. General introduction 

 Background 

 Aims and content of thesis 

 Prokaryotic systematics 

 Actinobacterial diversity and bioprospecting 

 Selective isolation and recognition of novel taxa 

 Extreme habitats as a source of novel actinobacteria 

 Screening for bioactive compounds 

Chapter 2. Materials and methods 

 Sampling sites 

 Physico-chemical properties of environmental samples 

 Selection, maintenance and presumptive classification of actinobacteria 

isolated from the Salar de Atacama and Yungay environmental samples  

 Comparative 16S rRNA gene sequencing  studies 

 Detection of additional chemical markers 

 DNA-DNA relatedness assays 

 Detection of phenotypic properties 

 Morphology 

 Screening for bioactivity 

 Preliminary characterisation of bioactive compounds 

Chapter 3. Biosystematic studies and screening of representative strains isolated from 

hyper-arid and extreme hyper-arid Atacama Desert soils 

 Sampling sites 



6 

 Physico-chemical properties of environmental samples 

 Selection, maintenance and presumptive classification of actinobacteria 

isolated from the Salar de Atacama and Yungay environmental samples 

 Classification of representative actinobacteria from the Salar de Atacama 

and Yungay environmental samples  

 Screening for bioactivity 

 Preliminary characterisation of some bioactive compounds 

Chapter 4.  Classification of thermophilic Amycolatopsis strains isolated from arid 

desert soils 

 Source, selective isolation and enumeration 

 Polyphasic taxonomy of representative strains 

 Formal naming of novel species and emended descriptions of 

Amycolatopsis ruanii and Amycolatopsis thermalba  

Chapter 5. Biosystematic studies on Modestobacter strains isolated from extreme 

hyper-arid desert soil and from historic buildings 

 Source, selective isolation and enumeration 

 Polyphasic taxonomy of representative strains 

 Formal description of novel species 

 Screening of selected strains 

Chapter 6.  Polyphasic studies on presumptive Streptomyces strains isolated from 

hyper-arid and extreme hyper-arid Atacama Desert soils 

 Source and selective isolation 

 Polyphasic taxonomy of antibiotic-producing strains 

 Formal naming of novel species 

Chapter 7. General discussion and prospectives for future work 

 

1.3. Prokaryotic systematics 

The power of the taxonomic approach to drug discovery with particular reference to 

actinobacteria is based upon concepts and practices that underpin prokaryotic 

systematics (Goodfellow et al., 1997; Schleifer, 2009; Oren & Garrity, 2014).  
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Prokaryotic systematics, the scientific study of the kinds and diversity of Achaea and 

Bacteria, is a scientific discipline which encompasses Classification, Nomenclature and 

Identification.  The first step, classification, is the practice of assigning prokaryotes to 

taxonomic groups based on similarities and differences.  The outcome of this process is 

an orderly arrangement or system designed to show natural relationships between taxa 

and serves as an information storage and retrieval system.  The term classification 

includes both the process and the outcome of the exercise though outcomes are often 

referred to as taxonomies.  Sound classification of prokaryotes is a prerequisite for 

stable nomenclature and reliable identification. 

 Taxonomies based on genotypic and phenotypic properties are called phenetic 

classifications.  These classifications are built upon phenotypic data (e.g.,  biochemical, 

chemical, morphological and physiological properties), including genetic relationships 

(e.g. DNA-DNA homology values).  Phenetic classifications show relationships 

between organisms as they exist now, that is, without reference to ancestry.  In contrast, 

phylogenetic classifications express inferred evolutionary relatedness between 

organisms and thereby reflect the extent of change over time.  In practice, phenetic and 

phylogenetic classifications are usually found to be congruent.  Current approaches to 

prokaryotic classification based on 16S rRNA gene sequences are usually considered to 

be phylogenetic, but many are in fact phenetic as they are based on similarities and 

differences between homologous nucleotide sequences. 

 The second step, nomenclature, deals with the terms used to depict ranks in the 

taxonomic hierarchy (e.g. species, genera, families), notably with the practice of giving 

correct, internationally accepted names to taxonomic groups according to rules and 

recommendations given in successive editions of the International Code of 

Nomenclature of Bacteria (Lapage et al., 1975, 1992).  In 1975, Lapage and his 

colleagues introduced two changes to the “Bacteriological Code” which had a far 

reaching impact on the nomenclature of prokaryotes.  Thus, a definitive document and 

starting date was introduced for the recognition of names with the publication of the 

Approved Lists of Bacterial Names on January 1, 1980 (Skerman et al., 1980); names 

published before this date and omitted from the Approved Lists of Bacterial Names lost 

their standing in nomenclature, a development that cleared away thousands of  

meaningless names based on poorly described taxa.   Secondly, it was decided that new 

taxa had to be validly published in the International Journal of Systematic and 

Evolutionary Microbiology (IJSEM; formerly the International of Systematic 

Bacteriology), but could be effectively published in appropriate international journals 
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and then cited in Validation Lists published in the IJSEM.  The correct use of names is 

important to microbiologists as they need to know which organisms they are studying 

before they transmit information about them within and outside the scientific 

community (Tindall et al., 2006).  In essence, an organism’s name is a vehicle of 

communication and a key to its literature, an entry to what is known about it. 

 The final step, identification, is sometime seem as the most important element of 

prokaryotic systematics given the importance of accurately identifying unknown 

organisms, especially with respect to pathogenic bacteria (Priest & Williams, 1993).  It 

is both the act and the result of determining whether unknown organisms belong to 

published taxa (Krieg, 2005).  It involves determining the key characteristics of 

unknown organisms and matching them against databases containing corresponding 

information on validly published taxa (Priest, 2004).  Prokaryotes that do not fit into 

established groups in the taxonomic hierarchy should be classified as new taxa.  

 Classifications of prokaryotes are data dependent and hence are in a continuous 

state of development as high quality information becomes available from the application 

of new and improved techniques (Tindall et al., 2010; ORainey & Oren, 2011; Kim et 

al., 2014; Oren & Garrity, 2014).  Such taxonomies are essentially empirical as they are 

driven by technological advances not by theoretical considerations, as exemplified by 

the biological species concept (Goodfellow et al., 1997; Schleifer, 2009).  Current 

approaches to the classification of prokaryotes are based on the integrated use of 

genotypic and phenotypic features derived from the application of chemotaxonomic, 

molecular systematic and phenotypic methods.  This practice, known as polyphasic 

taxonomy, was introduced by Colwell (1970) to signify successive or simultaneous 

studies on groups of prokaryotes using methods chosen to yield high quality data.  The 

polyphasic approach has, and still does, provide a sound basis for stable nomenclature 

and reliable identification, essential factors for practical or utilitarian taxonomy 

designed to serve different end users (Vandamme et al., 1996; Goodfellow et al., 1997; 

Gillis et al., 2005; Krieg & Padgett, 2011). 

 The application of polyphasic taxonomy led to significant improvements in the 

classification of prokaryotes, especially in groups like the Actinobacteria and 

Cyanobacteria where traditional approaches based on form and function were found to 

be unreliable (Goodfellow & Maldonado, 2006; Kroppenstedt & Goodfellow, 2006; 

Gupta, 2009).  However, it is not possible at present to recommend a set of methods to 

be used in all polyphasic studies as the scope of such studies is influenced by the 

biological properties and rank of the taxa under study and by the equipment available to 
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investigators.  Nevertheless, sequencing highly conserved macromolecules, notably 16S 

rRNA genes and conserved proteins, has provided valuable data for generating 

phylogenies at and above the genus level (Ludwig & Klenk, 2005; Ludwig et al., 2012).  

In contrast, DNA-DNA relatedness, molecular fingerprinting and phenotypic 

procedures are methods of choice for delineating taxa at and below the rank of species 

(Rosselló-Mora & Amann, 2001; Rosselló-Mora et al., 2011). 

 The basic taxonomic unit in prokaryotic systematics is the species though this 

remains an ill-defined concept (Rosselló-Mora & Amann, 2001; Staley, 2006; Schleifer, 

2009).  In the absence of a universally accepted definition of species (Ward, 1998; 

Stackebrandt et al., 2002), an operational or utilitarian species concept has been 

proposed for cultivable bacteria (Vandamme et al., 1996; Goodfellow et al., 1997; 

Schleifer 2009).  In particular, extensive taxonomic studies led to the recommendation 

that genomic species should include strains with approximately 70% or more DNA-

DNA relatedness with a difference of 5
o
C or less in thermal stability (ΔTm; Wayne et 

al., 1987).  In practice, polyphasic studies draw upon information acquired from 

chemotaxonomic, numerical phenetic and molecular systematic studies and are of 

considerable practical value in applied microbiology (Priest & Goodfellow, 2000; Bull, 

2004; De Vos et al., 2009). 

 

Chemotaxonomy.  This is the study of the discontinuous distribution of chemical 

macromolecules (e.g. amino acids, fatty acids, polar lipids, polysaccharides, proteins 

and isoprenoid quinones) across different taxa and the use of such information for 

classification and identification (Kroppenstedt, 1985; Goodfellow & O’Donnell, 1994; 

Schleifer, 2009; Da Costa et al., 2011a, b, c).  Chemotaxonomic analyses of amino 

acids, lipids (e.g., fatty acids, mycolic acids and polar lipids), and polysaccharides and 

related polymers (e.g. sugars and teichoic acids) has provide valuable data for 

classification of prokaryotes, notably actinobacteria at various ranks in the taxonomic 

hierarchy (Goodfellow, 2000).  The determination of amino acid and cell wall sugar 

composition and peptidoglycan structure, in particular, led to marked improvements in 

the classification of actinobacteria (Williams et al., 1989; Goodfellow et al., 2010). The 

introduction of new technologies, such as analyses of proteins using sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE; Lanoot et al., 2002) and 

matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF; Dridi & 

Drancourt, 2011) have provided valuable information for the classification and 

identification of diverse bacteria, including actinobacteria (Lotz et al., 2010; Saleeb et 
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al., 2011).  In general, good congruence has been found between the discontinuous 

distribution of chemical markers and phylogenetic classifications of actinobacteria 

(Chun & Goodfellow, 1995; Ward & Goodfellow, 2004; Goodfellow et al., 2010). 

 

Numerical taxonomy. This is the classification by numerical methods of strains and 

taxonomic units into taxa based on many shared characters (Sneath, 1957). The primary 

aim of this method is to assign individual strains to homogeneous groups or clusters 

(taxospecies) using large sets of phenotypic data. The organisms to be classified are 

referred to as operational taxonomic units (OTUs;(Sneath & Johnson, 1972). It is 

essential in such studies to use phenotypic characters that are genetically stable, hence 

not susceptible to environmental changes, and which are not  particularly sensitive to 

experimental conditions or observational uncertainties. The usual practice is to take a 

selection of biochemical, cultural, morphological, nutritional and physiological 

characters to represent the phenome, that is, the genotype and phenotype. It is important 

in numerical taxonomic studies to have sufficient information to discriminate between 

taxa (Sneath & Sokal, 1973; Goodfellow et al., 1997).    

The conceptual basic and operation procedures of numerical taxonomy have 

been the subject of several comprehensive reviews (Sokal, 1985; Goodfellow et al., 

1997) and hence will not be considered here.   Indeed, conventional numerical 

taxonomic studies have tended to go out of  fashion as they are seem to be time-

consuming and laborious even though new high-throughput methods, such as 

commercially available 96 well phenotypic array plates, have been introduced to 

mitigate these problems (Bochner, 2003; Clemons, 2004; Bochner et al., 2008). 

The application of numerical taxonomic procedures in their heyday led to 

significant improvements in actinobacterial systematics. Numerical taxonomic studies 

were used to circumscribe taxospecies, including those in taxonomically complex 

genera such as Actinomadura (Trujillo & Goodfellow, 2003), Actinoplanes 

(Goodfellow et al., 1990), Gordonia (Goodfellow et al., 1991), Nocardia (Goodfellow 

et al., 1982; Goodfellow, 1992), Mycobacterium (Wayne et al., 1996), Rhodococcus 

(Goodfellow et al., 1998), Streptosporangium (Whitham et al., 1993) and 

Thermomonospora (McCarthy & Cross, 1981). Phenotypic analyses of streptomycetes 

(Williams et al., 1983; Kämpfer et al., 1991; Manfio et al., 1995) provided a sound base 

for selecting representative strains for detailed taxonomic studies based on 

chemotaxonomic and molecular systematic procedures (Lanoot et al., 2002; 2005; 

Girard et al., 2014a). 
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Molecular systematics. The most significant development in prokaryotic systematics in 

recent times was the realisation that bacterial genomes (and proteins) contain records of 

changes that have occurred since prokaryotes diverged from a common ancestor around 

3.5 billion years ago (Zuckerkandl & Pauling, 1965; Woese, 1987). Molecular-sequence 

based approaches to systematics have a significant advantage over chemotaxonomic and 

numerical taxonomic methods as the acquisition of sequence data is independent of 

cultivation conditions. Molecular-based methods are currently the driving force in 

prokaryotic systematics, partly as a consequence of rapid technological advances, but 

also because the end product of this approach reflect natural relationships between 

prokaryotes as encoded in DNA and protein sequences (Head et al., 1998; Woese, 1998; 

Gevers et al., 2006; Schleifer, 2009; Alam et al., 2010; Jensen, 2010; Girard et al., 2013, 

2014). 

 Comparative analyses of nucleic acid and conserved protein sequences together 

with the identification of taxon-specific molecular signatures have had a profound 

impact on prokaryotic systematics (Stackbrandt & Goodfellow, 1991; Stackebrandt et 

al., 1997; Gupta, 1998, 2000; Zhi et al., 2009; Goodfellow et al., 2012a; Gao & Gupta, 

2012).  Comparison of almost complete 16S rRNA gene sequences has proved to be an 

especially effect way of establishing suprageneric relationships between prokaryotes 

(Woese, 1987; Ludwig & Klenk, 2001; Ludwig et al., 2011a; Yarza et al., 2012).  In 

contrast, DNA-DNA hybridisation and molecular fingerprinting procedures together 

with complementary phenotypic data are invaluable in circumscribing taxa at species 

and infrasubspecific levels (Wayne et al., 1996; Rosselló-Mora & Amann, 2001; 

Tindall et al., 2010; Rosselló-Mora et al., 2011). 

 

16S rRNA gene sequencing. Data derived from sequencing 16S rRNA genes have been 

used extensively for the classification of cultivated (Yarza et al., 2012) and uncultivated 

actinobacteria (Stach et al., 2003a, b; Kumar et al., 2007) and for the design of 

oligonucleotide probes and primers for the identification of specific taxa (Shen & 

Young, 2005; Zhi et al., 2009). However, 16S rRNA sequencing studies do not always 

allow delineation between closely related bacterial species (Fry et al., 1991; Fox et al., 

1992), as exemplified by studies on the genera Micromonospora (Koch et al., 1996), 

Saccharomonospora (Yoon et al., 1997) and Salinispora (Jensen et al., 2005).  In such 

cases molecular systematic methods that give higher resolution should be employed, as 
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illustrated by the delineation of Salinispora species based on partial gyrB sequences 

(Ahmed et al., 2013). 

Comparative 16S rRNA gene sequence analyses are seen to be a rapid and 

reliable way of classifying unknown prokaryotes.  16S rRNA gene sequence data held 

in the DNA Data Base of Japan (DDBJ;(Kaminuma et al., 2011; 

http://www.ddbj.nig.ac.jp), the European Molecular Biology Laboratories Database 

(EMBL;(Cochrane et al., 2008; http://www.ebi.ac.uk) and in special rRNA databases 

such as SIVA (Pruesse et al., 2007; http://www.arb-silva.de), RDP (Cole et al., 2009; 

http://www.rdp.cme.msu.edu) and Greengenes (De Santis et al., 2006; 

http://greengenes.lbl.gov) are retrievable for comparative taxonomic studies.  In general, 

good, congruence has been found between phylogenetic trees derived from 16S rRNA 

gene sequence data and corresponding trees generated from studies based on other 

conserved molecules, such as elongation factors, protein-translocating ATPase subunits 

and RNA polymerase (Ludwig & Klenk, 2001). 

 

Analysis of sequence data and phylogenetic reconstruction. The various methods used 

to align and analyse 16S rRNA gene sequence data and construct and interpret 

phylogenetic trees have been considered in detail by Rosselló-Mora et al. (2011). The 

initial step, the alignment of rRNA gene sequences is critical for inferring phylogenetic 

relationships. The presence of insertions and deletions (indel sequences) may need to be 

addressed, especially when homology values are low; the use of secondary structural 

information is essential to localise indel sequences. It is customary to manually adjust 

alignments and to eliminate nucleotide positions considered to be uncertain (Brocchieri, 

2001; Harayama & Kasai, 2006), procedures which rely on the experience and 

judgment of the investigator. 

Numerous tree-making methods are available to infer ancestry once nucleotide 

sequences have been aligned. In general, treeing approaches can be divided into two 

groups: cluster methods (algorithms) deal with distance data while discrete character 

methods use optionality criteria.  The most frequently used method for calculating 

distances is the one-parameter model proposed by Jukes & Cantor (1969), this is based 

on the assumption that there are independent changes at all nucleotide positions in 16S 

rRNA sequences, that is, there is an equal probability of ending up with each of the 

other three bases. 

The construction of trees from data in distance matrices is often achieved by 

using the neighbour-joining (Saitou & Nei, 1987) and weighted least-squares (Fitch & 
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Margoliash, 1967) algorithms. The neighbour-joining method is theoretically related to 

clustering methods, such as the unweighted-pair-group method with arithmetic averages 

(UPGMA;(Sneath & Sokal, 1973), but is not based on the assumption that data are 

ultrametric and that all lineages have equally diverged. In contrast to cluster analysis, 

the neighbour-joining method keeps track of nodes on the tree rather than taxa or 

clusters of taxa. The least-squares method fits a given set of pairwise evolutionary 

distance estimates to an additive tree.  

Widely used discrete character methods that employ optimality criteria include 

maximum-likelihood (Fitch, 1971) and the maximum-parsimony (Felsenstein, 1991) 

methods.  Maximum-likelihood methods seek the tree that is most likely to generate the 

observed sequences.  These methods examine sequences on a site-by-site basis but also 

incorporate on explicit model of sequence evolution to compensate for superimposed 

substitutions.  Maximum-likelihood methods are used to evaluate the net likelihood that 

the given evolutionary model will yield the observed sequences; the inferred trees are 

those with the highest likelihood of achieving this.   The maximum-parsimony method 

is used to find the most parsimonious tree among all possible tree topologies, the tree 

with the minimal overall number of changes, the most parsimonious one, is taken as the 

one which infers evolution most closely (Felsenstein, 1981). This also examine 

sequences on a site-by-site basis and is successful at reconstructing inferred molecular 

histories, especially when the extent of change is small.  

The statistical significance of the order of particular subtrees in a phylogenetic 

tree can be tested by resampling methods, such as the bootstrap procedure (Felsenstein, 

1985). This approach involves random resampling of alignment positions with the result 

that some of them are included more often than others in analyses whereas others are 

not included at all. The procedure is usually repeated between 100 and 1000 times with 

alternatively truncated or rearranged datasets. 

 

DNA-DNA relatedness. A unique property of DNA and RNA macromolecules is their 

capacity for reassociation or hybridisation. Complementary strands of DNA, once 

denatured, can reassociate into native duplexes under appropriate experimental 

conditions. When comparing nucleic acids from any two closely related prokaryotes the 

amount of the molecular hybrid and its thermal stability provide a measure of the 

nucleotide sequence similarity between them. These theoretically simple concepts are 

the basis of DNA-DNA hybridisation (DDH) techniques which are used to make 
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comparisons of whole genomes between closely related prokaryotes in order to estimate 

their overall genomic similarities (Rosselló-Mora et al., 2011).  

The importance of DDH studies in circumscribing species was underlined by 

recommendations arising from an ad hoc committee on prokaryotic systematics (Wayne 

et al., 1987). Wayne and his colleagues recommended that the phylogenetic definition 

of archaeal and bacterial species should be based on the assignment of strains to 

genomic species when they showed approximately  0  or more D   relatedness with 

5  C or less thermal stability (ΔTm). It is important to interpret DDH values with care as 

they may not reflect the actual degree of sequence similarity (Goodfellow et al., 1997; 

Rosselló-Mora & Amann, 2001) and because results can be distorted by differences in 

genome size and genomic rearrangements (Kang et al., 2007). It is well known that 

DDH data are prone to experimental error and cannot be used to generate cumulative 

databases as they are based on pairwise comparisons between tested strains 

(Goodfellow et al., 1997; Stackebrandt et al., 2002 Schleifer, 2009; Kang et al., 2007; 

Rosselló-Mora et al., 2011). 

The strengths and weaknesses of the different DDH techniques that have been 

developed over the past fifty years have been reviewed by Rosselló-Mora (2006).  Two 

experimental approaches are commonly used to measure the degree of DNA relatedness 

or similarity between prokaryotes. These approaches are based on assessing the degree 

of binding by hybridisation (Ezaki et al., 1989; Jahnke, 1994) or by establishing 

differences in thermal denaturation midpoints (De Ley et al., 1970; Mehlen et al., 2004). 

The binding strategy involves fixing single-stranded, high-molecular-weight DNA on a 

solid support, usually nitrocellulose or nylon membranes, followed by incubation in the 

presence of single-stranded, low-molecular-weight, labelled DNA. The thermal 

denaturation temperature is used to estimate the thermal stability of hybrid DNA 

duplexes against  that of homologous DNA. The temperature at which 50% of the initial 

double-stranded molecules denatures into single-stranded DNA is the melting 

temperature or thermal denaturation midpoint (Tm). 

A parameter commonly used to estimate DNA-D   relatedness, ∆Tm, is the 

difference between the Tm of a reference strain and that of corresponding hybrid DNA. 

To estimate ∆Tm, purified total genomic DNA and mixtures of DNA from 

representatives of related species are denatured and allowed to renature at the optimal 

temperature for renaturation (Tor); Tor can be estimated from the mol% G+C of the 

DNA of the strains under study, as described by De Ley et al. (1970). The transition 

from double to single stranded DNA, DNA melting, can be measured by the change in 
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absorbance at 260 nm. Alternatively, the shift in fluorescence of added SYBR Green I 

dye bound to double stranded DNA can be determined as D   is ‘melted’ by 

progressive heating (Gonzalez & Saiz-Jimenez, 2005). This technique has several 

advantages over more established methods, as it is rapid and inexpensive, and allows 

high-throughput comparisons. Comparative studies show that results derived from 

estimating binding percentages and ∆Tm values are generally in good agreement 

(Roselló-Mora & Amann, 2001; Gonzalez & Saiz-Jimenez, 2005; Goodfellow et al., 

2007). 

Despite their limitations, DDH studies are still widely used for the delineation of 

closely related prokaryotic species, including actinobacteria (Vandamme et al., 1996; 

Goodfellow et al., 1997; Rosselló-Mora & Amann, 2001; Kumar & Goodfellow, 2008; 

Rosselló-Mora et al., 2011). Such studies give greater resolution between strains than 

corresponding 16S rRNA gene sequencing studies, as is apparent from Figure 1.2. 

Organisms with almost identical 16S rRNA sequence similarities can be distinguished 

using corresponding DDH data. 

 

 

 

 

 

 

 

Figure 1.2. Comparison of DNA-DNA and 16S rRNA gene similarities of 

Proteobacteria, Cytophaga-Flavobacterium-Bacteroides and Gram-positive bacteria of 

high GC phyla.  The vertical shaded zone indicates the range of cut-off values for DNA-

DNA relatedness used for the delineation of genomic species while the horizontal shade 

zone indicates cut-off values for 16S rRNA gene sequence similarity (99 %) (adapted 

from Rosselló-Mora & Amann, 2001). 

 

It is tedious and time-consuming to establish DDH similarities between pairs of 

closely related strains hence such experiments are to be avoided if there are good 
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reasons for doing so.  Stackebrandt and Goebel (1994) recommended that if two strains 

shared 16S rRNA gene similarities at or below the 97% threshold it was unnecessary to 

undertake DDH determinations to prove that they belonged to the same species.  This 

threshold was raised to 98.7-99.0%, based, as before, on an empirical dataset taken from 

the taxonomic literature (Stackebrandt & Ebers, 2006).   Using real world 16S rRNA 

gene sequence and corresponding DDH data, Meier- Kolthoff et al. (2013) concluded 

that a threshold at or below 99.0% was a realistic cut-off point for recognising related 

pairs of actinobacterial strains belonged to different genomic species.  They noted that 

approximately half of recent DDH experiments could safely been omitted without 

significant missclassification of tested strains. 

 The report of the ad hoc committee for the re-evaluation of the species definition 

in bacteriology recommended the use of DNA profiling (e.g., AFLP, PCR-RFLP, rep-

PCR and ribotyping) and multilocus sequence typing (MLST) to discriminate between 

taxonomically closely related strains (Stackebrandt et al., 2002). They also considered 

that multilocus sequence analyses (MLSA) might be used as an alternative to DNA-

DNA relatedness studies in defining genomic species. MLSA involves sequencing a 

minimum of five housekeeping or other protein coding genes and presenting the 

resultant data in individual and/or concatenated trees (Enright & Spratt, 1999; Gevers et 

al., 2005; De Vos, 2011; Cody et al., 2014). The choice of genes needs to be based on 

their loci; selected genes should be spread across the genome (Maiden et al., 1998; De 

Vos, 2011). MLSA provides good resolution at and below the species level and greater 

clarity in genomic relatedness at inter- and intraspecific levels (Thompson et al., 2005; 

Guo et al., 2008; Martens et al., 2008). Initially, MLSA studies were restricted to 

epidemiological and population genetic studies (Enright & Spratt, 1999; Robinson & 

Enright, 2004; Miragaia et al., 2007), but they are now being used to establish 

taxonomic relationships between closely related bacteria, including actinobacteria, as 

shown by studies on groups of closely related Streptomyces species (Guo et al., 2008; 

Rong & Huang, 2010, 2012; Rong et al., 2009, 2010; Adékambi et al., 2011). 

 

Embracing the genome.  It has already pointed out that polyphasic taxonomic studies 

are being increasingly driven by advances in molecular biology, as shown by the impact 

that 16S rRNA gene sequence and DNA relatedness data have had on the 

circumscription of prokaryotic taxa, notably at the rank of species (Rosselló-Mora & 

Amann, 2001; Sutcliffe et al., 2012).  The application of polyphasic taxonomy over the 
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past forty years has culminated in spectacular improvements in actinobacterial 

systematics (Goodfellow  et al., 2012a).  However, serious problems remain, especially 

with the delineation of species within genera such as Amycolatopsis and Streptomyces 

where 16S rRNA gene sequence and associated phenotypic data are not always 

sufficient for the recognition of species (Kämpfer, 2012; Tan & Goodfellow, 2012).  

Improved methods are also needed to unambiguously establish the taxonomic status of 

closely related genera within morphologically complex taxa, such as the families 

Pseudonocardiaceae and Streptomycetaceae (Labeda et al., 2010; 2011).  There is 

evidence that such problems can be addressed by the judicious use of whole genome 

sequence data (Girard et al., 2013, 2014). 

 The next generation sequencing revolution has seen the number of genome 

sequences released into the public domain accelerate at an ever increasing rate 

(Shendure & Lieberman-Aiden, 2012).  Currently, sequences of over 8000 bacterial 

genomes are publically available, including those of strains classified in the phylum 

Actinobacteria.  Indeed, following the publication of the genome sequence of 

“Streptomyces coelicolor” A(3)2  (Bentley et al., 2002) over 100 Streptomyces genomes 

and a score of other actinobacterial genomes 

 have been released (http://www.genomesonline.org). 

 Comparative genome sequence data are being extensively used to infer genome-

based phylogenics (Wu et al., 2009; Klenk & Göker, 2010; Gao & Gupta, 2010) and to 

illuminate the evolution and mechanisms of actinobacterial complexity (Girard et al., 

2013, 2014; Chandra & Chater, 2014).  In contrast, there has been a surprising 

reluctance amongst prokaryotic systematists to use genome sequence data to support the 

circumscription of novel taxa or to help unravel relationships between poorly delineated 

genera, despite the fact that the use of such data are a logical extension of the 

polyphasic taxonomic concept (Kämpfer & Glaeser, 2012).  Indeed, the use of such data 

for descriptive purposes should provide valuable insights into the ecology, metabolism, 

physiology and biotechnological potential of individual novel taxa and thereby help to 

re-establish prokaryotic systematics as a fundamental scientific discipline.  However, it 

is critically important that the increasing use of genome data for taxonomic purposes 

builds upon sound taxonomic concepts painstakingly developed over the last fifty years, 

not least the nomenclatural type concept (Goodfellow & Fiedler, 2010; Jensen, 2010; 

Whitman, 2011, Kämpfer & Glaesen, 2012; Oren & Garrity, 2014).  The advantages 

and limitations of using whole-genome sequences in prokaryotic systematics has been 

summarised by Sentausa & Fournier (2013). 
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1.4. Actinobacterial diversity and bioprospecting 

The term biodiversity or more precisely biological diversity encompasses genetic 

diversity, the distribution or variation of genes and genomes within a species 

(intraspecific diversity); species or organism diversity, the number of species in a 

microbial community or the variety of organisms within a region (species richness), and 

ecological or ecosystem diversity, the number of communities in an ecosystem or 

ecosystem diversity within a region (Harper & Hawksworth, 1994; Bull & Stach, 2004).  

The focus in the present study is on species diversity of actinobacteria in Atacama 

Desert soils, notably as a prospective source of novel specialised metabolites. 

 It has been estimated that a single gram of fertile soil may contain up to 8.3 

million bacterial species (Schloss & Handelsman, 2006) and that the number of 

prokaryotic cells present in natural habitats is 4-6 x10
30

 (Whitman et al., 1998).  It is 

astonishing given such estimates that only about 13,000 prokaryotic species have been 

validly named (http://www.bacterio.net/-number.html#sinceAL).  Indeed, it has been 

estimated less than 0.1% of prokaryotes in marine ecosystems have been cultured (Bull 

et al., 1992, 2000), a similar situation has been reported for actinobacteria (Stach et al., 

2003a, b). It is clear from such estimates that remarkably few actinobacterial taxa have 

been isolated from natural ecosystems and screened for natural products. 

 Although only a small fraction of actinobacterial diversity in natural habitats has 

been isolated and included in pharmacological screening programmes these organisms 

have proved to be a prolific source of novel bioactive compounds, including antibiotics 

of therapeutic value (Lazzarini et al., 2000; Strohl, 2004; Genilloud et al., 2011; 

Genilloud, 2014).  It seems likely that this trend will continue as novel actinobacteria 

are isolated and screened, not least because full genome sequences of taxonomically 

diverse filamentous actinobacteria have been found to contain over 20 natural product 

biosynthetic gene clusters for the production of specialised metabolites, as shown by 

studies on Amycolatopsis mediterranei U32
T
 (Zhao et al., 2002), Blastococcus 

saxobsidens DD2 (Chouaia et al., 2012), Geodermatophilus obscurus G20
T
 (Ivanova et 

al., 2010), Kribbella flavida IFO 14399
T
 (Pukall et al., 2012), Modestobacter marinus 

BC 501(Normand et al., 2012), Saccharopolyspora erythaea NRRL 4338
T
 (Oliynyk et 

al., 2007), Salinispora tropica CNB 440
T
 (Udwary et al., 2007), Saccharothrix 

espannaensis DSM 44229
T
(Strobel et al., 2012), Streptomyces avermitilis MA-4680

T
 

(Ikeda et al., 2003) and “Streptomyces coelicolor” 3(2)
 
(Bentley et al., 2002). 
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 There is evidence that taxonomic diversity amongst filamentous actinobacteria 

can be used as a surrogate for chemical diversity, especially at the species level 

(Goodfellow et al., 2007; Jensen et al., 2007; Tan et al., 2007).  It can, therefore, be 

anticipated that taxa which occupy gaps in actinobacterial taxospace may prove to be a 

rich source of new bioactive compounds (Ward & Goodfellow, 2004; Jensen, 2010).  

Consequently, it makes good sense to devise new strategies for the selective isolation 

and recognition of novel actinobacteria, including streptomycetes and members of “rare 

genera”, as exemplified by the taxonomic approaches to drug discovery (Goodfellow & 

Fiedler, 2010; Genilloud et al., 2011; Wang et al., 2011; Tiwari & Gupta, 2012a, b).   

 

Table 1.1. Antibiotics isolated from actinobacterial genera, as described in the 

antibiotic database of the Journal of Antibiotics (http://www.antibiotics.or.jp). 

Actinomycete AG ML AML BLA PEP GP ANC TC NUC POL QN 

Streptomyces            

Rare actinobacteria            

Actinomadura            

Actinoplanes            

Actinosynnema            

Amycolatopsis            

Dactylosporangium            

Kibdelosporangium            

Kitatospora            

Microbispora            

Micromonospora            

Microtetraspora            

Norcardia            

Nocardiopsis             

Nonomuraea            

Pseudonocardia            

Rhodococcus            

Saccharomonospora            

Saccharopolyspora            

Saccharothrix            

Streptoalloteichus            

Streptosporangium            

Thermomonospora            

* AG, aminoglycoside; ML, macrolide; AML, ansamacrolide; BLA, -lactam; PEP, peptide; 

GP, glycopeptide; ANC, antracycline; TC, tetracycline; NUC, nucleotide; POL, polyene; QN, 

quinine.         , production (modified from Okami & Hotta, 1998). 

 

Indeed, members of rare actinobacterial genera are a source of novel antibiotics used 

extensively in medicine, such as erythromycin produced by Saccharopolyspora 

erythraea (Oliynyk et al., 2007), gentamicin by Micromonospora purpurea (Weinstein 

et al., 1963; Wagman & Weinstein, 1980), rifamycins by Amycolatopsis mediterranei 

(Jin et al., 2002), teicoplanin by Actinoplanes teichomyceticus (Somma et al., 1984; 
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Jung et al., 2009) and vancomycin by Amycolatopsis orientalis (Wink et al., 2003).  

Clearly, it is time to re-energise the quest for the next generation of antibiotics for 

healthcare from members of novel actinobacterial taxa, including the genus 

Streptomyces. 

Another pertinent point is that actinobacterial antibiotics show an extensive 

range of chemical diversity, as shown in Table 1.1 Streptomycetes in particular 

synthesise a broad range of chemical entities, structural types of antibiotics commonly 

produced by these organisms include ansalactam rings, monocyclic lactins and products 

with polyether and cyclopeptide skeletons (Bérdy 2005). 

 

1.5. Selective isolation, dereplication and recognition of novel taxa  

Innumerable filamentous actinobacteria have been isolated and screened since the 

discovery that a Streptomyces griseus strain produced streptomycin (Schatz et al., 1944), 

a momentous development that stimulated the search for additional novel bioactive 

compounds of therapeutic value. Early search and discovery programmes were focused 

on streptomycetes as these organisms were easy to isolate, grow and recognise on 

isolation media. Intensive screening of members of the genus Streptomyces led to the 

discovery of many novel antibiotics, such as actinomycin from S. antibioticus 

(Waksman & Woodruff, 1941) and neomycin from S. fradiae (Waksman & Lechevalier, 

1949).   

It has already been pointed out that it is important to selectively isolate, 

dereplicate and recognise novel actinobacteria from environmental samples in order to 

secure high quality biological material for pharmaceutical screening programmes (Bull 

et al., 2000; Goodfellow & Fiedler, 2010). The application of such procedures show 

that actinobacteria once considered to be rare in natural habitats are widely distributed 

and numerous, as shown by studies on acidiphilic (Kim et al., 2003; Busti et al., 2006; 

Golinska et al., 2013a, b, c), endophytic (Janso & Carter, 2010), halophilic (Meklat et 

al., 2011), motile (Hayakawa et al., 2000; Suzuki et al., 2001) and marine 

actinobacteria (Gontang et al., 2007; Becerril-Espinosa et al., 2013) and by studies on 

individual taxa, such as the genera Amcolatopsis (Tan et al., 2006), Dactylosporangium 

(Kim et al., 2011).  Micromonospora (Goodfellow & Haynes, 1984; Maldonado et al., 

2008) and Rhodococcus (Colquhoun et al., 1998), Sphaerisporangium (Janso & Carter, 

2010) and Streptacidiphilus (Cho et al., 2006). 
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Most actinobacteria have a saprophytic mode of life in aquatic and terrestrial 

ecosystems, notably in soils, freshwater and marine habitats (Bull et al., 2005; Bull & 

Stach, 2007). It is not possible to recommend a single procedure for the selective 

isolation of the many different kinds of actinobacteria present in environmental samples 

due to their diverse growth and incubation requirements. Consequently, numerous 

approaches have been recommended for the isolation of specific actinobacterial taxa 

(Nolan & Cross, 1988; Labeda & Shearer, 1990; Goodfellow, 2010; Tiwari & Gupta, 

2012a) based on their biological properties (Cross, 1982; Wellington & Cross, 1983; 

Goodfellow & O'Donnell, 1989; Goodfellow, 2010). Most selective isolation 

procedures involve the extraction of propagules (hyphae and spores) from selected 

environmental samples, pretreatment(s) of samples, use of selective media and 

appropriate incubation conditions followed by dereplication, and recognition of target 

colonies. 

 

Extraction of actinobacterial propagules. Physico-chemical interactions of bacterial 

propagules with particulate substrates affect their recovery from environmental samples. 

Traditional methods used to separate bacteria from organic matter, sediment and soil 

particles, include shaking in water or weak buffers (e.g., ¼ strength Ringer’s solution), 

are not always effective (Hopkins et al., 1991). It is particularly important to thoroughly 

break up soil-sediment particles as many microorganisms, notably those showing 

mycelial growth, may be bound within them. Procedures used to promote the 

dissociation of microorganisms from particulate material include the use of chelating 

agents (MacDonald, 1986), buffered diluents (Niepold et al., 1979), elutriation 

(Hopkins et al., 1991) and ultrasonication (Ramsay, 1984); all of these procedures 

address the problem of quantitative and representative sampling to varying degrees.  

The dispersion and differential centrifugation technique, a multistage procedure 

introduced by Hopkins et al. (1991), combines several physico-chemical treatments 

which have been found to be effective in increasing the number and taxonomic diversity 

of actinobacteria isolated from natural habitats (Mac aughton & O’Donnell, 1994; 

Atalan et al., 2000; Sembiring et al., 2000; Maldonado et al., 2005).  

 

Pre-treatment of environmental samples. Several pre-treatment procedures are used to 

select different fractions of actinobacterial communities present in environmental 

samples. In general, pre-treatment regimes select for target taxa by inhibiting or 

eliminating the growth of unwanted microorganisms. Actinobacterial spores are more 
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resistant to desiccation than other bacterial cells hence air-drying soil/sediment samples 

at room temperature helps eliminate unwanted Gram-negative bacteria which might 

otherwise overrun isolation plates (Williams et al., 1984a; Labeda & Shearer, 1990; 

Sembiring et al., 2000). A pre-treatment regime based on alternate drying and wetting 

of soil has been used to enrich for sporangia (spore vesicles)–forming genera (Makkar 

& Cross, 1982). Rare spore-forming actinobacteria (e.g., Actinomadura, 

Microtetraspora, Pseudonocardia and Streptosporangium) have been isolated from 

irradiated soil samples and soil suspensions (Bulina et al., 1997; Terekhova, 2003). 

Resistance of actinobacteial propagules to desiccation is usually accompanied by 

some degree of resistance to heat. The basis of this resistance is not clear but it is 

apparent that many actinobacterial spores (e.g., Micromonospora and Microtetraspora), 

spore vesicles (eg. Dactylosporangium and Streptosporangium) and hyphal fragments 

(e.g., Rhodococcus) are more resistant to heat than vegetative cells of other prokaryotes.  

Heat pretreatment procedures have been shown to be effective in the selective isolation 

of several actinobacterial taxa, as exemplified by the novel species of Actinomadura, 

Microbispora, Microteteraspora and Themomonospora on selective media inoculated 

with suspensions of air-dried soil that had been heated at either 100
o
C or 120

o
C before 

plating onto selective media (Nonomura & Ohara, 1969; Hayakawa et al., 1996).  

However, actinobacterial propagules are more sensitive to wet than dry heat hence 

much lower temperatures are used to isolate these organisms from suspensions of 

environmental samples.  Rowbotham & Cross (1977) isolated Dactyosporangium and 

Thermomonospora strains from water and soil suspensions heated at either 55
o
C for 6 

minutes or at 44
o
C for 80 minutes prior to plating onto isolation media.  Similarly, 

Orchard & Goodfellow (1974) recommended the pre-treatment of 10
-1

 dilutions of soil 

at 55
o
C for 6 minutes as an improved way of isolating nocardiae.  This heat pre-

treatment regime has been used to isolate what proved to be novel Streptomyces species 

from hay meadow soils (Atalan et al., 2000; Manfio et al., 2003).  Heat-pretreatment 

procedures usually lead to a decrease in the ratio of bacteria to actinobacteria on 

selective isolation plates though counts of the latter may also be reduced (Williams et 

al., 1984). 

 Chemical pretreatments of mixed inocula are used to isolate specific 

actinobacterial taxa, notably members of genera classified in the family 

Streptosporangiaceae (Hayakawa et al., 1988, 1991a, 1995; Yamamura et al., 2003; 

Goodfellow, 2010). The selective chemical procedures introduced by Hayakawa and his 

colleagues are based on the differential ability of actinobacterial spores to withstand 
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treatment with chemical germicides, such as benzethonium chloride, chlorhexidine 

gluconate and phenol.  Treatment with these agents for 30 minutes at 30
o
C kill 

vegetative cells of aerobic, endospore-forming bacilli and pseudomonads. The 

simultaneous use of more than one chemical germicide can further enhance selectivity, 

as exemplified by the use of chlorheximide gluconate and phenol for the isolation of 

Microbispora strains (Hayakawa et al., 1991b). 

Nutrient and baiting techniques have been used to increase the populations of 

specific fractions of actinobacterial communities in environmental samples to facilitate 

their isolation on selective isolation media. Amendments of soil with substrates such as 

chitin and keratin was first used by Jensen (1930) to boost the numbers of 

streptomycetes. The addition of these substrates led to an increase in the number of 

streptomycetes through amendment with chitin also led to an increase in the number of 

unwanted bacteria. The practise of amending environmental samples with substrates has 

fallen into neglect in recent times, but this approach does provide an effective way of 

enhancing specific components of actinobacterial communities in soil (Williams et al., 

1971; Nonomura &Takagi, 1977). 

 

Selective isolation media. Numerous media have been recommended for the isolation of 

a diverse actinobacterial taxa from natural habitats and more specifically for selected 

families, genera and species (Kurtböke, 2003; Goodfellow, 2010; Tiwari & Gupta, 

2012a). Most of the ‘general’or ‘non-selective’ media were formulated without 

reference to either the nutritional or the tolerance preferences of the target organisms. It 

is now known that widely used‘non-selective’ media, such as colloidal chitin-mineral 

salts (Lingappa & Luckwood, 1962; Hsu & Lockwood, 1975) and starch-casein nitrate 

(Küster & Williams, 1964) agars tend to select for a relatively narrow range of 

Streptomyces species nor do they support the growth of actinobacteria that have 

different nutritional requirements (Williams et al., 1984a). 

Selective isolation media can be formulated in an objective way by drawing 

upon phenotypic data held in taxonomic databases (Goodfellow & Haynes, 1984; 

Williams &Vickers, 1988; Goodfellow, 2010). One of the early successes of this 

approach was the formulation of a medium selective for the isolation of the nocardiae 

from soil and water samples (Orchard et al., 1977; Orchard & Goodfellow, 1980; 

Maldonado et al., 2000). The discovery that Diagnostic Sensitivity Agar supplemented 

with tetracycline was selective for Nocardia species was based on information held in 

an antibiotic sensitivity database (Goodfellow et al., 1989).  An extension of this work 
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was the visual scanning of phenotypic databases to highlight antibiotics that might form 

the basis of selective isolation media. The number of verticillate streptomycetes 

(formerly members of the genus Streptoverticillium), for example, was increased by 

reducing the number of competing neutrophilic streptomycetes by supplementing 

isolation media with neomycin and oxytetracycline (Hanka & Schaadt, 1988); 

verticillate streptomycetes were known to be resistant and other neutrophilic 

streptomycetes sensitive to these antibiotics (Williams et al., 1985).  

It is standard practice to control or eliminate fungal containmants by using 

antifungal antibiotics, such as cycloheximide, nystatin and pimaricin (Porter et al., 1960; 

Gregory & Lacey, 1963; Williams & Davies, 1965). Similarly, penicillin G and 

polymixin B have been used to select actinobacteria from competing soil inhabiting 

bacteria (Nonomura & Ohara, 1960; Williams & Davies, 1965), as have nalidixic acid 

and trimethoprim (Hayakawa et al., 1996). Antibacterial antibiotics are also widely used 

for the selective isolation of specific actinobacterial taxa (Goodfellow, 2010). 

 

Incubation. Incubation conditions, including gaseous regimes, incubation times and 

temperature, contribute to selectivity. Incubation at 25 to 30°C favours mesophilic 

actinobacteria whereas their thermophilic counterparts require higher temperatures. 

Thermophilic species, such as Pseudonocardia thermophila and Saccharopolyspora 

rectivirgula, only require incubation for 2-3 days at 45 to 50°C. In contrast, incubation 

times up to 5 weeks may be required to isolate some genera, such as those classified in 

the families Micromonosporaceae and  Streptosporangiaceae (Labeda & Shearer, 1990; 

Goodfellow, 2010). Members of commonly isolated genera, such as Micromonospora, 

Nocardia and Streptomyces, may be selected from isolation plates after incubation for 

14 days.  

 

Colony selection and dereplication. The selection of actinobacterial colonies on 

selective isolation plates is a time-consuming and fairly subjective stage in isolation 

procedures. Colonies can be selected randomly or with some degree of choice. When 

selective isolation media are used the target organism(s) can sometimes be provisionally 

assigned to genera either on the basis of colony morphology or by examining colonies 

for distinctive morphological features, such as the presence of spore vesicles and the 

nature of spore chains, using a long working distance objective. However, it is not 

usually possible to distinguish between species of the same actinobacterial genus on 

selective isolation plates. In such instances, the selection of large numbers of colonies is 
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laborious and can lead to duplication of strains and hence effort, especially in low 

throughput screening systems. This problem can be overcome by a rapid grouping of 

isolates based on colonial characteristics and molecular fingerprinting patterns (Tan et 

al., 2006; Antony-Babu et al., 2008). 

 A practical and reliable way of dereplicating streptomycetes was introduced by 

Williams et al. (1969) who assigned large numbers of soil streptomycetes to groups 

based on aerial spore mass, substrate mycelial and diffusible pigment colours produced 

on oatmeal agar, and on their ability to form melanin pigments on yeast extract-malt 

extract-iron agar.  Colour-groups were subsequently shown to reflect the extent of the 

taxonomic diversity of streptomycetes in rhizosphere and non-rhizosphere soils 

(Williams & Vickers, 1988; Atalan et al., 2000; Sembiring et al., 2000), as 

representatives of such groups were found to belong to either validly named or novel 

Streptomyces species or species-groups based on computer-assisted identification 

(Williams & Vickers, 1988; Atalan et al., 2000) and polyphasic taxonomy (Manfio et 

al., 2003; Goodfellow et al., 2007). 

 The classification of streptomycetes into colour-groups has been used to gain an 

insight into the taxonomic diversity of these micro-organisms in a beach and sand dune 

system (Antony-Babu & Goodfellow, 2008), in marine sediments (Goodfellow & 

Haynes, 1984; Pathom-aree et al., 2006) and arid desert soils (Okoro et al., 2009), and 

thereby to the selection of representative isolates for screening assays (Goodfellow & 

Fiedler, 2010).  A reasonable linear correlation has been found between streptomycete 

colour-groups and corresponding rep-PCR data (Antony-Babu et al., 2010). 

 

Recognition of novel taxa.  The classification of representatives of dereplicated groups 

of actinobacteria can be achieved using a two stage procedure.  Reliable methods are 

used to assign representative strains to higher taxonomic ranks (eg. genera, families and 

orders) prior to the choice of diagnostic tests for the recognition of new or validly 

named species.  The first objective can be achieved by comparing the almost complete 

16S rRNA gene sequences of the representative isolates with those of their nearest 

phylogenetic neighbours using appropriate databases and software (Felis et al., 2010; 

Kim et al., 2012; Ludwig et al., 2011, 2012) and chemotaxonomic and morphological 

data (The Society of Actinomycetes Japan, 2001; Goodfellow et al., 2012b). The second 

stage, the classification of representatives to validly named new species can be done by 

using combinations of phenotypic properties with or without associated DDH assays, as 

exemplified by the circumscription of novel Amycolatopsis (Zucchi et al., 2012; Camas 



26 

et al., 2013), Modestobacter (Xiao et al., 2011; Qin et al., 2013) and Streptomyces 

species (Promnuan et al., 2013; Ray et al., 2013). 

 

1.6. Extreme habitats as a source of novel actinobacteria 

Pioneering ecological studies undertaken by Williams and his colledgues showed that 

the presence, distribution, numbers and kinds of actinobacteria in natural habitats were 

influenced by key environmental factors, such as aeration, pH, temperature and 

availability of organic matter and water (Williams et al., 1971, 1972; Goodfellow & 

Williams, 1988). These observations meant that the chance of isolating novel 

actinobacteria is dependent on the nature of environmental samples, as shown by the 

selective isolation of acidiphilic and acidotolerent actinobacteria from acid forest soils 

(Khan & Williams, 1975; Kim et al., 2003; ; Golinska et al., 2013a, b, c) and 

alkaliphilic streptomycetes from beach and sand dune soils (Antony-Babu et al., 2008).  

The realisation that novel actinobacteria were present in such neglected habitats induced 

a shift towards the isolation, classification and screening of actinobacteria from extreme 

habitats on the premise that harsh environmental parameters would give rise to a unique 

actinobacterial diversity that would be the basis of a novel chemistry (Ward & 

Goodfellow, 2004; Bull, 2011).  Strong support for this proposition has come from 

bioprospecting studies on filamentous actinobacteria isolated from marine habitats 

(Fiedler et al., 2005; Bull & Stach, 2005; Jensen, 2010; Zotchev 2012; Manivasagan et 

al., 2013). 

 

Actinobacteria from desert soils.   It is surprising that so little attention has been paid to 

the actinobacterial composition of desert soils as deserts account for about a quarter of 

the earth’s landmass.  Most deserts lie in two areas parallel to the equator, at 25
o
-35

o
 

latitude in the northern and southern hemispheres.  The desert biome can be defined on 

the basis of climate, as the sum of all the arid and hyper-arid areas on the planet, 

biologically as ecoregions that contain organisms adapted for survival in arid 

environments, and physically as regions with large areas of bare soil, regolith or rock 

and low vegetation cover.  Desert landscapes are diverse, some are found on ancient 

crystalline rock hardened over millions of years to give flat deserts of rock and sand, as 

in the Sahara desert, while others are the folded product of more recent tectonic 

movements and have evolved into crumpled rocky mountains emerging from lowland 

sedimentary plains, as in Central Asia, North and South America.  Life is continuously 
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under stress by abiotic factors in the desert biome, amongst them desiccation, 

temperature fluctuations, lack of organic matter and intense solar radiation.  Low 

moisture content and water activity, in particular, limit microbial growth, abundance 

and diversity in hyper-arid deserts (Skujins, 1984; Kieft, 2002). 

 Actinobacteria have been isolated from desert soils, including from the 

Amargosa desert in Nevada (Luedemann, 1968), the Mojave desert in southwest United 

States (Garrity et al., 1996), the Mongolian desert (Jadambaa, 2000; Kurapova et al., 

2012), the Namibian desert (Wink et al., 2003), the Sahara desert (Hozzein et al., 2004; 

Zitouni et al., 2005; Meklat et al., 2011), the Taklamakan desert in Xinjiang province, 

China (Luo et al., 2012), the Thar desert in Rajastan, India (Harwani, 2013) and the 

desert ecosystem in the northeast of the Qinghai-Tibet plateau (Ding et al., 2012).  In 

general, very few actinobacteria have been isolated from such desert soils but most of 

these that have being assigned to rare genera such as Actinomadura, Actinoplanes, 

Dactylosporangium, Geodermatophilus, Microbispora, Micromonospora, Nocardiopsis, 

Saccharothrix and Saccharopolyspora, as well as to the genus Streptomyces.  Some 

desert isolates have been validly named as new genera, such as Geodermatophilus 

(Luedemann, 1968) and Yuhushiella (Mao et al., 2010) and others as new species, as 

exemplified by Corynebacterium deserti (Zhou et al., 2012),  Geodermatophilus 

normandii (Montero-Calasanz et al., 2013) and Mycetocola manganoxydans (Luo et al., 

2012).  In contrast, relatively large numbers of Amycolatopsis strains have been isolated 

from arid Australian soils (Tan, et al., 2006), including some classified to new species, 

such as Amycolatopsis granulosa, Amycolaopsis ruanii and Amycolatopsis thermalba 

(Zucchi et al., 2012). 

 

The Atacama Desert.  This temperate desert in northern Chile stretches for ~1000 

kilometers along the coast of Chile in Regions II (Región de Antofagasta) and III 

(Región de Atacama) but is only between 100 and 200 kilometers wide. The core zone 

of hyper-aridity extends from 15 to 30S at elevations from sea level to 3500 m 

(Houston & Hartley, 2003). The Atacama Desert is considered to be the oldest and 

driest desert on the planet having evolved over 100 million years of aridity and 15 

million years of hyper-aridity (Hartley et al., 2005; Gomez-Silva et al., 2008). 

Most Atacama Desert soils and regoliths are hyper-arid, that is, as stated earlier 

the ratio of mean annual rainfall to mean annual evaporation is 0.05%, the 

corresponding ratio for extreme hyper-arid soils is 0.002%.  The availability of liquid 

water and high UV radiation are considered to be the key environmental factors 
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governing microbial colonisation in Atacama Desert soils (Bhatnagar & Bhatnagar, 

2005; Paulino-Lima et al., 2013).  The harshness of this environment is compounded by 

very low concentrations of organic carbon, presence of inorganic oxidants and in some 

areas by high salinity.  The harsh conditions found in the Atacama Desert are 

considered by astrobiologists to provide on accurate analogue of the prevailing 

conditions on Mars (McKay et al., 2003; Navarro-González et al., 2003; Azura-Bustos 

et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  Map of Atacama Desert showing the location of the Salar de Atacama and 

Yungay regions (adapted from Costello et al., 2009). 

 

 

 

  

 

 

 

 

Figure 1.4.  Cross-section of Atacama Desert region, near Antofagasta, Chile (adapted 

from Gómez-Silva et al., 2008). 

 

 Extreme hyper-arid soils in the Atacama Desert occur from approximately 22
o
S 

to 26
o
S between the Coastal Mountains to the west (~1000-3000m) and the western 
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Andes Cordillera including the Domeyko Mountains to the east (~4000 m high), and are 

prominent in the Yungay region (Figure 1.3).  This region receives negligible rainfall, 

below 1 mm year
-1

 in some areas (McKay et al., 2003).  Moisture is provided 

principally by intermittent fogs entering the Desert from the coast. The Yungay region, 

which lies within this area, is considered to be the driest part of the desert thereby 

providing a promising setting to determine the presence of actinobacteria in conditions 

of extreme hyper-aridity.  In contrast, arid and hyper-arid soils are found around the 

Salar de Atacama (Figure 1.3); this is largest salt flat in Chile (ca. 3000 km
2
)
 
is bordered 

by the Cordellera de Domekyo to the west and the Andes to the east (Figure 1.4).  The 

salar is fed by small inflowing rivers from the Andes, but the only outlet for the area is 

through very high evaporation rates.  The Laguna de Chaxa, a product of underground 

rivers, lies within the Salar de Atacama.  Other interesting habitats in the Atacama 

Desert have been considered by Bull and Asenjo (2013).  

 Culture-dependent and culture-independent surveys of Atacama Desert soils 

reveal the presence of small, but taxonomically varied microbial communities (Lester et 

al., 2007; Gómez-Silva et al., 2008; Bull & Asenjo, 2013; Paulino-Lima et al., 2013) 

thereby indicating that micro-organisms can withstand the extremes of a aridity that 

prevent the growth of plants.  Drees et al. (2006) sampled subsurface soils across an 

east-west transect of the Atacama Desert and grew bacteria from all but one of the 

samples.  Molecular profiling using denaturing gradient gel electrophoresis (DGGE) 

highlighted an unique microbial community in hyper-arid soils dominated by the phyla 

Gammatimonadetes and Planctomycetes.  However, other culture-independent studies 

of hyper-arid soils from in and around the Yungay region were found to be dominated 

by actinobacteria (Demergasso et al., 2007; Connon et al., 2007; Lester et al., 2007). 

Demergasso and her coworkers also have explored microbial communities in the 

subsurface. A drilling project near the Salar de Grande (Region I, Región de Tarapacá, 

north of Antofagasta) revealed a microbial habitat at a depth of 2 m that was 

characterised by abundant hygroscopic salts that allowed deliquescence to occur at low 

relative humidities and hence microbial colonisation. Actinobacteria were among the 

bacteria detected in this habitat by means of a multi-signal molecular chip (Parro et al., 

2010). In sharp contrast, culture-independent studies of high altitude wetlands from the 

Chilean Altiplano based on 16S rRNA phylotypes showed that the bacterial 

communities of these systems were dominated by Bacteroidetes and Proteobacteria 

(Dorador et al., 2009). DGGE analyses of hypersaline environments were found to be 
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dominated by archaea, cyanobacteria and heterotrophic bacteria (De los Ríos et al., 

2010). 

 Okoro et al. (2009) were the first to study the diversity of culturable 

actinobacteria in Atacama Desert soils.  The use of standard selective isolation 

procedures allowed them to detect small populations of filamentous actinobacteria in 

arid, hyper-arid and extreme hyper-arid soil samples; in some cases actinobacteria were 

the only bacteria to be isolated, a result in good agreement with some of the culture-

independent studies (Lester et al., 2007; Neilson et al., 2012). Phylogenetic analyses 

and associated phenotypic tests showed that the isolates belonged to putatively novel 

Amycolatopsis, Lechevalieria and Streptomyces species.  Subsequent polyphasic 

taxonomic studies showed that the Lechevalieria isolates belonged to three new species 

(Okoro et al., 2010), as did four of the Streptomyces isolates (Santhanam et al., 2012a, b; 

2013; Busarakam et al., 2014).  The results of these and an associated study (Schulz et 

al., 2011) support the view that Atacama Desert soils are a largely unexplored source of 

novel actinobacteria, some of which have been shown to synthesis novel bioactive 

compounds (Nachtigall et al., 2011; Rateb et al., 2011a, b; Schulz et al., 2011). 

 

1.7. Screening for bioactive compounds 

 The initial steps in the culture-dependent bioprospecting strategy described by 

Goodfellow and Fiedler (2010) are based on the selective isolation of novel 

actinobacteria from neglected habitats and the selection of representative dereplicated 

isolates for screening.  It has been shown that these steps are highly dependent on 

developments in actinobacterial systematics and are based partly on the hypothesis that 

taxonomic diversity remains a surrogate for chemical diversity (Ward & Goodfellow, 

2004; Bull & Stach, 2007; Jensen, 2010) and partly on the concept that novel species 

may synthesis unique bioactive compounds as the evolution of specialised metabolites 

may be a driver of speciation (Czaran et al., 2002; Jensen, 2010).  The remaining steps 

in the taxonomic approach to drug discovery involve the expression and detection of 

bioactive compounds from representatives of dereplicated groups grown on 

appropriated production media, the detection of chemical novelty using appropriate 

analytical chemical procedures and structural analyses of interesting leads. Numerous 

assays have been developed for the detection of antimicrobial, antiparasitic and 

antitumour metabolites (Fiedler, 2004; Singh et al., 2007; Donadio & Sosio, 2010). 
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Production media.  It is good practice to grow dereplicated isolates on a range of 

production media (Fielder, 1994; Theobald et al., 2000), not least because such media 

can have an enormous impact on the expression of actinobacterial biosynthetic gene 

clusters. Goodfellow and Fiedler (2010) recommended several media formulations 

which they considered suitable for the production of specialised metabolites from 

taxonomically different actinobacteria (see Table 1.2).  Media 410, which has a high 

concentration of carbon and nitrogen, supports the growth of most actinobacteria, 

notably strains classified in the order Corynebacteriales. This medium is not, however, 

suitable for the production of specialised metabolites from streptomycetes or 

streptosporangiae even though they grow well on it.  In contrast, media 19, 400, OM 

and SGG induce the synthesis of novel drug candidates from Streptomyces strains; 

members of the family Micromonosporaceae are best grown on media 333, MMM and 

SGG.  These observations, while somewhat empirical, do help press the point that the 

success of screening campaigns for specialised metabolites are highly dependent on 

accurate classification of novel dereplication isolates, as exemplified the production of 

novel antibiotics from Streptomyces strain C34
T
 which was isolated from the Salar de 

Atacama region of the Atacama Desert (Rateb et al., 2011b). 

 

Table 1.2.  Media suitable for submerged cultivation of actinobacteria (g/l) (taken from 

Goodfellow & Fiedler, 2010). 

Medium 

 

  

tthese 

19 333 400 410 MMM OM SGG 

Glucose - 5 10 10 10 - 10 

Glycerol - - - 10 10 - 10 

Mannitol 20 - - 15 - - - 

Casamino acid - - - 15 - - - 

Casitone - - - - - 5 - 

Cornsteep powder - - - - - - 2.5 

Meat extract - - 3 - - - - 

Oatmeal - - - 5 - 20 - 

Peptone 20 3 3 10 - - 5 

Soluble starch - 10 20 - 20 - 10 

Yeast extract - 3 5 5 5 - 2 

CaCO3 - 2 3 1 1 - 3 



32 

NaCl - - - - - - 1 

NH4NO3 - 3 - - - - - 

pH 7.5 7.2 7.0 7.0 7.6 7.3 7.3 

C content (g/l) 13.8 10.5 12.7 13.4 12.5 5.2 14.0 

C:N ratio 6.3:1 6.05:1 11.3:1 3.5:1 12.5:1 15:1 15.4 

 

Primary antibiotic screening of actinomycetes is usually achieved against a 

panel of Gram-negative and Gram-positive bacteria (Baltz, 2007; Urban et al., 2007) 

and yeasts. Genetically engineered Escherichia coli K-12 strains can be used to exclude 

the rediscovery of the most broad-spectrum antibiotics as they contain genes that confer 

resistance against antibiotics such as ampicillin, chloramphenicol, streptomycin and 

tetracycline (Baltz, 2007).  Agar plug assays are widely used to establish whether 

dereplicated isolates show bioactivity against such strains (Fiedler, 2004).  There are 

several variants to this approach, one of which is to take plugs of actinobacterial strains 

grown on production media and place them on the surface of agar plate supporting the 

growth of the panel of wild type organisms then recording zones of inhibition after 

overnight incubation. Alternatively, culture filtrates or organic extracts of 

actinobacterial mycelia may be spotted onto plates supporting the growth of the 

microorganisms and zones of inhibition recorded following incubation. 

Dereplicated isolates showing activity in the primary screens can be selected for 

secondary screens designed to detect the target sites of the agents of bioactivity (Fiedler 

et al., 2004).  This approach can be based on mutant strains that carry reporters, such as 

-galactosidase or luciferase genes, fixed to promoters that specifically respond to 

certain types of antibiotics which trigger the promoter resulting in the expression of the 

reporter gene.  The product of β-galactosidase, for instance, leads to X-gal being 

cleaved to galactose and 5-bromo-4-chloro-3-hydroxyindole (Figure 1.5);  the 

production of an insoluble blue pigment (5-bromo-4-chloro-3-hydroxyindole) shows 

that the antibiotic is repressing the target pathway.  Hütter et al. (2004) generated 

several Bacillus subtilis reporter strains and used them to detect inhibitors of cell walls, 

DNA, fatty acids and protein biosynthesis.  Similarly, Fiedler et al. (2004) used fatty 

acid biosynthesis pathway (FAS)-specific B. subtilis reporter strains against several 

antibiotics and identified two known FAS inhibitors, cerulenin and triclosan. 

Another strategy that is increasingly being used to increase the sensitivily of 

screening assays is based upon antisense technology (Genilloud, 2014). This approach 



33 

involves a reduction in the level of the desired bacterial target by inducing the 

overexpression of the cognate antisense mRNA leading to the generation of strains that 

are hypersensitive to compounds which inhibit that target hence the probability of 

finding the inhibitor of that target as an antibacterial compound is significantly 

increased (Singh et al., 2007).  This approach has led to the discovery of several potent 

antibiotics, including platensimycin (Wang et al., 2006) and platencin (Wang et al., 

2007) from Streptomyces platensis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5.  Cleavage of 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-gal) to β-D-

galactose and 5-bromo-4-chloro-3-hydroxyindole (Blue compound). Adapted from Voet & 

Voet (2011). 
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Chapter 2. Materials and Methods 

 

2.1. Sampling sites 

Source of environment samples.  Environmental samples were collected from two 

locations in the Atacama Desert by Professor A.T. Bull (School of Biosciences, 

University of Kent, Canterbury, UK.), namely the Laguna de Chaxa, Salar de Atacama, 

near Tocanao and the Yungay region, quite near Antofagasta (Table 2.1). 

 

Table 2.1.  Environmental conditions at sampling sites. 

Location Latitude Longitude Elevation 

(m asl) 

Date Biome MAR/MAE* 

Laguna de 

Chaxa, 

Salar de 

Atacama  

23
o
1 ’S 68

o
10’W 2,300 4-10-2004 Salt flat 

hyper-

arid 

0.009 

Yungay 

 

2406’18.6” 7001’55.6” 1033 13-11-

2010 

Extreme 

hyper-

arid soil 

0.002 

*MAR, mean average rainfall; MAE, mean average evaporation. Ratio estimated from 

data provided by Houston (2006). 

 

2.2. Physico-chemical properties of environmental samples  

pH. The pH of the environmental samples were determined using the procedure 

described by Reed and Cummings (1945). Deionised water was added to two grams of 

each environmental sample until a thin layer of water was visible on the surface of the 

samples, the latter were mixed thoroughly and left for two hours at room temperature. 

The pH of each sample was determined, in triplicate, using a glass electrode pH meter 

(Model 320 Mettler-Toledo AG, CH.8603, Schwerzenbach, Switzerland).   

 

Moisture and organic matter content.  The percentage moisture content of the 

environmental samples were determined, in triplicate, by drying known amounts of the 
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samples to constant weight at 105°C then calculating the average loss in weight between 

each set of samples. The dried samples were placed in a muffle furnace (Carbolite, 

Sheffield, UK), the temperature raised slowly to 700°C and kept constant for 30 minutes 

to burn off any organic matter. After cooling overnight in a desiccator, the average loss 

in weight for each set of samples was recorded as the organic matter content. 

 

2.3. Selective isolation, enumeration and presumptive classification of 

actinobacteria isolated from Atacama Desert environmental samples 

Selective isolation and enumeration.  Suspensions from the Salar de Atacama and 

Yungay environmental samples were prepared in 1/4 strength Ringer’s solution (Oxoid, 

UK) to give 10
-½ 

 dilutions which were shaken on a tumble shaker (TMI Tumbler, 

Luckham Ltd., Sussex, UK) for 30 minutes, heat-pretreated at 55
o
C for 6 minutes and 

10
-1

 and 10
-2

 dilutions prepared in ¼ strength Ringer’s solution.  liquots (100 µl) of the 

various dilutions were spread over plates of several selective isolation media (Table 3.1) 

which had been dried for 15 minutes at room temperature prior to inoculation (Vickers 

& Williams, 1987). Three replicate plates were prepared for each dilution and for each 

of the isolation media.  After incubation at 28
o
C for 3 weeks, the number of 

actinobacteria growing on the isolation plates were counted and the results expressed as 

the number of colony forming units (cfu) per gram dry weight of environmental sample. 

 

Table 2.2.  Media used for the selective isolation of actinobacteria from the Atacama 

Desert environmental samples. 

Media 

Selective agents 

(µg ml
-1

) 

Target organism(s) 

Gause’s  o.1 agar (Zakharova et al., 

2003) 

Nalidixic acid (10)  Rare or uncommon 

actinobacteria 

Geodermatophilus obscurus agar 

(Uchida &Seino, 1997) 

Nystatin (25) Geodermatophilus spp. 

Glucose-yeast extract agar (Athalye 

et al., 1981) 

Rifampicin (20) Actinomadura spp. 

HV agar (Hayakawa & Nonomura, 

1987) 

Humic acid (1g L
-1

) Streptosporangiaceae spp. 

Luedemann’s agar (Luedemann, 

1971) 

Nystatin (25 ) Modestobacter spp. 
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Microlunatus agar (Nakamura et al., 

1995) 

Nystatin (25) Modestobacter spp. 

Oligotrophic agar (Senechkin et al., 

2010) 

Low carbon and nitrogen 

content 

Rare and uncommon 

actinobacteria 

R2A (Reasoner & Geldreich, 1985) Nystatin (25) Modestobacter spp. 

Starch-casein agar (Küster & 

Williams, 1964) 

Nystatin (25) Streptomyces spp. 

SM1 (Tan et al., 2006) Neomycin (1) and        

nystatin (25) 

Amycolatopsis spp. 

All of the media were supplemented with cycloheximide (25 µg ml
-1

). 

 

2.4. Selection, maintenance and presumptive classification of 

actinobacteria isolated from the Salar de Atacama and Yungay 

environmental samples  

Four hundred and twenty strains randomly chosen from the selective isolation plates 

were subcultured onto glucose-yeast extract-malt extract agar plates (ISP2, Shirling & 

Gottlieb, 1966) and incubated at 28
o
C for 14 days.  Three hundred and fifteen of the 

strains were taken from isolation plates inoculated with suspensions of the Salar de 

Atacama environmental sample and 105 from the isolation plates seeded with the 

suspensions of the environmental sample taken from the Yungay region.  The isolates 

considered to belong to the genus Streptomyces were recognised by their ability to 

produce leathery colonies covered by an abundant aerial spore mass while 

Geodermatophilaceae colonies were recognised by their characteristic shiny black 

colony.  In contrast, isolates producing leathery colonies covered by little or no aerial 

hyphae were considered to belong to other filamentous actinobacterial groups. 

 

Maintenance of strains.   All of the isolates were grown on oatmeal (Shirling & 

Gottlieb, 1966) and modified Bennett’s agar plates (Jones, 1949) at 28°C for 3 weeks.  

Suspensions of spores and mycelial fragments from each of the incubated plates were 

suspended in 1 ml aliquots of 20%, v/v glycerol (2 vials per strain per medium) in 

cryotubes, one culture prepared from each medium was kept at -80
o
C for long-term 

preservation, the others, the working cultures, were kept at -20
o
C. 
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Assignment to colour-groups.   The presumptive streptomycete and non-streptomycete 

strains isolated from the Salar de Atacama and Yungay environmental samples were 

subcultured onto oatmeal agar (ISP medium 3, Shirling & Gottlieb, 1996) and peptone-

yeast extract agar plates (PYEIA, ISP medium 6, Shirling & Gottlieb, 1966) and 

incubated at 28
o
C for 14 days and 4 days, respectively.  The isolates were assigned to 

colour-groups based on aerial spore mass, substrate mycelial and diffusible pigment 

colours produced on the oatmeal agar plates, using National Bureau of Standards (NBS) 

Colour Name Charts (Kelly, 1958), and their ability to produce melanin pigments on the 

peptone-yeast extract-iron agar plates.  The strains isolated from the Salar de Atacama 

environmental sample were assigned to 49 multi-membered and 23 single-membered 

colour-groups; the corresponding numbers for the strains isolated from the Yungay 

environmental sample were 20 and 13, respectively (Appendix 1).  The codes assigned 

to the strains isolated from the Salar de Atacama and Yungay environmental samples 

include reference to the media they were isolated on and the colour-groups to which 

they were assigned (Tables 2.3 and 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Colour-grouping of actinobacteria on oatmeal agar (ISP3 medium). 
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Table 2.3.  Selected actinobacteria  isolated from the hyper-arid environmental sample 

from Chaxa de Laguna, Salar de Atacama of the Atacama Desert and assigned to single- 

and multi-membered colour-groups. 

Actinobacteria Codes 

Presumptive streptomycetes 

Multi-membered 

colour-groups 

C34, C38, C58, C59, C79, KNN1-1a*, KNN1-2c, KNN1-3b, KNN1-5f;  KNN2-1b*, 

KNN2-2c, KNN2-3c, KNN2-4c, KNN2-5c, KNN2-6c, KNN2-7d, KNN2-8b, KNN2-9d, 

KNN2-10d, KNN2-11d, KNN2-12d, KNN2-13a, KNN2-14c, KNN2-15a, KNN2-16c, 

KNN2-17d, KNN2-18c, KNN3-1b*, KNN3-2b, KNN3-3c, KNN3-4b, KNN3-5c, KNN3-

6c, KNN3-7c, KNN3-8c, KNN3-9c, KNN3-10e, KNN3-14d, KNN3-15d, KNN3-16d, 

KNN3-17d, KNN3-18d, KNN3-19b, KNN4-1b*, KNN4-2e, KNN4-3b, KNN4-4a; 

KNN5-1a*, KNN5-2a, KNN5-3c, KNN5-4c, KNN5-5a, KNN5-6a, KNN5-7a, KNN5-8b, 

KNN5-9b, KNN5-10b, KNN5-13b, KNN5-14b, KNN5-15b, KNN5-16d, KNN5-17d, 

KNN5-18d, KNN5-19d, KNN5-20d, KNN5-25b, KNN5-28c, KNN5-29b, KNN5-30d, 

KNN5-31e; KNN6-1a*, KNN6-2a, KNN6-3a, KNN6-4a, KNN6-5a, KNN6-6b, KNN6-

7d, KNN6-8d, KNN6-9a, KNN6-10b, KNN6-11a; KNN8-1b*, KNN8-2b, KNN8-3a, 

KNN8-4b, KNN8-5d, KNN8-6b, KNN8-7a, KNN8-8a, KNN8-9a, KNN8-10c, KNN8-

11e, KNN9-1a*, KNN9-2e, KNN9-3a, KNN10-1a*, KNN10-2b, KNN10-3b, KNN10-

4d, KNN10-5a, KNN11-1a, KNN11-2a, KNN11-3c, KNN11-4b, KNN11-5a, KNN11-

6b, KNN14-1f*, KNN14-2c, KNN14-3e, KNN16-1*, KNN16-2, KNN17-1c*, KNN17-

2b; KNN18-1b*, KNN18-2c, KNN18-3d, KNN24-1b*, KNN24-2c, KNN24-3c, KNN24-

4c, KNN24-5c, KNN24-6a, KNN24-7c, KNN24-8e, KNN29-1a*, KNN32-1a*, KNN32-

2b,  KNN35-1b*, KNN35-2b; KNN36-1*c, KNN36-2c, KNN36-3c; KNN37-1e*, 

KNN37-2a KNN37-3a, KNN37-4a, KNN38-1b*, KNN38-2d, KNN38-3d, KNN38-4a, 

KNN38-5b, KNN41-1b*, KNN41-2a, KNN48-1c*, KNN48-2a, KNN48-3e, KNN48-4e, 

KNN48-5e, KNN52-1c*, KNN52-2b, KNN52-3b, KNN54-1b*, KNN54-2b, KNN58-

1b*, KNN58-2c, KNN60-1c*, KNN60-2d, KNN63-1b*, KNN63-2b, KNN63-3b, 

KNN63-4b, KNN63-5a, KNN63-6b, KNN63-7b, KNN63-8d, KNN63-9d, KNN63-10d, 

KNN63-11b, KNN63-12b, KNN63-13b, KNN63-14b, KNN63-15b, KNN63-16b, 

KNN63-17b, KNN63-18b, KNN63-19e, KNN64-1a*, KNN64-2a, KNN64-3a, KNN64-

4b, KNN64-5b, KNN64-6b; KNN65-1f*, KNN65-2a, KNN65-3c, KNN65-4c, KNN65-

5d, KNN67-1b*, KNN67-2b, KNN67-3b, KNN67-4b, KNN68-1b*, KNN68-2b, 

KNN68-3b, KNN68-4b, KNN69-1e*, KNN69-2a, KNN69-3a, KNN71-1a*, KNN71-2a, 

KNN73-1a*, KNN73-2a, KNN73-3d, KNN74-1c*, KNN74-2c, KNN75-1c*, KNN75-

2b, KNN75-3b, KNN75-4b, KNN78-1e*, KNN78-2e, KNN79-1b*, KNN79-2b, KNN79-

3d; KNN80-1c*, KNN80-2d, KNN81-1c*, KNN81-2b, KNN81-3d, KNN82-1a*, 

KNN82-2c, KNN85-1f*, KNN85-2b, KNN85-3b, KNN85-4c, KNN85-5c, KNN85-6c, 

KNN85-7c, KNN85-8a  

 

Single-membered 

colour groups 

KNN25c*, KNN26b* KNN27a*, KNN28a*, KNN30a*, KNN31d*,  KNN33a*, 

KNN39c*, KNN43b*, KNN51b*, KNN56a*, KNN59e*, KNN62b*, KNN66*, 

KNN70b*, KNN72a*, KNN76b*, KNN83e*, KNN84c*, KNN87b*, KNN94e* 

Presumptive non-streptomycetes 

Multi-membered GY024, GY142, KNN49-1f*, KNN49-2e, KNN49-3e, KNN49-4e, KNN49-5e, KNN49-
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colour-groups 6a, KNN49-7c, KNN49-8c, KNN49-9c, KNN49-10b, KNN49-11c, KNN49-12b, 

KNN49-13b, KNN49-14b, KNN49-15b, KNN49-16c, KNN49-17b, KNN49-18b, 

KNN49-19a, KNN49-20b, KNN49-21c, KNN49-22d, KNN49-23d, KNN49-24d, 

KNN49-25d, KNN49-26a, KNN49-27a, KNN49-28a, KNN49-29a, KNN49-30b, 

KNN49-31b, KNN49-32b, KNN50-1a*, KNN50-2e, KNN50-3c, KNN50-4c, KNN50-

5c, KNN50-6e, KNN50-7d, KNN50-8b, KNN50-9b, KNN50-10e, KNN50-11c, KNN50-

12c, KNN50-13c, KNN50-14d, KNN50-15d, KNN50-16d, KNN50-17d KNN50-8d, 

KNN53-1a*, KNN53-2a, KNN53-3a, KNN54-1a*, KNN54-2b, KNN57-1b*, KNN57-

2b,  KNN61-1e*, KNN61-2a, KNN61-3e, KNN61-4e, KNN61-5e, KNN61-6b 

 

Single-membered 

colour-groups 

KNN34a*, KNN77b* 

Code exemplified by strain KNN2-1b, this organism was isolated by Kanungnid Busarakam (KNN), 

assigned to colour-group 2 as the first member of group and was isolated on a humic acid-vitamin agar 

isolation plate.  C-coded strains were studied by Okoro et al who isolated them from hyper-arid soil from 

the Salar de Atacama region of the Atacama Desert.  The GY-coded strains were isolated from an arid 

Australian composite soil by Tan  et al. (2006). 

Codes for isolation media : (a),  Gause No.1 agar;  (b),  HVA: Humic acid-vitamin agar;  (c), Oligotrophic 

agar; (d), minimal medium agar; (e),  SM1 agar; (f) and starch-casein agar; (g) Geodermatophilus 

obscurus agar. 

*Representative of colour-groups used to detect isomers of diaminopimelic acid. 

 

Table 2.4.  Selected actinobacteria  isolated from the extreme hyper-arid environmental 

sample from Yungay region and assigned to single- and multi-membered colour-groups. 

Actinobacteria Codes 

Presumptive streptomycetes 

Multi-membered 

colour-groups 

KNN12-1a*, KNN12-2a, KNN15-1a*, KNN15-2a, KNN16-2c, KNN19-1b*, KNN19-2c, 

KNN23-1a*, KNN23-2a, KNN29-2a, KNN29-3a, KNN48-7d, KNN48-8d, KNN48-9d, 

KNN48-10d, KNN48-11b, KNN48-12d, KNN48-13b, KNN48-14a, KNN48-15a, KNN48-

16c, KNN48-17c, KNN48-18c, KNN48-19c, KNN48-20c, KNN77-1a*, KNN77-2a, 

KNN77-3a, KNN77-4a, KNN77-5a, KNN77-6a, KNN86-1b*, KNN86-2b, KNN86-3b, 

KNN86-4b, KNN86-5c, KNN86-6a, KNN88-1a*, KNN88-2b, KNN88-3b, KNN88-4a, 

KNN91-1a*, KNN91-2b, KNN91-3b, KNN91-4a, KNN91-5a, KNN91-6a, KNN92-1b*, 

KNN92-2b, KNN92-3b, KNN92-4a, KNN92-5a, KNN92-6a, KNN92-7a,  KNN93-1a*, 

KNN93-2a, KNN93-4a, KNN 93-5a, KNN95-1f*, KNN95-2f, KNN95-3f, KNN95-4f, 

KNN95-5f, KNN95-6f, KNN95-7f  

 

Single-membered 

colour-groups 

KNN13a*; KNN20c*, KNN21a*; KNN22a*; KNN40a*; KNN42a*, KNN51b*; KNN89b*, 

KNN90b*; KNN96b*;  KNN97b*; KNN98b* 

Presumptive non-streptomycetes 

Multi-membered 

colour-groups 

KNN7-1b*, KNN7-2b, KNN7-3b, KNN7-4b, KNN23-1a*, KNN23-2a, KNN44-1b*, 

KNN44-2a, KNN44-3a, KNN44-4c, KNN45-1b, KNN45-2a, KNN45-3b*, KNN45-4b, 

KNN46-1b, KNN46-2b, KNN46-3b*, KNN46-4b, KNN46-5a, KNN46-6a, KNN46-7g, 
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KNN46-8c, KNN46-9, KNN46-10, KNN46-11,  KNN55-1b*, KNN55-2b 

 

Single-membered 

colour-group 

KNN47* 

Codes as for Table 2.3. 

 

Detection of diaminopimelic acid isomers.  Ninety eight strains representing each of 

the colour-groups (Tables 3.2 and 3.3) were examined for diaminopimelic acid (A2pm) 

isomers using the procedure described by Hasegawa et al. (1983).  One to two loopfuls 

of biomass scraped from strains grown on ISP2 agar plates (Shirling & Gottlieb, 1960) 

at 28
o
C for 14 days were transferred to cryotubes containing 6N HCl, the preparations 

autoclaved at 121
o
C for 20 minutes, left to cool at room temperature, centrifuged at 

6000 rpm for 4 minutes and then stored at 4
o
C until required.   The A2pm isomers were 

separated by one-dimensional thin-layer-chromatography (TLC) on aluminium-backed 

sheets (20 x 20 cm diameter; No.5716, Merck, Darmstadt, Germany).  A pencil line was 

drawn 1 cm above the bottom of the TLC sheets and 3 µl of each of the hydrolysates 

spotted, 1 µl at a time, onto the sheets followed by drying using a hair drier to prevent 

the spots spreading.  A 1 µl preparation, which contained a mixture of 0.01 M LL- and 

meso-A2pm (Sigma), was used as a standard on each of the prepared sheets. The latter 

were developed in glass tanks containing the solvent system (32 methanol: 10.4 

sterilised distilled water: 1.6 6N HCl : 4 pyridine, v/v) for 4-5 hours, that is, until  the 

solvent front was 1 cm from the top of the sheets.  The chromatograms were air-dried, 

sprayed with 2% (w/v) ninhydrin in acetone and heated at 100
o
C for 5 minutes.   The 

isomers of A2pm appeared as dark purple to brown spots that had a lower retention 

factor (Rf) than other amino acids, the latter gave blue to purple coloured spots.  The 

A2pm isomers of the test strains were identified by comparison with the standard 

mixture.  The Rf values of the A2pm isomers run in the order: 3-hydroxy-A2pm, meso-

A2pm and LL-A2pm (from lowest to highest). 

 

2.5. Comparative 16S rRNA gene sequencing  studies 

Ninety eight isolates were taken to represent multi- and single-membered colour-groups 

were the subject of 16S rRNA gene sequencing studies to determine whether they 

belonged to known or putatively novel taxa.  The 42 isolates found to contain LL-A2pm 

in whole-organism hydrolysates were considered to belong to the genus Streptomyces, 
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the remainder, which contained meso-A2pm, were considered to belong to other 

actinobacterial genera (Table 2.5). 

 

Extraction of genomic DNA: Bead beating method.  Total genomic DNA was 

extracted from the 98 representative isolates.  Three grams of acid washed sterile glass 

beads (0.1 mm in diameter, Sigma) were added to one to two loopfuls of biomass of 

each of the isolates grown on yeast extract-malt extract agar plates (ISP medium 2, 

Shirling & Gottlieb, 1966) and the resultant preparations treated for 30 seconds at 5.5 

m/s in a FastPrep® (Thermo Lab Systems, Waltham, USA), a process that was repeated 

twice prior to the mixtures being centrifuged at 13000 rpm for 2 minutes.  DNA was 

precipitated from the preparations by adding 400 µl of cold 100% ethanol suspended in 

100 µl of 1x TE buffer (pH8) and quantified using a Nanodrop spectrophotometer 

(Thermo Scientific, Wilmington, USA).The supernatants containing the extracted DNA 

were transferred to new tubes and kept at -20
o
C until required. 

 

Table 2.5.  Actinobacteria taken to represent multi-membered and single-membered 

colour-groups examined in the comparative 16S rRNA gene sequence studies. 

A.  Representative isolates from the Salar de Atacama environmental sample  

Multi-membered colour-groups: 

C34O, C38O, C58O, C59O, C79O, GY024T, GY142T, KNN2-4c, KNN2-6c, KNN4-1b, KNN4-4a, KNN6-6b, KNN6-9a, 

KNN6-10b, KNN6-11a, KNN9-1a, KNN9-2c, KNN10-4a, KNN10-5a, KNN11-1a, KNN11-5a, KNN24-1b, KNN32-1a, 

KNN35-1b, KNN35-2b, KNN38-1b, KNN41-1b, KNN48-1e, KNN48-3e, KNN48-6d, KNN49-1h, KNN49-3e, KNN49-5e, 

KNN49-6a, KNN49-11c, KNN49-12b, KNN49-26a, KNN50-1a, KNN50-2e, KNN50-4c, KNN50-5c, KNN50-6e, KNN50-

7d, KNN50-8b, KNN50-9b, KNN50-10e, KNN50-11c, KNN50-12c, KNN50-13c, KNN50-14a, KNN50-15a, KNN50-16d, 

KNN50-17d, KNN50-18d, KNN53-1a, KNN53-3a, KNN54-1a, KNN57-1b, KNN57-2b, KNN61-1a, KNN64-5b, KNN82-

2c, KNN83e, KNN88-1c 

 

Single-membered colour groups: 

KNN25c, KNN26b, KNN34c, KNN56a, KNN70b, KNN87b, KNN94e 

B. Representative isolates from the Yungay environmental sample 

Multi-membered colour-groups: 

KNN7-2b, KNN23-1b, KNN44-1b, KNN44-3b, KNN44-4b, KNN45-1a, KNN45-2b, KNN45-3b, KNN46-1b, KNN46-2b, 

KNN46-3b, KNN46-4b, KNN46-5b, KNN46-6a, KNN46-7a, KNN46-8a, KNN46-9c, KNN46-10g, KNN46-11f,  KNN55-

1b, KNN55-2b 

 

Single-membered colour-groups:  

KNN13a, KNN22a, KNN42f, KNN47b, KNN51b, KNN70b, KNN89a, KNN90a 

o
Strains isolated by Okoro et al. (2009) and 

T
strains isolated  by Tan et al. (2006). 
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Quality of extracted DNA.  The quality of the DNA products was checked by agarose 

gel  electrophoresis (1%, w/v agarose in 0.5xTBE, 40 minutes at 110 V).  The gels were 

stained with ethidium bromide (0.5 µg/ml) and loaded with 4 µl of crude DNA mixed 

with 2µl of loading dye (0.5 µg/µl, Sigma) (Sambrook, 1989).  The sizes of the DNA 

fragments were compared with 100 bp molecular size markers (Gene Ruler™ MBI 

Fermentas, Vilnius, Lithuania).  After electrophoresis, the gels were visualised and 

photographs taken using a BioRad™ Multimager UV transilluminator. 

 

PCR amplification of 16S rRNA gene preparations.  One to two µl of each crude DNA 

product was used as DNA template in a 25 µl polymerase chain reaction (PCR) which  

contained 1x buffer (10x buffer: 160 mM (NH4)2SO4, 670 mM Tris-HCl [pH 8.8 at 

25
o
C] , 0.1% Tween-20), a mixture of d TP’s containing 0.125 mM of each of the four 

d TP’s, and 200 µM of each forward and reverse primer (27f: 

AGAGTTTGATCCTGGCTCAG and 1527r: AAGGAGGTGATCCAGCC, 

respectively; Sigma-Aldrich, Hertfordshire, UK), 1.5 µM of MgCl2 and 1,25 Taq 

polymerase. Positive and negative controls were included, the negative control was 

sterilised distilled water and the positive control a known DNA sample.  The PCR 

reactions were carried out as follows: initial denaturation at 95
o
C for a minute, 30 cycles 

of 95
o
C for a minute, 55

o
C for a minute and 72

o
C for a minute, and finally 72

o
C for 5 

minutes.  The PCR products were checked for quality as mentioned above.  The 

preparations were kept at -20
o
C prior to use. 

 

Purification of PCR products.  Prior to sequencing, the PCR products were purified by 

using ExoSAP-IT* kits (USB, Corporation, Ohio, USA), according to the 

manufacturer’s protocol.  Each PCR product (5µl) was mixed with 2µl of ExoS P-IT*, 

the reaction mixtures incubated at 37
o
C for 15 minutes to degrade the remaining primers 

and nucleotides, and the preparations incubated at 80
o
C for 15 minutes to inactivate the 

ExoSAP-IT*.  The purified products were stored at -20
o
C until required. The sequences 

of the almost complete 16S rRNA genes were determined by the Newcastle University 

company GENEIUS. 

 

Phylogenetic analyses.   The chromatogram files in ABI were read in Finch TV and 

converted to FASTA format files.  The nearest match of each sequence was determined 

by using the Basic Local Alignment Search Tool (BLAST) at the National Center for 

Biotechnology Information (NCBI; Bethesda, USA) and pairwise sequence similarities 
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calculated by using the global alignment algorithm implemented using the EzTaxon e 

web server (http://eztaxon-e.ezbiocloud.net/; Kim et al., 2012).  The aligned sequences 

were used to construct phylogenetic trees generated using either the neighbour-joining 

algorithm (Saitou & Nei, 1987) from the MEGA5 software program or the maximum-

likelihood (Felsenstein, 1981) and maximum-parsimony (Kluge & Farris, 1967) 

algorithms from the PHYLIP suite of programs (Felsenstein, 2004).  The evolutionary 

distance model of Jukes & Cantor (1969) was used to generate evolutionary distance 

matrices for the neighbour-joining analyses.  The topologies of the resultant trees were 

evaluated in bootstrap analyses (Felsenstein, 1985) based on 1000 resamplings of the 

neighbour-joining dataset using the CONSENSE and SEQBOOT options from the 

PHYLIP package. 

The Salar de Atacama and Yungay strains included in the comparative 16S 

rRNA gene analyses were assigned to seven and six genera, respectively as shown in 

Table 2.6.  It can also be seen from this Table that strains assigned to the same colour-

groups as tested strains were deemed to belong to the same genus as the strains included 

in the comparative 16S rRNA gene analyses.  

 

Table 2.6.  Assignment of strains assigned to colour-groups containing isolates from the 

Salar de Atcama and Yungay samples to genera based on 16S rRNA sequencing data.  

In total, 420 isolates were assigned to 12 genera. 

