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Abstract 

Alternative splicing – the production of multiple messenger RNA isoforms from a single 

gene – is regulated in part by RNA binding proteins. The overall aim of this study was 

to identify and characterise novel targets of the RNA binding proteins Tra2α and Tra2β, 

in order to further understand their biological functions. Tra2β is implicated in male 

germ cell development and in the initial stages of this project, I utilised data from a 

previous Tra2β HITS-CLIP experiment to validate and characterise novel RNA targets 

from the mouse testis using minigenes. These included a large testis-enriched exon 

from Nasp and a posion exon from Tra2a. The identification of a Tra2β-responsive 

poison exon within the Tra2a gene suggested that Tra2β may directly regulate Tra2α 

protein expression. Subsequent experiments in a human breast cancer cell line 

revealed that following depletion of Tra2β, Tra2α is up-regulated, and could 

functionally compensate in splicing regulation. Tra2β is also up-regulated in several 

human cancers and we hypothesised that Tra2β may regulate alternative splicing 

programmes of functional importance in cancer. Therefore for the majority of this 

project, I investigated RNA targets of Tra2α and Tra2β in the human invasive breast 

cancer cell line MDA-MB-231. Two transcriptome-wide approaches were used to 

identify RNA targets in this study. Firstly, I used iCLIP to map the transcriptome-wide 

binding sites of Tra2β in MDA-MB-231 cells. Secondly, I used RNA-seq to investigate 

the functional effect of joint Tra2 protein depletion on the transcriptome. Combining 

the iCLIP and RNA-seq data facilitated the identification of target exons which were 

both directly bound by Tra2β and functionally responsive to Tra2 protein depletion. 

Unexpectedly, Tra2 protein dependent exons included both alternative and 

constitutively spliced exons. A Gene Ontology enrichment analysis of the 

experimentally validated exons revealed that Tra2 protein dependent exons were 

functionally enriched in genes associated with chromosome biology. These included a 

functionally important exon from CHEK1, which encodes a key DNA damage response 

protein. Joint depletion of Tra2α and Tra2β led to reduced expression of the full-length 

CHK1 protein, accumulation of the DNA damage marker γH2AX and decreased cell 

viability. Together, this data suggests that human Tra2 proteins jointly control 

constitutive and alternative splicing patterns via paralog compensation which are 

important for cell viability.  
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Chapter 1: Introduction 

1.1 Pre-mRNA splicing 

1.1.1 One gene, multiple mRNAs 

The human genome contains approximately 21,000 protein-coding genes (Clamp et al., 

2007), far fewer than many had predicted prior to the completion of the Human 

Genome Project (HGP) in 2004 (Nilsen and Graveley, 2010). Earlier estimates of human 

gene copy number varied considerably, as different predictions were based on a 

variety of factors including the average size of a gene, the quantity of unique 

expressed sequence tags (ESTs) identified and the perceived biological complexity of 

humans relative to other organisms (Pertea and Salzberg, 2010). Our modest number 

of protein-coding genes is even more remarkable when considering that the human 

genome is estimated to produce over one million different protein species (Harrison et 

al., 2002; Jensen, 2004).  

The ‘missing information’ which generates proteome complexity is explained in part by 

a series of post-transcriptional modifications which occur throughout the course of 

gene expression. When information encoded by DNA is expressed as a precursor 

messenger RNA (pre-mRNA), processing of the primary transcript occurs almost 

immediately after transcription initiation. Pre-mRNA processing begins with 5' capping, 

and is closely followed by splicing, transcription termination and polyadenylation. 

These modifications to the primary transcript allow the creation of multiple messenger 

RNA (mRNA) isoforms from a single gene (Matlin et al., 2005).  As a result, a single 

gene may encode multiple protein isoforms.  

Post-transcriptional modifications such as alternative splicing, alternative 

polyadenylation and RNA editing expand the number of proteins encoded by the 

genome enormously (Figure 1.1) (Lander, 2011). As different protein isoforms may be 

structurally and functionally distinct from one another, post-transcriptional 

modifications such as alternative splicing dramatically increase the complexity of the 

proteome from a defined number of genes (Nilsen and Graveley, 2010). When post-

transcriptional modifications are combined with subsequent post-translational 

modifications to proteins (such as phosphorylation and ubiquitylation), the protein 

coding potential of the genome is massive  (Wilhelm et al., 2014).   
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Alternative splicing is one of the major sources of proteomic diversity in eukaryotes 

(Nilsen and Graveley, 2010); approximately 95% of human genes are alternatively 

spliced (Pan et al., 2008). However, it is worth noting that relatively few of these 

alternative splicing events are highly conserved and not all alternative splicing events 

are of functional importance. Alternative splicing can also create non-productive 

transcripts, and therefore alternative splicing provides a key mechanism for post-

transcriptional regulation of gene expression (Lareau et al., 2007).  

 

Figure 1.1 Post-transcriptional modifications create multiple mRNA isoforms from a 

single gene. Post-transcriptional modifications include (A) alternative splicing, (B) 

alternative polyadenylation and (C) RNA editing. This image is adapted from (Siomi and 

Dreyfuss, 1997). 

1.1.2 General pre-mRNA processing 

In the initial stages of eukaryotic gene expression, pre-mRNAs are transcribed from a 

DNA template by RNA polymerase II during transcription (Hurwitz, 2005). The 

emerging pre-mRNA transcripts are then subject to a series of processing events 

known as post-transcriptional modifications, resulting in production of a mature mRNA. 

Shortly after transcription initiation and 5' capping, components of the splicing 

machinery bind to the primary transcript, including small nuclear ribonucleoproteins 

(snRNPs), heterogeneous nuclear ribonucleoproteins (hnRNPs) and a large range of 

auxiliary RNA-binding proteins (Cramer et al., 2001). Originally, splicing was thought to 

occur entirely post-transcriptionally. However, it was later recognized that many of 

these “post”-transcriptional modifications are directly linked to transcription 

(Neugebauer, 2002) and frequently occur co-transcriptionally (including capping, 
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splicing and polyadenylation) (Proudfoot et al., 2002). Following transcriptional 

termination and polyadenylation, mature mRNAs are exported from the nucleus 

through nuclear pores to the cytoplasm, where they serve as templates for protein 

synthesis (translation) prior to their eventual degradation (Stewart, 2010). 

1.1.3 Splicing and splice site recognition by the spliceosome 

Pre-mRNA splicing is the process by which introns are removed from the pre-mRNA 

whilst exons are simultaneously joined together, forming a continuous protein-coding 

region (open reading frame, ORF) within the RNA sequence (Matlin et al., 2005). 

Splicing is performed by a macromolecular complex called the spliceosome. In 

eukaryotes, the majority of introns are processed by the major spliceosome. In 

fact, >99% of human introns are excised by the major spliceosome in a process termed 

canonical splicing (Wahl et al., 2009). However, a less abundant class of non-canonical 

introns are also processed by distinct splicing machinery termed the minor 

spliceosome, which recognises distinct splice site sequences from the major 

spliceosome (Patel and Steitz, 2003).  

The splicesome consists of between 150 and 300 individual proteins (Rappsilber et al., 

2002), together with a group of small nuclear ribonucleoproteins (snRNPs) which 

consist of proteins bound to an RNA component (snRNA). However, the number of 

protein components of the spliceosome varies depending of which biochemical 

conditions are used experimentally and on how the spliceosome is defined. The major 

spliceosome consists of five snRNPs; designated U1, U2, U4/U6, and U5, which are 

essential for spliceosome formation on the RNA transcript (Wahl et al., 2009). 

Assembly of the spliceosome is guided by two sets of degenerate sequences called the 

5' and 3' splice sites (subsequently referred to as 5'ss and 3'ss respectively), which help 

define the intron/exon boundaries. In humans, the consensus 5'ss sequence 

recognised by the major spliceosome is CAGGURAGU (where R = purine and GU is 

almost always invariant). The 3'ss sequences consist of three elements; the consensus 

3'ss YAGG (where Y = pyrimidine and AG is almost always invariant), an upstream 

polypyrimidine tract (PPT) and the branch point sequence (BPS) (see Figure 1.2).  
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Figure 1.2 The four cis-elements of a typical metazoan intron which are recognised by 

the major spliceosome. Intron recognition is guided by four cis-elements; the 5' splice 

site, the branch point sequence (BPS), the polypyrimadine tract (PPT) and the 3' splice 

site. (R = purine, Y = pyrimidine, N = any nucleotide). This image is adapted from (Wahl 

et al., 2009). 

During early formation of the major spliceosome, each of the four cis-elements are 

bound by specific spliceosomal components (Valadkhan, 2007). The 5'ss is recognised 

by U1 snRNP. The branch point sequence (BPS) is initially recognised by splicing factor 

1/branch point bound protein (SF1/BBP) and is subsequently replaced by U2 snRNP, 

whilst the polypyrimidine tract (PPT) and 3'ss interact with two subunits of the U2 

auxilliary factor heterodimer (U2AF35 and U2AF65 respectively) (see Figure 1.3) 

(Selenko et al., 2003). Most of the essential RNA-RNA interactions between the snRNA 

component of the snRNPs and the pre-mRNA are weak, and often require additional 

proteins to enhance their stability on the RNA transcript (Wahl et al., 2009).  

