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Abstract 

Over 30% of patients diagnosed with a medulloblastoma experience disease 

recurrence. Relapse is almost universally fatal, only infants who receive delayed 

radiotherapy at disease recurrence typically survive long term. Consequently relapse is 

the single leading cause of mortality disease-wide. Improved understanding of 

medulloblastoma at diagnosis has led to the identification of four distinct molecular 

subgroups with differing biology and outcome. These comprise of medulloblastomas 

associated with WNT and SHH pathway disruption (MBWNT and MBSHH respectively), 

and Group 3 and Group 4 tumours (MBGroup3 and MBGroup4). In contrast, very little is 

understood about the disease at recurrence, and at present there are only two 

published studies interrogating the biology of relapsed medulloblastoma. However, 

improved understanding of the biology at relapse is critical to improving treatment. 

Events at disease relapse could be explored as therapeutic targets or, if predictive of 

disease recurrence, provide an opportunity to escalate upfront therapy with the aim of 

preventing relapse. 

This study compiled a cohort of medulloblastoma tumours sampled at relapse (n=29), 

paired with their diagnostic counterparts. All clinicopathological and molecular 

features, with an established relationship to disease prognosis at diagnosis, were 

interrogated in this paired relapse cohort. With the exception of molecular subgroup, 

all features investigated displayed evidence of alteration and predominantly 

acquisition at recurrence. Most strikingly, the emergence of combined p53-MYC 

defects was commonly observed at relapse and these features were associated with 

locally aggressive, rapidly progressive disease following relapse. Through collaborative 

work, this discovery was explored further, with the development of a novel 

GTML/Trp53 KI/KI mouse model which faithfully recapitulated the clinicopathological 

and molecular features of the p53-MYC human tumours, and demonstrated the 

dependency of tumourigenesis and maintenance on this genetic interaction. 

Moreover, therapeutic inhibition of Aurora A kinase using MLN8237 in these mouse 

tumours led to degradation of MYCN, tumour reduction and prolonged survival. 
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A novel genome-wide DNA methylation analysis was next undertaken in the paired 

relapse cohort, focusing on MBGroup4 tumours, to interrogate maintained and acquired 

DNA methylation events between diagnosis and relapse, which may play a role in 

tumour development. Individual CpG sites on the Infinium DNA methylation 450K 

array were assessed for changes in their DNA methylation status between diagnosis 

and relapse. Fifteen candidate genes demonstrated tumour-specific methylation states 

that emerged at relapse and correlated with gene expression. The T-box and 

Homeobox gene families accounted for 8/15 (53%) candidates identified. Both these 

families are reportedly important for tumour development in other cancers. In 

addition, several studies suggest that epigenetic mechanisms, such as DNA 

methylation, play a regulatory role in their gene expression. 

Finally, a large cohort of medulloblastoma tumours (n=206), sampled at diagnosis, 

from patients who are known to go on and recur, was assembled to investigate any 

subgroup-specific patterns and timings of relapse. MBWNT rarely relapsed, whereas 

MBSHH frequently relapsed at both local and distant sites, but were the tumour 

subgroup most readily salvaged by radiotherapy in patients who were not treated with 

craniospinal irradiation (CSI) at diagnosis (8/12, 67%). Both MBGroup3 and MBGroup4 were 

widely metastatic at recurrence (34/41 (83%) and 52/61 (85%)) but contrastingly 

MBGroup3 relapsed quickly (p=0.0022), whereas MBGroup4 relapsed more slowly 

(p=0.0008). In patients who did not receive upfront CSI, MYC amplification at diagnosis 

was associated with rapid disease progression after relapse (p=0.0003). No diagnostic 

feature was significantly associated with time to death following relapse in the cohort 

of patients who received upfront CSI. This finding was supported by data from the 

paired relapse cohort where, in patients who received upfront CSI, it was the biological 

features of the tumour at relapse and not diagnosis, which were associated with 

disease course.  

In summary, this study has discovered emergent combined p53-MYC defects at 

medulloblastoma relapse which are associated with disease behaviour, identified 

potentially epigenetically regulated candidate genes in relapsed MBGroup4 tumours, and 

shown that the patterns of disease relapse are associated with radiotherapy and 

molecular subgroup. Together these findings demonstrate that medulloblastoma 

tumour biology is significantly different at relapse and that the timings and location of 
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disease recurrence should be considered in the context of molecular subgroup and 

treatment. Biopsy at disease recurrence is now essential to validate and expand on 

these novel findings, interrogate all molecular subgroups at disease recurrence, and 

translate these discoveries into improved outcomes for the patients suffering from this 

devastating diagnosis. 
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1.1 Definition of cancer 

Cancer, in its simplest terms is used to describe a disease process where there is 

uncontrolled and unregulated replication of cells. To circumvent the normal cell 

regulatory mechanisms, cancer cells must overcome numerous barriers, both intrinsic 

and extrinsic, to gain a survival advantage and continue to multiply, populate a tumour 

and disseminate throughout the body (metastasise). Cancer is a heterogeneous 

disease which develops over time and different cell populations within a tumour 

acquire different properties, such as the ability to invade or metastasise. Despite 

advances in the treatment of cancer, worldwide it still remains one of the biggest 

challenges faced by science and modern medicine today (Pelengaris and Khan, 2006).  

1.2 Health burden of cancer  

1.2.1 Worldwide incidence of cancer 

More than one in three people will be diagnosed with a form of cancer during their 

lifetime. The occurrence and distribution of cancers varies across the world with a 

higher incidence experienced in developed countries such as the USA, UK, Australia 

and New Zealand. However, whilst the incidence of cancer is highest in developed 

countries (Figure 1.1), due to of the distribution of people around the globe, over half 

of all the world’s cancer diagnoses occur in the developing world (CRUK, 2011). 

 

Figure 1.1  Worldwide incidence of cancer per 100,000 people in 2008.  Figure 
adapted from Cancer Worldwide and in the UK (CRUK, 2011). 
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1.2.2 UK incidence of cancer 

In the UK alone, 300 000 people were diagnosed with cancer in 2011 with lung, 

prostate, breast and bowel (Figure 1.2) being the commonest primary locations 

observed (CRUK, 2014b). Women and men suffer from different types of cancer with 

breast cancer being the commonest in women, and cancer of the prostate the 

commonest diagnosis in men. There is both a gender and age bias in the incidence of 

cancer as men are more likely to develop cancer, and the rate of cancer increases with 

advancing age with over half of all cancers diagnosed in people older than 50 years 

(CRUK, 2014b). 

 

Figure 1.2  Percentage incidence of the ten commonest cancers observed in the UK.  
NHL, Non-Hodgkin’s lymphoma. Figure adapted from Cancer incidence and mortality in 
the UK (CRUK, 2014b).  

 

1.2.3 Incidence of childhood cancer 

Cancer diagnosed between the ages of 0-14 years is rare (1% of all cancers), with 

approximately 1600 new diagnoses made annually in the UK (CRUK, 2014c). Of these, 

the most common diagnoses are the haematological malignancies (leukaemia and 

lymphoma) with tumours arising in the central nervous system (CNS) being the most 

common ‘solid’ tumour (Figure 1.3). 
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Figure 1.3  Illustrative diagram highlighting the percentage incidence of childhood 
cancer within the UK. CNS, central nervous system; SNS, sympathetic nervous system; 
GCT, germ cell tumour. Figure adapted from Childhood Cancer Great Britain & UK 
(CRUK, 2010).  

 

The incidence of childhood cancer has risen in the UK over the last 50 years by 

approximately 40%. This is believed to be due to a combination of improved diagnoses 

and better reporting systems. In contrast, however, survival from childhood cancer has 

greatly improved as a result of better treatment strategies and therapeutic advances. 

Five year survival rates for childhood cancer are currently 82% and whilst there are still 

advances to be made to cure all children of their disease, treatment strategies are now 

also focusing on long term quality of survival and minimising late effects (CRUK, 

2014c). Consequently the challenges and aims of treating childhood cancer today can 

be divided into two broad strategies; firstly identifying, treating and curing those 

tumours that currently have a poor prognosis and overall survival (OS) rate and 

secondly, safely reducing therapies responsible for morbid late effects whilst 

maintaining survival for those cancers that are currently successfully cured long term.  
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1.3 The hallmarks of cancer 

It is well recognised that cancer occurs following multiple processes which enable the 

cancer cells to escape normal growth control, develop, grow and metastasise. During 

this multistep process it is estimated that up to seven events, either genetic or 

epigenetic, are required by cancer cells for tumour development. The mechanisms by 

which cancer cells acquire these aberrations and overcome the normal regulatory 

processes imposed are not fully understood. Conceptually they consist of six 

established characteristics which are summarised below (Figure 1.4). More recently, 

additional mechanisms which contribute to the maintenance and progression of the 

disease have also been described and are similarly displayed in Figure 1.4 (Knudson, 

1971; Hanahan and Weinberg, 2000; Pelengaris and Khan, 2006; Hanahan and 

Weinberg, 2011). 

 

Figure 1.4  Established and emerging hallmarks of cancer.  Illustration summarising 
the six hallmarks of cancer (top panel) followed by more recent emerging and enabling 
characteristics (bottom panel) that have been recently proposed by Hanahan and 
Weinberg (2011).  
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1.3.1 Sustained proliferative signalling 

In order to enable cancers cells to continuously proliferate, the normal balance of cell 

growth and division is disrupted. Cell growth is controlled by a balance of positive and 

negative signals which are either local in origin (paracrine) or distant (endocrine). 

Complex pathways are integral to this process; growth factors bind to intracellular or 

cell surface receptors and engage downstream intracellular enzymes or transcription 

factors which activate the cell cycle and growth machinery. Typically, for cell growth to 

occur in the correct environment, growth factors also require integrin cell-adhesion. 

These processes, however, are difficult to investigate experimentally, as they are 

typically paracrine in nature, transient and localised making accessing these events 

challenging. What is understood is that cancer cells can acquire alternative 

proliferative signalling mechanisms to maintain survival and growth. These 

mechanisms include; hyper-sensitivity to growth factors due to increased growth 

factor receptors, modified receptor structures which enable independent unregulated 

signalling, excess self-production of growth factors, recruitment of growth factors from 

nearby normal cells, and downstream control of growth factor signalling pathways 

(Pelengaris and Khan, 2006; Hanahan and Weinberg, 2011). 

1.3.2 Evading growth suppressors 

In addition to sustaining proliferation and growth, cancer cells must also evade the 

normal growth suppressive mechanisms. Two key cellular processes are in place to 

suppress growth; contact inhibition and tumour suppressor genes. Contact inhibition is 

the process where densely populated, neighbouring cells, form cell-to-cell contacts 

which in turn inhibits further growth and division. An example of contact inhibition is 

the coupling of the cell-surface adhesion molecular E-cadherin, to a transmembrane 

receptor tyrosine kinase such as the epidermal growth factor receptor (EGF). This 

process is mediated by Merlin, the cytoplasmic product of the NF2 gene. Merlin 

strengthens the cell-to-cell adhesions formed and can also sequester growth factors 

leading to the overall suppression of growth. Loss of Merlin, through mutations in the 

NF2 gene, occurs in the cancer predisposition syndrome neurofibromatosis type II and 

is an example of how cancer can evade one of the growth suppressive mechanisms 

(Hanahan and Weinberg, 2011). 
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Tumour suppressor genes encode for proteins which either inhibit or slow cell 

proliferation. Their role is to prevent abnormal cells with damaged DNA from entering 

or progressing through the cell cycle and they either induce growth arrest, to allow the 

repair of the damaged cell, or cell death known as apoptosis. Examples of tumour 

suppressor genes are RB1 and TP53 (discussed in section 1.4.1, Table 1.1 ) which both 

encode for proteins involved in cell cycle control (Rb and p53 respectively). In brief, Rb 

is responsible for determining whether a cell should continue to grow and divide 

whereas p53 halts the cycle of a cell with DNA damage and elects to either repair that 

cell or trigger apoptosis if the cell is beyond rescue. Both these mechanisms can be 

circumvented by cancer cells, and aberrations in the Rb and p53 pathways are 

frequently discovered with mutations in TP53 being the most frequently found 

mutations (~50%) in adult cancers (Hanahan and Weinberg, 2011). 

1.3.3 Resisting cell death 

There are a variety of mechanisms adopted by cancer cells to resist apoptosis. 

Abnormalities within the p53 pathway, such as mutation of the TP53 gene, enable 

cancer cells to avoid death. A similar affect is achieved by the down-regulation of other 

pro-apoptotic factors, such as BAX or BBC3 (Figure 1.6), or the up-regulation of survival 

and anti-apoptotic factors (BCL2 or BCL2L1). Other forms of cell death such as 

autophagy are less well understood, and enhancement of this process can be both 

deleterious as well as beneficial to cancer cells. Finally, cell death via necrosis can be 

advantageous to tumours as the release of the cell contents attracts inflammatory cells 

which in turn stimulates growth via processes such as angiogenesis (Pelengaris and 

Khan, 2006; Hanahan and Weinberg, 2011). 

1.3.4 Enabling replicative immortality 

Normal cells have a finite ability to replicate, with the endpoint being either 

senescence, where cells cease to divide but remain viable, or cell death (apoptosis). 

Telomeres, located at the end of chromosomes, progressively shorten after each cell 

division and it is this process which determines the number of divisions a cell can 

undergo. Once telomeres are eroded, the chromosome ends are no longer protected 

and cells enter a crisis phase where the majority of cells die. Cells surviving this crisis 

phase typically express telomerase, a ribonucleoprotein with DNA polymerase activity 

which stabilises and maintains the shortened telomere ends by adding repeat 
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segments of DNA. These cells are consequently immortalised; a characteristic feature 

displayed by both cell lines and cancer cells (up to 90% of all tumours) and the 

reactivation of telomerase correlates directly with the sustained growth of many 

advanced cancers (Hanahan and Weinberg, 2011; Shay and Wright, 2011). Other 

mechanisms by which cells can achieve immortalisation are through increased 

expression of telomerase reverse transcriptase (TERT), the protein subunit of 

telomerase. This can be achieved via hypermethylation or mutations in the promoter 

region of the gene (section 1.4.7). Other alternative mechanism also recently 

discovered for telomere lengthening include loss-of-function mutations in the 

telomere binding proteins encoded by DAXX and ATRX  (Shay and Wright, 2011; 

Castelo-Branco et al., 2013; Killela et al., 2013; Lindsey et al., 2014).  

1.3.5 Inducing angiogenesis 

The normal process of blood vessel growth, angiogenesis, is rarely activated in 

developed tissue except when stimulated to do so by injury for example, to enable 

healing. In tumourigenesis and cancer progression, angiogenesis is central to the 

survival of cancer cells and is inevitably activated relatively early in cancer 

development (Pelengaris and Khan, 2006; Hanahan and Weinberg, 2011). Pathological 

activation of vascularisation in tumourigenesis is attributed to the imbalance of pro 

and anti-angiogenic factors and this ‘angiogenic switch’ is believed to be triggered by 

the relative hypoxia and increased metabolic load found within a tumour (Baeriswyl 

and Christofori, 2009).  

Vascular endothelial growth factor A (VEGFA) is a member of the gene family 

responsible for inducing placental growth. It plays a central role in regulating both 

normal and pathological angiogenesis. In pathological angiogenesis, VEGFA binds to its 

tyrosine kinase receptor VEGFR-2, which is located on the endothelial cells within 

blood vessels, and promotes abnormal vascularisation within the tumour. Additional 

members of same gene family such as VEGFC are also involved in inducing 

angiogenesis by binding to their tyrosine kinase receptors. Other well recognised 

stimulators in this process are fibroblast growth factor 1 and 2 (FGF1 and FGF2) and 

platelet derived growth factor B and C (PDGFB and PDGFC) all of which induce 

endothelial cell migration and proliferation (Pelengaris and Khan, 2006; Baeriswyl and 

Christofori, 2009; Hanahan and Weinberg, 2011).  
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Anti-angiogenic factors disrupted during the vascularisation of tumours include 

thrombospondin-1 (THBS1), an extracellular matrix glycoprotein which inhibits growth 

factor mobilisation and endothelial migration and promotes endothelial cell apoptosis. 

In addition the proteolytic cleavage products of collagen (endostatin, tumstatin and 

canstatin), interferon-α, interferon-β and angiostatin are all potent inhibitors of 

angiogenesis. Both inhibitors and stimulators of vascularisation can be produced by 

cancer cells themselves or by neighbouring inflammatory cells which have invaded the 

tumour. Once angiogenesis has begun patterns of vascularisation vary from tumour to 

tumour due to the spectrum of ongoing stimulation resulting in some tumours being 

highly vascularised and others relatively under-vascularised (Pelengaris and Khan, 

2006; Baeriswyl and Christofori, 2009; Hanahan and Weinberg, 2011). 

1.3.6 Activating invasion and metastasis 

Understanding the biology of invasion and metastasis of cancer cells is an evolving field 

but recent advances propose a sequential mechanisms which is summarised in Figure 

1.5 below (Talmadge and Fidler, 2010) .  

 

Figure 1.5  The sequential process of metastasis.  Figure adapted from Talmadge and 
Fidler, 2010. 

 

Not all cells within a tumour have the properties which enable them to invade and 

metastasise. In addition, as illustrated in Figure 1.5, invasion and metastasis is a 

multistep process with rate limiting steps along the way and failure to progress from 

one step to the next will delay or halt the process. Cancer cells attain invasive 



10 
 

properties through inappropriate activation of matrix-degrading enzymes alongside 

altered epithelial intercellular adhesion. Cells either enter the blood or lymphatic 

circulation directly, or break away from the primary malignancy and proliferate in the 

stromal tissue until they discover an appropriate lymph node or blood vessel to enter 

the circulation through (motility and invasion, embolization and circulation, Figure 

1.5). Typically cancer cells become trapped within a capillary because of their relatively 

large size compared to the vessel diameter (arrest and adherence in capillaries, Figure 

1.5).  

However, certain tumour types have a predilection for particular organs and it is 

hypothesised that specific tumour cells require specific microenvironments to 

successfully invade and proliferate. Moreover, if a cancer cell is circulating via the 

lymphatic system the most likely metastatic sites are the lymph nodes located in the 

drainage region of the primary tumour. Here, cancer cells face additional challenges to 

overcome due to the differing microenvironment and large population of cytotoxic T 

cells found in lymph nodes. Once a cancer cell has established itself at a secondary site 

with an appropriate microenvironment, the processes of proliferation and 

angiogenesis (Figure 1.5 and section 1.3.5) begins again. When invasion and metastasis 

occurs varies, and there is an emerging body of evidence which suggests that the 

metastatic process can be initiated both early and late on in cancer development 

(Pelengaris and Khan, 2006; Hanahan and Weinberg, 2011). 

1.3.7 Advances in understanding the biology of cancer 

In addition to the six established hallmarks already discussed (section 1.3.1-1.3.6), two 

new hallmarks and further enabling features concerned with cancer development have 

now been described (Figure 1.4). The new hallmarks are i) mechanisms to avoid 

destruction by the immune system and ii) the modification of cellular metabolisms to 

create the most ideal circumstances for neoplastic proliferation. The enabling 

characteristics are i) genomic instability and ii) promoting an inflammatory response 

(Hanahan and Weinberg, 2011). 

Genomic instability is an enabling feature for the majority of cancers and plays a key 

role in tumourigenesis and progression. It is best defined as an increased tendency to 

spontaneously acquire DNA damage, from the nucleotide level (e.g. DNA mutations) to 
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gross changes at the chromosomal level (e.g. chromothripsis). Disruptions of many 

cellular processes are associated with genomic instability such as DNA damage and 

repair mechanisms, telomere function (section 1.3.4) and cell cycle regulation. As such, 

the process results in a highly mutable genome allowing the more rapid acquisition of 

beneficial aberrations for tumour progression (Pelengaris and Khan, 2006; Hanahan 

and Weinberg, 2011; Rausch et al., 2012).  

Finally, the innate inflammatory response, elicited by cancer cells, which historically 

was thought to be the immune system attempting to eliminate the cancer cells, is now 

believed to also be an enabling event in cancer development. Tumour promoting 

effects of inflammation include the ability of immune cells to supply growth factors, 

pro-angiogenic factors and survival factors. All of these features contribute to many of 

the already established hallmarks of cancer and enabling features in tumour 

development described above (section 1.3.1-1.3.6) and illustrated in Figure 1.4 

(Hanahan and Weinberg, 2011). 

  



12 
 

1.4 Models of tumourigenesis in cancer development 

As described in section 1.3, cancer development is a multistep process. In order for 

these steps to occur, many genetic and epigenetic aberrations must develop, typically 

in tumour suppressor genes and oncogenes, to enable a cancer cell to grow, multiply, 

invade and metastasise (Figure 1.5). These two classes of genes are described below in 

section 1.4.1 and 1.4.2, along with the key models proposed for tumour development 

(sections 1.4.3-1.4.7). 

1.4.1 Tumour suppressor genes 

A tumour suppressor gene encodes for a protein which guards the cell against DNA 

damage. Tumour suppressor genes have a variety of functions such as monitoring 

critical checkpoints at the G1 or G2 phase in the cell cycle, initiating repair, inducing 

growth arrest or preventing inappropriate signalling for cell growth (Pelengaris and 

Khan, 2006). It was initially proposed that all tumour suppressor genes were recessive, 

i.e. both alleles required an aberration to lead to loss-of-function of the encoded 

protein. Knudson’s ‘two hit’ theory, which explored the inheritance of retinoblastoma, 

supported this and proposed that a child who develops this particular tumour of the 

retina, inherits one defective RB1 allele from a parent (germline), followed by a second 

(somatic), deletion, insertion, nonsense mutation or missense mutation of the 

remaining functioning RB1 allele sometime later (Knudson, 1971; Pelengaris and Khan, 

2006; Ali et al., 2010).  

This hypothesis is based on the understanding that one normal copy and one abnormal 

copy (heterozygosity of the RB1 gene) is not adequate for a malignant retinoblastoma 

tumour to develop. In the absence of a germline mutation in the RB1 gene, unilateral 

retinoblastoma can still arise but typically later on in childhood which allows time for 

the acquisition of separate aberrations of both RB1 alleles (Cavenee et al., 1983). 

However, whilst loss of heterozygosity of the RB1 gene leads to tumourigenesis, this is 

not true for all tumour suppressor genes.  

The TP53 gene, for example, is the most frequently mutated gene in adult cancers 

(Hanahan and Weinberg, 2011). It has been shown that missense heterozygous 

mutations can act in a dominant negative way and still lead to loss of p53 function. 

Other mechanisms which lead to loss of p53 function include deletion of one or both 



13 
 

of the TP53 alleles, which are located on the short arm of chromosome 17 (17p13.1) or 

amplification of MDM2, the negative regulator of p53 (Figure 1.6), which leads to 

excess degradation of the p53 protein (de Vries et al., 2002; Wijnhoven et al., 2007; 

Carr-Wilkinson et al., 2010).  

 

Figure 1.6  Illustrative diagram representing the p53 pathway.  p53 responds to DNA 
damage by activating cell cycle arrest via transcription of CDKN1A or apoptosis through 
transcription of BAX, TP53I3 and BBC3. A feedback loop with MDM2 regulates p53 with 
MDM2 degrading p53. MDM2 in turn is inhibited by p14ARF along with PTEN indirectly 
and p14ARF responds to MYC and E2F. Figure adapted from Carr et al., 2006.  

 

Since the discovery of the RB1 gene and the TP53 gene as tumour suppressor, several 

other genes important in cancer development have subsequently been characterised 

as tumour suppressors and examples of these are summarised in Table 1.1.
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Table 1.1  Examples of commonly occurring tumour suppressor genes genetically down-regulated in many types of cancer.  Genes are shown 
alongside their current nomenclature with a summary of their function, chromosomal location and associated tumour types. Table adapted from 
Pelengaris and Khan (2006).

Gene Nomenclature Function
Chromosome 

location
Associated tumour types

RB1 Retinoblastoma 1 Cell cycle regulator 13q14.2
retinoblastoma, bladder cancer,              

osteogenic sarcoma

TP53 Tumour protein p53
Induces cell cycle arrest, apoptosis, senescence, 

DNA repair or changes in metabolism
17p13.1

Variety of human cancers and                             

Li-Fraumeni syndrome

CDKN2A
Cyclin-dependent kinase 

inhibitor 2A
Cell cycle regulator 9p21 Variety of human cancers  

APC Adenomatous polyposis coli Antagonist of the Wnt signalling pathway 5q21-q22 Colon cancer

BRCA1 Breast cancer 1 DNA repair 17q21 Breast and ovarian cancer

BRCA2 Breast cancer 2 DNA repair 13q12.3 Breast and ovarian cancer

MSH2 mutS homolog 2 DNA mismatch repair 2p21 Hereditary nonpolyposis colon cancer

MLH1 mutL homolog 1 DNA mismatch repair 3p21.3 Hereditary nonpolyposis colon cancer

VHL von Hippel-Lindau Transcription elongation 3p25.3
Renal cancer, haemangioblastoma, 

pheochromoctoma

PTCH1 Patched 1 Development and differentiation 9q22.3
Medulloblastoma, basal cell carcinoma                 

and Gorlin sydrome

PTEN
Phosphatase and tensin 

homolog
Signalling 10q23.3 Variety of human cancers  

WT1 Wilms' tumour 1 Transcription regulator 11p13 Wilms' tumour

NF1 Neurofibromin 1 Ras inactivation 17q11.2
Neurofibromas, sarcomas, gliomas                    

and Neurofibromatosis type 1

NF2 Neurofibromin 2 Cytoskeleton 22q12.2
Schwannomas, astrocytomas, meningiomas            

and Neurofibromatosis type II
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1.4.2 Oncogenes 

Oncogenes are cancer causing genes which, when functioning normally are a class of 

genes known as proto-oncogenes. Proto-oncogenes are typically growth factors, 

transcription factors, signal transducers or receptors and are responsible for cellular 

mechanisms such as growth, division or survival. Their abnormal activation via 

aberrations such as mutations, amplifications and chromosomal rearrangements, 

alongside the accumulation of other defects such as loss of a tumour suppressor can 

lead to tumour maintenance or tumourigenesis. Several examples of oncogenes 

alongside their associated tumour types are highlighted in Table 1.2. Two key instances 

of aberrant proto-oncogene activation are discussed below; the chromosomal 

rearrangement creating the fusion gene BCR-ABL, and point mutations, amplifications 

and overexpression of the MYC gene family; MYC, MYCN and MYCL (Vita and 

Henriksson, 2006).  

The BCR-ABL fusion protein, encoded for by the fusion gene BCR-ABL is cancer causing 

in certain types of leukaemia. It was first discovered in 1960 (Nowell and Hungerford, 

1960) in the karyotypes of patients with chronic myeloid leukaemia (CML) and is 

created from the reciprocal translocation of chromosomal material between 

chromosome 9 and 22; t(9;22)(q34;911). Whilst the normal function of BCR is not 

known, ABL1 is a classic proto-oncogene encoding a tyrosine kinase implicated in 

cellular processes such as division and differentiation. The fusion gene BCR-ABL leads 

to constitutive activation of the ABL1 proto-oncogene and a cancer causing phenotype 

(Druker et al., 2001). 

MYC protein is a transcription factor involved in a variety of regulatory processes in the 

cell such as cell cycle progression, differentiation, growth, cell motility and 

proliferation (Figure 1.7). Normally the expression of MYC is tightly regulated with high 

levels of expression when a cell enters the cell cycle and low levels of expression when 

a cell is quiescent. The MYC gene family are widely activated in a variety of adult and 

childhood cancers via several mechanisms. For example, in haematological 

malignancies such as Burkitt’s lymphoma or diffuse large cell lymphoma MYC 

translocations and overexpression are the activating mechanisms, whereas in solid 

tumours such as neuroblastoma and medulloblastoma amplifications of MYC and 

MYCN, are observed (Vita and Henriksson, 2006; Bretones et al., 2014). 
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Figure 1.7  The cellular processes controlled by MYC during normal conditions and 
tumourigenesis.  Left; normal cell processes that MYC regulates, right; deregulation of 
MYC leads to multiple tumorigenic processes such as genomic instability, uncontrolled 
cell proliferation, escape from immune surveillance, immortalisation and 
independence from growth factors. Figure taken from Vita and Henriksson, 2006. 
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Table 1.2  Examples of commonly occurring oncogenes up-regulated in many types of cancer.  Genes are shown alongside their current 
nomenclature with a summary of their function, chromosomal location and associated tumour types. Table adapted from Pelengaris and Khan (2006).

Gene Nomenclature Function
Chromosome 

location
Associated tumour types

ABL1
ABL proto-oncogene 1, non-

receptor tyrosine kinase

Cell division, adhesion, differentiation, and 

response to stress
9q34.1 Chronic myeloid leukaemia

VAV1
Vav 1 guanine nucleotide 

exchange factor
T-cell and B-cell development and activation 19p13.2 Haematological malignancies

NRAS
Neuroblastoma RAS viral 

oncogene homolog
GTPase activity 1p13.2

Rectal cancer, follicular thyroid cancer and 

autoimmune lymphoproliferative syndrome

BRAF
B-Raf proto-oncogene, 

serine/threonine kinase
Cell division, differentiation, and secretion 7q34

Non-Hodgkin lymphoma, colorectal cancer, 

malignant melanoma and thyroid carcinoma

EGFR
Epidermal growth factor 

receptor

Transmembrane glycoprotein, member of the 

protein kinase superfamily
7p12 Lung cancer

ERBB2
V-erb-b2 avian 

erythroblastic leukaemia 

Epidermal growth factor receptor family of receptor 

tyrosine kinases
17q12 Breast and ovarian tumours

RUNX1
Runt-related transcription 

factor 1

Transcription factor involved normal 

haematopoiesis
21q22.3 Leukaemia

MYCN
V-myc avian 

myelocytomatosis viral 
Transcription factor involved in brain development 2p24.3 Neuroblastoma and medulloblastoma

MDM2
MDM2 proto-oncogene, E3 

ubiquitin protein ligase
p53-binding protein 12q14.3-q15 Sarcomas

MYC
V-myc avian 

myelocytomatosis viral 

Cell cycle progression, apoptosis and cellular 

transformation
8q24.21

Haematopoietic tumours, leukaemias and 

lymphomas

MET
MET proto-oncogene, 

receptor tyrosine kinase
Hepatocyte growth factor receptor 7q31 Papillary renal carcinoma

CCND1 Cyclin D1 Cell cycle progression 11q13
Breast cancer, squamous cell carcinoma of 

the head and neck and bladder cancer

CDK4 Cyclin-dependent kinase 4 Cell cycle G1 phase progression 12q14 Multiple cancers including sarcomas
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1.4.3 The genetic model for tumourigenesis 

In 1990 Fearon and Vogelstein proposed a genetic model for the tumourigenesis of 

colorectal cancer (Fearon and Vogelstein, 1990). Here they hypothesised that the 

sequential accumulation of aberrations such as activation of oncogenes (section 1.4.2) 

and loss of tumour suppressor genes (section 1.4.1) led to benign tumours, in this 

instance adenomas, developing into carcinomas. These events in turn led to a survival 

advantage with the aberration(s) enabling the cancer cell to multiply; a process known 

as clonal expansion (Figure 1.8). They also proposed that it was not the order but the 

accumulation of events that was important, with up to seven events required by a 

cancer cell for tumourigenesis to occur (Knudson, 1971; Fearon and Vogelstein, 1990; 

Pelengaris and Khan, 2006).  

 

 

Figure 1.8  Illustrative example of mutation accumulation in tumourigenesis. The 1st 
mutation acquired expands clonally before a 2nd and 3rd mutation are acquired. Each 
clone, in turn, expands the population of cells with that specific aberration and 
provides heterogeneity within the arising malignant tumour. 

 

This model of genetic accumulation is also observed in many other tumours such as 

breast cancer, ependymoma and leukaemia. In addition it is now recognised that 

aberrations within DNA repair mechanisms can accelerate this process of accumulation 
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with distinct repair pathways disrupted in specific tumour types. For example, 

homologous recombination genes are disrupted in breast and ovarian cancer, colon 

cancer exhibits aberrations in DNA mismatch repair and homologous recombination 

pathways, whereas prostate cancer displays aberrations in both homologous 

recombination and nucleotide-excision repair mechanism (Shackney et al., 1996; Milde 

et al., 2009; Dietlein et al., 2014; Esposito and So, 2014).  

1.4.4 The cancer stem cell model of tumour development and 

maintenance  

The cancer stem cell (CSC) model is a hierarchical model proposed for tumour 

development whereby a small population of CSCs possesses the ability to populate and 

propagate the tumour (Figure 1.10). This is in contrast to the non-hierarchical clonal 

evolution model where genetic features are accumulated within clones of cancer cells 

(Figure 1.8). These two models are not mutually exclusive, and both models can 

account for tumour development, maintenance and importantly the molecular 

heterogeneity frequently observed in multiple cancer types as illustrated below in 

Figure 1.9 and Figure 1.10 (Hanahan and Weinberg, 2011; Visvader and Lindeman, 

2012). 
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Figure 1.9  Illustrative example of the clonal evolution model.  Tumour cells arise from 
the dominant clone, generate other tumour cells, some with and some without 
tumorigenic capacity. Figure adapted from Visvader and Lindeman, 2012. 

 

 

Figure 1.10  Illustrative example of the cancer stem cell model.  Small subsets of 
cancer stem cells sustain tumourigenesis whereas all other tumour cells do not have 
this ability. The CSC continues to maintain the malignant tumour as it grows and 
develop. Figure adapted from Visvader and Lindeman, 2012. 
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CSCs do not necessarily originate from normal stem cells but do have properties such 

as self-renewal and multi-potency. They have been attributed to treatment resistance 

and populating recurrences and theoretically must be eradicated to achieve cure. Not 

all cells within the tumour have these abilities, or the need to be destroyed but the 

theory implies that all cells within the malignancy have been derived from a CSC as 

illustrated in Figure 1.10 (Nguyen et al., 2012; Visvader and Lindeman, 2012).  

The concept of CSCs has been postulated for several decades with the first notable 

publications in the 1960s where, for example, genetic evidence of the clonal 

progression of CML was reported (Levan et al., 1963) and the clonal origin of tumours 

was first demonstrated in vivo (Kleinsmith and Pierce, 1964). As momentum has grown 

in this field there are now multiple theories emerging as to how CSCs propagate 

tumours and convey heterogeneity, such as a single subset of CSCs populating a 

tumour (Figure 1.10), multiple subsets of populating  CSCs, dormant CSCs which lead to 

recurrence over a period of time, evolution of a novel CSC leading to a dominant CSC 

clone and tumour progression and finally CSCs which have an unstable phenotype 

resulting in phenotypic reversion (Visvader and Lindeman, 2012). 

Clinically, CSCs offer an attractive therapeutic option. Various approaches have been 

attempted, such as targeting the critical pathways for CSC maintenance or the use of 

monoclonal antibodies towards CSC surface markers. The CSC niche, the tumour 

microenvironment which interacts bi-directionally with the CSCs, has also provided a 

target in certain tumours, for example in glioblastoma (GBM), a highly malignant brain 

tumour for which there is currently no curative therapy (Gilbertson and Rich, 2007). 

However the clinical utility of the CSC concept has yet to be proven with most pre-

clinical models that demonstrate a response requiring both CSC focused therapy and 

adjuvant chemotherapy (Visvader and Lindeman, 2012). Further work is required to 

evaluate the importance of CSCs in particular in tumour resistance, progression and 

disease recurrence. 
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1.4.5 Epigenetics and cancer 

Epigenetics is the study of heritable changes in gene expression or cellular phenotype 

which do not correspond with a change in the DNA nucleotide sequences. The 

interaction of epigenetic mechanisms, such as DNA methylation, chromatin 

remodelling and histone modification, can regulate gene expression. As demonstrated 

in Figure 1.11, an epigenetically silenced gene will display DNA methylation upstream 

of the promoter region and the promoter CpG island will be occupied by the Polycomb 

complex which mediates chromatin modulation. Transcriptionally inactive genes have 

compressed DNA with extensive methylation downstream, compacted nucleosomes 

and repressive histone modifiers such as the trimethylation of lysine 27 residue on 

histone 3 (Baylin and Jones, 2011).  

Transcriptionally active genes (Figure 1.11) display the active histone modification of 

trimethylation on lysine residue 4, histone 3 (H3K4me3), alongside acetylation of key 

lysine residues in histone 3 and histone 4. Transcriptional elongation is facilitated by 

the variant histone H2A.Z, and trimethylation of histone 3, lysine residue 36 

(H3K36me3). The transcriptional start site (TSS) has an open configuration with distal 

enhancers such as H3K4me1 (Baylin and Jones, 2011). 
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Figure 1.11  The normal human epigenome.  Both a silenced gene with repressive 
histone marks (H3K27me3) at the transcription start site and a transcribed gene are 
demonstrated. DNA hypomethylation at the promoter CpG island followed by 
downstream acetylation of H3K/H4K to aide in transcription initiation, H3K36me3 for 
transcriptional elongation and the signature histone modification for enhancers 
H3K4me1, are present for transcription. The packaging and folding of repressed 
methylated DNA, (H3K9me3 and H3K9me2), into chromosomes located to the nucleus 
is also shown. Figure adapted from Baylin and Jones, 2011. 

 

1.4.6 The cancer epigenome 

Since the early 1980s there has been a growing body of evidence demonstrating that 

epigenetic and genetic mechanisms co-occur in the development of cancer (Feinberg 

and Tycko, 2004; Jones and Baylin, 2007). There are currently four epigenetic 

mechanisms which can lead to alterations in gene expression (Figure 1.12) and may 

therefore play a role in cancer development. These are summarised in sections 1.4.6.1-

1.4.6.3 and comprise of DNA methylation, microRNAs (miRNAs) and their connection 

to the up-regulation of DNA methyltransferase (DNMT) and hypermethylation of gene 
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promoters, histone modifications (methylation and acetylation) and chromatin 

remodelling (Hadnagy et al., 2008; Baylin and Jones, 2011). 

 

Figure 1.12  The cancer epigenome.  Diagram demonstrating the epigenetic 
mechanisms associated with tumour development and maintenance. Figure adapted 
from Baylin and Jones, 2011. 

 

1.4.6.1 DNA methylation 

1.4.6.1.1 DNA methylation in normal development 

CpG sites are symmetrical linear dinucleotides, which, through evolution, have been 

progressively lost due to the ability of the methylated cytosine (C) to deaminate and 

become thymine (T). CpG residues which have escaped depletion are thought to play 

an important role in normal development and gene expression (Issa, 2004). CpG 

islands are GC rich regions of DNA which contain a relatively high proportion of CpG 

sites. Approximately 60% of all genes have CpG islands associated with their promoter 

region which are typically unmethylated. Importantly however, a small number of CpG 

islands do become normally methylated, for example in X-linked or imprinted genes. 

When this occurs the methylated DNA is wrapped around histones and compacted into 

nucleosomes, which also harbour repressive histone marks and deacetylated histones. 

This focally establishes the chromatin as inactive and subsequently silences the gene  

as shown in Figure 1.11 (Bird, 2002).  

It is not fully understood how DNA methylation patterns are established. The enzyme 

family of DNMTs can transfer methyl groups onto DNA. Cooperation between different 
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members of this family of enzymes (e.g. DNMT1, DNMT3A and DNMT3B) facilitates 

and maintains the tissue-specific normal DNA methylation patterns. DNMT1 is the 

main member of the family responsible for the maintenance of DNA methylation and is 

assisted by DNMT3A and DNMT3B. Conversely there are also enzyme systems 

important in development which remove methyl groups from DNA such as the  ten-

eleven translocation (TET) family of proteins (Baylin and Jones, 2011; Gros et al., 2012). 

1.4.6.1.2 Aberrant promoter region DNA methylation  

DNA methylation is critical to explaining the epigenome of cancer and is thus far the 

most widely studied epigenetic mechanism in this field. Methylation imbalances are 

frequently observed in cancer cells, such as aberrant hypermethylation at promoter 

associated CpG islands (Figure 1.12) leading to gene silencing, as well as more 

widespread hypomethylation outside of these regions (Costello and Plass, 2001; 

Sidransky, 2002; Dedeurwaerder et al., 2011). Recent advances have enabled the 

characterisation of hundreds of genes within a variety of cancers which display 

promoter region hypermethylation. Examples include CDKN2A which displays 

promoter hypermethylation in several cancers and encodes the tumour suppressor 

p14ARF, as well as the tumour suppressor gene Von Hippel-Lindau (VHL), which is 

silenced in renal cancer, and RASSF1A which is epigenetically silenced in 

medulloblastoma (Table 1.3). These high frequency events however, are rare and 

some of the most commonly reported examples are shown in Table 1.3. The relevance 

of other, low frequency, hypermethylation events observed in cancer is not fully 

understood. It is possible that these rarer epigenetic events cluster in the same 

signaling pathways, or complement genetic events such as mutations to create the 

cancer phenotype (Lindsey et al., 2005; Baylin and Jones, 2011; Levesley et al., 2011).
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Table 1.3  Examples of genes silenced by CpG island hypermethylation in many types of cancer.  Genes are shown alongside their current 
nomenclature with a summary of their function, chromosomal location and associated tumour types. Table adapted from Pelengaris and Khan (2006). 

Gene Nomenclature Function
Chromosome 

location
Associated tumour types

CDKN2A
Cyclin-dependent kinase 

inhibitor 2A
DNA mismatch repair 9p21

Wide variety of tumours including colon, 

gastric and endometrial tumours

THBS1 Thrombospondin 1
Mediates cello-to-cell and cell-to-matrix 

interactions
15q15 Gliomas

VHL
von Hippel-Lindau tumour 

suppressor, E3 ubiquitin 
Ubiquitin ligase component 3p25.3 Renal tumours and haemangioblastomas

RASSF1A
Ras association domain 

family member 1
DNA repair 3p21.3 Variety of cancer types

BRCA1 Breast cancer 1 DNA repair 17q21 Breast and ovarian cancer

RB1 Retinoblastoma 1 Cell cycle regulator 13q14.2
retinoblastoma, bladder cancer,              

osteogenic sarcoma

APC Adenomatous polyposis coli Antagonist of the Wnt signalling pathway 5q21-q22 Colon cancer

SFRP1
Secreted frizzled-related 

protein 1
Activation of Wnt signalling 8p11.21 Colon cancer

HOXA9 Homeobox A9
Regulates gene expression, morphogenesis and 

differentiation
7p15.2 Leukaemia and neuroblastoma

CDH1
Cadherin 1, type 1,                 

E-cadherin
Cell adhesion 16q22.1

Gastric, breast colorectal, thyroid and 

ovarian cancer

CDH13 Cadherin 13 Cell adhesion 16q.23.3
Many tumour types  including breast and 

lung cancer

SOCS1
Suppressor of cytokine 

signalling 1
Inhibitor of JAK-STAT pathway 16p.13.13 Liver cancer and myeloma

SOCS3
suppressor of cytokine 

signalling 3
Inhibitor of JAK-STAT pathway 17q25.3 Lung cancer
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1.4.6.1.3 Global methylation patterns and sub-classification of 

tumours 

Increasingly, global DNA methylation patterns in cancer are being used to sub-stratify 

tumours which historically have been thought of as one disease. Examples include 

medulloblastoma (Hovestadt et al., 2013; Schwalbe et al., 2013b), GBM  (Sturm et al., 

2012) and chronic lymphocytic leukemia (Kulis et al., 2012). Importantly these derived 

subgroups correlate with clinicopathological variables, molecular features and 

prognosis. It is postulated that these global methylation patterns witnessed are 

biologically relevant and relate to the epigenetic imprint of the cancer cell of origin 

(Kulis et al., 2012). 

1.4.6.1.4 DNA hypermethylation and disruption of microRNAs 

miRNAs are defined as short, non-coding RNAs which function by targeting the coding 

messenger RNA (mRNA) to fine-tune or regulate gene expression. There is increasing 

evidence to suggest that miRNAs are both effectors and targets in aberrant DNA 

hypermethylation observed in cancer. For example, promoter hypermethylation which 

leads to pathway disruption can repress the transcription of miRNAs and subsequently 

up-regulate the oncogenic targets of these microRNAs which, in turn, promotes 

tumour progression (Baylin and Jones, 2011). Studies have also shown that enforced 

expression of the miRNA-29 family demonstrates indirect and direct interactions with 

the DNA methyltransferases DNMT1, DNMT3A and DNMT3B (section 1.4.6.1.1), which 

lowers their expression and leads to a reduction in global DNA methylation. This 

subsequently fosters the re-expression of important tumour suppressor genes in both 

lung cancer and AML models supporting the role of miRNA-29 suppression in 

tumourigenesis and its therapeutic utility (Fabbri et al., 2007; Garzon et al., 2009). 
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1.4.6.2 Histones 

1.4.6.2.1 Normal function and modification of histones 

Histones are the major protein component of chromatin and are responsible for 

packaging and organising DNA. There are two classes of histones; core histones (H2A, 

H2B, H3 and H4), which share a similar structure of terminal tails and a central fold 

domain, and linker histones (H1 and H5). DNA is wrapped around the octameric 

histone unit which consists of eight core histones (two of H2A, H2B, H3 and H4) to 

form a nucleosome. The linker histone H1 binds the DNA in place and the nucleosomes 

are further wound into efficiently packed chromosomes. Post translational 

modifications of histones leads to alterations in the chromatin conformation, and thus 

form another epigenetic mechanism to regulate gene expression (Hadnagy et al., 2008; 

Baylin and Jones, 2011).  

Normal enhancing modifications of histones, such as trimethylation of lysine 4 of the 

core histone H3, (H3K4me3), flank nucleosome depleted regions of the DNA making 

these regions more amenable to transcription. Trimethylation of lysine 36, 

(H3K36me3), facilitates transcriptional elongation whereas destabilisation of the 

nucleosome structure due to acetylation of H3 and H4 enhances transcription 

initiation. Repressive modifications also occur, for example, methylation at the lysine 9 

residue of H3, (H3K9me2 and H3K9me3, Figure 1.11). Histone methyltransferases and 

demethylases can remove lysine methylation marks on histones. Similarly histone 

acetyltransferases and deacetylases, acetylate and deacetylate histones, respectively. 

A summary of the key histone modifications witnessed in the normal epigenetic 

regulation of gene transcription and expression are displayed in Table 1.4 (Hadnagy et 

al., 2008; Baylin and Jones, 2011).  
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Table 1.4  Summary of the major histone modifications observed in the epigenetic 
regulation of gene expression. K, lysine; me, methylation. 

 

1.4.6.2.2 Abnormal histone modifications in cancer 

The role of aberrant histone modifications in cancer is less well understood. Recent 

advances support the importance of these aberrations as an epigenetic mechanism in 

tumourigenesis (Figure 1.12). Abnormal gains of repressive histone marks or loss of 

enhancing ones can occur through a variety of ways including rearrangement or 

mutations of genes which undertake these histone modifications (section 1.4.7). For 

example, H3K27me3, which is critical in the normal balance of gene activity, is 

frequently deregulated in several types of cancer including B-cell lymphoma, ovarian 

cancer, breast cancer and paediatric high grade gliomas (Martinez-Garcia and Licht, 

2010; Greer and Shi, 2012; Bender et al., 2013). Similarly, abnormal acetylation of 

histones 3 and 4 are observed in many tumour types such as oesophageal cancer, 

breast cancer and lymphoma (Piekarz et al., 2004; Chen et al., 2011; Huang et al., 

2011). 

1.4.6.3 Chromatin 

1.4.6.3.1 Normal chromatin architecture 

Chromatin consists of DNA and proteins (histones) which combine to strengthen and 

package DNA. As already eluded to, the conformation of chromatin, either closed or 

open, is another epigenetic mechanism which can regulate the expression of genes. 

The structure of chromatin will vary normally depending on the phase of the cell cycle 

and DNA access required, with a tightly packed, condensed conformation 

(heterochromatin) during metaphase and an open structure (euchromatin) during 

interphase to allow transcriptional machinery access (Figure 1.11).  

Histone Class Lysine Modification Role in transcription Nomenclature

4 methylation Enhancement H3K4me1

4 Trimethylation Enhancement H3K4me3

36 Trimethylation Elongation H3K36me3

3 Core Acetylation Enhancement

4 Core Acetylation Enhancement

9 Dimethyltion Repression H3K9me2

9 Trimethylation Repression H3K9me3

27 Trimethylation Repression H3K27me3

3 Core

3 Core
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1.4.6.3.2 Chromatin remodeling and cancer 

Abnormal chromatin architecture can play a vital role in cancer (Figure 1.12). One 

highly studied example is the switch/sucrose non fermentable (SWI/SNF) chromatin 

remodeling complex, a tumour suppressor which disrupts histone-DNA interactions in 

an adenosine triphosphate (ATP)-dependent fashion. The SWI/SNF complex regulates 

transcription and comprises of 11-15 proteins. Mutations and deletions of the genes 

encoding these proteins, for example SMARCB1 and SMARCA4, are observed in many 

types of cancer such as the rare childhood brain tumour, atypical teratoid/rhabdoid 

tumour (ATRT). In ATRTs, greater than 90% of tumours demonstrate inactivation of 

SMARCB1, and more recent reports also identify SMARCA4 mutations in a small subset 

of cases (Banine et al., 2005; Hasselblatt et al., 2011; Tolstorukov et al., 2013). 

1.4.7  Genetics meets epigenetics 

There is no one unified model for the development of cancer. There is evidence to 

support the genetic model for tumourigenesis with mutation accumulation (section 

1.4.3) and the non-hierarchical clonal evolution model as well as reports supporting 

the hierarchical system of cancer stem cells (section 1.4.4). Similarly cancer is not 

uniquely a genetic disease, and epigenetic mechanisms are increasingly implicated in 

tumour development and maintenance. For example, many tumour suppressor genes 

are both genetically and epigenetically silenced (e.g. APC, RB1 and CDKN2A, Table 1.1 

and Table 1.3). Moreover, as described in section 1.4.6.3.2, the genetic inactivation of 

SMARCB1 due to mutation or deletion of the SMARCB1 gene is an example of a genetic 

aberration disrupting an epigenetic mechanism. It is now well recognised that there 

are a high number of aberrations in many cancers of genes which encode proteins 

associated with epigenetic mechanisms (Plass et al., 2013).  

Examples of this cross-over of mechanisms are found in mixed-lineage leukemia (MLL) 

rearranged leukemia, where histone methyltransferase no longer functions normally 

due to chromosomal translocations. The resultant fusion proteins lead to both 

abnormal histone acetylation and methylation (Slany, 2009). Another example is the 

highly malignant paediatric brain tumour, GBM, whose epigenome is rapidly being 

elucidated. This tumour has epigenetic subgroups (section 1.4.6.1.3) which are 

biologically distinct. Two of these subgroups are defined by mutations in the H3 

histone, family 3A (H3F3A) which affect critical amino acids, lysine 27 (K27) and glycine 
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34 (G34), of the core histone. Further work has demonstrated that in the K27 mutant 

subgroup, reduced methylation in the repressive histone mark H3K27me3 alone, or in 

combination with global DNA hypomethylation, are major epigenetic processes 

allowing the aberrant upregulation of genes witnessed in this subgroup (Sturm et al., 

2012; Bender et al., 2013).  

Finally, combined epigenetic and genetic aberrations are observed in the disruption of 

TERT, a catalytic subunit of telomerase which lengthens telomeres, allowing cancer 

cells to evade apoptosis and become immortal (section 1.3.4). Recent studies in 

several tumour types have demonstrated that hypermethylation upstream of the TSS 

of TERT can lead to increased expression of the gene, as oppose to the epigenetic gene 

silencing following promoter hypermethylation described in section 1.4.6.1.2. This 

finding is particularly true in high grade tumours, as in comparison low grade tumours 

and normal tissue display unmethylated CpG sites upstream of the TSS. Importantly, 

expression of TERT in normal tissue is not associated with hypermethylation, and 

tumours that evolve from low grade to high grade (e.g. low to high grade gliomas 

(HGG)), show increasing levels of methylation upstream of the TSS with a 

corresponding rise in TERT expression (Castelo-Branco et al., 2013; Lindsey et al., 

2014).  

Somatic mutations of the TERT promoter, also leading to elevated expression are 

frequently found in cancer (Killela et al., 2013; Koelsche et al., 2013; Remke et al., 

2013). Moreover, a recent study in medulloblastoma shows that these hotspot 

mutations are mutually exclusive to TERT promoter hypermethylation, and together 

are prognostically significant, providing insight into how epigenomic and genomic 

events complement each other to derive the cancer phenotype (Lindsey et al., 2014). 

All these examples underpin the importance of understanding both the genome and 

epigenome within the context of the cancer phenotype. Moreover, there are exciting 

therapeutic agents being developed in this field, such as histone deacetylase inhibitors 

(HDAC, section 1.5.1.3), which offer potential novel treatment opportunities (Baylin 

and Jones, 2011; Plass et al., 2013). 

  



32 
 

1.5 Therapeutic targeting in cancer 

Understanding the hallmarks of cancer (section 1.3) along with the genetic and 

epigenetic aberrations (section 1.4) that contribute to these processes has created the 

opportunity to therapeutically target these mechanisms and aberrations. Examples of 

these targeted therapies are shown in Figure 1.13 and some key agents are discussed 

in section 1.5.1 and 1.5.2. 

 

Figure 1.13  Schematic illustrating the therapeutic targeting of the hallmarks of 
cancer.  Figure taken from Hanahan and Weinberg, 2011. 

 

1.5.1 Reactivation of tumour suppressor genes 

As already described in section 1.4.1, loss-of-function in tumour suppressor genes 

plays a key role in cancer development. Therapeutic agents now exist which reactivate 

these genes. Examples include nutlins which reactivate TP53, or DNMT inhibitors and 

HDAC inhibitors, both of which can lead to the reactivation of epigenetically silenced 

tumour suppressor genes. 
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1.5.1.1 Nutlins 

Targeting the interaction between MDM2 and p53 to stimulate the tumour suppressor 

activity of p53 is an attractive therapeutic option (Chene, 2003). Nutlins 1, 2 and 3 are 

analogs of cis-imidazole and competitively block the p53-MDM2 interaction (Figure 

1.6) by selectively binding to the p53-binding domain of MDM2. This group of agents 

have been show to display anti-tumorigenic activity in vitro and in vivo for a variety of 

paediatric tumours including medulloblastoma (Kunkele et al., 2012; Carol et al., 2013; 

Van Maerken et al., 2013) and first in man studies of the nutlin compound RG7112, in 

adult cancers such as AML and liposarcoma, have also shown promise (Ray-Coquard et 

al., 2012). 

1.5.1.2 DNA methyltransferase inhibitors 

As already described, hypermethylation in the promoter region of tumour suppressor 

genes can lead to gene silencing (Table 1.3). The enzyme family of DNMTs are 

responsible for transferring methyl groups onto DNA (section 1.4.6). Inhibition of 

DNMT utilising either nucleoside on non-nucleoside analogues, can target aberrant 

DNA hypermethylation in cancer. Nucleoside inhibitors are incorporated into the DNA 

before they can inhibit DNMT whereas non-nucleoside inhibitors do not require DNA 

incorporation and can block the action DNMT directly. This, in turn, interrupts the 

process of DNA methylation leading to the reactivation of epigenetically silenced genes 

(Hadnagy et al., 2008).  

It has been demonstrated that the strategy of inhibiting DNA methylation via pan-

inhibition of DNMT is effective in cancers such as AML, chronic myelomonocytic 

leukaemia and myelodysplastic syndrome. Approved agents for the treatment of these 

conditions are the first generation nucleoside inhibitors azacitibine and decitabine. 

Both these drugs are also in phase II trials for solid tumours such as melanoma, 

prostate and ovarian cancer. Non-nucleoside analogues such as flavonoids have 

demonstrated demethylating activity in pre-clinical studies although their utility as an 

anti-cancer therapy is unclear. More developed agents include the anti-hypertensive 

hydralazine and the anti-arrhythmic procainamide, both of which have the secondary 

effect of DNMT inhibition. Several other non-nucleoside inhibitors are under 

investigation but as yet none of them have enter clinical trials for the treatment of 

cancer (Gros et al., 2012; Kirschbaum et al., 2014). 
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1.5.1.3 Histone deacetylase inhibitors 

Alterations of histone acetylation are observed in many cancers such as AML, breast 

and ovarian malignancies (Figure 1.12). Inhibition of histone deacetylase (HDAC) is 

believed to have several effects; re-expression of epigenetically silence tumour 

suppressor genes, generation of oxidative stress leading to early chromatid separation, 

and an ineffective mitotic spindle assembly checkpoint. There are many examples of 

HDAC inhibitors such as vorinostat, panobinostat and romidepsin. Many of these 

agents are in phase I-III trials such as vorinostat which is being investigated for the 

treatment for mesothelioma, AML, myelodysplastic syndrome and T-cell lymphoma 

(Hadnagy et al., 2008; Witt et al., 2012; Di Costanzo et al., 2014; Kirschbaum et al., 

2014). 

1.5.2 Targeting oncogenes 

The upregulation of oncogenes are critical to the development of cancer. Multiple 

oncogenes have been identified (Table 1.2) and are now therapeutic targets for the 

treatment of cancer (section 1.5.2.1-1.5.2.3). 

1.5.2.1 Imatinib 

Imatinib was first discovered in the late 1990s following a screening program for 

compounds with the ability to inhibit protein kinases through binding at their ATP site. 

Pre-clinically, compound CGP 57148 was found to be a potent inhibitor of the ABL 

proto-oncogene (section 1.4.2 and Table 1.2), whilst not significantly inhibiting the 

majority of other tyrosine kinases (Druker et al., 1996). This compound was developed 

into imatinib for use initially in CML, a first of its kind in this class of molecularly 

targeted drugs to be used in cancer therapy. It was well tolerated in phase I trials and 

showed significant anti-leukemic effects (Druker et al., 2001).  

Imatinib has revolutionised the current treatment of CML and its use has been 

broadened to include other types of leukemia with the BCR-ABL translocation. 

However, primary and acquired resistance to imatinib does exist, through mechanism 

such as point mutations within the target fusion gene BCR-ABL, or through alternative 

pathways of disease progression (e.g. activation of the SRC-kinase family). This has led 

to the development of other BCR-ABL targeted agents, such as dasatinib and nilotinib, 

which have greater potencies for both non-mutant and mutant BCR-ABL when 
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compared to imatinib. Other inhibitors which target the alternate pathways to 

resistance, such as SRC-kinase family, have also been developed. These include the 

dual SRC and ABL kinase inhibitor bosutinib, which has shown efficacy following failure 

to treat CML with imatinib, dasatinib and nilotinib (Kujawski and Talpaz, 2007; Saglio et 

al., 2010; Khoury et al., 2012). 

1.5.2.2 Aurora A kinase inhibitors 

Aurora kinases are mitotic kinases critical for the cellular processes of mitosis and 

division and were identified in the mid-1990s. There are three homologs, A, B and C, 

with Aurora A kinase being involved in mechanisms such as mitotic entry, spindle 

assembly and chromosome alignment during metaphase. Currently there are multiple 

Aurora kinase inhibitors in various stages of development, some that are pan-inhibitors 

whereas others specifically inhibit Aurora A, examples of which are listed in Table 1.5 

(Kollareddy et al., 2012). 

 

Table 1.5  Aurora kinase A inhibitors in clinical trials.  Table adapted from Kollareddy 
et al., 2012. 

 

1.5.2.2.1 MLN8237 

MLN8237 is a second generation Aurora A inhibitor which has been shown to have in 

vitro efficacy in a variety of paediatric cancers including rhabdomyosaroma, Ewing’s 

sarcoma, GBM, ALL and neuroblastoma. In vitro in neuroblastoma (section 1.7.3), 

Aurora A protein, independent of its kinase activity, binds to MYCN, the protein 

encoded by MYCN (Figure 1.14), stabilises it and prevents proteasomal degradation of 

the MYCN onco-protein (Otto et al., 2009). The Aurora A kinase inhibitor MLN8237, 

disrupts the complex formed between Aurora A and MYCN, promoting MYCN 

degradation leading to prolonged survival and tumour regression in vivo (Brockmann 

et al., 2013).  

  

Compound Selectivity In vitro IC50 Pre-clinical activity Stage of development

MLN8237 Aurora A 1nM Solid tumours and leukemias Phase II

ENMD-2076 Aurora A 14nM Solid tumours and multiple myeloma Phase II

MK-5108 Aurora A 0.064nM Solid tumours Phase I

IC50, half maximal inhibitory concentration; nM, nanomolar; AML, acute myeloid leukaemia
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Figure 1.14  Disruption of MYCN degradation by MLN8237 inhibition of Aurora A. The 
MYCN/Aurora A complex prevents degradation of the MYCN protein by Fbxw7 which 
normally recognises MYCN in G2/M when it is doubly phosphorylated (S62 and T58) 
and mediates the ubiquitination of phosphorylated MYCN. MLN8237 disrupts the 
MYCN/Aurora A complex, returning the degradation process to normal. U, Ubiquitin; P, 
phosphate. Figure adapted from Kollareddy et al., 2012 and Brockmann et al., 2013. 

 

1.5.2.3 Bromodomain and extraterminal domain inhibition 

The bromodomain and extraterminal domain (BET) family are important in cellular 

processes such as transcription, cell growth and epigenetic memory. The BET family 

comprise of four genes; BRD2, BRD3, BRD4 and BRDT. Inhibition of the BET family has 

utility in the treatment of many types of haematological malignancies as well as the 

highly aggressive epithelial cancer NUT midline carcinoma (Puissant et al., 2013; Di 

Costanzo et al., 2014). 

1.5.2.3.1 JQ1 

JQ1, a novel thienotriazolo-1,4-diazepine, was the first selective inhibitor of the BET 

family and works by competitively binding to the lysine pocket of the bromodomain. 

JQ1 has multiple mechanisms of action, such as disruption of the binding between 

MYC and BRD4 leading to suppression of the MYC oncogene. Recent in vitro and in vivo 

work has also identified that JQ1 has efficacy in the treatment of MYCN amplified 

neuroblastoma and leads to downregulation of the expression of the MYCN oncogene 

as well as the MYC oncogene. BRD4 also binds to the promoter region of MYCN, and, 
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similar to MYC, inhibition by JQ1 leads to a disruption of this interaction and 

downregulation of MYCN. JQ1 is therefore a novel agent which targets two of the MYC 

gene family of oncogenes and may have utility in the treatment of a variety of MYC 

and MYCN driven malignancies (Puissant et al., 2013; Di Costanzo et al., 2014). 

1.5.3 The future of targeted therapies  

Many of the above mentioned targeted therapies show promise in pre-clinical and 

early phase trials, and more developed agents such as imatinib, are the standard 

treatment for BCR-ABL positive leukaemia. However, tumour resistance and evolution 

still occur following targeted treatment, as highlighted by the discussion in section 

1.5.2.1, and calls for second line agents, for example in primary and secondary 

resistance to imatinib. Strategies can, and have, been put in place to overcome 

mechanisms of tumour resistance, for example the development of dasatinib, nilotinib 

or bosutinib (section 1.5.2.1). However, it is highly likely that the therapeutic strategies 

of the future will encompass both targeted treatments alongside more traditional 

cytotoxic therapies, in a variety of combinations to successfully evade tumour 

resistance, improve outcomes and also reduce long term toxicity.   
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1.6 Paediatric tumours 

Paediatric malignancies are rare (section 1.2.3) with approximately 1600 new cancer 

diagnoses made per annum in the UK in children aged between 0-14 years (CRUK, 

2014c). As oppose to adult malignancies, paediatric cancers are less due to 

environmental factors and are more frequently observed in children with hereditary 

syndromes, although the overall incidence of familial and genetic syndromes 

associated with childhood malignancies is still low (Stiller, 2004). Hereditary 

syndromes, for example  Li-Fraumeni syndrome, which are linked to childhood cancers 

also have important wider medical considerations, and have historically provided 

crucial insights into the development of sporadic childhood malignancies (discussed in 

section 1.8.7). In addition, many of the tumour types witnessed in childhood, such as 

neuroblastoma, rhabdomyosarcoma and hepatoblastoma, are rarely seen in adulthood 

(Pinkerton et al., 2007) and therefore the research and treatment of paediatric 

tumours has often evolved separately to that of adult malignancies.  

1.6.1 Central nervous system tumours in childhood 

Paediatric malignancies are typically thought of as either liquid; leukaemia and 

lymphoma, or solid; bone, brain and soft tissue tumours (Pelengaris and Khan, 2006). 

Tumours that occur within the CNS are the most common solid tumour observed in 

childhood (section 1.2.3 and Figure 1.3), with over 400 new diagnoses per year in the 

UK, and approximately 600 when including young adults (Figure 1.15). Typically CNS 

tumours originate within the brain tissue itself, and certain malignancies have the 

ability to metastasis via the cerebrospinal fluid (CSF). Less frequently, CNS tumours can 

arise from the spinal cord such as ependymomas. Tumours originating from glial cells 

(gliomas, section 1.6.1.1) are the most commonly diagnosed CNS tumours, account for 

approximately 43% of all cases, and are a spectrum from low grade to high grade 

(Louis et al., 2007). The second most frequently observed group are embryonal 

tumours in the CNS (19%, section 1.6.1.2), followed by ependymomas (section 1.6.1.3) 

the third most common childhood brain tumour (CRUK, 2010). 
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Figure 1.15  Average number of new CNS tumours diagnosed per year in the UK 
between 2009-2011.  Figure adapted from CRUK (CRUK, 2014a).  

 

1.6.1.1 Gliomas 

Gliomas are a diverse spectrum of tumours classified as either low grade (grade I and 

II), or high grade (grade III and IV). These classifications reflect the behaviour of the 

tumour with low grade tumours being more ‘benign’ in nature and indolent and high 

grade being more ‘malignant’ and aggressive in their disease course (Hargrave, 2009). 

1.6.1.1.1 Low grade gliomas 

Low grade gliomas (LGGs) commonly arise from the optic pathway or cerebellum but 

can occur anywhere within the CNS. Astrocytic tumours originate from astrocytes and 

include the subtypes; pilomyxoid, pilocytic, subependymal giant cell, diffuse 

astrocytomas and pleomorphic xanthoastrocytoma (Louis et al., 2007). The most 

commonly witnessed LGGs in childhood are pilocytic astrocytomas. Unlike in adult 

LGGs, malignant transformation of these tumours rarely occurs in childhood, although 

more aggressive disease behaviour and metastases within the CSF has been observed 

in the paediatric age group (Hargrave, 2009). 

LGGs are particularly associated with the neurocutaneous condition neurofibromatosis 

type 1 (NF-1). NF1 is a tumour suppressor gene (Table 1.1) and is an inhibitor of the 

RAS signalling pathway and involved in control of the mTOR pathway. Sporadic LGGs 
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have, in recent years, been associated with aberrations of the BRAF oncogene (Table 

1.2), a cytosolic serine-threonine kinase and member of the RAF kinase family 

(Dasgupta and Haas-Kogan, 2013). Two established BRAF aberrations in paediatric 

LGGs are the activating point mutation, BRAF V600E, which is linked to a poorer 

prognosis and found in grade II LGGs, and the KIAA1549-BRAF fusion gene which is 

associated with the majority of pilocytic astrocytomas. The identification of BRAF 

aberrations such as the point mutation V600E has provided the opportunity to use the 

BRAF V600E targeted agent dabrafenib, which is currently in a UK’s Children’s Cancer 

and Leukaemia Group (CCLG) phase I trial for mutation positive paediatric solid 

tumours such as LGGs. However, it is the fusion gene, KIAA1549-BRAF, that is more 

commonly observed in this group of tumours, and use of dabrafenib in this context is 

not established and conversely may encourage tumour growth (Hargrave, 2009; 

Schiffman et al., 2010; Dasgupta and Haas-Kogan, 2013).  

1.6.1.1.2 High grade gliomas 

High grade gliomas (HGGs) encompass anaplastic astrocytomas (grade III) and GBM 

(grade IV) which are both believed to either originate from, or histopathologically 

resemble, glial cells (Phillips et al., 2006). Grading is used to assess the malignancy of 

the tumour, prognosticate and direct treatment decisions. For example, grade III 

tumours are malignant tumours with nuclear atypia and elevated mitotic activity. 