Genera Tested strains Additional strains in colour-groups 

Actinomadura 

 

KNN34c,  

KNN53-1a, KNN53-3a 

 

- 

KNN53-2a 

Amycolatopsis 

 

 

 

 

 

 

 

 

 

 

 

 

KNN49-1f, KNN49-3e, 

KNN49-5e, KNN49-6q, 

KNN49-11c, KNN49-12b, 

KNN49-26a, KNN50-1a, 

KNN50-2e, KNN50-4c, 

KNN50-5c, KNN50-6e, 

KNN50-7d, KNN550-8b, 

KNN50-9b, KNN50-10e, 

KNN50-11c, KNN50-12c, 

KNN50-13c, KNN50-14d, 

KNN50-15d, KNN50-16d, 

KNN50-17d, KNN50-18d, 

KNN61-1e 

KNN49-2e, KNN49-4e, KNN49-7c, KNN49-8c, 

KNN49-9c, KNN49-10b, KNN49-13b, KNN49-14b, 

KNN49-15b, KNN49-16c, KNN49-47b, KNN49-

18b, KNN49-19a, KNN49-20b, KNN49-21c, 

KNN49-22d, KNN49-23d, KNN49-24d, KNN49-

25d, KNN49-27a, KNN49-28a, KNN49-29a, 

KNN49-30b, KNN49-31b, KNN50-3c, KNN61-2a, 

KNN61-3e, KNN61-4e, KNN61-5b, KNN61-6c 

Blastococcus 

 

KNN47b - 

Couchioplanes 

 

KNN7-2b KNN7-1b, KNN7-3b, KNN7-4b 

Geodermatophilus 

 

 

KNN44-1b, KNN44-3b, 

KNN44-4b 

KNN44-2a 

Kribbella 

 

KNN56a  

http://eztaxon-e.ezbiocloud.net/
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Lechevalieria 

 

KNN94e - 

Modestobacter 

 

 

 

 

 

 

 

 

KNN45-1b, KNN45-2b, 

KNN45-3b, KNN45-4b, 

KNN46-1b, KNN46-2b, 

KNN46-3b, KNN46-4b, 

KNN46-5a, KNN46-6a, 

KNN46-7a, KNN46-8c, 

KNN46-9c, KNN46-10c, 

KNN46-11a 

KNN46-12a 

Nonomuraea 

 

KNN57-1b, KNN57-2b - 

Pseudonocardia 

 

KNN55-1b KNN55-2b 

Saccharothrix 

 

 

KNN10-4d, KNN54-1a KNN10-1a, KNN10-2b, KNN10-3b, KNN10-5a, 

KNN54-2b 

Streptomyces C34, C38, C58, C59, C79, 

KNN2-4c, KNN2-6c, 

KNN4-1b, KNN4-4a, 

KNN6-6b, KNN6-9a, 

KNN6-10b, KNN6-11a, 

KNN9-3a, KNN10-5a, 

KNN11-1a, KNN11-5a, 

KNN13a, KNN22a, 

KNN23-1b, KNN24-1b, 

KNN25c, KNN26b, 

KNN32-1a, KNN35-1b, 

KNN35-2b, KNN38-1b,  

KNN41-1b, KNN42, 

KNN48-1c, KNN48-3e, 

KNN48-6e, KNN51b, 

KNN64-5b, KNN82-2c, 

KNN83e, KNN87b, 

KNN88-1a, KNN89a, 

KNN90a 

KNN1-1a, KNN1-2c, KNN1-3b, KNN1-5f;  KNN2-

1b, KNN2-2c, KNN2-3c, KNN2-5c, KNN2-7d, 

KNN2-8b, KNN2-9d, KNN2-10d, KNN2-11d, 

KNN2-12d, KNN2-13a, KNN2-14c, KNN2-15a, 

KNN2-16c, KNN2-17d, KNN2-18c, KNN3-1b, 

KNN3-2b, KNN3-3c, KNN3-4b, KNN3-5c, KNN3-

6c, KNN3-7c, KNN3-8c, KNN3-9c, KNN3-10e, 

KNN3-14d, KNN3-15d, KNN3-16d, KNN3-17d, 

KNN3-18d, KNN3-19b, KNN4-2e, KNN4-3b,  

KNN5-1a, KNN5-2a, KNN5-3c, KNN5-4c, KNN5-

5a, KNN5-6a, KNN5-7a, KNN5-8b, KNN5-9b, 

KNN5-10b, KNN5-13b, KNN5-14b, KNN5-15b, 

KNN5-16d, KNN5-17d, KNN5-18d, KNN5-19d, 

KNN5-20d, KNN5-25b, KNN5-28c, KNN5-29b, 

KNN5-30d, KNN5-31e; KNN6-1a, KNN6-2a, 

KNN6-3a, KNN6-4a, KNN6-5a, KNN6-7d, KNN6-

8d, KNN8-1b, KNN8-2b, KNN8-3a, KNN8-4b, 

KNN8-5d, KNN8-6b, KNN8-7a, KNN8-8a, KNN8-

9a, KNN8-10c, KNN8-11e, KNN9-1a, KNN9-2e, 

KNN10-1a, KNN10-2b, KNN10-3b, KNN10-4d, 

KNN11-2a, KNN11-3c, KNN11-4b,  KNN11-6b, 

KNN12-1a, KNN12-2a, KNN14-1f, KNN14-2c, 

KNN14-3e, KNN15-1a, KNN15-2a, KNN16-1c, 

KNN16-2c, KNN17-1c, KNN17-2b KNN18-1b, 

KNN18-2c, KNN18-3d, KNN19-1b, KNN19-2c, 

KNN23-2a, KNN23-2a, KNN24-2c, KNN24-3c, 

KNN24-4c, KNN24-5c, KNN24-6a, KNN24-7c, 

KNN24-8e, KNN27a, KNN28a, , KNN29-1a, 

KNN29-2a, KNN29-3a, KNN30a, KNN31d, 

KNN32-2b,  KNN33a, KNN36-1c, KNN36-2c, 

KNN36-3c; KNN37-1e, KNN37-2a KNN37-3a, 

KNN37-4a, KNN38-1b, KNN38-2d, KNN38-3d, 

KNN38-4a, KNN38-5b, KNN39, KNN41-2a, 

KNN43b, KNN48-2a, KNN48-4e, KNN48-5e, 

KNN48-7d, KNN48-8d, KNN48-9d, KNN48-10d, 

KNN48-11b, KNN48-12d, KNN48-13b, KNN48-

14a, KNN48-15a, KNN48-16c, KNN48-17c, 

KNN48-18c, KNN48-19c, KNN48-20c,  KNN51b, 

KNN52-1c, KNN52-2b, KNN52-3b, KNN54-1b, 

KNN54-2b, KNN56a, KNN58-1b, KNN58-2c, 

KNN59e, KNN60-1c, KNN60-2d, KNN62b, 

KNN63-1b, KNN63-2b, KNN63-3b, KNN63-4b, 

KNN63-5a, KNN63-6b, KNN63-7b, KNN63-8d, 

KNN63-9d, KNN63-10d, KNN63-11b, KNN63-12b, 
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KNN63-13b, KNN63-14b, KNN63-15b, KNN63-

16b, KNN63-17b, KNN63-18b, KNN63-19e, 

KNN64-1a, KNN64-2a, KNN64-3a, KNN64-4b, 

KNN64-6b; KNN65-1f, KNN65-2a, KNN65-3c, 

KNN65-4c, KNN65-5d, KNN66b, KNN67-1b, 

KNN67-2b, KNN67-3b, KNN67-4b, KNN68-1b, 

KNN68-2b, KNN68-3b, KNN68-4b, KNN69-1e, 

KNN69-2a, KNN69-3a, KNN70b, KNN71-1a, 

KNN71-2a, KNN72a, KNN73-1a, KNN73-2a, 

KNN73-3d, KNN74-1c, KNN74-2c, KNN75-1c, 

KNN75-2b, KNN75-3b, KNN75-4b, KNN77-1a, 

KNN77-2a, KNN77-3a, KNN77-4a, KNN77-5a, 

KNN77-6a,  KNN78-1e, KNN78-2e, KNN79-1b, 

KNN79-2b, KNN79-3d, KNN80-1c, KNN80-2d, 

KNN81-1c, KNN81-2 b, KNN81-3d, KNN82-1a, 

KNN82-2c, KNN83e, KNN84c, KNN85-1f, 

KNN85-2b, KNN85-3b, KNN85-4c, KNN85-5c, 

KNN85-6c, KNN85-7c, KNN85-8a, KNN86-1b, 

KNN86-2b,  KNN86-3b, KNN86-4b, KNN86-5c, 

KNN86-6a,  KNN88-2b, KNN88-3b, KNN88-4a, 

KNN87b, KNN91-1a,  KNN91-2a, KNN91-3a, 

KNN91-4a, , KNN91-5a, KNN91-6a, KNN92-1b, 

KNN92-2b KNN92-3b, KNN92-4a, KNN92-5a, 

KNN92-6a, KNN92-7a, KNN94e, KNN97b, 

KNN98b 

 

2.6. Detection of additional chemical markers 

Actinobacteria taken to represent each of the genera highlighted in the comparative 16S 

rRNA gene sequencing studies were examined for key chemical markers known to be of 

value in actinobacterial systematics (Table 2.7). 

 

Table 2.7.  Representative actinobacteria  included in the chemotaxonomic analyses. 

Codes Source Genera 

KNN53-1a, KNN53-2a Salar de Atacama Actinomadura 

KNN49-5e, KNN49-26a, 

KNN50-8b, KNN50-11c, 

KNN50-16d 

Salar de Atacama Amycolatopsis 

KNN47b Yungay Blastococcus 

KNN7-2b Yungay Cochioplanes 

KNN44-1b Yungay Geodermatophilus 

KNN56a Salar de Atacama Kribbella 

KNN94e Salar de Atacama Lechevalieria 

KNN45-2b, KNN46-4b Yungay Modestobacter 

KNN57-1b Salar de Atacama Nonomuraea 

KNN55-1b Yungay Pseudonocardia 

KNN10-4d Salar de Atacama Saccharothrix 

C34, C38, C58, C59, C79 Salar de Atacama Streptomyces 

 

Whole-cell sugar analyses.  All of the representative strains (Table 2.7) assigned to 

genera based on 16S rRNA gene sequences were examined for the presence of 

diagnostic whole-cell sugars using the procedure described by Hasegawa et al. (1983).  
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One to two loopfuls of each strain were transferred to cryotubes containing 0.25 N HCl, 

the preparations autoclaved at 121
o
C for 15 minutes and 3 µl of each of the resultant 

hydrolysates and 1 µl of a standard solution of sugars (each at 1%, w/v) applied to 10 

x10 cm cellulose TLC plates (10 x 20 cm; No.5552, Merck).  The standard sugars were 

arabinose, galactose, glucose, rhamnose, ribose and xylose (10 mg of each in 1 ml of 

pyridine). The TLC sheets were developed for 2 hours in a glass tank containing the 

solvent system, namely 10 n-butanol : 6 sterile distilled water : 6 pyridine : 1 toluene 

(v/v).  The chromatograms were air-dried, developed for 2 hours, air-dried again, 

sprayed with aniline phthalate reagent and heated at 100
o
C for 4 minutes when the 

hexose and pentose sugars gave brown-red and grey-green spots, respectively.   The 

sugar patterns of the strains were identified by comparison against the standard sugars. 

 

Menaquinone analyses.   Menaquinones were extracted from the 21 representative 

strains (Table 2.7), by using the small-scale integrated procedure of Minnikin et al. 

(1984). Freeze-dried biomass (100 mg) of each strain was treated with 2 ml of 0.3% 

aqueous NaCl/methanol (1:10, v/v) and 2 ml of petroleum ether, mixed on a tube rotator 

for 30 minutes, and the upper layers transferred to individual clean vials. The lower 

layers were treated with a further 1ml of petroleum ether, mixed for 30 minutes, and the 

upper layers added to the corresponding initial preparations. The combined extracts 

were transferred to small glass vials, evaporated to dryness using a nitrogen stream and 

stored at - 20°C until required. 

The extracted menaquinones were resuspended in 200 μl of isopropanol and 

analysed using a high performance liquid chromatograph (LC-10AS, Shimadzu Co., 

New Jersey, USA) fitted with a reverse-phase C18 column (250 × 4.0 mm, 5 μm 

particle size; RP-18-Lichrosorb column; Capital Analytical, Leeds, UK). 

Methanol/isopropanol (2:1, v/v) was used as the isocratic mobile phase with a flow rate 

of 1 ml/minute at ambient temperature; aliquots of each sample (10 μl) were injected 

into the chromatograph. The menaquinones were detected at a wavelength of 270 nm 

using a UV detector (SPD-10A, Shimadzu Co.), and the resultant chromatograms 

integrated using a C-R6A Chromatopac Integrator (Shimadzu Co.). The menaquinones 

were identified by comparing their retention times with those of reference samples 

extracted from Streptomyces indiaensis JCM 3053
T
 which has a well known 

menaquinone profile (Kudo & Seino, 1987) 

 

Polar lipid analyses.  Polar lipids were extracted from the biomass preparations 
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remaining after the extraction of the menaquinones (Minnikin et al., 1985).  Each 

sample of cell debris was heated in a boiling water bath for 5 minutes, cooled to room 

temperature, and 2.3 ml of chloroform/methanol/0.3%, w/v aqueous NaCl (9:10:3, v/v/v) 

added and the resultant preparations mixed on a tube rotator for an hour.  Each 

supernatant was transferred to a clean test tube and 0.75 ml of 

chloroform/methanol/0.3%, w/v aqueous NaCl (5:10:4, v/v/v) added prior to vortexing 

for 30 minutes and centrifuging at 2000 rpm for 5 munutes, the supernatants were then 

transfered to a clean tube; repeat this step was repeated twice.  Each of the resultant 

preparations was mixed thoroughly after the addition of 1.3 ml of chloroform and 1.3 

ml of 0.3% NaCl, then centrifugation and the lower layers transferred to clean vials, 

evaporated to dryness in a nitrogen stream and stored at -20
o
C.  The lipid extracts were 

dissolved in 50 µl of chloroform/methanol (2:1, v/v) and 10 µl of the resultant samples 

applied to the corners of five 10 x 10 cm silica-gel TLC plates (No. 1.05721, Merck). 

Thin-layer-chromatography was carried out using chloroform / methanol / water 

(65:65:4, v/v/v) in the first direction and chloroform/acetic acid/methanol/water 

(80:15:12:4, v/v/v/v) in the second one until the solvent front was 1cm below the top of 

the plates.  The resultant spots were characterised using differential stains after 

Komagata and Suzuki (1987):  

(a) The first plate was sprayed with 10% (w/v) phosphomolybdic acid in ethanol (Sigma 

P-1518) and charred at 120
o
C for 10 minutes to detect all lipids. 

(b) The second plate was sprayed with ninhydrin 0.2% (w/v) in ethanol and heated at 

100
o
C for 5 minutes to detect lipids with free amino groups.  Phosphatidylethanolamine 

(PE) and phosphatidyl-N-methylethanolamine (PME) appear as dark pink spots on a 

white background. The same sheet was sprayed with Dittmer’s reagent (molybdenum 

blue; Sigma M-3389) to detect phosphorus containing lipids which appear as blue spots 

on a white background. 

(c) The third plate was sprayed with aqueous sodium metaperiodate (1%, v/v) and left 

for 10 minutes before decoloring with SO2, followed by spraying with Schiff’s reagent 

(Sigma) and a further decoloring with SO2. Phosphatidylglycerol gives a bright purple 

spot immediately and phosphatidylinositol a brown coloured spot on a white 

background. 

(d) The fourth plate was sprayed with α-naphthosulfuric acid (10.5 ml of 15  α-

naphthol (Sigma N2480) in 95% ethanol 6.5 ml of concentrated H2PO4), 40.5 ml of 95% 
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EtOH and 4 ml of water) and heated at 100
o
C for 10 minutes.  Phosphatidylinositol 

dimannosides (PIDM) and glycolipids appear as brown spots on a white background. 

(e) The final plate was sprayed with Dragendorff reagent (0.11 M potassium iodide and 

0.6 mM bismuth nitrate in 3.5 M acetic acid) to detect phosphatidylcholine (PC), PE 

and PME which appear as orange spots on a yellow background. 

The lipids on each of the TLC plates were identified by comparing their motilities with 

those of authentic lipids (Sigma PH-9). 

 

2.7. DNA-DNA relatedness assays 

Isolates found to be closely related to type strains of known species based on 16S rRNA 

gene sequence data were subjected of DNA:DNA relatedness studies.  High purity 

genomic DNA, was prepared  using the CTAB method (Kieser et al., 2000) from 

isolates KNN49-5e, KNN49-26a, KNN50-2e, KNN50-8b, KNN50-11c, KNN50-16d, 

KNN45-2 and KNN46-4.   

 

Determination of optimal temperature for renaturation. DNA-DNA relatedness values 

were determined between isolate KNN49-5e and A. ruanii NGM112
T
, isolate KNN49-

26a and A. ruanii NGM112
T
, isolate KNN50-2e and A. thermalba SF45

T
, isolate 

KNN50-8b and A. ruanii NGM112
T
, isolate KNN50-11c and A. thermalba SF45

T
, 

isolate KNN50-16d and A. thermalba SF45
T
, isolate KNN45-2b and M. marinus 

42H12-1
T 

using the procedure described by Gonzalez & Saiz-Jimenez (2005). To 

determine the thermal denaturation midpoint of hybrid and reference DNA, purified 

genomic DNA and mixtures of DNA from the pairs of strains were denatured and 

renatured at the optimal temperature for renaturation (Tor; De Ley et al. 1970).  The 

G+C contents of the strains were determined fluorimetrically.  To this end,  each 

genomic D   preparation (2.5 μg) was added to a 0.5 ml tube, the preparation dried in 

a Speed vac- DNA 120 (Savant Speed Vac Systems, St. Paul, Minnesota, USA), 

resuspended in 90 μl resuspension solution (30  formamide, 0.1x SSC buffer [pH 8.0]) 

and transferred to 0.2 ml MJ clear tubes (MJ Research Inc, Waltham, USA) suitable for 

fluorescence measurements. Ten μl of 1x SYBR Green I (Molecular Probes) was added 

to each of the preparations and a thermal ramp run from 25 to 100
o
C at a 1

o
C rise per 

minute in a 185-5201 CFX connected (Bio Rad, Hertfordshire,  UK).  Double-stranded 

DNA was bound with SYBR Green I; when the studied-double strand DNA dissociated 
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into single-stranded DNA, the fluorescence was released and measured as described 

below.  The fluorescence from the tubes was measured at each step of the thermal ramp 

and the Tm of each strain calculated from the minimum value of the slope of the tangent 

to the melting curve of fluorescence versus temperature. The mol% G+C content of 

each strain was calculated using the equation: mol% G+C = (1.99Tm) - 71.08. The 

optimal temperature for renaturation was determined from the G+C values using the 

equation: Tor = 0.51(mol % G+C) + 47.0, as described by De Ley et al. (1970). 

 

Estimation of ΔTm between pairs of strains. The generation of genomic DNA 

reference strains and hybrids for estimation of ΔTm values between the pairs of test 

strains was carried out by adding genomic D   (250 ng/μl in 0.1xSSC,  ppendix 2) 

samples from both the reference and the test strains to a 0.5 ml centrifuge tube.  The 

homologous DNA control and hybrid DNA samples were denatured and rehybridised in 

a T-gradient Thermocycler
® 
(Whatman-Biometra) using the following conditions  99  C 

for 10 minutes, Tor for 8 hours followed by progressive steps in which the temperature 

was dropped by 10  C then held for an hour until the temperature reached 25  C. The 

tubes were then held at 4  C, 10μl of 1x SYBR Green I was added and the contents 

transferred to MJ clear tubes in an PTC -200 D   Engine Thermal Cycler. Thermal 

denaturation was achieved as follows  25  C for 15 minutes, and a thermal ramp from 25 

to 100  C at 0.2  C per second; fluorescence measurements were taken at each step of the 

ramp. The Tm of the homologous and hybrid DNA preparations were calculated by 

taking the temperature corresponding to a 50% decrease in fluorescence in the melting 

curve of fluorescence versus temperature. ΔTm is the difference between these two 

temperatures; differences of 5  C or more are considered to show that tested strains 

belong to different genomic species (Wayne et al., 1987; Rosselló-Mora & Amann, 

2001). 

 

2.8. Detection of phenotypic properties 

2. 8. 1.  Test strains and data acquisition   

Phenotypic tests were carried out on representative strains of the genera Amycolatopsis 

(Table 2.8), Modestobacter (Table 2.9) and Streptomyces (Table 2.10) together with 
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appropriate marker type strains.  The tests were performed using standard  

microbiological methods and by using API ZYM kits , 20 NE API kits (BioMerieux® 

Co.) and GEN III MicroPlates (BiOLOG). 

 

Table 2.8. Amycolatopsis strains isolated from the Salar de Atacama environmental 

sample and examined for phenotypic properties together with the type strains of their 

nearest phylogenetic neighbours. 

 

Strains Source/strain histories 

Isolates KNN49-1h, KNN49-3e, KNN49-5e, KNN49-6a, 

KNN49-7c, KNN49-10b, KNN49-11c, KNN49-

12b, KNN49-26a, KNN49-32e, KNN50-1a, 

KNN50-2e, KNN50-4c, KNN50-5c, KNN50-6e, 

KNN50-7d, KNN50-8b, KNN50-9b, KNN50-11c, 

KNN50-12c, KNN50-13c, KNN50-14d, KNN50-

15d, KNN50-16d, KNN50-17d, KNN50-18d*, 

GY024
A
 and GY142

A 

 

A. eurytherma Kim et al. (2002)  NT202
T 

(=DSM 44348
T
=NCIMB 13795

Tc
), isolated 

from arid scrubland soil 

 

A. granulosa Zucchi et al. (2012b)  GY307
T 

(= NCIMB 14709
T
= NRRL B-24844

T
), 

isolated from an arid soil sample from Marla, 

Australia 

 

A. methanolica Boer et al. (1990)  NCIB 11946
T
; isolated from a New Guinea soil 

 

A. thermoflava Chun et al. (1999) N1165
T
 (= CIP106795

T 
= DSM 44574

T 
= NBRC 

14333
T 

= JCM 10669
T 

= NRRL B-24140
T
), isolated 

from a soil sample from Hainan Island, China 

 

A. thermalba Zucchi et al. (2012a)  SF45
T
 (=NCIMB14705

T
=NRRL B-24845

T
), 

isolated from an arid soil sample from Marla, 

Australia 

 

A. ruanii Zucchi et al. (2012a)  NMG112
T
(= NCIB14711

T
 = NRRL B-24848

T
), 

isolated from an arid soil sample from Marla, 

Australia 

 

A. thermophila Zucchi et al. (2012b)  GY088
T
 (= NCIMB 14699

T 
= NRRL B-24836

T
) 

isolated from a composite Australian soil sample 

 

A. tucumanensis Albarracín et al. 2010 

 

Professor Martha Trujillo, University of Salamanca, 

Spain, strain ABO
T
 (= DSM45259

T
 = JCM17017

T
 = 

LMG 24814
T
), isolated from a sediment sample 

polluted with copper and collected in Tucumán, 

Argentina. 

 

A.  viridis Zucchi et al. (2012b)  GY115
T
 (= NCIMB 14700

T
 = NRRL B-24837

T
), 

isolated from a composite Australian soil sample 
T 

Type strain. 
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Table 2.9. Modestobacter strains isolated from the Yungay environmental sample and 

examined for phenotypic properties together with the type strains of their nearest 

phylogenetic neighbours. 

Strains Source/strain histories 

Isolates 

 

KNN45-1a, KNN45-2b, KNN45-3b, KNN45-4b, 

KNN46-2b, KNN46-3b, KNN46-4b, KNN46-6a, 

KNN46-7a, KNN46-8d, KNN46-9c and KNN46-

10g 

 

M. marinus Xiao et al. (2011) Professor Martha Trujillo, University of 

Salamanca, Spain, strain 42H12-1
T
  (= CGMCC 

4.5581
T
=DSM 45201

T 
), isolated from deep-sea 

sediment from the Atlantic Ocean 

 

M. multiseptatus Mevs et al. (2000) emend. 

Reddy et al. (2007).  

 

Professor Martha Trujillo, strain AA-826
T
 (= CIP 

106529
T
=DSM 44406

T
=JCM 12207

T
), isolated 

from Antarctic surface soil from Linnaeus Terrace 

(1600 m) of Asgard Range Transantarctic 

Mountains 

 

M. roseus Qin et al. 2013 DSM 45764
T 

(= KCTC 19887
T 

= KLBMP 1279
T
 = 

NBRC 108673
T
), isolated from the coastal 

halophyte Salicornia europaea Linn. 

 

M. versicolor Reddy et al. 2007 Professor Martha Trujillo, CP153-2
T
 (= ATCC 

BAA-1040
T
=DSM 16678

T
 =JCM 15578

T
) isolated 

from a soil crust 
T 

Type strain. 

 

Table 2.10. Streptomyces strains isolated from either the Salar de Atacama or Yungay 

environmental samples and examined for phenotypic properties together with the type 

strain of Streptomyces fimbriatus. 

Strains Source/strain histories 

Isolates C34
*,1

, C38
*,1

, C58
*,1

, C59
1
, C79

*,1
 

KNN2-4
1
, KNN2-6

1
, KNN5-48

1
, KNN6-6

1
, KNN6-9

1
, 

KNN10-4
1
, KNN10-5

1
, KNN11-1

1
, KNN11-5

1
, 

KNN13
2
, KNN23-1

2
, KNN24-1

1
, KNN25

1
, KNN26

1
, 

KNN32-1
1
, KNN35-1

1
, KNN35-2

1
, KNN38-1

1
, 

KNN42
2
, KNN48-1

1
, KNN51

2
, KNN64-5

1
, KNN70

1
, 

KNN88-1
2
 and KNN90

2 

 

Streptomyces fimbriatus (Millard & Burr 1926) 

Waksman and Lechevalier 1953 

NRRL B-3175
T
 ( =AS 4.1598

T 
= ATCC 15051

T
 = 

CBS 453.65
T 

= DSM 40942
T
 = NBRC 15411

T
 = JCM 

5080
T
 = NCIB 13039

T 
= VKM Ac-761

T
 ) isolated 

from a case of common potato scab 

Strains isolated from 
1
Salar de Atacama and 

2
Yungay environmental samples. 

T 
Type strain. 
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Inoculation of test media. Most of the tests were carried out in Replidishes (Sterilin 

Ltd., Staffordshire, UK) at 28°C unless stated otherwise, and the results recorded after 

final readings. Sterile media were aseptically dispensed into each of the 25 

compartments of the Replidishes and individual compartments inoculated with 10 μl 

aliquots of spore suspensions. Inocula were prepared by scraping spores/hyphal 

fragments from yeast extract-malt extract agar plates (ISP medium 2, Shirling & 

Gottlieb, 1966), which had been incubated at 28°C for 21 days, and transferred to 

individual 15 ml conical tubes which contained 5 ml of ¼ strength Ringer’s solution. 

The resultant spore suspensions were filtered through sterile cotton wool, centrifuged 

and resuspended in 2 ml of ¼ strength Ringer’s solution to give a turbidity of 5 on the 

McFarland scale (Murray et al., 1999). Each inoculum (1 ml) was pipetted into a sterile 

compartment of a Replidish and gently agitated to give an even suspension prior to 

inoculation. An automatic multipoint inoculator (Denley-Tech; Denley Instruments Ltd., 

Sussex, UK) was used to inoculate Replidishes containing each test medium. The 

phenotypic tests carried out in either Bijoux tubes or Replidishes are shown in Table 

2.11.  All of the tests were carried out in duplicate.  Details of the composition of the 

test media are shown in Appendix 3. 

 

Table 2.11.   Phenotypic tests carried out in bijou tubes or Replidishes. 

Type of test Tests 

A. Biochemical tests (w/v): 

 

 

 

 

Aesculin hydrolysis (0.1%)
A,M,S

, Allantoin hydrolysis (0.1%)
A,M,S

, 

Arbutin hydrolysis (0.1%)
 A,M,S

, Catalase production*
; A,M,S

, 

Hydrogen sulphide production*
;A,M,S

, Nitrate reduction*
; A,M,S

, 

Urease production*
; A,M,S 

B. Degradation tests (%, w/v): Adenine (0.4)
 A,M,S

, Casein (1)
 A,M,S

, Cellulose (1.0)
 A,M,S

, Chitin 

(0.2)
 A,M,S

, DNA (0.2)
 A,M,S

, Elastin (0.3)
 A,M,S

, Gelatin (0.4)
 A,M,S

, 

Guanine (0.05)
 A,M,S

, Hypoxanthine (0.4)
 A,M,S

, RNA (0.3)
 A,M,S

, 

Tributyrin (0.1 % v/v)
 A,M,S

, L-tyrosine (0.5)
 A,M,S

, Starch (0.1)
 A,M,S

, 

Tween 20 (1% v/v)
 A,M,S

, Tween 40 (1% v/v)
 A,M,S

, Tween 60 (1% 

v/v)
 A,M,S

, Tween 80 (1% v/v)
 A,M,S

, Uric acid (0.5 )
 A,M,S

, Xanthine 

(0.4 )
 A,M,S

, Xylan (0.4%)
 A,M,S

,  

C. Nutritional tests 

Growth on sole carbon sources: 

1. Monosaccharides (at 1%, w/v) 

 

 

Hexoses: D-fructose
A
, D-galactose

A
, D-glucose

A
, D-mannose

A
, L-

sorbose
A
, D-xylose

A
 

Pentoses: Amygdalin
A
, L-arabinose

A
, L-fucose

A
, D-turanose

A
, L-

rhamnose
A
 , D-ribose

A
 

 

2. Disaccharides (at 1%, w/v) D-trehalose
A
, D-cellobiose

A
 

3. Tri & tetrasaccharides (at 1%, 

w/v) 

D(+) melezitose
A 

, D(+) raffinose
A
, α-lactose

A
, D-maltose

A
, D-

melibiose
A
, D-sucrose

A
 

 

4. Polysaccharides (at 1%, w/v) D-cellubiose
A
 , Dextrin

A
, Glycogen

A
, Inulin

A
, Pectin

A
  

 

5. Sugar alcohols (at 1%, w/v) Adonitol
A
, Dulcitol

A
, meso-inositol

A
, D-mannitol

A
, D-sorbitol

A
,  
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6. Glycosides (at 1%, w/v) Aesculin
 A

, Arbutin
 A

, Salicin
 A

 

7. Alcohols (1%,v/v) Butan-1-ol
 A

, Ergosterol
 A

, Ethanol
 A

, Ethylamine
 A

, Methanol
 A

, 

Methylamine
 A

, Propan-1-ol
 A

, Propan-2-ol
 A

, Propylene glycol
 A

 

8. Sodium salts (0.1% w/v) Acetate
 A

, Adipate
 A

, Alginate
 A

, Azelate
 A

, Benzoate
 A

, Butyrate
 A

, 

Citrate
A
, Fumarate

 A
, Hippurate

 A
, Malate

 A
, Malonate

 A
, Oxalate

 A
, 

Pimelate
 A

, Propionate
 A

, Pyruvate
 A

, Succinate
 A

, Tartrate
 A

, Urea
 A

, 

Uric acid
 A 

 

D. Tolerance tests
1
: 

1. pH
 
 

 

2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 9.0, 10.0, 11.0 and 12.0
 A,M,S

 

 

2. Temperature
 
 4, 10, 20, 30, 40, 50, 55, 58 and 60

o
C

 A,M,S
 

 

3. Growth in presence of (%w/v) 

 

3.1 Sodium chloride
 A,M,S

 : 2.5, 5, 7.5 and 10.0 

     3.2 Lysozyme (0.05) 

     3.3 Resistance to antibiotics (µg/ml)
1; A,M

: Gentamicin  sulphate 

(8)
, 
Neomycin sulphate (4, 8)

 
, Novobiocin sulphate (8), 

 
Penicillin 

G sulphate (16),
 
 Rifampicin (16)

, 
Streptomycin  sulphate(4)

 
, 

Tetracycline sulphate  (8)
, 
Vancomycin sulphate (2) 

Tests carried out on (A) Amycolatopsis, (M) Modestobacter and (S) Streptomyces strains. 

2. 8. 2.  Biochemical tests 

Aesculin hydrolysis. This test was carried out using the method of Kutzner (1976) and 

results recorded after incubation for 7, 14 and 21 days. Strains showing β-glucosidase 

activity hydrolyse aesculin to give 6, 7-dihydroxycoumarin which complexes with ferric 

ions in the medium to form a brown-black melanin-like polymer. Blackening of the test 

medium indicated a positive result. It can be difficult to distinguish between a positive 

result and the production of dark pigments by some actinobacteria hence all strains were 

inoculated onto a negative control (without aesculin) which was compared to the 

corresponding aesculin test in order to prevent recording false positive results. 

 

Allantoin hydrolysis. The hydrolysis of allantoin (0.33%, w/v) was detected using the 

basal medium of Gordon et al. (1974) with phenol red as the pH indicator. After 

incubation for 14 days, inoculated Replidishes were examined for the development of 

an alkaline reaction which was indicated by a colour change in the medium from orange 

to pink red. A positive test result, that is, the production of a pink- red colour, indicates 

the presence of two hydrolytic enzymes, one of which hydrolyses allantoin to allantoic 

acid and the other which catalyses the formation of urea and glycoxalate.   

 

Arbutin hydrolysis. The hydrolysis of arbutin (0.1%, w/v), a hydroquinone-α- 

glucopyranoside, was detected using the basal medium described by Williams et al. 

(1983). The hydrolysis of arbutin is catalysed by the hydrolase enzyme, β-glucosidase, 
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resulting in the production of glucose and a hydroquinone, the latter complexes with 

iron in the medium to form a black-brown melanin-like polymer. Blackening of the 

medium after 5, 10 or 15 days was recorded as a positive result. 

 

Catalase production. The presence of catalase was detected by adding a few drops of 

20% (v/v) hydrogen peroxide solution to 7-day-old cultures grown on modified 

Bennett’s agar (Jones, 1949). The production of oxygen bubbles from the reduction of 

hydrogen peroxide was recorded as a positive reaction. 

 

Hydrogen sulphide production. The ability of the test strains to produce hydrogen 

sulphide was determined following the method described by Küster and Williams 

(1964). Tubes of nitrate broth were inoculated and strips of sterile lead acetate paper 

hooked over their necks. Hydrogen sulphide converts lead acetate to lead sulphide 

resulting in blackening of the lead acetate paper; blackening of lead acetate strips after 

incubation for 7 days was scored as a positive result. 

 

Nitrate reduction. This test is used to detect the presence of nitrate and nitrite 

reductases. Tubes containing 3 ml nitrate broth (0.1%, w/v; (Gordon & Mihm, 1962) 

were inoculated and incubated for 14 days when a few drops of reagents A and B 

(Appendix 3) were added. The sulfanilic acid in reagent A reacts with nitrite to yield a 

diazonium salt which forms a stable red dye in the presence of α-naphthylamine in 

reagent B. The development of a red colour on addition of reagent B indicated the 

presence of nitrite and was recorded as positive for nitrate reductase activity. In the 

absence of a colour change traces of zinc dust were added to the broths. Zinc ions 

catalyse the same reaction as nitrate reductase hence when nitrate is still present the 

addition of zinc reduces it to nitrite with the formation of a characteristic red colour; 

such results were recorded as nitrate and nitrite reductase negative. The continued 

absence of any colour change following the addition of zinc indicates that nitrate has 

been reduced to gaseous nitrogen; such reactions were recorded positive for nitrate and 

nitrite reductase. 

 

Urease production. The strains were tested for their ability to hydrolyse urea using the 

basal medium of Gordon et al. (1974) supplemented with urea (1.76 %, w/v). Inoculated 

Replidishes were incubated for 14 days then examined for the development of a pink-

red colour which was recorded as a positive result. 
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2. 8. 3.  Degradation tests 

Adenine, casein, cellulose, elastin, guanine, hypoxanthine, L-tyrosine, uric acid, 

xanthine and xylan were incorporated into modified Bennett’s agar (Jones, 1949) with 

care taken to ensure an even distribution of the insoluble compounds; each compound 

was sterilised by Tyndallisation before adding to molten modified Bennett’s agar. 

Inoculated plates were read after 7, 14 and 21 days. In all cases, disappearance of the 

substrate from under and around the area of growth was recorded as a positive result. 

Adenine, guanine, hypoxanthine and xanthine are nitrogenous purine bases involved in 

the biosynthesis of nucleic acids, L-tyrosine is an aromatic amino acid and elastin is a 

protein found in animal connective tissue. The degradation of uric acid and xylan 

indicate the production of uricase and xylanase enzymes, respectively. 

 

Casein. The degradation of casein was detected in modified Bennett’s agar (Jones, 1949) 

supplemented with skim milk powder (10 g per litre). Inoculated Replidishes were 

incubated for 15 days when the presence of clear zones from around and under areas of 

growth indicated a positive result. Similarly, chitinolytic activity was observed on 

colloidal chitin agar (Hsu & Lockwood, 1975) after 14, 21 and 28 days and positive 

results recorded when a clear zone was detected around colonies. 

 

Cellulose. Cellulose is composed of β-(1-4) linked glucose subunits. 

Carboxymethylcellulose plates inoculated with the test strains were incubated for 14 

days then flooded with Congo red solution (0.1%, w/v) for 15 minutes at room 

temperature. Undigested cellulose stained a pinky red when excess reagent was 

removed; a pale orange to straw colour zone around areas of growth indicated the 

breakdown of cellulose, such results were recorded as positive. 

 

DNA and RNA. The degradation of DNA was detected using Bacto DNase test agar 

(Difco; Appendix 3) which contains DNA (0.2%, w/v). Ribonucleic acid breakdown 

was examined in tryptose agar supplemented with RNA (0.3%, w/v, Goodfellow et al., 

1979). In each case, inoculated 7-day-old plates were flooded with 1 N hydrochloric 

acid which causes nucleic acids to precipitate as a fibrous mass. Positive reactions were 

indicated by the presence of clear zones from under and around the growth of the tested 

strains. 
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Gelatin. The degradation of gelatin was detected using modified Bennett’s agar (Jones, 

1949) supplemented with gelatin (0.4%, w/v). Inoculated plates were incubated for 7 

days then flooded with acidic mercuric chloride solution (Appendix 3), the latter acts as 

a denaturing agent complexing with gelatin and causing it to precipitate. Extracellular 

proteases hydrolyse gelatin into small peptides and amino acids which do not react with 

mercuric chloride, positive reactions were indicated by the presence of clear zones from 

under and around the growth of the tested strains. 

 

Starch. Starch is composed of α-D-glucopyranose sub-units in two different structural 

configurations; amylose, an α-(1-4) linked polymer, and amylopectin, an α-(1-4) linked 

molecule with α-(1-6) branches. This test was performed using modified Bennett’s agar 

(Jones, 1949) supplemented with soluble starch (10 g/ litre).  Inoculated plates were 

incubated for 15 days prior to flooding with Lugol’s iodine ( ppendix 3); iodine 

complexes with left handed, α- helical, amylose molecules resulting in the formation of 

a dark blue starch-iodine complex. Extracellular α-amylases show endo-glycosidase 

activity and are able to hydrolyse starch molecules by random attack at points distant 

from the chain ends to form short polysaccharide chains (dextrins) and simple sugars 

which are unable to complex with iodine. Positive results are indicated by the formation 

of clear zones from around the growth area following the addition of Lugol’s iodine. 

 

Tributyrin. The breakdown of glycerol tributyrate was carried out using tributyrin agar 

(Sigma T3688). Inoculated plates were read after 7 and 14 days. Positive results were 

recorded when clear zones were observed from under and around colonies. 

 

Tweens. Tweens 20, 40, 60 and 80 are a homologous series of water soluble, high 

molecular weight fatty acid esters of a polyoxyalkaline derivative of sorbitan which 

differ in fatty acid components. Tweens 20, 40, 60 and 80 contain mono-laurate, 

palmitic, stearic and oleic acids, respectively and can be used to detect the production of 

specific esterases. Esterases produced by tested strains diffuse into the medium and 

hydrolyse ester linkages releasing free fatty acids which combine with calcium ions 

(Ca
2+

) in the medium to form insoluble calcium salts which precipitate out as white 

crystals characteristic for each of the Tweens. The basal medium of Sierra (1957) 

supplemented with individual Tweens (10 ml/litre) were inoculated, incubated and 

examined for the characteristic precipitates which indicated a positive response. 
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2. 8. 4.  Nutritional tests 

The ability of some test strains to metabolise carbon compounds as sole sources of 

carbon for energy and growth was examined using carbon utilisation agar (ISP medium 

9; Shirling & Gottlieb, 1966) as the basal medium. Solutions of each carbon source 

were sterilised by steaming at 101°C for 30 minutes on three consecutive days then 

added to the basal medium to give the required concentration. Media dispensed into 

Replidishes were inoculated, incubated and examined after 7, 14 and 21 days. The test 

strains were also inoculated onto the basal media (negative control) and onto the basal 

medium supplemented with 1%, glucose (positive control). A positive result was 

recorded when growth on the test medium was equal or greater to that on the positive 

control, but negative when growth on the test plate was equal to or less than that on the 

negative control plate. 

2. 8. 5.  Tolerance tests 

Temperature. The test strains were examined for their ability to grow on modified 

Bennett’s agar (Jones, 1949) at 4°C, 10°C, 20°C, 25°C, 30°C, 37°C and 45°C. 

Inoculated Replidishes were incubated and read weekly for 6 weeks at 4°C and 10°C, 

and for 3 weeks at the other temperatures. In all cases, visible growth was recorded as a 

positive result. The Replidishes incubated at 37°C and 42°C were placed into plastic 

bags in order to prevent the inoculated medium from drying out. 

 

pH. The ability of the test strains to grow over a range of pH values (Table 2.8) was 

examined on modified Bennett’s agar adjusted to the appropriate pH using 0.1 M 

solutions of potassium dihydrogen phosphate (KH2PO4) and dipotassium hydrogen 

phosphate (K2HPO4) (Appendix 2). Growth was recorded as a positive result after 

incubation for up to 21 days. 

 

Sodium chloride and lysozyme. The test strains were examined for their ability to grow 

on modified Bennett’s agar (Jones, 1949) supplemented with sodium chloride at 1.5%, 

3%, 5% and 7% (w/v) and lysozyme at 0.05% (v/v). Inoculated plates were read after 7, 

14 and 21 days when the growth of strains was compared to that on control plates 

without the supplements; positive reactions were recorded when growth on the test 
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plates was greater than that on the control plate and a negative one when growth was 

less or the same as on the control plate. 

 

Resistance to antibiotics. Some test strains were examined for their ability to grow in 

the presence of different antibiotics at various concentrations.  All of the antibiotic 

solutions were filter sterilised then added to sterile cooled modified Bennett’s agar 

(Jones, 1949) to give the required concentrations before dispensing into Replidishes; 

control plates lacking antibiotic were also inoculated. Inoculated plates were incubated 

for up to 21 days. Organisms were recorded as resistant (+) where growth on the test 

plate was greater than or equal to that on the control plate and sensitive (-) when growth 

was less than that on the control plate. 

 

2.9. Data acquired using test kits 

API ZYM kits.   Suspensions of the Amycolatopsis, Modestobacter and Streptomyces 

strains were prepared from cultures grown on yeast extract-malt extract agar (ISP 

medium 2; Shirling & Gottlieb, 1966) plates for 7 days at 28
o
C.  Biomass was 

transferred to sterile disposal bijoux bottles containing 2 ml of sterile ¼ strength 

Ringer’s solution and emulsified by vigorous vortexing to provide turbidity readings 

equivalent to McFarland scale 5.0 (Murray et al., 1999).  Aliqouts (50µl) of the 

suspensions were incubated at 28
o
C overnight prior to the addition of single drops of 

reagent ZYM A (Tris-HCl and sodium lauryl sulphate in water) and one drop of reagent 

ZYM B (diazonium salt Fast Blue BB in 2-methoxyethanol) to each cupule. The strips 

were then developed in strong light for 5 minutes to eliminate any yellow colour which 

may appear in the cupules due to any excess of Fast Blue BB which had not reacted.  

Enzymetic activity was revealed by the colour changes shown in Table 2.12, reactions 

were scored from 0 (no enzyme activity) to 5 (very strong enzyme activity), according 

to the intensity of the colour reaction in each cupule.  Scores of 0 to 2 and 3 to 5 were 

classified as negative (0) and positive (1), respectively. 

 

GEN III MicroPlate™ BiOLOG tests.  Suspensions of the Amycolatopsis, 

Modestobacter and Streptomyces strains were prepared as mentioned for the  API ZYM 

tests.  Test strains were examined to establish their carbon utilisation and chemical 

sensitivity patterns based on 71 and 23 assays, respectively (Table 2.13).  Inocula were 
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prepared in Inocula Fluid (IF, BiOLOG) and vigorous by vortexed to give a turbidity 

reading equivalent to McFarland scale 5.  Aliqouts (100 l) of the inocula were added to 

the wells in the Microplates which were then covered with a lid and incubated at 28
o
C 

for 3 to 36 hours.  Colour densities in the wells were detected using a spectrophotometer 

(model Multiskan Ascent, Thermo Labsystems) using software version 1.3.1. Positive 

results were read when colourimetric readings for both the carbon utilisation and 

chemical tests were greater than the control and negative results when the readings were 

less or equal to those of the negative control. 

 

2.10. Morphology 

Selected Actinomadura, Nonomuraea, Pseudonocardia, Saccharothrix and 

Streptomyces strains (Table 2.14) were grown on oatmeal agar at 28
o
C for 21 days prior 

to detecting spore chain arrangement and spore surface ornamentation which were 

observed by examining gold-coated dehydrated specimens under a scanning electron 

microscope (Cambridge Stereoscan 240 instrument), as described by O’Donnell et al. 

(1993). 

 

Table 2.12.  API ZYM colourimetric enzyme assays. 

Test 

no. 

Enzyme detected Substrate pH Positive 

result 

Negative 

result 

1 Control - - No colour No colour 

2 Alkaline phosphatase 2-naphthyl phosphate 8.5 Violet  

A
S

 c
o

n
tr

o
l 

3 Esterase (C4) 2-napthyl butyrate 6.5 Violet 

4 Esterase lipase (C8) 2-napthyl caprylate 7.5 Violet 

5 Lipase 2-napthyl myristate 7.5 Violet 

6 Leucine arylamidase L-leucyl-2-naphthylamide 7.5 Orange 

7 Valine arylamidase L-valyl-2-naphthylamide 7.5 Orange 

8 Cystine arylamidase L-cystyl-2-naphthylamide 7.5 Orange 

9 Trypsin N-benzoyl-DL-arginine-2-

naphthylamide 

8.5 Orange 

10 Chymotrypsin N-glutaryl-phenylalanine-2-

naphthylamide 

7.5 Orange 

11 Acid phosphatase 2-naphthyl phosphatase 5.4 Violet 

12 Naphthol-AS-BI-

phosphohydrolase 

Naphthol-AS-BI-phosphate 5.4 Blue 

13 -Galactosidase 6-Br-2-naphthyl-D- 5.4 Violet 
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galactopyranosidase 

14 -Galactosidase 2-naphthyl-D-

galactopyranosidase 

5.4 Violet 

15 -Glucuronidase Naphthol-AS-BI-D-glucuronide 5.4 Blue 

16 -Glucosidase 2-naphthyl-D-glucopyranoside 5.4 Violet 

17 -Glucosidase 6-Br-2-naphthyl-D-

glucopyranoside 

5.4 Violet 

18 N-acetyl--

glucosaminidase 

1-naphthyl-N-acetyl-D-

glucosamine 

5.4 Brown 

19 -Mannosidase 6-Br-2-naphthyl-D-

mannopyranoside 

5.4 Violet 

20 -Fucosidase 2-naphthyl-L-fucopyranoside 5.4 Violet 
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Table 2.13.   Colourimetric carbon utilization and tolerance testing using GEN III Microplates. 

  1 2 3 4 5 6 7 8 9 10 11 12 

A A1  

negative 

control 

A2 Dextrin A3  

D-Maltose 

A4  

D Trehalose 

A5  

D-cellobiose 

A6  

Gentiobose 

A7  

N-acetyl-β-D-

mannosamine 

A8  

D-turanose 

A9 Stachyose A10  

Positive control 

A11  

pH6 

A12  

pH5 

B B1  

D-raffinose 

B2   

α-D-lactose 

B3  

D-melibiose 

B4  

β-methyl-D-

glucoside 

B5  

D-salicin 

B6  

N-acetyl-D-

glucosamine 

B7  

N-acetyl-β—D-

mannosamine 

B8  

D-acetyl-

galactosam-ine 

B9  

N-acetyl-

Neuraminic acid 

B10  

1% NaCl 

B11  

4% NaCl 

B12  

8% NaCl 

C C1  

α-D-glucose 

C2  

D-mannose 

C3  

D-fructose 

C4  

D-galactose 

C5  

3-methyl-

glucose 

C6  

D-fucose 

C7  

L-fucose 

C8  

L-rhamnose 

C9 

 inosine 

C10  

1% sodium lactate 

C11  

Fusidic acid 

C12  

D-serine 

D D1  

D-sorbitol 

D2  

D-mannose 

D3  

D-arabitol 

D4  

myo-inositol 

D5 glycerol D6  

D-glucose-6-

PO4 

D7  

D-fructose-6-PO4 

D8 

 L-rhamnose 

D9  

D-serine 

D10 

Troleandomy-cin 

D11  

rifamycin SV 

D12 

minocycline 

E E1  

gelatin 

E2  

 glycyl-L-

proline 

E3  

L-alanine 

E4  

L-arginine 

E5  

L-aspartic acid 

E6  

L-glutaminc 

acid 

E7  

L-histidine 

E8  

L-pyroglutamic 

acid 

E9  

L-serine 

E10  

lincomycin 

E11  

guanidine HCl 

E12  

Niaproof4 

F F1  

pectin 

F2  

D-galacturonic 

acid 

F3  

L-galacturon-ic 

acid lactone 

F4  

D-gluconic acid 

F5  

D-glucuronic 

acid 

F6 

glucoronamide 

F7  

mucic acid 

F8  

quinic acid 

F9  

D-saccharic acid 

F10  

vancomycin 

F11  

tetrazolium 

violet 

F12 

tettrazolium 

blue 

G G1  

-hydroxy 

phenylacetic 

acid 

G2  

methyl 

pyruvate 

G3 

D-lactic acid 

methyl ether 

G4  

L-lactic acid 

G5 

citric acid 

G6  

α-keto-glutaric 

acid 

G7  

D-malic acid 

G8  

L-malic acid 

G9  

bromo-succinic 

acid 

G10  

nalidixic acid 

G11  

lithium chloride 

G12 potassium 

tellurite 

H H1 

 tween30 

H2 

 γ-amino-

butyric acid 

H3  

α-hydroxy 

butyrc acid 

H4  

β-hydroxy-D,L-

butyric acid 

H5  

α-keto-butyric 

acid 

H6  

acetoacetic acid 

H7  

propionic acid 

H8  

acetic acid 

H9  

formic acid 

H10 

 azetreonam 

H11 

sodiumbuty-rate 

H12  

sodium bromide 
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Table 2.14. Actinomadura, Nonomuraea, Pseudonocardia, Saccharothrix and 

Streptomyces strains examined for spore chain arrangement and spore ornamentation using 

scanning electron microscopy. 

Genera Code 

Actinomadura 

Nonomuraea 

Pseudonocardia 

Saccharothrix 

Streptomyces 

KNN34c, KNN53-1a 

KNN57-1b, KNN57-2b 

KNN51-1b 

KNN54-1a 

C34, C38, C58, C59, C79, KNN2-6c, KNN13a, 

KNN17-2c, KNN21a, KNN23-1b, KNN24-1b, 

KNN26b, KNN35-1b, KNN35-2b, KNN38-1b, 

KNN42f, KNN48-1c, KNN51-1b, KNN66b, KNN83e, 

KNN87b and  KNN90a 

 

2.11. Screening for bioactivity 

Plug assays. One hundred and thirty four isolates, 106 from the Salar de Atacama and 28 

from the Yungay environmental sample (Table2.15) were taken to represent multi-membered 

and single-membered colour-groups and screened for antimicrobial activity against a panel of 

wild type microorganisms using a standard agar plug assay (Fiedler, 2004),  

The isolates were grown on ISP medium 2 (Shirling & Gottlieb, 1966), prepared with 0.8% 

agar, and incubated for 14 days at 30
o
C.  

 Five plugs were taken from each plate using a sterile cork borer and transferred to 

Petri dishes labelled Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, 

Saccharomyces cerevisiae and Staphylococcus aureus.  

 Lysogeny broth (50 ml) was mixed with 50 ml of nutrient agar in four separate sterile 

bottles and 100 µl of the  B. subtilis, E. coli, P. fluorescens, and S. aureus wild type 

strains added to the  appropiate bottle.  

 50 ml of yeast-potato dextrose (YPD) agar was added to 50 ml of YPD broth and 200 

µl of the S. cerevisiae wild type strain.  

The resultant preparations were carefully poured into the corresponding Petri dishes 

containing the agar plugs until the bottom of the dishes were covered. The media were 
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allowed to solidify and the plates incubated overnight at 30
o
C and then examined for the 

presence and extent of zones of inhibition around the inoculated agar plugs.   

 

Reporter strains. The 92 isolates which showed activity in the plug assays were examined 

against five B. subtilis reporter strains designed to detect specific modes of action on the 

target cells (Table 2.16).   

 Five plugs were taken from each plate, as explained above, and transferred to Petri 

dishes labelled with the names of the five B. subtilis reporter strains.   

 25 ml Luria broth (LB) 100 µl of erythromycin, 100 µl of X-gal and 100 µl of each 

reporter strain were added to 75 ml of nutrient agar; for the phi105
CH

 reporter strain 

100 µl of chloramphenicol was used instead of erythromycin.  

 The resultant media were carefully poured into Perti dishes until all of the plugs were 

covered.  

Table 2.15. Representative strains isolated from the Salar de Atacama and Yungay 

environmental samples and examined in the plug assays against a panel of pathogenic 

microorganisms. 

Salar de Atacama Yungay 

Multi-membered colour-groups: 

KNN1-2c, KNN1-5f, KNN2-2c, KNN2-5c, KNN2-6c, KNN2-10d, 

KNN2-11d, KNN3-1b, KNN3-2b, KNN3-11d, KNN3-17d, KNN4-1b, 

KNN4-3b, KNN4-4a, KNN5-24b, KNN5-25d, KNN6-2a, KNN6-5a, 

KNN6-6b, KNN6-10b, KNN6-11a, KNN8-3a, KNN8-5b, KNN8-8a, 

KNN8-9c, KNN8-10e, KNN9-1a, KNN9-2c, KNN10-3b, KNN10-4d, 

KNN10-5a, KNN11-2a, KNN11-4b, KNN11-5a, KNN11-6a, KNN14-

3e, KNN17-1c, KNN17-2b, KNN18-3d, KNN24-2c, KNN24-3c, 

KNN24-4c, KNN24-7e, KNN24-8e, KNN24-9e, KNN32-1a, KNN35-

1b, KNN35-2b, KNN36-1c, KNN36-3c, KNN37-1e, KNN37-5a, 

KNN38-1b, KNN38-5b, KNN48-3e, KNN48-6d, KNN49-5e, KNN49-

26a, KNN50-8b, KNN50-11c, KNN52-2b, KNN53-1a, KNN53-2a, 

KNN53-3a, KNN54-1a, KNN57-1b, KNN58-1b, KNN61-1a, KNN63-

2b, KNN63-15b, KNN64-3a, KNN64-5b, KNN65-1f, KNN65-5d, 

KNN67-4b, KNN68-2b, KNN68-4b, KNN69-1a, KNN69-2, KNN69-

3a, KNN71-2a, KNN73-2a, KNN74-2c, KNN75-4b,  KNN81-2b, 

KNN82-1a, KNN85-1f 

Single-membered colour groups: 

KNN25c, KNN26b, KNN27a, KNN28a, KNN29a, KNN30a, 

KNN31d, KNN33a, KNN34c, KNN39c, KNN43b, KNN56a, 

KNN66b, KNN72a, KNN76b, KNN83e, KNN87b, KNN94es 

Multi-membered colour groups: 

KNN7-2b, KNN13a, KNN21a, 

KNN23-1b, KNN44-2a, KNN44-4b, 

KNN45-1a, KNN45-2b, KNN45-3b, 

KNN45-4b, KNN46-1b, KNN46-2b, 

KNN46-3b, KNN46-4b, KNN46-5b, 

KNN46-6a, KNN46-7a, KNN46-8a, 

KNN55-1b, KNN86-1b,  KNN88-1a,  

KNN91-1a   

 

Single-membered colour groups: 

KNN47b, KNN51b, KNN89a, 

KNN90a, KNN96a, KNN97a 
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Positive controls (10 µl) were placed on Whatman filter paper discs (6 mm diameter) and 

applied to the corresponding plates which were incubated overnight at 30
o
C and examined for 

blue rings around Whatman filter paper (Brunstein, 2010), The reporter genes are induced by 

bioactive substances and causing the cleavage X-gal to galactose and 5-bromo-4-chloro-3-

hydroxyindole.  The presence of a blue halo around inhibition zones which is due to this latter 

compound, indicates the mode of action of the bioactive compounds. 

 Positive results in the plug assays based on the B. subtilis reporter strains were 

recorded when a blue halo was formed round zones of inhibition. 

 

Table 2.16.   Bacillus subtilis strains containing reporter genes and positive controls used in 

the plug assays designed to determine the mode of action of unknown antimicrobial 

compounds. 

Reporter genes  Positive controls  Targets  

yvqI
ER

 Bacitracin  

 

Cell wall synthesis  

yvgS
ER

 Rifampicin 

 

RNA synthesis  

ypuA
ER

 Cefoxitin 

 

Cell envelope synthesis  

Phi105
CH

 Nalidixic acid  

 

DNA synthesis  

yjaX
ER

 Triclosan  Fatty acid synthesis  

ER: erythromycin resistant, CH: chloramphenicol resistant.  

 

Disk diffusion assays. . The mycelial extracts of the 92 representative isolates tested in the 

plug assays were examined against the E. coli and S. cerevisiae strains and against the 5 B. 

subtilis reporter strains. Each isolate was grown on ISP medium 2 (Shirling & Gottlieb, 1966), 

prepared with 0.8% agar, and incubated for 7 days at 30
o
C. Cultures growing on the ISP 

medium were crushed using a sterile syringe, kept overnight at -20
o
C, the supernatants 

(extracts) collected using wide bore pipette tips and transferred to 10 ml Falcon tubes. The 

media used for the disk diffusion assays were prepared as for the plug assays. The resultant 

media were poured into the corresponding Petri dishes and allowed to solidify. Twenty sterile 

Whatman filter paper disks (6 mm diameter) impregnated with 10 µl of extracts were placed 

on the agar surface of each Petri dish, the plates incubated overnight at 30
o
C and the extent of 

zones of inhibition measured. 
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2.12. Preliminary characterisation of bioactive compounds 

Strains.  Six strains belonging to the genera Amycolatopsis (isolates KNN50-8b and 

KNN50-16d) and Streptomyces (isolates KNN26b, KNN38-1b, KNN64-5b and KNN90a) 

were chosen because they produced extensive inhibition zones in the plug assays and were 

distinct from their closest phylogenetic neighbours in the corresponding Amycolatopsis and 

Streptomyces 16S rRNA gene trees. 

 

Production media and cultivation conditions.  Four media were employed for submerged 

cultivation of the selected strains, namely yeast-extract malt-extract medium (ISP medium 2, 

Shirling and Gottleb, 1966), medium 19, medium 410 and starch-casein agar (Goodfellow & 

Fiedler, 2010) containing 1 gram Amberlite per 50 ml of production medium for secondary 

metabolites adsorption from cultivated medium (Sigma-Aldrich, Gillingham Dorset, UK).  

The inoculated media were shaken at 180 rpm for 14 days. 

 

Preparation of extracts.  The Amberlite beads were separated from production media 

biomass by centrifugation at 2,000 rpm for 5 minutes then washed 4-5 times with sterile 

distilled water.  The Amberlite bead preparations were then shaken in 50 ml of methanol 

overnight prior to centrifugation at 3000 rpm for 10 minutes and the Amberlite discarded.  

The resultant supernatants were dried under a nitrogen gas stream and the dried preparations 

sent to Professor Marcel Jaspars at Aberdeen University for preliminary chemical analyses. 

 

Chemical analyses.  Each preparation was dissolved in methanol to give a final concentration 

of 0.5mg/mL, filtered and submitted for liquid chromatographic/mass spectrometric (LCMS) 

analysis. High resolution mass spectral data were obtained from a Thermo Instruments MS 

system (LTQ XL/ LTQ Orbitrap Discovery) coupled to a Thermo Instruments HPLC system 

(Accela PDA detector, Accela PDA autosampler and Accela Pump using the following 

conditions : capillary voltage 45 V, capillary temperature 260°C, auxilliary gas flow rate 10-

20 arbitrary units, sheath gas flow rate 40-50 arbitrary units, spray voltage 4.5 kV. mass range 

100–2000 amu (maximum resolution 30000). An Agilent Poroshell 120, EC-C18, 2.1x100 

mm, 2.7um UPLC column was used for LC/MS with a mobile phase of 0-100% MeCN over 

30 minutes at 0.5 ml/min flow rate. The results were presented as mass spectrophotometric 

(MS), liquid spectrophotometric (LC) and ultraviolet (UV) traces. 
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Chapter 3. Biosystematic Studies and Screening of 

Representative Strains Isolated from Hyper-arid and Extreme 

hyper-arid Atacama Desert Soils 

 

3.1. Abstract 

Atacama Desert soils are a largely untapped source of actinobacteria with a potential to 

produce biologically active specialised metabolites for the control of drug resistant 

pathogens.  This study was designed to recover and screen taxonomically diverse 

actinobacteria from two habitats in the Atacama Desert, a hyper-arid soil from the Salar 

de Atacama region and an extreme hyper-arid soil from the Yungay region.  The hyper-

arid soil yielded relatively large numbers of Amycolatopsis and Streptomyces strains and 

small numbers of Actinomadura, Kribbella, Lechevalieria, Nonomuraea and 

Saccharothrix  strains.  Modestobacter and Streptomyces were predominant in the 

extreme hyper-arid soil through small numbers of Blastococcus, Couchioplanes and 

Geodermatophilus strains were isolated.  With few exceptions representatives of the 

genera formed distinct phyletic lines in 16S rRNA gene trees.  Most of the 

representative isolates examined in standard plug assays inhibited the growth of one or 

more of a panel of five wild type micro-organisms while some of the streptomycetes 

from the hyper-arid Salar de Atacama soil were shown to inhibit cell envelope, cell wall, 

fatty acid and RNA synthesis in assays based on Bacillus subtilis reporter strains.  In 

contrast, few of the non-streptomycetes produced bioactive compounds through this 

may reflect the use of an inappropriate production media.  Nevertheless, these results 

confirm that novel actinobacteria, notably streptomycetes, from hyper- and extreme 

hyper-arid Atacama Dsert soils are a rich source of diverse bioactive compounds that 

may be developed as resources for healthcare. 

 

3.2. Introduction 

Previously unknown filamentous actinobacteria, notably streptomycetes, are proving to 

be a rich source of new natural products, especially antibiotics, that can be developed as, 

resources for healthcare.  Streptomycetes account for around 40% of known specialised 

metabolites and have genomes that typically contain over twenty biosynthetic gene 
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clusters that encode for known or predicted secondary metabolites (Bérdy, 2012).  

Although an underused resource, it is difficult to find new specialised metabolites from 

known actinobacteria as screening them tends to lead to the rediscovery of compounds 

of known provenance (Busti et al., 2000; Lam, 2007; Williams, 2008).  Consequently, 

new strategies are being developed to selectively isolate, dereplicate and recognise 

novel actinobacteria for pharmaceutical screening programmes, as exemplified by the 

taxonomic approach to drug discovery recommended by Goodfellow & Fiedler (2010).  

This approach to bioprospecting has been used to isolate actinobacteria from extreme 

biomes, especially marine habitats, on the premise that harsh environmental conditions 

give rise to unique actinobacteria presenting novel chemistry (Bull & Stach, 2007; Bull 

2011).   

Novel actinobacteria isolated from deep-sea sediments have been shown to be an 

especially prolific source of new antibiotics, as illustrated by the discovery of 

caboxamycin, a benzoxazole antibiotic produced by a Streptomyces strain isolated from 

the Canary Basin in the Atlantic Ocean (Hohmann et al., 2009) and the abyssomicins, a 

family of polycyclic polyketides isolated from a Verrucosispora maris strain derived 

from a sediment sample collected from the Sea of Japan (Riedlinger et al., 2004; Keller 

et al., 2007; Goodfellow et al., 2012b).  Salinispora, an obligate marine genus which 

has a pan-tropical distribution in near shore marine sediments, is proving to be a 

particularly rich source of new antibiotics (Mincer et al., 2002; Fenical & Jensen, 2006; 

Jensen et al., 2007; Jensen, 2010). Salinispora arenicola and Salinospora tropica, the 

founder members of the genus have a large fraction of their genomes encoding for the 

biosynthesis of structurally unique specialised metabolites which are produced in 

species-specific patterns, Salinispora arenicola synthesises metabolites in the 

rifampicin and staurosporine classes and S. tropica compounds in the salinosporamide 

and spiralide clades, including salinisporamide A, an anticancer agent.  Such studies 

helped promote an explosion of interest in marine actinobacteria as a source of new 

specialised metabolites (Blunt et al., 2012; Zotchev, 2012; Manivasagan et al., 2013).   

 The taxonomic approach to drug discovery has been used to isolate and screen 

novel filamentous actinobacteria from Atacama Desert soils in Northern Chile (Bull & 

Asenjo, 2013).  The Atacama Desert  is the oldest and driest desert on the planet having 

evolved over several million years of aridity and hyper-aridity (Gómez-Silva et al., 

2008). Environment conditions in the desert have been considered too extreme to 

support any form of life due to a dearth of liquid water, virtual absence of organic 

matter, presence of inorganic oxidants and high levels of UV radiation.  Nevertheless, 
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small numbers of phylogenetically novel filamentous actinobacteria, notably 

streptomycetes, have been isolated from hyper-arid and extreme hyper-arid Atacama 

Desert soils (Okoro et al., 2009) and shown to synthesise novel specialised metabolites 

(Bull & Asenjo, 2013).  Three of the putatively novel Streptomyces isolates have been 

validly named as Streptomyces atacamensis, Streptomyces bullii and Streptomyces 

deserti and another two found to syntheses new antibiotics and anticancer agents, the 

atacamycins, chaxalactins and chaxamycins (Nachtigall et al., 2011; Rateb et al., 2011a, 

b; Bull & Asenjo, 2013).  Another putatively novel Streptomyces strain from high 

altitude Atacama altiplano soil produced new aminobenzoquinones, the abenquines, 

which show inhibitory activity against bacteria and dematophilic fungi (Schulz et al., 

2011).  In addition, three isolates assigned to the rare genus Lechevalieria (Okoro et al., 

2009) have been validly named as Lechevalieria atacamensis, Lechevalieria deserti and 

Lechevalieria roselyniae (Okoro et al., 2010). 

 The present study was designed to build upon and extend the pioneering studies 

of Okoro et al. (2009, 2010).  To this end, large numbers of actinobacteria were isolated 

from two contrasting locations in the Atacama Desert using a broad range of selective 

isolation media, dereplicated, assigned to genera and screened for their ability to inhibit 

the growth of a panel of micro-organisms and Bacillus subtilis reporter strains, the latter 

designed to detected modes of action of bioactive compounds. 

 

3.3. Materials and Methods  

3. 3. 1.  Sampling sites 

Environmental samples were collected from two locations in the Atacama Desert by 

Professor A.T. Bull (School of Biosciences, University of Kent, Canterbury, UK.), 

namely the Laguna de Chaxa, Salar de Atacama, near Tocanao (latitude 23
o
1 ’S, 

longitude 68
o
10’W), and the Yungay region (latitude 2406’18.6” and longitude 

7001’55.6”) (see Chapter 2). 

3. 3. 2.  Physico-chemical properties of environmental samples 

The pH of the environmental samples were determined using the procedure described 

by Reed and Cummings (1945). The pH of each sample was determined, in triplicate, 
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using a glass electrode pH meter (Model 320 Mettler-Toledo AG, CH.8603, 

Schwerzenbach, Switzerland).  The percentage moisture content of the environmental 

samples were determined, in triplicate, by drying known amounts of the samples to 

constant weight at 105°C then calculating the average loss in weight between each set 

of samples. The dried samples were placed in a muffle furnace (Carbolite, Sheffield, 

UK), the temperature raised slowly to 700°C and kept constant for 30 minutes to burn 

off any organic matter. After cooling overnight in a desiccator, the average loss in 

weight for each set of samples was recorded as the total organic matter content. 

3. 3. 3.  Selective isolation and enumeration of actinobacteria isolated from the 

environmental samples 

Soil suspensions from the Salar de Atacama and Yungay environmental samples were 

prepared in 1/4 strength Ringer’s solution (Oxoid, UK) to give 10
-½ 

 dilutions which 

were shaken on a tumble shaker (TMI Tumbler, Luckham Ltd., Sussex, UK) for 30 

minutes, heat-pretreated at 55
o
C for 6 minutes, as described by Okoro et al. (2009). 

Aliquots (100 µl) of the various dilutions were spread over plates of several selective 

isolation media (Table 3.1) which had been dried for 15 minutes at room temperature 

prior to inoculation (Vickers & Williams, 1987). Three replicate plates were prepared 

for each dilution and for each of the isolation media.  After incubation at 28
o
C for 3 

weeks, the number of actinobacteria growing on the isolation plates were counted and 

the results expressed as the number of colony forming units (cfu) per gram dry weight 

of environmental sample. 

 

Table 3.1.  Media used for the selective isolation of actinobacteria from the Atacama 

Desert environmental samples. 

Media Selective agents (µg ml
-1

) Target organism(s) 

Gause’s  o.1 agar (Gause et al., 

1957;  Zakharova et al., 2003) 

Nalidixic acid (10)  Rare or uncommon 

actinobacteria 

Geodermatophilus obscurus agar 

(Uchida &Seino, 1997) 

Nystatin (25) Geodermatophilus spp. 

Glucose-yeast extract agar (Athalye 

et al., 1981) 

Rifampicin (20) Actinomadura spp. 

HV agar (Hayakawa & Nonomura, 

1987) 

Humic acid (1g L
-1

) Streptosporangiaceae 

spp. 
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Luedemann’s agar (Luedemann, 

1971) 

Nystatin (25 ) Modestobacter spp. 

Microlunatus agar (Nakamura et al., 
1995) 

Nystatin (25) Modestobacter spp. 

Minimal medium agar (Johnson et 

al., 1981) 

Nystatin (25) Rare or uncommon 

actinobacteria 

Oligotrophic agar (Senechkin et al., 

2010) 

Low carbon and nitrogen 

content 

Rare and uncommon 

actinobacteria 

R2A (Reasoner & Geldreich, 1985) Nystatin (25) Modestobacter spp. 

Starch-casein agar (Küster 

&Williams, 1964) 

Nystatin (25) Streptomyces spp. 

SM1 (Tan et al., 2006) Neomycin (1) and        nystatin 

(25) 

Amycolatopsis spp. 

All of the media were supplemented with cycloheximide (25 µg ml
-1

). 

3. 3. 4.  Selection, maintenance and presumptive classification of actinobacteria 

isolated from the Salar de Atacama and Yungay environmental samples  

Four hundred and twenty strains chosen to represent the various colony types growing 

on the selective isolation plates were subcultured onto yeast extract-malt extract agar 

plates (International Streptomyces Project [ISP2], Shirling & Gottlieb, 1966) and 

incubated at 28
o
C for 14 days.  Three hundred and fifteen of the strains were taken from 

the isolation plates inoculated with suspensions of the Salar de Atacama environmental 

sample and 105 from those seeded with suspensions of the environmental sample taken 

from the Yungay region.  Colonies that produced a leathery substrate mycelium covered 

by an abundant aerial spore mass were considered to belong to the genus Streptomyces, 

and those which formed shiny black, mucoid colonies were assigned to the family 

Geodermatophilaceae.  In contrast, isolates producing leathery colonies covered by 

little or no aerial hyphae were assumed to belong to a range of filamentous 

actinobacterial taxa. 

 

Maintenance of strains.   All of the isolates were grown on oatmeal (Shirling & 

Gottlieb, 1966) and modified Bennett’s agar plates (Jones, 1949) at 28°C for 3 weeks.  

Suspensions of spores and mycelial fragments from each of the inoculated plates were 

suspended in 1 ml aliquots of 20%, v/v glycerol (2 vials per strain per medium) in 
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cryotubes, one culture prepared from each medium was kept at -80
o
C for long-term 

preservation, the others, the working cultures, were kept at -20
o
C. 

 

Assignment to colour-groups.   The presumptive streptomycete and non-streptomycete 

strains isolated from the Salar de Atacama and Yungay environmental samples were 

subcultured onto oatmeal agar (ISP medium 3, Shirling & Gottlieb, 1996) and peptone-

yeast extract-iron agar (PYEIA, ISP medium 6, Shirling & Gottlieb, 1966) and 

incubated at 28
o
C for 14 days and 4 days, respectively.  The isolates were assigned to 

colour-groups based on aerial spore mass, substrate mycelial and diffusible pigment 

colours produced on the oatmeal agar plates, using National Bureau of Standards (NBS) 

Colour Name Charts (Kelly, 1958) and by their ability to produce melanin pigments on 

the  PYEIA plates (Tables 3.2 and 3.3).  

 

Table 3.2. Actinobacteria  isolated from the hyper-arid Salar de Atacama environmental 

sample and assigned to single- and multi-membered colour-groups. 

Actinobacteria Codes 

Presumptive streptomycetes: 

Multi-membered 

colour-groups 

C34, C38, C58, C59, C79, KNN1-1a*, KNN1-2c, KNN1-3b, KNN1-5f;  KNN2-1b*, 

KNN2-2c, KNN2-3c, KNN2-4c, KNN2-5c, KNN2-6c, KNN2-7d, KNN2-8b, KNN2-9d, 

KNN2-10d, KNN2-11d, KNN2-12d, KNN2-13a, KNN2-14c, KNN2-15a, KNN2-16c, 

KNN2-17d, KNN2-18c, KNN3-1b*, KNN3-2b, KNN3-3c, KNN3-4b, KNN3-5c, KNN3-

6c, KNN3-7c, KNN3-8c, KNN3-9c, KNN3-10e, KNN3-14d, KNN3-15d, KNN3-16d, 

KNN3-17d, KNN3-18d, KNN3-19b, KNN4-1b*, KNN4-2e, KNN4-3b, KNN4-4a; 

KNN5-1a*, KNN5-2a, KNN5-3c, KNN5-4c, KNN5-5a, KNN5-6a, KNN5-7a, KNN5-8b, 

KNN5-9b, KNN5-10b, KNN5-13b, KNN5-14b, KNN5-15b, KNN5-16d, KNN5-17d, 

KNN5-18d, KNN5-19d, KNN5-20d, KNN5-25b, KNN5-28c, KNN5-29b, KNN5-30d, 

KNN5-31e; KNN6-1a*, KNN6-2a, KNN6-3a, KNN6-4a, KNN6-5a, KNN6-6b, KNN6-

7d, KNN6-8d, KNN6-9a, KNN6-10b, KNN6-11a; KNN8-1b*, KNN8-2b, KNN8-3a, 

KNN8-4b, KNN8-5d, KNN8-6b, KNN8-7a, KNN8-8a, KNN8-9a, KNN8-10c, KNN8-

11e, KNN9-1a*, KNN9-2e, KNN9-3a, KNN10-1a*, KNN10-2b, KNN10-3b, KNN10-

4d, KNN10-5a, KNN11-1a, KNN11-2a, KNN11-3c, KNN11-4b, KNN11-5a, KNN11-

6b, KNN14-1f*, KNN14-2c, KNN14-3e, KNN16-1c*, KNN16-2c, KNN17-1c*, 

KNN17-2b; KNN18-1b*, KNN18-2c, KNN18-3d, KNN24-1b*, KNN24-2c, KNN24-3c, 

KNN24-4c, KNN24-5c, KNN24-6a, KNN24-7c, KNN24-8e, KNN29-1a*, KNN32-1a*, 

KNN32-2b,  KNN35-1b*, KNN35-2b; KNN36-1*c, KNN36-2c, KNN36-3c; KNN37-

1e*, KNN37-2a KNN37-3a, KNN37-4a, KNN37-5a*, KNN38-1b*, KNN38-2d, 

KNN38-3d, KNN38-4a, KNN38-5b, KNN41-1b*, KNN41-2a, KNN48-1c*, KNN48-2a, 

KNN48-3e, KNN48-4e, KNN48-5e, KNN52-1c*, KNN52-2b, KNN52-3b, KNN54-1b*, 

KNN54-2b, KNN58-1b*, KNN58-2c, KNN60-1c*, KNN60-2d, KNN63-1b*, KNN63-
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2b, KNN63-3b, KNN63-4b, KNN63-5a, KNN63-6b, KNN63-7b, KNN63-8d, KNN63-

9d, KNN63-10d, KNN63-11b, KNN63-12b, KNN63-13b, KNN63-14b, KNN63-15b, 

KNN63-16b, KNN63-17b, KNN63-18b, KNN63-19e, KNN64-1a*, KNN64-2a, KNN64-

3a, KNN64-4b, KNN64-5b, KNN64-6b; KNN65-1f*, KNN65-2a, KNN65-3c, KNN65-

4c, KNN65-5d, KNN67-1b*, KNN67-2b, KNN67-3b, KNN67-4b, KNN68-1b*, 

KNN68-2b, KNN68-3b, KNN68-4b, KNN69-1e*, KNN69-2a, KNN69-3a, KNN71-1a*, 

KNN71-2a, KNN73-1a*, KNN73-2a, KNN73-3d, KNN74-1c*, KNN74-2c, KNN75-1c*, 

KNN75-2b, KNN75-3b, KNN75-4b, KNN78-1e*, KNN78-2e, KNN79-1b*, KNN79-2b, 

KNN79-3d; KNN80-1c*, KNN80-2d, KNN81-1c*, KNN81-2b, KNN81-3d, KNN82-

1a*, KNN82-2c, KNN85-1f*, KNN85-2b, KNN85-3b, KNN85-4c, KNN85-5c, KNN85-

6c, KNN85-7c, KNN85-8a  

Single-membered 

colour groups 

KNN25c*, KNN26b* KNN27a*, KNN28a*, KNN30a*, KNN31d*,  KNN33a*, 

KNN39c*, KNN43b*, KNN51b*, KNN56a*, KNN59e*, KNN62b*, KNN66*, 

KNN70b*, KNN72a*, KNN76b*, KNN83e*, KNN84c*, KNN87b*, KNN94e* 

Presumptive non-streptomycetes: 

Multi-membered 

colour-groups 

KNN49-1f*, KNN49-2e, KNN49-3e, KNN49-4e, KNN49-5e, KNN49-6a, KNN49-7c, 

KNN49-8c, KNN49-9c, KNN49-10b, KNN49-11c, KNN49-12b, KNN49-13b, KNN49-

14b, KNN49-15b, KNN49-16c, KNN49-17b, KNN49-18b, KNN49-19a, KNN49-20b, 

KNN49-21c, KNN49-22d, KNN49-23d, KNN49-24d, KNN49-25d, KNN49-26a, 

KNN49-27a, KNN49-28a, KNN49-29a, KNN49-30b, KNN49-31b, KNN49-32b, 

KNN50-1a*, KNN50-2e, KNN50-3c, KNN50-4c, KNN50-5c, KNN50-6e, KNN50-7d, 

KNN50-8b, KNN50-9b, KNN50-10e, KNN50-11c, KNN50-12c, KNN50-13c, KNN50-

14d, KNN50-15d, KNN50-16d, KNN50-17d KNN50-8d, KNN53-1a*, KNN53-2a, 

KNN53-3a, KNN54-1a*, KNN54-2b, KNN57-1b*, KNN57-2b,  KNN61-1e*, KNN61-

2a, KNN61-3e, KNN61-4e, KNN61-5e, KNN61-6b 

Single-membered 

colour-groups 

KNN34a*, KNN77b* 

Codes exemplified by strain KNN2-1b, this organism was isolated by Kanungnid Busarakam (KNN), 

assigned to colour-group 2 as the first member of group and was isolated on a humic acid-vitamin agar 

isolation plate. The C-coded isolates represent a colour-group delineated by Okoro et al. (2009). 

Codes for selective isolation media : (a),  Gause No.1 agar;  (b),  HVA, humic acid-vitamin agar;  (c), 

Oligotrophic agar; (d), minimal medium agar; (e),  SM1 agar;  (h), SCAV agar 

*Representatives of colour-groups used to detect isomers of diaminopimelic acid in whole-organism 

hydrolysates. 

The C-coded strains are known to contain LL-A2pm in whole-organism hydrolysates (Okoro et al., 2009). 
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Table 3.3. Actinobacteria  isolated from the extreme hyper-arid Yungay environmental 

sample  and assigned to single- and multi-membered colour-groups. 

Actinobacteria Codes 

Presumptive streptomycetes: 

Multi-membered colour-

groups 

KNN12-1a*, KNN12-2a, KNN15-1a*, KNN15-2a, KNN16-2c, KNN19-1b*, 

KNN19-2c, KNN23-1b*, KNN23-2a, KNN29-2a, KNN29-3a, KNN48-7d, KNN48-

8d, KNN48-9d, KNN48-10d, KNN48-11b, KNN48-12d, KNN48-13b, KNN48-14a, 

KNN48-15a, KNN48-16c, KNN48-17c, KNN48-18c, KNN48-19c, KNN48-20c, 

KNN77-1a*, KNN77-2a, KNN77-3a, KNN77-4a, KNN77-5a, KNN77-6a, KNN86-

1b*, KNN86-2b, KNN86-3b, KNN86-4b, KNN86-5c, KNN86-6a, KNN88-1a*, 

KNN88-2b, KNN88-3b, KNN88-4a, KNN91-1a*, KNN91-2b, KNN91-3b, KNN91-

4a, KNN91-5a, KNN91-6a, KNN92-1b*, KNN92-2b, KNN92-3b, KNN92-4a, 

KNN92-5a, KNN92-6a, KNN92-7a,  KNN93-1a*, KNN93-2a, KNN93-4a, KNN 93-

5a, KNN95-1f*, KNN95-2f, KNN95-3f, KNN95-4f, KNN95-5f, KNN95-6f, 

KNN95-7f  

Single-membered colour-

groups 

KNN13a*; KNN20c*, KNN21a*; KNN22a*; KNN40a*; KNN42a*, KNN51b*; 

KNN89b*, KNN90b*; KNN96b*;  KNN97b*; KNN98b* 

Presumptive non-streptomycetes: 

Multi-membered colour-groups 

Geodermatophilaceae KNN44-1b*, KNN44-2a, KNN44-3a, KNN44-4c, KNN45-1b, KNN45-2a, KNN45-

3b*, KNN45-4b, KNN46-1b, KNN46-2b, KNN46-3b*, KNN46-4b, KNN46-5a, 

KNN46-6a, KNN46-7g, KNN46-8c, KNN46-9, KNN46-10, KNN46-11 

Others KNN7-1b*, KNN7-2b, KNN7-3b, KNN7-4b, KNN23-1a*, KNN23-2a, KNN55-1b*, 

KNN55-2b 

Single-membered colour-

group 

KNN47* 

KNN and media codes as for Table 3.2.; Additional codes (f) Geodermatophilus obscurus agar; (g) 

Luedemann’s agar. 

 

Detection of diaminopimelic acid isomers.  Ninety eight strains representing each of 

the colour-groups (Tables 3.2 and 3.3) were examined for diaminopimelic acid (A2pm) 

isomers using the procedure described by Hasegawa et al. (1983) and biomass scraped 

from strains grown on ISP2 agar plates (Shirling & Gottlieb, 1960) incubated at 28
o
C 

for 14 days.  
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3. 3. 5.  Classification of representative actinobacteria from the Salar de Atacama 

and Yungay environmental samples to generic rank 

Phylogenetic analyses.   Ninety eight isolates were taken to represent 64 multi- and 34 

single-membered colour-groups (Table 3.4). Genomic DNA of the selected isolates was 

extracted from biomass scrapped from yeast-extract malt-extract plates (ISP2 medium, 

Shirling & Gottlieb, 1966) that had been incubated for 14 days at 28
o
C. PCR 

amplification of the 16S rRNA purified gene products of the isolates was carried out, as 

described by Kim & Goodfellow (2002).  The resultant almost complete 16S rRNA 

gene sequences (~1300 to 1450 nucleotide [nt]) were submitted to the EzTaxon server 

(http://eztaxon-e.ezbiocloud.net/; Kim et al. (2012) and aligned with corresponding 16S 

rRNA gene sequences of closely related type strains of the appropicate genus (Table 3.5) 

using CLUSTAL W version 1.8 software (Thompson et al., 1994).  Individual 

phylogenetic trees were generated from the aligned sequences using the maximum-

likelihood (Felsenstein, 1981), maximum-parsimony (Fitch, 1971) and neighbour-

joining (Saitou & Nei, 1987) tree-making algorithms drawn from the MEGA and 

PHYML software packages (Guindon & Gascuel, 2003; Tamura et al., 2011; 

evolutionary matrices for the neighbour-joining analyses were prepared using the Jukes 

and Cantor (1969) model.  The topology of the inferred evolutionary trees were 

evaluated by bootstrap analyses (Felsenstein, 1985) based on 1000 resamplings of the 

neighbour-joining  datasets using MEGA 5 software. 

 

Table 3.4. Representative actinobacteria taken to represent multi-membered and single-

membered colour-groups examined in the comparative 16S rRNA gene sequence 

studies. 

A.  Representative isolates from the Salar de Atacama environmental sample  

Multi-membered colour-groups: 

C34*, C38*, C58*, C59*, C79*, KNN2-4c, KNN2-6c, KNN4-1b, KNN4-4a, KNN6-6b, KNN6-9a, 

KNN6-10b, KNN6-11a, KNN9-1a, KNN9-2c, KNN10-4a, KNN10-5a, KNN11-1a, KNN11-5a, KNN24-

1b, KNN32-1a, KNN35-1b, KNN35-2b, KNN38-1b, KNN41-1b, KNN48-1e, KNN48-3e, KNN48-6d, 

KNN49-1h, KNN49-3e, KNN49-5e, KNN49-6a, KNN49-11c, KNN49-12b, KNN49-26a, KNN50-1a, 

KNN50-2e, KNN50-4c, KNN50-5c, KNN50-6e, KNN50-7d, KNN50-8b, KNN50-9b, KNN50-10e, 

KNN50-11c, KNN50-12c, KNN50-13c, KNN50-14a, KNN50-15a, KNN50-16d, KNN50-17d, KNN50-

18d, KNN53-1a, KNN53-3a, KNN54-1a, KNN57-1b, KNN57-2b, KNN61-1a, KNN64-5b, KNN82-2c, 

http://eztaxon-e.ezbiocloud.net/
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KNN83e, KNN88-1c 

Single-membered colour groups: 

KNN25c, KNN26b, KNN34c, KNN56a, KNN70b, KNN87b, KNN94e 

B. Representative isolates from the Yungay environmental sample 

Multi-membered colour-groups: 

KNN7-2b, KNN23-1b, KNN44-1b, KNN44-3b, KNN44-4b, KNN45-1a, KNN45-2b, KNN45-3b, 

KNN45-4b, KNN46-1b, KNN46-2b, KNN46-3b, KNN46-4b, KNN46-5b, KNN46-6a, KNN46-7a, 

KNN46-8a, KNN46-9c, KNN46-10g, KNN46-11f,  KNN55-1b, KNN55-2b 

Single-membered colour-groups:  

KNN13a, KNN22a, KNN42f, KNN47b, KNN51b, KNN70b, KNN89a, KNN90a 

*Strains isolated by Okoro et al. (2009). 

 

Chemotaxonomy.  Wet biomass of 21 representative isolates was prepared by 

harvesting from shake flasks of yeast extract malt-extract broth (ISP medium 2, Shirling 

& Gottlieb, 1966) after 14 days at 28
o
C.  The resultant preparations, which represented 

the 12 genera detected in the 16S rRNA gene sequencing studies (Table 3.5).  Standard 

procedures used to establish the predominant menaquinones (Minnikin et al., 1984) and 

polar lipids (Minnikin et al., 1984).  Similarly, standard procedures were examined for 

the presence of diagnostic sugars using procedure described by Hasegawa et al. (1983), 

the sugar paterns of the strains were identified by comparison against on in house 

standard solution.  (Minnikin et al., 1984)  

 

Table 3.5. Representative actinobacteria  included in the chemotaxonomic analyses. 

Codes Source         Genera 

KNN53-1a, KNN53-2a  Salar de Atacama Actinomadura 

KNN49-5e, KNN49-26a, KNN50-8b, 

KNN50-11c 

Salar de Atacama Amycolatopsis 

KNN47b Yungay Blastococcus 

KNN7-2b Yungay Cochioplanes 

KNN44-1b Yungay Geodermatophilus 
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KNN56a Salar de Atacama Kribbella 

KNN94e Salar de Atacama Lechevalieria 

KNN45-2b, KNN46-3b Yungay Modestobacter 

KNN57-1b Salar de Atacama Nonomuraea 

KNN55-1b Yungay Pseudonocardia 

KNN10-4d Salar de Atacama Saccharothrix 

C34, C38, C58, C59, C79 Salar de Atacama Streptomyces 

 

Morphology.  Selected Actinomadura, Nonomuraea, Pseudonocardia, Saccharothrix 

and Streptomyces isolates (Table 3.6) were grown on oatmeal agar at 28
o
C for 21 days 

prior to detecting spore chain arrangement and spore surface ornamentation using gold-

coated dehydrated specimens under a scanning electron microscope (Cambridge 

Stereoscan 240 instrument), as described by O'Donnell et al. (1993). 

 

Table 3.6.  Actinomadura, Nonomuraea, Pseudonocardia, Saccharothrix and 

Streptomyces strains examined for spore chain arrangement and spore surface 

ornamentation using scanning electron microscopy. 

Genera Codes 

Actinomadura 

Nonomuraea 

Pseudonocardia 

Saccharothrix 

Streptomyces 

KNN34c, KNN53-1a 

KNN57-1b, KNN57-2b 

KNN55-1b 

KNN10-4d, KNN54-1a 

C34, C38, C58, C59, C79, KNN2-6c, KNN13a, 

KNN17-2b, KNN21a, KNN23-1b, KNN24-1b, 

KNN26b, KNN35-1b, KNN35-2b, KNN38-1b, 

KNN42f, KNN48-1c, KNN51b, KNN66b, 

KNN83e, KNN87b and  KNN90a 

3. 3. 6.  Screening for bioactivity 

Plug assays. One hundred and thirty four isolates, 106 from the Salar de Atacama and 

28 from the Yungay environmental sample (Table 3.7) taken to represent multi-

membered and single-membered colour-groups were screened for antimicrobial activity 

against a panel of wild type  microorganisms using a standard agar plug assay (Fiedler, 

2004), as detailed on page 61 in the Materials and Methods section. 
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Table 3.7. Representative strains isolated from the Salar de Atacama and Yungay 

environmental samples examined against the panel of wild type microorganisms in plug 

assays. 

Salar de Atacama Yungay 

Multi-membered colour-groups: 

KNN1-2c, KNN1-5f, KNN2-2c, KNN2-5c, KNN2-6c, KNN2-

10d, KNN2-11d, KNN3-1b, KNN3-2b, KNN3-11d, KNN3-17d, 

KNN4-1b, KNN4-3b, KNN4-4a, KNN5-24b, KNN5-25d, KNN6-

2a, KNN6-5a, KNN6-6b, KNN6-10b, KNN6-11a, KNN8-3a, 

KNN8-5b, KNN8-8a, KNN8-9c, KNN8-10e, KNN9-1a, KNN9-

2c, KNN10-3b, KNN10-4d, KNN10-5a, KNN11-2a, KNN11-4b, 

KNN11-5a, KNN11-6a, KNN14-3e, KNN17-1c, KNN17-2b, 

KNN18-3d, KNN24-2c, KNN24-3c, KNN24-4c, KNN24-7e, 

KNN24-8e, KNN24-9e, KNN32-1a, KNN35-1b, KNN35-2b, 

KNN36-1c, KNN36-3c, KNN37-1e, KNN37-5a, KNN38-1b, 

KNN38-5b, KNN48-3e, KNN48-6d, KNN49-5e, KNN49-26a, 

KNN50-8b, KNN50-11c, KNN52-2b, KNN53-1a, KNN53-2a, 

KNN53-3a, KNN54-1a, KNN57-1b, KNN58-1b, KNN61-1a, 

KNN63-2b, KNN63-15b, KNN64-3a, KNN64-5b, KNN65-1f, 

KNN65-5d, KNN67-4b, KNN68-2b, KNN68-4b, KNN69-1a, 

KNN69-2, KNN69-3a, KNN71-2a, KNN73-2a, KNN74-2c, 

KNN75-4b,  KNN81-2b, KNN82-1a, KNN85-1f 

Single-membered colour groups: 

KNN25c, KNN26b, KNN27a, KNN28a, KNN29a, KNN30a, 

KNN31d, KNN33a, KNN34c, KNN39c, KNN43b, KNN56a, 

KNN66b, KNN72a, KNN76b, KNN83e, KNN87b, KNN94es 

Multi-membered colour groups: 

KNN7-2b, KNN13a, KNN21a, 

KNN23-1b, KNN44-2a, KNN44-4b, 

KNN45-1a, KNN45-2b, KNN45-3b, 

KNN45-4b, KNN46-1b, KNN46-2b, 

KNN46-3b, KNN46-4b, KNN46-5b, 

KNN46-6a, KNN46-7a, KNN46-8a, 

KNN55-1b, KNN86-1b,  KNN88-

1a,  KNN91-1a   

 

Single-membered colour groups: 

KNN47b, KNN51b, KNN89a, 

KNN90a, KNN96a, KNN97a 

 

Reporter strains. The 92 isolates which showed activity in the plug assays were 

examined against five B. subtilis reporter strains designed to detect specific modes of 

action on the target cells (Table 3.8), as details on pages 61 and 63 in the Materials and 

Methods section.   

Disk diffusion assays. The mycelial extracts of the 92 representative isolates tested in 

the plug assays were examined against the E. coli and S. cerevisiae strains and against 

the 5 B. subtilis reporter strains. Each isolate was grown on ISP medium 2 (Shirling & 

Gottlieb, 1966), prepared with 0.8% agar, and incubated for 7 days at 30
o
C. Cultures 

growing on the ISP medium were crushed using a sterile syringe, kept overnight at        

-20
o
C, the supernatants (extracts) collected using wide bore pipette tips and transferred 

to 10 ml Falcon tubes. The media used for the disk diffusion assays were prepared as for 

the plug assays. The resultant media were poured into the corresponding Petri dishes 

and allowed to solidify. Twenty sterile Whatman filter paper disks (6 mm diameter) 

impregnated with 10 µl of extracts were placed on the agar surface of each Petri dish, 
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the plates incubated overnight at 30
o
C and the extent of zones of inhibition measured.  

3. 3. 7.  Preliminary characterisation of bioactive compounds 

Selection of strains.  Six strains belonging to the genera Amycolatopsis (isolates 

KNN50-8b and KNN50-16d) and Streptomyces (isolates KNN26b, KNN38-1b, 

KNN64-5b and KNN90a) were chosen because they produced extensive inhibition 

zones in the plug assays and were distinct from their closest phylogenetic neighbours in 

the corresponding Amycolatopsis and Streptomyces 16S rRNA gene trees. 

 

Production media and growth conditions.  Each of the selected strains was shaken at 

180 rpm at 28
o
C for 14 days in 50 ml of each of the production media, namely yeast-

extract malt-extract broth (ISP medium 2, Shirling & Gottlieb, 1966), medium 19 and 

medium 410  broths (Goodfellow & Fiedler, 2010); each formulation contained 1 gram 

Amberlite (Sigma-Aldrich, Gillingham, Dorset, UK) per 50 ml of production medium 

for secondary metabolite adsorption. The inoculated media were shaken at 180 rpm for 

14 days at 28
o
C. 

 

Preparation of extracts.  The Amberlite beads were separated from production media 

biomass by centrifugation at 2,000 rpm for 5 minutes then washed 4-5 times with sterile 

distilled water.  The Amberlite bead preparations were then shaken in 50 ml of 

methanol overnight prior to centrifugation at 3000 rpm for 10 minutes and the 

Amberlite discarded.  The resultant supernatants were dried under a nitrogen gas stream 

and the dried preparations sent to Professor Marcel Jaspars at Aberdeen University for 

chemical analyses. 

 

Chemical analyses.  Each preparation was dissolved in methanol to give a final 

concentration of 0.5mg/mL, filtered and submitted for liquid chromatographic/mass 

spectrometric (LCMS) analysis. High resolution mass spectral data were obtained from 

a Thermo Instruments MS system (LTQ XL/ LTQ Orbitrap Discovery) coupled to a 

Thermo Instruments HPLC system (Accela PDA detector, Accela PDA autosampler and 

Accela Pump using the following conditions: capillary voltage 45 V, capillary 

temperature 260°C, auxilliary gas flow rate 10-20 arbitrary units, sheath gas flow rate 

40-50 arbitrary units, spray voltage 4.5 kV. mass range 100–2000 amu (maximum 

resolution 30000). An Agilent Poroshell 120, EC-C18, 2.1x100 mm, 2.7um UPLC 
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column was used for LC/MS with a mobile phase of 0-100% MeCN over 30 minutes at 

0.5 ml/min flow rate. The results were presented as mass spectrophotometric (MS), and 

ultraviolet (UV) traces. 

 

3.4. Results 

3. 4. 1.  Physico-chemical properties of environmental samples 

The pH, moisture and organic matter contents of the Salar de Atacama and Yungay 

environmental samples are shown in Table 3.9.  The pH values recorded for the two 

samples were similar, but the Salar de Atacama environmental sample contained a little 

more moisture and organic matter when compared with that from the Yungay sample. 

 

Table 3.8.  Physico-chemical properties of the environmental samples. 

Environmental 

sample 
pH Moisture content (%) 

Organic matter content 

(%) 

Salar de Atacama 7.7+0.2* 0.007 0.03 

Yungay region 7.5+0.2* 0.004 0.01 
*Standard deviation.  