Spliceosome assembly is also influenced by the size of an intron. In lower eukaryotes 

such as the fission yeast Schizosaccharomyces pombe, coding exons are typically 

separated by very small introns which are often <100 nucleotides long (Berget, 1995). 

For small introns such as these, splice site pairs are recognised across the intron; a 

process termed “intron definition”. However, the average vertebrate gene consists of 

multiple small exons, separated by significantly larger introns. For large introns, splice 

site recognition initially occurs across the exon; a process termed “exon definition” 

(see Figure 1.3). In the exon definition model, U1 snRNP binds to the 5'ss and 

promotes recognition of the upstream 3'ss across the exon (Schellenberg et al., 2008). 

Consequently, the splicing reaction may be considered as the process of defining two 

exons, rather than the process of defining one intron. 
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Figure 1.3 During early spliceosome formation, cross-exon splicing complexes form 

along the pre-mRNA during the process of exon definition. The U1 and U2 snRNPs, 

together with the two subunits of the U2 auxilliary factor heterodimer (U2AF65 and 

U2AF35) recognise specific components from the consensus splice sites. In addition to 

the essential splicing components, other auxiliary RNA-binding proteins (such as SR-

proteins and hnRNPs) bind to splicing enhancers and silencers to either enhance or 

inhibit spliceosome formation. This image is adapted from (Wahl et al., 2009). 

1.1.4 The splicing reaction  

Mechanistically, splicing occurs as a two-step process, centered around two SN2-type 

transesterification reactions (Valadkhan and Jaladat, 2010). Briefly, the first step of 

splicing involves the 2'OH group of the branchpoint adenosine nucleotide attacking the 

phosphodiester bond of the 5'ss. This results in cleavage of the 5' exon and generation 

of a lariat intron, which is temporarily attached to the 3' exon. Subsequently, the 3'OH 

group of the cleaved 5' exon attacks the 3'ss, resulting in ligation of both exons 

through another transesterification reaction, whilst the intron is released as a lariat 

(see Figure 1.4) (Moore and Sharp, 1993; Sharp, 1994; Wahl et al., 2009).  

 

Figure 1.4 The two SN2-type transesterification reactions of splicing. Reaction 1: the 

2'OH group of the branchpoint adenosine nucleotide (black circle) attacks the 
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phosphodiester bond of the 5'ss, forming the lariat intron. Reaction 2: the 3'OH group 

of the cleaved 5' exon attacks the 3'ss, resulting in ligation of both exons, whilst the 

lariat intron is released and subsequently degraded. This image is adapted from (Black, 

2003). 

Throughout the splicing reaction, the spliceosomal components assemble on the RNA 

substrate in a series of complexes; termed the H, E, A, B and C splicing complexes in 

order of formation (see Figure 1.5) (Wahl et al., 2009; Valadkhan and Jaladat, 2010). 

Complex H is effectively pre-spliceosome assembly, recognising the non-specific 

association of a group of RNA-binding proteins called the heterogeneous nuclear 

ribonucleoproteins (hnRNPs) to the primary transcript immediately following 

transcription (Wahl et al., 2009).  

 

Figure 1.5 Assembly of the major splicesome leading to intron removal from the pre-

mRNA. This image is taken from a recent review by (Wahl et al., 2009). 

Spliceosome assembly begins with the ATP-independent interaction of U1 snRNP with 

the 5'ss. This interaction can be stabilised by other auxiliary RNA-binding proteins 

(including members of the SR-protein family) which interact with the protein 

component of U1 snRNP. The splicing factor 1/branch point bound protein (SF1/BBP) 

recognises the branch point sequence (BPS) and interacts with the U2 auxiliary factor 

(U2AF) heterodimer. U2AF consists of a 65kDa subunit and a 35kDa subunit, which 

recognise the polypyrimidine tract (PPT) and 3'ss respectively. This formation is 

referred to as the E complex. Subsequently, SF1/BBP is replaced by U2 snRNP, which 



Chapter 1                                                                                                                                  Introduction 

 

7 
 

interacts with the BPS in an ATP-dependent manner. U2 snRNP interacts with U1 

snRNP, forming complex A. Following this, a tri-snRNP complex composed of U4/U6 

and U5 attaches to the spliceosome, forming complex B. Spliceosomal remodelling 

leads to the dissociation of U1 and U4, allowing the first transesterification reaction to 

occur. The first transesterification reaction is catalysed by the RNA-dependent ATPase 

Prp2, forming the lariat intron structure, termed complex C. In the second 

transesterification reaction, the upstream 5'ss ligates to the 3'ss and the intron lariat is 

subsequently released. The overall splicing reaction is catalysed by eight, 

evolutionarily-conserved DExD/H-type RNA-dependent ATPases/helicases which 

catalyse RNA-RNA rearrangements and spliceosome remodelling events (see Figure 

1.5). Following completion of the splicing reaction, the lariat intermediate is degraded 

and the snRNPs are recycled in successive splicing reactions. Formation of the 

spliceosome is reviewed in further detail by (Black, 2003; Wahl et al., 2009). 

1.1.5 The minor spliceosome 

Whilst the vast majority of human introns are removed by the major spliceosome, a 

less-abundant class of non-canonical introns are removed by the minor spliceosome. 

The minor spliceosome contains four specific snRNPs; U11, U12, U4atac and U6atac, 

which are functionally analogous to the U1, U2, U4 and U6 components of the major 

spliceosome (Turunen et al., 2013). Consequently by convention, introns recognised by 

the major spliceosome are referred to as “U2-type” introns, whilst introns recognised 

by the minor spliceosome are referred to as “U12-type” introns (Patel and Steitz, 2003). 

Both spliceosomes share the same U5 snRNP component. U12-type introns were 

originally defined by distinct 5' and 3' splice site dinucleotide sequences (AT-AC termini 

rather than GT-AG) and consequently were originally referred to as “atac introns” (Wu 

and Krainer, 1997). However, it was later discovered that the minor spliceosome 

recognises both sets of terminal dinucleotide sequences (in fact GT-AG termini are 

more frequently recognised by the minor spliceosome than AT-AC), and that a highly 

conserved 5'ss and branch point sequence (BPS) are the most defining features of a 

U12-type intron (Burge et al., 1998). The minor spliceosome is reviewed in detail by 

(Patel and Steitz, 2003; Turunen et al., 2013). However for the remainder of this thesis, 

I will focus on U2-type introns recognised by the major spliceosome.   
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1.1.6 Alternative splicing 

Whilst some exons are always spliced into the mRNA transcript (constitutively spliced), 

other exons are sometimes included and sometimes skipped (alternatively spliced). 

When splicing was first discovered in 1977 (Chow et al., 1977; Gelinas and Roberts, 

1977), alternative splicing was estimated to occur in less than 1% of human genes. 

Subsequently, through bioinformatic analyses of expressed sequence tags (ESTs) and 

the more recent development of RNA sequencing (RNA-seq), that number has 

continually risen to approximately 95%, indicating alternative splicing events occur in 

nearly all human multi-exon genes (Martin Dutertre, 2010). 

On average, human protein-coding genes produce three different mRNA transcripts via 

alternative splicing (Djebali et al., 2012). In addition to generating proteome diversity, 

alternative splicing also plays a significant role in quantitative gene control. Alteration 

to the open reading frame (ORF) of a gene is estimated to occur in around one third of 

alternative splicing events, potentially leading to the generation of premature stop 

codons (PTCs) within the RNA sequence and subsequently targeting the transcript for 

nonsense-mediated decay (NMD) (Lewis et al., 2003). Alternative splicing of the 

untranslated regions (UTRs) within a gene can also regulate gene expression through 

changes to mRNA stability (Matlin et al., 2005). Accurate splicing of the pre-mRNA is 

therefore crucial to maintain normal cellular physiology. This is exemplified by the 

estimation that between 15% to 50% of human genetic diseases may arise from 

mutations to splice sites or splicing regulatory sequences (Cartegni et al., 2002; 

Faustino and Cooper, 2003). 
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Figure 1.5 Classification of different alternative splicing events. (a) Constitutive exons 

are spliced into all mRNA transcripts from a gene. (b) Cassette exons (or alternative 

exons) are sometimes included and sometimes skipped from the mRNA transcript in an 

independent manner. (c-d) Alternative splice sites compete for recognition with 

primary splice sites to modify the length of an exon. (e) Intron retentions occur when 

an intron is not removed from the primary transcript. (f) Mutually exclusive exons are 

spliced in a coordinated manner, where inclusion of each exon is not independent 

from the other. This image is adapted from (Srebrow and Kornblihtt, 2006). 