Similarly grade IV tumours are malignant with a higher frequency of mitotic bodies and 

evidence of tumour necrosis (Louis et al., 2007).  

Much work has recently been undertaken in these devastating tumours which have a 5 

year survival below 10% (Phillips et al., 2006; Sturm et al., 2012). Critical mutations and 

epigenetically defined subgroups have been identified for GBM in both paediatric and 

adult GBM (section 1.4.6.1.3 and 1.4.7). Overall, six subgroups have recently been 

described, with 30-40% of GBMs in children and young people associated with 

disrupted epigenetic mechanisms such as IDH1 mutations (also linked to TP53 

mutations) or mutations of the H3F3A gene which affect the lysine residues K27 or G34 

(section 1.4.7). The other three subgroups are associated with copy number variations 

such as PDGFRA amplification, EGFR amplification, deletion of CDKN2A, chromosome 7 

gain and chromosome 10 loss. These subgroups cluster separately, according to their 

DNA methylation patterns, and importantly are associated with differing tumour 
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locations and prognosis. For example, GBMs with a H3F3A mutation affecting the K27 

residue are located in the midline (thalamus or pons), and have a poorer overall 

survival. IDH1 mutated tumours are located in the cerebral hemispheres (frontal and 

temporal lobe) and have a better overall survival (Sturm et al., 2012). 

Alongside the epigenetic features recently described for GBM, paediatric HGGs are 

also associated with the point mutation BRAF V600E in up to 20% of cases (section 

1.6.1.1.1). These mutations are often linked to the concomitant deletion of CDKN2A. 

(Schiffman et al., 2010; Dasgupta and Haas-Kogan, 2013). Similar to LGGs (section 

1.6.1.1.1) dabrafenib is currently in a CCLG phase I trial for mutation positive tumours. 

In addition to this trial, use of the targeted agent bevacizumab, a VEGF inhibitor 

(section 1.3.5), is currently open in a CCLG phase II study for paediatric HGG.  

1.6.1.2 Embryonal brain tumours 

Under the current WHO guidelines embryonal brain tumours consist of ATRTs, CNS 

primitive neuroectodermal tumours (CNS-PNETs) and medulloblastoma (Louis et al., 

2007).  

1.6.1.2.1 ATRTs 

ATRTs are an extremely rare (<5% of paediatric brain tumours), and aggressive form of 

intracranial tumour which occur both in the infratentorial and supratentorial regions of 

the brain (Figure 1.16).  

 

Figure 1.16  Illustration demonstrating the supratentorial and infratentorial regions of 
the brain.   
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They occur predominantly in children under the age of 3 years, and it is this group of 

patients who typically present with disseminated disease and do extremely poorly, 

with an OS of less than 15%. Tumours display pathological heterogeneity which 

historically gave rise to difficulty in their confident identification. Consequently ATRTs 

were commonly misdiagnoses as medulloblastomas, choroid plexus carcinomas and 

CNS-PNETs. However, more recently, the identification of SMARCB1 loss in greater 

than 90% of tumours (section 1.4.6.3.2), with a corresponding lack of expression of the 

protein it encodes (commonly referred to as INI-1, section 2.2), has rapidly improved 

the histopathological diagnostic certainty of this tumour. Despite these advances, 

treating these tumours remains challenging. It is also becoming clear that they are not 

genetically homogenous, and the importance of epigenetic and other molecular events 

in tumour development are emerging (Tekautz et al., 2005; Hasselblatt et al., 2011; 

Dufour et al., 2012a).  

1.6.1.2.2 CNS-PNETs 

CNS-PNETs, historically considered alongside medulloblastoma and previously referred 

to as supratentorial PNETs (Figure 1.16), are now separately defined (Louis et al., 

2007). They are rare, accounting for approximately 3-5% of all brain tumours in 

childhood, and have an OS of approximately 50%, despite receiving similar multimodal 

treatment to patients diagnosed with medulloblastoma. They are again pathologically 

heterogeneous, currently divided into four subtypes; CNS neuroblastoma, CNS 

ganglioneuroma, medulloepithelioma and ependymoblastoma. However, the 

histological classification of these aggressive supratentorial tumours is challenging and 

they are often reclassified as other paediatric tumours such as ATRTs. Moreover, an 

additional histological entity, ‘embryonal tumour with abundant neuropil and true 

rosettes’ (ETANR) has recently been proposed as a further variant of CNS-PNET. These 

histological difficulties are increasingly corroborated by the expanding amount of data 

available on the genome and epigenome of these complex tumours. Recent findings 

suggest that the DNA methylation patterns of these tumours more closely relate to 

other paediatric brain tumours, rather than other CNS-PNETs , raising important 

questions regarding the biology of this tumour entity, appropriateness of current 

clinical classification, and future treatment approaches (Picard et al., 2012; Schwalbe 

et al., 2013a; Kleinman et al., 2014; Korshunov et al., 2014).  
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1.6.1.3 Ependymomas 

Ependymomas account for 3-6% of all CNS tumours and can occur anywhere in the 

CNS, although they most frequently arise intracranially in children. There are currently 

three histological subtypes of ependymomas; myxopapillary ependymoma (grade I), 

ependymoma (grade II) and anaplastic ependymoma (grade III). At present anaplastic 

subtype, younger age group and incomplete surgical resection are all associated with a 

poor outcome. However, despite this understanding, and histological similarities 

between ependymoma subtypes, tumours can exhibit a wide range of outcomes with 5 

year PFS ranging from 30-60%. (Louis et al., 2007; Wani et al., 2012). 

Recent breakthrough discoveries have identified two biologically defined subgroups of 

infratentorial ependymomas (Figure 1.16). The first subgroup (group A), occurs more 

frequently in young children, have a male preponderance and extremely poor 

prognosis. Group A tumours demonstrate a balanced genome with only gain of 

chromosome 1 and loss of chromosome 22 repeatedly observed. Over-expression of 

genes associated with angiogenesis, wound healing, cell migration and cell adhesion 

have also been reported in this group. In addition, group A tumours also display 

promoter hypermethylation (section 1.4.6.1.2) known as the ‘CpG island methylator 

phenotype’ (CIMP). Group B tumours are witnessed in older patients, and have a 

better prognosis (>95% 5 year OS). These tumours are genomically unstable with 

frequent copy number aberrations such as loss of chromosome 1, 2, 3, 6, 8, 10, 14q, 

17q ,22q and gain of 4, 5q, 7, 9, 11, 12, 15q, 18, 20, 21q. Overexpression of genes 

involved in microtubule assembly, mitochondria metabolism and ciliogenesis have also 

been described in this subgroup (Archer and Pomeroy, 2011; Witt et al., 2011; Wani et 

al., 2012; Mack et al., 2014). 

Recent pre-clinical work in supratentorial ependymomas (Figure 1.16), has identified 

the common occurrence of the oncogenic fusion gene C11orf95-RELA as a driver of 

tumourigenesis through aberrant stimulation of the NF-κB signalling pathway (Parker 

et al., 2014). These discoveries, along with pre-clinical high-throughput drug screening, 

are altering and advancing the understanding and treatment of ependymoma. Agents 

such as 5-fluorouracil have been identified to have efficacy in this normally chemo-

resistant tumour (Atkinson et al., 2011). However, further advances are required if 

survival for paediatric ependymoma, is to be improved. 
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1.7 Relapsed paediatric tumours 

Relapsed disease is frequently observed in many of the malignancies already discussed 

such as HGG and the embryonal brain tumours; ependymomas, CNS-PNETS and ATRTs. 

Limited investigations into the patterns, treatment and biology of these tumours have 

been reported (Phillips et al., 2006; Merchant et al., 2008; Messahel et al., 2009; Pizer 

et al., 2011a; Bouffet et al., 2012; Fangusaro, 2012; Sottoriva et al., 2013; Bode et al., 

2014; Hoffman et al., 2014). Further insights into relapsed paediatric malignancies 

have been attained from studies in non-CNS paediatric tumours such as relapsed 

neuroblastoma (Carr et al., 2006; Carr-Wilkinson et al., 2010). While recurrent CNS-

PNETS have historically been considered together with relapsed medulloblastoma in 

trials (Pizer et al., 2011a; Bode et al., 2014), other relapsed CNS and embryonal 

tumours and their relevance to relapsed medulloblastoma are summarised below. 

1.7.1 Recurrent high grade glioma 

Paediatric HGGs are highly malignant and aggressive brain tumours which, as detailed 

in section 1.6.1.1.2, have a 5 year overall survival rate below 10% (Phillips et al., 2006; 

Sturm et al., 2012). Typically  following treatment; maximal surgical resection, focal 

radiotherapy and chemotherapy, (although the benefit of chemotherapy in paediatric 

HGG is unclear), the tumour will progress or recur and most children will succumb to 

their disease (Fangusaro, 2012). Treatment resistance has been attributed to 

intratumoural heterogeneity with different molecular subgroup signatures observed 

within the same tumour. This molecular heterogeneity compounds the challenge of 

treatment resistance in HGG. Clonal evolution, and a heterogeneous surviving 

subpopulation of treatment resistant cells, which may be stem-cell-like, adds to the 

complexity of recurrent disease (Phillips et al., 2006; Gilbertson and Rich, 2007; 

Sottoriva et al., 2013). These findings raise important questions with regards to the 

molecular subgroup evolution in medulloblastoma, and whether subgroup remains the 

same or changes at disease relapse. 

1.7.2 Relapsed ependymoma 

Ependymoma is the second most common malignant CNS tumour observed in 

childhood (section 1.6.1.3). It is typically treated with maximal surgical resection and 

focal radiotherapy, although recent pre-clinical work has identified a limited number of 

chemotherapeutic agents which may have efficacy in the treatment of this tumour 
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(Atkinson et al., 2011). Recurrent disease is common in ependymoma, occurring in 20-

70% of all patients diagnosed with the tumour. At present, relapsed disease is rarely 

curable with reports of only up to 25% of patients being rescued with re-treatment at 

disease recurrence. Similar to medulloblastoma, recent advances in the understanding 

of the biology of disease at diagnosis have been reported and are summarised in 

section 1.6.1.3 (Archer and Pomeroy, 2011; Witt et al., 2011; Wani et al., 2012; Mack 

et al., 2014). However, very little is known about the biology at relapse.  

What has been reported in ependymoma is the successful re-treatment of patients at 

disease recurrence with radiotherapy. Bouffet et al., (2012) for example, reported a 

series of 18 patients who received full dose focal radiotherapy (54Gy) to the tumour 

bed, coupled with CSI (36Gy) in metastatic recurrences. Encouragingly 3 year OS was 

81%, compared to 10% in relapsed patients who did not receive radiotherapy at this 

time-point. Moreover, the interval to next recurrence, (third presentation), was 

significantly increased following re-irradiation. However follow-up of these patients 

was short, (2 years), and therefore it is difficult to comment on the long term side 

effects of re-irradiation. Similar findings following stereotactic radiosurgery for 

recurrent ependymoma (n=12) have recently been reported by Hoffman et al., (2014). 

Here they report a significantly prolonged interval to second recurrence following 

radiation therapy (p=0.008) and a 3 years OS of 89%. However, radiation necrosis was 

observed and was symptomatic in 25% of patients. 

Other attempts at re-irradiation for disease recurrence have not been as successful, 

but still convey either a survival benefit or good local disease control (Merchant et al., 

2008; Messahel et al., 2009). Re-irradiation at relapse is a growing practice in recurrent 

ependymoma and is providing important information on its safety and efficacy in the 

craniospinal axis. While this treatment comes with significant long term morbidity, as 

discussed in section 1.8.6 and 1.9.1, it may also provide, at present, the best chance of 

cure in patients who relapse with other CNS tumours (Merchant et al., 2008; 

Zacharoulis et al., 2010; Atkinson et al., 2011; Bouffet et al., 2012; Hoffman et al., 

2014; Muller et al., 2014). 
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1.7.3 Neuroblastoma 

Neuroblastoma is the most common extra-cranial solid tumour in paediatrics. It is 

embryonal in origin, and predominantly occurs during childhood. It arises from the 

sympathoadrenal lineage of the developing neural crest, most commonly the adrenal 

medulla. Neuroblastoma is a complicated, heterogeneous disease with a clinical 

outcome that varies from complete tumour regression, to high-risk refractory or 

recurrent disease. Characteristic molecular features include, activating mutations of 

the gene encoding the anaplastic lymphoma receptor tyrosine kinase (ALK), 

amplification of MYCN (section 1.4.2) and intra-chromosomal rearrangements, all of 

which convey a poor prognosis. Disruption of the p53 pathway is also important in the 

disease, in particular at relapse where acquisition or maintenance of p53 pathway 

defects (TP53 mutations, p14ARF methylation/deletion and MDM2 amplification, Figure 

1.6) are enriched, suggesting a role in chemoresistance and subsequent demise of the 

patient (Carr et al., 2006; Carr-Wilkinson et al., 2010; Petroni et al., 2012; Cheung and 

Dyer, 2013). These findings, of acquisition of p53 pathway defects at disease 

recurrence, suggest that the biology of disease at relapse differs from diagnosis in 

neuroblastoma. This raises important questions to address in studying other relapsed 

disease, including medulloblastoma, and highlights the necessity of studying paired 

tumour samples at both time-points to understand the molecular evolution of tumour 

biology. 
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1.8 Medulloblastoma 

1.8.1 Incidence, epidemiology and outcomes 

Medulloblastoma is the most common malignant CNS tumour of childhood, and 

accounts for approximately 90 new paediatric cancer diagnoses per year in the UK 

(Pizer and Clifford, 2008). In comparison to other childhood cancers (section 1.2.3), 

medulloblastoma is disproportionately responsible for a high frequency (~10%) of 

childhood cancer deaths (Pizer and Clifford, 2009). There is a male preponderance in 

the disease (1.7: 1, male: female), and tumours typically occur in the first decade of 

life. The peak incidence is between 4-7 years but medulloblastoma can occur in 

neonates and infants as well as teenagers and young adults (Pizer and Clifford, 2008).  

Outcome after multimodal therapy (section 1.8.5) is variable, with 5 year OS rates in 

standard-risk disease around 80% (Lannering et al., 2012). However, for those patients 

with high-risk disease, which is distinguished from standard-risk disease by the 

presence of metastatic disease, large cell/anaplastic (LCA) histology, <3 years of age or 

a residual tumour of >1.5cm2 post-surgery, the outcome is much poorer with a 5 year 

OS rate of 25-65% (Crawford et al., 2007; Pizer and Clifford, 2009; Ellison, 2010; Gajjar 

et al., 2012). Despite advances in our understanding of the disease at diagnosis, >30% 

of all children with a medulloblastoma will experience disease recurrence, which is 

almost universally fatal especially in patients who received craniospinal irradiation 

(CSI) at initial diagnosis (Pizer et al., 2011a; Jones et al., 2012; Ramaswamy et al., 

2013). 

1.8.2 Diagnosing medulloblastoma 

The presentation of patients with medulloblastoma varies and is often dependent on 

the age of the child. Medulloblastomas are infratentorial (posterior fossa) tumours 

occurring below the tentorium, within the cerebellum (Figure 1.16). Typically they give 

rise to the triad of symptoms attributed to disruption of the CSF flow and raised 

intracranial pressure (ICP); early morning headaches, vomiting, and papilloedema 

leading to visual disturbances. Children may also exhibit localised ‘cerebellar signs’ 

such as ataxia, nystagmus and speech disturbances. However, the symptoms and signs 

in a younger child are more subtle due to the ability of the unfused skull to expand and 

compensate for raised ICP. This is compounded by their inability to report symptoms 
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and leads to a different spectrum of symptoms and signs in the infant age group, with 

increasing head circumference, developmental delay or loss of developmental 

milestones often worrying features present at diagnosis (Pizer and Clifford, 2008).  

Following a history and examination suggestive of a space occupying lesion within the 

cranium the next investigation of choice in a medically stable patient would be 

imaging. A gadolinium contrast enhanced magnetic resonance imaging (MRI) of the 

entire CNS (brain and spinal cord) to look for primary tumour and metastases, is 

superior in quality to computed tomography (CT), and the preferred investigation.  

  

Figure 1.17  Sagittal MRI of a medulloblastoma.  Image demonstrates a posterior fossa 
tumour consistent with the appearances of a medulloblastoma (arrow). Image kindly 
provided by Prof Simon Bailey (PBTG, Paediatric Brain Tumour Group). 

 

Advances in MRI technology such as diffusion weighted images and magnetic 

resonance spectroscopy (MRS), have improved the diagnostic capabilities and 

interpretation of this imaging modality (Panigrahy et al., 2006; Rumboldt et al., 2006). 

However, it is not always possible to confidently differentiate from other posterior 

fossa tumours such as ependymomas (section 1.6.1.3) or pilocytic astrocytomas 

(section 1.6.1.1.1). MRI is critical however, in confirming the presence of a tumour, 

aiding in surgical planning and staging of the disease.  
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1.8.3 Staging of medulloblastoma 

Current practice uses the Chang’s operative staging system (Chang et al., 1969) to 

assess and stage the extent of metastatic disease (Table 1.6). Alongside an MRI, a 

lumbar puncture must be performed to sample and assess for the presence of tumour 

cells in the CSF (M1 disease). Metastatic disease is present in up to 35% of patients at 

diagnosis (Gandola et al., 2009). If there is clinical suspicion of widely disseminated 

disease outside the CNS (M4 stage), for instance in extensive M3 disease, other 

clinically appropriate imaging techniques such as a bone scan, can be performed as 

disease can rarely spread to bone or other extra-CNS sites such as the liver (Cakir et al., 

2004; Gajjar et al., 2006). 

  

Table 1.6  Metastatic staging of medulloblastoma.  Classification based on Chang’s 
criteria (Chang et al., 1969; Dufour et al., 2012b). 

 

1.8.4 Histological diagnosis and classification 

The diagnosis of medulloblastoma is currently confirmed histopathologically and while 

this can be performed on a biopsy sample, typically upfront treatment of all posterior 

fossa tumours require complete or near complete surgical excision. Therefore, 

confirmatory histological diagnosis of medulloblastoma follows neurosurgical resection 

of the tumour. Medulloblastoma, like all other embryonal brain tumours (section 

1.6.1.2), is histologically heterogeneous and currently comprises of five main 

pathological subtypes. These are classic (CLA, 73%), desmoplastic/nodular (DN, 10%), 

medulloblastoma with extensive nodularity (MBEN), anaplastic and large cell (Louis et 

al., 2007), with the latter two subtypes being routinely combined to form the subtype 

LCA, which combined account for approximately 17% of all tumours (Ellison, 2010).  

 

M0 No metastases

M1 Presence of tumour cells in the CSF

M2 Intracranial metastases

M3 Spinal metastases

M4 Metastases outside of the CNS

Metastatic 

(M) stage
Definition
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Historically it was crucial to firstly correctly identify medulloblastomas over and above 

other tumours that can occur in the posterior fossa such as ATRTs (section 1.6.1.2). 

However, it is now becoming increasingly important to not only confirm the diagnosis 

of medulloblastoma, but define the pathological subtype as well. These histological 

variants have prognostic significance and, alongside the growing body of molecular 

information as well as other clinical factors in medulloblastoma, are utilised to direct 

current and future therapeutic strategies (McManamy et al., 2007; Pizer and Clifford, 

2009; Ellison, 2010; Leary et al., 2011; Taylor et al., 2012). 

1.8.4.1 Classic histology 

Medulloblastomas exhibiting sheets of small, round, blue cells with a high nuclear: 

cytoplasmic ratio, are subtyped as CLA histopathology.  This subtype is observed in 

over 70% of tumours (Figure 1.18). Nuclear pleomorphism, mitotic figures and 

apoptotic bodies are seen in this pathological variant as are occasional rosettes of cells 

(Ellison, 2010). 

 

Figure 1.18  Medulloblastoma with classic histology.  Haemotoxylin and eosin (H&E) 
stain demonstrating CLA histology with nuclear pleomorphism, mitotic and apoptotic 
bodies. Image obtained from the tumour arising in patient 6 (Chapter 3) at diagnosis. 

 

1.8.4.2 Desmoplastic nodular medulloblastoma and medulloblastoma 

with extensive nodularity 

Both DN medulloblastoma and MBEN demonstrate nodules which consist of 

differentiated neurocytic cells with intranodular regions of desmoplasia. This is easiest 

visualised on a reticulin stain (Figure 1.19), which is used to detect reticulin fibres 

made of type III collagen. This silver stain is part of the standard panel of 

immunohistochemistry performed on a suspected medulloblastoma tumour sample 
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(section 2.2). In MBEN, the nodules are extensive and dominant with sparse 

intranodular desmoplasia, whereas in DN medulloblastoma the nodules are less 

frequent (Figure 1.19). Intranodular neurocytic cells express synaptophysin, another 

stain performed as part of the histopathological assessment of a tumour sample 

(section 2.2). Both DN medulloblastomas and MBEN convey a good prognosis in the 

infant subgroup, which is typically defined as patients under the age of 3 years 

(McManamy et al., 2007; Ellison, 2010; Leary et al., 2011). 

 

Figure 1.19  Low power images of medulloblastoma with extensive nodularity and 
desmoplastic nodular histology.  Images obtained from the tumours arising in patient 
3 (Chapter 3) demonstrating MBEN subtype with dominant nodules (square) and 
sparse intranodular desmoplasia at diagnosis on H&E (i) and reticulin staining (arrow) 
(ii) and DN subtype with large, less frequent nodules (square) at relapse on H&E (iii) 
and reticulin stain (arrow) (iv). 

 

1.8.4.3 Large cell/anaplastic histology 

Large cell and anaplastic medulloblastomas have similar features and typically co-

occur. As a result they are routinely considered together as one histological subtype, 

LCA. Large cells are observed with a single nucleolus and round nuclei. Anaplastic cells 

demonstrate significant cytological pleomorphism and accompanying features of cell 

wrapping and irregular patterns of nuclei known as cell moulding (Figure 1.20). Both 

cell types show apoptosis and a high mitotic index. Importantly, LCA is associated with 
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a poorer outcome and is currently used to define high-risk disease and direct 

treatment strategies (Pizer and Clifford, 2009; Ellison, 2010; Pizer et al., 2011b). 

 

Figure 1.20  Medulloblastoma with large/cell anaplastic histology.  H&E stain 
demonstrating LCA histology with large pleomorphic cells (arrow and outlined) when 
compared to CLA histology (Figure 1.18). Image obtained from the tumour arising at 
relapse in patient 6 (Chapter 3). 

 

1.8.5 Treatment of medulloblastoma 

Currently multimodal treatment strategies and risk-adapted stratification of 

medulloblastoma therapy in the UK and Europe-wide rely on clinicopathological 

variables alone. Standard-risk patients are defined as those at diagnosis who are; i) 

greater than 3 years old, ii) have M0 disease (Table 1.6), iii) have less than 1.5cm2 of 

residual tumour after surgical resection, and iv) have CLA, DN or MBEN histological 

subtype (Pizer et al., 2011b). All other patients who do not meet these criteria, such as 

those with metastatic disease or LCA histology, are classified as having high-risk 

disease and, with the exception of infants, receive escalated therapy (Gajjar et al., 

2006; Gandola et al., 2009).  

However, the advent of molecular treatment stratification is upon us, with new trials 

already in advanced stages of development or underway. For example, in Europe the 

PNET5 trial, coordinated by the European International Society of Paediatric Oncology 

(E-SIOP) is due to open imminently, and in certain centres in the USA the SJMB12 trial, 

coordinated by St Jude Children’s Research Hospital (Memphis, TN), is currently 

recruiting. These protocols will radically alter treatment approaches for 

medulloblastoma. They aim to appropriately escalate or de-escalate therapy according 

to each patients predicted outcome which is determined by both clinicopathological 
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and molecular variables and will be discussed in more detail in section 1.8.8 (Pizer and 

Clifford, 2009; Morfouace et al., 2014).  

In brief therefore, the current principles of multimodal treatment in medulloblastoma 

comprise of a complete or near complete upfront surgical resection, followed by 

craniospinal irradiation (CSI) with a directed boost towards the primary tumour in the 

posterior fossa. Patients with standard-risk disease receive adjuvant chemotherapy, 

with the E-SIOP PNET4 regimen, the most recent standard-risk trial to be completed in 

Europe, comprising of vincristine, cisplatin and lomustine. This trial had two treatment 

arms of either standard fractionated radiotherapy or hyperfractionated radiotherapy 

(HFRT, discussed further in section 1.8.6) and reported a 5 year OS of 77% and 78% for 

the two treatment arms respectively (Lannering et al., 2012).  

High-risk disease protocols are less well defined. Patients typically receive escalated 

therapy, for example in the form of risk-adapted CSI or HFRT alongside high dose 

chemotherapy with autologous stem cell transplant. The SJMB-96 utilised risk-adapted 

CSI and a cyclophosphamide based high-dose chemotherapy regimen and reported a 5 

year OS of up to 70% (Gajjar et al., 2006). In other reports, the use of HFRT for high-risk 

disease alongside a chemotherapy regimen consisting of methotrexate, etoposide, 

cyclophosphamide and carboplatin achieved a 5 year OS of 73% (Gandola et al., 2009). 

Whilst both these trials were promising, the treatment of high-risk disease remains a 

considerable challenge and these improvements in OS have not always been 

reproducible in other centres around the world. The 5 year OS of high-risk 

medulloblastoma is therefore difficult to capture but is more likely to be between 25-

65% (Crawford et al., 2007; Pizer and Clifford, 2009; Ellison, 2010; Gajjar et al., 2012). 

1.8.6 Long term sequelae of medulloblastoma treatment 

Since the addition of chemotherapy to treatment protocols of medulloblastoma the 

dose of radiotherapy has successfully been reduced but is still a necessary modality for 

the majority of patients (Packer et al., 2006). Predominantly CSI, but also 

neurosurgery, can affect many aspects of neurocognitive function in long term 

survivors, and the quality of survival is increasingly influencing treatment strategies 

and interventions (Pizer and Clifford, 2009). Typically, survivors have been thought to 

suffer from a lower than average intelligence quotient (IQ). This is due to the inability 
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of survivors to acquire new skills and understanding. Consequently they do not display 

the traditional increase in IQ with age that is seen in their healthy peers.  

While a reduced IQ alone will have long term consequences in schooling and higher 

education, the neurological damage following CSI is more complex. Survivors of brain 

tumours also display lower adaptive functioning; the age appropriate ability to 

independently complete tasks of daily living, as well as difficulties with areas of 

executive function, such as working memory; integral for obtaining new information. 

Survivors also display emotional, physical, social and behavioral problems and over 

time will develop endocrinopathies, such as growth and sex hormone deficiencies, 

which require life-long treatment (Ashford et al., 2014; Bull et al., 2014; Knight et al., 

2014).  

Understanding the interplay of all these neurocognitive deficits, alongside treatment 

factors is difficult. Radiotherapy avoidance strategies are in place for infants with 

medulloblastoma as the long term side effects are too devastating for such a young 

and developing brain. As a result of this strategy it has become apparent that a 

subpopulation of infants with localised, DN disease (section 1.8.4.2) can potentially 

achieve long term survival without requiring radiotherapy at all. Infants with DN 

medulloblastoma are reported to experience an OS of 85%, an equivalently good 

survival to that of older, standard-risk patients. This subpopulation of infants will 

benefit in the future from elimination of radiotherapy as an upfront strategy and 

instead it will only be employed as salvage treatment if disease recurs (Leary et al., 

2011).  

Other attempts to improve long term survival while preserving or improving quality of 

survival include the use of HFRT in the standard-risk E-SIOP, PNET4 trial (section 1.8.5). 

This was a randomised study comparing standard CSI with HFRT with the aim of 

improving tumour control, due to the dose escalation permitted in HFRT, without an 

increase in late effects. To date there is no evidence of benefit using HFRT in standard-

risk disease either for tumour control or quality of survival (5 year OS of 77% and 78% 

for the 2 arms). However, the full range of late-effects is yet to be evaluated in this 

study, as the median follow-up at review of this trial was only 4.8 years (Lannering et 

al., 2012).  
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1.8.7 Initial insights into the molecular biology of medulloblastoma  

Medulloblastoma is associated with several cancer predisposition syndromes; most 

notably Li- Fraumeni syndrome (LFS), Turcot syndrome (Type A) and Gorlin syndrome. 

As a result of these associations, initial research into the molecular biology of 

medulloblastoma focused on understanding whether the pathways disrupted in these 

syndromes played a wider role in the development of sporadic medulloblastoma 

(Northcott et al., 2012a). 

1.8.7.1 Li-Fraumeni syndrome  

LFS was described in 1969 following observations of frequent childhood cancers within 

the same family. It is a cancer predisposition disorder whereby there is classically a 

germline mutation of the tumour suppressor gene TP53 (section 1.4.1, Table 1.1). It is 

non-syndromic without physical phenotypical features, and therefore often only 

suspected by obtaining a strong family history of cancer. The diagnosis is also 

suspected in isolated specific tumour types in childhood which are strongly associated 

with LFS such as adrenocortical carcinoma and choroid plexus carcinoma, or in young 

women who have early onset breast cancer without identifiable BRCA1 or BRCA2 

(Table 1.1) mutations (Chompret et al., 2000; Gonzalez et al., 2009). 

The classic definition for LFS is a proband diagnosed with a sarcoma under the age of 

45 years, with a first-degree relative with cancer below the age of 45 years, and 

another first-degree/second-degree relative with cancer under the age of 45 years or a 

sarcoma at any time in their life. The classic component tumour spectrum is shown in 

Figure 1.21 and includes sarcomas, brain tumours, breast cancer and adrenocortical 

carcinoma. Over time the tumour spectrum has increased to include for example 

gastric cancer, melanoma and germ cell tumours. The diversity of tumour types is 

possibly explained by an increasingly complex TP53 genotype such as polymorphisms 

and copy number variations (Gonzalez et al., 2009; Malkin, 2011).  

Medulloblastoma is one of the component tumours of LFS and recent discoveries of an 

unexpectedly high frequency of germline TP53 mutations in one of the subgroups of 

medulloblastoma (section 1.8.8.2) has led to the proposal that LFS is underestimated 

in the disease (Rausch et al., 2012). Moreover, this insight into the relationship 

between LFS and medulloblastoma led to the interrogation of TP53 status in sporadic 
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disease, and somatic mutations of the TP53 gene are known to be one of the most 

frequently observed mutations disease-wide (~10%) and will be discussed further in 

section 1.8.8.1 and 1.8.8.2 (Northcott et al., 2012a; Rausch et al., 2012; Zhukova et al., 

2013). 

 

 

Figure 1.21  Li-Fraumeni family pedigree.  Illustrative example of a family with 
inherited LFS also demonstrating the genetic anticipation observed in the syndrome. 
Circle, female; square, male; grey, affected; diagonal line, deceased; BB, bilateral breast 
cancer; LK, leukaemia; OS, osteosarcoma; RMS, rhabdomyosarcoma; CPC, choroid 
plexus carcinoma; GBM, glioblastoma; MB, medulloblastoma; number, age at diagnosis 
in years. Figure adapted from Malkin, 2011. 

 

1.8.7.2  Turcot syndrome 

Turcot syndrome is another cancer syndrome which includes a predisposition to 

medulloblastoma as well as GBM (section 1.6.1.1.2), ependymoma (section 1.6.1.3), 

colon cancer, thyroid papillary carcinoma, basal cell carcinoma, leukemia and 

lymphoma. Unlike LFS, patients have phenotypic features of café au lait spots, 

sebaceous cysts and pigmented ocular fundi lesions. There are two types of Turcot 

syndrome, type A and type B. Type A is associated with medulloblastoma and is a 

result of a mutation in the adenomatous polyposis coli gene (APC, Table 1.1), a 

member of the canonical Wnt/wingless (WNT) signaling pathway (Figure 1.22). Type B, 

which is associated GBM (section 1.6.1.1.2) and ependymoma (section 1.6.1.3), has 

mutations in the DNA mismatch repair genes; MLH1, MLH2, MLH3, PMS1 and PMS2 

(de Bont et al., 2008; Gorovoy and de Alba Campomanes, 2014).  
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Similar to LFS, the discovery of APC mutations in medulloblastomas associated with 

Turcot syndrome led to the investigation of other WNT pathway components in 

sporadic medulloblastoma. It is now well established that somatic mutations of the 

CTNNB1 of the WNT pathway, which encodes the protein β-catenin, occur in 

approximately 10% of all medulloblastomas, and this subgroup of tumours is discussed 

further in section 1.8.8.1 (de Bont et al., 2008; Northcott et al., 2012a; Taylor et al., 

2012; Gorovoy and de Alba Campomanes, 2014). 

1.8.7.3 Gorlin syndrome 

Gorlin syndrome is also known as nevoid basal cell carcinoma syndrome. It is 

predominantly associated with the formation of basal cell carcinomas but also 

predisposes to medulloblastoma. Phenotypic features include vertebral abnormalities, 

polydactyly and a coarse facial appearance. Mutations of genes within the sonic 

hedgehog (SHH) pathway (PTCH1, PTCH2 and SUFU) are frequently observed (Torrelo 

et al., 2014). Subsequent investigation of the SHH pathway (Figure 1.22) in non-

syndromic medulloblastomas revealed somatic mutations of PTCH and SUFU alongside 

mutations of SMO and amplifications of GLI1 and GL2, all components of the SHH 

pathway (Figure 1.22). Combined these SHH pathway aberrations are found in up to a 

third of sporadically arsing medulloblastomas, and form their own molecular subgroup 

which is discussed in section 1.8.8.2 (Northcott et al., 2012a; Taylor et al., 2012). 
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Figure 1.22  The sonic hedgehog and Wnt/Wingless signaling pathways.  Inactive SHH 
pathway; Ptch receptors inhibit Smo (red) preventing Smo from accessing the primary 
cilium, Sufu binds Gli2 and Gli3, Gli2 is also degraded. Active SHH pathway; Ptch no 
longer represses Smo (green) which locates into the cilium, Sufu does not bind to Gli2 
and Gli3, Gli2 translocates to the nucleus where it activates transcription. Inactive WNT 
pathway; phosphorylated β-catenin is degraded. Active WNT pathway; β-catenin 
translocates to the nucleus where it activates transcription. Figure adapted from 
Ellison, 2010. 

 

1.8.8 Molecular subgrouping 

It is now well established that medulloblastoma comprises of four genetically and 

epigenetically (section 1.4.6.1.3) defined subgroups, with their own distinct 

clinicopathological demographics, recurrent molecular aberrations and outcomes 

(Figure 1.23). These four subgroups were largely identified through the convergence of 

transcriptomic data which subgrouped medulloblastoma into anything from four to six 

separate molecular subgroups. Leaders in the field of medulloblastoma research 

reached a consensus agreement in 2012 that there are four principal, molecularly 

defined, subgroups in medulloblastoma. However, within these four subgroups there is 

likely to be further sub-classifications which would account for the variable number of 

subgroups originally reported (Thompson et al., 2006; Kool et al., 2008; Cho et al., 

2011; Northcott et al., 2011b; Taylor et al., 2012).  
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Figure 1.23  Overall survival difference between the four molecular subgroups of 
medulloblastoma.  MBWNT, blue; MBSHH, red; MBGroup3, yellow; MBGroup4, green. Figure 
adapted from Kool et al., 2012. 

 

The most well defined and understood subgroups are medulloblastomas associated 

with WNT pathway disruption (MBWNT, section 1.8.7.2 and Figure 1.22) and 

medulloblastomas associated with aberrations of the SHH pathway (MBSHH, section 

1.8.7.3 and Figure 1.22). The two remaining subgroups, Group 3 and Group 4, 

(MBGroup3 and MBGroup4 respectively) are less well characterised but recent years have 

seen an expansion of genomic and epigenomic data across all subgroups (Kool et al., 

2012; Northcott et al., 2012a; Taylor et al., 2012). 
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1.8.8.1 WNT subgroup 

1.8.8.1.1 Clinical, pathological and molecular features of MBWNT 

MBWNT is the least common subgroup and accounts for approximately 10% of all 

medulloblastomas. They occur equally in boys and girls, typically around the median 

age of 9 years and readily display CLA histology, although rarely there have been 

reports of LCA in this subgroup (section 1.8.4). Initial insights into WNT pathway 

involvement in tumourigenesis were revealed due to the association of Turcot 

syndrome (type A) and medulloblastoma (section 1.8.7.2). Mutations in exon 3 of the 

CTNNB1 gene, which is pathognomonic for MBWNT membership, leads to nuclear 

accumulation of the encoded protein, β-catenin. This protein accumulation in the 

nucleus of tumour cells can be examined by immunohistochemistry and serves as a 

surrogate test to confirm molecular subgroup (Clifford et al., 2006; Northcott et al., 

2012a; Taylor et al., 2012).  

Another surrogate marker for MBWNT membership is monosomy 6 which can be 

examined by Fluorescence in situ Hybridisation (FISH). This is a frequently (~85%) 

observed copy number variation in this otherwise balanced genomic subgroup. 

Importantly, patients with MBWNT have a favorable prognosis (Figure 1.23 and Figure 

1.24) with long term OS in excess of 90%. This is despite the relatively frequent 

occurrence of TP53 mutations in this subgroup (~12% of MBWNT) which has 

traditionally been thought of as a poor prognostic marker. Recent work however has 

revealed that it is the subgroup context of TP53 mutations which is important in 

medulloblastoma, and MBSHH with TP53 mutations drive the poor prognosis of this 

additional molecular feature. MBWNT tumours with a TP53 mutation still have a good 

OS, comparable to those MBWNT with wild type TP53 (Clifford et al., 2006; Pfaff et al., 

2010; Tabori et al., 2010; Lindsey et al., 2011; Kool et al., 2012; Northcott et al., 2012a; 

Taylor et al., 2012; Zhukova et al., 2013; Shih et al., 2014).  
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Figure 1.24  Kaplan-Meier overall survival curves for MBWNT.  Ten year overall survival; 
demonstrating a good prognosis for MBWNT molecular subgroup in children. Figure 
adapted from Shih et al., 2014. 

 

Other recurrent aberrations more recently identified through a variety of sequencing 

techniques, (Sanger sequencing (section 2.4), whole-genome sequencing (WGS) and 

whole-exome sequencing (WES)), include mutations of the dead box helicase3, X 

linked gene (DDX3X) which are reported in up to 50% of MBWNT. DDX3X is part of a 

gene family encoding for dead box proteins which are associated with multiple cellular 

mechanisms such as regulation of the cell cycle. Mutations within this gene alter the 

RNA binding conformation, and consequently modify protein function. Mutations of 

the histone and chromatin modifiers, MLL2 (12%, sections 1.4.6.2.2 and 1.4.7) and 

SMARCA4 (26%, section 1.4.6.3.2) respectively, are also enriched in this subgroup 

(Parsons et al., 2011; Jones et al., 2012; Northcott et al., 2012a; Pugh et al., 2012; 

Robinson et al., 2012).  

1.8.8.1.2 Therapeutic stratification of MBWNT 

Despite the increasing number of molecular aberrations associated with MBWNT, 

evidence suggests that it is subgroup membership that is the overriding biomarker 

related to prognosis, and other features such as TP53 mutation, monosomy 6 and 

metastatic disease, play less of a role in determining outcome (Pfaff et al., 2010; 

Lindsey et al., 2011; Kool et al., 2012; Zhukova et al., 2013; Shih et al., 2014). As such, 
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trials are either in development, or underway, to reduce the therapy given to this 

group. In particular, radiotherapy reductions are planned for this good prognosis 

subgroup with the aim of reducing long term side effects specific to this treatment 

modality (section 1.8.6) while maintaining the high OS rates (Pizer and Clifford, 2009).  

While deciding on the appropriate treatment reduction is one challenge, determining 

an appropriate clinical test to identify patients with MBWNT in the first instance is also 

difficult and, at present, international consensus is yet to be reached. 

Immunohistochemical staining for nuclear accumulation of the β-catenin protein has 

proven robust when assessed uniformly (Ellison, 2010), and is currently utilised in the 

SJMB12 protocol coordinated  by St Jude Children’s Research Hospital (Memphis, TN). 

Examination for monosomy 6 by FISH or polymerase chain reaction (PCR) DNA 

sequencing analysis for the hotspot mutations observed in exon 3 of the CTNNB1 gene 

have been proposed as potential tests to identify this subgroup (Taylor et al., 2012). 

Currently, mutation screening alongside immunohistochemistry are the favoured 

analyses by E-SIOP for the upcoming PNET5 trial (section 1.8.5). Additionally, MBWNT 

along with MBSHH, MBGroup3 and MBGroup4 cluster distinctly according to both their gene 

expression and DNA methylation signatures (section 1.4.6.1.3, 1.8.8 and 2.11). Minimal 

gene expression (Northcott et al., 2011c; Schwalbe et al., 2011), and DNA methylation 

signature assays (PBTG unpublished work, section 6.3.6.2), are at various stages of 

development to assign not only MBWNT membership but MBSHH, MBGroup3 and MBGroup4 

membership as well. 

1.8.8.1.3 Mouse models of MBWNT 

Evidence now suggests that MBWNT have a distinct developmental origin to that of 

other medulloblastomas (Gibson et al., 2010). It has been demonstrated in Ctnnb1-

mutant mice that aberrant cell collections in the dorsal brainstem most commonly 

resemble progenitor cells derived from the lower rhombic lip. Further work in Ctnnb1-

mutant mice on a background of Trp53 deletion (Tp53flx/flx) demonstrated that upon 

aging, 15% of Ctnnb1-mutant; Tp53flx/flx mice developed CLA medulloblastomas, 

connected to the dorsal brainstem, with immunoprofiles most closely resembling 

MBWNT. Cross-species genomic comparison of the transcriptomes of these tumours, 

demonstrated that the Ctnnb1-mutant mice tumour profiles clustered only with their 

human MBWNT counterparts. This evidence supports the hypothesis that MBWNT 
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tumours differ in their developmental origin when compared to MBSHH (section 

1.8.8.2), and uniquely originate from progenitor cells within the dorsal brainstem 

(Gibson et al., 2010). Further work to model this disease subgroup has shown that 

mice harbouring Pik3caE545K mutations, also reported in human MBWNT , develop 

tumours with 100% penetrance which recapitulate human MBWNT in Blbp-

Cre;Ctnnb1+/lox(Ex3);Tp53+/flx transgenic mice (Robinson et al., 2012; Poschl et al., 2014). 

A summary of all the key features in MBWNT is provided below (Figure 1.25). 

 

Figure 1.25  Summary of the main clinical, pathological, molecular features and 
mouse models associated with MBWNT.    CLA, classic histology; LCA, large 
cell/anaplastic; M+, metastatic disease; Blbp, brain lipid binding protein; Ex3, exon 3; 
Pik3ca, PI3K catalytic-α polypeptide; Flx, flox. Mouse models; percentage tumour 
penetrance in parenthesis.  
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1.8.8.2 SHH subgroup 

1.8.8.2.1 Clinical, pathological and molecular features of MBSHH 

MBSHH is named after the SHH pathway (Figure 1.22) which is disrupted in this 

subgroup and drives tumour initiation. MBSHH is associated with amplifications (GLI1 

and GLI2), somatic and germline mutations of the SHH pathway (SUFU, PTCH and SMO, 

section 1.8.7.3). Together mutations within the SHH pathway are found in 

approximately 87% of sporadic MBSHH tumours (Kool et al., 2014). MBSHH display a 

bimodal age distribution, and commonly occur in teenagers and young adults or 

infants (<3 years old), with a paucity of MBSHH during the childhood years. There is an 

equal gender distribution but otherwise these tumours are clinically and biologically 

heterogeneous, with variable outcomes, pathology and molecular aberrations. For 

example, infants with DN histology (section 1.8.4.2) have a good prognosis and many 

of these young patients are able to avoid CSI (section 1.8.6), whereas older patients 

tend to have an intermediate prognosis (Figure 1.26). However, unlike MBWNT,  the 

interplay of clinicopathological and molecular events within this subgroup does 

significantly affect OS in both univariate and multivariate analyses (McManamy et al., 

2007; Ellison, 2010; Leary et al., 2011; Taylor et al., 2012; Shih et al., 2014). 

 

Figure 1.26  Kaplan-Meier overall survival curves for MBSHH.  Overall survival 
demonstrating a variable outcome by age for MBSHH molecular subgroup. Figure 
adapted from Shih et al., 2014. 
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Germline and somatic TP53 mutations are enriched within this subgroup (up to 20%). 

Studies report that TP53 mutations convey an extremely poor prognosis in all MBSHH    

(5 year OS of 41%). TP53 mutations are frequently found in tumours sampled from 

children diagnosed with a MBSHH between the ages of 5-18 years and, in this age group, 

predict an extremely poor OS with over 70% of patients with TP53 mutant-MBSHH 

succumbing to their disease. This is irrespective of whether mutations are somatic or 

germline (LFS, section 1.8.7.1). In addition to the association with age and LFS, TP53 

mutant-MBSHH frequently exhibit LCA histology, 17p loss or MYCN amplifications, and 

combined TP53-MYCN defects occur in approximately 6% of MBSHH (Pfaff et al., 2010; 

Jones et al., 2012; Zhukova et al., 2013; Kool et al., 2014). Recent findings have also 

linked GLI2 amplifications with TP53 mutations (Kool et al., 2014). Moreover, copy 

number aberrations of components in the p53 pathway such as PPM1D and MDM4 

amplification have been described, although their impact on prognosis is not clear 

(Northcott et al., 2012b). 

Chromothripsis (section 1.3.7), whereby there are alternating copy number states and 

chromosomal rearrangements attributed to one single event shattering the 

chromosome, has similarly been linked to germline TP53 mutations in this subgroup. 

This suggests that preceding TP53 mutations lead to the chromothripsis phenomenon, 

and also highlights the importance of considering undiagnosed LFS in patients with 

MBSHH (Rausch et al., 2012). Patients displaying chromothripsis with MBSHH also have a 

significantly worse outcome (Shih et al., 2014). 

MYCN amplification in isolation is found in approximately 8% of MBSHH and conveys a 

poor prognosis. Similarly amplification of the SHH pathway member GLI2 is predictive 

of a poor outcome as is 17p loss, 14q loss and 10q gain (Korshunov et al., 2011; 

Northcott et al., 2011a; Pezzolo et al., 2011; Taylor et al., 2012; Shih et al., 2014). 

DDX3X mutations (section 1.8.8.1) are present in around 12% of MBSHH, as well as 

amplifications of IGF signalling genes (for example IGF1R) and PI3K genes. Mutations 

and aberrations of the TERT promoter region have also been recently described. As 

already discussed in section 1.4.7, increased expression of TERT via mutually exclusive 

genetic and epigenetic mechanisms, leads to telomere lengthening and evasion of 

apoptosis by cancer cells. TERT promoter aberrations occur in >75% of non-infant 

MBSHH, convey an improved prognosis, and represent the most common additionally 
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disrupted pathway within the MBSHH subgroup (Jones et al., 2012; Northcott et al., 

2012a; Northcott et al., 2012b; Pugh et al., 2012; Robinson et al., 2012; Koelsche et al., 

2013; Remke et al., 2013; Kool et al., 2014; Lindsey et al., 2014).  

1.8.8.2.2 Therapeutic stratification, targeted therapies and quality of 

survival in MBSHH 

It is important to consider all these multiple, recurrent genetic and epigenetic events 

described in the MBSHH subgroup when deriving improved therapeutic stratification 

and prognostication. A recent multivariate analyses (Shih et al., 2014), integrating the 

majority, but not all, of the proposed clinical, pathological and molecular biomarkers in 

medulloblastoma reported that for MBSHH the consideration of GLI2 amplification, 14q 

loss and metastatic disease provides the most robust model for discerning high, 

standard and low risk patients in this subgroup. Importantly, absence of all three poor 

prognostic features conveys an OS comparable to the favourable prognosis of MBWNT 

tumours (Figure 1.24). While this report is promising (Shih et al., 2014), further work is 

required to assess some of the features of MBSHH not included in these multivariate 

analyses, such as TP53 mutations and TERT promoter mutations/methylation status. 

Treatment strategies targeted towards inhibiting the SHH pathway are currently 

underway in phase I/II studies for medulloblastoma, having shown efficacy in other 

SHH pathway driven cancers such as basal cell carcinoma (Low and de Sauvage, 2010). 

Use of the agent GDC-0449, a selective inhibitor of SMO (Figure 1.22), has shown early 

promise. However, tumours with aberrations of the SHH pathway downstream of SMO 

(amplification of GLI2  for example) are likely to exhibit primary resistance to this agent 

and, following administration of GDC-0449 to sensitive tumours, secondary resistance 

has been acquired. Furthermore, the long term effects of using these agents in young 

patients are unknown, and concerns focus on growth abnormalities and abnormal 

development. It therefore follows, given the evidence of tumour resistance and 

concerns around late effects, that targeted therapies may need to be part of a multi-

agent rather than single-agent strategy (Rudin et al., 2009; Ng and Curran, 2011; 

Northcott et al., 2012a; Kool et al., 2014).  
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Similarly as we move towards subgroup-specific stratified treatments, so should long 

term follow-up analysis. Firstly, to account for the variable effects of molecularly 

defined and potentially targeted treatment strategies and secondly, to understand 

how the differing biology of the four subgroups influences the long term health 

outcomes of survivors. Recent evidence, for example, suggests that despite their 

intermediate prognosis, patients with MBSHH have a better quality of survival, even 

when compared to MBWNT survivors who had equivalent treatment and better OS (Bull 

et al., 2014). 

1.8.8.2.3 Mouse models of MBSHH  

It has also been demonstrated that MBSHH tumours arise from differing cells of origin 

when compared to MBWNT. This is firstly borne out by observations in both human and 

mouse, where MBSHH tumours are located in the cerebral hemispheres rather than on 

the surface of the dorsal brainstem like MBWNT tumours (section 1.8.8.1). This 

observation is further supported by findings in mouse models of MBSHH. There are 

currently multiple mouse models of MBSHH which are either constitutive knockout or 

transgenic models (Poschl et al., 2014). The knockout models occur on a background of 

a single inactivated Ptch1 allele, and develop sporadic MBSHH with a penetrance of 

approximately 15%, which improves to 100% in Trp53-/- mice (Goodrich et al., 1997; 

Wetmore et al., 2000; Northcott et al., 2012a). In Ptch1+/- MBSHH mouse models, 

tumours have been shown to originate in granule neuron precursor cells arising from 

the upper rhombic lip (Gibson et al., 2010).  

Transgenic models however, either mimic SHH pathway disruption, by overexpressing 

neurogenic differentiation 2 (Neurod2 or “ND2”)-SmoA1, or by targeting the 

inactivation of Ptch1 in granule precursor cells by crossing a knockout Ptch1 mouse 

with a Math1-cre transgenic mouse (Helms et al., 2000; Schuller et al., 2007). These 

transgenic models develop tumours with increased penetrance that anatomically, and 

histologically resemble MBSHH (Hallahan et al., 2004; Hatton et al., 2008; Yang et al., 

2008). Further work has demonstrated that in the transgenic mice hGFAP-cre::SmoM2-

YFPFl/+ and Math1-cre::SmoM2-YFPFl/+, which disrupts the SHH pathway via a mutated 

SMO allele (SmoM2-YFP), tumours arise from granule neuron precursor cells derived 

from of the cochlear nuclei of the lower rhombic lip. This cell of origin still remains 

distinct from the pre-cerebellar lower rhombic lip cell of origin of MBWNT, described in 
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section 1.8.8.1. These multiple cells of origin from both the upper rhombic lip and 

cochlear nuclei of the lower rhombic lip for MBSHH could go part way to explaining the 

heterogeneity frequently observed in this molecular subgroup (Grammel et al., 2012). 

Most recently Wu et al., (2012), describes a model where the expression of the 

sleeping beauty transposon system in a Math1 transgenic mouse, bred with transgenic 

T2/Onc mice on a background of hemizygous Ptch1 inactivation, develop highly 

aggressive, metastatic medulloblastomas similar in their dissemination to human 

MBSHH (Wu et al., 2012). A summary of these models alongside the key clinical, 

pathological and molecular features in MBSHH are shown in Figure 1.27. 

 

Figure 1.27  Summary of the main clinical, pathological, molecular features and 
mouse models associated with MBSHH.   DN, desmoplastic/nodular histology; MBEN, 
medulloblastoma with extensive nodularity; CLA, classic histology; LCA, large 
cell/anaplastic; M+, metastatic disease; ND2, neurogenic differentiation 2; Smoa1; 
activated mutant of smoothened; Atoh1, atonal homologue 1; SB, sleeping beauty; Flx, 
flox; GFAP, glial fibrillary acidic protein. Mouse models; percentage tumour penetrance 
in parenthesis.  
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1.8.8.3 Group 3 subgroup 

1.8.8.3.1 Clinical, pathological and molecular features of MBGroup3 

MBGroup3 occur in infancy and childhood, display a male predominance (2:1) and 

account for approximately 27% of all medulloblastomas. Both LCA and CLA histological 

appearances are observed in MBGroup3, with enrichment of LCA in infants. They are 

frequently metastatic with approximately 30-50% of patients presenting with distant 

disease. As such, MBGroup3, across all age groups, conveys the worst prognosis of all 

four molecular subgroups (Figure 1.23 and Figure 1.28). Despite this poor prognosis, 

little is known about the molecular biology of MBGroup3 tumours. Certain genes 

associated with retinal development are over-expressed in this subgroup, but their 

role in tumourigenesis is unclear, and unlike MBWNT and MBSHH there is no defined 

molecular event or pathway implicated yet in the initiation of this tumour subgroup 

(Kool et al., 2012; Northcott et al., 2012a; Taylor et al., 2012).  

 

Figure 1.28  Kaplan-Meier overall survival curves for MBGroup3.  Overall survival 
demonstrating a universally poor, but significantly worse outcome in infants, with 
MBGroup3. Figure adapted from Shih et al., 2014. 

 

Overall the MBGroup3 genome is highly variable with copy number aberrations and 

tetraploidy being common events. High levels of MYC expression and frequent 

amplification is observed in up to 17% of MBGroup3 tumours. Similarly, amplification and 
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overexpression of the orthodenticle Homeobox 2 gene (OTX2), which normally 

encodes a transcription factor involved in craniofacial and brain development but is 

believed to play an oncogenic role in medulloblastoma, is observed in approximately 

8% of MBGroup3. Other cytogenetic abnormities include deletions of chromosome 10q 

(~50%), 16q (50%), and 17p (~40%), gains of 1q (35%), 7 (55%), and 17q (~60%) along 

with the combined loss of 17p and gain of 17q known as isochromsome 17 (i(17q)). 

SMARCA4 (~10%) and MLL2 mutations (4%), are also noted in this subgroup as they 

are in MBWNT (Parsons et al., 2011; Jones et al., 2012; Kool et al., 2012; Northcott et al., 

2012a; Northcott et al., 2012b; Pugh et al., 2012; Robinson et al., 2012; Taylor et al., 

2012; Shih et al., 2014).  

1.8.8.3.2 Therapeutic stratification in MBGroup3 

In the recent multivariate analysis by Shih et al., (2014) a selection of FISH biomarkers, 

including some of the cytogenetic aberrations associated with MBGroup3 (MYC, Ch11, 

Ch17p and Ch17q) were assessed for their role in improving subgroup-specific 

prognostication. In this study patients with metastatic disease, i(17q) or MYC 

amplification identify a high-risk group of MBGroup3, but crucially the absence of all 

three of these poor prognostic markers reveals a standard-risk group of patients. This 

is in contrast to previous analyses by Kool et al., (2012), who observe a non-significant 

difference in OS between metastatic and non-metastatic MBGroup3 . This may be due to 

cohort size or differing types of analyses between the two studies. 

In addition to these attempts to improve prognostication in MBGroup3, patients with 

MBGroup3 or MBGroup4 tumours in the currently recruiting SJMB12 trial, (St Jude 

Children’s Research Hospital, Memphis, TN), will receive chemotherapy that has 

demonstrated efficacy in pre-clinical MBGroup3 models. This comprises of gemcitabine 

and pemetrexed, which are established cytotoxic drugs in the paediatric setting, cross 

the blood brain barrier and target purine, pyrimidine and folate metabolism. Both 

agents showed promise in pre-clinical medulloblastoma studies, where survival was 

significantly increased in MBGroup3 neurospheres and mice harbouring both murine 

MBGroup3 and patient derived xenografts of MBGroup3 tumours (Morfouace et al., 2014). 
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1.8.8.3.3 Mouse models of MBGroup3 

Models of MBGroup3 have been described following orthotopic transplantation of Trp53-

inactivated cerebellar stem or progenitor cells which have been transformed by Myc 

expression (Kawauchi et al., 2012; Pei et al., 2012). The only spontaneous model of 

MBGroup3 is the GTML (Glt1–tTA/TRE–MYCN–Luc) MYCN-driven transgenic mouse 

model which is described in detail in Chapter 4 (Swartling et al., 2010; Poschl et al., 

2014). A summary of the key MBGroup3 features are summarised in Figure 1.29. 

 

Figure 1.29  Summary of the main clinical, pathological, molecular features and 
mouse models associated with MBGroup3. LCA, large cell/anaplastic; CLA, classic 
histology; M+, metastatic disease; Prom1, prominin 1; Lin, lineage; NSCs, neural stem 
cells; Atoh1, atonal homologue 1; GFP, green fluorescent protein; CGNPs, cerebellar 
granule neuron precursors; RFP, red fluorescent protein; Glt1, glutamate transporter 1; 
tTA, tetracycline transactivator; Luc, luciferase. Mouse models; percentage tumour 
penetrance in parenthesis.  
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1.8.8.4 Group 4 subgroup 

1.8.8.4.1 Clinical, pathological and molecular features of MBGroup4 

This is the largest subgroup of medulloblastoma accounting for a third of all tumours 

diagnosed. MBGroup4 have a male bias across all ages and occur predominantly in 

children but also occasionally in adults and infancy. They are often metastatic, display 

CLA histology and convey an intermediate prognosis. Similar to MBGroup3, the molecular 

pathogenesis of MBGroup4 is not understood and while multiple expression analyses 

have noted the association, and over-representation of genes involved in neuronal 

development and differentiation, the underlying role these pathways play in MBGroup4 

development is unclear (Kool et al., 2012; Northcott et al., 2012a; Taylor et al., 2012). 

 

Figure 1.30  Kaplan-Meier overall survival curves for MBGroup4.  Overall survival 
demonstrating an intermediate prognosis for MBGroup4, with a significantly worse 
outcome in the few infant-MBGroup4. Figure adapted from Shih et al., 2014. 

 

Tetraploidy, as well as recurrent cytogenetic abnormalities, such as amplification of 

MYCN and cyclin-dependent kinase 6 (CDK6), another proto-oncogene which normally 

assists in the regulation of cell cycle progression, are associated with approximately 6% 

and 5% of MBGroup4 respectively. Loss of 17p as well as i(17q) is most frequently found 

in this subgroup and is the most common cytogenetic aberration (>60%). Deletions of 

NFKBIA and USP4, both components of the NF-κB pathway, are observed, and female 
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patients typically show loss of one copy of the X chromosome. In addition, there are 

reports of mutations in lysine (K)-specific demethylase 6A (KDM6A, 13%), MLL3 (~5%), 

occasional TP53 and TERT mutations as well as chromothripsis in MBGroup4. However, 

while TERT promoter mutations are a rare occurrence, in contrast to their presence in 

MBSHH, initial findings suggest that these aberrations convey a poor prognosis (Parsons 

et al., 2011; Jones et al., 2012; Kool et al., 2012; Northcott et al., 2012a; Northcott et 

al., 2012b; Pugh et al., 2012; Rausch et al., 2012; Robinson et al., 2012; Taylor et al., 

2012; Remke et al., 2013; Zhukova et al., 2013; Shih et al., 2014). 

1.8.8.4.2 Therapeutic stratification in MBGroup4 

Shih et al., (2014) proposed that stratifying patients with; metastatic MBGroup4 as high-

risk, loss of Ch11 or gain of Ch17 as low risk, and standard-risk as those patients who 

demonstrated none of these features, improves prognostication in this subgroup. 

Surprisingly no poor prognosis molecular markers were identified in these analyses, 

including MYCN amplification which is in contrast to its role in MBSHH. These few and 

unclear observations, combined with the absence of known drivers of tumourigenesis, 

and critically no mouse models of MBGroup4 (Poschl et al., 2014), emphasise the urgent 

need for further study in MBGroup4, the most common molecular subgroup, and yet the 

most poorly understood (Figure 1.31). 
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Figure 1.31  Summary of the main clinical, pathological and molecular features 
associated with MBGroup4. CLA, classic histology; LCA, large cell/anaplastic; M+, 
metastatic disease. 

 

1.8.8.5 Summary of molecular subgrouping in medulloblastoma 

The four molecular subgroups of medulloblastoma display unique clinical, pathological 

genetic and epigenetic features. Recent studies suggest that these subgroups 

represent distinct tumour entities with differing cells of origin. This is reflected in their 

varying gene expression and DNA methylation profiles, cytogenetic aberrations and 

mutation spectrum. However, there is also crossover between the molecular 

aberrations found across subgroups, such as TP53 mutations, MYC and MYCN 

amplifications, as well as a variety of recently described mutations in histone and 

chromatin modifiers (e.g. SMARCA4, MLL2, MLL3 and KDM6A). The interplay of many 

of these aberrations, as well as clinicopathological features varies according to 

molecular subgroup. In view of this data, it is now clear that pre-clinical research, 

clinical treatment stratification and future therapies, alongside extended survival 

analyses in medulloblastoma, must now be interpreted in the context of molecular 

subgroup.   
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1.9 Relapsed medulloblastoma 

1.9.1 Impact, survival and treatment of relapsed disease  

Overall survival rates for children diagnosed with medulloblastoma are approximately 

80% for patients with standard-risk disease and 25-65% for high-risk disease. Despite 

improved survival rates, recurrence will occur in over 30% of patients with an 

enrichment of relapses in the infant age group, attributable to the avoidance of CSI in 

this patient population. Relapsed disease is almost universally fatal, and is therefore 

the single leading cause of death for children with medulloblastoma. (Crawford et al., 

2007; Pizer and Clifford, 2008; Pizer and Clifford, 2009; Dunkel et al., 2010; Ellison, 

2010; Gajjar et al., 2012; Jones et al., 2012; Northcott et al., 2012a; Ramaswamy et al., 

2013).  

In view of these dismal outcomes for relapsed disease, various treatment strategies 

have been administered including protocols consisting of re-resection, high-dose 

chemotherapy with stem cell rescue, and salvage radiotherapy for unirradiated 

patients (Gajjar et al., 1994; Grodman et al., 2009; Massimino et al., 2009; Dunkel et 

al., 2010; Gajjar and Pizer, 2010; Pizer et al., 2011a). Together, the administration of 

high-dose chemotherapy across multiple studies for medulloblastoma and CNS-PNET 

recurrences, achieves an overall survival of less than 5% (Gajjar and Pizer, 2010).  

Other more novel combinations have been attempted, such as metronomic therapy, 

oral etoposide, temozolamide, irinotecan and the VEGFA inhibitor bevacizumab, as 

well as phase I trials of the SHH pathway inhibitor, Vismodegib (GDC-0449). However, 

many of these studies are case reports or phase I/II trials, aimed at establishing the 

maximum tolerated dose of an agent, assessing adverse effects and investigating 

disease response. The intention of these studies is not to achieve cure, and therefore 

often does not have long term survival data. However, Aguilera et al., (2013) does 

report a PFS of 15-55 months in three patients who received bevacizumab, 

temozolamide and irinotecan at relapse. Padovani et al., (2011) reported an isolated 

long term survivor, (median follow-up 28 months), following the administration of 

metronomic temozolamide alongside re-irradiation. Similarly, Kim et al., (2013) 

reported an isolated long term survivor following high-dose chemotherapy and 

radiotherapy, and one long term survivor following combination chemotherapy alone 
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(Ruggiero et al., 2010; Sterba et al., 2010; Aguilera et al., 2011; Padovani et al., 2011; 

Sondhi et al., 2012; Aguilera et al., 2013; Gajjar et al., 2013; Grill et al., 2013; Kim et al., 

2013).  

Despite this variety of treatments, there is no standard of care for children suffering 

from relapsed medulloblastoma. None of the therapies discussed have shown any 

consistent benefit, or improvement in long term survival, with the exception of a 

minority of radiotherapy naive infants who receive this modality of treatment at 

relapse, albeit with significant neurological long term effects (Muller et al., 2014). In 

the study by Muller et al., (2014), seventeen patients, the majority of whom were 

infants at diagnosis (median age 2.9 years, range 1.7-5 years), underwent CSI as part of 

a salvage strategy at relapse. Eleven of these patients progressed and died. However 

the 5 year OS was reported as 39%, suggesting that a small number of infants who did 

not receive CSI at initial diagnosis, could benefit and survive long term following CSI 

delivery at relapse (Muller et al., 2014). 

1.9.2 The biology of relapsed disease 

As already discussed in section 1.8, there has been an impressive expansion of 

genomic and epigenomic human data, alongside in vitro and in vivo studies, leading to 

a better understanding of medulloblastoma biology at diagnosis. However, this has not 

occurred in the disease at relapse with only two published studies to date, summarised 

below, which have interrogated the biology of recurrent medulloblastoma (Korshunov 

et al., 2008; Ramaswamy et al., 2013). 

1.9.2.1 Accumulation of molecular aberrations in medulloblastoma at 

relapse 

The hypothesis of the study by Korshunov et al., (2008), based on observations in 

other tumour types, was that medulloblastoma exhibited molecular progression at 

relapse. Korshunov et al., (2008), collated a cohort of 28 medulloblastoma tumours 

sampled at relapse, which were paired with their counterpart tumours sampled at 

diagnosis. This study was carried out prior to the current understanding of molecular 

subgrouping in medulloblastoma, and aimed to compare recurrence patterns and 

pathological subtype, alongside a panel of five cytogenetic markers. The markers 
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selected (MYC, MYCN, 17p, 17q and 6q), were assessed by FISH and utilised to 

determine whether molecular progression over time occurred in medulloblastoma.  

At diagnosis 26/28 (93%) patients had M0 disease, and all patients received 

multimodal therapy consisting of neurosurgical resection, CSI and adjuvant 

chemotherapy (vincristine, lomustine and cisplatin). There was a male preponderance 

(3:1, male: female), with a median age at recurrence of 14 years (range 3-37). Early 

relapses occurred in 16/28 (57%) cases, which was defined as disease recurrence less 

than 4 years after initial diagnosis. Thirteen cases had isolated local recurrences, six 

demonstrated local disease with leptomeningeal spread (one of these patients had 

spread outside the CNS as well) and nine had isolated leptomeningeal disease. All 

patients underwent surgical re-resection at recurrence with eighteen samples 

obtained from the local recurrence, and ten samples from metastatic disease sites.  

Patients with LCA disease at diagnosis (n=4) had a significantly shorter time to relapse 

(p< 0.001). Interestingly ten patients exhibited histopathological changes, with CLA 

histology in their tumours sampled at diagnosis evolving to demonstrate features of 

anaplasia in their respective tumours at relapse. Thirteen tumours showed cytogenetic 

aberrations at diagnosis, and this group of patients had a non-significant reduction in 

both time to relapse and OS. At relapse, seven tumours demonstrated cytogenetic 

aberrations not previously observed in their paired tumour at diagnosis, with 

abnormalities of 17q most commonly acquired (n=5). Gain of 6q (n=2) and MYCN (n=2) 

amplification, were also observed in samples taken at relapse where the diagnostic 

profiles were balanced. Both examples of acquired 6q gain occurred in tumours which 

also acquired 17q abnormalities. Conversely, two metastatic lesions sampled at 

relapse showed maintenance of i(17)q but loss of MYCN amplification.  

This study was the first published dataset to report the temporal progression and 

accumulation of both histopathological and cytogenetic events in medulloblastoma. 