3. 4. 2.  Enumuration, detection of isomers of diaminopimelic acid and colour-

grouping 

Number of actinobacteria isolated from the Salar de Atacama and Yungay 

environmental samples.  Small numbers of actinobacteria, but very few unwanted 

bacteria, were detected on the isolation media inoculated with suspensions of the Salar 

de Atacama and Yungay environmental samples (Table 3.10).  The highest counts were 

recorded on the humic acid vitamin agar plates for both the Salar de Atacama and 

Yungay environmental samples, namely 1.3x10
4
 and 5 x 10

3
 cfu/gram weight of 

environmental sample, respectively. 

 

Assignment to colour-groups.  The 420 strains isolated from the two environmental 

samples were assigned to 63 multi- and 35 single-membered colour-groups based on 

aerial spore mass, substrate mycelial and diffusible pigment colours after growth on the 

oatmeal agar at 28
o
C for 14 days, (melanin pigments were only produced by members 
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of colour-groups KNN16, KNN29 and KNN44; see Appendix 1).  Eighty three of the 

98 representatives of the colour-groups, namely 92 Streptomyces and a single Kribbella 

strain, containied LL-A2pm in whole-cell hydrolysates and hence were considered 

belong to the genus Streptomyces. The remaining isolates contained meso-A2pm in 

whole-organism hydrolysates and hence were considered to be non-streptomycetes.  

The balance of isolates in the multi-membered colour-groups were assigned to the same 

taxa as the corresponding representative strain (see Table 3.24). 

 

Table 3.9. Number of actinobacteria (cfu/g dry weight environmental sample) growing 

on selective media inoculated with suspensions of the Salar de Atacama and Yungay 

environmental samples and incubated at 28
o
C for 3 weeks. 

Sample 

Media 
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Salar de 

Atacama 
1.1x104 None None 1.3x104 None None 1.3x102 0.3x102 None 0.1x102 0.3x102 

Yungay 3x102 2.3x102 2.4x102 5x103 1x102 3x102 0.2 x102 1.3x102 2.4x102 2.3x102 4.7x102 

 

The 315 strains isolated from the Salar de Atacama environmental sample were 

assigned to 49 multi- and 23 single-membered colour-groups (Table 3.2; Appendix 1); 

these strains were comprised of 250 streptomycetes and 65 non-streptomycetes, that is 

79% and 21% of the total number of isolates, respectively.  The streptomycetes were 

assigned to 43 multi-membered colour-groups and the latter to the remaining 6 colour-

groups.  Similarly, 13 out of the 23 single-membered colour-groups were composed of 

streptomycetes, the remaining ones were considered to be non-streptomycetes. 

Over half of the streptomycetes were recovered in colour-groups KNN2, KNN5 

and KNN63.  The largest of these taxa, colour-group KNN5, contained 25 isolates (7.9% 

of the total number of isolates); these strains produced a medium gray aerial spore mass, 

a gray greenish yellow substrate mycelium and a pale gray greenish yellow diffusible 

pigment.  The next largest taxon, colour-group  KNN2, included 23 strains (7.3% of the 

total number of isolates); these strains formed a medium gray aerial spore mass, an 
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olivaceous black substrate mycelium and a light olivaceous gray diffusible pigment.  

Similarly, colour-group  KNN63, encompassed 19 strains (6% of the total number of 

isolates); these strains formed a yellowish white aerial spore mass, a yellowish white 

substrate mycelium but did not produce a diffusible pigment.   

The 65 non-streptomycete strains isolated from the Salar de Atacama 

environmental sample were assigned to 6 multi-membered (63 isolates) and 2 single-

membered colour-groups.  The largest multi-membered colour-group, KNN49, 

contained 32 strains (10.2% of the total number of isolates); these organisms produced a 

white aerial spore mass, a yellowish substrate mycelium but did not form a diffusible 

pigment.  The next largest taxon, colour-group KNN 50, encompassed 18 isolates (5.7% 

of the total number of isolates); these organisms produced a yellowish white aerial spore 

mass, a yellowish substrate mycelium but no diffusible pigment. 

The 105 strains isolated from the Yungay environmental sample were assigned to 20 

multi-membered and 13 single-membered colour groups (Table 3.3; Appendix 1).  

Seventy-seven of the isolates were assigned to the genus Streptomyces (73% of the 

total), the remaining 28 to non-streptomycete taxa (27%).  The largest taxon, colour–

group KNN48, included 14 isolates (13.3% of total number of isolates); these strains 

produced a yellowish white aerial spore mass, a yellowish substrate mycelium but did 

not produce diffusible pigments.  Colour-groups KNN92 and KNN95 each contained 7 

isolates (6.7% of the total number of isolates). Members of colour-group KNN92 

formed  a dark pale gray aerial spore mass, a blackish purple and a light reddish brown 

diffusible pigment and those assigned to colour-group KNN95 produced a yellowish 

white aerial spore mass, a middle orange yellow substrate mycelium and a gray yellow 

diffusible pigment. 

  The isolates assigned to the family Geodermatophilaceae fell into 3 colour-

groups, all of which encompassed isolates that formed black shiny colonies.  The largest 

of these taxa, colour-group KNN46, contained 12 isolates (11.4% of the total number of 

isolates) which exhibited shiny black colonies, did not form diffusible pigments or an 

aerial spore mass. Similarly, colour-group KNN 45 contained 4 isolates (3.8%) which 

formed shiny orange-black colonies.  The final colour-group, KNN44 contained 4 

isolates (3.8%) which produced  shiny black colonies and a light yellowish brown 

diffusible pigment. 
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Forty three of the multi-membered colour-groups were comprised of streptomycetes 

isolated from the Salar de Atacama environmental sample, and a further 14 

streptomycetes isolated from the Yungay environmental sample.  In contrast, colour-

groups KNN16, KNN29 and KNN48 encompassed streptomycetes isolated from each 

of the environmental samples.  Colour-group KNN16 contained 2 strains, a single 

isolate from each of the environmental samples; these organisms produced a pale yellow 

aerial spore mass, a yellowish white substrate mycelium, but did not form a diffusible 

pigment.  Similarly, colour-group KNN29 contained 3 isolates, one from the Salar de 

Atacama environmental sample and two from the Yungay environmental sample; these 

isolates formed a yellowish white aerial spore mass, a yellowish white substrate 

mycelium, and a yellowish white diffusible pigment.  The final colour-group, KNN48, 

contained 5 isolates from the Salar de Atacama environmental sample and 15 from the 

corresponding Yungay environmental sample; these organisms formed a yellowish 

white aerial spore mass, a yellowish white substrate mycelium and a light orange yellow 

diffusible pigment.  

3. 4. 3.  Classification of representative strains isolated from the Salar de Atacama 

and Yungay environmental samples based on chemotaxonomic, morphological and 

phylogenetic data 

Phylogenetic analyses.  Eighty three out of the 98 representatives of the multi-and 

single-membered colour-groups contained LL-A2pm in whole-organism hydrolysates, 

formed streptomycetes-like colonies and were recovered within the evolutionary 

radiation encompassed by the genus Streptomyces based on 16S rRNA gene sequence 

data.  The remaining 15 isolates, which contained meso-A2pm in whole-organism 

hydrolysates, were found to belong to 10 taxa based on 16S rRNA gene sequence data, 

namely the genera Actinomadura, Amycolatopsis, Blastococcus, Couchioplanes, 

Geodermatophilus, Lechevalieria, Modestobacter, Nonomuraea, Pseudonocardia and 

Saccharothrix. 

 

The genus Actinomadura.  Three isolates from the Salar de Atacama environmental 

sample were recovered within the Actinomadura 16S rRNA gene tree (Figure 3.1).  

Isolates KNN53-1a and KNN53-3a, representatives of a colour-group which containing 

three isolates, were found to share a 16S rRNA gene sequence similarity of 99.9%, a 

value shown to correspond to 2 nucleotide (nt) differences at 1332 sites (Table 1; 
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Appendix 4).  These isolates formed a distinct branch in the Actinomadura 16S rRNA 

gene tree together with the type strains of Actinomadura apis and Actinomadura 

rifamycini; this taxon was supported by all of the tree-making algorithms and by a 96% 

bootstrap value.  Strains KNN53-1a and KNN53-3a were most closely related to A. apis 

IMI 17.1
T
 sharing a 99.7% 16S rRNA gene similarity with the latter, a value that 

corresponded to 6 and 4 nt differences, respectively at 1351 locations.  Similarly, isolate 

KNN34c, the representative of a single membered colour-group, formed a well 

delineated branch in the Actinomadura 16S rRNA gene sequence tree together with the 

type strains of Actinomadura flavalba, Actinomadura rugatobispora and Actinomadura 

vinacea; the taxonomic integrity of this subclade was supported by all of the tree-

making algorithms and by a 65% bootstrap value.  Isolate KNN34c was found to be 

most closely related to A. rugatobispora NBRC 14382
T
, the two strains shared a 16S 

rRNA gene sequence similarity of 98.8%, a value found to be equivalent to 16 nt 

differences at 1336 locations (Appendix 4, Table 1).  This isolate was also loosely 

related to A. vinacea ICM 3325
T
, these strains shared a 16S rRNA gene sequence 

similarity of 98.5%, a value corresponding to 20 nt differences at 1338 locations. 

 

The genus Amycolatopsis.  Twenty six strains isolated from the Salar de Atacama 

environmental sample were recovered within the Amycolatopsis methanolica 16S rRNA 

subclade (Figure 3.2).  Thirteen of the isolates had identical or almost identical 16S 

rRNA gene sequences to that of the type strain Amycolatopsis ruanii, as association that 

was supported by all of the tree-making algorithms and by a 99% bootstrap value.  

Similarly, 13 isolates had identical or almost identical 16S rRNA gene sequences to that 

of the type strain of Amycolatopsis thermalba, a relationship that was underpinned by 

all of the tree-making algorithms and by a 99% bootstrap value.  In contrast, strains 

GY024 and GY142, which were isolated from an arid Australian environmental sample 

formed a distinct branch in the A. methanolica 16S rRNA gene subclade.  These isolates 

shared a 16S rRNA gene similarity of 99.7%, a value shown to correspond to 4 nt 

differences at 1366 sites (Appendix 4, Table 2), the taxonomic integrity of this subclade 

was supported by all of the tree-making algorithms and by a 100% bootstrap values.  

Isolates GY024 and GY142 were found to be most closely related to A. ruanii 

NGM112
T
 sharing 16S rRNA gene sequence similarities with the latter of 98.9 and 

98.7%, respectively, values corresponding to 15 and 14 nt differences at 1395 and 1410 

locations (Table 2, Appendix 4).  The results obtained for the Amycolatopsis strains will 

be considered in detail in Chapter 4. 
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Figure 3.1.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains isolated from the hyper-arid Salar de 

Atacama environmental sample and relationships between them and type strains of the 

most closely related Actinomadura species. Asterisks indicate branches of the tree that 

were also recovered with the maximum-likelihood and maximum-parsimony tree-

making methods.   ML indicates a branch of the tree that was supported by the 

maximum-likelihood tree-making method.  Numbers at the nodes indicate levels of 

bootstrap support based on a neighbour-joining analysis of 1000 resampled datasets; 

only values above 50% are shown.  The scale bar indicates 0.005 substitutions per 

nucleotide position. 
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Figure 3.2.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains isolated from the hyper-arid Salar de 

Atacama environmental sample and relationships between them and the type strains of 

the most closely related Amycolatopsis species.  Asterisks indicate branches of the tree 

that were also recovered with the maximum-likelihood and maximum-parsimony tree-

making methods.   Numbers at the nodes indicate levels of bootstrap support based on a 

neighbour-joining analysis of 1000 resampled datasets; only values above 50% are 

shown.  The scale bar indicates 0.005 substitutions per nucleotide position. Blue and 

green coloured subclades signified strains isolated from the hyper-arid Salar de 

Atacama soil and from the composite Australian soil, respectively. 

 

The family Geodermatophilaceae.  Sixteen isolates from the Yungay environmental 

sample were assigned to the Geodermatophilaceae 16S rRNA gene tree (Figure 3.3).  

The single strain assigned to the genus Blastococcus, isolate KNN47b, the 

representative of a single-membered group, formed a well delineated phyletic line with 

Blastococcus saxobidens BC448
T
, this taxon was supported by all of the tree-making 

algorithms and by 99% bootstrap value.  The two strains shared a 16S rRNA gene 

sequence similarity of 99.0%, a value shown to correspond to 14 nt differences at 1422 

sites.  Isolate KNN47b was also closely related to Blastococcus endophytica 

YIM68236
T
, these organisms shared a 16S rRNA gene sequence similarity of 98.2 %, a 
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value equivalent to 15 nt differences at 1422 sites (Appendix 4, Table 3).  

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains isolated from the Yungay 

environmental sample and relationships between them and the type strains of the most 

closely related Blastococcus, Geodermatophilus and Modestobacter species.  Asterisks 

indicate branches of the tree that were also recovered with the maximum-likelihood and 

maximum-parsimony tree-making methods.   ML indicates a branch of the tree that was 

supported by the maximum-likelihood method.  Numbers at the nodes indicate levels of 

bootstrap support based on a neighbour-joining analysis of 1000 re-sampled datasets; 
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only values above 50% are shown.  The scale bar indicates 0.005 substitutions per 

nucleotide position. 

 

Three strains , isolates KNN44-1b, KNN44-3b and KNN44-4b, representatives of a 

colour-group that contained 4 isolates, formed a well delineated branch in the 

Geodermatophilus 16S rRNA gene tree together with the type strains of 

Geodermatophilus obscurus, Geodermatophilus ruber and Geodermatophilus siccatus; 

the taxonomic status of this subclade was supported by all of the tree-making algorithms 

and by a 95% bootstrap value.  Isolate KNN44-3b shared a 16S rRNA gene sequence 

similarity to isolate KNN44-4b of 99.9%, a value equivalent  to a single nt difference at 

1324 sites.  Isolates KNN44-1b and KNN44-3b shared a 16S rRNA gene sequence of 

99.7%, a value corresponding to 4 nt differences at 1300 sites. Isolate KNN44-1b was 

also found to share a 16S rRNA gene sequence similarity to isolate KNN44-4 of 99.9%, 

a value that corresponded to a single nt difference at 1288 sites.  Isolates KNN44-1b, 

KNN44-3b and KNN44-4b were most closely related to Geodermatophillus obscurus 

DSM 43160
T
 sharing 16S rRNA gene sequence similarities with the latter of 99.9, 98.6 

and 99.9%, respectively, values equivalent to 13, 20 and 13 nt differences at 1300, 1428 

and 1324 locations. These isolates were also closely related to Geodermatophilus 

siccatus CF6
T
 sharing 16S rRNA sequences similarities with the latter within the range 

of 98.5 to 98.9%. 

 

The 12 Modestobacter isolates were assigned to 2 subclades in the Modestobacter 16S 

rRNA gene tree that were related to the type strains of Modestobacter marinus and 

Modestobacter versicolor, respectively (Figure 3.5). The 4 isolates that were most 

closely related to M. marinus 42H12-1
T
 were from colour-group KNN45, the remaining 

8 isolates that were most closely related to M. versicolor CP153-2
T
, all of these isolates 

belonged to colour-group KNN46. The results obtained for the Modestobacter isolates 

will be considered in detail in Chapter 5. 

 

The genus Couchioplanes.   Isolate KNN7-2b, a representative of a colour-group 

KNN7 containing 4 isolates, formed a distinct phyletic branch in the Couchioplanes 16S 

rRNA gene tree (Figure 3.4).  This isolate was most closely related to the type strain of  

Couchioplanes caeruleus subsp. azureus,  a relationship that was supported by all of the 

tree-making algorithms, but not by a high bootstrap value.  The two strains shared a 16S 
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rRNA gene sequence similarity of 98.6%, a value shown to correspond to 20 nt 

differences at 1386 locations (Table 3.11).  Isolate KNN7-2b was also closely related to 

Pseudosporangium ferrugineum 3-4-a-19
T
, these strains shared a 16S rRNA gene 

sequence similarity of 98.5%, a value equivalated to 25 nt differences at 1381 locations 

(Table 3.11). 

 

 

 

 

 

Figure 3.4.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN7-2b isolated from the Yungay 

environmental sample and closely related members of the genera Couchioplanes and 

Pseudosporangium. Asterisks indicate branches of the tree that were also recovered 

using the maximum-likelihood and maximum-parisimony tree-making methods. 

Numbers at the nodes indicate levels of bootstrap support based on a neighbour-joining 

analysis of 1000 re-sampled datasets; only values above 50% are shown.  The scale bar 

indicates 0.002 substitutions per nucleotide position. 

 

Table 3.10.  Nucleotide similarities  (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strain KNN7-2b isolated from the 

extreme hyper-arid Yungay environmental sample and its nearest phylogenetic 

neighbours. 

Isolate 1 2 3 4 5 6 7 

1. Isolate KNN7-2b --- 20/1386 25/1381 21/1385 41/1375 30/1378 50/1382 

2. C. caeruleus subsp. 

azureus 98.6 --- 15/1445 15/1449 31/1436 28/1442 40/1446 

3. C. caeruleus subsp. 

caeruleus 98.2 99.0 --- 17/1451 33/1440 29/1438 47/1447 

4. Pseudosporangium 

ferrugineum 98.5 99.0 98.8 --- 31/1442 26/1442 43/1469 

5. Actinoplanes 

missouriensis 97.0 97.8 97.7 97.9 --- 34/1430 50/1441 

6. Actinoplanes braziliensis 97.8 98.1 98.0 98.2 97.6 --- 30/1438 

7. Micromonospora 

wenchangensis 96.4 97.2 96.8 97.1 96.5 97.9 --- 

Strain codes, as given in Figure 3.4. 
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The genus Kribbella.  Strain KNN56a, which was isolated from the Salar de Atacama 

environmental sample, represented a single-membered colour-group.  It formed a well 

delineated branch in the Kribbella 16S rRNA gene tree (Figure 3.5) together with the 

type strain of Kribbella antibiotica, the taxonomic status of which was supported by all 

of the tree-making algorithms and by a 56% bootstrap value.  The two strains shared a 

16S rRNA gene sequence similarity of 99.3%, a value found to correspond to 10 nt 

differences at 1417 sites. Isolate KNN56a was closely related to Kribbella 

albertanoniae BC640
T
, these strains shared a 16S rRNA gene sequence similarity of 

99.2%, a value corresponding to 11 nt differences at 1421 sites (Table 3.12). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN56a isolated from the hyper-arid 

Salar de Atacama environmental sample and the type strains of closely related Kribbella 

species. Asterisks indicate branches of the tree that were also recovered with the 

maximum-likelihood and maximum-parsimony tree-making methods.   Numbers at the 

nodes indicate levels of bootstrap support based on a neighbour-joining analysis of 1000 

re-sampled datasets; only values above 50% are shown.  The scale bar indicates 0.002 

substitutions per nucleotide position. 

 

 

Table 3.11. Nucleotide similarities (%) and differences  based on almost complete 16S 

rRNA gene sequences between strain KNN56a isolated from the hyper-arid Salar de 

Atacama environmental sample and the type strains of closely related Kribbella species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 

1. KNN56 a --- 10/ 11/ 11/ 12/ 13/ 14/ 15/ 17/ 17/ 17/ 29/ 
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1417 1421 1344 1379 1408 1419 1374 1420 1419 1382 1419 

2. K. antibiotica 99.3 --- 

13/ 

1417 

19/ 

1342 

20/ 

1377 

17/ 

1406 

21/ 

1417 

20/ 

1372 

19/ 

1416 

23/ 

1417 

16/ 

1380 

35/ 

1417 

3. K. albertanoniae 99.2 99.1 --- 

11/ 

1344 

12/ 

1379 

4/ 

1408 

12/ 

1419 

17/ 

1374 

6/ 

1420 

17/ 

1419 

19/ 

1382 

27/ 

1419 

4. K. swartbergensis 99.2 98.6 99.2 --- 

3/ 

1304 

13/ 

1333 

13/ 

1344 

18/ 

1299 

17/ 

1343 

16/ 

1344 

22/ 

1307 

26 

/1344 

5. K. karoonensis 99.1 98.6 99.1 99.8 --- 

12/ 

1376 

14/ 

1379 

19/ 

1372 

18/1

378 

17/ 

1379 

23/ 

1379 

27/ 

1379 

6. K. sandramycini 99.1 98.8 99.7 99.0 99.1 --- 

14/ 

1408 

19/ 

1371 

8/ 

1407 

19/ 

1408 

21/ 

1379 

29/ 

1408 

7. K. flavida 99.0 98.5 99.2 99.0 99.0 99.0 --- 

13/ 

1374 

18/ 

1418 

13/ 

1419 

18/ 

1382 

30/ 

1419 

8. K. sancticallist 98.9 98.5 98.8 98.6 98.6 98.6 99.1 --- 

23/ 

1373 

18/ 

1374 

19/ 

1374 

35/ 

1374 

9. K. yunnanensis 98.8 98.7 99.6 98.7 98.7 99.4 98.7 98.3 --- 

23/ 

1418 

25/ 

1381 

33/ 

1418 

10. K. alba 98.8 98.4 98.8 98.8 98.8 98.7 99.1 98.7 98.4 --- 

15/ 

1382 

32/ 

1419 

11. K. endophytica 98.8 98.8 98.6 98.3 98.3 98.5 98.7 98.6 98.2 98.9 --- 

39/ 

1382 

12. K. jejuensis 98.0 97.5 98.1 98.1 98.0 97.9 97.9 97.5 97.7 97.7 97.2 --- 

Strain codes, as given in Figure 3.5. 

 

The genus Lechevalieria.  Strain KNN94e, the representative of a single-membered 

colour-group, was isolated from the Salar de Atacama environmental sample.  This 

isolate formed a well delineated branch in the Lechevalieria 16S rRNA gene tree 

together with the type strains of Lechevalieria atacamensis, Lechervalieria deserti and 

Lechevalieria roselyniae; the taxonomic status of  this subclade was supported by all of 

the tree-making algorithms and by a 100% bootstrap value (Figure 3.6).  The isolate 

shared a 100% 16S rRNA gene sequence with L. atacamensis C61
T
. It was also closely 

related to  L. roselyniae C81
T
; these strains shared a 16S rRNA gene sequence similarity 

of 99.8%, a value that corresponed to 2 nt differences at 1375 locations (Table 3.13). 
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Figure 3.6.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN94e isolated from the Salar de 

Atacama environmental sample and closely related type strains of Lechevalieria and 

Lentzea species.  Asterisks indicate branches of the tree that were also recovered with 

the maximum-likelihood and maximum-parsimony tree-making algorithms.  ML and 

MP indicates branches of the tree that were supported by the maximum-likelihood and 

maximum-parsimony methods.  Numbers at the nodes indicate levels of bootstrap 

support based on a neighbour-joining analysis of 1000 resampled datasets.  Only values 

above 50% are shown.  The scale bar indicates 0.002 substitutions per nucleotide 

position. 

 

Table 3.12.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences between isolate KNN94e from the hyper-arid Salar de Atacama 

environmental sample and the type strains of Lechevalieria and closely related Lentzea 

species. 

Isolate  1 2 3 4 5 6 7 8 9 10 

1. Isolate KNN94e  --- 

20/ 

1375 

14/ 

1375 

0/ 

1375 

4/ 

1375 

2/ 

1375 

21/ 

1375 

19/ 

1375 

16/ 

1373 

19/ 

1373 

2. L. flava  98.5 --- 
17/ 
1377 

20/ 
1377 

25/ 
1377 

23/ 
1377 

20/ 
1377 

24/ 
1377 

32/ 
1375 

25/ 
1375 

3. L. xinjiangensis  99 98.8 --- 

14/ 

1377 

19/ 

1377 

17/ 

1377 

17/ 

1377 

29/ 

1377 

30/ 

1375 

25/ 

1375 

4. L. atacamensis  100 98.5 99 --- 
5/ 
1377 

3/ 
1377 

21/ 
1377 

19/ 
1377 

16/ 
1375 

19/ 
1375 

5. L. deserti 99.7 98.2 98.6 99.6 --- 

2/ 

1377 

26/ 

1377 

24/ 

1377 

21/ 

1375 

24/ 

1375 

6. L. roselyniae 99.8 98.3 98.8 99.8 99.8 --- 
24/ 
1377 

22/ 
1377 

19/ 
1375 

22/ 
1375 

7. L. aerocolonigenes  98.5 98.5 98.8 98.5 98.1 98.3 --- 

17/ 

1377 

25/ 

1375 

17/ 

1375 

8. L. fradiae 98.6 98.3 97.9 98.6 98.3 98.4 98.8 --- 
21/ 
1375 

19/ 
1375 

9. Lentzea albida  98.8 97.7 97.8 98.8 98.5 98.6 98.2 98.5 --- 

12/ 

1373 

10. Lentzea kentuckyensis  98.6 98.2 98.2 98.6 98.2 98.4 98.8 98.6 99.1 --- 

Strain codes, as given in Figure 3.6. 

 

The genus Nonomuraea.  Strain KNN57-2b, a representative of a colour-group KNN57 

which contained 2 isolates, was isolated from the Salar de Atacama environmental 

sample and shown to belong to the Nonomuraea 16S rRNA gene tree (Figure 3.7).  It 

formed a distinct branch in the tree and was most closely related to Nonomuraea 

candida HMC10
T
; these strains shared a 16S rRNA gene sequence similarity of 99.8%, 

a value shown to correspond to 7 nt differences at 1368 locations.  The isolate was also 

closely related to Nonomuraea jabiensis A4036
T
, these strains shared a 16S rRNA gene 

sequence similarity of 99.0%, a value shown to correspond to 14 nt differences at 1403 
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locations (Table 3.14). 

 

 

 

 

 

 

 

Figure 3.7.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN57-2b isolated from the Salar de 

Atacama environmental sample and the type strains of closely related Nonomuraea 

species. Asterisks indicate branches of the tree that were also recovered with the 

maximum-likelihood and maximum-parsimony tree-making methods.   ML indicates 

branches of the tree that were supported by the maximum-likelihood method.  Numbers 

at the nodes indicate levels of bootstrap support based on a neighbour-joining analysis 

of 1000 re-sampled datasets; only values above 50% are shown.  The scale bar indicates 

0.01 substitutions per nucleotide nucleotide position. 

 

Table 3.13.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strain KNN57-2b from the hyper-

arid Salar de Atacama environmental sample and the type strains of closely related 

Nonomuraea species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. KNN57-2b --- 

7/ 

1368 

14/ 

1403 

19/ 

1405 

17/ 

1399 

17/ 

1405 

19/ 

1399 

19/ 

1405 

19/ 

1404 

22/ 

1404 

23/ 

1397 

38/ 

1405 

41/ 

1401 

2. N. candida 99.8 --- 
17/ 
1370 

20/ 
1370 

24/ 
1364 

14/ 
1370 

21/ 
1366 

18/ 
1370 

11/ 
1369 

23/ 
1370 

18/ 
1363 

35/ 
1370 

46/ 
1368 

3. N. jabiensis 99.0 98.8 --- 

27/ 

1406 

14/ 

1399 

28/ 

1405 

25/ 

1401 

22/ 

1405 

23/ 

1404 

23/ 

1404 

25/ 

1398 

36/ 

1406 

41/ 

1403 

4. N. endophytica 98.7 98.5 98.1 --- 
28/ 
1401 

23/ 
1407 

29/ 
1402 

31/ 
1407 

22/ 
1408 

32/ 
1406 

30/ 
1400 

43/ 
1408 

52/ 
1405 

5. N. agiospora 98.8 98.2 99.0 98.0 --- 

31/ 

1401 

16/ 

1398 

29/ 

1401 

27/ 

1401 

26/ 

1400 

31/ 

1393 

46/ 

1401 

32/ 

1399 

6. N. salmonea 98.8 99.0 98.0 98.4 97.8 --- 
31/ 
1401 

22/ 
1407 

23/ 
1406 

23/ 
1406 

28/ 
1398 

46/ 
1407 

55/ 
1403 

7. N. helvata 98.6 98.5 99.2 97.9 98.9 97.8 --- 

26/ 

1401 

27/ 

1401 

27/ 

1400 

27/ 

1396 

43/ 

1402 

40/ 

1400 

8. N. kuesteri 98.7 98.7 98.4 97.8 97.9 98.4 98.1 --- 
21/ 
1406 

8/ 
1407 

29/ 
1398 

41/ 
1408 

53/ 
1403 
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9. N. turkmeniaca 98.7 99.2 98.4 98.4 98.1 98.4 98.1 98.5 --- 
26 

/1405 

24/ 
1399 

35/ 
1406 

50/ 
1405 

10. N. maheshkhaliensis 98.4 98.3 98.4 97.7 98.1 98.4 98.1 99.4 98.2 --- 

34/ 

1397 

44/ 

1407 

48/ 

1402 

11. N. rubra 98.4 98.7 98.2 97.9 97.8 98 98.1 97.9 98.3 97.6 --- 
45/ 
1399 

56/ 
1397 

12. N. rhizophila 97.3 97.5 97.4 97.0 96.7 96.7 96.9 97.1 97.5 96.9 96.8 --- 

71/ 

1403 

Strain codes, as given in Figure 3.7. 

 

The genus Pseudonocardia.  Two isolates, strains KNN55-1b and KNN55-2b, from the 

Yungay environmental sample were recovered in the Pseudonocardia 16S rRNA gene 

tree (Figure 3.8).  The two strains, which formed colour-group KNN55, were found to 

share a 16S rRNA gene sequence similarity of 96.9%, a value shown to correspond to 

41 nucleotide (nt) differences at 1318 sites (Table 3.15).  The strains formed distinct 

branches in the Pseudonocardia 16S rRNA gene tree together with the type strains of 

Pseudonocardia petroleophila and Pseudonocardia seraimata; a taxon that was 

supported by all of the tree-making algorithms, but not by high bootstrap values.  Strain 

KNN55-1b was most closely related to P. petroleophila ATCC 15777
T
 sharing a 99.0% 

16S rRNA gene sequence similarity with the latter, a value corresponding to 14 nt 

differences at 1363.  It was also loosely associated with P. serranimata YIM 63233
T
; 

these strains shared a 96.3% 16S rRNA gene sequence similarity, a value equivalent to 

14 nt differences at 1310 sites.  In turn, isolate KNN55-2b was most closely related to P. 

petroleophila ATCC 15777
T
; these strains shared a 99.0% 16S rRNA gene sequence 

similarity, a value corresponding to 14 nt differences at 1370 locations.  It was also 

closely related to P. serranimata YIM 63233
T
; these organisms shared a 96.1% 16S 

rRNA gene sequence similarity, a value corresponding to 51 nt differences 1317 sites. 
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Figure 3.8.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains KNN55-1b and KNN55-2b isolated 

from the Yungay environmental sample and relationships between them and the type 

strains of the most closely related Pseudonocardia species.  Asterisks indicate branches 

of the tree that were recovered with the maximum-likelihood and maximum-parsimony 

tree-making methods.  ML indicates branches of the tree that were also supported by the 

maximum-likelihood method. Numbers at the nodes indicate levels of bootstrap support 

based on a neighbour-joining analysis of 1000 re-sampled datasets; only values above 

50% are shown.  The scale bar indicates 0.005 substitutions per nucleotide position. 

 

Table 3.14.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains isolated from the extreme 

hyper-arid Yungay environmental sample and between them and the type strains of 

closely related Pseudonocardia species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. KNN55-2b  --- 

41/ 

1318 

48/ 

1310 

51/ 

1317 

50/ 

1303 

62/ 

1314 

54/ 

1318 

64/ 

1314 

65/ 

1308 

67/ 

1316 

60/ 

1315 

69/ 

1316 

84/ 

1316 

2. KNN55-1 b 96.9 --- 

14/ 

1363 

14/ 

1370 

19/ 

1325 

24/ 

1365 

25/ 

1371 

26/ 

1367 

28/13

61 

29/ 

1369 

31/ 

1368 

33/ 

1369 

70/ 

1369 

3. P. petroleophila 96.3 99.0 --- 

5/ 

1364 

26/ 

1317 

22/ 

1357 

34/ 

1365 

24/ 

1360 

28/ 

1354 

27/ 

1362 

29/ 

1361 

30/ 

1362 

76/ 

1362 

4. P. seranimata 96.1 99.0 99.6 --- 

29/ 

1324 

25/ 

1364 

31/ 

1372 

27/ 

1367 

27/ 

1361 

30/ 

1369 

30/ 

1368 

33/ 

1369 

75/ 

1369 

5. P. xinjiangensis 96.2 98.6 98.0 97.8 --- 

25/ 

1322 

26/ 

1325 

27/ 

1322 

18/ 

1316 

26/ 

1323 

27/ 

1323 

34/ 

1323 

60/ 

1323 

6. P. kunmingensis 95.3 98.2 98.4 98.2 98.1 --- 

33/ 

1365 

2/ 

1364 

22/ 

1358 

17/ 

1365 

23/ 

1365 

13/ 

1365 

67/ 

1365 

7. P. saturnea 95.9 98.2 97.5 97.7 98.0 97.6 --- 

35/ 

1368 

36/ 

1362 

42/13

70 

43/13

69 

40/ 

1370 

63/ 

1370 

8. P. sichuanensis 95.1 98.1 98.2 98.0 98.0 99.9 97.4 --- 

24/ 

1361 

19/ 

1368 

25/ 

1368 

15/ 

1368 

69/ 

1368 

9. P. aurantiaca 95.0 97.9 97.9 98.0 98.6 98.4 97.4 98.2 --- 

21/ 

1362 

21/ 

1362 

31/ 

1362 

61/ 

1362 

10. P zijingensis 94.9 97.9 98.0 97.8 98.0 98.8 96.9 98.6 98.5 --- 

28/ 

1369 

16/ 

1370 

63/ 

1370 

11. P. alaniniphila 95.4 97.7 97.9 97.8 98.0 98.3 96.9 98.2 98.5 98.0 --- 
34/13
69 

60/ 
1369 

12. P. aselaidensis 94.8 97.6 97.8 97.6 97.4 99.1 97.1 98.9 97.7 98.8 97.5 --- 

72/ 

1370 

13. P. autotrophica 93.6 94.9 94.4 94.5 95.5 95.1 95.4 95.0 95.5 95.4 95.6 94.7 --- 

Strain codes, as given in Figure 3.8. 

 

The genus Saccharothrix. Two isolates, KNN10-4d and KNN54-1a, which represented  

colour-groups containing 5 and 2 strains, respectively, were isolated from the Salar de 

Atacama environmental sample and  recovered in the Saccharothrix 16S rRNA gene 

sequence tree (Figure 3.9). The isolates shared a 16S rRNA gene similarity of 99.1%, a 

value shown to correspond to 12 nt differences at 1346 sites (Table 3.16).  Isolate 

KNN10-4d formed a well delineated branch in the Saccharothrix 16S rRNA gene tree 

together with the type strains of Saccharothrix espanaensis, Saccharothrix texaensis 

and Saccharothrix variisporea; the taxonomic integrity of this subclade was supported 
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by all of the tree-making algorithm but not by a high bootstrap value.  The isolate was 

found to be most closely related to S. texasensis NRRL B-16107
T
 sharing a 98.9% 16S 

rRNA gene sequence similarity with the latter, a value corresponding to 15 nt 

differences at 1346 locations.  Isolate KNN10-4d was also closely related to S. 

espanaensis DSM 44229
T
; these strains  shared a 98.8% 16S rRNA gene sequence 

similarity, a value equivalent to 15 nt differences at 1346 locations.  Similarly, isolate 

KNN54-1a formed a well delineated branch in the Saccharothrix 16S rRNA gene tree 

together with the type strains of Saccharothrix hoggarensis, Saccharothrix longispora 

and Saccharothrix saharensis, the taxonomic status of this subclade was supported by 

all of the tree-making algorithms and by a low bootstrap value of 51%.  The isolate was 

most closely related to S. saharensis SA152
T
 ; these organisms shared a 99.6% 16S 

rRNA gene sequence similarity, a value corresponding to 12 nt differences at 1346 

locations.  Isolate KNN54-1a was also closely related to Saccharothrix xinjiangensis 

NBRC 101911
T
; these strains shared a 99.3% 16S rRNA gene sequence similarity, a 

value equivalent to 6 nt differences at 1346 locations. 

 

 

 

 

 

 

 

Figure 3.9.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains KNN10-4d and KNN54-1a isolated 

from the Salar de Atacama environmental sample and relationships between them and 

the type strains of closely related Saccharothix species.  Asterisks indicate branches of 

the tree that were also recovered with the maximum-likelihood and maximum-

parsimony tree-making methods.   ML and MP indicate branches of the tree that were 

supported by the maximum-likelihood and maximum-parsimony methods.  Numbers at 

the nodes indicate levels of bootstrap support based on a neighbour-joining analysis of 
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1000 re-sampled datasets; only values above 50% are shown.  The scale bar indicates 

0.002 substitutions per nucleotide position. 

 

Table 3.15. Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains isolated from the hyper-

arid Salar de Atacama environmental sample and between them and the type strains of 

closely related Saccharothix species.  

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. KNN54-1a --- 

12/ 

1346 

6/ 

1346 

10/ 

1346 

16/ 

1346 

15/ 

1346 

20/ 

1346 

22/ 

1346 

18/ 

1346 

17/ 

1346 

19/ 

1346 

19/ 

1346 

21/ 

1346 

2. KNN10-4d 99.1 --- 

17/ 

1346 

21/ 

1346 

24/ 

1346 

18/ 

1346 

15/ 

1346 

20/ 

1346 

15/ 

1346 

29/ 

1346 

30/ 

1346 

23/ 

1346 

29/ 

1346 

3. S. saharensis 99.6 98.7 --- 

6/ 

1346 

19/ 

1346 

20/ 

1346 

15/ 

1346 

25/ 

1346 

22/ 

1346 

19/ 

1346 

15/ 

1346 

19/ 

1346 

23/ 

1346 

4. S. xinjiangensis 99.3 98.4 99.6 --- 

15/ 

1346 

16/ 

1346 

21/ 

1346 

21/ 

1346 

18/ 

1346 

23/ 

1346 

21/ 

1346 

13/ 

1346 

19/ 

1346 

5. S. autraliensis 98.8 98.2 98.6 98.9 --- 
17/ 
1346 

30/ 
1346 

21/ 
1346 

15/ 
1346 

28/ 
1346 

32/ 
1346 

19/ 
1346 

11/ 
1346 

6. S. coeruleofusca 98.9 98.7 98.5 98.8 98.7 --- 

27/ 

1346 

25/ 

1346 

21/ 

1346 

32/ 

1346 

33/ 

1346 

16/ 

1346 

24/ 

1346 

7. S. texasensis 98.5 98.9 98.9 98.4 97.8 98.0 --- 
24/ 
1346 

18/ 
1346 

33/ 
1346 

22/ 
1346 

28/ 
1346 

32/ 
1346 

8. S. variisporea 98.4 98.5 98.1 98.4 98.4 98.1 98.2 --- 

11/ 

1346 

33/ 

1346 

38/ 

1346 

22/ 

1346 

26/ 

1346 

9. S. espanaensis 98.7 98.9 98.4 98.7 98.9 98.4 98.7 99.2 --- 
31/ 
1346 

35/ 
1346 

21/ 
1346 

18/ 
1346 

10. S. longispora 98.7 97.9 98.6 98.3 97.9 97.6 97.6 97.6 97.7 --- 

14/ 

1347 

33/ 

1346 

32/ 

1346 

11. S. hoggarensis 98.6 97.8 98.9 98.4 97.6 97.6 98.4 97.2 97.4 99.0 --- 

31/ 

1346 

36/ 

1346 

12. S. xinjiangensis 98.6 98.3 98.6 99.0 98.6 98.8 97.9 98.4 98.4 97.6 97.7 --- 

25/ 

1346 

13. S. syringae 98.4 97.9 98.3 98.6 99.2 98.2 97.6 98.1 98.7 97.6 97.3 98.1 --- 

Codes, as given in Figure 3.9  

 

The genus Streptomyces. The 37 representative Streptomyces strains isolated from the 

Salar de Atacama and Yungay environmental samples (Table 3.4) were recovered 

within the Streptomyces 16S rRNA gene tree (Figure 3.10).  Five of the 16S rRNA 

subclades contained one or more type strains of Streptomyces species, the remaining 

two, labelled Streptomyces new subclades 1 and 2, encompassed strains isolated from 

the Salar de Atacama and the Yungay environmental samples, respectively (Table 3.4).  

The taxonomic status of the 15 isolates in Streptomyces new subclade 1 was supported 

by all of the tree-making methods through the bootstrap value was low at 53%.  Seven 

isolates were assigned to Streptomyces new subclade 2, the taxonomic status of which 

was underpinned by all of the tree-making algorithms, but not by a high bootstrap value.  

The detailed taxonomic relationships between the isolates assigned to these taxa and 

between them and their closest phylogenetic neighbours will be considered in detail in 

Chapter 6, as will relationships between the 5 isolates assigned to the Streptomyces 

fimbriatus 16S rRNA gene clade.  Members of these taxa are of interest as they contain 
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strains known or likely to produce novel natural products.  The 9 remaining 

Streptomyces were assigned to the subclades six of Streptomyces subclade, namely 

Streptomyces albogriseolus (1 isolate), Streptomyces althioticus (2 isolates), 

Streptomyces anulatus (1 isolate), Streptomyces fragilis (1 isolate), Streptomyces 

glaucosporus (3 isolates) and Streptomyces rochei (2 isolates) all which were named 

after the earliest described type strains, as shown in Figure 3.10. 

 

Figure 3.10.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing the assignment of Streptomyces strains isolated from the hyper-arid 

Salar de Atacama and the extreme hyper-arid Yungay environmental samples to 

subclades containing one or more the type strains of closely related Streptomyces 

species.  The number of isolates in each subclade is shown; subclades containing one or 

more Streptomyces type strains were named after the earliest validly named species.  

Asterisks indicate branches of the tree that were also recovered with the maximum-

likelihood and maximum-parsimony tree-making methods.   ML and MP indicate 

branches of the tree that were supported by the maximum-likelihood and maximum-

parsimony methods.  Numbers at the nodes indicate levels of bootstrap support based on 

a neighbour-joining analysis of 1000 re-sampled datasets; only values above 50% are 

shown.  The scale bar indicates 0.002 substitutions per nucleotide position. 
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Streptomyces  albogriseolus sublade.  Strain KNN4-1b, a representative of the four 

isolates assigned to colour-group KNN4, was isolated from the Salar de Atacama 

environmental sample and recovered in the S. albogriseolus 16S rRNA subclade (Figure 

3.11).  The isolate formed a well delineated phyletic line together with the type strain of 

Streptomyces arovirens; the taxonomic status of this subclade was supported by all of 

the tree-making algorithms and by a 96% bootstrap value. Isolate KNN4-1b was most 

closely related to Streptomyces atrovirens NRRL B-16357
T
 and Streptomyces 

albogriseolus NRRL B-1305
T
, the isolate shared  a 16S rRNA gene sequence similarity 

with these strains of 99.9% and 99.4%, respectively, values corresponding to a single 

and 9 nt differences at 1397 locations (Table 3.17). 

 

 

 

 

 

 

 

Figure 3.11.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between Streptomyces strain KNN4-1b isolated from 

the hyper-arid Salar de Atacama environmental sample and between it and the type 

strains of the most closely related Streptomyces species.  Asterisks indicate branches of 

the tree that were also recovered with the maximum-likelihood and maximum-

parsimony tree-making methods.   ML indicates branches of the tree that were 

supported by the maximum-likelihood method.  Numbers at the nodes indicate levels of 

bootstrap support based on a neighbour-joining analysis of 1000 re-sampled datasets; 

only values above 50% are shown.  The scale bar indicates 0.001 substitutions per 

nucleotide position. 

 

Table 3.16. Nucleotide similarities (%) and differences  based on almost complete 16S 

rRNA gene sequences showing relationships between isolate KNN4-1b from the hyper-

arid Salar de Atacama environmental sample and between it and the type strains of 

closely related Streptomyces species. 

Isolate 1 2 3 4 5 6 

1. Isolate KNN4-1b --- 1/1397 9/1397 9/1389 12/1380 12/1388 

2. S. atrovirens 99.9 --- 11/1484 10/1463 13/1454 13/1462 
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3. S. albogriseolus 99.4 99.3 --- 0/1463 17/1454 17/1462 

4. S. viridodiastaticus 99.4 99.3 100 --- 17/1454 17/1462 

5. S. pilosus 99.1 99.1 98.8 98.8 --- 0/1454 

6. S. flavoviridis 99.1 99.1 98.8 98.8 100 --- 

Strain codes, as given in Figure 3.11. 

 

Streptomyces althioticus subclade.  Strains KNN2-4c and KNN5-25d, representatives 

of  the twenty three and twenty five isolates assigned to colour-groups KNN2 and 

KNN5, respectively, were isolated from the Salar de Atacama environmental sample 

and recovered in S. althioticus 16S rRNA gene tree (Figure 3.12).  These two strains 

shared a 16S rRNA gene sequence similarity of 98.2%, a value corresponding to 23 nt 

differences at 1305 locations.  Isolate KNN2-4c formed a well delineated phyletic line 

together with the type strains of Streptomyces griseoincarnatus, Streptomyces labedae 

and Streptomyces variabilis; the taxonomic status of this subclade was supported by all 

of the tree-making algorithms and by a 67% bootstrap value.   The isolate shared a 99.3% 

a 16S rRNA gene similarity with these strains, a value corresponding to 10 nt 

differences at 1355 locations.  In turn, isolate KNN5-25c formed a distinct phyletic line 

in the S. althioticus 16S rRNA subclade.  It was most closely related to S. althioticus 

NRRL B-3981
T
 and Streptomyces matensis NBRC 12889

T
, sharing 16S rRNA gene 

sequence similarities with  the later equivalent to 99.1%, a value corresponding to in 

each case to 12 nt differences at 1283 locations (Table 3.18). 

 

 

 

 

Figure 3.12.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains KNN2-4c and KNN5-25d isolated 

from the hyper-arid Salar de Atacama environmental sample and between them and the 

type strains of the most closely related Streptomyces species.  The asterisk indicates a 

branch of the tree that was also recovered with the maximum-likelihood and maximum-

parsimony tree-making methods.  ML indicates branches of the tree that were supported 

by the maximum-likelihood method.  Numbers at the nodes indicate levels of bootstrap 

support based on a neighbour-joining analysis of 1000 re-sampled datasets; only values 
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above 50% are shown.  The scale bar indicates 0.001 substitutions per nucleotide 

position. 

 

Table 3.17. Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains KNN2-4c and  KNN5-25d 

isolated from the hyper-arid Salar de Atacama environmental sample and between them 

and type strains of closely related Streptomyces species. 

 Isolate 1 2 3 4 5 6 7 

1.Isolate  KNN2-4c --- 23/1305 12/1346 13/1346 10/1355 10/1355 10/1355 

2. Isolate KNN5-25c 98.2 --- 17/1300 17/1300 20/1309 20/1309 20/1309 

3. S. althioticus 99.1 98.7 --- 0/1350 7/1351 7/1351 7/1351 

4. S. matensis 99.0 98.7 100.0 --- 8/1351 8/1351 8/1351 

5. S. griseocarnatus 99.3 98.5 99.5 99.4 --- 0/1360 0/1360 

6. S. labedae 99.3 98.5 99.5 99.4 100.0 --- 0/1360 

7. S. variabilis 99.3 98.5 99.5 99.4 100.0 100.0 --- 

Strain codes, as given in Figure 3.12. 

 

Streptomyces anulatus subclade.  Isolate KNN23-1b, a representative of two isolates 

assigned to colour-group KNN23, was isolated from the Yungay environmental sample 

and assigned to the  S. anulatus 16S rRNA subclade (Figure 3.13).  It formed a well 

delineated phyletic line at the periphery of a subclade which contained the type strains 

of Streptomyces albidochromogenes, Streptomyces chryseus, Streptomyces 

flavidovirens and Streptomyces helvaticus; the taxonomic integrity of this subclade was 

supported by the maximum-likelihood tree-making algorithm and by a 63% bootstrap 

value.  The isolate was most closely related to S. albidochromogenes NBRC 101003
T
 

and S. flavidovirens NBRC 13039
T
; sharing 16S rRNA gene sequence similarities with 

these organisms of 99.5%, a value corresponding in each case to 7 nt differences at 

1378 locations (Table 3.19).   
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Figure 3.13.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN23-1b isolated from the extreme 

hyper-arid Yungay environmental sample and the type strains of closely related 

Streptomyces species.  Asterisks indicate branches of the tree that were also recovered 

with the maximum-likelihood and maximum-parsimony tree-making methods.   ML 

indicates branches of the tree that were supported by the maximum-likelihood method. 

Numbers at the nodes indicate levels of bootstrap support based on a neighbour-joining 

analysis of 1000 re-sampled datasets; only values above 50% are shown.  The scale bar 

indicates 0.002 substitutions per nucleotide position. 

 

Table 3.18.  Nucleotide similarities (%) and differences  based on almost complete 16S 

rRNA gene sequences showing relationships between strain KNN23-1b isolated from 

the extreme hyper-arid environmental sample and the type strains of closely related 

Streptomyces species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 

1. Isolate KNN23-1b --- 

7/ 

1378 

7/ 

1378 

8/ 

1378 

8/ 

1378 

17/ 

1378 

23/ 

1391 

27/ 

1378 

27/ 

1378 

27/ 

1378 

27/ 

1378 

2. S. flavidovirens 99.5 --- 

0/ 

1379 

1/ 

1379 

1/ 

1379 

12/ 

1379 

12/ 

1378 

23/ 

1379 

21/ 

1379 

24/ 

1379 

24/ 

1379 

3. S. albidochromogenes 99.5 100 --- 

1/ 

1379 

1/ 

1379 

12/ 

1379 

12/ 

1378 

23/ 

1379 

21/ 

1379 

24/ 

1379 

24/ 

1379 

4. S. chryseus 99.4 99.9 99.9 --- 

0/ 

1379 

13/ 

1379 

11/ 

1378 

22/ 

1379 

20/ 

1379 

23/ 

1379 

23/ 

1379 

5. S. helvaticus 99.4 99.9 99.9 100 --- 

13/ 

1379 

11/ 

1378 

22/ 

1379 

20/ 

1379 

23/ 

1379 

23/ 

1379 

6. S. enssocaesilis 98.8 99.1 99.1 99.1 99.1 --- 

21/ 

1378 

29/ 

1379 

21/ 

1379 

29/ 

1379 

29/ 

1379 

7. S. hypolithicus 98.4 99.1 99.1 99.2 99.2 98.5 --- 

20/ 

1378 

21/ 

1378 

21/ 

1378 

21/ 

1378 

8. S. anulatus 98.0 98.3 98.3 98.4 98.4 97.9 98.6 --- 

16/ 

1379 

17/ 

1379 

17/ 

1379 

9. S. sannanensis 98.0 98.5 98.5 98.6 98.6 98.5 98.5 98.8 --- 

16/ 

1379 

16/ 

1379 

10. S. michiganensis 98.0 98.3 98.3 98.3 98.3 97.9 98.5 98.8 98.8 --- 

0/ 

1379 

11. S. xanthochromogenes 98.0 98.3 98.3 98.3 98.3 97.9 98.5 98.8 98.8 100 --- 

Strain codes, as given in Figure 3.13.  

 

Streptomyces fragilis subclade.  Strain KNN87b, the representative of a single-

membered colour-group, was isolated from the Salar de Atacama environmental sample 

and recovered in the S.  fragilis
 
16S rRNA subclade (Figure 3.14). It shared an identical 

16S rRNA gene sequence with the type strain of Streptomyces bullii (Table 3.20), these 

strains were most closely related to Streptomyces chromofuscus NBRC 12851
T
 sharing 

a 99.4% 16S rRNA gene similarity with the latter, a value corresponding 12 nt 

differences at 1388 sites (Table 3.20). 
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Figure 3.14.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strain KNN87b isolated from the hyper-arid 

Salar de Atacama environmental sample and the type strains of the most closely related 

Streptomyces species.  Asterisks indicate branches of the tree that were also recovered 

with the maximum-likelihood and maximum-parsimony tree-making methods.   ML and 

MP indicate branches of the tree that were supported by the maximum-likelihood and 

maximum-parsimony methods.  Numbers at the nodes indicate levels of bootstrap 

support based on a neighbour-joining analysis of 1000 re-sampled datasets; only values 

above 50% are shown.  The scale bar indicates 0.001 substitutions per nucleotide 

position. 

 

Table 3.19.  Nucleotide similarities (%)and differences  based on almost complete 16S 

rRNA gene sequences showing relationships between strain KNN87b isolated from the 

hyper-arid Salar de Atacama environmental sample and the type strains of closely 

related Streptomyces species. 

Isolate 1 2 3 4 5 6 7 8 9 10 

1. Isolate KNN87b --- 

0/ 

1388 

12/ 

1388 

15/ 

1388 

16/ 

1388 

17/ 

1388 

17/ 

1388 

17/ 

1388 

17/ 

1387 

19/ 

1386 

2.S. bullii 100 --- 

12/ 

1390 

15/ 

1390 

16/ 

1390 

17/ 

1390 

17/ 

1390 

17/ 

1390 

17/ 

1389 

19/ 

1388 

3. S. chromofuscus 99.1 99.1 --- 

21/ 

1390 

19/ 

1390 

13/ 

1390 

10/ 

1390 

15/ 

1390 

18/ 

1389 

15/ 

1388 

4. S. fragilis 98.9 98.9 98.5 --- 

24/ 

1390 

23/ 

1390 

20/ 

1390 

24/ 

1390 

21/ 

1389 

26/ 

1388 

5. S. thermocarboxydovorans 98.9 98.9 98.6 98.3 --- 

22/ 

1390 

24/ 

1390 

19/ 

1391 

17/ 

1389 

19/ 

1388 

6. S. cinereospinus 98.8 98.8 99.1 98.4 98.4 --- 

9/ 

1390 

19/ 

1390 

24/ 

1389 

24/ 

1388 

7. S. coeruleofuscus 98.8 98.9 99.3 98.6 98.3 99.4 --- 

20/ 

1390 

20/ 

1389 

19/ 

1388 

8. S. deserti 98.8 98.8 98.9 98.3 98.6 98.6 98.6 --- 

15/ 

1389 

29/ 

1388 

9. S. lomodensis 98.8 98.8 98.7 98.5 98.8 98.3 98.6 98.9 --- 

18/ 

1387 

10. S. chiangmaiensis 98.6 98.6 98.9 98.1 98.6 98.3 98.6 97.9 98.7 --- 

Strain codes, as given in Figure 3.14.  
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Streptomyces radiopugnans subclade.  Isolates KNN51b and KNN89a, representatives 

of single-membered colour-groups, encompassed strains isolated from the Salar de 

Atacama environmental sample and isolate KNN70b, a representative of a single-

membered colour-group from the Yungay environmental sample, were recovered in the 

S. radiopugnans 16S rRNA subclade (Figure 3.15).  Isolates KNN51b and  KNN70b 

were shown to have a 98.6% 16S rRNA gene sequence similarity, a value 

corresponding to 20 nt differences at 1394 locations (Table 3.21).  Isolate KNN51b 

shared a 98.1% 16S rRNA gene sequence similarity to isolate KNN89a, a value 

corresponding to 26 nt differences at 1383 locations.  Similarly, isolates KNN70b and 

KNN89a shared a 97.0% 16S rRNA gene sequence similarity, a value equivalent to 42 

nt differences at 1385 locations. 

Isolates KNN51b and KNN70b formed a well circumscribed branch in the 16S 

rRNA gene tree together with Streptomyces atacamensis C60
T
, a taxon that was 

supported by all of the tree-making algorithms and by a bootstrap value of 96%.    

Strain KNN51 shared a 99.2% 16S rRNA gene sequence similarity with the  S. 

atacamensis strain, a value equivalent to 12 nt differences at 1406 locations; the 

corresponding value between isolate KNN70b and S. atacamensis C60
T
 was 98.6%, a 

value corresponding to 19 nt differences at 1396 locations. Strain KNN51b was also 

closely related to Streptomyces radiopugnans R97
T
; these strains shared a 16S rRNA 

gene sequence similarity of 98.7%, a value corresponding to 19 nt differences at 1403 

locations.  Isolate KNN70b was also closely reated to S. radiopugnans R97
T 

; the two 

strains shared a 16S rRNA gene sequence similarity of a 98.1%, a value corresponding 

to 26 nt differences at 1396 locations. 

Isolate KNN89a was recovered at the periphery of a taxon that contained isolates 

KNN51b and KNN70b and the type strains of S. atacamensis, Streptomyces 

fenghuangensis, Streptomyces nanheiensis and S. radiopugnans, together with isolate 

KNN89a; this taxon was supported by all of the tree-making algorithms and by a 

bootstrap value 69%.  Isolate KNN89a shared a 16S rRNA gene sequence similarity to 

isolates KNN51 and KNN70b of 98.1% and 97.0 %, respectively, values corresponding 

to 26 and 42 nt differences at 1383 and 1385 locations.  Isolate KNN89a was most 

closely related to S. radiopugnans R97
T
; these strains shared a 98.4% 16S rRNA gene 

sequence similarity, a value equivalent to 22 nt differences at 1383 locations.  It was 

also closely related S. nanhaiensis SCSIO01248
T
; these organisms shared a 98.3% 16S 

rRNA gene similarity, a value corresponding to 23 nt differences at 1386 locations. 
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Figure 3.15.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains KNN51b, KNN70b and KNN89a 

isolated from the Salar de Atacama and Yungay environmental samples and between 

them and the type strains of the most closely related Streptomyces species.  Asterisks 

indicate branches of the tree that were also recovered with the maximum-likelihood and 

maximum-parsimony tree-making methods.   ML indicates a branch of the tree that was 

supported by the maximum-likelihood method.  Numbers at the nodes indicate levels of 

bootstrap support based on a neighbour-joining analysis of 1000 re-sampled datasets; 

only values above 50% are shown.  The scale bar indicates 0.005 substitutions per 

nucleotide position. 

 

Table 3.20. Nucleotide similarities  (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between isolates KNN51b, KNN70b and 

KNN89a and between them and closely related type strains of the Streptomyces species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate 

KNN51b --- 

20/ 

1394 

26/ 

1383 

12/ 

1406 

19/ 

1403 

26/ 

1403 

26/ 

1404 

45/ 

1404 

43/ 

1405 

57/ 

1402 

52/ 

1401 

47/ 

1405 

2. Isolate 

KNN70b 98.6 --- 

42/ 

1385 

19/ 

1396 

26/ 

1396 

35/ 

1397 

35/ 

1398 

53/ 

1397 

52/ 

1398 

64/ 

1396 

61/ 

1395 

58/ 

1397 

3. Isolate 

KNN89a 98.1 97.0 --- 

28/ 

1384 

22/ 

1383 

25/ 

1385 

23/ 

1386 

50/ 

1385 

41/ 

1386 

48/ 

1383 

53/ 

1383 

51/ 

1387 

4. S. 

atacamensis 99.2 98.6 98.0 --- 

9/ 

1409 

17/ 

1409 

18/ 

1410 

35/ 

1410 

33/ 

1411 

48/ 

1409 

45/ 

1406 

42/ 

1411 

5. S. 

radioplugnans 98.7 98.1 98.4 99.4 --- 

12/ 

1408 

13/ 

1409 

39/ 

1408 

31/ 

1409 

42/ 

1408 

41/ 

1406 

41/ 

1408 

6. S. 

fenghuangensis 98.2 97.5 98.2 98.8 99.2 --- 

10/ 

1411 

43/ 

1410 

32/ 

1411 

45/ 

1408 

42/ 

1408 

38/ 

1410 

7. S. nanhaiensis 98.2 97.5 98.3 98.7 99.1 99.3 --- 

43/ 

1411 

35/ 

1412 

47/ 

1409 

48/ 

1408 

38/ 

1411 

8. S. 

glaucosporus 96.8 96.2 96.4 97.5 97.2 97.0 97.0 --- 

39/ 

1412 

51/ 

1408 

70/ 

1407 

49/ 

1413 

9. S. 

macrosporus 96.9 96.3 97.0 97.7 97.8 97.7 97.5 97.2 --- 

50/ 

1409 

57/ 

1408 

30/ 

1412 

10. S. 95.9 95.4 96.5 96.6 97.0 96.8 96.7 96.4 96.5 --- 43/ 64/ 
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xinghaiensis 1406 1408 

11. S. 

lactiproducens 96.3 95.6 96.2 96.8 97.1 97.0 96.6 95.0 96.0 96.9 --- 

70/ 

1408 

12. S. 

megaspores 96.7 95.9 96.3 97.0 97.1 97.3 97.3 96.5 97.9 95.5 95.0 --- 

Strain codes, as given in Figure 3.15.  

 

Streptomyces rochei subclade.  Isolate KNN22a, a representative of a single-membered 

colour-group, was isolated from the Yungay environmental sample and isolate KNN32-

1a, a representative of colour-group KNN32 which contianed two strains, was isolated 

from the Salar de Atacama environmental sample.  Both isolates formed distinct 

phyletic lines in the S. rochei 16S rRNA gene subclade (Figure 3.16).  These isolates 

shared a 16S rRNA gene sequence similarity of a 99.6%, a value corresponding to 5 nt 

differences at 1331 locations.  They formed a distinct branch in the S. rochei subclade 

with Streptomyces mutabilis; a taxon supported by all the tree-making algorithms but  

not by a high bootstrap value.  Strain KNN22a was most closely related to Streptomyces 

ghanaensis KCTC9882
T
, these strains shared a 16S rRNA gene sequence similarity of 

99.3% , a value equivalent to 10 nt differences at 1398 locations (Table 3.22).  The 

isolate was also closely related to S. rochei NBRC12908
T
, these strains shared a16S 

rRNA gene sequence similarity of 99.1%, a value equivalent to 13 nt differences at 

1405 locations.  In turn, isolate KNN32-1a was most closely related to Streptomyces 

mutabilis NBRC12800
T
, these strains shared a 16S rRNA gene sequence similarity of 

99.6%, a value corresponding to 5 nt differences at 1334 locations. Isolate KNN32-1a 

was also closely related to S. rochei NBRC12908
T
, these organisms were found to have 

a 16S rRNA gene sequence similarity of 99.6%, a value equivalent to 5 nt differences at 

1332 lacations. 
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Figure 3.16.  Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains KNN32-1a and KNN22a isolated from 

the Salar de Atacama and Yungay environmental samples, respectively and between 

them and the type strains of closely related Streptomyces species. Asterisks indicate 

branches of the tree that were also recovered with the maximum-likelihood and 

maximum-parsimony tree-making methods.  ML indicates branches of the tree that were 

supported by the maximum-likelihood method. Numbers at the nodes indicate levels of 

bootstrap support based on a neighbour-joining analysis of 1000 re-sampled datasets; 

only values above 50% are shown.  The scale bar indicates 0.001 substitutions per 

nucleotide position. 

 

Table 3.21.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains KNN22a and KNN32-1a  

isolated from the Atacama Desert environmental samples and between them and the 

type strains of closely related Streptomyces species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 

1.Isolate  

KNN22a --- 

5/ 

1331 

13/ 

1405 

13/ 

1405 

13/ 

1405 

10/ 

1398 

15/ 

1405 

14/ 

1405 

15/ 

1400 

20/ 

1405 

21/ 

1405 

27/ 

1404 

2. Isolate 

KNN32-1a 99.6 --- 

5/ 

1332 

5/ 

1332 

5/ 

1332 

6/ 

1332 

5/ 

1334 

6/ 

1332 

7/ 

1327 

10/ 

1332 

8/ 

1332 

17/ 

1331 

3. S. 

enissocaesilis 99.1 99.6 --- 

0/ 

1461 

0/ 

1463 

1/ 

1420 

4/ 

1458 

1/ 

1463 

2/ 

1468 

7/ 

1435 

8/ 

1454 

14/ 

1463 

4. S. rochei 99.1 99.6 100 --- 

0/ 

1461 

1/ 

1418 

4/ 

1456 

1/ 

1461 

2/ 

1456 

7/ 

1433 

8/ 

1452 

14/ 

1460 

5. S. plicatus 99.1 99.6 100 100 --- 

1/ 

1420 

4/ 

1458 

1/ 

1463 

2/ 

1458 

7/ 

1435 

8/ 

1454 

14/ 

1462 

6. S. 

ghanaensis 99.3 99.6 99.3 99.9 99.9 --- 

5/ 

1420 

0/ 

1420 

3/ 

1415 

6/ 

1420 

7/ 

1420 

13/ 

1419 

7. S. mutabilis 98.9 99.6 99.7 99.7 99.7 99.7 --- 

5/ 

1458 

6/ 

1453 

9/ 

1435 

8/ 

1454 

16/ 

1457 

8. S. 

geysiriensis 99.0 99.6 99.9 99.9 99.9 100 99.7 --- 

3/ 

1458 

6/ 

1435 

7/ 

1454 

13/ 

1462 

9. S. 

vinceusdrappus 98.9 99.5 99.9 99.9 99.9 99.8 99.6 99.8 --- 

9/ 

1430 

10/ 

1449 

16/ 

1458 

10. S. 

djakartensis 98.6 99.3 99.5 99.5 99.5 99.6 99.4 99.6 99.4 --- 

7/ 

1435 

15/ 

1434 

11. S. tuirus 

 

 

98.5 

 

 

99.4 

 

 

99.5 

 

 

99.5 

 

 

99.5 

 

 

99.5 

 

 

99.5 

 

 

99.5 

 

 

99.3 

 

 

99.5 

 

 

--- 

 

 

14/ 

1453 

12. S. 

aurantiogriseus 98.1 98.7 99.0 99.0 99.0 99.1 98.9 99.1 98.9 99.0 99.0 --- 

Strain codes, as given in Figure 3.16. 

3. 4. 4.  Chemotaxonomy 

The chemotaxonomic properties of the representative isolates included in the 

phylogenetic analyses are show in Table 3.23.  The Actinomadura, Amycolatopsis, 

Blastococcus, Couchioplanes, Geodermatophilus, Lechevalieria, Modestobacter, 
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Nonomuraea, Pseudonocardia and Saccharothrix strains contained meso-A2pm in 

whole-organism hydrolysates whereas those assigned to the genera Kribbella and 

Streptomyces had hydrolysates rich in the corresponding LL-isomer. Nearly half of the 

isolates contained menaquinones with nine isoprene units though the number of 

hydrogenated units tended to differ.  The representatives of the genera Amycolatopsis, 

Blastococcus and Pseudonocardia contained arabinose and galactose as diagnostic 

whole-organism sugars whereas the Actinomadura, Couchioplanes, Geodermatophilus, 

Kribbella, Lechevalieria, Modestobacter, Nonomuraea and Streptomyces strains 

showed a range of whole-cell sugars patterns.  Similarly, considerable variation was 

found in the polar lipid patterns between the tested isolates. 

 

Table 3.22.  Chemotaxonimic properties of isolates assigned to genera circumscribed in 

the comparative 16S rRNA gene sequence analyses*. 

Isolate code Chemotaxonomic markers 

Diaminopimelic 

acid  isomer
2
 

Predominant 

Menaquinones
3
 

Major polar 

lipid
4
 

Diagnostic 

whole-cell 

sugars
5
 

Actinomadura: 

KNN34c 

 

 

 

Meso-A2pm 

 

DPG, PG, PI 

 

DPG, PG, PI 

 

Gal, Glu, Mad,  

Man, Rib 

KNN49-26a Meso-A2pm MK-9(H6)  Gal, Glu, Mad,  

Man, Rib 

Amycolatopsis: 

KNN49-5e 

 

 

 

 

Meso-A2pm 

 

MK-9(H2), 

MK9(H4), MK-

9(H6), MK-9(H8) 

 

DPG, PE, PME 

 

Ara, Gal 

 

KNN49-26a 

 

 

Meso-A2pm MK9(H4), MK-

9(H6), MK-9(H8) 

DPG, PE, PME Ara, Gal 

KNN50-8b 

 

 

Meso-A2pm MK8(H4), MK-

9(H4), MK-9(H6) 

DPG, PE, PG, 

PI, PME 

Ara, Gal 

KNN50-11c Meso-A2pm MK-8(H4), MK-

9(H4) 

DPG, PE, PG, 

PI, PME 

Ara, Gal 

Blastococcus: 

KNN47b 

 

Meso-A2pm 

 

MK-9(H4) 

 

DPG, PC,  PG, 

PI, PE 

 

Ara, Gal 

Couchioplanes: 

KNN7-2 

 

Meso-A2pm 

 

MK-9(H4) 

 

PG, PE, PI 

 

Ara, Glu, Gal,  

Xyl 

Geodermatophilus: 

KNN44-1b 

 

 

Meso-A2pm 

MK-9(H4), MK9(H0)  

DPG, PC, PI 

 

Rib, Glu 

Kribbella: 

KNN56a 

 

LL-A2pm 

 

MK-9(H4) 

 

DPG, PCPG, PI 

 

Glu, Gal 

Lechevalieria: 

KNN94e 

 

Meso-A2pm 

 

MK-9(H4) 

 

DPG, PE, PG, PI 

 

Gal, Glu, Man, 

Rib, Rha 

Modestobacter:     
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KNN45-2b 

 

 

Meso-A2pm MK-9(H4) DPG, PG, PE, PI Gal, Glu, Xyl 

KNN46-4b Meso-A2pm MK-9(H4) DPG, PG, PE, PI Gal, Glu, Xyl 

Nonomuraea: 

KNN57-2b 

 

Meso-A2pm 

 

MK-9(H4) 

 

DPG, PE 

 

Mad, Man 

Pseudonocardia: 

KNN55-1b 

 

Meso-A2pm 

 

MK-8(H4) 

 

PC, PE 

 

Ara, Gal 

Saccharothrix: 

KNN10-4d 

 

Meso-A2pm 

 

MK-9(H4), MK-10 

(H4) 

 

DPG, PE, PIMS 

 

Gal, Rha, Man 

*Data on Streptomyces isolates can be found  in Chapter 6. 

1ND, not determined.. 

2Diaminopimelic acid  isomers: meso-A2pm, meso-diaminopimelic acid; LL-A2pm, LL-diaminopimelic acid. 

3Menaquinone:exemplified by MK-9(H4),  tetrahydrogenated menaquinones with nine isoprene units. 

4Polar lipids: DPG, diphosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, 

posphatidylglycerol; PI, phosphatidylinositol, PIMS, phosphatidylinositol manosides (PIMs) and PME, 

phosphatidylmethylethanolamine. 

5Whole-cell sugars: Ara, arabinose; Gal, Galactose; Glu, glucose, Man, mannose; Mad, maduros; Rha, rhamnose; 

Rib, ribose and Xyl, xylose. 

3. 4. 5.  Morphology 

The arrangement of aerial hyphae and spores of the 20 representative isolates included 

in the scaning electron microscopy studies are shown in Figures 3.17 and 3.18.  The two 

Saccharothrix strains produced straight chains of rough ornamented spores, the 

Pseudonocrdia strain formed straight chains of smooth surfaced spores whereas the 

Actinomadura, Nonomuraea and Streptomyces strains showed variation in spore chain 

arrangement and spore surface ornamentation.  

 

Figure 3.17.  Scanning electron micrographs of isolates grown on glucose yeast-extract 

malt-extract agar for 14 days at 28
o
C, (A) Actinomadura strain KNN34c showing 

smooth ornamented spores in straight chains; (B) Actinomadura strain KNN53-1a 

showing spiral chains of rough ornamented spores; (C) Actinomadura strain KNN53-3a 

showing a straight chain of smooth surfaced spores; (D) Nonomuraea strain KNN57-1b 

showing spiral chains of rough ornamented spores; (E) Nonomuraea KNN 57-2b  

showing straight chains of smooth surfaced spores; (F) Pseudonocardia strain KNN55-

1b showing straight chains of smooth ornamented spores; (G, H) Saccharothrix strains 

KNN10-4d and KNN 54-1a (H) showing straight chains of smooth ornamented spores. 

Scale bars : 1µm. 
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Figure 3.18.  Scanning electron micrographs of streptomycetes isolates grown on 

oatmeal agar after 14 days at 28
o
C.  (A), C34

T
 showing smooth ornamented spore in 

open spiral chains; (B), isolate C38 showing spiral chains of smooth surfaced spores; 

(C), isolate KNN35-2b showing loose spiral chains of smooth surfaced spores; (D, E 

and F) isolates KNN17-2b, KNN24-1b and KNN26b showing loose spiral chains of 

smooth surfaced spores; (G, H and I), isolates C59 KNN40b and KNN48-1c showing 

spiral chains of hairy ornamented spores; (J, K and L) isolates KNN51b, KNN89a and 

KNN90a showing straight chains of smooth surfaced spores. Scale bars : 1µm. 
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3. 4. 6.  Selectivity of selection media 

Most of the strains isolated from the Salar de Atacama and Yungay environmental 

samples were assigned to the genus Streptomyces (79.4% and 73.3%, respectively) as 

shown in Table 3.24. In contrast, relatively high numbers of Amycolatopsis strains were 

isolated from the hyper–arid Salar de Atacama environmental sample (13.1%). The 

corresponding Yungay environmental sample was found to contain a relatively high 

number of isolates (5%) belonging to the family Geodermatophilaceae.  Isolates 

recovered in the same multi-membered colour-groups as the representative isolates were 

assumed to belong to the same genus as the studied strains (Table 3.24). 

 

Table 3.23.  Assignment of strains assigned to colour-groups containing isolates from 

the Salar de Atcama and Yungay environmental samples to genera based on 16S rRNA 

sequencing data of representative strains. 

Genera Tested strains Additional strains in colour-groups 

Actinomadura 

 

KNN34c,  

KNN53-1a, KNN53-3a 

None 

KNN53-2a 

Amycolatopsis 

 

 

 

 

 

 

 

KNN49-1f, KNN49-3e, 

KNN49-5e, KNN49-6q, 

KNN49-11c, KNN49-12b, 

KNN49-26a,  

 

KNN50-1a, KNN50-2e, 

KNN50-4c, KNN50-5c, 

KNN50-6e, KNN50-7d, 

KNN550-8b, KNN50-9b, 

KNN50-10e, KNN50-11c, 

KNN50-12c, KNN50-13c, 

KNN50-14d, KNN50-15d, 

KNN50-16d, KNN50-17d, 

KNN50-18d,  

KNN61-1e 

KNN49-2e, KNN49-4e, KNN49-7c, KNN49-8c, 

KNN49-9c, KNN49-10b, KNN49-13b, KNN49-14b, 

KNN49-15b, KNN49-16c, KNN49-47b, KNN49-18b, 

KNN49-19a, KNN49-20b, KNN49-21c, KNN49-22d, 

KNN49-23d, KNN49-24d, KNN49-25d, KNN49-27a, 

KNN49-28a, KNN49-29a, KNN49-30b, KNN49-31b 

KNN50-3c  

 

 

 

 

KNN61-2a, KNN61-3e, KNN61-4e, KNN61-5b, 

KNN61-6c 

Blastococcus KNN47b None 

Couchioplanes KNN7-2b KNN7-1b, KNN7-3b, KNN7-4b 

Geodermatophilus KNN44-1b, KNN44-3b, 

KNN44-4b 

KNN44-2a 

Kribbella 

 

KNN56a None 



113 
 

Lechevalieria KNN94e None 

Modestobacter 

 

 

 

KNN45-1b, KNN45-2b, 

KNN45-3b, KNN45-4b 

KNN46-1b, KNN46-2b, 

KNN46-3b, KNN46-4b, 

KNN46-5a, KNN46-6a, 

KNN46-7a, KNN46-8c, 

KNN46-9c, KNN46-10c, 

KNN46-11a 

None 

 

KNN46-12a 

Nonomuraea KNN57-1b, KNN57-2b None 

Pseudonocardia KNN55-1b KNN55-2b 

Saccharothrix 

 

KNN10-4d 

KNN54-1a 

KNN10-1a, KNN10-2b, KNN10-3b, KNN10-5a,  

KNN54-2b 

Streptomyces KNN2-4c, KNN2-6c 

 

KNN2-1b, KNN2-2c, KNN2-3c, KNN2-5c, KNN2-

7d, KNN2-8b, KNN2-9d, KNN2-10d, KNN2-11d, 

KNN2-12d, KNN2-13a, KNN2-14c, KNN2-15a, 

KNN2-16c, KNN2-17d, KNN2-18c, C34, C38, C58, 

C59, C79, 

 KNN4-1b, KNN4-4a, KNN4-2e and KNN4-3b 

 KNN5-4, KNN5-5 

 

KNN5-1a, KNN5-2a, KNN5-3c, KNN5-4c, KNN5-

5a, KNN5-6a, KNN5-7a, KNN5-8b, KNN5-9b, 

KNN5-10b, KNN5-13b, KNN5-14b, KNN5-15b, 

KNN5-16d, KNN5-17d, KNN5-18d, KNN5-19d, 

KNN5-20d, KNN5-25b 

 KNN6-6b, KNN6-9a, 

KNN6-10b, KNN6-11a 

KNN6-1a, KNN6-2a, KNN6-3a, KNN6-4a, KNN6-

5a, KNN6-7d, KNN6-8d 

 KNN9-3a KNN9-1a, KNN9-2e  

 KNN11-1a, KNN11-5a KNN11-2a, KNN11-3c, KNN11-4b,  KNN11-6b, 

 KNN13a None 

 KNN22a None 

 KNN23-1b KNN23-2a, KNN23-2a  

 KNN24-1b KNN24-2c, KNN24-3c, KNN24-4c, KNN24-5c, 

KNN24-6a, KNN24-7c, KNN24-8e  

 KNN25c None 

 KNN26b None 

 KNN32-1a KNN32-2b,  

 KNN35-1b, KNN35-2b None 

 KNN38-1b KNN38-1b, KNN38-2d, KNN38-3d, KNN38-4a, 

KNN38-5b  
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 KNN41-1b KNN41-2a 

 KNN42 None 

 KNN48-1c, KNN48-3e, 

KNN48-6e 

 

KNN48-2a, KNN48-4e, KNN48-5e, KNN48-7d, 

KNN48-8d, KNN48-9d, KNN48-10d, KNN48-11b, 

KNN48-12d, KNN48-13b, KNN48-14a, KNN48-15a, 

KNN48-16c, KNN48-17c, KNN48-18c, KNN48-19c, 

KNN48-20c   

 KNN51b None 

 KNN64-5b KNN64-1a, KNN64-2a, KNN64-3a, KNN64-4b, 

KNN64-6b 

 KNN82-2c KNN82-1a, KNN82-2c 

 KNN83e None 

 KNN87b None 

 KNN88-1a KNN88-2b, KNN88-3b, KNN88-4a  

 KNN89a None 

 KNN90a None 

Codes for isolation media : (a),  Gause No.1 agar;  (b),  HVA, humic acid-vitamin agar;  (c), 

Oligotrophic agar; (d), minimal medium agar; (e),  SM1 agar; (f) Geodermatophilus obscurus 

agar; (g) Luedemann’s agar.  (h), SCAV agar. 

 

 The number of actinobacteria isolated from the Salar de Atacama environmental 

sample on the selective isolation media are shown in Table 3.25.  Eighty of the 

streptomycetes were isolated from humic acid-vitamin agar plates (25.4% of the total 

number of isolates), 56 on Gause’s  o. 1 agar (1 .8 ), 53 on oligotrophic agar  

(16.8%), 33 on minimal agar (10.5%), 18 on SM 1 agar  (5.7%) and  5 on starch casein-

vitamin agar (1.6%) plates.  In turn, 13 of the Amycolatopsis isolates were recovered 

from humic acid-vitamin agar and from minimal medium agar (4.1%),  10 from 

oligotrophic medium agar, 10 from SM1 agar (3.2 ), 8 from Gause’s  o. 1 agar plates 

(2.5%) and a single isolate from a starch casein-vitamin agar plate (0.3%).  Three of 

Saccharothrix strains were isolated from Gause’s  o.1 agar plates and the remaining 

three from a humic acid-vitamin agar plate (1%).  Three out of the 4 Actinomadura 

strains were isolated on Gause’s  o.1 agar plates (1 ) and the remaining one from a 

minimal medium agar plate (0.3%). The two Nonomuraea strains were isolated from 

humic acid-vitamin agar plates (0.6%), the single Kribbella from Gause’s  o.1 agar 

(0.3%) and the only Lechevalieria strain from SM1 agar (0.3%). 
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Table 3.24.  Assignment of representative strains isolated on a range of selective media 

inoculated with suspensions of the Salar de Atacama environmental sample to genera 

based on 16S rRNA gene sequences. 

Genus 

Media 

Gause’s 

No.1 

Humic 

acid-

vitamin 

agar 

Minimal 

medium 

agar 

Oligitrophic 

medium 

agar 

SM1 agar 

Starch 

casein- 

vitamin 

agar 

Actinomadura 3 - 1 - - - 

Amycolatopsis 8 13 13 10 10 1 

Kribbella 1 - - - - - 

Lechevalieria - - - - 1 - 

Nonomuraea - 2 - - - - 

Saccharothrix 3 3 - 1 - - 

Strreptomyces 56 80 33 53 18 5 

Total 71 98 47 64 29 6 

 

 The corresponding numbers of actinobacteria isolated on the selective media 

inoculated with suspensions of the Yungay environmental sample are shown in Table 

3.26.  Thirty six streptomycetes were isolated on Gause’s  o.1 agar (34.3 ), 20 on 

humic acid-vitamin agar (19%), 8 on oligotrophic medium agar (7.6%), 7 on starch 

casein-vitamin agar (6.7%) and 6 on minimal medium agar  (5.75%)  plates.  Similarly, 

8 of the 12 Modestobacter isolates (11.4%) were recovered from humic acid-vitamin 

agar, 4 from Gause No.1 agar (3.8%), 2 from Geodermatophilus obscurus agar plates 

(1.9%) and the remaining two strains from the Luedemann agar and oligotrophic agar 

plates (1%). Similarly, 4 out of the 5 Couchioplanes isolates were recovered from 

humic acid-vitamin agar plates and the remaining one from a starch casein-vitamin agar 

plate (1%).  Similarly, 4 out of the 5 Geodermatophilus strains were isolated from 

humic acid-vitamin agar plates (4.8%), the remaining one from a Gause’s  o.1 agar 

plate (1%). The 2 Pseudonocardia isolates were recovered from humic acid-vitamin 

agar plates (1.9%) and the single strain of Blastococcus from same isolation medium 

(1%). 

 

Table 3.25.  Assignment of representative strains isolated on a range of selective media 

inoculated with suspensions of the Yungay environmental sample to genera based on 

16S rRNA gene sequences. 
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Genus 

Media 
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M
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g

ar
 

S
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h

 c
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n

- 
v
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ag
ar

 

Blastococcus - 1 - - - - - 

Couchioplanes - 4 - - - - 1 

Geodermatophilus 1 4 - - - - - 

Modestobacter 4 8 2 1 - 1 - 

Pseudonocardia - 2 - - - - - 

Streptomyces 36 20 - - 6 8 7 

Total 41 39 2 1 5 9 8 

No actinobacteria were isolated on the SM1 agar plates. 

3. 4. 7.  Screening for antimicrobial activity 

Plug assays. The results obtained for the 136 representative isolates screened for 

antimicrobial activity in the agar plug assays are shown in Table 3.27. Ninety six 

isolates showed activity against the Bacillus subtilis strain (69.1%), 10 against the 

Escherichia coli strain (7.4%), 11 against the Pseudomonas fluorescens strain (8.1%), 

75 against Staphylococcus aureus strain (56.0%) and 38 against the  Saccharomyces 

cerevisiae strain (27.9%).  Isolates KNN26b, KNN32-1a, KNN35-1b, KNN35-2b, 

KNN37-5a, KNN38-1b, KNN63-2b, KNN64-3a, KNN64-5b and KNN90a (7.4% of 

isolates) gave zones of inhibition against all five wild type strains.  In contrast, 43 

isolates (31.6%) did not show any activity against the panel of strains, namely 15 

isolates from the Salar de Atacama soil (11.0%) and 28 from the Yungay soils (20.6%).    

 

Table 3.26.  Inhibition zones (mm) shown by representative strains isolated from the 

Salar de Atacama and Yungay environmental samples in the plug assays after 

incubation overnight at 30
o
C. 

Isolates 
Panel of wild type strains 

Bacillus 

subtilis 
Escherichia 

coli 
Pseudomonas 

fluorescens 
Staphylococcus 

aureus 
Saccharomyces 

cerevisiae 
Salar de Atacama: 
KNN1-2c  18 - - 30 - 
KNN1-5f 

 
17 - - 40 - 

KNN2-2c 18 - - 35 11 
KNN2-5c  16 - - 25 - 
KNN2-6c  19 - - 30 12 
KNN2-10d  18 - - - - 
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KNN2-11d  

 
17 - - 25 11 

KNN3-1b  19 - - 24 - 
KNN3-2b  16 - - 20 - 
KNN3-11d  17 - - 35 - 
KNN3-17d  

 
18 - - 35 - 

KNN4-3b  

 
18 - - 20 - 

KNN5-24b  15 - - - - 
KNN5-25d  

 
16 - - - - 

KNN6-2a  18 - - 40 - 
KNN6-5a  19 - - 30 - 
KNN6-6b  18 - - - 20 
KNN6-10b  17 - - 25 - 
KNN6-11a 

 
17 - - 22 - 

KNN8-3a  18 - - 10 - 
KNN8-5b  19 - - 30 - 
KNN8-8a  16 - - - 12 
KNN8-9c  16 - - - - 
KNN8-10e  

 
17 - - - - 

KNN9-1a  18 - - 20 11 
KNN9-2c  

 
18 - - 30 11 

KNN10-3b  18 - - 24 - 
KNN10-4d  19 - - 30 - 
KNN10-5a  

 
18 - - 20 - 

KNN11-2a  18 - - 20 18 
KNN11-4b  18 - - 28 - 
KNN11-5a  18 - - 20 35 
KNN11-6a  

 
18 - - 15 - 

KNN14-3e 

 
18 - - 20 - 

KNN17-1c  18 - - 30 - 
KNN17-2b  

 
18 - - 35 - 

KNN18-3d  

 
18 - - 28 20 

KNN24-2c  18 - - 25 - 
KNN24-3c  18 - - 15 - 
KNN24-4c  18 - - 13 - 
KNN24-7c  18 - - 35 18 
KNN24-8e  18 - - Weak - 
KNN24-9e  

 
18 - - 25 - 

KNN25c  

 
18 - - 14 18 

KNN26b 

 
18 17 22 24 22 

KNN27a  

 
18 - - 25 - 

KNN28a 

 
18 - - 25 18 

KNN29a  18 - - - - 
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KNN30a  

 
18 - - 28 - 

KNN31d  

 
18 - - 30 - 

KNN32-1a 

 
18 Weak  13 22 18  

KNN33a  

 
18 - - - - 

KNN35-1b  24 20 20 24 18 
KNN35-2b  

 
24 13 18 18 25 

KNN36-1c 18 - - - - 
KNN36-3c  

 
18 - - - - 

KNN37-1e  18 - - - 40 
KNN37-5a  

 
18 21 20 20 16 

KNN38-1b 18 15 20 30 13 
KNN38-5b  

 
18 - - 25 14 

KNN43b 

 
18 - - 35 - 

KNN48-3e  18 - - 18 - 
KNN48-6e  

 
18 - - 22 - 

KNN52-2b  

 
18 - - - - 

KNN58-1b  

 
19 - - 30 15 

KNN63-2b  18 12 14 10 13  
KNN63-15b  

 
16 - - 15 - 

KNN64-3a  18 17 20 20 14 
KNN64-5b  

 
20 16 21 30 18 

KNN65-1f  18 - - 20 18 
KNN65-5d 

 
19 - - 22 16 

KNN66b 

 
18 - - 35 18 

KNN67-4b  

 
18 - - - - 

KNN68-2b  17 - - - 45 
KNN68-4b  

 
16 - - - 15 

KNN69-1e  18 - - 30 18 
KNN69-2a  19 - - 25 18 
KNN69-3a  

 
19 - - 16 - 

KNN71-2a  

 
18 - - 35 18  

KNN72a  

 
18 - - 17 - 

KNN73-2a  

 
17 - - 35 - 

KNN74-2c  19 - - 35 18 
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KNN75-4b  

 
18 - - 23 18 

KNN76b  

 
- - - Weak - 

KNN81-2b  

 
18 - - - 35 

KNN82-1a  

 
16 - - 30 - 

KNN83e  

 
19 - - 22 - 

KNN85-1f  

 
18 - - 25 18 

KNN87b  

 
18 - - 30 - 

KNN94e  

 
16 - - - - 

 

Yungay: 
KNN13a 

 
13 - - - - 

KNN21a 

  
19 - - 12 - 

KNN23-1b  

 
13 - 21 - - 

KNN90a  16 16 22 24 24 
+: positive, -: negative results.  

Strains negative against all five wild type strains: A) isolates from the Salar de Atacama 

environmental sample: 1) streptomycetes including KNN4-1b, KNN4-4a, KNN39c, KNN50-

11c, , KNN61-1a and 2) non-streptomycetes including KNN34c (Actinomadura), KNN49-5e 

(Amycolatopsis) , KNN49-26a (Amycolatopsis), KNN50-8b* (Amycolatopsis), KNN53-1a 

(Actinomadura), KNN53-2a (Actinomadura), KNN53-3a (Actinomadura), KNN54-1a 

(Saccharothrix), KNN56a (Kribbella), and KNN57-1b (Nonomuraea); and  B) isolates from the 

Yungay environmental sample: 1) streptomycetes including KNN61-1e, KNN67-4b, KNN86-1b, 

KNN88-1a, KNN88-2a, KNN89a, KNN91-1a, KNN96a KNN97a and KNN88a ; and 2) non-

streptomycetes KNN7-2b (Couchioplanes), KNN44-2b (Geodermatophilus), KNN44-4a 

(Geodermatophilus), KNN45-1a (Modestobacter), KNN45-2b (Modestobacter), KNN45-3b 

(Modestobacter), KNN45-4b (Modestobacter), KNN46-1b (Modestobacter), KNN46-2b 

(Modestobacter), KNN46-3b (Modestobacter), KNN46-4b (Modestobacter), KNN46-5b 

(Modestobacter), KNN46-6a (Modestobacter), KNN46-7a (Modestobacter), KNN46-8a 

(Modestobacter), KNN47b (Blastococcus), KNN51b (Pseudonocardia) and KNN55-1b 

(Pseudonocardia). 

*Isolate KNN50-8b did not shown any activity against the five wild type strains but was 

included in the preliminary study of  bioactive compounds, as a non-creative strain. 
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Plug assays with Bacillus subtilis reporter strains. The results obtained for the 94 

isolates included in the plug assays based on the B. subtilis reporter strains are shown in 

Table 3.28.  Twenty two strains (23.4%) gave blue halos against the yvqI
ER 

, yjaX
ER

, 

ypuA
ER

 and yvgS
ER

 reporter strains, six (6.4%) against the yjaX
ER

, ypuA
ER

 and yvgS
ER

 

reporter strains, and three (3.2%) against the yvqI
ER 

, ypuA
ER

 and yvgS
ER

 reporter strains.  

Three strains (3.2%) were shown to inhibit DNA synthesis, twenty eight (29.8%) cell 

envelope synthesis, thirty four (36.2%) fatty acid synthesis, thirty two (34.0%) cell wall 

synthesis and a further thirty two (34%) against RNA synthesis, as shown in Table 3.28, 

and as exemplified in Figure 3.19.  In contrast, 40 isolates (42.6%) showed bioactivity 

but did not form blue halos.   

 

Table 3.27.  Diameter of zones of inhibition (mm) produced by strains isolated from the 

Salar de Atacama environmental sample against the Bacillus subtilis reporter strains 

after incubating overnight at 30
o
C. Isolates found to give blue halos are shown in blue. 

Isolates Reporter genes 

phi105
CH

 yvqI
ER

 yjaX
ER

 ypuA
ER

 yvgS
ER

 

Multi-membered colour-groups: 

KNN1-2c  23 20 23 22 22 

KNN1-5f 

 

20 18 15 16 17 

KNN2-2c 15 17 15 15 13 

KNN2-5c  16 14 15 15 16 

KNN2-6c  17 18 18 18 20 

KNN2-10d  25 17 25 22 21 

KNN2-11d  

 

15 15 20 15 16 

KNN3-1b  20 20 28 23 23 

KNN3-2b  22 18 23 22 23 

KNN3-11d  13 12 10 11 14 

KNN3-17d  

 

24 21 23 22 23 

KNN4-1b - - - - - 

KNN4-3b  20 20 22 23 22 

KNN4-4 a 

 

- - - - - 

KNN5-25d  

 

21 17 19 18 19 

KNN6-2a  20 19 20 20 20 

KNN6-5a  14 15 14 13 15 

KNN6-6b  Weak Weak 13 13 13 

KNN6-10b  24 16 25 23 23 

KNN6-11a 

 

22 22 25 24 23 

KNN8-3a  20 16 20 18 20 

KNN8-5b  25 25 25 25 25 

KNN8-8a  Weak Weak Weak Weak Weak 

KNN8-9a  23 17 25 20 20 

KNN8-10a  

 

Weak Weak Weak Weak Weak 

KNN9-1a  Weak 13 Weak Weak Weak 

KNN9-2c 22 19 22 20 22 
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*KNN10-3b  23 18 20 20 20 

*KNN10-4d  18 18 20 17 21 

*KNN10-5a  

 

20 16 20 20 19 

KNN11-2a  13 12 10 13 14 

KNN11-4b  Weak 13 13 12 10 

KNN11-5a  Weak Weak 14 10 19 

KNN11-6a  

 

24 12 15 18 19 

KNN14-3e 

 

15 14 18 15 15 

KNN17-1c 30 19 35 28 35 

KNN17-2b 

 

23 30 28 28 30 

KNN18-3d 

 

16 15 20 18 17 

KNN24-2c  21 20 24 21 22 

KNN24-3c  15 19 17 13 15 

KNN24-4c  - - - - - 

KNN24-7c  24 25 25 20 25 

KNN24-8e  15 13 14 15 14 

KNN24-9e  

 

18 18 19 17 16 

KNN32-1a 

 

16 21 18 19 18 

KNN35-2b 

 

20 21 20 21 21 

KNN36-1c Weak Weak Weak 10 10 

KNN36-3c 

 

12 14 Weak 11 12 

KNN37-1e 20 20 20 20 17 

KNN37-5a 

 

20 19 18 16 18 

KNN38-1b 27 18 18 22 15 

KNN38-5b 

 

20 18 22 20 22 

KNN48-3e 20 19 22 22 22 

KNN48-6d 

 

21 25 27 24 24 

KNN52-2b 

 

15 Weak 12 16 15 

KNN57-1b 

 

- - - - - 

KNN58-1b 

 

24 16 25 23 22 

KNN63-2b 15 16 18 18 18 

KNN63-5b 

 

Weak 20 Weak Weak Weak 

KNN64-3b 28 17 21 21 23 

KNN64-5b 

 

27 20 22 20 21 

KNN65-1f 23 18 25 25 24 

KNN65-5d 

 

25 19 22 25 25 

KNN67-4b 

 

11 Weak 15 17 16 

KNN68-2 b Weak Weak 10 Weak 13 

KNN68-4 b 

 

Weak Weak Weak 11 10 

KNN69-1e 21 15 23 21 21 

KNN69-2a 22 25 25 23 23 
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KNN69-3a 

 

13 Weak 12 13 15 

KNN71-2a 

 

21 17 23 21 21 

KNN73-2a 

 

18 17 18 17 18 

KNN74-2c 

 

23 18 23 20 22 

KNN75-4b 

 

15 13 15 15 15 

KNN81-2b 

 

Weak 12 11 11 14 

KNN82-1a 

 

15 12 Weak Weak 12 

KNN85-1f 20 18 21 20 22 

 

Single-membered colour-groups: 
KNN25c 

 

15 15 15 12 15 

KNN26b 

 

25 19 19 28 25 

KNN27a 

 

25 21 20 21 20 

KNN28a 

 

12 22 14 12 14 

KNN29a 

 

Weak Weak 12 12 12 

KNN30a 

 

13 Weak 17 16 16 

KNN31d 

 

10 Weak 13 Weak 11 

KNN33a 

 

14 12 12 11 10 

KNN39c 

 

- - - - - 

KNN43b 

 

25 18 25 23 25 

KNN56a 

 

- - - - - 

KNN66a 

 

25 18 22 22 22 

KNN72a 

 

16 15 17 16 17 

KNN76b 

 

- - - - - 

KNN83e 

 

20 19 20 20 22 

KNN87b 

 

20 23 24 27 25 

KNN94e Weak 10 Weak Weak Weak 

- : negative result.  * Saccharothrix strains. 