1.1.7 Regulation of alternative splicing 

Alternative splicing is a highly regulated process. Splice site selection is influenced by 

both cis-acting elements (within the RNA sequence) and trans-acting factors which 

determine splice site selection in a combinational manner (Smith and Valcárcel, 2000). 

The expression of RNA-binding proteins can vary in a tissue-specific (Venables et al., 

2013a) and developmental-stage-specific manner (Matsui et al., 2000), generating 

different splicing patterns depending on the cellular context. Furthermore, several 

other factors have been demonstrated to influence splice site selection, including the 

formation of secondary structures within the pre-mRNA (Warf and Berglund, 2010), 

the rate of transcription (Cáceres and Kornblihtt, 2002) and epigenetic factors (Luco et 

al., 2011). Consequently, the regulation of alternative splicing is complex. However, 

with advances in experimental technology, such as high-throughput sequencing, as 

well as advanced bioinformatic analyses of splicing regulatory motifs, a “splicing code” 

is beginning to be deciphered (Barash et al., 2010). 
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1.1.7.1 Cis-regulatory sequences 

1.1.7.1.1 Splice site strength 

In the initial stage of spliceosome formation, snRNPs are recruited to the pre-mRNA by 

the presence of the 5' and 3' splice sites. Recognition of the 5' and 3' splice site 

sequences depends on complementary base-pairing between the pre-mRNA and the 

snRNA component of the snRNP. Consequently, the extent of the complementarity 

between the splice site sequence and the snRNA affects the efficiency of splice site 

recognition by the spliceosome. This degree of complementarity is often quantified as 

the “splice site strength”. Generally speaking, constitutively spliced exons are often 

flanked by strong splice sites (they are efficiently recognised by the spliceosome), 

whereas alternative exons are more likely to be flanked by at least one weak splice site 

(they are less efficiently recognised by the spliceosome), although there are exceptions. 

A variety of computer programs have been developed to predict the relative strength 

of splice sites, including the Splicing RegulatiOn Online Graphical Engine (SROOGLE) 

(Schwartz et al., 2009) which I use in this study.  

1.1.7.1.2 Splicing enhancer and silencer sequences 

In combination with splice site strength, splice site selection is influenced by other cis-

acting elements, including splicing enhancer sequences (termed exonic splicing 

enhancers (ESE) and intronic splicing enhancers (ISE)) and splicing silencer sequences 

(termed exonic splicing silencers (ESS) and intronic splicing silencers (ISS)). Splicing 

enhancer and silencer sequences play an essential role in the recognition of both 

constitutive and alternative exons (Matlin et al., 2005). The splicing enhancer and 

silencer sequences are recognised by a large number of auxiliary RNA-binding proteins 

(RBPs) which compete to either enhance or repress splice site recognition (see Figure 

1.6). Analyses of sequence conservation indicate that cis-regulatory elements are most 

highly enriched within the regulated exons (exonic) or within close proximity to the 

splice sites (within 103 nucleotides upstream or 94 nucleotides downstream of 

regulated exons) (Sorek and Ast, 2003). However, there are also many examples of 

more distal intronic regulatory elements which can influence splice site selection, such 

as distal intronic regulatory sequences bound by TIA-1 (Witten and Ule, 2011) and 

NOVA (Ule et al., 2006). 
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Figure 1.6 Cis-elements consisting of splicing enhancers (ESE/ISE) and splicing 

silencers (ESS/ISS) can have antagonistic effects on splice site selection by the 

splicesome. RNA-binding proteins which recognise the enhancer and silencer 

sequences compete to either stabilise or disrupt spliceosome formation respectively. 

This image is adapted from (Srebrow and Kornblihtt, 2006). 

1.1.7.2 Trans-regulatory proteins  

Trans-acting influences on splicing include the relative concentration, localisation and 

activity of RNA-binding proteins, such as members of the SR-protein family and the 

heterogenous nuclear ribonucleoproteins (hnRNPs). SR-proteins are generally 

considered enhancers of splicing, whilst hnRNPs are often considered splicing 

repressors. However, the activating or repressive activity of SR-proteins and hnRNPs is 

largely position-dependent. For example, Erkelenz et al. have recently demonstrated 

that SR-proteins can activate splicing when recruited to an exon, yet repress splicing 

inclusion of the same exon when recruited to the downstream intron (Erkelenz et al., 

2013). Similarly, hnRNPs were found to exert both activating and repressive activity 

over a single exon, but in the opposite positions to SR-proteins (Erkelenz et al., 2013).  

The number of proteins identified with RNA-binding capacity continues to grow. 

Remarkably, a recent study of the mRNA-bound proteome in the human embryonic 

kidney cell line HEK-293 identified nearly 800 mRNA-bound proteins (Baltz et al., 2012). 

However this thesis will specifically focus on two paralogous RNA-binding proteins; 

Tra2α and Tra2β. 
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1.1.8 The SR-protein family 

The SR-protein family consist of a group of RNA-binding proteins which share two main 

structural features; an arginine/serine-rich domain (RS-domain) and one or more RNA-

recognition motifs (RRMs) (Shepard and Hertel, 2009a). RS-domains can facilitate 

protein-protein interactions with other RS-domain-containing proteins, including other 

SR-proteins, SR-like proteins and components of the spliceosome including the U1 

snRNP-associated protein U1-70K and U2AF65 (Wu and Maniatis, 1993; Kohtz et al., 

1994; Graveley et al., 2001). RRMs facilitate direct interaction between SR-proteins 

and short motifs within the RNA sequence. The term “SR-protein” was originally given 

to a group of RS-domain-containing proteins which were recognised by the 

monoclonal antibody mAb104 (Roth et al., 1990). These include SF2/ASF (SFRS1), SC35 

(SFRS2), SRp20 (SFRS3), SRp75 (SFRS4), SRp40 (SFRS5) and SRp55 (SFRS6). Classical SR-

protein family members are defined by four criteria; (1) structural similarity, (2) dual 

function in both alternative and constitutive splicing, (3) recognition by the 

monoclonal antibody mAb104 and (4) purification using magnesium chloride (Long and 

Caceres, 2009). 

In addition to the classical group of SR-proteins, a structurally-related group of “SR-like” 

proteins are also involved in alternative splicing regulation. SR-like proteins share some 

degree of structural similarity to classical SR-proteins (both groups of proteins contain 

at least one RS-domain and an RRM) and both have roles in pre-mRNA splicing, yet SR-

like proteins do not meet all of the criteria which defines classical SR-proteins. 

Examples from the SR-like group of proteins include both subunits of the U2AF 

heterodimer (U2AF65 and U2AF35), as well as the human homologues of the 

Drosophila Tra2 splicing factor; Tra2α and Tra2β (Long and Caceres, 2009).  

1.1.9 Regulation of SR-protein activity 

SR-proteins regulate alternative splicing in a concentration-dependent and 

phosphorylation-state-dependent manner. SR-proteins are directly phosphorylated on 

serine residues located within their RS-domains by a group of SR-protein kinases, 

including SR-protein kinase 1 (SRPK1) (Zhong et al., 2009) and CDC-like kinase 1 (CLK1) 

(Prasad and Manley, 2003), which can modulate SR-protein activity. In addition, recent 

evidence has also suggested a role for long non-coding RNAs (lncRNAs) in the 
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regulation of SR-protein activity. The nuclear-retained lncRNA MALAT1 directly 

interacts with SR-proteins and can regulate their localisation within nuclear speckles 

(Tripathi et al., 2010a). Furthermore, lncRNAs may also modulate the phosphorylation 

state of SR-proteins, suggesting that lncRNAs may have a significant role in alternative 

splicing regulation via modulation of SR-protein activity (Tripathi et al., 2010a). 

1.1.10 Models of splicing regulation by SR-proteins 

To date, a number of different models have been proposed to explain the mechanisms 

of SR-protein-mediated splicing activation and repression (see Figure 1.7, A-D). The 

“U2AF recruitment model” is the classical model of SR-protein splicing enhancer 

function. This model describes the ability of SR-proteins to directly bind to exonic 

splicing enhancer (ESE) sequences and stabilise interactions between the spliceosome 

and the consensus splice sites, specifically the interactions of U1 snRNP and U2AF65 

with the 5' and 3' splice sites respectively (see Figure 1.7 A) (Robberson et al., 1990; 

Graveley et al., 2001). The U2AF recruitment model is therefore closely linked to the 

process of exon definition.  

The “inhibitor model” hypothesises that SR-proteins may also act through antagonism 

of splicing repressor proteins, such as the hnRNPs. Recruitment of SR-proteins to 

splicing enhancer sequences may block splicing repressor proteins from binding to 

nearby splicing silencer sequences, preventing them from disrupting spliceosome 

formation (see Figure 1.7 B). Therefore in the inhibitor model, splicing activators and 

splicing repressors act in a competitive, antagonistic manner (Zhu et al., 2001; 

Martinez-Contreras, 2007).  