While only a limited set of biological features were assessed, Korshunov et al., (2008), 

provided the first insights into the biology of recurrent disease highlighting that firstly, 

it is not always the same as the disease at diagnosis, and secondly, further studies are 

required to improve understanding and outcomes for this fatal disease. 
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1.9.2.2 Subgroup-specific patterns of relapse in medulloblastoma 

Ramaswamy et al,. (2013) combined three independent cohorts (cohort 1, n=5; cohort 

2, n=29; cohort 3, n=17) of relapsed medulloblastoma samples, paired with tumours 

taken at diagnosis. Molecular subgroup was assigned at both diagnosis and relapse in 

cohort 1 and 2 by nanoString (Northcott et al., 2011c), a targeted gene expression 

profiling technique, which revealed that molecular subgroup did not change between 

diagnosis and relapse. This finding was confirmed in cohort 3 where a panel of four 

immunohistochemistry antibodies, which had previously been reported (MBWNT, β-

catenin; MBSHH, SFRP1; MBGroup3, NPR3 and MBGroup4, KCNA1), was adopted to assign 

molecular subgroup in this latter validation cohort (Clifford et al., 2006; Northcott et 

al., 2011b). 

Patterns and timings of recurrence were analysed in a subgroup-specific manner, in 

extended cohorts, where tumour tissue was not available at relapse and subgroup had 

been assigned on samples obtained at diagnosis (cohort 1, n=30; cohort 2, n=77; 

cohort 3, n=96). This report suggests that there are subgroup-specific patterns of 

relapse, with local recurrences dominating in MBSHH and distant relapses occurring 

more frequently in MBGroup3 and MBGroup4. Relapse disease in MBWNT was unsurprisingly 

rare, given their overall good prognosis (section 1.8.8.1), and MBGroup4 tumours had a 

prolonged time to death (TTD). This study provides further evidence to support the 

notion that the four molecular subgroups within medulloblastoma are distinct, with 

subgroup stability over time strengthening the evidence that they arise from different 

cells of origin (section 1.8.8.1 and 1.8.8.2). Ramaswamy et al,. (2013) also reinforces 

the importance of analysing medulloblastoma in the context of the four molecular 

subgroups at all time-points in the disease course, and provides initial insights into the 

subgroup-specific patterns of disease relapse. 
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1.10 Summary and aims 

Medulloblastoma is the most common malignant CNS tumour of childhood. Current 

survival rates following multi-modal therapy have plateaued at approximately 80% for 

children with standard-risk disease, and 25-65% for those displaying high-risk features. 

Moreover, the long term neurological sequelae following multimodal treatment 

highlights that advances in our therapeutic strategies are essential if we are to not only 

improve survival, but the quality of that survival as well. Consequently in recent years 

there has been a rapid expansion of data on the disease at diagnosis. This has led to 

the identification of four distinct molecular subgroups with unique demographic, 

clinical, pathological, epigenetic and genetic features, and it is now believed that these 

four subgroups represent distinct disease entities with different cells of origin. 

Two of the medulloblastoma molecular subgroups are well characterised (MBWNT and 

MBSHH) and treatment reductions are either in place, or planned for MBWNT, and phase 

I trials are underway for SHH pathway inhibitors in the disease. Despite these 

developments, there is still a greater understanding of these two subgroups required, 

such as the interplay of other features and novel events on prognosis. Little is known 

about the driving events in MBGroup3 and MBGroup4 which represent the poorest 

prognosis or largest subgroup observed, respectively. Efforts therefore continue to 

focus predominantly on the characterisation, modelling and discovery of novel events 

in the disease at diagnosis. 

Relapsed medulloblastoma is almost universally fatal. Typically only infants who are 

treated at recurrence with salvage radiotherapy have a chance of surviving their 

disease. Despite this dismal outcome, and the appreciation of the natural course of the 

disease, i.e. patients rarely die from other causes except disease recurrence, very little 

is understood about relapsed disease. At present there is no unifying treatment 

approach or trial for relapsed medulloblastoma. This has made studying the disease at 

recurrence difficult, and is compounded by the fact that routine sampling of a 

suspected recurrent lesion is rarely performed, as the diagnosis is commonly made by 

radiological assessment alone. Therefore there have only been two published studies 

which have attempted to interrogate the biology of medulloblastoma at relapse. 
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The characterisation of medulloblastoma at relapse is crucial to providing future new 

therapeutic targets and critical insights into the biology of the disease. This in turn, 

may identify patients at greater risk of disease recurrence, enabling their upfront 

treatment to be escalated and tailored accordingly, and their risk of recurrence 

reduced. Moreover, the identification of molecular events at disease relapse, could be 

explored in the future as therapeutic targets, proving new approaches to control or 

cure disease at this time-point. This project therefore aims to comprehensively 

investigate the clinical, pathological and molecular features of relapsed 

medulloblastoma, and provide essential new understanding into the mechanisms of 

disease recurrence to identifying events predictive of or specific to relapse.  

The aims and approaches undertaken are; 

 

1. Assemble a large cohort of relapsed tumours, paired with their diagnostic 

counterparts. Within this cohort, comprehensively characterise all the 

established molecular features with validated relationships to prognosis 

currently understood in the disease at diagnosis, with the aim of identifying 

associations between relapsed medulloblastoma features and disease 

behaviour. These events could next be explored as either prognostic 

biomarkers or therapeutic targets in the medulloblastoma at recurrence 

(Chapter 3 and Chapter 4).  

 

2. Interrogate the epigenome of relapsed medulloblastoma utilising the paired 

relapsed cohort assembled in Chapter 3, to identify events specific to or 

predictive of relapse. Validate these discoveries with relation to expression, in 

an independent cohort, and provide the foundation for future functional work 

to identify novel epigenetic events in relapsed medulloblastoma. These 

epigenetic events could further be exploited as either prognostic biomarkers or 

therapeutic targets (Chapter 5). 
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3. Assemble a large cohort of medulloblastoma tumour samples taken at 

diagnosis from patients who have subsequently relapsed with their disease. 

Utilise this extensively characterised relapsing cohort to investigate the 

subgroup-specific clinical, pathological and molecular features of relapsed 

disease at diagnosis, which may further inform disease course and behaviour at 

relapse. Moreover, this relapsing cohort provides an additional future resource 

to either identify prognostic biomarkers, or investigate the utility of events 

discovered in aims 1 and 2, that may be predictive of relapse (Chapter 6). 
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Chapter 2. Materials and Methods 
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2.1 Extraction of nucleic acids 

Extractions of tumour DNA from FFPE (formalin fixed, paraffin embedded) and tumour 

DNA and RNA from frozen material were performed by myself, Dr Janet Lindsey and 

Ms Amanda Smith (PBTG). Extracted tumour DNA was also kindly provided by Dr 

Michael Taylor (Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for 

Sick Children, University of Toronto, Toronto, Canada) and Prof Stefan Pfister 

(Department of Paediatric Haematology and Oncology, Heidelberg University Hospital, 

Heidelberg, Germany). 

2.1.1 DNA extraction  

DNA extractions from FFPE tumour material were performed using the Qiagen QIAamp 

® DNA FFPE tissue kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s 

instructions. High molecular weight DNA was obtained from frozen tissue using the 

Qiagen DNeasy ® blood and tissue kit (Qiagen, Venlo, Netherlands). Extracted DNA was 

stored at -80°C. 

2.1.2 Quality control of DNA 

2.1.2.1 NanoDrop spectrophotometry 

DNA was assessed using the NanoDrop 1000 Spectrophotometer (Thermo Fisher 

Scientific, Waltham, MA, USA). NanoDrop spectrophotometry is able to measure 

nucleic acid concentrations as low as 1ng/µl and purity in liquid samples as small as 1μl 

by utilising the differences in optical density between nucleic acids and protein. 

Nucleotides, DNA and RNA all absorb UV light at a wavelength of 260nm. The greater 

the amount of DNA or RNA in a sample, the more UV light is absorbed, providing a 

measure of sample DNA or RNA concentration. The absorbance ratio at wavelengths 

260nm/280nm (maximum protein absorbency) is utilised to assess the purity of a 

sample, as impurities have absorbance at different wavelengths e.g. EDTA, phenol and 

carbohydrates, wavelength of 230nm (Sedlackova et al., 2013). 

2.1.2.2 Qubit ® fluorometer 

Double stranded DNA (dsDNA) was evaluated using the Qubit ® PicoGreen dsDNA 

broad-range assay kit according to the manufacturer’s instructions (Invitrogen, 

Carlsbad, CA, USA). This assay is highly selective for dsDNA and uses intercalating 

fluorescent dyes to determine DNA concentrations as low as 25pg/ml. Whilst the 
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PicoGreen reagent is not specific to dsDNA, once bound to dsDNA, fluorescent 

enhancement is 1000-fold greater than bound PicoGreen reagent to single stranded 

DNA (ssDNA, Figure 2.1). It is also able to detect RNA-DNA hybrids, and as a result of 

these features is able to reliably quantify dsDNA, the main advantage over NanoDrop 

spectrophotometry (Sedlackova et al., 2013). 

  

Figure 2.1  Illustrative example demonstrating the difference in fluorescence 
emission between dsDNA, ssDNA and RNA upon binding to the PicoGreen dsDNA 
reagent.  Figure taken from Life Technologies, Nucleic acid quantitation in solution, 
www. lifetechnologies.com. 

 

2.1.3 RNA extraction 

RNA was extracted using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer’s guidelines. Extracted RNA was stored at -80 °C. 

2.1.4 Quality control of RNA 

Assessment of the quantity and integrity of total RNA was performed using the Agilent 

RNA 6000 Nano Kit on the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, 

USA) according to the manufacturer’s instructions. This system allows visualisation of 

RNA integrity and impurities, has a quantitative range of 25-500ng/μl, and reports the 

RNA Integrity Number (RIN), which is a software tool designed to provide a measure of 

RNA degradation.  

2.1.5 Combined DNA/RNA extraction 

Combined extractions of tumour DNA and RNA were carried out using the Qiagen 

AllPrep extraction kit using standard methods (Qiagen, Venlo, Netherlands). Quality 
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control of extracted nucleic acids was performed as descried in section 2.1.2 and 2.1.4. 

Extracted products were stored at -80 °C. 
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2.2 Histopathology 

Immunohistochemistry slides were prepared by Ms Sarah Leigh Nicholson (former 

member of the PBTG), Miss Anna Long (former member of the PBTG) and Dr Stephen 

Crosier (PBTG). FFPE tumour blocks were sectioned at a thickness of 5µm on a 

microtome, floated in a water bath at 40°C, and transferred onto Superfrost Plus slides 

(VWR International, East Grinstead, UK). A panel of stains were performed using 

standard techniques, to assess the medulloblastoma pathological variant according to 

the current 2007 World Health Organization (WHO) classification of central nervous 

system tumours (Louis et al., 2007).  

The immunohistochemical stains undertaken were; H&E, for morphological 

assessment; reticulin, for morphological assessment and expression in DN variant of 

medulloblastoma; GFAP, normally expressed in astrocytes within the CNS; 

synaptophysin, expressed in the intranodular regions of DN medulloblastoma; 

neurofilament protein expression, differentiates neurons from glial cells; Ki-67, marker 

of cellular proliferation; Vimentin, mesenchymal expression; INI-1, differentiates 

between medulloblastoma (immunopositive) and ATRT (immunonegative); β-catenin, 

nuclear localisation in MBWNT (section 1.8.8.1); and p53, nuclear expression in p53 

pathway disruption. 

Central pathology review was performed according to the current 2007 WHO 

classification of tumours (Louis et al., 2007) by three neuropathologists, Dr Thomas 

Jacques, Prof Stephen Wharton and Dr Keith Robson, from the CCLG. Pathological 

variant was assigned as CLA, DN, MBEN or LCA, as described in section 1.8.4. If the 

pathological variant was unable to be assigned it was recorded as a medulloblastoma 

not otherwise specified (MBNOS). 
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2.3 Polymerase Chain Reaction 

PCR was first described in the 1980s by Kary Mullis (Mullis et al., 1986) and is a 

technique used to specifically amplify a segment of DNA. To target the desired DNA, 

primers of 18-25 nucleotides in length are designed to complement the DNA 

sequences which flank the target DNA segment. In designing primers, the nucleotide 

sequence selected should not be repeated elsewhere in the genome and ideally have 

an even distribution of the four bases Cytosine (C), Guanine (G), Thymine (T) and 

Adenine (A). The melting temperature (Tm, mid-point in the transition between dsDNA 

and ssDNA) of the forward and reverse primers should also be within 5°C of each other 

(Dieffenbach et al., 1993). 

The process of PCR consists of three stages; denaturation, primer annealing and DNA 

synthesis. Denaturation of human DNA, where hydrogen bonds between dsDNA break 

forming ssDNA, typically occurs at approximately 94°C. The conditions for primer 

annealing depends on the Tm of the primer pairs but is usually 5°C below the Tm (50-

70°C) and allows the primers to align to their complementary DNA sequence. Finally, 

DNA synthesis, which occurs at 70-75 °C in the presence of DNA polymerase and the 

four deoxyribonucleotide triphosphates (dNTP), is the process whereby primers 

initiate the creation of the desired complementary DNA. This process is repeated in 

cycles to allow for the exponential amplification of the desired DNA product. 

2.3.1 TP53 mutation analysis  

PCR based direct sequence analysis of exons 2-11 (Table 2.1), within the DNA binding 

domain of TP53, was performed on all samples within the paired relapse cohort 

(Chapter 3). Following the identification of mutations within exons 5-8, alongside the 

latest understanding of TP53 mutation distribution in medulloblastoma (Zhukova et al., 

2013), all samples within the relapsing cohort (Chapter 6) were screened for TP53 

mutations in exons 5-8 only. Fast PCR was optimised for all exons (2-11) in this 

mutation screen, which used a hot start polymerase system, a technique which 

increased the specificity and reduced the time taken to perform the PCR reactions.  

One 20μl reaction required 2µl of both forward and reverse primers (Table 2.1), at a 

final concentration of 10µM, 5µl of RNAase free water, 25ng of total tumour DNA (in 

1µl of RNAse free water) and 10μl of GeneAmp® Fast PCR Master Mix (Life 



88 
 

Technologies, Paisley, UK). A negative control of the same reaction mix without DNA 

was performed for each experiment to confirm that there was no DNA contamination 

of the reagents. PCR reactions were run on the Applied Biosystems® 9800 Fast Thermal 

Cycler (Life Technologies, Paisley, UK, Table 2.2).  

 

Table 2.1  Primer sequences for TP53 mutation screen. Forward and reverse 
nucleotide sequences for primer pairs utilised in the PCR reactions for exons 2-11 of 
the TP53 gene. 

 

 

Table 2.2  Thermocycler settings for fast PCR reaction. Temperature settings, duration 
and number of cycles required for fast PCR reaction; exons 2-11 of the TP53 gene.  

 

2.3.2 CTNNB1 mutation analysis 

PCR of the GSK-3β phosphorylation domain of CTNNB1 (nucleotides 791-1070), the 

mutational hotspot within the CTNNB1 gene associated with MBWNT subgroup 

membership, was analysed using a standard PCR technique (Ellison et al., 2005; Taylor 

et al., 2012). One 20μl reaction contained 2μl of both forward and reverse primers 

(10μM final concentration, Table 2.3), 2μl of PCR buffer, 1.5μl MgCl2 (10mM), 0.8μl 

dNTP (5mM), 0.2μl of Taq polymerase (5U/ μl), 9.5μl of RNAse free water and a total of 

Location Forward sequence 5'-3' Reverse sequence 5'-3'

Exon 2 CCAGGGTTGGAAGCGTCTC GACAAGAGCAGAAAGTCAGTCC

Exon 3/4 CATGGGACTGACTTTCTGCTC CTTCATCTGGACCTGGGTCT

Exon 4 (part) GGACGATATTGAACAATGGTT ATGGAAGCCAGCCCCTCAG

Exon 4 GGCTGAGGACCTGGTCCTCTGA GCCAGGCATTGAAGTCTCATGG

Exon 5 ATCTGTTCACTTGTGCCCTG CAACCAGCCCTGTCGTCTCTC

Exon 6 GCCTCTGATTCCTCACTGAT GGAGGGCCACTGACAACCA

Exon 7 AAGGCGCACTGGCCTCATCTT CAGGGGTCAGAGGCAAGCAGA

Exon 8 GAGCCTGGTTTTTTAAATGG TTTGGCTGGGGAGAGGAGCT

Exon 9 AGCGAGGTAAGCAAGCAGG GCCCCAATTGCAGGTAAAACAG

Exon 10 CTTCTCCCCCTCCTCTGTTGC GAAGGCAGGATGAGAATGGA

Exon 11 GGCACAGACCCTCTCACTCAT TGCTTCTGACGCACACCTATT

Primers for TP53  PCR reaction

Temperature Time Cycles

95°C 45 seconds

94°C 0 seconds

64°C 15 seconds

72°C 45 seconds

4°C Hold

35
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50ng of DNA (25ng/μl). A negative control of the same reaction mix without DNA was 

performed for each experiment to confirm that there was no DNA contamination of 

the reagents. The PCR reaction was run on the GeneAmp ® PCR System 9700 

thermocycler (Applied Biosystems, Life Technologies, Paisley, UK) with the following 

settings (Table 2.4). 

 

Table 2.3  Primer sequences for CTNNB1 mutation screen.   Forward and reverse 
nucleotide sequences for the primer pairs utilised in the PCR reaction for CTNNB1. 

 

 

Table 2.4  Thermocycler settings for standard PCR reaction. Temperature settings, 
duration and number of cycles required for CTNNB1 PCR reaction.  

 

2.3.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used to separate different length strands of amplified 

DNA. It works on the principle that DNA, being negatively charged, will travel through 

an agarose gel when an electrical current is passed through the gel. Different 

percentage (w/v) gels can be made, with lower percentage (w/v) gels allowing the 

travel of larger DNA strands and vice versa for smaller DNA segments. A DNA ladder is 

run alongside the amplified product to allow estimation of the DNA strand length and 

confirmation of the desired PCR product.  

For both TP53 and CTNNB1 mutational analysis, gel electrophoresis on a 2% (w/v) 

agarose gel confirmed the presence and length of the desired amplified product 

(Figure 2.2). The 2% (w/v) agarose gel was made by microwave heating 40mls of 

1xTris-Borate-EDTA (TBE, Table 2.5) with 0.8g of molecular grade agarose powder 

Forward sequence 5'-3' Reverse sequence 5'-3'

TCCAATCTACTAATGCTAATACTG TAAGGCAATGAAAAATAATACTC

Temperature Time Cycles

95°C 45 seconds

95°C 30 seconds

53°C 30 seconds

72°C 30 seconds

72°C 5 minutes

4°C Hold

40
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(Bioline, London, UK). Once dissolved, 4μl of GelRedTM Nucleic Acid Gel Stain (Biotium, 

Hayward, CA, USA) was added to the solution. Gels were cast in appropriately sized 

moulds with combs to create individual wells (Scientific Laboratory Supplies, East 

Riding, UK), set at room temperature and immersed in 1xTBE gel bath (Scientific 

Laboratory Supplies, East Riding, UK). The first well was loaded with 4μl of PCR markers 

(Promega, Madison, WI, USA) as a reference DNA ladder. Subsequent wells were 

loaded with 5μl of PCR product, which had all been individually premixed with 1μl of 

PCR loading dye (Promega, Madison, WI, USA). Gels were run at 150volts for 10 

minutes and visualised under UV light using a G:Box (Syngene, Cambridge, UK). 

 

Table 2.5  Recipe for 10xTBE. 1xTBE; 100ml of 10xTBE added to 900mls of H2O. 

 

 

Figure 2.2  Gel electrophoresis demonstrating amplified PCR products.  Lane 1-6 all 
show DNA bands for exon 6, TP53. Lane 1 and 3 show low intensity bands, reflecting 
the differing quality of DNA extracted from tumour samples. Negative control is blank 
confirming that there is no DNA contamination of the reagents. Ladder band sizes are 
shown (left) and PCR product size is highlighted in red; bp, base pairs. 

 

2.3.4 PCR purification 

PCR purification was undertaken using the Purelink® PCR Purification Kit (Life 

Technologies, Paisley, UK) according to the manufacturer’s instructions. Samples were 

stored at 4°C until sequenced. 

Component Amount

H2O 700ml

Tris 108g

Boric acid 55g

EDTA (0.5M) 40ml

Additional H2O is added to male a final volume of 1l

Made to pH 8.3 using additional Hydrochloric acid
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2.4 DNA Sequencing 

Sanger sequencing was first described in 1977 by Frederick Sanger and colleagues 

(Sanger et al., 1977). It is an enzymatic method where ssDNA is the template for 

making complementary DNA using DNA polymerase. There are four reactions using the 

four dNTPs (ATP, TTP, CTP and GTP), along with a dideoxynucleotide (ddNTP), which 

lacks a hydroxyl group at both the 2’ and 3’ carbon positions and acts as a chain 

terminator. Automated DNA sequencing utilises fluorophores, a non-isotopic chemical 

group, to label the primers and dNTPs enabling the four reactions to occur 

simultaneously. As the reactions occur the DNA strand, now labelled with distinct 

fluorophores, elongates until the ddNTP is randomly inserted ending the reactions and 

terminating the chain. During automated sequencing the intensity of the fluorescent 

signals from the labelled DNA strand is recorded and outputted as an intensity profile 

for each of the four fluorophores, allowing the sequence to be read and interpreted 

(Figure 2.3). Sanger sequencing was outsourced in this study to DBS GENOMICS 

(Durham University, UK) and Eurofins Genomics (Ebersberg, Germany) and performed 

on an ABI sequencer (Applied Biosystems, Life Technologies, Paisley, UK). Sequence 

analysis was undertaken on SeqMan 5.05, MegAlign 5.05 (©1993-2002 DNASTAR) and 

Mutation Surveyor (Dna Variant Analaysis, SoftGenetics, PA, USA). 

 

Figure 2.3  Sequence analysis of TP53 exon 5.  Wild type (WT) sequence is shown on 
the left panel, homozygous missense mutation demonstrated on the right panel. Pro, 
proline, Leu, leucine. 
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2.5 Next Generation Sequencing 

Next generation sequencing is a high throughput sequencing technology which 

parallelises the sequencing process and enables thousands to millions of sequencing 

reads to be produced. The Fluidigm Access Array System (Fluidigm Corporation, San 

Francisco, CA, USA) combines tagged, target specific primers with sample specific 

primer pairs, (four primer amplicon tagging scheme), which reduces the time required 

for enrichment of the target sequence. Target specific primers for exon 5 of TP53 were 

used as previously described (Grossmann et al., 2011), and combined a sequence 

specific primer and a universal Fluidigm tag (Table 2.6).  

 

 

Table 2.6  Next generation sequencing target specific primers for TP53, exon 5. 
Forward and reverse nucleotide sequences for the primers required for the Fluidigm 
tag and exon 5 of the TP53 gene. 

 

PCR reaction preparation (Table 2.7), and thermocycler settings (Table 2.8), were 

performed as per the Fluidigm Access Array System directions (Fluidigm Corporation, 

San Francisco, CA, USA). PCR fragment size and quantitation size were confirmed using 

the Agilent DNA 1000 Kit for the Agilent 2100 BioAnalyzer (Agilent Technologies, Santa 

Clara, CA, USA). PCR products were purified using the Agencourt AMPure beads 

according to the manufacturer’s instructions (Beckman Coulter UK Ltd, High Wycombe, 

UK). In brief, PCR products were bound to AMPure magnetic beads, allowing the 

separation of contaminants, which were aspirated, from bound products. PCR 

fragments were washed in 70% ethanol, air dried and then eluted in PCR certified 

water. The AMPure magnetic beads were separated from the eluted PCR fragments 

using the DynaMag™-96 Side Skirted Magnetic Particle Concentrator (Invitrogen, 

Carlsbad, CA, USA). Purified PCR products were then combined with barcoded primers 

from the Access Array Barcode Library, pooled and run in a single sequencing 

experiment on the 454 FLX titanium sequencer (454 Life Sciences, a Roche company, 

CT, USA). 

Location Forward sequence 5'-3' Reverse sequence 5'-3'

Fludigm tag ACACTGACGACATGGTTCTACA TACGGTAGCAGAGACTTGGTCT

Exon 5 CACTTGTGCCCTGACTTTCA CACTCGGATAAGATGCTGAGG
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Table 2.7  Reaction preparation for next generation sequencing. Each component of 
the reaction alongside the final volume and concentration per reaction are shown. 
Current suppliers of every component are also highlighted. 

Component Volume per reaction (μl) Final concentration

Dimethyl sulfoxide (DMSO) * 0.25 5%
10mM PCR Grade Nucleotide Mix * 0.1 200µM each

5 U/µl FastStart High Fidelity Enzyme Blend * 0.05 0.05 U/μl

20x Access Array Loading Reagent
 # 0.25 1x

DNA 0.83 10ng/µl

RNAase free water 0.12 10mM

Target Specific Primers # 1

Total 5

* Roche, Indianapolis, IN, USA
#
 Fluidigm, San Francisco, CA, USA

10x FastStart High Fidelity Reaction Buffer 

without MgCl2 *

25 mM MgCl2 *

2 μM Access Array Barcoded Primers #                        

for the 454 FLX Titanium Sequencer *
1

0.5 1x

0.9 4.5mM

400nM
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Table 2.8  Thermocycler settings for next generation sequencing PCR reaction. 
Temperature settings, duration and number of cycles required for the PCR reaction 
prior to next generation sequencing of exon 5 of the TP53 gene are shown. 

  

Temperature Time Cycles

50°C 2 minutes 1

70°C 20 minutes 1

95°C 10 minutes 1

95°C 15 seconds

60°C 30 seconds

72°C 1 minute

95°C 15 seconds

80°C 30 seconds

60°C 30 seconds

72°C 1 minute

95°C 15 seconds

60°C 30 seconds

72°C 1 minute

95°C 15 seconds

80°C 30 seconds

60°C 30 seconds

72°C 1 minute

95°C 15 seconds

60°C 30 seconds

72°C 1 minute

95°C 15 seconds

80°C 30 seconds

60°C 30 seconds

72°C 1 minute

2

8

5

2

10

8
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2.6 Fluorescence in situ hybridisation (FISH) 

FISH is a cytogenetic technique used to detect chromosomal abnormalities such as 

amplifications, deletions and translocations. DNA probes which hybridise to the 

chromosome are either labelled directly or indirectly with fluorophores, which can be 

visualised using certain wavelengths of light. The digoxigenin and the biotin-

streptavidin system are two common examples of indirect labelling. DNA probes are 

labelled indirectly, with a nucleotide containing a modified reporter molecule such as 

digoxigenin (Digitalis steroid) or biotin (vitamin B7). In the digoxigenin system, a 

digoxigenin-specific antibody acts as a fluorescently labelled affinity molecule, binding 

to the reporter molecule (digoxigenin) after it has been incorporated into the DNA, 

and thus allows for detection of the reporter molecule. For the biotin-streptavidin 

technique, streptavidin is the fluorescently labelled affinity molecule which binds to 

biotin, the reporter molecule. 

2.6.1 Probe preparation 

Bacterial artificial chromosome (BAC) cloned DNA sequences (Wellcome Trust Sanger 

Institute, Cambridge, UK) were used as probes for the four chromosomal regions of 

interest; MYC, MYCN, chromosome 17p and 17q (Lamont et al., 2004). These probes 

were subsequently labelled using the nick-translation technique. Using this method, 

single strand breaks known as ‘nicks’ are introduced by an endonuclease into the DNA. 

As a result, the exposed 3’ terminus of the nick acts as a start point for the 

introduction of fluorescently labelled nucleotides. Using DNA polymerase the labelled 

nucleotides replace the existing nucleotides, which are removed 5’ to 3’, and the DNA 

sequence is translated.  

DNA probes were labelled using the Nick-Translation Kit (Vysis, Abbott Molecular, IL, 

USA). The reaction was combined according to the manufacturer’s instructions (Table 

2.9), briefly centrifuged and vortexed, and then incubated at 15°C for 16 hours on the 

GeneAmp ® PCR System 9700 thermocycler (Applied Biosystems, Life Technologies, 

Paisley, UK), to allow for the translation of unlabelled nucleotides to labelled 

nucleotides. 
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Table 2.9  Reaction preparation for probe labelling by nick translation. Each 
component and their concentration alongside the final volume per reaction are shown. 
Current suppliers of every component are also highlighted. 

 

The reaction was terminated on ice, and probe size was determined by running 6µl of 

the reaction on a 0.8% (w/v) agarose gel (section 2.3.3) in parallel with an appropriate 

DNA ladder (PCR markers, Promega, Madison, WI, USA). For probe precipitation, the 

reagents were added in order (Table 2.10), vortexed and transferred onto dry ice for 

15 minutes. The reaction was centrifuged at 16 000xg relative centrifugal force (rcf) in 

a pre-cooled Eppendorf centrifuge 5415R (Eppendorf, Hauppauge, NY, USA) at 4° for 

20 minutes. The liquid supernatant was aspirated, and pellet vacuum dried for 5 

minutes at 16 000xg (rcf) in an Eppendorf concentrator 5301 (Eppendorf, Hauppauge, 

NY, USA). The pellet was re-suspended in hybridisation mix (Table 2.11) at a ratio of 

4:1, hybridisation mix to nick translation mixture (128µl: 32µl), vortexed, incubated for 

60 minutes at 37°C and stored at -20°C. 

  

Component Volume per reaction (μl)

RNAase free water # with 1µg DNA 19

Biotin-16-dTUP (50nmol) * or 

Digoxigenin-11-dUTP (25nmol) *

0.1mM dTTP 
# 5

0.1mM dNTP
 # 10

Nick translation enzyme # 5

10x Nick translation buffer 
# 5

Total 45

* Roche, Indianapolis, IN, USA
#
 Vysis, Abbott Molecular, IL, USA

1
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Table 2.10  Mixture for precipitation of probes labeled by nick translation. Each 
component and their final volume per reaction are shown. Current suppliers of every 
component are also highlighted. Salmon sperm DNA is added to block non-specific 
binding of hybridisation probe. Human Cot-1 DNA contains repetitive DNA sequences 
and is also utilised to block non-specific hybridisation by binding to repetitive DNA 
sequences. 

 

 

Table 2.11  Hybridisation mix for re-suspension of probes labelled by nick translation. 
Each component and their final volume per reaction are shown. Current suppliers of 
every component are also highlighted   

 

2.6.2 Isolation of nuclei 

FFPE tumour tissue curls, cut to 15µm, were dewaxed in 1ml of xylene for 5 minutes at 

12 100xg (rcf, Eppendorf miniSpin, Eppendorf, Hauppauge, NY, USA). The dewaxing 

was repeated after removal of the supernatant, and the pellet re-suspended in 1ml of 

100% ethanol. The sample was centrifuged for 5 minutes at 12 100xg (rcf) and 

supernatant aspirated. Re-suspension was repeated with 50% (v/v) ethanol and 

Component Volume per reaction (μl)

Nick translation reaction locus specific probe 24

Nick translation reaction centromeric probe 8
Human Cot-1 DNA (1mg/ml) * 6

Salmon Sperm DNA # 16

3M sodium acetate # 5.4

100% Ethanol at -20°C 148.5

Total 217.9

* Invitrogen, Carlsbad, CA, USA
# 
Life Technologies, Paisley, UK 

Probe precipitation

Component Volume per reaction (ml)

Deionised formamide containing 

20% dextran sulphate *

10x saline sodium citrate (SSC) # 2ml

Distilled water 3ml

Total 10ml 

* Sigma-Aldrich, St. Louis, MO, USA
# 20x SSC (Invitrogen, Carlsbad, CA, USA) containing 3.0 M NaCl 

and 0.3M sodium citrate at pH 7.0 was diluted according to 

requirements with deionised water.

Hybridisation mix

5ml
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phosphate buffered saline (PBS, Life Technologies, Paisley, UK) respectively. Tissue 

pellets were digested for 2 hours with 500µl of 0.5% (w/v) pepsin (Sigma-Aldrich, MO, 

USA) in 0.01M hydrochloric acid (HCl). If digestion was not complete on visual 

inspection, a further 250µl of 0.5% (w/v) pepsin was added and digestion continued for 

a total of 3 hours. Foetal calf serum (FCS) was added (500µl) to terminate digestion 

and samples were next centrifuged at 12 100xg (rcf).  

The supernatant was removed, tissue re-suspended in 1ml of PBS, passed through a 

70µM nylon mesh filter (Thermo Fisher Scientific,  Waltham, MA, USA) at 8000xg (rcf) 

for 10 minutes and collected in a 50ml falcon tube. This process was repeated with a 

further 1ml of PBS added to the original tube to remove any residual tissue. The filtrate 

in the falcon tube was aspirated and the remaining tissue, containing the isolated 

nuclei, was re-suspended in 1ml of PBS. Using cuvettes and pre-cut filter cards 

(Thermo Fisher Scientific, Waltham, MA, USA) to create a central density of nuclei, 80-

100µl of this solution was centrifuged onto superfrost plus slides (VWR International, 

East Grinstead, UK) in a Cytospin 2 Centrifuge (Thermo Shandon, Runcorn, UK). 

Cytospins for each sample were assessed by light microscopy (Optika, Ponteranica, 

Italy) to determine the volume of solution required to create the desired nuclei 

density. 

2.6.3 Fluorescence in situ hybridisation protocol 

Cytospin slides were warmed at 37°C for 10 minutes in a water bath (Thermo Fisher 

Scientific, Waltham, MA, USA). Slides were dried, nuclei covered with 100µl of pepsin 

solution (Sigma-Aldrich, MO, USA, 4mg per 1ml 0.2M HCl), and incubated in a 

humidified slide chamber at 37°C for 16 minutes. Cytospin slides were next washed in 

distilled water followed by PBS and graded alcohols (v/v, 75%, 85% and 95%) and air 

dried. The probe solution (Section 2.6.1) was warmed to 37°C for 15 minutes in a 

digital dry bath (Labnet, Edison, NJ, USA), vortexed and briefly centrifuged at 12 100xg 

(rcf). Probe solution (2.5µl) was added to the centre of each slide which was covered 

with a circular coverslip (VWR International, East Grinstead, UK) and sealed with 

rubber glue. Slides were placed on a hot plate (VELP Scientifica, Usmate, Italy) at 75°C 

for 5 minutes to denature and then incubated overnight in a dark humidified chamber 

at 37°C.  
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Following overnight hybridisation, cover slips were removed from each slide by 

agitating them at 37°C in 2x saline sodium citrate (SSC, Invitrogen, Carlsbad, CA, USA). 

Slides were washed twice, 5 minutes each, at 43°C, in variably stringent solutions 

which was determined by the degree of background staining. MYCN slides were 

washed in 40ml of 1xSSC/30% formamide (56ml 1xSSC and 24ml formamide, Sigma-

Aldrich, MO, USA ) and MYC, 17p and 17q slides were washed in 40ml of 0.5xSSC/30% 

formamide (56ml 0.5xSSC and 24ml formamide). All slides were subsequently washed 

at 37°C in 2xSSC for a further 5 minutes.  

Cytospins were incubated at 37°C in 100µl of 4xSSCTM (saline sodium citrate, Tween 

and milk, Table 2.12) for 15 minutes in a humidified chamber before each antibody 

was sequentially applied as described in Table 2.13. Each antibody application was 

separated by two washes in 4xSSCTM (Table 2.12) for 4 minutes at 43°C to minimise 

unspecific antibody binding followed by two final 4 minute washes in  2xSSC at 37°C.  

 

Table 2.12  Saline sodium citrate, tween and milk recipe. Each component and their 
volume are shown. Current suppliers of every component are also highlighted. 

 

 

Table 2.13  Order of antibody application, dilution and duration for FISH. Antibodies 
are displayed in order of application (1-4) alongside their final dilution in 4xSSCTM and 
duration of incubation at 37°C. Current suppliers of each antibody are also highlighted. 

Component Volume

Tween/Igepal CA-630 * 250µl

4xSSC 
#

500ml

Powdered milk 1.5ml

SSCTM (Saline sodium citrate, tween, milk)

* Sigma-Aldrich, St. Louis, MO, USA
#
 Invitrogen, Carlsbad, CA, USA

Dilution Duration

 in 4xSSCTM  (minutes)

1 Anti-digoxigenin fluorescein, Fab fragments * 1:20 30

2 Polyclonal rabbit anti-sheep immunoglobulins # 1:50 20

3 Polyclonal swine anti-rabbit immunoglobulins  # 1:40 20

4 Texas red avidin DCS ~ 1:500 20

~ Vector, Peterborough, UK

# Dako, Glostrup, Denmark

AntibodyOrder

* Roche, Indianapolis, IN, USA
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Slides were agitated in PBS for 1 minute, dehydrated in sequential alcohols (v/v, 75%, 

85% and 95% respectively) and air dried in the dark. Each slide had 20µl of 

Vectashield® mounting medium with DAPI added (Vector, Peterborough, UK), followed 

by a 25mmx25mm coverslip (VWR International, East Grinstead, UK) before being 

examined by two independent scorers (Dr Janet Lindsey and myself) using 

fluorescence microscopy (Olympus BX16, Olympus, Tokyo, Japan). The scoring 

methods for chromosome 17 status are detailed in section 3.3.2.2. MYC and MYCN 

FISH slides were scored as previously described (Ellison et al., 2011). Amplification was 

defined as a gene locus: centromeric ratio greater than 4: 1 respectively in 5% or more 

nuclei scored, with evidence of double minutes (DM) or homogenously staining regions 

(HSR).  
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2.7 Multiplex ligation-dependent probe amplification 

Multiplex ligation-dependent probe amplification (MLPA) is a multiplex PCR method 

that can be used to detect copy number aberrations at multiple (typically up to 40) 

different loci of interest (Schouten et al., 2002). It is a semi-quantitative technique and 

identifies changes in probe signals of interest relative to probe signals at 

reference/control loci. The method requires small amounts of DNA (20ng-100ng) and 

consists of four steps; denaturation and hybridisation, ligation, PCR reaction and 

fragment analysis. Each MLPA probe consists of two oligonucleotide sequences which 

bind to adjacent sites on the sample DNA prior to the ligation reaction. Within the 

oligonucleotide sequences are; complementary nucleotides (hybridising sequence) for 

the loci of interest, a stuffer sequence so that each ligated probe is unique in length to 

allow fragment analysis to differentiate between multiple loci, and universal primers 

for the PCR reaction to occur (Figure 2.4). Only the ligated oligonucleotides are 

amplified during the PCR reaction and give a signal, enabling the products of interest 

to be separated and measured by electrophoresis. 

 

Figure 2.4  Schematic showing a standard MLPA probe bound to a ssDNA target 
sequence prior to ligation reaction. 

 

MLPA was carried out as per the manufactures two-tube protocol using the SALSA ® 

reagents for MLPA, P200-1 reference probe mix and Cy5.0 PCR primers (MRC-Holland, 

Amsterdam, Netherlands). In brief, a custom made probe mix was prepared consisting 

of oligonucleotide sequences for the three genes of interest (MYC, MYC and MDM2) 

along with two control genes (TBP and B2M, Table 2.14). Each oligonucleotide, 

supplied at 20nmol (Metabion International, Martinsried, Germany) was re-suspended 

with 200µl of Tris-EDTA buffer (TE buffer solution, Sigma-Aldrich, MO, USA) to make a 



102 
 

stock solution of 100µM which was stored at -20°C. Working dilutions of the 

oligonucleotides (MYC, MYC, MDM2, TBP and B2M) were made with 10µl of stock 

solution and 990µl of TE buffer (1µM) and stored at -20°C. The custom probe mix was 

made by combining 0.8µl of each 1µM oligonucleotide (working dilution), with TE 

buffer to a final volume of 200 µl (stored at -20°C). 

 

Table 2.14  Oligonucleotide sequences for MLPA.  Oligonucleotide sequences (I, 
forward; II reverse) for the three loci of interest (MYC, MYCN and MDM2) and two 
additional reference loci (TBP and B2M) are shown.  

 

2.7.1 Denaturation and hybridisation 

DNA (2.5µl, total amount 20-100ng) was denatured at 98°C for 5 minutes and cooled 

to 25°C. For one hybridisation reaction 0.5µl of P200-1 reference probe mix, 0.25µl of 

custom made probe mix (section 2.7) and 0.75µl of MLPA buffer were mixed and 

added to each DNA sample (total reaction volume 4µl). Samples were incubated at 

95°C for 1 minute, and heated at 60°C for 16 hours overnight on a GeneAmp ® PCR 

System 9700 thermocycler (Applied Biosystems, Life Technologies, Paisley, UK).  

2.7.2 Ligation reaction 

The ligase reaction mix was prepared within 1 hour before use and stored on ice. Each 

reaction contained 1.5µl of ligase 65 buffer A, 1.5µl of ligase 65 buffer B and 12.5µl of 

RNAse free water which was vortexed before 0.5µl of Ligase 65 was added to make a 

total volume of 16µl. Samples were cooled from 60°C (section 2.7.1) to 54°C before the 

ligase mix was added (total reaction volume 20µl). The reaction was incubated at 54°C 

for 15 minutes before being heated to 98°C for 5 minutes.  

Gene of interest Oligonucleotide I 5'-3' Oligonucleotide II 5'-3'

CTACGCAGCGCCTCCCTCCACTTGCAGTTCCGCACT GGGTTCCCTAAGGGTTGGAGTGC

ACTACGCTGACTCTAGATTGGATCTTGCTGGCAC CACGTCTCCACACATCAGCACAA

GCTTGAGAACGAGCTGTGGGGCATGCAGTTCCGC GGGTTCCCTAAGGGTTGGAG

ACTACTACGCTGATCTAGATTGGATCTTGCTGGCAC AGCTGGGTCACGGAGATGCT

CAGAAGATTATAGCCTTAGTGAAGAAGGACAA GGGTTCCCTAAGGGTTGGAGATCAGTTTA

GAACTCTCTTCTAGATTGGATCTTGCTGGCAC GTGTAGAATTTGAAGTTGAATCTCTCGACT

CTTACGCTCAGGGCTTGGCCTCCTG GGGTTCCCTAAGGGTTGGATCAT

CATCTAGATTGGATCTTGCTGGCAC GGATCAGAACAACAGCCTGCCAC

GATGTCTCGCTCCGTGGCCTTATGCA GGGTTCCCTAAGGGTTGGA

GTTTCTAGATTGGATCTTGCTGGCAC CTGACAGCATTCGGGCCGA
B2M

TBP

MYCN

MYC

MDM2
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2.7.3 PCR reaction 

In separate PCR tubes, 2µl of SALSA ® PCR buffer, 13µl of RNAse free water and 5µl of 

the MLPA reaction (section 2.7.2) were combined. Next, 5µl of the polymerase 

reaction (1µl of SALSA ® PCR primers, 1µl of SALSA ® enzyme dilution buffer, 2.75µl of 

RNAse free water and 0.25µl of SALSA ®polymerase) was added to each tube and the 

PCR reaction started on a GeneAmp ® PCR System 9700 thermocycler (Table 2.15, 

Applied Biosystems, Life Technologies, Paisley, UK).  

 

Table 2.15  Thermocycler settings for MLPA PCR reaction. Temperature settings, 
duration and number of cycles required for MLPA PCR reaction are shown. 

 

2.7.4 Fragment analysis 

Separation of amplified products using electrophoresis was performed on the 

Beckman Coulter CEQTM 880 Genetic Analysis System (Beckman Coulter UK Ltd, High 

Wycombe, UK), and results were analysed using GeneMarker ® Version 1.75 

(SoftGenetics, PA, USA). MYC, MYCN and MDM2 copy numbers were measured 

relative to the two reference genes (TBP and B2M) in the custom made probemix 

along with two additional reference loci in the P200-1 probemix (7q31 and 14q22). 

Normal DNA diploid controls were run on the MLPA assay (n=7) and used to define cut-

offs for the detection of copy number elevation (> 2 standard deviations of the mean). 

Any tumour sample showing elevated copy number versus three or more reference 

loci (TBP, B2M, 7q31 and 14q22) on two separate replicate assays was deemed to have 

copy number elevation of that gene. 

2.7.5 Validation of MLPA assay 

MLPA results for individual samples were compared to FISH (section 2.6), the standard 

technique for measuring MYC and MYCN amplification (section 2.6.3). In an initial pilot 

study, 55 tumour samples for MYC and 52 tumour samples for MYCN had FISH and 

Temperature Time Cycles

95°C 30 seconds

60°C 30 seconds 35

72°C 1 minute

72°C 20 minutes

4°C Hold

Method for MLPA PCR reaction
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MLPA data correlated (Figure 2.5 and Figure 2.6). Overall, MLPA reliably detected 

tumours with no MYC/MYCN amplification and when amplification of MYC was present 

in >30% of nuclei, and amplification of MYCN in >10% of nuclei. In tumour samples 

with lower-level copy number changes, MLPA delivered an intermediate copy number 

score requiring FISH validation to confirm the degree of amplification or gain (gene 

locus: centromeric ratio >1:1 but ≤ 4:1). 
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Figure 2.5  Comparison of MYC copy number status as detected by MLPA and FISH.  Figure shows the percentage of amplified nuclei, gained nuclei 
and balanced nuclei counted for each sample alongside their positive or negative MLPA score (as defined in section 2.7.4). Overall, 22 MLPA positive 
samples showed amplification by FISH (section 2.6.3), and no amplified cases produced a negative MLPA result. MLPA was therefore 100% sensitive 
for detecting MYC amplified cases and 61% specific, as it identified 13 cases that were not amplified although several of these cases had high levels of 
gain as displayed in the figure.  
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Figure 2.6  Comparison of MYCN copy number status as detected by MLPA and FISH.  Figure shows the percentage of amplified nuclei, gained nuclei 
and balanced nuclei counted for each sample alongside their positive or negative MLPA score (as defined in section 2.7.4). Overall, 24 MLPA positive 
cases showed amplification by FISH (section 2.6.3). No amplified cases produced a negative MLPA result. MLPA was therefore 100% sensitive for 
detecting MYCN amplified cases and 83% specific, as it identified 5 cases that were not amplified although all of these cases had either high levels of 
gain or a low level amplification in <5% of cells as displayed in the figure.
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2.8 Survival analysis 

Cancer survival analyses typically measure event free survival (EFS) and OS. EFS is a 

measure of the time from initial diagnosis to an event such as relapse, disease 

progression or another pre-defined event unique to that cancer or treatment. OS 

measures the time from initial diagnosis to death of any cause and therefore includes 

toxic deaths due to treatment complications as well as deaths unrelated to the cancer 

or its associated therapy.  

For the purpose of survival analysis within medulloblastoma studies, EFS is defined as 

the time from diagnosis to disease progression if remission is not achieved, or disease 

recurrence, if there is documented evidence of no visible disease in the interim period 

between initial therapy and recurrence. Consequently, all events used to calculate EFS 

in this study were disease recurrence. OS remained as the time from initial diagnosis to 

the time of death, or if the patient was still alive the data was censored at the date of 

last follow-up. Those patients who died of causes unrelated to their disease were 

excluded from OS analyses but remained in the EFS analyses. TTD was calculated as the 

difference between EFS (date of relapse) and OS (date of death or last follow-up). All 

survival analyses were performed in R (R Development Core Team, 2014). 

2.8.1 Univariate testing 

The Log-rank test is a test of significance and is applied to compare survival between 

two or more groups of interest with the null hypothesis that there is no difference 

between these groups. A p value of <0.05 indicates that there is a significant difference 

in survival between the two comparison groups, although if multiple comparisons are 

performed this must be corrected for using an appropriate technique such as the 

Bonferroni procedure which is discussed in section 2.10. The advantage of this method 

is it accounts for the total survival experience and was used across all observation 

periods (EFS, OS and TTD, section 2.8). Censored data is handled in the same way as 

the Kaplan-Meier method, i.e. the data is not included in the analysis beyond the point 

of censorship (Bland and Altman, 2004).  

 

Kaplan-Meier plots are survival curves which estimate the proportion of patients 

surviving at a given time-point. An event, such as death of disease or disease relapse, is 
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represented as a step down in the graph, as the proportion of patients not suffering 

the event reduces. Censored data are indicated by vertical lines on the plot but do not 

affect the overall shape of the survival curve, making the assumption that had the 

patient’s  data not been censored, their prospects of surviving the disease were equal 

to those remaining (Bland and Altman, 1998). 

2.8.2 Multivariate testing 

Multivariate testing using a statistical model allows survival to be assessed in relation 

to many variables at the same time; for example, metastatic stage, gender and 

pathology. The Cox proportional hazard model (Bradburn et al., 2003) is the statistical 

model of choice in medical research and was used to assess the contribution of 

multiple clinicopathological and molecular variables to EFS, OS and TTD. It is a 

nonparametric, multi linear, regression model, which reports the size of effect (hazard 

ratio and their 95% confidence intervals) and how each variable jointly impacts on 

survival. The hazard ratio is an estimate of the ratio of the hazard rates in relation to 

two variables or two groups of patients. A ratio of 1 indicates no difference between 

the variables compared. Hazard ratios with 95% confidence intervals greater than 1 

indicate a variable is significantly and positively associated with the probability of an 

event, ratios with 95% confidence intervals less than 1 are significantly and negatively 

associated (Bradburn et al., 2003; Clark et al., 2003). 

2.9 Comparative and correlative analyses 

Contingency tables and subsequent comparative analyses of the frequency and 

distribution of clinicopathological variables were generated and undertaken using 

Fisher’s exact test in GraphPad Prism version 6.05 (GraphPad Software, Inc., San Diego, 

CA, USA). Clinicopathological and molecular variables were tested for association using 

Fisher’s exact test and performed in R (R Development Core Team, 2014). Data was 

categorised for each variable including continuous data, such as age which was 

categorised as ≥ 4 years or < 4 years old, and results with a p value of <0.05 were 

considered significant, once appropriately corrected for multiple testing (section 2.10).  

2.10 Correction for multiple testing 

Upon testing multiple variables and consequently multiple null hypotheses, the 

possibility of witnessing a significant result by chance, and incorrectly rejecting the null 
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hypothesis increases. To account for this, the Bonferroni procedure was applied to 

both univariate survival analyses and correlative analyses (section 2.8.1 and 2.9 

respectively). It is a conservative method, which corrects the p value by multiplying it 

by the number of tests performed (Bland and Altman, 1995).  

2.11 Molecular subgrouping on the Infinium Methylation 450K array 

The quality control of tumour DNA samples and experimental procedures undertaken 

on the Infinium methylation 450K array are described in section 3.3.2.1, 5.3.6  and 

6.3.6.1. Molecular subgrouping assignment using non-negative matrix factorisation 

(NMF) was performed by Dr Ed Schwalbe (PBTG) as previously described (Schwalbe et 

al., 2013b). NMF is a technique which reduces the variation of a high dimensional 

dataset to a more manageable set of metagenes, which represent patterns of variation 

in the original dataset. In brief, a filtered 450K array dataset containing the most 

variably methylated probes (A) was reduced to two matrices (H and W). The H matrix 

typically represents the expression of the metagenes, although in this instance it refers 

to DNA methylation, and is the number of samples (M) from the original dataset A, by 

the number of metagenes identified (k). The W matrix represents the correlation of 

each input probe (N) with each metagene identified and its dimensions are defined by 

these two variables (N by k, Figure 2.7).                     
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Figure 2.7  Illustrative example of non-negative matrix factorisation demonstrating 2 
metagenes corresponding to 2 groups. Heatmap A shows 100 methylation probes for 
23 medulloblastoma samples. (Green, unmethylated probes; red, methylated probes; 
black, hemi-methylated probes.)  NMF factorises matrix A into the W and H matrices. 
The W matrix has size N rows by k columns, (k = number of metagenes). Each data 
point for W represents the coefficient of a methylation probe with that particular 
metagene. (Blue, probes with low correlation to the metagene; red, probes with high 
correlation.)  Matrix H has k rows and M columns where M is the number of samples 
and each column represents the metagene expression profile for each sample. (Blue, 
low metagene expression; red, high metagene expression.)  Line graph illustrates the 
clear difference in metagene expression between the two classes. Image kindly 
provided by Dr Ed Schwalbe (PBTG). 
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After identifying the metagenes, dataset A was then clustered using resampling 

techniques which varied the number of clusters and metagenes from three to ten to 

identify the most robust clustering solution. In this instance, five metagenes and four 

clusters were the most stable solution and used to assign molecular subgroup 

membership (Figure 2.8). NMF is considered to be a superior clustering technique for 

biological datasets as it identifies the major components of variation in the dataset, 

and is robust to noise that is typically of high-dimensional biological datasets. In 

addition, identified metagenes can also be used across multiple datasets to project 

subgroup membership using the original predetermined W matrices (Hovestadt et al., 

2013; Schwalbe et al., 2013b).  

 

Figure 2.8  Metagene patterns of tumours sampled at diagnosis and relapse in the 
paired relapse cohort.  Five metagenes are shown (F1-F5) with F3 and F4 identifying 
MBSHH reflecting the heterogeneity within this subgroup (section 1.8.8.2). Each sample 
is represented by a row with confidently assign samples labelled; MBGrp4, green; MBSHH, 
red; MBGrp3, yellow; MBWNT, blue and unconfidently assigned samples in grey (MBNOS). 
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Chapter 3. Combined MYC gene family amplification and 

p53 pathway defects emerge at medulloblastoma relapse 

and identify locally aggressive, rapidly progressive 

disease  
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3.1 Introduction 

Recent years have witness a rapid expansion in the knowledge and understanding of 

the molecular biology of medulloblastoma at diagnosis (Northcott et al., 2012a; Taylor 

et al., 2012). This, in turn, has influenced global clinical practice to treat the disease, 

with new therapeutic stratification and treatment options increasingly based on the 

interplay of molecular markers alongside clinical features  (Pizer and Clifford, 2009; 

Morfouace et al., 2014). The biology of the disease at relapse however, remains poorly 

understood with a limited number of molecular studies and clinical trials available to 

inform future research and treatment strategies (Korshunov et al., 2008; Pizer et al., 

2011a; Ramaswamy et al., 2013).  

In other paediatric tumour types such as neuroblastoma, a neural crest cell tumour 

arising from the sympathetic nervous system (section 1.7.3), studies have shown that 

acquisition of defects in the p53 pathway frequently occur at relapse (Carr-Wilkinson 

et al., 2010). Moreover, in HGGs (section 1.6.1.1.2), tumour heterogeneity gives rise to 

intratumoural molecular subgroup variation and evolution of subgroup is seen at 

disease relapse (Phillips et al., 2006; Sottoriva et al., 2013). Two initial studies in 

relapsed medulloblastoma, summarised in section 1.9.2, have shown that some 

molecular features are altered at relapse (Korshunov et al., 2008), with more recent 

findings suggesting that molecular subgroup does not change over time (Ramaswamy 

et al., 2013). However, the established medulloblastoma clinicopathological and 

molecular features, have yet to be comprehensively interrogated at relapse.  

This chapter focuses on the investigation of molecular features with validated 

relationships to disease prognosis at diagnosis, within a cohort of medulloblastoma 

samples taken at relapse (n=29), paired with their tumour sampled at diagnosis, and 

correlates these findings with disease behaviour and clinicopathological features at 

both time-points. Tumour samples taken at diagnosis and relapse are interrogated for 

molecular subgroup status (MBWNT, MBSHH, MBGroup3 and MBGroup4), which is associated 

with particular clinical demographics, molecular features and disease behaviour 

(Taylor et al., 2012). Additionally, chromosome 17 defects, the most common 

cytogenetic abnormality observed in medulloblastoma (predominantly MBGroup3 and 

MBGroup4), and polyploidy, a feature noted in MBGroup3 and MBGroup4,  are investigated in 

view of their association with a poorer outcome (Pfister et al., 2009; Ellison et al., 
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2011; Jones et al., 2012; Northcott et al., 2012a; Taylor et al., 2012; Shih et al., 2014). 

Specific genetic aberrations also associated with a poor prognosis, such as MYC and 

MYCN amplification, TP53 mutation (predictive of a poor prognosis in MBSHH) and 

other p53 pathway defects (MDM2 amplification and p14ARF deletion/methylation) are 

assessed (Frank et al., 2004; Pfister et al., 2009; Pizer and Clifford, 2009; Ellison et al., 

2011; Northcott et al., 2012a; Ryan et al., 2012; Zhukova et al., 2013; Shih et al., 2014). 

Combined, these investigations provide a comprehensive investigation of the 

established features in medulloblastoma at disease relapse, and an initial insight into 

the biology and behaviour of recurrent medulloblastoma. 
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3.2 Aims 

The aims of this chapter are to; 

 

 Collect a cohort of tumour samples obtained at medulloblastoma relapse 

alongside their counterpart sample taken at diagnosis. 

 

 Collate and centrally review all clinical and pathological data within this cohort, 

including a detailed assessment of the disease patterns at relapse. 

 

 Investigate tumour samples taken at both time-points for molecular disease 

features with established importance and relationships to prognosis in the 

disease at diagnosis. 

 

 Undertake correlative, univariate and multivariate analyses of all clinical, 

pathological and molecular variables to identify associations between relapsed 

medulloblastoma features and disease behaviour. 
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3.3 Materials and methods 

3.3.1 Cohort assembly and preparation 

Tumour tissue was obtained from UK CCLG institutions and collaborating centres (Pizer 

et al., 2011a) for 29 patients at the time of relapse, 26 of these samples had material 

available from their tumour resected at diagnosis. Tumour material was predominantly 

FFPE (diagnosis n=24, relapse n=27) with frozen material available for two additional 

diagnostic and two relapse samples, alongside duplicate frozen material for 15/51 FFPE 

samples. All investigations carried out on human tissue in this study were part of a 

CCLG-approved biological study (BS-2007-04) with ethics approval from the 

Newcastle/North Tyneside Research Ethics Committee (reference 07/Q0905/71).  

3.3.1.1 Collation of clinical data and patterns of relapse 

Detailed clinical data was collated by Prof Simon Bailey (PBTG) from all treatment 

centres and centrally reviewed. Information was gathered at both diagnosis and 

relapse on; gender, age, treatment (degree of surgical resection, chemotherapy and 

radiotherapy regimen), site(s) of disease, date of last follow-up and cause of death 

where appropriate. Metastatic stage at diagnosis was assigned according to Chang’s 

criteria (Chang et al., 1969), whereas patterns of disease relapse were recorded as 

local and/or distant site, nodular and/or diffuse. These criteria were designed to 

capture the diverse patterns of relapse witnessed in the disease (Perreault et al., 

2013). Treatment intent at relapse was also recorded as either palliative or curative. 

3.3.1.2 Central pathology review 

All tumours were centrally reviewed by a panel of three CCLG neuropathologists as 

previously described (section 2.2). Where possible pathological variant was assigned 

according to the current WHO criteria (Louis et al., 2007), otherwise a tumour was 

confirmed as a MBNOS.  

3.3.1.3 Extraction of nucleic acids 

Extractions of nucleic acids from FFPE and frozen samples were performed as detailed 

in section 2.1. Quality of extracted material was assessed by Nanodrop 

spectrophotometry for investigations of the established molecular pathways (section 

2.1.2.1) and Quibit fluorometer for samples proceeding onto the Infinium methylation 

450K array (section 2.1.2.2 and 5.3.6). 
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3.3.1.4 Confirming the identity of the paired tumour samples  

Microsatellites are highly variable lengths of typically di, tri or tetra nucleotide repeats 

and can be used, for example, in linkage analysis, assessment of segmental 

chromosomal copy number abnormalities or in this instance, confirmation that DNA 

obtained from two independent tumour samples originated from the same patient. To 

assess the lengths of a series of up to fourteen microsatellite markers for each patient, 

PCR and subsequent analysis was performed by Dr Janet Lindsey (PBTG), using 

previously reported primer sequences that flanked the microsatellite regions of 

interest (Randerson-Moor et al., 2001; Jung et al., 2004; Langdon et al., 2006).  

 

Table 3.1  Primer sequences for microsatellite markers. 

 

Each 15μl PCR reaction contained 1.5μl of forward and reverse primers (10μM, Table 

3.1), 1.5μl of PCR buffer, 0.9μl MgCl2 (10mM), 0.6μl dNTP (5mM), 0.15μl Taq 

polymerase (5U/μl), 7.35μl of RNAse free water and 1.5μl of DNA (25ng/μl). The PCR 

reaction was run on the GeneAmp ® PCR System 9700 thermocycler (Applied 

Biosystems, Life Technologies, Paisley, UK), with 1 cycle at 94°C for 10 minutes 

followed by 40 cycles of 95°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute 

followed by 1 cycle of 72°C for 5 minutes. Fragment analysis (Figure 3.1) of amplified 

products using electrophoresis was performed on the Beckman Coulter CEQTM 880 

Genetic Analysis System (UK Ltd, High Wycombe, UK). All 26 cases, where tumour DNA 

Location Forward sequence 5'-3' Reverse sequence 5'-3'

d9s942 GCAAGATTCCAAACAGTA CTCATCCTGCGGAAACCATT

d9s1748 CACCTCAGAAGTCAGTGAGT GTGCTTGAAATACACCTTTCC

d5s346 ACTCACTCTAGTGATAAATCGGG AGCAGATAAGACAGTATTACTAGTT

d2s123 AAACAGGATGCCTGCCTTTA GGACTTTCCACCTATGGGAC

MYCL TGGGGTCTGCTTAGCTCACT GTCCTCAGATCATCCCCAGA

d18s69 GCAGTCTGGAAATCCTCTTT ATGTTCCCCGCTATTGTACT

d10s197 ACCACTGCACTTCAGGTGAC GTGATACTGTCCTCAGGTCTCC

TP53 AGGGATACTATTCAGCCCGAGGTG ACTGCCACTCCTTGCCCCATTC

d17s2196 CCAACATCTAGAATTAATCAGAATC ATATTTCAATATTGTAACCAGTCCC

 d17s936 ATTTGAAACCACAACAGCA AGGTATATGCCCACCCC

d17s969 ATCTAATCTGTCATTCATCTATCCA AACTGCAGTGCTGCATCATA

d17s974 AGACCCTGTCTCAGATAGATGG TAAAATAGAAAGTGCCCCTCC

d17s786 TACAGGGATAGGTAGCCGAG GGATTTGGGCTCTTTTGTAA

d17s1866 TGGATTCTGTAGTCCCAGG GGTTCAAAGACAACTCCCC

Primers for microsatellite analysis



118 
 

was available at diagnosis and relapse, demonstrated corresponding microsatellite 

profiles, confirming the matched nature of the paired samples. 

 

Figure 3.1  Fragment analysis for microsatellite marker d9s1748.  Traces show 
identical fragment lengths in tumours sampled at three different time-points 
confirming that they have been sampled from the same patient.  
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3.3.2  Selection of pathways and techniques for investigation 

Investigations carried out on the paired relapse cohort focused on interrogating those 

pathways which play a role in the tumourigenesis of medulloblastoma at diagnosis as 

well as molecular features known to be important in other embryonal tumours at 

relapse. Molecular features examined included molecular subgroup, chromosome 17, 

the p53 pathway, MYC gene family (MYC/MYCN) status and polyploidy as detailed in 

section 3.1. 

3.3.2.1 Molecular subgroup 

All tumour samples were examined for CTNNB1 mutation, associated with MBWNT 

subgroup status as detailed in section 2.3.2. Where DNA was of sufficient quantity and 

quality, as determined by the Qubit fluorometer (section 2.1.2.2), samples were 

analysed on the Infinium methylation 450K array at the Wellcome Trust Clinical 

Research Facility, University of Edinburgh, UK, according to the manufacturer’s 

protocols (section 5.3.6, Illumina Inc. San Diego, CA, USA). Sample requirements for 

this array were a DNA concentration of ≥50ng/µl and total amount of 2µg extracted 

from FFPE material or 750ng extracted from frozen tissue. A total of 49/55 samples in 

the paired relapse cohort met these criteria and were processed to assess their 

molecular subgroup as described in section 2.11. 

3.3.2.2 Chromosome 17  

Assessment of chromosome 17 by FISH was undertaken for 17p and 17q (section 2.6). 

Each sample slide was scored by two independent assessors with a total of 200 non-

overlapping nuclei recorded with reference to the number of centromeric probes 

versus locus specific probe (17p13.3 and 17q12). Counts were divided into the total 

number of nuclei demonstrating a loss (locus specific probe count < centromeric probe 

count), gain (locus specific probe count > centromeric probe count) or balanced status 

(locus specific probe count = centromeric probe count). Both 17p and 17q status were 

combined for each tumour sample and the overall chromosome 17 status designated 

as balanced, 17p loss or i(17q) as previously described (Nicholson et al., 2000). In brief, 

each slide was assigned an average signal score, for example if there were 70% of 

nuclei demonstrating two locus specific signals with two centromeric (2/2), and 30% of 

nuclei demonstrating one locus specific signal with two centromeric (1/2) the score 
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would be 0.85 ((2/2 x 0.7) + (1/2 x 0.3)). With thresholds set at < 0.8 for loss and >1.2 

for gain, this example would be a balanced profile. 

3.3.2.3 The p53 pathway  

Assessment of the p53 pathway focused on analysing the TP53 gene mutation status 

by PCR based direct sequencing (section 2.3.1), MDM2 amplification by MLPA (section 

2.7) and hypermethylation or deletion of the p14ARF gene. Methylation status of the 

p14ARF was obtained from Infinium methylation 450K array (section 3.3.2.1 and 5.3.6, 

Illumina Inc. San Diego, CA, USA). Deletion of p14ARF was initially assessed using 

microsatellite markers d9s942 and d9s1748 (section 3.3.1.4), as loss of heterozygosity 

(LOH) at these loci is suggestive of a heterozygous deletion (Randerson-Moor et al., 

2001). Conformation of copy number status was performed for three samples 

demonstrating LOH using the Infinium methylation 450K array (n=2) or the Illumina 

human omniexpress array (n=1, Illumina Inc. San Diego, CA, USA). Sample 

requirements for the Illumina human omniexpress array were identical to the 

requirements for the Infinium methylation 450K array (section 3.3.2.1). Copy number 

analysis was performed by Dr E Schwalbe (PBTG) using R (R Development Core Team, 

2014) as previously reported (Northcott et al., 2012b; Sturm et al., 2012). Copy 

number estimates were normalised by quantile normalisation and segmented using 

the Circular Binary Segmentation (CBS) algorithm. The copy number segments were 

subsequently interrogated and classified as balanced, gained or lost. 

3.3.2.4 MYC gene family 

MYC gene family status (MYC and MYCN) were assessed by FISH (section 2.6). One 

hundred nuclei were assessed by two independent scorers, with reference to the 

number of centromeric probes, locus specific probes and the relationship between the 

two counts (section 2.6.3). Tumour samples were deemed to show MYC or MYCN 

amplification if the gene locus: centromeric ratio was greater than 4: 1 respectively in 

5% or more nuclei scored with evidence of DM or HSR (Ellison et al., 2011). Alongside 

FISH analysis, an MLPA assay was developed to interrogate and screen multiple loci of 

interest including MYC and MYCN (section 2.7). 
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3.3.2.5 Polyploidy 

Polyploidy was assessed for each tumour sample with FISH slides undertaken to 

interrogate multiple regions of interest (MYC, MYCN, 17p and 17q). Centromeric 

counts were categorised as balanced (2n), elevated (>2n) or other (<2n). Polyploidy 

was assigned where the modal centromeric category was >2n across 2 or more loci.  

3.3.3 Independent control cohort  

To compare, in a subgroup-specific manner, the incidence of molecular events 

discovered at relapse with their expected rate at diagnosis, a large independent 

control cohort of tumours sampled at diagnosis was assembled (n=344). All cases were 

assigned their molecular subgroup utilising the Infinium methylation 450K array as 

previously described (section 2.11 and 5.3.6, Illumina Inc. San Diego, CA, USA), and 

assessed for TP53 mutations, MYC and MYCN amplification as discussed in section 

2.3.1, 2.6 and 2.7 respectively. An overview of this cohort is shown in Table 3.2. The 

reduced number of MBSHH and MBGroup3 observed can be explained by the exclusion of 

patients not receiving upfront CSI. These patients are typically in the infant age group 

which is enriched for MBSHH and MBGroup3 (Kool et al., 2012; Northcott et al., 2012a; 

Taylor et al., 2012) and therefore underrepresented in this cohort.  
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Table 3.2  Clinicopathological and molecular subgroup demographics of the 
independent control cohort sampled at diagnosis.  CLA, classic histology; DN, 
desmoplastic/nodular histology; LCA, large cell/anaplastic histology; M-, M0/M1 
disease; M+, M2+ disease; GTR, gross total resection; STR, subtotal resection.   