 

Disc diffusion assays.  The results obtained with the mycelial extracts of the 94 strains 

isolated from the Salar de Atacama environmental sample are shown in Table 3.29, and 

illustrated in Figure 3.20.  Twenty four of the isolates (25.5%) gave strong positive 

results with the B. subtilis reporter strains, whereas 28 (29.8%) showed very weak or 

weak activity. In contrast, negative results were obtained against all of the B. subtilis 
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reporter strains with 31 of the extracts (33.0%).  The mycelial extracts of three strains 

inhibited cell wall synthesis (3.2%), three inhibited fatty acid synthesis (3.2%), 

seventeen cell envelope synthesis (18.1%) and a further sixteen RNA synthesis (17.0%),  

none of the extracts showed activity against DNA synthesis.   The mycelial extracts of 

eight strains (8.5%) showed activity against to all of B. subtilis reporter strains but did 

not produced blue halos.  Seventy four strains presented strong activity against the B. 

subtilis reporter strains in the plug assays, but only thirteen of the corresponding 

mycelial extracts showed strong activity against to the B. subtilis reporter strains. 

 

Figure 3.19.  Zones of inhibition produced by representative strains isolated from the 

Salar de Atacama environmental sample against the Escherichia coli strain and against 

the Bacillus subtilis reporter strains (Table 2.16, page 63) in agar plug assays after 

incubating overnight at 30
o
C. 
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Table 3.28.  Inhibition zones (mm) produced by mycelial extracts obtained from strains 

isolated from the Salar de Atacama environmental sample against the Bacillus subtilis 

reporter strains after incubating overnight at 30
o
C. Strains which gave blue halos are 

shown in blue. 

Isolates Reporter genes 
phi105

CH yvqI
ER yjaX

ER ypuA
ER yvgS

ER 
Multi-membered colour-groups: 
Streptomycetes      
KNN1-2c  23 20 23 22 22 
KNN1-5f 

 
20 18 15 16 17 

KNN2-2c 15 17 15 15 13 
KNN2-5c  16 14 15 15 16 
KNN2-6c  17 18 18 18 20 
KNN2-10d  25 17 25 22 21 
KNN2-11d  

 
15 15 20 15 16 

KNN3-1b  20 20 28 23 23 
KNN3-2b  22 18 23 22 23 
KNN3-11d  13 12 10 11 14 
KNN3-17d  

 
24 21 23 22 23 

KNN4-1b - - - - - 

KNN4-3b  20 20 22 23 22 

KNN4-4 a 

 

- - - - - 

KNN5-25d  

 

21 17 19 18 19 

KNN6-2a  20 19 20 20 20 

KNN6-5a  14 15 14 13 15 

KNN6-6b  Weak Weak 13 13 13 

KNN6-10b  24 16 25 23 23 

KNN6-11a 

 

22 22 25 24 23 

KNN8-3a  20 16 20 18 20 

KNN8-5b  25 25 25 25 25 

KNN8-8a  Weak Weak Weak Weak Weak 

KNN8-9a  23 17 25 20 20 

KNN8-10a  

 

Weak Weak Weak Weak Weak 

KNN9-1a  Weak 13 Weak Weak Weak 

KNN9-2c 

 

22 19 22 20 22 

KNN11-2a  13 12 10 13 14 

KNN11-4b  Weak 13 13 12 10 

KNN11-5a  Weak Weak 14 10 19 

KNN11-6a  

 

24 12 15 18 19 

KNN14-3e 

 

15 14 18 15 15 

KNN17-1c 30 19 35 28 35 

KNN17-2b 

 

23 30 28 28 30 

KNN18-3d 

 

16 15 20 18 17 

KNN24-2c  21 20 24 21 22 

KNN24-3c  15 19 17 13 15 

KNN24-4c  - - - - - 
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KNN24-7c  24 25 25 20 25 

KNN24-8e  15 13 14 15 14 

KNN24-9e  

 

18 18 19 17 16 

KNN32-1a 

 

16 21 18 19 18 

KNN35-2b 

 

20 21 20 21 21 

KNN36-1c Weak Weak Weak 10 10 

KNN36-3c 

 

12 14 Weak 11 12 

KNN37-1e 20 20 20 20 17 

KNN37-5a 

 

20 19 18 16 18 

KNN38-1b 27 18 18 22 15 

KNN38-5b 

 

20 18 22 20 22 

KNN48-3e 20 19 22 22 22 

KNN48-6d 

 

21 25 27 24 24 

KNN52-2b 

 

15 Weak 12 16 15 

KNN58-1b 

 

24 16 25 23 22 

KNN63-2b 15 16 18 18 18 

KNN63-5b 

 

Weak 20 Weak Weak Weak 

KNN64-3b 28 17 21 21 23 

KNN64-5b 

 
27 20 22 20 21 

KNN65-1f 23 18 25 25 24 
KNN65-5d 

 

25 19 22 25 25 

KNN67-4b 

 
11 Weak 15 17 16 

KNN68-2 b Weak Weak 10 Weak 13 
KNN68-4 b 

 
Weak Weak Weak 11 10 

KNN69-1e 21 15 23 21 21 
KNN69-2a 22 25 25 23 23 
KNN69-3a 

 
13 Weak 12 13 15 

KNN71-2a 

 
21 17 23 21 21 

KNN73-2a 

 
18 17 18 17 18 

KNN74-2c 

 
23 18 23 20 22 

KNN75-4b 

 
15 13 15 15 15 

KNN81-2b 

 
Weak 12 11 11 14 

KNN82-1a 

 
15 12 Weak Weak 12 

KNN85-1f 20 18 21 20 22 
      

Non-streptomycetes 
Saccharothrix 

KNN10-3b  

 

23 

 

18 

 

20 

 

20 

 

20 

KNN10-4d  18 18 20 17 21 
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KNN10-5a  

 

20 16 20 20 19 

KNN54-1a - - - - - 

 
Nonomuraea 
KNN57-1b 

 

- 

 

- 

 

- 

 

- 

 

- 

 

Single-membered colour-groups: 
KNN25c 

 
15 15 15 12 15 

KNN26b 

 
25 19 19 28 25 

KNN27a 

 
25 21 20 21 20 

KNN28a 

 
12 22 14 12 14 

KNN29a 

 
Weak Weak 12 12 12 

KNN30a 

 
13 Weak 17 16 16 

KNN31d 

 
10 Weak 13 Weak 11 

KNN33a 

 
14 12 12 11 10 

KNN39c 

 
- - - - - 

KNN43b 

 
25 18 25 23 25 

KNN66a 

 
25 18 22 22 22 

KNN72a 

 
16 15 17 16 17 

KNN76b 

 
- - - - - 

KNN83e 

 
20 19 20 20 22 

KNN87b 

 
20 23 24 27 25 

KNN94e Weak 10 Weak Weak Weak 
      

Non-streptomycetes 

Kribbella 
KNN56a 

 

 

- 
 

- 
 

- 
 

- 
 

- 

- : negative result. 

Strains negative against all of the B. subtilis reporter strains: KNN5-25d, KNN9-1a, KNN9-2c, 

KNN25c, KNN26b, KNN27a, KNN28a, KNN29a, KNN32-1a, KNN33a, KNN35-1b, KNN35-2b, 

KNN37-5a, KNN39c, KNN52-2b, KNN56a, KNN57-1b, KNN64-3a, KNN64-5b, KNN67-4b, 

KNN68-2b, KNN68-4b, KNN72a, KNN75-4b, KNN81-2b, KNN82-1a and KNN94e. 

3. 4. 8.  Preliminary characterisation of some bioactive compounds  

Three out of the 6 tested strains, namely Amycolatopsis strain KNN50-8b and 

Streptomyces strains KNN26b and KNN64-5b were found to produce interesting 
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specialised metabolites.  The results obtained for isolate KNN26b, a member of S. 

fimbriatus 16S rRNA gene clade, are shown in Figure 3.21.  Extracts of this organism 

showed HPLC peaks between 10-15 minutes (molecular weight between 220-590), 

which suggested the presence of novel metabolites or peptides as these peaks that did 

not correspond with compounds contained in the Dictionary of Natural Products 

(Buckingham, 2013),  the Reaxys online (http://www.reaxys.com)  or the AntiBase 

2012 (Laatsch, 2013) databases. Isolate KNN50-8b, a member of A. ruanii 16S rRNA 

gene subclade, produced one major and several minor compounds as shown in Figure 

3.22, that did not feature in the databases mentioned above.  Isolate KNN64-5b, another 

member of the S. fimbriatus 16S rRNA gene clade, produced 5-6 derivatives of 

prospective novel aromatic polyene compounds, as shown in Figure 3.23, that did not 

correspond to entries in any of the three databases.  The remaining strains, 

Amycolatopsis isolate KNN50-16d and Streptomyces isolates KNN38-1b and KNN90a, 

did not yield any specialised compounds of interest. 

 

Figure 3.20.  Zones of inhibition produced by mycelial extracts of representative strains 

isolated from the Salar de Atacama environmental sample against the Bacillus subtilis 

reporter strains after incubating overnight at 30
o
C. Strains which gave blue halos are 

highlighted. 

 

 

 

 

 

 

 

 

 

 

http://www.reaxys.com/
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Figure 3.21.  HPLC and UV traces obtained in liquid chromatographic analyses for Streptomyces fimbriatus-like strain KNN26b  extracts prepared 

from medium 19. The red circle highlights the peaks of prospective novel major and minor novel specialised compounds. 
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Figure 3.22. HPLC and UV traces obtained in liquid chromatographic analyses for Amycolatopsis ruanii-like isolate KNN50-8b extracts prepared 

from medium 19. The red circle highlights the peaks of major and minor specialised metabolites of interest compounds. 
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Figure 3.23.  HPLC and UV traces obtained in liquid chromatographic analyses for Streptomyces fimbriatus-like strain KNN64-5b extracts prepared 

from glucose yeast-extract malt-extract broth. The individual arrows highlight peak of presumptive novel compounds. 
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3.5. Discussion 

The outcomes of the present investigation confirm and extend those reported in the pioneering 

biosystematic studies on cultivable Atacama Desert actinobacteria (Okoro et al., 2009; Bull & 

Asenjo, 2012).  Once again, small numbers of taxonomically diverse filamentous 

actinobacteria with the capacity to produce bioactive compounds were isolated from hyper- 

and extreme hyper-arid Atacama Desert soils.  Low numbers of actinobacteria were isolated 

from the Salar de Atacama and Yungay environmental samples, counts ranging from 0.1x10
2
 

to 1.3x10
4 

and 1.0x10
2
 to 5x10

3
 colony forming units per gram dry weight soil, respectively 

with the highest number in each case recorded from humic acid-vitamin agar plates.  In 

general, these counts are similar to those recorded for comparable soils by Okoro et al. (2009).  

These results together with those from previous culture-dependent (Cameron et al., 1966; 

Opfel & Zerbal, 1967) and culture-independent studies (Wintzingerode et al., 1997; Navarro-

Gonzalez et al., 2003; Drees et al., 2006; DiRuggiero et al., 2013) show that actinobacteria 

are present in arid Atacama Desert soils, sometimes in high abundance (Connon et al., 2007; 

Neilson et al., 2012). 

 Nearly all of the colonies growing on the selective isolation plates were identified as 

actinobacteria based on characteristic morphological features, notably the ability to form 

extensively branched substrate mycelia, and in many cases, aerial hyphae.  Indeed, on this 

basis most of the representative isolates from the hyper-arid Salar de Atacama and extreme 

hyper-arid Yungay soils were assigned to the genus Streptomyces, namely 79.3 and 73.3%, 

respectively.  The 250 representative streptomycetes from the Salar de Atacama soil were 

recovered in 43 multi- and 21 single-membered colour-groups and the corresponding 77 

representative isolates from the Yungay soil in 14 multi- and 12 single-membered colour-

groups.  These data show that the streptomycete communities in these soils, while small, are 

taxonomically diverse as it is known that colour-groups based on the ability of streptomycetes 

to produce diagnostic pigments on oatmeal and peptone-yeast extract-iron agars are reliable 

indicators of species diversity (Pathom-aree et al., 2006; Antony-Babu & Goodfellow, 2008; 

Antony-Babu et al., 2010; Goodfellow & Fiedler, 2010).   It is evident, therefore, that 

taxonomically diverse streptomycetes are present in arid Atacama Desert soil, as found in the 

pilot study of Okoro et al. (2009). 

Whole-organism hydrolysates of strains taken to represent the  Streptomyces colour-groups 
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were rich in the diagnostic marker, LL-diaminopimelic acid thereby underpinning the generic 

status of these taxa (Kämpfer, 2012).  It was surprising that only 10 out of the 327 

streptomycetes formed melanin pigments on peptone-yeast extract-iron agar as melanin and 

melanin-like pigments have been shown to protect micro-organisms against UV radiation and 

oxidants (Casadevall et al., 2000; Langfelder et al., 2003; Dharmik & Gomashe, 2013).  

However, there is evidence that some actinobacteria only produce melanin-like pigments 

under oligotrophic conditions (Reddy et al., 2007) while other micro-organisms, such as 

cyanobacteria and fungi, may produce secondary metabolites as sunscreens (Cao & Garcia-

Puhel, 2011). 

 The phylogenetic analyses of the 62 Salar de Atacama strains taken to repesent 21 

multi- and 6 single-membered colour-groups fell within the evolutionary radiation occupied 

by the genera Actinomadura, Amycolatopsis, Kribbella, Lechevalieria, Nonomuraea, 

Saccharothrix and Streptomyces.  Most of the Amycolatopsis and Streptomyces isolates 

represented large multi-membered colour-groups, as exemplified by Amycolatopsis colour-

groups KNN49 (31 isolates) and KNN50 (18 isolates) and Streptomyces colour-groups KNN2 

(18 isolates), KNN 5 (21 isolates) and KNN48 (20 isolates).  These data together with those 

reported by Okoro et al. (2009) indicate that Amycolatopsis and Streptomyces are the 

predominant culturable genera present in hyper-arid Salar de Atacama soil.  In contrast, the 

Actinomadura, Nonomuraea and all but one of the Saccharothrix strains represented colour-

groups encompassing between 2 and 5 isolates; the Kribbella, Lechevalieria and the 

remaining Saccharothrix strains belonged to single-membered colour-groups.  All of these 

isolates represent genera considered to be rare in natural habitats (Tiwari & Gupta, 2012a, b); 

of these genera only members of the genus Lechevalieria had previously been isolated from 

Salar de Atacama soil (Okoro et al., 2010). 

 Comparative 16S rRNA gene sequence analyses showed that 25 isolates from the 

extreme hyper-arid Yungay soil, which represented 6 multi- and 4 single-membered clusters, 

belonged to the genera Blastococcus (KNN47b), Couchioplanes (KNN7-2b), 

Geodermatophilus (KNN44-1b, KNN44-3b and KNN44-4b), Modestobacter (KNN45-1a, 

KNN45-2b, KNN45-3b, KNN45-4b and KNN46-2b, KNN46-3b, KNN46-4b, KNN46-6b, 

KNN46-7a, KNN46-8a, KNN46-9c and KNN49-10f), Pseudonocardia (KNN55-1b and 

KNN55-2b) and Streptomyces (KNN22a, KNN23-1b, KNN32-1a, KNN42f, KNN47b and 

KNN70b); these assignments were underpinned by the results of chemotaxonomic and 
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morphological data from representatives of these taxa as the latter gave results typical of the 

constituent genera (Goodfellow et al., 2012a).  In this case, most of the isolates were assigned 

to the genera Modestobacter and Streptomyces, as illustrated by Modestobacter colour-group 

KNN46 (12 isolates) and Streptomyces colour-group KNN48 (15 isolates).  Isolates 

representing single-membered colour-groups were assigned to the genera Blastococcus and 

Streptomyces whereas the Couchioplanes, Geodermatophilus and Pseudonocardia strains 

represented colour-groups that contained 4, 4 and 2 isolates, respectively. 

 While based on a relatively small number of isolates, the phylogenetic data provide 

evidence that hyper-arid and extreme hyper-arid Atacama Desert soils are populated by 

markedly different actinobacterial communities. It is especially interesting that representatives 

of the genera Blastococcus, Geodermatophilus and Modestobacter, which together constitute 

the family Geodermatophilaceae, were only found in the extreme hyper-arid soil, as members 

of these poorly studied genera are typically inhabitants of exposed surfaces, such as ancient 

monuments and rocks (Urzì et al., 2004; Reddy et al., 2007; Montero-Calasanz et al., 2013), 

surface soils (Luedemann, 1968) and regoliths (Mevs et al., 2004).  In constrast, 

Amycolatopsis strains were only isolated from the hyper-arid Salar de Atacama soil; members 

of this taxon are known to be present in arid Australian soils (Tan et al., 2006).  Furthermore, 

Streptomyces strains, while prevalent in both the Salar de Atacama and Yungay soils, were 

with very few exception, recovered in site specific colour-groups.  Relatively little in known 

about the abundance and distribution of the remaining genera in natural habitats through 

Actinomadura, Nonomuraea, Pseudonocardia and Saccharothrix strains have been isolated 

from arid soils (Wink et al., 2003; Zitouni et al., 2004; Babulola et al., 2009; Lee & Lee, 

2010; Zhang et al., 2010; Kurapova et al., 2012; Camas et al., 2013; Ding et al., 2013). 

 The results of the phylogenetic analyses based on 16S rRNA gene sequences of 

representative Streptomyces strains isolated from the hyper-arid Salar de Atacama soil showed 

that nearly all of them formed distinct phyletic lines or subclades that can be considered as 

putatively novel Streptomyces species.  Similar deductions  drawn by Okoro et al. (2009) for 

strains isolated from hyper-arid and extreme hyper-arid Atacama Desert soils were 

substantiated when three strains forming distinct lineages in the Streptomyces 16S rRNA gene 

tree were validly named as Streptomyces atacamensis, Streptomyces bullii and Streptomyces 

deserti (Santhaman et al., 2012a, b, 2013).  In the present study, isolate KNN87, which 

formed a single-membered colour-group, was found to have an identical 16S rRNA gene 
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sequence to the type strain of S. bullii thereby providing good grounds for considering it to be 

a member of this species.  However, it was especially interesting that most of the 

Streptomyces strains from the present study belonged to well delineated multi-membered 

subclades recognised by Okoro et al. (2009), notably the S. fimbriatus subclade and a large 

taxonomically distinct taxon which encompassed strains shown to synthesised specialised 

metabolites (Nachtigall et al., 2011; Rateb et al., 2011a, b; Bull & Asenjo, 2012).  The 

detailed taxonomic relationships within these taxa and their closest phylogenetic neighbours 

will be considered in Chapter 6, as will relationships between the seven strains which formed 

a well delineated Streptomyces subclade that was most closely related to the type strain of 

Streptomyces carpinenis.  Corresponding studies will be reported in Chapter 4 on isolates 

assigned to the Amycolatopsis methanolica 16S rRNA gene clade given their potential 

biotechnological, ecological and taxonomic significance. 

 Most of the remaining isolates included in the phylogenetic studies formed distinct 

phyletic lines within evolutionary space populated by the genera  Actinomadura, Blastococcus, 

Couchioplanes, Geodermatophilus, Nonomuraea, Pseudonocardia and Saccharothrix, as did 

the balance of the Streptomyces strains.  Some of these isolates may well form the nuclei of 

new species as they shared 16S rRNA gene similarities below the 99.0% cut-off point 

recommended by Meier- Kolthoff et al. (2013) to trigger the need for DNA:DNA pairing 

studies between potentially novel isolates and very close taxonomic neighbours.  

Consequently, isolates KNN7-2b, KNN10-4d, KNN34c, KNN44-3b and KNN55-2 probably 

represent new species in the genera Couchioplanes, Saccharothrix, Actinomadura, 

Geodermatophilus and Pseudonocardia, respectively.  In contrast, more extensive taxonomic 

studies, including the application of DNA:DNA pairing or whole-genome sequence 

procedures, are needed to establish the taxonomic status of the remaining isolates recovered in 

the genera Actinomadura, Geodermatophilus, Pseudonocardia, Saccharothrix and 

Streptomyces and the strains assigned to the genera Kribbella and Nonomuraea.  The 

relationships between the Modestobacer isolates and between them and associated type strains 

will be considered in Chapter 5. 

 At the generic level, more extensive actinobacterial diversity was recorded amongst 

isolates from the hyper-arid Atacama Desert soil when compared with the work of Okoro et al. 

(2009), for in addition to Amycolatopsis, Lechevalieria and Streptomyces strains a small 

number of Actinomadura, Kribbella, Nonomuraea and Saccharothrix strains were isolated.  
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These differences can be attributed to factors such as sampling error and to the use of 

different selective media.  However, in the present study Amycolatopsis and Streptomyces 

strain grew on all of the isolation media, not just on those designed for this purpose.  Indeed, 

the humic acid agar plates not only supported the growth of representative strains of 

Amycolatopsis and Streptomyces, but also that of the two Nonomuraea strains and three out of 

the six Saccharothrix isolates.  Similar results were recorded for the extreme hyper-arid 

Yungay soil, as exemplified by the isolation of more representatives of the family 

Geodermatophilaceae on humic acid-vitamin agar than on the media designed to isolate 

members of this taxon.  These apparently anomalous results can be attributed to the lack of 

competition between taxonomically different bacteria, including actinobacteria, on isolation 

plates, which in turn may reflect the small number of the bacterial propagules in the soil 

suspensions.  Indeed, in light of these results humic acid-vitamin agar can be recommended as 

the medium of choice for the selective isolation of taxonomically diverse actinobacteria from 

hyper-arid and extreme hyper-arid Atacama Desert soils.  Nevertheless, additional taxonomic 

surveys of  arid Atacama Desert soils should be based on the use of several selective isolation 

media, not least ones formulated for the isolation members of the family Conexibacteriaceae, 

Nitriliruptoraceae, Patulibacteriaceae, Rubrobacteriaceae and Solirubrobacteriaceae all of 

which have been detected in such soils by pyrosequencing community DNA samples (Neilson 

et al., 2012). 

 Ninety two out of 136 representative strains (67.6%) isolated from the hyper-arid and 

extreme hyper-arid Atacama Desert soils showed activity against one or more of the five 

strains used in the standard plug assays thereby providing further evidence that the use of 

dereplicated strains results in high hit rates (Qin et al., 2009; Goodfellow & Fiedler, 2010; 

Yuan et al., 2014).   Most of the isolates showed activity against the B. subtilis and S. aureus 

strains, a third against S. cerevisiae, but few inhibited the growth of the E. coli and P. 

fluorescens strains; these results are in line with those of previous studies on filamentous 

actinobacteria (Eccleston et al., 2008; Qin et al., 2009).  In contrast, 15 of the isolates from 

the hyper-arid Salar de Atacama soil (11.0%) and 28 of those from the Yungay (20.6%) did 

not show any activity against the panel of wild type micro-organisms, most of these isolates 

belonged to non-streptomycete taxa. 

 Nine out of the ten strains that inhibited the growth of all of the wild type strains in the 

plug assays were isolated from the hyper-arid Salar de Atacama soil and the remaining one, 
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isolate KNN90a, from the extreme hyper-arid Yungay soil.  These strains are of particular 

interest as they may produce one or more novel broad spectrum antibiotics (or a range of 

specialised metabolites) and hence are prime candidates in the search for such compounds 

(Fishbach & Walsh, 2009).  The ten isolates, which represented eight colour-groups, were all 

assigned to be the genus Streptomyces: strains KNN26b, KNN38-1b, KNN64-3a, KNN64-5b 

to the S. fimbriatus 16S rRNA subclade, strains KNN35-1b and KNN35-2b to Streptomyces 

news ubclade 2, while strain KNN32-1a formed a distinct phyletic line in the S. rochei 16S 

rRNA subclade; the remaining three strains, isolates KNN37-5a, KNN63-2b and KNN90a, 

were not included in the 16S rRNA sequence analyses.  It is also interesting that six of the 

strains were isolated on humic acid-vitamin agar plates, the remaining four on a Gause’s  o.1 

agar plate.  The potential importance of the isolates classified in the S. fimbriatus 16S rRNA 

subclade was underpinned by results from the preliminary chemical analyses which showed 

that strains KNN26b and KNN64-5b produced potentially novel bioactive compounds. 

 Twenty two of the Salar de Atacama isolates (23.4%) were found to inhibit cell 

envelope, cell wall, fatty acid and RNA synthesis as they produced blue halos with the B. 

subtilis reporter strains ypuA
ER

, yvqI
ER

, yjaX
ER

 and yvgS
ER

, respectively.  These isolates belonged to 

16 Streptomyces colour-groups and hence represent diverse taxa within this genus.  Isolate 

KNN5-25d formed a well distinct phyletic line in the S. althioticus 16S rRNA subclade while 

KNN38-5b was member of S. fimbriatus 16S rRNA subclade  (the remaining isolates were 

not included in the 16S rRNA gene sequencing studies).  It was particularly interesting that 

five of the twenty two isolates, strains KNN6-2a, KNN6-10b, KNN9-2c, KNN10-4d and 

KNN24-2c, were assigned to Streptomyces 16S rRNA new subclade 1 which will be 

considered in Chapter 6 under the heading Streptomyces leeuwenhoekii 16S rRNA gene 

subclade.  The 40 isolates (42.6%) which did not exhibit blue halos but did show bioactivity 

against one or more of the B. subtilis reporter strains are of interest as the nature of their 

bioactivity remains to be determined. 

 It is becoming increasingly apparent that rare actinobacteria from extreme 

environments are a useful source of novel bioactive compounds (Bredholt et al., 2007, 2008; 

Genilloud et al., 2011; Tiwari & Gupta, 2012b).  However, in the present study only three out 

of the thirty isolates assigned to the genera Actinomadura, Amycolatopsis, Blastococcus, 

Couchioplanes, Geodermatophilus, Kribbella, Modestobacter, Nonomuraea, Pseudonocardia 

and Saccharothrix showed activity in the plug assays.  The three isolates found to be active, 
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strains KNN10-3b, KNN10-4d, KNN10-5d, inhibited the growth of the B. subtilis and S. 

aureus strains and synthesised one or more bioactive compounds that targeted cell envelope, 

fatty acid and RNA synthesis.  It is, however, important to remember that the success or 

otherwise of screening programmes is not only dependent on the use of novel taxonomically 

diverse actinobacteria but is also influenced by the composition of media used to cultivate 

strains.  Consequently, strains showing inactivity in screening assays need to be grown on a 

range of production media as this may have a dramatic effect on the expression of constituent 

secondary metabolite gene clusters (Goodfellow & Fiedler, 2010). 

 The results of the present study provide further evidence that small numbers of 

taxonomically diverse actinobacteria with the capacity to synthesise a broad range of 

bioactive compounds are present in highly arid Atacama Desert soils.  Indeed, this is the first 

report describing the isolation of members the genera Actinomadura, Blastococcus, 

Couchioplanes, Geodermatophilus, Kribbella, Modestobacter, Pseudonocardia and 

Saccharothrix strains from such soils.  However, complementary culture-independent studies 

of community DNA isolated from Salar de Atacama and Yungay soils are needed to 

determine whether the taxa isolated in the present study are representative of the 

actinobacterial communities present in these soils. 
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Chapter 4. Classification of thermophilic Amycolatopsis strains 

isolated from arid desert soils 

 

4.1. Abstract 

The taxonomic position of twenty six filamentous actinobacteria isolated from a hyper-

arid Atacama Desert soil and two from an arid Australian composite soil were 

established using a polyphasic approach.  All of the isolates gave the diagnostic 

amplification product using 16S rRNA oligonucleotide primers specific for the genus 

Amycolatopsis.  16S rRNA gene analyses showed that all of the isolates belonged to the 

Amycolatopsis methanolica 16S rRNA gene subclade.  Representative isolates had 

chemotaxonomic and morphological properties typical of members of the genus 

Amycolatopsis. The Atacama Desert isolates were assigned to one or other of two 

recognised species, namely Amycolatopsis ruanii and Amycolatopsis thermalba based 

on 16S rRNA gene sequence, DNA:DNA relatedness and phenotypic data; emended 

descriptions are given for these species.  In contrast, the two strains from the arid 

Australian composite soil, isolates GY024 and GY142, formed a distinct branch at the 

periphery of the A. methanolica 16S rRNA gene subclade, a taxon that was supported 

by all of the tree-making algorithms and by a 100% bootstrap value.  Isolate GY024 

was distinguished from the type strains of all of species classified in the A. methanoloca 

16S rRNA subclade using a broad range of phenotypic properties.  The combined 

genotypic and phenotypic data show that strain GY024 merits recognition as a new 

species within the A. methanolica group of thermophilic strains.  The name proposed for 

the new species is Amycolatopsis deserti sp. nov.; the type strain is GY024
T 

(= CIMB……= RRL….).   

 

4.2. Introduction 

The genus Amycolatopsis Lechevalier et al. (1986) is classified in the family 

Pseudonocardiaceae (Labeda & Goodfellow, 2012a) of the order Pseudonocardiales 

(Labeda & Goodfellow, 2012b).  It can be distinguished from other genera classified in 

the family by using genus-specific 16S rRNA oligonucleotide primers (Tan et al., 2006) 

and by a combination of chemotaxonomic and morphological markers (Labeda et al., 
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2011; Labeda & Goodfellow, 2012a).  The genus encompasses 65 validly published 

species (Euzéby, 2013) most of which have been proposed using polyphasic taxonomic 

data, as exemplified by descriptions of Amycolatopsis cihanbeyliensis (Tatar et al., 

2013), Amycolatopsis jiangsuensis (Xing et al., 2014), Amycolatopsis magusensis 

(Camas et al., 2013) and Amycolatopsis umgeniensis (Everest et al., 2013).  Closely 

related Amycolatopsis species can be distinguished by using a combination of 

phenotypic features (Tan & Goodfellow, 2012; Camas et al., 2013; Everest et al., 2013).  

Members of genus are widely distributed in natural habitats, especially in 

geographically diverse soils (Saintpierre-Bonaccio et al., 2005; Tan et al., 2006; Nie et 

al., 2012; Camas et al., 2013; Everest et al., 2013), others have been isolated from 

clinical material (Labeda et al., 2003, Huang et al., 2004), marine sediment (Bian et al., 

2009), a salt lake (Tang et al., 2010) and plants (Duangmal et al., 2011; Miao et al., 

2011). 

 Amycolatopsis species can be assigned to several multi- and single- membered 

phyletic lines based on gyrB, recN and 16S rRNA sequence analyses (Everest & Meyers, 

2009; Everest et al., 2011; Tan & Goodfellow 2012)., The two most populated phyletic 

groups, the Amycolatopsis methanolica and Amycolatopsis orientalis 16S rRNA 

subclades, are difficult to distinguish using phenotypic criteria though members of the 

former grow well at temperatures up to 45
o
C (Tan & Goodfellow, 2012; Zucchi et al., 

2012a, c) and hence can be considered to be thermophilic actinobacteria (Cross, 1968; 

Brock, 1986).  The A. methanolica 16S rRNA subclade encompasses Amycolatopsis 

methanolica (De Boer et al., 1990), the earliest described species, Amycolatopsis 

eurytherma (Kim et al., 2002a), Amycolatopsis granulosa (Zucchi et al., 2012a), 

Amycolatopsis ruanii (Zucchi et al., 2012c), Amycolatopsis thermoflava (Chun et al., 

1999), Amycolatopsis thermophila (Zucchi et al., 2012a), Amycolatopsis thermalba 

(Zucchi et al., 2012b), Amycolatopsis tucumanensis (Albarraćin et al., 2010) and 

Amycolatopsis viridis (Zucchi et al., 2012c).  These species can be distinguished using a 

broad range of phenotypic properties (Zucchi et al., 2012b, c) and are of potential value 

in biotechnology, notably as vehicles for fermentation overproduction of aromatic 

amino acids (De Boer et al., 1990; Abou-Zeid et al., 1995) and as agents of 

bioremediation (Albarracín et al., 2008, 2010).  Members of the A. methanolica 16S 

rRNA gene clade are rare actinomycetes as all but one of the constituent species, 

namely A. eurytherma, rest on descriptions of single strains that were mainly isolated 

from arid soil collected in Australia, China and New Guinea. 
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 The present study was designed to establish the taxonomic provenance of strains 

isolated from arid Atacama Desert and Australian desert soils and assigned to the A. 

methanolica 16S rRNA gene clade based on characteristic colonial features and an 

ability to grow at 50
o
C.  The isolates were compared with the type strains of species 

classified in the A. methanolica 16S rRNA gene clade using a polyphasic taxonomic 

approach.  The resultant data showed that the twenty six Atacama Desert isolates were 

bona fide members of either A. ruanii or A. thermalba  whereas the two isolates from 

the Australian soil belong to a new Amycolatopsis species for which the name 

Amycolatopsis taniae sp. nov. is proposed. 

 

4.3. Materials and Methods 

4. 3. 1.  Isolation of Amycolatopsis strains 

Filamentous actinobacteria were sought from a hyper-arid soil sample collected from 

the Chaxa de Laguna of the Salar de Atacama in the Atacama Desert of Northern Chile 

(23
o
 1 ’S, 68

o
 100’ W) using a range of selective isolation media (Table 4.1).  The 

media were incubated at 28
o
C for 3 weeks following inoculation with a 10

-1
 soil 

suspension that had been heated at 55
o
C for 6 minutes, as described by Okoro et al. 

(2009).  Counts of Amycolatopsis strains growing on each of the isolation media were 

expressed as the number of colony forming units per gram dry weight soil.    Strains 

GY024 and GY142 were isolated on SM1 agar plates that had been inoculated with 

tenfold dilutions of an arid Australian composite soil and incubated at 28
o
C for 3 weeks, 

as described by Tan et al. (2006). 

4. 3. 2.  Test strains, maintenance and cultural conditions 

Twenty-six isolates from the hyper-arid Salar de Atacama soil with the typical colonial 

appearance of Amycolatopsis strains were taken from the selective isolation plates and 

subcultured onto modified Bennett’s agar plates (Jones, 1949), incubated at 28
o
C for 14 

days and checked for purity by microscopic examination of Gram-stained smears.  

These Atacama strains together with isolates GY024
T
 and GY142 and the type strains of 

Amycolatopsis species classified in the A. methanolica 16S rRNA gene subclade were 

maintained on modified Bennett’s agar slopes (Jones, 1949) and in 20%, v/v glycerol     

-20 and -80
o
C.  Biomass for the chemotaxonomic studies carried out on representative 
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isolates and the type strains of A. ruanii and A. thermalba was prepared in shake flasks 

(200 revolutions per minute) of yeast extract-malt extract broth (International 

Streptomyces Project [ISP] medium 2; Shirling & Gottlieb, 1966) for 14 days at 28
o
C, 

washed twice in distilled water and freeze-dried.  Biomass for the molecular systematic 

studies was prepared in the same way but was stored as washed preparations at -20
o
C. 

4. 3. 3.  PCR amplification using genus-specific primers 

Genomic DNA was extracted from the twenty six representatives of the Salar de 

Atcama soil and from the 2 isolates from the Australian composite soil and the DNA 

preparations examined to determine whether they produced the diagnostic amplification 

product with the genus-specific Amycolatopsis 16S rRNA oligonucleotide primers 

AMY2 amd ATOP, as described by Tan et al. (2006). 

4. 3. 4.  Phylogeny 

Genomic DNA was extracted from all of the isolates and PCR amplification and 16S 

rRNA gene sequencing achieved after Kim and Goodfellow (2002). 16S rRNA gene 

sequences of the strains [1310-1350 nucleotides (nt)] were aligned manually, using 

MEGA version 5 software (Tamura et al., 2011), against corresponding sequences of 

the type strains of Amycolatopsis species retrieved from the GenBank database using 

the EzTaxon-e server (Kim et al., 2012) and phylogenetic trees generated using the 

maximum-likelihood (Felsenstein, 1981), maximum-parsimony (Fitch, 1971) and 

neighbour-joining (Saitou & Nei, 1987) tree-making algorithms drawn from MEGA 

5software programme. The same procedure was used to examine relationships between 

the isolates and closely related Amycolatopsis. The appropriate nucleotide substitutions 

for the maximum-likelihood analyses were selected by the Bayesian Information 

Criterion (BIC) using MEGA 5 software and found to follow the Tamura 3-parameter 

(T92+G+I) model (Tamura, 1992). The topologies of all of the evolutionary trees were 

evaluated by bootstrap analyses (Felsenstein, 1985) of the neighbour-joining dataset 

based on 1,000 replicates using MEGA 5 software. The root position of the neighbour-

joining trees were inferred by using Actinokineospora riparia DSM 44259
T
 (GenBank 

AF114802) as the outgroup. 
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4. 3. 5.  Chemotaxonomy 

All of the isolates were examined for the presence of isomers of diaminopimelic acid 

(A2pm) using the procedure described by Staneck and Robert (1974).  In addition, six 

strains from the Salar de Atacama soil (isolates KNN49-5e, KNN49-26a, KNN50-8b, 

KNN50-2e, KNN50-11c and KNN50-16d) and isolates GY024 and GY142 from the 

Australian composite soil were examined for additional chemotaxonomic markers 

considered to be typical of members of the genus Amycolatopsis (Tan & Goodfellow, 

2012).  Standard procedures were used to determine the predominant isoprenoid 

quinones (Minnikin et al., 1984),  muramic acid type (Uchida et al., 1999), sugars 

(Schaal, 1985), and polar lipids (Minnikin et al., 1984), using A. ruanii NMG112
T
 and 

A. thermalba  SF45
T
 as controls; mycolic acids were sought from these isolates using 

the acid methanolysis procedure described by Minnikin et al. (1980). Fatty acids 

extracted from the representative isolates and type strains of A. ruanii and A. thermalba 

were methylated and analysed using the standard Sherlock Microbial Identification 

(MIDI) system, ACTINO version 5.  The G+C mol% of the DNA of the representatives 

from the hyper-arid Salar de Atacama soil isolates and isolates GY024
T
 and GY142 

from the Australian composite soil were determined, in triplicate, following the 

procedure described by Gonzalez and Saiz-Jimenez (2002).   

4. 3. 6.  Phenotypic tests 

All of the isolates were examined for cultural properties following growth on oatmeal 

and peptone-yeast extract-iron agars (ISP media 3 and 6; Shirling & Gottlieb, 1966) 

after incubation for 14 and 4 days, respectively.  The isolates and the type strains of 

species classified in the A. methanolica 16S rRNA gene subclade were also examined 

for phenotypic properties known to be of value in Amycolatopsis systematics (De Boer 

et al., 1990; Kim et al., 2002; Tan & Goodfellow, 2012) following incubation at 28
o
C 

for 3 weeks. Additional biochemical features were obtained by using API ZYM test 

strips (BioMérieux), following the manufacturer’s protocol.   standard inoculum 

equivalent to 5.0 on the McFarland scale (Murray et al., 1999) was used to inoculate the 

test media. All of the tests were carried out in duplicate. 
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4. 3. 7.  DNA-DNA relatedness 

DNA:DNA relatedness experiments were carried out, in triplicate, between six selected 

pairs of strains (Table 4.3) by measuring the divergence between the thermal 

denaturation midpoint of homoduplex DNA and heteroduplex DNA (ΔTm) preparations  

using the  fluorimetric method, as described by Gonzalez & Sait-Jimenez (2005).  The 

optimal temperature for renaturation (Tm) was calculated using the equation Tor-0.51 

(GC%) + 47.    

 

4.4. Results  

Selective isolation, enumeration and initial classification of isolates.  Low numbers 

of strains growing on the isolation media were assigned to the genus Amycolatopsis 

(Table 4.1) as they formed characteristic flat to slightly raised, round colonies covered 

by a powdery white aerial mycelia.  The highest count, 6.0x10
2 

cfu/g dry weight soil, 

was recorded from the humic acid-vitamin agar plates.  The twenty six isolates taken to 

represent the strains isolated from the Salar de Atacama soil and the two representatives 

from the Australian composite soil produced the genus-specific amplification product 

with the AMY2 and ATOP 16S rRNA primers and formed  yellowish white aerial 

hyphae, yellowish white substrate mycelia but no diffusible pigments on oatmeal agar; 

melanin pigments were not produced on peptone-yeast extract-iron agar.   

 

Table 4.1.  Numbers and representatives of  Amycolatopsis isolates growing on the 

selective isolation media after incubation for 21 days at 28
o
C. 

Selective media 
Target 

organisms 

Number of 

Amycolatopsis 

isolates (cfu/g dry 

weight soil) 

Reprresentative isolates 

Gause’s  o.1 agar supplemented 

with nalidixic acid (10 µg/ml) 

(Zakharova et al., 2003) 

Rare or 

uncommon 

actinobateria 

4.3x10
2
 KNN49-6a, KNN49-26a,  

KNN50-1a 

Humic acid-vitamin agar 

(Hayakawa & Nonomura, 1987) 

Streptosporangi

aceae spp. 

6.0x10
2
 KNN49-10b, KNN49-

12b, KNN50-8b, 

KNN50-9b 

Minimal medium agar (Johnson et 

al., 1981) 

Rare or 

uncommon 

actinobateria 

4.7x10
2
 KNN49-11, KNN50-4, 

KNN50-5, KNN50-11, 

KNN50-12, KNN50-13 
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Oligotrophic agar (Senechkin et al., 

2010) 

Rare or 

uncommon 

actinobateria 

5.7x10
2
 KNN50-7, KNN50-15, 

KNN50-14, KNN50-16, 

KNN50-17,  KNN50-18 

Starch-casein agar (Küster & 

Williams, 1964) 

Streptomyces 

spp. 

0.3x10
2
 KNN49-1 

SM1 agar supplemented with 

neomycin (1 µg/ml) (Tan et al., 

2006) 

Amycolatopsis 

spp.  

4.7x10
2
 KNN49-3e, KNN49-5e, 

KNN49-32e, KNN50-2e, 

KNN50-6e, KNN50-10e 

All of the media were supplemented with cycloheximide and nystatin, each at 25 µg ml
-1

. 

 

Phylogeny.  All of the isolates fell within the evolutionary radiation encompassed by 

the A. methanolica 16S rRNA gene subclade, which, in turn, was sharply separated 

from all of the remaining Amycolatopsis strains (Figure S1).  The recovery of the 

isolates within the A. methanolica 16S rRNA gene subclade in the more detailed 16S 

rRNA gene sequence analyses was supported by all of the tree-making algorithms and 

by a 100% bootstrap value (Figure 4.1).  The isolates from the hyper-arid Salar de 

Atacama soil were closely related either to the type strain of A. ruanii or to the 

corresponding A. thermalba strain, results underpinned by all of the tree-making 

methods and in each case by a 99% bootstrap value.  Indeed, four strains (isolates 

KNN49-3e, KNN49-5e, KNN50-5c and KNN50-13c) had identical 16S rRNA gene 

similarities with A. ruanii NMG112
T
, the remainder shared similarities with the latter 

within the similarity range 99.7 to 99.9 %, values corresponding to 1 to 4 nt diffences at 

1313 to 1403 locations (Table S1).  Similarly, four strains, isolates KNN49-6a, KNN50-

1a, KNN50-2e and KNN50-12c, had identical 16S rRNA gene sequences with A. 

thermalba SF45
T
, the remaining nine isolates were found to have similarities with the 

latter within the 16S rRNA similarity range 99.8 to 99.9%, a value equivalent to 1 to 3 

nt differences at 1315 to 1361 locations. 

 

The Australian strains, isolates GY024
T
 and GY142, formed a distinct branch at the 

periphery of the A. methanolica 16S rRNA gene subclade, the integrity of this taxon 

was supported by all of the tree-making algorithms and by a 100% bootstrap value 

(Figure 4.1).  The two isolates shared a 16S rRNA gene similarity of 99.7%, which 

corresponded to 4 nt differences at 1366 locations.  Strain GY024
T
 was most closely 

related to the type strain of A. ruanii having a 98.9% 16S rRNA gene sequence 

similarity with the latter, a value equivalent to 15 nt differences at 1328 sites.  Similarly, 

isolate GY142 was marginally more closely related to A. thermalba SF45
T
 than to A. 
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ruanii NMG112
T
 sharing a 16S rRNA gene sequence similarity with the former of 

98.8%, a value equivalent to 17 nt differences at 1369 sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.  Neighbour-joining tree based on nearly complete 16S rRNA gene 

sequences (~1350 bp) showing relationships between the isolates and and between them 

and the type strains of closely related Amycolatopsis species.  Asterisks indicate 

branches of the tree that were recovered with the maximum-likelihood and maximum-

parsimony tree-making methods.   Numbers at the nodes indicate levels of bootstrap 

support based on a neighbour-joining analysis of 1000 resampled datasets;only values 

above 50% are shown.  The scale bar indicates 0.005 substitutions per nucleotide 

position.  Blue and green characters indicated the strains were isolated from Salar de 

Atacama, Atacama Desert, Chile and the composite Australia soil, respectively. 
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Chemotaxonomy.  Whole organism hydrolysates of all of the isolates contained meso-

A2pm.  The six representative isolates from the Salar de Atacama soil, the two from the 

Australian composite soil and the type strains of A. ruanii and A. thermalba contained 

arabinose and galactose in whole-organism hydrolysates, N-acetylated muramic acid, 

tetrahydrogenated menaquinones with nine isoprene units as the predominant 

isoprenologue, and major amounts of diphosphatidylglycerol, 

phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylglycerol and 

phosphatidylinositol, as exemplified in Figure 4.2, but lacked mycolic acids. All of the 

isolates contained major proportions (>10%) of iso-C16:0 (23.5-30.6%), C16:0 (12-15.4%) 

and anteiso-C17:0 (12.2-13.1%), small amounts (<10%) of iso-C15:0 (3.3-4.4%), 

C16:16c/C16:1 (2.6-6.0%), iso-C17:0 (5.8-7.1%), C17:16c (5.6-9.7%) and C18:0 (6.7-8.5) 

and trace to small amounts of several components, some of which were discontinuously 

distributed (Table 4.2).  The DNA G+C contents of isolates KNN49-5e, KNN49-26e 

and KNN50-8b, representatives of the A. ruanii 16S rRNA gene subclade, were 

76.18+1%, 75.18+1% and  77.18+1%, respectively whereas those for the 

representatives of the A. thermalba 16S rRNA gene subclade, namely isolates KNN50-

2e,  KNN50-11c and KNN50-16d were 78.17+1%, 79+1% and 78.28+1%, respectively 

and those for isolate GY024
T
 and GY142 were 70.1+1% and 70.4+1%, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.  Two-dimensional thin-layer chromatography of polar lipids of isolates (A) 

KNN49-26a, (B) KNN50-2e, (C) KNN50-8b, (D) KNN50-11c, (E) GY024 and (F) 
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GY142 stained with molybdenum blue spray (Sigma).  Chloroform:methanol:water 

(32.5:12.5:2.0, v/v) was used in the first direction, followed by chloroform : acetic acid : 

methanol : water (40.0 : 7.5 : 6.0 : 2.0,v/v) in the second direction. Abbrevations: DPG, 

diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, 

phosphatidyl inositol; PME, phosphatidylmethylethanolamine. 

 

Table 4.2 Fatty acid composition (%) of Amycolatopsis isolates and the type strains of 

their closest phylogenetic neighbours. 

Fatty acids 

 Strains 

KNN49-

5e 

KNN49-

26a 

KNN50-

8b 

KNN50-

2e 

KNN50-

11c 

KNN50-

16d 

A. ruanii 

NMG112T 

A.thermalba 

SF45T 

iso-C11:0 - - - - - - 0.1 - 

iso-C12:0 - - - - - - 0.1 - 

C12:0 - 0.2 0.2 0.3 0.3 0.2 0.1 0.3 

C11:0 2OH - - - - - - 0.1 - 

iso-C13:0 - 0.1 - - 0.1 - 0.5 - 

anteiso-C13:0 - - - - - - 0.1 - 

C13:0 - - - - - - 0.1 - 

iso-C14:0 0.6 0.5 0.4 0.5 0.5 0.5 3.8 0.6 

anteiso-C14:0 - - - - - - 0.2 - 

C14:0 0.6 0.7 0.6 0.7 0.9 0.6 0.8 0.6 

iso-C15:0 3.3 4.5 4.2 4.2 4.1 4.4 23.7 47.1 

anteiso-C15:0 1.0 1.2 1.0 1.5 1.5 1.0 6.3 1.1 

C15:1 ω6c 0.1 - - - - - - - 

iso-C16:1 H 0.8 0.8 0.9 0.5 0.5 0.8 - 0.9 

C16:0 N alcohol 0.1 0.2 0.2 0.1 0.1 0.2 0.3 - 

iso-C16:0 30.6 28.5 29.3 29.4 28.6 30.1 12.8 35.7 

anteiso-C16:0 0.4 0.9 1.2 0.9 1.0 0.8 0.7 0.5 

C16:1 ω6c/C16:1 

ω c 

6.0 5.5 3.2 3.3 2.6 5.4 6.7 7.2 

C16:0 15.4 12.8 14.2 13.6 14.2 12.0 14.4 9.8 

iso-C17:1 

ω9c/C16:0 10 

methyl 

0.2 0.3 0.3 0.2 0.2 0.3 0.3 0.4 

anteiso-C17:1 

ω9c 

0.1 0.2 0.2 0.2 0.2 0.2 - - 

iso-C17:0 5.8 6.7 7.1 6.8 6.9 6.7 3.9 8.1 

anteiso-C17:0 12.2 15.0 16.2 16.6 18.1 13.9 5.5 12.8 

C17:1 ω8c 1.4 0.8 0.7 0.6 0.4 1.2 3.5 0.7 

C17:1 ω6c 5.6 9.4 8.3 9.0 9.3 8.3 1.3 7.4 

C17:0  1.5 1.5 1.8 1.5 1.4 1.7 8.9 0.8 

C17:0 10 methyl 0.2 0.1 - - - 0.1 0.3 - 

C16:0 3OH - - - 0.1 0.1 0.1 - - 
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C18:3 ω6c (6, 9, 

12) 

- - - 0.2 - 0.2 - - 

C17:0 10-methyl 0.2 - 0.1 - - - - - 

iso-C18:0 0.5 0.4 0.5 0.5 0.4 0.5 0.2 0.3 

C18:1 ω9c 4.7 2.1 1.7 1.5 1.0 2.8 1.5 1.5 

C18:1 ω6c/C18:1 

ω c 

0.3 - - - - - - - 

C18:0 8.5 6.8 6.5 7.0 6.7 7.3 3.7 4.1 

C17:0 2OH - - - - 0.1 - - - 

C17:0 3OH - - - - - - 0.2 - 

cyclo-C19:0 

ω10c/19ω6 

0.6 1.0 1.3 1.0 1.2 1.0 - 0.3 

 

DNA:DNA relatedness.  It is apparent from Table 4.3 that without exception, the 

DNA:DNA relatedness studies carried out by thermal denaturation of homologous DNA 

and associated heterologous DNA hybrid preparations between members of the A. 

ruanii and A. thermalba 16S rR   gene subclades revealed ΔTm values below the cut-

off point recommended for the recognition of genomic species (ΔTm >5.0
o
C) and hence 

above the DNA:DNA relatedness threshold of 70% (Wayne et al., 1987).  In contrast, 

the corresponding assays between the type strains of A. ruanii and A. thermalba were 

above these recommended thresholds, these strains shared a ΔTm value of 13+1
o
C and a 

DNA:DNA relatedness value of 30+0.1%.  The results of these experiments are 

exemplified in Figure 4.3. 

 

Table 4.3.  Relationships between representative isolates and between them and their 

most closely related type strain based on ΔTm (
o
C) values together with corresponding 

figures expressed as percentage DNA:DNA relatedness values. 

Strains 

Mean 

ΔTm* 

(
o
C) 

DNA:DNA 

relatedness values 

+ standard 

deviations 

Nucleotide base 

differences / total 

number of 16S 

rRNA nucleotides 

Amycolatopsis ruanii subclade:    

Isolate KNN49-5e versus isolate KNN49-26a 2.1+0.1 82+0.1 1/1382 

Isolate KNN49-5e versus isolate KNN50-8b 4.2+0.1 72+0.1 2/1314 

Isolate KNN49-26e  versus isolate KNN50-8b 4.2+0.1 72+0.1 3/1316 

Isolate KNN49-5e versus A. ruanii NMG112
T
 3.2+0.1 75+0.1 0/1382 

Isolate KNN49-26e versus A. ruanii NMG112
T
 4.0+0.1 76+0.1 4/1402 

Isolate KNN50-8b versus A. ruanii NMG112
T
 3.9+0.1 76+0.1 4/1359 
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Amycolatopsis thermalba subclade: 

Isolate KNN50-2e versus isolate KNN50-16d 2.7+0.1 80+0.1 1/1311 

Isolate KNN50-11c versus isolate KNN50-16d 3.1+0.1 76+0.1 2/1321 

Isolate KNN50-2e versus A. thermalba SF45
T
 2.9+0.1 80+0.1 0/1357 

Isolate KNN50-16d versus A. thermalba SF45
T
 2.7+0.1 80+0.1 1/1315 

A. ruanii NMG112
T
 versus A. thermalba SF45

T
 13.0+0.1 30+0.1 13/1392 

* Based on triplicate analyses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.  DNA:DNA relatedness studies between (A), isolate KNN49-5e gDNA and 

isolate KNN49-5e : KNN50-8b hybrid DNA; (B), isolate KNN50-8b gDNA and isolate 

KNN50-8b : A. ruanii NMG112
T
 hybrid DNA; (C), isolate KNN50-2e gDNA and 

isolate KNN50-2e : isolate KNN50-16d hybrid DNA; (D), isolate KNN50-2e gDNA 

and isolate isolate KNN50-2e: A. thermalba SF45
T
 hybrid and  (E), A. ruanii NMG112

T
 

gDNA and A. ruanii NMG112T: A. thermalba SF45
T
 hybrid DNA. 
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Phenotypic  properties.  Identical results were obtained between the duplicated 

cultures for all of the phenotypic tests.  The isolates and the type strains of 

Amycolatopsis species classified in the A. methanolica 16S rRNA gene cluster grew 

from pH 6.0 to 10, from 30 to 50
o
C, in the presence of 2.5% NaCl, degraded arbutin, 

casein, cellulose, gelatin, Tween 40 and 60, produced -chymotrypsin, acid phosphatase 

and -fucosidase (API ZYM tests) and formed acid from L-fructose and L-fucose.  In 

contrast, the isolates and marker strains did not grow at 4
o
C, in the presence of 10% 

NaCl, did not degraded chitin, guanine, Tween 20 or 80, did not produce acid from D-

glucose, D-glycogen, did not grow on butanol, ergosterol, propan-1-ol; propan-2-ol, 

sodium hippurate or sodium malate as sole carbon sources (at 1%, w/v), did not produce 

-galactosidase (API ZYM tests) and were sensitive to lysozyme (0.005%, w/v),  but 

resistant to  vancomycin hydrochloride (10 µg/ml). 

 It can be seen from Table 4.4 that all of the isolates assigned to the A. ruanii or 

A. thermalba 16S rRNA gene subclades gave identical results to those recorded for the 

respective type strain.  The members of these taxa can be distinguished from one 

another and from the type strains of the remaining Amycolatopsis species classified in 

the A. methanolica 16S rRNA gene subclade using a combination of phenotypic 

properties.  The A. ruanii strains, unlike the A. thermalba strains, degraded 

hypoxanthine, used D-arabinose and D-galactose as sole carbon sources, grew in the 

presence of 7.5% NaCl (w/v) and produced N-acetyl--glucosamidase.  In contrast, the 

A. thermalba strains, unlike the A. ruanii counterparts, hydrolysed allantoin, produced 

acid from xylose (1%, w/v), and used methanol (1%, v/v) as a sole carbon source, 

produced - and -glucosidases and naphthol-AS-BI-phosphohydrolase (API ZYM 

tests) and grew at 20
o
C and 55

o
C.  Similarly, isolates GY024

T
 and GY142 can be 

distinguished from one another and from all of the Amycolatopsis type strains belonging 

to species classified in the A. methanolica 16S rRNA subclade using a range of 

phenotypic properties (Table 4.4).  Isolate GY024
T
, unlike isolate GY142, degraded 

adenine and guanine and produced acid  from  D-adonitol, conversely only isolate 

GY142 formed acid from D-galactose, D-melibiose, D-melezitose, D-ribose, D-sucrose 

and D-turanose and grew in the presence of 7.5% NaCl (w/v). 
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Table 4.4.  Phenotypic characteristics distinguishing between Amycolatopsis isolates 

and between them and validly named Amycolatopsis species classified in the 

Amycolatopsis methanolica 16S rRNA gene clade.  

Phenotypic tests 

A
. 

m
et

h
a

n
o

li
ca

 2
3

9
T
 

A
. 

eu
ry

th
er

m
a

 N
T

 2
0

2
T
 

A
. 

g
ra

n
u

lo
sa

 G
Y

 0
3

7
T
 

A
. 

ru
a

n
ii

 N
G

M
 1

1
2

T
 +

 1
3
 S

a
la

r 
d

e 

A
ta

ca
m

a
 i

so
la

te
s*

 

A
. 

th
er

m
o

fl
a

va
  

N
R

R
L

1
4

3
3

T
 

A
. 

th
er

m
a

lb
a

 S
F

 4
5

T
 +

 1
3

 S
a
la

r 
d

e 

A
ta

ca
m

a
 i

so
la

te
s*

 

A
. 

th
er

m
o

p
h

il
a

 G
Y

0
8

8
T
 

A
. 

tu
cu

m
a

n
en

si
s 

A
B

O
T
 

A
. 

vi
ri

d
is

 G
Y

1
1

5
T
 

Is
o

la
te

 G
Y

0
2

4
 

Is
o

la
te

 G
Y

1
4

2
 

Acid production  from (1%, w/v):            

     D-adonitol + + - + + - + + - + - 

     D-Amygdalin + + - + + + - + - - + 

     L-arabinose + + + + + + - + + - - 

     D-arabinose + + - + + - - - - - - 

     D-arabitol + + - + + - + + + - - 

     L-arabitol + + - + + + - + - + + 

     Meso-erythritol  - + + + + + - + - - - 

     D-galactose + + + + + - + + + - + 

     Meso-inositol + + - + - + - + - + + 

     D-lactose + + + + + + - + + + + 

     D-maltose - - - + - + - - - - - 

     D-mannitol - + - + + + - + - + + 

     D-melezitose - + + + - + - + - _ + 

     D-melibiose - - - - + - - - - - + 

     D-ribose + + - + + + - + - - + 

     D-sorbitol + + - + + + - + - + + 

     D-sucrose + + - - + + - + - - + 

     D-trehalose + + + - + + - - + + + 

     D-turanose + + - - - - - + + - + 

     D-xylose + + + + + + - - + + + 

     D-xylitol + + - + + + - + - + + 

API ZYM tests: 

    N-acetyl--glucosamidase 

 

+ 

 

+ 

 

- 

 

+ 

 

+ 

 

- 

 

+ 

 

- 

 

- 

 

+ 

 

+ 

    Alkaline phosphatase + + + + + + - - + + + 

    Cysteine arylamidase + + + - + - - - + + + 

    Esterase (C4) + + + + - + + + + - - 

    Esterase (C8) + + + + - + + + + + + 

    -galactosidase + - + - - - - - + - - 

    -glucoside + - - - - + - + - - - 

    -glucosidase - - - - - + - + - - - 

    -glucuronidase - - + - - - - - + - - 

    Leucine arylamidase + + + + + + - + + + + 

    Lipase (C14) + + + - - - - - + + + 

    Naphthol-AS-BI-phosphohydrolase + + + - + + + - + - - 

    Trypsin + + + - + - - - - - - 

    Valine arylamidase + - - - - - + - + - - 

Degradation tests (%, w/v):            

    Allantoin (0.1) - + - - + + - - - - - 

    Adenine (0.4) - - - - - - - - + + - 

    Elastin (0.3) - + - + + + - + - + + 

    Guanine (0.4) - - - - - - - - - + - 

    Hypoxanthine (0.4) + + + + + - - - + - - 
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    Starch (0.1) + + + + + + + - + + + 

    Tyrosine (0.4) + + + - - - + - + - + 

    Xanthine (0.4) + - - - + + - - - - - 

    Xylan (0.4) - + - - + - - - - - - 

Growth in the presence of (%w/v):            

     5% NaCl + + + + + - + + + + + 

     7.5% NaCl + + - + + - + + - - + 

Growth on sole carbon sources (1%, 

w/v or 1%, v/v): 

           

    Ethanol + + - + - + - + - + + 

    Methanol  + - - - - + + + - + + 

   Sodium acetate + + - - + + - + - + + 

   Sodium benzoate - - + - + + - + - + + 

   Sodium butyrate + - + - + + - + - + + 

   Sodium citrate + + - - + - - + - + + 

   Sodium fumarate - - - - + - - + - + + 

   Sodium malonate + + - - + - - + - + + 

   Sodium propionate + + - - + - - + - + + 

   Sodium pyruvate + + - - + - - + - + + 

   Sodium succinate + + - - + - - - - + + 

   Sodium tartrate - - + - + - + + - + + 

Growth at:            

      pH5 + + + + + - + + + - + 

      10
o
C + - - - - - + - + - - 

      20
o
C - - - - + + + + + - - 

      50
o
C + + + + + + + + + + + 

      55
o
C - + + - + + - + - + + 

Resistant to:             

    Novobiocin (10 µg/ml) - + - - + + - - + - - 

    Streptomycin sulphate (10 µg/ml) - + + + - - - + - + + 

            

    Lysozyme resistance (0.005%, w/v) - - - - + - - + - - - 

*Codes for these isolates are given in Figure 4.1. 

 

4.5. Discussion 

All of the isolates gave the amplification products characteristic of the genus 

Amycolatopsis with the 16S rRNA oligonucleotide primers AMY2 and ATOP, formed 

complex mixtures of iso-branched, straight chain saturated and unsaturated fatty acids 

typical of the genus, and were recovered in the A. methanolica 16S rRNA gene subclade.  

The representative isolates from the A. ruanii and A. thermalba 16S rRNA subclades 

and isolates GY024
T
 and GY142 gave chemotaxonomic and morphological features 

typical of the genus Amycolatopsis (Tan & Goodfellow, 2012).  All of the isolates 

formed a branched substrate mycelium that fragmented into rod-shaped elements (0.3-

0.4 µm x 1.2-1.8 µm), formed colonies covered with powdery white aerial hyphae, 

produced whole-organism hydrolysates rich in meso-A2pm, arabinose and galactose 

(wall chemotype IV after Lechevalier & Lechevalier, 1970), contained 

tetrahydrogenated menaquinones with nine isoprene units as the predominant 

isoprenologue, and major amounts of DPG, PE, PG, PI and PME (phospholipid type II 
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sensu Lechevalier et al., 1977, 1986).  All of these properties are consistent with the 

classification of the isolates in the genus Amycolatopsis (Tan & Goodfellow, 2012). 

The 26 strains isolated from the hyper-arid Salar de Atacama soil were assigned 

to either the A. ruanii or A. thermalba phyletic lines and found to have identical or 

almost identical 16S rRNA gene similarity values with their respective type strain.  

DNA:DNA gene relatedness values between representative isolates from the A. ruanii 

16S rRNA subclade and between them and A. ruanii NMG112
T
 were within the range 

72-82+0.1%, values well above the cut-off point recommended for the assignment of 

strains to the same genomic species (Wayne et al., 1987).  In turn, isolates representing 

those belonging to the A. thermalba 16S rRNA subclade were shown to belong to the 

same genomic species as the type strain of A. thermalba as the corresponding 

DNA:DNA relatedness values were within the range 76-80%.  Members of each of 

these species had many phenotypic features in common but can be separated from one 

another and from the type strains of the remaining Amycolatopsis species classified in 

the A. methanolica 16S rRNA subclade using a broad range of phenotypic features.  

Since the original descriptions of A. ruanii and A. thermalba were based on single 

isolates it is proposed that the descriptions of these species be emended in light of the 

current data. 

Isolates GY024
T
 and GY142 from the Australian arid composite soil formed a 

distinct branch towards the periphery of the A. methanolica 16S rRNA gene tree.  They 

shared a high 16S rRNA gene sequence similarity but were readily distinguished using a  

combination of phenotypic properties.  The two strains need to be the subject of 

DNA:DNA pairing assays to establish whether belong to the same or different novel 

Amycolatopsis species. 

The results of the present study confirm and extend those from previous 

investigations in showing that thermophilic Amycolatopsis strains constitute a distinct 

phyletic branch within the evolutionary radiation occupied by the genus Amycolatopsis 

(Tan et al., 2006; Everest & Myers, 2009; Everest et al., 2011; Tan & Goodfellow, 2012; 

Zucchi et al., 2012a, b, c).  There is evidence that this taxon is underspeciated and more 

distantly related to Amycolatopsis orientalis, the type species of the genus, than to 

members of some other genera classified in the family Pseudonocardiaceae (Tan et al., 

2006; Ludwig et al., 2012; Guoping Zhou et al., pers. com.).  Indeed, it seems likely 

that A. methanolica and the closely related thermophilic species should be classified in a 

new genus though further comparative taxonomic studies are need to confirm this. 
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Almost nothing is known about the distribution, numbers, kinds and roles of 

thermophilic Amycolatopsis strains in natural habitats (Tan et al., 2006; Tan & 

Goodfellow, 2012) though it would seem from the present study that A. ruanii and A. 

thermalba strains may be major components of the cultivable actinobacterial 

community in the hyper-arid Salar de Atacama soil.  Similarly, A. taniae strains may be 

common in Australian arid soils as isolates GY024
T
 and GY142 were representatives of 

the largest colour-group recovered in the survey undertaken by Tan et al. (2006).  

However, additional biosystematic studies are needed to build upon these preliminary 

findings, not least by establishing the ecological roles that thermophilic Amycolatopsis 

strains play in arid desert soils. 

 

Description of Amycolatopsis deserti sp. nov. 

Amycolatopsis deserti (dè.ser.t. L. gen.gem.n. deserti of desert, pertaining to the socrce 

of the isolates.   

 

The description is based on data from this and  an ealier study (Tan et al., 2006). 

Aerobic, Gram-positive, non-acid-alcohol-fast, non-motile, catalase-positive 

actinobacterium that forms an extensively branched substrate mycelium that fragments 

into granular ornamented cylindrical elements (0.3-0.4 x 1.1-1.7 µm). Produces 

abundant white aerial hyphae, a pale yellow substrate mycelium and a yellow diffusible 

pigment on oatmeal agar.  Grows from pH 6-10, from 25-50
o
C, optimum temperature is 

45
o
C and in the  presence of NaCl (5%, w/v).  Additional phenotypic test results are 

cited either in the main text or in Table 4.3.  Chemotaxonomic properties are typical of 

the genus. 

 The type strain GY024
T
 (=DSMZ………= RRL…….) was isolated from an 

Australian arid composite soil. 

 

Emended description of Amycolatopsis ruanii Zucchi et al. 2012b 

The description is based on this and the earlier study of Zuchii et al. (2012b). 

Aerobic, Gram-positive, non-acid-alcohol-fast, non-motile, catalase-positive 

actinobacteria that form an extensively branched substrate mycelium that fragments into 

granular ornamented cylindrical elements (0.3-0.35 x 1.2-1.7 µm) on modified 

Bennett’s agar supplemented with mannitol and soybean flour, but does not form 

diffusible pigment on this medium.  Abundant yellowish white aerial hyphae, a 

yellowish white substrate mycelium, but no diffusible pigments are produced on 
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oatmeal agar.  Grows from 20-50
o
C, optimum temperature is 45

o
C, from pH 5.0-10.0 

and in the presence of NaCl (2.5%, w/v).  Additional phenotypic properties are cited in 

the main text and in Table 4.3.  Chemotaxonomic properties are typical of the genus.  

 The type strain NMG112
T
 (=NCIMB14711

T
=NRRL B-24848

T
) was isolated 

from an Australian arid composite soil and additional members of the taxon from a 

hyper-arid Atacama Desert soil. 

 

Emended description of Amycolatopsis thermalba Zucchi et al. 2012b 

The description is based on this and the earlier study Zucchi et al (2012b). 

Aerobic, Gram-positive, non-acid-alcohol-fast, non-motile, catalase-positive 

actinobacteria that form an extensively branched substrate mycelium that fragments into 

granular ornamented cylindrical elements (0.3-0.4 x 1.5-1.8 µm).  Abundant, white 

aerial hyphae, a yellow substrate mycelium and a medium yellow olive brown diffusible 

pigment are produced on modified Bennett’s agar supplemented with mannitol and 

soybean flour.  Melanin pigments are not formed on peptone-yeast extract-iron agar.  

Grows from 20-55
o
C, optimum temperature is 45

o
C, from pH 6-10.0 and in the 

presence of NaCl (2.5%, w/v).  Additional phenotypic properties are cited in the main 

text and in Table 4.3.  Chemotaxonomic properties are typical of the genus.  Common 

in a hyper-arid Salar de Atacama soil of the Atacama Desert. 

 The type strain, SF45
T
 (=NCIMB 14705

T
=NRRL B-24845

T
) was isolated from 

an arid Australian composite soil and the remaining members of the taxon from a hyper-

arid Atacama Desert soil. 
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Supplemented Table. Nucleotide similarities  (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains 

isolated from a hyper-arid Atacama Desert soil or from an arid Australian composite and between them and the type strains of closely related Amycolatopsis species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1. Isoalte  KNN50-8b --- 

17/ 

1285 

21/ 

1315 

16/ 

1314 

2/ 

1314 

2/ 

1312 

16/ 

1315 

2/ 

1317 

3/ 

1316 

16/ 

1317 

16/ 

1317 

17/ 

1312 

2/ 

1313 

16/ 

1314 

7/ 

1314 

19/ 

1313 

17/ 

1316 

3/ 

1313 

2/ 

1314 

16/ 

1314 

19/ 

1317 

7/ 

1317 

2. Isolate GY024 98.7 --- 

4/ 

1366 

25/ 

1353 

15 

/1353 

15/ 

1354 

26/ 

1369 

15/ 

1371 

16/ 

1370 

26/ 

1370 

26/ 

1370 

40/ 

1372 

15/ 

1281 

28/ 

1374 

18/ 

1282 

16/ 

1282 

30/ 

1338 

16/ 

1370 

15/ 

1347 

26/ 

1369 

24/ 

1351 

16/ 

1371 

3. Isolate GY142 98.4 99.7 --- 

27/ 

1378 

17/ 

1378 

18/ 

1378 

31/ 

1395 

21/ 

1398 

22/ 

1397 

31/ 

1397 

30/ 

1396 

39/ 

1392 

19/ 

1311 

29/ 

1392 

20/ 

1314 

18/ 

1313 

34/ 

1365 

19/ 

1393 

17/ 

1372 

28/ 

1393 

26/ 

1380 

26/ 

1397 

4. Isolate KNN49-6a 98.8 98.2 98.0 --- 

24 

/1382 

24/ 

1380 

0/ 

1381 

24/ 

1382 

25/ 

1381 

0/ 

1383 

0/ 

1383 

7/ 

1381 

14/ 

1310 

1/ 

1382 

17/ 

1311 

1/ 

1311 

14/ 

1367 

25/ 

1381 

19/ 

1376 

0/ 

1383 

1/ 

1381 

29/ 

1382 

5. Isolate KNN49-5e 99.9 98.9 98.8 98.3 --- 

0/ 

1380 

24/ 

1380 

0/ 

1382 

1/ 

1381 

24/ 

1382 

24/ 

1382 

23/ 

1380 

0/ 

1310 

25/ 

1381 

3/ 

1311 

15/ 

1311 

29/ 

1366 

1/ 

1381 

0/ 

1376 

24/ 

1382 

23/ 

1380 

5/ 

1382 

6. Isolate KNN49-3e 99.9 98.9 98.7 98.3 100.0 --- 

25/ 

1379 

0/ 

1382 

1/ 

1381 

25/ 

1381 

25/ 

1381 

25/ 

1381 

0/ 

1308 

26/ 

1380 

3/ 

1309 

15/ 

1309 

29/ 

1364 

0/ 

1383 

0/ 

1374 

25/ 

1381 

23/ 

1378 

4/ 

1382 

7. Isolate KNN50-10e 98.8 98.1 97.8 100.0 98.3 98.2 --- 

25/ 

1401 

26/ 

1399 

0/ 

1402 

0/ 

1401 

21/ 

1396 

14/ 

1311 

1/ 

1397 

20/ 

1313 

4/ 

1312 

14/ 

1368 

26/ 

1395 

19/ 

1374 

0/ 

1397 

4/ 

1383 

31/ 

1400 

8. Isolate KNN50-4c 99.9 98.9 98.5 98.3 100.0 100.0 98.2 --- 

1/ 

1402 

25/ 

1403 

25/ 

1402 

38/ 

1398 

0/ 

1313 

26/ 

1398 

6/ 

1315 

18/ 

1314 

29/ 

1369 

1/ 

1398 

0/ 

1376 

25/ 

1398 

26/ 

1384 

6/ 

1403 

9. Isolate KNN49-26a 99.8 98.8 98.4 98.2 99.9 99.9 98.1 99.9 --- 

26/ 

1401 

26/ 

1400 

38/ 

1396 

1/ 

1312 

27/ 

1396 

7/ 

1314 

19/ 

1313 

30/ 

1369 

2/ 

1397 

1/ 

1375 

26/ 

1397 

27/ 

1383 

7/ 

1401 

10. Isolate KNN49-12b 98.8 98.1 97.8 100.0 98.3 98.2 100.0 98.2 98.1 --- 

0/ 

1403 

21/ 

1398 

14/ 

1313 

1/ 

1399 

20/ 

1315 

4/ 

1314 

14/ 

1370 

26/ 

1397 

19/ 

1376 

0/ 

1399 4/1385 

31/ 

1402 

11. Isolate  KNN49-11c 98.8 98.1 97.9 100.0 98.3 98.2 100.0 98.2 98.1 100.0 --- 

21/ 

1398 

14/ 

1313 

1/ 

1399 

19/ 

1314 

3/ 

1313 

14/ 

1370 

26/ 

1397 

19/ 

1376 

0/ 

1399 

3/ 

1384 

31/ 

1402 

12. Isolate KNN49-32e 98.7 97.1 97.2 99.5 98.3 98.2 98.5 97.3 97.3 98.5 98.5 --- 

15/ 

1308 

23/ 

1398 

18/ 

1309 

2/ 

1309 

15/ 

1365 

38/ 

1397 

19/ 

1374 

20/ 

1397 

6/ 

1379 

41/ 

1398 

13. Isolate KNN50-18d 99.9 98.8 98.6 98.9 100.0 100.0 98.9 100.0 99.92 98.9 98.9 98.9 --- 

14/ 

1310 

5/ 

1312 

17/ 

1312 

15/ 

1312 

1/ 

1309 

0/ 

1310 

14/ 

1310 

17/ 

1313 

5/ 

1313 

14. Isolate KNN50-17d 98.8 98.0 97.9 99.9 98.2 98.1 99.9 98.1 98.1 99.9 99.9 98.4 98.9 --- 

17/ 

1311 

1/ 

1311 

15/ 

1366 

27/ 

1396 

20/ 

1375 

1/ 

1398 

2/ 

1380 

32/ 

1398 

15. Isolate KNN50-15d 99.5 98.6 98.5 98.7 99.8 99.8 98.5 99.5 99.5 98.5 98.6 98.6 99.6 98.7 --- 18/1314 20/1313 4/1310 3/1311 17/1311 18/1315 10/1314 

16. Isolate KNN50-16d 98.6 98.8 98.6 99.9 98.9 98.9 99.7 98.6 98.6 99.7 99.8 99.9 98.7 99.9 98.6 --- 2/1312 16/1310 15/1311 1/1311 2/1314 22/1313 

17. Isolate KNN50-11c 98.7 97.8 97.5 99.0 97.88 97.9 99.0 97.9 97.8 99.0 99.0 98.9 98.9 98.9 98.5 99.9 --- 30/1365 29/1366 14/1367 17/1370 34/1369 

18. Isolate KNN50-14d 99.8 98.8 98.6 98.2 99.9 100.0 98.1 99.9 99.9 98.1 98.1 97.3 99.9 98.1 99.7 98.8 97.8 --- 1/1375 26/1397 24/1379 

6/ 

1398 

19. Isolate KNN50-13c 99.9 98.9 98.8 98.6 100.0 100.0 98.6 100.0 99.9 98.6 98.6 98.6 100.0 98.6 99.8 98.9 97.9 99.9 --- 19/1376 20/1376 5/1376 

20. Isolate KNN50-12c 98.8 98.1 98.0 100.0 98.3 98.2 100.0 98.2 98.1 100.0 100.0 98.6 98.9 99.9 98.7 99.9 99.0 98.1 98.6 --- 1/1381 31/1398 

21. Isolate  KNN50-9b 98.6 98.2 98.1 99.9 98.3 98.3 99.7 98.1 98.1 99.7 99.9 99.6 98.7 99.9 98.6 99.9 98.8 98.3 98.6 99.9 --- 30/1383 

22. Isolate KNN50-7d 99.5 98.8 98.1 97.9 99.6 99.7 97.8 99.6 99.5 97.8 97.8 97.1 99.6 97.7 99.2 98.3 97.5 99.6 99.6 97.8 97.8 --- 

23. Isolate KNN50-6e 99.9 98.9 98.6 98.3 100.0 100.0 98.2 100.0 99.9 98.2 98.2 97.4 100.0 98.1 99.6 98.7 97.9 99.9 100.0 98.2 98.2 99.6 

24. Isolate KNN50-5c 99.9 98.9 98.8 98.6 100.0 100.0 98.6 100.0 99.9 98.6 98.6 98.6 100.0 98.5 99.8 98.9 97.9 99.9 100.0 98.6 98.5 99.6 

25. Isolate KNN50-2e 98.8 97.8 97.9 100.0 98.3 98.1 100.0 98.1 98.1 100.0 100.0 98.4 98.9 99.6 98.7 99.9 99.0 98.1 98.6 100.0 99.9 97.7 

26. Isolate KNN50-1a 98.6 98.1 98.0 100.0 98.3 98.2 99.8 98.0 97.9 99.8 99.9 98.5 98.9 99.9 98.7 99.9 98.8 98.1 98.6 100.0 99.9 97.7 

27. Isolate KNN49-10b 99.9 98.9 98.6 98.3 100.0 100.0 98.3 100.0 99.9 98.3 98.3 98.3 100.0 98.2 99.6 98.7 97.9 99.9 100.0 98.3 98.2 99.6 

28. Isolate KNN49-1h 99.9 98.8 98.6 98.3 100.0 100.0 98.1 99.9 99.9 98.1 98.1 97.4 100.0 98.1 99.8 98.9 97.9 99.9 100.0 98.1 98.3 99.7 
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Supplemented Table (cont.) 

Isolate 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1.Isolate  KNN50-8b 

2/ 
1317 2/1314 16/1314 18/1317 2/1316 2/1312 0/1317 18/1317 16/1316 18/1317 19/1317 19/1316 20/1317 23/1316 26/1316 24/1313 68/1315 67/1317 66/1315 84/1313 87/1314 

2. Isolate GY024 

15/ 
1370 15/1348 31/1375 26/1370 15/1352 16/1369 15/1395 15/1328 26/1394 17/1380 19/1394 17/1394 18/1395 35/1351 39/1353 20/1390 72/1412 63/1411 62/1429 68/1395 85/1394 

3. Isolate GY142 

20/ 
1397 17/1373 29/1394 28/1397 19/1380 19/1392 18/1410 17/1369 29/1409 20/1409 22/1409 21/1409 22/1410 40/1392 47/1381 29/1396 80/1408 70/1409 68/1407 74/1406 95/1407 

4. Isolate  KNN49-6a 

24/ 
1382 20/1377 0/1383 0/1383 24/1381 24/1380 24/1382 0/1357 28/1382 26/1382 18/1382 22/1382 23/1383 26/1381 25/1380 32/1378 83/1381 79/1382 76/1380 86/1378 98/1379 

5.  Isolate KNN49-5e 

0/ 
1382 0/1377 24/1382 24/1382 0/1381 0/1380 0/1382 14/1357 16/1381 18/1381 19/1381 19/1381 20/1382 31/1380 33/1379 24/1377 70/1380 65/1381 64/1379 83/1378 86/1379 

6. Isolate KNN49-3e 

0/ 
1382 0/1375 26/1382 25/1381 0/1380 0/1383 0/1382 14/1355 16/1381 18/1381 19/1381 19/1381 20/1382 31/1378 35/1379 24/1377 70/1380 65/1381 64/1379 83/1378 86/1379 

7. Isolate KNN50-10e 

25/ 
1399 20/1375 0/1398 3/1402 24/1382 26/1394 28/1401 3/1359 32/1401 30/1401 22/1401 26/1401 27/1402 29/1383 27/1383 36/1397 87/1400 83/1401 80/1399 90/1397 101/1398 

8. Isolate KNN50-4c 

0/ 
1402 0/1377 26/1400 28/1403 0/1384 1/1397 3/1404 17/1361 19/1403 21/1403 22/1403 22/1403 23/1404 34/1384 37/1385 27/1399 73/1402 68/1403 67/1401 86/1400 89/1401 

9. Isolate KNN49-26a 

1/ 
1401 1/1376 27/1398 29/1401 1/1383 2/1396 4/1402 18/1360 20/1401 22/1401 23/1401 23/1401 24/1402 35/1383 38/1384 28/1397 74/1400 69/1401 68/1399 87/1398 89/1399 

10. Isolate KNN49-

12b 

25/ 
1401 20/1377 0/1400 3/1404 24/1384 26/1396 28/1403 3/1361 32/1403 30/1403 22/1403 26/1403 27/1404 29/1385 27/1385 36/1399 87/1402 83/1403 80/1401 90/1399 102/1400 

11.Isolate  KNN49-11c 

25/ 
1401 20/1377 0/1400 2/1403 24/1384 26/1396 27/1402 2/1360 31/1402 29/1402 21/1402 25/1402 26/1403 28/1384 27/1385 35/1398 86/1401 82/1402 79/1400 89/1398 101/1399 

12. Isolate KNN49-32e 

37/ 
1397 19/1375 22/1400 21/1398 23/1379 37/1396 39/1399 1/1355 43/1399 41/1399 33/1399 37/1399 38/1400 33/1381 34/1383 47/1395 99/1400 94/1401 92/1399 101/1395 113/1397 

13.  Isolate KNN50-

18d 

0/ 
1313 0/1310 14/1310 16/1313 0/1312 0/1308 2/1313 16/1313 14/1312 16/1313 17/1313 17/1312 18/1313 21/1312 24/1312 22/1309 66/1311 65/1313 64/1311 82/1309 85/1310 

14. Isolate KNN50-

17d 

26/ 
1397 21/1376 5/1403 1/1399 25/1380 27/1395 27/1403 1/1356 31/1403 29/1403 21/1403 25/1403 26/1404 27/1380 26/1381 35/1399 85/1402 82/1403 79/1401 89/1399 101/1400 

15. Isolate KNN50-

15d 

5/ 
1314 3/1311 17/1311 17/1315 5/1313 3/1309 3/1316 1/1316 15/1315 17/1316 18/1316 18/1315 19/1316 22/1315 25/1313 23/1312 66/1314 66/1316 65/1314 83/1312 86/1313 

16.Isolate  KNN50-

16d 

17/ 
1313 15/1311 1/1311 1/1314 17/1312 15/1309 15/1315 1/1315 18/1314 17/1315 9/1315 12/1314 13/1315 21/1314 22/1312 22/1311 69/1313 72/1315 69/1313 77/1311 88/1312 

17. Isolate KNN50-11c 

29/ 
1369 29/1366 14/1367 16/1370 29/1368 29/1364 31/1369 1/1359 33/1369 32/1370 24/1370 27/1369 28/1370 38/1368 38/1368 37/1365 87/1368 88/1370 85/1368 92/1365 103/1366 

18. Isolate KNN50-

14d 

1/ 
1398 1/1376 27/1398 26/1397 1/1381 1/1398 1/1398 15/1356 17/1397 19/1397 20/1397 20/1397 21/1398 32/1379 36/1381 25/1393 71/1396 66/1397 65/1395 84/1394 87/1395 

19. Isolate KNN50-13c 

0/ 
1376 0/1376 19/1376 19/1376 0/1375 0/1374 0/1376 14/1357 16/1375 18/1375 19/1375 19/1375 20/1376 26/1374 28/1373 24/1371 70/1374 65/1375 64/1373 83/1372 86/1373 

20.Isolate  KNN50-12c 

25/ 
1398 20/1377 0/1399 0/1399 24/1381 26/1396 25/1398 0/1357 29/1398 27/1398 19/1398 23/1398 24/1399 26/1381 25/1382 33/1394 84/1397 80/1398 77/1396 87/1394 99/1395 

21. Isolate KNN50-9b 

25/ 
1383 21/1377 1/1381 1/1385 25/1382 23/1378 23/1384 1/1361 27/1384 25/1384 17/1384 21/1384 22/1385 27/1383 26/1381 31/1380 82/1383 78/1384 75/1382 85/1380 97/1381 

22. Isolate KNN50-7d 

6/ 
1402 5/1377 32/1400 33/1402 5/1384 4/1397 8/1403 21/1360 24/1402 26/1402 27/1402 27/1402 28/1403 38/1383 42/1385 32/1398 78/1401 73/1402 72/1400 91/1399 94/1400 

23.Isolate KNN50-6e --- 0/1377 26/1399 27/1401 0/1384 1/1397 2/1402 16/1360 18/1401 20/1401 21/1401 21/1401 22/1402 33/1383 37/1385 26/1397 72/1400 67/1401 66/1399 85/1398 88/1399 

24. Isolate KNN50-5c 100.0 --- 20/1377 20/1377 0/1376 0/1375 0/1377 14/1357 16/1376 18/1376 19/1376 19/1376 20/1377 27/1375 29/1374 24/1372 70/1375 65/1376 64/1374 83/1373 86/1374 

25. Isolate KNN50-2e 98.1 98.6 --- 0/1400 24/1381 27/1397 30/1404 0/1357 34/1404 32/1404 24/1404 28/1404 29/1405 26/1381 26/1383 38/1400 89/1403 85/1404 82/1402 92/1400 104/1401 

26. Isolate KNN50-1a 98.1 98.6 100.0 --- 26/1384 26/1396 25/1403 0/1361 29/1403 27/1403 19/1403 23/1403 24/1404 26/1385 25/1385 33/1399 84/1402 80/1403 77/1401 87/1399 99/1400 

27. Isolate KNN49-

10b 100.0 100.0 98.3 98.1 --- 0/1380 2/1384 16/1359 18/1383 20/1383 21/1383 21/1383 22/1384 33/1382 35/1381 26/1379 71/1382 66/1383 65/1381 84/1380 88/1381 

28. Isolate  KNN49-1h 99.93 100.0 98.1 98.1 100.0 --- 1/1397 14/1355 17/1396 19/1396 20/1396 20/1396 21/1397 31/1378 35/1380 25/1392 71/1395 66/1396 65/1394 84/1393 87/1394 
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Supplemented Table (cont.) 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

29. A_ruanii_ 100.0 98.9 98.7 98.3 100.0 100.0 98.0 99.9 99.7 98.0 98.1 97.2 99.9 98.1 99.8 98.9 97.7 99.9 100.0 98.2 98.3 99.4 99.9 

30. A_thermalba 98.6 98.9 98.8 100.0 99.0 99.0 99.8 98.8 98.7 99.9 99.9 99.9 98.8 99.9 99.9 99.9 99.9 98.9 99.0 100.0 99.9 98.5 98.8 

31. A_thermoflava 98.8 98.1 97.9 98.0 98.8 98.8 97.7 98.7 98.6 97.7 97.8 96.9 98.9 97.8 98.9 98.6 97.6 98.8 98.8 97.9 98.1 98.3 98.7 

32. A_endophytica 98.6 98.8 98.6 98.1 98.7 98.7 97.9 98.5 98.4 97.9 97.9 97.1 98.8 97.9 98.7 98.7 97.7 98.6 98.7 98.1 98.2 98.2 98.6 

33. A_methanolica 98.6 98.6 98.4 98.7 98.6 98.6 98.4 98.4 98.4 98.4 98.5 97.6 98.7 98.5 98.6 99.3 98.3 98.6 98.6 98.6 98.8 98.1 98.5 

34. A_eurytherma 98.6 98.8 98.5 98.4 98.6 98.6 98.1 98.4 98.4 98.2 98.2 97.4 98.7 98.2 98.6 99.1 98.0 98.6 98.6 98.4 98.5 98.1 98.5 

35. A_tucumanensis 98.5 98.7 98.4 98.3 98.6 98.6 98.1 98.4 98.3 98.1 98.2 97.3 98.6 98.2 98.6 99.0 98.0 98.5 98.6 98.3 98.4 98.0 98.4 

36. A_granulosa 98.3 97.4 97.1 98.1 97.8 97.8 97.9 97.5 97.5 97.9 98.0 97.6 98.4 98.0 98.3 98.4 97.2 97.7 98.1 98.1 98.1 97.3 97.6 

37. A_viridis 98.0 97.1 96.6 98.2 97.6 97.5 98.1 97.3 97.3 98.1 98.1 97.5 98.2 98.1 98.1 98.3 97.2 97.4 98.0 98.2 98.1 97.0 97.3 

38. A_thermophila 98.2 98.6 97.9 97.7 98.3 98.3 97.4 98.1 98.0 97.4 97.5 96.6 98.3 97.5 98.3 98.3 97.3 98.2 98.3 97.6 97.6 97.7 98.1 

39. A_pigmentata 94.8 94.9 94.3 94.0 94.9 94.9 93.8 94.8 94.7 93.8 93.9 92.9 95.0 93.9 95.0 94.7 93.6 94.9 94.9 94.0 94.1 94.4 94.9 

40. A_helveola 94.9 95.5 95.0 94.3 95.3 95.3 94.1 95.2 95.1 94.1 94.2 93.3 95.1 94.2 95.0 94.5 93.6 95.3 95.3 94.3 94.4 94.8 95.2 

41. A_taiwanensis 95.0 95.7 95.8 94.5 95.4 95.4 94.3 95.2 95.1 94.3 94.4 93.4 95.1 94.4 95.1 94.7 93.8 95.3 95.3 94.5 94.6 94.9 95.3 

42. A_orientalis 93.6 95.1 94.7 93.8 94.0 94.0 93.6 93.9 93.8 93.6 93.6 92.8 93.7 93.6 93.8 94.1 93.3 94.0 94.0 93.8 93.8 93.5 93.9 
43. Actinokineospora 

riparia 93.4 93.9 93.3 92.9 93.8 93.8 92.8 93.7 93.6 92.7 92.8 91.9 93.5 92.8 93.5 93.3 92.5 93.76 93.7 92.9 93.0 93.3 93.7 

 

Isolate 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

29. A_ruanii_ 100.0 97.9 98.2 99.9 99.9 --- 
14/ 
1392 

16/ 
1456 18/1441 19/1460 19/1456 20/1461 31/1414 35/1385 24/1426 70/1455 65/1456 64/1458 83/1453 87/1457 

30. A_thermalba 99.0 100.0 100.0 98.8 99.0 99.0 --- 
17/ 
1389 16/1389 8/1392 11/1389 12/1392 20/1390 21/1359 21/1360 70/1388 71/1390 68/1390 77/1386 88/1389 

31. A_thermoflava 98.8 97.6 97.9 98.7 98.8 98.9 98.8 --- 20/1442 13/1457 16/1459 17/1460 34/1416 41/1388 24/1429 79/1455 74/1456 71/1454 86/1452 94/1452 

32. A_endophytica 98.7 97.7 98.1 98.6 98.6 98.8 98.9 98.6 --- 12/1443 16/1442 17/1443 37/1413 44/1386 23/1413 76/1440 72/1441 70/1439 82/1437 97/1438 

33. A_methanolica 98.6 98.3 98.7 98.5 98.6 98.7 99.4 99.1 99.2 --- 10/1457 11/1478 31/1415 38/1386 22/1427 77/1455 78/1456 73/1468 80/1452 93/1471 

34. A_eurytherma 98.6 98.0 98.4 98.5 98.6 98.7 99.2 98.9 98.9 99.3 --- 1/1460 36/1416 43/1388 26/1429 75/1455 78/1456 75/1454 80/1452 96/1452 

35. A_tucumanensis 98.6 97.9 98.3 98.4 98.5 98.6 99.1 98.8 98.8 99.3 99.9 --- 37/1418 44/1389 27/1430 76/1456 79/1457 76/1469 81/1453 97/1472 

36. A_granulosa 98.0 98.1 98.1 97.6 97.8 97.8 98.6 97.6 97.4 97.8 97.5 97.4 --- 11/1387 39/1386 77/1414 69/1415 72/1414 92/1409 101/1412 

37. A_viridis 97.9 98.1 98.2 97.5 97.5 97.5 98.5 97.1 96.8 97.8 96.9 96.8 99.2 --- 44/1384 80/1386 74/1387 79/1385 100/1381 102/1383 

38. A_thermophila 98.3 97.3 97.6 98.1 98.2 98.3 98.5 98.3 98.4 98.5 98.2 98.1 97.2 96.8 --- 77/1425 75/1426 71/1424 86/1422 100/1422 

39. A_pigmentata 94.9 93.7 94.0 94.9 94.9 95.2 95.0 94.6 94.7 94.7 94.9 94.8 94.6 94.2 94.6 --- 46/1475 44/1475 110/1451 110/1453 

40. A_helveola 95.3 94.0 94.3 95.2 95.3 95.5 94.9 94.9 95.0 94.6 94.6 94.6 95.1 94.7 94.7 96.9 --- 17/1475 91/1452 111/1454 

41. A_taiwanensis 95.3 94.2 94.5 95.3 95.3 95.6 95.1 95.1 95.1 95.0 94.8 94.8 94.9 94.3 95.0 97.0 98. --- 94/1450 113/1466 

42. A_orientalis 94.0 93.4 93.8 93.9 94.0 94.3 94.4 94.1 94.3 94.5 94.5 94.4 93.5 92.8 94.0 92.4 93.73 93.5 --- 97/1452 
43. Actinokineospora 

riparia 93.7 92.6 92.9 93.6 93.8 94.0 93.66 93.53 93.25 93.68 93.39 93.41 92.85 92.62 92.97 92.43 92.37 92.29 93.32 --- 

Strain codes, as given in Figure 4.1. 
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Supplemented figure.  Neighbour-joining tree based on nearly complete 16S rRNA 

gene sequences (~1350 bp) showing relationships between the Amycolatopsis isolates 

and and between them and the all type strains of Amycolatopsis species.  The symbol 

“” indicates branches of the tree that were recovered with the maximum-likelihood and 

maximum-parsimony tree-making methods, the symbols “”  and the symbol “”  

branches that were recovered with maximum-likelihood and maximum-parsimony tree-

making algorithms, repectively.   Numbers at the nodes indicate levels of bootstrap 

support based on a neighbour-joining analysis of 1000 resampled datasets;only values 

above 50% are shown.  The scale bar indicates 0.005 substitutions per nucleotide 

position. 
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Chapter 5. Biosystematic studies on Modestobacter strains 

isolated from extreme hyper-arid desert soil and from historic 

buildings 

 

5.1. Abstract 

A polyphasic study was undertaken to establish the taxonomic status of 17  

Modestobacter strains isolated either from an extreme hyper-arid Atacama Desert soil 

or from deteriorated sandstone from historic buildings in Salamanaca, Spain.  The 

isolates were shown to have chemotaxonomic and morphological properties consistent 

with their classification in the genus Modestobacter.  Three of the isolates from the 

Atacama Desert soil and four from deteriorated sandstone formed a distinct 16S rRNA 

gene subclade.  These isolates had chemotaxonomic and many common phenotypic 

properties, were most closely related to the type strain of Modestobacter marinus, but 

were readily distinguished from the latter using genotypic and phenotypic data and 

hence may represent one or more novel Modestobacter species.  The majority of the 

isolates from the extreme hyper-arid soil formed a well delineated subclade in the 

Modestobacter 16S rRNA gene tree, shared many phenotypic features and may form 

one or more new centres of taxonomic variation in the genus Modestobacter.  The two 

remaining strains, isolates MDVD 1 and MON 3.1, from deteriorated sandstone, 

constituted well defined lineages in the Modestobacter 16S rRNA gene tree and were 

readily distinguished from one another and from all of the type strains using a broad 

range of phenotypic properties.  On the basis of these data, it is proposed that these 

isolates be classified in the genus Modestobacter as Modestobacter lapidis sp. nov. and 

Modestobacter muralis sp. nov. with isolates MDVD1 (=DSM……=  CIMB…..= 

NRRL…..)  and MO  3.1 (=DSM…..= CIMB……..= RRL……) as the respective 

type strains. 