A “splicing repressor model” has also been proposed to explain the splicing repressor 

activity of SR-proteins. When SR-proteins bind to intronic regions close to the splice 

sites of regulated exons, recruitment of the spliceosomal components (such as the 

U2AF heterodimer) may be inhibited by steric hinderance, leading to non-productive 

spliceosome assembly (see Figure 1.7 C) (Shepard and Hertel, 2009b; Erkelenz et al., 

2013). 

Finally, in the “co-activator model”, SR-proteins have also been proposed to enhance 

splicing activation independent of direct RNA-binding, through multiple potential 

protein-protein interactions (see Figure 1.7 D). For example, SR-proteins may augment 
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splice site pairing by simultaneously interacting with both U1 snRNP and U2AF65 

across the intron. Alternatively, SR-proteins may recruit the U4/U5+U6 tri-snRNP 

complex to the splicesome. Similarly, SR-proteins may also interact with the splicing 

co-activator SRm160, promoting spliceosome formation without direct interaction 

with U2AF65 (Blencowe, 2000). 

 

Figure 1.7 Four proposed models of splicing regulation by SR-proteins. (A) In the 

classical U2AF recruitment model, SR-proteins stabilise the interactions between U2AF 

heterodimer and the 3' splice site by binding to ESE’s. SR-proteins may also stablise the 

interaction of U1 snRNP with the 5' splice site by binding to ESE’s. (B) In the inhibitor 

model, SR-proteins block recruitment of splicing repressor proteins, preventing them 

from inhibiting spliceosome assembly. (C) SR-proteins can also function as splicing 

repressors by binding to intronic regions in close proximity to the splice sites of 

regulated exons (D) In the splicing co-activator model, SR-proteins may recruit 

spliceosomal components or stablise spliceosome interactions independent from 

direct RNA-binding. The images in Figure 1.7 are adapted from the following reviews 

(Matlin et al., 2005; Long and Caceres, 2009; Shepard and Hertel, 2009a). 
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It is possible that the recruitment of spliceosomal components and silencer 

antagonism occur simultaneously to contribute to splicing activation by SR-proteins. In 

fact, each of the aforementioned models (Figure 1.7) may contribute to splicing 

regulation by SR-proteins in different contexts. 

1.1.11 Other factors which influence splicing 

Splicing decisions are made in a dynamic environment and RNA-binding proteins do 

not determine splicing activation in isolation. Formation of secondary structures within 

the pre-mRNA can affect splicing activation in two ways; either by preventing RNA-

binding proteins from recognising a specific sequence, or by altering the relative 

distance between splice sites and the auxiliary elements (Warf and Berglund, 2010). 

Likewise, as splicing occurs predominantly co-transcriptionally, the rate of 

transcription (or rate of RNA elongation) by RNA polymerase II has also been shown to 

influence splicing through changes to the relative speed in which competitive splice 

sites and auxiliary elements are synthesised (Cáceres and Kornblihtt, 2002). Finally, 

independent of elongation rate, epigenetic factors such as histone modifications have 

been proposed to regulate alternative splicing (Luco et al., 2011). For example, the 

histone arginine methyltransferase CARM1 can directly interact with U1 snRNP 

(Ohkura et al., 2005; Cheng et al., 2007), suggesting that chromatin complexes may 

have a role in facilitating the correct assembly of pre-spliceosome components onto 

the pre-mRNA (Luco et al., 2011).  

1.2 The SR-like splicing factors Tra2α and Tra2β 

1.2.1 Tra2 proteins 

The transformer-2 gene was originally identified in the fruit-fly Drosophila 

melanogaster, where the Tra2 protein is a key component of an alternative splicing 

complex involved in sex-determination (Tian and Maniatis, 1993). In the Drosophila 

sex-determination pathway, female-specific expression of the Tra protein is 

established through alternative splicing of the transformer (tra) gene, regulated by 

female-specific expression of the Sex-lethal protein (Valcarcel et al., 1993). In turn, the 

Tra protein cooperates with the non-sex-specific Tra2 protein, to promote splicing 

inclusion of exon 4 of the doublesex (dsx) pre-mRNA, leading to female fruit-fly 

development (Lopez, 1998). 
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Tra2 proteins are well conserved across the animal kingdom. However, whilst 

invertebrate genomes contain a single tra2 gene, vertebrate genomes contain two 

distinct tra2 genes. The human TRA2 genes are designated TRA2A and TRA2B, which 

encode the proteins Tra2α and Tra2β respectively. It is likely that early in vertebrate 

evolution, the Tra2 gene was duplicated, resulting in vertebrates obtaining two copies 

of the Tra2 gene and invertebrates retaining a single copy. In evolutionary terms, there 

is substantial functional conservation between the invertebrate and vertebrate Tra2 

homologues. For example, the introduction of human Tra2α protein in transgenic Tra2-

deficient fruit-flies is able to partially rescue Tra-dependent splicing and female sex-

determination (Dauwalder et al., 1996). 

1.2.2 Human Tra2α and Tra2β 

The human Tra2α and Tra2β proteins share both structural and functional similarities. 

Tra2α and Tra2β have the same modular protein structure, consisting of a single, 

central RNA recognition motif (RRM) flanked by N-terminal and C-terminal RS-domains. 

Tra2α and Tra2β share a 63% amino acid homology, with particularly high conservation 

throughout their RRMs and both proteins were determined to have indistinguishable  

RNA sequence specificities by SELEX (Systematic Evolution of Ligands by EXponential 

enrichment) (Tacke et al., 1998a). Both RBPs are known to be sequence-specific 

activators of alternative splicing (Tacke et al., 1998a), however the relative 

contributions of endogenous Tra2α and Tra2β to this process and their functional 

relationship is not well understood (Best et al., 2014b). For example, it is not clear 

whether endogenous Tra2α and Tra2β share the same functions and regulate the same 

target exons. Both Tra2α and Tra2β can regulate splicing of the same minigene model 

exons when over-expressed in HEK-293 cells (Grellscheid et al., 2011a), demonstrating 

some degree of functional redundancy. However, the Tra2a gene alone is not 

sufficient to maintain the phenotype of Tra2b knockout mice (Mende et al., 2010b; 

Roberts et al., 2014; Storbeck et al., 2014). Ubiquitous deletion of Tra2b is embryonic 

lethal, resulting in highly disorganised embryos at day E7.5 and death during early 

embryonic development (Mende et al., 2010b). Similarly, conditional knockout of 

Tra2b in the nervous system severely disrupts brain development. A cortex-specific 

Tra2b knockout mouse model led to loss of neural progenitor cell survival caused by 

apoptosis (Roberts et al., 2014). Likewise, a broader neuronal-specific knockout of 
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Tra2b caused severe abnormalities in the cortex and thalamus, leading to death shortly 

after birth (Storbeck et al., 2014). Hence despite sharing similar splicing targets in 

cellulo, the Tra2a and Tra2b genes are not entirely redundant in vivo. 

Interestingly, Tra2β was previously found to auto-regulate its own protein expression 

by promoting inclusion of a poison exon within the TRA2B pre-mRNA (Stoilov et al., 

2004). However, it is not known whether Tra2β may similarly regulate expression of 

Tra2α, or vice versa. Despite their similarities, generally speaking there have been far 

more studies of Tra2β-mediated splicing regulation than of its paralogous protein 

Tra2α. Hence for the remainder of this section, I largely focus on studies involving 

Tra2β, although some observations may apply to both Tra2 proteins. 

1.2.3 The TRA2B gene generates multiple mRNA isoforms 

The human TRA2B gene contains ten exons, generating at least five known mRNA 

isoforms and two known protein isoforms via a combination of alternative splicing, 

alternative polyadenylation and the use of alternative promoters (Stoilov et al., 2004). 

TRA2B mRNA isoform 1 (termed TRA2B-1) is ubiquitously expressed (Daoud et al., 

1999) and encodes the full-length Tra2β protein (Tra2β-1) which contains both RS-

domains together with a central RRM (see Figure 1.8 A). Interestingly, the Tra2β-1 

protein isoform has been shown to auto-regulate its own protein concentration 

through a negative feedback loop (Stoilov et al., 2004). Tra2β-1 was found to directly 

bind to a posion exon (exon 2) within the TRA2B pre-mRNA, promoting inclusion of this 

frequently skipped exon. Inclusion of exon 2 produces of a non-productive mRNA 

species (termed TRA2B-2), which is not translated into protein (see Figure 1.8 B). 

Stoilov et al. suggest that this molecular sensor may contribute to the maintenance of 

normal cell physiology, given deregulation of Tra2β has been observed in numerous 

disease states (2004), such as nerve injury (Kiryu-Seo et al., 1998), hypoxia (Matsuo et 

al., 1995), and silicosis (Segade et al., 1995). 