Male 219/344 (64%)

Female 125/344 (36%)

Male:female ratio 1.75:1

Age range in years 1.4-39.6

Infants (<4 years) 35/344 (10%)

Children (4-16 years) 294/344 (86%)

Adults (>16 years) 15/344 (4%)

CLA 258/325 (79%)

 DN 26/325 (8%)

 LCA 41/325 (13%)

M- 259/341 (76%)

M+ 82/341 (24%)

GTR 244/337 (72%)

STR 93/337 (28%)

MBSHH 65/344 (19%)

MBWNT 48/344 (14%)

MBGroup3 72/344 (21%)

MBGroup4 159/344 (46%)

Resection

Molecular 

subgroup

Control cohort

Gender

Age

Pathology 

Clinicopathological features                         

and molecular subgroup 

Metastatic 

stage
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3.4 Results 

3.4.1 Comparing the paired relapsed cohort with historic studies 

To assess the distribution and frequency of clinicopathological and molecular features 

in the paired relapsed cohort, independent, well annotated, historic studies of 

medulloblastoma tumours, sampled at diagnosis, were used to perform comparison 

analyses (McManamy et al., 2007; Pfister et al., 2009; Pfaff et al., 2010; Kool et al., 

2012; Lannering et al., 2012; Ryan et al., 2012). 

3.4.1.1 Metastatic disease is enriched in the paired relapse cohort  

The paired relapse cohort consisted of 29 patients with a male to female ratio of 1.6: 1 

and a median age at diagnosis of 8.6 years (range 0.1-33.7 years). High-risk features, 

namely metastatic disease (M1+) as defined by Chang’s criteria (Chang et al., 1969), 

subtotal resection (STR, <1.5cm2 residuum after surgical resection), LCA pathology and  

infant age group were assessable in 27/29 (93%) patients. For the purposes of 

comparisons with reported high-risk features in the selected historic studies, infant 

age group was defined as <4 years old. Overall 24/27 (89%) patients in the paired 

relapse cohort demonstrated at least one high-risk feature at diagnosis (Figure 3.2). 

 

Figure 3.2  Proportion of assessable high-risk features present in the paired relapse 
study cohort at diagnosis.  Metastatic disease, M1+ disease; LCA, large cell/anaplastic 
histology; STR, subtotal resection. 
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Clinicopathological features in the paired relapse cohort at diagnosis were compared 

to historic studies of tumours sampled at diagnosis, and demonstrated that for gender, 

age and pathological subtype incidence was comparable, but subtotal resection was 

enriched (p=0.0657, Fisher’s exact test) and metastatic disease was significantly more 

common in the paired relapse cohort at diagnosis (p=0.0026, Fisher’s exact test, Table 

3.3). Similarly, at relapse, metastatic disease was the only clinicopathological feature 

significantly enriched in comparison to historic studies of medulloblastomas sampled 

at diagnosis (p<0.0001, Fisher’s exact test, Table 3.3). The majority of patients who 

were fully staged at relapse (n=24) demonstrated distant sites of disease (18/24, 75%). 

 

 

Table 3.3  Comparison of clinicopathological features in the paired relapse study with 
historic studies of tumours sampled at diagnosis.  # Historic studies (McManamy et al., 
2007; Kool et al., 2012; Lannering et al., 2012). * Patients with the specific feature were 
compared against all others without that feature. CLA, classic histology; DN, 
desmoplastic/nodular histology; LCA, large cell/anaplastic histology; M-, M0 disease; 
M+, M1+ disease; GTR, gross total resection; STR, subtotal resection; na, not 
applicable. p, Fisher’s exact test. 

  

Male 585/952 (61%) 18/29 (62%) 18/29 (62%)

Female 367/952 (39%)  11/29 (38%) 11/29 (38%)

Male:female ratio 1.6:1 1.6:1 1.6:1

Age range in years 0.3-52 0.1-33.7 2.3-36.3
Infants (<4 years) 167/943 (17%) 6/29 (21%) 0.6261 * 5/29 (17%)  1 *

Children (4-16 years) 599/943 (64%) 22/29 (76%) 19/29 (66%)

Adults (>16 years) 177/943 (19%) 1/29 (3%) 5/29 (17%)

CLA 938/1277 (74%) 16/26 (61%) 14/24 (58%)

 DN 183/1277 (14%) 7/26 (27%) 4/24 (17%)

 LCA 156/1277 (12%) 3/26 (12%) 1 * 6/24 (25%) 0.1073 *

M - 608/834 (73%) 9/22 (41%) 6/24 (25%)

M + 226/834 (27%) 13/22 (59%) 18/24 (75%)

GTR 267/317 (84%) 20/29 (69%) na

STR 50/317 (16%) 9/29 (31%) na

1

<0.0001

Paired relapse study                  

Diagnosis  Relapsep value p value

Metastatic 

stage
0.0026

Resection 0.0657

Clinicopathological features Historic studies #

Gender 1

Age

Pathology 
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3.4.1.2 High-risk molecular features are enriched at relapse   

Whilst the incidence of all molecular aberrations interrogated have not been reported 

in historic studies of tumours sampled at diagnosis (e.g. polyploidy, p14ARF aberrations 

and MDM2 status), comparisons between the frequency and distribution of molecular 

subgroup, MYC and MYCN amplification, TP53 mutation and chromosome 17 defects 

were possible.  

MBSHH was enriched at diagnosis within the paired relapse cohort, whereas MBGroup3 

was under-represented when compared to the typical subgroup distribution at 

diagnosis (p=0.0402 and 0.0355 respectively, Fisher’s exact test). This is most likely 

reflective of current clinical practice coupled with the increased incidence of relapse in 

infants, which is discussed further in Chapter 6 (section 6.4.3). The remainder of 

molecular features examined at diagnosis (section 3.3.2) revealed that while high-risk 

molecular events were present at diagnosis in the paired relapse cohort (e.g. TP53 

mutation, MYC and MYCN amplification), unlike the high-risk clinicopathological 

factors, (section 3.4.1.1) these molecular aberrations were not significantly enriched at 

diagnosis (Table 3.4).  

In contrast, the majority of molecular events interrogated at relapse in the paired 

relapse cohort were significantly more frequent, when compared to historic studies of 

tumours sampled at diagnosis, most notably the occurrences of TP53 mutation, MYC 

and MYCN amplification (Table 3.4). This observation suggests that there is progression 

of the molecular biology over time between diagnosis and relapse in medulloblastoma 

as previously reported by Korshunov et al,.(2008). This hypothesis is explored further 

in the following comparisons made within the relapse cohort between the paired 

tumour samples taken at both diagnosis and relapse (section 3.4.2). 
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Table 3.4  Comparison of molecular features in the paired relapse study with historic 
studies of tumours sampled at diagnosis.   # Historic studies (Pfister et al., 2009; Pfaff 
et al., 2010; Ryan et al., 2012). * Patients with the specific feature were compared 
against all others without that feature.  

  

MBSHH 153/550 (28%) 12/25 (48%) 0.0402 * 12/25 (48%) 0.0402 *

MBWNT 60/550 (11%) 2/25 (8%) 1 * 2/25 (8%) 1 *

MBGroup3 149/550 (27%) 2/25 (8%) 0.0355 * 2/25 (8%) 0.0355 *

MBGroup4 188/550 (34%) 9/25 (36%) 0.8324 * 9/25 (36%) 0.8324 *

MYC/MYCN  amplification 50/552 (9%) 2/25 (8%) 1 9/29 (31%) 0.0012

MYC  amplification 17/552 (3%) 1/25 (4%) 0.5549 4/29 (14%) 0.0166

MYCN amplification 33/552 (6%) 1/25 (4%) 1 5/29 (17%) 0.034

TP53  mutations 21/310 (7%) 4/26 (15%) 0.1157 8/29 (28%) 0.0013

Chromosome 17 defects 138/260 (53%) 8/21 (38%) 0.2562 10/21 (48%) 0.6562

Molecular 

defects

Molecular 

subgroup

Molecular features Historic studies #

Paired relapse study                  

Diagnosis  p value Relapse p value
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3.4.2 Clinicopathological and molecular features evolve between 

diagnosis and relapse  

To address the theory that there is progression of clinicopathological and molecular 

features in medulloblastoma over time, analyses to interrogate the differences 

between tumour samples taken at relapse and their diagnostic counterparts was 

undertaken. This comprised of examining the frequencies and distributions of all the 

clinical, pathological and molecular features investigated at diagnosis and relapse 

(section 3.1). An overview of the clinicopathological and molecular features for all 29 

patients in the paired relapse cohort are summarised in Table 3.5 followed by a 

detailed analyses and commentary of the pertinent findings. 
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Patient number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Concensus subgroup

CTNNB1 mutation

Methylation subgroup

Male 18/29 (62%) 18/29 (62%)

Female 11/29 (38%) 11/29 (38%)

Age in years 2.3 4 2 3.7 0.1 2.4 2.3 3.9 1.9 2.8 1.8 2.6 14 14.5 9.1 10 15.1 19.5 7.5 8.6 33.7 36.3 10.8 12.8 4.7 7.7 8 10.7 7 12.2 6.6 8.1 8.6 15.7 8.3 14.5 8.8 10.4 13.6 19 11.6 15.9 11.7 16.3 7.4 10.5 6.2 9.6 10.5 14.1 10.7 17.5 11.4 12.7 14.3 19.9 9.5 10.4 8.6 (0.1-33.7) 10.7 (2.3-36.3)  

Infants (<4 years) 6/29 (21%) 5/29 (17%)

CLA 16/26 (61%) 14/29 (48%)

LCA 3/26 (12%) 6/29 (21%) 2/22 (9%)

DN 7/26 (27%) 4/29 (14%)

NOS 0/26 (0%) 5/29 (17%)

Local 29/29 (100%) 14/26 (54%)

Distant 10/29 (34%) 17/26 (65%) 10/26 (38%)

Complete resection 20/29 (69%) 3/29 (10%)

Subtotal resection 9/29 (31%) 6/29 (21%)

Degree unknown 0/29 (0%) 16/29 (55%)

Biopsy 0/29 (0%) 4/29 (14%)

Biopsy site

Craniospinal irradiation 22/29 (76%) 4/29 (14%)

Focal radiotherapy 0/29 (0%) 4/26 (15%)

Chemotherapy 26/28 (93%) 20/26 (77%)

Progression free survival 0/29 (0%) 4/29 (14%)

MYC/MYCN  amplification 2/25 (8%) 9/29 (31%) 9/25 (36%) 7/25 (28%)

MYC amplification 1/25 (4%) 4/29 (14%) 4/25 (16%) 3/25 (12%)

MYCN amplification 1/25 (4%) 5/29 (17%) 5/25 (20%) 4/25 (16%)

P53 pathway defect 4/26 (15%) 9/29 (31%) 3/26 (12%) 3/26 (12%)

TP53  mutation 4/26 (15%) 8/29 (28%) 2/26 (8%) 2/26 (8%)

p53 immunohistochemistry 6/23 (26%) 9/27 (33%) 5/23 (22%) 3/23 (13%)

p14  homozygosity 2/24 (8%) 3/29 (10%) 0/24 (0%) 0/24 (0%)

p14  deletion 0/2 (0%) 1/3 (33%) 1/2 (50%) 1/2 (50%)

MDM2  amplification 0/25 (0%) 0/29 (0%)

Ch17p FISH 8/22 (36%) 10/21 (48%) 5/20 (25%) 4/20 (20%)

Ch17q FISH 4/22 (18%) 4/22 (18%) 2/19 (11%) 1/19 (5%)

Polyploidy FISH 6/23 (26%) 8/24 (33%) 2/21 (10%) 2/21 (10%)

Microsatalite instability 0/26 (0%) 1/29 (3%) 1/26 (4%) 1/26 (4%)

Acquired 

events

8

No RT at diagnosis RT at diagnosis Summary of demographics
Altered 

events

3 4 5 6 7

Shh 10/22 (45%)             

Wnt 2/22 (9%)       

G3 1/22 (5%)            

G4 9/22 (41%)

21 22 23 24 25 26 27 28 29
Diagnosis Relapse

Molecular 

subgroup

Shh 10/18 (55%)            

Wnt 1/18 (6%)         

G3 1/18 (6%)           

G4 6/18 (33%) 

15 16 17 18 19 209 10 11 12 13 141 2

DOD

Patient 

details

Pathology 

variant

5/22 (23%)

Disease 

location
17/26 (65%)

Treatment 

and outcome

ADF ADF ADF ADF DOD DOD DOD DOD DOD DOD DOD DOD DOD DOD DOD

Molecular 

and 

cytogenetic  

defects

DOD DOTC DOD DOD DOD DOTCDOD DOD DOD DOD DOD DODDOD
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Table 3.5  Detailed clinical, pathological and molecular characteristics of the paired relapse cohort at diagnosis (D) and relapse (R), showing altered 
and acquired features at relapse.  Demographic frequencies, altered and acquired events are shown as a proportion and percentage of the data 
available for each variable. Consensus molecular subgroup (red, MBSHH; blue, MBWNT; yellow, MBGroup3; green, MBGroup4). Pathology variant (CLA, 
classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise specified). Disease location (local, M0/M1; 
distant, M2+). Current status (ADF, alive disease-free; DOD, died of disease; DOTC, died of treatment complications). Chromosome 17 status (red, 
loss; green, gain). Feature present, grey square; feature absent, white square; data not available, diagonal hatching; biopsy sample not available, 
crossed square. 
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3.4.2.1 Molecular subgroups are stable between diagnosis and relapse 

Molecular subgrouping, achieved by PCR based DNA sequencing analysis of CTNNB1 

(Table 3.6 and section 2.3.2) and the Infinium methylation 450K array (section 3.3.2.1), 

was confidently assigned in 40/49 (82%) tumour samples within the paired relapse 

cohort (Figure 3.3, section 2.11). Two cases had CTNNB1 mutations, both of which 

were located in exon 3, part of the GSK-3β phosphorylation domain of the gene and 

the known mutational hotspot in MBWNT (Ellison et al., 2005; Taylor et al., 2012). Both 

these cases alone also clustered with MBWNT on the Infinium methylation 450K array 

(Table 3.5 and Figure 3.3). In total, 15/15 (100%) assessable pairs maintained 

molecular subgroup, as determined by their DNA methylation patterns at both time-

points (Table 3.5).  This discovery corroborated recent findings from an independent 

study, which similarly reported that molecular subgroup did not alter at relapse in 

medulloblastoma (Ramaswamy et al., 2013). 

 

 

Table 3.6  Details of CTNNB1 mutations identified in the paired relapse cohort. 

 

 

Figure 3.3  Principal component analysis of medulloblastoma subgroups at diagnosis 
and relapse.  Consensus molecular subgroups: red, MBSHH; blue, MBWNT; yellow, 
MBGroup3; green, MBGroup4. Subgroups assigned at diagnosis are represented by circles 
and those assigned at relapse by squares. 

Patient number Mutated gene Protein Acquired mutation Molecular Subgroup

13 CTNNB1 Ser34Phe No MBWNT

14 CTNNB1 Ser37deletion Unknown MBWNT

Phe, Phenylalanine, Ser, Serine.
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3.4.2.2 Acquisition at relapse of high-risk clinicopathological features   

The incidence of clinicopathological features between diagnosis and relapse within the 

paired relapse cohort were altered (Table 3.5). Acquisition of LCA histology and distant 

disease (M2+) was demonstrated between paired samples (2/22, 9% and 10/26, 38% 

respectively, Figure 3.4). While the frequency of LCA at diagnosis and relapse was not 

significantly different (p=0.2814, Fisher’s exact test), the occurrence of distant disease 

(M2+) was significantly enriched at relapse when compared to diagnosis (p=0.0315, 

Fisher’s exact test). 

 

Figure 3.4  Acquisition of high-risk clinicopathological features at medulloblastoma 
relapse.  H&E stain demonstrating (i) CLA histology at diagnosis and development of 
LCA at relapse (ii). Sagittal view of an MRI kindly provided by Prof Simon Bailey (PBTG) 
showing (iii) local disease at diagnosis (white arrow) with a large, distant, frontal lesion 
(red arrow) at disease recurrence (iv).  
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3.4.2.3 Acquisition at relapse of high-risk molecular features  

All of the molecular features examined, with the exception of MDM2, demonstrated 

evidence of acquired defects at relapse. Microsatellite instability, polyploidy, 

chromosome 17 defects, TP53 mutations, p14ARF defects, MYC and MYCN 

amplifications were observed in tumours sampled at relapse where the paired sample 

showed no evidence of that defect (Table 3.5). Acquisition of microsatellite instability 

and polyploidy (Figure 3.5) were witnessed in only one paired tumour sample 

respectively, whereas all other aberrations demonstrated acquisition in multiple cases 

and are discussed in detail below.  

3.4.2.3.1 Chromosome 17 defects are acquired in relapsed disease 

Chromosome 17 defects were acquired at relapse in five tumours (5/20 assessable 

pairs, 25%) but the overall frequency of chromosome 17 defects was not significantly 

enriched when compared to diagnosis in the paired relapse cohort (p=0.7557, Fisher’s 

exact test).  

 

Figure 3.5  Acquisition of Chromosome 17 defects between diagnosis and relapse.  
FISH images demonstrating 17p loss (i), with a balanced 17q profile (ii) at diagnosis, 
evolving into i(17)q and evidence of polyploidy with 17p loss (iii), and 17q gain( iv) at 
relapse. Green, locus specific probe; red, centromeric probe. 
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3.4.2.3.2 p53 pathway defects are maintained or emerge at relapse 

No evidence of MDM2 amplification or p14ARF hypermethylation was discovered at 

either diagnosis or relapse. Acquisition of other p53 pathway defects were observed in 

three patients (TP53 mutation and p14ARF deletion, Table 3.5 and Figure 3.6). These 

defects were consistent with the typically reported pathway defects in the disease at 

diagnosis (Frank et al., 2004; Zhukova et al., 2013), and compliments the theory of 

tumour molecular evolution over time, first proposed by Korshunov et al., (2008).  

 

Figure 3.6  Acquisition of p53 pathway defects at relapse.  (i) Normal negative 
immunohistochemical staining of the p53 protein with wild type copy (wt, arrow) of 
the TP53 gene (ii) at diagnosis. Acquisition at relapse of a homozygous TP53 mutation 
(arrow) as demonstrated by Sanger sequencing (iv) and corresponding nuclear 
accumulation of the p53 protein (iii). (v) Normal copy number profile of chromosome 
9p with loss of one copy of the p14ARF locus (red line) at relapse (vi).   
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Importantly, no case showed loss of a p53 pathway defect and in total 8/29 (28%) 

patients demonstrated TP53 mutations at relapse, two of which were acquired and 

1/29 (3%) demonstrated deletion of the p14ARF gene (Figure 3.6 and Table 3.5). Whilst 

the frequency of TP53 mutations at relapse was significantly enriched when compared 

to independent historic studies (Table 3.4), the increased incidence of p53 pathway 

defects between diagnosis and relapse within the paired relapse cohort was not 

significant (p=0.3387, Fisher’s exact test). All TP53 mutations observed had been 

reported on the TP53 database (Soussi et al., 2006) and located within exons 4-9 which 

encodes for the DNA binding domain of p53, the region most frequently mutated in 

medulloblastoma (Pfaff et al., 2010; Zhukova et al., 2013). 

 

Table 3.7  Nature of TP53 mutations that are maintained or acquired at 
medulloblastoma relapse. 

 

3.4.2.3.3 MYC gene family amplifications frequently emerge at relapse 

Amplification of MYC and MYCN was the most frequently acquired defect observed at 

relapse (7/25 assessable paired samples, 28%). This was a significantly increased rate 

of amplification when compared to tumours sampled at diagnosis within the paired 

relapse cohort (p=0.0467, Fisher’s exact test and Figure 3.7). This finding corroborates 

the earlier observations by Korshunov et el., (2008, section 1.9.2.1) of molecular 

progression over time in medulloblastoma, as they also observed acquisition of MYCN 

amplification at relapse in a minority of cases (2/28, 7%). 

  

Patient number Mutated gene Protein Homozygous Acquired mutation Molecular Subgroup

5 TP53 Gly245Val No Yes MBSHH

8 TP53 Arg282Trp Yes No MBSHH

10 TP53 Arg282Trp Yes No MBSHH

12 TP53 Arg273His Yes No MBSHH

13 TP53
Arg158Cys 

& Arg282Trp
No No MBWNT

14 TP53 Arg273His No Unknown MBWNT

22 TP53 Pro152Leu Yes Yes MBGroup4

29 TP53 Arg175His No Unknown Unknown

Molecular details of beta-catenin and TP53  mutated medulloblastomas

Arg, Arginine; Cys, Cysteine; His, Histidine; Leu, Leucine; Pro, Proline; Trp, Tryptophan; Val, Valine; na, not 

applicable.
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Figure 3.7  MYC and MYCN defects at diagnosis and relapse.  (A)  MYCN amplification 
at relapse (R) with varying statuses at diagnosis (low levels of amplification; patient 3, 8 
and 10, gain in patient 22). (B)  MYC amplification at relapse following high levels of 
gain (patient 12) or low levels of amplification (patient 28) at diagnosis. (C)  FISH 
images demonstrating a balanced profile at diagnosis (i) and amplification at relapse 
(ii). Green, locus specific probe; red, centromeric probe.  
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3.4.3 Overall survival in the paired relapse cohort 

The median time to relapse in the paired relapse cohort was 2.6 years (range 0.7-7.1 

years) with a median age at recurrence of 10.7 years (range 2.4-36.3 years). Twenty-

five patients (85%) died following relapse; 23/29 (79%) died of their disease, 2/29 (7%) 

died of other causes (Table 3.5). Of note, none of the patients who received standard 

initial therapy, consisting of upfront CSI (22/29, 76%) survived their disease recurrence. 

Only 4/29 (14%) survived their relapse, all of whom were infants (<4 years) at diagnosis 

who received salvage radiotherapy at disease recurrence (median OS 17 years, range 

8.9-19.2 years). In both univariate and multivariate analyses infant age group was the 

most significant established clinical feature associated with OS (Figure 3.8 and Table 

3.8). 

 

Figure 3.8  Kaplan-Meier plot demonstrating the difference in overall survival 
between infants and non-infants in the paired relapse cohort. Blue line, infant age 
group; red line, non-infant age group. p, Log rank test, Bonferroni corrected.  
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Table 3.8  Cox proportional hazard models assessing the significance of 
clinicopathological features on OS.  Unadjusted p values are reported. RT, 
radiotherapy; STR, subtotal resection; GTR, gross total resection; LCA, large 
cell/anaplastic histology; M+, M2+ disease; M-, M0/M1 disease; ns, not significant; HR, 
hazard ratio; CI, confidence interval. 

 

3.4.4 Analyses of relapsing patients who received upfront craniospinal 

irradiation 

In view of the OS differences within the paired relapse cohort between infants and 

non-infants, and the survival advantage conveyed by salvage radiotherapy at relapse 

the following analyses were carried out on those patients >4 years old who received 

comparable upfront standard treatment (n=22, surgical resection, CSI and 

chemotherapy).  

3.4.4.1 MYC gene family amplification and p53 pathway defects are 

significantly associated at relapse 

All interrogated clinical, pathological and molecular features with validated 

relationships to poor prognoses in the disease at diagnosis (section 3.1) were tested 

for association at diagnosis and relapse in the paired relapse cohort. These results, 

summarised in Figure 3.9, demonstrated that at diagnosis no features were 

significantly associated with each other but importantly, at relapse, several events 

showed evidence of association. These were; p53 pathway defects and LCA histology 

(4/20 assessable cases, 20%, p=0.03, Fisher’s exact test), p53 pathway defects and 

HR 95% CI p va lue p va lue

Infant 6/29 (21%) 0.171 0.04-0.77 0.021 0.021*

Non infant 23/29 (79%)

Male 18/29 (62%) 0.385 0.16-0.92 0.032 ns

Female 11/29 (38%)

Yes 22/29 (76%) 3.715 1.05-13.21 0.043 ns

No 7/29 (24%)

STR 9/29 (31%) 2.281 0.9-5.79 0.083 ns

GTR 20/29 (69%)

LCA 3/26 (12%) 1.758 0.49-6.33 0.388 ns

Non LCA 23/26 (88%)

M+ 10/29 (34%) 0.886 0.37-2.10 0.784 ns

M- 19/29 (66%)

Number of 

patients          
Univariate Multivariate

Age

Gender

RT at diagnos is

Resection

Pathology 

Metastatic s tage

Cl inicopathologica l  feature
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MYCN amplification (4/22, 18%, p=0.01, Fisher’s exact test), LCA histology and MYC 

gene family amplification (4/20 assessable cases, 20%, p=0.03, Fisher’s exact test) and 

p53 pathway defects and MYC gene family amplification (7/22, 32%, p=0.0004, Fisher’s 

exact test).  

With the exception of p53 pathway defects and LCA histology, which was observed in 

1/19 (5%) assessable cases at diagnosis, none of the other correlations at relapse were 

witnessed in the paired relapse cohort at diagnosis (p53 pathway defects and MYCN 

amplification, LCA histology and MYC gene family amplification and p53 pathway 

defects and MYC gene family amplification). Furthermore, following correction using 

the Bonferroni procedure for type I errors (familywise error rate, section 2.10) the 

association of MYC gene family amplification and p53 pathway defects remained the 

only significant finding at medulloblastoma relapse (p=0.02, Fisher’s exact test).  

 

Figure 3.9  Correlative analysis of the association between clinicopathological and 
molecular features at diagnosis (A) and relapse (B).  Raw p values (Fisher’s exact test) 
reported in individual boxes, Bonferroni corrected p values in parentheses; Ch17, 
chromosome 17; LCA, large cell/anaplastic histology; diagonally hatched boxes, 
comparison not appropriate/available; bold, significant raw p value; yellow box, 
significant finding following Bonferroni correction.  
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3.4.4.2 MYC and p53 defects are either detected at low levels at 

diagnosis or acquired de novo at relapse 

Following the identification of combined p53 pathway defects and MYC gene family 

amplification which emerged at relapse (p53-MYC), it was evident that tumours 

sampled at relapse acquired MYC gene family amplification following either low levels 

of amplified cells (<5%) at diagnosis (patient 8 and 10, Figure 3.10), or no detectable 

amplified cells at diagnosis (patient 12 and 22, Figure 3.10). TP53 mutations were 

either maintained at relapse (patient 8, 10 and 12, Figure 3.10) or acquired de novo  at 

relapse in one patient (patient 22, Figure 3.10), who on next generation sequencing 

demonstrated no evidence of a mutation at diagnosis in approximately 2000 reads 

(Figure 3.10).  

 

Figure 3.10  Mechanisms for acquisition of molecular defects at relapse.  Estimated 
percentages of TP53 mutated tumour cells (Sanger sequencing peak heights, mutant 
versus wild type) and MYC/MYCN amplified cells (by FISH). D, diagnosis; R, relapse; 
diagonally hatched box, data not relevant; white box, negative results; grey box; 
positive result. * Expanded box; next generation sequencing reads for TP53 exon 5, 
patient 22. 
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3.4.4.3 TP53 mutations predict a shortened time to relapse    

All clinicopathological and molecular features at diagnosis and relapse were analysed 

to determine their association with time to relapse (EFS). These univariate and 

multivariate analyses included the variable of combined p53-MYC defects which 

emerged at relapse (section 3.4.4.1). The results of these Cox proportional hazard 

models are summarised in Table 3.9 and demonstrate that in univariate analyses p53 

pathway defects at diagnosis (4/19, 21%, p=0.007), MBSHH membership (5/14, 36%, 

p=0.035) and  MYCN amplification at relapse (4/22, 18%, p=0.044) all conveyed a 

significantly shortened time to relapse.  

Importantly these first two features, p53 pathway defects and MBSHH, are closely 

related. While p53 pathway defects and MBSHH were not significantly associated at 

diagnosis in this study (p=0.06, Fisher’s exact test, Figure 3.9), 3/4 (75%) of the cases 

with a p53 pathway defect at diagnosis belonged to the MBSHH subgroup. The p53 

pathway defects were TP53 mutations in the DNA binding domain in all three cases. 

Moreover, only 2/5 (40%) of MBSHH did not demonstrate a TP53 mutation. These 

observations are consistent with other recent reports that TP53 mutations convey a 

poor prognosis in MBSHH (Zhukova et al., 2013; Kool et al., 2014). This is particularly 

true between the ages of 5-18 years, which was corroborated by these three cases of 

MBSHH with TP53 mutations who were all diagnosed with a medulloblastoma in this 

age range (patient 8, 10 and 12, age range 7.5-10.8 years, Table 3.5). It is also reported 

that patients with a MBSHH tumour and a TP53 mutation are more likely to harbour a 

germline TP53 mutation consistent with LFS (section 1.8.7.1), however, no germline 

DNA was available to test this hypotheses in these three individuals (Rausch et al., 

2012; Zhukova et al., 2013; Kool et al., 2014). 

The third significant feature associated with a shortened time to relapse was MYCN 

amplification at relapse. MYCN amplification at diagnosis conveys a poor prognosis in 

MBSHH and 2/4 (50%) cases identified to have a MYCN amplification at relapse were 

assigned to the MBSHH subgroup. The presence of the defect at relapse, but not at 

diagnosis, and its association with a rapid time to relapse can be explained in several 

ways. Firstly 2/4 (50%) of those cases with MYCN amplification at relapse exhibited 

MBSHH membership and TP53 mutations at diagnosis and therefore it could be these 

molecular events that drove the tumour to recur quickly. Importantly, 3/4 (75%), of 
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tumours with MYCN amplification at relapse, when sampled at diagnosis exhibited low 

levels (<5%) of MYCN amplification. These findings may support the theory that this 

aggressive sub-population of MYCN amplified cells which, following the selective 

pressure of treatment, expanded rapidly to populate an early, recurrent tumour 

(Figure 3.7). In the single case that does not show any amplified nuclei at diagnosis 

(patient 22) there are two possibilities as to why MYCN amplification could predict a 

rapid time to relapse. Firstly, that there was a sub-population of MYCN amplified cells 

that, due to tumour heterogeneity, were not sampled at diagnosis. Secondly, that 

MYCN amplification was acquired de novo, but early in the treatment course leading to 

a reduced time to relapse. 

To further address these hypotheses a multivariate Cox proportional hazard model, 

inclusive of all univariate variables analysed, was performed (Table 3.9). This 

demonstrated that the only factor significantly associated with EFS was the presence 

of a TP53 mutation at diagnosis (p=0.007) and no other event added to this model. 

TP53 mutations are known to convey a poor prognosis in a subgroup-specific manner. 

Interestingly, 2/4 (50%) patients with a TP53 mutation at diagnosis were classified as 

having standard-risk disease in this cohort (patient 8 (MBSHH) and 13 (MBWNT)). 

Together, these findings re-emphasise the importance of overlaying molecular 

biomarkers to stratify new therapeutic approaches in a subgroup-specific manner in 

medulloblastoma at diagnosis. 
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Table 3.9  Univariate and multivariate Cox proportional hazard models interrogating 
the relationship between all clinicopathological and molecular variables and time to 
relapse.   HR, hazard ratio; CI, confidence interval; Ch17, chromosome 17; M+, M2+; 
M0, M0/M1; LCA, large cell/anaplastic histology; STR, subtotal resection; GTR, gross 
total resection; bold, significant; ns, not significant. Features witnessed as a single 
event were not included. 

  

HR 95% CI p value p value

Yes 4/19 (21%) 6.887 1.69-28.14 0.007 0.007*

No 15/19 (79%)

MBSHH 5/14 (36%) 3.929 1.1-14.03 0.035 ns

MBGroup4 9/14 (64%)

Yes 4/22 (18%) 3.257 1.03-10.28 0.044 ns

No 18/22 (82%)

Yes 8/22 (36%) 2.593 0.99-6.79 0.053 ns

No 14/22 (64%)

Yes 7/22 (32%) 2.451 0.92-6.49 0.071 ns

No 15/22 (68%)

Yes 8/18 (44%) 0.357 0.12-1.1 0.073 ns

No 10/18 (56%)

Yes 6/16 (38%) 0.444 0.14-1.46 0.180 ns

No 10/16 (62%)

Yes 7/15 (47%) 2.005 0.67-6.01 0.215 ns

No 8/15 (53%)

Yes 8/22 (36%) 1.723 0.69-4.31 0.245 ns

No 14/22 (64%)

Yes 8/15 (53%) 1.952 0.62-6.08 0.249 ns

No 7/15 (47%)

M + 9/22 (41%) 0.697 0.29-1.68 0.422 ns

M - 13/22 (59%)

LCA 5/16 (31%) 0.712 0.22-2.26 0.565 ns

Non LCA 11/16 (69%)

M + 10/19 (53%) 0.793 0.31-2.01 0.625 ns

M - 9/19 (47%)

Male 14/22 (64%) 0.812 0.32-2 0.650 ns

Female 8/22 (36%)

STR 7/22 (32%) 1.243 0.49-3.19 0.651 ns

GTR 15/22 (68%)

LCA 3/19 (16%) 1.127 0.31-4.06 0.855 ns

Non LCA 16/19 (84%)

Yes 4/22 (18%) 0.954 0.32-2.89 0.934 ns

No 18/22 (82%)

Number of cases Univariate Multivariate

p53 pathway defect & MYC/MYCN 

amplification at relapse

MYC/MYCN amplification at 

relapse

Pathology at diagnosis

p53 pathway defect at diagnosis

Ch17 defects at relapse

MYC amplification at relapse 

Variable

Metastatic stage at relapse

Ploidy at relapse

Resection at diagnosis

Ploidy at diagnosis

Gender

Subgroup                              

Ch17 defects at diagnosis

Pathology at relapse

Metastatic stage at diagnosis 

MYCN amplification at relapse

p53 pathway defect at relapse
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3.4.4.4 Combined p53 pathway defects and MYC gene family 

amplification predict a rapid time to death following relapse 

All clinicopathological and molecular features were analysed to determine their 

association with TTD (Table 3.10). For the purposes of these analyses the data for the 

patients who died of treatment complications (n=2) were censored (section 2.8).

 

Table 3.10  Univariate and multivariate Cox proportional hazard models interrogating 
the relationship between all clinicopathological and molecular variables and time to 
death.   HR, hazard ratio; CI, confidence interval; LCA, large cell/anaplastic histology; 
Ch17, chromosome 17; M+, M2+; M0, M0/M1; STR, subtotal resection; GTR, gross total 
resection; bold, significant; ns, not significant. Features witnessed as a single event 
were not included. 

HR 95% CI p value p value

Yes 7/20 (35%) 8.185 1.93-34.19 0.004 0.004 *

No 13/20 (65%)

Yes 7/20 (35%) 8.185 1.93-34.19 0.004 ns

No 13/20 (65%)

Yes 8/20 (40%) 3.692 1.26-10.78 0.017 ns

No 12/20 (60%)

Yes 4/20 (20%) 5.633 1.35-23.44 0.017 ns

No 16/20 (80%)

LCA 3/17 (18%) 6.304 1.22-32.45 0.028 ns

Non LCA 14/17 (82%)

Yes 4/17 (24%) 2.919 0.86-9.91 0.086 ns

No 13/17 (76%)

Yes 8/14 (57%) 3.149 0.78-12.71 0.107 ns

No 6/14 (43%)

Yes 3/20 (15%) 2.905 0.74-11.39 0.126 ns

No 17/20 (85%)

MBSHH 5/13 (38%) 2.272 0.67-7.67 0.186 ns

MBGroup4 8/13 (62%)

Yes 7/14 (50%) 2.207 0.68-7.15 0.187 ns

No 7/14 (50%)

LCA 5/17 (29%) 1.613 0.53-4.88 0.397 ns

Non LCA 12/17 (71%)

M+ 8/20 (40%) 1.45 0.57-3.68 0.439 ns

M- 12/20 (60%)

Male 12/20 (60%) 0.728 0.29-1.86 0.506 ns

Female 8/20 (40%)

Yes 8/17 (47%) 0.835 0.31-2.25 0.722 ns

No 9/17 (53%)

M+ 10/18 (56%) 0.857 0.33-2.26 0.754 ns

M- 8/18 (44%)

Yes 6/15 (40%) 1.03 0.36-2.99 0.956 ns

No 9/15 (60%)

STR 5/20 (25%) 0.994 0.32-3.07 0.992 ns

GTR 15/20 (75%)

MYC amplification at relapse 

Variable Number of cases Univariate Multivariate

p53 pathway defect & MYC/MYCN 

amplification at relapse

MYC/MYCN amplification at 

relapse

MYCN amplification at relapse

p53 pathway defect at relapse

Pathology at diagnosis

p53 pathway defect at diagnosis

Ch17 defects at relapse

Metastatic stage at relapse

Ploidy at relapse

Resection at diagnosis

Ploidy at diagnosis

Subgroup                              

Ch17 defects at diagnosis

Pathology at relapse

Metastatic stage at diagnosis 

Gender
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In univariate analyses the most significant variable associated with a shortened TTD 

was combined p53 pathway defects and MYC gene family amplification (p53-MYC) at 

relapse, present in 7/20 (35%, p=0.004) patients. In addition to this finding p53 

pathway defects at relapse and MYCN amplification at relapse both independently 

predicted a shorted TTD post relapse (8/20, 40%, p=0.017 and 4/20, 20%, p=0.017 

respectively). Both these variables however were identifying a similar population of 

patients to the variable of combined p53-MYC defects (Table 3.5). This was also true 

for MYC gene family amplification at relapse which identified the same cohort of 7/20 

patients (35%, p=0.004). One patient demonstrated MYC amplification at relapse in 

isolation (patient 28, Table 3.5) but died of treatment complication and was therefore 

excluded from these analyses (Table 3.5).  

Finally LCA histology at diagnosis, an established poor prognostic marker in 

medulloblastoma (Pizer and Clifford, 2009; Ellison, 2010; Pizer et al., 2011b), was also 

significantly associated with a reduced TTD (3/17 assessable cases, 18%, p=0.028). The 

three patients exhibiting LCA at diagnosis, however, all went on to develop p53-MYC 

defects. To understand the interplay of these events a multivariate analysis was 

performed and revealed that combined p53-MYC defects remained the only significant 

variable associated with rapidly progressive disease at relapse and no other variable 

added to the Cox proportional hazard model (p=0.004, Table 3.10). This significant 

finding is illustrated in the following Kaplan-Meier survival curves (Figure 3.11) which 

reports the Log rank, Bonferroni corrected p values for patients with p53-MYC defects 

for time to relapse (p=1) and TTD (p=0.0165). These analyses further support the 

association of p53-MYC defects and TTD which remained the only significant variable 

following Log rank analyses and correction for multiple testing (section 2.10). 
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Figure 3.11  Survival of patients harbouring combined p53 pathway defects and MYC 
gene family amplification at relapse.  Left, Kaplan-Meier curve demonstrating no 
significant difference in time from diagnosis to relapse between patients with p53-MYC 
defects (blue line) and patients without p53-MYC defects (red line). Right, Kaplan-
Meier curve demonstrating a significant difference in time from relapse to death 
between patients with p53-MYC defects (blue line) and patients without p53-MYC 
defects (red line). p, Log rank test, Bonferroni corrected.  

 

3.4.4.5 Relapsed tumours with combined p53-MYC defects are locally 

aggressive 

At relapse, p53 pathway defects and MYC gene family amplification were the only 

features examined that were significantly associated with each other. No other 

features demonstrated a significant association after correction for multiple testing at 

either diagnosis or relapse (Figure 3.9). Furthermore, combined p53-MYC defects were 

the only feature in multivariate analyses significantly associated with a rapidly 

progressive disease course following relapse. This is the first report of emergent 

molecular events at medulloblastoma relapse to show an association with disease 

prognosis. The clinical, pathological and molecular features of the seven cases 

demonstrating combined p53-MYC defects at relapse are summarised in Table 3.11. 

This summary highlights important clinicopathological and molecular observations in 

this subgroup of patients. 
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Table 3.11  Detailed clinical, pathological and molecular demographics of patients 
with combined p53 pathway defects and MYC gene family defects at relapse.  
Consensus molecular subgroup (red, MBSHH; blue, MBWNT; yellow, MBGroup3; green, 
MBGroup4). Pathology variant (CLA, classic; LCA, large-cell/anaplasia; DN, 
nodular/desmoplastic; NOS, medulloblastoma not otherwise specified). Disease 
location (local, M0/M1; distant, M2+) current status (DOD, died of disease). 
Chromosome 17 status (red, loss; green, gain). D, diagnosis; R, relapse. Feature 
present, grey square; feature absent, white square; data not available, diagonal 
hatching; biopsy sample not received, crossed square. 

Patient number

Diagnosis/relapse D R D R D R D R D R D R D R

Concensus subgroup

Male

Female

Age in years 7 12.2 8 10.7 10.8 12.8 9.1 10 7.5 8.6 11.7 16.3 9.5 10.4

CLA

LCA

DN

NOS

Local 

Distant 

Complete resection

Subtotal resection

Degree unknown

Biopsy

Biopsy site

Craniospinal irradiation

Focal radiotherapy

Chemotherapy 

Progression free survival

P53-MYC defect

MYC amplification

MYCN amplification

p53 immunohistochemistry

TP53  mutation

Homozygous TP53 mutation

Germline TP53 mutation

p14  deletion

MDM2  amplification

Ch17p FISH

Ch17q FISH

22

DOD

MYC amplified MYCN amplified

DOD

10

DOD

29

DOD

14

DOD

8

Molecular     

and 

cytogenetic  

defects

15

DOD

12

DOD

Pathology 

variant

Disease 

location

Treatment      

and     

outcome

Patient 

details
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Disease at relapse was local in 5/7 cases (70%) and significantly associated with LCA at 

relapse in 4/5 assessable cases (80%, p=0.0099, Fisher’s exact test). Tumours with 

combined p53-MYC defects were therefore locally extremely aggressive, and in the 

main, non-metastatic (2/7, 30%, demonstrated distant disease sites at relapse). TP53 

mutations were homozygous in 4/6 (67%) cases and heterozygous in 2/6 (33%). No 

evidence of germline mutations were found in 2/6 (33%) assessable cases which 

demonstrated a TP53 mutation at relapse, and loss of 17p was observed in 2/6 (33%) 

cases with a TP53 mutation at relapse, both of which were homozygous. 

 

Figure 3.12  Homozygous and heterozygous TP53 mutations in tumours with 
combined p53 pathway defects and MYC gene family amplification. Forward (i) and 
reverse (ii) Sanger sequence demonstrating a homozygous TP53 mutation in codon 282 
from the tumour sampled at relapse in patient 8. Forward (iii) and reverse (iv) Sanger 
sequencing demonstrating a heterozygous Tp53 mutation in codon 175 from the 
tumour sampled at relapse in patient 29 (see also Table 3.7). 
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Typically, combined TP53 mutation and MYCN amplification is a phenomenon normally 

only observed in ~6% of MBSHH at diagnosis (Jones et al., 2012; Zhukova et al., 2013; 

Kool et al., 2014). In this study at relapse, combined p53-MYC defects were witnessed 

across all 4 molecular subgroups in combinations that are not reported in the disease 

at diagnosis such as; TP53-MYC defects in MBWNT and MBSHH,  p14ARF-MYC defects in 

MBGroup3 and TP53-MYCN defects in MBGroup4 (Table 3.11).  

3.4.4.6 Combined p53-MYC defects are not observed in MBWNT, 

MBGroup3 and MBGroup4 in independent cohorts of tumours sampled 

at diagnosis 

To analyse the incidence of combined p53-MYC defects in a subgroups specific manner 

at relapse, and compare this to the incidence at diagnosis, a large independent control 

cohort of tumours sampled at diagnosis (section 3.3.3), was assessed for combined 

defects (TP53 mutation and MYC/MYCN amplification) alongside molecular subgroup. 

A further published dataset (Northcott et al., 2012b) was utilised to analyse the 

combination of p14ARF-MYC defects in MBGroup3, the specific combination identified in 

MBGroup3 at relapse in this study. The results of these analyses are reported in Figure 

3.13 and demonstrate that no combined p53-MYC defects were found in MBWNT, 

MBGroup3 and MBGroup4 at diagnosis. In MBSHH at diagnosis, TP53-MYCN defects were 

identified at diagnosis in 8/65 (12%) cases, however the incidence at relapse was 

significantly greater (p=0.0250, 3/5, 60%). The discovery at relapse of combined p53-

MYC defects enriched in MBSHH, and the isolated examples observed in MBWNT (1/2, 

50%) and MBGroup3 (1/2, 50%) is a significant finding when compared to the frequency 

of all these events at diagnosis (p=0.0250, 0.0400 and 0.0156 respectively, Fisher’s 

exact test, Figure 3.13). The isolated example of TP53-MYCN defects at relapse in 

MBGroup4 (1/9, 11%) was also unique at relapse, but not significant when compared to 

diagnosis (p=0.0536, Fisher’s exact test, Figure 3.13). 
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Figure 3.13  Subgroup distribution of combined p53-MYC defects in the paired 
relapse cohort compared to a large independent cohort of tumours sampled at 
diagnosis.  No examples of combined TP53 mutation and MYC/MYCN amplification 
found in MBWNT (n=48), MBGroup3 (n=72) or MBGroup4 (n=159) sampled at diagnosis.      
*Compared against patients receiving upfront radiotherapy. # Compared against 
patients aged 3-16 years from Northcott et al., (2012b). p, Fisher's exact test versus 
independent control cohorts, significant values are in bold. 
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3.5 Discussion 

3.5.1 Molecular subgroup does not change at relapse 

Recent work in this study and by others (Ramaswamy et al., 2013) has demonstrated, 

by differing techniques, (methylation profiling, expression signatures and 

immunohistochemistry) that molecular subgroup does not change between diagnosis 

and relapse. This supports the theory that the four different medulloblastoma 

subgroups originate from different embryonal cells (Gibson et al., 2010; Grammel et 

al., 2012) with the molecular event(s) determining subgroup being common to all 

tumour cells and present in whichever cells repopulate the relapse tumour. So whilst 

intratumoural heterogeneity is observed for other events such as MYC gene family 

amplification (Figure 3.7), these findings suggest that molecular subgroup 

heterogeneity does not occur in medulloblastoma, unlike other brain tumours such as 

GBM, (Phillips et al., 2006; Sottoriva et al., 2013). Subgroup stability also has important 

implications for subgroup targeted therapies, e.g. SHH inhibitors (section 1.8.8.2), 

which could be appropriately selected for use at relapse, even if subgroup was 

determined at diagnosis.  

3.5.2 High-risk medulloblastoma features at diagnosis 

Clinical and pathological variables currently used for treatment stratification (STR, LCA, 

M1+ disease and infant age group) to determine high-risk from standard-risk disease 

(Pizer et al., 2011b) are enriched within this relapsed cohort and do aid in the 

identification of a population of patients at diagnosis who are likely to have a poor 

outcome (section 3.4.1.1). Metastatic disease (M1+) was significantly enriched at 

diagnosis within this cohort and only three out of the twenty-seven fully assessable 

patients at diagnosis had standard-risk disease (Figure 3.2). Infant age group was 

reported as the only current high-risk variable to significantly impact OS (section 3.4.3) 

as while the paired relapsed cohort was enriched for infant patients, as would be 

expected given their reduced upfront therapy (section 1.8.5), four infants were 

salvaged with RT and adjuvant therapy at relapse (Figure 3.8).  

Acknowledged high-risk molecular features, such as MYC/MYCN amplification (Pizer 

and Clifford, 2009; Northcott et al., 2012a; Ryan et al., 2012), were not enriched at 

diagnosis. However, the presence of TP53 at diagnosis predicted a shorter time to 
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relapse in the non-infant group who received upfront RT (section 3.4.4.3). The 

presence of TP53 mutations in three MBSHH at diagnosis also emphasised the interplay 

of these two molecular features as a poor prognostic marker (Zhukova et al., 2013) 

highlighting the potential role of directed molecular investigation to improve upfront 

treatment stratification of this heterogeneous subgroup (section 1.8.8.2).  

3.5.3 High-risk medulloblastoma features are enriched and emerge 

medulloblastoma at relapse 

When compared to historic independent cohorts sampled at diagnosis, the incidence 

of metastatic disease (M1+), TP53 mutation, MYC and MYCN amplification were 

significantly enriched at relapse in the paired relapse cohort (Table 3.3 and Table 3.4). 

Moreover, on comparing the clinical, pathological and molecular profiles of relapsed 

patients with their diagnostic counterparts, molecular aberrations were frequently 

acquired and rarely lost (Table 3.5). This was observed on multiple occasions for 

chromosome 17 defects (section 3.4.2.3.1), p53 pathway defects (section 3.4.2.3.2) 

and MYC gene family amplification (section 3.4.2.3.3). The emergence of molecular 

features at relapse occurred following no evidence of the aberration at diagnosis or, 

low levels of that aberration, for example MYCN amplification in <5% of nuclei 

examined at diagnosis (Figure 3.7 and Figure 3.10). These findings suggest that the 

molecular progression observed in medulloblastoma at relapse can be attributed to 

two differing mechanisms, either clonal evolution or de novo acquisition. 

3.5.4 Clonal evolution versus de novo acquisition of molecular defects 

at relapse 

As highlighted in Figure 3.7 and Figure 3.10, the progression or acquisition of 

molecular aberrations at relapse either occurred following low levels of the same 

defect detectable at diagnosis or, in the absence of that defect at diagnosis. These 

mechanisms can therefore be considered as two different models, similar in design to 

the previously described models of tumourigenesis in section 1.4, but now taking into 

account the continuing process of tumour development after a malignant tumour has 

initially developed, received treatment and then recurred. 
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The clonal evolution model, first proposed in the 1970s (Nowell, 1976), describes the 

stepwise selection, expansion and progression of sub-populations of tumours cells. In 

this model, a treatment resistant, sub-population or clone of cells, present at low 

levels when the tumour was sampled at diagnosis, survives due to selective pressure 

following the administration of treatment, and expands to populate the tumour at 

relapse. This model explains some of the observations in the paired relapse cohort, for 

example in patient 8 (Figure 3.7 and Figure 3.10), where there was a low level (<5%) of 

MYCN amplified cells in the tumour sampled at diagnosis, but a much higher 

proportion (>30%) of amplified cells in the counterpart tumour sampled at relapse. 

Whether this surviving sub-population of cells has stem-like properties (section 1.4.4), 

is an area of ongoing research in brain tumours, in particular GBM (section 1.6.1.1.2), 

another highly malignant brain tumour which exhibits genetic heterogeneity and 

treatment resistance at relapse (Gilbertson and Rich, 2007; Aktipis et al., 2011; Andor 

et al., 2014). 

The second mechanism of emergent defects at relapse is de novo acquisition, observed 

for example in patient 22 (Figure 3.7 and Figure 3.10). This patient demonstrated no 

evidence of MYCN amplification in 200 nuclei scored in their tumour sampled at 

diagnosis. Conversely, all 200 nuclei counted in the tumour sampled at relapse 

demonstrated MYCN amplification. A similar finding is noted for TP53 mutation in this 

case where, on deep sequencing analysis in approximately 2000 reads, no TP53 

mutation was noted in the tumour at diagnosis, whereas almost all tumour cells 

sequenced at relapse (>1500 reads) showed evidence of mutation (Figure 3.10).  

De novo acquisition of p53 pathway defects have been reported in vivo (TP53 

mutations) following treatment with both RT and chemotherapy (Lowe et al., 1994), as 

well as in other paediatric embryonal tumours such as neuroblastoma (TP53 

mutations, p14ARF methylation and deletion, section 1.7.3) at various time-points; post 

chemotherapy, disease progression and disease recurrence (Carr et al., 2006; Carr-

Wilkinson et al., 2010). These findings of emergent defects at medulloblastoma relapse 

therefore support both mechanisms; clonal expansion and de novo acquisition and 

both models are summarised in Figure 3.14. 
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Figure 3.14  Illustrative example of the two mechanisms for acquisition of defects at 
relapse; clonal expansion and de novo acquisition.  Top panel, clonal expansion; low 
level evidence of the molecular aberration (MYCN amplification) at diagnosis which 
remains undetected at remission but populates the tumour at relapse. Bottom panel, 
de novo acquisition; MYCN amplification is not present at diagnosis but is acquired 
during the time between remission and relapse. 

 

3.5.5 Combined p53 and MYC gene family amplifications are a 

biomarker of aggressive disease at relapse 

Individually MYC gene family amplification and p53 pathway defects are known to 

convey a poor prognosis at diagnosis in a subgroup-specific way (Pizer and Clifford, 

2009; Northcott et al., 2012a; Ryan et al., 2012; Zhukova et al., 2013; Shih et al., 2014). 

Combined p53-MYC defects were not observed in our paired relapse cohort at 

diagnosis, and were only evident in MBSHH in our large independent control cohort of 

samples taken at diagnosis (section 3.4.4.6). This was consistent with independently 

reported findings by Zhukova et al., (2013).  
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The relationship between combined p53-MYC defects and survival has never been 

formally analysed in medulloblastoma at diagnosis or relapse. This study has shown, 

for the first time, that MYC gene family amplification and p53 pathway defects 

frequently co-occur at relapse and define locally aggressive, rapidly progressive disease 

(Figure 3.11). This association with aggressive disease behaviour was independent of 

molecular subgroup in multivariate analysis (Table 3.10), and combined p53-MYC 

defects were found in all four subgroups, in combinations that were not observed in 

the disease at diagnosis, for example TP53-MYC defects in MBWNT and MBSHH,  p14ARF-

MYC defects in MBGroup3 and TP53-MYCN defects in MBGroup4 (section 3.4.4.5).  

3.5.6 p53 pathway defects and MYC gene family amplification interact 

The frequent observation of emergent and combined p53-MYC defects at relapse 

(7/22, 32%) suggested that these two events interact to define rapidly progressive and 

locally aggressive disease. While we were unable to directly assess this for all human 

tumours demonstrating combined defects, one tumour, sampled at relapse from 

patient 22 (Figure 3.10), demonstrated 100% de novo acquisition of both MYCN 

amplification by FISH and TP53 mutation on next generation sequencing. This further 

supported the hypothesis that combined p53-MYC defects co-occurred at a cellular 

level. To explore the p53-MYC interaction functionally, collaborations with Dr Louis 

Chesler and his group, the Pediatric Solid Tumour Biology and Therapeutics Team at 

The Institute of Cancer Research were undertaken and are discussed in Chapter 4. 
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3.6 Summary 

Recurrent disease is the poorest prognostic factor in childhood medulloblastoma with 

only infants who receive radiotherapy at relapse surviving despite, in the present 

study, many older children having treatment with curative intent as part of the 

Recurrent PNET (CNS 2000 01) trial (Pizer et al., 2011a). Current treatment risk 

stratification still has merit in the diagnostic setting, as demonstrated by the 

enrichment of high-risk clinicopathological features in the paired relapse cohort at 

diagnosis (section 3.4.1.1). However, subgroup-specific treatment stratification is now 

in development at diagnosis with the aim of reducing long term side effects in low risk 

groups (MBWNT, section 1.8.8.1.2) and escalating treatment in those patients with high-

risk disease (Pizer and Clifford, 2009; Morfouace et al., 2014) . These advancements 

have not translated into the disease at relapse where little is understood about the 

biology of disease at this time-point. 

The present paired relapse study reports, at diagnosis and relapse, all the 

clinicopathological and molecular variables with established relationships to disease 

behaviour at diagnosis. At relapse, almost all clinicopathological and molecular 

features examined show examples of alteration, and predominately acquisition of poor 

prognosis features with the only unchanged feature being molecular subgroup (section 

3.4.2.1-3.4.2.3). However, it is the emergence of high-risk molecular events at relapse 

that is significantly enriched when compared to both the paired diagnostic tumour 

samples, and independent historic cohorts of tumours sampled at diagnosis (section 

3.4.1.2 and 3.4.2.3). 

The most striking and significant example of altered molecular biology at relapse is the 

emergence of frequent p53 pathway defects together with MYC gene family 

amplification. These combined defects demonstrated the most significant association 

with disease behaviour at relapse, identifying a group of patients (7/22, 32%) with 

rapidly progressive disease at the point of relapse. Moreover, p53-MYC defects 

occurred in patients who typically only had local disease (5/7, 71%), a feature not 

commonly found in this cohort (section 3.4.1.1). In addition, these combined defects 

were observed in all four molecular subgroups in unique combinations, not previously 

described in the disease (section 3.4.4.6).  
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This paired relapse study highlights the difficulty in successful treating 

medulloblastoma at relapse, and provides compelling evidence for further 

investigations into the disease at this time-point. No patients who received standard 

upfront multi-modal treatment survived their disease recurrence. This was despite the 

fact that many had aggressive re-treatment at relapse (Pizer et al., 2011a). 

Importantly, the biology of relapsed disease evolves and is different to the disease at 

diagnosis. Events such as combined p53-MYC defects that are not detectable at 

diagnosis emerge, and interact at relapse. These combined defects are the first 

described molecular events to be significantly associated with aggressive disease 

behaviour at recurrence and emphasise the necessity of understanding the molecular 

biology of relapsed disease by sampling tumours at this time-point. Moreover 

combined p53-MYC defects have, at present, potential utility in directing current 

treatment decisions at medulloblastoma relapse. In the future this molecular 

biomarker could be targeted therapeutically to improve the outcome of this rapidly 

progressive disease course (Chapter 4).  

Further studies in relapsed medulloblastoma are now essential. Interrogating the 

epigenome and genome of disease at both diagnosis and relapse for events predictive 

of or specific to relapse could, in turn, identify therapeutic targets. Validation of the 

findings reported in this chapter is also required in a separate cohort to confirm the 

frequent presence of p53-MYC defects at relapse, and their association with an 

aggressive and devastating disease course.  
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Chapter 4. MYC and p53 interactions can be modelled and 

therapeutically targeted in GTML mice 
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4.1 Introduction 

To further explore the relationship between MYC gene family amplification and p53 

pathway defects, the following work was performed by Dr Louis Chesler and his group, 

the Pediatric Solid Tumour Biology and Therapeutics Team at The Institute of Cancer 

Research (Sutton, UK). This chapter has therefore been undertaken separate to this 

study but included in this thesis due to its pertinent discoveries and relevance to 

relapsed medulloblastoma. The methods, written by Dr Louis Chesler and his group, 

and results, which they have provided, are reported in this additional chapter along 

with a discussion of the key findings. 
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4.2 Materials and methods  

These experiments were designed and carried out by Dr Louis Chesler and his group 

(Pediatric Solid Tumour Biology and Therapeutics Team, The Institute of Cancer 

Research, Sutton, UK).  

4.2.1 Immunohistochemistry 

Mouse tumour samples were fixed in 4% paraformaldehyde in PBS for at least 24 

hours, decalcified with 0.3M EDTA and processed using the Leica ASP300S tissue 

processor (Leica Microsystems, Milton Keynes, UK). Sections were cut at 4µM for H&E 

staining and immunohistochemistry as previously described (Chesler et al., 2006). 

Antibodies used for immunohistochemistry were: MYCN (OP-13, Merck-Millipore, 

Darmstadt, Germany), Ki-67 (556003, BD Biosciences, NJ, USA), GFAP (Z0334, DAKO, 

Glostrup, Denmark), Cleaved Caspase 3 (9664, Cell Signalling Technology, MA, USA), 

Synaptophysin (180130, Life Technologies, CA, USA), Gli1 (2534, Cell Signalling 

Technology, MA, USA), Phospho-Ser10-Histone H3 (9706, Cell Signalling Technology, 

MA, USA). 

4.2.2 In situ RNA analysis 

Dual colour RNA in situ hybridization was performed using the RNAscope 2-plex 

Chromogenic Reagent Kit (Advanced Cell Diagnostics, CA, USA) according to the 

manufacturer’s instructions. Paired double-Z oligonucleotide probes were designed 

against Cdkn1a using custom software as previously described (Wang et al., 2012). 

Custom mouse Cdkn1a-specific RNA target Z probe pairs (20), provided by Advanced 

Cell Diagnostics (CA, USA) targeted bps 19 through 1240 of the Cdkn1a cDNA sequence 

(NM_007669.4). Probe sets specific for mouse Ubc (ubiquitin C), Polr2a (DNA-directed 

RNA polymerase II subunit RPB1) and Ppib (Peptidylprolyl Isomerase B, Cyclophilin B) 

as well as the probe set against the dapB (dihydrodipicolinate reductase) gene from B. 

subtilis were obtained from Advanced Cell Diagnostics (CA, USA). 

FFPE tissue blocks were sectioned at 4µm. Slides were baked for 1 hour at 60C prior 

to use. After de-paraffinisation and dehydration, the tissues were air dried and treated 

with peroxidase blocker before boiling at 100-104C in a pre-treatment solution for 15 

minutes. Protease was then applied for 30 minutes at 40C. Target probes for each 

two-gene combination were premixed and hybridized together for 2 hours at 40C, 
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followed by a series of signal amplification and washing steps. All hybridizations at 

40C were performed in a HybEZ Hybridisation System (Advanced Cell Diagnostics, CA, 

USA). Following the RNAscope assay, samples were counterstained for 2 minutes with 

50% Gill’s Haematoxylin diluted in dH20. Hybridisation signals were detected by 

sequential chromogenic reactions using red and green chromogens and RNA staining 

signal was identified as red and green punctate dots. Each sample was quality 

controlled for RNA integrity with a probe specific to the Ppib housekeeping gene; only 

samples with an average of >4 dots per cell were included for analysis. Negative 

control background staining was evaluated using a probe specific to the bacterial dapB 

gene; only samples with an average of <1 dot per 10 cells were included for analysis. 

To verify that the RNAscope method was performed with technical accuracy, 

references slides consisting of FFPE HeLa cell pellets were tested for Ppib and dapB 

expression in parallel with tissue sample quality control (QC). 

4.2.3 In situ proximity ligation assay 

Duolink in situ proximity ligation assay (PLA; Olink Bioscience, Uppsala, Sweden) was 

performed according to the manufacturer’s instructions. Briefly, GTML/Trp53KI/KI 

neurospheres were fixed in 4% paraformaldehyde for 20 minutes, permeabilised with 

0.5% Triton X-100 (Sigma-Aldrich, MO, USA), and blocked with 1% bovine serum 

albumin (BSA) for 30 minutes at room temperature, followed by incubation with 

paired primary antibodies, MYCN (OP-13, Merck-Millipore, Darmstadt, Germany) with 

Aurora A (GeneTex, CA, USA), overnight at 4°C. PLA detection was performed as 

recommended by the manufacturer. Images were taken and analysed using the Zeiss 

LSM700 confocal microscope (Jena, Germany) and analysed using DuoLink image 

analysis software (Olink Bioscience, Uppsala, Sweden). 

4.2.4 In vivo experiments 

All experiments were performed in accordance with guidelines specified in the local 

ethical review panel, the UK Home Office Animals Scientific Procedures Act 1986 and 

the UK National Cancer Research Institute guidelines for the welfare of animals in 

cancer research (Workman et al., 2010). The GTML mouse model has been described 

previously (Swartling et al., 2010). The Trp53KI/KI mice were kindly provided by G.I. Evan 

(Christophorou et al., 2005) and crossed with GTML animals into a background of the 

Friend Virus B-type/NIH Jackson (FVB/NJ) inbred strain (Taketo et al., 1991). To image 
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for bioluminescence expression, animals were injected with 75mg kg–1 D-luciferin in 

saline (Perkin Elmer, MA, USA) prior to imaging in the IVIS Lumina using the Living 

Image Software 4.3.1 (Perkin Elmer, MA, USA). 

Transgenic GTML/Trp53KI/KI animals with bioluminescence signals higher than 1.5e9 

photons/seconds (20-30 days of life) were randomised to treatment groups of 4-6 

mice, and treated with 30mg kg–1 MLN8237 (kindly provided by Millennium, MA, USA), 

50mg/kg GDC-0449 (Vismodegib, LC Laboratories, MA, USA), 1mg kg–1 Tamoxifen 

(Harlan Laboratories, IN, USA), 200mg/kg–1 doxycycline (Harlan Laboratories, IN, USA) 

and vehicle. MLN8237, GDC-0449 and the respective vehicles were dosed orally on a 

daily basis. Tamoxifen and doxycycline were given via chow at 1mg kg–1 and 200mg   

kg-1 respectively. Animals were monitored twice a week for bioluminescence signal and 

were sacrificed upon detection of a signal higher than 9e9 photons/second or overt 

signs of intracranial expansion associated with tumour growth. 

4.2.5 MRI imaging 

Multi-slice 1H MRI was performed on a 7T Bruker horizontal bore microimaging system 

(Bruker, Ettlingen, Germany) using a 3cm birdcage coil and a 2.5cm x 2.5cm field of 

view. Anaesthesia was induced with a 10 ml kg–1 intraperitoneal injection of fentanyl 

citrate (0.315 mg ml–1) plus fluanisone (10 mg ml–1 (Hypnorm; Janssen Pharmaceutical 

Ltd. High Wycombe, UK), midazolam (5mg/ml (Hypnovel; Roche, CT, USA)), and sterile 

water (1:1:2). Core body temperature was maintained by warm air blown through the 

magnet bore. Magnetic field homogeneity was optimized by shimming over the entire 

brain using an automated shimming routine (FASTmap). T2-weighted images acquired 

using a rapid acquisition with refocused echoes (RARE) sequence (12 contiguous 1mm 

sagittal slices or 20 contiguous 1mm axial slices, 256 x 256 matrix, 4 averages, echo 

times (TE) = 36 and 132 ms, repetition time (TR) = 4.5 s, RARE factor = 8) were used for 

localization of the tumour and measurement of tumour volume. 

4.2.6 Neurosphere isolation and culture 

Tissue was isolated from GTML/Trp53KI/KI tumours and transferred into cold HBSS (Life 

Sciences, CT, USA). The tissues were then cut into 2-3mm2 pieces and dissociated 

before the cells were titrated in medium and filtered through a 70µm mesh. 

Subsequently the cells were cultured under self-renewal conditions in DMEM/F12 
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medium (Life Technologies, CA, USA) supplemented with 2% B27 supplement (Life 

Technologies, CA, USA), 20ng ml–1 epidermal growth factor (EGF, Sigma-Aldrich, MO, 

USA), 20ng ml–1 fibroblast growth factor (bFGF-basic, Life Technologies, CA, USA) and 

100units ml–1 penicillin/streptomycin. To examine cell division rates, cells were treated 

with the following concentrations of drugs: DMSO or ethanol, 100nM 4-OHT (Sigma-

Aldrich, MO, USA), 1µg ml–1 doxycycline (Sigma-Aldrich, MO, USA), 100 nM MLN8237, 

500 nM GDC-0449 up to 7 days. At each time-point cells were counted as follows: 

neurospheres were dissociated, trypan blue (Sigma-Aldrich, MO, USA) was added and 

cells were counted using a haemocytometer. To assess neurosphere formation, cells 

were plated in limiting dilutions from 1000 to 60 cells in 96-well plates. Drugs were 

added as before and neurospheres were counted after 3 days in culture using the 

Celigo S Imaging Cell Cytometer (Brooks Life Science Systems, MA, USA). 

4.2.7 Western blot analysis 

Tumour or spleen tissues were homogenized using T-PER buffer as previously 

described (Brockmann et al., 2013). Neurospheres were cultured in the presence or 

absence of MLN8237 or GDC-0449 for 24hrs before cells were suspended in RIPA lysis 

buffer (Santa Cruz Biotechnology, TX, USA) as per manufacturer’s protocol. Western 

blot analysis was performed as previously described (Chesler et al., 2006). Antibodies 

used included MYCN (OP-13, Merck-Millipore, Darmstadt, Germany), Phospo-S10-

Histone H3 (9706, Cell Signalling Technology, MA, USA), phospho-AurkABC (2914, Cell 

Signalling Technology, MA, USA), AurkA (4718, Cell Signalling Technology, MA, USA), 

Sonic Hedgehog (Ab73958, Abcam, Cambridge, UK), Gli-1 (2534, Cell Signalling 

Technology, MA, USA) and GAPDH (2118, Cell Signalling Technology, MA, USA). 