 

5.2. Introduction 

The genus Modestobacter (Mevs et al., 2000) and the genera Blastococcus (Ahrens & 

Moll, 1970) and Geodermatophilus (Luedemann, 1968) comprise the family 
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Geodermatophilaceae (Normand, 2006; Normand & Benson, 2012a) which belongs to 

the order Frankiales (Normand & Benson, 2012b).  Geodermatophilaceae strains have 

a characteristic 16S rRNA gene signature pattern, may form rudimentary hyphae, have 

modest growth requirements and have been isolated frequently from extreme habitats 

characterised by dry conditions, such as those associated with desert and high altitude 

soils and with the surfaces of rocks and ancient monuments (Eppard et al., 1996; Urzì et 

al., 2001; Nie et al., 2012).  Modestobacter strains form a distinct clade in the 

Geodermatophilus 16S rRNA gene tree (Qin et al., 2013) and can also be distinguished 

from the genera Blastococcus and Geodermatophilus using 16S rRNA targeted 

oligonucleotide primers (Urzì et al., 2004), by phenotypic and physiological properties 

(Normand & Benson, 2012b), and notably by how they have adapted to resisting stress 

in extreme habitats (Essoussi et al., 2010; Gtari et al., 2012).  The presence of 

Geodermatophilaceae strains on rock and building surfaces is often associated with 

black, grey and orange patinas and spots and with additional phenomena, such as 

biopitting, crumbling and powdering (Urzì & Realini, 1998; Urzì et al., 2001, 2004).   

The genus currently encompasses four species, Modestobacter multiseptatus 

(Mevs et al., 2000), the type species, Modestobacter marinus (Xiao et al., 2011), 

Modestobacter roseus (Qin et al., 2013) and Modestobacter versicolor (Reddy et al., 

2007), which were isolated from regolithic soil from the Linnaeus Terrace of the Asgard 

Range in the Transantarctic Mountains, a deep-sea sediment sample from the Atlantic 

Ocean, from surface-sterilised roots of the coastal halophyte Salicornia europaea and 

from a biological soil crust sample from the Colorado Plateau of the USA, respectively.   

Modestobacter strains are Gram-positive, non-spore-forming actinobacteria 

which form rod and coccoid-shaped elements, and have a tendency to form short 

multiseptate filaments and to grow on oligotrophic media; the wall peptidoglycan 

contains meso-diaminopimelic acid (meso-A2pm), major fatty acids include C18:1, iso-

C16:0 and anteiso-C17:0, the predominant respiratory quinone is tetrahydrogenated with 

nine isoprene uints (MK9[H4]) and the major polar lipids include 

diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, 

phosphatidylinositol mannosides, uncharactrised aminophospholipids and an unknown 

uncharacterised phospholipid (Xiao et al., 2011; Qin et al., 2013). 

 The primary aim of the present study was to establish the taxonomic status of 

Modestobacter strains isolated from an extreme hyper-arid Atacama Desert soil and 

from deteriorated sandstone scrapped from the surfaces of historic buildings.  The 

isolates were compared with one another and with the type strains of M. multiseptatus, 
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M. marinus, M. roseus and M. versicolor using a polyphasic taxonomic approach.  Most 

of the isolates were assigned to two distinct subclades in the Modestobacter 16S rRNA 

but two strains from the deteriorated sandstone, namely isolates MON 3.1 and MDVD 1, 

formed the nuclei of two new Modestobacter species for which the names 

Modestobacter lapidis sp. nov. and Modestobacter muralis sp. nov. are proposed. 

 

5.3. Materials and Methods 

5. 3. 1.  Isolation of Modestobacter strains 

Modestobacter strains were sought from an extreme hyper-arid soil sample collected 

from the Yungay region of the Atacama Desert (24
o
 06’ 18.6” S /  0

o
 01’ 55.6” W) 

using a range of selective media (Table 5.1).  The media were incubated at 28
o
C for 21 

days following inoculation with a 10
-1

 suspension of the soil.  The number of 

Modestobacter strains growing on the isolation plates were counted as colony forming 

units (cfu) per gram dry weight soil.  In contrast, isolates CAT N4, MON1.1, MON3.1, 

MDVD1 and MDVD4 were isolated on Luedemann’s agar (Luedemann, 1971) and 

isolate CMB2 from Microlunatus agar (Nakamura et al., 1995), these media were 

inoculated with 10
-3

 and 10
-4

 suspensions of deteriorated sandstone scrapped from the 

surfaces of historic buildings in Salamanca, Spain (40° 5 ’ 45”  ) and incubated at 

28°C for 5 weeks. 

5. 3. 2.  Test strains, maintenance and cultural conditions 

Eleven representative isolates from the extreme hyper-arid Yungay soil with the typical 

appearance of Modestobacter colonies were taken from the isolation plates, subcultured 

onto modified Bennett’s agar (Jones, 1949),  incubated at 28
o
C for 3 weeks and checked 

for purity by examination of Gram-stained smears.  These strains, the six isolates from 

the biodeteriorated sandstone and the type strains of M. multiseptatus, M. marinus, M. 

roseus and M. versicolor were maintained on modified Bennett’s agar slopes at room 

temperature and in 20% glycerol (v/v) at -20
o
C and -80

o
C.  Biomass for most of the 

chemotaxonomic analyses was prepared in shake flasks (200 resolutions per minute) of 

yeast extract-malt extract broth (International Streptomyces Project [ISP] medium 2; 

Shirling & Gottlieb, 1966) after incubation for 14 days at 28
o
C, whereas those for the 

fatty acid analyses were harvested after 3 to 5 days or until good growth was obtained 
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from the third quadrant (Sasser et al., 1990).  Biomass for the molecular systematic 

studies was prepared in the same way, but was stored at -20
o
C as washed preparations.  

5. 3. 3.  Phylogeny 

Genomic DNA was extracted from eleven representative strains isolated from the 

Yungay soil and from the six isolates recovered from the deteriorated sandstone. PCR 

amplification and 16S rRNA gene sequencing was carried out following the procedure 

of Kim & Goodfellow (2002).  16S rRNA gene sequences of the isolates (1386-1394 

nucleotides [nt]) were aligned using MEGA version 5 software (Tamura et al., 2011) 

against corresponding sequences of the Modestobacter type strains taken from the 

GenBank database using the EzTaxon-e server (Kim et al., 2012).  Phylogenetic trees 

were inferred using the maximum-likelihood (Felsenstein, 1981), maximum-parsimony 

(Fitch, 1971) and neighnour-joining (Saitou & Nei, 1987) tree-making algorithms 

drawn from the MEGA 5 software; an evolutionary distance matrix for the neighbour-

joining analysis was constructed after Jukes and Cantor (1969).  The topologies of the 

inferred evolutionary trees were evaluated in bootstrap analyses (Felsenstein, 1985) 

based on a 1000 resamplings of the neighbour-joining dataset using MEGA 5 software.  

The root positions of the unrooted trees were estimated using the sequence of 

Geodermatophilus obscurus DSM 43160
T
 (GenBank accession number CP 001807) as 

the outgroup.  The 16S rRNA gene sequences of all of the isolates were examined for 

the present of 16S rRNA nucleotide signatures found to be characteristic for 

Geodermatophilaceae strains (Normand & Benson, 2012a). 

5. 3. 4.  Chemotaxonomy 

All of the isolates were examined for the presence of isomers of diaminopimelic acid 

(A2pm) using the procedure described by Hasegawa et al. (1983).  In addition, two 

representatives from the Yungay soil, isolates KNN45-2b, KNN46-4b, and isolates 

MDVD1 and MON3.1 from deteriorated sandstone were examined for other 

chemotaxonomic properties considered to be characteristic for Modestobacter strains 

(Normand & Benson, 2012b).  Standard procedures were used to determine the 

menaquinone (Minnikin et al., 1984a),  muramic acid type (Uchida et al., 1999), 

diagnostic whole-cell sugars (Schaal, 1985) and polar lipids (Minnikin et al., 1984).  

Mycolic acids were sought from the isolates using the acid methanolysis procedure 
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described by Minnikin et al. (1980).  Fatty acids were extracted, methylated and 

analysed according to the standard protocol of the Sherlock Microbial Identification 

System (MIDI) and peaks were named using the database SACTIN6. The G+C mol% of 

the DNA of isolate KNN45-2b was determined following the procedure described by 

Gonzalez and Saiz-Jimenez (2002).  

5. 3. 5.  DNA:DNA relatedness 

DNA:DNA relatedness values between isolate KNN45-2b and M. marinus DSM 45201
T
 

were determined, using triplicate samples, by applying the fluorimetric method of 

Gonzalez & Saiz-Jimenez (2005); the optimal temperature for reassociation (Tm) was 

calculated by using the equation Tor - 0.51 (GC%) + 41.  The melting temperature (Tm) 

at which 50% of the initial double-stranded DNA denatured into single stranded DNA 

for isolate KNN45-2b and for the isolate KNN45-2b : M. marinus DSM 45201
T 

hybrid 

DNA were compared and the differences (ΔTm) determined.  

5. 3. 6.  Cultural and micromorphological properties 

The micromorphological properties of all of the isolates were observed from methylene 

blue stained smears prepared from growth taken from ISP 2 agar plates (Shirling & 

Gottlieb, 1966), that had been incubated at 28
o
C for 7-10 days, and examined under the 

light microscope.  The isolates were examined for cultural properties following growth 

on glucose-yeast extract malt-extract, glycerol-asparagine , inorganic salts-starch, 

oatmeal, peptone-yeast extract-iron, tryptone-yeast extract and tyrosine agars (ISP 

media 2, 5, 4, 3, 6, 1 and 7; Shirling & Gottlieb, 1966) after incubation at 28
o
C for 14 

days.  A modified hanging drop method was used to determine whether the isolates 

were motile (Rohde, 2011). 

5. 3. 7.  Phenotypic tests 

The seventeen isolates and the type strains of the four Modestobacter species were 

examined for a broad range of phenotypic properties.  The enzyme profiles of the strains 

were determined using API ZYM strips (BioMerieux) and biochemical, carbon 

utilisation and  inhibitory properties using Biolog GENIII microplates, in each case 

following the manufacturer’s instructions; a standard inoculum equivalent to 5.0 on the 

McFarland scale (Murray et al., 1999) was used to inoculate the BIOLOG microplates 
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and the API-ZYM kits.  The strains were examined for their ability to grow over a range 

of pH and temperatures following growth on ISP2 for 21 days and for their ability to 

grow in the presence of 5% carbon dioxide as a sole carbon source using a Thermo 

Forma Series II Water Jacket CO2 incubator and carbon utilisation agar plates (ISP 

medium 9; Shirling & Gottlieb, 1966) that were incubated at 28
o
C for 14 days. 

5. 3. 8.   Generation of whole-genome sequence of isolate KNN45-2b and genomic 

analysis 

Isolate KNN45-2b (neé ASC16) was grown on tryptone soya broth supplemented with 

10% sucrose-yeast extract-malt extract medium (1:1, v/v) with 5 mM MgCl2 and 0.5 % 

glycine at 30
o
C for 48 hours. Cells were resuspended in 10 mM NaCl, 20 mM Tris–HCl 

(pH 8.0), 1 mM EDTA and incubated with lysozyme at 37
o
C for 1 to 30 minutes until 

they were lysed. Sodium dodecyl sulphate (0.5 %, w/v final concentration) and 

proteinase K (40 µg) were added and the cell extract incubated at 50
o
C for 6 hours when 

a standard phenol/chloroform extraction was performed on the lysate. The extract was 

adjusted to 0.3 M sodium acetate (pH 5.5) and the DNA was spooled with a glass rod 

upon addition of 2 volumes of 96 % ethanol. After washing and drying, the DNA was 

dissolved in TE buffer. DNA quality was verified by Sall digestion and agarose gel 

electrophoresis. Illumina/Solexa sequencing on Genome Analyzer IIx was outsourced 

(ServiceSX, Leiden, The Netherlands) and 100-nt paired-end-reads were obtained. The 

quality of the short reads was verified using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/) and, depending on the quality, 

reads were trimmed at both ends. Processed raw reads were used as input for the Velvet 

assembly algorithm version 1.206 (Zerbino & Birney 2008). The genome was annotated 

using the RAST server (Aziz et al., 2008) with default options. Predictions of gene 

clusters for natural products were performed using antiSMASH (Medema et al., 2011). 

The genome sequence has been deposited at DDBJ/EMBL/GenBank under the 

accession number JPMX00000000. 

 

5.4. Results 

Selective isolation, enumeration and initial classification.  Small numbers of strains 

growing on the isolation plates were assigned to the genus  Modestobacter as they 

formed characteristic round, slightly mucoid colonies that were initially orange to beige 

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
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in colour but later turned black (Table 5.1).  The highest count, 6.0 x 10
1
 cfu/g dry 

weight soil, was recorded from the humic acid-vitamin agar plates. 

 

Table 5.1.  Modestobacter strains taken to represent those growing on the selective 

isolation media after incubation for 21 days at 28
o
C. 

Media Target organism(s) 

Number of 

Modestobacter 

isolates (cfu/g dry 

weight soil) 

Selected isolates 

Gause’s  o.1 agar supplemented 

with nalidixic acid (10 µg/ml) 

(Zakharova et al.,2003) 

 

Rare or uncommon 

actinobacteria 

 

4x101 KNN45-1a*, KNN46-6a,* 

KNN46-7a*, KNN46-8a* 

Geodermatophilus obscurus agar 

supplemented with nystatin (25 

µg/ml) (Uchida &Seino, 1997) 

 

Geodermatophilus spp. 1.5x101 KNN46-11f, KNN46-12f 

Humic acid-vitamin agar 

(Hayakawa & Nonomura, 1987) 

Streptosporangiaceae 

spp. 

 

6 x101 KNN45-2b*, KNN45-3b*, 

KNN45-4b, KNN46-1b, 

KNN46-2b*, KNN46-5b 

Luedemann’s agar supplemented 

with nystatin (25 µg/ml) 

(Luedemann, 1971) 

 

Modestobacter spp. 1x101 KNN46-10g* 

Microlunatus agar supplemented 

with nystatin (25 µg/ml) 

(Nakamura et al., 1995) 

 

Modestobacter spp. 1x101 KNN46-4b* 

Minimal medium agar (Johnson et 

al., 1981) 

Rare and uncommon 

actinobacteria 

1x101 KNN46-9c* 

R2A agar supplemented with 

nystatin (25 µg/ml) (Reasoner & 

Geldreich, 1985) 

Modestobacter spp. 1x101 KNN46-3b* 

All of the media were supplemented with cycloheximide (25 µg ml
-1

). 

*Strains included in 16S rRNA gene sequence study. 

 

Phylogeny.  The assignment of the seventeen isolates to the Modestobacter 16S rRNA 

gene tree was supported by all of the tree-making algorithms and by a 100% bootstrap 

value (Figure 5.1).  Fifteen of the isolates were recovered in two 16S rRNA phyletic 

lines, subclades 1 and 2, the taxonomic integrity of which was underpinned by all of the 

tree-making algorithms and by high bootstrap values.  Strains MDVD 1 and MON 3.1, 

organisms isolated from deteriorated sandstone, formed distinct lineages in the 

Modestobacter 16S rRNA gene tree.  All of the isolates were found to have the 16S 

rRNA gene signatures characteristic of members of the family Geodermatophilaceae 

(Normand & Benson, 2012a). 

Eight out of the eleven strains isolated from the extreme hyper-arid Yungay soil 

were assigned to 16S rRNA subclade 1(Figure 5.1).  These strains shared 16S rRNA 

gene similarities within the range 99.1 to 99.5 %, values that corresponded to 7 to 12 nt 

differences at 1385 to 1392 locations (Table 5.2); three of the strains, isolates KNN46-
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4b, KNN46-7a and KNN46-8a, had identical 16S rRNA gene sequences.  The isolates 

in this subclade were most closely related to the type strain of M. versicolor sharing 16S 

rRNA gene similarities with the latter within the range 99.1 to 99.5%, values that 

corresponded to between 7 and 9 nt differences at between 1386 and 1392 locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.  Neighbour-joining tree based on nearly complete 16S rRNA gene 

sequences (~1390 bp) showing relationships between strains isolated from the extreme-

hyper-arid Yungay soil and deteriorated sandstone and between them and the type 

strains of Modestobacter species.  Asterisks indicate branches of the tree that were 

recovered using the maximum-likelihood and maximum-parsimony tree-making 

algorithms.   MP indicates branches of the tree that were supported by the maximum-

parsimony method.  Numbers at the nodes indicate levels of bootstrap support based on 

a neighbour-joining analysis of 1000 resampled datasets; only values above 50% are 

shown.  The scale bar indicates 0.005 substitutions per nucleotide position.  Blue and 

yellow coloured indicated strains isolated from the Yungay soil and from deteriorated 

sandstone,  respectively.  
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16S rRNA subclade 2 encompassed the three remaining isolates from the 

extreme hyper-arid Yungay soil and isolates CAT N4, CMB 2, MDVD 4 and MON 1.1 

from deteriorated sandstone.  All of these isolates, apart from strain CMB 2, had 

identical 16S rRNA gene sequences and were most closely related to the type strain of 

M. marinus sharing similarities with the latter of 99.6%, values equivalent to 5-6 nt 

differences at between 1390 and 1393 sites.  The isolates were also closely related  to M. 

roseus KCBMP 1279
T
 sharing 16S rRNA gene similarities with the latter of 99.4-99.5% 

values equivalent to 7-8 nt differences at between 1385-1391 locations.  All of these 

strains formed a distinct 16S rRNA gene subclade, the taxonomic integrity of which 

was supported the three  tree-making algorithms and by a 85% bootstrap value (Table 

5.1). 

The two remaining strains, isolates MDVD 1 and MON 3.1, were sharply 

separated from one another and from most of the other strains in the Modestobacter 16S 

rRNA gene tree (Figure 5.1).  Isolate MON 3.1 and the type strain of M. multiseptatus 

formed a 16S rRNA gene subclade that was underpinned by all of the tree-making 

algorithms though the bootstrap value was only 53%.  The two strains shared a 16S 

rRNA gene similarity of 98.9%, which corresponds to 16 nt differences at 1392 

locations.  The final isolate, strain MDVD 1, was most closely related to isolates 

KNN46-4b, KNN46-7a and KNN46-10g, members of subclade 1, sharing 16S rRNA 

gene similarities with the latter of 99.0%, a value equivalent to 14 nt differences at 1394 

sites. 

 

Chemotaxonomy.  All of the isolates contained meso-A2pm as the major diamino acid.  

Isolates KNN45-2b and KNN46-4b were found to contain galactose, glucose and xylose 

in whole-cell hydrolysates, N-acetyl muramic acid, tetrahydrogenated menaquinones as 

the sole isoprenologue, but lacked mycolic acids. They also contained major amounts of 

diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and 

phosphatidylinositol, as exemplified in Figure 5.2. Fatty acid profiles of most of the 

isolates and the marker strains are shown tin Tables 5.3 and 5.4.  The fatty acid profiles 

of the strains showed considerable qualitative and quantitative differences but with only 

two exceptions, M. marinus DSM 45201
T 

and M. multiseptatus DSM44406
T
, the 

predominant component was iso-C16:0.  The isolates related to the type strain of M. 

versicolor, unlike the latter, contained major amounts of C17:1 9c. 
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Table 5.2. Nucleotide similarities (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains 

isolated from the hyper-arid Yungay soil and from deteriorated sandstone and between them and the type-strains of Modestobacter species. 

 Isolates 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1.Isolate KNN46-2b --- 4/1390 

14/ 

1388 

14/ 

1383 

2/ 

1390 

14/ 

1389 

3/ 

1390 

2/ 

1390 

4/ 

1390 

1/ 

1390 

2/ 

1390 

9/ 

1386 

19/ 

1387 

20/ 

1386 

21/ 

1385 

14/ 

1387 

16/ 

1388 

15/ 

1386 

14/ 

1387 

14/ 

1385 

20/ 

1390 

56/ 

1386 

2. Isolate KNN46-3b 99.7 --- 

17/ 

1391 

17/ 

1386 

5/ 

1393 

17/ 

1392 

4/ 

1393 

5/ 

1393 

7/ 

1393 

3/ 

1393 

5/ 

1393 

12/ 

1389 

22/ 

1390 

23/ 

1389 

24/ 

1388 

17/ 

1390 

19/ 

1391 

17/ 

1389 

17/ 

1390 

16/ 

1388 

23 

/1393 

60/ 

1389 

3.Isolate  KNN45-1a 99.0 98.8 --- 

0/ 

1388 

12/ 

1394 

0/ 

1394 

13/ 

1394 

12/ 

1394 

13/ 

1394 

14/ 

1394 

12 

/1394 

16/ 

1390 

5/ 

1392 

25/ 

1390 

7/ 

1390 

0/ 

1392 

16/ 

1392 

1/ 

1391 

0/ 

1392 

1/ 

1390 

21/ 

1394 

56/ 

1391 

4. Isolate KNN45-2b 99.0 98.8 100.0 --- 

12/ 

1389 

0/ 

1389 

13/ 

1389 

12/ 

1389 

13/ 

1389 

14/ 

1389 

12/ 

1389 

16/ 

1385 

5/ 

1387 

25/ 

1385 

7/ 

1385 

0/ 

1387 

16/ 

1387 

1/ 

1386 

0/ 

1387 

1/ 

1385 

21/ 

1389 

56/ 

1386 

5. Isolate KNN46-4b 99.9 99.6 99.1 99.1 --- 

12/ 

1395 

1/ 

1396 

0/ 

1396 

2/ 

1396 

2/ 

1396 

0/ 

1396 

7/ 

1392 

17/ 

1393 

19/ 

1392 

19/ 

1391 

12/ 

1393 

14/ 

1394 

13/ 

1392 

12 

/1393 

12/ 

1391 

18/ 

1396 

55/ 

1392 

6. isolate  KNN45-3b 99.0 98.8 100.0 100.0 99.1 --- 

13 

/1395 

12/ 

1395 

13/ 

1395 

14/ 

1395 

12/ 

1395 

16/ 

1391 

5/ 

1393 

25/ 

1391 

7/ 

1391 

0/ 

1393 

16/ 

1393 

1/ 

1392 

0/ 

1393 

1/ 

1391 

21/ 

1395 

56/ 

1392 

7. Isolate  KNN46-6a 99.8 99.7 99.1 99.1 99.9 99.1 --- 

1/ 

1396 

3/ 

1396 

3/ 

1396 

1/ 

1396 

8/ 

1392 

18/ 

1393 

20/ 

1392 

20/ 

1391 

13/ 

1393 

15/ 

1394 

13/ 

1392 

13/ 

1393 

12/ 

1391 

19/ 

1396 

56/ 

1392 

8.Isolate KNN46-7a 99.9 99.6 99.1 99.1 100.0 99.1 99.9 --- 

2/ 

1396 

2/ 

1396 

0/ 

1396 

7/ 

1392 

17/ 

1393 

19/ 

1392 

19/ 

1391 

12/ 

1393 

14/ 

1394 

13/ 

1392 

12/ 

1393 

12/ 

1391 

18/ 

1396 

55/ 

1392 

9. Isolate KNN46-8a 99.7 99.5 99.1 99.1 99.9 99.1 99.8 99.9 --- 

4/ 

1396 

2/ 

1396 

9/ 

1392 

18/ 

1393 

20/ 

1392 

20/ 

1391 

13/ 

1393 

15/ 

1394 

14/ 

1392 

13/ 

1393 

13/ 

1391 

19/ 

1396 

56/ 

1392 

10. Isolate KNN46-9c 99.9 99.8 99.0 99.0 99.9 99.0 99.8 99.9 99.7 --- 

2/ 

1396 9/1392 

19/ 

1393 

21/ 

1392 

21/ 

1391 

14/ 

1393 

16/ 

1394 

15/ 

1392 

14/ 

1393 

14/ 

1391 

20/ 

1396 

57/ 

1392 

11. Isolate KNN46-10g 99.9 99.6 99.1 99.1 100.0 99.1 99.9 100.0 99.9 99.9 --- 

7/ 

1392 

17/ 

1393 

19/ 

1392 

19/ 

1391 

12/ 

1393 

14/ 

1394 

13/ 

1392 

12/ 

1393 

12/ 

1391 

18/ 

1396 

55/ 

1392 

12. M. versicolor 99.4 99.1 98.9 98.8 99.5 98.9 99.4 99.5 99.4 99.4 99.5 --- 

21/ 

1391 

20/ 

1390 

23/ 

1391 

16/ 

1391 

18/ 

1392 

17/ 

1389 

16/ 

1391 

17/ 

1389 

25/ 

1392 

60/ 

1388 

13. M. marinus 98.6 98.4 99.6 99.6 98.8 99.6 98.7 98.8 98.7 98.6 98.8 98.5 --- 

28/ 

1391 

8/ 

1391 

5/ 

1393 

21/ 

1391 

6/ 

1391 

5/ 

1393 

6/ 

1391 

22/ 

1393 

57/ 

1390 

14. M. multiseptatus 98.6 98.3 98.2 98.2 98.6 98.2 98.6 98.6 98.6 98.5 98.6 98.6 98.0 --- 

32/ 

1389 
25/ 

1391 

23/ 

1390 

26/ 

1389 

25/ 

1391 

25/ 

1389 

16/ 

1392 

59/ 

1392 

15. M. roseus 98.5 98.3 99.5 99.5 98.6 99.5 98.6 98.6 98.6 98.5 98.6 98.4 99.4 97.7 --- 
7/ 

1391 

23/ 

1391 

8/ 

1389 

7/ 

1391 

8/ 

1389 

28/ 

1391 

51/ 

1388 

16. Isolate MDVD4 99.0 98.8 100.0 100.0 99.1 100.0 99.1 99.1 99.1 99.0 99.1 98.9 99.6 98.2 99.5 --- 

16/ 

1391 

1/ 

1391 

0/ 

1393 

1/ 

1391 

21/ 

1393 

56/ 

1390 

17.Isolate  MDVD1 98.9 98.6 98.9 98.9 99.0 98.9 98.9 99.0 98.9 98.9 99.0 98.7 98.5 98.4 98.4 98.9 --- 

17/ 

1390 

16/ 

1391 

16/ 

1389 

23/ 

1394 

57/ 

1390 

18. Isolate CMB2 98.9 98.8 99.9 99.9 99.1 99.9 99.1 99.1 99.0 98.9 99.1 98.8 99.6 98.1 99.4 99.9 98.8 --- 

1/ 

1391 

1/ 

1389 

22/ 

1392 

57/ 

1389 

19. Isolate CATN4 99.0 98.8 100.0 100.0 99.1 100.0 99.1 99.1 99.1 99.0 99.1 98.9 99.6 98.2 99.5 100.0 98.9 99.9 --- 

1/ 

1391 

21/ 

1393 

56/ 

1390 

20. Isolate MON1.1 99.0 98.9 99.9 99.9 99.1 99.9 99.1 99.1 99.1 99.0 99.1 98.8 99.6 98.2 99.4 99.9 98.9 99.9 99.9 --- 

21/ 

1391 

56/ 

1388 

21. Isolate MON3.1 98.6 98.4 98.5 98.5 98.7 98.5 98.6 98.7 98.6 98.6 98.7 98.2 98.4 98.9 98.0 98.5 98.4 98.4 98.5 98.5 --- 

51/ 

1392 

22. G. obscurus 96.0 95.7 96.0 96.0 96.1 96.0 96.0 96.1 96.0 95.9 96.1 95.7 95.9 95.8 96.3 96.0 95.9 95.9 96.0 96.0 96.3 --- 
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Table 5.3. Fatty aicds (%) of Modestobacter subclade 1 isolates and their nearest phylogenetic neighbour, the type strain of Modestobacter versicolor. 

Fatty acid KNN46-2b KNN46-3b KNN46-4b KNN46-6a KNN46-7 KNN46-8a KNN46-9c KNN46-10g 
M. versicolor 

DSM 16678
T
 

Iso-C12:0 - - - - 0.3 0.2 - - - 

C12:0 - 0.5 0.3 0.3 - - - - - 

Iso-C14:0 0.6 0.4 2.0 0.8 2.3 0.9 1.1 0.6 1.0 

C14:0 0.2 0.7 0.5 0.6 0.5 0.4 0.8 0.4 0.3 

iso-C15:1 G 1.9 1.3 1.5 0.7 1.7 1.4 0.4 0.7 2.8 

iso-C15:0 6.2 3.6 3.4 2.3 3.6 3.4 4.3 4.2 19.9 

anteiso-C15:0 0.7 0.9 1.2 1.5 1.3 0.7 1.1 0.5 2.8 

C15:1 B 0.2 - 0.4 - 0.4 0.3 0.3 0.2 - 

C15:0 0.6 1.2 0.5 0.7 0.8 0.7 1.9 1.1 0.7 

iso-C16:1 H 4.0 1.8 8.5 3.1 9.9 5.1 2.0 1.7 - 

iso-C16:0 22.9 21.1 33.1 23.8 32.8 27.8 23.0 26.2 22.2 

C16:1 ω9c 9.8 8.4 13.0 10.0 13.1 10.9 6.4 5.0 1.3 

C16:0 4.3 9.4 7.1 9.8 5.8 4.6 9.3 4.6 3.2 

9-Methyl C16:0 3.4 0.7 1.1 1.3 1.3 1.4 0.5 1.2 2.0 

anteiso-C17:1 C 0.8 0.3 0.8 1.3 0.8 0.4 0.3 0.2 0.4 

iso-C17:0 4.5 2.5 1.2 2.6 1.2 2.0 2.3 3.5 8.7 

anteiso-C17:0 2.3 2.0 1.8 5.8 1.8 1.5 2.5 1.2 4.9 

C17:1 ω9c 16.8 14.1 9.5 10.1 11.1 14.8 16.0 16.0 5.5 

C17:0 cyclo 1.7 0.9 2.2 - 1.0 1.2 0.9 0.8 - 
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C17:0 2.2 3.9 1.2 2.9 1.4 2.8 7.4 4.6 4.8 

10-Methyl C17:0 1.7 1.0 1.3 1.8 1.3 2.2 0.8 3.6 0.9 

C18:3 ω6,12,14c - 3.1 1.1 1.1 1.4 1.1 - 0.9 1.0 

iso-C18:0 0.3 0.4 0.2 0.6 - 0.5 0.4 0.7 0.4 

C18:1 ω9c 9.7 14.6 4.6 15.9 4.1 12.6 10.0 15.5 9.8 

C18:0 0.9 2.5 0.4 2.3 0.4 1.1 3.5 1.8 3.9 

C17:0 iso-2OH 1.4 2.2 1.7 - 1.1 1.5 2.5 2.3 0.9 

Summed feature 3 - - - - - - - - - 

Summed feature 7 1.4 0.9 0.3 1.0 0.3 0.8 0.6 0.6 - 

Summed feature 9 1.0 - 0.9 - 0.4 - 1.4 1.9 1.3 

Summed feature 3  C16 1 ω c , summed feature 7: C18:1 ω7c/ C18:1 ω9t/ C18:1 ω12t. and summed feature 9: iso-C17 ω9c and/or 10-methyl C16:0. 
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Table 5.4.  Fatty acids (%) of Modestobacter subclade 2 isolates and strains MDVD 1 and MON 3.1 and their nearest phylogenetic neighbours, the 

type strains of M. marinus, M. multiseptatus and M. roseus. 

Fatty acid 

Modestobacter subclade 2 
M. marinus 

DSM 45201
T
 

M. roseus 

DSM 45764
T
 

M. 

multiseptatus 

DSM 44406
T
 

MON3.1 MDVD1 
MDVD4 CATN4 MON1.1 CMB2 

KNN45-

1a 

KNN45-

2b 

KNN45-

3b 

iso-C12:0 0.1 - - - - - - - - - - - 

C12:0 0.2 - - 0.1 0.7 0.3 0.2 - - - - - 

iso-C13:0 - - - 0.0 - - - 0.2 - - 0.10 - 

C13:0 0.2 0.3 - 0.1 - - - 0.4 - - - - 

iso-C14:0 2.5 1.3 0.7 1.4 1.6 1.5 1.9 1.3 2.4 1.1 2.1 1.4 

C14:0 0.5 1.0 0.4 0.6 0.9 0.8 0.3 1.0 0.8 0.4 2.1 0.9 

iso-C15:1 G 0.6 0.4 1.3 1.2 0.7 0.8 1.5 0.7 - 1.7 5.3 - 

iso-C15:0 3.6 3.6 5.1 4.4 7.4 7.1 2.9 9.7 11.0 21.5 17.4 8.2 

anteiso-C15:0 0.9 1.3 2.6 0.9 1.0 0.9 0.6 4.2 4.5 3.7 2.5 1.5 

C15:1 B 0.5 0.5 0.2 0.5 0.3 0.4 0.4 0.7 - - 1.2 - 

C15:0 4.3 4.9 0.8 2.0 1.7 1.5 0.6 5.6 1.3 1.3 2.3 3.9 

iso-C16:1 H 1.7 1.2 2.1 4.3 1.6 1.3 9.4 0.3 5.3 0.5 3.6 - 

iso-C16:0 34.6 16.4 24.6 28.1 22.6 23.4 39.1 10.3 21.9 19.7 21.8 16.1 

C16:1 ω9c 4.1 5.6 8.1 9.6 8.0 7.3 11.1 3.2 - 1.0 10.0 3.6 

C16:0 6.9 11.5 8.1 6.9 8.8 8.9 5.7 11.2 7.2 3.8 7.6 8.3 

9-Methyl-C16:0 0.2 - 0.9 0.7 0.8 0.7 0.9 0.3 - 1.2 0.5 - 

anteiso-C17:1 C 0.1 - 1.0 0.3 - 0.2 0.4 0.2 - 0.2 0.5 - 
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iso-C17:0 0.8 1.3 2.8 1.3 2.8 3.1 0.9 2.8 3.1 8.8 1.0 3.2 

anteiso-C17:0 0.8 1.5 6.5 0.9 1.4 1.4 0.7 3.7 2.1 5.99 1.6 2.3 

C17:1 ω8c - - - - - - - - 15.0  - - 

C17:1 ω9c 17.3 14.3 11.6 15.5 13.8 13.5 8.5 13.7 - 4.81 6.9 19.4 

C17:0 cyclo 0.7 1.5 1.6 2.8 0.7 1.0 2.5 0.2 1.0 - 2.3 - 

C17:0 10.3 16.4 4.1 4.7 5.3 5.2 1.2 20.0 9.6 8.6 1.5 17.2 

10-Methyl-

C17:0 
0.7 0.4 1.1 1.3 0.8 0.8 2.0 - 1.0 0.4 0.2 0.5 

C18:3 ω 

6,12,14c 
0.9 2.1 0.4 0.5 4.1 2.0 1.2 1.3 - 0.9 - 1.0 

iso-C18:0 1.3 0.5 0.7 0.3 0.5 0.5 0.3 - - 0.5 - - 

C18:1 ω9c 2.4 5.1 9.3 4.9 9.8 10.2 4.4 2.1 2.1 5.5 3.9 5.4 

C18:0 2.3 3.8 2.2 0.8 3.0 3.2 0.6 3.7 0.6 6.6 0.8 2.8 

C17:0 iso-2OH 1.5 3.7 1.9 3.7 1.8 2.1 1.6 2.6 - 0.7 2.7 3.2 

Summed 

feature 3 
- - - - - - - - 8.4 - - - 

Summed 

feature 7 
- 0.4 0.4 0.7 - 0.5 0.2 - 0.4 - 0.1 - 

Summed 

feature 9 
0.3 1.3 1.5 1.4 - 1.5 0.9 0.4 1.5 0.8 1.6 1.0 

Summed feature 3: C16:1 ω7c and/or C17:1 ω6c; summed feature 7: C18:1 ω7c/ C18:1 ω9t/ C18:1 ω12c and summed feature 9: iso-C17 ω9c and/or 10-methyl-

C16:0.
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and with two exceptions, isolates KNN46-4b and KNN46-7a, had similar proportions of 

C18:19c (Table 5.3).  In general, the isolates belonging to 16S rRNA gene subclade 1 

showed similar fatty acid profiles to one another and to a lesser extent with M. marinus 

DSM 45201
T
.  In contrast, isolate MON 3.1 and M. multiseptatus DSM 44406

T
 

exhibited markedly different qualitative and quantitative fatty acid profiles.  The type 

strain of M. roseus was readily distinguished from those of the other strains as it lacked 

C17:18c but contained a major amount of iso-C16:0.   The G+C content of the DNA of 

isolate KNN45-2b was 72.5+1%. 

 

DNA:DNA relatedness.  The ΔTm between isolate KNN45-2b g DNA and isolate 

KNN45-2b : M. marinus DSM 45201
T
 hybrid DNA was 4.9+0.3%, a result which can 

be equated with a DNA:DNA similarity of 70.2+0.1% (Gonzalez & Saiz-Jimenez, 

2005), a value very close to the cut-off point for assigning strains to the same genomic 

species (Figure 5.3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.Two-dimensional thin-layer chromatography of polar lipids of isolates (A), 

KNN45-2b; (B), KNN46-4b; (C) MDVD 1 and (D) MON 3.1 stained with molybdenum 

blue spray (Sigma).  Chloroform:methanol:water (32.5:12.5:2.0, v/v) was used in the 

first direction, followed by chloroform : acetic acid : methanol : water (40.0 : 7.5 : 6.0 : 

2.0,v/v) in the second direction. Abbrevations: DPG, diphosphatidylglycerol; PE, 

phosphatidylethanolamine; PG, phosphatidylglycerol and PI, phosphatidylinositol. 
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Figure 5.3. Thermal denaturation of genomic DNA from isolate KNN45-2b and isolate 

KNN45-2b : M. marinus DSM 45201
T
 hybrid D  .  The calculated ΔTm is 4.9

o
C+0.3. 

 

Cultural and morphological properties.  All of the strains grew well on ISP media 1, 

2, 3, 6 and 7, moderately on ISP medium 5 and poorly on ISP medium 4 (Table 5.5).  

Colony colours ranged from yellowish white to black; strains assigned to the M. 

versicolor 16S rRNA subclade produced diffusible pigments on ISP media 2 and 7.  All 

of the isolates formed entire, flat, round, mucoid colonies with entire margins.  

 

Table 5.5.  Growth and cultural characteristics of isolates and Modestobacter type 

strains on ISP media after incubation for 14 days at 28
o
C. 

Media Growth Substrate mycelium colour Diffusible pigment 

    

Glycerol-asparagine agar (ISP 5) 

 

++ Olivaceous black None 

Inorganic salts-starch agar (ISP 4) 

 

+ Yellowish white None 

Oatmeal agar (ISP 3) 

 

+++ Olivaceous black 

 

None 

Peptone-yeast extract-iron agar (ISP 6) 

 

+++ Black / orange* None/ Light yellow* 

Tryptone-yeast extract agar (ISP 1) 

 

+++ Yellowish white None 

Tyrosine agar (ISP 7) 

 

+++ Yellowish white None /  Light yellow* 

Yeast extract-malt extract agar (ISP 2) 

 

+++++ Black None / Light yellow* 

++++ abundant growth; +++ very good growth; ++ good growth; + poor growth. 

* Results for members of the M. versicolor DSM 16678
T
 and associated isolates from the 

Yungay soil(see Figure 5.1). 
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Phenotypic properties.  Identical results were obtained for the duplicated strains in all 

of the phenotypic tests.  The seventeen isolates and the Modestobacter type strains grew 

at 20 and 28
o
C, at pH 7 and 8, produced acid phosphatase, esterase (C4), esterase lipase 

(C8), leucine arylamidase, naphthol-AS-BI-phosphohydrolase and valine aryamidase 

(API ZYM tests), reduced nitrate to nitrite, hydrolysed urea, and used acetoacetic acid 

and dextrin as sole carbon sources, grew in the presence of minocycline, potassium 

tellurite and 1%, w/v sodium chloride (Biolog Gen III microplates) and showed scant 

growth in the presence of 5% carbon dioxide as a sole carbon source.  In contrast, none 

of strains grew at 10 or 40
o
C, at pH 4, 5, 9, 10 or 11, produced -fucosidase, - or -

galactosidases, N-acetyl--glucosamidase, or grew on -amino-butyric acid, formic 

acid, -methyl-D-glucoside, glycyl-proline or methyl pyruvate as sole carbon sources 

(Biolog GEN III microplates). 

 It can be seen from Table 5.6 that the Modestobacter type strains can be 

distinguished from one another using a broad range of phenotypic properties.  With few 

exceptions the subclade 1 isolates from the extreme hyper-arid Yungay soil shared the 

same phenotypic profile, ones that readily distinguished them from all of other isolates 

and from the Modestobacter type strain (Table 5.6). Unlike M. versicolor DSM 16678
T
, 

their nearest phylogenetic neighbour, these isolates produced alkaline phosphatase, 

cysteine arylamidase and trypsin, conversely only the M. versicolor type strain used D-

aspartic acid, D-cellobiose, D-fructose-6-PO4, D-galacturonic acid, gelatin, gentobiose, 

D-gluconic acid, 3-methyl glucose, -D-glucose, L-glutaric acid, D- & L-lactic acid, D-

malic acid and D-pectin as sole carbon sources. 

The subclade 2 isolates had many phenotypic properties in common some of 

which distinguish them from the type strain of M. marinus, their closet phylogenetic 

neighbour (Table 5.6).  The isolates, unlike M. marinus DSM 45201
T
, grew at pH 5 and 

6, in the presence of guadinine hydrochloride, conversely only the M. marinus strains 

used inosine and D-serine as sole carbon sources. In contrast, only the type strain of M. 

marinus used D-galactose, D-glycerol, D-mannose, stachyose and D-turanose, as  sole 

carbon sources.  These isolates can also be distinguished from the type strain of M. 

roseus by their ability to grow in the presence of azetreonam, gusanidine hydrochloride, 

lithium chloride, niaproof 4, at pH5 and used L-alanine and sodium butyrate as sole 

carbon compounds though the M. roseus strain showed a much greater ability to 

assimilate carbon compounds (Table 5.6). 
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  Isolates MON3.1 and MDVD1, which formed distinct branches in the 

Modestobacter 16S rRNA gene tree, had phenotypic properties that readily 

distinguished them from one another and from all of the remaining strains (Table 5.6), 

including their nearest neighbours.  Thus, isolate MON 3.1 produced cysteine 

arylamidase, and lipase (C14) and used acetic acid, D-cellobiose, -ketoglutaric acid, 

D-trehalose and Tween 40 as sole carbon sources through, in general, the M. 

multiseptatus strain showed a much greater capacity to grow and to metabolise carbon 

compounds and grow in the presence of inhibitory agents.  Similarly, isolate MDVD1 

and the type strain of M. multiseptatus were readily distinguished, only the former 

produced alkaline phosphatase and cysteine arylamidase and only the latter -

chymotrypsin and - and -glucosidases.  In addition, M. multiseptatus DSM 44406
T
 

assimilated a much broader range of carbon compounds, as exemplified by its ability to 

use D-cellobiose, 3-methyl-glucose, D- and L-lactic acid, methyl ether, L-malic acid 

and D-salicin as sole carbon sources. 

 

Table 5.6.  Phenotypic properties that distinguish the Modestobacter isolates from one 

another and from the type strains of Modestobacter. 

Characteristics 
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API ZYM tests:         

     Alkaline phosphatase + + + - + + + - 

     -Chymotrypsin + + + + + + - + 

     Cysteine  arylamidase - + + - + + + + 

     Esterase lipase (C8) + + + - - + - - 

     -glucosidase - - + + + - - + 

     -glucosidase - - + + + - - - 

     Trypsin - - + - + - - - 

Micromorphology: 

 

        

Motility Motile Non-

motile 

Motile Motile Motile Non-

motile 

Motile Motile 

Colony properties: 

 

Mucoid Round ,

mucoid 

Flat, 

mucoid 

Flat , 

mucoid 

Mucoid Round ,

mucoid 

Mucoid Flat, 

mucoid 

Diffusible pigments:         

Glucose-yeast 

extract-malt extract 

agar 

- +/- - + + +/- - - 

Peptone-yeast 

extract-iron agar 

- - - + - - - - 

Tyrosine agar - - - + - - - - 
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Resistance to inhibitory 

compounds: 

        

     Azetreonam + + - + + + + + 

     Fusidic acid + + + + + + + - 

     Guanidine HCl + - - + - + - - 

     Lincomycin + - + + + + + - 

     Lithium chloride + + - + + + + + 

     Nalidixic acid + + + + + + + - 

     Niaproof4 + + - + + + + - 

     Rifamycim SV + - + + + - + + 

     Tetrazoliun blue + - + + + - + - 

     Tetrazoliun violet + + + + + + + - 

     Troleandomycin + - + + + - + - 

     Vancomycin + - + + + + + - 

Growth at:         

     pH5 + - - + + + + - 

     pH6 + - + + + + + + 

pH8 + + + + + + + + 

pH9 + + + + + + + + 

         

Growth in the present of:         

     4%, (w/v) NaCl + - + + + + + + 

     8%, (w/v) NaCl + - - + + - + + 

Sole carbon sources:         

     Acetic acid
1
 - + + - - + - + 

     N-Acetyl-D-glucosamine - + + - - + - - 

     N-Acetyl--D-mannose - + + - - + - - 

     N-Acetyl-neuramic acid + + + - - + - - 

     L-Alanine + + - - - + - - 

     D-Arabitol + - + - - - - - 

     L-Arginine + - - - - - - - 

     D-Aspartic acid + + + + - + - + 

     L-Aspartic acid + - + - - - - + 

     -keto-butyric acid - - + - - - - - 

     -hydroxy butyric acid + - - + + - - - 

     -hydroxy-D,L-butyric 

acid 

+ - - - - - - + 

     D-Cellobiose - + + + - +
1
 - + 

     Citric acid - - + - - - - - 

     D-Fructose - + + - - + - - 

     D-Fructose-6PO4 + + + + - + - + 

     D-Fucose - - + -  - - - 

     L-Fucose + - + - - - - - 

     D-Galactose + + - - - - - - 

     D-Galacturonic acid + + + + - + - - 

     L-Galacturonic acid 

lactone 

+ - + - - - - - 

      Gelatin - - + + - -
2
 - - 

      Gentiobiose - + + + - + - - 

      D-Gluconic acid + - - + - -
3
 + + 

      D-Glucuronic acid + - - - - -
4
 + - 

      Glucuronamide + - + - - -
5
 - - 

      3-Methyl glucose - - - + - -
6
 - - 

      -D-Glucose + + + + - +
7
 - - 

      D-Glucose-6-PO4 + + + - - +
8
 - + 

      -keto-Glutaric acid - - + - - -
9
 + + 

      L-Glutamic acid + - - + - - - + 

      Glycerol + + - - - - - - 

      L-Histidiine + - - - - - - - 

      Inosine + - + + + + + + 

      Myo-Inositol + - - - - - - - 

      D-Lactose - + + - - + - - 
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      L-Lactic acid + + + - - + - - 

D- & L- Lactic acid 

methyl ether 

+ + - + - +
10

 - - 

     D-Malic acid + - + + - -
11

 + - 

     L-Malic acid + - + + + -
12

 - + 

     D-Maltose + - + - - - - + 

     D-Mannose + + + - - - - - 

     L-Mannose - + + - - + - - 

     D-Melibiose + + + - - + - - 

     Mucic acid + - + - - - - + 

     D-pectin + + + + - +
13

 - - 

-Hydroxy-phenylacetic 

acid 

- - + - - - - - 

     Propionic acid + - + + - -
14

 - - 

     L-pyroglutamic acid + - + + - - - - 

     Quinic acid + - + + - - - + 

     D-Raffinose - + + + - + - + 

     L-Rhamnose + - + - - - - - 

     D-Saccharic acid + - + - - - - - 

     D-Salicin + - + + - - - - 

     D-Serine + - + - - + - - 

     L-Serine + + + - - + - + 

     Stachyose - + - - - - - - 

     Sodium butyrate + - - + + + + - 

     Sodium bromide + - - + + - + + 

     1% sodium lactate + - + + + - + + 

     D. Sorbitol - - + - - - - - 

     Bromo-succinic acid - - + - - - - - 

     D-Sucrose + + + - - + - + 

     D-Trehalose - + - - - +
15

 - + 

     D-Turanose - + + - - - - + 

     Tween 40 + + + + + + + + 

+ : positive; -: negative; +/- variable.  *Codes  for these isolates are shown in Figure 5.1. 

Positive results were recorded for :
1
isolates KNN46-7a, KNN46-8a and KNN46-10g; 

2
isolates KNN46-3b 

and KNN46-6a; 
3
isolates KNN46-6a and KNN46-10g; 

4
isolates KNN46-6a; KNN46-8a, KNN46-9c; 

5
isolates KNN46-3b, KNN46-4b, KNN46-6a and KNN46-8a; 

6
isolates KNN46-6a and KNN46-10g; 

7
isolates KNN46-8a, KNN46-9c and KNN46-10g; 

8
isolates KNN46-4b; KNN46-6a and KNN46-8a; 

9
isolates KNN46-4b, KNN46-6a and KNN46-8a; 

10
isolates KNN46-3b, KNN46-4b, KNN46-7a and 

KNN46-8a; 
11

isolates KNN46-4b, KNN46-6a and KNN46-8a; 
12

isolates KNN46-2b, KNN46-3b, 

KNN46-9c; 
13

isolates KNN46-3b, KNN46-6a, KNN46-8a and KNN46-10g ; 
14

isolates KNN46-3b, 

KNN46-4b, KNN46-6a and KNN46-7a and 
15

isolates KNN46-9c and KNN46-10g . 

 

Analysis of whole genome sequence of isolate KNN45-2b.  Full genome sequencing 

of strain KNN45-2b (GenBank accession number JPMX00000000) using Illumina 

methods led to an assembly of 140 contigs for a total genome size of ~4.96 Mb, 

predicted to encode 4,683 proteins (Figure 5.4). The functions of the genes were 

catalogued into different functional classes.  The relative distribution of the different 

classes is similar to that of the model strains “Streptomyces coelicolor” A3(2)
 
(Bentley 

et al., 2002) and “Streptomyces lividans” (Cruz-Morales et al., 2013). RAST is a widely 

used annotation tool that allows good initial prediction of gene functions. However, for 

a more detailed prediction regarding the specific functions of secondary metabolism-
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related genes, a dedicated algorithm was required such as antiSMASH (Medema et al., 

2011).  Only a handful of natural product clusters were predicted (two terpene-, one 

siderophore-, two polyketide synthase-type clusters and one of unknown type). This can 

be explained by the relatively small size of this genome when compared to those other 

actinomycetes (~ 5 Mb vs. 8-10 Mb). 

 

5.5. Discussion 

All of the isolates were Gram-positive, formed rod- and coccoid-shaped cells that 

tended to be aggregated together, produced beige to orange colonies which on 

prolonged incubation turned black, and had whole cell hydrolysates rich in meso-A2pm, 

arabinose and galactose (wall chemotype IV sensu Lechevalier & Lechevalier, 1974).  

The representative isolates were found to contain tetrahydrogenated menaquinones with 

nine isoprene units as sole isoprenologues, and diphosphatidylglycerol, 

phosphatidylglycerol, phosphatidylethanolamine (diagnostic phospholipid) and 

phosphatidylinositol as major polar lipids (phospholipid type 2; Lechevalier et al., 1977, 

1981), but lacked mycolic acids, and with two exceptions contained iso-C16:0 as the 

predominant fatty acid.  The G+C content of the DNA of isolate KNN45-2b was 72.5+1%  

All of these properties are consistent with the classification of the isolates in the genus 

Modestobacter (Mevs et al., 2000; Normand & Benson, 2012b; Qin et al., 2013). 

Three out of the eleven representatives of the Modestobacter strains isolated 

from the extreme hyper-arid Yungay soil and four out of the six strains from 

deteriorated sandstone shared high 16S rRNA gene similarities, had similar fatty acid 

profiles and many phenotypic properties in common.  They were most closely related to 

M. marinus DSM 45201
T
 but can be distinguished from the latter on the basis of their 

fatty acid profile and by a broad range of phenotypic properties.  Further comparative 

taxonomic studies are needed to clarify relationships between the subclade 2 isolates to 

determine whether they represent one or more Modestobacter species. 

The remaining isolates from the Yungay soil showed high 16S rRNA gene 

similarities (99.1 to 99.5%) and were found to have many phenotypic properties in 

common.  These isolates were readily distinguished from all of the remaining 

Modestobacter strains, including M. versicolor, their nearest phylogenetic neighbour, 

using a combination of phenotypic properties.  Further studies need to be carried out on 
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these strains to establish whether they belong to one or more novel Modestobacter 

species. 

The two remaining isolates, strains MON 3.1
T
 and MDVD 1

T
, merit recognition 

as novel Modestobacter species as they formed well delineated branches in the  

Modestobacter 16S rRNA gene tree and can be distinguished from all of the remaining 

strains, including their nearest phylogenetic neighbours, using a battery of phenotypic 

properties.  It is, therefore, proposed that isolates MON 3.1 and MDVD 1 be recognised 

as new Modestobacter species, namely as Modestobacter lapidis  sp. nov. and 

Modestobacter muralis sp. nov.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Overview of Modestobacter strain KNN45-2b subsystem gene functions as 

generated by analysis on the RAST server at (http://rast.nmpdr.org).  

  

 Relatively little is known about the distribution, numbers, kinds and activities of 

Modestobacter strains in natural habitats.  However, members of this taxon, like 

Blastococcus and Geodermatophilus strains, tend to be associated with extreme habitats 

characterised by dryness, low nutrient availability and high UV radiation (Eppard et al., 

1996; Urzì & Realini, 1998; Urzì, et al., 2001; Salazar et al., 2006).  In the present 

study the isolation of small numbers of Modestobacter strains from the extreme hyper-

arid Yungay soil is further evidence that these organisms are present in dry, nutrient 

poor habitats subject to high UV radiation.  To the best of our knowledge this is the first 

report on the isolation of Modestobacter strains from arid desert soils.  Furthermore, the 

circumscription of two novel Modestobacter strains from deteriorated sandstone is in 

 

http://rast.nmpdr.org/
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line with the view that isolates associated with the family Geodermatophilaceae show a 

relatively marked genotypic and phenotypic diversity on exposed and arid rock-surfaces 

(Eppard et al., 1996; Urzì, et al., 2001;Essoussi et al., 2010).  

 The ability of Modestobacter strains to survive under harsh conditions such as 

those outlined above, may be associated with their pleomorphic morphology, thick 

walls and ability to synthesise melanin-like pigments (Essoussi et al., 2010).  The 

observation that Geodermatophilus strains can be transported over long distances, and 

resist radiation and desiccation while in the high atmosphere (Chuvochina et al., 2011), 

similarly may account for the isolation of the subclade 2 isolates from environmental 

samples collected as far apart as Chile and Spain.  However, additional research is 

needed to build upon these pioneering studies, notably by establishing the ecological  

roles that Modestobacter strains play in harsh environments.  Detailed annotation of the 

KNN45-2b genome, particularly of the stress response genes, followed by appropriate 

physiological studies should enable the chemical ecology of these and other members of 

the family Geodermatophilaceae recovered from the Atacama Desert to be defined. 

 

Description of Modestobacter lapidis sp. nov. 

Modestobacter lapidis sp. nov. (la.pi'dis). L. gen. n. lapidis of a stone. 

Aerobic, Gram-positive, motile, non-spore forming actinobacterium which forms short 

rods and cocci (1.5-2.8 x 1.7-3.0 µm).  Grows well on ISP medium 2 producing black 

mucoid colonies.  Grows from 20 to 37
o
C, optimum temperature is 28

o
C, from pH 6-9 

and in the presence of 8% NaCl (w/v).  Additional phenotypic test results are cited in 

the text and in Tables 5.3 and 5.4.  Chemotaxonomic properties are typical of the genus. 

 The type strain MON 3.1
T
 (= DSM………., =  CIMB…………, =  RRL…….) 

was isolated from a deteriorated sandstone historic building in Salamanaca, Spain.  The 

description is based on a single strain and hence serves as the description of the type 

strain.  The GenBank accession number for the 16S rRNA gene sequence of strain 

MON 3.1
T
 is ………. 

 

Description of  Modestobacter muralis sp. nov. 

Modestobacter muralis sp. nov. (mu.ra'lis. L. adj. muralis pertaining or belonging to 

walls. 

Aerobic, Gram-positive, non-spore forming actinobacterium that forms slightly curved, 

short rods (0.5-1.2 x 1.0-3.0 µm). Grows well on ISP medium 2 producing flat, black 

mucoid, colonies.  Grows from 20 to 37
o
C, optimal temperature is 28

o
C, from pH 6-9 
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and in the presence of 8%, w/v NaCl.  Additional phenotypic test results are cited in the 

text and in Tables 5.3 and 5.4.  Chemotaxonomic properties are typical of the genus. 

The type strain MDVD 1
T 
(= DSM………., =  CIMB…………, =  RRL…….) 

was isolated from deteriorated sandstone from a historic building in Salamanaca, Spain.  

The description is based on a single strain and hence serves as a description of the type 

strain. The GenBank accession number for the 16S rRNA gene sequence of strain 

MDVD 1
T 
is ………. 
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Chapter 6. Polyphasic Studies on Presumptive Streptomyces 

Strains isolated from Hyper-arid and Extreme Hyper-arid 

Atacama Desert Soils 

6.1. Abstract 

Twenty-five presumptive novel streptomycetes isolated from hyper-arid and extreme 

hyper-arid Atacama Desert soils were the subject of polyphasic studies designed to 

establish their taxonomic status.  All of the isolates were found to exhibit 

chemotaxonomic, cultural and morphological properties consistent with their 

classification in the genus Streptomyces.  Five of the isolates formed a well supported 

subclade in the Streptomyces 16S rRNA gene tree  together with the type strain of  

Streptomyces fimbriatus.  Three of these isolates were considered to be membere of this 

species based on genotypic and phenotypic criteria; an emended description of S. 

fimbriatus is given.  Seven of the isolates formed a well delineated subclade in the 

Streptomyces pseudogriseolus 16S rRNA gene subclade, but further studies are needed 

to establish whether they merit species status.  The remaining strains, including isolate 

C34, formed a distinct subclade in the Streptomyces 16S rRNA gene tree and shared a 

wealth of phenotypic features.  Multilocus sequence analyses (MLSA) based on five 

house-keeping gene alleles underpinned the separation of isolate C34
T
 and related 

strains from all of their nearest neighbours, apart from the type strains of Streptomyces 

chiangmaiensis and Streptomyces hyderabadensis which are not currently in the MLSA 

database.  Strain C34
T
 and the other members of the subclade were distinguished readily 

from the S. chiangmaiensis and S. hyderabadensis strains using a combination of 

cultural and morphological data.  Consequently, strain C34
T
 and the other fourteen 

members of the well-delineated 16S rRNA subclade are considered to form a new 

species of the genus Streptomyces for which the name Streptomyces leeuwenhoekii sp. 

nov. is proposed.  The type strain is C34
T
 (=DSM 42122

T
 = NRRL B-24963

T
).  

Analysis of the whole-genome sequence of S. leeuwenhoekii C34
T
, with 6,780 predicted 

open reading frames and total genome size of around 7.86 Mb, revealed a high potential 

for natural product biosynthesis. 
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6.2. Introduction 

A major attraction of strains assigned to the genus Streptomyces is their unique capacity 

to synthesise new specialised metabolites, notably antibiotics, that can be developed as 

resources for healthcare (Hopwood, 2007; Bérdy, 2012).  Streptomycetes account for 

about 40% of all known natural products and have genomes that typically contain over 

twenty biosynthetic gene clusters that encode for known or predicted specialised 

metabolites (Goodfellow & Fiedler, 2010; Becerril-Espinosa et al., 2013).  It is, 

however, difficult to find new chemical entities from know Streptomyces species as 

screening them tends to lead to the costly rediscovery of known bioactive compounds 

(Busti et al., 2006; Williams, 2008)  Consequently, innovative strategies are needed to 

selectively isolate, dereplicate and identify new Streptomyces species for 

pharmaceutical screening programmes, as illustrated by the taxonomic approach to drug 

discovery  recommended by Goodfellow and Fiedler (2010). 

 The taxonomic approach to drug discovery has been shown to be particularly 

effective in the isolation of novel streptomycetes from extreme habitats, as exemplified 

by the discovery of caboxamycin, a new bensoxazole antibiotic from extracts of a 

Streptomyces strain isolated from an Atlantic Ocean deep sea sediment (Hohmann et al., 

2009) and warkmycin, a novel angucycline antibiotic, produced by a Streptomyces 

strain isolated from an embryonic sand dune (Helaly et al., 2013).  This strategy has 

recently  been applied in studies of actinobacterial communities in Atacama Desert soils 

in Northern Chile (Bull & Asenjo, 2013).  This, the oldest and driest desert on the planet 

has evolved over several million years of aridity and hyper-aridity (Gomez-Silva et al., 

2008). 

 Despite, the extreme conditions of the Atacama Desert, phylogenetically novel 

actinobacteria, notably streptomycetes, have been isolated from soils taken from hyper-

arid extreme hyper-arid regions of the desert (Okoro et al., 2009; Bull & Asenjo, 2013).   

Three of the putatively novel streptomycetes have been validly named as Streptomyces 

atacamensis, Streptomyces bullii and Streptomyces deserti (Santhanam et al., 2012a, b, 

2013).  In addition, Streptomyces isolates C34, C58 and C79, representatives of a large, 

well delineated 16S rRNA gene subclade (Okoro et al., 2009) are the source of novel 

antibiotics, namely the chaxalactins and chaxamycins from the former (Rateb et al., 

2011a, b), four new specialised metabolites from the latter (Fiedler et al., unpublished) 

and a novel lasso peptide from isolate C58 (Jaspars et al., unpublished).  Another 

putatively novel Streptomyces strain from high altitude Atacama Desert soil produces 
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novel aminobenzoquinones, the abenquines, which show inhibitory activity against 

bacteria and dermatophilic fungi (Schulz et al., 2011). 

 The primary aim of the present study was to establish the taxonomic status of 

isolates C34, C58 and C79 and additional putatively novel Streptomyces, strains isolated 

from extreme hyper-arid and hyper-arid Atacama Desert soils using a polyphasic 

approach.  Most of the isolates, including strains C34, C58 and C79, were shown to 

form a new centre of taxonomic variation in the genus Streptomyces, this taxon was 

designated Streptomyces leeuwenhoekii with  isolate C34 as the type strain.  The 

remaining isolates formed a putatively novel Streptomyces species or belonged to, or 

were closely related, to Streptomyces fimbriatus. 

 

6.3.  Materials and Methods 

6. 3. 1.  Selective isolation, maintenance and cultural conditions  

All but two of the 28 putatively novel Streptomyces strains, including isolates C34, C38, 

C58 and C79, were recovered from a hyper-arid soil collected from the Chaxa de 

Laguna, Salar de Atacama of the Atacama Desert (23
o
 170/S, 68

o
 100N), near Tacanao.  

The fresh strains were taken from a range of selective isolation media (Table 6.1) 

following inoculation with a 10
-1

 soil suspension that had been held at 55
o
C for 6 

minutes, as described by Okoro et al. (2009).  Similarly, the two remaining isolates, 

strains KNN13a and KNN42f, were isolated from an extreme hyper-arid soil sample 

taken from Yungay region of the Atacama Desert (24
o
 06’ 18.6”S,  0

o
01’55.6”W) on 

Gause’s  o.1 agar (Gause et al., 1957) and Microlunatus agar (Nakamura et al., 1995), 

respectively.  All of the strains were maintained on modified Bennett’s agar slopes 

(Jones, 1949) and as suspensions of hyphal fragments and spores in 20% glycerol (v/v) 

at -80
o
C.  Biomass for the molecular systematic and most of the chemotaxonomic 

studies was scapped from 14 day-old modified Bennett’s agar plates incubated at 28
o
C 

and washed twice in distilled water; biomass for most of the chemotaxonomic analyses 

was freeze-dried and that for the molecular systematic studies stored at -20
o
C.  Cells for 

the fatty acid analyses were harvested from yeat extract-malt extract broth (International 

Streptomyces Project [ISP] medium 2; Shirling & Gottlieb (1966) after 3 days at 25
o
C. 
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Table 6.1.  Media used for the selective isolation of actinobacteria from Atacama 

Desert environmental samples. 

Media 
Selective agents (µg 

ml
-1

) 
Target organism(s) Selected isolates 

Gause’s  o.1 agar  (Gause et 

al. 1957;  Zakharova et al., 

2003) 

Nalidixic acid (10)  Rare or uncommon 

actinobacteria 

KNN2-6a, 

KNN6-9a, 

KNN6-11a, 

KNN10-5a, 

KNN11-1a, 

KNN13a, 

Geodermatophilus obscurus 

agar  (Uchida &Seino, 1997) 

Nystatin (25) Geodermatophilus spp. KNN42f 

Glucose-yeast extract agar  

(Athalye et al., 1981) 

Rifampicin (20) Actinomadura spp.  

HV agar (Hayakawa & 

Nonomura , 1987) 

Humic acid (1g L
-1

) Streptosporangiaceae spp. KNN6-6b, 

KNN24-1b, 

KNN26b, 

KNN35-1b, 

KNN35-2b, 

KNN38-1b, 

KNN64-5b 

Luedemann’s agar 

(Luedemann, 1971) 

Nystatin (25 ) Modestobacter spp.  

Microlunatus agar 

(Nakamura et al., 1995) 

Nystatin (25) Modestobacter spp.  

Minimal medium agar 

(Johnson et al., 1981) 

Nystatin (25) Rare or uncommon 

actinobacteria 

KNN48-6d 

Oligotrophic agar (Senechkin 

et al., 2010) 

Low carbon and 

nitrogen content 

Rare and uncommon 

actinobacteria 

 

R2A  (Reasoner & Geldreich, 

1985) 

Nystatin (25) Modestobacter spp.  

Starch-casein agar (Küster 

&Williams, 1964) 

Nystatin (25) Streptomyces spp.  

SM1 (Tan et al., 2006) Neomycin (1) and        

nystatin (25) 

Amycolatopsis spp. KNN48-3e, 

KNN83e 

All of the media were supplemented with cycloheximide (25 µg ml
-1

). 

6. 3. 2.  Chemotaxonomy and morphology 

All of the isolates were examined for the presence of isomers of diaminopimelic acid 

(A2pm) following the procedure described by Hasegawa et al. (1983).  Strains KNN24-

1b, KNN26b, KNN35-2b and KNN48-1c were also examined for diagnostic 
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menaquinones and whole organism sugars  using standard procedures (Hasegawas et al., 

1983; Collins et al., 1985).  Cellular fatty acids extracted from isolates C34
T
, C38, C58, 

C59 and C79 were methylated and analysed by gas chromatography (Hewlett Packard 

model 6890) following the  recommended procedure of the Sherlock Microbial 

Identification System (MIDI, Sasser 1990).  The resultant fatty acid methyl esters were 

identified and quantified using the MIDI ACTINO1 database (version 6.10). 

 The micromorphology of all of the isolates were observed on oatmeal agar 

plates (ISP medium 3; Shirling & Gottlieb, 1966) after 14 days at 28
o
C, using the 

coverslip technique described by  Kawato and Shinobu (1959).  Spore chain 

morphology and spore surface ornamentation of isolates C34, C38, C59 and KNN35-2b 

were detected by examining gold coated, dehydrated specimens taken from the oatmeal 

agar plates , using an electron microscope (Cambridge Stereoscan 240 instrument) and 

the procedure described by O'Donnell et al. (1993).  Cultural characteristics of all of the 

isolates were determined using ISP media (Shirling & Gottlieb, 1966) after incubation 

at 28
o
C for 14 days. 

6. 3. 3.  Phylogenetic analyses 

Genomic DNA was extracted from biomass of all the isolates and PCR-mediated 

amplification of  16S rRNA purified gene products  realised, as described by Kim and 

Goodfellow (2002). The resultant almost complete 16S rRNA gene sequences were 

submitted to the EzTAXON server (http://eztaxon-e.ezbiocloud.net/; Kim et al. (2012) 

and aligned with corresponding 16S rRNA gene sequences of the type strains of the 

most closely related Streptomyces species using CLUSTAL W version 1.8 software 

(Thompson et al., 1994). Phylogenetic trees were generated from each set of aligned 

sequences using the maximum-likelihood (Felsenstein 1981), maximum-parsimony 

(Fitch 1971) and neighbour-joining algorithms (Saitou & Nei, 1987) drawn from the 

MEGA 5 and PHYML software packages (Guindon & Gascuel, 2003; Tamura et al., 

2011); evolutionary distance matrices for the neighbour-joining analyses were prepared 

using the Jukes and Cantor (1969) model. The topology of the inferred evolutionary 

trees were evaluated by bootstrap analyses (Felsenstein, 1985) based on 1000 

resamplings of the neighbour-joining dataset using MEGA 5 software.  The  root  

positions of the unrooted trees were estaminted using the sequence of  Streptomyces 

albus subspecies albus DSM 40313
T
 (GenBank accession number AJ 621602) as the 

out group. 
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6. 3. 4.  Phenotypic tests 

All of isolates assigned to the S. fimbriatus and S. leeuwenhoekii 16S rRNA gene trees 

(Figures 6.1 and 6.2) were examined for an extensive range of biochemical, degradative 

and physiological properties of value in streptomycete systematics (Kämpfer, 2012). 

The enzyme profiles of the strains were determined using API ZYM strips (BioMerieux) 

and their ability to use a broad range of carbon sources determined using Biolog GEN 

III Microplates, in each case following the manufacturer’s instructions; a standard 

inoculum equivalent to 5.0 on the McFarland scale (Murray et al., 1999) was used to 

inoculate both the microplates and the API ZYM strips. All of the tests were carried out 

in duplicate. 

6. 3. 5.  Generation of whole-genome sequence of isolate C34
T
 and genome analysis 

Isolate C34
T
 was grown on TSBS-YEME (1:1, v/v) with 5 mM MgCl2 and 0.5% 

glycine at 30
o
C for 48 hours. Cells were resuspended in 10 mM NaCl, 20 mM Tris-HCl 

(pH 8.0), 1 mM EDTA and incubated with lyzozyme at 37
o
C for 1 to 30 minutes until 

they were lysed. Sodium dodecyl sulphate (0.5% final concentration) and proteinase K 

(40 µg) were added and the cell extract incubated at 50
o
C for 6 hours when a standard 

phenol/chloroform extraction was performed on the lysate. The extract was adjusted to 

0.3 M NaOAC (pH 5.5) and DNA was spooled with a glass rod upon addition of 2 

volumes of 96% ethanol. After washing and drying, the DNA was dissolved in TE 

buffer. DNA quality was verified by Sall digestion and agarose gel electrophoresis. 

Illumina/Solexa sequencing on Genome Analyzer IIx was outsourced 

(ServiceSX, Leiden, The Netherlands) and 100-nt paired-end-reads were obtained. The 

quality of the short reads was verified using FastQC 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/), and depending on the quality, 

reads were trimmed at both ends. Processed raw reads were then used as input for the 

Velvet assembly algorithm (Zerbino & Birney, 2008). The genome was annotated using 

the RAST server (Aziz et al., 2008) with default options. Predictions of gene clusters 

for natural products were performed using antiSMASH (Medema et al., 2011). The 

genome sequence has been deposited at DDBJ/EMBL/GenBank under the accession 

number AZSD0000000. 
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6. 3. 6.  Multilocus Sequence Analysis   

Multilocus sequence analysis was based on previously described methods (Guo et al., 

2008; Rong et al., 2009; Labeda, 201; Rong & Huang, 2010, 2012). Genomic DNA was 

extracted isolates C34
T
, C38, C58 and C79 and from the strains listed in Table 6.2 using 

UltraClean® microbial DNA isolation kits (MoBio Labs, Carlsbad, CA) following the 

instructions of the manufacturer.   Partial sequences of the house-keeping genes atpD 

(ATP synthase F1,  subunit), gyrB (DNA gyrase  subunit) and rpoB (RNA 

polymerase  subunit) were amplified and sequenced using the primers and protocols 

described previously (Guo et al., 2008; Rong et al., 2009), as well as modified primers 

designed to optimise amplification and sequencing of the house-keeping genes recA 

(recombinase A) and trpB (tryptophan synthetase,  subunit) for a broader range of  

Streptomyces species (Labeda et al., 2014).   Amplified products were purified using 

ExoSAP-IT (Affymetrix, Santa Clara, CA) and sequenced using BigDye 3.1 on an ABI 

model 3730 sequencer in the NCAUR core sequencing facility.  Sequence data for the 

five house-keeping loci for each strain were deposited in Genbank with the accession 

numbers shown in Table 6.2.  House-keeping gene sequences for species of the genus 

Streptomyces were organized using Bacterial Isolate Genomic Sequence Database 

(BIGSdb) version 1.6.3 (Jolley & Maiden, 2010) on the ARS Microbial Genomic 

Sequence Database server at http://199.133.98.43.  The alleles of the house-keeping loci 

for strain C34
T
, C38, C58 and C79 were found within the draft genome using the 

genome sequence scan function in BIGSdb.  The alleles were tagged within the genome 

sequence and added to the sequence database. The sequences of the loci for each strain 

were concatenated head to tail and exported in FASTA format, providing a dataset of 

152 strains and 2575 positions.  Sequences were aligned using MUSCLE (Edgar, 2004) 

and phylogenetic relationships constructed in MEGA 5.2 (Tamura et al., 2011) using 

maximum-likelihood based on the General Time Reversible model (Nei & Kumar, 

2000), determined to be the optimal model for these data using jmodeltest2 (Darriba et 

al., 2012; Guindon & Gascuel, 2003). The phylogenetic relationships of the strains were 

also determined using maximum-parsimony and neighbour-joining analyses. MLSA 

evolutionary distances were determined using MEGA 5.2 to calculate the Kimura 2-

parameter distance (Kimura, 1980). 

 

 

http://199.133.98.43/
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Table 6.2.  Streptomyces strains house-keeping gene sequences deposited for the 

present study. 

Species Strain atpD gyrB recA rpoB trpB 

S. leeuwenhoekii 

 

NRRL B-24963
T 

(= DSM 42122
T
) 

KJ137029 KJ137046 KJ137063 KJ137080 KJ137097 

S.  chryseus NRRL B-12347
T
 KJ137020 KJ137037 KJ137054 KJ137071 KJ137088 

S.  daghestanicus NRRL B-5418
T
 KJ137021 KJ137038 KJ137055 KJ137072 KJ137089 

S.  fimbriatus NRRL B-3175
T
 KJ137022 KJ137039 KJ137056 KJ137073 KJ137090 

S.  fumanus NRRL B-3898
T
 KJ137023 KJ137040 KJ137057 KJ137074 KJ137091 

S.  

fumigatiscleroticus 
NRRL B-3856

T
 KJ137024 KJ137041 KJ137058 KJ137075 KJ137092 

S.  ghanaensis NRRL B-12104
T
 KJ137025 KJ137042 KJ137060 KJ137076 KJ137093 

S.  glaucus NRRL B-16368
T
 KJ137026 KJ137043 KJ137059 KJ137077 KJ137094 

S.  griseomycini NRRL  B-5421
T
 KJ137027 KJ137044 KJ137061 

  

KJ137078 

  

KJ137095 

S.  hirsutus NRRL  B-2713
T
 KJ137028 KJ137045 KJ137062 KJ137079 KJ137096 

S. lusitanus NRRL B-5637
T
 KJ196366 KJ196368 KJ196370 KJ196372 KJ196374 

S.  mexicanus NRRL B-24196
T
 KJ137030 KJ137047 KJ137064 KJ137081 KJ137098 

S. parvulus NRRL B-1628
T
 KJ196367 KJ196369 KJ196371 KJ196373 KJ196374 

S.  recifensis NRRL B-3811
T
 KJ137031 KJ137048 KJ137065 KJ137082 KJ137099 

S.  seoulensis NRRL B-24310
T
 KJ137032 KJ137049 KJ137066 KJ137083 KJ137100 

S.  

thermocoprophilus 
NRRL B-24314

T
 KJ137033 KJ137050 KJ137067 KJ137084 KJ137101 

S.  

thermodiastaticus 
NRRL B-5316

T
 KJ137034 KJ137051 KJ137068 KJ137085 KJ137102 

S.  thermovulgaris NRRL B-12375
T
 KJ137035 KJ137052 KJ137069 KJ137086 KJ137103 

S.  thermovulgaris NRRL B-12375
T
 KJ137036 KJ137053 KJ137070 KJ137087 KJ137104 

 

6.4. Results 

All of the strains isolated from the hyper-arid and extreme hyper-arid Atacama Desert 

soils produced an extensively branched mycelium which carried aerial hyphae that  

differentiated into chains of spores, and produced whole-organism hydrolysates rich in 

LL-A2pm, glucose and xylose and contained octahydrogenated menaquinones with nine 

isoprene units as the predominant isoprenologue.  Representative strains, isolates C34
T
, 

C38, C58, C59 and C79 contained major amounts of saturated, iso- and anteiso-fatty 

acids (Table 6.3).  In addition, all of the isolates assigned to S. leeuwenhoekii 16S rRNA 

subclade grew well on the ISP media producing a variety of pigments responsible for 

the colour of the substrate and aerial mycelial; none of the isolates formed melanin 

pigments on peptone-yeast extract-iron agar (Tables 6.7, 6.10 and 6.13).  All of these 

properties are consistent with the classification of the isolates in the genus Streptomyces 

(Kämpfer, 2012). 
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Table 6.3.  Fatty acid profile (%) of representatives of the Streptomyces leeuwenhoekii 

and Streptomyces fimbriatus 16S rRNA gene subclade. 

Fatty acid 
S. leeuwenhoekii S. fimbriatus  

C34
T
 C38 C58 

 
C79 C59 

iso- C11:0 - 0.1 - - - 

C12:0 0.2 - - - 0.5 

iso- C12:0 - 0.2 0.1 0.2 - 

iso- C13:0 0.4 0.4 0.4 0.5 0.29 

anteiso- C13:0 0.2 0.4 0.2 0.2 0.23 

C13:0 - - - 0.1 - 

C13:0 2OH - - - - 0.26 

iso- C14:0 4.3 5.6 4.1 4.0 2.09 

C14:0 1.1 0.3 0.4 0.8 1.45 

iso- C15:0 5.5 7.4 8.0 7.5 6.83 

anteiso- C15:0 29.2 30.0 25.9 30.4 10.07 

C15:0 20H 0.2 - - 0.2 - 

iso-C15:1 H/13:0 3OH - - - - 0.31 

iso- C16:1 H 0.4 2.0 2.4 0.6 6.32 

iso- C16:0 12.5 24.9 21.0 15.4 18.33 

  C16:0 19.1 4.1 5.4 10.4 5.47 

anteiso- C17:1 9c 1.1 1.3 3.7 1.4 5.4 

iso- C17:0 4.4 5.3 5.0 6.0 7.41 

anteiso- C17:0  13.8 15.1 14.5 14.5 12.05 

C17:1 8c 0.2 - 0.5 0.3 1.62 

cyclo- C17:0 - 0.5 0.6 0.3 1.11 

C17:0 3.5 0.6 0.9 2.2 1.55 

C17:0 OH - - 0.1 - - 

C17:010-methyl  - - 0.4 - 0.91 

iso- C18:0 0.5 0.6 - 0.5 0.64 

C18:0  0.9 0.2 - 0.8 2.39 

C18:1 7c - - - - 0.5 

C18:1 9c - - 0.9 0.5 0.92 

iso- C18:1 H - - 0.9 0.5 1.24 

Summed features:      

  C16:1 7c / C16:1 6c 1.5 0.6 1.5 1.1 4.19 

  iso-C17:1 9c/10-methyl C16:0 1.0 0.7 4.0 1.6 0.5 

  C16:0 / iso- C17:1 9c - - 0.1 0.4 7.92 
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  C18:1 7c / C18:1 6c - - 0.1 1.6 - 

 

Streptomyces leeuwenhoekii 16S rRNA gene subclade.  Fifteen of the isolates from 

the hyper-arid Salar de Atacama soil, including isolate C34
T
, formed a well delineated 

subclade in the Streptomyces 16S rRNA gene tree, a taxon that was supported by all of 

the tree-making algorithms and by an 82% bootstrap value.  The isolates shared 16S 

rRNA gene sequence similarities within the range 99.5-99.9%, values corresponding to 

between 2 to 6 nt differences at between 1313-1372 sites (Table 6.4).  These isolates 

were most closely related to Streptomyces mexicanus CH-M-1035
T
 sharing 16S rRNA 

gene similarities with the latter within the range 98.7-99.0% , values equivalent to 14-17 

nt differences at between 1308-1367 sites.  The isolates were also closely related to the 

type strains of Streptomyces althioticus (98.7-98.9%, 15-20 nt differences), 

Streptomyces chiangmaiensis (98.5-98.9%, 15-20 nt differences), Strerptomyces 

lusitanus (98.7-99.0%, 13-18 nt differences), Streptomyces parvulus (98.6-99.0%, 14-19 

nt differences) and Streptomyces speibonae (98.6-99.0%, 14-18 nt differences). 
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Figure 6.1. Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences (1313-1372) showing relationships between Streptomyces leeuwenhoekii 

C34
T
,  and related strains isolated from hyper-arid Salar de Atacama soil and between 

them and the type strains of closely related Streptomyces species. Asterisks indicate 

branches of the tree that were also found using the maximum-likelihood and maximum-

parsimony tree-making algorithms. Numbers at the nodes are percentage bootstrap 

values based on a neighbour-joining analysis of 1,000 sampled datasets, only values 

above 50% are given. The root position of the tree was determined using Streptomyces 

albus subsp. albus DSM 40313
T
. Bar, 0.002 substitutions per nucleotide position. 

 

The phylogenetic relationships of isolates C34
T
, C38, C58 and C79 to one 

another  and to other Streptomyces species based on an analysis of the sequence 

alignments resulting from concatenation of the house-keeping genes head to tail is 

shown in Figure 6.2 and in the expanded version of this tree (Figure S1a-1c).  It is 

apparent that isolates C34
T
, C38, C58 and C79 gave identical results but were not  

phylogeneticaly closely rrelated to any Streptomyces type strains for which sequences of 

the house-keeping loci are available, but appear to be most closely related to 

Streptomyces thermocoprophilus NRRL B-24314
T
 based on the present analysis.  This 

relationship is not supported by significant bootstrap values nor by the stability of the 

relationship when different phylogenetic algorithms are used, as in the maximum-

parsimony and neighbour-joining analyses.  MLSA evolutionary distances were 

determined using MEGA 5.2 to calculate Kimura 2-parameter distances (Kimura, 

1980), as shown in Table 6.5.  Isolates C34
T
, C38, C58 and C79 were found to have an 

MLSA distance greater than 0.007 with all of the phylogenetically near species therby 

supporting the proposal that these strains represent a new species since the cut-off point 

empirically determined by Rong and Huang (2012) stated that this distance corresponds 

to 70% DNA:DNA relatedness. 
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Table 6.4.  Nucleotide similarities (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between 

Streptomyces leeuwenhoekii C34
T
 and related strain isolated from the hyper-arid Salr de Atacama soil and between them and the type strains of closely 

related Streptomyces species. 

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Isolate C38 --- 1/1362 1/1370 1/1362 4/1365 1/1331 3/1334 0/1324 0/1353 3/1330 0/1313 2/1372 1/1362 

2. Isolate C58 99.9 --- 0/1362 1/1352 4/1355 1/1321 4/1325 0/1314 0/1343 3/1320 0/1303 3/1362 1/1352 

3. Isolate C79 99.9 100.0 --- 1/1360 4/1363 1/1329 3/1332 0/1322 0/1351 3/1328 0/1311 3/1370 1/1360 

4. Isolate KNN1-5a 99.9 99.9 99.9 --- 2/1362 2/1331 4/1334 1/1324 1/1353 2/1330 1/1313 1/1362 0/1362 

5. Isolate KNN2-6a 99.7 99.7 99.7 99.9 --- 2/1331 4/1334 1/1324 1/1353 4/1330 1/1313 3/1365 2/1362 

6. Isolate KNN6-6b 99.9 99.9 99.9 99.9 99.9 --- 4/1331 1/1324 1/1331 4/1330 1/1313 1/1331 2/1331 

7. Isolate KNN6-9a 99.8 99.7 99.8 99.7 99.7 99.7 --- 3/1324 3/1334 6/1330 3/1313 3/1334 4/1334 

8. Isolate KNN10-4d 100.0 100.0 100.0 99.9 99.9 99.9 99.8 --- 0/1324 1/1324 0/1312 0/1324 1/1324 

9. Isolate KNN10-5a 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 --- 3/1330 0/1313 0/1353 1/1353 

10. Isolate KNN11-1a 99.8 99.8 99.8 99.9 99.7 99.7 99.6 99.9 99.8 --- 1/1313 3/1330 2/1330 

11. Isolate KNN24-1b 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 100.0 99.9 --- 0/1313 1/1313 

12. Isolate KNN25c 99.9 99.8 99.8 99.9 99.8 99.9 99.8 100.0 100.0 99.8 100.0 --- 1/1362 

13. Isolate KNN41-1c 99.9 99.9 99.9 100.0 99.9 99.9 99.7 99.9 99.9 99.9 99.9 99.9 --- 

14. Isolate KNN48-1c 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 100.0 99.8 100.0 100.0 99.9 

15. S. leeuwenhoekii 99.7 99.9 99.8 99.7 99.6 99.7 99.5 99.8 99.8 99.6 99.8 99.6 99.7 

16. S. mexicanus 98.9 99.0 99.0 98.9 98.8 98.9 98.7 98.9 99.0 98.7 98.9 98.8 98.9 

17. S. hyderabadensis 98.4 98.5 98.5 98.4 98.2 98.3 98.2 98.4 98.5 98.2 98.4 98.3 98.4 

18. S. parvulus 98.8 99.0 98.9 99.0 98.6 98.8 98.7 98.9 98.9 98.8 98.9 98.7 99.0 

19. S. lusitanus 98.9 99.0 99.0 98.9 98.7 98.9 98.7 98.9 99.0 98.7 98.9 98.8 98.9 

20. S. speibonae 98.8 99.0 98.9 98.8 98.6 98.8 98.7 98.9 98.9 98.7 98.9 98.7 98.8 

21. S. chiangmaiensis 98.7 98.9 98.8 98.7 98.6 98.7 98.5 98.7 98.7 98.5 98.7 98.5 98.7 

22. S. coerulescens 98.7 98.8 98.8 98.8 98.5 98.7 98.5 98.7 98.7 98.7 98.7 98.5 98.8 

23. S. althioticus 98.8 98.9 98.8 98.9 98.5 98.7 98.6 98.8 98.8 98.7 98.8 98.6 98.9 

24. S. matensis 98.7 98.8 98.8 98.8 98.5 98.6 98.5 98.7 98.7 98.6 98.7 98.5 98.8 

25. S. variabilis 98.7 98.8 98.8 98.8 98.5 98.7 98.5 98.7 98.7 98.7 98.7 98.5 98.8 

26. S. albus subsp. albus 96.9 96.8 96.8 96.8 96.8 96.8 96.6 96.8 96.9 96.6 96.8 96.7 96.8 

Type strain codes, as given in Figure 6.1. 
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Table 6.4.  (2)  

Isolates 14 15 16 17 18 19 20 21 22 23 24 25 

1. Isolate C38 0/1335 4/1372 15/1367 22/1370 16/1371 15/1371 16/1371 18/1369 18/1371 17/1364 18/1364 18/1371 

2. Isolate C58 0/1325 2/1363 14/1357 20/1360 14/1361 13/1361 14/1361 15/1359 16/1361 15/1354 16/1354 17/1361 

3. Isolate C79 0/1333 3/1370 14/1365 21/1368 15/1369 14/1369 15/1369 17/1367 17/1369 16/1362 17/1362 17/1369 

4. Isolate KNN1-5a 1/1335 4/1362 15/1357 22/1360 14/1361 15/1361 16/1361 18/1359 16/1361 15/1354 16/1354 16/1361 

5. Isolate KNN2-6a 1/1335 5/1365 16/1360 25/1363 19/1364 18/1364 19/1364 19/1362 21/1364 20/1357 21/1357 21/1364 

6. Isolate KNN6-6b 1/1331 4/1331 15/1326 22/1329 16/1330 15/1330 16/1330 18/1330 18/1330 17/1323 18/1323 18/1330 

7. Isolate KNN6-9a 3/1334 7/1335 17/1329 24/1332 18/1333 17/1333 18/1333 20/1333 20/1333 19/1326 20/1326 20/1333 

8. Isolate KNN10-4d 0/1324 3/1324 14/1319 21/1322 15/1323 14/1323 15/1323 17/1323 17/1323 16/1316 17/1316 17/1323 

9. Isolate KNN10-5a 0/1335 3/1353 14/1348 21/1351 15/1352 14/1352 15/1352 17/1351 17/1352 16/1345 17/1345 17/1352 

10. Isolate KNN11-1a 3/1330 6/1330 17/1325 24/1328 16/1329 17/1329 18/1329 20/1329 18/1329 17/1322 18/1322 18/1329 

11. Isolate KNN24-1b 0/1313 3/1313 14/1308 21/1311 15/1312 14/1312 15/1312 17/1312 17/1312 16/1305 17/1305 17/1312 

12. Isolate KNN25c 0/1335 6/1372 17/1367 24/1370 18/1371 17/1371 18/1371 20/1369 20/1371 19/1364 20/1364 20/1371 

13. Isolate KNN41-1c 1/1335 4/1362 15/1357 22/1360 14/1361 15/1361 16/1361 18/1359 16/1361 15/1354 16/1354 16/1361 

14. Isolate KNN48-1c --- 3/1335 14/1330 21/1333 15/1334 14/1334 15/1334 17/1334 17/1334 16/1327 17/1327 17/1334 

15. S. leeuwenhoekii 99.8 --- 15/1367 23/1370 17/1371 16/1371 17/1371 16/1369 19/1371 18/1364 19/1364 20/1371 

16. S. mexicanus 99.0 98.9 --- 23/1365 19/1366 21/1366 18/1366 15/1364 19/1366 23/1359 24/1360 24/1366 

17. S. hyderabadensis 98.4 98.3 98.3 --- 15/1371 24/1371 25/1371 26/1368 24/1371 27/1364 27/1364 32/1371 

18. S. parvulus 98.9 98.8 98.6 98.9 --- 14/1372 19/1372 18/1369 12/1372 15/1365 16/1365 22/1372 

19. S. lusitanus 99.0 98.8 98.5 98.3 99.0 --- 14/1372 21/1369 8/1372 9/1365 9/1365 17/1372 

20. S. speibonae 98.9 98.8 98.7 98.2 98.6 99.0 --- 19/1369 15/1372 15/1365 16/1365 15/1372 

21. S. chiangmaiensis 98.7 98.8 98.9 98.1 98.7 98.5 98.6 --- 20/1369 22/1362 23/1362 26/1369 

22. S. coerulescens 98.7 98.6 98.6 98.3 99.1 99.4 98.9 98.5 --- 12/1365 12/1365 14/1372 

23. S. althioticus 98.8 98.7 98.3 98.0 98.9 99.3 98.9 98.4 99.1 --- 0/1364 4/1365 

24. S. matensis 98.7 98.6 98.2 98.0 98.8 99.3 98.8 98.3 99.1 100.0 --- 5/1365 

25. S. variabilis 98.7 98.5 98.2 97.7 98.4 98.8 98.9 98.1 99.0 99.7 99.6 --- 

26. S. albus subsp. albus 96.8 96.8 96.7 96.3 96.2 96.5 96.4 96.3 96.3 96.9 96.8 96.7 

Type strain codes, as given in Figure 6.1. 
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Figure 6.2. Subtree from the phylogenetic tree inferred from concatenated partial 

sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB in MEGA 5.2 

(Tamura et al., 2011) using the maximum-likelihood method based on the General Time 

Reversible model (Nei & Kumar, 2000).  There were 2575 positions and 152 strains in 

the final dataset.  Trees were also inferred using the Tamura-Nei evolutionary distance 

method (Tamura & Nei, 1993) with the neighbour-joining algorithm of Saitou & Nei 

(1987), neighbour-joining and maximum parsimony models in MEGA 5.2, correspond 

with branches in all methods are marked with an asterisk.  Percentages at the nodes 

represent levels of bootstrap support from 1000 re-sampled datasets (Felsenstein, 1985) 

with values less than 60% not shown.  The proposed new species, Streptomyces 

leeuwenhoekii DSM 42122
T
 is indicated with a bold node label. Bar marker equals 

number of substitutions per site.  
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Table 6.5. MLSA distances for strains phylogenetically near to S. leeuwenhoekii C34
T
 

and related isolates (values in bold text).   The distances between the isolates and the 

type strains are greater than 0.007 which was defined by Rong and Huang (2012) as 

equivalent to 70% genomic DNA similarity. 