A third TRA2B mRNA isoform (termed TRA2B-3) encodes a shorter protein isoform 

which lacks the functional RS1 domain (see Figure 1.8 C) and is expressed in a tissue-

specific manner (predominantly in the brain) (Nayler et al., 1998a). Whether full-length 

Tra2β-1 and the shorter Tra2β-3 protein isoform share similar functions in splicing 

regulation or are functionally distinct is currently unclear. It was previously reported 
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that unlike full-length Tra2β-1, the shorter Tra2β-3 protein isoform did not influence 

splice site selection (Stoilov et al., 2004). However, subsequent data has indicated that 

Tra2β-3 can activate inclusion of SMN2 exon 7 (Cléry et al., 2011). Consistent with an 

important function however, expression of the TRA2B-3 mRNA isoform is conserved in 

invertebrates (Nayler et al., 1998a). Interestingly, it was previously demonstrated that 

the dopamine and cAMP regulated phosphoprotein 32kDa (DARPP-32) directly 

interacts with Tra2β-1, and over-expression of DARPP-32 was associated with a 

reduction in splicing inclusion of Tra2β-regulated exons (Benderska et al., 2010). As 

DARPP-32 also directly interacts with the Tra2β-3 protein isoform, Benderska et al. 

have postulated that one possible function of the Tra2β-3 protein isoform may be to 

sequester DARPP-32/Tra2β interactions, without influencing splice site selection 

directly (Benderska et al., 2010). A fourth TRA2B mRNA isoform (TRA2B-4) is generated 

when exons 2 and 3 are skipped, although this isoform is not translated. A fifth TRA2B 

mRNA isoform (TRA2B-5) is also generated through use of an alternative promoter 

within the second intron (Stoilov et al., 2004). 

 

Figure 1.8 The human TRA2B gene generates two known protein isoforms via 

alternative splicing. The open reading framess (ORFs) are highlighted in blue. The 

TRA2B poison exon (exon 2) is highlighted in red. (A) Skipping of exon 2 generates the 

TRA2B-1 mRNA isoform which encodes full-length Tra2β. (B) Inclusion of exon 2 

generates a downstream frameshift, resulting in a non-producive transcript. (C) 

Skipping of exons 2 and 3 generates the TRA2B-3 mRNA isoform, which encodes a 

shorter Tra2β-3 protein isofrom which lacks the RS1 domain. This image is adapted 

from (Stoilov et al., 2004). 

1.2.4 Tra2β protein structure and sequence specificity 

Classical SR-proteins contain one or two N-terminal RNA recognition motifs (RRMs) 

and a single C-terminal RS-domain (Wu and Maniatis, 1993; Kohtz et al., 1994). 
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However unlike the classical SR-proteins, the full-length Tra2α and Tra2β proteins 

share an unusual modular structure, which consists of a single, central RRM flanked by 

N-terminal and C-terminal RS-domains (see Figure 1.9). The larger, N-terminal RS-

domain (termed RS1) of the Tra2β protein contains a region of 19 arginine/serine 

dipeptides, whilst the smaller C-terminal RS-domain (termed RS2) is located within 

close proximity of a hinge region and contains just 7 arginine/serine dipeptides (Beil, 

1997). Similarly to classical SR-proteins, the RS-domains of Tra2β facilitate a number of 

direct protein-protein interactions. Tra2β has been shown to directly interact with a 

number of other RNA-binding proteins, including SRSF1 (Ge et al., 1991), hnRNPG and 

hnRNP-GT (Soulard et al., 1993; Venables et al., 2000), RMBY (Venables et al., 2000), 

SRp30c and SAF-B (Nayler et al., 1998b). In addition to facilitating direct protein-

protein interactions, it was recently identified that both the RS1 and RS2 domains 

contain nuclear localisation signals (NLS) important for the nuclear import of Tra2β. 

Using mutational analysis, Li et al. found that the presence of either the RS1-domain or 

the RS2-domain was sufficient for nuclear import of Tra2β (Li et al., 2013). What’s 

more, two sub-nuclear localisation signals were also identified within the RS1-domain 

(but not the RS2-domain) which are required for the sub-nuclear localisation of Tra2β 

to nuclear speckles (Li et al., 2013).  

 

 

Figure 1.9 Modular structure of the full-length Tra2β protein. The full-length Tra2β 

protein contains a single, central RNA-recognition motif (RRM) flanked by two 

arginine/serine-rich (RS)-domains. This image is taken from a recent review by (Best et 

al., 2014a). 

Both Tra2 proteins contain highly-conserved RNA-recognition motifs (RRMs) required 

for direct RNA binding. The first description of human Tra2 protein sequence specificity 

was reported by Tacke et al., who identified preferential binding of human Tra2 

proteins to ‘GAA’ repeats using a series of SELEX experiments (1998a). Subsequently, 

Tra2β was also found to directly bind to another RNA sequence, specifically to C/A-rich 

elements (ACE) such as ‘ACUUCAACAAGUU’; a thirteen-nucleotide sequence located 

within exon 4 of the CGRP gene (Tran et al., 2003). This suggested that Tra2β may 
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recognise multiple, distinct RNA sequences. Tra2β protein/RNA interactions have now 

been resolved at atomic resolution using nuclear magnetic resonance (NMR) (Cléry et 

al., 2011; Kengo Tsuda, 2011). It was discovered that Tra2β recognises two distinct 

sequences; a longer, degenerate sequence containing ‘CAA’ and the shorter tetra-

nucleotide sequence ‘AGAA’ (Kengo Tsuda, 2011). The tetra-nucleotide sequence 

‘AGAA’ is recognised by specific residues within the β-sheets of the Tra2β RRM (Cléry 

et al., 2011). The longer degenerate sequence containing ‘CAA’ is only recognised 

when integrated into a stem-loop structure (RNA secondary structure) (Kengo Tsuda, 

2011). Hence Tra2β has two distinct modes of RNA sequence recognition (Kengo Tsuda, 

2011). 

 

Figure 1.10 Tra2β has two distinct modes of RNA sequence recogntion. (A) The Tra2β 

RRM in complex with the sequence ‘GACUUCAACAAGUC’ when integrated into a stem 

loop structure. (B) The Tra2β RRM also specifically recognises the tetra-nucleotide 

sequence ‘AGAA’. This image is taken from (Kengo Tsuda, 2011).  

1.2.5 Phosphorylation of Tra2β 

Similarly to classical SR-proteins, phosphorylation of Tra2β can influence its activity in 

splicing regulation. Interestingly, phosphorylation of serine residues within different 

functional domains of the protein may alter splicing activity through distinct 

mechanisms. For example, phosphorylation of serine residues within the RS-domains 

of SR-proteins can regulate sub-cellular localisation (Lin and Fu, 2007), whilst 

phosphorylation of the RRM domain of SR-proteins has been shown to directly 

influence the affinity of protein-RNA interactions (Benderska et al., 2010). 
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Tra2β is actively dephosphorylated by protein phosphatase 1 (PP1) on residues located 

within its RRM and PP1 activity has been shown to influence splicing inclusion of 

Tra2β-regulated exons, including SMN2 exon 7 (Novoyatleva et al., 2008). The 

dopamine and cAMP regulated phosphoprotein 32kDa (DARPP-32) is an inhibitor of 

PP1, which directly interacts with Tra2β to prevent PP1-mediated dephosphorylation. 

Over-expression of DARPP-32 was found to reduce splicing inclusion of the Tra2β 

targets using minigene assays, whilst depletion of DARPP-32 via RNAi increased splicing 

activation of the same target exons (Benderska et al., 2010). These experiments 

suggest that variable phosphorylation of the Tra2β RRM may significantly influence 

target exon inclusion by affecting the RNA-binding capacity of Tra2β (Stoilov et al., 

2004; Benderska et al., 2010). 

1.2.6 Well characterised RNA targets of vertebrate Tra2 proteins 

Well characterised targets of vertebrate Tra2 proteins include SMN2 (survival motor 

neuron 2) exon 7. Regulation of SMN2 exon 7 is of significant clinical interest in the 

motor neuron disease Spinal Muscular Atrophy (SMA), which is caused by loss-of-

function mutations to the survival motor neuron (SMN1) gene (Hofmann and Wirth, 

2002). The highly-conserved paralogous gene SMN2 fails to provide a functional 

protein replacement due to a translationally silent mutation within a splicing enhancer 

sequence. As a result, SMN2 exon 7 is skipped, producing a truncated SMN2 protein 

which is unable to functionally compensate for the loss of SMN1. SMN2 exon 7 is a 

potential therapeutic target for SMA, as restoring efficient inclusion of SMN2 exon 7 

could effectively restore full-length SMN expression. Tra2β directly enhances splicing 

inclusion of SMN2 exon 7 through a GA-rich exonic splicing enhancer sequence 

(Hofmann et al., 2000). 

Tra2β is also known to directly regulate a testis-specific exon from the homeodomain 

interacting protein kinase 3 (HIPK3) gene, which is referred to as the HIPK3-T exon 

(Venables et al., 2005; Grellscheid et al., 2011b). The HIPK3-T exon is exclusively 

spliced in the testis and inclusion of this exon introduces a premature termination 

codon (PTC) within the HIPK3 mRNA, targeting the HIPK3 mRNA for degradation via 

the nonsense-mediated decay (NMD) pathway (Venables et al., 2005). 
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Other well established target exons include exon 10 from the Tau gene. Mutations 

within Tau exon 10 are associated with the neurological disease frontotemporal 

dementia with Parkinsonism linked to chromosome 17 (FTDP-17) (Fu et al., 2012). 