4.2.8 Gene expression analysis 

RNA was isolated from cells or tumour tissue using the miRNAeasy minikit (Qiagen, 

Venlo, Netherlands) according to the manufacturer’s protocol. Total RNA was reverse 

transcribed into complementary DNA (cDNA) using Superscript II Reverse Transcriptase 

(Life Technologies, CA, USA) according to manufacturer’s protocol. Quantitative PCR 

(QT-PCR) was performed in triplicates using Taqman Gene Expression mix (Life 

Technologies, CA, USA). Primers used were mouse Cdkn1a (Mm04205640), mouse 

Mdm2 (Mm01233136), human MYCN (Hs00232074) and mouse β-actin 

(Mm00607939; Life Technologies, CA, USA). Relative expression was calculated 
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according to the ΔΔCT relative quantification method using the average expression of 

control cells treated with ethanol or vehicle treated tumours as calibrator. 

4.2.9 Trp53 mutational analysis 

Genomic DNA was extracted from cell lines, tumours and where available, normal 

brain tissue using a Qiagen QIAamp DNA Mini kit (Qiagen, Venlo, Netherlands). PCR 

amplification of exons 5-9 was performed using primers detailed in Figure 4.1 . 

Products were sequenced with the original PCR primers using the BigDye Terminator 

Cycle Sequencing Kit (Life Technologies, Paisley, UK) and an ABI 3730 Genetic Analyser 

(Applied Biosystems, Foster City, CA, USA). Sequences were analysed using Mutation 

Surveyor software v3.97 (DNA Variant Analysis, SoftGenetics, PA, USA). 

 

Figure 4.1  Primers for Trp53 PCR reaction. 

 

4.2.10 Expression analysis 

Affymetrix (Affymetrix, CA, USA) HGU133plus2 expression profiles of primary tumours 

from 110 individuals with a diagnosis of medulloblastoma were taken from previously 

published studies (Kool et al., 2008; Fattet et al., 2009). Raw data were normalised and 

processed using gcRMA in R (R Development Core Team, 2014). Processed data was 

converted to four metagenes representing the four subgroups using NMF, and these 

metagenes projected onto the mouse tumour/cell line expression profiles using an 

adaption of the procedure described by Tamayo et al (Tamayo et al., 2007). Mouse 

expression profiles were generated using Illumina Mouse v8 arrays (Illumina Inc., CA, 

USA) according to manufacturer’s instructions. Raw data was processed using the 

beadarray package in R (R Development Core Team, 2014). Expression profiles from 

primary murine medulloblastoma samples and cell lines included a total of 47 from our 

GTML mouse models as well as 6 from a Myc/Trp53-deficient mouse model (Kawauchi 

et al., 2012) (a kind gift from Dr Martine Roussel, St. Jude Children’s Research Hospital, 

TN, USA) and 36 from Ptch+/- mice (Lastowska et al., 2013). We also included published 

Location Forward sequence 5'-3' Reverse sequence 5'-3'

Exon 5/6 GATCGTTACTCGGCTTGTCC AAGACGCACAAACCAAAACA

Exon 7 CTATAGCCAGCCATTCCCG AGGCAGAAGCTGGGGAAG

Exon 8/9 TACACACAGTCAGGATGGGG ATGCGAGAGACAGAGGCAAT

Primers for Trp53  PCR reaction
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Ptch+/- and Myc/Trp53-deficient mouse model expression profiles (Kawauchi et al., 

2012), which were downloaded from Gene Expression Omnibus (Elsevier, London, UK) 

and processed using gcRMA. Subgroup calls for the mouse tumours were made using a 

Support Vector Machine algorithm trained on the four human subgroup metagenes 

and tested on the projected mouse metagenes. 

4.2.11 Pharmacokinetic analysis 

4.2.11.1 Calibration standards 

Calibration and quality control solutions were prepared in dimethyl sulfoxide (DMSO) 

from individual 1mM MLN8237 and GDC-0449 stocks. Calibration standards used for 

spiking were prepared over the dynamic range 20-100000nM by serial dilution of the 

calibration stock solution with DMSO to give final matrix concentrations of 2-

10000nM. QC standards were also prepared at 250, 2500, 7500 and 25000nM by serial 

dilution of the quality control stock solution with DMSO to give a final concentration of 

25, 250, 750 and 2500nM. A stock solution of Olomoucine (Sigma-Aldrich, MO, USA) 

internal standard (IS) was prepared in DMSO at a concentration of 1mM and further 

diluted in methanol to give a working IS solution of 250nM for quenching. 

4.2.11.2 Plasma and tissue sample preparation 

Plasma and tissue samples were thawed on ice. All tissues were homogenised in either 

3 or 5ml g–1 PBS and kept on ice. 100µl aliquots of untreated mouse plasma or tissue 

homogenates were spiked with 10µl of the appropriate calibration or QC standard 

solutions. 100µl aliquots of the unknown samples were spiked with 10µl DMSO. Where 

necessary, plasma and tissue samples were diluted with untreated (blank) matrix. 

4.2.11.3 LC-MS/MS method 

Extracted plasma and tissue samples were analysed by LC-MS/MS for the 

quantification of MLN8237, GDC-0449 and Olomoucine (Sigma-Aldrich, MO, USA) using 

a Waters Xevo TQ-S mass spectrometer (Waters, MA, USA) coupled with an Acquity 

ultra-performance liquid chromatography UPLC H-class system (Waters, MA, USA). 

Chromatography was carried out using a Phenomenex (Macclesfield, UK) C18 X-B 

column (2.6µm, 50mm x 2.1mm ID) with a gradient mobile phase consisting of 0.1 % 

formic acid and methanol. 2ml of sample was injected on to the column using a flow 

rate of 0.6ml min–1 with a 5 minute run time. Both analytes and IS were ionized using 
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electrospray interface in positive ion mode. Detection was via tandem mass 

spectrometry (MS/MS) in the multiple reaction monitoring (MRM) mode. The 

transitions m/z 519.12 – 139.04, 421.11 – 110.87 and m/z 299.19 – 177.29 were 

monitored for MLN8237, GDC-0449 and IS respectively. Data acquisition was 

performed using Targetlynx, version 4.1 (Waters, MA, USA). The assay was linear over 

the range 2-10,000nM. 
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4.3 Results 

4.3.1 Trp53 and MYCN interact directly in medulloblastoma 

development and generate locally aggressive tumours 

The observations reported in Chapter 3 (section 3.4), alongside other medulloblastoma 

mouse models reported by Kawauchi et al., (2012) and Pei et al., (2012, section 

1.8.8.3.3), suggested that upregulation of MYC/MYCN interacts with inactivation of 

p53 to form aggressive types of medulloblastoma. To investigate this hypothesis 

further we elected to examine the Trp53 status of medulloblastomas arising in the 

MYCN-driven GTML (Glt1–tTA/TRE–MYCN–Luc) mouse model. This model is an 

established doxycycline (dox) regulatable transgenic MYCN-driven model (Swartling et 

al., 2010). Medulloblastoma tumours in this immunocompetent model are 

spontaneously arising, retain their appropriate anatomical and developmental context, 

and have an intact blood brain barrier.  

Acquired somatic Trp53 mutations within the DNA binding domain of the gene, which 

were comparable to the location of mutations in human medulloblastomas, were 

found in 10/12 of GTML mice examined (83%, Table 3.7 and Table 4.1). Tumours in 

these mice were also non-metastatic, but locally aggressive, with LCA histology (Figure 

4.2), reflective of the clinicopathological features noted in the human 

medulloblastomas with combined p53-MYC defects (Table 3.11). 

 

Figure 4.2  GTML mice demonstrate aggressive histopathological features. (i) H&E 
stain of tumours arising from GTML mice with a spontaneous Trp53 mutation showing 
LCA histology and a high proliferation rate on Ki-67 staining (ii). 
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Table 4.1  Spontaneously developing Trp53 mutations in GTML mice.  Table 
demonstrating the nature of somatic Trp53 mutations acquired in GTML mouse 
including nucleotide change, amino acid change and equivalency of mutation to those 
observed in human cancers. 

 

To examine the interaction between MYCN and Trp53, and test whether tumour 

growth was dependent on the dysregulation of both these genes, GTML mice, deficient 

for p53 from the outset were developed. This novel model was generated by replacing 

the endogenous Trp53 gene with a knock-in allele encoding a 4-hydroxytamoxifen (4-

OHT) regulatable p53-ERTAM fusion protein (Christophorou et al., 2005). The function of 

this fusion protein was completely dependent on the administration of ectopic 

tamoxifen (tam) which is metabolised to 4-OHT, allowing p53 to be readily activated or 

inactivated. Consequently, this GTML mouse model had both a MYCN regulatable (dox) 

and Trp53 (4-OHT) regulatable allele, enabling the interaction of these two genes to be 

studied directly.  

The three GTML genotypes developed, (GTML, GTML/Trp53KI/WT and GTML/Trp53KI/KI), 

were next investigated for tumour penetrance and survival. Both GTML/Trp53KI/WT and 

GTML/Trp53KI/KI mice, when compared to GTML mice alone, demonstrated significantly 

increased penetrance and reduced OS (p=0.0022 and p < 0.0001, respectively, Log-rank 

test, Figure 4.3), with GTML/Trp53KI/KI displaying 100% tumour penetrance (43/43). 

Mouse ID Tissue cDNA Protein

10519 Tumor 734G>GA Arg245Arg/His 1544 (Arg248)
#

10519 Brain None detected Wild type na

10087 Tumor 404C>CT Ala135Ala/Val 110 (Ala138)

10087 Brain None detected Wild type na

26826 Tumor 464G>GC Arg155Arg/Pro 264 (Arg158)

26826 Brain None detected Wild type na

10933 Tumor 464G>GC Arg155Arg/Pro 264 (Arg158)

10933 Brain None detected Wild type na

14658 Tumor 701T>C Met234Thr 214 (Met237)

14658 Brain None detected Wild type na

11185 Tumor 839G>T, 841A>C Arg280Leu, Thr281Pro 103 (Arg283), 30 (Thr284)

14634 Tumor 382_405 het_delAATAAGCTATTCTGCCAGCTGGCG Wild type na

10545 Tumor 577C>CG Arg193Arg/Gly 230 (Arg196)

19780 Tumor 734G>A Arg245His 1544 (Arg248)

2737 Tumor 526C>T His176Tyr 341 (His179)

9303 Tumor None detected Wild type na

9303 Tail None detected Wild type na

11153 Tumor None detected Wild type na

Somatic TP53  mutation 

count in human cancer*

Sequence variant

*Soussi et al. , 2006 
#Equivalent human p53 amino acids are shown in parenthesis.  

Ala, Alanine; Arg, Arginine; Cys, Cysteine; Gly, Glycine; His, Histidine; Leu, Leucine; Met, Methionine; Pro, Proline; Thr, Threonine; Tyr, 

Tyrosine; Val, Valine; na, not applicable.
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Figure 4.3  Kaplan-Meier survival curves for GTML, GTML/Trp53KI/WT and 
GTML/Trp53KI/KI mice. Green line, GTML (n=50); blue line, GTML/Trp53KI/WT (n=83); red 
line, GTML/Trp53KI/KI (n=43). p, Log rank test. 

 

Similar to the clinicopathological features noted in the human medulloblastomas with 

combined p53-MYC defects, and GTML mice with spontaneously arising Trp53 

mutations (Table 3.11 and Figure 4.2), tumours from GTML/Trp53KI/WT and 

GTML/Trp53KI/KI displayed locally aggressive pathological features with LCA and a high 

proliferation rate (Figure 4.4). 

 

Figure 4.4  GTML/Trp53KI/KI mice demonstrate aggressive histopathological features.  
(i) H&E stain of tumours arising from GTML/Trp53KI/KI showing LCA histology and a high 
proliferation rate on Ki-67 staining (ii). 
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These tumours, as already described for GTML mice in section 1.8.8.3.3, displayed 

expression profiles which clustered with human MBGroup3 expression profiles (Figure 

4.5).  

 

Figure 4.5  Subgroup classification using a support vector machine (SVM) trained on 
expression profiles of human medulloblastomas. Principal component analysis of 
murine and human medulloblastomas demonstrated that all 3 GTML genotypes 
(GTML, GTML/Trp53KI/WT and GTML/Trp53KI/KI) clustered with human MBGroup3. (For 
descriptions of the other mouse models and expression analysis see sections 1.8.8 and 
4.2.10 respectively.) 
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4.3.2 Tumour maintenance is dependent on Trp53 and MYCN status in 

GTML/Trp53KI/KI mice 

We next wanted to investigate in this regulatable model, whether tumour 

maintenance was reliant on both MYCN upregulation and Trp53 downregulation. 

Firstly, in GTML/Trp53KI/KI neurospheres, suppression of MYCN expression with dox, 

and reactivation of p53 with tam separately lead to a significant reduction in the 

number of spheres formed, and decreased overall growth (p<0.0001, unpaired t test, 

Figure 4.6). Reduced expression of MYCN, and induction of p53 target genes (e.g. 

Cdkn1a, Figure 1.6) was also demonstrated following treatment with dox or tam 

respectively by real-time quantitative PCR (Figure 4.7).  

  

 

Figure 4.6  GTML/Trp53KI/KI derived primary cells depend on both loss of p53 function 
and expression of MYCN for survival. Neurosphere formation (left) and growth (right) 
following dox (red) or tam (blue) administration compared to untreated control 
(green). p, unpaired t test. 

 

Figure 4.7  Expression levels of human MYCN after doxycycline (Dox) treatment and 
Cdkn1a and Mdm2 after tamoxifen (Tam) treatment. p, unpaired t test. 
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Secondly, in GTML/Trp53KI/KI mice, administration of dox led to tumour regression, and 

tam inhibited tumour growth revealing a significant survival benefit with both agents 

(p=0.0101, Log rank test, Figure 4.8 and Figure 4.9).  

 

Figure 4.8  Kaplan-Meier curve illustrating the difference in survival of 
GTML/Trp53KI/KI mice treated with doxycycline or tamoxifen. Red line, dox; blue line, 
tam; green line, vehicle. p, Log rank test.  

 

Figure 4.9  GTML/Trp53KI/KI mice demonstrate tumour growth inhibition and 
regression following tamoxifen and doxycycline. Bioluminescence images 
demonstrating tumour progression is observed between day 0-9 in vehicle control, 
tumour inhibition is observed between day 0-9 following the administration of tam 
whereas tumour regression is observed between day 0-9 following the administration 
of dox. 
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Similarly MYCN protein expression was reduced in dox treated mice and Cdkn1a RNA 

expression (p53 target gene) increased following the administration of tam (Figure 

4.10 and Figure 4.11).  

 

Figure 4.10  GTML/Trp53KI/KI mice treated with doxycycline or tamoxifen. Left, H&E of 
vehicle (i) and doxycycline treated (iii) GTML/Trp53KI/KI mice with reduction of MYCN 
expression in doxycycline (iv) treated GTML/Trp53KI/KI versus vehicle (ii). Right,  RNA 
scope demonstrating RNA expression of Cdkn1a in negative (i) and positive control (iii) 
followed by increased expression in tam treated GTML/Trp53KI/KI mice (iv) compared to 
vehicle (ii). 

 

Figure 4.11  Fold difference in human MYCN and Cdkn1a RNA levels in 
GTML/Trp53KI/KI mice following treatment with either tamoxifen (tam) or doxycycline 
(dox). p, unpaired t test. 

 

These combined findings validated the dependency of MYCN-driven tumour growth in 

the GTML mouse models on both MYCN and Trp53 defects. As such, the demonstrated 

dependency of tumour growth and maintenance on this critical interaction provided a 

potential opportunity for therapeutic intervention in this aggressive tumour model.  
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4.3.3 Therapeutic targeting and inhibition of Aurora A kinase in 

GTML/Trp53KI/KI mice with MLN8237 reduces tumour growth and 

prolongs survival  

Following this discovery of the reliance of tumour growth and maintenance on the 

Trp53-MYCN interaction in GTML/Trp53KI/KI mice, the second generation Aurora A 

kinase inhibitor MLN8237 was used to treat both GTML/Trp53KI/KI neurospheres and 

mice. MLN8237, described in section 1.5.2.2.1, is a small-molecule that targets the 

kinase domain of Aurora A, which disrupts the complex formed between Aurora A and 

MYCN and leads to the degradation of MYCN. This agent has previously demonstrated 

in vitro efficacy in MYCN-driven neuroblastoma cell lines (Brockmann et al., 2013). In 

our GTML/Trp53KI/KI neurospheres, MLN8237 significantly inhibited growth and 

clonogenic capacity (p<0.001, unpaired t test, Figure 4.12).  

 

Figure 4.12  Limiting dilution assays following treatment with MLN8237.  
Neurosphere formation (left) and growth (right) following MLN8237 (red) or GDC-0449 
(blue) administration compared to untreated control (green). p, unpaired t test. 

 

In vivo administration of the agent also significantly prolonged survival of 

GTML/Trp53KI/KI mice (p<0.0001, Log rank test, Figure 4.13) and, consistent with their 

expression profiles (MBGroup3, Figure 4.5), neither in vitro, nor in vivo treatment with 

the SHH inhibitor GDC-0449, which was selected as a second control agent (section 

1.8.8.2), demonstrated an effect on growth or survival. Tumour growth was also visibly 

inhibited following the administration of MLN8237 in GTML/Trp53KI/KI mice as 

measured by MRI and bioluminescence (Figure 4.14).  
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Figure 4.13  Kaplan-Meier plot illustrating prolonged survival in GTML/Trp53KI/KI mice 
treated with MLN8237. Red line, MLN8237; blue line, GDC-0449 (SHH inhibitor) and 
green line, vehicle. p, Log rank test.  

 

 

Figure 4.14  Inhibition of tumour growth in GTML/Trp53KI/KI mice following treatment 
with MLN8237. Left, MRI images demonstrate no tumour growth on day 40 following 
administration of MLN8237. Right, bioluminescence confirms no tumour growth 
following MLN8237 compared to vehicle control. 

 

Importantly MLN8237 penetrated the blood brain barrier and demonstrated target-

dependent activity, as its administration in GTML/Trp53KI/KI mice led to reductions in 

MYCN and Ki-67 expression and accumulation of phosphorylated histone H3 in G2 and 

mitosis because of Aurora A inhibition (Figure 4.15). 
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Figure 4.15  Target dependent activity of MLN8237 in GTML/Trp53KI/KI mice. H&E of 
vehicle (i) and MLN8237 treated (v) GTML/Trp53KI/KI mice with reduction of MYCN 
expression in MLN8237 (vi) treated GTML/Trp53KI/KI mice versus vehicle (ii). Reduction 
of Ki-67 following MLN8237 administration (vii) compared to vehicle (iii) and increased 
levels of phosphorylated histone H3 (viii) due to Aurora A kinase inhibition compared 
to vehicle alone (iv).  
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4.4 Discussion 

4.4.1 GTML/Trp53 KI/KI mice model locally aggressive 

medulloblastoma disease 

GTML mice provide an important model for understanding the biology of p53-MYC 

interactions in medulloblastoma. The initial discovery of spontaneous Trp53 mutations 

in GTML mice, followed by the direct modelling of this interaction in the novel 

GTML/Trp53KI/WT and GTML/Trp53KI/KI mice validated the observations in chapter 3; 

MYCN and Trp53 defects interact directly to generate tumours (section 4.3.1). 

Importantly, tumours sampled from GTML/Trp53KI/KI faithfully modelled the 

clinicopathological features of the locally aggressive disease witnessed in the human 

relapsed tumours with combined p53-MYC defects. The murine tumours were non-

metastatic, and displayed LCA histology with high proliferation rates (Figure 4.4). 

Furthermore, the regulatable nature of both the MYCN and Trp53 alleles enabled us to 

demonstrate the reliance of tumour growth and maintenance on disruption of both 

MYCN and Trp53 dysregulation (section 4.3.2).  

4.4.2 Aurora A kinase inhibition is a promising strategy for indirect 

targeting of MYCN in medulloblastoma 

The indirect targeting of MYCN with the Aurora A kinase inhibitor, MLN8237, 

significantly prolonged survival in GTML/Trp53KI/KI derived neurospheres and mice 

(Figure 4.12 and Figure 4.13). MLN8237 demonstrated target-dependent activity 

leading to a reduction in MYCN expression, alongside a reduction in cell proliferation 

and accumulation of phosphorylation of histone H3 (Figure 4.15). Importantly, 

MLN8237 penetrated the blood brain barrier, which is intact in this mouse model. 

These pre-clinical trials provided proof-of-concept for the potential therapeutic use of 

Aurora A kinase inhibition in MYCN-driven human medulloblastomas.  

4.4.3 Therapeutic reactivation of p53 as a potential strategy in 

medulloblastoma 

The dependency of tumour growth and maintenance on loss of function of p53 

demonstrated in this study (section 4.3.2) suggests an additional opportunity for 

therapies that reactivate wild type p53 by inhibiting the p53-MDM2 interaction (Figure 

1.6). One group of agents which target the p53-MDM2 interaction are nutlins 
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(discussed in section 1.5.1.1). Nutlins have already been shown to have anti-

tumorigenic activity in vitro and in vivo in a variety of paediatric tumour types including 

medulloblastoma cells lines (Kunkele et al., 2012; Carol et al., 2013; Van Maerken et 

al., 2013). However, this therapeutic trial was not possible in the GTML/Trp53KI/KI 

model as nutlin therapy requires wild type p53 to be effective. Use of this agent in 

medulloblastoma, including relapsed medulloblastoma, where the majority of tumours 

in this study had functioning wild type p53 at relapse (15/22, 68%, Table 3.5) holds 

promise as an alternative targeted intervention. 

 

  



178 
 

4.5 Summary 

Here we describe a novel mouse model which faithfully mimics key clinicopathological 

and molecular features identified in an extremely poor prognosis subgroup of patients 

with relapsed medulloblastoma. Utilising the GTML/Trp53KI/KI mouse model we have 

validated the dependency of tumour growth and maintenance on both MYCN and 

Trp53 disruption, and successfully targeted MYCN indirectly with MLN8237, a second 

generation Aurora A kinase inhibitor. MLN8237 crosses the blood brain barrier, and is 

now an attractive targeted therapy for MYCN driven relapsed medulloblastoma. 

Moreover, establishment of it wider relevance in all MYCN driven tumours, including 

medulloblastoma at diagnosis, is essential. This study further emphasises that 

modelling and targeting the evolving biology of medulloblastoma at relapse is vital to 

improve outcomes in this devastating and almost always fatal disease. 
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Chapter 5.  Identification of the T-box and Homeobox 

families as candidate epigenetically regulated genes 

which play a role in MBGroup4 at relapse 
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5.1 Introduction 

Epigenetic aberrations are increasingly implicated in the development and 

maintenance of cancer. The four best defined epigenetic mechanisms which can 

regulate the level of gene expression are; DNA methylation, histone modifications, 

chromatin remodelling and miRNAs and their role in promoter methylation (section 

1.4.5). While DNA methylation is the most studied epigenetic feature in 

medulloblastoma, recent advances through WGS and WES techniques have also 

discovered subgroup-specific mutations in genes associated with chromatin 

remodelling and histone modifications which are discussed in detail in section 1.8.8 

(Parsons et al., 2011; Jones et al., 2012; Northcott et al., 2012a; Pugh et al., 2012; 

Robinson et al., 2012). 

DNA methylation patterns in medulloblastoma reproducibly and reliably identify the 

four consensus molecular subgroups observed in the disease, and have been proposed 

to reflect the developmental origins for each of the four subgroups (Gibson et al., 

2010; Grammel et al., 2012). Importantly, specific methylation events have been 

reported to be prognostically and biologically relevant in the disease. Recent examples 

of methylation markers which improve prognostication are MXI1 and IL8; 

hypomethylation of both these genes in non-MBWNT tumours is associated with a poor 

prognosis (Schwalbe et al., 2013b). In addition, individual methylation events have 

been reported to show negative and positive correlations with gene expression in 

medulloblastoma, implying a biologically important role in the epigenetic regulation of 

gene expression in the disease. The most recent example is aberrant DNA methylation 

upstream of the TSS of TERT (detailed in section 1.4.7) which positively correlates with 

gene expression in MBSHH (Lindsey et al., 2014). 

DNA methylation patterns have not previously been examined at relapse in 

medulloblastoma. Consequently the utility of DNA methylation patterns as either 

prognostic biomarkers, or biologically important drivers of tumour development at 

relapse has not been explored. This chapter focuses on characterising, for the first 

time, DNA methylation patterns and events in recurrent disease. Here, DNA 

methylation in paired samples taken from tumours at both diagnosis and relapse are 

profiled on the Infinium methylation 450K array (Illumina Inc. San Diego, CA, USA), and 

analysed to identify DNA methylation features that are either acquired at disease 
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recurrence or may be predictive of relapse. Events identified are subsequently 

correlated with expression in an independent medulloblastoma cohort for which DNA 

methylation and expression profiles are available (unpublished data, PBTG), to 

distinguish epigenetic events with a potential regulatory role in gene expression at 

relapse. Any new discoveries will provide the platform for future functional work to 

define the biological mechanisms underlying these findings, and their utility as either 

prognostic biomarkers or therapeutic targets at relapse.  
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5.2 Aims 

The aims of this chapter are to; 

 

 Assemble a cohort of tumour samples taken at medulloblastoma relapse 

alongside their paired diagnostic counterpart. 

 

 Interrogate the DNA methylation patterns of this cohort utilising the Infinium 

methylation 450K array (Illumina Inc. San Diego, CA, USA). 

 

 Analyse this dataset both cohort-wide, and by molecular subgroup, to identify 

single CpG residue events and regional DNA methylation patterns that are 

either acquired or maintained at relapse. 

 

 Interpret these discoveries utilising an independent methylation-expression 

dataset to investigate the correlation of DNA methylation events identified at 

relapse with gene expression. 

 

 Provide a platform for future functional work aimed at defining the biological 

mechanisms underlying these epigenetic events and exploring their utility as 

either prognostic biomarkers or therapeutic targets. 
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5.3 Materials and methods 

5.3.1 DNA extraction and quality control 

DNA from tumour and normal cerebellar tissue was extracted as described in section 

2.1.1. Where DNA was of sufficient quantity and quality, as determined by the Qubit 

fluorometer (section 2.1.2.2), samples were analysed on the Infinium methylation 

450K array at the Wellcome Trust Clinical Research Facility, University of Edinburgh, 

UK, according to the manufacturer’s protocols (section 5.3.6, Illumina Inc. San Diego, 

CA, USA). Sample requirements for this array were a DNA concentration of ≥50ng/µl 

and total amount of 2µg extracted from FFPE material or 750ng extracted from frozen 

tissue. FFPE sample requirements were greater to allow for degraded FFPA DNA to be 

restored using the Infinium HD FFPE restore protocol (Illumina Inc. San Diego, CA, 

USA). 

5.3.2 Assembly of a paired relapse cohort of medulloblastoma 

tumours sampled at diagnosis and relapse 

The assembly of the cohort of paired tumours sampled at both diagnosis and relapse 

has been described in detail in section 3.3.1. In total, twenty-nine tumours sampled at 

relapse and twenty-six counterpart tumours sampled at diagnosis were available for 

profiling on the Infinium methylation 450K array (Illumina Inc. San Diego, CA, USA). 

Twenty-seven tumour samples taken at relapse and twenty-two tumour samples taken 

at diagnosis met the DNA requirements for this array (total number of paired samples 

= 20). To expand this cohort, seven further pairs of tumours sampled at diagnosis and 

relapse, kindly provided by Dr Michael Taylor and Prof Stefan Pfister, (Arthur and Sonia 

Labatt Brain Tumour Research Centre, Hospital for Sick Children, University of Toronto, 

Toronto, Canada and Department of Paediatric Haematology and Oncology, Heidelberg 

University Hospital, Heidelberg, Germany, respectively), were profiled. 

5.3.3 Assembly of a control cohort of medulloblastoma tumours 

sampled at diagnosis for the assessment and comparison of DNA 

methylation events between diagnosis and relapse 

A control cohort of medulloblastoma samples taken at diagnosis (n=139) was 

assembled and utilised for a comparative analysis to identify DNA methylation events 

enriched or novel in relapse disease. These samples were collated from the Newcastle 
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Medulloblastoma (NMB) cohort. Entry criteria for the cases were; successful analysis 

on the Infinium methylation 450K array, availability of complete clinical data and 

molecular subgrouping data, and DNA available for further validation work. To assess 

the suitability of this cohort, clinical and demographic features were assessed and a 

survival analysis performed (section 2.8) to ensure the cohort was reflective and 

representative of medulloblastomas sampled at diagnosis. The results of this analysis 

are reported below (Table 5.1, Figure 5.1-Figure 5.5). 

 

Table 5.1  Clinicopathological features and molecular subgroup demographics of the 
Infinium methylation 450K array control cohort. All clinicopathological and 
demographic features are shown alongside their expected distribution as reported in 
historic studies. # Historic studies (McManamy et al., 2007; Kool et al., 2012; Lannering 
et al., 2012). CLA, classic histology; DN, desmoplastic/nodular histology; LCA, large 
cell/anaplastic histology; M-, M0 disease; M+, M1+ disease; GTR, gross total resection; 
STR, subtotal resection.  

As demonstrated in Table 5.1, the demographic features of patients included in the 

control cohort reflected the age and gender distribution observed in larger historic 

independent cohorts. There was an equivalent male predominance (1.6:1, 

male:female) in the present cohort and the majority of patients were diagnosed 

between the ages of 4-16 years (64% (historic studies) versus 70% (present study)). 

Male 585/952 (61%) 85/139 (61%)

Female 367/952 (39%)  54/139 (39%)

Male:female ratio 1.6:1 1.6:1

Age range in years 0.3-52 0.2-43

Infants (<4 years) 167/943 (17%) 35/139 (25%)

Children (4-16 years) 599/943 (64%) 97/139 (70%)

Adults (>16 years) 177/943 (19%) 7/139 (5%)

CLA 938/1277 (74%) 96/134 (71%)

 DN 183/1277 (14%) 17/134 (13%)

 LCA 156/1277 (12%) 21/134 (16%)

M- 608/834 (73%) 67/118 (57%)

M+ 226/834 (27%) 51/118 (43%)

GTR 267/317 (84%) 95/122 (78%)

STR 50/317 (16%) 27/122 (22%)

MBSHH 153/550 (28%) 45/139 (32%)

MBWNT 60/550 (11%) 14/139 (10%)

MBGroup3 149/550 (27%) 29/139 (21%)

MBGroup4 188/550 (34%) 51/139 (37%)

Historic studies # Present study

Diagnosis

Resection

Molecular 

subgroup

Clinicopathological features                         

and molecular subgroup 
Control cohort

Gender

Age

Pathology 

Metastatic 

stage
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Similarly, pathological variant, resection status and molecular subgroup frequencies 

within the present control cohort were in line with the large independent cohorts 

reported here. However, in the present control cohort there was a greater number of 

metastatic cases observed (27% (historic studies) versus 43% (present study)) which 

was most likely due to many of the cases (n=21) not having their CSF sampled and 

therefore unable to be categorised as M0 or M1 disease (Table 1.6) and excluded from 

this comparison. 

 

Figure 5.1  Illustrative example of age distribution within the four molecular 
subgroups within the Infinium methylation 450K array control cohort (left) and an 
independent historic study (right). Historic study (Northcott et al., 2011b). 

 

As illustrated in Figure 5.1, MBSHH showed a peak in infancy and teenagers in the 

control cohort (left panel) similar to that of the independent historic study (right 

panel). In both cohorts MBWNT was most commonly seen between 6-10 years, MBGroup3 

was observed in infants whereas MBGroup4, the largest subgroup, was witnessed 

throughout childhood (Northcott et al., 2011b). These comparisons demonstrated that 

the subgroup-specific age distribution within the independent Infinium methylation 

450K array control cohort was reflective of medulloblastoma tumours sampled at 

diagnosis. 
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Figure 5.2  Gender distribution by molecular subgroup in the Infinium methylation 
450K array control cohort (left) and an independent historic study (right). Historic 
study (Kool et al., 2012). 

 

As illustrated in Figure 5.2, the bar graphs demonstrated equal male: female ratio in 

MBWNT and MBSHH and male predominance in MBGroup3 and MBGroup4 in both the 

Infinium methylation 450K array control cohort and the historic study (Kool et al., 

2012). 

 

Figure 5.3  Histology distribution by molecular subgroup in the Infinium methylation 
450K array control cohort (left) and an independent historic study (right). Historic 
study (Kool et al., 2012). CLA, classic histology; DN, desmoplastic/nodular histology; 
LCA, large cell/anaplastic histology.  
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In Figure 5.3 the bar graphs demonstrated the expected pathological variants by 

molecular subgroup in the Infinium methylation 450K array control cohort when 

compared to the historic study (Kool et al., 2012). There was an enrichment of DN in 

MBSHH, predominantly CLA in MBWNT, MBGroup3 and MBGroup4 and a significant presence 

of LCA in MBGroup3.  

 

Figure 5.4  Metastatic disease by molecular subgroup in the Infinium methylation 
450K array control cohort (left) and an independent historic study (right). Historic 
study (Kool et al., 2012). M-, M0 disease; M+, M1+ disease. 

 

Figure 5.4 demonstrates less metastatic disease in MBWNT but enrichment of 

metastatic disease in MBGroup3 and MBGroup4 for both cohorts. Overall there was an 

increased number of patients presenting with metastatic disease in the Infinium 

methylation 450K array control cohort, which was most likely reflective of the 

incomplete staging of 21 patients who were excluded from this comparison as they 

could not be classified as either M0 or M1 disease (Table 5.1). 
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Figure 5.5  Kaplan-Meier curve illustrating the overall survival difference between 
molecular subgroups (top) and metastatic disease (bottom) in the Infinium 
methylation 450K array control cohort (left) and an independent historic study 
(right). Historic study (Kool et al., 2012). M-, M0 disease; M+, M1+ disease. 

 

As demonstrated in Figure 5.5, MBWNT had a good overall survival rate in both the 

Infinium methylation 450K array control cohort (top left) and in the independent 

historic cohort (top right). Similarly metastatic disease conveyed a poorer prognosis in 

both cohorts (bottom panels).  

 

Overall, the control cohort was reflective and representative of medulloblastoma at 

diagnosis when compared to large historic studies (McManamy et al., 2007; Northcott 

et al., 2011b; Kool et al., 2012; Lannering et al., 2012), and demonstrated the 

appropriate subgroup-specific clinicopathological features (Table 5.1, Figure 5.1 - 

Figure 5.5). Age distribution amongst the subgroups revealed a bimodal trend in 

MBSHH, enrichment of MBGroup3 in infants and the prevalence of both MBWNT and 
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MBGroup4 in childhood (Figure 5.1). There was an enrichment of males in both MBGroup3 

and MBGroup4 consistent with other datasets in medulloblastoma (Figure 5.2). Similarly, 

pathology variants were represented appropriately within the four subgroups, with DN 

witnessed most frequently in MBSHH, CLA histology predominating in MBWNT, and 

MBGroup3 showing the highest number of LCA cases (Figure 5.3). Metastatic disease was 

observed most frequently in MBGroup3 (Figure 5.4), consistent with the current 

understanding of the disease (Taylor et al., 2012). Finally, survival relationships with 

molecular subgroup and metastatic disease were as expected, with MBWNT having the 

best prognosis, and metastatic disease demonstrating a poor overall survival (Figure 

5.5). 

5.3.4 Selection and assembly of a cohort for the assessment of DNA 

methylation patterns and their correlation with gene expression 

levels 

Subgroup-specific analysis of DNA methylation patterns, as profiled on the Infinium 

methylation 450K array, focused on MBGroup4 as this was the largest, uniformly treated 

(upfront CSI), molecular subgroup within the paired relapse cohort. In addition, 

proceeding with the analysis in MBGroup4 alone, controlled for the DNA methylation 

heterogeneity observed between the four molecular subgroups (Hovestadt et al., 

2013; Schwalbe et al., 2013b). To analyse DNA methylation patterns and relate them 

to gene expression, an independent NMB cohort of medulloblastomas with matched 

expression and DNA methylation data (HiSeq 2000 RNA-seq and Infinium methylation 

450K array respectively, Illumina Inc., CA, USA) was used to assess the correlation 

between methylation and expression. This aspect of the analysis was performed by Dr 

Sirintra Nakjang (PBTG). In brief, Pearson’s product-moment correlation coefficient (r) 

was calculated to assess the strength of relationships between DNA methylation at 

specific CpG residues of interest and their associated gene expression levels. These 

analyses were performed across all four molecular subgroups and in MBGroup4 alone. A 

strong positive relationship was defined by a correlation coefficient r value > 0.75 and 

a p value < 0.05; a strong inverse relationship was defined by an r value < -0.75 and a p 

value < 0.05. The clinicopathological, demographic features and molecular subgroup 

distribution of this cohort are detailed in Table 5.2, and represent the expected disease 

features and distribution of all these parameters at diagnosis. 
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Table 5.2  Clinicopathological features and molecular subgroup overview of the 
control cohort for the assessment of DNA methylation patterns and their correlation 
with gene expression.  All clinicopathological and demographic features are shown 
alongside their expected distribution as reported in historic studies. # Historic studies 
(McManamy et al., 2007; Kool et al., 2012; Lannering et al., 2012). CLA, classic 
histology; DN, desmoplastic/nodular histology; LCA, large cell/anaplastic histology; M-, 
M0 disease; M+, M1+ disease; GTR, gross total resection; STR, subtotal resection.  

 

 As demonstrated in Table 5.2, the demographic features of patients included in the 

control cohort reflected the age and gender distribution observed in larger historic 

independent cohorts. There was a male predominance observed in both cohorts 

(1.6:1, male:female (historic studies) versus 1.8:1, male:female (present study)). The 

majority of patients in both cohorts were diagnosed between the ages of 4-16 years 

(64% (historic studies) versus 70% (present study)). Similarly, the frequency and 

distribution of pathological variants, metastatic disease, resection status and 

molecular subgroup within the present control cohort were representative of 

medulloblastoma tumours sampled at diagnosis, when compared alongside the large 

independent historic cohorts reported here.   

Male 585/952 (61%) 109/168 (65%)

Female 367/952 (39%)  59/168 (35%)

Male:female ratio 1.6:1 1.8:1

Age range in years 0.3-52 0.2-43

Infants (<4 years) 167/943 (17%) 37/168 (22%)

Children (4-16 years) 599/943 (64%) 118/168 (70%)

Adults (>16 years) 177/943 (19%) 13/168 (8%)

CLA 938/1277 (74%) 115/157 (74%)

 DN 183/1277 (14%) 21/157 (13%)

 LCA 156/1277 (12%) 21/157 (13%)

M- 608/834 (73%) 97/151 (64%)

M+ 226/834 (27%) 54/151 (36%)

GTR 267/317 (84%) 120/148 (81%)

STR 50/317 (16%) 28/148 (19%)

MBSHH 153/550 (28%) 41/168 (25%)

MBWNT 60/550 (11%) 19/168 (11%)

MBGroup3 149/550 (27%) 39/168 (23%)

MBGroup4 188/550 (34%) 69/168 (41%)

Present studyHistoric studies #

Diagnosis

Resection

Molecular 

subgroup

Clinicopathological features                         

and molecular subgroup 
Control cohort

Gender

Age

Pathology 

Metastatic 

stage
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5.3.5 Selection and assembly of a control cohort of normal cerebella  

DNA methylation of normal brain tissue is known to vary according to the 

developmental stage of the CNS (section 1.4.6.1.1). To identify tumour-specific DNA 

methylation events in medulloblastoma, a cohort of DNA samples (n=17) from normal 

cerebella at different stages of development, extracted as described in section 2.1.1, 

was collated and analysed on the Infinium methylation 450K array.  

 

Table 5.3 Cohort of normal cerebella tissue samples.  Infant, <3 years old; child 3-16 
years old; adult >16 years old. CB, cerebellum. 

  

5.3.6 The Infinium methylation 450K array 

As discussed in section 1.4.6.1, DNA methylation patterns vary widely in cancer. While 

bisulfite genomic sequencing provides the highest resolution for investigating the DNA 

methylome (Bibikova et al., 2011; Dedeurwaerder et al., 2011), the Infinium 

methylation 450K array enables the assessment of >480 000 CpG residues which are 

distributed across the entire human genome. This recent technology provides, at 

present, the best compromise for high throughput, cost effective biomarker and target 

discovery. Importantly, this array interrogates >95% of CpG islands (section 1.4.6.1.1) 

as well as island shores and distant sites (Figure 5.6), and coverage includes  99% of all 

Reference Sequence (RefSeq) genes (Dedeurwaerder et al., 2011). 

Sample number Developmental stage Tissue type

CB1 Foetal Frozen

CB2 Foetal Frozen

CB3 Foetal Frozen

CB5 Infant Frozen

CB6 Infant Frozen

CB7 Adult Frozen

CB9 Adult Frozen

CB11 Infant Frozen

CB13 Infant Frozen

CB15 Unknown Frozen

CB17 Infant Frozen

CB18 Adult Frozen

CB21 Infant Frozen

CB22 Child Frozen

CB23 Child Frozen

CB24 Child Frozen

CB25 Infant Frozen
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Figure 5.6  Distribution of probes across the genome on the Infinium methylation 
450K array.  Island shores are defined as those regions within a 2 kilobase (2kb) 
distance of a CpG island (Irizarry et al., 2009). Figure adapted from Dedeurwaerder et 
al., (2011). 

 

5.3.6.1 The Infinium methylation assay 

The Infinium DNA methylation assay combines DNA bisulfite conversion and whole 

genome amplification (WGA) as sample preparation, before directly capturing and 

scoring each individual CpG locus on the array. Bisulfite treatment introduces single 

nucleotide changes within the DNA that are dependent on the methylation status of 

cytosine residues, as demonstrated in Figure 5.7, which enables the analysis of DNA 

methylation patterns (Krueger et al., 2012).  
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Figure 5.7 DNA bisulfite conversion.  Schematic demonstrating the cytosine (C) to 
thymine (T/U) polymorphism that is introduced at unmethylated cytosine nucleotides 
alone, allowing for quantitative genotyping of this polymorphism. CH3, methylated 
residue. 

 

Following bisulfite conversion, DNA is denatured with sodium hydroxide (NaOH), 

neutralised and isothermally amplified over 20-24 hours to produce several thousand 

copies of the converted DNA. The amplified DNA sample is enzymatically fragmented, 

precipitated in 100% isopropanol and centrifuged at 3000 rpm for 20 minutes at 4°C to 

facilitate DNA collection. Precipitated DNA is then resuspended in hybridisation buffer, 

dispensed onto BeadChips and incubated overnight. Any non-specifically hybridised or 

unhybridised DNA is washed off and the oligonucleotides on the BeadChip undergo 

single bp extension, incorporating labels which can then determine the methylation 

levels of the CpG loci of interest (Illumina, 2010; Bibikova et al., 2011; Dedeurwaerder 

et al., 2011). 
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5.3.6.2 Infinium I and II assay probes 

There are two different types of probes on the Infinium methylation 450K platform; 

type I assay probes and type II assay probes, which are illustrated and described in 

Figure 5.8. The Infinium II probe is preferentially used on the array (72%), however in 

high density CpG regions such as islands, type I probes (28%) are used. This is due to 

the fact that type II probes can have up to three CpG sites corresponding to one probe. 

Consequently in regions of the genome which are densely populated with CpG 

residues, specificity and hybridisation kinetics would be deleteriously affected if type II 

probes were used and data quality would suffer (Maksimovic et al., 2012).  

 

Figure 5.8  The Infinium methylation 450K array assay scheme.  Infinium I assay bead 
type; two bead types correspond to each locus, one for methylated cytosine (C) 
residues, one for unmethylated (T) bisulfite converted residues. Both bead types are 
detected in the same colour channel. This 50bp probe design assumes that the 
methylation state of the interrogated site corresponds to that of any other underlying 
adjacent sites. Infinium II assay bead type; one bead type corresponds to each locus 
which is detected in two colours. ‘A’ is incorporated at an unmethylated site (left) and 
‘G’ at a methylated site (right). The Infinium II probe design can contain up to three 
CpG loci. Figure adapted from Bibikova et al., 2011. 



195 
 

Technical differences in performance and a divergence of β-values between the 

Infinium I and Infinium II assays have been reported (Bibikova et al., 2011; 

Dedeurwaerder et al., 2011; Maksimovic et al., 2012; Teschendorff et al., 2013). The 

dynamic range of β-values reported by the Infinium II probes is reduced, with less 

accuracy and reproducibility of β-values particularly at the extremes of methylation 

(hypo or hyper methylation, Figure 5.9). To overcome this variablity and enable 

analysis of both assays simultaneously, various normalisation techniques have been 

descibed and are discussed below.  

 

 

Figure 5.9  Density plots demonstrating the divergence in β-values between the type I 
and type II assays on the Infinium methylation 450K array. Figure adapted from 
Dedeurwaerder et al., 2011. 

 

5.3.6.3 Peak-based correction  

Peak-based correction (PBC) utilises the peak summits of the β-values to align and 

match the reported β-values from type I and type II probes. β-values are transformed 

to M-values (Figure 5.10), peak summits for both probe types are independently 

determined and raw M-values are corrected using the reference peak summits. The 

corrected M-values are rescaled to the Infinium I assay probe range (greater than the 

Infinium II assay probe) and M-values are converted back to β-values. As illustrated in 

Figure 5.11, this correction provides a better distribution of type II assay probe β-

values, which align more closely to the distribution of type I assay probes 

(Dedeurwaerder et al., 2011). 
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Figure 5.10  Conversion of β-values to M-values.  M, methylated signal; U, 
unmethylated signal. 

 

 

Figure 5.11  Density plots demonstrating the improved alignment between type I and 
type II assays reported β-values following peak-based correction.  Figure adapted 
from Dedeurwaerder et al., 2011. 

 

5.3.6.4  Subset-quantile within array normalisation 

Subset-quantile within array normalization (SWAN) is a technique available within the 

minfi package written for R (R Development Core Team, 2014) and downloadable from 

Bioconductor.org. It is a technique which has evolved from normalisation methods 

used for microarray expression platforms and applies a within-array quantile 

normalisation to match the type I and type II probes β-value distribution. This method 

is designed to remove technical variation whilst preserving any true biological 

differences observed between the two probe types. Biological differences between the 

two probes will occur because of their differences in distribution (section 5.3.6.2). Type 

I Infinium probes are more readily found in CpG dense regions such as islands, which 

will often have differing methylation states when compared to low density CpG regions 

more readily corresponding to type II Infinium probes. As a result of this unequal 

distribution across the genome, standard normalisation techniques cannot be applied. 
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To overcome this difficulty the SWAN algorithm randomly selects a subset of Infinium 

type I and II probes deemed to be biologically similar based on their underlying CpG 

content i.e. it selects from a pool of type I and II probes (3n pairs) which have one, two 

or three underlying CpG sites (n=number of probes for each underlying CpG variant). 

The methylated and unmethylated channel from each subset of probe types is 

organised in increasing intensity for each of the 3n pairs. The mean value of each of 

the 3n pairs becomes the mean intensity for that ‘quantile’ and all remaining probes 

are separately normalised to the subset of probes using linear interpolation 

(Maksimovic et al., 2012). This algorithm again provides a better distribution of type II 

assay probe β-values, illustrated in Figure 5.12, and supersedes PBC, which struggles to 

normalise probes which are hemi-methylated. 

 

 

Figure 5.12  Differences in β-values before and after subset-quantile within array 
normalisation.  Left panel, varying β-value distribution at unmethylated, hemi-
methylated and methylated CpG sites for type I and type II Infinium assay probes. Right 
panel, improved β-value distribution at unmethylated, hemi-methylated and 
methylated CpG sites for type I and type II Infinium assay probes following SWAN 
procedure. Figure adapted from Maksimovic et al., 2012. 

 

5.3.6.5 Beta-mixture quantile normalisation 

Beta-mixture quantile (BMIQ) normalisation is another technique which uses quantiles 

to match the density distributions of type II probes to that of type I probes. It is an 

assumption free algorithm, which fits fully methylated, unmethylated and hemi-

methylated type II probes to the distribution of type I probes but does not rely on 

normalisation of a subset of probes with biologically similar characteristics. In 
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comparison to the two other methods described, (PBC and SWAN), BMIQ performs 

better, generating a smoother density distribution. In particular PBC struggles when a 

probe does not have a bimodal distribution of β-values as demonstrated in Figure 5.13.  

BMIQ also outperforms in eliminating the type I enrichment bias, which is observed 

due to the greater dynamic range of type I probes providing more statistical power in 

analyses which leads to their over-representation as top ranked probes. The reduction 

in technical variation following BMIQ is superior to PBC and SWAN and crucially does 

not affect biological findings (Teschendorff et al., 2013). Overall, BMIQ normalisation 

outperforms all other current techniques for correcting the type I and II probe 

differences and was selected as the algorithm to utilise in this study. BMIQ was 

downloaded from http://bmiq.googlecode.com/files/BMIQ_1.2.R and is a series of 

functions written for use in R (R Development Core Team, 2014).    

 

Figure 5.13  Comparison of peak-based correction versus beta-mixture quantile 
normalisation.  Illustrative examples of both correction techniques showing a superior 
fit following BMIQ (left) when compared to PBC (right). Figure adapted from 
Teschendorff et al., 2013. 

 

5.3.6.6 Quality control measures 

IDAT data files of the raw β-values were read into R (R Foundation for Statistical 

Computing, 2014) and the BMIQ normalisation was applied (section 5.3.6.5). Quality 

control reports were generated to assess the data and array performance, and batch 

controls were analysed to look for inter-array batch variation. As demonstrated in 

Figure 5.14, inter array batch controls did not vary in their β-value distribution but data 

quality was variable with a proportion (8/65, 12%) of samples not demonstrating a 

http://bmiq.googlecode.com/files/BMIQ_1.2.R
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clear bimodal distribution typically observed for β-values (e.g. Patient 11 at diagnosis, 

Figure 5.14). This related most closely to sample type, with frozen samples 

outperforming the more degraded DNA obtained from FFPE samples. This was not 

uncommon for FFPE samples at this time, with previous experience from within the 

PBTG, observing approximately a 10% failure rate for FFPE samples on historic DNA 

methylation arrays such as the GoldenGate array (Illumina Inc., CA, USA).  

 

Figure 5.14  Quality control report of β-values in the paired relapsed cohort.  Variable 
data quality demonstrated in density plot (top left) and beanplot (bottom). Batch 
control (top right) demonstrating minimal batch variation and good correlation 
between β-values of the same DNA sample on different batches at different times.  

 

5.3.7 Study design 

In order to maximise the opportunities for discovery work from the paired relapse 

cohort methylation dataset, several analytical approaches were conceived and 

undertaken. The workflow pipeline is summarised in Figure 5.15. In brief, analyses 

were undertaken using either a regional approach, looking for widespread changes in 

methylation states across multiple CpG loci, or by identifying single CpG sites which 

show alterations in methylation states between diagnosis and relapse. Individual 
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analyses required control cohorts to compare and correlate against, which were 

introduced in section 5.3.3 - 5.3.5. Each analysis arm will be discussed separately in 

section 5.3.7.1 - 5.3.7.3. 

 

Figure 5.15  Pipeline for analysis of the Infinium methylation 450K array dataset in 
the paired relapse cohort.    
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5.3.7.1 Bumphunter analyses 

DNA methylation events demonstrating relationships with gene expression, have been 

described for both genomic CpG regions such as islands and island shores as well as 

single site events (Irizarry et al., 2009; Jaffe et al., 2012; Lindsey et al., 2014). 

‘Bumphunting’ was first described to look for transcription factor binding sites utilising 

chromatin immunoprecipitation (ChIP). While not directly applicable in this context, 

due to the nature and greater variability of epigenetic ‘bumps’, this technique has 

been adapted for use in DNA methylation analyses (Jaffe et al., 2012).  

In brief, for each genomic location there is a β-value for several individuals. Regression 

analysis for each individual is performed giving one estimate value. Candidate regions 

between the two populations are identified and permutation analyses performed to 

assess uncertainty. The output of this analysis is a table of candidate regions with 

permutation-based family-wise error rates and an assigned p value. The p value should 

be interpreted with caution, and represents the percentage of candidate regions 

obtained from the permutations that are as extreme as the original observation, 

identifying this region as a candidate. Bumphunter is a function within the minfi 

package written for R (R Development Core Team, 2014) and was applied to detect 

differentially methylated genomic regions of interest between two different 

populations. The analysis workflow is depicted in Figure 5.16.  
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Figure 5.16  Analysis pipeline utilising Bumphunter.  Diagnosis and relapse samples 
represent the paired relapse cohort (section 5.3.2). The control cohort is a collection of 
independent tumours sampled at diagnosis and described in section 5.3.3.  

 

Bumphunter can only interrogate two populations; consequently three different 

comparisons were conceived to identify prognostic events (samples taken at diagnosis 

from the paired relapse cohort (n=29) versus control cohort (n=139)), relapse specific 

events (samples taken at relapse from the paired relapse cohort (n=34) versus control 

cohort) and acquired events (samples taken at diagnosis from the paired relapse 

cohort versus samples taken at relapse). This was performed cohort wide as well as in 

a subgroup-specific manner for the two well represented subgroups in these analyses 

(MBSHH, 16/29 (55%) sampled at diagnosis, 17/34 (50%) sampled at relapse, and 

MBGroup4 9/29 (31%) sampled at diagnosis, 11/34 (32%) sampled at relapse). MBWNT 

and MBGroup3 subgroups were limited in numbers and unsuitable for this analysis in 

isolation (both 1/29 (3%) sampled at diagnosis, 2/34 (6%) sampled at relapse).  
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5.3.7.2 RnBeads analyses 

RnBeads is an open source R package (R Development Core Team, 2014) for analysis of 

multiple types of methylation data, including the Infinium methylation 450K array. It is 

capable of analysing genomic regions as well as single CpG sites. Genomic regions, 

inferred from the annotation data are separated into promoter, CpG island and gene 

body locations. RnBeads has the advantage of being able to perform paired analyses, 

for example, compare methylation states of a sample taken at diagnosis with its 

counterpart sample taken at relapse. In this type of analysis the paired Student’s t-test 

is applied and reported alongside a false discovery rate (FDR) adjusted p value. For this 

reason an analysis workflow was developed (Figure 5.17) using RnBeads, to directly 

interrogate in a pairwise manner whether genomic regions acquired changes in 

methylation between diagnosis and relapse. 

 

Figure 5.17  Workflow for RnBeads analyses.  Paired samples at diagnosis and relapse 
samples refer to the paired relapse cohort (section 5.3.2). 
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5.3.7.3 Single probe analysis 

This proof-of-concept analysis was designed to detect methylation events that were 

either acquired at relapse or maintained at relapse. It was hypothesis driven following 

the observations in Chapter 3, where maintained and acquired defects such as TP53 

mutation were significant events observed at relapse. To capture methylation events 

that behaved in an equivalent manner, the following pipeline was conceived and 

implemented.  

 

Figure 5.18  Analysis pipeline to detect single CpG site alterations between diagnosis 
and relapse.  *Description of cataloguing events is discussed in section 5.3.7.3.1. 
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5.3.7.3.1 Cataloguing events with relation to the normal cerebella 

The cerebella cohort (n=17, section 5.3.5) methylation dataset was normalised using 

the BMIQ method (section 5.3.6.5). Probes which contained potentially confounding 

single nucleotide polymorphisms (SNPs) were removed from both the normal cerebella 

and paired relapsed cohort methylation datasets. Invariant probes in the normal 

cerebellum were identified as those probes with a standard deviation from the mean 

of β-value <0.02. This identified a total of 410 350 probes with a consistent 

methylation status in normal tissue which could be used to interrogate tumour-specific 

methylation states in the paired relapsed cohort. Every invariant probe was next 

categorised according to their methylation status at diagnosis and relapse in every 

individual patient matched sample, to determine whether DNA methylation status was 

altered from the normal cerebellum at diagnosis and relapse.  

This created 5 criteria; changed methylation state from abnormal (tumour-specific) to 

normal (same as normal cerebellum) between diagnosis and relapse, changed 

methylation state from normal to abnormal between diagnosis and relapse, 

unchanged normal methylation state between diagnosis and relapse, unchanged 

abnormal methylation state between diagnosis and relapse and NA due to missing 

data. Examples of two of these criteria, acquired events and maintained events 

(changed methylation state from normal to abnormal between diagnosis and relapse 

and unchanged abnormal DNA methylation state between diagnosis and relapse 

respectively) are illustrated in Figure 5.19. The threshold for a change in DNA 

methylation state was set at an absolute β-value difference of 0.4. This was to capture 

true differences in β-values which has previous been defined as a β-value change of 

0.25-0.33 (Maksimovic et al., 2012; Schwalbe et al., 2013b). The R script for this 

analysis is reported in section 9.1:  Appendix I. 
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Figure 5.19  Illustrative example in MBGroup4 of a single CpG residue (probe 
cg05431842) showing acquired and maintained tumour-specific methylation states  
between diagnosis and relapse in relation to the normal cerebella.   Dashed and 
dotted lines connect paired tumours sampled from the same patient at diagnosis and 
relapse.  

 

5.3.7.3.2 Analysis of MBGroup4 methylation events 

Subsequent analyses of the paired relapse cohort methylation dataset focused on the 

MBGroup4 pairs sampled at diagnosis and relapse. The MBGroup4 pairs were the largest, 

uniformly treated (upfront CSI), molecular subgroup, and proceeding with the analysis 

in MBGroup4 alone controlled for the DNA methylation heterogeneity observed between 

the four molecular subgroups (Hovestadt et al., 2013; Schwalbe et al., 2013b). This 

analysis focused on identifying single CpG residues located in either a CpG island or 

promoter region, which demonstrated acquisition or maintenance of a tumour-specific 

DNA methylation state, with regards to the normal cerebella, whilst excluding those 

CpG sites which showed loss of an event and a return to normal methylation state at 

relapse. See section 9.2:  Appendix II for the fully annotated R script of this analysis and 

section 5.4.2 and Figure 5.22 for the output tally table of results.  

5.3.7.3.3 Correlation of methylation events with expression 

An independent cohort with matched DNA methylation and gene expression data was 

utilised to identify DNA methylation events in MBGroup4 that demonstrated a 

relationship with gene expression. This analysis is detailed in section 5.3.4.  
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5.3.7.3.4 Gene ontology analysis 

Candidate genes showing acquired and maintained tumour-specific DNA methylation 

events in MBGroup4 at relapse, which also demonstrated a strong relationship to 

expression (correlation coefficient r value >0.75 or <-0.75, section 5.3.4) were taken 

forward for gene ontology analyses. Ingenuity Pathway Analysis (IPA, Qiagen, Venlo, 

Netherlands) is an interactive software package which performs multiple types of 

analyses, such as pathway analysis, predictive causal analytics, as well as the 

integration and analyses of complex datasets. This software was utilised to identify 

relationships between candidate genes, pathway interactions and predict downstream 

effects of the upregulation or downregulation of a gene of interest.  
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5.4 Results 

5.4.1 Relapse specific differentially methylated regions in 

medulloblastoma are an uncommon event 

Two approaches, Bumphunting and RnBeads, were undertaken to interrogate the 

epigenome for the presence of differentially methylated regions that were associated 

with relapsed disease. These analyses are described in sections 5.3.7.1 and 5.3.7.2. The 

following table summarises the result from the Bumphunting analyses, including the 

number of candidate regions identified for each type of comparative analyses (Table 

5.4). 

 

Table 5.4  Summary of Bumphunter analysis results in the paired relapse cohort 
compared to an independent control cohort of tumours sampled at diagnosis.  p 
value, see section 5.3.7.1. 

 

As already discussed in section 5.3.7.1, the p value reported should be interpreted with 

caution. Therefore, all candidate regions were visualised to examine the absolute 

difference in average β-values between the 2 populations of interest. Illustrative 

examples, reflective of the candidate regions identified are shown in Figure 5.20.

Paired relapse cohort Independent control cohort Number of candidate regions p value range

Diagnosis Diagnosis 20 <0.0001-0.05

Relapse Diagnosis 56 <0.0001-0.05

Diagnosis Diagnosis 27 0.0008-0.05

Relapse Diagnosis 193 <0.0001-0.04

Diagnosis Diagnosis 274 <0.0001-0.05

Relapse Diagnosis 255 <0.0001-0.05

Paired relapse cohort Paired relapse cohort Number of candidate regions p value range

Diagnosis Relapse 8 0.006-0.02

Diagnosis Relapse 0 na

Diagnosis Relapse 196 <0.0001-0.05

Cohort wide

MBSHH

MBGroup4

Comparison Results

Cohort wide

MBSHH

MBGroup4

Comparison Results
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Figure 5.20  Illustrative examples of candidate regions identified by Bumphunter analysis.  i)  Tumours sampled at diagnosis (red) from paired 
relapse cohort versus tumours sampled at diagnosis (blue) from control cohort, ii)  tumours sampled at relapse (red) from paired relapse cohort 
versus tumours sampled at diagnosis (blue) from control cohort, iii) tumours sampled at diagnosis (red) from paired relapse cohort versus tumours 
sampled at relapse (blue) from paired relapse cohort, iv) MBGroup4 tumours sampled at diagnosis (red) from paired relapse cohort versus MBGroup4 

tumours sampled at relapse (blue) from paired relapse cohort. p value, see section  5.3.7.1. 
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Candidate regions identified by the Bumphunter analyses did demonstrate significant 

differences in β-values between the two comparative populations. However an 

absolute β-value difference >0.33 is typically reported as a significant change in DNA 

methylation which could lead to an epigenetically regulated change in gene 

transcription, and therefore may be of biological importance (Maksimovic et al., 2012; 

Schwalbe et al., 2013b). An example of this is shown in Figure 5.20i, where outlying 

cases sampled at diagnosis from the paired relapsed cohort (red) demonstrated a β-

value difference of >0.33 when compared to the independent control cohort (blue). 

However, other regions were more difficult to interpret. For example, the region in 

NADH dehydrogenase assembly factor 3 (NDUFAF3, Figure 5.20iv) identified in the 

MBGroup4 analysis between tumours sampled at diagnosis and relapse in the paired 

relapse cohort. This candidate region demonstrated a wide range of β-values in both 

populations interrogated, with little separation in the two mean β-values across the 

region and despite being significant was unlikely to be of biological relevance. 

One of the limitations of the Bumphunter algorithm is that it only assesses and 

compares two populations of tumour samples. To overcome this, and undertake an 

analysis based on the individual patient matched tumour samples taken at diagnosis 

and relapse, a paired regional analysis was performed using RnBeads. This analysis, 

described in section 5.3.7.2, compared all tumours sampled at diagnosis that had a 

matched sample taken at relapse (n=27) and was undertaken to specifically identify 

acquired regional changes in DNA methylation between diagnosis and relapse within 

each individual patient. The results of this analysis are summarised in Table 5.5 and 

examples of differentially methylated regions are illustrated in Figure 5.21. 

 

Table 5.5  Summary of RnBeads analysis in the paired relapse cohort reported by 
genomic region.  p, paired Student’s t-test.

Paired relapse cohort Paired relapse cohort Number of candidate regions p value range

Diagnosis Relapse 429 <0.01-0.05

Diagnosis Relapse 194 <0.01-0.05

Diagnosis Relapse 136 <0.01-0.05

Comparison Results

CpG Island

Promoter

Gene body
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Figure 5.21  Illustrative examples of candidate regions identified by paired RnBeads analysis.  i) Promoter region, ii) CpG island, iii) CpG island and 
iv) gene body. Red, tumours sampled at diagnosis from the paired relapse cohort; blue, tumours sampled at relapse from the paired relapse cohort. 
p, paired Student’s t-test. 
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The results following the RnBeads analyses also required careful interpretation. While 

significant results were obtained following the paired Student’s t-test, after controlling 

for the FDR, no results remained significant. Furthermore, on examining the 

differentially methylated genomic regions identified in this analysis (Figure 5.21), the 

absolute differences in β-values were <0.33 and therefore unlikely to be of biological 

importance (Maksimovic et al., 2012; Schwalbe et al., 2013b). 

5.4.1.1 Challenges of analysing global DNA methylation patterns in 

the paired relapsed cohort 

Following review of both approaches to examine any regional DNA methylation 

changes between diagnosis and relapse in medulloblastoma, it was evident that DNA 

methylation events of potential biological relevance were occurring, as illustrated in 

Figure 5.20i; isolated cases sampled at diagnosis from the paired relapsed cohort (red) 

demonstrated a β-value difference of >0.33 when compared to the independent 

control cohort (blue). However, given the heterogeneous DNA methylation patterns 

displayed by the four molecular subgroups (Hovestadt et al., 2013; Schwalbe et al., 

2013b) which were all included in these analyses, it was likely that DNA methylation 

events were masked between diagnosis and relapse. Moreover, to identify DNA 

methylation events that behaved in an equivalent manner to the events reported in 

Chapter 3, i.e. acquired and maintained events between diagnosis and relapse, 

required a more focused and hypothesis driven approach as these types of events 

were unlikely to reach significance in regional analyses where β-values were averaged.  

To address these challenges, a novel analysis was developed to identify single CpG 

residues located in biologically important regions of the genome (CpG islands or 

promoter regions), that either acquired or maintained tumour-specific DNA 

methylation states at relapse. These genomic regions were interrogated initially as it is 

well established that promoter DNA methylation can regulate gene transcription and 

expression (Bird, 2002; Issa, 2004; Baylin and Jones, 2011). This analysis was next 

expanded to incorporate a regional overview looking at CpG residues across an entire 

gene in a subgroup-specific manner. As described in section 5.3.7.3, this approach 

addressed both the limited numbers and epigenetic heterogeneity within the paired 

relapse cohort by cataloguing every methylation event for each pair according to their 

molecular subgroup.  
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MBSHH, while overall was the largest subgroup in the paired relapse cohort (n=16 

pairs), contained both infants and older children who received variable upfront 

treatment strategies i.e. infants did not receive upfront CSI. Given the findings 

reported in Chapter 3, and the impact upfront treatment appears to have on relapse 

medulloblastoma biology, further analyses focused on MBGroup4, the largest uniformly 

treated molecular subgroup represented in the paired relapse cohort. It is also the 

most poorly understood of the four subgroups ((Kool et al., 2012; Northcott et al., 

2012a; Taylor et al., 2012)). Therefore, to further our understanding in this subgroup, 

the methylation events cataloged in MBGroup4 paired tumour samples were investigated 

in more detail and correlated with expression.  

5.4.2 T-box gene family and Homeobox gene family acquire 

methylation events at relapse which correlate with gene 

expression in MBGroup4 

As described in section 5.3.7.3.1, every probe that was invariant in the cerebella, with 

a β-value standard deviation of <0.02 (n=410 350), on the Infinium methylation 450K 

array, was categorised according to its DNA methylation state at diagnosis versus 

relapse for each individual MBGroup4 paired sample. Only probes located in promoter 

regions or CpG islands of known genes were included in this analysis. This approach 

was taken because of the current understanding in cancer of epigenetic regulation of 

gene expression by aberrant promoter region DNA methylation, which is discussed in 

section 1.4.6.1.2 (Costello and Plass, 2001; Sidransky, 2002; Baylin and Jones, 2011; 

Dedeurwaerder et al., 2011).  