Strain MLSA (Kimura 2-parameter) Distance 

S. albus  NRRL B-1811T -            

S. thermocarboxydovorans 

NRRL B-24317T 

0.141            

S.  thermocoprophilus   

NRRL B-24314T 

0.136 0.073           

S. thermodiastaticus   

NRRL B-5316T 

0.148 0.063 0.074          

S. thermogriseus   

NRRL B-24322T 

0.137 0.071 0.073 0.073         

S. thermovulgaris   

NRRL B-12375T 

0.138 0.075 0.075 0.069 0.020        

S. sclerotialus DSM 

43032T 

0.145 0.086 0.084 0.089 0.096 0.098       

S. globosus CGMCC 

4.0320T 

0.145 0.070 0.053 0.066 0.071 0.075 0.078      

S. roseodiastaticus   

CGMCC 4.1788T 

0.140 0.069 0.063 0.065 0.076 0.069 0.088 0.037     

S. alanosinicus   

NRRL B-3627T 

0.139 0.088 0.073 0.095 0.089 0.092 0.090 0.065 0.068    

S. leeuwenhoekii   

C34T, C38, C58 and C79 

0.146 0.062 0.054 0.073 0.076 0.082 0.071 0.061 0.069 0.070   

S. chryseus  NRRL B-

12347T 

0.141 0.066 0.078 0.032 0.077 0.072 0.086 0.076 0.070 0.095 0.076  

S. daghestanicus   

NRRL B-5418T 

0.129 0.063 0.060 0.068 0.078 0.080 0.081 0.063 0.065 0.074 0.053 0.071 

S.. fimbriatus  NRRL B-

3175T 

0.141 0.060 0.047 0.067 0.075 0.075 0.076 0.054 0.065 0.076 0.042 0.069 

S. fumanus  NRRL B-

3898T 

0.134 0.072 0.069\8 0.070 0.087 0.088 0.080 0.065 0.072 0.080 0.061 0.078 

S. fumigatiscleroticus   

NRRL B-3856T 

0.134 0.069 0.062 0.073 0.076 0.077 0.070 0.055 0.065 0.070 0.056 0.075 

S. ghanaensis   

NRRL B-12104T 

0.143 0.063 0.065 0.073 0.080 0.080 0.077 0.059 0.070 0.075 0.060 0.078 

S. glaucus  NRRL B-

16368T 

0.138 0.062 0.060 0.066 0.076 0.070 0.082 0.064 0.054 0.083 0.055 0.067 

S. griseomycini   

NRRL B-5421T 

0.144 0.056 0.055 0.064 0.075 0.077 0.069 0.058 0.063 0.074 0.041 0.071 

S. hirsutus  NRRL B-2713T 0.152 0.072 0.069 0.083 0.084 0.085 0.076 0.072 0.072 0.085 0.064 0.082 

S. lusitanus NRRL B-

5637T 

0.135 0.070 0.069 0.081 0.083 0.087 0.069 0.068 0.077 0.147 0.065 0.084 

S. mexicanus   

NRRL B-24196T 

0.147 0.065 0.068 0.042 0.077 0.074 0.083 0.059 0.055 0.086 0.066 0.060 

S. parvulus NRRL B-1628T 0.134 0.079 0.075 0.083 0.085 0.088 0.077 0.083 0.085 0.083 0.072 0.085 

S. recifensis  NRRL B-

3811T 

0.146 0.078 0.066 0.073 0.083 0.087 0.085 0.058 0.066 0.087 0.073 0.080 
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S. seoulensis  NRRL B-

24310T 

0.146 0.078 0.064 0.073 0.083 0.086 0.082 0.061 0.068 0.087 0.069 0.079 

S. daghestanicus   

NRRL B-5418T 

-            

S.. fimbriatus  NRRL B-

3175T 

0.058            

S. fumanus  NRRL B-

3898T 

0.034 0.058           

S. fumigatiscleroticus   

NRRL B-3856T 

0.058 0.044 0.055          

S. ghanaensis   

NRRL B-12104T 

0.052 0.040 0.052 0.053         

S. glaucus  NRRL B-

16368T 

0.060 0.047 0.064 0.061 0.060        

S. griseomycini   

NRRL B-5421T 

0.056 0.027 0.059 0.050 0.042 0.057       

S. hirsutus  NRRL B-2713T 0.060 0.051 0.062 0.063 0.052 0.068 0.053      

S. lusitanus NRRL B-

5637T 

0.058 0.060 0.060 0.057 0.054 0.072 0.059 0.065     

S. mexicanus   

NRRL B-24196T 

0.067 0.058 0.070 0.064 0.066 0.064 0.061 0.076 0.071    

S. parvulus NRRL B-1628T 0.054 0.066 0.061 0.070 0.064 0.066 0.066 0.063 0.060 0.079   

S. recifensis  NRRL B-

3811T 

0.069 0.067 0.070 0.066 0.075 0.073 0.069 0.070 0.066 0.071 0.070  

S. seoulensis  NRRL B-

24310T 

0.069 0.063 0.069 0.062 0.072 0.068 0.069 0.071 0.064 0.069 0.066 0.019 

The distance between the isolates and all of the Streptomyces type strains is greater than 0.007 which was 

defined by Rong & Huang (2012) as equivalent to 70 % genomic DNA similarity. 

 

 Identical results were obtained between the duplicated cultures of each of the 

fifteen isolates for all of the phenotypic tests.  The isolates were found to have many 

phenotypic properties in common, showing pronounced enzymatic activity and an 

ability to assimilate a broad range of carbon sources (Table 6.6).  All of the isolates 

grew well on ISP media, notably on oatmeal and yeast extract-malt extract agar (Table 

6.7).  In general, they formed yellowish white substrate mycelia, an olivaceous gray 

green aerial spore mass and, when formed, yellowish diffusible pigments.  The three 

representative strains, isolates C34
T
, C58 and C79, produced spiral chains of smooth 

surfaced spores borne on aerial mycelia (Figure 6.3). 

 

Table 6.6. Phenotypic properties  of isolate C34
T
 and other isolates assigned to 

Streptomyces leeuwenhoekii 16S rRNA gene cluster. 

Test type Results 

All strains giving positive results 

API ZYM tests: Acid phosphatase, N-acetyl--glucosamidase, alkaline phosphatase, -

chymotrypsin, esterase (C4), esterase lipase (C8), -fucosidase, -



201 
 

galactosidase, -glucosidase, lipase, leucine amylamidase, naphthol-AS-BI-

phosphohydrolase, trypsin and valine amylamidase 

Bio-chemical 

tests: 

NO3 reductase and urease 

Growth on 

carbon sources: 

Acetoacetic acid, -keto-butyric acid, Dextrin, D-fructose , D-fructose-6-

PO4, D-galacturonic acid , D-gluconic acid,  -D-glucose , -keto-glutaric 

acid , D-mannose , pectine, quicnic acid, L-rhamnose and Tween 40 

Growth at or in 

the presence of: 

pH5, pH6, pH10, 1% NaCl and 7% NaCl 

All strains giving negative results 

API ZYM tests: -galactosidase, -glucuronidase, -glucosidase and -mannosidase 

Bio-chemical 

tests: 

NO2 reductase and oxidase 

Growth on 

carbon sources: 

N-acetyl--D-mannosamine, N-acetyl neuraminic acid, D-arabitol, L-

arginine, -aminobutyric acid, -hydroxy butyric acid, citric acid, D-

fucose , L-fucose formic acid,  D-galacturonic acid lactone , gelatin , 

glycyl-L-proline, glucoronamide,  -methyl-D-glucoside , D-glucose-6-

PO4, glycerol, L-pyroglutamic acid, L-glutamic acid,  inosine , myo-

inositol , L-lactic acid, -D-lactose , D-maltose , D-malic acid , L-malic 

acid , D-mannitol , D-melibiose, mucic acid,  -hydroxyphenyl acetic acid , 

methyl pyruvate, D-raffinose , D-sorbitol , D-saccharic acid , D-salicin, D-

serine, L-serine, D-stachyose, bromo-succinic acid, D-sucrose, D-trehalose  

and D-turanose 

*Strains growing variable results (see details in supplemented Table S1) 

Growth on sole 

carbon sources: 

Acetic acid, N-acetyl--D-mannosamine, N-acetyl-D-glucosamine, L-

alanine, L-aspartic acid, -hydroxy butyric acid, -hydroxy butyric acid, D-

cellobiose, D-galactose, formic acid, gentiobose, gelatin, D-gluconic acid, 

Glucoronamide, 3-methyl-glucose, L-histidine, D-lactic acid methyl ether, 

D-maltose and propionic acid 

*The detailed results are given in Table S1. 

  

Table 6.7. Growth and cultural characteristics of strains assigned to the Streptomyces 

leeuwenhoekii  16S rRNA gene subclade on ISP media after incubation for 14 days at 

28
o
C. 

Media Growth 
Substrate mycelial 

colour 

Aerial spore mass 

colour 
Diffusible pigment 

Glycerol-asparagine agar 

(ISP 5) 

+++ Yellowish white Olivaceous gray 

green 

None 

Inorganic salts-starch agar 

(ISP 4) 

+++ Yellowish white Olivaceous gray 

green 

Yellowish 

Oatmeal agar (ISP 3) ++++ Yellowish white Olivaceous gray 

green 

Yellowish 

Peptone-yeast extract-iron 

agar (ISP 6) 

+++ Gray yellow Olivaceous gray 

green 

Gray yellow 

Tryptone-yeast extract agar 

(ISP 1) 

+++ Yellowish white Olivaceous gray 

green 

None 

Tyrosine agar (ISP 7) +++ Yellowish white Olivaceous gray 

green 

Yellowish 

Yeast extract-malt extract 

agar (ISP 2) 

++++ Gray yellow Gray yellowish 

green 

Pale yellow 

++++ abundant growth; +++ very good growth. 
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Figure 6.3. Scanning electron micrographs of representative streptomycetes grown on 

oatmeal agar after 14 days at 28
o
C.  (A, B, C), Streptomyces isolates C34

T
, C58 and 

KNN35-2b showing smooth ornamented spores in spiral spore chains, (D) isolate C59 

showing spiral chains of hairy ornamented spores. Scale bars : 1µm. 

 

 

 

 

 

 

 

 

 

 

 

  

Full genome sequencing of strain C34
T
 (GenBank accession number 

AZSD0000000) using Illumina led to an assembly of 658 contigs for a total genome 

size of 7.86 Mb, predicted to encode 77 RNAs and 6,780 proteins. The functions of the 

genes were catalogued into different functional classes (Figure 6.4). The relative 

distribution of the different classes is similar to that of the model strains S. coelicolor 

A3(2) (Bentley et al., 2002) and “S. lividans 66” (Cruz-Morales et al., 2013).  RAST is 

a widely used annotation tool that allows good initial prediction of gene functions.  

However, for a more detailed prediction regarding the specific functions of secondary 

metabolism-related genes, a dedicated algorithm is required such as antiSMASH 

(Medema et al., 2011). In particular, the AHBA gene linked to chaxamycin synthesis in 

strain C34
T
 (Rateb et al., 2011a) was found by BLAST search among several polyketide 

synthase (PKS) type 1 genes in a cluster of genes with similarity to genes of the 
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rifamycin biosynthetic pathway (sequence 0641).  However, many more PKS gene 

clusters were identified by antiSMASH (Table 6.8), including the genes that seem likely 

to be responsible for the biosynthesis of chaxamycin and chaxalactin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4.    Overview of Streptomyces isolate C34
T 

subsystem gene functions as 

generated by analysis on the RAST server at (http://rast.nmpdr.org). 

 

Table 6.8.  Predicted natural products gene clusters in strain C34
T
. 

Contig gene cluster type compound with gene  

cluster of highest homology 

c34_sequence_116  "t1pks-nrps"  

c34_sequence_124  "transatpks-nrps"  "leinamycin" 

c34_sequence_141  "terpene"  "albaflavenone" 

c34_sequence_142  "t1pks"  "oxazolomycin" 

c34_sequence_143  "butyrolactone"  "lactonamycin" 

c34_sequence_155  "t1pks"  

c34_sequence_17  "nrps"  "daptomycin" 

c34_sequence_201  "amglyccycl"  "cetoniacytone A" 

c34_sequence_23  "t1pks"  

c34_sequence_241  "t1pks"  

c34_sequence_246  "terpene"  

c34_sequence_326  "terpene"  

c34_sequence_347  "siderophore"  "geosmin" 

c34_sequence_364  "other"  

c34_sequence_37  "t3pks"  

c34_sequence_368  "melanin"  "melanin" 

c34_sequence_396  "other"  "melanin" 

c34_sequence_418  "t1pks"  "macbecin" 

c34_sequence_457  "t3pks"  

c34_sequence_541  "nrps"  

c34_sequence_542  "other"  "kirromycin" 

 

http://rast.nmpdr.org/
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c34_sequence_552  "terpene"  

c34_sequence_60  "transatpks-t2pks"  "leinamycin" 

c34_sequence_6  "t1pks-siderophore"  "geosmin" 

c34_sequence_70  "ectoine"  

c34_sequence_640  "terpene"  

c34_sequence_642  "t1pks"  "rubradirin" 

c34_sequence_78  "other"  

c34_sequence_7  "siderophore"  

c34_sequence_84  "siderophore"  "desferrioxamine" 

 

Streptomyces fimbriatus 16S rRNA gene subclade.  Five strains isolated from 

the hyper-arid Salar de Atacama soil, a single isolate from the extreme hyper-arid 

Yungay soil and S. fimbriatus NBRC 15411
T
 formed a subclade in the Streptomyces 

16S rRNA gene tree, the taxonomic status of which was underpinned by all of the tree-

making algorithms and by a 99% bootstrap value (Figure 6.5).  Similarly,  isolates C59, 

KNN13a, KNN26b and the S. fimbriatus strain formed a well supported branch in the S. 

fimbriatus 16S rRNA gene subclade; these strains shared identical or almost identical 

16S rRNA gene similarities (Table 6.9).  Isolate C59 was also found to be closely 

related to the type strain of S. fimbriatus based upon the analyses of the sequence 

alignments resulting from the concatenation of house-keeping genes head to tail is 

shown in Figure 6.2.  The two remaining isolates, strains KNN38-1b and KNN64-5b, 

formed a second branch in the S. fimbriatus 16S rRNA gene clade that was supported 

by all of the tree-making algorithms and by a 99% bootstrap value.  However, these 

isolates shared a relatively low 16S rRNA gene similarity, namely 98.2%, a value  

corresponding to 25 nt differences at 1352 locations.  Indeed, isolate KNN64-5b was 

most closely related to isolate KNN26b; these strains shared a 16S rRNA gene 

similarity of 98.9%, a value equivalent to 15 nt differences at 1352 locations.   

The strains assigned to the S. fimbriatus 16S rRNA gene subclade were most 

closely, albeit quite distinctly related to the type strain of Streptomyces werraensis, 

sharing 16S rRNA gene similarities with the latter within the range 97.0 to 98.9%, 

values that corresponded to between 15 and 40 nt differences at between 1352-1353 

locations.  It is also interesting that the type strains of Streptomyce griseomycini and 

Streptomyces griseostramineus were found to have identical 16S rRNA gene sequences; 

these strains formed a well delineated branch in the Streptomyces 16S rRNA gene tree 

(Figure 6.5).   

All of the strains assigned to the S. fimbriatus 16S rRNA gene subclade grew 

well on the ISP media producing a range of aerial and substrate mycelial pigments and, 

when formed, yellowish diffusible pigments (Table 6.10).  These organisms also had a 
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broad range of phenotypic properties in common with identical results recorded for each 

set of duplicated strains.  All of the strains produced acid and alkaline phosphatases, N-

acetyl-glucosamidase, esterase (C4), esterase lipase (C8), -glucosidase and leucine 

arylamidase (API-ZYM tests), nitrate reductase and urease, and assimilated acetoacetic 

acid, citric acid, D-galacturonic acid and -D-glucose, grew from pH 5.0-11.0 and in 

the presence of 1% NaCl (w/v) (Biolog GEN III Microplates).  In contrast, none  of 

strains produced -chymotrypsin, -fucosidase, -glucoronidase, -mannosidase or 

trypsin (API-ZYM tests), nitrate reductase or oxidase, nor did they assimilate dextrin, 

L-histidine, L-lactic acid, D-lactic acid methyl ether, N-acetyl-galactosamine, L-

pyrogalacturonic acid, quinic acid, raffinose, D-salicin, D-serine, sodium bromide, 

sodium butyrate, sodium lactate or D-stachyose or grew in the presence of azetreonan, 

fusidic acid, guanidine hydrochloride, lincomycin, minocycline, niaproof 4, rifampicin 

SV, 4% NaCl (w/v), troleandomycin or vancomycin (Biolog GEN III Microplates). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Neighbour-joining tree based on almost complete 16S rRNA gene 

sequences showing relationships between strains isolated from 
+
hyper-arid and 

*extreme hyper-arid Atacama Desert soils and between them and the type strains of 

closely related Streptomyces species. Asterisks indicate branches of the tree that were 

also found using the maximum-likelihood and maximum-parsimony tree-making 

algorithms. ML indicates a branch of the tree that was supported by the maximum-

likelihood tree-making method.  Numbers at the nodes are percentage bootstrap values 

based on a neighbour-joining analysis of 1,000 sampled datasets, only values above 

50% are given. The root position of the tree was determined using Streptomyces albus 

subsp. albus DSM 40313
T
. Bar, 0.002 substitutions per nucleotide position. 
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Table 6.9.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains isolated from hyper-arid  

and extreme hyper-arid Atacama Desert soils and between them and the type strains of 

closely related Streptomyces species.  

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate 

C59 --- 

1/ 

1356 

0/ 

1356 

34/ 

1353 

15/ 

1355 

0/ 

1356 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

2. Isolate 

KNN13a 99.9 --- 

1/ 

1356 

35/ 

1353 

16/ 

1355 

1/ 

1356 

16/ 

1352 

17/ 

1353 

17/ 

1353 

19/ 

1352 

16/ 

1352 

36/ 

1350 

3. Isolate 

KNN26b 100.0 99.9 --- 

34/ 

1353 

15/ 

1355 

0/ 

1356 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

4. Isolate 

KNN38-1b 97.5 97.4 97.5 --- 

25/ 

1352 

34/ 

1353 

40/ 

1352 

41/ 

1353 

41/ 

1353 

43/ 

1352 

46/ 

1352 

64/ 

1347 

5. Isolate 

KNN64-5b 98.9 98.8 98.9 98.2 --- 

15/ 

1355 

30/ 

1351 

31/ 

1352 

31/ 

1352 

33/ 

1351 

30/ 

1351 

50/ 

1349 

6. S. 

fimbriatus 100.0 99.9 100.0 97.5 98.9 --- 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

7. S. 

werraensis 98.9 98.8 98.9 97.0 97.8 98.9 --- 

19/ 

1352 

19/ 

1352 

11/ 

1352 

10/ 

1352 

41/ 

1346 

8. S. 

griseostrami

neus 98.8 98.7 98.8 97.0 97.7 98.8 98.6 --- 

0/ 

1353 

14/ 

1352 

21/ 

1352 

37/ 

1347 

9. S. 

griseomycini 98.8 98.7 98.8 97.0 97.7 98.8 98.6 100.0 --- 

14/ 

1352 

21/ 

1352 

37/ 

1347 

10. S. 

viridiviolace

us 98.7 98.6 98.7 96.8 97.6 98.7 99.2 99.0 99.0 --- 

15/ 

1351 

41/ 

1346 

11. S. 

caelestis 98.9 98.8 98.9 96.6 97.8 98.9 99.3 98.5 98.5 98.9 --- 

41/ 

1346 

Type strain codes, as given in Figure 6.5. 

 

Identical results were also obtained between the duplicated set of strains in the 

balance of the phenotypic tests.  Streptomyces fimbriatus NRRL B-3175
T
 and isolates 

C59, KNN13a and KNN26b have a phenotypic profile that readily distinguishes them 

from isolates KNN38-1b and KNN64-5b (Table 6.11). It is al so clear that the S. 

fimbriatus type strain and its closest  phylogenetic neighbours together with isolate 

KNN38-1b metabolise a much broader rangeof sole carbon compounds than  isolate 

KNN38-1b.  Strain C59, a representative of the isolates found to be most closely related 

to the type strain of S. fimbriatus, produced  hairy ornamented spores in tight spiral 

chains  (Figure 6.3) and contained major amounts (>10%) of anteiso-C15:0, iso-C16:0 and 

antieso-C17:0 (Table 6.3). 

 

Table 6.10. Growth and cultural characteristics of strains assigned to the Streptomyces 

fimbriatus 16S rRNA gene tree on ISP media after incubation for 14 days at 28
o
C. 

Media Growth 
Substrate 

mycelium colour 

Aerial spore mass 

colour 
Diffusible pigment 

Glycerol-asparagine agar 

(ISP 5) 

+++ Dark gray Dark gray None 

Inorganic salts-starch agar 

(ISP 4) 

+++ Dark gray Dark gray Light yellowish 

brown 

Oatmeal agar (ISP 3) ++++ Dark gray Dark gray Light yellowish 
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brown 

Peptone-yeast extract-iron 

agar (ISP 6) 

+++ Gray yellow Olivaceous gray 

green 

Gray yellow 

Tryptone-yeast extract agar 

(ISP 1) 

+++ Yellowish white Olivaceous gray 

green 

None 

Tyrosine agar (ISP 7) +++ Yellowish white Olivaceous gray 

green 

Yellowish 

Yeast extract-malt extract 

agar (ISP 2) 

++++ Dark gray Dark gray Light yellowish 

brown 

++++ abundant growth; +++ very good growth. 

 

Table 6.11.   Phenotypic tests that distinguish between members of the Streptomyces 

fimbriatus 16S rRNA gene subclade. 

Tests S. fimbriatus Isolate KNN38-

1b 

Isolate KNN64-

5b NRRL B-3175
T
, C59, 

KNN13a and KNN26b 

API-ZYM tests: 

-galactosidase - + - 

-glucosidase 2+ + + 

Lypase (C14) 1+  (KNN26b) + - 

Naphthol-AS-BI-

phosphohydrolase 

- + + 

Valine arylamidase - + + 

Biolog GEN III microplate test 

Growth on sole carbon 

sources: 

   

Acetic acid + + - 

-hydroxyphenyl acetic acid + + - 

L-alanine + + - 

D-arabitol + + - 

L-arginine + + - 

-aminobutyric acid + + - 

L-aspartic acid + + - 

-hydroxy butyric acid + + - 

-hydroxy butyric acid + + - 

-keto-butyric acid + + - 

D-cellobiose + + - 

Formic acid - + - 

D-fructose-6-PO4 + + - 

D-fucose - + + 

L-fucose + + - 

D-fructose + + - 

D-galactose - + + 

D-galacturonic acid + + - 

D-galacturonic acid lactone - + - 

Gentiobose + + - 

Gelatin + + - 

Glycyl-L-proline + + - 

Glucoronamide + + - 

-methyl-D-glucoside + + - 

D-glucose-6-PO4 2+ + - 

3-methyl-glucose + + - 

Glycerol + + - 
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N-acetyl-D-glucosamine + + - 

-keto-glutaric acid - + - 

L-glutamic acid + + - 

Inosine + + - 

Myo-inositol + + - 

-D-lactose + + - 

D-maltose + + - 

D-malic acid + + - 

L-malic acid 1+ (KNN26b) + - 

D-mannitol + + - 

D-mannose + + - 

N-acetyl--D-mannosamine - + - 

D-melibiose - + - 

Mucic acid + + - 

N-acetyl neuraminic acid - + - 

Pectine + + - 

Propionic acid + + - 

Methyl pyruvate - + - 

L-rhamnose + + - 

D-sorbitol - + - 

D-turanose - + - 

D-saccharic acid 2+ + - 

L-serine 2+ + - 

D-sucrose - + - 

Bromo-succinic acid 2+ + - 

D-trehalose + + - 

Tween 40 + + - 

+, positive; - negative;;  
2+

 , S. fimbriatus NRRL B-3175
T
 and isolate C59 positive  

 

Streptomyces pseudogriseolus 16S rRNA gene subclade.  Seven strains isolated from 

either hyper-arid or extreme hyper-arid Atacama Desert soils formed a distinct branch in 

the Streptomyces pseudogriseolus 16S rRNA gene subclade, an association that was 

supported by all of the tree-making algorithms and by a 90% bootstrap value (Figure 

6.6).  The isolates exhibited identical or almost identical 16S rRNA gene similarities 

(Table 6.12) and were most closely related to a second branch in the S. pseudogriseolus 

16S rRNA gene tree composed of the type strains of Streptomyces capillispiralis, 

Streptomyces gancidicus and S. pseudogriselous, sharing 16S rRNA gene similarities 

with the latter with in the range 99.4-99.6%, values that corresponded to between 5 and 

7 nt differences at between 1369 and 1381 locations.  In turn, the S. capillispiralis, S. 

gancidicus and S. pseudogriseolus strains were found to have identical or almost  

identical 16S rRNA gene similarities (Table 6.12). 
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Figure 6.6.   Neighbour-joining tree based on 16S rRNA gene sequences showing 

relationships between strains isolated from  
+
hyper-arid and *extreme hyper-arid and 

Atacama Desert soils and between them and the type strains of closely related 

Streptomyces species. Asterisks indicate branches of the tree that were also found using 

the maximum-likelihood and maximum-parsimony tree-making algorithms. Numbers at 

the nodes are percentage bootstrap values based on a neighbour-joining analysis of 

1,000 sampled datasets, only values above 50% are given. The root position of the tree 

was determined using Streptomyces albus subsp. albus DSM 40313
T
. Bar, 0.005 

substitutions per nucleotide position.  

 

Table 6.12.  Nucleotide similarities (%) and differences based on almost complete 16S 

rRNA gene sequences showing relationships between strains isolated from hyper-arid 

and extreme hyper-arid Atacama Desert soils and between them and the type strains of 

closely related Streptomyces species. 

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate 

KNN6-1a --- 

2/ 

1381 

1/ 

1381 

1/ 

1373 

0/ 

1370 

0/ 

1381 

0/ 

1381 

5/ 

1381 

5/ 

1380 

6/ 

1381 

7/ 

1381 

8/ 

1381 

2. Isolate 

KNN35-1b 99.9 --- 

1/ 

1381 

3/ 

1373 

2/ 

1370 

2/ 

1381 

2/ 

1381 

7/ 

1381 

7/ 

1380 

8/ 

1381 

9/ 

1381 

10/ 

1381 

3. Isolate 

KNN35-2b 99.9 99.9 --- 

2/ 

1373 

1/ 

1370 

1/ 

1381 

1/ 

1381 

6/ 

1381 

6/ 

1380 

7/ 

1381 

8/ 

1381 

9/ 

1381 

4. Isolate 

KNN42f 99.9 99.8 99.9 --- 

1/ 

1363 

1/ 

1373 

1/ 

1373 

6/ 

1373 

6/ 

1372 

7/ 

1373 

8/ 

1373 

9/ 

1373 

5. Isolate 

KNN48-3e 100.0 99.9 99.9 99.9 --- 

0/ 

1370 

0/ 

1370 

5/ 

1370 

5/ 

1369 

6/ 

1370 

7/ 

1370 

8/ 

1370 

6. Isolate 

KNN48-6d 100.0 99.9 99.9 99.9 100.0 --- 

0/ 

1381 

5/ 

1381 

5/ 

1380 

6/ 

1381 

7/ 

1381 

8/ 

1381 

7. Isolate 

KNN83e 100.0 99.9 99.9 99.9 100.0 100.0 --- 

5/ 

1381 

5/ 

1380 

6/ 

1381 

7/ 

1381 

8/ 

1381 

8. S. 99.6 99.5 99.6 99.6 99.6 99.6 99.6 --- 0 1/ 10/ 9/ 
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pseudogriseolus /1381 1382 1381 1381 

9. S. gancidicus 99.6 99.5 99.6 99.6 99.6 99.6 99.6 100.0 --- 

1/ 

1381 

10/ 

1380 

9/ 

1380 

10. S. 

capillispiralis 99.6 99.4 99.5 99.5 99.6 99.6 99.6 99.9 99.9 --- 

11/ 

1381 

8/ 

1381 

11. S. 

carpinensis 99.5 99.4 99.4 99.4 99.5 99.5 99.5 99.3 99.3 99.2 --- 

7/ 

1381 

12. S. levis 99.4 99.3 99.4 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.5 --- 

Type strain codes, as given in Figure 6.6. 

 

All of the isolates grew well on the ISP media, especially on oatmeal and yeast-

extract malt-extract agar (Table 6.13).  In general, the substrate mycelia were gray to 

yellowish white and the aerial spore mass grayish yellow or light orange yellow, as 

were the diffusible pigments when produced.   

 

Table 6.13.  Growth and cultural characteristics isolates forming a branch in the 

Streptomyces pseudogriseolus 16S rRNA gene tree on ISP media after incubation for 14 

days at 28
o
C. 

Media Growth 
Substrate mycelium 

colour 

Aerial spore mass 

colour 
Diffusible pigment 

Glycerol-asparagine agar 

(ISP 5) 

+++ Dark gray Dark gray None 

Inorganic salts-starch agar 

(ISP 4) 

+++ Yellowish white  Light orange yellow  Llight orange 

yellow  

Oatmeal agar (ISP 3) ++++ Yellowish white  Light orange yellow  Llight orange 

yellow  

Peptone-yeast extract-iron 

agar (ISP 6) 

+++ Gray yellow Olivaceous gray 

green 

Gray yellow 

Tryptone-yeast extract agar 

(ISP 1) 

+++ Yellowish white  Light orange yellow  Llight orange 

yellow  

Tyrosine agar (ISP 7) +++ Yellowish white  Light orange yellow  Llight orange 

yellow  

Yeast extract-malt extract 

agar (ISP 2) 

++++ White  Dark orange yellow  Yellowish gray  

++++ abundant growth; +++ very good growth. 

 

6.5. Discussion 

Although the natural product chemistry of Atacama Desert streptomycetes  is still at a 

pioneering stage, it is encouraging that strains isolated from hyper-arid Salar de 

Atacama soil and recovered in a taxonomically distinct subclade in the Streptomyces 

16S rRNA gene tree by Okoro et al., (2009) have been found to be a source of novel 

antibiotics (Bull & Asenjo, 2013).  To date, it has been shown that four representatives 
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of this taxon produce novel specialised metabolites; Streptomyces isolate C34
T
 

synthesise new bioactive ansamycin type polyketides, the chaxamycins, and rare 22-

membered macrolactone polyketides, the chaxalactins (Rateb et al., 2011a, 2011b), 

Streptomyces isolate C38, antitumour macrolactones (Nachtigall et al., 2011), 

Streptomyces isolate C58, a novel lasso peptide (Jaspars et al., unpublished) and 

Streptomyces isolate C79, four new but uncharacterised, bioactive metabolites (Fiedler 

et al., unpublished).  It is important to establish the taxonomic provenance of such 

potentially useful streptomycetes as part of an integrated approach to exploitable 

microbiology and with this in mind to isolate additional representatives of such creative 

taxa. 

In the present study additional strains isolated from the hyper-arid Salar de 

Atacama soil were recovered in the well delineated 16S rRNA gene subclade recognised 

by Okoro et al. (2009), a result that suggests that members of this taxon are common in 

hyper-arid soils from this region of the Atacama Desert.  Indeed, the distinctness of this 

taxon was underpinned by the results of the MLSA analysis based on concatenated 

sequences of five house-keeping genes as the MLST distances between C34
T
, C38, C58 

and C79 and their nearest phylogenetic neighbours was greater that the 0.007 cut-off 

point that is considered to be equivalent 70% DNA:DNA homology (Rong & Huang, 

2012).  In addition, all of the representatives of the 16S rRNA gene subclade shared 

many phenotypic features in common while representative strains were found to 

produce smooth surfaced spores in spiral chains.  Some of these properties can be 

weighted to distinguish between members of the subclade and the type strains of closely 

related Streptomyces species, including Streptomyces chiangmaiensis JCM 16578
T
 and 

Streptomyces hyderabadensis CCTCC-A 209024
T
 that are not represented in the MLSA 

database. Members of the S. leeuwenhoekii 16S rRNA gene subclade, unlike the latter, 

produce diffusible pigments on inorganic salts-starch, oatmeal and tyrosine agars 

(Reddy et al., 2011; Promnuan et al., 2013).  They can also be separated from the S. 

hyderabadensis strain by their ability to form spiral, as opposed to, straight chains of 

spores.  Properties such as these have been considered to be of particular value in 

distinguishing between Streptomyces species (Labeda et al., 2012). 

It can be concluded from this combination of genotypic and phenotypic data that 

the representatives of the S. leeuwenhoekii 16S rRNA gene subclade can be 

distinguished readily from phylogenetically related species that are validly named.  It is, 

therefore proposed that members of the subclade be recognised as a new Streptomyces 

species, Streptomyces leeuwenhoekii sp. nov.  It is clear from the whole genome 
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sequence that type strain, isolate C34
T
, contains a large number of gene clusters 

involved in natural product synthesis.   

Streptomyces fimbriatus (Millard & Burr, 1926) Waksman and Lechevalier 1953 

is an excellent example of a rare actinomycete as the species description is based on a 

single strain (Kämpfer, 2012).  Millard and Burr’s original single isolate, which is no 

longer extant, was obtained from a case of common potato scrab.  The neotype strain, 

which forms a distinct branch in the Streptomyces 16S rRNA gene tree, produces 

septacidin, an antitumour and antifungal antibiotic (Dutcher et al., 1964; van Saltza & 

Pansy, 1964).  Given this pedigree, it  is especially interesting that five strains isolated 

from the Atacama Desert soils formed well-delineated subclade in the Streptomyces 16S 

rRNA gene tree. 

Three out of the five Atacama Desert strains assigned to the S. fimbriatus 16S 

rRNA gene clade not only had identical or almost identical 16S rRNA gene sequences 

to S. fimbriatus NBRC 15411
T
 but also shared many phenotypic properties with the 

latter and hence can be considered to be bona fide members of this species.  One of 

these strains, isolate C59, clustered with the type strain of S. fimbriatus in the 

phylogenetic tree based on the concatenated gene sequences of the five house-keeping 

geness.  In light, of these results, an emended description of S. fimbriatus is given here.  

The two remaining strains, isolates KNN38-1b and KNN64-5b may represent new 

Streptomyces species but further comparative studies are need to confirm their 

taxonomic status. 

Further comparative studies are also needed to resolve the taxonomic status of 

the seven Atacama Desert strains that formed a well supported branch in the 

Streptomyces pseudogriseolus 16S rRNA gene subclade.  Unscrambling the 

relationships between members of this taxon and the type strain of Streptomyces 

capillispiralis (Mertz & Higgens, 1982), Streptomyces ganidicus (Suzuki, 1957) and 

Streptomyces pseudogriseolus is compounded by the fact that these strains also need to 

be studied further as they have identical 16S rRNA gene sequences a point highlighted 

in this study but made earlier by Kämpfer (2012). 

 

Description of Streptomyces leeuwenhoekii sp. nov.   

Streptomyces leeuwenhoekii (le.e.u.wen’ho.e.ki.i. of Leeuwenhoek, named after 

Antonie van Leeuwenhoek (1632-1723), the father of microbiology). 

Aerobic, Gram-positive, catalase-positive actinomycete which forms an 

extensively branched substrate mycelium that carries aerial hyphae which differentiate 
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into spiral chains of smooth surfaced spores (0.7-0.9 x 0.8-1.0 µm) on oatmeal agar. 

Light yellowish brown diffusible pigments are formed on inorganic salts-starch, oatmeal, 

tyrosine and yeast extract-malt extract agars. Grows from 4 to 50
o
C, optimally ~ 30

o
C , 

from pH 6.0 to 11, optimally ~7.0, and in the presence of 10%, w/v sodium chloride. 

Additional phenotypic properties are cited in the text and in Tables 6.7 and 6.9. 

Chemotaxonomic properties are typical of the genus. Produces novel bioactive 

secondary metabolites, the chaxalactins and chaxamycins. The DNA G+C composition 

is 72.6 mol%. 

The type strain C34
T
 (=DSM 42122

T
; NRRL B-24963

T
) together with additional 

strains was isolated from a hyper-arid soil collected from the Chaxa de Laguna, of the 

Salar de Atacama of the Atacama Desert, near Tocanao, Chile. The species description 

is based on all of these strains. The GenBank accession number for the 16S rRNA gene 

sequence of the type strain is KF 733382. 

 

Emended description of Streptomyces fimbriatus (Millard & Burr, 1936) Waksman 

1953. 

The species description is based on the present study and on the earlier work of 

Kämpfer (2012).   

Aerobic, Gram-positive, catalase-positive actinomycetes which form an 

extremely branched substrate mycelium that  bear aerial hyphae that differentiate into 

spiral chains of hairly ornamented spores (0.8-1.2 x 1.5-1.8 µm) on oatmeal agar.  Dark 

gray substrate and aerial mycelia are formed on oatmeal agar, as is a light yellowish 

brown diffusible pigment.  Grow from 20-40
o
C, optimum temperature ~ 30

o
C, from pH 

5-11 and in presences of 4% , w/v of NaCl.  Additional phenotypic properties are cited 

in the text and in Tables 6.10 and 6.11.  Chemotaxonomic properties are typical of the 

genus.  Produces septacidin, an antitumour and antifungal purine antibiotic 

 The source of the type strains DSM 40942
T
 (=NBRC 15411

T
 = NRRL B-3175

T
) 

is not known.  The additional of the species isolated from hyper-arid and extreme hyper-

arid Atacama Desert soils. 
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Supplemental Table. Phenotypic properties  of Streptomyces leeuenhoekii C34
T
 and 

related strains (isolates C38, C58, C79, KNN1-5a, KNN2-6a, KNN6-6b,  KNN6-9a, 

KNN10-4d, KNN10-5a, KNN11-1a, KNN24-1b, KNN25c, KNN33a, KNN41-1c and 

KNN48-1c). 

 

 

 

Tests 

 

 

 

 

Strains 

K
N

N
1

-5
a 

K
N

N
2

-6
a 

K
N

N
6

-6
b
 

K
N

N
6

-9
a 

K
N

N
1

0
-4

d
 

K
N

N
1

0
-5

a 

K
N

N
1

1
-1

a 

K
N

N
2

4
-1

b
 

K
N

N
2

5
c 

K
N

N
3

3
a 

K
N

N
4

1
-1

c 

K
N

N
4

8
-1

c 

C
3

4
T
 

C
3

8
 

C
5

8
 

C
7

9
 

Sole Carbon                 

Acetic acid - - + + + + + + + + + + + - - + 

 N-acetyl--D-

mannosamine 

- - - - - - - - - - - - - + - - 

N-acetyl-D-

glucosamine 

- - + + - - - - - - - - - + + - 

L-alanine - - + + - - - - - - - - - + + - 

L-aspartic acid - + - - - - - - - - - - - + + - 

-hydroxy 

butyric acid 

- + - + + - - - - - - - + - + - 

     D-cellobiose - - + + - - - - - - - - - + + - 

     D-galactose - - + + - - - - - - - - - + + - 

Formic acid - - - - - - - - - - - - - - - - 

Gentiobose - - + + - - - - - - - - - - - - 

Gelatin - - - - - - - - - - - - - + - - 

D-gluconic acid + + - - + + + + + + + + + + + + 

Glucoronamide - - - - - - - - - - - - - - - - 

3-methyl-

glucose 

- - + + - - - - - - - - - + + - 

L-histidine - - - - - - - - - - - - - - + + 

D-lactic acid 

methyl ether 

- - - - - - - - - - - - + - - + 

D-maltose + - - - - - - - - - - - + - - - 

Propionic acid - - - - - - - - - - - - - + + - 
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Supplemental Figure1a-c   Phylogenetic tree inferred from concatenated partial 

sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB in MEGA 5.2 

(Tamura et al., 2011) using the maximum-likelihood method based on the General Time 

Reversible model (Nei & Kumar 2000).  There were 2575 positions and 152 strains in 

the final dataset.  Trees were also inferred using the Tamura-Nei evolutionary distance 

method (1993) with the neighbour-joining algorithm of Saitou & Nei (1987) neighbour-

joining and maximum-parsimony models in MEGA 5.2 and conserved branches in all 

methods are marked with an asterisk.  Percentages at the nodes represent levels of 

bootstrap support from 1000 re-sampled datasets (Felsenstein 1985) with values less 

than 60% not shown.  The proposed new species Streptomyces leeuwenhoekii DSM 

42122
T
 is indicated with a bold node label. Bar marker equals number of substitutions 

per site. 
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Suppl. Fig 1a. 
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Suppl. Fig 1b. 
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Suppl. Fig 1c. 
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Chapter 7. General Discussion and Prospectives for Future 

Works 

7.1. General discussion 

The primary aims of the project were realiased as (a), a high quality library of 

taxonomically diverse filamentous actinobacteria with the capacity to synthesise a broad 

range of bioactive compounds isolated from two contrasting locations in the Atacama 

Desert, namely hyper-arid and extreme hyper-arid soils collected from the Salar de 

Atacama and Yungay regions, respectively and (b), selected isolates of interest from 

bioprospecting and ecological perspectives were shown to belong to novel or 

presumptively novel actinobacterial species using polyphasic taxonomic precedures and 

16S rRNA gene sequence data.  These results provide further evidence that novel and 

rare actinobacteria can be isolated from arid Atacama Desert soils using a combination 

of selective isolation, dereplication and characterisation procedures. 

 The results of the present study confirm and extend those reported by Okoro and 

her colleagues in their pioneering studies on cultivable actinobacteria isolated hyper-

arid extreme hyper-arid Atacama Desert soils (Okoro et al., 2009, 2010).  Once again, 

most isolates were assigned to new centres  of taxonomic variation in the Streptomyces 

16S rRNA gene tree.  It was particularly interesting that additional isolates from the 

hyper-arid Salar de Atacama soil were recovered in the deep-rooted Streptomyces 16S 

rRNA gene subclade discovered by Okoro et al. (2009), especially since some members 

of this taxon now know to synthesise novel antibiotics, notably the atacamycins 

(Nachtigall et al., 2011) and chaxalactins and chaxamycins (Rateb et al., 2011a, 2011b; 

Bull & Asenjo, 2013).  Indeed, it was conclusively shown from the results of a wide-

ranging polyphasic study that members of this taxon merited recognition as a new 

species, Streptomyces leeuwenhoekii sp. nov.  The whole-genome sequence of the type 

strain of this species was found to contain many polyketide synthase genes, including 

those that seem likely to be responsible for the biosynthesis of the chaxalactins and 

chaxamycins. 

 Other polyphasic studies on selected isolates yielded interesting results.  

Representative Amycolatopsis strains isolated from the hyper-arid Salar de Atacama soil 

were found to belong to two known, albeit rare species, namely A. ruanii and A. 

thermalba, taxa based on single strains isolated from Australian desert soils (Zucchi et 

al., 2012b).  In contrast, representative Modestobacter strains isolated from the extreme 
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hyper-arid Yungay soil were shown to belong to at least two novel species though 

additional comparative taxonomic studies are needed to confirm this.  It was also 

interesting that the full genome sequence of a representative of one of these taxa, unlike 

the S. leeuwenhoekii type strain, contained few natural product gene clusters.  These 

contrasting results suggest that Atacama Desert actinobacteria may have developed, 

through evolutionary processes, different strategies for surviving the harsh 

environmental conditions that prevail in the desert. 

 The comparative 16S rRNA gene sequence analyses showed that the hyper-arid 

Salar de Atacama soil contained representatives of taxa other than the genera 

Amycolatopsis, Lechavalieria and Streptomyces that were detected by Okoro et al. 

(2009).  In the present study the selective isolation strategies led to the recovery from 

Salar de Atacama soil of representatives of the genera Actinomadura, Kribbella, 

Nonomuraea and Saccharothrix, rare taxa known to be the source of novel specialised 

(secondary) metabolites (Tiwari & Gupta, 2012a, b).  Similarly, members of the genera 

Blastococcus, Couchioplanes, Geodermatophilus, Modestobacter and Pseudonocardia, 

as well as Streptomyces strains, were recovered from the extreme hyper-arid Yungay 

soil.  It was interesting that members of all but one of these genera contain as putatively 

new species as they shared relatively low 16S rRNA gene similarities with the type 

strains of their nearest neighbours.  The exception, the genus Amycolatopsis, was of 

interest as the strains assigned to this taxon belonged to the thermophilic and poorly 

studied A. methanolica 16S rRNA gene subclade. 

 It is evident from the phylogenetic, and from the more comprehensive 

polyphasic studies, that hyper- and extreme hyper-arid Atacama Desert soils contain 

many novel actinobacteria, notably streptomycetes, that can be isolated using 

appropriate selective isolation, dereplication strategies and recognised using a 

combination of genotypic and phenotypic procedures.  It is apparent from the plug 

assays, especially the one based on B. subtilis reporter genes, that representative novel 

and putatively novel actinobacteria are the source of a broad range of interesting 

bioactive compounds with the potential to be developed into drug leads.  So, once again, 

the premise that extreme habitats are a rich source of novel actinobacterial taxa with the 

capacity to produce novel specilaised metabolites has been realised. 

 However, it has to be conceded that both polyphasic taxonomic studies and 

comparative 16S rRNA gene analyses have serious limitations.  The former by their 

very nature cannot be applied to large number of strains, as exemplified by the fact that 

only four novel Streptomyces species and three novel Lechevalieria species have been 
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proposed for strains isolated from hyper- and extreme hyper-arid Atacama Desert soils 

(Okoro et al., 2009; Santhanam et al., 2012a, b, 2013; Busarakam et al., 2014).  At the 

present rate of progress it would take several decades to formally name all of putatively 

novel taxa highlighted in the present study. 

 16S rRNA gene sequencing studies have greatly enhanced our understanding of 

actinobacterial diversity (Goodfellow et al., 2012) and can be expected to do so in the 

near future (Kim & Chun, 2014; Yarza & Munoz, 2014).  Nevertheless, this approach to 

unravelling prokaryotic diversity does have drawbacks, notably by providing 

insufficient resolution for distinguishing between closely related species and for 

detecting the closest neighbours of deep seated lineages in taxonomically complex 

genera, both phenomena were appaarent in the present study with particular respect to 

relationships within the genus Streptomyces.  Thus, in the present investigation, the 

analysis of sequence alignments derived from concatenation of five conserved house-

keeping genes showed that isolates assigned to the S. leeuwenhoekii 16S rRNA gene 

subclade formed a distinct branch in Streptomyces gene trees (Busarakam et al., 2014).  

Indeed, multi-locus sequence analyses based on such conserved genes are clarifying 

relationships between closely related Streptomyces species, including ones with 

identical 16S rRNA gene sequences (Rong & Huang, 2008, 2010; Rong et al., 2009, 

2010, 2014). 

 It seems likely that colossal taxonomic bottlenecks such as these touched upon 

above will increasingly be resolved now that whole-genome sequences are increasingly 

being used in prokaryotic systematics (Zhi et al., 2012), as exemplified in the present 

study with respect to the type strain of S. leeuwenhoekii.  This logical extension of the 

polyphasic taxonomic concept will not only provide a wealth of high quality taxonomic 

data (Klenk & Göker, 2010; Sutcliffe et al., 2012; Sentausa & Fournier, 2013) but will 

provide an insight into the ecology, evolution, physiology and biotechnological 

potential of prokaryotic species (Gao & Gupta, 2012; Chandra & Chater, 2014; Girard 

et al., 2014).  However, while systematists should “embrace the genome” it is important 

that future developments should build upon sound taxonomic practice, notably the 

nomenclatural type concept (Goodfellow & Fiedler, 2010; Jensen, 2010, Whitman, 

2014). 

 At present, the widespread use of whole-genome sequence is restricted as such 

data are only available for 1,725 out of nearly 11,000 archaeal and bacterial type strains 

(Chun & Rainey, 2014) whereas; in contrast nearly a full complement of 16s rRNA 

gene sequences are available (Kim & Chun, 2014; Yarza & Munoz, 2014).  However, 
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the relative lack of whole-genome sequence data is being addressed by the one thousand 

microbial genomes (KMG-1) project (Genomic Encycopedia of Type Strains, Phase 1, 

Kyrpides et al., 2014).  Once whole genome sequences are available for all type strains, 

there will be an opportunity for them to serve as a companion to all further isolates 

thereby dispensing with the need to maintain costly service collections, a vision 

promulgated by Whitman (2014), who also pointed out that this approach was in line 

with the principles of the Bacteriological Code (Lapage et al., 1990), which only 

requires that species be unique and completely identified prior to naming. 

 

7.2. Pospectives for future work 

Ecology: 

 Culture-independent studies will be carried out to establish the key genera present in 

the hyper-arid and extreme hyper-arid soils used in the present study. 

 Inovative and effective taxonomic approaches will be used to isolate members of 

dominant members of actinobacterial communities detected in the culture-

independent studies. 

 Emphasis will also be placed on the selective isolation of rare genera, such as 

Modestobacter which predominate in extreme hyper-arid surface soils and on rock 

surfaces given their ability to produce melanin-like pigments. 

 Biogeographical studies will be undertaken on selected genera found to be 

discontinuously distributed in the Salar de Atacama and Yungay soils. 

 Whole genome sequencing studies of representative novel isolates will be generated 

to gain an insight into how such taxa cope with the harsh environmental conditions 

that prevail in arid Atacama Desert soils. 

 

Systematics: 

 Formal naming of putatively novel Modestobacter strains isolated from the extreme 

hyper-arid Yungay soil following the completion of a polyphasic taxonomic study. 

 Completion of the taxonomic studies on representatives of the S. fimbriatus, S. 

leeuwenhoekii and S. radiopugnans 16S rRNA gene subclades with the aim of 

formally naming new species. 
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 Comprehensive genotypic and phenotypic studies on representatives of rare genera 

recovered from the hyper-arid Salar de Atacama soil in order to formally name them 

as new species. 

 

Bioprospecting: 

 The Streptomyces leeuwenhoekii C34 gene clusters responsible for the biosynthesis 

of the chaxamycins and chaxalactins will be identified, and expressed heterologously 

in “Streptomyces coelicolor”  (3)2.  Similarly approaches will be taken to express 

and characterise other novel specilaised metabolite gene clusters identified in the S. 

leeuwenhoekii C34 genome sequence. 

 Screening of representatives of rare genera isolated from the hyper-arid Salar de 

Atacama soil for putatively novel bioactive compounds using the Bacillus subtilis 

reporter genes with interesting leads pursued using chemical screens. 

 Genome scanning of selected representatives of rare novel genera isolated from the 

hyper-arid Atacama Desert soil to identify novel pathways. 

 Selective isolation, dereplication and screening of additional rare actinobacterial 

genera highlighted in the culture-independent studies on the Salar de Atacama and 

Yungay soils. 

  

  



225 

References 

Abdel-Mageeb, W.M., Miline, B.F., Wagner, M., Schumacher, M., Sander, P., 

Pathom-aree, W., Goodfellow, M., Bull, A.T., Horikoshi, K., Ebel, R., 

Diederich, M., Fiedler, H.-P. & Jaspars, M. (2010).  Dermacozines, a new 

phenazine family from deep-sea dermacocci isolated from Mariana Trench 

sediment. Organic and Biomolecular Chemistry 8, 2352-2362. 

Abou-Zeid, A., Euverink, G., Hessels, G.I., Jensen, R.A. & Dijkhuizen, L. (1995).  

Biosynthesis of i-phenylalanine and i-tyrosine in the actinomycete 

Amycolatopsis methanolica.  Applied and Environmental Microbiology 61, 

1298-1302. 

Adékambi, T., Butler, R. W., Hanrahan, F., Delcher, A. L., Drancourt, M. & 

Shinnick, T. M. (2011). Core gene set as the basis of multilocus sequence 

analysis of subclass of Actinobacteria. Plos One 6, 10. 

Adiri, R. S., Gophna, U. & Ron, E. Z. (2003). Multilocus sequence typing (MLST) of 

Escherichia coli O78 strains. FEMS Microbiology Letters 222, 199-203. 

Ahmed, L. Jensen, P.R., Freel, K.K., Brown, R., Jones, A,L., Kim, B. & 

Goodfellow, M. (2013).  Salinispora pacifica sp. nov., an actinomycete froom 

marine sediments.  Antonie van Leeuwenhoek 103, 1069-1078. 

Ahrens, R. & Moll, G. (1970).  Ein neues knospendes Bakterium aus der Ostsee.  

Archives of Microbiology 70, 243-265. 

Alam, M. T., Merlo, M. E., Takano, E. & Breitling, R. (2010). Genome-based 

phylogenetic analysis of Streptomyces and its relatives. Molecular 

Phylogenetics and Evolution 54, 763-772. 

Albarracín, V. H., Winik, B., Kothe, E., Amoroso, M. J. & Abate, C. M. (2008). 

Copper bioaccumulation by the actinobacterium Amycolatopsis sp. ABO. 

Journal of Basic Microbiology 48, 323–330. 

Albarracín, V.H., Alonso-Vega, P., Trujillo, M.E., Amoroso, M.J. & Abate, C.M. 

(2010).  Amycolatopsis tucumanensis sp. nov., a copper-resistant 

actinobacterum isolated from polluted sediments.  International Journal of 

Systematic and Evolutionary Microbiology 60, 397-401. 

Antony-Babu, S. & Goodfellow, M. (2008). Biosystematics of alkaliphilic 

streptomycetes isolated from seven locations across a beach and dune sand 

system. Antonie van Leeuwenhoek 94, 581-591. 



226 

Antony-Babu, S., Stach, J. E. M. & Goodfellow, M. (2008). Genetic and phenotypic 

evidence for Streptomyces griseus ecovars isolated from a beach and dune sand 

system. Antonie van Leeuwenhoek 94, 63-74. 

Antony-Babu, S., Stach, J. & Goodfellow, M. (2010). Computer-assisted numerical 

analysis of colour-group data for dereplication of streptomycetes for 

bioprospecting and ecological purposes. Antonie van Leeuwenhoek 97, 231-

239. 

Anzai, Y., Okuda, T. & Watanabe, J. (1993). Application of the random amplified 

polymorphic DNA using the polymerase chain reaction for efficient 

elimination of duplicate strains in microbial screening. Journal of 

Antibiotics 47, 183 193. 

Atalan, E., Manfio, G.P., Ward, A.C., Kroppenstedt, R.M. & Goodfellow, M.  

(2000). Biosystematic studies on novel streptomycetes from soil. Antonie van 

Leeuwenhoek 77, 337–353. 

Athalye, M., Lacey, J. & Goodfellow, M. (1981). Selective isolation and enumeration 

of actinomycetes using rifampicin. Journal of  Applied Bacteriology 51, 289-

297. 

Ayuso, A., Clark, D., González, I., Salazar, O., Anderson, A. & Genilloud, O. 

(2005). A novel actinomycete strain de-replication approach based on the 

diversity of polyketide synthase and nonribosomal peptide synthetase 

biosynthetic pathways. Applied Microbiology and Biotechnology 67, 795-806. 

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, 

Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman 

AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch 

GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O 

(2008). The RAST Server: rapid annotations using subsystems technology. 

BMC Genomics 9, 75 

Azura-Bustos, A. Urrejola, C. & Vicuῆa, R. (2012).  Life at the edge: 

microorganisms of the Atacama Desert.  FEMS Letters 586, 2939-2945. 

Babakola, O.O., Kirby, B.M., Roes-Hill, M.L., Cook, A.E., Craig-Carry, S., Burton, 

S.G. & Cowan, D.A. (2009).  Phylogenetic analysis of actnobacteria 

populations associated with Antarctic Dry Valley mineral soils.  Environmental 

Microbiology 11, 566-576. 

Baltz, R. H. (2008). Renaissance in antibacterial discovery from actinomycetes. 

Current Opinion in Pharmacology 8, 557-563. 



227 

Becerril-Espinosa, A. Freel, K.C., Jensen, P.R. & Soria-Mercado, I.E. (2013).  

Marine actinobacteria from the gulf California: diversity, abundance and 

secondary metabolite biosynthetic potential.  Antonie van Leeuwenhoek 103, 

809-819. 

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. (2011). 

GenBank. Nucleic Acids Research. 39, D32-D37. 

Bentley, S. D., Chater, K.F., Cerdeno-Tarraga, A.-M., Challis, G.L., Thomson, 

N.R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H., Harper, D., 

Bateman, A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., 

Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., 

Kieser, T., Larke, L., Murphy, L., Oliver, K., O'Neil, S., Rabbinowitsch, E., 

Rajandream, M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunders, D., 

Sharp, S., Squares, R., Squares, S., Taylor, K., Warren, T.,  Wietzorrek, 

A., Woodward, J., Barrell, B. G., Parkhill, J. & Hopwood, D. A. (2002). 

Complete genome sequence of the model actinomycete Streptomyces 

coelicolor A3(2). Nature 417, 141-147. 

Bérdy, J. (1995). Are actinomycetes exhausted as a source of secondary metabolites? 

Biotechnologia 7, 13–34. 

Bérdy, J. (2005).  Bioactive microbial metabolites.  Journal of Antibiotics 58, 1-26. 

Bérdy, J. (2012).  Thoughts and facts about antibiotics: Where we are now and where 

we are heading.  Journal of Antibiotics 65, 385-395.  

Betina, V. (1983).  The Chemistry and Biology of Antibiotics.  Elsevier Scientific 

Publishing Company, Amsterdam. 

Bhatnagar, A. & Bhatnagar, M. (2005).  Microbial diversity in desert ecosystems.  

Current Science 89, 91-100. 

Bian, J., Li, Y., Wang, J., Song, F.-H., Lui, M., Dai, H.-Qi, Ren, B., Goa, H., Hu, A., 

Lui, Z.-H., Li, W.-J. & Zhang, L.-X. (2009).  Amycolatopsis marina sp. 

nov., an actinomycete isolated from an ocean sediment.    International 

journal of Systematic and Evolutionary Microbiology 59, 477-481. 

Bister, B., Bischoff, D., Ströbele, M., Riedlinger, J., Reicke, A., Wolter, F., Bull, A. 

T., Zähner, H., Fiedler, H. P. & Süssmuth, R. D. (2004). Abyssomicin C-a 

polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the 

p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angewandte 

Chemie Internatioal Edition 43, 2574-2576. 



228 

Black, J. G. (2008). Microbiology, Principles and Explorations. 7th edition, John 

Wiley & Sons, Inc, USA. 

Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H.G. & Prinsep, M.R. (2012).  

Marine natural products. Natural Product Reports 29, 144-222. 

Bochner, B. R. (2003). New technologies to assess genotype-phenotype relationships. 

Nature Reviews Genetics 4, 309-314. 

Bochner, B. R., Giovannetti, L. & Viti, C. (2008). Important discoveries from 

analysing bacterial phenotypes. Molecular Microbiology 70, 274-280. 

Boer, L.D., Dijkhuizen, L., Grobben, G., Goodfellow, M., Stackebrandt, E., Parlett, 

J.H., Whitehead, D. & Witt, D. (1990).  Amycolatopsis methanolica sp. nov., 

a facultatively methylotrophic actinomycete.  International Journal of 

Systematic Bacteriology 40, 194-204. 

Böröczky, K., Laatsch, H., Wagner-Döbler, I., Strizke, K. & Schulz, S. (2006).  

Cluster analysis as selection and dereplication tool for the identification of new 

natural compounds from large sample set.  Chemistry & Biodiversity 3, 622-

634. 

Brandão, P.F.B., Torimura, M., Kurane, R. & Bull, A.T. (2002).  Dereplication for 

biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) 

profiling of 16S rRNA genes of marine and terrestrial actinomycetes.  Applied 

Microbiology and Biotechnology 58, 77-83. 

Bredholt, H., Galatenko, O.A., Engelhard, K., Fjaervick, E., Terekhova, L.P. & 

Zotchev, S.B. (2007).  Rare actinobacteria from shollow water sediments of 

the Trondheim fjord, Norway: isolation, diversity and biological activity.  

Environmental Microbiology 9, 2756-2764. 

Bredholt, H., Fjaervick, E., Johnsen, G., & Zotchev, S.B. (2008).  Actinomycetes 

from sediments in the Trondheim Fjord, Norway: Diversity and biological 

acitivity.  Marine Drugs 6, 12-24. 

Brocchieri, L. (2001). Phylogenetic inferences from molecular sequences: review and 

critique. Theoretical Population Biology 59, 27-40. 

Brock, T. D. (1986). Introduction: an overview of the thermophiles. In Thermophiles: 

General, Molecular and Applied Microbiology, pp. 1-17. Edited by T. D. 

Brock. New York: Wiley. 

Brunstein, J. (2010).  Methods in molecular biology and genetic engineering.  In 

Lewin’s Genes X, pp. 42-78.  Edited by J. Krebs, S.T. Kilpatrick & E.S. 

Goldstein.  Massachusette: Jones and Bartlett Publishers. 



229 

Bulina, T. I., Alferova, I. V. & Terekhova, L. P. (1997). A new method for the 

isolation of actinomycetes with the use of microwave irradiation of soil 

samples. Mikrobiologiya 66, 278-282. 

Bull, A.T. (ed.) 2004. Microbial Diversity and Bioprospecting. ASM Press, 

Washington, DC, pp. 1–496. 

Bull, A.T. (2011).  Actinobacteria of the extremobiosophere. In: Extremeophiles 

Handbook, pp. 2103-2014. Edited by K. Horikoshi, G. Anthranikian, A.T. Bull, 

F. Robb and K. Stetter. Springer-Verlag Gmbh, Berlin. 

Bull, A.T. & Asenjo, J.A. (2013).  Microbiology of hyper-arid environments: recent 

insights from the Atacama Desert, Chile.  Antonie van Leeuwenhoek  103, 

1173-1179. 

Bull, A. T. & Stach, J.E.M. (2004). An overview of biodiversity-estimating the scale. 

In Microbial Diversity and Bioprospecting, pp. 15-28.  Edited by A. T. Bull.  

ASM Press, Washington, D.C. 

Bull, A.T. & Stach, J.E.M. (2007).  Marine actinobacteria: new opportunities for 

natural products search and discovery.  Trends in Microbiology 15, 491-499. 

Bull, A.T., Goodfellow, M. & Slater, J.H. (1992).  Biodiversity as a source of 

innovation in biotechnology.  Annual Review of Micrbiology 46, 219-252. 

Bull, A.T., Ward, A.C. & Goodfellow, M. (2000).  Search and discovery strategies for 

biotechnology: paradigm shift.  Microbiology and Molecular Biology Reviews 

64, 573-606.  

Bull, A.T., Stach, J.E.M., Ward, A.C. & Goodfellow, M. (2005).   Marine 

actinobacteria: perspectives, challenges, future directions.  Antonie van 

Leeuwenhoek  87, 259-276. 

Busarakam, K., Bull, A.T., Girard, G., Labeda, D.P., van Wezel, G.P. & 

Goodfellow, M. (2014).  Streptomyces leeuwenhoekii sp. nov., the producer of 

chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene 

trees.  Antonie van Leewenhoek.  Antonie van Leeuwenhoek 105, 849-861. 

Buskingham, J. (2013).  Dictionary of Natural Products on DVA. Champan and Hall 

CRC, ISBN-13: 978-0412491504. 

Busti, E., Monciardini, P., Cavaletti, L., Bamonte, R., Lazzarini, A., Sosio, M. & 

Donadio, S. (2006). Antibiotic-producing ability by representatives of a newly 

discovered lineage of actinomycetes. Microbiology 152, 675-683. 

Butler, M.S. & Cooper, M. (2011).  Antibiotics in the clinical pipeline in 2011.  

Journal of Antibiotics 64, 413-425. 



230 

Camas, M., Sahin, N., Sazak, A., Sproer, C. & Klenk, H.P. (2013).  Amycolatopsis 

magusensis sp. nov. isolated from soil. International Journal of Systematic and 

Evolutionary Microbiology 6, 1254-1260. 

Cameron, R.E., Gensel, D.R. & Blank, G.B. (1966). Soil studies–desert microflora 

XII, Abundance of microflora in soil samples from the Chile Atacama Desert. 

Space Programs Summary, Jet Propulsion Laboratory IV, 37– 38. 

Chandra, G. & Chater, K.F. (2014). Developmental biology of Streptomyces from the 

perspective of 100 actinobacterial gene sequences. FEMS Microbiology Reviews 

38, 345-379. 

Cho, S.-H., Han, J.-H., Seong, C.-N. & Kim, S.-B. (2006).  Phylogenetic diversity of 

acidophilic sporoactinobacteria isolated from various soils. The Journal of 

Microbiology 44, 600-606. 

Chouaia, B., Crotti, E., Brusetti, L., Daffonchio, D., Essoussi, I., Nouioui, I., Sbssi, 

I., Ghodbane-Gatari, F., Gtari, M., Vacherie, B., Barbe, V., Médigue, C., 

Pujic, P. & Mormand, P. (2012).  Genome sequence of Blastococcus 

saxobsidens DD2, a stone-inhabiting bacterium.  Journal of Bacteriology 194, 

2752-2753. 

Chun, J. & Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia 

with 16S rRNA gene sequences. International Journal of Systematic 

Bacteriology 45, 240-245. 

Chun, J., Kim, S.B., Oh, Y.K., Seong, C.-N., Lee, D.-H., Bae, K.S., Kang, S.-O., 

Hah, Y.C. & Goodfellow, M. (1999).  Amycolatopsis thermoflava ap. nov., a 

novel soil actinomecete from Hainan Island, China.  International Journal of 

Systematic Bacteriology 49, 1369-1373. 

Chuvochina, M.S., Marie, D., Chevaillier, S., Petit, J.R., Normand, P., Alekhina 

I.A. & Bulat S.A. (2011). Community variability of bacteria in alpine snow 

(Mont Blanc) containing saharan dust deposition and their snow colonisation 

potential. Microbes Environments., 26: 237-247.  
Clemons, P. A. (2004). Complex phenotypic assays in high-throughput screening. 

Current Opinion in Chemical Biology 8, 334-338. 

Cochrane, G., Akhtar, R., Bonfield, J., Bower, L., Demiralp, F., Faruque, N., 

Gibson, R., Hoad, G., Hubbard, T., Hunter, C., Jang, M., Juhos, S., 

Leinonen, L., Leonard, S., Lin, Q., Lopez, R., Lorenc, D., McWilliam, H., 

Mukherjee, G., Plaister, S., Radhakrishnan, R., Robinson, S., Sobhany, S., 

Hoopen, P. T., Vaughan, R., Zalunin, V. & Birney, E. (2008). Petabyte-



231 

scale innovations at the European Nucleotide Archive. Nucleic Acids Research. 

37, D19-D25.  

Cody, A.J., Bennett, J.S. & Maiden, C.J. (2014).  Multi-locus sequence typing and 

the gene-by-gene approach to bacterial classification and analysis of population 

variation.  Methods in Microbiology 43 (in press). 

Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-

Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M. & Tiedje, J. 

M. (2009).  The Ribosomal Database Project: improved alignments and new 

tools for rRNA analysis. Nucleic Acids Research 37, D141-D145. 

Collins, M.D., Goodfellow, M., Minnikin, D.E. & Alderson, G. (1985).  

Menaquinone composition of mycolic acid-containing actinomycetes and some 

sporoactinomycetes.  Journal of Applied Bacteriology 58, 77-86. 

Colquhoun, J. A., Mexson, J., Goodfellow, M., Ward, A. C., Horikoshi, K. & Bull, 

A.T. (1998). Novel rhodococci and other mycolate actinomycetes from the 

deep sea. Antonie van Leeuwenhoek 74, 27-40. 

Colwell, R.R. (1970). Polyphasic taxonomy of bacteria. In Culture Collections of 

Microorganisms: Proceedings of the International Conference on Culture 

Collections, pp. 421-436. Edited by H. Iizuka and T. Hasegawa. Tokyo: 

University Tokyo Press. 

Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A.  (2007). 

Bacterial diversity in hyperarid Atacama Desert soils.  Journal  of Geophysical 

Research 112, G04S17, doi:10.1029/2006JG00311. 

Costello, E.K., Halloy, S.R.P., Reed, s.C., Sowell, P. & Schmidt, S.K. (2009).  

Fumarole-supported islands of biodiversity within a hyperarid, high-elevation 

landscap on socompa volcano, Puna de Atacama, Andes.  Applied and 

Environmental Microbiology 75, 735-747. 

Cragg, G.M. & Newman, D. (2013).  Natural products: A continuing source of novel 

drug leads.  Biochimica et Biophysica Acta 1830: 3670-3695. 

Cross, T. (1968).  Thermophilic actinomycetes.  The Journal of Applied Bacteriology 

31, 36-53. 

Cross, T. (1982). Actinomycetes: a continuing source of new metabolites. Development 

in Industrial Microbiology 33, 1-18. 

Cruz-Morales, P., Vijgenboom, E., Iruegas-Bocardo, F, Girard, G., Yáñez-Guerra, 

Ramos-Aboites, H.E., Pernodet, J.-L., Anné, Wezel, van G.P. & Barona-

Gómez, F. (2013). The genome sequence of Streptomyces lividans 66  reveals 



232 

a novel tRNA-dependent peptide biosynthetic system within a metal-related 

genomic island. Genome Biology and Evolution 5, 1165–1175. 

Czaran, T.L., Hoekstra, R.E. & Page, L. (2002). Chemical warfare between microbes 

promotes biodiversity. Proceedings of the National Academy Science USA 99, 

786–790. 

Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012). jModelTest 2: more 

models, new heuristics and parallel computing. Nature Methods 9,772. 

Da Costa, M.S., Albuquerque, L., Fermanda Nobre, M. & Wait, R. (2011a).  The 

identification of polar lipids in prokaryotes. Methods in Microbiology 38, 165-

182. 

Da Costa, M.S., Albuquerque, L., Fermanda Nobre, M. & Wait, R. (2011b).  The 

identification of fatty acids in bacteria. Methods in Microbiology volume 38, 

183-198. 

Da Costa, M.S., Albuquerque, L., Fermanda Nobre, M. & Wait, R. (2011c).  The 

extraction and identification of respiratory lipoquinones of prokaryotes and 

their use in taxonomy.  Method in Microbiology 38, 283-298 

Das, M., Royer, T.V. &  Leff. L.G. (2007).  Diversity of fungi, bacteria and 

actinomycetes on leaves decomposing in a stream.  Applied and Environmental 

Microbiology 73: 756-767. 

De Boer, L., Dijkhuizen, L., Grobben, G., Goodfellow, M., Stackebrandt, E., 

Parlett, J. H., Whitehead, D. & Witt, D. (1990). Amycolatopsis 

methanolica sp. nov., a facultatively methylotrophic actinomycete. 

International Journal of Systematic Bacteriology 40, 194–204. 

De Ley, J., Cattoir, H. & Reynaerts, A. (1970). The quantitative measurement of 

DNA hybridization from renaturation rates. European Journal of Biochemistry 

12, 133-142. 

De los Ríos, A., Valea, S., Ascaso, C., Davila, A., Kastovsky, J., McKay, C.P., 

Gómez-Silva, B & Wierzchos, J. (2010).  Comparative analysis of the 

microbial communities inhibiting halite evaporates of the Atacama Desert.  

International Microbiology 13, 79-89. 

De Santis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., 

Huber, T., Dalevi, T., H, P. & Andersen, G. L. (2006). Greengenes, a 

chimera-checked 16S rRNA gene database and workbench compatible with 

ARB.  Applied and Environmental Microbiology 72, 5069-5072. 



233 

De Vos, P. (2011).  Multilocus sequence determination and analysis. Method in 

Microbiology 38, 385-408.   

De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., 

Schleifer, K. H. & Whitman, W. B. (2009). Bergey's Manual of Systematic 

Bacteriology, 2nd edn.  Volume 3, The Firmicutes pp. 1-1450, New York: 

Springer,. 

Demergasso, C., Escudero, L., Casamayor, E.O., Chong, G., Balagué, V. & Pedrós-

Alió, C. (2008).  Novelty and spatio-temperal heterogeneity in the bacterial 

diversity of hypersaline Lake Tebenquiche (Salar de Atacama).  Extremophiles 

12, 491-504. 

Dharmik, P. & Gomeshe, A.V. (2013).  Isolation and antioxidant activity of melanin 

from actinomycete (Streptomyces species) isolated from garden soil, Nagpur 

district, India.  International Journal of Pure and Applied Sciences and 

Technology 18, 69-72. 

Ding, D., Chen, G., Wang, B., Wang, Q., Lui, D., Peng, M. & Shi, P. (2012).  

Culturable actinomycetes desert ecosystem in northeast of Qinghai-Tibet 

Plateau. Annual Review of Microbiology, DOI 10.1007/s13213-012-0469-9. 

DiRuggiero, J., Wierzchos, J., Robinson, C.K., Souterre, T., Ravel, J., Artieda, O., 

Souza-Egipsy, V. & Ascaso, C. (2013).  Microbial colonisation of 

chasmoendolithic habitats in hyper-arid zone of the Atacama Desert.  

Biogeosciences 10, 2439-2450. 

Donadio, S. & Sosio, M. (2010).  Cell-based screening methods for anti-infective  

compound. In Manual of Industrial Microbiology and Biotechnology, pp. 62-

72. Edited by R. H. Baltz, A.L.Demain and J. E. Davies. Washington, DC: 

ASM Press. 

Donadio, S., Maffioli, S., Monciardini, P., Sosio, M. & Jabes, D. (2010a).  Antibiotic 

discovery in the twenty-first century: current trends and future perspectives.  

Journal of Antibiotics 63, 423-430. 

Doanadio, S., Maffioli, S., Monciardini, P., Sosio, M. & Jabes, D. (2010b).  Sources 

of novel antibiotics-aside the common roads.  Applied Microbiology and 

Biotechnology 88, 1261-1269. 

Dorador, C., Meneses, D., Urtuvia, V., Demergasso, C., Vila, I., Witzel, K.-P. & 

Imhoff, J.F. (2009).  Diversity of Bacterioidetes in high-altitude saline 

evaporitic basins in northern Chile.  Journal of Geophysical Research 114, 

G00D05, doi:10.1029/2008JG000837 



234 

Drees, K.P., Nielson, J.W., Betancourt, L., Quade, J., Henderdon, D.A., Pryor, B.M. 

& Maier, R.M. (2006).  Bacterial community structure in the hyperarid core of 

the Atacama Desert, Chile.  Applied and Environmental Microbiology 72, 

7902-7908. 

Dridi, B.B. & Drancourt, M. (2011).  Characterization of prokaryotes using MALDI-

TOF mass spectrometry.  Method in Microbiology 38, 283-298.  

Duangmal, K., Ward, A. C. & Goodfellow, M. (2005). Selective isolation of members 

of the Streptomyces violaceoruber clade from soil. FEMS Microbiology Letter 

245, 321-327. 

Duangmal, K., Mingma, R., Pathom-Aree, W., Thamchaipenet, A., Inahashi, Y., 

Matsumoto, A. & Takahashi, Y. (2011).  Amycolatopsis samaneae sp. nov., 

isolated from root of Samanea saman (Jacq.) Merr.  International Journal of 

Systematic and Evolutionary Microbiology 61, 951-955. 

Dutcher, J.D., Pansy, F.E. & van Saltza, M.H. (1964). Septacidin and derivatives 

thereof.  United States Patent, 3, 155,647 November 3. 

Eccleston, G.P., Brooks, P.R. & Kurtböke, D.I. (2008).  The occurence of bioactive 

micromonosporae in aquatic habitats of sunshine coast in Austrialia.  Marine 

Drugs 6, 243-261. 

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and 

high throughput.  Nucleic Acids Research 32, 1792–1797. 

Enright, M. C. & Spratt, B. G. (1999). Multilocus sequence typing. Trends in 

Microbiology 7, 482-487. 

Eppard, M., Krumbein, W. E., Koch, C., Rhiel, E., Staley, J. T. & Stackebrandt, E. 

(1996). Morphological, physiological and molecular characterization of 

actinomycetes isolated from dry soil, rocks and monument surfaces. Archieve 

of Microbiology 166, 12-22. 

Essoussi, I., Ghodbane-Gtari, F., Amairi, H., Sghaier, H., Jaouani, A., Brusetti, L., 

Daffonchio, D., Boudabous, A. & Gtari, M. (2010). Esterase as an enzymatic 

signature of Geodermatophilaceae adaptability to Sahara desert stones and 

monuments. Journal of Applied Microbiolology 108,1723–1732. 

Euzéby, J. P. (2013). List of Bacterial Names with Standing in Nomenclature: a folder 

available on the Internet. (Last full update: 23 October 2013). 

http://www.bacterio.cict.fr/. 



235 

Everest, G. J. & Meyers, P. R. (2009). The use of gyrB sequence analysis in the 

phylogeny of the genus  Amycolatopsis. Antonie van Leeuwenhoek 95, 1–11. 

Everest, G.J., Cook, A.E., Kirby, B.M. & Meyers, P.R. (2011).  Evaluation of the use 

of recN sequence analysis in the phylogeny of the genus Amycolatopsis. Antonie 

Van Leeuwenhoek 100, 483–496 

Everest, G., Roes-Hill, M., Omorogie, C., Cheung, S.-K., Cook, A., Goodwin, C. & 

Meyers, P. (2013). Amycolatopsis umgeniensis sp. nov., isolated from soil from 

the banks of the Umgeni river in South Africa. Antonie van Leeuwenhoek 103, 

673–681.  

Ezaki, T., Hashimoto, Y. & Yabuuchi, E. (1989). Fluorometric deoxyribonucleic 

acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative 

to membrane filter hybridization in which radioisotopes are used to determine 

genetic relatedness among bacterial strains. International Journal of Systematic 

Bacteriology 39, 224-229. 

Felis, G.E., Torriani, S., van Hylckama, V.J.T. &Oren, A. (2010). Taxonomic 

characterization of prokaryotic microorganisms. In Manual of Industrial 

Microbiology and Biotechnology, 3rd edn. Edited by R.H. Baltz, J. Davies, A.L. 

Dermain (volume eds), pp 28–42.  Section 1: Isolation and screening of 

secondary metabolites and enzymes.  Section edition by A.T. Bull AT and J. 

Davies. ASM Press, Washington, DC. 

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood 

approach. Journal of Molecular Evolution 17, 368-376. 

Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the 

bootstrap. Evolution 39, 783-791. 

Felsenstein, J. (2004). PHYLIP (Phylogeny Inference Package), version 3.6. 

Seattle,USA: Department of Genome Science, University of Washington. 

Fenical, W., Jensen, P.R., Palladino, M.A., Lam, K.S., Lloyd, G.K. &Potts, B.C. 

(2009).  Discovery and development of anti-cancer agent salinosporamide A 

(NPI-0052).  Bioorganic & Medical Chemistry 17, 2175. 

Fiedler, H.-P. (1994). Biosynthetic capacities of actinomycetes. 2. Juglomycin Z, a new 

naphthoquinone antibiotic from Streptomyces tendae. Journal of Antibiotics 47, 

1116–1122. 

Fiedler, H.-P. (2004). Screening for bioactivity. In Microbial Diversity and 

Bioprospecting, pp. 324-335. Edited by A. T. Bull. Washington, D C: 

American Society for Microbiology. 



236 

Fiedler, H.P., Bruntner, C., Bull, A.T., Ward, A.C., Goodfellow, M & Mihm, G. 

(2005).  Marine actinomycetes as a source of novel secondary metabolites.  

Antonie van Leeuwenhoek 87, 37-42. 

Fischbach, M. A. & Walsh, C. T. (2009). Antibiotics for emerging pathogens. Science 

325, 1089-1093. 

Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a 

specific tree topology. Systematic Zoology 20, 406-416. 

Fitch, W. M. & Margoliash, E. (1967). Construction of phylogenetic trees. Science 

155, 279-284. 

Fletcher, L., Valdivia-Silva, J.E., Perez-Montaňo, S., Condori-Apaza, R.M., Conley, 

C.A. & Mckay, P. (2012). Variability of organic material in surface horizons 

of the hyper-arid Mars-like soils of the Atacama Desert. Advances in Space 

Research 49, 271-279. 

Fox, G. E., Wisotzkey, J. D. & Jurtshuk, J. P. (1992). How close is close: 16S rRNA 

sequence identity may not be sufficient to guarantee species identity. 

International Journal of Systematics Bacteriology 42, 166-170. 

Freel, C.K., Edlund A. & Jensen , P.P. (2012).   Microdiversity and evidence for high 

dispersal rates in the marine actinomycete genus Salinispora. Environmental 

Microbiology 14, 480–493.  

Fry, N. R., Warwick, S., Saunders, N. A. & Embley, T. M. (1991). The use of 16S 

ribosomal RNA analyses to investigate the phylogeny of the family 

Legionellaceae. Journal of General Microbiology 137, 1215-1222. 

Gao, Q. & Garcia-Pichel, F. (2011).  Microbial ultraviolet sunscreens.  Microbiology 9, 

791-802. 

Gao, B. & Gupta, R.S. (2012).  Phylogenetic framework and molecular signatures for 

main clades of the phylum Actinobacteria.  Microbiology and Molecular 

Biology Reviews 77, 66-112. 

Garrity, G.M.,  Heimbuch, B.K. & Gagliardi, M. (1996).  Isolation of 

zoosporogenous actinomycetes from desert soils.  Journal of Industrial 

Microbiology 17, 260-267. 

Gause, G.F., Kochetkovga, V. & Vladimirovag, B. (1957). Biochemical mutants of 

staphylococci with impaired respiration. Doklsdy Academy Science USSR, 117, 

720. 

Genilloud, O. (2014).  The re-emerging role of microbial natural products in antibiotic 

discovery.  Antonie van Leeuwenhoek 106, 173-188. 



237 

Genilloud, O., González, I., Salazar, O., Martín, J., Tormo, J.R. & Vincente, F. 

(2011).  Current approaches to exploit actinomycetes as a source of novel 

natural products.  Journal of Industrial Microbiology and Biotechnology 38, 

375-389. 

Gevers, D., Dawyndt, P., Vandamme, P., Willems, A., Vancanneyt, M., Swings, J. 

& De Vos, P. (2006). Stepping stones towards a new prokaryotic taxonomy. 

Philosophical Transactions of the Royal Society, Biology 361, 1911-1916. 

Gillis, M., Vandamme, P., De Vos, P., Swings, J. & Kersters, K. (2005). Polyphasic 

taxonomy. In Bergey's Manual of Systematic Bacteriology, pp. 43-48. Edited 

by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: 

Springer. 

Girard G., Traag B. A., Sangal V., Mascini N., Hoskisson P. A., Goodfellow M., & 

van Wezel, G. P. (2013). A novel taxonomic marker that discriminates 

between morphologically complex actinomycetes. Open Biology 3, 130073. 

Girard, G., Willemse, J., Zhu, H., Claessen, D., Busarakam, K., Goodfellow & van 

Wezel, G.P. (2014).  Analysis of novel kitasatosporae reveals major 

evolutionary changes in conserved developmental genes between 

Kitasatospora and Streptomyces. Antonie van Leeuwenhoek 106, 365-380. 

Golinska, P., Ahmed, L., Wang, D. & Goodfellow, M. (2013a). Streptacidiphilus 

durhamensis sp. nov., isolated from a spruce forest soil. Antonie Van 

Leeuwenhoek 104,199–206. 

Golinska, P., Kim, B.-K., Dahm, H. & Goodfellow, M. (2013b).  Streptacidiphilus 

hamsterleyensis sp. nov., isolated from a spruce forest soil.  Antonie van 

Leeuwenhoek 104, 965-972. 

Golinska, P., Wang, D. & Goodfellow, M. (2013c).  Norcardia aciditolerans sp. nov., 

isolated from a spruce forest soil.  Antonie van Leeuwenhoek 103, 1079-1088. 

Gómez-Silva, B., Rainey, F.A., Warren-Rhodes, K.A., McKay, C.P. & Navarro-

González, R. (2008).  Acatama Desert soil microbiology.  Soil Biology 13, 

117-132. 

Gontang, E.A., Fenical, W. & Jensen, P.R. (2007).  Phylogenetic diversity of Gram-

positive bacteria cultured from marine sediments.  Applied and Environmental 

Microbiology 73, 3272-3282. 

Gonzalez, J. M. & Saiz-Jimenez, C. (2002).  A fluorimetric method for the estimation 

of G+C mol% content in microorganisms by thermal denaturation temperature.  

Environmental Microbiology 4, 770-773. 



238 

Gonzalez, J. M. & Saiz-Jimenez, C. (2005). A simple fluorimetric method for the 

estimation of DNA-DNA relatedness between closely related microorganisms 

by thermal  denaturation temperatures. Extremophiles 9, 75-79. 

Goodacre, R., Timmins, E.M., Burton, R., Kaderbhi, N., Woodward, A.M., Kell, 

D.B. & Rooney, P. (1998).  Rapid identification of urinary tract infection 

bacteria using hyperspectral whole-organism fingerprinting and artificial neural 

networks.  Microbiology 144, 1157-1170. 

Goodfellow, M. (2000).  Microbial systematics: Background and uses.  In Applied 

Microbial Sysematics, pp. 1-18.  Edited by F.G. Priest and M. Goodfellow.  

Kluwer Academic Publishers, Dordrecht. 

Goodfellow, M. (2010). Selective isolation of actinobacteria. In Manual of Industrial 

Microbiology and Biotechnology, pp. 13-27. Edited by R. H. Baltz, 

A.L.Demain and Davies, J. E. Washington, DC: ASM Press. 

Goodfellow, M. (2013).  Actinobacterial diversity as a sources of new drugs.  

Microbiologist 14, 8-12. 

Goodfellow, M. & Fiedler, H.P. (2010).  A guide to successful bioprospecting: 

informed by actinobacterial systematics.  Antonie van Leeuwenhoek 98, 119-

142. 

Goodfellow, M. & Haynes, J. A. (1984). Actinomycetes in marine sediments. In 

Biological, Biochemical and Biomedical Aspects of Actinomycetes, pp. 453–

472. Edited by L. Ortiz-Ortiz, L. F. Bojalil and V. Yakoleff. New York: 

Academic Press. 

Goodfellow, M. & O'Donnell, A. G. (1994). Chemical Methods, in Prokaryotic 

Systematics, Chichester, UK, Wiley & Sons. 

Goodfellow, M. & Maldonado, L. A. (2006). The families Dietziaceae, Gordoniaceae, 

Nocardiaceae and Tsukamurellaceae. In The Prokaryotes, pp. 843-888. Edited 

by M. Dworkin, S. Falkow, K.H. Schleifer and E. Stackebrandt. New York: 

Springer. 

Goodfellow, M., Alderson, G. & Lacey, J. (1979). Numerical taxonomy of 

Actinomadura and related actinomycetes. Journal of General Microbiology 

112, 95-111. 

Goodfellow, M., Weaver, C. R. & Minnikin, D. E. (1982). Numerical classification of 

some rhodococci, corynebacteria and related organisms. Journal of General 

Microbiology 128, 731-745. 



239 

Goodfellow, M., Lacey, J., Athalye, M., Embley, T. M. & Bowen, T. (1989). 

Saccharopolyspora gregorii and Saccharopolyspora hordei: two new 

actinomycete species from fodder. Journal of General Microbiology 135, 

2125-2139. 

Goodfellow, M., Stanton, L. J., Simpson, K. E. & Minnikin, D. E. (1990). Numerical 

and chemical classification of Actinoplanes and some related actinomycetes. 

Journal of Geneneral Microbiology 136, 19-36. 

Goodfellow, M., Zakrzewska-Czerwinska, J., Thomas, E. G., Mordarski, M., Ward, 

A. C. & James, A. L. (1991). Polyphasic taxonomic study of the genera 

Gordona and Tsukamurella including the description of Tsukamurella 

wratislaviensis sp. nov. Zentralblatt für Bakteriologie 275, 162-178. 

Goodfellow, M., Davenport, R., Stainsby, F.M. & Curtis, T.P. (1996).  

Actinomycete diversity associated with foaming in activated sludge plants.  

Journal of Industrial Microbiology 17, 268-280. 

Goodfellow, M., Manfio, G. P. & Chun, J. (1997). Towards a practical species 

concept for cultivable bacteria. In The Units of Biodiversity - Species in 

Practice, pp. 25-59. Edited by M. F. Claridge, H. A. Dawah & M. R. Wilson. 

London, Chapman Hall. 

Goodfellow, M., Alderson, G. & Chun, J. (1998). Rhodococcal systematics: problems 

and developments. Antonie van Leeuwenhoek 74, 1-18. 

Goodfellow, M., Kumar, Y., Labeda, D. P. & Sembiring, L. (2007). The 

Streptomyces violaceusniger clade: a home for streptomycetes with rugose 

ornamented spores. Antonie van Leeuwenhoek 92, 173-199.  

Goodfellow, M., Kämpfer, P., Busse, H.J., Trujillo, M., Suzuki, K.-E., Ludwig, W. 

& Whitman, W.B., eds. (2010).  Bergey’s Manual of Systemic Bacteriology. 

Volume 3: The Actinobacteria, 2
nd

 edn., Parts A and B. New York: Springer, 

pp. 1-2083. 

Goodfellow, M., Brown, R., Ahmed, L., Pathom-aree, W., Bull, A.T., Stach, J.E.M., 

Zucchi,. T.D., Zhang, L. & Wang, J. (2012a).  Verrucosispora fiedleri sp. 

nov., an actinomycete isolated from fjord sediment which syntheses 

proximicins.  Antonie van Leeuwenhoek 103, 493-502. 

Goodfellow, M., Stach, J.E.M., Brown, R., Bonda, A.N.V., Jones, A.L., Mexon, J, 

Fielder, H-P., Zucchi, T.D. & Bull, A.T. (2012b).  Verrucosispora maris sp. 

nov., a novel deep-sea actinomycete isolated from a marine sediment which 

produces abyssomocins.  Antonie van Leeuwenhoek 10, 185-193. 



240 

Gordon, R. E. & Mihm, J. M. (1962). The type species of the genus Nocardia. 

Journal of General Microbiology 27, 1-10. 

Gordon, R. E., Barnett, D. A., Handerhan, J. E. & Pang, C. H. (1974). Nocardia 

coeliaca, Nocardia autotrophica and the nocardin strain. International Journal 

of Systematic Bacteriology 24, 54-63. 

Gregory, P. H. & Lacey, M. E. (1963). Mycological examination of dust from mouldy 

hay associated with farmer's lung disease. Journal of General Microbiology 

30, 75-88. 

Gtari, M., Essoussi, Maaoui, R., Sghaier, H., boujmil, R., Gury, J., pujic, P., 

Brusetti, L., Chouaia, B., Crotti, E., Daffonchio, D., Boudabous, A. & 

Normand, P. (2012).  Contrasted resistance of stone dwelling 

Geodermatophilaceae species to stresses know to give rise to reactive oxygen 

species.  FEMS Microbiology Ecology 80, 566-577. 

Guindon, S. & Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate 

large phylogenetics by maximum likelihood. Systematic Biology 52, 696–704. 

Guo, Y., Zheng, W., Rong, X. & Huang, Y. (2008). A multilocus phylogeny of the 

Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence 

analysis for streptomycete systematics. Internation Journal of Systematic and 

Evolutionary Microbiology 58, 149-159. 

Gupta, R.S. (1998).  Protein phylogenies and signature sequences: a reappraisal of 

evolutionary relationships among archaea-bacteria, eubacteria and eukaryotes. 

Microbiology and Molecular Biology Reviews 62, 1435-1491. 

Gupta, R.S. (2000).  The phylogeny of proteobacteria: relationships to other eubacterial 

phyla and eukaryotes. FEMS Microbiology Reviews 24, 367-402. 

Gupta, R. S. (2009). Protein signatures (molecular synapomorphies) that are distinctive 

characteristics of the major cyanobacterial clades. International Journal of 

Systematic and Evolutionary Microbiology 59, 2510-2526. 

Handelsman, J. (2004). Metagenomics: application of genomics to uncultured  

microorganisms. Microbiology Molecular Biology Reviews 68, 669-685. 

Hanka, L. J. & Schaadt, R. D. (1988). Methods for isolation of streptoverticillia from 

soil. Jounal of Antibiotics (Tokyo) 41, 576-578. 

Harayama, S. & Kasai, H. (2006). Bacterial phylogeny reconstruction from molecular 

sequences. In Molecular Identification, Systematics and Population Structure 

of Prokaryotes, pp. 23-50. Edited by E. Stackebrandt. Berlin: Springer-Verlag. 



241 

Harper, J.L. & Hawksworth, D.L. (1994). Biodiversity: Measurement and Estimation. 

Philosophical Transactions of the Royal Society London, 1994. pp. 5-12. 

Hartley, A.J., Chong, G., Houston, J. & Mather, A.F. (2005). 150 million years of 

climatic stability: evidence from the Atacama Desert, northern Chile. Journal 

of Geological Science 162,421–424. 

Harwani, D. (2013).  Biodiversity of rare thermophilic actinomycetes in the Great 

Indian Thar Desert: an overview.  Indo American Journal of Phamaceutical 

Research 11, 9349-9356. 

Hasegawa, T., Takizawa, M. & Tanida, S. (1983).  A rapid analysis for chemical 

grouping of aerobic actinomycetes.  Journal of General and Applied 

Microbiology 29: 319-322. 

Hayakawa, M. & Nonomura, H. (1987).  Humic acid-vitamin agar, a new medium for 

the selective isolation of soil actinomycetes.  Journal of Fermentation 

Technology 65, 501-509. 

Hayakawa, M., Ishizawa, K. & Nonomura, H. (1988). Distribution of rare 

actinomycetes in Japanese soils. Journal of Fermentation Technology 66, 367-

373. 

Hayakawa, M., Momose, Y., Kajiura, T., Yamazaki, T., Tamura, T., Hatano, K. & 

Nonomura, H. (1995). A selective isolation method for Actinomadura viridis 

in soil. Journal of  Fermentation Bioengineering 79, 287-289. 

Hayakawa, M., Kajiura, T. & Nonomura, H. (1991a). New methods for the highly 

selective isolation of Streptosporangium and Dactylosporangium from soil. 

Journal of Fermentation and Bioengineering 72, 327-333. 

Hayakawa, M., Sadakata, T., Kajiura, T. & Nonomura, H. (1991b). New methods 

for the highly selective isolation of Micromonospora and Microbispora from 

soil. Journal of Fermentation Bioengineering 72, 320-326. 

Hayakawa, M., Takeuchi, T. & Yamazaki, T. (1996). Combined use of trimethoprim 

with nalidixic acid for the selective isolation and enumeration of actinomycetes 

from soil.  Actinomycetologica 10, 80-90.  

Hayakawa, M., Otoguro, M., Takeuchi, T., Yamazaki, T. & Iimura, Y. (2000). 

Application of a method incorporating differential centrifugation for selective 

isolation of motile actinomycetes in soil and plant litter. Antonie van 

Leeuwenhoek 78, 171-185. 



242 

Head, I. M., Saunders, J. R. & Pickup, R. W. (1998). Microbial evolution, diversity, 

and ecology: A decade of ribosomal RNA analysis of uncultivated 

microorganisms.  Microbial Ecology 35, 1-21. 

Helaly, S.E., Goodfellow, M., Zinecker, H., Imhoff, J., Süssmuth, R.D. & Fiedler, 

H.-P. (2013).  Warkmycin, a novel angucycline antibiotic produced by 

Streptomyces sp. Acta 2930.  The Journal of Antibiotics 66, 669-674. 