Tra2β also regulates exon 3 from the cysteine rich 61 (Cyr61) gene, which encodes a 

matricellular protein linked with tumour progression and metastasis (Hirschfeld et al., 

2011). Interestingly, Hirschfeld et al. reported that under acidic conditions, splicing 

inclusion of Cyr61 exon 3 was significantly reduced and this was associated with a 

substantial switch in localisation of Tra2β from the nucleus to the cytoplasm 

(Hirschfeld et al., 2011). Other examples of known target exons include exon 23 from 

the smooth muscle myosin phosphatase targeting subunit (Mypt1) gene (Fu et al., 

2012), variable exons v4 and v5 from CD44 (Watermann et al., 2006) and most recently 

exon 11 from BRCA1 (Raponi et al., 2014). 

The aforementioned studies largely focus on detailed characterisation of single exons. 

In addition, a number of recent studies have now investigated endogenous Tra2β 

target exons on a more global scale, using RIP-seq (Uren et al., 2012) and splicing-

specific microarrays (Anderson et al., 2012; Storbeck et al., 2014), as well as studies 

published from the Elliott lab using HITS-CLIP (Grellscheid et al., 2011a), iCLIP and RNA-

seq (Best et al., 2014b). Anderson et al. identified that the cardiotonic steroid digitoxin 

induces substantial changes in alternative splicing through depletion of the RNA-

binding proteins SRp20 and Tra2β (Anderson et al., 2012). Subsequently, they used 

shRNA-mediated depletion of Tra2β in HEK-293 cells to identify Tra2β-responsive 

exons using microarray analyses. Interestingly, depletion of Tra2β was found to induce 

skipping of some alternative exons whilst enhancing inclusion of others (Anderson et 

al., 2012). Similarly, Storbeck et al. analysed RNA from a neuronal-specific tra2b 

knockout mice using exon arrays and identified Tubd1 exon 4 and Sgol exon 2 as in vivo 

targets of Tra2β (Storbeck et al., 2014). 

1.2.7 The physiological functions of Tra2β 

Tra2β is associated with numerous physiological functions. These include a potential 

role in mammalian spermatogenesis, as Tra2β protein expression is up-regulated 

during meiosis in male germ cells (Grellscheid et al., 2011a) and Tra2β  directly 

interacts with the germ-cell specific protein RBMY (Venables et al., 2000). Tra2β is also 

involved in generating tissue-specific splicing patterns of Mypt1 in smooth muscle cells 
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(Fu et al., 2012), and the cardiotonic steroid digitoxin (prescribed for the treatment of 

heart failure) affects alternative splicing patterns through depletion of Tra2β 

(Anderson et al., 2012). Tra2β protein expression is also thought to be important to the 

maintenance of normal cell physiology, given the number of pathophysiological states 

now associated with deregulation of Tra2β expression (Best et al., 2013). TRA2B mRNA 

expression changes throughout the ageing process (Holly et al., 2013) and age-related 

macular degeneration is associated with an increase in Tra2β expression and aberrant 

nuclear localisation of Tra2β in diseased retinal cells (Karunakaran et al., 2013). 

Changes in Tra2β protein expression is also associated with the disease pathology of 

Alzheimer’s disease (Glatz et al., 2006), Frontotemporal Dementia and Parkinsonism 

linked to chromosome 17 (FTDP-17) (Jiang et al., 2003) and several human cancers 

(reviewed by Best et al. 2013). 

1.3 Alternative splicing in cancer 

1.3.1 Introduction 

The importance of alternative splicing regulation is demonstrated by a growing 

number of diseases now associated with altered splicing activity, including aberrant 

splicing events in cancer (Srebrow and Kornblihtt, 2006). Alteration to splicing activity 

can result in potentially pathogenic consequences through multiple mechanisms. 

These include mutation of cis-elements, which alter the RNA sequence and can lead to 

aberrant splicing. For example, the introduction of a novel splice site through mutation 

and its subsequent recognition may produce disease-associated mRNA isoforms which 

are not typically produced under normal physiological conditions. Consequently, 

aberrant splicing may result in the production of novel protein isoforms that are 

structurally and functionally distinct from those typically produced, with the potential 

to exert profound effects on cellular physiology and phenotype (Pajares et al., 2007). 

Secondly, changes to trans-acting factors which regulate splicing may result in a 

deviation from the typical ratio of pre-existing alternatively spliced isoforms, or the 

recognition of cryptic splice sites (Pajares et al., 2007). Changes to the ratio of normal 

physiological isoforms may consequently drive cellular phenotype in a particular 

direction. Hence deregulation of splicing in cancer can result from either mutation to 

cis-elements, including splice sites and auxiliary elements, or alternatively through the 
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modification of trans-acting proteins, including changes to the concentration, activity 

or localisation of splicing factors (Peter Stoilov, 2002; Faustino and Cooper, 2003). 

Alternative splicing has now been demonstrated to produce different protein isoforms 

which promote many of the hallmarks of cancer. However, distinguishing between 

splice variants which genuinely contribute to cell transformation and those which are 

simply the by-product of lost splicing regulation in the transformed cell remains a 

considerable challenge. 

 

Figure 1.11 Abnormal pre-mRNA splicing can contribute to tumour progression 

through the production of protein isoforms with oncogenic properties. Mutation of 

cis-elements may result in the production of novel protein isoforms with potentially 

oncogenic function. Alternatively, changes to trans-acting factors may change the ratio 

of pre-existing mRNA isoforms, or promote recognition of cryptic splice sites, 

contributing to changes in cell phenotype. This image is adapted from (Pajares et al., 

2007). 

1.3.2 Mutations within cis-elements 

Cells may require as few as 2-10 driving mutations to initiate oncogenic transformation 

(Hahn and Weinberg, 2002; Stratton et al., 2009), a modest number considering many 

advanced tumours are estimated to contain up to 100,000 genetic alterations (Martin 

Dutertre, 2010). The cellular mechanisms which maintain genomic stability are 

frequently lost in tumour cells, including the loss or impairment of DNA repair 

pathways. Consequently, the accumulation of mutations allow tumour cells to acquire 
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many of the hallmarks of cancer, which include an increased proliferative capacity, 

resistance to apoptosis, unlimited replication potential, self-sufficiency in growth 

signals, insensitivity to growth inhibitory signals, angiogenesis and metastasis 

(Hanahan and Weinberg, 2011). Similarly, loss of normal splicing regulation has 

recently emerged as another possible mechanism which could contribute to cellular 

transformation. 

Originally, analyses of cancer-associated  mutations within genomic DNA typically 

focused on their downstream effect on primary protein structure (the amino acid 

sequence) (Pajares et al., 2007). For instance, point mutations may be categorised as 

nonsense (introduction of a premature stop codon), missense (change in the amino 

acid) or synonymous (does not change the amino acid sequence). However, whilst 

synonymous mutations may appear to be translationally silent (they do not appear to 

alter the amino acid sequence), such mutations can exert dramatic effects on splicing 

regulation (Blencowe, 2006). Synonymous mutations can introduce novel splice sites 

or regulatory elements, or disrupt pre-existing ones, potentially altering the mRNA 

isoform and ultimately the protein that is produced.  

Mutations which cause changes to splice site selection have been reported in 

numerous human cancers (Liu et al., 2001; Lukas et al., 2001; Oltean et al., 2006). Key 

examples include the inherited nonsense mutation within exon 18 from the BRCA1 

gene, which encodes an important protein involved in repair of DNA double-strand 

breaks (DSBs) (Friedenson, 2007). This inherited mutation disrupts the binding site of 

the splicing factor SRSF1 (ASF/SF2), resulting in the aberrant skipping of exon 18 from 

the BRCA1 mRNA (Liu et al., 2001). Similar mutations which affect splice site selection 

have been reported in MDM2, which encodes a nuclear phosphoprotein and key 

regulator of the tumour suppressor P53 (Lukas et al., 2001). Mutations which disrupt 

pre-mRNA splicing of the DNA mismatch repair genes MSH2 and MLH1 are also 

common in hereditary non-polyposis colorectal cancer (HNPCC) (Stella et al., 2001). 

1.3.3 Trans-acting factors in cancer 

Changes to trans-acting splice factors can also exert significant effects on pre-mRNA 

splicing in tumour cells. The alteration in expression, stability, localisation and/or 

activity of splicing factors can have a significant effect on splicing decisions in cancer 
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cells (Pajares et al., 2007). There is some evidence that the general splicing machinery 

of a cell may be fundamentally changed in cancer (Mee Young Kim, 2009; Pedro A. F. 