Probes that showed loss of an event, i.e. a tumour-specific DNA methylation state at 

diagnosis returning to a normal state at relapse were excluded (section 9.2:  Appendix 

II). Finally, an output tally table was created which focused on scoring probes 

according to how many acquired (normal DNA methylation state at diagnosis, tumour-

specific state at relapse) or maintained events (tumour-specific state at both diagnosis 

and relapse) they demonstrated (Figure 5.22). Those probes which demonstrated 

acquisition of an event between diagnosis and relapse on >1 occasion (n=2170 probes) 

were taken forward into the expression analysis. 
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Figure 5.22  Tally table of acquired and maintained methylation events in gene CpG 
islands and promoter regions between MBGroup4 paired samples at diagnosis and 
relapse.  Number in each box represents the number of probes in this dataset fulfilling 
the criteria of the acquired (horizontal axis) and maintained (vertical axis) events. 
Squares outlined in red; number of selected probes taken forward for correlative 
expression analysis.  

 

Correlation of DNA methylation and expression events was performed as described in 

section 5.3.4. This identified 23 CpG residues with DNA methylation events in MBGroup4 

relapse tumours which demonstrated a strong positive or negative relationship with 

expression (correlation coefficient r value >0.75 or <-0.75 respectively). Several of 

these probes were located within the same CpG island or gene promoter region. In 

total, 15 candidate genes showed a significant association between DNA methylation 

and gene expression levels, strongly suggestive of epigenetic mechanisms which 

regulate transcription of these candidate genes in MBGroup4 tumours (Table 5.6). Most 

notably, genes from the T-box and Homeobox gene families represented 8/15 (53%) of 

the candidates identified.  
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Table 5.6  MBGroup4 candidate gene list with DNA methylation events at 
medulloblastoma relapse which are significantly associated with gene expression 
levels.  Infinium methylation 450K array probes with acquisition of tumour-specific 
DNA methylation events between diagnosis and relapse are shown according to their 
relationship with expression in an independent methylation-expression dataset of 
medulloblastomas (section 5.3.4). r values are reported across all four molecular 
subgroups in this independent cohort and in MBGroup4 alone. 

 

5.4.2.1 TBX3 exhibits regional DNA methylation changes between 

diagnosis and relapse which positively correlate with expression 

As illustrated in Table 5.6, the most notable findings in this analysis were the 

enrichment of T-box transcription factors (TBX1, TBX3, TBX5 and EOMES) and the 

Homeobox gene family (HOXA3, HOXB13, HOXC10 and HOXC5). In particular the 

relationship between DNA methylation and gene expression for TBX3, the T-box 

transcription factor located on chromosome 12, which exhibited multiple CpG sites 

with either maintained tumour-specific DNA methylation or acquired DNA methylation 

of these sites at relapse (Figure 5.23). For example DNA methylation was acquired at 

Probe Location r value in MBGroup4 r value across all subgroups Gene name

cg00347620 Island 0.77 0.68 TBX3

cg22635491 CpG island 0.8 0.71 TBX3

cg09413529 CpG island 0.8 0.71 TBX3

cg11246938 CpG island 0.79 0.71 TBX3

cg18161956 CpG island 0.82 0.74 TBX3

cg18173058 CpG island 0.92 0.7 TBX5

cg05769349 CpG island 0.79 0.75 TBX5

cg16732616 CpG island 0.94 0.82 DMRTA2

cg12756396 CpG island 0.93 0.79 DMRTA2

cg16406967 CpG island 0.81 0.75 HOXA3

cg19999161 CpG island 0.83 0.78 HOXA3

cg14230397 Promoter 0.81 0.66 PRAC

cg20945566 Promoter 0.84 0.68 PRAC

cg22149137 CpG island 0.85 0.57 HOXB13

cg20403938 Promoter 0.79 0.69 HOXC10

cg11664987 CpG island 0.78 0.75 EPHA10

cg00204782 CpG island 0.85 0.88 TBX1

cg18843682 CpG island 0.75 0.77 HOXC5

cg26459500 CpG island -0.8 -0.82 NUDT16

cg15270892 CpG island -0.91 -0.79 EOMES

cg26614816 CpG island -0.84 -0.85 EID3

cg07064066 Promoter -0.87 -0.87 DSCR4

cg08460435 CpG island -0.88 -0.86 HENMT1

Infinium methylation 450K array 

Positive correlation

Negative correlation

Expression analysis
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several CpG residues in patient 21 and 31 and also maintained in patient 17 and 18 

(Figure 5.23, highlighted in grey). Importantly, on examining the CpG sites across the 

entire gene, acquired DNA methylation changes were also observed outside of the CpG 

residues identified in this analysis, for example in patient 21 probe cg16277169 (Figure 

5.23). This suggests that while DNA methylation of individual CpG residues identified in 

this analysis may correlate with gene expression, they may also be reflective of the 

wider DNA methylation status observed in that gene region. The DNA methylation at 5 

CpG residues which all positively correlated with expression in the independent 

expression control cohort are illustrated in Figure 5.24, and were significantly 

associated with levels of gene expression in both MBGroup4 and all medulloblastoma 

tumours in the independent expression control cohort.
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Figure 5.23  Illustration demonstrating the DNA methylation changes for TBX3 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey rows, probes of interest; D, diagnosis; R, relapse. 
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Figure 5.24  Linear regression plot demonstrating the positive correlation between 
gene expression and DNA methylation for 5 CpG residues located in the gene TBX3. 
VSD, variance-stabilising data. 
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While a positive correlation between DNA methylation and gene expression is contrary 

to the typical epigenetic mechanism proposed for the regulation of gene expression 

(i.e. promoter hypermethylation normally leads to gene silencing (section 1.4.6.1.2)), 

this type of observation is not unique. Recent work within medulloblastoma and other 

brain tumours has reported similar findings, with for example, hypermethylation 

upstream of the TSS of TERT linked to increased expression of the gene (Castelo-

Branco et al., 2013; Lindsey et al., 2014). Given this strong correlation between DNA 

methylation and gene expression across multiple sites in the TBX3 gene, pathway 

analysis was undertaken to investigate the role of TBX3 methylation and expression in 

tumourigenesis.  

5.4.2.2 TBX3 gene expression inhibits p14ARF and TP53 in pathway 

analysis 

Pathway analysis using the IPA software as described in section 5.3.7.3.4 was 

undertaken to identify gene networks associated with TBX3. The predictive causal 

analysis was also explored to assess the downstream effects of increased expression in 

TBX3, which corresponded with the positively correlated increase in DNA methylation 

observed at relapse in MBGroup4 tumours (Figure 5.23). The result of this analysis is 

shown in Figure 5.25. Most notably, increased expression of TBX3 was predicted to 

inhibit both TP53, and CDKN2A, which has an alternatively spliced transcript encoding 

p14ARF, a stabiliser of the p53 protein (Figure 1.6). This is suggestive of another 

aberrant mechanism leading to p53 pathway disruption at medulloblastoma relapse, in 

keeping with the discoveries reported in Chapter 3.  
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Figure 5.25  Downstream effects of TBX3 upregulation as predicted by Ingenuity 
Pathway Analysis.  Illustration shows only the networks with strong relationships to 
the gene of interest, TBX3.  
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5.4.2.3 TBX5 and TBX1 exhibit DNA methylation changes between 

diagnosis and relapse which positively correlate with gene 

expression 

In addition, TBX5 and TBX1 of the T-box gene family also demonstrated acquisition and 

maintenance of DNA methylation of individual CpG residues at relapse in MBGroup4 

(Figure 5.26, Figure 5.27 and Figure 5.29). For example, in TBX5 acquisition of DNA 

methylation was observed in patient 17 and 20, and maintenance of DNA methylation 

at relapse for patient 18, 22, 30 and 31 (Figure 5.26, grey row). Further downstream in 

TBX5, acquisition of DNA methylation was also observed in patient 17, 18 and 22 

(Figure 5.27, grey row). As illustrated in both these figures, the CpG residues of interest 

at relapse appeared to be more widely reflective of the DNA methylation patterns of 

that region of the gene. This was particularly noticeable for patient 18, 22, 30 and 31 in 

the CpG island associated with the probe of interest, cg18173058 (Figure 5.26).  

TBX1 demonstrated a similar pattern of DNA methylation at relapse, with acquisition 

observed in two patients (patient 17 and 21) and maintenance of DNA methylation 

witnessed in several patients which was reflective of the regional DNA methylation 

status (19, 20, 22, 30 and 31, Figure 5.29). For both TBX5 and TBX1, gene expression 

levels correlated positively with DNA methylation in the independent expression 

control cohort (Figure 5.28 and Figure 5.30). These findings further reinforced the 

potential role of the T-box gene family in MBGroup4 medulloblastoma at relapse, 

alongside highlighting the complex relationship between the epigenetic regulation of 

gene expression (discussed in section 5.5.2). 
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Figure 5.26  Illustration demonstrating the DNA methylation changes for TBX5 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 5.27  Illustration continued demonstrating the DNA methylation changes for TBX5 between diagnosis and relapse in the MBGroup4 paired 
samples.  Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are 
arranged in order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse.
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Figure 5.28  Linear regression plot demonstrating the positive correlation between 
gene expression and DNA methylation for 2 CpG residues located in the gene TBX5. 
VSD, variance-stabilising data.
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Figure 5.29  Illustration demonstrating the DNA methylation changes for TBX1 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse.
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Figure 5.30  Linear regression plot demonstrating the positive correlation between 
gene expression and DNA methylation for 1 CpG residue located in the gene TBX1. 
VSD, variance-stabilising data. 

 

5.4.2.4 EOMES DNA methylation inversely correlates with gene 

expression in MBGroup4 tumours at relapse  

Five genes demonstrated a significantly inverse relationship between DNA methylation 

and gene expression (Table 5.6, section 9.3:  Appendix III and section 9.4:  Appendix 

IV). One of these genes, EOMES located on chromosome 3, is another member of the 

T-box gene family. One CpG residue located within a CpG island demonstrated 

acquisition of DNA methylation in two patients (19 and 22) and maintenance of DNA 

methylation in three patients (20, 30 and 31, Figure 5.32). DNA methylation at this CpG 

residue (cg15270892) appeared reflective of the DNA methylation upstream, for 

example, in the north shore in patient 19 and 22 (acquisition of DNA methylation) and 

patient 20, 30 and 31 (maintenance of DNA methylation). DNA methylation at this CpG 

residue strongly correlated inversely with gene expression (Figure 5.31) suggesting a 

possible role for epigenetic silencing of EOMES in MBGroup4 at relapse. 
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Figure 5.31  Linear regression plot demonstrating the inverse correlation between 
gene expression and DNA methylation for CpG residue cg15270892 located in the 
CpG island of EOMES.  VSD, variance-stabilising data. 
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Figure 5.32  Illustration demonstrating the DNA methylation changes for EOMES between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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5.4.2.5 All MBGroup4 tumours at relapse demonstrate acquisition or 

maintenance of DNA methylation in a T-box gene CpG residue 

which correlates with gene expression  

To understand the overall involvement of the T-box gene family in MBGroup4 at relapse 

a summary of the DNA methylation status at the CpG residues associated with gene 

expression is shown in Figure 5.33. On examining the DNA methylation patterns for 

each gene it was clear, for example in TBX3, that in patient 17, 18, 21 and 31 the DNA 

methylation status at diagnosis and relapse was equivalent at each CpG site associated 

with gene expression (n=5). This was either acquisition of DNA methylation (e.g. 

patient 21) or maintenance of DNA methylation (e.g. patient 18). A similar pattern was 

observed in TBX5, for example in patient 17, where acquisition of DNA methylation 

was witnessed at both CpG sites associated with gene expression. 

Importantly, on examining the patterns of DNA methylation for all four T-box genes 

identified in these analyses, every MBGroup4 tumour demonstrated either acquisition or 

maintenance of a tumour-specific DNA methylation event at relapse. In particular, 

TBX1 displayed a DNA methylation event in 7/8 (88%) of MBGroup4 between diagnosis 

and relapse. Together, these findings suggest the epigenetic regulation and 

involvement of the T-box gene family in MBGroup4 at relapse.  
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Figure 5.33  Heat-map demonstrating the DNA methylation status for each CpG residue associated with gene expression in the T-box gene family.  
Top panel displays DNA methylation at individual CpG residues with a summary of the number of acquired and maintained tumour-specific events 
observed at each site. Bottom panel summarises the four T-box genes with an average β-value for the two genes, TBX3 and TBX5, which have multiple 
CpG residues of interest. D, diagnosis; R, relapse. 

 

Gene Probe D R D R D R D R D R D R D R D R

TBX3 cg00347620 3/8 (38%) 1/8 (13%)

TBX3 cg22635491 2/8 (25%) 2/8 (25%)

TBX3 cg09413529 2/8 (25%) 2/8 (25%)

TBX3 cg11246938 2/8 (25%) 2/8 (25%)

TBX3 cg18161956 2/8 (25%) 0/8 (0%)

TBX5 cg18173058 2/8 (25%) 4/8 (50%)

TBX5 cg05769349 3/8 (38%) 2/8 (25%)

TBX1 cg00204782 2/8 (25%) 5/8 (63%)

EOMES cg15270892 2/8 (25%) 3/8 (38%)

Gene D R D R D R D R D R D R D R D R

TBX3

TBX5

TBX1

EOMES

Hemimethylated

Methylated

Unmethylated

Summary of T-box gene family DNA methylation patterns

Acquired 

events 

Maintained 

events

Patient number

17 18 19 20 21 22 30 31

30 31

Patient number

17 18 19 20 21 22
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5.4.2.6 Homeobox gene family demonstrates acquisition of DNA 

methylation events in MBGroup4 at relapse which positively correlate 

with gene expression  

As already reported in Table 5.6, four members of the Homeobox gene family (HOXA3, 

HOXB13, HOXC10 and HOXC5) at MBGroup4 relapse also acquired DNA methylation at 

individual CpG residues which were associated with gene expression. These findings 

are illustrated in Figure 5.34 - Figure 5.38. HOXA3 displayed two CpG sites with 

acquired or maintained tumour-specific DNA methylation at relapse which, similar to 

the DNA methylation patterns observed in the T-box gene family, was reflective of the 

DNA methylation of the CpG island associated with these two residues (e.g. patient 20 

and 30, Figure 5.34). Similar patterns at adjacent probes were also witnessed for 

HOXC10 and HOXC5 (e.g. patient 20 and 30, Figure 5.36 and Figure 5.37). However, the 

regional DNA methylation pattern was less clear for HOXB13 and only an isolated CpG 

residue demonstrated acquired tumour-specific DNA methylation (e.g. patient 17, 18 

and 21, Figure 5.35). In the Homeobox gene family, DNA methylation patterns at the 

five CpG residues identified through this analysis (Table 5.6), were significantly and 

positively associated with gene expression in the independent expression cohort 

(Figure 5.38). 
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Figure 5.34  Illustration demonstrating the DNA methylation changes for HOXA3 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 



233 
 

 

Figure 5.35  Illustration demonstrating the DNA methylation changes for HOXB13 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 5.36  Illustration demonstrating the DNA methylation changes for HOXC10 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 5.37  Illustration demonstrating the DNA methylation changes for HOXC5 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 5.38  Linear regression plots demonstrating the positive correlation between 
gene expression and DNA methylation for the Homeobox gene family.  VSD, variance-
stabilising data. 
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5.4.2.7 Tumour-specific DNA methylation in the Homeobox gene 

family is frequently observed in MBGroup4 at relapse 

Tumour-specific DNA methylation at the CpG sites of interest identified in these 

analyses were observed in the majority of MBGroup4 tumours at relapse (5/8, 63%). 

These DNA methylation patterns are illustrated in Figure 5.39 and highlight that a DNA 

methylation event occurred in one or more of the Homeobox genes for patient 17, 18, 

20, 22 and 30. In particular, patient 17, 20 and 30 demonstrated either maintenance or 

acquisition of a DNA methylation event at relapse across multiple Homeobox genes 

(Figure 5.39). Combined these findings suggest a role for the Homeobox gene family in 

MBGroup4 at relapse. 
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Figure 5.39  Heat-map demonstrating the DNA methylation status for each CpG residue associated with gene expression in the Homeobox gene 
family.  Top panel displays DNA methylation at individual CpG residues with a summary of the number of acquired and maintained tumour-specific 
events observed at each site. Bottom panel summarises the four Homeobox genes with an average β-value for HOXA3, which has two CpG residues of 
interest. D, diagnosis; R, relapse. 

 

Gene Probe D R D R D R D R D R D R D R D R

HOXA3 cg16406967 2/8 (25%) 0/8 (0%)

HOXA3 cg19999161 2/8 (25%) 1/8 (13%)

HOXB13 cg22149137 2/8 (25%) 0/8 (0%)

HOXC10 cg20403938 2/8 (25%) 2/8 (25%)

HOXC5 cg18843682 2/8 (25%) 1/8 (13%)

Gene D R D R D R D R D R D R D R D R

HOXA3

HOXB13

HOXC10

HOXC5

Methylated

Acquired 

events 

Maintained 

events

Summary of Homeobox gene family DNA methylation patterns

Unmethylated

Hemimethylated

Patient number
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30 31
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5.5 Discussion 

5.5.1 DNA methylation patterns differ between diagnosis and relapse 

in medulloblastoma 

This study was the first to examine and identify differences in medulloblastoma DNA 

methylation patterns between diagnosis and relapse. These findings were in contrast 

to earlier discoveries reported in Chapter 3, where the subgroup-specific DNA 

methylation patterns remain stable between both time-points (Table 3.5). Three 

approaches were adopted to determine whether CpG residues either acquired or lost 

DNA methylation at relapse and if, in turn, this correlated with expression. Regional 

analysis of the medulloblastoma methylome in an unpaired (Bumphunter, section 

5.4.1) and paired (RnBeads, section 5.4.1) analysis revealed initial insights into the 

temporal changes of DNA methylation but did not identify regions that displayed 

significantly different DNA methylation between diagnosis and relapse.  

Following these provisional findings, subsequent analyses focused on the MBGroup4 

matched pairs. This was the largest molecular subgroup represented in the paired 

cohort of medulloblastoma tumours sampled at both diagnosis and relapse that 

received similar initial treatment, including upfront CSI (section 5.4.1.1). This novel 

approach addressed the heterogeneity of the methylome between subgroups in 

medulloblastoma and also compensated for the modest numbers in the cohort by 

interrogating for tumour-specific DNA methylation changes. Through this analysis, 

2170 probes residing in CpG islands or promoter regions were identified to show 

tumour-specific DNA methylation states that emerged at relapse on multiple 

occasions. These findings demonstrated that changes in DNA methylation between 

diagnosis and relapse were present and, given that the changes were observed on 

more than one occasion, suggested a potential biological role in tumour development 

and progression. 

5.5.2 T-box gene family and Homeobox gene family methylation 

patterns positively correlate with expression and suggest a novel 

epigenetic mechanism for gene regulation 

Further analysis revealed that DNA methylation of 23/2170 (1%) CpG probes, which 

corresponded to 15 genes in total, showed a significant correlation with gene 
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expression and, on several occasions, DNA methylation of multiple CpG sites within the 

same gene demonstrated a positive relationship with gene expression (e.g.TBX3, 

Figure 5.24). This relationship does not correspond with the typical epigenetic model 

proposed of promoter DNA hypermethylation and gene silencing for the regulation of 

gene transcription (Costello and Plass, 2001; Sidransky, 2002; Baylin and Jones, 2011; 

Dedeurwaerder et al., 2011).  

However, the repeated discovery of positive correlations between DNA methylation 

and gene expression levels within the same gene, and within two particular gene 

families (T-box and Homeobox), further supported that these were significant findings 

that may be of biologically relevance. These two gene families are discussed below 

with particular emphasis on; TBX3 (section 5.5.2.1 and 5.5.2.2), in view of the frequent 

association of gene expression and DNA methylation at multiple CpG sites within the 

gene; EOMES (section 5.5.2.3), which has previously been reported in 

medulloblastoma; and the Homeobox gene family in general which has been reported 

to have complex epigenetic mechanisms which regulate gene expression and may also 

play a role in medulloblastoma tumour development (section 5.5.2.4 and 5.5.2.5). 

5.5.2.1 TBX3 expression has important roles in other cancers 

TBX3 belongs to the T-box family of transcription factors and is closely related to TBX2, 

which shares the same ancestral gene. TBX3 is important in embryological 

development and has been implicated in cell cycle regulation in cancer development. 

Mutations in TBX3 lead to the rare condition known as ulnar mammary syndrome 

whereby there is abnormal development of the limbs, heart and genitalia, as well as 

mammary gland hypoplasia. There are also multiple reports of its overexpression in a 

variety of cancer types including head and neck carcinomas, melanoma, breast, 

bladder, liver, pancreatic and ovarian tumours (Rodriguez et al., 2008; Cavard et al., 

2009; Peres et al., 2010; Burgucu et al., 2012; Douglas and Papaioannou, 2013; Peres 

and Prince, 2013; Peters et al., 2013).  

TBX3 has been shown to interact with a variety of pathways implicated in tumour 

development and its function as a transcriptional repressor is increasingly found to 

play a major role in disrupting key pathways in tumourigenesis. For example, in vivo 

and in vitro work in melanoma has demonstrated that TBX3 can repress the adhesion 
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molecule E-cadherin by directly binding near the TSS, potentially enhancing the 

invasive capabilities of the tumour (Hoogaars et al., 2008; Rodriguez et al., 2008). 

Similarly, it also directly represses CDKN1Ap21/CIP1/WAF1, a downstream target of p53, 

(Figure 1.6) and PTEN in vitro, another tumour suppressor gene frequently 

downregulated in cancer (Hoogaars et al., 2008; Lu et al., 2010; Burgucu et al., 2012).  

Recent work in transgenic mice has also shown that TBX3 directly binds to, and 

represses NFκBIB an inhibitor of NF-κB. Dysregulation of the NF-κB pathway leads to 

elevated levels of NF-κB, promotes cell proliferation and mammary hyperplasia and 

plays a role in breast cancer development (Liu et al., 2011). In addition, TBX3 is a 

downstream target of β-catenin in liver cancer (heptocellular carcinoma and 

hepatoblastoma), and activating mutations of the CTNNB1 gene which encodes for β-

catenin protein is associated with overexpression of TBX3  (Hoogaars et al., 2008; 

Rodriguez et al., 2008; Yarosh et al., 2008; Lu et al., 2010; Liu et al., 2011; Burgucu et 

al., 2012; Douglas and Papaioannou, 2013). 

One of the most reported functions of TBX3 is its repression and downregulation of 

p14ARF (p19ARF in mice) which was also predicted in this study following IPA analysis 

(section 5.4.2.2). The mechanisms of interaction between p14ARF and TBX3 are diverse 

and complex. Some studies have shown in vitro that TBX3 interacts with HDACs to 

regulate the expression of p14ARF (Yarosh et al., 2008), whereas others demonstrate 

that expression of TBX3 can regulate the p53 pathway to suppress apoptosis or bypass 

cell senescence via repression of p14ARF through a variant T-box binding element 

located near the TSS of p14ARF (Brummelkamp et al., 2002; Lingbeek et al., 2002; 

Rowley et al., 2004; Lu et al., 2010; Liu et al., 2011; Douglas and Papaioannou, 2013).  

In contrast, knockdown of TBX3 in melanoma cell lines has been shown to increase 

rather than decrease cell proliferation. However, in these experiments TBX3 did 

contribute to tumour formation and migration both in melanoma cell lines and upon 

orthotopic implantation in vivo (Peres et al., 2010; Peres and Prince, 2013). This in turn 

led to a more aggressive phenotype, most likely through the inhibition of E-cadherin 

described above (Hoek et al., 2004; Hoogaars et al., 2008; Rodriguez et al., 2008). 

More recently, TBX3 expression has been proposed as marker for cancer stem cells 

that could have potential in diagnosing or predicting tumour progression (Amini et al., 
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2014). A summary of the key pathways that interact with TBX3 and are believed to play 

a role in tumour formation are shown in Figure 5.40. 

 

 

Figure 5.40  Summary of the proposed mechanisms for the role of TBX3 in 
tumourigenesis.  TBX3 represses CDKN1A and p14ARF leading to the bypassing of 
cellular senescence, increases cellular proliferation by the inhibition of NFκBIB, and 
promotes metastases by repressing E-cadherin. It is also a downstream target of β-
catenin, of the WNT signaling pathway. Figure adapted from Lu et al., (2010). 

 

5.5.2.2 TBX3 hypermethylation conveys a poor prognosis and is 

associated with disease progression in glioblastoma and bladder 

cancer  

Genome-wide integrative analyses of both gene expression profiles and DNA 

methylation in GBM on 40 patients have reported tumour-specific DNA methylation 

changes which are inversely correlated with gene expression, such as the 

hypermethylation of CDKN2A leading to gene silencing (Etcheverry et al., 2010). In 

total, the study undertaken by Etcheverry et al., (2010) reported 421 CpG sites 



243 
 

corresponding to 321 genes which displayed an inverse correlation with expression (r 

value < -0.5). While they utilised the Infinium HumanMethylation 27 beadchip array 

(Illumina Inc. San Diego, CA, USA) a predecessor to the Infinium methylation 450K 

array, CpG probes corresponding to the promoter region of the TBX3 gene were 

interrogated and no inverse relationship was reported.  

Importantly however, in the same study, a multivariate survival analysis, performed on 

50 patients, demonstrated that hypermethylation in the promoter region of TBX3 

identified patients who did not respond to treatment and had an extremely poor 

survival. In summary, while this analysis was limited, it reports that DNA methylation 

of TBX3 may also play a role in tumour progression and response. Moreover, similar to 

the present study, Etcheverry et al., (2010) does not find an inverse correlation 

between methylation and expression of the TBX3 gene. While they do not support a 

positive correlation between gene expression and DNA methylation it is clear they 

interrogated their datasets for inverse relationships alone. Finally, in a study of bladder 

cancer, hypermethylation of the TBX3 CpG island was associated with disease 

progression in multivariate analysis. Direct comparison with gene expression was not 

performed as part of this study, but again these findings highlight the potential role of 

TBX3 methylation in tumour progression (Kandimalla et al., 2012). 

5.5.2.3 Epigenetic gene silencing of the T-box transcription factor, 

EOMES in medulloblastoma  

Methylation of EOMES, another T-box transcription factor also known as TBR-2, has 

been demonstrated in other cancers. In medulloblastoma, hypermethylation of EOMES 

has been shown to have an inverse correlation with gene expression with subgroup-

specific differential expression observed in MBGroup4, (Jones et al., 2012), supporting 

the findings in this study and suggesting a potential role in MBGroup4 tumourigenesis 

(Figure 5.31 and Figure 5.32). EOMES is implicated in the process of differentiation and 

maturation of natural killer (NK) cells and, alongside TBX21 (T-bet), is a key 

transcription factor required for the expression of the IL-15Rβ-chain by NK cells. One 

role of NK cells is to prevent tumour development. EOMES is potentially important in 

dictating the normal NK cell response to tumours and down regulation of EOMES has 

been shown to lead to loss of the NK anti-tumour effect. While the nature of this 

relationship is not fully understood, the discovery of hypermethylation of EOMES in 
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MBGroup4  at relapse suggests a mechanism for silencing a gene that normally has a 

protective role against tumour development (Atreya et al., 2007; Ivascu et al., 2007; 

Reinert et al., 2011; Gordon et al., 2012; Jones et al., 2012; Malaise et al., 2014).  

5.5.2.4 The diverse relationship between DNA methylation and gene 

expression in the Homeobox gene family 

The example of TBX3 discovered in this study, coupled with the multiple recurrent hits 

of other genes demonstrating a positive correlation between DNA methylation and 

gene expression (Table 5.6, section 9.3:  Appendix III and section 9.4:  Appendix IV) 

suggests that the current mechanisms for the epigenetic regulation of gene expression 

are not fully understood. Homeobox genes, similar to the T-box gene family, are 

important in normal development and are a family of transcription factors involved in 

many cellular processes such as growth, proliferation, and differentiation (Shah and 

Sukumar, 2010; Bhatlekar et al., 2014). Again they can act as transcriptional activators 

and repressors in cancer and HOXB13, (identified in this study, Table 5.6), in adult solid 

malignancies, is one of the most commonly disrupted genes from this family (Shah and 

Sukumar, 2010; Bhatlekar et al., 2014). Their behaviour in tumour development is 

again varied and reported to be tissue and cancer specific. They can act as tumour 

suppressors as well as drivers of aggressive disease (Shah and Sukumar, 2010; 

Bhatlekar et al., 2014).  

Interestingly, the regulation of Homeobox gene expression, via epigenetic mechanism 

such as the methylation of miRNAs (section 1.4.6.1.4) to regulate Homeobox gene 

expression, has been proposed. DNA promoter hypermethylation leading to gene 

silencing has also been noted (Shah and Sukumar, 2010). Conversely, in other studies, 

Homeobox gene family expression in some instances was shown to be depressed upon 

DNA demethylation. Moreover, HOXB and HOXC gene clusters, three genes of which 

were highlighted in the present study, (HOXB13, HOXC10 and HOXC5, Table 5.6), have 

been reported to display DNA hypermethylation in certain regions which was 

associated with moderate or strong gene expression in specific tissue types (Flagiello 

et al., 1996; Tsumagari et al., 2013). Proposed explanations for these findings included 

the necessity for more than one epigenetic mechanism to silence gene expression, 

such as repressive histone modifications and DNA methylation, or that DNA 

methylation is present to control the differential splicing observed in this family of 



245 
 

genes (Tsumagari et al., 2013). These discoveries suggest that DNA methylation plays a 

diverse role in controlling the expression of Homeobox genes in specific cell types, and 

further supports the relationships observed in the present study.  

5.5.2.5 The role of the Homeobox gene family in medulloblastoma 

While the role of the Homeobox gene family in medulloblastoma has not yet been fully 

elucidated, early reports have described strong protein expression, detected 

immunohistochemically, of HOXB3 and HOXB4 in medulloblastoma suggestive of a role 

in tumour development (Bodey et al., 2000). Amplification of OTX2, another member 

of the Homeobox gene family has been recently reported in medulloblastoma at 

diagnosis (Parsons et al., 2011; Northcott et al., 2012a; Robinson et al., 2012). 

Moreover, Homeobox gene expression can be regulated by the MLL family of histone 

modifiers. Mutations within the MLL gene family have been reported in 

medulloblastoma at diagnosis (discussed in section 1.8.8), suggestive of common 

pathways inclusive of the MLL and Homeobox gene families that could be involved in 

tumour development (Parsons et al., 2011; Jones et al., 2012; Northcott et al., 2012a; 

Pugh et al., 2012; Robinson et al., 2012). Together these findings alongside the reports 

of epigenetic regulation of the Homeobox genes in other cancer types (section 5.5.2.4) 

support the discoveries in the present study and the role of the Homeobox gene family 

in MBGroup4 at relapse. 
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5.6 Summary 

MBGroup4 is the largest and yet poorest understood of the molecular subgroups in 

medulloblastoma. As such, it represents a large proportion of recurrent tumours, and 

all patients who relapsed with MBGroup4 in the paired relapse cohort (Chapter 3) died of 

their disease. Novel routes of investigation are required to understand the 

mechanisms of tumourigenesis and disease recurrence in this subgroup and to identify 

new treatment strategies and targets. This study reports DNA methylation events that 

emerge at relapse and show significant relationships with gene expression. 

Importantly, two gene families (T-box and Homeobox gene families) consistently 

showed DNA methylation events at relapse which, in an independent cohort, 

correlated with gene expression.  

Both the T-box gene family and the Homeobox gene family are important in 

development and their dysregulation has been demonstrated in several cancers. The 

role of these two gene families has not been detailed in medulloblastoma, with the 

exception of the potential epigenetic regulation of the T-box gene EOMES, which is 

differentially expressed in MBGroup4. This observation is consistent with the findings in 

this study (section 5.4.2.4) and the traditional epigenetic paradigm of DNA promoter 

hypermethylation leading to gene silencing. However, the majority of reported 

correlations in the present study were contrary to the paradigm, with DNA 

hypermethylation corresponding to an increase in gene expression. The epigenetic 

control of gene expression is increasingly studied and many observations have noted a 

relationship between hypermethylation and increased gene expression. In 

medulloblastoma, this has been observed for TERT, and the expression of Homeobox 

genes in other cell types has been reported to display diverse and complex 

relationships with DNA methylation and other epigenetic mechanisms (section 

5.5.2.4). 

Further work is now required to validate and expand on these findings in the T-box and 

Homeobox gene families alongside all the other MBGroup4 candidates identified in this 

analysis (Table 5.6, section 9.3: Appendix III and section 9.4: Appendix IV). A separate 

paired relapse cohort with frozen tissue samples taken at diagnosis and recurrence 

would enable the interrogation of DNA methylation events between these two time-

points and their direct assessment with gene expression. Cohort expansion in this way 
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would potentially allow for similar analyses to be undertaken on the other three 

subgroups which were not interrogated in this aspect of the study. Cross validation in 

all subgroups of any significant findings would also be important to elicit whether 

observations were subgroup specific, relapse specific, or both. This cross validation is 

important as while interrogating medulloblastoma in the context of subgroup is 

essential, common aberrations in all molecular subgroups, such as p53-MYC defects 

described in Chapter 3, may be observed across all the subgroups in the disease at 

relapse.  

Moreover, in vitro and in vivo work is required to discern the epigenetic mechanisms 

of gene regulation. Experiments such as the treatment of medulloblastoma cell lines 

with 5-azacitidine to decrease DNA methylation and assess the effect (upregulation or 

downregulation) on gene expression should be undertaken, alongside functional work 

to explore the role of candidate genes in cellular processes such as apoptosis, 

senescence, proliferation and migration. In addition, developing suitable 

medulloblastoma mouse models to evaluate the downstream effects of these 

candidate genes on tumour penetrance, maintenance and aggression, similar in nature 

to the work described in Chapter 4, could also be undertaken.  
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Chapter 6. Patterns and timings of medulloblastoma relapse 

are associated with radiotherapy and molecular subgroup 
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6.1 Introduction 

Biopsies of medulloblastoma recurrences are rarely performed in current clinical 

practice and as a consequence, investigating the biology of disease at relapse is a 

challenge. At present, only two studies (section 1.9.2), alongside this study, have 

collated and interrogated a cohort of tumours sampled at disease recurrence 

(Korshunov et al., 2008; Ramaswamy et al., 2013). Understanding the biology of 

medulloblastoma at relapse is essential to identify novel treatment strategies. This was 

highlighted by the findings of combined p53-MYC defects (Chapter 3) as a biomarker of 

aggressive disease behaviour post-recurrence, alongside the pre-clinical results 

reported in Chapter 4 of the successful targeting of this interaction with the Aurora A 

kinase inhibitor MLN8237. However, until biopsies are routinely performed in the 

clinical setting and larger cohorts are compiled of tumours sampled at disease relapse, 

additional informative approaches are required to supplement and expand on the 

initial findings by this study and others (Korshunov et al., 2008; Ramaswamy et al., 

2013). 

Medulloblastoma is a heterogeneous disease comprising of four molecular subgroups 

with varying clinicopathological, demographic and molecular features, and current 

hypotheses suggest that these four subgroups develop from four distinct tumour cells 

of origin (Gibson et al., 2010; Grammel et al., 2012; Taylor et al., 2012). This study, 

alongside Ramaswamy et al., (2013), supports this theory by demonstrating that 

molecular subgroup does not alter over time between diagnosis and relapse. 

Moreover, these findings provide an opportunity to study medulloblastoma at 

diagnosis, in a subgroup-specific way and interrogate the disease features of those 

patients who subsequently relapse with their disease.  

This chapter describes the identification, assembly, clinicopathological and molecular 

characterisation of a cohort comprised of medulloblastoma tumours, sampled at 

diagnosis, from a population of patients who are known to subsequently suffer from 

disease recurrence. Detailed clinical and pathological features, including patterns of 

disease relapse, are compiled alongside the investigation of molecular features 

understood to play a role in relapse disease. These include molecular subgroup, MYC 

gene family amplification and TP53 mutation. This large relapsing cohort provides a 

valuable opportunity to evaluate the patterns of recurrence in a subgroup-specific way 
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and identify features which may be enriched at diagnosis, and predictive of relapse. In 

addition, this cohort provides the foundation for future studies to validate the utility of 

potential biomarkers identified in this study, such as promoter hypermethylation of 

the T-box gene, EOMES, in MBGroup4, which is both maintained between diagnosis and 

relapse, and acquired at disease relapse (section 5.4.2.4). Moreover, it will enable the 

unbiased assessment of molecular features from profiling data, (genomic and DNA 

methylation events), and the relationship of these features with the patterns and 

timings of relapse disease.  
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6.2 Aims 

The aims of this chapter are to; 

 

 Compile an extensive database for the cohort of medulloblastoma samples 

taken at diagnosis and assembled in Newcastle for investigation (Newcastle 

Medulloblastoma Cohort, NMB cohort). Centrally review, and encode all clinical 

data affiliated with each tumour sample. 

 

 Coordinate and align all centrally reviewed pathology data and molecular data 

related to each tumour sample within the NMB cohort. 

 

 Identify from the NMB cohort, all patients who have relapsed and have tumour 

material taken at diagnosis available (relapsing cohort). 

 

 Characterise this relapsing cohort with respect to patterns and timings of 

disease recurrence, clinical demographics, pathological variant and molecular 

features. 

 

 Utilise this cohort to analyse the patterns of disease relapse and perform an 

exploratory survival analysis to identify features at diagnosis that are 

associated with time to relapse, time to death and overall survival. 

 

 

 Provide the foundation for further multivariate survival analyses and future 

work to identify and validate potential relapse-specific biomarkers.  
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6.3 Materials and methods 

6.3.1 Assembly of a cohort of medulloblastoma samples taken at 

diagnosis 

Tumour tissue was collected from UK CCLG institutions and collaborating centres as 

part of the wider remit of work undertaken by the PBTG. To date, 718 tumours 

sampled at diagnosis have been collected and entered into the NMB database for 

further annotation, characterisation and review. All investigations carried out on 

human tissue in this study were part of a CCLG-approved biological study (BS-2007-04) 

with ethics approval from the Newcastle/North Tyneside Research Ethics Committee 

(reference 07/Q0905/71). All biological material was recorded and logged in 

accordance with the Human Tissue Act, 2004.  

6.3.2 Collation and review of cohort clinical data 

Detailed clinical data was collated by Prof Simon Bailey (PBTG) from all treatment 

centres, centrally reviewed and coded to create a database of NMB tumour samples 

with annotated clinical data (n=718). The clinical features and categories of 

information obtained are illustrated in Table 6.1. Strict inclusion criteria were applied 

to tumour samples and their corresponding clinical data and cases which did not meet 

the minimum essential criteria (Table 6.1) were excluded from detailed survival 

analyses. A total of 597/718 (83%) diagnostic tumour samples were suitable for future 

survival and correlative analyses (sections 2.8 and 2.9).  
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Table 6.1  Overview of the clinical and demographic patient information obtained for 
tumour samples in the NMB cohort.  Essential criteria for inclusion into studies at 
diagnosis and relapse are highlighted in bold. ATRT, Atypical teratoid/rhabdoid 
tumours; CNS-PNET, CNS primitive neuroectodermal tumours; GTR, gross total 
resection; STR, subtotal resection; CSI, craniospinal irradiation; Gy, Gray; ADF, alive 
disease free; AWD, alive with disease; DOD, died of disease; DOOC, died of other 
complications; PFS, progression free survival; LFS, Li-Fraumeni syndrome; empty 
category line, free text entered. 

  

Gender Male/female

Age at diagnosis Years

Diagnosis Medulloblastoma/ATRT/CNS-PNET/other

Site of tumour

Metastatic stage M0/M1/M2/M3/M4/M0/1

Extent of tumour resection GTR/STR/biopsy

Radiotherapy Yes/no

Radiotherapy type Focal/CSI

CSI dose Low (24-27Gy)/high (35-39Gy)/hyperfractionated/other (40-54Gy) 

Chemotherapy Yes/no

Chemotherapy regimen

Status Alive/dead

Overall survival ADF/AWD/DOD/DOOC

Disease specific PFS Yes/no

Second malignancy Yes, no

PFS Years

Follow up Years

Other Family history cancer predisposition Gorlin syndrome/LFS

Age at relapse Years

Progression vs relapse Progression/relapse

Treatment at recurrence

Curative intent Yes/no

Surgery Yes/no

Extent of surgery GTR, STR, biopsy

Radiotherapy Yes/no

Chemotherapy Yes/no

Time to 1
st

 recurrence Years

Overall survival Time to 2
nd

 recurrence Years

Time to 3
rd

 recurrence Years

Time from relapse to death Years

Site of relapse Local/distant/both

Character of relapse Nodular/diffuse/both

Metastatic stage M0/M1/M2/M3/M4/M0/1

Patterns of relapse

Details at disease diagnosis

Clinical feature Category

Patient demographics

Staging

Treatment

Survival

Patient demographics

Treatment

Details at disease recurrence
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6.3.3 Central pathology review  

All tumour samples within the NMB cohort with FFPE tissue available were centrally 

reviewed by a panel of four neuropathologists (Prof David Ellison, St Jude Children’s 

Research Hospital, Memphis, TN, Dr Thomas Jacques, Prof Stephen Wharton and Dr 

Keith Robson from the UK CCLG), as described in section 2.2. Coordination of this 

review was undertaken by Ms Sarah Leigh-Nicholson (former member of the PBTG), 

myself and more recently Dr Stephen Crosier (PBTG). Tumour samples were excluded 

if, on review, the diagnosis of a medulloblastoma was in question or changed, for 

example to an ATRT. Pathological variant was categorised according to the current 

WHO guidelines as CLA, DN, MBEN, LCA or MBNOS and entered alongside the clinical 

data for each tumour sample (Louis et al., 2007). Separate entries for reticulin, p53 and 

β-catenin immunohistochemical results were completed to support individual projects 

within the PBTG. In total 527/597 (88%) underwent central pathology review.  

6.3.4 Molecular data  

The NMB cohort has been extensively characterised according to the current 

understanding of the key molecular features in the disease which are outlined in 

section 1.8.8. Molecular data was available on large subsets of the cohort including; 

molecular subgroup (GoldenGate Methylation array and Infinium methylation 450K 

array, Illumina Inc., CA, USA), copy number variation (SNP6, Affymetrix Inc., CA, USA; 

Infinium methylation 450K array and Illumina omniexpress array, Illumina Inc., CA, 

USA), RNA seq (HiSeq2000, Illumina Inc., CA, USA), TP53 mutation status (section 

2.3.1), CTNNB1 mutation status (section 2.3.2), MYC and MYCN amplification status as 

determined by FISH (section 2.6) or MLPA (section 2.7) and more recently TERT 

methylation and mutation status (section 1.4.7). Data points to represent the 

molecular analyses undertaken, and data results for MYC gene family amplification, 

TERT status, CTNNB1 and TP53 mutations were compiled alongside clinical and 

pathological data to create an Excel spreadsheet (Microsoft Office 2010, Microsoft 

Corporation, WA, USA), containing all pertinent data in relation to each tumour 

sample. 
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6.3.5 Assembly of the relapsing cohort 

Clinical data was extensively reviewed and all patients documented to have relapsed 

with a medulloblastoma and have biological material available from their tumour 

sampled at diagnosis (DNA, FFPE block, paraffin curl or frozen tissue), were identified 

and included in the relapsing cohort. Relapse was differentiated from progression, and 

defined as having no evidence of disease at one time-point (disease remission) either 

during initial treatment or after completion of initial therapy prior to the disease 

returning. Progression was defined as patients who displayed evidence of 

medulloblastoma (local or metastatic) throughout their disease course.  

In total 204/718 (28%) cases were identified in the NMB cohort, which had tissue 

available from their tumour sampled at diagnosis, alongside confirmatory clinical 

evidence of relapsed disease. This number was inclusive of the twenty-six samples 

taken at diagnosis that were analysed in the paired relapse cohort (Chapter 3). To 

supplement the relapsing NMB cohort, a well annotated trials based medulloblastoma 

cohort  from the SIOP-UK Children’s Cancer Study Group PNET3 study was utilised 

(Schwalbe et al., 2013b). Relapsed cases were identified from this cohort as defined 

above, and cases with available tumour material, (n=31, DNA, FFPE block or paraffin 

curl), were included in the relapsing cohort to make a total of 235 cases available for 

further investigation and analyses. 

6.3.6 Molecular characterisation of the relapsing cohort 

Many of the molecular features associated with medulloblastoma (section 1.8.8) had 

already been interrogated for a selected number of cases in the relapsing cohort as 

part of the wider remit of work within the PBTG. Cases with missing data were 

identified and investigated for molecular subgroup, TP53 mutations and MYC gene 

family amplification. 

6.3.6.1 Molecular subgrouping of the relapsing cohort on the Infinium 

methylation 450K array 

Molecular subgroup was assigned as previously described in section 2.11. Where DNA 

was of sufficient quantity and quality, as determined by the Qubit fluorometer (section 

2.1.2.2), samples were analysed on the Infinium methylation 450K array at the 

Wellcome Trust Clinical Research Facility, University of Edinburgh, UK, as discussed in 
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section 3.3.2.1. More recently samples were analysed on the Infinium methylation 

450K array by Aros (Department of Clinical Biochemistry, Aarhus, Denmark) according 

to the manufacturer’s protocols which are described in section 5.3.6 (Illumina Inc. San 

Diego, CA, USA). Revised sample requirements for the analysis by Aros were a total 

tumour DNA amount of 1µg extracted using standard techniques, (section 2.1.1), from 

either FFPE or frozen material at a concentration of ≥23ng/µl. Samples that did not 

meet these revised criteria were analysed using a novel DNA minimal methylation 

signature assay developed in the PBTG (section 6.3.6.2). 

6.3.6.2 Assigning molecular subgroup in the relapsing cohort using a 

minimal methylation signature 

This novel technique employs the use of a minimal methylation signature to determine 

the molecular subgroup of the medulloblastoma tumour and was developed by Dr Ed 

Schwalbe of the PBTG (unpublished data). The experimental procedures were 

performed by Dr Debbie Hicks (PBTG). In brief, a panel of CpG loci were identified 

through ranking the most informative subgrouping probes on the Infinium methylation 

450K array and sequentially removing each of the top ranking probes to enable the 

assessment of their contribution to the subgrouping confidence call. In total, a panel of 

19 CpG residues were identified to be the most robust loci whose methylation 

signature confidently determined molecular subgroup. 

6.3.6.3 TP53 mutation analysis  

TP53 mutation analysis using PCR based direct sequence analysis of exons 5-8 was 

undertaken as previously described in section 2.3.1. Exons 5-8 were interrogated as a 

result of the findings by this study (Chapter 3) and others whereby these exons were 

the most frequently observed region within the DNA binding zone of the TP53 gene, to 

harbour a mutation in medulloblastoma (Zhukova et al., 2013). Sanger sequencing was 

outsourced to Eurofins Genomics (Ebersberg, Germany) and sequence analysis was 

performed on SeqMan 5.05, MegAlign 5.05 (©1993-2002 DNASTAR) and Mutation 

Surveyor (Dna Variant Analysis, SoftGenetics, PA, USA). 

6.3.6.4 MYC gene family amplification  

Analyses of the MYC gene family in the relapsing cohort for evidence of amplification 

were undertaken firstly by MLPA as described in section 2.7. Fragment analysis was 
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outsourced to DBS GENOMICS (Durham University, Durham, UK). Any sample 

demonstrating evidence of copy number aberration by MLPA of either MYC or MYCN, 

as defined in section 2.7.4, proceeded to be analysed by FISH (section 2.6). 

6.3.7 Data analysis 

Comparative, correlative and univariate survival analyses were undertaken as 

previously described in section 2.8-2.10 and performed in GraphPad Prism version 6.05 

(GraphPad Software, Inc., San Diego, CA, USA)  and R (R Development Core Team, 

2014) respectively. 
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6.4 Results 

6.4.1 Relapsing cohort demographics and outcomes 

Overall, 235 medulloblastoma tumours sampled at diagnosis, with clinical data 

confirming disease recurrence, were assembled to form the relapsing cohort. There 

was a significant male preponderance within the cohort (male: female ratio 2.18: 1 

versus 1.6:1, p=0.0499, Fisher’s exact test, Table 6.2) suggesting that males were more 

likely to relapse then females. The median age at diagnosis was 6.8 years (range 0.01-

33.7 year). The median age at recurrence was 8.9 years (range 1.3-36.3 years) with a 

median time to recurrence of 1.5 years (range 0.1-8.9 years). Overall 16/235 (7%) 

patients were alive and disease free at the point of clinical data collection, 17/235 

patients (7%) were alive with evidence of disease, 195/235 patients (83%) died of their 

disease with the remaining 7/235 patients (3%) dying of other causes. The factors 

influencing long term survival within the relapsing cohort are discussed further in 

section 6.4.9. 

6.4.2 Established high-risk clinicopathological features are enriched  

In Chapter 3 (section 3.4.1), a comparative analysis was performed between the paired 

relapse cohort and independent published studies of medulloblastoma tumours 

sampled at diagnosis. This revealed that high-risk clinical features, such as metastatic 

disease, were enriched at diagnosis in the paired relapse cohort, whereas high-risk 

molecular features such as MYC gene family amplification and TP53 mutation were not 

significantly more frequent at diagnosis in the paired relapse cohort (section 3.4.1.2). 

Similar comparisons were performed between the larger relapsing cohort (n=235) and 

the same independent, published historic studies of medulloblastomas sampled at 

diagnosis (McManamy et al., 2007; Pfaff et al., 2010; Kool et al., 2012; Lannering et al., 

2012; Ryan et al., 2012). The results of these comparisons are reported in Table 6.2, 

and demonstrate that all current established clinical and pathological high-risk features 

(Pizer et al., 2011b), are enriched at diagnosis in the relapsing cohort. These features 

were; infant age group (p=0.0003, Fisher’s exact test), metastatic disease (p<0.001, 

Fisher’s exact test), subtotal resection (p<0.001, Fisher’s exact test) and LCA histology 

(p=0.0493, Fisher’s exact test).  
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Examining the molecular features characterised thus far in the relapsing cohort, 

revealed a significantly lower incidence of MBWNT in the relapsing cohort when 

compared to the independent historic studies, (5/206 (2%) versus 60/550 (11%), 

p<0.0001, Fisher’s exact test, Table 6.2). This low relapse rate is unsurprising given the 

overall good EFS and OS associated with MBWNT  (Clifford et al., 2006; Kool et al., 2012; 

Northcott et al., 2012a; Taylor et al., 2012; Shih et al., 2014). Interestingly, and in 

contrast to the findings reported in the paired relapse cohort, (section 3.4.1.2 and 

Table 3.4), there was not an enrichment of MBSHH (60/206 (29%) versus 153/550 (28%), 

p=0.7174, Fisher’s exact test, Table 6.2) or paucity of MBGroup3 (57/206 (28%) versus 

149/550 (27%), p=0.9269, Fisher’s exact test, Table 6.2) observed in the relapsing 

cohort. This suggests that current clinical practice does not sample medulloblastoma 

tumours at relapse in a subgroup reflective way. This observation is explored and 

discussed further in section 6.4.3.  

There was a moderate enrichment of MYC gene family amplification in the relapsing 

cohort (p=0.0313, Fisher’s exact test, Table 6.2) which was not significant when MYC 

and MYCN were compared in isolation. This supports the role of MYC gene family 

amplification as a biomarker of high-risk disease at diagnosis and its use for treatment 

stratification in upcoming clinical trials (Pizer and Clifford, 2009). TP53 mutations in 

exons 5-8, which encode the DNA binding domain of the gene, were not enriched at 

diagnosis in the relapsing cohort. A schematic illustration demonstrating the nature 

and subgroup distribution of the TP53 mutations is shown in Figure 6.1. As expected 

there was a preponderance for mutations in MBSHH and MBWNT (15/19, 79% and 2/19, 

11% respectively, section 1.8.8) and on correlative analysis (reported in Figure 6.2) 

TP53 mutations and MBSHH were significantly associated (p<0.0001, Fisher’s exact test, 

Bonferroni corrected). No mutations were found in MBGroup3 and only an isolated 

example was observed in MBGroup4 (Figure 6.1).  
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Figure 6.1  Schematic demonstrating the nature and subgroup distribution of TP53 
mutations in the relapsing cohort.  Solid line, homozygous mutation; dashed line, 
heterozygous mutation; Ins, insertion; Cys, Cysteine; Pro, Proline; Arg, Arginine; Gin, 
glutamine; Val, Valine; Phe, Phenylalanine; His, Histidine; Del, deletion; Leu, Leucine; 
Met, Methionine; Trp, Tryptophan. 

 

Importantly, there was not an enrichment of combined p53-MYC defects in the 

relapsing cohort (9/230, 4%, versus 8/310, 3%, p=0.4574, Fisher’s exact test, Table 6.2) 

and all p53-MYC combined defects were observed in MBSHH, consistent with reports by 

others (Zhukova et al., 2013). This observation supports the significant findings 

reported in Chapter 3 where combined p53-MYC defects frequently emerged at 

medulloblastoma relapse and were observed in all four molecular subgroups (Table 

3.11). 
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Table 6.2  Comparison of clinicopathological and molecular features in the relapsing 
cohort with historic studies of tumours sampled at diagnosis. # Historic studies 
(McManamy et al., 2007; Pfaff et al., 2010; Kool et al., 2012; Lannering et al., 2012; 
Ryan et al., 2012). * Cases with the specific feature were compared against all others 
without that feature. CLA, classic histology; DN, desmoplastic/nodular histology; LCA, 
large cell/anaplastic histology; M-, M0 disease; M+, M1+ disease; GTR, gross total 
resection; STR, subtotal resection; bold results, significant p value. p, Fisher’s exact test. 

 

 

  

Male 585/952 (61%) 161/235 (69%)

Female 367/952 (39%)  74/235 (31%)

Male:female ratio 1.6:1 2.18:1

Age range in years 0.3-52 0.01-33.73

Infants (<4 years) 167/943 (17%) 67/235 (29%) 0.0003*

Children (4-16 years) 599/943 (64%) 160/235 (68%)

Adults (>16 years) 177/943 (19%) 8/235 (3%)

CLA 938/1277 (74%) 154/219 (71%)

 DN 183/1277 (14%) 27/219 (12%)

 LCA 156/1277 (12%) 38/219 (17%) 0.0493*

M- 608/834 (73%) 93/183 (51%)

M+ 226/834 (27%) 90/183 (49%)

GTR 267/317 (84%) 154/227 (68%)

STR 50/317 (16%) 73/227 (32%)

MBSHH 153/550 (28%) 60/206 (29%) 0.7174

MBWNT 60/550 (11%) 5/206 (2%) <0.0001

MBGroup3 149/550 (27%) 57/206 (28%) 0.9269

MBGroup4 188/550 (34%) 84/206 (41%) 0.1058

MYC/MYCN  amplification 50/552 (9%) 29/198 (15%) 0.0313

MYC amplification 17/552 (3%) 9/212 (4%) 0.5034

MYCN amplification 33/552 (6%) 20/199 (10%) 0.0742

TP53 mutations 21/310 (7%) 19/215 (9%) 0.4058

TP53 mutation and MYC/MYCN  amplification 8/310 (3%) 9/230 (4%) 0.4574

TP53 mutation and MYC amplification 1/310 (<1%) 0/232 (0%) 1

TP53  mutation and MYCN  amplification 7/310 (2%) 9/230 (4%) 0.309

Clinicopathological and molecular features

Gender

Age

Pathology 

Metastatic stage

Resection

Molecular subgroup

Molecular defects

Combined molecular 

defects

<0.0001

<0.0001

0.0499

Independent 

published studies

Diagnosis p value

Present study

Relapsing cohort

Diagnosis

Historic studies #
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6.4.3 MBGroup3 tumours are not frequently biopsied at relapse 

Comparisons between the molecular subgroup distribution of the relapsing cohort 

(n=206 with subgroup available) and historic studies of medulloblastoma tumours 

sampled at diagnosis revealed that subgroup distribution of MBSHH, MBGroup3 and 

MBGroup4 was not significantly different (Table 6.2). However, tumours sampled at 

relapse in the paired relapse cohort (Chapter 3), when compared to the same historic 

studies (Table 3.4), demonstrated an enrichment at relapse for MBSHH (12/25,48%, 

versus 153/550, 28%, p=0.0402, Fisher’s exact test) and a paucity for MBGroup3 tumours 

(2/25, 8%, versus 149/550, 27%, p=0.0355, Fisher’s exact test). This raises the question 

of sampling bias which potentially may be due to a difference in clinical practice 

influenced by the subgroup-specific disease presentation at relapse. To explore this 

further, direct comparisons of subgroup distribution were performed between the 

paired relapse cohort (Chapter 3), the present relapsing cohort and the only other 

independent cohort of subgrouped medulloblastomas sampled at relapse 

(Ramaswamy et al., 2013). 

These comparisons, reported in Table 6.3, revealed that the subgroup distribution of 

the paired relapse cohort (Chapter 3) does differ significantly in its number of MBGroup3 

when compared to the number of MBGroup3 in the present relapsing cohort (57/206, 

28%, versus 2/25,8%, p=0.0489, Fisher’s exact test). However, on comparing the 

subgroup distribution of the paired relapse cohort with the tumours sampled at 

relapse reported by Ramaswamy et al., (2013) the number of MBGroup3   relapse 

tumours does not differ significantly (p=0.3215, Fisher’s exact test). This suggests that 

while MBGroup3 tumours do recur frequently, as would be expected given their poor 

overall prognosis (section 1.8.8.3), they are not routinely sampled at relapse. Clinical 

practice of tumour sampling at recurrence is most likely influenced by the nature and 

presentation of the disease at this time-point. The subgroup-specific patterns of 

disease relapse, alongside an exploratory survival analysis, are discussed in sections 

6.4.4.2-6.4.8.3 where the presentation of MBGroup3 disease at recurrence is explored 

further. 
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Table 6.3  Comparison between the subgroup distribution of the paired relapse 
cohort, relapsing cohort and independent cohort of medulloblastoma tumours 
sampled at relapse. *Independent published study (Ramaswamy et al., 2013). p, 
Fisher’s exact test. 

 

6.4.4 Assessing the clinicopathological and molecular features at 

diagnosis and their association with patterns of relapse in 

medulloblastoma 

Medulloblastoma comprises of four molecularly distinct subgroups which are 

associated with specific clinicopathological and additional molecular features 

(Thompson et al., 2006; Kool et al., 2008; Cho et al., 2011; Northcott et al., 2011b; 

Taylor et al., 2012). Consequently, all subsequent analyses were undertaken on the 

cases within the relapsing cohort which had molecular subgroup successfully assigned 

(n=206, section 6.3.6.1 and 6.3.6.2). To interrogate the relapsing cohort for 

associations between patterns of disease relapse and all other features (clinical, 

pathological and molecular), a correlative analyses (section 2.9) of the 206 relapsing 

tumours with known molecular subgroup was performed and is summarised in Figure 

6.2.  

6.4.4.1 Local relapses are associated with nodular disease, whereas 

distant relapse is associated with diffuse disease 

Several expected associations were observed in this analysis, whereas no unexpected 

associations were observed (Figure 6.2). This provided confidence in the assembly and 

assessment of the relapsing cohort. Established associations observed included the 

significant positive correlations between MBSHH and; infant age group (p=0.0247, 

Fisher’s exact test, Bonferroni corrected), MYCN amplification (p=0.0134, Fisher’s exact 

MBSHH 12/25 (48%) 60/206 (29%) 0.0676 21/51 (41%) 0.6275

MBWNT 2/25 (8%) 5/206 (2%) 0.1684 1/51 (2%) 0.2504

MBGroup3 2/25 (8%) 57/206 (28%) 0.0489 9/51 (18%) 0.3215

MBGroup4 9/25 (36%) 84/206 (41%) 0.8295 20/51 (39%) 1

Relapsing 

cohort

Relapse

Paired relapse 

cohort

Present study

Relapse p value

Independent published 

study *

Molecular subgroup Diagnosis p value



264 
 

test, Bonferroni corrected), TP53 mutation (p<0.0001, Fisher’s exact test, Bonferroni 

corrected) and DN histology (p<0.0001, Fisher’s exact test, Bonferroni corrected, 

section 1.8.8.2). Other established associations observed were the relationships 

between TP53 mutation and MYCN amplification (p<0.0001, Fisher’s exact test 

Bonferroni corrected), MBGroup4 and CLA histology (p=0.0006, Fisher’s exact test 

Bonferroni corrected) and the absence of MBGroup4 in the infant age group (p=0.0005, 

Fisher’s exact test, Bonferroni corrected). All of these established associations in 

medulloblastoma at diagnosis are discussed in section 1.8.8. 

Most notably the nature of disease relapse (diffuse or nodular) was significantly 

associated with disease location i.e. local or distant relapse (p<0.0001, Fisher’s exact 

test, Bonferroni corrected). This can be attributed to the typical clinical presentation of 

medulloblastoma recurrence, whereby nodular disease is more likely to occur locally 

and diffuse leptomeningeal disease is more widespread and distant (Perreault et al., 

2013). Following correction for multiple testing, no other feature demonstrated a 

significant association with the nature, or location of disease relapse. However, both 

MBSHH and DN histology were associated with disease location before correction for 

multiple testing (p=0.0199 and 0.0462 respectively, Fisher’s exact test). In view of the 

demonstrated association between DN histology and MBSHH (p<0.0001, Fisher’s exact 

test, Bonferroni corrected) and the stronger association between MBSHH and location 

of relapse, the subgroup-specific patterns of relapse were explored further (section 

6.4.4.2).
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Figure 6.2  Correlative analysis of the association between clinicopathological, molecular features and patterns of relapse in the relapsing cohort.  
Raw p values (Fisher’s exact test) reported in individual boxes, Bonferroni corrected p values in parentheses. CSI, craniospinal irradiation; LCA, large 
cell/anaplastic histology; DN, Desmoplastic/nodular histology; CLA, classic histology; Relapse location, distant; Nature of disease relapse, diffuse; 
diagonally hatched boxes, comparison not appropriate/available; bold, significant p value.  

Infant

Gender

CSI

0.3842 (1) 0.5054 (1) Resection

0.4901 (1) 0.2549 (1) 0.0273 (1)

1 (1) 0.2227 (1) 0.0984 (1) 1 (1) LCA

0.0010 

(0.1214)
0.0603 (1) 0.8199 (1) 0.8382 (1) DN

0.0136 (1) 0.0113 (1) 0.1236 (1) 1 (1) CLA

0.0134 (1) 0.4657 (1) 1 (1) 1 (1) 0.0130 (1) 1 (1) 0.0245 (1)

0.0270 (1) 0.7950 (1) 1 (1) 0.2802 (1)
0.0048 

(0.6109)
0.6982 (1) 0.0537 (1)

1 (1) 1 (1) 1 (1) 0.3687 (1)
0.0001 

(0.0093)
0.7452 (1)

0.0025 

(0.3223)

0.0444 (1) 0.7833 (1) 0.1031 (1) 0.0144 (1)
0.0014 

(0.1757)
0.6967 (1) 0.0194 (1) 1 (1)

<0.0001 

(<0.0001)

0.0002 

(0.0232)

0.0002 

(0.0247)

0.0078 

(0.9929)
1 (1) 0.0306 (1) 0.1520 (1)

<0.0001 

(<0.0001)

<0.0001 

(0.0001)
1 (1)

0.0001 

(0.0134)

0.0027 

(0.3415)

<0.0001 

(<0.0001)
MBSHH

0.3290 (1) 1 (1) 0.3259 (1) 0.3273 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1(1) 0.0625 (1) MBWNT

0.1601 (1) 1 (1) 0.2325 (1) 0.0922 (1) 0.0528 (1)
0.0060 

(0.7647)
1 (1) 0.0148 (1) 0.0258 (1) 0.8207 (1)

0.0039 

(0.4897)
MBGroup3

<0.0001 

(0.0005)
0.0145 (1) 0.1165 (1) 0.3557 (1)

0.0011 

(0.1379)
0.0171 (1)

<0.0001 

(0.0006)
0.0869 (1) 0.2015 (1) 0.0197 (1)

0.0031 

(0.3890)
MBGroup4

0.1534 (1) 0.0136 (1) 1 (1) 0.1465 (1) 0.0730 (1) 0.6654 (1) 0.7999 (1) 0.0462 (1) 0.0875 (1) 0.3486 (1) 0.7408 (1) 0.7826 (1) 0.0609 (1) 0.0119 (1) 0.3187 (1) 0.3875 (1) 0.0762 (1)

0.8611 (1) 0.2953 (1) 0.7872 (1) 1 (1) 0.3388 (1) 0.8536 (1) 1 (1) 0.6368 (1) 0.8575 (1) 0.1224 (1) 0.3803 (1) 0.0503 (1) 0.4366 (1) 0.8588 (1) 0.1762 (1) 0.7124 (1) 0.2359 (1)
<0.0001 

(<0.0001)

Relapse location

TP53  mutation

MYC/MYCN  amplification

Nature of disease relapse

Metastatic disease

Focal radiotherapy

MYCN amplification

MYC amplification



266 
 

6.4.4.2 MBGroup3 and MBGroup4 are commonly metastatic at disease 

relapse 

To assess the subgroup-specific patterns of relapse, three comparative analyses were 

performed on; the whole relapsing cohort, those patients who received upfront CSI 

and those patients that did not receive upfront CSI. These were undertaken to account 

for the differing age distribution of the molecular subgroups and the variable upfront 

treatment that each age group received (i.e. infants do not have CSI upfront, section 

1.8.5, and are enriched for MBSHH and MBGroup3, section 1.8.8). In addition, recent 

observations by Ramaswamy et al., (2013) noted a difference in the subgroup-specific 

patterns of relapse depending on the delivery of upfront CSI to MBGroup4 patients. The 

structure of the analysis of the present study would thus allow similar comparisons to 

be made. Overall, MBSHH recurred more frequently in the posterior fossa (31/47, 66%, 

p=0.0052, Fisher’s exact test, Table 6.4) than MBGroup3 and MBGroup4, both of which 

typically relapsed at distant sites (34/41, 83% and 52/61, 85%, p=0.0119, Fisher’s exact 

test, Table 6.4). This is consistent with recent reports by Ramaswamy et al., (2013, 

section 1.9.2.2), although they report a lower rate of distant disease in MBSHH (18/58, 

31%) than described in this study where distant relapse in MBSHH is still a common 

event (30/47, 64%). 

 

 

 

 



267 
 

  

Table 6.4  Subgroup-specific patterns of disease relapse.  CSI, craniospinal irradiation; 
bold, significant p value; local disease, M0/1; distant disease, M2+; p, Fisher’s exact 
test, compares the rate of local or distant relapse for each subgroup versus all other 
subgroups. 

 

The subgroup-specific patterns of disease relapse and association of MBSHH with local 

disease relapse (Figure 6.2) also reflects the predominance of distant relapse in 

MBGroup3 and MBGroup4 (34/41, 83% and 52/61, 85% in the whole cohort, Table 6.4). This 

is particularly true for those patients who received upfront CSI, whereby in MBGroup4, 

distant relapse occurs in 91% of patients (51/56, p=0.0066, Table 6.4). However, in 

MBGroup4 patients not receiving upfront CSI, distant relapse occurred infrequently (1/5, 

20%, p=0.0248, Fisher’s exact test). While this finding is drawn from a small population 

of patients, it is consistent with other reports (Ramaswamy et al., 2013).   

Molecular subgroup Local p value Distant p value

MBSHH 31/47 (66%) 0.0052 30/47 (64%) 0.0119

MBWNT 2/5 (40%) 1 3/5 (60%) 0.3187

MBGroup3 16/41 (39%) 0.2015 34/41 (83%) 0.3875

MBGroup4 26/61 (43%) 0.2507 52/61 (85%) 0.0762

Molecular subgroup Local p value Distant p value

MBSHH 13/20 (65%) 0.0245 11/20 (55%) 0.0034

MBWNT 2/5 (40%) 1 3/5 (60%) 0.2492

MBGroup3 8/27 (30%) 0.1788 22/27 (81%) 1

MBGroup4 22/56 (41%) 0.6969 51/56 (91%) 0.0066

Molecular subgroup Local p value Distant p value

MBSHH 18/27 (67%) 1 19/27 (70%) 1

MBGroup3 8/14 (57%) 0.5115 12/14 (86%) 0.1692

MBGroup4 4/5 (80%) 0.6446 1/5 (20%) 0.0248

Whole cohort

Upfront CSI cohort

No upfront CSI cohort

Relapse pattern frequency by molecular subgroup

Relapse pattern frequency by molecular subgroup

Relapse pattern frequency by molecular subgroup
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Further analysis revealed that the patterns of MBGroup4 relapse in patients who did not 

receive upfront CSI, differs significantly from the pattern of relapse observed in 

MBGroup4 patients who did receive upfront CSI, with patients typically relapsing at 

distant sites following upfront CSI (51/56,91%, versus 1/5, 20%, p=0.0011, Fisher’s 

exact test, Table 6.5). 