Hohmann, C., Schneider, K, Bruntner, C.,Irran, E., Nicholson, G., Bull, A.t., Jones, 

A.L., Brown, R., Stach, J.E.M., Goodfellow, M., Beil, W., Krämer, M., 

Imhoff, J.F., Süssmuth, R.D. & Fiedler, H.-P. (2009).  Caboxamycin, a new 

antibiotic of the benzoazole family produced by the deep-sea strain 

Streptomyces sp. NTK 937*.  The Journal of Antibiotics 62, 99-104. 

Hopkins, D. W., Macnaughton, S. J. & O'Donnell, A. G. (1991). A dispersion and 

differential centrifugation technique for representatively sampling 

microorganisms from soil. Soil Biology and Biochemistry 23, 217-225. 

Hopwood, D.A. (2007).  Streptomyces in Nature and Medicine: The Antibiotic Markers.  

New York, Oxford University Press. 

Houston, J. & Hartley, A.J. (2003).  The central Andes west-slope rainshadow and its 

potential contribution to the origin of hyper-aridity in the Atacama Desert.  

International Journal of Climatology 23, 1453-1464. 

Hozzein, W.N., Li, W.-J., Jiang, C.-L., Ali, M.I., Hammouda, U., Mousa, M.A. & 

Xu, L.-U. (2004).  Nocardiopsis alkaliphila sp. nov., a novel alkaliphilic 

actinomtcete isolated from desert soil Egypt.  International Journal of 

Systematic and Evolutionary Microbiology 54, 274-252. 

Hsu, S. C. & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for 

enumeration of actinomycetes in water and soil. Applied Microbiology 29, 422-

426.  

Huang, Y., Pasciak, M., Liu, Z. H., Xie, Q. & Gamian, A. (2004). Amycolatopsis 

palatopharyngis sp. nov., a potentially pathogenic actinomycete isolated from 

a human clinical source. International Journal of Systematic and 

Evolutionary Microbiology 54, 359–363. 

Hütter, B., Fischer, C., Jacobi, A., Schaab, C. & Loferer, H. (2004). Panel of 

Bacillus subtilis reporter strains indicative of various modes of action. 

Antimicrobial Agents and Chemotherapy 48, 2588-2594. 

Ikeda, H., Ishikawa, J., Hanamoto, A., Shinose, M., Kikuchi, H., Shiba, T., Sakaki, 

Y., Hattori, M. & Omura, S. (2003). Complete genome sequence and 



243 

comparative analysis of the industrial microorganism Streptomyces avermitilis. 

Nature Biotechnology 21, 526-531. 

Imhoff, J.F., Labes, A. & Wiese, J. (2011).  Bio-mining the microbial treasures of the 

ocean: new natural products. Biotechnology Advances 29, 468-482. 

Ivanova, N., Sikorski, J., Jando, M., Lapidus, M., Munk, C., Lapidus, A., Rio, 

Glavina, D.R.T., Copeland, A., Tice, H., Cheng, J.F., Lucas, S.,  Chen, F., 

Nolan, M., Bruce, D., Goodwin, L., Pitluck, S., Mavromatis, K., 

Mikhailova, N., Pari, A., Chen, A., Palaniappan, K., Land, M., Hauser, L., 

Chang, Y.J., Jeffries, C.D., Meincke, L., Brettin, T., Detter, J.C., Rohde, 

M., Göker, M., Bristow, J., Elsen, J.A., Markowitz, V., Hugenholtz, P., 

Kypides, N.C.& Klenk, H.P. (2010).  Complete genome sequence of 

Geodermatophilus obscurus type strain (G-20).  Standards in Genomic 

Sciences 30, 158-167. 

Ivantiskaya, L.P., Singal, S.M., Bibikova, M.V. & Vostrov, S.N. (1978).  Direct 

isolation of Micromonospora on selective media with gentamicin.  Antibiotiki 

23, 690-692. 

Jadambaa, N. (2006).  Identification of rare soecies of actinomycetes in soils of 

Mongolia.  18
th

 World Congress of Soil Science, July 9-15, 2006-Philadelphia, 

Penncylvania, USA. 

Jahnke, K. D. (1994). A modified method of quantitative colorimetric DNA-DNA 

hybridization on membrane filters for bacterial identification. Journal of 

Microbiology  methods 20, 273-288. 

Janso, J.E. & Carter, G.T. (2010).  Biosynthetic potential of phylogenetically unique 

endophytic actinomycetes from tropical plants.  Applied and Environmental 

Microbiology 76, 4377-4386. 

Jensen, H. L. (1930). Actinomycetes in Danish soils. Soil Science 30, 59-77. 

Jensen, P. R. (2010). Linking species concepts to natural product discovery in the post-

genomic era. Journal of Industrial Microbiology and Biotechnology 37, 219-

224. 

Jensen, P.R. & Mafnas, C. (2006).  Biogeography of the marine actinomycete 

Salinispora.  Environmental  Microbiology 73, 1146-1152. 

Jensen, P. R., Mincer, T. J., Williams, P. G. & Fenical, W. (2005). Marine 

actinomycete diversity and natural product discovery. Antonie van 

Leeuwenhoek 87, 43-48. 



244 

Jensen, P.R., Williams P.G., Oh, D.C., Zeigler, L. & Fenical, W. (2007).  Species-

specific secondary metabolite production in marine actinomycetes of the genus 

Salinispora. Applied and Environmental  Microbiology 73: 1146-1152.  

Jin, Z. H., Lin, J. P., Xu, Z. N. & Cen, P. L. (2002). Improvement of industry-applied 

rifamycin B-producing strain, Amycolatopsis mediterranei, by rational 

screening. Journal General Applied Microbiology 48, 329-334. 

Johnson, E.A., Madia, S. & Demain, A. (1981).  Chemically defined minimal medium 

growth of the anaerobic cellulolytic thermophile Clostidium thermocellum.  

Applied and Environmental Microbiology 41, 1060-1062. 

Jolley, K. & Maiden, M. (2010). BIGSdb: scalable analysis of bacterial genome 

variation at the population level. BMC Bioinformatics 11,595. 

Jones, K.L. (1949).  Fresh isolates of actinomycetes in which the presence of the 

sporogenous aerial mycelia is a fluctuating characteristic. Journal of 

Bacteriology 57, 141-145. 

Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In Mammalian 

Protein Metabolism, pp. 21-132. Edited by H. N. Munro. New York, NY: 

Academic Press. 

Jung, H. M., Jeya, M., Kim, S. Y., Moon, H. J., Kumar Singh, R., Zhang, Y. W. & 

Lee, J. K. (2009). Biosynthesis, biotechnological production, and application 

of teicoplanin: Current state and perspectives. Applied Microbiology and 

Biotechnology 84, 417-428. 

Kaminuma, E., Kosuge, T., Kodama, Y., Aono, I., Mashima, J., Gojobori, T., 

Sugawara, H., Ogasawara, O., Takagi, T., Okubo, K. & Nakamura, Y. 

(2011). DDBJ progress report. Nucleic Acids Research 39, D22-D27. 

Kämpfer, P. (2012). Family 1. Streptomycetaceae Waksman and Henrici 1943, 339AL 

emend. Rainey, Ward-Rainey and Stackebrandt, 1997, 486 emend. Kim, 

Lonsdale, Seong and Goodfellow 2003b, 113 emend. Zhi, Li and Stackebrandt 

2009, 600. In Bergey’s manual of systematic bacteriology, 2nd edn. pp. 1446–

1454. Editied by M. Goodfellow, P. Kämpfer, H.-J. Busse, M.E. Trujillo, K.-I. 

Suzuki, W Ludwig and W.B. Whitman. New York, NY: Springer. 

Kämpfer, P. & Glaser, S.P. (2012).  Prokaryotic taxonomy in the sequencing era-the 

polyphasic approach revisited.  Environmental Microbiology 14, 291-317.  

Kämpfer, P., Kroppenstedt, R. M. & Dott, W. (1991). A numerical classification of 

the genera Streptomyces and Streptoverticillium using miniaturized 

physiological tests. Journal of General Microbiology 137, 1831-1891. 



245 

Kang, C.-H., Nam, Y.-D., Chung, W.-H., Quan, Z.-X., Park, Y.-H., Park, S.-J., 

Desmone, R., Wan, X.-F. & Rhee, S.-K. (2007). Relationship between 

genome similarity and DNA-DNA hybridization among closely related bacteria. 

Journal of  Industrial Microbiology and Biotechnology 17, 945-951. 

Kawato, M. & Shinobu, R. (1959). On Streptomyces herbaricolor sp. nov., 

supplement: a simple technique for microscopical observation. Memories of 

Osaka University of Liberal Arts and Education  Natural Science 8,114–119. 

Kelly, K. L. (1958). Centroid notations for the revised ISCC-NBS color name blocks. 

Journal of Research of the National Bureau of Standards USA 61, 472. 

Keller, S., Schadt, H. S., Ortel, I. & Süssmuth, R. D. (2007). Action of atrop-

abyssomicin C as an inhibitor of 4-amino-4-deoxychorismate synthase PabB. 

Angewandte Chemie International  Edition 46, 8284-8286. 

Kennedy, J., Flemer, B., Jackson,  S.A., Lejon D.P.H., Morrissey, J.P., O’Gara & 

Dobson, A.D.W.  (2010).  Marine metagenomics: new tools for the study and 

exploitation of marine  microbial metabolism.  Marine Drugs 8: 608-628. 

Khan, M.R. & Williams, S.T. (1975).  Studies on the ecology of actinomycetes in soil-

VII: distribution and characteristics of acidophilic actinomycetes.  Soil biology 

and Biochemistry 7, 345-348. 

Kieft, T.L. (2002). Hot Desert Soil Communities. Encyclopedia of Environmental  

Microbiology. Wiley, New York, pp. 1576–1586. 

Kieser, T., Bibb, M.J., Buttner, Chater, K.F. & Hopwood, D.A. (2000).  Practical 

Streptomyces Genetics.  John Innes Foundation, Norwich Research Park, 

Colney, Norwich NR4 7UH, UK. 

Kim, B.-Y. (2010).  Biosystematics of the genus Dactyosporangium and some other 

filamentous actinomycetes.  PhD thesis,  Newcastle University. 

Kim, B., Sahin, N. Minnikin, D.E., Zakrzewka-Czerwinska, J., Mordarski, M. & 

Goodfellow, M. (1999).  Classification of thermophilic streptomycetes 

including description of Streptomyces thermoakalitolerans.  International 

Journal of Systematic and Bacteriology 49, 7-17. 

Kim, M. & Chun, J. (2014).  16S rRNA gene based identification of Bacteria and 

Archaea using the EzTaxon server.  Mothods in Microbiology 43 (in press). 

Kim, S.-B. & Goodfellow, M. (2002). Streptomyces thermospinisporus sp. nov., a 

moderately thermophilic carboxydotrophic streptomycete isolated from soil. 

International Journal of Systematic and Evolutionary Microbiology 52,1225–

1228. 



246 

Kim, B.-K., Kshertrimayum, J.D. & Goodfellow, M. (2011).  Detection, selective 

isolation and characterisation of Dactyosporangium strains from diverse 

environmental samples.  Systematic and Applied Microbiology 34, 606-616. 

Kim, B. J., Lee, S. H., Lyu, M. A., Kim, S. J., Bai, G. H., Kim, S. J., Chae, G. T., 

Kim, E. C., Cha, C. Y. & Kook, Y. H. (1999). Identification of mycobacterial 

species by comparative sequence analysis of the RNA polymerase gene (rpoB). 

Journal of Clinical Microbiology 37, 1714-1720. 

Kim, B.-J., Kim, C.J., Chun, J., Koh, Y.-H., Lee, S.-H., Hyun, J.-W., Cha, C.-Y. & 

Kook, Y.-H. (2004).  Phylogenetic analysis of the genera Streptomyces and 

Kitatospora based on partial RNA polymerase -subunit gene (rpoB) 

sequences.  International Journal of Systematic Evolutionary and 

Microbiology 54, 593-598. 

Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. (2014).  Toward a taxonomic coherence 

between average nucleotide identity and 16S rRNA gene sequence similarity 

for species demarcation of prokaryotes.  International Journal of Systematic 

and Evolutionary Microbiology 64, 346-351. 

Kim, O.-S., Chi, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., Park, S.-C., Jeon, 

Y.S., Lee, J.-K., Yi, H., Won, S. & Chun, J. (2012). Introducing EzTaxon-e: 

a prokaryotic 16S rRNA gene sequence database with phylotypes that represent 

uncultured species.  International Journal of Systematic and Evolutionary 

Microbiology 62, 716-721. 

Kim, S.-B., Tan, G.Y., Zakrzewska-Czerwinska, J. & Goodfellow, M. (2002a).  

Amycolatopsis eurytherma sp. nov., a thermophilic actinomycete isolated from 

soil.  International Journal of Systematic and Evolutionary Microbiology 52, 

889-894. 

Kim, S.-B., Lonsdale, J., Seong, C.-N. & Goodfellow, M. (2003). Streptacidiphilus 

gen. nov., acidophilic actinomycetes with wall chemotype I and emendation of 

the family  Streptomycetaceae (Waksman and Henrici (1943)
AL

) emended. 

Rainey et al. 1997. Antonie van Leeuwenhoek 83, 107-116. 

Kimura, M. (1980). A simple method for estimating evolutionary rates base 

substitutions through comparative studies of nucleotide sequences. Journal of 

Molecular Evolution 16, 111–120. 

Klenk, H.-P. & Göker, M. (2010).  En route a genome-based classification of Archaea 

and Bacteria?  Systematic and Applied Microbiology 33, 175-182. 



247 

Kluge, A.G. & Farris, J.S. (1967).  Quantitative phyletics and the evolution of of 

anurans.  Systematic Zoology 18, 1–32. 

Koch, C., Kroppenstedt, R. M., Rainey, F. A. & Stackebrandt, E. (1996). 16S 

ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, 

Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and 

Pilimelia and emendation of the family Micromonosporaceae. International 

Journal of Systematic Bacteriology 46, 765-768. 

Komagata, K. & Suzuki, K.-I. (1987). Lipid and cell wall analysis in bacterial 

systematics. Methods in Microbiology 19, 161-206. 

Krieg, N. R. (2005). Identification of prokaryotes. In Bergey's Manual of Systematic 

Bacteriology, pp. 33-38. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. 

M. Garrity. New York: Springer. 

Krieg, N.R. & Padgett, P.J. (2011). Phenotypic and physiological characterization 

methods.  Methods in Microbiology 38, 15-60. 

Kroppenstedt, R. M. (1985). Fatty acid and menaquinone analysis of actinomycetes 

and related organisms. In Chemical Methods in Bacterial Systematics (Society 

for Applied Bacteriology Technical Series vol 20), pp. 173-199. Edited by M. 

Goodfellow and D. E. Minnikin. New York: Academic Press.  

Kroppenstedt, R. M. & Goodfellow, M. (2006). The Family Thermomonosporaceae: 

Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In The 

Prokaryotes, pp. 682-724. Edited by M. Dworkin, S. Falkow, K. H. Schleifer 

& E.Stackebrandt. New York: Springer. 

Kudo, T. & Seino, A. (1987). Transfer of Streptosporangium indianense Gupta 1965 to 

the genus Streptomyces as Streptomyces indiaensis (Gupta 1965) comb. nov. 

International Journal of Systematic Bacteriology 37, 241-244. 

Kumar, Y., Aiemsum-ang, P., Ward, A. C. & Goodfellow, M. (2007). Diversity and 

geographical distribution of members of the Streptomyces violaceusniger 16S 

rRNA gene clade by clade-specific PCR primers. FEMS Microbiology Ecology 

62, 54-63. 

Kumar, Y. & Goodfellow, M. (2008). Five new members of the Streptomyces 

violaceusniger 16S rRNA gene clade: Streptomyces castelarensis sp. nov., 

comb. nov., Streptomyces himastatinicus sp. nov., Streptomyces mordarskii sp. 

nov., Streptomyces rapamycinicus sp. nov. and Streptomyces ruanii sp. nov. 

International Journal of Systematic Evolutionary and Microbiolology 58, 

1369-1378. 



248 

Kurapova, A.I., Zenova, G.M., Studnitsyn, I.I., Kizilova, A.K., Manucharova, N.A., 

Norovsuren, Z. & Zvyagintev, D.G. (2012).  Thermotolerant and 

thermophilic actinomycetes from soils of Mongolia Desert steppe zone.  

Microbiology 81, 98-108. 

Kurtböke, D. I. (2003). Use of bacteriophage for the selective isolation of rare 

actinomycetes. In Selective Isolation of Rare Actinomycetes, pp. 10-54. Edited 

by I. Kurtböke. Nambour, Queensland, Australia: Queensland Complete 

Printing Services. 

Küster, E. & Williams, S. T. (1964). Selection of media for isolation of streptomycetes. 

Nature 202, 928-929.  

Kutzner, H. J. (1976). Methoden zur Untersuchung von Streptomyceten und eingen 

anderen Actinomyceten. Darmstadt: Teilsammlung Darmstadt am Institut fur 

Microbiologi de Technischen Hochschule. 

Kyrpides, N.C., Woyhe, T., Eisen, J.A., Garrity, G., Lilburn, T.G., Beck, B.J., 

Whitman, W.B., Hugesholy, P. & Klenk, H.P. (2014).  Genomic 

Encyclopidia of Type Strains Phase 1: the 1000 microbial genomes (KMG-1) 

project.  Standards in Genomic Sciences 9, No3. 

Laatsch, H. (2013).  Antibase 2012-The natural compound identifier.  Wiley-VCH, 

Weinheim, Germany.   

Labeda, D.P. (2011). Multilocus sequence analysis of phytopathogenic Streptomyces 

species. International Journal of Systematic and Evolutionary Microbiology 

61, 2525–2531. 

Labeda, D.P. & Goodfellow, M. (2012a). Family I. Pseudonocardiaceae Embley, 

Smida, and Stackebrandt 1989, emend. Labeda, Goodfellow, Chun, Zhi and Li 

2010a. In Bergey’s Manual of Systematic Bacteriology. 2nd edition, volume 5 

pp, 1302-1305. Edited by M. Goodfellow , P. Kämpfer, H. Busse, M.E. Trujillo, 

K. Suzuki, W. Ludwig and W.B. Whitman.  New York, NY: Springer.  

Labeda, D.P. & Goodfellow, M. (2012b).  OrderXIII. Pseudonocardiales ord. nov. 

Stackebrandt, Rainey and Ward-Rainey 1997, emend. Zhi, Li and Stackebrandt 

2009. In Bergey’s Manual of Systematic Bacteriology. 2nd edition, volume 5 p, 

1301.  Edited by M. Goodfellow , P. Kämpfer, H. Busse, M.E. Trujillo, K. 

Suzuki, W. Ludwig and W.B. Whitman.  New York, NY: Springer.  

Labeda, D. P. & Shearer, M. C. (1990). Isolation of actinomycetes for 

biotechnological applications. In Isolation of Biotechnological Organisms from 

Nature, pp. 1-19. Edited by D. P. Labeda. London: McGraw-Hill. 



249 

Labeda, D. P., Donahue, J. M., Williams, N. M., Sells, S. F. & Henton, M. M. 

(2003). Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. 

nov., and Amycolatopsis pretoriensis sp. nov., isolated from equine  placentas. 

International Journal of Systematic and Evolutionary Microbiology 53, 1601–

1605. 

Labeda, D. P., Goodfellow, M., Chun, J., Zhi, X.-Y. & Li, W.-J. (2011). 

Reassessment of the systematics of the suborder Pseudonocardineae: transfer 

of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 

2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae 

Embley et al. 1989 emend. Zhi et al. 2009. International Journal of Systematic 

and Evolutionary Microbiology 61, 1259-1264. 

Labeda, D.P., Goodfellow, M., Brown, R., Ward, A.C., Lanoot, C., Vanncanneyt, 

M., Swings, J., Kim, S.-B., Liu, Z., Chun, J., Tamura, T., Oguchi, A., 

Kikuchi, T., Kikuchi, H., Nishii, T., Tsuji, K,, Yamaguchi, Y., Tase, A., 

Takahashi, M., Sakane, T., Suzuki, K.I. & Hatano, K. (2012). Phylogenetic 

study of the species within the family Streptomycetaceae. Antonie van 

Leeuwenhoek 101, 73–104. 

Labeda, D.P., Doroghazi, J.P., Ju, K.-S. & Metcalf, W.W. (2014). Taxonomic 

evaluation of Streptomyces albus and related species using multilocus sequence 

analysis and proposals to emend the description of Streptomyces albus and 

describe Streptomyces pathocidini sp. nov. International Journal of Systematic 

and Evolutionary Microbiology 64. 894-900. 

Lam, K.S. (2007).  New aspects of natural products in drug discovery.  Trends in 

Microbiology 15, 279-289. 

Lanoot, B., Vancanneyt, M., Cleenwerck, I., Wang, L., Li, W., Liu, Z. & Swings, J. 

(2002). The search for synonyms among streptomycetes by using SDS-PAGE 

of whole-cell proteins. Emendation of the species Streptomyces aurantiacus, 

Streptomyces cacaoi subsp. cacaoi, Streptomyces caeruleus and Streptomyces 

violaceus. International Journal of  Systematic and Evolutinary Microbiolgy 52, 

823-829. 

Lanoot, B., Vancanneyt, M., Hoste, B., Vandemeulebroecke, K., Cnockaert, M. C., 

Dawyndt, P., Liu, Z., Huang, Y. & Swings, J. (2005). Grouping of 

streptomycetes using 16S-ITS RFLP fingerprinting. Research in Microbiology 

156, 755-762. 

Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R. 



250 

& Clark, W. A. (1975). International Code of Nomenclature of Bacteria. 

Washington, DC: ASM Press. 

Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R. 

& Clark, W. A. (1992). International Code of Nomenclature of Bacteria (1990 

Revision). Bacteriological Code. Washington, DC: ASM Press. 

Lazzarini, A., Cavaletti, L., Toppo, G. & Marinelli, F. (2000). Rare genera of 

actinomycetes as potential producers of new antibiotics. Antonie van 

Leeuwenhoek 78, 399-405. 

Lechevalier, M. P. (1972). Description of a new species, Oerskovia xanthineolytica and 

emendation of Oerskovia Prauser et al. International Journal of Systematic 

Bacteriology 22, 260-264. 

Lechevalier, M. P. & Lechevalier, H.A. (1970).  Chemical composition as a criterion 

in the classification of aerobic actinomycetes.  International Journal of 

Systematic Bacteriology 20, 435-443. 

Lechevalier, M. P., De Bièvre, C. & Lechevalier, H. A. (1977). Chemotaxonomy of 

aerobic actinomycetes: phospholipid composition. Biochemical Systematics 

and Ecology 5, 249-260. 

Lechevalier, M.P., Prauser, H., Labeda, D.P. & Ruan, J.S. (1986).  Two new genera 

of nocardioform actinomycetes-Amycolata gen. nov. and Amycolatopsis gen. 

nov.  International Journal of Systematic Bacteriology 36, 29-37. 

Lee, S.D. (2009).  Amycolatopsis ultiminotia sp. nov., isolated from rhizosphere soil, 

and emended description of the genus Amycolatopsis. International Journal of 

Systematic and Evolutionary  Microbiology 59, 1401–1404. 

Lingappa, B.T. & Lockwood, J.L. (1962).  Fungitoxicity of lignin monomers, model 

substances, amd decomposition products.  Phytopathology 52, 295-299. 

Lotz, A., Ferroni, A., Beretti, J. L., Dauphin, B., Carbonnelle, E., Guet-Revillet, H., 

Veziris, N., Heym, B., Jarlier, V., Gaillard, J. L., Pierre-Audigier, C., 

Frapy, E., Berche, P., Nassif, X. & Bille, E. (2010). Rapid identification of 

mycobacterial whole cells in solid and liquid culture media by matrix-assisted 

laser desorption ionization-time of flight mass spectrometry. Journal of 

Clinical Microbiology 48, 4481-4486. 

Ludwig,W. & Klenk, H.-P. (2001). Overview: a phylogenetic backbone and 

taxonomic framework for procaryotic systematics. In Bergey's Manual of 

Systematic Bacteriology, 2nd edn, pp. 49-65. Edited by D. R. Boone, R. W. 

Castenholz  and G. M. Garrity. New York: Springer. 



251 

Ludwig, W. & Klenk, H. P. (2005). Overview: a phylogenetic backbone and 

taxonomic framework for procaryotic systematics. In Bergey's Manual of 

Systematic Bacteriology, pp. 49-66. Edited by D. J. Brenner, N. R. Krieg, J. T. 

Staley and G. M. Garrity. New York: S pringer. 

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, 

Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, 

S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, 

A., Liss, T., Lu¨ßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., 

Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A. 

& Schleifer, K. H. (2004). ARB: a software environment for sequence data. 

Nucleic Acids Research 32, 1363-1371. 

Ludwig, W., Euzéby, J. and Whitman, W. B. (2011a). Road map to the phyla 

Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, 

Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, 

Verrucomicrobia, Chlamydiae, and Planctomycetes. In: Bergey’s Manual of 

Systematic Bacteriology, Volume 4, pp. 1-19. Edited by W.B. Whitman. 

Springer, New York. 

Ludwig, W., Schleifer, K.-H. & Whitman, W. (2012).  Road map of Actinobacteria.  

In Bergey’s Manual of Systematic Bacteriology, Volume 5 pp. 1-28. Edited by 

M. Goodfellow, P. Kämpfer, H. J. Busse, M.E. Trujillo, V. Ludwig, K.-I. 

Suzuki and W.B. Whitman, A. Parte,Springer, New York.  

Ludwig, W., Oliver, F., Glöchner, F.O. & Yilmaz, P.  (2011b).  The use of rRNA 

gene sequence data in the classification and identification of prokaryotes.  

Method in Microbiology 38, 349-384. 

Luedemann, G.M. (1968).  Geodermatophilus, a new genus of the Dermatophilaceae 

(Actinomycetes).  Journal of Bacteriology 96, 1848-1858. 

Luedemann, G.M. (1971). Micromonospora purpureochromogenes (Waksman and 

Curtis 1916) comb. nov. (Subjective synonym. Micromonospora fusca Jensen 

1932). International Journal of Systematic Bacteriology 21, 240-247.  

Luo, X., Wang, J., Zeng, X.-C., Wang, Y., Zhou, L., Nie, Y., Dai, J. & Fang, C. 

(2012). Mycetocola manganoxydans sp. nov., novel actinobacteria isolated 

from the Taklamakan Desert.  International Journal of Systematic and 

Evolutionary Microbiology 62, 2967-2970. 



252 

MacDonald, R. M. (1986). Sampling soil microfloras: dispersion of soil by ion 

exchange and extraction of specific microorganisms by elutriation. Soil Biology 

and Biochemistry 18, 399-406. 

MacNaughton, S.J. & O’Donnell, A.G. (1994).  Tuberculostearic acid as a means of 

estimating the recovery (using dispersion and differential centrifugation) of 

actinomycetes from soil. Journal of Microbiological Methods 20, 69–77. 

Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., 

Zhang, Q., Zhou, J., Zurth, K., Caugant, D. A., Feavers, I. M., Achtman, 

M. & Spratt, B. G. (1998). Multilocus sequence typing: a portable approach to 

the identification of clones within populations of pathogenic microorganisms. 

Proceedings of the National Academy Sciences U S A 95, 3140-3145. 

Makkar, N. S. & Cross, T. (1982). Actinoplanetes in soil and on plant litter from 

freshwater habitats. Journal of Applied Bacteriology 52, 209-218. 

Maldonado, L., Hookey, J. V., Ward, A. C. & Goodfellow, M. (2000). The Nocardia 

salmonicida clade, including descriptions of Nocardia cummidelens sp. nov., 

Nocardia fluminea sp. nov. and Nocardia soli sp. nov. Antonie van 

Leeuwenhoek 78, 367-377. 

Maldonado, L.A., Stach, J.E.M., Pathom-aree, W., Ward, A.C., Bull, A.T. & 

Goodfellow, M. (2005).  Diversity of cultivable actinobacteria in 

geographically wide spread marine sediments.  Antonie van Leeuwenhoek 87, 

11-18. 

Maldonado, L.A., Stach, J.E.M., Ward, A.C., Bull, A.T. & Goodfellow, M. (2008).  

Characterisation of micromonosporae from aquatic environments using 

molecular taxonomic menthds.  Antonie van Leeuwenhoek 94, 289-298. 

Maldonado, L.A., Frangoso-Yáňez, D., Pérez-Garciä, A., Rosellón- Druker, J., 

Quintana, E. (2009).  Actinobacterial diversity from marine sediments 

collected in Mexico. Antonie van Leeuwenhoek 95, 111–120.  

Manfio, G. P., Zakrzewska-Czerwinska, J., Atalan, E. & Goodfellow, M. (1995). 

Towards minimal standards for description of Streptomyces species. 

Biotechnologia 7, 242 - 283. 

Manfio, G. P., Atalan, E., Zakrzewska-Czerwinska, J., Mordarski, M., Rodriguez, 

C., Collins, M. D. & Goodfellow, M. (2003). Classification of novel soil 

streptomycetes as Streptomyces aureus sp. nov. Streptomyces laceyi sp. nov 

and Streptomyces sanglieri sp. nov. Antonie van Leeuwenhoek 83, 245–255. 



253 

Manivasagan, P., Venkatesan, J., Sivakumar, K. & Kim, S.-K. (2013).  Marine 

actinobacterial metabolites: Current status and future perspectives.  

Microbiological Research 168, 311-332. 

Mao, J., Wang, J., Dai, H.-Q., Zhang, A.-D., Tang, Q.-Y., Ren, B., Goodfellow, M., 

Zhang, L.-X. & Liu, Z.-H. (2010). Yuhushiella deserti gen. nov., sp. nov., a 

new member of suborder Pseudonocardineae.  International Journal of 

Systematic and Evolutionary Microbiology 61, 621-630. 

Martens, M., Dawyndt, P., Coopman, R., Gillis, M., De Vos, P. & Willems, A. 

Using 10 housekeeping genes in the genus Ensifer (including former 

Sinorhizobium). International Journal of Systematic and Evolutionary 

Microbiology 58, 200-214. 

McCarthy, A. J. & Cross, T. (1981).  A note on a selective isolation medium for the 

thermophilic actinomycete  Thermomonospora chromogena. Journal of 

Applied Bacteriology 51, 299-302. 

McKay, C.P., Friedmann, E.I., Gómez-Silva, B., Cáceres- Villanueva, L. 

&Andersen, D.T. (2003). Temperature and moisture conditions for life in the 

extreme arid region of the Atacama Desert: four years of observations 

including the El Niῆo of 1997– 998. Astrobiology 3, 393–406. 

Medema, M.H., Blin, K., Cimermancic, P. de J.V., Zakrzewski, P., Fischbach, 

M.A., Weber, T., Takano, E., Breitling, R. (2011). AntiSMASH: rapid 

identification, annotation and analysis of secondary metabolite biosynthesis 

gene clusters in bacterial and fungal genome sequences. Nucleic Acids 

Research 39, W339–W346. 

Mehlen, A., Goeldner, M., Ried, S., Stindl, S., Ludwig, W. & Schleifer, K.-H. 

(2004). Development of a fast DNA-DNA hybridization method based on 

melting profiles in microplates. Systematic and Applied Microbiology 27, 689-

695. 

Meier-Kolthoff, J.P., Göker, M., Spröer, S. & Klenk, H.P. (2013).  When should a 

DDH experiment be mandatory in microbial taxonomy?  Archives of 

Microbiology 195, 413-418. 

Meklat, A., Sabaou, N., Zitouni, A., Mathieu, F. & Lebrihi, A. (2011).  Isolation, 

taxonomy and antagonistic properties of halophilic actinomycetes in Saharan 

soils of Algeria.  Applied and Environmental Microbiology 77, 6710-6714. 

Mertz, F.P. & Higgens, C.E. (1982). Streptomyces capillispiralis sp. nov. 

International Journal of Systematic  Bacteriology 32, 116-124. 



254 

Mevs, U., Stackebrandt, E., Schumann, P., Gallikowski, C.A. & Hirsch, P. (2000).  

Modestobacter sultiseptatus gen. nov., sp. nov., a budding actinomycete from 

soils of the Asgard Range (Transantarctic Mountains).  International Journal 

of Systematic and Evolutionary Microbiology 50, 337-346. 

Miao, Q., Qin, S., Bian, G.-K., Yuan, B., Xing, K., Zhang, Y.-J., Li, Q., Tang, S.-K., 

Li, W.-J. & Jiang, J.-H. (2011).  Amycolatopsis endophytica sp. nov., a 

novel endophytic actinomycete isolated from oil-seed plant Jatropha curas L.  

Antonie van Leeuwenhoek 100, 333-339. 

Millard, W.A. & Burr, S. (1926). A study of twenty-four strains of Actinomyces and 

their relation to types of common scab of potatoes.  Annuals of Applied Biology 

13, 580-644. 

Miller, J.H. (1972).  Experiments in molecular genetics.  Cold Spring Harbor 

Laboratory. Cold Spring Harbor. 

Mincer, T.J., Jensen, P.R., Kauffman, C.A. & Fenical, W. (2002). Widespread and 

persistent populations of a major new marine actinomycete taxon in ocean 

sediments. Applied Environmental Microbiology 68, 5005–5011. 

Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M. (1980). Thin-

layer chromatography of methanolysates of mycolic acid-containing bacteria. 

Journal of Chromatography 188, 221-233. 

Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., 

Schaal, A. & Parlett, J. H. (1984). An integrated procedure for the 

extraction of bacterial isoprenoid quinones and polar lipids. Journal of 

Microbiology Methods 2, 233-241. 

Mishra, S. K., R. E. Gordon & D. A. Barnett. (1980). Identification of nocardiae and 

streptomycetes of medical importance. Journal of Clinical Microbiology 11, 

728-736. 

Miragaia, M., Thomas, I. C., Couto, I., Enright, M. C. & de Lencastre, H. (2007). 

Inferring a population structure for Staphylococcus epidermidis from 

multilocus sequence typing data. Journal of  Bacteriology 189, 2540-2552. 

Montero-Calasans, M.C., Göker, M., Pötter, G., Rohde, M., Spröer, C., Schumann, 

P., Gorbushina, A.A. & Klenk, H.P. (2013).  Geodermatophilus normandii 

sp. nov., isolated from Saharan desert soil.  International Journal of Systematic 

and Evolutionary Microbiology 63, 3437-3443. 



255 

Murray, P. R., Baron, E. J., Pfalter, M. A., Tenover, F. C. & Yolken, R. H. (1999). 

Manual of Clinical Microbiology, 7th edn. Washington, DC: American Society 

for Microbiology. 

Nachtigall, J., Kulik, A., Bull, A.T., Goodfellow, M, Asenjo, J.A., Maier, A., Weise, 

J., Imhoff, J.F., Süssmuth, R.D. & Fiedler, H.-P. (2011).  Atacamycins A-C, 

22 membered antitumor macrolactones produced by Streptomyces sp. C38.  

Journal of Antibiotics 64, 775-780. 

Nakamura, K., Hiraishi, A., Yoshimi, Y., Kawaharasaki, M., Masuda, K. & 

Kamagata, Y. (1995). Microlunatus phosphovorus gen. nov., sp. nov., a new 

gram-positive polyphosphate-accumulating bacterium isolated from activated 

sludge. International Journal of Systematic Bacteriology 45, 17–22. 

Navarro-Gonzalez, R., Rainey F.A., Molina, P., Bagaley, D.R., Hollen, B.J., De la 

Rosa, J. Small, S.M., Quinn, R.C., Grunthaner, F.J., Caceres, L., Gómez-

Silva, B. & McKay, C.P. (2003).  Mars-like soils in the Atacama Desert, Chile, 

and the dry limit of microbial life.  Science 302, 1018-1021.  

Nei, M. & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford 

University Press, New York. 

Neilson, J.W., Quade, J., Ortiz, M., Nelson, W.M., Legatzki, A., Tian, F., LaComb, 

M., Betancourt, J.L., Wing, R.A., Soderlund, C.A. & Maier, R.M. (2012).  

Life at the hyperarid margin: novel bacterial diversity in arid soils of the 

Atacama Desert, Chile.  Extremeophiles 16, 553-566. 

Newman, D.J. (2008).  Natural products as leads to potential drugs: an old process or 

the hope for drug discovery?  Journal of Medical Chemistry 61, 2589-2599. 

Newman, D.J. & Cragg, G.M. (2013).  Natural produsts as sources of new drugs over 

the 30 years from 1981-2010.  Journal of Natural Products 75, 311-335. 

Nei, G.-X., Ming, H., Li, s., Zhou, E.-M., Cheng, J., Tang, W., Feng, H.-G., Tang, 

S.-K. & Li, W.-J. (2012).  Amycolatopsis dongchuanensis sp. nov., an 

actinobacterium isolated from soil.  International Journal of Systematic and 

Evolutionary Microbiology 62, 2650-2656. 

Nie G.-X., Ming H., Li S., Zhou E.-M., Cheng J., Yu T.-T., Zhang J., Feng H.-G., 

Tang S.-K. & Li W.-J. (2012). Geodermatophilus nigrescens sp. nov., 

isolated from a dry-hot valley. Antonie van Leeuwenhoek 101, 811-817. 

Niepold, F., Conrad, R. & Schlegel, H. G. (1979). Evaluation of the efficiency of 

extract for quantitative estimation of hydrogen bacteria in soil. Antonie van 

Leeuwenhoek 45, 485-497. 



256 

Nolan, R. D. & Cross, T. (1988). Isolation and screening of actinomycetes. In 

Actinomycetes in Biotechnology, pp. 1-32. Edited by M. Goodfellow, S. T. 

Williams & M. Mordarski. San Diego, CA: Academic Press. 

Nonomura, H. & Ohara, Y. (1969). Distribution of actinomycetes in soil. VII. A 

culture method effective for both of preferential isolation and enumeration of 

Microbispora and Streptosporangium strains in soil. Part 2 Classification of the 

isolates. Journal of Fermentation Technology 47, 701-709. 

Normand, P. & Benson, D. R. (2012). Genus I. Geodermatophilus Luedemann 1968. 

1994. In Bergey´s Manual of Systematic Bacteriology, 2nd edn, vol 5, The 

Actinobacteria Part 1, pp. 528-530. Editted by M. Goodfellow, P. Kämpfer, H.J. 

Busse, M.E. Trujillo, K.I. Suzuki, W. Ludwig, W.B. Whitman. Springer, New 

York. 

Normand, P., Gury, J., Pujic, P., Chouaia, B., Brusetti, L., Daffonchio, D., 

Vancherie, B., Barbe, V., Médigue, C., Calteau, A., Ghodhbane-Gtari, F., 

Essoussi, I., Nouioui, I., Abbassi-Ghozzi, I. & Gtari, M. (2012).  Genome 

sequence of radiation-resistant Modestobacter marinus strain BC 501, a 

representative actinobacterium that thrives on calcareous surfaces.  Journal of 

Bacteriology 17,  4773-4774. 

Nonomura, H. & Takagi, S. (1977). Distribution of actinomycetes in soil of Japan. 

Journal of Fermentation Technology 55, 423-428. 

Norman, P. (2006).  Geodermatophilaceae fam. nov., a formal description.  

International Journal of Systematic and Evolutionary Microbiology 56, 

2277-2278. 

Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., Dawson, J., 

Evtushenko, L. & Misra, A. K. (1996). Molecular phylogeny of the genus 

Frankia and related genera and emendation of the family Frankiaceae. 

International Journal of Systematic Bacteriology 46, 1–9. 

O'Donnell, A.G. (1988).  Recognition of novel actinomycetes.  In Actinomycetes in 

Biotechnology, pp. 69-88.  Edited by M. Goodfellow, S.T. Williams & M. 

Mordarski.  London, Academic Press Ltd. 

O'Donnell, A.G., Falconer, C. Goodfellow, M., Ward, A.C. & Williams, E. (1993).  

Biosystematics and diversity amongst novel carboxydotrophic actinomecetes.  

Antonie van Leeuwenhoek  64, 325-340. 



257 

Okami, Y. & Hotta, K. (1988). Search and discovery of new antibiotics In 

Actinomycetes in Biotechnology, pp. 33-67. Edited by M. Goodfellow, S. T. 

Williams & M. Mordarski. London: Academic Press.  

Okoro, C., Brown, R., Jones, A., Andrews, B., Asenjo, J., Goodfellow, M & Bull, A. 

(2009).  Diversity of culturable actinomycetes in hyper-arid soils of the 

Atacama Desert, Chile.  Antonie van Leeuwenhoek 95, 121-133. 

Okoro, C., Bull, A., Mutreja, A., Rong, X., Huang, Y. & Goodfellow, M. (2010).  

Lechevalieria atacamensis sp. nov., Lechevalieria deserti sp. nov. and 

Lechevalieria roselyniae sp. nov., isolated from hyperarid soils.  International 

Journal of Systematic and Evolutionary Microbiology 60, 296-300. 

Olano, C., Méndez, C. & Salas, J.A. (2009).  Antitumor compounds from marine 

actinomycetes.  Marine Drugs 7, 210-248. 

Oliynyk, M., Samborskyy, M., Lester, J. B., Mironenko, T., Scott, N., Dickens, S., 

Haydock, S. F. & Leadlay, P. F. (2007). Complete genome sequence of the 

erythromycin-producing bacterium Saccharopolyspora erythraea NRRL 23338. 

Nature Biotechnology 25, 447-453. 

Opell, J.B. & Zebal, G.P. (1967).  Ecological patterns of microorganism in deserts.  

Life Science & Space Research 5, 187-203. 

Orchard, V. A. & Goodfellow, M . (1974). The selective isolation of Nocardia from 

soil using antibiotics.  Journal of Applied Bacterial Microbial 85, 160-162. 

Orchard, V. A., Goodfellow, M. & Williams, S. T. (1977). Selective isolation and 

occurrence of nocardiae in soil. Soil Biolology and Biochemistry 9, 233-238. 

Orchard, V. A. & Goodfellow, M. (1980). Numerical classification of some named 

strains of Nocardia asteroides and related isolates from soil. Journal of 

General Microbiology 118, 295-312. 

Oren, A. & Garrity, G.M. (2014).  Then and now: a systematic review of the 

systematics of prokaryotes in the last 80 years.  Antonie van Leeuwenkoek DOI 

10.1007/s10482-013-0084-1. 

Parro, V., de Diego-Castilla, G., Moreno-Paz, M., Blanco-López, Y., Cruz-Gil, P.,
 

Rodríguez-Manfredi, .JA., Fernández-Remolar, D.,
 
Gómez, F., Gómez, M.J., 

Echeverría, A., Urtuvia, V., Ruiz-Bermejo, M., Rivas, L.A., García-

Villadango, M., Postigo, M., Sánchez-Román, M., Chong, G., Demergasso, 

C, & Gómez-Elvira J. (2011). A microbial oasis in the hypersaline Atacama 

subsurface discovered by a life detector chip: implication to the search for life on 

Mars. Astrobiology 11, 969-996.
 



258 

Pathom-aree, W., Nogi, Y., Sutcliffe, I.C., Ward, A.C., Horikoshi, K., Bull, A.T. & 

Goodfellow, M. (2006) Dermacoccus abyssi sp. nov, a piezzotolerant 

actinomycete isolated from the Mariana Trench.  International Journal of 

Systematic and Evolutionary Microbiology 56, 1233-1236. 

Paulino-Lima, I. G., Azua-Bustos A., Vicuña R.,Gonzáles-Silva, Salas, L., Tiexeira, 

L., Rosado, A. da Costa Leitao, A.A. & Lage, C. (2013). Isolation of UVC- 

tolerant bacteria from the hyperarid Atacama Desert, Chile. Microbial Ecology, 

65, 325-335. 

Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. (2007). Drugs for bad 

bugs: Confronting the challenges of antibacterial discovery. Nature Reviews 

Drug Discovery 6, 29-40. 

Porter, J. N., Wilhelm, J. J. & Tresner, H. D. (1960). Method for preferential 

isolation of actinomycetes from soils. Applied Microbiology 8, 174-178. 

Pridham, T. G. & Gottlieb, D. (1948). The utilization of carbon compounds by some 

Actinomycetales as an aid for species determination. Journal of Bacteriology 

56, 107–114. 

Priest, F. G. (2004). Approaches to identification. In Microbial Diversity and 

Bioprospecting, pp. 49-56. Edited by A. T. Bull. Washington, DC: ASM Press. 

Priest, F. G. & Williams, S. T. (1993). Computer-assisted identification. In Hand book 

of New Bacterial Systematics, pp. 361-381. Edited by M. Goodfellow & A. G. 

O'Donnell. London: Academic Press. 

Priest, F. G. & Goodfellow, M., eds.  (2000). Applied Microbial Systematics. 

Dordrecht: Kluwer Academic Publishers, pp. 1-290. 

Promnuan, Y., Kudo, T., Ohkuma, M. & Chantawannakul, P. (2013).  Streptomyces 

chiangmaiensis sp. nov., and Streptomyces lanensis sp. nov., isolated from the 

south-Easr Asian stingless bee (Tetragonilla collina).  International Journal of 

systematic and Evoluitional Microbiology 63, 1896-1901. 

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. and 

Glöckner, F. O. (2007). SILVA: a comprehensive online resource for quality 

checked and aligned ribosomal RNA sequence data compatible with ARB. 

Nucleic Acids Research 35, 7188-7196. 

Pukall, R., Lapidus, A., Glavina, D.R.T., Copeland, A. Tice, H., Cheng, J.F., Lucas, 

S., Chen, F., Nolan, M., Labutti, K., Pati, A., Ivenova, N., Mavromatis, K., 

Mikhailova, N., Pitluck, S., Bruce, D., Goodwin, L., Land, M., Hauser, L., 

Chang, Y.J., Jeffries, C.D., Chen, A., Palaniappan, K., Chain, P., Rohde, 



259 

M., Göker, M., Bristow, J., Eisen, J.A., Markowitz, V., Huhenholtz, P., 

Kyrpides, N.C., Klenk, H.P. & Brettin, T. (2012).  Complete genome 

sequence of Kribbella flavida type strain (IFO 14399).  Standards in Genomic 

Sciences 2, 186-193. 

Qin, S., Zhao, G. Z., Li, J., Zhu, W. Y., Xu, L. H. & Li, W. J. (2009). Jiangella alba 

sp. nov., an endophytic actinomycete isolated from the stem of Maytenus 

austroyunnanensis. International Journal of Systematic and Evolutionary 

Microbiolgy 59, 2162-2165. 

Qin, S., Brian, G.K., Zhang, Y.J., Xing, K., Cao, C.L., Lui, C.H., Dai, C.C. & Jiang, 

J.H. (2013).  Modestobacter roseus sp. nov., an endophytic actinomycete 

isolate from the coastal halophyte Salicornia europea Linn., and emended 

description of the genus Modestobacter.  International Journal of Systematic 

and Evolutionary Microbiology 63, 2197-2202. 

Rainey, F.A. & Oren, A., eds (2011).  Taxonomy of prokaryotes.  Method in 

Microbiology, Volume 38..  Elseiver, London, pp. 1-472. 

Rappé, M. S. & Giovannoni, S. J. (2003). The uncultured microbial majority. Annual 

Review of Microbiology 57, 369-394. 

Ramsay, A. J. (1984). Extraction of bacteria from soil: efficiency of shaking or 

ultrasonication as indicated by direct counts and autoradiography. Soil Biology 

and Biochemistry 16, 475-481. 

Rateb, M.E., Houssen, W.E., Arnold, M., Abdelrahman, M.-H., Deng, H., 

Harrison, W.T.A., Okoro, C.K., Asenjo, J.A., Andrews, B.A., Ferguso,n 

G., Bull, A.T., Goodfellow, M., Ebel, R. & Jaspars, M. (2011a). 

Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert 

Streptomyces sp. Journal of Natural Products 74, 1965–1971. 

Rateb, M.E., Houssen, W.E., Arnold, M., Abdelrahman, Deng, H., Harrison, 

W.T.A., Okoro, C.K., Asenjo, J.A., Andrew, B.A., Ferguson, G., Bull, A.T., 

Goodfellow, M., Ebel, R. & Jaspars, M. (2011b).  Chaxamycins A-D, new 

bioactive ansamycins from a hyper-arid desert Streptomyces sp.   Journal of 

Natural Product 74, 1491-1499. 

Ray, L., Suar, M., Kumar, Pattnaik, A.K. & Raina, V. (2013). Streptomyces 

chickensis sp. nov. a novel halophilic streptomycete isolated from brackish 

water sediment of Lake Chilika in Odisha.  International Journal of 

Systematic and Evolutionary Microbiology 63, 2754-2764. 



260 

Reasoner, D.J. & Geldreich, E.E. (1985).  A new medium for the enumeration and 

subculture of bacteria from potable water.  Applied and Environmental 

Microbiology 49, 1-7.  

Reddy, G.S.N., Potrafka, R.M. & Garcia-Pichel, F. (2007).  Modestobacter 

versicolor sp. nov., an actinobacterium from biological soils cruts that 

produces melanins under oligothrophy, with emended descriptions of the 

genus Modestobacter multiseptatus Mevs et al. 2000.  International 

Journal of Systematic and Evolutionary Microbiology 57, 2014-2020. 

Reddy, T.V., Mahmood, S., Paris, L., Reddy, Y.H., Wellington, E.M.H. & Idris, 

M.M. (2011). Streptomyces hyderabadensis sp. nov. an actinomycete isolated 

from soil. International Journal of Systematic and Evolutionary Microbiology 

61, 76–80. 

Reed, J. F. & Cummings, R. W. (1945). Soil reaction-glass electrodes and 

colorimetric methods for determining pH values in soil. Soil Science 59, 

97-104. 

Riedlinger, J., Reicke, A., Zähner, H., Krismer, B., Bull, A. T., Maldonado, L. A., 

Ward, A. C., Goodfellow, M., Bister, B., Bischoff, D., Süssmuth, R. D. & 

Fiedler, H. P. (2004). Abyssomicins, inhibitors of the para-aminobenzoic acid 

pathway produced by the marine Verrucosispora strain AB-18-032. Journal of 

Antibiotics (Tokyo) 57, 271-279. 

Ritacco, F.V., Haltli, B., Janso, J.E., Greestein, M. & Bernan, V.S. (2003).  

Dereplication of Streptomyces soil isolates and detection of specific 

biosynthetic genes using an qutomated ribotyping instrument.  Journal of 

Industrial Microbiology and Biotechnology 8, 472-479. 

Robinson, D. A. & Enright, M. C. (2004). Multilocus sequence typing and the 

evolution of methicillin-resistant Staphylococcus aureus. Clinical 

Microbiology and Infection 10, 92-97. 

Rohde, A. (2011).  Microscopy.  Methods in Microbiology 38, 61-100.   

Rong, X. & Huang, Y. (2010). Taxonomic evaluation of the Streptomyces griseus 

clade using multilocus sequence analysis and DNA - DNA hybridization, with 

proposal to combine 29 species and three subspecies as 11 genomic species. 

International Journal of Systematic Evolutionary Microbiology 60, 696-703. 

Rong, X. & Huang, Y. (2012). Taxonomic evaluation of the Streptomyces 

hygroscopicus using multilocus sequence analysis and DNA-DNA 



261 

hybridization, validating the MLSA scheme for systematics of the whole 

genus. Systematic and applied microbiology 35, 7-18. 

Rong, X., Guo, Y. & Huang, Y. (2009). Proposal to reclassify the Streptomyces 

albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA 

hybridization, and taxonomic elucidation of Streptomyces griseus subsp. 

solvifaciens. Systematic and Applied Microbiology 32, 314-322. 

Rong, X., Liu, N., Ruan, J. & Huang, Y. (2010). Multilocus sequence analysis of 

Streptomyces griseus isolates delineating intraspecific diversity in terms of 

both taxonomy and biosynthetic potential. Antonie van Leeuwenhoek 98, 237-

248. 

Rong, X., Doroghazi, J.R., Cheng, K., Zhung, L., Buckley, D.H. & Huang, Y. 

(2012).  Classification of Streptomyces phylogroup pratensis (Doroghazi and 

Buckley, 2010) based on genetic and phenotypic evidence, and proposal of 

Streptomyces pratensis sp. nov.  Systematic and Applied Microbiology 36, 401-

407. 

Rosamond, J. & Allsop, A. (2000). Harnessing the power of the genome in the search 

for new antibiotics. Science 287, 1973-1976. 

Rosselló-Mora, R. (2006).  DNA-DNA reassociation methods applied to microbial 

taxonomy and their critical evaluation. In Molecular Identification Systematics, 

and population Structure of Prokaryotes, pp. 23-50.  Edited by E. Stackebrandt, 

Heidelberg, Springer. 

Rosselló-Mora, R. & Amann, R. (2001). The species concept for prokaryotes. FEMS 

Microbiology  Reviews 25, 39-67. 

Rosselló-Mora, R., Urdiain, M. & López-López, A. (2011).  DNA-DNA 

hybridization. Methods in Microbiology 38, 325-348. 

Rowbotham TJ & Cross T. 1977. Ecology of Rhodococcus coprophilus and associated 

actinomycetes in freshwater and agricultural habitats. Journal of  General 

Microbiology 100, 231–240. 

Saintpierre-Bonaccio, D., Amir, H., Pineau, R., Tan, G.Y.A. & Goodfellow, M. 

(2005).  Amycolatopsis plumensis sp. nov., a novel bioactive actinomycete 

isolated from a New-Caldedonian brown hypermagnesian ultramafic soil.  

International Journal of Systematic and Evolutionary Microbiology 55, 2057-

2061. 

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for 

reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425. 



262 

Salazar, O., Valverde, A. & Genilloud, O. (2006).  Real-time PCR for the detection 

and quantification of Geodermatophilaceae from stone samples and 

identification of new members of genus Blastococcus.  Applied and 

Environmental Microbiology 72, 346-352. 

Saleeb, P. G., Drake, S. K., Murray, P. R. & Zelazny, A. M. (2011). Identification of 

mycobacteria in solid-culture media by matrix-assisted laser desorption 

ionizationtime of flight mass spectrometry. Journal of Clinical Microbiology 

49, 1790-1794. 

Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory 

Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. 

Santhanam, R., Okoro, C.K., Rong, X., Huang, Y., Bull, A.T., Woen, Y., Andrews 

B.A., Asenjo, J.A. & Goodfellow,  M. (2012a). Streptomyces atacamensis sp. 

nov., isolated from an extreme hyper-arid soil of the Atacama Desert.  

International  Journal of  Systematic and Evolutionary  Microbiology 62, 

2680-2684 

Santhanam, R., Okoro, C.K., Rong,  X., Huang, Y., Bull, A.T., Andrews, B.A., 

Asenjo, A.J., Weon, H.Y. & Goodfellow,  M. (2012b). Streptomyces deserti 

sp. nov., isolated from hyper-arid desert soil. Antonie van Leeuwenhoek 

101,575–581. 

Santhanam R, Rong X, Huang Y, Andrews BA, Asenjo JA, &Goodfellow, M. 

(2013). Streptomyces bullii sp. nov., isolated from a hyper-arid Atacama Desert 

soil. Antonie van Leeuwenhoek 103: 367-373. 

Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty 

acids, MIDI Technical Note 101. MIDI Inc., Newark. 

Schaal, K. P. (1985). Identification of clinically significant actinomycetes and related 

bacteria using chemical techniques. In Chemical Methods in Bacterial 

Systematics, pp. 359-381. Edited by M. Goodfellow & D. E. Minnikin. 

London: Academic Press. 

Schatz, A., Bugie, E. & Waksman, S.A. (1944). Streptomycin, a substance exhibiting 

antibiotic activity against gram-positive and gram-negative bacteria.  

Proceeding of the Society for Experimental Biology and Medicine 55, 66-69. 

Schleifer, K. H. (2009). Classification of Bacteria and Archaea: past, present and 

future. Systematic and Applied Microbiology 32, 533-542. 



263 

Schleifer, K.H. & Kandler, O. (1972).  Peptidoglycan types of bacterial types of 

bacterial cell walls and their taxonomic implications.  Bacteriological Reviews 

36, 407-477. 

Schloss, P. D. & Handelsman, J. (2004). Status of the microbial census. Microbiology 

and Molecular Biology Reviews 68, 686-691. 

Schulz, D., Beese, P., Ohlendorf, B., Erhard, A., Zinecker, H., Dorador, C. & 

Imhoff, J. (2011). Abenquines A-D: aminoquinone derivatives produced by 

Streptomyces sp. strain DB634. Journal of Antibiotics (Tokyo) 64, 763–768. 

Sembiring, L., Ward, A. C. & Goodfellow, M. (2000). Selective isolation and 

characterisation of members of the Streptomyces violaceusniger clade 

associated with the roots of Paraserianthes falcataria. Antonie van 

Leeuwenhoek 78, 353-366. 

Senechkin, H.V., Speksnijder, A.C.L., Semenov, A.M., van Bruggen, A.H.C. & van 

Overbeek, L.S. (2010).  Isolation and partial characterization of bacterial 

strains on low organic carbon medium from soils fertilized with different 

organic amendments.  Microbial Ecology 60, 829-839. 

Sentausa, E. & Fournier, P.-E. (2013).  Advantages and limitations of genomics in 

prokaryotic taxonomy. Clinical Microbiology and Infection 19, 790-795. 

Sierra, G. (1957). A simple method for the detection of lipolytic activity of 

microorganisms and some observations on the infulence of contact between 

cells and fatty substrates. Antonie van Leeuwenhoek 23, 15-22. 

Shen, F. T. & Young, C. C. (2005). Rapid detection and identification of the 

metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-

specificprimers. FEMS Microbiology Letters 250, 221-227. 

Shendure, J. & Lieberman-Aiden, E. (2012).  The expanding scope of DNA 

sequencing.  Nature Biotechnology 30, 1084-1094. 

Shirling, E. B. & Gottlieb, D. (1966). Methods for characterization of Streptomyces 

species. International Journal of Systematic Bacteriology 16, 313-340. 

Singh, S. B., Phillips, J. W. & Wang, J. (2007). Highly sensitive target-based whole-

cell antibacterial discovery strategy by antisense RNA silencing. Current 

Opinions in Drug Discovery and Development 10, 160-166. 

Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (1980). Approved lists of 

bacterial names. International  Journal of  Systematic Bacteriology 30, 225-

420. 



264 

Skujins, J. (1984). Microbial ecology of desert soils. Advances in Microbial Ecology 7, 

49–91. 

Sneath, P. H. A. (1957). The application of computers to taxonomy. Journal of  

General Microbiology 17, 201-226. 

Sneath, P. H. A. & Johnson, R. (1972). The influence on numerical taxonomic 

similarities of errors in microbiological tests. Journal of  General 

Microbiology 72, 377-392. 

Sneath, P. H. A. & Sokal, R. R. (1973). Numerical Taxonomy: The Principles and 

Practice of Numerical Classification. San Francisco, C.A.: W.H. Freeman, pp. 

1-373. 

Sokal, R. R. (1985). The principles of numerical taxonomy.  In Computer-assisted 

bacterial systematics.  Edited by M. Goodfellow, D. Jones & F.G. Priest pp. 

1-20. Academic Press London. 

Somma, S., Gastaldo, L. & Corti, A. (1984). Teicoplanin, a new antibiotic from 

Actinoplanes teichomyceticus sp.nov. Antimicrobial Agents and Chemotherapy 

26, 917-923. 

Spellberg, B., Guidos, R., Gilbert, D., Bradley, J., Boucher, H. W., Scheld, W. M., 

Bartlett, J. G. & Edwards Jr, J. (2008). The epidemic of antibiotic-resistant 

infections: A call to action for the medical community from the Infectious 

Diseases Society of America. Clinical Infectious Diseases 46, 155-164. 

Stach, J. E. M., Maldonado, L. A., Masson, D. G., Ward, A. C., Goodfellow, M. & 

Bull, A. T. (2003a). Statistical approaches for estimating actinobacterial 

diversity in marine  sediments. Appied and  Environmental Microbiology 69, 

6189-6200. 

Stach, J. E. M., Maldonado, L. A., Ward, A. C., Goodfellow, M. & Bull, A. T. 

(2003b). New primers for the class Actinobacteria: application to marine and 

terrestrial environments. Environmental Microbiology 5, 828-841. 

Stackebrandt, E. & Ebers, J. (2006). Taxonomic parameters revisited: tarnished gold 

standards. Microbiology Today 4, 152–155. 

Stackebrandt, E. & Goebel, B.M. (1994).  Taxonomic note: a place for DNA-DNA 

reassociation and 16S rRNA sequence analysis in the present species definition 

in bacteriology.  International Journal of Systematic and Evolutionary 

Microbiology 44, 846-849. 

Stackebrandt, E. & Goodfellow, M., eds. (1991). Nucleic Acid Techniques in 

Bacterial Systematics.  John Wiley & Sons, Chichester, pp. 1-329. 



265 

Stackebrandt, E., Rainey,F.A. & Ward-Rainey,N. (1997) Proposal for a new 

hierarchic classification system, Actinobacteria classis nov. International 

Journal of Systematic Bacteriology. 47, 479-491.   

Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., 

Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J., Trüper, H. G., 

Vauterin, L., Ward, A. C. & Whitman, W. B. (2002). Report of the ad hoc 

committee for the re-evaluation of the species definition in bacteriology. 

International  Journal of  Systematic and Evolutionary Microbiology 52, 1043-

1047. 

Staley, J. T. (2006). The bacterial species dilemma and the genomic-phylogenetic 

species concept. Philosophical Transactions of the Royal Society, B 361, 1899-

1909. 

Staneck, J. L. & Roberts, G. D. (1974). Simplified approach to identification of 

aerobic actinomycetes by thin-layer chromatography. Applied and 

Environmental Microbiology 28, 226-231. 

Strobel, T., Al-Dilaimi, A., Blom, J., Gessner, J., Kalinowski, J., Luzhetska, M., 

Pühler, Szczepanowski, R., Bechthod, A. & Rückert, C. (2012).  Complete 

genome sequence of Saccharothix espanaensis DSM 44229
T
 and comparison 

to other completely sequenced Pseudonocardiaceae. BMC Genomics 13,465.  

Strohl, W. R. (2004). Antimicrobials. In Microbial Diversity and Bioprospecting, pp. 

336-355. Edited by A. T. Bull. Washington, D.C.: ASM Press. 

Sun, W., Dai, S., Jiang, S., Wang, G., Liu, G., Wu, H. & Li, X. (2010). Culture-

dependent and culture-independent diversity of Actinobacteria associated with 

the marine sponge Hymeniacidon perleve from the South China Sea. Antonie 

van Leeuwenhoek 98, 65-75. 

Sutcliffe, I.C., Trujillo, M.E. & Goodfellow, M. (2012). A call to arms for 

systematists: revitalizing the purpose and practices underpinning the 

description of novel microbial taxa. Antonie van  Leeuwenhoek 101, 13–20. 

Suzuki, M. (1957). Studies on an antitumor substance, gancidin. Mycological study on 

the strain AAK-84 and production, purification of active fractions. The Journal 

of Chiba Medical Society 33, 535–542. 

Suzuki, S. I., Okuda, T. & Komatsubara, S. (2001). Selective isolation and 

distribution of the genus Planomonospora in soils. Canadian Journal of 

Microbiology 47, 253-263. 



266 

Tabacchioni, S., Chiarini, L., Bevivino, A., Cantale, C. & Dalmastri, C. (2000).  

Bias caused by using differenct isolation media assessing the genetic diversity 

of a natural microbial population.  Microbial Ecology 40, 169-176. 

Tamura, K. (1992).  Estimation of the number of nucleotide substitutions when they 

are strong transition-transversion and G+C-content biases.  Molecular Biology 

and Evolution 9, 678-687. 

Tamura, K. & Nei, M. (1993). Estimation of the number of nucleotide substitutions in 

the control region of mitochondrial DNA in humans and chimpanzees. 

Molecular Biology and Evolution 10, 512–526. 

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). 

MEGA5: molecular evolutionary genetics analysis using maximum likelihood, 

evolutionary distance, and maximum parsimony methods. Molecular Biology 

and Evolution  28, 2731–2739. 

Tan, G.Y.A. and Goodfellow, M. (2012). Genus: Amycolatopsis. In Bergey’s Manual 

of Systematic Bacteriology, pp 1334-1358. Editied by M. Goodfellow, P. 

Kämpfer, H.-J. Busse, M.E. Trujillo, K.-I. Suzuki, W. Ludwig andW.B. 

Whitman. New York, NY: Springer. 

Tan, G. Y. A., Ward, A. C. & Goodfellow, M. (2006). Exploration of Amycolatopsis 

diversity in soil using genus-specific primers and novel selective media. 

Systematic and  Applied Microbiology 29, 557-569. 

Tan, G., Robinson, S., Lacey, E., Brown, R., Kim, W. & Goodfellow, M. (2007). 

Amycolatopsis regifaucium sp. nov., a novel actinomycete that produces 

kigamicins. International Journal of Systematic Evoutionary Microbiology 57, 

2562-2567. 

Tang, S.K., Wang, Y., Guan, T.W., Lee, J.C., Kim, C.J. & Li, W.J. (2010).  

Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a 

salt lake. International Journal of Systematic Evolutionary Microbiology 60, 

1073–1078. 

Tatar, D., Sazak, A., Guven, K., Cetin, D. & Sahin, N. (2013).  Amycolatopsis 

cihanbeyliensis sp. nov., a halotolerant actinomycete isolated from a salt mine.  

International Journal of  Systematic and Evolutionary Microbiology  63, 3739-

3743. 

Terekhova, L. (2003). Isolation of actinomycetes with the use of microwaves and 

electric pulses. In Selective Isolation of Rare Actinomycetes, pp. 82-101. Edited 



267 

by I. Kurtböke. Nambour, Queensland, Australia: University of the Sunshine 

Coast. 

Theobald, U., Schimana, J. & Fiedler, H.-P. (2000). Microbial growth and production 

kinetics of Streptomyces antibioticus Tu 6040. Antonie van Leeuwenhoek 78, 

307–313 

Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence 

weighting position-specific gap penalties and weight matrix choice. Nucleic 

Acids Research 22, 4673–4680. 

Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., 

Munn, C. B. & Swings, J. (2005). Phylogeny and molecular identification of 

vibrios on the basis of multilocus sequence analysis. Applied and 

Environmental Microbiology 71, 5107-5115. 

Tindall, B. J., Kämpfer, P., Euzéby, J.P. & Oren, A. (2006).  Valid publication of 

names of prokaryotes according to the rules of nomenclature: past history and 

current practice.  International Journal of Systematic and Evolutionary 

Microbiology  56, 2715-2720. 

Tindall, B.J., Rosselló-Móra, R., Busse, H.J., Ludwig, W. & Kämpfer, P. (2010).  

Notes on the characterization of prokaryote strains for taxonomic purpose.  

International Journal of Systematic and Evolutionary Microbiology 60, 249-

266. 

Tiwari, K. & Gupta, R.K. (2012a). Diversity and isolation of rare actinomycetes: an 

overview.  Critical Reviews in Microbiology 39, 256-294. 

Tiwari, K. & Gupta, R.K. (2012b).  Rare actinomycetes: a potential storehouse for 

novel antibiotics.  Critical Reviews in Biotechnology 32, 108-132. 

Torsvik, V., Øvreås, L. & Thingstad, T. F. (2002). Prokaryotic diversity - magnitude, 

dynamics, and controlling factors. Science 296, 1064-1066. 

Traag, B.A. & van Wezel, G.P. (2008). The SsgA-like proteins in actinomycetes: 

small proteins up to a big task. Antonie van Leeuwenhoek 94, 85–97. 

Trujillo, M. E. & Goodfellow, M. (2003). Numerical phenetic classification of 

clinically significant aerobic sporoactinomycetes and related organisms. 

Antonie van Leeuwenhoek 84, 39-68. 

Uchida, K. & Seino, A. (1997). Intra- and intergeneric relationships of various 

actinomycete strains based on the acyl types of the muramyl residue in cell 



268 

wall peptidoglycans examined in a glycolate test. International Journal of 

Systematic Bacteriology 47, 182-190. 

Uchida, K., Kudo, T., Suzuki, K. & Nakase, T. (1999).  A new rapid method of 

glycolate test by diethyl ether extraction, which is applicable to a small amount 

of bacterial cells of less than one milligram.  Journal of General and Applied 

Microbiology 45, 49-56. 

Udwary, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., Fenical, W., 

Jensen, P. R. & Moore, B. S. (2007). Genome sequencing reveals complex 

secondary metabolome in the marine actinomycete Salinispora tropica. 

Proceedings of  the National Academy Science U S A 104, 10376-10381. 

Urban, A., Echermann, S., Fast, B., Metzger, S., Gehling, M., Ziegelbauer, K., 

Rubsamen-Waigmann, H. & Freiberg, C. (2007). Novel whole-cell 

antibiotic biosensors for compound discovery. Applied and Environmental 

Microbiology 73, 6436-6443. 

Urzı`, C., Brusetti, L., Salamone, P., Sorlini, C., Stackebrandt, E. & Daffonchio, D. 

(2001). Biodiversity of Geodermatophilaceae  isolated from altered stones 

and monuments in the Mediterranean basin. Environmental Microbiology 3, 

471–479. 

Urzì, C., Salamone, P., Schumann, P., Rohde, M. & Stackebrandt, E. (2004). 

Blastococcus saxobsidens sp. nov., and emended descriptions of the genus 

Blastococcus Ahrens and Moll 1970 and Blastococcus aggregatus Ahrens 

and Moll 1970. International Journal of Systematic and Evolutionary 

Microbiology 54, 253–259. 

Urzì, C. & Realini, M. (1998). Colour changes of  oto’s Calcareous Sandstone as 

related with its colonization by microorganisms. International 

Biodeterioration & Biodegradation 42: 45–54. 

Van Saltza, M.H. & Pansy, F.E. (1964).  Septacidin, a new antitumour and antifungal 

antibiotic produced by Streptomyces fimbriatus.  Antimicrobial Agents and 

Chemotherapy 1963, 83-88. 

Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. (1996). 

Polyphasic taxonomy, a consensus approach to bacterial systematics. 

Microbiological Reviews 60, 407-438. 

Vickers, J. C. & Williams, S. T. (1987). An assessment of plate inoculation procedures 

for the enumeration and isolation of soil streptomycetes. Microbios Letters 35, 

113-117. 



269 

Voet, D. & Voet, J. G. (2011). Biochemistry. 4
th

 edition, John Wiley & Sons, USA. 

Wagman, G. H. & Weinstein, M. J. (1980). Antibiotics from Micromonospora. 

Annual Reviews of Microbiology 34, 537-557. 

Waksman, S. A. & Lechevalier, H. A. (1949). Neomycin, a new antibiotic active 

against streptomycin-resistant bacteria, including tuberculosis organisms. 

Science 109, 305-307. 

Waksman, S.A. (1953).  A Guide to the Classification of Actinomycetes and their 

Antibiotics.  Edited by Waksman, S.A. & Lechevalier, pp. 1-126.  Baltimore, 

Williams and Wilkins Co. 

Waksman, S. A. & Woodruff, H. B. (1941). Actinomyces antibioticus, a new soil 

organism antagonistic to pathogenic and non-pathogenic bacteria. Journal of 

Bacteriology 42, 231-249. 

Wang, J., Soisson, S. M., Young, K., Shoop, W., Kodali, S., Galgoci, A., Painter, R., 

Parthasarathy, G., Tang, Y. S., Cummings, R., Ha, S., Dorso, K., Motyl, 

M., Jayasuriya, H., Ondeyka, J., Herath, K., Zhang, C., Hermandez, L., 

Allocco, J., Basilio, A., Tormo, J.R., Genilloud, O., Vincente, F., Pelaez, F., 

Colwell, L., Lee, S.H., Michael, B., Felcetto, T., Gill, C., Silver, L.L., 

Hermes, J.D., Bartizal, K., Barrett, K., Schmatz, D., Beck, J.W., Cully, D. 

& Singh, S.B.(2006). Platensimycin is a selective FabF inhibitor with potent 

antibiotic properties. Nature 441, 358-361. 

Wang, J., Kodali, S., Lee, S. H., Galgoci, A., Painter, R., Dorso, K., Racine, F., 

Motyl, M., Hernandez, L., Tinney, E., Colletti, S.L., Herath, K., 

Cummings, R., Salazar, O., González, I., Basilio, A., Vincente, F., 

Genilloud, O., Pelaez, F., Jayasuriya, H., Young, K., Cully, D.F. & Singh, 

S.B. (2007). Discovery of platencin, a dual FabF and FabH inhibitor with in 

vitro antibiotic properties. Proceedings of the National Academy of Sciences of 

the United States of the America 104, 7612-7616. 

Ward, D. M. (1998). A natural species concept for prokaryotes. Current Opinion in 

Microbiology 1, 271 - 277. 

Ward, A. C. & Goodfellow, M. (2004). Phylogeny and functionality: taxonomy as a 

roadmap to genes. In Microbial Diversity and Bioprospecting, pp. 288-313. 

Edited by A. T. Bull. Washington, D.C.: ASM Press. 

Watve, M. G., Tickoo, R., Jog, M. M. & Bhole, B. D. (2001). How many antibiotics 

are produced by the genus Streptomyces? Archives of Microbiology 176, 386-

390. 



270 

Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., 

Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., 

Stackebrandt, E., Starr, M. P. & Trüper, H. G. (1987). Report of the ad hoc 

committee on reconciliation of approaches to bacterial systematics. 

International Journal of Systematic Bacteriology 37, 463-464. 

Wayne, L. G., Good, R. C., Bottger, E. C., Butler, R., Dorsch, M., Ezaki, T., Gross, 

W., Jones, V., Kilburn, J., Kirschner, P., Krichevsky, M. I., Ridell, M., 

Shinnick, T. M., Springer, B., Stackebrandt, E., Tarnók, Z., Tasaka, H., 

Vincent, V., Warren, N. G., Knott, C. A. & Johnson, R. (1996). Semantide- 

and chemotaxonomy-based analyses of some problematic phenotypic clusters 

of slowly growing mycobacteria, a cooperative study of the International 

Working Group on Mycobacterial Taxonomy. International Journal of 

Systematic Bacteriology 46, 280-297. 

Weinstein, M. J., Luedemann, G. M., Oden, E. M., Wagman, G. H., Rosselet, J. P., 

Marquez, J. A., Coniglio, C. T., Charney, W., Herzog, H. L. & Black, J. 

(1963). Gentamicin, a new antibiotic complex from Micromonospora [2]. 

Journal of  Medicinal Chemistry 6, 463-464. 

Wellington, E. M. H. & Cross, T. (1983). Taxonomy of antibiotic-producing 

actinomycetes and new approaches for their selective isolation. In Progress in 

Industrial Microbiology, pp. 7-36. Edited by M. E. Bushell. Amsterdam, The 

Netherlands: Elsevier. 

Whitman, W.B. (2011). Intent of the nomenclatural code and recommendations about 

naming species based on genomic sequences. The Bulletin of BIMIS 2, 135–

139. 

Whitman, W.B. (2014).  The need for change: embrace the genome.  Methods in 

Microbiology 43 (in press). 

Whitham, T. S., Athalye, M., Minnikin, D. E. & Goodfellow, M. (1993). Numerical 

and chemical classification of Streptosporangium and some related 

actinomycetes. Antonie van Leeuwenhoek 64, 387-429. 

Whitman, W. B., Coleman, D. C. & Wiebe, W. J. (1998). Prokaryotes: the unseen 

majority. Proceedings of the Natural Academy of Sciences U S A 95, 6578-

6583. 

Willemse, J., Borst, J.W., de Waal, E., Bisseling, T. & van Wezel, G.P. (2011). 

Positive control of cell division: FtsZ is recruited by SsgB during sporulation of 

Streptomyces. Genes and Development 25, 89–99. 



271 

Williams, P.G. (2008). Panning for chemical gold: marine bacteria as a source of new 

therapeutics. Trends in Biotechnology 27, 45–52. 

Williams, P.G. (2008).  Panning for chemical gold: marine bacteria as a source of new 

therapeutics.  Trends in Biotechnology 27: 45-51. 

Williams, S. T. & Vickers, J. C. (1988). Detection of actinomycetes in the natural 

environment-problems and perspectives. In Biology of Actinomycetes '88, pp. 

265–270. Edited by Y. Okami, T. Beppu & K. Ogawara. Tokyo, Japan: 

Japan Scientific Societies Press. 

Williams, S.T., Dames, F.L. & Hall, D.M. (1969). A practical approach to the 

taxonomy of cctinomy& es isolated from soil. In The Soil Ecosystem.  Edited 

by J. G. Shealspp. 107-117, Systematics Association Pubn No. 8, London. 

Williams, S. T. & Davies, F. L. (1965). Use of antibiotics for selective isolation and 

enumeration of actinomycetes in soil. Journal of General Microbiology 38, 

251-261. 

Williams, S. T., Davies, F. L., Mayfield, C. I. & Khan, M. R. (1971). Studies on the 

ecology of actinomycetes in soil. II. The pH requirements of streptomycetes 

from two acid soils. Soil Biology and Biochemistry 3, 187–195. 

Williams, S.T., Shameemullah, M., Watson, E.T. & Mayfield, C.I. (1972).  Studies 

on the ecology of actinimycetes in acid soil.VI: the influence of moisture 

tension on growth and survival. Soil  Biology and Biochemistry 4, 215-225. 

Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M., Sneath, P. H.A. 

& Sackin, M. J. (1983). Numerical classification of Streptomyces and 

related genera. Journal of General Microbiology 129, 1743-1813. 

Williams, S. T., Goodfellow, M. & Vickers, J. C. (1984a). New microbes from old 

habitats? In The Microbe, pp. 481-528. Edited by D. P. Kelley & N. G. Carr. 

Cambridge: Cambridge University Press. 

Williams, S. T., Lanning, S. & Wellington, E. M. H. (1984b). Ecology of 

actinomycetes. In The Biology of the Actinomycetes, pp. 481–528. Edited by 

M. Goodfellow, M. Mordarski & S. T. Williams. London: Academic Press. 

Williams, S. T., Locci, R., Vickers, J., Schofield, G. M., Sneath, P. H. A. & Mortier, 

A. M. (1985). Probabilisic idenification of Streptoverticillium species. 

Journal of General Microbiology 131, 1681-1689. 

Williams, S. T., Goodfellow, M. & Alderson, G. (1989). Genus Streptomyces 

Waksman and Henrici 1943, 339 AL. In Bergey's Manual of Systematic 



272 

Bacteriology, pp. 2452-2492. Edited by S. T. Williams, M. E. Sharpe & J. G. 

Holt. Baltimore, M.D.: Williams & Wilkins. 

Wink, J., Kroppenstedt, R. M.,Seibert, G. & Stackebrandt, E. (2003).  

Actinomadura namibiensis sp. nov.  International Journal of Systematic and 

Evolutionary Microbiology 53, 721-724.  

Wink, J. M., Kroppenstedt, R. M., Ganguli, B. N., Nadkarni, S. R., Schumann, P., 

Seibert, G. & Stackebrandt, E. (2003). Three new antibiotic producing 

species of the genus Amycolatopsis, Amycolatopsis balhimycina sp. nov., A. 

tolypomycina sp. nov., A. vancoresmycina sp. nov., and description of 

Amycolatopsis keratiniphila subsp. keratiniphila subsp. nov. and A. 

keratiniphila subsp. nogabecina subsp. nov. Systematic and Applied 

Microbiology 26, 38-46. 

Wintzingerode, F.v., Göbel, U.B., & Stackebrandt, E. (1997).  Determination of 

microbial diversity in environmental samples pitfalls of PCR-based rRNA 

analysis.  FEMS Microbiology Reviews 21, 213-229. 

Woese, C. R. (1987). Bacterial evolution. Microbiology Reviews 51, 221-271. 

Woese, C. R. (1998). The universal ancestor. Proceedings of the Natural Academy 

Science USA 95, 6854-6859. 

Woo, P. C. Y., Lau, S. K. P., Huang, Y. & Yuen, K. Y. (2006). Genomic evidence for 

antibiotic resistance genes of actinomycetes as origins of antibiotic 

resistance genes in pathogenic bacteria simply because actinomycetes are 

more ancestral than pathogenic bacteria. Medical Hypotheses 67, 1297-1304. 

Wu, G., Feng, X. & Stein, L. (2010). A human functional protein interaction network 

and its application to cancer data analysis.  Genome Biology 11, R53 

doi:10.1186/gb-2010-11-5-r53. 

Xiao, J., Luo, Y., Xu, J., Xie, S. & Xu, J. (2011).  Modestobacter marinus sp. nov., a 

psychrotolerant actinobacterium from deep-sea, and emeded description of 

genus Modestobacter.  International Journal of Systematic and 

Evolutionary Microbiology 61, 1710-1704. 

Xing, K., Lui, W., Zhang, Y.-J., Bian, G.-K., Zhang, W.D., Tamura, T., Lee, J.-S., 

Qin, S. & Jiang, W.-D. (2014).  Amycolatopsis jiangsuensis sp. nov., a 

novel endophytic actinomycete isolated from a coastal plant in Jiangsu, 

China.  Antonie van Leeuwenhoek 103, 433-439. 



273 

Yamamura, H., Hayakawa, M. & Iimura, Y. (2003). Application of sucrose-gradient 

centrifugation for selective isolation of Nocardia spp. from soil. Journal of 

Applied Microbiology 95, 677-685. 

Yarza, P. & Munoz, R. (2014).  The All-Species Living Tree Project. Methods in 

Microbiology 43 (in press). 

Yarza, P., Ludwig, W., Euzéby, J., Amann, R., Schleifer, K-H, Glöckner, F.O. & 

Rosselló-Móra, R. (2010).  Update of the all-species living tree project 

based on 16S rRNA and 23S rRNA sequence analyses.  Systematic and 

Applied Microbiology 33, 291-299. 

Yassin, A.F., Rainey, F.A., Brzezinka, H., Goodfellow, M. & Pulverer, G. (1991).  

Menaquinone patterns of Amycolatopsis species.  Zentralbatt für 

Bakteriologie 274, 465-470. 

Yoon, J. H., Lee, S. T., Kim, S. B., Goodfellow, M. & Park, Y. H. (1997). Inter- and 

intraspecific genetic analysis of the genus Saccharomonospora with 16S to 

23S ribosomal DNA (rDNA) and 23S to 5S rDNA internally transcribed 

spacer sequences.  International Journal of Systematic Bacteriology 47, 

661-669. 

Yuan, M., Yong, Y., Li, H.-R., Dong, N. & Zhang, X.-H. (2014).  Phylogenetic 

diversity and biological activity of actinobacteria isolated from the 

Chuckchi Shelf marine sediments in the Arctic Ocean.  Marine Drugs 12, 

1281-1297. 

Zakharova, O.S., Zenova, G.M. & Zvyagintsev, D.G. (2003).  Some approaches to 

the selective isolation of actinomycetes of the genus Actinomadura from 

soil.   Microbiology 72, 110-113. 

Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E. J., Short, J. M. & Keller, 

M. (2002). Cultivating the uncultured. Proceedings of the National 

Academy of  Science U S A  99, 15681-15686. 

Zerbino, D.R. & Birney, E. (2008) Velvet: algorithms for de novo short read assembly 

using Bruijn graphs. Genome Research 18,821–829. 

Zhang, Y.-Q., Lui, H.-Y., Chen, J., Yuan, L.-J., Sun, W., Zgang, L.-X., Zhang, Y.-

Q., Yu, L.-Y. & Li, W.-J. (2010). Diversity of culturable actinobacteria 

from Qinghai-Tibet plateau, China. Antonie van Leeuwenhoek 98, 213-223. 

Zhao, W., Zhong, Y., Yuan, H., Wang, J., Zheng, H., Wang, Y., Cen, X., Xu, F., 

Bai, J., Han, X., Lu, G., Zhu, Y., Shao, Z., Yan, H., Li, C., Peng, N., 

Zhang, Z., Zhang, Y., Lin, W., Fan, Y., Qin, Z., Hu, Y., Zhu, B., Wang, 



274 

S., Ding, X. & Zhao, G.P. (2010). Complete genome sequence of the 

rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its 

genetic characteristics in phylogeny and metabolism. Cell Research 20, 

1096-1108 

Zhi, X.-Y., Li, W.-J. & Stackebrandt, E. (2009). An update of the structure and 16S 

rRNA gene sequence-based definition of higher ranks of the class 

Actinobacteria, with the proposal of two new suborders and four new 

families and emended descriptions of the existing higher taxa. International 

Journal of Systematic Evolution Microbiology 59, 589-608. 

Zhi, X. Y., Tang, S. K., Li, W. J., Xu, L. H. & Jiang, C. L. (2006). New genus-

specific primers for the PCR identification of novel isolates of the genus 

Streptomonospora. FEMS Microbiology Letters 263, 48-53. 

Zhi, X-Y., Zhao, W., Li, W-Z. & Zhao, G-P. (2012).  Prokaryotics systematics in the 

genomics era.  Antonie van Leeuwenhoek 101, 21-34. 

Zhou, Z., Yuan, M., Tang, R. Chen, M., Lim, M. & Zhang, W. (2012).  

Corynebacterium deserti sp. nov., isolated from desert sand.  International 

Journal of Systematic and Evolutionary Microbiology 62, 791-794. 

Zitouni, A., Boudjella, H,m Lamari, L., Badji, B. Mathieu, F., Lebrihi, A. & 

Sabaou, N. (2005).  Nocardiopsis and Saccharothrix genera in Saharan 

soils in Algeria: Isoaltion biological activities and partial characterization of 

antibiotics.  Research in Microbiology 156, 984-993. 

Zotchev, S.B. (2012).  Marine actinomycetes as an emerging resource for the drug  

development pipelines.  Journal of Biotechnology 158, 168-175. 

Zucchi, T.D., Bonda, A.N.V., Frank, S., Kim, K.-Y., Kshetrimayum, J.D. & 

Goodfellow, M. (2012a).  Amycolatopsis bartoniae sp. nov. and 

Amycolatopsis bullii sp. nov., mesophilic actinomycetes isolated from aric 

Australian soils.  Antonie van Leeuwenhoek 102, 91-98. 

Zucchi, T.D., Tan, G.Y.A. & Goodfellow, M. (2012b).  Amycolatopsis granulosa sp. 

nov., Amycolatopsis ruanii sp. nov. and A. thermalba sp. nov., thermophilic 

actinomycetes isolated from arid soils.  International Journal of Systematic 

and Evolutionary Microbiology 62, 1245-2351. 

Zucchi, T.D., Tan, G.Y.A. & Goodfellow, M. (2012c).  Amycolatopsis thermophila sp. 

nov., and Amycolatopsis viridis sp. nov., thermophilic actinomycetes 

isolated from arid soil. International Journal of Systematic and 

Evolutionary Microbiology 62, 168-172. 



275 

Zuckerkandl, E. & Pauling, L. (1965). Evolutionary divergence and convergence in 

proteins. In Evolving Genes and Proteins.  Edited by V. Bryson & H. J. 

Vogel: Academic Press, pp. 97-166. 

 

 

  



276 

Appendix 1. Assignment of isolates to colour-groups 

Assignment of strains isolated from the Salar de Atacama and Yungay environmental samples to multi- and single-membered colour-groups based on 

their ability to produce aerial spore mass, substrate mycelial and diffusible pigments on oatmeal agar and melanin pigments on peptone-yeast extract 

agar after incubation at 28
o
C for 4 weeks and 3 days, respectively. 