Galante, 2009) and it has been hypothesized that there may even be a “splicing switch” 

in cancer cells, allowing cells to generate  a vast array of splice variants, some of which 

may contribute to oncogenic transformation (Skotheim and Nees, 2007). The 

expression of several splicing factors has been found to be significantly altered in 

breast cancer tumours compared to corresponding normal tissue, including FOX2 

(Venables et al., 2009b), SRSF1 (Karni et al., 2007) and Tra2β (Watermann et al., 2006). 

Interestingly, the splicing factor oncoprotein SRSF1 (ASF/SF2) has been found to 

promote malignant transformation and is over-expressed in multiple human tumours 

(Chang et al., 2007). It was subsequently identified that SRSF1 regulates alternative 

splicing of the BIM and BIN1 genes, which encode proteins involved in the regulation 

of apoptosis (Anczuków et al., 2012). Over-expression of SRSF1 promotes expression of 

BIM and BIN1 protein isoforms which lack pro-apoptotic functions, possibly 

contributing to epithelial cell transformation (Anczuków et al., 2012).  

1.3.4 Tra2β expression in cancer 

TRA2B gene expression is amplified in several human cancers, including cancers of the 

lung, cervix, head and neck, ovary, stomach, and uterus (reviewed by Best et al., 2013). 

Tra2β protein expression was also found to be up-regulated in a subset of breast 

(Watermann et al., 2006), cervical (Gabriel et al., 2009), ovarian (Fischer et al., 2004) 

and colon (Kajita et al., 2013) cancers. High Tra2β protein expression is associated with 

a poorer prognosis for patients with cervical cancer (Gabriel et al., 2009). Tra2β protein 

expression has also been shown to be important for cell proliferation in several cancer 

cell lines. Knockdown of Tra2β in the gastric cancer cell line AGS was found to suppress 

cell growth (Takeo et al., 2009), whilst knockdown of Tra2β in the colon cancer cell line 

HCT116 reduced cell viability and led to increased apoptosis (Kajita et al., 2013). 

Watermann et al. found that both TRA2B mRNA and Tra2β protein expression was 

significantly up-regulated in a panel of invasive breast cancer tumour samples when 

compared to normal breast tissue from the same patient (Watermann et al., 2006). 

Conversely, their analysis of SRp40 expression revealed no change between normal 

and tumour samples, suggesting a specific up-regulation of Tra2β, rather than a 

broader change to the splicing machinery. Hence it has been speculated that Tra2β 
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may have an important role in breast cancer, through regulation of alternatively 

spliced isoforms associated with tumour progression and metastasis (Watermann et al., 

2006). 

1.3.5 Breast cancer and the MDA-MB-231 cell line 

Breast cancer is a complex and heterogeneous disease, consisting of multiple disease 

sub-types which have distinct clinical implications (Holliday and Speirs, 2011). Most 

breast cancers originate from epithelial cells and initially develop following an increase 

in the epithelial cell mass (hyperplasia), followed by the expansion of abnormal cells 

(atypical hyperplasia), carcinoma in situ (non-invasive breast cancer) and ultimately 

infiltrating carcinoma (invasive breast cancer). Traditionally, breast cancer 

classification was based on the histological type, tumour grade and lymph node status, 

as well as a limited number of predictive markers such as expression of the oestrogen 

receptor (ER) (Holliday and Speirs, 2011). Advances in molecular profiling such as the 

use of DNA microarrays and immunohistochemical analysis of hormone receptors 

including the oestrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor 2 (HER-2) subsequently led to the recognition that 

breast cancer could be classified into at least five distinct subtypes based on 

expression profiles and hormone receptor status (Perou et al., 1999; Perou et al., 

2000). Most recently, genomic and transcriptomic profiling has revealed that breast 

cancer consists of at least ten different subtypes with distinct “molecular signatures”, 

each with distinct clinical outcomes (Curtis et al., 2012). 

Breast cancer is often modelled in the laboratory using established breast cancer cell 

lines. The very first breast cancer cell line (BT20) was established in 1958 and 

originated from an invasive ductal carcinoma (Lasfargues, 1958).  Since then, a number 

of different breast cancer cell lines have become widely used including cell lines from 

the MD Anderson series (such as the MDA-MB-231 cell line used extensively in my 

study) (Cailleau R, 1978a), as well as cell lines from the Michigan Cancer Foundation 

such as MCF-7 cells (Soule HD, 1973). The MDA-MB-231 cell line is a tumourigenic 

breast epithelial cell line, first derived from a pleural effusion of a 51 year old female 

patient with breast adenocarcinoma (Cailleau R, 1978b). The MDA-MB-231 cell line 

models invasive disease in vitro and is traditionally considered to be “triple-negative” 

for hormone receptor status (ER-, PR-, HER2-). 
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The use of breast cancer cell lines as experimental models comes with significant 

limitations. Cell lines are prone to genetic and phenotypic drift over extended periods 

of continual culture (Burdall et al., 2003). Changes in cell phenotype over time not only 

have implications for experimental reproducibility, but as cells drift further away from 

the phenotype of the original tumour, their relevance as accurate models of disease is 

diminished (Burdall et al., 2003). Other limitations include the physiological relevance 

of growing cells on plastic in two dimensions, as the network of interactions that exist 

between cells in vivo may be lost. This is exemplified by MDA-MB-231 cells, which are 

widely regarded as invasive in vitro, yet show poor metastatic potential in some in vivo 

xenograph models (Burdall et al., 2003). Despite the aforementioned limitations, cell 

lines remain a valuable experimental model, partly due to their unlimited replicative 

capacity and their relatively high degree of homogeneity. 

1.3.6 Alternatively spliced isoforms as potential biomarkers and therapeutic targets 

in cancer 

Tumour-specific alternative splice variants have been postulated as potential 

biomarkers for disease prognosis, or as novel therapeutic targets in cancer. Key 

examples include alternatively spliced isoforms of the androgen receptor (AR), which 

are strongly linked with disease progression in prostate cancer (PCa). In the early 

stages of PCa, prostate cancer cells depend on androgen hormones to drive 

proliferation via the androgen receptor (Feldman and Feldman, 2001). Current clinical 

treatments for PCa include androgen ablation therapy, however after an initial period 

of remission, many patients subsequently develop hormone-resistant or castrate-

resistant prostate cancer (CRPCa) (Kohli and Tindall, 2010). Unlike the full-length AR 

which is localised in the cytoplasm and translocates to the nucleus upon androgen 

binding, some alternatively spliced isoforms of the AR lack the C-terminal ligand-

binding domain and are permanently localised within the nucleus (Dehm and Tindall, 

2011). Consequently, some alternatively spliced isoforms of the AR are constitutively 

active, even in the absence of androgens, suggesting alternatively spliced isoforms of 

the AR may play a role in the development of castrate-resistant prostate cancer. 

Alternative splicing of the human epidermal growth factor receptor 2 (HER-2) gene 

may also have significant clinical importance in breast cancer disease progression and 

drug resistance (Jackson et al., 2013). Expression of the HER-2 protein is up-regulated 



Chapter 1                                                                                                                                  Introduction 

 

29 
 

in approximately 20-30% of breast cancers (Rubin and Yarden, 2001) and confers 

increased proliferative and survival advantages via oncogenic signalling pathways 

involving the PI3K/AKT pathway (increased survival/reduced apoptosis) and the 

RAS/RAF/MEK/MAPK pathway (increased proliferation) (Citri and Yarden, 2006). 

Consequently, HER-2 was identified as an ideal candidate for the development of novel 

targeted therapies, which include the monoclonal antibody trastuzumab (Herceptin) 

and the tyrosine kinase inhibitor lapatinib (Tyverb). HER-2 splice variants may be of 

significant prognostic value given a number of different HER-2 protein isoforms are 

functionally distinct. For example, the Δ16HER2 isoform (in which exon 16 is skipped) is 

associated with increased malignant transformation and trastuzumab resistance (Mitra 

et al., 2009). Consequently, patients expressing the Δ16HER2 variant may benefit from 

more aggressive treatment strategies. The truncated HER-2 p100 protein isoform is 

created by retention of intron 15 (Scott et al., 1993). HER-2 p100 is associated with 

reduced tumour cell proliferation, possibly due to reduced downstream signal 

transduction from the truncated HER-2 protein (Wimberly et al., 2014). A third HER-2 

variant termed ‘Herstatin’ is produced following retention of intron 8, which also 

inhibits growth of HER-2 over-expressing cells (Doherty et al., 1999). Consequently, 

considering expression of HER-2 splice variants in the future may help determine 

patient prognosis or be used to predict the effect of therapeutic agents which target 

HER-2.  

Several strategies have been identified which may be useful when targeting splicing in 

the treatment of human disease. These include the use of synthetic antisense 

oligonucleotides (ASOs) which bind pre-mRNA and block splice site selection, the use 

of RNAi to target specific isoforms for degradation, or the use of monoclonal 

antibodies to specifically target aberrant protein isoforms and inhibit their function. 