 

Table 6.5  Differing patterns of relapse in MBGroup4 patients with and without upfront 
CSI. Local disease, M0/1; distant disease, M2+; p, Fisher’s exact test. 

 

6.4.4.3 Distant disease is frequently acquired in all molecular 

subgroups at medulloblastoma relapse  

In view of the high rate of distant disease at relapse, particularly in MBGroup3 and 

MBGroup4, the frequency of distant disease (M2+) at diagnosis was reviewed cohort-

wide and compared to the frequency of distant disease at relapse. This revealed that 

distant disease at relapse (119/154, 77%) was significantly more common than distant 

disease at diagnosis (63/202, 31%, p<0.0001, Fisher’s exact test). In view of these 

findings, and the enrichment of distant disease in MBGroup3 and MBGroup4 (Table 6.4), 

further analysis was undertaken to determine whether there was a subgroup-specific 

difference in disease location at diagnosis in those patients who went on to relapse at 

a distant site. The following results (Table 6.6) demonstrate that across all four 

subgroups, the majority of patients who suffer a distant relapse, regardless of whether 

they received upfront CSI, have only local disease at diagnosis.  

Overall, distant disease (M2+) at diagnosis in patients who go on to develop distant 

relapse is observed more frequently in MBGroup3 and MBGroup4 patients at diagnosis 

(12/34, 35% and 16/50, 32%, respectively) when compared to MBSHH and MBWNT (5/30, 

17% and 0/3, 0%, respectively). This is consistent with the increased overall rate of 

metastatic disease associated with these two subgroups (Thompson et al., 2006; Kool 

et al., 2008; Cho et al., 2011; Northcott et al., 2011b; Taylor et al., 2012). However, 

Cohort Local p value Distant p value

Upfront CSI 22/56 (41%) 51/56 (91%)

No upfront CSI 4/5 (80%) 1/5 (20%)

Relapse pattern

0.1536 0.0011

MBGroup4
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there was not a statistical difference in the frequency of M2+ disease at diagnosis in 

MBGroup3 and MBGroup4 when individually compared to the rest of the cohort (p=0.3654 

and p=0.5339 respectively, Fisher’s exact test). These findings indicate that disease 

location at diagnosis is not predictive of disease location at relapse in all four 

subgroups, and distant disease sites are commonly acquired at relapse. This is again 

consistent with the findings in Chapter 3 (section 3.4.2.2), where high-risk disease 

features, including distant relapse, were commonly acquired at recurrence. Fully 

annotated data on the subgroup-specific patterns of disease relapse alongside all other 

currently characterised molecular, clinicopathological and demographic features are 

provided in section 9.5:  Appendix V.  
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Table 6.6  Acquisition of distant disease at medulloblastoma relapse across all four 
molecular subgroups.  Data reported at diagnosis are the proportion of patients who 
go on to have distant relapses (also shown at relapse). CSI, craniospinal irradiation.        
* Data not available for two MBGroup4 patients at diagnosis. p, Fisher’s exact test 
comparing the frequency of distant disease at diagnosis in an individual subgroup with 
the frequency of distant disease in all other subgroups. 

 

6.4.4.4 Tumours with combined TP53 mutations and MYCN 

amplification display locally aggressive disease at diagnosis 

The patterns of disease relapse in patients with combined p53-MYC defects, (Chapter 

3), were also interrogated in the cohort of patients who relapsed following upfront CSI. 

In total, 7/152 cases (5%, two cases not characterised) displayed combined TP53 

mutations and MYCN amplification at diagnosis, and were all MBSHH. This is consistent 

Molecular subgroup Distant disease at relapse p value

Local disease 25/30 (83%)

Distant disease 5/30 (17%)

Local disease 3/3 (100%)

Distant disease 0/3 (0%)

Local disease 22/34 (65%)

Distant disease 12/34 (35%)

Local disease 34/50 (68%)*

Distant disease 16/50 (32%)*

Molecular subgroup Distant disease at relapse p value

Local disease 9/11 (82%)

Distant disease 2/11 (18%)

Local disease 3/3 (100%)

Distant disease 0/3 (0%)

Local disease 15/22 (68%)

Distant disease 7/22 (32%)

Local disease 33/49 (63%)*

Distant disease 16/49 (33%)*

Molecular subgroup Distant disease at relapse p value

Local disease 16/19 (84%)

Distant disease 3/19 (16%)

Local disease 7/12 (58%)

Distant disease 5/12 (42%

Local disease 1/1 (100%)

Distant disease 0/1 (0%)

34/41 (83%)

52/61 (85%)

11/20 (55%)

3/5 (60%)

22/27 (81%)

Acquisition and maintenance of distant disease

0.552

0.7904

0.4800

0.0652

0.1161

Acquisition and maintenance of distant disease

MBGroup3

MBGroup4

MBGroup4

No upfront CSI cohort

Location of disease at diagnosis

MBSHH

1

51/56 (91%)

19/27 (70%)

12/14 (86%)

1/5 (20%)

MBGroup3

MBGroup3

MBGroup4

Upfront CSI cohort

Location of disease at diagnosis

MBSHH

MBWNT

0.3654

0.5339

0.4952

MBWNT

Whole cohort

Location of disease at diagnosis

MBSHH 0.157

0.5578

30/47 (64%)

3/5 (60%)

Acquisition and maintenance of distant disease
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with the current understanding of the disease at diagnosis (section 1.8.8.2) where 

these features are infrequent at diagnosis and not observed outside of MBSHH (Pfaff et 

al., 2010; Jones et al., 2012; Zhukova et al., 2013; Kool et al., 2014). All of the seven 

patients (100%) demonstrated local disease alone, and 5/6 (83%, one case MBNOS) 

displayed LCA histology at diagnosis, consistent with the locally aggressive disease 

features reported at relapse in patients who acquired combined p53-MYC defects 

(Table 3.11). Interestingly, 5/6 p53-MYCN cases (83%, one case had no data) 

developed metastatic disease, typically leptomeningeal, at relapse. While this was in 

contrast to the findings reported in Chapter 3 these events are not directly 

comparable.  

Firstly, these observations are based on the assumption in the relapsing cohort that 

the combined p53-MYCN defects at diagnosis are maintained at relapse, which cannot 

be confirmed in the absence of a biopsy sample taken at relapse. Secondly, these 

comparisons do not account for the temporal evolution of the tumour. If we consider 

the time-point where both molecular aberrations are known to be present, whether it 

be at diagnosis (present study) or at relapse (Chapter 3), then both cohorts of patients 

display locally aggressive disease (M0/M1 disease and LCA histology). The observations 

in this study suggest that if the combined p53-MYC defects are demonstrated early 

(i.e. at diagnosis) then over time the tumour can recur and metastasise to distant sites.  

6.4.5 Features associated with time to relapse in the relapsing cohort 

An exploratory, univariate survival analyses undertaken on all cases with molecular 

subgroup available in the relapsing cohort (n=206), revealed several molecular 

features that were associated with a more rapid time to relapse. 

6.4.5.1 Upfront CSI, molecular subgroup membership and MYC 

amplification are associated with time to relapse 

Patients not receiving upfront CSI relapsed more quickly than those who did receive 

this treatment modality at diagnosis (Table 6.7 and Figure 6.3, p=0.0045, Log rank test, 

Bonferroni corrected). These patients were predominately infants (38/47, 81%, section 

9.5:  Appendix V), consistent with current clinical practice whereby CSI is typically 

avoided in this age group due to the long term side effects on the developing brain  

(Ashford et al., 2014; Bull et al., 2014; Knight et al., 2014). MBGroup4 was also predictive 
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of a slower time to relapse in the whole cohort (Table 6.7 and Figure 6.3, p=0.0008, 

Log rank test, Bonferroni corrected).  

In contrast to the findings in the paired relapse cohort (section 3.4.4.3, Table 3.9), TP53 

mutation did not predict a shortened time to relapse in this larger, relapsing cohort 

(Table 6.7). However, other high-risk disease features (Pizer and Clifford, 2009; 

Northcott et al., 2012a) which were associated with a more rapid time to relapse 

included MBGroup3 (Table 6.7 and Figure 6.3, p=0.0022, Log rank test, Bonferroni 

corrected) and MYC amplification (Table 6.7 and Figure 6.3, p<0.0001, Log rank test, 

Bonferroni corrected). On comparing in isolation the time to relapse across all four 

subgroups there remained a significant difference between the rate of relapse 

(p<0.0001, Log rank test, Figure 6.3) which was most likely born out of the more rapid 

time to relapse of MBGroup3 and the slower time to relapse of MBGroup4 (Table 6.7 and 

Figure 6.3, p=0.0022 and p=0.0008 respectively, Log rank test, Bonferroni corrected). 
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Table 6.7  Univariate time to relapse analysis on the whole relapsing cohort.  
Demographic frequencies are shown as a proportion and percentage of the data 
available for each variable. Infant, <4 years; STR, subtotal resection; GTR, gross total 
resection; CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; M-, 
M0/M1; M+, M2+. p, Log rank test, significant results are highlighted in bold. 

Number of patients          

raw p value corrected p value

Infant 54/206 (26%) 0.0048 0.076

Non infant 152/206 (74%)

Male 142/206 (69%) 0.39046 1

Female 64/206 (31%)

Yes 154/201 (77%) 0.0003 0.0045

No 47/201 (23%)

STR 61/199 (31%) 0.9624 1

GTR 138/199 (69%)

CLA 134/194 (69%) 0.0919 1

LCA 35/194 (18%) 0.0128 0.2050

DN 25/194 (13%) 0.8053 1

M+ 63/202 (31%) 0.3486 1

M- 139/202 (69%)

MBSHH 60/206 (29%) 0.0965 1

MBWNT 5/206 (2%) 0.3947 1

MBGroup3 57/206 (28%) 0.0001 0.0022

MBGroup4 84/206 (41%) 0.0001 0.0008

MYC/MYCN amplification 27/181 (15%) 0.0001 0.0014

MYC amplification 9/191 (5%) <0.0001 <0.0001

MYCN  amplification 18/182 (10%) 0.0557 1

TP53  mutations 17/193 (9%) 0.5160 1

Whole cohort 

Univariate

Age

Gender

CSI at diagnosis

Resection

Pathology 

Variable

Molecular defects

Metastatic stage

Subgroup



274 
 

 

Figure 6.3  Kaplan-Meier plots demonstrating the difference in time to relapse between different treatment groups, molecular subgroups and 
molecular features in the whole relapsing cohort.  (i) Patients receiving upfront CSI (blue) versus no upfront CSI (red). (ii) MBGroup3 tumours (blue) 
versus non-MBGroup3 tumours (red). (iii) MBGroup4 tumours (blue) versus non-MBGroup4 tumours (red). (iv) MYC/MYCN amplified tumours (blue) versus 
non-amplified tumours (red). (v) MYC amplified tumours (blue) versus non-MYC amplified tumours (red). p, Log rank test, Bonferroni corrected. (vi) 
Comparison of all four molecular subgroups; blue, MBWNT; red, MBSHH; yellow, MBGroup3; green, MBGroup4. p, Log rank test.  
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6.4.5.2 MBGroup3 tumours relapse more quickly in patients receiving 

upfront CSI 

In view of the demonstrated association between upfront CSI and time to relapse 

(Table 6.7), further survival analyses were undertaken on the two previously defined 

treatment groups within the relapsing cohort; those patients who received upfront CSI 

and those patients who did not receive upfront CSI. This highlighted that in patients 

who received upfront CSI only MBGroup3 membership was significantly associated with a 

rapid time to relapse with a median time to recurrence of 1.28 years (range 0.17-5.5 

years), compared to an overall median time to recurrence of 2.75 years in the 

remaining three molecular subgroups (range 0.29-8.91, p=0.0022, Log rank test, 

Bonferroni corrected, Table 6.8 and Figure 6.4). The difference in time to relapse 

remained significant when all four subgroups were compared in isolation (p=0.0013, 

Log rank test, Figure 6.4). These findings were consistent with the current 

understanding of medulloblastoma where MBGroup3 has the poorest OS (section 

1.8.8.3), and most aggressive disease course of all four subgroups (Kool et al., 2012; 

Northcott et al., 2012a; Taylor et al., 2012; Shih et al., 2014).  
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Table 6.8  Univariate time to relapse analysis on patients receiving upfront CSI in the 
relapsing cohort.  Demographic frequencies are shown as a proportion and percentage 
of the data available for each variable. Infant, <4 years; STR, subtotal resection; GTR, 
gross total resection; CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; 
M-, M0/M1; M+, M2+. p, Log rank test, significant results are highlighted in bold. 

 

   

Figure 6.4  Kaplan-Meier plots demonstrating the difference in time to relapse 
between molecular subgroups in patients who received upfront CSI.  (i)  MBGroup3 

tumours (blue) versus non-MBGroup3 tumours (red). p, Log rank test, Bonferroni 
corrected. (ii) Comparison of all four molecular subgroups; blue, MBWNT; red, MBSHH; 
yellow, MBGroup3; green, MBGroup4. p, Log rank test. 

Number of patients          

raw p value corrected p value

Infant 14/154 (9%) 0.0326 0.5210

Non infant 140/154 (91%)

Male 111/154 (72%) 0.3998 1

Female 43/154 (28%)

STR 51/152 (34%) 0.9524 1

GTR 101/152 (66%)

CLA 106/144 (74%) 0.7830 1

LCA 25/144 (17%) 0.1462 1

DN 13/144 (9%) 0.2370 1

M+ 49/152 (32%) 0.3276 1

M- 103/152 (68%)

MBSHH 33/154 (22%) 0.7957 1

MBWNT 5/154 (3%) 0.5662 1

MBGroup3 42/154 (27%) 0.0001 0.0022

MBGroup4 74/154 (48%) 0.0050 0.0795

MYC/MYCN amplification 18/132 (14%) 0.0139 0.2221

MYC amplification 3/140 (2%) 0.0353 0.5646

MYCN  amplification 15/133 (11%) 0.0661 1

TP53  mutations 15/141 (11%) 0.4081 1

TP53  mutation and 

MYC /MYCN amplification
7/152 (5%) 0.3277 1

Gender

Resection

Pathology 

Metastatic stage

Subgroup

Molecular defects

Upfront CSI cohort

Univariate

Age

Variable
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6.4.5.3 Combined TP53 mutations and MYCN do not predict a rapid 

time to relapse following upfront CSI 

As already described in section 6.4.4.4, 7/152 cases (5%) demonstrated combined TP53 

mutation and MYCN amplification at diagnosis. These tumours were locally aggressive 

at diagnosis, similar in nature to the clinicopathological features of the p53-MYC 

tumours discovered at relapse and described in Chapter 3 (Table 3.11). Similar to the 

observations in Chapter 3, patients with combined p53-MYCN defects did not relapse 

more quickly than patients without combined defects (p=1, Log rank test, Bonferroni 

corrected, Table 6.8 and Figure 6.5). 

 

Figure 6.5  Kaplan-Meier plot demonstrating, in patients who received upfront CSI, 
the difference in time to relapse between cases with and without p53-MYCN defects 
at diagnosis.  Combined p53-MYCN defects (blue) versus all cases without combined 
p53-MYCN defects (red). p, Log rank test, Bonferroni corrected.  

 

6.4.5.4  Pathological and molecular features predict a rapid time to 

relapse in patients not receiving upfront CSI 

As already demonstrated on the whole cohort, MYC amplification was significantly 

associated with a rapid time to relapse (section 6.4.5.1, Table 6.7 and Figure 6.3). This 

finding was not maintained in the cohort patients who received upfront CSI (p=0.5646, 

Log rank test, Bonferroni corrected, Table 6.8). However, on assessing patients who 

did not receive upfront CSI, MYC amplification was significantly associated with a rapid 

time to relapse (p=0.0003, Log rank test, Bonferroni corrected, Table 6.9 and Figure 

6.6). In addition to this finding, LCA histology, another established high-risk disease 

feature (Pizer and Clifford, 2009; Ellison, 2010; Pizer et al., 2011b) was also associated 
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with a shortened time to relapse (p=0.0004, Log rank test, Bonferroni corrected, Table 

6.9 and Figure 6.6). MYCN amplification appeared predictive of a shortened time to 

relapse (p=0.0357, Log rank test, Table 6.9 and Figure 6.6), but did not retain 

significance after correction for multiple testing. Overall, MYC gene family 

amplification (MYC/MYCN amplification) in the cohort of patients not receiving upfront 

CSI was significantly associated with a more rapid recurrence when compared to 

tumours without MYC gene family amplification (p<0.0001, Log rank test, Bonferroni 

corrected, Table 6.9 and Figure 6.6).  

Interestingly, of the six patients who displayed MYC amplification at diagnosis, 4/6 

(67%) also displayed LCA histology at diagnosis with an additional five cases displaying 

LCA who did not have MYC amplification at diagnosis. These findings suggest that MYC 

gene amplification and LCA histology are significant in predicting rapid recurrence in 

patients not receiving upfront CSI, but there is also a cross-over of these high-risk 

features which may compound the rapid time to relapse witnessed in this group of 

patients. Finally, molecular subgroup was not predictive of a differing time to relapse 

(p=0.5404, Log rank test, Table 6.9 and Figure 6.6), unlike the findings reported for 

patients who received upfront CSI, where MBGroup3 was predictive of a shortened time 

to relapse (section 6.4.5.2).  
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Table 6.9  Univariate time to relapse analysis on patients not receiving upfront CSI in 
the relapsing cohort.  Demographic frequencies are shown as a proportion and 
percentage of the data available for each variable. Infant, <4 years; STR, subtotal 
resection; GTR, gross total resection; CLA, classic; LCA, large-cell/anaplastic; DN, 
desmoplastic/nodular; M-, M0/M1; M+, M2+; na, not applicable. p, Log rank test, 
significant results are highlighted in bold. 

Number of patients          

raw p value corrected p value

Infant 38/47 (81%) 0.1029 1

Non infant 9/47 (19%)

Male 27/47 (57%) 0.90889 1

Female 20/47 (43%)

STR 10/47 (21%) 0.2898 1

GTR 37/47 (79%)

CLA 24/45 (53%) 0.0314 0.4389

LCA 9/45 (20%) <0.0001 0.0004

DN 12/45 (27%) 0.9774 1

M+ 13/47 (28%) 0.9963 1

M- 34/47 (72%)

MBSHH 27/47 (57%) 0.7330 1

MBWNT 0/47 (0%) na na

MBGroup3 14/47 (30%) 0.5975 1

MBGroup4 6/47 (13%) 0.2788 1

MYC/MYCN amplification 9/44 (20%) <0.0001 <0.0001

MYC amplification 6/46 (13%) <0.0001 0.0003

MYCN  amplification 3/44 (7%) 0.0357 0.4991

TP53  mutations 2/47 (4%) 0.1105 1

Molecular defects

Pathology 

Metastatic stage

Subgroup

Variable Univariate

Age

Gender

Resection

No upfront CSI cohort
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Figure 6.6  Kaplan-Meier plots demonstrating the difference in time to relapse in patients not receiving upfront CSI according to histological 
variant, MYC gene family amplification and molecular subgroup  (i) LCA histology (blue) versus non-LCA histology (red). (ii) MYC amplified tumours 
(blue) versus non-MYC amplified tumours (red). (iii) MYC gene family amplified tumours (blue) versus non-MYC gene family amplified tumours (red). 
(iv) MYCN amplified tumours (blue) versus non-MYCN amplified tumours (red). p, Log rank test, Bonferroni corrected. (v) Comparison of all molecular 
subgroups; red, MBSHH; yellow, MBGroup3; green, MBGroup4. p, Log rank test. 
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6.4.6 Assessing the clinicopathological and molecular features 

associated with time to death following relapse 

All clinical, pathological and molecular features at diagnosis and relapse that could 

influence disease behaviour from the point of relapse onwards; i.e. age, gender, 

molecular subgroup, molecular defects at diagnosis, pathology at diagnosis, 

radiotherapy at relapse, relapse location and pattern of relapse, were included in a 

univariate TTD analysis.  

6.4.6.1 No molecular features are associated with time to death 

following relapse in patients who received upfront CSI 

In the cohort of patients receiving upfront CSI, MYCN amplification and LCA histology 

at diagnosis and diffuse disease at relapse were associated with a shortened TTD prior 

to performing the Bonferroni procedure for multiple testing (section 2.10, Table 6.10). 

Similarly, prior to correction for multiple testing, MBGroup4 and radiotherapy at relapse 

were associated with a prolonged TTD (section 2.10, Table 6.10). Importantly, no 

feature, upon correcting for multiple testing, demonstrated a significant relationship 

with TTD. These findings were supportive of the results in Chapter 3, whereby it was 

the emerging molecular features of the tumour at relapse, (e.g. p53-MYC combined 

defects), and not diagnosis that identified patients with rapidly progressive disease 

post-recurrence (section 3.4.4.4). 
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Table 6.10  Univariate time to death analysis on patients receiving upfront CSI in the 
relapsing cohort.  Demographic frequencies are shown as a proportion and percentage 
of the data available for each variable. Infant, <4 years; CLA, classic; LCA, large-
cell/anaplastic; DN, desmoplastic/nodular; Distant, M2+; Local, M0/M1. p, Log rank 
test, significant results are highlighted in bold.  

 

6.4.6.2 Patients treated with upfront CSI, who display combined TP53 

mutations and MYCN amplification at diagnosis, progress rapidly 

following disease recurrence 

Despite the non-significant findings of this aspect of the analysis, closer inspection of 

the patients who displayed combined p53-MYCN defects at diagnosis (n=7) revealed 

that, with the exception of one patient who survived for 3.34 years, all other patients 

(n=5) died rapidly following recurrence (Figure 6.7) with a median TTD of 0.58 years 

(range 0.12-0.87 years). This compared to a median TTD of 0.79 (range 0- 4.31 years) in 

the remainder of the cohort. In addition, one patient who displayed combined p53-

MYCN defects at diagnosis had recently been diagnosed with a recurrent 

Number of patients          

raw p value corrected p value

Infant 14/154 (9%) 0.5988 1

Non infant 140/154 (91%)

Male 111/154 (72%) 0.6828 1

Female 43/154 (28%)

MBSHH 33/154 (22%) 0.0952 1

MBWNT 5/154 (3%) 0.2537 1

MBGroup3 42/154 (27%) 0.0883 1

MBGroup4 74/154 (48%) 0.0253 0.4298

MYC/MYCN amplification 18/132 (14%) 0.0152 0.2576

MYC amplification 3/140 (2%) 0.2261 1

MYCN  amplification 15/133 (11%) 0.0375 0.6382

TP53  mutations 15/141 (11%) 0.8971 1
TP53  mutation and 

MYC/MYCN  amplification
7/152 (5%) 0.8146 1

CLA 106/144 (74%) 0.0653 1

LCA 25/144 (17%) 0.0418 0.7106

DN 13/144 (9%) 0.7225 1

Yes 13/102 (13%) 0.0188 0.3189

No 89/102 (87%)

Distant 87/108 (81%) 0.2231 1

Local 21/108 (19%)

Diffuse 57/104 (55%) 0.0058 0.0981

Nodular 47/104 (45%)

Relapse location

Subgroup at 

diagnosis

Pattern of relapse

Molecular defects 

at diagnosis

Variable Univariate

Age

Gender

RT at relapse

Pathology at 

diagnosis

Upfront CSI cohort
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medulloblastoma and was still alive with evidence of disease at the point of clinical 

data collection (follow-up post-recurrence of 0.04 years).  

This comparison does not consider other p53 pathway defects which are yet to be 

assessed in this cohort (e.g. p14ARF deletion). Moreover, as it is a cohort of tumours 

sampled at diagnosis, there is no accounting for any cases that may have acquired p53-

MYC defects at relapse, as reported in Chapter3, which may influence disease behavior 

post-recurrence. However, if the p53-MYCN defects discovered at diagnosis in the 

relapsing cohort were maintained at relapse, these findings compliment the findings 

reported in Chapter 3, as the majority of patients with p53-MYCN defects at diagnosis 

(5/7, 71%) rapidly progress and succumb to their disease within a year post-relapse 

(Figure 6.7). 

 

Figure 6.7  Kaplan-Meier plot demonstrating, in patients who received upfront CSI, 
the difference in time to death following relapse between cases with and without 
p53-MYCN defects at diagnosis.  Combined p53-MYCN defects (blue) versus all cases 
without combined p53-MYC defects (red). p, Log rank test, Bonferroni corrected.  

 

6.4.6.3 MYC amplification predicts a rapid time to death in patients 

who do not receive upfront CSI 

In patients who did not receive upfront CSI, MYC amplification was predictive of rapid 

time to death following relapse (p=0.0003, Log rank test, Bonferroni corrected, Table 

6.11 and Figure 6.8). All patients with MYC amplified tumours at diagnosis rapidly 

progressed after recurrence and died of disease, with a median TTD of 0.02 years 

(range 0.01-0.22 years, Figure 6.8). Other features also associated with a rapid demise 

post recurrence, prior to correction for multiple testing, were MBGroup3 and LCA (Table 
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6.11 and Figure 6.8). As already discussed in section 6.4.5.4, there was overlap 

between these variables and 5/6 (83%) MYC amplified tumours belonged to MBGroup3, 

and 4/5 (80%) of these tumours also displayed LCA histology (Table 9.3).  

 

Table 6.11  Univariate time to death analysis on patients not receiving upfront CSI in 
the relapsing cohort.  Demographic frequencies are shown as a proportion and 
percentage of the data available for each variable. Infant, <4 years; CLA, classic; LCA, 
large-cell/anaplastic; DN, desmoplastic/nodular; Distant, M2+; Local, M0/M1; na, not 
applicable. p, Log rank test, significant results are highlighted in bold. 

  

Number of patients          

raw p value corrected p value

Infant 38/47 (81%) 0.5689 1

Non infant 9/47 (19%)

Male 27/47 (57%) 0.5167 1

Female 20/47 (43%)

MBSHH 27/47 (57%) 0.0905 1

MBWNT 0/47 (0%) na na

MBGroup3 14/47 (30%) 0.0254 0.3816

MBGroup4 6/47 (13%) 0.7081 1

MYC/MYCN amplification 9/44 (20%) 0.0004 0.0053

MYC amplification 6/46 (13%) <0.0001 0.0003

MYCN  amplification 3/44 (7%) 0.4866 1

TP53  mutations 2/47 (4%) 0.7380 1

CLA 24/45 (53%) 0.0341 0.5116

LCA 9/45 (20%) 0.0065 0.0972

DN 12/45 (27%) 0.0038 0.0564

Yes 19/43 (44%) <0.0001 0.0003

No 24/43 (56%)

Distant 32/46 (70%) 0.6182 1

Local 14/46 (30%)

Diffuse 24/44 (55%) 0.5182 1

Nodular 20/44 (45%)

Subgroup at 

diagnosis

Molecular defects 

at diagnosis

Pattern of relapse

Age

Gender

RT at relapse

Pathology at 

diagnosis

Relapse location

No upfront CSI cohort

Variable Univariate
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Figure 6.8  Kaplan-Meier plots demonstrating the features associated with time to 
death post-recurrence in CSI naïve patients.  (i) MYC amplified tumours (blue) versus 
non-MYC amplified tumours (red). (ii) MBGroup3 tumours (blue) versus non-MBGroup3 
tumours (red). (iii) LCA (blue) versus non-LCA tumours. p, Log rank test, Bonferroni 
corrected. (iv) Comparison of all molecular subgroups; red, MBSHH; yellow, MBGroup3; 
green, MBGroup4. p, Log rank test. 

 

6.4.7 Radiotherapy at relapse is associated with time to death in 

those patients who are CSI naïve at disease recurrence 

Radiotherapy at relapse (both CSI and focal radiotherapy) was the only factor following 

correction for multiple testing which was significantly associated with an increased TTD 

and survival in patients who did not receive upfront CSI (p=0.0003, Log rank test, 

Bonferroni corrected, Figure 6.9 and Table 6.11). This supports work by others (Muller 

et al., 2014), who report that radiotherapy is a potentially curative option at 

medulloblastoma relapse in this group of patients who are CSI naïve and is explored 

further in section 6.4.9. DN histology also conveyed a survival benefit in the cohort of 
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patients not receiving upfront CSI although this was not significant following correction 

for multiple testing (p=0.0564, Log rank test, Bonferroni corrected, Table 6.11). This 

finding compliments the current understanding of disease behavior in infants where 

DN histology conveys a better prognosis at diagnosis (McManamy et al., 2007; 

Rutkowski et al., 2009; Ellison, 2010; Leary et al., 2011). 

  

Figure 6.9  Kaplan-Meier plot demonstrating the difference in survival between CSI 
naïve patients at relapse who received radiotherapy at recurrence.  Blue line, 
radiotherapy at recurrence; red line, no radiotherapy at recurrence. p, Log rank test, 
Bonferroni corrected. 

 

6.4.8 Features that are associated with overall survival in the 

relapsing cohort 

Overall survival analyses was undertaken to investigate associations with the 

clinicopathological and molecular features interrogated at both diagnosis and relapse 

in the relapsing cohort.  

6.4.8.1 Only MYC gene family amplification is associated with a 

reduced overall survival in patients receiving upfront CSI 

In the cohort of patients receiving CSI at diagnosis, OS analysis clearly demonstrated 

that apart from MYC gene family amplification, no other feature was associated with 

OS (p=0.0481, Log rank test, Bonferroni corrected, Table 6.12). There was a subgroup-

specific difference between OS in MBGroup3 and MBGroup4 tumours prior to correction 

for multiple testing (p=0.0082 and p=0.0078 respectively, Log rank test, Table 6.12 and 

Figure 6.10) and comparison of the four molecular subgroups in isolation 

demonstrated a significant difference in OS (p=0.0208, Log rank test, Figure 6.10). 
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These findings most likely relate to the differing times to relapse in the molecular 

subgroups, with MBGroup3 relapsing quickly and MBGroup4 relapsing more slowly (section 

6.4.5.2 and Table 6.8).  

 

 

Table 6.12  Univariate overall survival analysis performed on patients receiving 
upfront CSI in the relapsing cohort.  Demographic frequencies are shown as a 
proportion and percentage of the data available for each variable. Infant, <4 years; CLA, 
classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; M+, M2+; M-, M0/1; STR, 
subtotal resection; GTR, gross total resection; RT, radiotherapy; distant, M2+; local, 
M0/M1. p, Log rank test, significant results are highlighted in bold. 

  

Number of patients          

raw p value corrected p value

Infant 14/154 (9%) 0.7843 1

Non infant 140/154 (91%)

Male 111/154 (72%) 0.7352 1

Female 43/154 (28%)

MBSHH 33/154 (22%) 0.3224 1

MBWNT 5/154 (3%) 0.4468 1

MBGroup3 42/154 (27%) 0.0082 0.1554

MBGroup4 74/154 (48%) 0.0078 0.1476

CLA 106/144 (74%) 0.2703 1

LCA 25/144 (17%) 0.0630 1

DN 13/144 (9%) 0.6988 1

M+ 49/152 (32%) 0.1033 1

M- 103/152 (68%)

STR 51/152 (34%) 0.1855 1

GTR 101/152 (66%)

MYC/MYCN amplification 18/132 (14%) 0.0025 0.0481

MYC amplification 3/140 (2%) 0.0238 0.4513

MYCN  amplification 15/133 (11%) 0.0216 0.4096

TP53  mutations 15/141 (11%) 0.5871 1
TP53  mutation and 

MYC /MYCN amplification
7/152 (5%) 0.6556 1

Yes 13/102 (13%) 0.0425 0.8071

No 89/102 (87%)

Distant 87/108 (81%) 0.9376 1

Local 21/108 (19%)

Diffuse 57/104 (55%) 0.0551 1

Nodular 47/104 (45%)

Metastatic stage at 

diagnosis

Pathology at 

diagnosis

RT at relapse

Relapse location

Pattern of relapse

Resection at 

diagnosis

Upfront CSI cohort

Variable Univariate

Age

Gender

Subgroup at 

diagnosis

Molecular defects 

at diagnosis
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Figure 6.10  Kaplan-Meier plots illustrating the features that are associated with 
overall survival in those patients who received upfront CSI in the relapsing cohort  (i) 
MYC gene family amplified tumours (blue) versus non amplified tumours (red). (ii) 
MBGroup3 tumours (blue) versus non-MBGroup3 tumours (red). (iii) MBGroup4 tumours 
(blue) versus non-MBGroup4 tumours (red). p, Log rank test, Bonferroni corrected. (iv) 
Comparison of all four molecular subgroups; blue, MBWNT; red, MBSHH; yellow, MBGroup3; 
green, MBGroup4. p, Log rank test. 

  



289 
 

6.4.8.2 Radiotherapy at relapse conveys a significant survival benefit 

to those patients who did not receive CSI at initial diagnosis 

Similar to the TTD analysis (Table 6.11), radiotherapy at relapse was significantly 

associated with OS in patients who did not receive upfront CSI at diagnosis (p=0.0058, 

Log rank test, Bonferroni corrected, Table 6.13 and Figure 6.11). Overall, 9/10 (90%) 

long term survivors in this cohort received radiotherapy at disease recurrence. This 

finding was consistent with the findings reported in Chapter 3, where radiotherapy at 

medulloblastoma relapse conveyed an OS benefit to those patients who were CSI naïve 

and is discussed further in section 6.4.9 (Figure 3.8 and Figure 6.11).  

6.4.8.3 MYC gene family amplification is significantly associated with 

a reduced OS in patients not receiving upfront CSI 

Similar to the time to relapse and TTD analyses, MYC gene family amplification was 

significantly associated with a reduced OS (p<0.0001, Fisher’s exact test, Bonferroni 

corrected, Table 6.13 and Figure 6.11). Patients who had a MYC gene family amplified 

tumour and did not receive CSI at diagnosis both relapsed more quickly (Table 6.9 and 

Figure 6.6) and died rapidly (Table 6.11 and Figure 6.8). MYC amplification was more 

frequently observed in this cohort (6/46, 13%, data not available for one case) 

compared to MYCN (3/44, 7%, data not available for three cases) which mainly 

comprised of infants (38/47, 81%). Of those tumours that exhibited MYC amplification 

at diagnosis, 5/6 (83%) were MBGroup3 (1/6, 17%, MBSHH).  

LCA histology, another feature associated with MBGroup3 (Kool et al., 2012; Northcott et 

al., 2012a; Taylor et al., 2012), was also associated with a reduced OS (p=0.0003, 

Fisher’s exact test, Bonferroni corrected, Table 6.13 and Figure 6.11). Similarly, those 

cases with LCA histology were assigned MBGroup3 membership in 5/9 cases (56%; 

MBSHH, 3/9 (33%) and MBGroup4, 1/9 (11%)). MBGroup3 did not retain an association with 

OS following correction for multiple testing (p=0.4976, Fisher’s exact test, Bonferroni 

corrected, Table 6.13 and Figure 6.11) suggesting that it was the aggressive 

phenotypes of LCA and MYC amplification which drove tumourgenesis and not 

MBGroup3 in isolation.  
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Table 6.13  Univariate overall survival analysis performed on patients who did not 
receive upfront CSI.  Demographic frequencies are shown as a proportion and 
percentage of the data available for each variable. Infant, <4 years; CLA, classic; LCA, 
large-cell/anaplastic; DN, desmoplastic/nodular; M+, M2+; M-, M0/1; STR, subtotal 
resection; GTR, gross total resection; RT, radiotherapy; distant, M2+; local, M0/M1; na, 
not applicable. p, Log rank test, significant results are highlighted in bold.

Number of patients          

raw p value corrected p value

Infant 38/47 (81%) 0.1694 1

Non infant 9/47 (19%)

Male 27/47 (57%) 0.4460 1

Female 20/47 (43%)

MBSHH 27/47 (57%) 0.0649 1

MBWNT 0/47 (0%) na na

MBGroup3 14/47 (30%) 0.0293 0.4976

MBGroup4 6/47 (13%) 0.9003 1

CLA 24/45 (53%) 0.6676 1

LCA 9/45 (20%) <0.0001 0.0003

DN 12/45 (27%) 0.0039 0.0660

M+ 13/47 (28%) 0.5886 1

M- 34/47 (72%)

STR 10/47 (21%) 0.3025 1

GTR 37/47 (79%)

MYC/MYCN amplification 9/44 (20%) <0.0001 <0.0001

MYC amplification 6/46 (13%) <0.0001 <0.0001

MYCN  amplification 3/44 (7%) 0.0421 0.7159

TP53  mutations 2/47 (4%) 0.0502 0.8531

Yes 19/43 (44%) 0.0003 0.0058

No 24/43 (56%)

Distant 32/46 (70%) 0.7922 1

Local 14/46 (30%)

Diffuse 24/44 (55%) 0.4894 1

Nodular 20/44 (45%)

Relapse location
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Age
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diagnosis
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at diagnosis
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diagnosis

RT at relapse

Metastatic stage at 

diagnosis

Resection at 

diagnosis

No upfront CSI cohort
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Figure 6.11  Kaplan-Meier plots illustrating the clinicopathological and molecular features that are associated with overall survival in those 
patients who did not receive upfront CSI in the relapsing cohort.  (i) LCA histology (blue) versus non-LCA histology (red). (ii) MYC gene family 
amplified tumours (blue) versus non amplified tumours (red). (iii) MYC amplified tumours (blue) versus non-MYC amplified tumours (red). (iv) 
Radiotherapy at relapse (blue) versus no radiotherapy at relapse (red). (v) MBGroup3 tumours (blue) versus non-MBGroup3 tumours (red). p, Log rank test, 
Bonferroni corrected. (vi) Comparison of all molecular subgroups; red, MBSHH; yellow, MBGroup3; green, MBGroup4. p, Log rank test.
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6.4.9 Long term survival after medulloblastoma relapse 

As already discussed, radiotherapy at relapse conveyed a significant survival benefit to 

those patients who did not receive upfront CSI (section 6.4.7 and 6.4.8.2). In the entire 

relapsing cohort (n=206) there were fourteen patients alive and disease free after 

disease recurrence (Table 6.14). Of these fourteen patients, twelve (86%) received 

radiotherapy at relapse (CSI; 8/12, 67% and focal radiotherapy; 4/12, 33%). Eight 

patients (67%) relapsed at distant sites (2/8, 25%, relapsed at both distant and local 

site) and 7/8 patients (88%) with a distant recurrence received CSI at relapse (Table 

6.14). The twelve patients receiving radiotherapy at relapse had a median follow-up 

after recurrence of 10.6 years (range 0.9-17 years) and comprised of all four molecular 

subgroups (MBSHH 8/12, (67%); MBWNT 1/12, (8%); MBGroup3 2/12, (17%) and MBGroup4 

1/12 (8%)). MBSHH was the most frequently observed molecular subgroup in this 

population of survivors. This may reflect the better prognosis of DN histology in infancy 

which is associated with MBSHH (McManamy et al., 2007; Rutkowski et al., 2009; 

Ellison, 2010; Leary et al., 2011) and observed at diagnosis in 7/8 (88%) of MBSHH 

survivors (Table 6.14).  

Two patients, (Table 6.14), both with follow-up after relapse beyond 5 years (5.3 and 

13.6 years) survived their disease recurrence without radiotherapy or neurosurgical 

resection. One patient had MBGroup3 and developed a nodular, frontal lobe relapse but 

responded to high dose chemotherapy with stem cell rescue (discussed in section 

1.9.1). The other case, MBGroup4, relapsed distantly and diffusely and similarly 

responded to high dose chemotherapy and stem cell rescue. These findings reinforce 

the results of Chapter 3 and others (Pizer et al., 2011a; Ramaswamy et al., 2013) 

whereby recurrent medulloblastoma is almost universally fatal. Radiotherapy is the 

critical treatment modality which offers a chance of survival at relapse (Muller et al., 

2014) . In the two isolated cases which did not receive radiotherapy, high dose 

chemotherapy was the treatment modality which achieved disease control and long 

term survival after recurrence. However, radiotherapy and high dose chemotherapy, 

are often not successful at controlling disease after relapse. A greater number of 

patients who received radiotherapy at recurrence died of their disease (n=14). 

Similarly, high dose chemotherapy did not achieve disease control or long term 

survival in at least twenty-one cases where data was available. 
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Table 6.14  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the long term 
survivors in the relapsing cohort.  Demographic frequencies are shown as a proportion and percentage of the data available for each variable. CSI, 
craniospinal irradiation; RT, radiotherapy; NMB, Newcastle medulloblastoma. Molecular subgroup (red, MBSHH; blue, MBWNT; yellow, MBGroup3; green, 
MBGroup4). Progression free survival (ADF, alive disease-free). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; 
NOS, medulloblastoma not otherwise specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white 
square; data not available, diagonal hatching.

NMB number Diagnosis Relapse

PNET3 number MBSHH 8/14 (57%) MBSHH 8/14 (57%) 

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R MBWNT 1/14 (7%) MBWNT 1/14 (7%) 

MBGroup3 3/14 (21%) MBGroup3 3/14 (21%)

Molecular subgroup MBGroup4 2/14 (14%) MBGroup4 2/14 (14%)

Male 8/14 (57%) 8/14 (57%)

Female 6/14 (43%) 6/14 (43%)

Infants (<4 years) 11/14 (79%) 7/14 (50%)

Time to relapse (years)

Progression free survival

Time from relapse to last follow up (years)

CLA 5/14 (36%) 1/4 (25%)

LCA 1/14 (7%) 0/4 (0%)

DN 7/14 (50%) 3/4 (75%)

NOS 1/14 (7%) 0/4 (0%)

Local 14/14 (100%) 6/14 (43%)

Distant 3/14 (21%) 10/14 (71%)

Nodular na 7/13 (54%)

Diffuse na 6/13 (46%)

Complete resection 13/14 (93%) 2/13 (15%)

Subtotal resection 1/14 (7%) 0/13 (0%)

Degree unknown 0/14 (0%) 4/13 (0%)

Biopsy 0/14 (0%) 0/13 (0%)

Craniospinal irradiation 3/14 (21%) 8/14 (57%)

Focal radiotherapy 2/14 (14%) 4/14 (29%)

Chemotherapy 13/14 (93%) 7/14 (50%)

TP53  mutation 0/14 (0%) 0/4 (0%)

MYC  amplification 0/14 (0%) 0/4 (0%)

MYCN amplification 0/13 (0%) 1/4 (25%)

1.62

ADF

7.3

Summary of demographicsFocal RT at relapse

371

16.3

2.57

ADF

553

15.5

1.74

ADF

551

Treatment

Molecular 

defects

Pathology 

variant

Pattern of 

relapse

Patient details 

and outcome

15.4

ADF

1.7

174

2.3

ADF

1.44

477 590

17

ADF

2.21

576 651 731

1.03

1

ADF

7.6

ADF

1.75

CSI at relapse
No RT at 

relapse

5.3

ADF

1.83

569

13.7

1.72

ADF

554

4.5

ADF

2.24

88

2.84

ADF

13.615.6

ADF

2.65

618

ADF

1.78

0.9

716
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6.5 Discussion 

6.5.1 High-risk features are enriched at diagnosis in patients who 

subsequently relapse with medulloblastoma 

As already discussed in Chapter 3, high-risk features are commonly observed at 

diagnosis in patients who go on to relapse. All established high-risk clinicopathological 

features in the disease; infant age group, metastatic disease, LCA histology and STR, 

(Pizer et al., 2011b) were significantly enriched at diagnosis in the relapsing cohort. 

This finding further validates their role in identifying patients at diagnosis who require 

more intensive treatment. However, the fact that these patients went on to relapse, 

despite many of them having increased upfront therapy, suggests that current 

therapeutic options for patients with high-risk disease is not sufficient. MYC gene 

family amplification was also enriched at diagnosis in the relapsing cohort, supporting 

its role in aggressive tumourigenesis and its inclusion in new and upcoming clinical 

trials as an additional biomarker of high-risk disease (Pizer and Clifford, 2009; 

Morfouace et al., 2014).  

6.5.2 Tumours with TP53 mutations and MYCN amplification at 

diagnosis are locally aggressive and typically progress quickly 

post-recurrence 

The combination of p53-MYC defects, a novel biomarker of aggressive disease at 

relapse (Chapter 3), was not enriched in the relapsing cohort at diagnosis (Table 6.2). 

This supports the findings discussed in Chapter 3 of combined p53-MYC defects as a 

biomarker which emerges at relapse in a group of patients who receive upfront CSI. 

Within the relapsing cohort those patients who received upfront CSI and displayed 

p53-MYCN defects typically had local tumours (7/7 100%), and displayed LCA histology 

(5/6, (83%), at diagnosis (section 6.4.4.4), again supportive of the findings reported in 

Chapter 3 (Table 3.11). In contrast to the reports in Chapters 3, p53-MYCN tumours in 

the relapsing cohort, had distant relapses which may reflect the temporal evolution of 

tumour biology (section 6.4.4.4). Tumours which demonstrated p53-MYCN defects at 

diagnosis did not recur more quickly. However, whilst the result was not significant, 

5/7 patients (71%), with p53-MYCN defects at diagnosis had a rapid time to death 

post-recurrence (section 6.4.6.2). 
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6.5.3 MBGroup3 tumours relapse quickly, with aggressive disease and 

are not frequently biopsied 

As discussed in section 6.4.3, while MBGroup3 accounted for 28% of medulloblastoma 

tumours in the relapsing cohort, this was not reflected in the tumour samples obtained 

at relapse in this study (Chapter 3). MBGroup3 were commonly metastatic at relapse 

(section 6.4.4.2) and also recurred quickly (section 6.4.5 and 6.4.5.2). These two 

factors are likely to influence clinical practice and biopsy is firstly, less likely to be 

performed to confirm diagnosis as, given the short time to relapse, the recurrent 

tumour is unlikely to be anything other than a medulloblastoma. Secondly, in view of 

the frequent metastatic disease of MBGroup3 at relapse, neurosurgical intervention is 

less likely to be performed as part of a curative strategy. 

Neither MBSHH nor MBGroup4, the other two well represented subgroups in the relapsing 

cohort (29% and 41% respectively, Table 6.2) exhibited both a rapid recurrence and 

distant disease at relapse. For example, MBSHH was not as frequently metastatic at 

relapse as MBGroup3 and MBGroup4 and was not associated with a rapid time to relapse 

(section 6.4.4.2 and section 6.4.5.1-6.4.5.4 ). MBGroup4 were commonly metastatic at 

relapse, particularly in those patients who received upfront CSI (section 6.4.4.2), but 

had a significantly slower overall time to relapse than any of the other three subgroups 

(Table 6.7 and Figure 6.3). Typically the majority of children (approximately 75%) with 

a medulloblastoma will relapse within 2 years of initial diagnosis (Crawford et al., 

2007). In this cohort, MBGroup4 had a median time to relapse of 2.1 years (range 0.29-

8.91 years). The prolonged time to relapse observed in MBGroup4, may bring about 

some doubt in the diagnosis of a recurrent medulloblastoma and raise the question of 

a possible secondary malignancy and therefore necessitate a biopsy to confirm the 

diagnosis. These findings are the most likely explanation for the under-representation 

of MBGroup3 tumours in comparison to the MBSHH and MBGroup4 tumours in the paired 

relapse cohort (Chapter 3). Moreover, the subgroup distribution of the relapsing 

cohort (Table 6.2) highlights the necessity for routine biopsy at relapse, if we are to 

understand the biology at recurrence of all the molecular subgroups in 

medulloblastoma. 
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6.5.4 Distant disease is frequently acquired and enriched at relapse 

While MBSHH tumours had local disease at relapse more frequently than MBGroup3 and 

MBGroup4, all four molecular subgroups frequently acquired distant disease at relapse 

(section 6.4.4.3). This was observed in patients who received upfront CSI as well as 

those who did not. However, in MBSHH distant disease at relapse was more frequently 

observed in patients who did not receive upfront CSI (Table 6.6) supporting the role of 

CSI in preventing distant recurrence and in contrast to reports by others (Ramaswamy 

et al., 2013). Interestingly, MBGroup4 tumours tended to relapse locally in patients who 

did not receive upfront CSI (Table 6.6) a pattern which is also supported by the study 

from Ramaswamy et al., (2013). This finding is counter-intuitive and highlights the lack 

of understanding in MBGroup4 tumour biology. It also potentially suggests that MBGroup4 

tumours behave differently in infants compared to young children. Further studies in 

MBGroup4, such as the novel investigations undertaken in Chapter 5, are now essential 

to advance our knowledge and treatment options for this, the most frequently 

relapsing tumour subgroup. 

6.5.5 Survival analyses in patients receiving upfront CSI demonstrates 

that very few clinicopathological and molecular features are 

associated with outcome  

Univariate survival analyses, assessing time to relapse, TTD and OS demonstrated that 

few disease features, following correction for multiple testing, were associated with 

survival in patients receiving upfront CSI. As already discussed (section 6.5.3), MBGroup3 

tumours typically recurred more rapidly in this treatment group (p=0.0022, Log rank 

test, Bonferroni corrected, section 6.4.5.2). No other factor influenced time to relapse 

or TTD after correction for multiple testing. MYC gene family amplification was 

associated with a poorer OS in this treatment group (section 6.4.8) supporting its role 

in aggressive disease at both diagnosis (Pizer and Clifford, 2009; Ryan et al., 2012) and, 

potentially at relapse if the amplification was maintained.  
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6.5.6 Tumour biology at diagnosis is associated with time to death 

and OS in patients who did not receive upfront CSI 

Patients who did not receive upfront CSI and demonstrated LCA histology or MYC 

amplification at diagnosis relapsed quickly (section 6.4.5.4), reinforcing both these 

features as markers of aggressive disease (Pizer and Clifford, 2009; Ellison, 2010; Ryan 

et al., 2012). Moreover, MYC amplification retained its significance in the TTD analysis 

in this treatment cohort (p=0.0003, Log rank test, Bonferroni corrected), potentially 

suggesting that this defect persisted in the tumour at relapse and continued to 

influence disease behaviour. Both LCA and MYC amplification were also significantly 

associated with a poorer overall survival (section 6.4.8.3). As already discussed (section 

6.4.5.4, 6.4.6.3 and 6.4.8.3) there was overlap between MYC amplification, LCA 

histology and MBGroup3 with 5/6 (83%) MYC amplified tumours belonging to MBGroup3, 

and 4/5 (80%) of these tumours also displaying LCA histology (Table 9.3). This overlap 

suggests that multiple high-risk features at diagnosis may combine and influence 

disease course at all three time-points (time to relapse, TTD and OS).  

Moreover, the consistent finding of MYC amplification at diagnosis and its association 

with a poor outcome in all three analyses in this treatment group, (time to relapse, 

TTD and OS), suggests that in the absence of upfront CSI, tumour molecular biology at 

diagnosis continues to influence disease behaviour at relapse. This supports the 

theory, as discussed in section 3.5.4, that selective pressure following treatment, such 

as upfront CSI, occurs and alters the molecular biology of a tumour at relapse. This 

may also explain why, in the relapsing cohort, no molecular feature characterised at 

diagnosis, was associated with TTD in those patients who received CSI (section 6.4.6).  

In the absence of CSI, one could hypothesise that in the relapsing cohort, MYC 

amplification is unchanged in the recurrent tumour, and hence is still associated with a 

rapid TTD. This is further supported by the observations in the paired relapse cohort 

(Chapter 3), where expansion or acquisition of molecular defects are less frequent 

between diagnosis and relapse in those patients who did not receive upfront CSI (Table 

3.5). Acquired molecular defects such as MYC gene family amplification, p53 pathway 

defects, Ch17 defects, polyploidy and microsatellite instability, were only observed on 

three occasions in the seven paired tumour samples which did not receive CSI at 

diagnosis (Table 3.5). Importantly, acquired molecular defects were observed on 
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fifteen occasions in the nineteen paired tumour samples that did receive upfront CSI, 

(Table 3.5), giving an average number of acquired defects per patient of 0.43 (no 

upfront CSI) versus 0.79 (upfront CSI). Therefore, the findings in this study reported 

here and in Chapter 3 both support the temporal evolution and clonal expansion of 

treatment resistant cells in medulloblastoma, which is more evident in patients who 

receive upfront CSI. 

6.5.7 Long term survival following medulloblastoma relapse is rare 

and significantly associated with the administration of 

radiotherapy at disease recurrence 

Radiotherapy at relapse is the treatment modality most likely to achieve long term 

disease control. It was significantly associated with OS in those patients who did not 

receive upfront CSI (p=0.0058, Log rank test, Bonferroni corrected, Table 6.13) and did 

provide long term benefit when administered focally to two patients who received 

upfront CSI (Table 6.14). Two patients also survived their disease recurrence after re-

treatment with high dose chemotherapy (section 6.4.9). However, both these 

treatment strategies (radiotherapy and high dose chemotherapy) failed to achieve long 

term survival after relapse more frequently than they succeeded (section 6.4.9).  

These findings highlight that successful upfront treatment of medulloblastoma 

provides our best chance of cure and that relapse is exceptionally challenging to 

retreat and current therapeutic options are inadequate. Nonetheless, in CSI naïve 

patients, radiotherapy at relapse currently provides the best option for long term cure. 

However, the majority of survivors who received radiotherapy at relapse, were less 

than 4 years old at the time of radiotherapy delivery (7/12, 58%, Table 6.14). The 

consequences of this treatment modality on such a young and developing brain will 

likely be severe (section 1.8.6) and survival will have come with significant co-

morbidities and long term neurological sequelae (Ashford et al., 2014; Bull et al., 2014; 

Knight et al., 2014; Muller et al., 2014). As reported by others, (Pizer et al., 2011a) high 

dose chemotherapy is rarely successful in controlling disease at relapse and novel 

treatment strategies are now essential if we are offer a chance of cure to children who 

suffer from recurrent medulloblastoma. 
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6.5.8 Comparison of the patterns and timings of medulloblastoma 

relapse with other published studies 

As already discussed in section 1.9.2.2, there has been one other recent study which 

interrogated the subgroup-specific patterns of medulloblastoma relapse (Ramaswamy 

et al., 2013). The present study alongside the report by Ramaswamy et al., (2013) 

confirmed that molecular subgroup did not change between diagnosis and relapse. In 

addition, they also investigate the patterns and timings of medulloblastoma relapse 

according to molecular subgroup, which are discussed further below.  

Overall, they reported that distant relapses were more commonly observed in MBGroup3 

and MBGroup4 (62/68, 91% and 60/67 respectively) with local recurrences occurring 

more frequently in MBSHH (18/58, 31%). These are consistent with the findings 

reported in this study where distant relapses were most frequently observed in 

MBGroup3 and MBGroup4 (34/41, 83% and 52/61, 85%, Table 6.4). However, while distant 

MBSHH relapses were significantly less frequent in this study when compared to the 

other molecular subgroups (30/47, 64%, p=0.0199, Fisher’s exact test, Table 6.4) there 

was still a significantly higher rate of distant relapses observed in MBSHH when 

compared to the study by Ramaswamy et al., (30/47, 64% versus 18/58, 31%, 

p=0.0009). Moreover, the frequency of distant relapses in patients with MBSHH who did 

not receive upfront CSI, in this study is higher still (19/27, 70%, Table 6.4). The findings 

of the present study would therefore not support the suggestions by Ramaswamy et 

al., (2013) to intensify local therapy and reduce CSI in MBSHH. Failure to prevent distant 

relapse in MBSHH was still a common event and was observed more frequently in those 

patients who did not receive upfront CSI (19/27, 70%, versus 11/20, 55%, Table 6.4), 

suggesting that CSI does have a role in preventing distant relapse in MBSHH.  

In addition to this finding, Ramaswamy et al., (2013) also demonstrated that local 

recurrences tended to be higher in MBGroup4 patients who did not receive CSI upfront 

than in MBGroup4 tumours that did receive upfront CSI (p=0.031, Fisher’s exact test). 

This supports the findings of this study where distant recurrences were rare in MBGroup4 

patients who did not receive upfront CSI compared those children who did receive 

upfront CSI (1/5, 20%, versus 51/56, 91%, respectively, p=0.0011, Fisher’s exact test, 

Table 6.5). As already discussed (section 6.5.4), this is an unusual finding that may 
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reflect the differing biology of MBGroup4 either in particular age groups or following 

different treatments.  

MBGroup4 tumours also had a significantly prolonged time to relapse across the whole 

cohort in the present study (p=0.0008, Log Rank test, Bonferroni corrected, Table 6.7). 

This was also observed in two out of the three cohorts examined by Ramaswamy et al., 

(2013, cohort 1 and 2). Here they also reported that MBGroup4 had a prolonged survival 

following relapse, a significant finding in the patients who received upfront CSI in the 

present study prior to correction for multiple testing (p=0.0253, Log rank test, Table 

6.10). These findings, in two independent studies, now warrant further investigation, 

with cohort expansion to validate these discoveries along with more frequent biopsy at 

relapse to interrogate the molecular features of MBGroup4 tumours at both time-points. 

6.5.9 Future work  

These analyses highlight that the timings and patterns of medulloblastoma relapse are 

strongly associated with radiotherapy (upfront or at relapse) and molecular subgroup. 

Further analyses are now required to understand the initial findings reported here. 

Cohort expansion and molecular subgrouping is ongoing and likely to exceed 250 cases 

with clinicopathological and molecular subgrouping data available. This would 

assemble the largest reported cohort of medulloblastoma tumours, sampled from 

patients at diagnosis who have subsequently relapsed with their disease. In addition to 

the molecular characterisation already described in section 6.3.6, further molecular 

investigations are also required to characterise all the established molecular features 

associated with disease outcome. These would include for example; chromosome 17 

status, polyploidy and TERT mutation status (Pfister et al., 2009; Ellison et al., 2011; 

Jones et al., 2012; Northcott et al., 2012a; Taylor et al., 2012; Remke et al., 2013; Shih 

et al., 2014). In addition, further characterisation of the p53 pathway defects is 

required, given the finding of an acquired p14ARF deletion reported at relapse in 

Chapter 3 (section 3.4.2.3.2), and similar reports of methylation or deletion of p14ARF  

by others in medulloblastoma at diagnosis (Frank et al., 2004). 

Following expansion and characterisation of the relapsing cohort, univariate analyses 

should first be repeated as described in this chapter, to confirm the findings reported 

and analyse the significance of additional molecular variables interrogated in the 
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cohort. Subsequent multivariate analyses will be undertaken cohort-wide and in the 

two defined treatment groups (patients who received upfront CSI and patients who did 

not received upfront CSI). Multivariate survival analyses would be particularly useful in 

understanding the findings reported in the cohort of patients who did not receive 

upfront CSI where MYC amplification, LCA and MBGroup3 frequently coincided at 

diagnosis and were associated with time to relapse, TTD and OS (section 6.4.5.4, 

6.4.6.3 and 6.4.8.3). In addition, correlative, univariate and multivariate analyses 

should be undertaken in the cohort in a subgroup-specific manner, to interrogate the 

differing behaviours and disease biology of the four distinct tumour entities in 

medulloblastoma.  

The relapsing cohort also provides an important resource to interrogate the already 

identified candidates in MBGroup4 described in Chapter 5 (e.g. T-box and Homeobox 

gene families), and assess their prognostic utility in the disease at diagnosis. In 

addition, profiling of the relapsing cohort (genomic and DNA methylation events) 

provides a valuable opportunity to identify new candidates that may be predicative of 

relapse in medulloblastoma either across all four subgroups or in a subgroup-specific 

manner. 
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6.6 Summary 

Relapsed medulloblastoma is almost universally fatal and in this study 83% of patients 

died of their disease. High-risk disease features were enriched at diagnosis in patients 

who go on to relapse. In CSI naïve patients the high-risk molecular feature, MYC 

amplification, was associated with a more rapid time to relapse and TTD. Certain 

factors were also associated with TTD following upfront CSI, such as MYCN 

amplification and LCA histology (shortened TTD), and MBGroup4 and RT at relapse 

(prolonged TTD). However, following correction for multiple testing, no 

clinicopathological or molecular features examined at diagnosis were associated with 

TTD in patients who received upfront CSI. Together, these findings support the 

discoveries in Chapter 3, where in those patients who received upfront CSI, it was the 

emergent biology of the tumour at relapse which was most strongly associated with 

disease course following relapse.  

The frequency, rate and patterns of disease relapse do vary according to molecular 

subgroup. Unsurprisingly, given their overall good prognosis, MBWNT tumours were 

rare in the relapsing cohort when compared to the other three molecular subgroups. 

However, MBWNT tumours did recur following standard upfront therapy (n=5) and 

therefore MBWNT is not 100% curable with 2/5 (40%) of these patients dying of disease 

and 2/5 (40%) alive but with disease. MBSHH at relapse was associated with both local 

and distant disease and was the subgroup most frequently represented in patients 

who survived their relapse (8/14, 57%). All the long term survivors with MBSHH tumours 

received delayed radiotherapy at relapse and the majority displayed the favourable DN 

histology variant at diagnosis (7/8, 88%, Table 6.14). However, despite these findings, 

no patients with MBSHH who received upfront CSI survived their disease relapse. 

Overall, MBGroup3 tumours relapsed more quickly and at distant sites, and both these 

features are likely to contribute to treatment decisions at this time-point and their 

infrequent biopsy. MBGroup4 also relapsed at distant sites but at a slower rate, and in 

the absence of upfront CSI disease tended to recur locally. These observations could 

inform treatment decisions at relapse with aggressive strategies for prolonging life 

potentially being of less benefit in MBGroup3 tumours compared to MBGroup4 tumours.  

This chapter has described the subgroup-specific patterns of relapse and provided an 

exploratory overview of the clinicopathological and molecular factors which influence 
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time to relapse, TTD and OS. A more detailed analysis is now required to assess all the 

features with established relationships to prognosis at diagnosis such as chromosome 

17 status and polyploidy (section 6.5.9) as well as molecular features such as TERT 

mutations recently associated with MBSHH and MBGroup4 survival (Remke et al., 2013). 

Following the completion of this characterisation a multivariate survival analysis will 

aid in identifying any clinicopathological or molecular features at diagnosis which are 

predictive of relapse. Moreover, the assembly of a large and well annotated relapsing 

cohort provides a valuable resource to examine new events (genomic and DNA 

methylation) and candidates, such as the methylation events in T-box and Homeobox 

gene families discovered in MBGroup4 described Chapter 5.  
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Chapter 7. Summary and Discussion 
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7.1 Introduction 

Medulloblastoma is the most common malignant brain tumour in childhood. 

Approximately 90 new cases are diagnosed annually in the UK, which equates to 

around 650 cases per annum in the European Union (Pizer and Clifford, 2008; Pizer and 

Clifford, 2009). There is a male predominance with an annual incidence of 0.48 per 100 

000 in girls and 0.75 per 100 000 in boys (Crawford et al., 2007). Current OS rates for 

standard-risk disease following multimodal therapy are approximately 80%. However, 

for patients with high-risk disease (section 1.8.5), long term survival is significantly 

worse despite frequent escalation of upfront treatment, and survival rates between 

25-65% are reported (Crawford et al., 2007; Pizer and Clifford, 2009; Ellison, 2010; 

Gajjar et al., 2012).  

Typically the disease course is such that remission is achieved following upfront 

treatment but, over time, approximately 30% of all patients will develop a recurrent 

tumour, with most relapses occurring during the first 2 years following initial diagnosis 

(Crawford et al., 2007; Jones et al., 2012). Relapse disease is almost universally fatal, 

particularly if the patient has already received CSI (Pizer et al., 2011a; Ramaswamy et 

al., 2013). Consequently, disease recurrence is the single greatest cause of death in 

children diagnosed with a medulloblastoma (Pizer and Clifford, 2008; Jones et al., 

2012; Muller et al., 2014). 

It is now understood that, at diagnosis, medulloblastoma comprises of four subgroups 

which are molecularly defined and believed to originate from different cell types. The 

four molecular subgroups; MBWNT, MBSHH, MBGroup3 and MBGroup4, have characteristic 

demographic, clinicopathological, genetic and epigenetic features alongside 

established differences in outcome (Gibson et al., 2010; Grammel et al., 2012; 

Northcott et al., 2012a; Taylor et al., 2012). These discoveries have guided both the 

clinical trials and research studies now undertaken in medulloblastoma at diagnosis. 

Clinical trials with subgroup-specific treatment stratification, founded on this new 

knowledge, are underway in the USA (SJMB12) and imminently due to open in Europe 

(PNET5, section 1.8.8). 
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To date, however, very little is understood about disease biology at medulloblastoma 

recurrence. This is due in part to the rarity of recurrent samples to investigate, as 

biopsy at relapse is performed infrequently in current clinical practice. There are only 

two published studies which have investigated the features of disease biology at 

medulloblastoma recurrence (Korshunov et al., 2008; Ramaswamy et al., 2013). The 

study by Korshunov et al., (2008) was the first published dataset to provide initial 

insights into the biology of recurrent disease, and demonstrated temporal progression 

of both histopathological and molecular events. This study was undertaken in the pre-

subgrouping era of medulloblastoma research (section 1.9.2.1).  

Ramaswamy et al., (2013) investigated the subgroup-specific patterns of relapse 

medulloblastoma in three independent cohorts. Here they demonstrated subgroup 

stability over time, alongside highlighting subgroup-specific differences in the timings 

and patterns of relapse (section 1.9.2.2). However, until now, medulloblastoma 

disease features at diagnosis with established importance and relationships with 

disease outcome, such as MYC gene family amplification, chromosome 17 status and 

p53 pathway defects, have yet to be comprehensively interrogated in the disease at 

relapse. Moreover, discovery work in recurrent disease to interrogate events that are 

either enriched or novel at this time-point, such as the analyses of DNA methylation 

patterns and their potential role in the regulation of gene expression, has not been 

performed. These events could in the future, be explored for their utility as either 

prognostic biomarkers or therapeutic targets at relapse.  

The current study was conceived and undertaken to provide critical new 

understanding of the biological mechanisms of medulloblastoma relapse. Through 

comprehensive investigation of the clinicopathological and molecular characteristics of 

recurrent disease, this study aimed to identify features that were either enriched or 

novel in the disease at relapse. Any events identified could firstly be assessed as 

potential biomarkers predictive of relapse, or relapse disease behaviour, which could 

be incorporated into therapeutic stratification of the disease at diagnosis, or used to 

inform treatment decisions at recurrence respectively. Secondly, relapse disease 

features could be investigated for their therapeutic utility, and provide the foundation 

for functional and pre-clinical work, with the ultimate aim of developing future 
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targeted therapeutic strategies for the disease at relapse and potentially the disease at 

diagnosis if the target is present (section 1.10).     

The approaches taken in this study were firstly to assemble a cohort of 

medulloblastoma tumours sampled at relapse, characterise the clinicopathological and 

molecular disease features of the tumours sampled at relapse, and contrast them with 

their diagnostic counterparts (Chapter 3). As a result of these investigations, with the 

exception of molecular subgroup, it was demonstrated that all clinicopathological and 

molecular features examined, showed evidence of alteration and predominantly 

acquisition of poor prognosis features. Most notably, the emergence of combined p53-

MYC defects were identified as a biomarker of locally aggressive relapsed disease 

which occurred across all four molecular subgroups. As a result of this discovery, 

collaborative work was undertaken by Dr Louis Chesler and his group, (Pediatric Solid 

Tumour Biology and Therapeutics Team, ICR, Sutton, UK). Here, they developed a 

novel mouse model of the p53-MYCN interaction in medulloblastoma 

(GTML/Trp53KI/KI) which faithfully mimicked the key features of the human p53-MYC 

relapsed tumours. As detailed in Chapter 4, the dependency of tumour growth and 

maintenance on the p53-MYCN genetic interaction was demonstrated. The Aurora A 

kinase inhibitor, MLN8237, an agent which disrupts the complex formed between 

Aurora A and MYCN and promotes MYCN degradation, reduced tumour formation and 

prolonged survival in this mouse model, and therefore may have therapeutic utility in 

medulloblastoma at relapse (Chapter 4). 