Growth on oatmeal agar 

Number of 

isolates 

Strain numbers and source of isolates 

Colour 

group 

code 

Aerial spore 

mass colour 

Substrate 

mycelial colour 

Colour of 

diffusible 

pigments 

Salar de Atacama 
Yungay 

Codes 
*Melanin 

production 
Codes 

*Melanin 

production 

KNN1 white (263) yellowish white 

(92) 

None 5 KNN1-1a, KNN1-2c, KNN1-3b, KNN1-4c and KNN1-5f - None - 

KNN2 medium 

gray (265) 

olivaceous black 

(114) 

light 

olivaceous 

gray (112) 

23 KNN2-1b, KNN2-2c, KNN2-3c, KNN2-4c, KNN2-5c, KNN2-6c, KNN2-

7d, KNN2-8b, KNN2-9d, KNN2-10d, KNN2-11d, KNN2-12d, KNN2-

13a, KNN2-14c, KNN2-15a, KNN2-16c, KNN2-17d, KNN2-18b 

C34, C38, C58, C59, C79, 

-  - 

KNN3 white (263) yellow white 

(92) 

none 19 KNN3-1b, KNN3-2b, KNN3-3c, KNN3-4c, KNN3-5c, KNN3-6c, 

KNN3-7c, KNN3-8c, KNN3-9c, KNN3-10e, KNN3-11d, KNN3-12d, 

KNN3-13b, KNN3-14d, KNN3-15d, KNN3-16d, KNN3-17d, KNN3-18b 
and KNN3-19b 

- None  

KNN4 white (263) yellow white 

(92) 

yellow 

white (92) 

4 KNN4-1b, KNN4-2e, KNN4-3b and KNN4-4a - None  

KNN5 medium 

gray (265) 

gray greenish 

yellow  (105) 

pale 

greenish 

yellow (104) 

25 KNN5-1a, KNN5-2a, KNN5-3c, KNN5-4c, KNN5-5a,KNN5-6a, KNN5-

7a, KNN5-8b, KNN5-9b, KNN5-10b, KNN5-11b, KNN5-12b,KNN5-

13b, KNN5-14b, KNN5-15b, KNN5-16d, KNN5-17d, KNN5-18d, 

KNN5-19d, KNN5-20b, KNN5-21b, KNN5-22d, KNN5-23c, KNN5-24b, 

and KNN5-25d 

+ None - 

KNN6 medium 

gray (265) 

gray olive 9110) light orange 

yellow (70) 

11 KNN6-1a, KNN6-2a, KNN6-3a, KNN6-4a, KNN6-5a, KNN6-6b, KNN6-

7d, KNN6-8d, KNN6-9a, KNN6-10b and KNN6-11a 

-  - 

KNN7 very orange 

(48) 

slightly orange 

(50) 

none 4 None  KNN7-1b, KNN7-2b, 

KNN7-3b, KNN7-4b  

- 

KNN8 medium 

gray (265) 

gray greenish 

yellow  (105) 

light gray 

olive (109) 

10 KNN8-1b, KNN8-2d, KNN8-3a, KNN8-4b, KNN8-5b, KNN8-6a, 

KNN8-7a, KNN8-8a, KNN8-9c and KNN8-10e 

- None  

KNN9 light gray 
(264) 

gray greenish 
yellow  (105) 

light 
oliveceous  

gray (112) 

3 KNN9-1a, KNN9-2c and KNN9-3b - None  

KNN10 light gray 

(264) 

gray greenish 

yellow  (105) 

light 

oliveceous  

gray (112) 

5 KNN10-1a, KNN10-2b, KNN10-3b, KNN10-4d and KNN10-5a - None  

KNN11 yellowish 

white (92) 

yellowish white 

(92) 

none 6 KNN11-1a, KNN11-2a, KNN11-3c, KNN11-4b, KNN11-5a and KNN11-

6a 

- None - 
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KNN12 gray yellow 

(90) 

light brown (57) medium 

yellow (87) 

2 -  KNN12-1a and KNN12-2a  

KNN13 medium 

gray (265) 

gray olivaceous 

green (127) 

none 1 None  KNN13a - 

KNN14 light gray 

(264) 

pale yellow (89) light brown 

(57) 

3 KNN14-1f, KNN14-2e and KNN14-3e - None  

KNN15 brilliant 

yellow (83) 

light yellow (86) none 2 None  KNN15-1a and KNN15-2a - 

KNN16 pale yellow 

(61) 

yellowish white 

(92) 

none 2 KNN16-1c + KNN16-2c + 

KNN17 very light 

purple (222) 

blackish purple 

(230) 

very deep 

purplish Red 

(257) 

2 KNN17-1c and KNN17-2b + None  

KNN18 light gray 
(264) 

pale yellow (89) none 3 KNN18-1b, KNN18-2c and KNN18-3d - None  

KNN19 white (263) light yellow (86) light yellow 
(86) 

2 None  KNN19-1b and  KNN19-2c - 

KNN20 slightly 

orange (50) 

slightly orange 

(50) 

none 1 None  KNN20c - 

KNN21 light gray 

(264) 

yellowish white 

(92) 

light gray 

yellowish 
brown (79) 

1 None  KNN21a - 

KNN22 brown pink 

(33) 

dark yellowish 

brown (75) 

light orange 

(52) 

1 None - KNN22a  

KNN23 yellowish 

white (92) 

deep orange 

yellow (72) 

gray yellow 

(90) 

2 None - KNN23-1b, KNN23-2b  

KNN24 yellowish 

white (92) 

yellowish white 

(92) 

none 8 KNN24-1b, KNN24-2c, KNN24-3c, KNN24-4c, KNN24-5a, KNN24-6c, 

KNN24-7e and KNN24-8e 

- None  

KNN25 dark 

yellowish 

brown (78) 

middle orange 

yellow (71) 

pale orange 

yellow (70) 

1 KNN25c - None  

KNN26 dark gray 

(75) 

dark gray (75) light 

yellowish 

brown (76) 

1 KNN26b - None  

KNN27 white (263) yellowish white 

(92) 

none 1 KNN27a - None  
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KNN28 yellowish 

white (92) 

light orange 

yellow (70) 

dark yellow 

(88) 

1 KNN28a - None  

KNN29 yellowish 

white (92) 

yellowish white 

(92) 

yellowish 

white (92) 

2 KNN29a + KB36a and  KB44a + 

KNN30 Medium 

gray (265) 

dark yellowish 

brown (78) 

light brown 

(57) 

1 KNN30a - None  

KNN31 light gray 

(264) 

brown gray (61) gray 

yellowish 

brown 

1 KNN31d - None  

KNN32 gray (265) dark red gray 

(23) 

pale 

yellowish 

green (121) 

2 KNN32-1a, KNN32-2b - None  

KNN33 pale yellow 
(89) 

pale yellow (89) pale yellow 
(89) 

1 KNN33a - None  

KNN34 white (263) light orange 

yellow (70) 

light yellow 

(86) 

1 KNN34c - None  

KNN35 white (263) dark orange 

yellow (72) 

yellowish 

gray (90) 

2 KNN35-1b, KNN35-2b + None  

KNN36 light orange 

yellow (70) 

light orange 

yellow (70) 

light 

yellowish 

brown (76) 

3 KNN36-1c, KNN36-2c and KNN36-3c + None  

KNN37 medium 

gray (265) 

middle yellowish 

brown (77) 

medium 

gray (265) 

5 KNN37-1e, KNN37-2a, KNN37-3a, KNN37-4a and KNN37-5a  - None  

KNN38 dark gray 

(75) 

dark gray (75) light 

yellowish 

brown (76) 

5 KNN38-1b, KNN38-2d, KNN38-3a, KNN38-4b and KNN38-5b - None  

KNN39 yellowish 

white (92) 

light orange 

yellow (70) 

light orange 

yellow (70) 

1 KNN39c - None  

KNN40 yellowish 
white (92) 

light yellow (86) none 1 None  KNN40b - 

KNN41 medium olivaceous black light 
olivaceous 

2 KNN41-1b, KNN41-2a - None  
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gray (265) (114) gray (112) 

KNN42 dark gray 

(75) 

dark gray (75) light 

yellowish 

brown (76) 

1 None  KNN42f - 

KNN43 gray 

yellowish 

pink (32) 

very dark red 

(17) 

bright pink 1 KNN43b - None  

KNN44 black (267) black (267) light 

yellowish 
brown (76) 

4 None  KNN44-1b, KNN44-2a, 

KNN44-3b, KNN44-4b 

+ 

KNN45 black (267) black (267) none 4 None  KNN45-1a, KNN45-2b, 
KNN45-3b and KNN45-4b 

- 

KNN46 black (267) black (267) none 12 None  KNN46-1b, KNN46-2b, 
KNN46-3b, KNN46-4b, 

KNN46-5b, KNN46-6a, 

KNN46-7a,  KNN46-8a, 

KNN46-9c, KNN46-10g, 

KNN46-11f, KNN46-12f 

- 

KNN47 black (267) black (267) none 1 None - KNN47b - 

KNN48 yellowish 

white (92) 

light orange 

yellow (70) 

light orange 

yellow (70) 

 20 KNN48-1c, KNN48-2a, KNN48-3e, KNN48-4e, KNN48-5e  - KNN48-6d, KNN48-7d, 

KNN48-8d, KNN48-9d, 

KNN48-10b, KNN48-11b, 
KNN48-12b, KNN48-13a, 

KNN48-14a,KNN48-15c, 

KNN48-16c, KNN48-17c, 

KNN48-18c, KNN48-19c, 

KNN48-20c 

- 

KNN49 yellowish 

white (92) 

yellowish white 

(92) 

none 32 KNN49-1h, KNN49-2e, KNN49-3e, KNN49-4e, KNN49-5e, KNN49-6a, 

KNN49-7c, KNN49-8c, KNN49-5c, KNN49-6b, KNN49-7c, KNN49-8b, 

KNN49-9c, KNN49-10b, KNN49-11c, KNN49-12b, KNN49-13b, 

KNN49-14b, KNN49-15b, KNN49-16c, KNN49-17b, KNN49-18b, 
KNN49-19a, KNN49-20b, KNN49-21c, KNN49-22d, KNN49-23d, 

KNN49-24d, KNN49-25d, KNN49-26a, KNN49-27a, KNN49-28a, 

KNN49-29a, KNN49-30b, KNN49-31b, KNN49-32e 

- None  

KNN50 yellowish 

white (92) 

yellowish white 

(92) 

none 18 KNN50-1a, KNN50-2e, KNN50-3c, KNN50-4c, KNN50-5c, KNN50-6e, 

KNN50-7d, KNN50-8b, KNN50-9b, KNN50-10e, KNN50-11c, KNN50-

12c, KNN50-13c, KNN50-14d, KNN50-15d, KNN550-16d, KNN50-17d 

and KNN50-18d 

- None  

KNN51 yellowish yellowish white none 1 None - KNN51b - 
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white (92) (92) 

KNN52 light olive 

brown (94) 

dark gray yellow 

(91) 

dark gray 

yellow (91) 

3 KNN52-1c, KNN52-2b and KNN52-3b - - - 

KNN53 White (263) yellowish white 

(92) 

yellowish 

white (92) 

3 KNN53-1a, KNN53-2a and KNN53-3a - - - 

KNN54 gray 

yellowish 

brown (32) 

dark yellowish 

brown (78) 

dark 

yellowish 

brown (78) 

2 KNN54-1a and KNN54-2b - None - 

KNN55 pink white 

(9) 

very dark red (7) middle  

brown (58) 

2 - - KNN55-1b  and KNN55-2b  

KNN56 none light yellowish 

brown (76) 

 

none 1 KNN56a - None - 

KNN57 brown pink 

(33) 

dark yellowish 

brown (75) 

light orange 

(52) 

2 KNN57-1b and KNN57-2b - - - 

KNN58 yellowish 

white (92) 

dark orange 

yellow (72) 

light orange 

yellow (70) 

2 KNN58-1b and KNN58-2c -  - 

KNN59 yellowish 

white (92) 

gray yellow (90) gray yellow 

(90) 

1 KNN59e - - - 

KNN60 pale yellow 

(89) 

middle  

yellowish brown 

(77) 

none 2 KNN60-1c and KNN60-2d - - - 

KNN61 light gray 

(264) 

light gray 

yellowish brown 

(79) 

light gray 

yellowish 

brown (79) 

4 KNN61-1a, KNN61-2e, KNN61-3e, KNN61-4b and KNN61-2c - - - 

KNN62 dark gray 

purple (229) 

blackish purple 

(230) 

pale gray 

(233) 

1 KNN62b - - - 

KNN63 yellowish 
white (92) 

yellowish white 
(92) 

none 18 KNN63-1a, KNN63-2b, KNN63-3b, KNN63-4b, KNN63-5a, KNN63-6b, 
KNN63-7b, KNN63-8d, KNN63-9d, KNN63-10d, KNN63-11b, KNN63-

12b, KNN63-13b, KNN63-14b, KNN63-15b, KNN63-16b, KNN63-17b 

- - - 
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and KNN63-18b  

KNN64 dark gray 

(75) 

dark gray (75) light 

yellowish 

brown (76) 

6 KNN64-1a, KNN64-2a, KNN64-3a, KNN64-4b, KNN64-5b and 

KNN64-6b 

- - - 

KNN65 white (263) middle  orange 

yellow (71) 

Gray yellow 

(90) 

6 KNN65-1f, KNN65-2a, KNN65-3c, KNN65-4c, KNN65-5d and KNN65-

6b 

- - - 

KNN66 yellowish 

white (92) 

light gray 

yellowish brown 

(79) 

light gray 

yellowish 

brown (79) 

1 KNN66b - - - 

KNN67 none light orange 

yellow (70) 

none 4 KNN67-1b, KNN67-2b, KNN67-3b and KNN67-4b - - - 

KNN68 yellowish 
white (92) 

middle  
yellowish brown 

(77) 

dark orange 
yellow (72) 

4 KNN68-1b, KNN68-2b, KNN68-3b and KNN68-4b - - - 

KNN69 slightly 

yellowish 

pink (26) 

light brown (57) light brown 

(57) 

3 KNN69-1e, KNN69-2a and KNN69-3a - - - 

KNN70 very 

yellowish 

pink (25) 

light gray 

yellowish brown 

(79) 

light gray 

yellowish 

brown (79) 

1 KNN80b - - - 

KNN71 yellowish 

white (92) 

light orange 

yellow (70) 

light orange 

yellow (70) 

2 KNN71-1a and KNN71-2a - - - 

KNN72 yellowish 

white (92) 

light  gray 

yellowish brown 

(79) 

light  gray 

yellowish 

brown (79) 

1 KNN72a - - - 

KNN73 yellowish 
white (92) 

light orange 
yellow (70) 

gray yellow 
(90) 

4 KNN73-1a, KNN73-2a , KNN73-3d and KNN73-4d - - - 

KNN74 yellowish 

white (92) 

dark yellowish 

brown (78) 

light gray 

yellowish 

brown (79) 

2 KNN74-1c and KNN74-2c - - - 
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KNN75 white (263) yellowish white 

(92) 

none 4 KNN75-1c, KNN75-2b, KNN75-3b and KNN75-4b - - - 

KNN76 yellowish 

white (92) 

light orange 

yellow (70) 

light orange 

yellow (70) 

1 KNN76-1b - - - 

KNN77 yellowish 

white (92) 

middle  

yellowish brown 

(77) 

dark orange 

yellow (72) 

6 - - KNN77-1a, KNN77-2a, 

KNN77-3a, KNN77-1a, 

KNN77-5a and KNN77-6a 

- 

KNN78 yellowish 

White (92) 

yellowish White 

(92) 

gray yellow 

(90) 

2 KNN78-1e and KNN78-2e - - - 

KNN79 yellowish 

white (92) 

deep yellowish 

brown (75) 

middle 

yellowish 
brown (77) 

3 KNN79-1b, KNN79-2b and KNN79-3d - - - 

KNN80 none White 

yellow(92) 

pale yellow 

(89) 

2 KNN80-1c and KNN80-2d - - - 

KNN81 pale 

yellowish 

pink (31) 

Light orange (52) middle  

yellowish 

brown (77) 

4 KNN81-1c, KNN81-2b, KNN81-3d and KNN81-4d - - - 

KNN82 yellowish 

white (92) 

blackish purple 

(230) 

gray reddish 

brown (46) 

2 KNN82-1a and KNN82-2c - - - 

KNN83 white (263) yellowish White 

(92) 

none 1 KNN83e - - - 

KNN84 dark 

yellowish 

brown (78) 

middle orange 

yellow (71) 

pale orange 

yellow (70) 

1 KNN84c - - - 

KNN85 yellowish 

white (92) 

middle  yellow 

(87) 

dark gray 

yellow (91) 

8 KNN85-1f, KNN85-2b, KNN85-3c, KNN85-4c, KNN85-5c, KNN85-6c, 

KNN85-7b, KNN85-8a 

- - - 

KNN86 black (267) black (267) none 5 - - KNN86-1b, KNN86-2b, 
KNN86-3b, KNN86-4a and 

KNN86-5a 

- 

KNN87 dark pale 

gray (234) 

blackish purple 

(230) 

light reddish 

brown (45) 

1 KNN87b + - - 
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KNN88 yellowish 

white (92) 

light  gray 

yellowish brown 

(79) 

light  gray 

yellowish 

brown (79) 

4 - - KNN88-1a, KNN88-2a, 

KNN88-3a and KNN88-4a 

- 

KNN89 medium 

gray (265) 

olivaceous black 

(114) 

light 

olivaceous 

gray (112) 

1 - - KNN89a - 

KNN90 yellowish 

white (92) 

light  gray 

yellowish brown 
(79) 

light  gray 

yellowish 
brown (79) 

1 - - KNN90a - 

KNN91 black (267) black (267) light 

yellowish 

brown (76) 

6 - - KNN91-1a, KNN91-2a, 

KNN91-3a, KNN91-4a, 

KNN91-5a and KNN91-6a 

- 

KNN92 dark pale 

gray (234) 

blackish purple 

(230) 

light reddish 

brown (45) 

7 - - KNN92-1a, KNN92-2a, 

KNN92-3a, KNN92-4a, 

KNN92-5a, KNN92-6a and 

KNN92-7a 

- 

KNN93 white (263) yellowish White 

(92) 

none 4 - - KNN93-1a, KNN93-2a, 

KNN93-3a and KNN93-4a  

- 

KNN94 white (263) yellowish white 

(92) 

None 1 KNN94e - - - 

KNN95 white (263) middle  orange 

yellow (71) 

Gray yellow 

(90) 

7 - - KNN95-1b, KNN95-2b, 

KNN95-3b, KNN95-4b, 

KNN95-5b, KNN995-6b and 

KNN95-7b 

- 

KNN96 white (263) yellowish White 
(92) 

none 1 - - KNN96a - 

KNN97 yellowish 
White (92) 

yellowish White 
(92) 

gray yellow 
(90) 

1 - - KNN97a - 

KNN98 yellowish 

white (92) 

dark yellowish 

brown (78) 

light gray 

yellowish 

brown (79) 

1 - - KNN98a - 

Codes exemplified by strain KNN2-1b, this organism was isolated by Kanungnid Busarakam (KNN), assigned to colour-group 2 as the first member of group and was isolated on a 

humic acid-vitamin agar isolation plate. The C-coded isolates represent a colour-group delineated by Okoro et al. (2009). 

Selective isolation media : (a),  Gause No.1 agar;  (b),  HVA, humic acid-vitamin agar;  (c), Oligotrophic agar; (d), minimal medium agar; (e),  SM1 agar; (f) Geodermatophilus obscurus agar; (g) Luedemann’s 

agar,  (h), SCAV agar. 
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Appendix 2.  Reagents and buffers 

 

20X SSC buffer 

 aCl (3M)………………………………………….. 1 .53 g 

Sodium citrate (0.3M)…………………………….….  . 3 g 

The solution of was adjusted to pH 7.0 with 5 N NaOH and distilled water added to 

make a final volume of 100ml. The working solution was prepared by diluting the stock 

solution to give 0.1X SSC buffer. 

 

EDTA buffer (0.5 M, pH 8.0) 

Disodium ethylenediaminetetraacetic acid (EDTA)..... 18.612 g 

Distilled water………….…………………………….. 80 ml 

The solution was adjusted to pH 8.0 with approximately 2.2 g NaOH pellets and 

distilled water added to give a final volume of 100 ml. 

 

Lugol’s iodine for the detection of starch degradation 

Iodine………………………………………………. 5 g 

Potassium iodide…………………………………… 10 g 

Distilled water……………………………………… 100 ml 

Iodine and potassium iodide were dissolved in 10 ml of distilled water and make up to 

100 ml. The reagent was diluted 1in 5 with distilled water. 

 

Nitrate reduction reagents 

Reagent A: 

Sulphanilic acid……………………………………. 0.8 g 

 cetic acid (5 )…………………………………… 100 ml 

Reagents B: 

α- apthylamine……………………………………. 0.8 g 

 cetic acid (5 ) …………………………………… 100 ml 

 

Potassium phosphate buffer 

Solution A: 0.1 M potassium dihydrogen phosphate (KH2PO4) 

Solution B: 0.1 M dipotassium hydrogen phosphate (K2HPO4) 

 

Desired 

pH 

Solution 

A (ml) 

Solution 

B (ml) 

 Desired 

pH 

Solution 

A (ml) 

Solution 

B (ml) 

5.7 98.5 6.5  6.9 45.0 55.0 

5.8 92.0 8.0  7.0 39.0 61.0 

5.9 90.0 10.0  7.1 33.0 67.0 

6.0 87.7 12.3  7.2 28.0 72.0 

6.1 85.0 15.0  7.3 23.0 77.0 

6.2 81.5 18.5  7.4 19.0 81.0 

6.3 77.5 22.5  7.5 16.0 84.0 

6.4 73.5 26.5  7.6 13.0 87.0 

6.5 68.5 31.5  7.7 10.5 90.5 

6.6 62.5 37.5  7.8 8.5 91.5 

6.7 56.5 43.5  7.9 7.0 93.0 

6.8 51.0 49.0  8.0 5.3 94.7 
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Tris-EDTA buffer, pH 8.0 (TE; 10 mM Tris, 1 mM EDTA, pH 8.0) 

0.5 M EDT , pH 8.0 …………………………………. 2 ml 

1 M Tris-HCl, pH 8.0 ……………………………….. 10 ml 

Milli-Q water up to ………………………………….. 1000 ml 

Autoclaved at 121°C for 20 minutes and stored at room temperature. 
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Appendix 3. Media formulations 

 

All media formulations were prepared with reagents of high purity (BDH Chemicals 

Ltd., Dorset, UK; Difco, Difco Laboratories, Michigan, USA; Oxoid, Oxoid Ltd., 

Cambridge, UK; Sigma, Sigma-Aldrich, Dorset, UK).  Media were autioclaved at 

121°C for 20 minutes unless otherwise stated. 

 

1) Culture media 

Carbon utilisation medium (ISP medium 9, Pridham & Gottlieb, 1948) 

(NH4)2SO4………………………………………………2.64 g 

KH2PO4 ………………………………………………...2.38 g 

K2HPO4.3H2O …………………………………………5.65 g 

MgSO4.7H2O ………………………………………….. 1.0 g 

Pridham & Gottlieb trace salts* …………………………1.0 ml 

 gar ……………………………………………………. 15.0 g 

dH2O……………………………………………………...1 L 

pH 6.8-7.0 

 Pridham & Gottlieb trace salts* 

 CuSO4.5H2O ……………………………………0.64 g 

            FeSO4.7H2O …………………………………... 0.11 g 

           MnCl2.4H20 ……………………………………. 0. 9 g 

 ZnSO4.7H2O …………………………………...0.15 g 

   dH2O …………………………………………...100.0 ml 

Carbohydrate solutions were prepared, separately, Tyndallised (steam at 100
o
C between 

8 to 24 hours) individual carbon sources were mixed thoroughly with the molten basal 

medium to give the appropriate final concentration. 

 

Glucose-yeast extract-malt extract (ISP medium 2; Shirling & Gottlieb, 1966) 

Glucose………………………………………..………… 4.0 g 

Yeast extract…………………………………………...... 4.0 g 

Malt extract……………………….….………………… 10.0 g 

CaCO3……………………………………….……...... ….2.0 g 

 gar……………………………………………………. 15.0 g 

dH2O………………………………………………………...1.0 L 

pH…………………………………………………….  .2 ± 0.2 

 

Glycerol-asparagine agar (ISP medium 5; Shirling & Gottlieb, 1966) 

L-asparagine ………………………………………….... 1.0 g 

Glycerol……………………………………………….. 10.0 g 

KH2PO4............................................................................ 1.0 g 

Trace salt solution* ……………………………….……..1.0 ml 

 gar………………………………………………….... 15.0 g 

dH2O……………………………………………………...1.0 L 

pH………………………………………………..…… 6.8 ± 0.2 

Trace salt solution*  

FeSO4.7H2O……………… …………...0.001 g 

MnCl2.4H2O………………….. ……….0.001 g 

ZnSO4.7H2O…………… ……….……..0.001 g 

pH 7.4±0.2 

 

Inorganic salts starch agar (ISP medium 4; Shirling & Gottlieb, 1966) 

Distilled water…………………………………..……. 500 ml 
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K2HPO4 (anhydrous basis)………………………….…. 1.0 g 

MgSO4⋅7H2O………………………………………….. 1.0 g 

(NH4)2SO4……………………………..…………….… 2.0 g 

 aCl…………………………………………………… 1.0 g 

CaCO3………………………………………………. …2.0 g 

Soluble starch solution……….……………………….. 500 ml 

 gar………………………………………………….. .15.0 g 

pH……………………………………………………  .2 ± 0.2 

Preparation of soluble starch solution: 10 g of soluble starch was added to 500 ml of 

distilled water and the preparation mixed well to prevent clumping then sterilsed. 

 

Luria-Bertani medium (Miller, 1972) 

Tryptone…………………………………………….…. 10.0 g 

Yeast extract……………………………………………… 5.0 g 

 aCl………………………………………………..…... 10.0 g 

dH2O……………………………………………………...1.0 L 

 

Bennett’s agar (Jones, 1949) 

Yeast extract …………………………………………….. 1.0 g 

Lab-LEMCO……………………………………………... 0.8 g 

Bacto-Casitone…………………………............................ 2.0 g 

Glycerol…………………………………………………. 10.0 g 

 gar……………………………………………………... 15.0 g 

pH……………………………………………………….  .2 ±0.2 

 

Oatmeal agar (ISP medium 3; Shirling & Gottlieb, 1966). 

Oatmeal (mixture)……………………………………… 1000 ml 

Trace salt solution stock………………………….…....... 1.0 ml 

 gar……………………………………………………. 15.0 g 

pH………………………………………………………  .2 ±0.2 

Oatmeal mixture: Add 20 g of oatmeal to 1000 ml of distilled water and boil for 20 

minutes. The mixture is then filtered through cheese cloth and restored to 1000 ml by 

adding distilled water. 

Trace salt solution stock: 

FeSO4 ⋅ 7H2O ………………………………………… 0.1 g 

MnCl ⋅ 4H2O………………………………………. ….0.1 g 

ZnSO4 ⋅ 7H2O……………………………………...…. 0.1 g 

Distilled water ………………………………………... 100 ml 

The solution was filter-sterilised using cellulose acetate membrane filters (pore size 0.45 

μm) and stored at 4°C. 

 

Peptone-yeast extract-iron agar (ISP medium 6; Shirling & Gottlieb, 1966) 

Bacto-peptone iron agar………………………..……… 36 g 

Bacto-yeast extract……………………..……………… 1.0 g 

dH2O……………………………………………………...1.0 L 

pH…………………………………………………….  .0 ±0.2 

 

Tryptone-yeast extract agar (ISP medium 1; Shirling & Gottlieb, 1996) 

Bacto-Tryptone …………………………………..…….. 5.0 g 

Bacto-Yeast extract………………………….................. 3.0 ml 

 gar……………………………………………..……… 15.0 g 

dH2O……………………………………………………...1.0 L 
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pH……………………………………………………..  .0 -7.2 

 

Tyrosine agar (ISP medium 7; Shirling & Gottlieb, 1966) 

Glycerol………………………………………………... 15.0 g 

L-Tyrosine (Difco)……………………………….…....... 0.5 g 

L- sparagine (Difco)………………………….…….….. 1.0 g 

K2HPO4 (anhydrous basis)……….…………….………. 0.5 g 

MgSO4 ⋅7H2O………………………….……….……. …0.5 g 

 aCl…………………………………………………….. 0.5 g 

FeSO4 ⋅ 7H2O………………………………….. ..……. 0.01 g 

dH2O……………………………………………………...1.0 L 

Trace salt solution (see ISP3) …..….…………………... 1.0 ml 

 gar………………………………………………......... 20.0 g 

pH………………………………………………..……  .2 - 7.4 

 

Modified Bennett’s agar (Jones, 1949) 

This composition of Bennett’s  gar followed the original formulation of Jones (1949) 

but with the substitution of beef-extract (1g per litre) and N-Z- mine  ’ (2g per litre) 

by Lab Lemco (0.8g per litre; Oxoid) and Bacto-Casitone (2g per litre; Difco), as 

recommended by P. Agrawal (unpublished data). 

Glucose ……………………………………...………… 10.0 g 

Bacto-Casitone (Difco) ………………………………… 2.0 g 

Yeast-extract …………………………………………… 1.0 g 

Lab-Lemco (Oxoid) ………………………………..…... 0.8 g 

 gar …………………………………………………… 15.0 g 

dH2O……………………………………………………...1.0 L 

pH…………………………………………………..……  .2 - 7.4 

 

2) Phenotypic test media 

Aesculin/ Arbutin degradation (Kutzner, 1976) 

Basal medium 

Yeast extract………………………………………..…... 3.0 g 

Ferric ammonium citrate ……………………………….. 0.5 g 

 gar…………………………………………………….. 7.5 g 

pH……………………………………………………….  .2 

Aesculin and arbutin were tyndallised in distilled water then added to the melted basal 

medium to give a final concentration of 0.1% (w/v).  

 

Allantoin degradation (Gordon et al., 1974) 

Basal medium 

KH2PO4………………………………………………. 9.1 g 

Na2HPO4……………………………………………... 9.5 g 

Yeast extract…………………………………………. 0.1 g 

Phenol red………………………….……………..... 0.01 g 

dH2O……………………………………………...…..1.0  L 

pH……………………………………………….……. 6.8 

Autoclaved at 121°C for 20 minutes. The allantoin was tyndallised for 24 hours in 

distilled water then added to the basal medium to give a final concentration of 0.33 %, 

w/v. Three ml amounts of the broth were dispensed into test tubes. 

 

Buffer media for pH tolerance tests 
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Potassium phosphate buffers (0.2 M) were prepared at pH 4.0, 5.0, 9.0 and 10.0 by 

combining the volume of buffers A (0.2 M potassium dihydrogen phosphate) and buffer 

B (0.2 M dipotassium hydrogen phosphate) in the ratio of 199.7: 0.3; 197.3: 2.7; 1.4: 

198.6 and 0.1: 199.9, respectively. Buffer at pH 11.0 was prepared by combining 0.2 M 

dipotassium hydrogen phosphate with 1 N NaOH to reach the pH. Each 200 ml of warm 

buffer was added aseptically to 200ml of sterile double strength modified Bennett’s agar 

to give a final volume of 400 ml. The pH of the media were tested using pH paper and 

adjusted with sterile 1 N NaOH or 1 N HCl to the desired pH. 

 

Chitin degradation (Hsu & Lockwood, 1975) 

Colloidal chitin………………….................................... 4.0 g 

K2HPO4……………………………………….……...... 0.7 g 

KH2PO4………………………………………………... 0.3 g 

MgSO4.5H2O………………………………………..…. 0.5 g 

FeSO4.7H2O………………………………………….. 0.01 g 

ZnSO4…………………………………………..…… 0.001 g 

MnSO4…………………………………………….… 0.001 g 

 gar……………………………………………….… 20.0 g 

dH2O……………………………………………………...1 L 

pH…………………………………………………. 8.0 

 

DNase test agar for DNA degradation (Difco) 

Tryptose……………………………………………… 20.0 g 

D  ………………………………………………....... 2.0 g 

 aCl………………………………………………...… 5.0 g 

 gar……………………………………………......... 12.0 g 

dH2O…………………………………………………...1.0 L 

pH……………………………………………………  .2 

 

Nitrate reduction medium (Gordon & Mihm, 1962) 

KNO3……………………………………………….. 1.0 g 

Lab LEMCO…………………….………………….. 2.4 g 

dH2O………………………….……………………...1.0 L 

pH…………………………………………….……..  .0 

Three ml amounts of the media were dispensed into bijoux bottles. 

 

RNA degradation (Goodfellow et al., 1979) 

Tryptone ……………………………………………. 20.0 g 

 aCl………………………………..………….....…. 5.0 g 

dH2O………………………………………………….1.0 L 

 gar…………………………………………............ 12.0 g 

pH……………………………………………………  .2 

RNA (3 g) was tyndallised and added to the molten basal medium prior to dispensing 

into plates to give a final concentration (0.3%, w/v). 

 

Sierra’s medium for degradation of Tweens (Sierra, 1957) 

Basal medium 

Bacto-peptone ………………………………..……….. 10.0 g 

 aCl…………………………………………………… .5.0 g 

CaCl2.H2O…………………………………….......... …..0.1 g 

 gar…………………………………………………… 15.0 g 

dH2O……………………………………………………...1.0 L 
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pH………………………………………………………  .4 

Ten ml of each of the Tweens was tyndallised in distilled water then added to melted 

basal medium to give a final concentration of 1.0% (v/v). 

 

Tributyrin agar 

Tributyrin agar base (Sigma T3688)…………............. 23.0 g 

Tributyrin (Sigma T8626)……………………............ 10.0 ml 

Distilled water……………………………………..…. 990 ml 

Tributyrin agar base was dissolved in 990 ml distilled water by heating and stirring on a 

heated magnetic stirrer. Tributyrin was added to the medium while it was being stirred. 

After autoclaving the molten medium was cooled in a 50°C water bath and mixed by 

gentle swirling while pouring in order to maintain uniform turbidity in the agar. 

 

Urea degradation (Krieg & Padgett, 2011) 

Basal medium 

KH2PO4……………………………………………..…… 9.1 g 

Na2HPO4……………………………………................... .9.5 g 

Yeast extract…………………………………………..… 0.1 g 

Phenol red……………………………………………… 0.01 g 

dH2O……………………………………………………...1 L 

pH……………………………………………………… 6.8 

Urea solution in distilled water was filter-sterilized using cellulose acetate membrane 

filters (pore size 0.45 μm) then added to the basal medium to give a final concentration 

(2.0%, w/v). Three ml amounts of the medium were aseptically dispensed into bijoux 

bottles. 

 

3) Isolation media 

Gause’s agar No.1 (Gause et al., 1957) 

Starch……………………………………………………20.0 g 

FeSO4.7H2O…………………….……………………….0.01 g 

KNO3 …………………………….………………..……..1.0 g 

K2HPO4…………………………………...…………….... 0.5 g 

MgSO4.7H2O ………………………………………….…0.5 g 

 aCl………………………………………………...…..... 0.5 g 

 gar…………………………………………..…………..15.0 g 

dH2O……………………………………………………...1.0 L 

pH ………………………………………………………..17.2+0.2 

 

Geodermatophilus obscurus agar (Uchida & Seino, 1997) 

Soluble starch ……………………………………………..10.0 g 

Yeast extract…………………………………………..……4.0 g 

Tryptone……………………………………………..……..4.0 g 

Sucrose……………………………………………..………2.0 g 

 gar………………………………………………..……...15.0 g 

dH2O……………………………………………………….1.0 L 

pH…………………………………………………………. .0 

 

Humic acid vitamin agar (Hayakawa & Nonomura, 1987) 

Humic acid*……………………………………………….1.0 g 

Vitamin solution**…………………………………..……1.0 ml 

CaCO3 …………………………………………………….0.02 g 

FeSO4.7H2O………………………………………….....…0.01 g 
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KCl……………………………………………………....1.7 g 

MgSO4.7H2O …………………………………………0.05 g 

Na2HPO4………………………………………...……... 0.5 g 

 gar………………………………………………....…15.0 g 

dH2O………………………………………………………1.0 L 

pH…………………………………………………… .2+0.2 

*Humic acid was dissolved in 10 ml of 0.2 N NaOH  

**Vitamin Solution  

The following vitamins were dissolved in 1 litre of cold distilled water and the pH 

adjusted to 3.0 ± 0.2 with 0.1M HCl prior to sterilising by vacuum membrane filtration. 

p-aminobenzoic acid ………………………….….…....10 mg 

Biotin ……………………………………….………....10 mg 

Inositol …………………………………….…………..10 mg 

 icotinamide ………………………………….……… 10 mg 

Pantothenic acid (B5) ………………………….…...… 10 mg 

Pyridoxine (B6) ………………………………………. 10 mg 

Riboflavin  a choline (B2) ……………….……...……10 mg 

Thiamin (B1) …………………………………………. 10 mg 

Cyanocobalamin (B12) ……………………………..... 0.5 mg 

Folic acid ……………………………………...……... 0.5 mg 

 

Microlunatus agar (Nakamura et al., 1995) 

Glucose………………………………………………….……0.5 g 

Peptone…………………………………………….…....……0.5 g 

Yeast extract…………………………………….……....……0.5 g 

Na-glutamate………………………………………....………0.5 g 

KH2PO4……………………………………………..…..……0.5 g 

MgSO4.7H2O………………………………………..……..…0.1 g 

dH2O………………………………………………..………...1.0 L 

pH…………………………………………………..……….. .0 

 

Minimal medium (Johnson et al., 1981) 

KH2PO4………………………………………..……………1.5 g 

K2HPO4………………………………………..……………2.9 g 

Urea…………………………………………..……………..2.1 g 

MgCl2.6H2O………………………………………………...1.0 g 

CaCl2……………………………………………………….150 mg 

FeSO4.6H2O……………………………………………….1.25 mg 

Cysteine hydrochloride……………………………..……....1.0 g 

Resazurin……………………………………………….…..2.0 mg 

Cellobiose…………………………………………………..5.0 g 

Morpholinopropane sulfonic acid…………………….……10.0 g 

Pyridoxamine hydrochloride……………………………….2.0 mg 

Biotin……………………………………………………….0.2 mg 

- minobenzoic acid………………………….……………0.4 mg 

Vitamin B12……………………………….………………...0.2 mg 

Sodium citrate.H2O………………………..………………..3.0 g 

dH2O……………………………………..…………………...1.0 L 

 

Oligotrophic medium (Senechkin et al., 2010) 
MgSO4.7H2O………………………………………………...0.5 g 

KNO3……………………………………………………..….0.5 g 
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KH2PO4.3H2O……………………………………………….1.3 g 

Ca(NO3)2.4H2O……………………………….……………0.06 g 

Glucose…………………………………….……..………….2.5 g 

Enzymetic casein hydrolysate…………………...…………..0.2 g 

 gar……………………………………………….………..15.0 g 

dH2O……………………………………………..…………1.0 L 

pH……………………………………………..……..…….. .2 

 

R2A agar (Reasoner & Geldriech, 1985) 

Proteose peptone……………..……………………..……….0.5 g 

Casamino acid ………………………………….…….……..0.5 g 

Yeast extract……………………………..……………….…0.5 g 

Dextrose………………………………………..…….….…..0.5 g 

Soluble starch …………………………………….…..…..…0.5 g 

K2HPO4…………………………………………………………..……………….……...0.3 g 

MgSO4.7H2O………………………………………..….....0.005 g 

Sodium pyruvate……………………………..………...…….0.3 g 

 gar………………………………………………...…..…..15.0 g 

dH2O……………………………………………..………..1.0 L 

pH………………………………………………………..  .2+0.2 

 

SM1 (Tan et al., 2006) 

Basal medium*………………………………………..…..100.0  ml 

Sterile molten agar (15%w/v) …………….…………….…900.0 ml 

*Basal medium: yeast  nitrogen base (Difco) ………….…… 6 .0 g 

       Casamino acid (Difco)…………   100.0 mg 

       dH2O……………………………......1.0 L 

Basal medium were steriled by cellulose filter (0.20 µm).  Then add to sterilised 

K2HPO4 (10%w/v) 200 ml.  Followed by filter sterilized of 

   D(-)-sorbitol (final concentration)………….1.0  w/v 

   Cycloheximide……………………………50.0 µg/ml 

    eomycin sulphate…………………………4.0   µg/ml 

    ystatin……………………………………50.0  µg/ml 

 

Starch casein-vitamin agar (Küster & Williams, 1964) 

Difco-vitamin-free casein………………………………..…0.3 g 

KNO3 …………………………………………….………..2.0 g 

 aCl…………………………………………….….….……2.0 g 

MgSO4.7H2O………………………………………...……0.05 g 

CaCO3 ………………………………………….…….......0.02 g 

FeSO4.7H2O………………………………………..…......0.01 g 

Soluble starch ……………………………………..……..10.0 g 

 gar…………………………………………………..…..15.0 g 

dH2O…………………………………………………….....1.0 L 

pH 7.0+0.2 
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Appendix 4. Nucleotide similarity and differences tables 

Table 1   Nucleotide similarities (%) and differences  based on almost complete 16S rRNA gene sequences showing relationships between strains KNN34c, 

KNN53-1a and KNN53-3d isolated from the hyper-arid Salar de Atacama environmental sample and the type strains of closely related Actinomadura species. 

Isolate  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. Isolate KNN34  --- 42/1363 39/1400 15/1393 22/1399 20/1400 25/1343 25/1401 23/1396 26/1401 28/1397 25/1400 27/1391 39/1401 52/1394 36/1398 30/1401 32/1400 28/1401 25/1400 

2.Isolate KNN53-3  96.9 --- 3/1365 54/1360 51/1363 39/1364 37/1336 47/1364 38/1361 37/1365 50/1359 40/1364 43/1355 8/1366 18/1363 19/1363 31/1366 32/1364 38/1365 40/1364 

3.Isolate KNN53-1  97.2 99.8 --- 52/1401 52/1407 36/1413 41/1344 47/1402 36/1409 37/1414 52/1409 36/1413 41/1404 9/1415 17/1404 19/1407 28/1415 29/1413 34/1414 36/1413 

4. A. rugatobispora 98.9 96.0 96.3 --- 24/1405 26/1405 34/1340 37/1397 30/1402 37/1405 41/1399 34/1405 32/1396 52/1405 56/1404 47/1402 42/1405 42/1405 40/1405 34/1405 

5. A. vinacea 98.4 96.3 96.3 98.3 --- 25/1441 34/1343 31/1429 32/1423 34/1438 50/1421 33/1432 32/1432 51/1438 61/1405 47/1428 44/1441 39/1427 35/1418 33/1432 

6. A. bangladensis 98.6 97.1 97.5 98.2 98.3 --- 20/1343 25/1431 15/1437 18/1455 58/1438 19/1444 7/1449 40/1454 50/1406 34/1429 25/1458 27/1442 26/1434 19/1444 

7. A.  napierensis 98.1 97.2 97.0 97.5 97.5 98.5 --- 25/1343 25/1340 27/1344 37/1339 29/1343 24/1334 36/1344 52/1342 34/1342 36/1344 30/1343 30/1344 29/1343 

8. A. xylanlytica 98.2 96.6 96.7 97.4 97.8 98.3 98.1 --- 25/1412 26/1441 41/1416 31/1424 31/1440 47/1432 57/1398 39/1418 42/1452 27/1420 27/1411 31/1424 

9. A. meyeae 98.4 97.2 97.4 97.9 97.8 99.0 98.1 98.2 --- 12/1435 44/1425 22/1433 22/1428 40/1435 50/1403 38/1421 33/1438 31/1433 27/1429 22/1433 

10. A. geliboluensis 98.1 97.3 97.4 97.4 97.6 98.8 98.0 98.2 99.2 --- 54/1440 27/1445 28/1455 42/1457 51/1407 36/1427 39/1466 32/1444 28/1436 27/1445 

11. A. flavaba 98.0 96.3 96.3 97.1 96.5 96.0 97.2 97.1 96.9 96.3 --- 53/1434 64/1429 79/1450 63/1400 56/1417 66/1440 56/1435 54/1426 53/1434 

12. A. madurae 98.2 97.1 97.5 97.6 97.7 98.7 97.8 97.8 98.5 98.1 96.3 --- 26/1435 40/1445 51/1406 35/1426 34/1445 31/1439 32/1431 0/1445 

13. A.  chokoriensis 98.1 96.8 97.1 97.7 97.8 99.5 98.2 97.9 98.5 98.1 95.5 98.2 --- 45/1446 56/1397 37/1420 30/1467 33/1433 32/1425 26/1435 

14. A. phis 97.2 99.4 99.4 96.3 96.5 97.3 97.3 96.7 97.2 97.1 94.6 97.2 96.9 --- 23/1408 19/1428 35/1458 32/1445 39/1436 40/1445 

15. A. rifamicini 96.3 98.7 98.8 96.0 95.7 96.4 96.1 95.9 96.4 96.4 95.5 96.4 96.0 98.4 --- 26/1407 40/1408 39/1406 47/1407 51/1406 

16. A. cremea 97.4 98.6 98.7 96.7 96.7 97.6 97.5 97.3 97.3 97.5 96.1 97.6 97.4 98.7 98.2 --- 26/1431 35/1426 43/1417 35/1426 

17. A. sediminis 97.9 97.7 98.0 97.0 97.0 98.3 97.3 97.1 97.7 97.3 95.4 97.7 98.0 97.6 97.2 98.2 --- 37/1445 44/1436 34/1445 

18. A. flabrosa 97.7 97.7 98.0 97.0 97.3 98.1 97.8 98.1 97.8 97.8 96.1 97.9 97.7 97.8 97.2 97.6 97.4 --- 19/1434 31/1439 

19. A. nitritigenes 98.0 97.2 97.6 97.2 97.5 98.2 97.8 98.1 98.1 98.1 96.2 97.8 97.8 97.3 96.7 97.0 96.9 98.7 --- 32/1431 

20. A. madurae 

 

98.2 

 

97.1 

 

97.5 

 

97.6 

 

97.7 

 

98.7 

 

97.8 

 

97.8 

 

98.5 

 

98.1 

 

96.3 

 

100 

 

98.2 

 

97.2 

 

96.4 

 

97.6 

 

97.7 

 

97.0 

 

97.8 

 

--- 

 

Strain codes, as given in Figure 3.1. 
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Table 2 Nucleotide similarities  (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains KNN49-1h, 

KNN49-3e, KNN49-5e, KNN49-6a, KNN49-10b, KNN49-11c, KNN49-12b, KNN49-26a, KNN49-32e, KNN50-1a, KNN50-2e, KNN50-4c, KNN50-5c, KNN50-

6e, KNN50-7d, KNN50-8b, KNN50-9b, KNN50-10e,  KNN50-11c, KNN50-13c, KNN50-14d, KNN50-15d, KNN50-12c, KNN50-16d, KNN50-17d and KNN 50-

18d isolated from the hyper-arid Salar de Atacama environmental sample and the type strains of closely related Amycolatopsis species. 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1. Isoalte  KNN50-8b --- 

17/ 

1285 

21/ 

1315 

16/ 

1314 

2/ 

1314 

2/ 

1312 

16/ 

1315 

2/ 

1317 

3/ 

1316 

16/ 

1317 

16/ 

1317 

17/ 

1312 

2/ 

1313 

16/ 

1314 

7/ 

1314 

19/ 

1313 

17/ 

1316 

3/ 

1313 

2/ 

1314 

16/ 

1314 

19/ 

1317 

7/ 

1317 

2. Isolate GY024 98.7 --- 

4/ 

1366 

25/ 

1353 

15 

/1353 

15/ 

1354 

26/ 

1369 

15/ 

1371 

16/ 

1370 

26/ 

1370 

26/ 

1370 

40/ 

1372 

15/ 

1281 

28/ 

1374 

18/ 

1282 

16/ 

1282 

30/ 

1338 

16/ 

1370 

15/ 

1347 

26/ 

1369 

24/ 

1351 

16/ 

1371 

3. Isolate GY142 98.4 99.7 --- 

27/ 

1378 

17/ 

1378 

18/ 

1378 

31/ 

1395 

21/ 

1398 

22/ 

1397 

31/ 

1397 

30/ 

1396 

39/ 

1392 

19/ 

1311 

29/ 

1392 

20/ 

1314 

18/ 

1313 

34/ 

1365 

19/ 

1393 

17/ 

1372 

28/ 

1393 

26/ 

1380 

26/ 

1397 

4. Isolate KNN49-6a 98.8 98.2 98.0 --- 

24 

/1382 

24/ 

1380 

0/ 

1381 

24/ 

1382 

25/ 

1381 

0/ 

1383 

0/ 

1383 

7/ 

1381 

14/ 

1310 

1/ 

1382 

17/ 

1311 

1/ 

1311 

14/ 

1367 

25/ 

1381 

19/ 

1376 

0/ 

1383 

1/ 

1381 

29/ 

1382 

5. Isolate KNN49-5e 99.9 98.9 98.8 98.3 --- 

0/ 

1380 

24/ 

1380 

0/ 

1382 

1/ 

1381 

24/ 

1382 

24/ 

1382 

23/ 

1380 

0/ 

1310 

25/ 

1381 

3/ 

1311 

15/ 

1311 

29/ 

1366 

1/ 

1381 

0/ 

1376 

24/ 

1382 

23/ 

1380 

5/ 

1382 

6. Isolate KNN49-3e 99.9 98.9 98.7 98.3 100.0 --- 

25/ 

1379 

0/ 

1382 

1/ 

1381 

25/ 

1381 

25/ 

1381 

25/ 

1381 

0/ 

1308 

26/ 

1380 

3/ 

1309 

15/ 

1309 

29/ 

1364 

0/ 

1383 

0/ 

1374 

25/ 

1381 

23/ 

1378 

4/ 

1382 

7. Isolate KNN50-10e 98.8 98.1 97.8 100.0 98.3 98.2 --- 

25/ 

1401 

26/ 

1399 

0/ 

1402 

0/ 

1401 

21/ 

1396 

14/ 

1311 

1/ 

1397 

20/ 

1313 

4/ 

1312 

14/ 

1368 

26/ 

1395 

19/ 

1374 

0/ 

1397 

4/ 

1383 

31/ 

1400 

8. Isolate KNN50-4c 99.9 98.9 98.5 98.3 100.0 100.0 98.2 --- 

1/ 

1402 

25/ 

1403 

25/ 

1402 

38/ 

1398 

0/ 

1313 

26/ 

1398 

6/ 

1315 

18/ 

1314 

29/ 

1369 

1/ 

1398 

0/ 

1376 

25/ 

1398 

26/ 

1384 

6/ 

1403 

9. Isolate KNN49-26a 99.8 98.8 98.4 98.2 99.9 99.9 98.1 99.9 --- 

26/ 

1401 

26/ 

1400 

38/ 

1396 

1/ 

1312 

27/ 

1396 

7/ 

1314 

19/ 

1313 

30/ 

1369 

2/ 

1397 

1/ 

1375 

26/ 

1397 

27/ 

1383 

7/ 

1401 

10. Isolate KNN49-12b 98.8 98.1 97.8 100.0 98.3 98.2 100.0 98.2 98.1 --- 

0/ 

1403 

21/ 

1398 

14/ 

1313 

1/ 

1399 

20/ 

1315 

4/ 

1314 

14/ 

1370 

26/ 

1397 

19/ 

1376 

0/ 

1399 4/1385 

31/ 

1402 

11. Isolate  KNN49-11c 98.8 98.1 97.9 100.0 98.3 98.2 100.0 98.2 98.1 100.0 --- 

21/ 

1398 

14/ 

1313 

1/ 

1399 

19/ 

1314 

3/ 

1313 

14/ 

1370 

26/ 

1397 

19/ 

1376 

0/ 

1399 

3/ 

1384 

31/ 

1402 

12. Isolate KNN49-32e 98.7 97.1 97.2 99.5 98.3 98.2 98.5 97.3 97.3 98.5 98.5 --- 

15/ 

1308 

23/ 

1398 

18/ 

1309 

2/ 

1309 

15/ 

1365 

38/ 

1397 

19/ 

1374 

20/ 

1397 

6/ 

1379 

41/ 

1398 

13. Isolate KNN50-18d 99.9 98.8 98.6 98.9 100.0 100.0 98.9 100.0 99.92 98.9 98.9 98.9 --- 

14/ 

1310 

5/ 

1312 

17/ 

1312 

15/ 

1312 

1/ 

1309 

0/ 

1310 

14/ 

1310 

17/ 

1313 

5/ 

1313 

14. Isolate KNN50-17d 98.8 98.0 97.9 99.9 98.2 98.1 99.9 98.1 98.1 99.9 99.9 98.4 98.9 --- 

17/ 

1311 

1/ 

1311 

15/ 

1366 

27/ 

1396 

20/ 

1375 

1/ 

1398 

2/ 

1380 

32/ 

1398 

15. Isolate KNN50-15d 99.5 98.6 98.5 98.7 99.8 99.8 98.5 99.5 99.5 98.5 98.6 98.6 99.6 98.7 --- 18/1314 20/1313 4/1310 3/1311 17/1311 18/1315 10/1314 

16. Isolate KNN50-16d 98.6 98.8 98.6 99.9 98.9 98.9 99.7 98.6 98.6 99.7 99.8 99.9 98.7 99.9 98.6 --- 2/1312 16/1310 15/1311 1/1311 2/1314 22/1313 

17. Isolate KNN50-11c 98.7 97.8 97.5 99.0 97.88 97.9 99.0 97.9 97.8 99.0 99.0 98.9 98.9 98.9 98.5 99.9 --- 30/1365 29/1366 14/1367 17/1370 34/1369 

18. Isolate KNN50-14d 99.8 98.8 98.6 98.2 99.9 100.0 98.1 99.9 99.9 98.1 98.1 97.3 99.9 98.1 99.7 98.8 97.8 --- 1/1375 26/1397 24/1379 

6/ 

1398 

19. Isolate KNN50-13c 99.9 98.9 98.8 98.6 100.0 100.0 98.6 100.0 99.9 98.6 98.6 98.6 100.0 98.6 99.8 98.9 97.9 99.9 --- 19/1376 20/1376 5/1376 

20. Isolate KNN50-12c 98.8 98.1 98.0 100.0 98.3 98.2 100.0 98.2 98.1 100.0 100.0 98.6 98.9 99.9 98.7 99.9 99.0 98.1 98.6 --- 1/1381 31/1398 

21. Isolate  KNN50-9b 98.6 98.2 98.1 99.9 98.3 98.3 99.7 98.1 98.1 99.7 99.9 99.6 98.7 99.9 98.6 99.9 98.8 98.3 98.6 99.9 --- 30/1383 

22. Isolate KNN50-7d 99.5 98.8 98.1 97.9 99.6 99.7 97.8 99.6 99.5 97.8 97.8 97.1 99.6 97.7 99.2 98.3 97.5 99.6 99.6 97.8 97.8 --- 

23. Isolate KNN50-6e 99.9 98.9 98.6 98.3 100.0 100.0 98.2 100.0 99.9 98.2 98.2 97.4 100.0 98.1 99.6 98.7 97.9 99.9 100.0 98.2 98.2 99.6 

24. Isolate KNN50-5c 99.9 98.9 98.8 98.6 100.0 100.0 98.6 100.0 99.9 98.6 98.6 98.6 100.0 98.5 99.8 98.9 97.9 99.9 100.0 98.6 98.5 99.6 

25. Isolate KNN50-2e 98.8 97.8 97.9 100.0 98.3 98.1 100.0 98.1 98.1 100.0 100.0 98.4 98.9 99.6 98.7 99.9 99.0 98.1 98.6 100.0 99.9 97.7 

26. Isolate KNN50-1a 98.6 98.1 98.0 100.0 98.3 98.2 99.8 98.0 97.9 99.8 99.9 98.5 98.9 99.9 98.7 99.9 98.8 98.1 98.6 100.0 99.9 97.7 

27. Isolate KNN49-10b 99.9 98.9 98.6 98.3 100.0 100.0 98.3 100.0 99.9 98.3 98.3 98.3 100.0 98.2 99.6 98.7 97.9 99.9 100.0 98.3 98.2 99.6 

28. Isolate KNN49-1h 99.9 98.8 98.6 98.3 100.0 100.0 98.1 99.9 99.9 98.1 98.1 97.4 100.0 98.1 99.8 98.9 97.9 99.9 100.0 98.1 98.3 99.7 

Strain codes, as given in Figure 3.2. 
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Table2 (cont.) 

Isolate 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

1.Isolate  KNN50-8b 

2/ 
1317 2/1314 16/1314 18/1317 2/1316 2/1312 0/1317 18/1317 16/1316 18/1317 19/1317 19/1316 20/1317 23/1316 26/1316 24/1313 68/1315 67/1317 66/1315 84/1313 87/1314 

2. Isolate GY024 

15/ 
1370 15/1348 31/1375 26/1370 15/1352 16/1369 15/1395 15/1328 26/1394 17/1380 19/1394 17/1394 18/1395 35/1351 39/1353 20/1390 72/1412 63/1411 62/1429 68/1395 85/1394 

3. Isolate GY142 

20/ 
1397 17/1373 29/1394 28/1397 19/1380 19/1392 18/1410 17/1369 29/1409 20/1409 22/1409 21/1409 22/1410 40/1392 47/1381 29/1396 80/1408 70/1409 68/1407 74/1406 95/1407 

4. Isolate  KNN49-6a 

24/ 
1382 20/1377 0/1383 0/1383 24/1381 24/1380 24/1382 0/1357 28/1382 26/1382 18/1382 22/1382 23/1383 26/1381 25/1380 32/1378 83/1381 79/1382 76/1380 86/1378 98/1379 

5.  Isolate KNN49-5e 

0/ 
1382 0/1377 24/1382 24/1382 0/1381 0/1380 0/1382 14/1357 16/1381 18/1381 19/1381 19/1381 20/1382 31/1380 33/1379 24/1377 70/1380 65/1381 64/1379 83/1378 86/1379 

6. Isolate KNN49-3e 

0/ 
1382 0/1375 26/1382 25/1381 0/1380 0/1383 0/1382 14/1355 16/1381 18/1381 19/1381 19/1381 20/1382 31/1378 35/1379 24/1377 70/1380 65/1381 64/1379 83/1378 86/1379 

7. Isolate KNN50-10e 

25/ 
1399 20/1375 0/1398 3/1402 24/1382 26/1394 28/1401 3/1359 32/1401 30/1401 22/1401 26/1401 27/1402 29/1383 27/1383 36/1397 87/1400 83/1401 80/1399 90/1397 101/1398 

8. Isolate KNN50-4c 

0/ 
1402 0/1377 26/1400 28/1403 0/1384 1/1397 3/1404 17/1361 19/1403 21/1403 22/1403 22/1403 23/1404 34/1384 37/1385 27/1399 73/1402 68/1403 67/1401 86/1400 89/1401 

9. Isolate KNN49-26a 

1/ 
1401 1/1376 27/1398 29/1401 1/1383 2/1396 4/1402 18/1360 20/1401 22/1401 23/1401 23/1401 24/1402 35/1383 38/1384 28/1397 74/1400 69/1401 68/1399 87/1398 89/1399 

10. Isolate KNN49-

12b 

25/ 
1401 20/1377 0/1400 3/1404 24/1384 26/1396 28/1403 3/1361 32/1403 30/1403 22/1403 26/1403 27/1404 29/1385 27/1385 36/1399 87/1402 83/1403 80/1401 90/1399 102/1400 

11.Isolate  KNN49-11c 

25/ 
1401 20/1377 0/1400 2/1403 24/1384 26/1396 27/1402 2/1360 31/1402 29/1402 21/1402 25/1402 26/1403 28/1384 27/1385 35/1398 86/1401 82/1402 79/1400 89/1398 101/1399 

12. Isolate KNN49-32e 

37/ 
1397 19/1375 22/1400 21/1398 23/1379 37/1396 39/1399 1/1355 43/1399 41/1399 33/1399 37/1399 38/1400 33/1381 34/1383 47/1395 99/1400 94/1401 92/1399 101/1395 113/1397 

13.  Isolate KNN50-

18d 

0/ 
1313 0/1310 14/1310 16/1313 0/1312 0/1308 2/1313 16/1313 14/1312 16/1313 17/1313 17/1312 18/1313 21/1312 24/1312 22/1309 66/1311 65/1313 64/1311 82/1309 85/1310 

14. Isolate KNN50-

17d 

26/ 
1397 21/1376 5/1403 1/1399 25/1380 27/1395 27/1403 1/1356 31/1403 29/1403 21/1403 25/1403 26/1404 27/1380 26/1381 35/1399 85/1402 82/1403 79/1401 89/1399 101/1400 

15. Isolate KNN50-

15d 

5/ 
1314 3/1311 17/1311 17/1315 5/1313 3/1309 3/1316 1/1316 15/1315 17/1316 18/1316 18/1315 19/1316 22/1315 25/1313 23/1312 66/1314 66/1316 65/1314 83/1312 86/1313 

16.Isolate  KNN50-

16d 

17/ 
1313 15/1311 1/1311 1/1314 17/1312 15/1309 15/1315 1/1315 18/1314 17/1315 9/1315 12/1314 13/1315 21/1314 22/1312 22/1311 69/1313 72/1315 69/1313 77/1311 88/1312 

17. Isolate KNN50-11c 

29/ 
1369 29/1366 14/1367 16/1370 29/1368 29/1364 31/1369 1/1359 33/1369 32/1370 24/1370 27/1369 28/1370 38/1368 38/1368 37/1365 87/1368 88/1370 85/1368 92/1365 103/1366 

18. Isolate KNN50-

14d 

1/ 
1398 1/1376 27/1398 26/1397 1/1381 1/1398 1/1398 15/1356 17/1397 19/1397 20/1397 20/1397 21/1398 32/1379 36/1381 25/1393 71/1396 66/1397 65/1395 84/1394 87/1395 

19. Isolate KNN50-13c 

0/ 
1376 0/1376 19/1376 19/1376 0/1375 0/1374 0/1376 14/1357 16/1375 18/1375 19/1375 19/1375 20/1376 26/1374 28/1373 24/1371 70/1374 65/1375 64/1373 83/1372 86/1373 

20.Isolate  KNN50-12c 

25/ 
1398 20/1377 0/1399 0/1399 24/1381 26/1396 25/1398 0/1357 29/1398 27/1398 19/1398 23/1398 24/1399 26/1381 25/1382 33/1394 84/1397 80/1398 77/1396 87/1394 99/1395 

21. Isolate KNN50-9b 

25/ 
1383 21/1377 1/1381 1/1385 25/1382 23/1378 23/1384 1/1361 27/1384 25/1384 17/1384 21/1384 22/1385 27/1383 26/1381 31/1380 82/1383 78/1384 75/1382 85/1380 97/1381 

22. Isolate KNN50-7d 

6/ 
1402 5/1377 32/1400 33/1402 5/1384 4/1397 8/1403 21/1360 24/1402 26/1402 27/1402 27/1402 28/1403 38/1383 42/1385 32/1398 78/1401 73/1402 72/1400 91/1399 94/1400 

23.Isolate KNN50-6e --- 0/1377 26/1399 27/1401 0/1384 1/1397 2/1402 16/1360 18/1401 20/1401 21/1401 21/1401 22/1402 33/1383 37/1385 26/1397 72/1400 67/1401 66/1399 85/1398 88/1399 

24. Isolate KNN50-5c 100.0 --- 20/1377 20/1377 0/1376 0/1375 0/1377 14/1357 16/1376 18/1376 19/1376 19/1376 20/1377 27/1375 29/1374 24/1372 70/1375 65/1376 64/1374 83/1373 86/1374 

25. Isolate KNN50-2e 98.1 98.6 --- 0/1400 24/1381 27/1397 30/1404 0/1357 34/1404 32/1404 24/1404 28/1404 29/1405 26/1381 26/1383 38/1400 89/1403 85/1404 82/1402 92/1400 104/1401 

26. Isolate KNN50-1a 98.1 98.6 100.0 --- 26/1384 26/1396 25/1403 0/1361 29/1403 27/1403 19/1403 23/1403 24/1404 26/1385 25/1385 33/1399 84/1402 80/1403 77/1401 87/1399 99/1400 

27. Isolate KNN49-

10b 100.0 100.0 98.3 98.1 --- 0/1380 2/1384 16/1359 18/1383 20/1383 21/1383 21/1383 22/1384 33/1382 35/1381 26/1379 71/1382 66/1383 65/1381 84/1380 88/1381 

28. Isolate  KNN49-1h 99.93 100.0 98.1 98.1 100.0 --- 1/1397 14/1355 17/1396 19/1396 20/1396 20/1396 21/1397 31/1378 35/1380 25/1392 71/1395 66/1396 65/1394 84/1393 87/1394 

Strain codes, as given in Figure 3.2. 
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Table2 (cont.) 

Isolate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

29. A_ruanii_ 100.0 98.9 98.7 98.3 100.0 100.0 98.0 99.9 99.7 98.0 98.1 97.2 99.9 98.1 99.8 98.9 97.7 99.9 100.0 98.2 98.3 99.4 99.9 

30. A_thermalba 98.6 98.9 98.8 100.0 99.0 99.0 99.8 98.8 98.7 99.9 99.9 99.9 98.8 99.9 99.9 99.9 99.9 98.9 99.0 100.0 99.9 98.5 98.8 

31. A_thermoflava 98.8 98.1 97.9 98.0 98.8 98.8 97.7 98.7 98.6 97.7 97.8 96.9 98.9 97.8 98.9 98.6 97.6 98.8 98.8 97.9 98.1 98.3 98.7 

32. A_endophytica 98.6 98.8 98.6 98.1 98.7 98.7 97.9 98.5 98.4 97.9 97.9 97.1 98.8 97.9 98.7 98.7 97.7 98.6 98.7 98.1 98.2 98.2 98.6 

33. A_methanolica 98.6 98.6 98.4 98.7 98.6 98.6 98.4 98.4 98.4 98.4 98.5 97.6 98.7 98.5 98.6 99.3 98.3 98.6 98.6 98.6 98.8 98.1 98.5 

34. A_eurytherma 98.6 98.8 98.5 98.4 98.6 98.6 98.1 98.4 98.4 98.2 98.2 97.4 98.7 98.2 98.6 99.1 98.0 98.6 98.6 98.4 98.5 98.1 98.5 

35. A_tucumanensis 98.5 98.7 98.4 98.3 98.6 98.6 98.1 98.4 98.3 98.1 98.2 97.3 98.6 98.2 98.6 99.0 98.0 98.5 98.6 98.3 98.4 98.0 98.4 

36. A_granulosa 98.3 97.4 97.1 98.1 97.8 97.8 97.9 97.5 97.5 97.9 98.0 97.6 98.4 98.0 98.3 98.4 97.2 97.7 98.1 98.1 98.1 97.3 97.6 

37. A_viridis 98.0 97.1 96.6 98.2 97.6 97.5 98.1 97.3 97.3 98.1 98.1 97.5 98.2 98.1 98.1 98.3 97.2 97.4 98.0 98.2 98.1 97.0 97.3 

38. A_thermophila 98.2 98.6 97.9 97.7 98.3 98.3 97.4 98.1 98.0 97.4 97.5 96.6 98.3 97.5 98.3 98.3 97.3 98.2 98.3 97.6 97.6 97.7 98.1 

39. A_pigmentata 94.8 94.9 94.3 94.0 94.9 94.9 93.8 94.8 94.7 93.8 93.9 92.9 95.0 93.9 95.0 94.7 93.6 94.9 94.9 94.0 94.1 94.4 94.9 

40. A_helveola 94.9 95.5 95.0 94.3 95.3 95.3 94.1 95.2 95.1 94.1 94.2 93.3 95.1 94.2 95.0 94.5 93.6 95.3 95.3 94.3 94.4 94.8 95.2 

41. A_taiwanensis 95.0 95.7 95.8 94.5 95.4 95.4 94.3 95.2 95.1 94.3 94.4 93.4 95.1 94.4 95.1 94.7 93.8 95.3 95.3 94.5 94.6 94.9 95.3 

42. A_orientalis 93.6 95.1 94.7 93.8 94.0 94.0 93.6 93.9 93.8 93.6 93.6 92.8 93.7 93.6 93.8 94.1 93.3 94.0 94.0 93.8 93.8 93.5 93.9 
43. Actinokineospora 

riparia 93.4 93.9 93.3 92.9 93.8 93.8 92.8 93.7 93.6 92.7 92.8 91.9 93.5 92.8 93.5 93.3 92.5 93.76 93.7 92.9 93.0 93.3 93.7 

Strain codes, as given in Figure 3.2. 

Isolate 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

29. A_ruanii_ 100.0 97.9 98.2 99.9 99.9 --- 
14/ 
1392 

16/ 
1456 18/1441 19/1460 19/1456 20/1461 31/1414 35/1385 24/1426 70/1455 65/1456 64/1458 83/1453 87/1457 

30. A_thermalba 99.0 100.0 100.0 98.8 99.0 99.0 --- 
17/ 
1389 16/1389 8/1392 11/1389 12/1392 20/1390 21/1359 21/1360 70/1388 71/1390 68/1390 77/1386 88/1389 

31. A_thermoflava 98.8 97.6 97.9 98.7 98.8 98.9 98.8 --- 20/1442 13/1457 16/1459 17/1460 34/1416 41/1388 24/1429 79/1455 74/1456 71/1454 86/1452 94/1452 

32. A_endophytica 98.7 97.7 98.1 98.6 98.6 98.8 98.9 98.6 --- 12/1443 16/1442 17/1443 37/1413 44/1386 23/1413 76/1440 72/1441 70/1439 82/1437 97/1438 

33. A_methanolica 98.6 98.3 98.7 98.5 98.6 98.7 99.4 99.1 99.2 --- 10/1457 11/1478 31/1415 38/1386 22/1427 77/1455 78/1456 73/1468 80/1452 93/1471 

34. A_eurytherma 98.6 98.0 98.4 98.5 98.6 98.7 99.2 98.9 98.9 99.3 --- 1/1460 36/1416 43/1388 26/1429 75/1455 78/1456 75/1454 80/1452 96/1452 

35. A_tucumanensis 98.6 97.9 98.3 98.4 98.5 98.6 99.1 98.8 98.8 99.3 99.9 --- 37/1418 44/1389 27/1430 76/1456 79/1457 76/1469 81/1453 97/1472 

36. A_granulosa 98.0 98.1 98.1 97.6 97.8 97.8 98.6 97.6 97.4 97.8 97.5 97.4 --- 11/1387 39/1386 77/1414 69/1415 72/1414 92/1409 101/1412 

37. A_viridis 97.9 98.1 98.2 97.5 97.5 97.5 98.5 97.1 96.8 97.8 96.9 96.8 99.2 --- 44/1384 80/1386 74/1387 79/1385 100/1381 102/1383 

38. A_thermophila 98.3 97.3 97.6 98.1 98.2 98.3 98.5 98.3 98.4 98.5 98.2 98.1 97.2 96.8 --- 77/1425 75/1426 71/1424 86/1422 100/1422 

39. A_pigmentata 94.9 93.7 94.0 94.9 94.9 95.2 95.0 94.6 94.7 94.7 94.9 94.8 94.6 94.2 94.6 --- 46/1475 44/1475 110/1451 110/1453 

40. A_helveola 95.3 94.0 94.3 95.2 95.3 95.5 94.9 94.9 95.0 94.6 94.6 94.6 95.1 94.7 94.7 96.9 --- 17/1475 91/1452 111/1454 

41. A_taiwanensis 95.3 94.2 94.5 95.3 95.3 95.6 95.1 95.1 95.1 95.0 94.8 94.8 94.9 94.3 95.0 97.0 98. --- 94/1450 113/1466 

42. A_orientalis 94.0 93.4 93.8 93.9 94.0 94.3 94.4 94.1 94.3 94.5 94.5 94.4 93.5 92.8 94.0 92.4 93.73 93.5 --- 97/1452 
43. Actinokineospora 

riparia 93.7 92.6 92.9 93.6 93.8 94.0 93.66 93.53 93.25 93.68 93.39 93.41 92.85 92.62 92.97 92.43 92.37 92.29 93.32 --- 

Strain codes, as given in Figure 3.2. 
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Table 3   Nucleotide similarities  (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between 16 strains isolated from 

the extreme hyper-arid Yungay environmental sample and the type strains of closely related Blastococcus, Geodermatophilus and Modestobacter species. 

 Isolate 1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate KNN45-3 --- 12/1389 0/1405 0/1405 3/1405 3/1405 1/1405 14/1394 3/1398 12/1396 12/1396 7/1401 

2. Isolate KNN46-3 99.1 --- 12/1389 12/1389 14/1389 15/1389 13/1389 1/1381 13/1383 0/1388 0/1388 17/1386 

3. Isolate KNN46-6 100 99.1 --- 6/1419 3/1410 3/1411 1/1421 14/1403 3/1398 12/1401 12/1401 8/1404 

4. Isolate KNN46-10 100 99.1 99.6 --- 3/1411 3/1412 7/1420 14/1401 3/1398 12/1402 12/1402 8/1402 

5. Isolate KNN46-9 99.8 99 99.8 99.8 --- 4/1411 4/1411 17/1399 3/1398 14/1402 14/1402 4/1401 

6. Isolate KNN46-8 99.8 98.9 99.8 99.8 99.7 --- 2/1412 15/1400 4/1398 15/1402 15/1402 7/1402 

7. Isolate KNN46-5 99.9 99.1 99.9 99.5 99.7 99.9 --- 13/1403 2/1398 13/1402 13/1402 7/1404 

8. Isolate KNN45-4 99 99.9 99 99 98.8 98.9 99.1 --- 13/1387 3/1393 3/1393 18/1394 

9. Isolate KNN46-4 99.8 99.1 99.8 99.8 99.8 99.7 99.9 99.1 --- 14/1390 14/1390 3/1397 

10. Isolate KNN45-2 99 100 99.1 99.1 99.0 98.9 99.1 99.8 99 --- 0/1403 18/1393 

11. Isolate KNN45-1 99 100 99.1 99.1 99.0 98.9 99.1 99.8 99 100 --- 18/1393 

12. Isolate KNN46-2 99.5 98.8 99.4 99.4 99.7 99.5 99.5 98.7 99.8 98.7 98.7 --- 

13. M. versicolor 99 98.5 99.1 99.1 99.0 98.9 99.1 98.3 99.0 98.5 98.5 98.7 

14. M. marinus 98.8 99.6 98.4 98.8 98.6 98.6 98.3 99.4 98.6 99.6 99.6 98.2 

15. M. roseus 98.3 99.1 97.9 98.3 98.1 98.1 97.8 98.9 98.1 99.1 99.1 97.7 

16. M. multiseptatus 98.6 98.1 98.2 98.6 98.4 98.4 98.1 97.9 98.4 98.1 98.1 98.0 

17. Isolate KNN44-1 96.5 96.4 96.5 96.5 96.6 96.6 96.5 96.4 96.5 96.4 96.4 96.7 

18. Isolate KNN44-3 96 95.8 95.6 96 95.8 95.8 95.5 95.7 95.8 95.9 95.9 95.5 

19. Isolate KNN44-4 96.3 96.1 96.3 96.3 96.3 96.3 96.3 96.1 96.3 96.1 96.1 96.3 

20. G. normandii 95.6 96.1 95.2 95.6 95.4 95.4 95.1 96.0 95.4 96.1 96.1 95.0 

21. G. solani 94.9 94.6 94.9 94.9 94.8 94.7 94.9 94.5 94.9 94.6 94.6 94.7 

22. G. ruber 95.2 95.2 94.9 95.3 95.0 95.0 94.8 95.1 95.1 95.3 95.3 94.6 

23. G. telluris 94.2 94.7 93.9 94.3 94.0 94.0 93.8 94.7 94.1 94.8 94.8 93.6 

24. G. obscurus 96 96 95.6 96.1 95.8 95.8 95.7 95.9 95.8 96.1 96.1 95.4 

25. G. terrae 95.6 95.3 95.5 95.5 95.4 95.4 95.5 95.2 95.8 95.2 95.2 95.6 

26. G. saharensis 95.9 96.5 95.6 96 95.7 95.7 95.5 96.4 95.8 96.5 96.5 95.4 

27. G. siccatus 95.8 95.7 95.4 95.9 95.6 95.6 95.4 957 95.6 95.8 95.8 95.2 

28. G. arenarius 95.6 95.2 95.2 95.6 95.4 95.4 95.1 95.0 95.4 95.2 95.2 95.0 

29.  G. nigrescens 95.7 95.4 95.3 95.8 95.5 95.5 95.3 95.3 95.5 95.4 95.4 95.1 

30. G. taihuensis 93.9 93.9 93.5 93.4 93.6 93.5 93.3 93.1 93.9 93.6 93.6 93.3 

31. Isolate KNN47 96.6 96.3 96.3 96.7 96.4 96.4 96.2 96.1 96.4 96.4 96.4 96.1 

32. B. jejuensis 96.7 96.5 96.7 96.7 96.6 96.5 96.6 96.3 96.6 96.6 96.6 96.3 

33. B. saxobsidens 96.6 96.3 96.3 96.7 96.4 96.4 96.2 96.1 96.5 96.4 96.4 96.1 

34. B. endophyticus 96.7 96.3 96.3 96.6 96.4 96.5 96.2 96.2 96.5 96.4 96.4 96.1 

35. B. aggregatus 96 95.9 96 96 95.9 95.8 95.9 95.5 96 95.8 95.8 95.6 

Strain codes, as given in Figure 3.3. 
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Table 3 (continue) 

 Isolate 13 14 15 16 17 18 19 20 21 22 23 24 

1. Isolate KNN45-3 12/1393 17/1402 24/1400 20/1401 45/1298 56/1398 49/1322 62/1399 70/1358 67/1401 81/1401 56/1401 

2. Isolate KNN46-3 21/1385 5/1387 12/1385 26/1385 47/1298 58/1383 51/1322 54/1384 74/1358 66/1386 73/1386 55/1386 

3. Isolate KNN46-6 12/1398 23/1418 30/1416 26/1417 45/1298 62/1413 49/1322 68/1415 70/1358 73/1417 87/1417 62/1417 

4. Isolate KNN46-10 12/1400 17/1423 24/1416 20/1422 45/1298 57/1418 49/1322 62/1420 70/1358 67/1422 81/1422 56/1422 

5. Isolate KNN46-9 14/1399 20/1408 27/1406 23/1407 44/1298 59/1404 49/1322 65/1405 71/1358 70/1407 84/1407 59/1407 

6. Isolate KNN46-8 15/1399 20/1409 27/1407 23/1408 44/1298 59/1404 49/1322 65/1406 72/1358 70/1408 84/1408 59/1408 

7. Isolate KNN46-5 13/1399 24/1419 31/1417 27/1418 45/1298 63/1414 49/1322 69/1416 70/1358 74/1418 88/1418 63/1418 

8. Isolate KNN45-4 24/1389 8/1402 15/1400 29/1400 47/1291 60/1397 51/1315 56/1399 74/1350 69/1401 75/1401 58/1401 

9. Isolate KNN46-4 14/1387 20/1395 27/1393 22/1394 45/1298 59/1392 49/1322 64/1392 70/1358 69/1394 83/1394 58/1394 

10. Isolate KNN45-2 21/1398 5/1401 12/1399 26/1399 47/1297 58/1397 51/1321 54/1398 74/1357 66/1400 73/1400 55/1400 

11. Isolate KNN45-1 21/1398 5/1401 12/1399 26/1399 47/1297 58/1397 51/1321 54/1398 74/1357 66/1400 73/1400 55/1400 

12. Isolate KNN46-2 18/1390 25/1401 32/1399 28/1400 43/1298 63/1396 49/1322 70/1398 72/1358 75/1400 89/1400 64/1400 

13. M. versicolor --- 25/1446 23/1432 26/1408 51/1298 66/1397 55/1320 64/1400 72/1356 76/1410 84/1442 66/1443 

14. M. marinus 98.3 --- 11/1451 29/1439 47/1298 62/1424 50/1322 55/1428 75/1358 72/1444 73/1476 56/1477 

15. M. roseus 98.4 99.2 --- 38/1426 44/1298 59/1415 48/1320 46/1419 71/1356 66/1429 66/1448 54/1448 

16. M. multiseptatus 98.2 98 97.3 --- 45/1298 61/1422 48/1320 68/1428 70/1356 70/1435 86/1436 55/1436 

17. Isolate KNN44-1 96.1 96.4 96.6 96.5 --- 4/1300 1/1288 31/1297 39/1296 25/1300 43/1299 13/1300 

18. Isolate KNN44-3 95.3 95.7 95.8 95.7 99.7 --- 1/1324 39/1423 49/1356 31/1428 55/1427 20/1428 

19. Isolate KNN44-4 95.8 96.2 96.4 96.4 99.9 99.9 --- 31/1319 44/1320 24/1324 46/1323 13/1324 

20. G. normandii 95.4 96.2 96.8 95.2 97.6 97.3 97.7 --- 60/1357 46/1429 30/1431 30/1429 

21. G. solani 94.7 94.5 94.8 94.8 97 96.4 96.8 95.6 --- 59/1358 69/1359 53/1358 

22. G. ruber 94.6 95 95.4 95.1 98.1 97.8 98.2 96.8 95.7 --- 66/1447 35/1448 

23. G. telluris 94.2 95 95.4 94 97 96.2 96.5 97.9 94.9 95.4 --- 46/1479 

24. G. obscurus 95.4 96.2 96.3 96.2 99.0 98.6 99.0 97.9 96.1 97.6 96.9 --- 

25. G. terrae 94.9 95 95 95.4 96.8 96.2 96.5 95.3 97.7 95.3 94.1 95.9 

26. G. saharensis 95.7 96.9 97 95.7 97.6 97 97.7 98.5 95.3 96.3 97.4 97.7 

27. G. siccatus 95.2 96 96 96.1 98.8 98.5 98.9 97.8 96.2 97.9 96.7 99.1 

28. G. arenarius 95.5 95.5 95.9 95.3 97.5 96.8 97.3 97.7 95.4 96.3 97.6 97.6 

29.  G. nigrescens 95.6 95.6 96 95.2 97.2 96.9 97.3 98.6 95.2 96.3 97.1 97.6 

30. G. taihuensis 92.6 91.8 92.1 93.1 96.9 95 96.5 94.3 99.1 93.9 92.6 93.8 

31. Isolate KNN47 96.3 96.2 96.6 96.2 96.7 96.3 96.6 96.6 96 95.9 95.7 96.5 

32. B. jejuensis 96.5 96.6 96.6 96.7 97.8 97.5 97.8 96.1 95.5 96.9 94.8 97.4 

33. B. saxobsidens 96.1 96.4 96.5 96.3 96.8 96.6 96.8 96.9 95.7 96 95.5 97.3 

34. B. endophyticus 96.4 96.2 96.9 95.7 97.3 96.9 97.2 96.6 96.6 96.5 95.6 96.7 

35. B. aggregatus 96 95.8 96.1 95.9 96.7 95.9 96.4 95.1 95.7 95.8 94.4 96 

Strain codes, as given in Figure 3.3. 
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Table 3 (continue) 

 Isolate 25 26 27 28 29 30 31 32 33 34 35 

1. Isolate KNN45-3 59/1353 57/1402 59/1401 62/1402 60/1398 85/1397 47/1398 46/1392 47/1399 47/1401 56/1392 

2. Isolate KNN46-3 63/1353 49/1387 59/1386 67/1387 64/1383 84/1382 51/1383 48/1384 51/1384 51/1386 57/1383 

3. Isolate KNN46-6 61/1355 63/1418 65/1417 68/1418 66/1414 92/1408 53/1413 46/1397 53/1415 53/1417 56/1397 

4. Isolate KNN46-10 61/1355 57/1423 59/1422 62/1423 60/1419 93/1408 47/1416 46/1399 47/1420 49/1420 56/1399 

5. Isolate KNN46-9 63/1355 60/1408 62/1407 65/1408 63/1404 90/1403 50/1403 48/1398 50/1405 50/1406 58/1398 

6. Isolate KNN46-8 63/1355 60/1409 62/1408 65/1409 63/1405 92/1404 50/1403 49/1398 50/1406 50/1407 59/1398 

7. Isolate KNN46-5 61/1355 64/1419 66/1418 69/1419 67/1415 94/1409 54/1413 47/1398 54/1416 54/1417 57/1398 

8. Isolate KNN45-4 65/1348 51/1402 61/1401 70/1402 66/1398 97/1397 54/1397 51/1389 54/1399 54/1401 62/1389 

9. Isolate KNN46-4 57/1347 59/1395 61/1394 64/1395 62/1391 85/1390 50/1392 47/1386 49/1392 49/1394 56/1386 

10. Isolate KNN45-2 65/1354 49/1401 59/1400 67/1401 64/1397 90/1396 51/1396 48/1398 51/1398 51/1399 59/1397 

11. Isolate KNN45-1 65/1354 49/1401 59/1400 67/1401 64/1397 90/1396 51/1396 48/1398 51/1398 51/1399 59/1397 

12. Isolate KNN46-2 60/1350 65/1401 67/1400 70/1401 68/1397 93/1396 54/1396 52/1389 55/1398 55/1400 61/1389 

13. M. versicolor 69/1354 62/1440 67/1400 65/1440 64/1442 105/1424 51/1394 49/1401 55/1426 50/1395 58/1437 

14. M. marinus 68/1354 46/1470 58/1434 67/1474 65/1470 118/1440 54/1422 48/1404 53/1460 55/1429 61/1441 

15. M. roseus 68/1354 42/1449 57/1419 59/1449 58/1447 114/1438 48/1412 48/1402 51/1445 44/1414 56/1430 

16. M. multiseptatus 62/1354 61/1433 56/1432 68/1437 69/1431 98/1416 54/1420 46/1402 53/1436 62/1427 58/1405 

17. Isolate KNN44-1 42/1295 31/1297 16/1300 33/1300 36/1296 40/1296 43/1298 29/1298 42/1298 35/1298 43/1298 

18. Isolate KNN44-3 52/1350 43/1424 22/1428 46/1428 44/1422 70/1410 52/1419 35/1400 49/1424 44/1421 58/1400 

19. Isolate KNN44-4 46/1316 31/1320 15/1324 36/1324 36/1318 46/1320 45/1322 29/1322 42/1322 37/1322 48/1321 

20. G. normandii 64/1353 21/1434 31/1429 33/1430 20/1434 81/1413 49/1419 55/1400 45/1427 49/1428 69/1400 

21. G. solani 31/1343 64/1358 52/1358 63/1358 65/1356 12/1359 55/1358 61/1358 59/1358 46/1358 59/1357 

22. G. ruber 64/1353 54/1440 30/1438 53/1448 53/1438 87/1424 59/1422 44/1403 58/1444 50/1431 60/1413 

23. G. telluris 80/1353 38/1471 48/1437 36/1477 43/1472 106/1441 61/1421 73/1403 65/1459 63/1430 80/1440 

24. G. obscurus 56/1353 34/1469 13/1438 35/1477 35/1471 90/1440 50/1422 37/1404 40/1460 47/1431 58/1441 

25. G. terrae --- 60/1354 55/1353 71/1353 63/1352 41/1352 62/1351 65/1352 60/1352 59/1353 64/1351 

26. G. saharensis 95.6 --- 35/1430 36/1470 30/1472 102/1440 55/1420 57/1402 48/1454 57/1429 72/1439 

27. G. siccatus 95.9 97.6 --- 37/1438 33/1428 75/1414 50/1422 40/1403 43/1434 47/1431 58/1403 

28. G. arenarius 94.8 97.6 97.4 --- 24/1468 100/1440 45/1422 60/1404 51/1460 48/1431 63/1441 

29.  G. nigrescens 95.3 98.0 97.7 98.4 --- 103/1438 50/1418 60/1400 46/1452 52/1427 68/1437 

30. G. taihuensis 97.0 92.9 94.7 93.1 92.8 --- 76/1408 71/1402 101/1440 68/1409 95/1427 

31. Isolate KNN47 95.4 96.1 96.5 96.8 96.5 94.6 --- 32/1397 14/1422 25/1422 30/1397 

32. B. jejuensis 95.2 95.9 97.2 95.7 95.7 94.9 97.7 --- 28/1404 39/1398 35/1403 

33. B. saxobsidens 95.6 96.7 97.0 96.5 96.8 93.0 99.0 98.0 --- 33/1429 37/1429 

34. B. endophyticus 95.6 96.0 96.7 96.7 96.4 95.2 98.2 97.2 97.7 --- 33/1398 

35. B. aggregatus 95.3 95.0 95.9 95.6 95.3 93.3 97.9 97.5 97.4 97.6 --- 

Strain codes, as given in Figure 3.3. 
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Table 4.  Nucleotide similarities (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains C59, 

KNN26b, KNN38-1b, KNN42f and KNN64-5b isolated from the Atacama Desert environmental samples and between them and the type strains of 

closely related Streptomyces species.  

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate C59 --- 

1/ 

1356 

0/ 

1356 

34/ 

1353 

15/ 

1355 

0/ 

1356 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

2. Isolate KNN13a 99.9 --- 

1/ 

1356 

35/ 

1353 

16/ 

1355 

1/ 

1356 

16/ 

1352 

17/ 

1353 

17/ 

1353 

19/ 

1352 

16/ 

1352 

36/ 

1350 

3. Isolate KNN26b 100.0 99.9 --- 

34/ 

1353 

15/ 

1355 

0/ 

1356 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

4. Isolate KNN38-1b 97.5 97.4 97.5 --- 

25/ 

1352 

34/ 

1353 

40/ 

1352 

41/ 

1353 

41/ 

1353 

43/ 

1352 

46/ 

1352 

64/ 

1347 

5. Isolate KNN64-5b 98.9 98.8 98.9 98.2 --- 

15/ 

1355 

30/ 

1351 

31/ 

1352 

31/ 

1352 

33/ 

1351 

30/ 

1351 

50/ 

1349 

6. S. fimbriatus 100.0 99.9 100.0 97.5 98.9 --- 

15/ 

1352 

16/ 

1353 

16/ 

1353 

18/ 

1352 

15/ 

1352 

35/ 

1350 

7. S. werraensis 98.9 98.8 98.9 97.0 97.8 98.9 --- 

19/ 

1352 

19/ 

1352 

11/ 

1352 

10/ 

1352 

41/ 

1346 

8. S. griseostramineus 98.8 98.7 98.8 97.0 97.7 98.8 98.6 --- 

0/ 

1353 

14/ 

1352 

21/ 

1352 

37/ 

1347 

9. S. griseomycini 98.8 98.7 98.8 97.0 97.7 98.8 98.6 100.0 --- 

14/ 

1352 

21/ 

1352 

37/ 

1347 

10. S. viridiviolaceus 98.7 98.6 98.7 96.8 97.6 98.7 99.2 99.0 99.0 --- 

15/ 

1351 

41/ 

1346 

11. S. caelestis 98.9 98.8 98.9 96.6 97.8 98.9 99.3 98.5 98.5 98.9 --- 

41/ 

1346 

Strain codes, as given in Figure 6.5 
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Table 5.  Nucleotide similarities (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains C34, 

C38, C58, KNN2-6c, KNN6-6b, KNN6-9a, KNN9-3b, KNN10-4d, KNN10-5a, KNN11-1a, KNN11-5a, KNN24-1b, KNN25c, KNN41-1b and 

KNN48-1c isolated from the Atacama Desert environmental sample and between them and the type strains of closely related Streptomyces species.  

Isolates 1 2 3 4 5 6 7 8 9 10 11 12 13 

1. Isolate C38 --- 1/1362 1/1370 1/1362 4/1365 1/1331 3/1334 0/1324 0/1353 3/1330 0/1313 2/1372 1/1362 

2. Isolate C58 99.9 --- 0/1362 1/1352 4/1355 1/1321 4/1325 0/1314 0/1343 3/1320 0/1303 3/1362 1/1352 

3. Isolate C79 99.9 100.0 --- 1/1360 4/1363 1/1329 3/1332 0/1322 0/1351 3/1328 0/1311 3/1370 1/1360 

4. Isolate KNN1-5a 99.9 99.9 99.9 --- 2/1362 2/1331 4/1334 1/1324 1/1353 2/1330 1/1313 1/1362 0/1362 

5. Isolate KNN2-6a 99.7 99.7 99.7 99.9 --- 2/1331 4/1334 1/1324 1/1353 4/1330 1/1313 3/1365 2/1362 

6. Isolate KNN6-6b 99.9 99.9 99.9 99.9 99.9 --- 4/1331 1/1324 1/1331 4/1330 1/1313 1/1331 2/1331 

7. Isolate KNN6-9a 99.8 99.7 99.8 99.7 99.7 99.7 --- 3/1324 3/1334 6/1330 3/1313 3/1334 4/1334 

8. Isolate KNN10-4d 100.0 100.0 100.0 99.9 99.9 99.9 99.8 --- 0/1324 1/1324 0/1312 0/1324 1/1324 

9. Isolate KNN10-5a 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 --- 3/1330 0/1313 0/1353 1/1353 

10. Isolate KNN11-1a 99.8 99.8 99.8 99.9 99.7 99.7 99.6 99.9 99.8 --- 1/1313 3/1330 2/1330 

11. Isolate KNN24-1b 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 100.0 99.9 --- 0/1313 1/1313 

12. Isolate KNN25c 99.9 99.8 99.8 99.9 99.8 99.9 99.8 100.0 100.0 99.8 100.0 --- 1/1362 

13. Isolate KNN41-1c 99.9 99.9 99.9 100.0 99.9 99.9 99.7 99.9 99.9 99.9 99.9 99.9 --- 

14. Isolate KNN48-1c 100.0 100.0 100.0 99.9 99.9 99.9 99.8 100.0 100.0 99.8 100.0 100.0 99.9 

15. C34 99.7 99.9 99.8 99.7 99.6 99.7 99.5 99.8 99.8 99.6 99.8 99.6 99.7 

16. S. mexicanus 98.9 99.0 99.0 98.9 98.8 98.9 98.7 98.9 99.0 98.7 98.9 98.8 98.9 

17. S. hyderabadensis 98.4 98.5 98.5 98.4 98.2 98.3 98.2 98.4 98.5 98.2 98.4 98.3 98.4 

18. S. parvulus 98.8 99.0 98.9 99.0 98.6 98.8 98.7 98.9 98.9 98.8 98.9 98.7 99.0 

19. S. lusitanus 98.9 99.0 99.0 98.9 98.7 98.9 98.7 98.9 99.0 98.7 98.9 98.8 98.9 

20. S. speibonae 98.8 99.0 98.9 98.8 98.6 98.8 98.7 98.9 98.9 98.7 98.9 98.7 98.8 

21. S. chiangmaiensis 98.7 98.9 98.8 98.7 98.6 98.7 98.5 98.7 98.7 98.5 98.7 98.5 98.7 

22. S. coerulescens 98.7 98.8 98.8 98.8 98.5 98.7 98.5 98.7 98.7 98.7 98.7 98.5 98.8 

23. S. althioticus 98.8 98.9 98.8 98.9 98.5 98.7 98.6 98.8 98.8 98.7 98.8 98.6 98.9 

24. S. matensis 98.7 98.8 98.8 98.8 98.5 98.6 98.5 98.7 98.7 98.6 98.7 98.5 98.8 

25. S. variabilis 98.7 98.8 98.8 98.8 98.5 98.7 98.5 98.7 98.7 98.7 98.7 98.5 98.8 

26. S. albus subsp. albus 96.9 96.8 96.8 96.8 96.8 96.8 96.6 96.8 96.9 96.6 96.8 96.7 96.8 

Strain codes, as given in Figure 6.1 

Table 5.  (2)  
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Isolates 14 15 16 17 18 19 20 21 22 23 24 25 

1. Isolate C38 0/1335 4/1372 15/1367 22/1370 16/1371 15/1371 16/1371 18/1369 18/1371 17/1364 18/1364 18/1371 

2. Isolate C58 0/1325 2/1363 14/1357 20/1360 14/1361 13/1361 14/1361 15/1359 16/1361 15/1354 16/1354 17/1361 

3. Isolate C79 0/1333 3/1370 14/1365 21/1368 15/1369 14/1369 15/1369 17/1367 17/1369 16/1362 17/1362 17/1369 

4. Isolate KNN1-5a 1/1335 4/1362 15/1357 22/1360 14/1361 15/1361 16/1361 18/1359 16/1361 15/1354 16/1354 16/1361 

5. Isolate KNN2-6a 1/1335 5/1365 16/1360 25/1363 19/1364 18/1364 19/1364 19/1362 21/1364 20/1357 21/1357 21/1364 

6. Isolate KNN6-6b 1/1331 4/1331 15/1326 22/1329 16/1330 15/1330 16/1330 18/1330 18/1330 17/1323 18/1323 18/1330 

7. Isolate KNN6-9a 3/1334 7/1335 17/1329 24/1332 18/1333 17/1333 18/1333 20/1333 20/1333 19/1326 20/1326 20/1333 

8. Isolate KNN10-4d 0/1324 3/1324 14/1319 21/1322 15/1323 14/1323 15/1323 17/1323 17/1323 16/1316 17/1316 17/1323 

9. Isolate KNN10-5a 0/1335 3/1353 14/1348 21/1351 15/1352 14/1352 15/1352 17/1351 17/1352 16/1345 17/1345 17/1352 

10. Isolate KNN11-1a 3/1330 6/1330 17/1325 24/1328 16/1329 17/1329 18/1329 20/1329 18/1329 17/1322 18/1322 18/1329 

11. Isolate KNN24-1b 0/1313 3/1313 14/1308 21/1311 15/1312 14/1312 15/1312 17/1312 17/1312 16/1305 17/1305 17/1312 

12. Isolate KNN25c 0/1335 6/1372 17/1367 24/1370 18/1371 17/1371 18/1371 20/1369 20/1371 19/1364 20/1364 20/1371 

13. Isolate KNN41-1c 1/1335 4/1362 15/1357 22/1360 14/1361 15/1361 16/1361 18/1359 16/1361 15/1354 16/1354 16/1361 

14. Isolate KNN48-1c --- 3/1335 14/1330 21/1333 15/1334 14/1334 15/1334 17/1334 17/1334 16/1327 17/1327 17/1334 

15. S. leeuwenhoekii 99.8 --- 15/1367 23/1370 17/1371 16/1371 17/1371 16/1369 19/1371 18/1364 19/1364 20/1371 

16. S. mexicanus 99.0 98.9 --- 23/1365 19/1366 21/1366 18/1366 15/1364 19/1366 23/1359 24/1360 24/1366 

17. S. hyderabadensis 98.4 98.3 98.3 --- 15/1371 24/1371 25/1371 26/1368 24/1371 27/1364 27/1364 32/1371 

18. S. parvulus 98.9 98.8 98.6 98.9 --- 14/1372 19/1372 18/1369 12/1372 15/1365 16/1365 22/1372 

19. S. lusitanus 99.0 98.8 98.5 98.3 99.0 --- 14/1372 21/1369 8/1372 9/1365 9/1365 17/1372 

20. S. speibonae 98.9 98.8 98.7 98.2 98.6 99.0 --- 19/1369 15/1372 15/1365 16/1365 15/1372 

21. S. chiangmaiensis 98.7 98.8 98.9 98.1 98.7 98.5 98.6 --- 20/1369 22/1362 23/1362 26/1369 

22. S. coerulescens 98.7 98.6 98.6 98.3 99.1 99.4 98.9 98.5 --- 12/1365 12/1365 14/1372 

23. S. althioticus 98.8 98.7 98.3 98.0 98.9 99.3 98.9 98.4 99.1 --- 0/1364 4/1365 

24. S. matensis 98.7 98.6 98.2 98.0 98.8 99.3 98.8 98.3 99.1 100.0 --- 5/1365 

25. S. variabilis 98.7 98.5 98.2 97.7 98.4 98.8 98.9 98.1 99.0 99.7 99.6 --- 

26. S. albus subsp. albus 96.8 96.8 96.7 96.3 96.2 96.5 96.4 96.3 96.3 96.9 96.8 96.7 

Strain codes, as given in Figure 6.1. 
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Table 6.  Nucleotide similarities (%) and differences based on almost complete 16S rRNA gene sequences showing relationships between strains 

KNN6-11a, KNN35-1b, KNN35-2b, KNN42f, KNN48-3b, KNN48-6d and KNN83e isolated from the Atacama Desert environmental sample and 

between them and the type strains of closely related Streptomyces species.  

  1 2 3 4 5 6 7 8 9 10 11 12 

1. Isolate KNN35-1b --- 1/1382 2/1373 2/1370 2/1382 2/1381 2/1382 7/1382 7/1381 8/1382 9/1382 10/1382 

2. Isolate KNN35-2b 99.9 --- 2/1373 1/1371 1/1385 1/1382 1/1383 6/1391 6/1390 7/1391 8/1391 9/1391 

3. Isolate KNN42f 99.9 99.9 --- 1/1363 1/1373 1/1373 1/1373 6/1373 6/1372 7/1373 8/1373 9/1373 

4. Isolate KNN48-3b 99.9 99.9 99.9 --- 0/1388 0/1407 0/1407 9/1403 5/1392 6/1398 7/1403 8/1389 

5. Isolate KNN48-6d 99.9 99.9 99.9 100.0 --- 0/1399 0/1400 6/1402 5/1401 6/1402 7/1402 8/1402 

6. Isolate KNN6-11a 99.9 99.9 99.9 100.0 100.0 --- 0/1418 9/1414 5/1403 6/1409 7/1414 8/1400 

7. Isolate KNN83e 99.9 99.9 99.9 100.0 100.0 100.0 --- 9/1415 5/1404 6/1410 7/1415 8/1401 

8. S. pseudogriseolus 99.5 99.6 99.6 99.4 99.6 99.4 99.4 --- 1/1452 2/1458 14/1462 10/1448 

9. S. gancidicus 99.5 99.6 99.6 99.6 99.6 99.6 99.6 99.9 --- 1/1452 10/1451 9/1447 

10. S. capillispiralis 99.4 99.5 99.5 99.6 99.6 99.6 99.6 99.9 99.9 --- 11/1457 8/1448 

11. S. carpinensis 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.0 99.3 99.3 --- 7/1448 

12. S. levis 99.3 99.4 99.3 99.4 99.4 99.4 99.4 99.3 99.4 99.5 99.5 --- 

Strain codes, as given in Figure 6.6. 
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Appendix 5.  Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sampling site at the Chaxa de Laguna,Salar de Atacama, Atacama Desert, 

Chile. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sampling site in the region of the Yungay, Atacama Desert Chile 
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Figure 3. Selective isolation of filamentous actinobacteria from soil samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Production of melanin pigment on peptone yeast-extract-iron agar (ISP6 

medium) 
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Figure 5. One dimensional thin layer chromatography to detect isomer of 

diaminopimelic analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The primer pair AMY2 and ATOP were used to amplify a 435 bp product that 

is characteristic of members of the genus  Amycolatopsis.  
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Figure 7.  One dimensional thin layer chromatography to detect diagraphic whole-cell 

sugar analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. ABI format-chromatogram of Streptomyces leeuwenhoekii C34
T
. 
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Figure 9. growth of isolates on sole carbon sources and degradation of tyrosine after 

incubated at 28
o
C for 7 days 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Amycolatopsis colonies growing on selective characters on isolation media 

after incubation at 28
o
C for 14 days. 
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Figure 11. Modestobacer colonies growing on selective isolation media after incubation 

at 28
o
C for 14 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Streptomyces colonies growing on selective isolation media after incubated 

at 28
o
C for 14 days. 

 

 