The second approach, reported in Chapter 5, describes the analysis of DNA 

methylation patterns in medulloblastoma at relapse, and compares these patterns 

with the disease at diagnosis in both an unpaired and paired manner. In this chapter, a 

novel analysis was developed and undertaken, focussed on MBGroup4, to interrogate the 

DNA methylation status of CpG sites located in gene promoter regions and CpG 

islands. This analysis identified 15 candidate genes (Table 5.6) that displayed tumour-

specific DNA methylation states which were acquired at disease relapse, and 

correlated with gene expression in an independent cohort. Importantly, 8/15 (53%) of 

the candidate genes belonged to two gene families (T-box and Homeobox gene 

families) which are both reported in other cancers to be potentially epigenetically 

regulated (section 5.4). These candidates now provide the foundation for functional 
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work and their utility for therapeutic targeting or disease stratification should be 

further explored (section 7.5). 

In the final approach, the assembly and characterisation of a large relapsing cohort 

(n=206), described in Chapter 6, has enabled the subgroup-specific patterns and 

timings of disease relapse to be studied more widely. The findings reported here, 

validate the current use of high-risk disease features (section 1.8.5) to identify patients 

more likely to have a poor outcome, as all high-risk features investigated were 

enriched in this relapsing cohort. Moreover, high-risk molecular features at diagnosis, 

such as MYC amplification in patients who were CSI naïve, demonstrated an 

association with a rapid time to death and reduced OS (section 6.4.6.3 and 6.4.8.3). 

The findings in this chapter highlighted that the timings and patterns of disease 

recurrence are also strongly associated with radiotherapy and molecular subgroup. 

Moreover, while the molecular features identified at diagnosis in tumours that did not 

receive upfront CSI are still associated with disease course at relapse (e.g. MYC 

amplification), for patients that did receive upfront CSI, the features of the tumour at 

diagnosis were not significantly associated with disease course post-recurrence. These 

findings compliment the discoveries reported in Chapter 3 where it was the biology of 

the tumour at relapse which was most strongly associated with disease behaviour at 

this time-point.  

In addition to these findings, characterisation of the relapsing cohort has enabled the 

features associated with survival following relapse to be assessed, and highlighted a 

significant benefit following the administration of radiotherapy at relapse (section 

6.4.9 and 6.5.7). Radiotherapy, both focal and CSI, should be considered at present the 

critical treatment modality as part of a curative strategy for recurrent disease. While 

this treatment may not be a suitable option for all patients, particularly for those who 

have already received upfront CSI, radiotherapy does have utility at relapse. However 

radiotherapy can lead to significant morbidity in infants who, as demonstrated in this 

cohort (Table 6.14), are the group of patients commonly administered radiotherapy as 

part of their salvage strategy at relapse (Muller et al., 2014).  
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In summary, this study provides the most comprehensive investigation of relapsed 

medulloblastoma to date which could influence both current and future clinical 

practice. Emergent, combined p53-MYC defects at relapse have potential utility as a 

biomarker of aggressive disease and could inform treatment decisions at disease 

recurrence. Through collaborative work, the modelling and targeting of p53-MYCN 

combined defects, has identified the agent MLN8237, which should be consider for use 

in medulloblastoma at recurrence. Moreover, the investigation of the DNA 

methylation patterns of relapsed disease has identified candidate genes (e.g. T-box 

and Homeobox gene families) which should be explored as either potential biomarkers 

or therapeutic targets in relapsed disease. Combined with the  reported patterns and 

timing of disease relapse (described in Chapter 6), these discoveries also underscore 

the urgent need for further investigation of medulloblastoma recurrence and how 

these discoveries could be translated into patient benefit. The key themes (section 7.2-

7.4) and ideas (section 7.5) to advance all the findings from this study are discussed 

below.  
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7.2 The temporal evolution of the molecular biology in 

medulloblastoma is dependent on upfront treatment  

The temporal evolution of tumour molecular biology has been reported for many types 

of paediatric cancers including, for example, neuroblastoma, LGG and HGG (Phillips et 

al., 2006; Carr-Wilkinson et al., 2010; Castelo-Branco et al., 2013; Sottoriva et al., 

2013). A single report in medulloblastoma, prior to this study, identified acquisition at 

relapse of histological features such as anaplasia, as well as the development of 

cytogenetic aberrations such as 17q gain and MYCN amplification (Korshunov et al., 

2008). In contrast, a more recent study reported that molecular subgroup remained 

stable between diagnosis and relapse (Ramaswamy et al., 2013). 

This study has advanced the discoveries of the two earlier reports in the disease at 

relapse and describes findings which support the conclusions of both studies 

(Korshunov et al., 2008; Ramaswamy et al., 2013). In the paired relapse cohort 

assembled in this study (Chapter 3), molecular disease features with established roles 

in disease prognosis at diagnosis were interrogated. Here, it was demonstrated that 

molecular subgroup, as assessed on the Infinium methylation 450K array, remained 

stable between 15/15 (100%) paired medulloblastoma tumours sampled at both 

diagnosis and relapse (section 3.4.2.1). Moreover, the DNA methylation patterns of 

tumour pairs correlated most closely with each other before any other tumour 

sampled from within the same molecular subgroup (Figure 2.8 and Figure 3.3). 

Therefore, the cancer cells that populate the tumour at recurrence, demonstrate the 

same DNA methylation signature as the cancer cells in the tumour at diagnosis. This 

finding further supports the hypothesis that the four molecular subgroups identified in 

medulloblastoma arise from distinct cells of origin and the cell of origin, with its 

distinct DNA methylation pattern, is unchanged over time (Gibson et al., 2010; 

Grammel et al., 2012). In addition, this discovery suggests that subgroup directed 

therapy such as SHH inhibitors (Low and de Sauvage, 2010), may have utility in the 

disease at recurrence which can be determined from the molecular subgroup 

identified at diagnosis (section 1.8.8.2.2). 

In contrast, all other molecular features interrogated at medulloblastoma relapse 

demonstrated evidence of alteration; predominantly acquisition, of high-risk features 

(Table 3.5). This was particularly noticeable for patients who received upfront CSI 
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where the acquisition of fifteen molecular events was observed in the nineteen paired 

tumours, (acquisition rate 0.79 per patient), compared to only three events in the 

seven paired tumours sampled from patients who did not receive upfront CSI 

(acquisition rate of 0.43 per patient, Table 3.5). Importantly, in those patients who 

received upfront CSI it was the emergent molecular biology of the tumour at relapse 

which was associated with disease behavior from this time-point. Combined p53-MYC 

defects were frequently observed at medulloblastoma relapse in this treatment group 

(7/22, 32%), across all four molecular subgroups (Table 3.11) and was significantly 

associated with rapid progression after relapse, independent of the time taken to 

relapse (p=0.0165 and p=1 respectively, Log rank test, Bonferroni corrected, Figure 

3.11).  

These findings suggest that the molecular biology of recurrent disease in patients 

treated with upfront CSI is more frequently altered than the biology of recurrent 

tumours in patients not receiving upfront CSI. Ionizing radiotherapy works on the 

principle of causing extensive cellular damage. This is achieved by the creation of free 

radicals, which leads to either single stranded or double stranded DNA breaks. 

Damaged cells are then either repaired or, as is the aim with cancer cells, directed into 

apoptosis and cell death (Pelengaris and Khan, 2006). However, intratumoural 

heterogeneity at a cellular level exists and is observed in the present study, for 

example MYC and MYCN amplification, where the defect was not present in all nuclei 

assessed by FISH (Figure 3.7 and Figure 3.10). Intratumoural heterogeneity in 

medulloblastoma may therefore account for variable response rates, at a cellular level, 

to treatment modalities such as CSI. Clones of cells, which contain the original driving 

defect, e.g. SHH pathway aberrations, may also contain additional aberrations such as 

MYCN amplification which convey a survival advantage and resistance to CSI (Wang et 

al., 2013). 

The administration of treatment such as CSI, potentially applies selective pressure, and 

inadvertently isolates treatment resistant clones which return to populate the tumour 

at recurrence. The evolutionary theory of tumour development, known as clonal 

expansion, is discussed in section 1.4 and section 3.5.4 and was first proposed by 

Nowell (1976). However, theories have evolved and now include the possibility of CSCs 

accounting for a treatment resistant population of cells (section 1.4.4) and the 
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existence of a medulloblastoma stem cell or brain tumour-initiating cell (BTIC) that is 

radiotherapy resistant has been postulated (Manoranjan et al., 2012). It is likely that 

these models are not mutually exclusive, moreover neither model accounts for the de 

novo acquisition of molecular aberrations also reported in this study (Figure 3.10).  

Two hypotheses exist to explain the de novo acquisition of defects observed, for 

example, the discovery of an emergent TP53 mutation at relapse in patient 22 in the 

paired relapse cohort. This mutation was not evident at diagnosis following 

assessment by next generation sequencing (Figure 3.10). Firstly, the mutation may 

have been present at low-levels in the tumour at diagnosis but was simply not 

detected. This could be due tumour sampling failing to obtain a population of cells 

with the mutation present or because the sample was not sequenced to enough depth 

to detect the low-level mutation.  

The alternative explanation is that the molecular defect was not present at diagnosis 

and occurred in a population of cancer cells later on in tumour development, after 

tumour sampling was performed at initial diagnosis. This clone of cells would not be a 

CSC but a cancer cell with a survival advantage, which over time was favourably 

selected and populated the tumour at recurrence (Figure 1.9 and Figure 3.10). De novo 

acquisition could therefore also be attributed to treatment induced DNA damage 

following therapies such as CSI which could introduce the aberration after the tumour 

had been sampled at initial diagnosis (Boss et al., 2014). Experiments such as next-

generation sequencing have the ability to explore both these theories, by either 

identifying the low-level clones of cells at diagnosis which are treatment resistant and 

populate the tumour at relapse or, as reported in this study (Figure 3.10), demonstrate 

the absence of the molecular defect at diagnosis, supporting the theory of de novo 

acquisition at medulloblastoma relapse. 

While the effect of treatment has not been explored directly in this study, the findings 

in Chapter 3 alongside the discoveries in Chapter 6 support a different course of 

tumour evolution depending on upfront treatment. For example, patients who 

received upfront CSI in the relapsing study, relapsed more slowly and had no molecular 

features identified at diagnosis which influenced disease behaviour at relapse (Table 

6.7 and Table 6.10). Patients, who did not receive upfront CSI, relapsed quickly but had 
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molecular features detectable at diagnosis which continued to be associated with 

tumour behavior at relapse (Table 6.11 and Figure 6.8). Ionizing radiation, may 

therefore alter the course of the molecular evolution within a tumour. This could 

either be due to treatment induced selective pressure or the introduction of defects as 

a direct result of the DNA damaging effects of ionizing radiotherapy. 

If it is the upfront treatment that is the most important factor directing the molecular 

evolution of a tumour, it follows that to understand these treatment effects further, 

tumours at relapse, following all different types of upfront treatment must be 

sampled. Moreover, to test these theories pre-clinically, we must model treatment 

effects directly (section 7.5.5) as well as the downstream aberrations that emerge at 

relapse, such as combined p53-MYC defects (Chapter 4). Given that the majority of 

patients receive upfront CSI, it is likely to be the emergent molecular biology of the 

tumour at relapse which informs disease behavior and these are the events that must 

be characterised and targeted if we are to improve and potentially cure patients of 

their relapsed disease.  

7.3 Pre-clinical models of relapsed medulloblastoma are needed to 

further our understanding of its underlying biology and trial 

promising novel therapies 

Through collaborative work, a mouse model, which faithfully recapitulated the key 

clinicopathological and molecular features identified in an aggressive form of human 

relapsed medulloblastoma, was developed. As reported in the human data (Chapter 3), 

the common emergence of p53-MYC defects at relapse suggested that these two 

combined aberrations provided a particular survival advantage to the cancer cell, 

whether they were considered as CSCs or treatment resistant clones. Given the 

frequency of this occurrence it was likely that these two aberrations co-existed, as was 

demonstrated in one tumour (patient 22, Figure 3.10), at a cellular level to drive 

tumour development and progression at relapse. The development of the novel 

GTML/Trp53KI/KI mouse model facilitated the exploration of this hypothesis and 

demonstrated that the interaction between these two aberrations was critical to 

tumour development, and was similarly associated with aggressive disease.  
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This proof-of-concept study highlighted the importance of appropriately modelling the 

molecular biology of the disease at relapse to firstly validate the findings of the human 

data and secondly provide an appropriate pre-clinical model to study further. When 

we consider the disease course of medulloblastoma, the majority of patients will die of 

their relapsed disease and not their primary disease. Therefore it follows that to 

improve survival in the disease as a whole, it is the biology of the disease at relapse 

that we need to understand further and faithfully model. 

By modelling combined p53-MYC defects disease in a GTML/ Trp53KI/KI mouse we have 

firstly validated the dependency of MYCN-driven tumour growth on both MYCN and 

Trp53 defects. Secondly, we have demonstrated that we can therapeutically target 

p53-MYCN driven medulloblastoma with an appropriate agent such as MLN8237. 

MLN8237, is an Aurora A kinase inhibitor which works by disrupting the complex which 

forms between MYCN and Aurora A, which as a consequence, leads to the degradation 

of MYCN. The use of MLN8237 in the GTML/Trp53KI/KI mouse model highlights the 

importance of agent selection for the desired target, as well as utilising a drug which is 

already approved for use in phase II trials, which will facilitate the more rapid 

translation of these findings into clinical practice (Table 1.5). MLN8237, has potential 

utility for treatment of recurrent disease and should be considered for use in patients 

with p53-MYCN driven relapsed medulloblastoma.  

Currently we do undertake phase I and II studies of new agents on patients with 

relapsed medulloblastoma, such as the SHH inhibitor GDC-0449 (section 1.8.8.2.2). 

However, while SHH pathway inhibition may still have utility in the disease at relapse, 

given the findings in this study of subgroup stability over time; other potential new 

agents identified through pre-clinical work may not have efficacy in the disease at 

relapse, or if they do, may only have effect in a subgroup of the population at relapse 

who still display the target. Most reported mouse models focus on mimicking the 

disease features identified in medulloblastoma at diagnosis (section 1.8.8). Therefore 

agents developed through this route will be typically trialled on pre-clinical models of 

the disease at diagnosis, and targeted at the disease features at this time-point. 

However, at present, agents developed through this route are given to patients at 

disease relapse, where the driving events of tumour biology, as demonstrated in 

Chapter 3, are likely to have evolved.  
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It therefore follows that to improve outcomes in patients with relapsed 

medulloblastoma we should alter our approach. As demonstrated in this study, 

molecular target identification should be driven out of the interrogation of relapsed 

tumour biology. These events should next be modelled and targeted pre-clinically. To 

facilitate more rapid translation of potential agents into the clinic we should look first 

towards agents that are either in development or use in other cancers and expedite 

any therapeutic agent with demonstrated pre-clinical utility into the clinic. Importantly 

these agents should be administered to patients who display the target at relapse to 

allow appropriate understanding of the tumour responses (section 7.5). 

7.4 Novel and focused analyses of the features of relapse 

medulloblastoma provides important new insights into the 

epigenetics of tumour development 

The findings in Chapter 5 describe changes in DNA methylation patterns between 

diagnosis and relapse in both the T-box and Homeobox gene families in MBGroup4. Both 

these families display either maintenance or acquisition of tumour-specific DNA 

methylation within CpG islands or promoter regions of the gene between these two 

time-points which, in turn, correlates with expression. These findings suggest that DNA 

methylation may play a role in regulating gene transcription in these gene families and 

that these candidate genes may be important in MBGroup4 tumour development at 

relapse. Several important points are highlighted by these discoveries to consider 

when investigating medulloblastoma.  

Firstly, the consideration of medulloblastoma molecular subgroup at all time-points in 

the disease is crucial to interpret findings. Had the analysis described in section 5.3.7.3 

only considered all relapsed tumour samples together, and not in a subgroup-specific 

way, it is possible that these important findings would not have been discovered due 

to the heterogeneity of the DNA methylation patterns between the subgroups 

(Hovestadt et al., 2013; Schwalbe et al., 2013b), and the dilution of any important 

discoveries. This may be counter-intuitive as the numbers in the study group were 

consequently small. However, the analysis has generated candidate genes from the 

same gene families which are known to play a role in other cancers (section 5.4). 

Moreover, one candidate gene, EOMES, has been identified by others to potentially be 

epigenetically regulated and have a role in tumourigenesis MBGroup4 tumours (Jones et 
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al., 2012). Secondly, when characterising the DNA methylation events between 

diagnosis and relapse it is important to consider the current understanding of these 

mechanisms. For example, the threshold for a change in DNA methylation state was 

set at an absolute β-value difference of 0.4 to capture true differences in β-values, 

previously defined as a β-value change of 0.25-0.33, that may reflect the epigenetic 

regulation of gene transcription (Maksimovic et al., 2012; Schwalbe et al., 2013b).  

This novel approach has yielded important findings which should be interrogated 

further and taken forward into functional work (section 7.5). The identification in this 

study, of several potentially epigenetically regulated genes highlights the importance 

of considering both genetics and epigenetics in cancer development as a whole, and in 

medulloblastoma specifically. In addition, the positive correlation between DNA 

methylation and gene expression demonstrated consistently across multiple CpG sites 

in several genes (Table 5.6) suggests that the current understanding of the epigenetic 

mechanisms which control gene expression is not complete, as these findings do not 

conform to the current paradigm of DNA methylation and its typically inverse 

relationship with gene expression (Baylin and Jones, 2011). 

Characterisation of the epigenetic mechanisms associated with cancer development 

has until recently focused on the linear, inverse correlation between DNA methylation 

and gene expression (Baylin and Jones, 2011) and in particular the epigenetic silencing 

of tumour suppressor genes (Table 1.3). However, it is now evident that this 

understanding is limited. This is supported by the present study, other reports in 

medulloblastoma (e.g. TERT expression regulation) and studies in the Homeobox gene 

families (Flagiello et al., 1996; Castelo-Branco et al., 2013; Tsumagari et al., 2013; 

Lindsey et al., 2014). The complex relationships between all epigenetic mechanisms 

that regulate gene expression needs to be further investigated.  

DNA methylation patterns do not only exhibit negative linear relationships with gene 

expression levels, and both non-linear relationships and negative associations, should 

also be explored. For example, analyses separate to the ones described in Chapter 5 

(section 5.3.4) identifying the associations between DNA methylation and gene 

expression whereby, for example, DNA methylation has to reach a threshold before 

gene expression levels are affected (non-linear relationship) may also uncover 
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important epigenetically regulated genes. Moreover, patterns of DNA methylation may 

also be responsible for determining alternate gene transcripts rather than simply levels 

of gene expression, and hence may explain the positive correlations observed. 

Similarly, DNA methylation in isolation may not be the only epigenetic mechanism 

required to control gene expression (Tsumagari et al., 2013). Histone and chromatin 

modifications are also critical in controlling gene transcription and the recent discovery 

in medulloblastoma of mutations in several genes responsible for modifying histones 

and chromatin supports this (Parsons et al., 2011; Jones et al., 2012; Northcott et al., 

2012a; Pugh et al., 2012; Robinson et al., 2012). Further investigation into these less 

well understood aspects of the epigenetic machinery is now warranted in the disease 

and ideas for future work are discussed in section 7.5. 
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7.5 Future work  

The present study has demonstrated that the molecular biology of relapsed disease is 

different to that of the disease at diagnosis (Chapter 3 and Chapter 5), emergent 

events at relapse are associated with disease behaviour (Chapter 3), and the patterns 

and timings of relapse vary according to molecular subgroup and radiotherapy 

(Chapter 6). These findings underscore the importance of sampling and interrogating 

medulloblastoma disease at relapse further if we are to advance treatments and 

improve outcome in this almost always fatal diagnosis (Pizer et al., 2011a; Ramaswamy 

et al., 2013). The discoveries reported in the current study could lead to several 

potential lines of investigations which are discussed in detail below. These novel 

findings in medulloblastoma at relapse, have also provided the platform for wider 

translational research in the field and ideas for future studies are explored in section 

7.5.5. 

7.5.1 Validation of combined p53-MYC defects and translation into 

clinical practice 

The discovery of emergent and combined p53-MYC defects at medulloblastoma 

relapse requires validating in a separate cohort of paired tumour samples taken at 

both diagnosis and relapse. The techniques employed in this study such as a focused 

PCR-based direct sequence analysis of the hotspot regions for TP53 mutations (exon 5-

8) alongside MLPA and FISH for the assessment of MYC and MYCN amplification could 

be readily undertaken in relapse biopsies, as they require limited amounts of DNA 

extracted from FFPE material (Chapter 3). While in this study the Infinium methylation 

450K array was utilised to determine subgroup for the majority of tumour samples, 

where DNA may be limited, the additional use of a minimal signature DNA methylation 

assay (section 6.3.6.2) to determine molecular subgroup would also be important to 

assign subgroup on all samples obtained.  

Confirmation of the frequent acquisition of combined p53-MYC defects at relapse in a 

separate cohort and its association with aggressive disease, would reinforce the clinical 

use of these combined aberrations as a biomarker of rapidly progressing disease at 

recurrence. Moreover, therapeutic targeting of this interaction should next be 

expedited for patient use. In this study the compound MLN8237 had demonstrated 

efficacy in the tumours spontaneously arising in GTML/Trp53KI/KI mice. Other agents 
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may also have utility, for example the BET inhibitor JQ1, which is described in section 

1.5.2.3.1, and has demonstrated efficacy against both MYC and MYCN oncogenes 

(Puissant et al., 2013; Di Costanzo et al., 2014). Given the findings of both combined 

p53-MYC and p53-MYCN defects emerging at relapse in the human tumours (Chapter 

3), JQ1 may also be more widely appropriate for trial in the disease at relapse.  

7.5.2 Expansion of the paired relapsed cohort is essential to identify 

more genetic and epigenetic events important in disease 

recurrence 

Expansion of the paired relapse cohort is now essential to elicit further key biological 

mechanisms in medulloblastoma relapse. While much has been achieved from DNA 

extracted from FFPE samples, to maximise the opportunity to characterise recurrent 

disease, tissue sampled at relapse should be freshly frozen, to enable the analysis of 

both DNA and RNA. The correlation of DNA methylation patterns and gene expression 

profiles at relapse would provide further evidence, for example, of the epigenetic 

regulation of T-box and Homeobox gene families at relapse (Chapter 5). Moreover, 

high molecular weight DNA samples and good quality RNA samples would facilitate 

techniques such as WES, WGS, whole genome bisulfite sequencing, RNA seq analysis 

and ChIP which could further explore the role of epigenetic mechanisms in the 

regulation of gene expression in relapsed medulloblastoma (Laird, 2010; Bibikova et 

al., 2011; Dedeurwaerder et al., 2011). These techniques could also be utilised to 

expand on the findings in Chapter 5 and aid in explaining the positive correlations 

between DNA methylation and gene expression levels (section 5.4).  

Expansion of the paired relapse cohort, with improvement of the of quality material, 

would also allow for more detailed interrogation genome-wide. Targeted deep 

sequencing at a greater resolution could be used to further explore whether acquired 

defects such as TP53 mutation are truly acquired or simply not detected at the depth 

investigated in this study (Figure 3.10). Moreover, WGS or WES of tumours at relapse 

could be utilised to identify new candidate genes important in disease evolution at 

relapse. In addition, the general expansion of the paired relapse cohort would expand 

the data available for all four molecular subgroups at relapse. This would firstly 

facilitate a greater understanding of the underrepresented MBGroup3 tumours. 

Moreover, subgroup-specific analyses of paired tumour samples taken at both 



320 
 

diagnosis and relapse, would maximise the opportunity for finding further major 

mechanisms important in the disease at relapse. 

7.5.3 Interrogation of the DNA methylation patterns of MBWNT, MBSHH 

and MBGroup3 at relapse  

As described above (section 7.5.3) the expansion of the paired relapse cohort is crucial 

to understanding the mechanisms of disease relapse in medulloblastoma. In the 

future, this would facilitate similar types of assessment of the DNA methylation 

patterns in the three subgroups that were not interrogated in this study (MBWNT, 

MBSHH and MBGroup3, Chapter 5). Initial approaches would be to replicate the analyses 

described in section 5.3.7.3 across all subgroups. Candidates identified through these 

analyses, such as the T-box and Homeobox gene families in MBGroup4, should be cross 

investigated in each subgroup to understand whether these events are subgroup-

specific or relapse specific. 

Potential epigenetically regulated candidate genes, discovered through these 

investigations, would provide the platform for in vitro and in vivo work. Experiments 

such as the treatment of medulloblastoma cell lines with 5-azacitidine to decrease 

DNA methylation and assess the downstream effect (upregulation or downregulation) 

on gene expression levels should be undertaken. Other assays utilising, for example, 

siRNAs in medulloblastoma cells lines to interrupt the expression of candidate genes 

could be developed to assess the role of the candidate genes in cellular processes such 

as apoptosis, senescence, proliferation and migration. Together these approaches 

would validate genes as epigenetically regulated and confirm their role in cellular 

processes that are important in tumourigenesis.  

7.5.4 Characterisation of the relapsing cohort and validation of DNA 

methylation markers predictive of disease relapse 

The assembly and analysis of the relapsing cohort reported in Chapter 6 needs to be 

completed and a comprehensive multivariate analyses undertaken. Clinical data on 

patterns of relapse are awaited on 31 cases and will aid in interpreting the initial 

findings described in section 6.4. Moreover, the molecular characterisation of other 

established disease features which are associated with prognosis is important. 

Aberrations such as chromosome 17 status, ploidy and TERT mutation status should be 
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assessed, before incorporating all clinicopathological features into a large multivariate 

survival analysis. The results of this analysis will expand the findings reported in 

Chapter 6 and provide further information on the impact of tumour molecular biology 

at diagnosis on disease behavior at relapse. 

In addition to analysing established features of medulloblastoma in the relapsing 

cohort, additional work should be undertaken in this cohort to assess any current or 

future candidate genes that are discovered through analyses such as those reported in 

Chapter 5. The analysis described in section 5.3.7.3 is designed to identify methylation 

events that are either maintained or acquired at relapse. It therefore follows that 

through this analysis, potential candidates might also have prognostic utility in the 

disease at diagnosis. The relapsing cohort (section 6.3.5) alongside the larger NMB 

cohort (section 6.3.1-6.3.4) provides a valuable resource to enable the validation of 

prognostic biomarkers at diagnosis. Approximately 250 of the tumour samples in the 

NMB cohort and 160 tumours in the relapsing cohort have been characterised on the 

Infinium methylation 450K array. Consequently any candidate gene identified at 

relapse could be investigated in these independent cohorts to assess their prognostic 

utility.  

In addition, DNA methylation at CpG residues could be investigated seperately, in 

these large cohorts of tumours sampled at diagnosis, to assess their utility as 

biomarkers predictive of relapse. A multivariate analysis which incorporates all 

features with an established association to disease prognosis, similar to previous 

studies (Schwalbe et al., 2013b), could be performed to assess the prognostic utility of 

any selected probe of interest. Unbiased entry of bi-modally methylated probes into a 

Cox proportional hazard model could be performed as previously described (Schwalbe 

et al., 2013b), or a correlative analysis of DNA methylation events which are associated 

with, or enriched in tumours sampled from patients at diagnosis who subsequently 

relapse, could be undertaken to identify CpG residues of interest. This analysis should 

be performed cohort-wide and in a subgroup-specific manner.  

Looking further ahead, the identification of a small number of CpG residues whose 

DNA methylation status is predictive of relapse, could be interrogated using a minimal 

signature methylation assay similar to the one described in section 6.3.6.2. This assay 
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is practical, successful on small amounts on DNA and, as a medulloblastoma molecular 

subgrouping technique, is being considered for development as a clinically suitable 

method to subgroup patients (PBTG, unpublished work). Our best treatment strategy 

at present is to cure our patients with upfront therapy, and a sensitive and specific 

clinical test, predictive of relapse, could direct initial treatment stratification. 

7.5.5 The future landscape of translational research in relapsed 

medulloblastoma 

To improve the clinical outcome of patients with relapsed medulloblastoma, combined 

research and clinical efforts must focus on understanding the disease at relapse. This 

study has raised the possibility that upfront treatment directs the temporal evolution 

of the molecular biology of tumours (section 7.2). Pre-clinical work could firstly utilise 

some of the tools already available, such as the established medulloblastoma cell lines 

(Xu et al., 2014). The molecular biology of these established medulloblastoma cells 

lines (e.g. DNA methylation patterns, gene expression levels and copy number 

aberrations) could be investigated, both before and after applying selective treatment 

pressure with radiotherapy. This would enable the extensive characterisation of 

molecular aberrations that expand or emerge as a result of radiotherapy. These 

findings would provide further understanding of the potential mechanisms of 

treatment resistance and facilitate the comparison between the aberrations 

discovered through these experiments and the aberrations discovered in tumours at 

relapse (Chapter 3).  

Exploring this idea further, these experiments could be designed and undertaken in 

the medulloblastoma mouse models. A recent elegant study, undertaken in Ptch1+/- 

MBSHH mouse models, reports the identification of a potentially treatment resistant 

population of cells (Vanner et al., 2014). Here, Vanner et al., (2014) describes the 

discovery of a low frequency, quiescent population of Sox2+ cells which expanded 

following treatment with chemotherapy, implying treatment resistance, but upon 

targeting these cells with the antineoplastic agent, mithramycin, tumour growth 

reduction was observed. While this report does not explore the effect of radiotherapy 

on tumour biology it does support the hypothesis of clonal evolution over time in 

medulloblastoma (section 3.5.4), and provides rationale for the future experiments 

outlined here.  
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At present there are mouse models that represent three out of the four molecular 

subgroups in the disease (Northcott et al., 2012a; Poschl et al., 2014). Future 

experiments in mouse models, representative of all possible molecular subgroups, 

could be designed to recapitulate the treatment of human disease. For example, 

following the development of a primary medulloblastoma tumour, exposing these 

various mouse models to the equivalent treatment administered to patients, such as 

chemotherapy and radiotherapy, and allowing tumours to return would provide access 

to valuable relapse tumour material that again should be interrogated at the 

epigenetic and genetic level. These investigations could identify aberrations that have 

emerged at relapse and are important in relapsed biology. In addition, next generation 

sequencing of tumours at both diagnosis and relapse could identify treatment resistant 

clonal populations of cells which may be present at low levels in tumours sampled at 

diagnosis but expand to populate tumours at relapse.  

In order to appropriately model the disease at relapse, large numbers of combination 

experiments, with mice representative of all possible molecular subgroups, would be 

required. Each subgroup would need a cohort of mice to receive upfront CSI with 

adjuvant chemotherapy as well as just chemotherapy alone, to recapitulate the 

treatment received by patients at diagnosis. This approach would also be able to 

accommodate any changes that occur in the upfront treatment of patients which may 

affect the nature, patterns, frequency and tumour biology of medulloblastoma 

relapses. Employing an adaptive strategy like this would enable the pre-clinical study 

of relapse disease to be relevant to the present day and reflective of our current 

upfront treatment strategies. 

Following the development of appropriate cell lines and mouse models, whether after 

exposure to treatment in mouse models of the primary disease (described above) or 

modelling the molecular biology of relapsed disease as described in Chapter 4, 

therapeutic options should next be explored. Two approaches could be undertaken. 

With an identified target, such as MYCN, appropriate and available targeted therapy 

could be trialled on mouse models which model and display that target (Brockmann et 

al., 2013). Similar to the experiment described in Chapter 4, conformation of successful 

targeting by the agent by interrogating for a reduction in the target at both the protein 

level (Western blotting and IHC) or the gene level (RNA extraction a QT-PCR) should 



324 
 

also be undertaken. Alternatively, in mouse models where tumours have recurred 

following treatment, and do not have an identifiable target, high throughput drug 

screening could be performed.  

High throughput drug screening has already been undertaken for other paediatric 

brain tumours such as ependymoma (section 1.6.1.3), and have successfully identified 

potential cytotoxic agents with efficacy in the disease, for example 5-fluoruracil 

(Atkinson et al., 2011). Similarly, a recent report of in vitro and in vivo drug screening in 

MBGroup3 mouse models and neurospheres, identified gemcitabine and pemetrexed as 

agents with utility in this subgroup (Morfouace et al., 2014). Both these findings are 

now being translated into clinical practice. Approaches similar to these reports could 

therefore be undertaken in the in vitro and in vivo relapsed medulloblastoma models 

described. In addition, after the identification of an appropriate drug through both 

these avenues, agents should be used in the relapse setting on the appropriate 

patients. Otherwise if a targeted therapy is trialled on patients who do not exhibit the 

target, the likelihood of observing an effect on tumour growth is small (Kool et al., 

2014). The incorrect use of a targeted agent in early phase trials could lead to the 

rejection of a potentially useful drug in the relapsed setting. 

Efforts to improve our understanding of the biology of relapsed disease should also be 

driven out of current clinical practice. The importance of sampling medulloblastoma 

tumours at relapse has already been highlighted (section 7.2). The molecular biology of 

tumours has been shown to evolve over time; therefore further information could also 

be attained from sampling tumours at post mortem. While this is not common practice 

in medulloblastoma, it has been undertaken for other childhood brain tumours such as 

diffuse intrinsic pontine gliomas (DIPGs), a HGG which is not normally biopsied, and 

therefore understanding of the molecular biology of the disease has, until recently, 

remained elusive. Nucleic acids extracted from DIPGs sampled at post mortem, have 

successfully been extracted and utilised in experiments to characterise the molecular 

biology of this tumour, and the discoveries from these samples have furthered the 

understanding in this fatal disease (Jones and Baker, 2014).  

Medulloblastoma tumours sampled at three time-points would aid in determining 

whether the molecular evolution of the tumour is as a result of treatment, the natural 
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biology of the tumour, or both. Moreover sampling at post mortem of tumours that 

have progressed through all treatments, and never achieved remission may also reveal 

mechanisms and pathways that are associated with progressive disease (section 6.3.5). 

While rapidly progressive disease is rare, it is difficult to investigate, as the clinical 

need to sample a tumour at disease progression rarely occurs. Post mortem sampling, 

and comparison between the molecular features of relapsed disease and progressive 

disease, could provide the first insights into this aspect of disease behaviour, and help 

to determine whether rapidly progressive disease is an accelerated version of 

recurrence or a separate entity with differing tumour biology. 

Finally exploring the biology of relapsed disease more widely in other childhood 

tumours should also be considered. As already discussed in section 1.7, relapse in 

paediatric brain tumours and other tumours such as neuroblastoma also occurs, and in 

certain tumour types, for example ependymoma, recurrent disease is frequently 

witnessed on multiple occasions. In this study we have already demonstrated that p53 

pathway defects emerge at medulloblastoma relapse, similar to the findings reported 

in neuroblastoma (Carr et al., 2006; Carr-Wilkinson et al., 2010). Other common 

mechanisms may be involved in tumour evolution and treatment resistance, and 

therefore an integrated understanding of many tumour types is more likely to identify 

targetable mechanisms, as well as safe and effective therapies for use in the relapse 

setting.  

7.5.6 Summary 

This study has identified emergent and combined p53-MYC pathway defects which are 

associated with locally aggressive relapsed disease, DNA methylation events in 

MBGroup4 which are acquired or maintained at relapse and associated with gene 

expression in the T-box and Homeobox gene families, and patterns or timings of 

relapse disease which are related to features at diagnosis, such as, molecular subgroup 

or radiotherapy. Together, these findings have provided the foundation for future 

research into relapsed medulloblastoma. These initial discoveries demonstrate that 

both genetic and epigenetic events contribute to the molecular evolution of 

medulloblastoma at relapse. In addition, upfront treatment such as CSI appears to play 

a critical role in the frequency and nature of molecular aberrations discovered at 
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recurrence. Combined efforts both pre-clinically and clinically are now required to 

further the understanding of this almost universally fatal disease.  

Efforts should now focus on developing appropriate models of relapse to trial 

therapeutic agents which, if successful, should be expedited into the clinic. In the 

clinic, biopsy of tumours at relapse should be incorporated into routine clinical 

practice. Ideally tumour samples should be freshly frozen, which would improve the 

nuclei acid quality and yield, and enable more extensive analysis of the genome and 

epigenome to be undertaken. Post mortem biopsies should also now be considered, 

not just for relapse medulloblastoma, but for all patients dying of disease. Finally, 

collaborative efforts into relapse disease across all paediatric tumours should enable 

the identification of any common mechanisms and agents that may have cross-tumour 

utility. This will maximise potential patient groups for trial of new treatment strategies 

and therapeutic agents. Together, these approaches should expand our understanding 

of the disease, provide potential agents with efficacy at recurrence, and ultimately 

improve the outcome for patients with relapse medulloblastoma.  
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9.1 Appendix I:  R script characterising methylation events between 

diagnosis and relapse 

##Normal cerebella cohort dataset object; betas.BMIQ.NC 

##Paired relapsed cohort dataset object (number of pairs=27); 

##betas.BMIQ.D.R 

##Convert to M values 

library(minfi) 

library(multicore) 

M.CB <- ilogit2(betas.BMIQ.NC) 

##Calculate standard deviation  

CB.sd <- mclapply(mc.cores=16, 1:nrow(M.CB), function(i) 

sd(na.rm=TRUE, M.CB[i,])) 

CB.sd <- unlist(CB.sd) 

plot(CB.sd[order(decreasing=TRUE, CB.sd)], pch=".") 

selectedProbes <- rownames(M.CB)[which(CB.sd < 0.02)]  

##interrogate invariant probes only for both datasets and check they 

##match 

betas.BMIQ.D.R.trim <- betas.BMIQ.D.R[rownames(betas.BMIQ.D.R) %in% 

selectedProbes,] 

betas.BMIQ.NC.trim <- betas.BMIQ.NC[rownames(betas.BMIQ.NC) %in% 

selectedProbes,] 

all(rownames(betas.BMIQ.NC.trim) == rownames(betas.BMIQ.D.R.trim)) 

##create a matrix of values of the difference in beta values between 

##diagnosis and relapse 

betas.BMIQ.D.R.diffs <- betas.BMIQ.D.R.trim [,1:27] - 

betas.BMIQ.D.R.trim[,28:54] 

##calculate the mean of the cerebella beta values 

CB.mean <- apply(betas.BMIQ.NC.trim,1,function(x) mean(x, na.rm=TRUE)) 

##set the change in methylation value which is biologically important 

threshold <- 0.4 

diagChange <- lapply(1:nrow(betas.BMIQ.D.R.trim), function(i)  

which(abs(betas.BMIQ.D.R.trim[i,1:27] - CB.mean[i]) > 

threshold)) 

relapChange <- lapply(1:nrow(betas.BMIQ.D.R.trim), function(i)  

  which(abs(betas.BMIQ.D.R.trim[i,28:54] - CB.mean[i]) > 

threshold)) 

diagUnchange <- lapply(1:nrow(betas.BMIQ.D.R.trim), function(i)  
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  which(abs(betas.BMIQ.D.R.trim[i,1:27] - CB.mean[i]) < 

threshold)) 

relapUnchange <- lapply(1:nrow(betas.BMIQ.D.R.trim), function(i)  

  which(abs(betas.BMIQ.D.R.trim[i,28:54] - CB.mean[i]) < 

threshold)) 

NAcount <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i)   

which(is.na(betas.BMIQ.D.R.trim[i,1:27]) | 

is.na(betas.BMIQ.D.R.trim[i,28:54]))) 

##Count 1. Change D -> R, back to cerebellar-like state 

func1 <- function(i) {  tmpD <- diagChange[[i]] 

     tmpD <- tmpD[!tmpD %in% NAcount[[i]]] 

     tmpR <- relapChange[[i]] 

tmpR <- tmpR[!tmpR %in% NAcount[[i]]] 

     out <- tmpD[!tmpD %in% tmpR] 

    if(length(out)==0) {x <- length(out)} else {x <- 

out} 

 } 

outcome1   <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i) 

func1(i)) 

##Count 2. Change D -> R, away from cerebellar-like state 

func2 <- function(i) { tmpD <- diagChange[[i]] 

     tmpD <- tmpD[!tmpD %in% NAcount[[i]]] 

     tmpR <- relapChange[[i]] 

tmpR <- tmpR[!tmpR %in% NAcount[[i]]] 

     out <- tmpR[!tmpR %in% tmpD] 

if(length(out)==0) {x <- length(out)} else {x <- 

out} x} 

outcome2  <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i) 

func2(i)) 

##Count 3. Unchanging D -> R, in cerebellar-like state 

func3 <- function(i) { tmpD <- diagUnchange[[i]] 

     tmpD <- tmpD[!tmpD %in% NAcount[[i]]] 

     tmpR <- relapUnchange[[i]] 

tmpR <- tmpR[!tmpR %in% NAcount[[i]]]   

     out <- tmpD[tmpD %in% tmpR] 

if(length(out)==0) {x <- length(out)} else {x <- 

out} x} 
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outcome3   <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i) 

func3(i)) 

##Count 4. Unchanging D -> R, maintained in abnormal state 

func4 <- function(i) { tmpD <- diagChange[[i]] 

     tmpD <- tmpD[!tmpD %in% NAcount[[i]]] 

     tmpR <- relapChange[[i]] 

     tmpR <- tmpR[!tmpR %in% NAcount[[i]]] 

     out <- tmpD[tmpD %in% tmpR] 

     if(length(out)==0) {x <- length(out)} else {x<- out} 

x} 

outcome4   <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i) 

func4(i)) 

##Count 5. Magnitude of change between diagnosis and relapse 

func5 <- function(i) { diffs <- abs(betas.BMIQ.D.R.trim [i,1:27] –  

betas.BMIQ.D.R.trim i,28:54]) 

     x <- length(diffs[diffs > threshold]) x} 

outcome5   <- lapply(1:nrow(betas.BMIQ.D.R.diffs), function(i) 

func5(i)) 

##populate a results matrix 

results <- matrix(nrow=nrow(betas.BMIQ.D.R.diffs), ncol=6) 

colnames(results) <-  c("Change_D_R_to_CB_state",  

"Change_D_R_away_CB_state", "Unchange_maintain_CB",  

"Unchange_maintain_abnormal", "NA" 

"D_R_difference>threshold") 

rownames(results)  <- rownames(betas.BMIQ.D.R.diffs) 

for(i in 1:nrow(results))  

{ 

tmp <- outcome1[[i]] 

   if(tmp[1]!=0) { results[i,1] <- length(tmp) } else {results[i,1] 

<- 0} 

  tmp <- outcome2[[i]] 

  if(tmp[1]!=0) {results[i,2] <- length(tmp) } else {results[i,2] 

<- 0} 

   tmp <- outcome3[[i]] 

   if(tmp[1]!=0) {results[i,3] <- length(tmp) } else {results[i,3] 

<- 0} 

  tmp <- outcome4[[i]] 

   if(tmp[1]!=0) {results[i,4] <- length(tmp) } else {results[i,4] 

<- 0} 
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   tmp <- NAcount[[i]] 

if(length(tmp)!=0) {results[i,5] <- length(tmp) } else 

{results[i,5] <- 0} 

   tmp <- outcome5[[i]] 

if(tmp[1]!=0) {results[i,6] <- tmp } else {results[i,6] <- 0}  

} 

## Check all should add up to 27 pairs 

all(rowSums(results [, 1:5]) == 27) 
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9.2 Appendix II:  R script tallying methylation events between 

diagnosis and relapse 

##Table of categorises events in MBGroup4; 

##Grp4_Threshold_0.4_Comparison_CB  

##Headings for table Grp4_Threshold_0.4_Comparison_CB 

##Count 1. "Change_D_R_to_CB_state" 

##Count 2. "Change_D_R_away_CB_state" 

##Count 3. "Unchange_maintain_CB",   

##Count 4. "Unchange_maintain_abnormal" 

##Count 5. "NA" 

##Count 6. "D_R_difference>threshold" 

##Load annotation data 

library(IlluminaHumanMethylation450kanno.ilmn12.hg19) 

library(minfiData) 

data(RGsetEx) 

A  <- getAnnotation(RGsetEx) 

##match annotation data to Grp4_Threshold_0.4_Comparison_CB 

A  <- A[match(rownames(Grp4_Threshold_0.4_Comparison_CB), 

rownames(A)),] 
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##Include probes that are in an Island in a known gene 

Island    <-A[A$Relation_to_Island =="Island",] 

Island_Body   <-Island[Island$UCSC_RefGene_Name !="",] 

##Include probes that are in promoter regions defined as 1500 bp 

##upstream of the TSS and 500 bp downstream of TSS 

library(Homo.sapiens) 

txsByGene   <- transcriptsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, 

'gene') 

names(txsByGene) <- mget(names(txsByGene), org.Hs.egSYMBOL, 

ifnotfound=NA) 

promotersByGene  <- promoters(txsByGene, upstream=1500, 

downstream=500)  

library(minfiData) 

data(MsetEx) 

tmp     <- mapToGenome(MsetEx) 

promoterProbes   <- subsetByOverlaps(tmp, promotersByGene) 

promoterProbeNames  <- rownames(promoterProbes) 

##Combine with CpG Island probes; Island_Body  

probesOfInterest <- unique(c(promoterProbeNames, 

rownames(Island_Body))) 

##Filter table Grp4_Threshold_0.4_Comparison_CB to match our 

##probesOfInterest 

Grp4_Threshold_0.4_Comparison_CB_trim <- 

Grp4_Threshold_0.4_Comparison_CB[rownames(Grp4_Threshold_0.4_Compariso

n_CB) %in% probesOfInterest, ]  
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##Create an event table to tally acquired                       

##(Count 2. "Change_D_R_away_CB_state") and maintained         

##(Count 4. "Unchange_maintain_abnormal") events whilst excluding 

##probes which demonstrate lost methylation events              

##(Count 1. "Change_D_R_to_CB_state") 

noOfProbes<-c() 

for(xIn in 0:8) 

{ 

  for(yIn in 0:8) 

  { 

tmp  <- Grp4_Threshold_0.4_Comparison_CB_trim 

[Grp4_Threshold_0.4_Comparison_CB_trim[,2] == xIn  

                                  & 

Grp4_Threshold_0.4_Comparison_CB_trim[,6] == xIn 

                                     & 

Grp4_Threshold_0.4_Comparison_CB_trim[,4] == yIn  

                                      & 

Grp4_Threshold_0.4_Comparison_CB_trim[,1] == 0, , drop=F] 

       noOfProbes<-c(noOfProbes, nrow(tmp)) 

  } 

} 

Tally_table  <- matrix(noOfProbes, 9, 9, byrow=F) 

Tally_table 
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9.3 Appendix III:  Candidate gene illustrations of DNA methylation at 

diagnosis and relapse in MBGroup4 paired samples.  
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Figure 9.1  Illustration demonstrating the DNA methylation changes for DMRTA2 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey rows, probes of interest; D, diagnosis; R, relapse. 
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Figure 9.2  Illustration demonstrating the DNA methylation changes for PRAC between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey rows, probes of interest; D, diagnosis; R, relapse. 
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Figure 9.3  Illustration demonstrating the DNA methylation changes for EPHA10 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 9.4  Illustration demonstrating the DNA methylation changes for NUDT16 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 9.5  Illustration demonstrating the DNA methylation changes for EID3 between diagnosis and relapse in the MBGroup4 paired samples.  Circles 
represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in order 
along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 9.6  Illustration demonstrating the DNA methylation changes for DSCR4 between diagnosis and relapse in the MBGroup4 paired samples. 
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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Figure 9.7  Illustration demonstrating the DNA methylation changes for HENTM1 between diagnosis and relapse in the MBGroup4 paired samples.  
Circles represent the β-value for each sample as detected by the CpG probes on the Infinium methylation 450K array. CpG probes are arranged in 
order along the gene (5’-3’). Grey row, probe of interest; D, diagnosis; R, relapse. 
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9.4 Appendix IV:  Linear regression plots demonstrating the 

correlation between gene expression and DNA methylation for the 

candidate genes in MBGroup4 tumours 
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Figure 9.8  Linear regression plot illustrating the positive correlation between 
methylation and expression in PRAC, EPHA10 and DMRTA2.   VSD, variance-stabilising 
data. 
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Figure 9.9  Linear regression plot illustrating the inverse correlation between 
methylation and expression at single CpG residues for NUD16, EID3, DSCR4 and 
HENMT1.  VSD, variance-stabilising data. 
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9.5 Appendix V:  Relapsing cohort data tables illustrating the patterns 

of medulloblastoma relapse according to molecular subgroup and 

upfront therapy. 
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Table 9.1  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBSHH (red) 
relapsing cohort who did not receive upfront craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the 
data available for each variable. NMB, Newcastle medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease; DOD, 
died of disease; DOOC, died of other complications). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, 
medulloblastoma not otherwise specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; 
data not available, diagonal hatching. 

 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse

Male 15/27 (56%) 15/27 (56%)

Female 12/27 (44%) 12/27 (44%)

Infants (<4 years) 24/27 (89%) 21/27 (78%)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA 12/27 (44%) 2/7 (29%)

LCA 3/27 (11%) 1/7 (14%)

DN 11/27 (41%) 4/7 (57%)

NOS 1/27 (4%) 0/7 (0%)

Local 27/27 (100%) 18/27 (67%)

Distant 4/27 (15%) 19/27 (70%)

Nodular na 15/26 (58%)

Diffuse na 15/26 (58%)

Complete resection 21/27 (78%) 3/25 (12%)

Subtotal resection 6/27 (22%) 2/25 (8%)

Degree unknown 0/27 (0%) 6/25 (24%)

Biopsy 0/27 (0%) 0/25 (0%)

Craniospinal irradiation 0/27 (0%) 9/24 (38%)

Focal radiotherapy 9/27 (33%) 3/24 (13%)

Chemotherapy 27/27 (100%) 12/24 (50%)

TP53  mutation 2/27 (7%) 1/7 (14%)

MYC  amplification 1/26 (4%) 0/7 (0%)

MYCN amplification 2/25 (8%) 1/7 (14%)

Patient details 

and outcome

Pathology 

variant

Pattern of 

relapse

Treatment

Molecular 

defects

Summary of demographics

138 143 181 256 474 477 553 554 555 572 576 580479 485 486 495 544 551 174 371 379612 651 670 702 724 866

0.79 0.77 0.14 1.5 3.6 1.44 1.19

DOD DOD

1.620.79 0.6 0.83 0.5 1.74 2.57

DOD DOD DOD ADF ADF ADFDOD DOD DOD ADF DOD DOD

0.661.75 1.25 0.33 0.69 0.95 1.71.72 3.43 0.79 2.21 0.96 0.57

DOOCDOD DOD DOD AWD ADF ADFDOD DOD ADF DOD DOD ADF

na na na 0.530.38 na 0.02 1.89 na 0.03 0.37 0.340.6 1.46 na na na 1.060.01 0.36 0.55 0.53 0.09 na 0.04 0.74 0.34
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Table 9.2  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBSHH (red) 
relapsing cohort who did receive upfront craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the 
data available for each variable. NMB, Newcastle medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease; DOD, 
died of disease; DOOC, died of other complications). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, 
medulloblastoma not otherwise specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; 
data not available, diagonal hatching. 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse

Male 18/33 (55%) 18/33 (55%)

Female 15/33 (45%) 15/33 (45%)

Infants (<4 years) 3/33 (9%) 2/33 (6%)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA 12/33 (37%) 3/6 (50%)

LCA 11/33 (33%) 1/6 (17%)

DN 8/33 (24%) 0/6 (0%)

NOS 2/33 (6%) 2/6 (33%)

Local 33/33 (100%) 13/20 (65%)

Distant 8/33 (24%) 11/20 (55%)

Nodular na 12/19 (63%)

Diffuse na 9/19 (47%)

Complete resection 21/33 (64%) 0/19 (0%)

Subtotal resection 12/33 (36%) 3/19 (16%)

Degree unknown 0/33 (0%) 6/19 (32%)

Biopsy 0/33 (0%) 2/19 (11%)

Craniospinal irradiation 33/33 (100%) 0/18 (0%)

Focal radiotherapy 0/33 (0%) 1/18 (6%)

Chemotherapy 23/33 (70%) 15/18 (83%)

TP53  mutation 12/31 (39%) 3/6 (50%)

MYC  amplification 1/30 (3%) 2/6 (33%)

MYCN amplification 11/29 (38%) 2/6 (33%)

Summary of demographics

0.5 1.71

DODAWD DOD DODDOD DODDOD DOOCAWD AWD AWDDOD

5.54 1.331.01 2.57 2.79 0.64 1.96 0.89

0.26 0.87 0.570.28 0.85

DOD DOD DOD DOD

1.300.892.57

DOD DOD DOD DOD

0.46

Pattern of 

relapse

0.73 0.545.83 0.94 5.36 2.084.17 1.32 2.45 0.85 1.5 0.32.05 2.43 1.14 2.2

0.4 1.89

DOD

Patient details 

and outcome

Pathology 

variant

DOOC DOD

0.08

0.29 7.56 1.94 1.57 4.44 2.82 1.09

0.58 0.013 1.95 0.17

DOD DOD DOD DOD DOOC

0.390.2 0.12 0.33 0.56 0.89 0.07

35 50011 50019 50063

502 549 578

3.34

DOD

439

50091

678 695 738 763 788 810

11319 20130

123 452 462 464128 261 395 413 437

Treatment

Molecular 

defects

1 19 25 64

DOD

81

DOD

0.39

DOD DOD
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Table 9.3  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBWNT (blue) 
relapsing cohort who did receive upfront craniospinal radiotherapy and MBGroup3 (yellow) relapsing cohort who did not receive upfront 
craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the data available for each variable. NMB, 
Newcastle medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease; DOD, died of disease). Pathology variant 
(CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise specified). Disease location (local, M0/M1; 
distant, M2+). Feature present, grey square; feature absent, white square; data not available, diagonal hatching. 

 

 

NMB number NMB number

PNET3 number PNET3 number

Diagnosis/relapse D R D R D R D R D R Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse Molecular subgroup Diagnosis Relapse

Male 4/5 (80%) 4/5 (80%) Male 10/15 (67%) 10/15 (67%)

Female 1/5 (10% 1/5 (10% Female 5/15 (33%) 5/15 (33%)

Infants (<4 years) 0/5 (0%) 0/5 (0%) Infants (<4 years) 13/15 (87%) 9/15 (13%)

Time to relapse (years) Time to relapse (years)

Progression free survival Progression free survival

Time to death (years) Time to death (years)

CLA 4/5 (80%) 1/1 (100%) CLA 10/15 (67%) na

LCA 1/5 (20%) 0/1 (0%) LCA 5/15 (33%) na

DN 0/5 (0%) 0/1 (0%) DN 0/15 (0%) na

NOS 0/5 (0%) 0/1 (0%) NOS 0/15 (0%) na

Local 5/5 (100%) 2/5 (40%) Local 15/15 (100%) 8/14 (57%)

Distant 0/5 (0%) 3/5 (60%) Distant 6/15 (40%) 12/14 (86%)

Nodular na 4/5 (80%) Nodular na 9/14 (64%)

Diffuse na 1/5 (20%) Diffuse na 9/14 (64%)

Complete resection 5/5 (100%) 1/3 (33%) Complete resection 13/15 (87%) 0/15 (0%)

Subtotal resection 0/5 (0%) 1/3 (33%) Subtotal resection 1/15 (7%) 0/15 (0%)

Degree unknown 0/5 (0%) 0/3 (0%) Degree unknown 1/15 (7%) 0/15 (0%)

Biopsy 0/5 (0%) 0/3 (0%) Biopsy 0/15 (0%) 0/15 (0%)

Craniospinal irradiation 5/5 (100%) 0/5 (0%) Craniospinal irradiation 0/15 (0%) 2/14 (14%)

Focal radiotherapy 0/5 (0%) 2/5 (40%) Focal radiotherapy 4/14 (29%) 2/14 (14%)

Chemotherapy 5/5 (100%) 4/5 (80%) Chemotherapy 13/14 (93%) 6/14 (43%)

TP53  mutation 2/5 (40%) 1/1 (100%) TP53  mutation 0/15 (0%) na

MYC  amplification 0/5 (0%) 0/1 (0%) MYC  amplification 5/15 (33%) na

MYCN amplification 0/5 (0%) 0/1 (0%) MYCN amplification 0/15 (0%) na

Pathology 

variant

Pattern of 

relapse

Treatment

Molecular 

defects

0.22 0.01 na 0.88 0.020.22 0.82 0.13 na 0.590.02 0.01 1.34 0.18 0.01

0.27

DOD DOD DOD DOD DOD DOD DOD DOD ADF DOD DOD DOD AWD DOD DOD

Summary of demographics

Patient details 

and outcome 1.5 0.31 2.68 0.98 0.4 0.14 0.39 0.52 1.83 2.08 0.23 0.25 3.42 2.03

741 637 422 568 169361 666 669 569 476374 148 493 490 535

Pathology 

variant

Pattern of 

relapse

2.08 na 1.82

Patient details 

and outcome 3.43 2.82 2.97

na

DOD AWD DOD AWD ADF

Treatment

Molecular 

defects

Summary of demographics

115 116 386 436 731

3.92 1.03

na
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Table 9.4  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBGroup3 (yellow) 
relapsing cohort who did receive upfront craniospinal radiotherapy.  Demographic frequencies are shown in Table 9.5. NMB, Newcastle 
medulloblastoma. Progression free survival (ADF, alive disease-free; DOD, died of disease). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; 
DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey 
square; feature absent, white square; data not available, diagonal hatching. 

 

 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup

Male

Female

Infants (<4 years)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA

LCA

DN

NOS

Local

Distant 

Nodular

Diffuse

Complete resection

Subtotal resection

Degree unknown

Biopsy

Craniospinal irradiation

Focal radiotherapy

Chemotherapy 

TP53  mutation

MYC  amplification

MYCN amplification 

Treatment

Molecular 

defects

0.36 0.52 na 0.42 na 0.4 1.23

DOD DOD ADF DOD ADF DOD DOD

1.72 2.09 2.24 1.4 2.65 0.72 1.59

618 627 629

Pathology 

variant

Pattern of 

relapse

530 533 590 591

0.31 0.13 1.16 0.63 1.85 2.01

DOD

0.84 0.01 0.47 0.18 1.42 0.57 0.63 0.58 0.05

DOD DOD

0.35

DOD DOD DOD DOD DOD DOD DOD DOD

3.12 0.9 2.01 0.45 3.5 1.5

171 176 227

Patient details 

and outcome 1.49 1.01 0.31 1.17 1.26 1.28 1.61

DOD DOD DOD DOD

1.64

384 420 440269 277 318 333 335 34420 60 92
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Table 9.5  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBGroup3 (yellow) 
relapsing cohort who did receive upfront craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the 
data available for each variable. NMB, Newcastle medulloblastoma. Progression free survival (AWD, alive with disease; DOD, died of disease). 
Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise specified). Disease 
location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; data not available, diagonal hatching. 

 

 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse

Male 29/42 (69%) 29/42 (69%)

Female 13/42 (31%) 13/42 (31%)

Infants (<4 years) 6/42 (14%) 3/42 (7%)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA 25/42 (60%) 0/2 (0%)

LCA 9/42 (21%) 1/2 (50%)

DN 1/42 (2%) 0/2 (0%)

NOS 7/42 (17%) 1/2 (50%)

Local 42/42 (100%) 8/27 (30%)

Distant 17/42 (40%) 22/27 (81%)

Nodular na 19/27 (70%)

Diffuse na 12/27 (44%)

Complete resection 28/42 (67%) 0/26 (0%)

Subtotal resection 12/42 (29%) 2/26 (8%)

Degree unknown 1/42 (2%) 2/26 (8%)

Biopsy 1/42 (2%) 0/26 (0%)

Craniospinal irradiation 42/42 (100%) 1/26 (4%)

Focal radiotherapy 0/42 (0%) 2/26 (8%)

Chemotherapy 35/42 (83%) 17/26 (65%)

TP53  mutation 0/39 (0%) 0/2 (0%)

MYC  amplification 1/38 (3%) 1/2 (50%)

MYCN amplification 1/38 (3%) 0/2 (0%)

Summary of demographics

0.05 2.76 0.19na na 0.6 0.84 0.35 0.02 0.21 1.05 0.72

DOD DOD DOD DODAWD AWD DOD DOD DOD DOD DOD DOD

2.13 2.2 5.5 3.25 0.861.89 0.48 5.17 1.17 1.44 1.45 1.06

129 31 50049 50137 50166 50259106 116

0.03

784 786 145 84

0.01 0.32 0.93 0.78 0.83 0.25

DOD DODDOD DOD DOD DOD DOD

0.17 1.28 0.95

680

1.15

DOD

0.99 1.09 0.17 0.920.75

687 693 766 768630 633 644

Pathology 

variant

Pattern of 

relapse

Patient details 

and outcome

Treatment

Molecular 

defects
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Table 9.6  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBGroup4 (green) 
relapsing cohort who did not receive upfront craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the 
data available for each variable. NMB, Newcastle medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease: DOD, 
died of disease). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise 
specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; data not available, diagonal 
hatching. 

 

 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse

Male 6/10 (60%) 6/10 (60%)

Female 4/10 (40%) 4/10 (40%)

Infants (<4 years) 3/10 (30%) 0/10 (0%)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA 6/10 (60%) na

LCA 2/10 (20%) na

DN 1/10 (10%) na

NOS 1/10 (10%) na

Local 10/10 (100%) 4/5 (80%)

Distant 4/8 (50%) 1/5 (20%)

Nodular na 4/4 (100%)

Diffuse na 0/4 (0%)

Complete resection 3/6 (50%) 0/5 (0%)

Subtotal resection 3/6 (50%) 0/5 (0%)

Degree unknown 0/6 (0%) 2/5 (40%)

Biopsy 0/6 (0%) 0/5 (0%)

Craniospinal irradiation 0/6 (0%) 2/5 (40%)

Focal radiotherapy 1/6 (17%) 1/5 (20%)

Chemotherapy 6/6 (100%) 3/5 (60%)

TP53  mutation 0/10 (0%) na

MYC  amplification 0/10 (0%) na

MYCN amplification 1/9 (11%) na

na 0.46

66716373 531 711

2.22 7.6 0.33

DOD

0.44 0.13 0.04 0.06

126 129 149 151 152

Molecular 

defects

0.55 1.31 1.64

DOD DOD DOD DOD

Summary of demographics

Patient details 

and outcome

Pathology 

variant

Pattern of 

relapse

Treatment

5.05 0.66

DOD AWD AWD ADF DOD

1.78

5.81 na na
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Table 9.7  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBGroup4 (green) 
relapsing cohort who did receive upfront craniospinal radiotherapy.  Demographic frequencies are shown in Table 9.8. NMB, Newcastle 
medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease; DOD, died of disease; DOOC, died of other 
complications). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise specified). 
Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; data not available, diagonal hatching. 

 

 

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup

Male

Female

Infants (<4 years)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA

LCA

DN

NOS

Local

Distant 

Nodular

Diffuse

Complete resection

Subtotal resection

Degree unknown

Biopsy

Craniospinal irradiation

Focal radiotherapy

Chemotherapy 

TP53  mutation

MYC  amplification

MYCN amplification 

2.45 1.9 1.12 1.55 0.75 0.610.31 2.46 0.98 4.31 0.49 2.91.59 na na 3.941.49 1.51 0.79 0.12 0.95 0.981.41 0.23 1.22 0.41 1.02 3.61

DOD DOOCDOD DOD AWDDOD DOD DOD DOD DOD DOD

1.53 na0 0.32 2.23 1.76 na 2.66 1.51

DOD DODDOD DOD DOD DOD DOD DODDOD AWD AWD DOD DOD DODDOD DOD DODDOD DOD DOD DOD ADF DOD DOD DOD DOD

2.73 3.394.64 7.09 6.16 6.8 2.52 1.631.72 3.08 2.6 4.08 3.431.59 1.63 1.39 3.47 3.16 3.44

Patient details 

and outcome 0.63 0.93 4.16 0.29 2.84

586504 506 509 532 542 546368 376 393 401 410 438189 190 255 562 564 566 582 583 5852 39 43 78 88 119 316 320 358121 125 144 161 180 183

Pathology 

variant

Pattern of 

relapse

Treatment

Molecular 

defects

4.28 5.65 6.59 2.31 2.07 1.583.42 1.42 3.15 2 5.47 8.91 6.19
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Table 9.8  Detailed clinical, pathological, patterns of relapse and molecular characteristics at diagnosis (D) and relapse (R) of the MBGroup4 (green) 
relapsing cohort who did receive upfront craniospinal radiotherapy.  Demographic frequencies are shown as a proportion and percentage of the 
data available for each variable. NMB, Newcastle medulloblastoma. Progression free survival (ADF, alive disease-free; AWD, alive with disease; DOD, 
died of disease). Pathology variant (CLA, classic; LCA, large-cell/anaplastic; DN, desmoplastic/nodular; NOS, medulloblastoma not otherwise 
specified). Disease location (local, M0/M1; distant, M2+). Feature present, grey square; feature absent, white square; data not available, diagonal 
hatching.

NMB number

PNET3 number

Diagnosis/relapse D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R D R

Molecular subgroup Diagnosis Relapse

Male 60/74 (81%) 60/74 (81%)

Female 14/74 (19%) 14/74 (19%)

Infants (<4 years) 5/74 (7%) 0/74 (0%)

Time to relapse (years)

Progression free survival

Time to death (years)

CLA 65/74 (89%) 7/10 (70%)

LCA 4/74 (5%) 2/10 (20%)

DN 4/74 (5%) 0/10 (0%)

NOS 1/74 (1%) 1/10 (10%)

Local 74/74 (100%) 22/56 (41%)

Distant 24/72 (32%) 51/56 (91%)

Nodular na 31/53 (58%)

Diffuse na 35/53 (66%)

Complete resection 47/74 0/55 (0%)

Subtotal resection 27/74 3/55 (5%)

Degree unknown 0/74 (0%) 10/55 (18%)

Biopsy 0/74 (0%) 0/55 (0%)

Craniospinal irradiation 74/74 (100%) 0/73 (0%)

Focal radiotherapy 0/74 (0%) 7/53 (13%)

Chemotherapy 62/74 (84%) 46/54 (85%)

TP53  mutation 1/66 (2%) 1/10 (10%)

MYC  amplification 1/67 (1%) 0/10 (0%)

MYCN amplification 3/61 (5%) 1/10 (10%)

72

1.54

DOD

0.87

145

1.44

DOD

1.71 0.07 na 3.51 0.16 1.24 0.74

DOD ADF DOD DOD DOD DOD

0.74 2.25 4.24 2.18 2.41 1.5

50015 50124 50198 50241 50253 66

0.09 2.05 1.94 1.21 0.93 0.55

DOD DOD DOD DOD DOD DOD

1.39 2.37 3.6 2.68 0.84 2.19

13 134 15 43

442 76

1.98 1.19 0.02 0.7 0.5 0.18

DOD DOD DOD DOD DOD DOD

3.59 1.47 1.9 1.29 1.75 1.33

186 257 265 315 362 38

na 0.06 0.79 0.08 2.87 1.04

AWD DOD DOD DOD DOD DOD

1.5 0.91 1.19 1.31 3.8 4.11

747 770 782 785 809 821

1.69 2.57 2.07 1.05 1.02 0.16

1.33 1.13

DOD DOD DOD DOD DOD DOD

729653 685 689 692 723

2.06 0.33 0.33 1.25

1.07 3.44 0.23 0.04 0.03

DOD DOD DODDOD DOD

21.31 3.97 2.32 2.1

592 595 616 632 634

Summary of demographics

Patient details 

and outcome

Pathology 

variant

Pattern of 

relapse

Treatment

Molecular 

defects
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