However, currently the number of potential treatments which target splicing that have 

reached the clinical trial stage is limited. Most therapeutic strategies have been aimed 

at the treatment of monogenic diseases, such as Spinal Muscular Atrophy (SMA) (Kolb 

and Kissel, 2011). Interestingly, splice-switching oligonucleotides (SSO) have been 

successfully used to switch HER-2 mRNA splicing in cell lines, which lead to reduced 

proliferation and the induction of apoptosis (Wan et al., 2009). Targeting splice 

variants in the treatment of cancer may become more viable in the future if improved 
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delivery methods are developed and novel splice variants are identified which 

significantly contribute to disease initiation and progression (Pajares et al., 2007).  

1.4 Methodologies for dissecting alternative splicing 

1.4.1 Introduction 

Given the complexity of splicing regulation, how can we further our current 

understanding of alternative splicing? To date, there have been many techniques used 

to dissect the molecular mechanisms of splicing, utilizing both in vitro and in vivo 

splicing assays. Traditionally, a reductionist approach has been used to create 

individual model systems which allow the roles of specific cis- or trans-acting factors to 

be characterised in vivo, such as the use of minigenes. This has been complemented by 

in vitro techniques, such as SELEX, which is used to identify consensus sequences 

recognised by RNA-binding proteins. Most recently however, high-throughput 

techniques have been developed which have facilitated the study of splicing on a much 

greater scale. These include the development of splicing-specific microarrays, high-

throughput RT-PCR platforms, UV cross-linking and immunoprecipitation (CLIP) 

experiments coupled with next-generation sequencing, as well as RNA-seq.  

1.4.2 Model systems using minigenes 

The creation of model systems using minigenes is frequently used to replicate splicing 

regulation in vivo (Mardon et al., 1987) and has been used in numerous studies to 

investigate splicing regulation by Tra2β (Glatz et al., 2006; Grellscheid et al., 2011a). 

The construction of minigenes involves cloning of the genomic region of interest (often 

one or more alternatively spliced exons and the flanking intronic regions) into an exon-

trap vector. The insert is cloned in between two constitutively spliced exons, which are 

downstream of a eukaryotic promoter that drives transcription. Subsequently, 

minigene constructs are then transfected into cells where they are subject to splicing 

regulation similar to the endogenous gene. Minigene experiments are particularly 

suited to the study of cis- and trans-acting factors which regulate a specific region 

within a gene. Cis-elements are often studied through mutagenesis of splice sites and 

auxiliary elements, or through the introduction of new regulatory sequences. Similarly, 
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trans-acting factors may be studied through the introduction of proteins using 

expression vectors or alternatively by depletion of endogenous proteins using RNAi.  

1.4.3 Alternative splicing microarrays 

The development of splice-specific microarrays allowed thousands of alternative 

splicing events to be analysed in parallel. Microarrays contain thousands of 

immobilised oligonuclotide probes which hybridise with specific RNA targets (Matlin et 

al., 2005). Traditionally, microarrays have been used to monitor the expression of 

mRNA without the capacity to distinguish between multiple splice variants (Ben-Dov et 

al., 2008). However, the development of isoform-specific microarrays permited global 

analyses of alternative splice events (Johnson et al., 2003).  

1.4.4 SELEX 

Systematic Evolution of Ligands by EXponential enrichment (SELEX) is an in vitro 

screening technique frequently used to determine the RNA sequences that are 

recognised by RNA-binding proteins. Briefly, it involves the progressive selection of 

specific RNA molecules from pools of random RNAs to identify a consensus binding 

sequence (Yang et al., 2007). SELEX was successfully used to identify the ‘GAA’ repeat 

sequence that is one of two RNA sequences specifically recognised by Tra2β (Tacke et 

al., 1998a). The RNA-binding sites of SR-proteins identified through SELEX have also 

proven particularly useful in the development of search programmes such as ESEfinder, 

which predicts the presence of auxiliary elements within a given sequence (Cartegni et 

al., 2003). Subsequently, functional SELEX was developed to identify the sequences 

which actually influence splicing activity when bound to a specific protein, rather than 

simply associate with that protein (Gopinath, 2007). 

1.4.5 UV cross-linking and immunoprecipitation (CLIP) 

The RNA-binding motifs generated by SELEX are typically short (between 4-10 

nucleotides) and highly degenerate. Given the high frequency with which these 

degenerate motifs occur in the genome, accurate prediction of functional targets 

based on the RNA-binding motifs alone has traditionally proven difficult (Elliott, 2010). 

Direct RNA-protein interactions can be identified through protein/RNA 

immunoprecipitation experiments, such as RNA immunoprecipitation (RIP) and UV 
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cross-linking and immunoprecipitation (CLIP). Subsequently, CLIP coupled with high-

throughput sequencing (HITS-CLIP) was developed to identify the physiological targets 

of RNA-binding proteins on a genome-wide scale (Ule et al., 2005a).  

 

Figure 1.12 UV cross-linking and immunoprecipitation coupled with high-throughput 

sequencing (HITS-CLIP). HITS-CLIP utilises UV-irradiation to penetrate living cells and 

induce covalent cross-links between RNA and proteins in direct contact. The RNA–

protein complexes are then immunoprecipitated and purified under stringent 

conditions. Following purification, the RNA-binding protein is digested, leaving the 

purified RNA substrate. This is followed by linker ligation and RT-PCR to amplify the 

original RNA sequences. Sequencing may then be performed using high-throughput 

sequencing technologies. This image is adapted from a recent review by (Licatalosi and 

Darnell, 2010). 

CLIP was originally used to identify RNA targets of  the brain-specific splicing regulator 

Nova in mice (Ule et al., 2003). Following this, Ule et al. combined CLIP with splicing-

specific microarrays to create an ‘RNA map’, which could predict position-dependent 

splicing patterns of Nova-regulated targets (Ule et al., 2006). Subsequent studies using 

CLIP have identified the RNA targets for numerous RNA-binding proteins, including 

FOX2 (Yeo et al., 2009), SRSF1 (SF2/ASF) (Sanford et al., 2008), hnRNPC (Konig et al., 

2010) and SRSF3 and SRSF4 (Anko et al., 2012). Most recently, adaptations to the 

original CLIP protocol have facilitated the identification of protein-RNA interactions at 

near individual nucleotide resolution, including individual-nucleotide resolution CLIP 
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(iCLIP) (Konig et al., 2011) and PhotoActivatable-Ribonucleoside-enhanced CLIP (PAR-

CLIP) (Hafner et al., 2010). 

1.4.6 RNA-seq 

Most recently, the development of RNA-sequencing (RNA-seq) has facilitated the 

analysis of alternative splicing on a transcriptome-wide scale. RNA-seq was developed 

to allow whole transcriptome profiling using deep-sequencing and allows simultaneous 

analysis of gene expression and alternatively spliced isoforms. Briefly, a population of 

RNA (either total or fractionated, such as poly(A)+) is fragmented and reverse 

transcribed into a cDNA library. Sequencing adaptors are added to the cDNA fragments, 

which are then sequenced using next-generation sequencing technology. The 

sequencing reads are then processed and mapped to a reference genome to create an 

expression profile for each gene (Wang et al., 2009). RNA-seq has recently been 

applied to analyse the transcriptome of different breast cancer cell subtypes, revealing 

novel splicing alterations which were sub-type specific (Eswaran et al., 2013). Other 

recent applications include combining CLIP datasets with RNA-seq, to investigate how 

RNA-binding proteins such as hnRNPC and U2AF65 compete to regulate the 

transcriptome (Zarnack et al., 2013). 
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1.5 Research aims and objectives 

The identification and characterisation of novel RNA targets of the RNA-binding 

proteins Tra2α and Tra2β was a key objective in this thesis. 

Prior to the start of my project, a previous PhD student had recently used HITS-CLIP to 

identify direct RNA targets of Tra2β from the mouse testis (Liu, 2009). Therefore an 

early objective was to validate and characterise splicing regulation of exons identified 

from the previous HITS-CLIP experiment, using minigenes. I also investigated whether 

two different isoforms of Tra2β may be functionally distinct in splicing regulation using 

over-expressed proteins and whether direct RNA-binding was required for Tra2β-

mediated splicing regulation of the newly identified exons.   

Tra2β is up-regulated in several human cancers and we hypothesised that Tra2β may 

regulate alternative splicing of genes with functional importantance in breast cancer. 

Therefore for the majority of this project, my aim was to identify and characterise RNA 

targets in the human invasive breast cancer cell line MDA-MB-231. Two transcriptome-

wide approaches were used in this study. Initially, I used iCLIP to map the 

transcriptome-wide binding sites of Tra2β in MDA-MB-231 cells. Subsequently, I used 

RNA-seq to investigate functional changes in the transcriptome following Tra2 protein 

depletion. By combining the iCLIP and RNA-seq data, the objective was to identify 

target exons which were directly bound by Tra2β and functionally responsive to Tra2 

protein depletion. 

The iCLIP and RNA-seq data facilitated further investigation into a number of 

unanswered questions regarding vertebrate Tra2 protein biology and splicing 

regulation. For example, do Tra2α and Tra2β regulate the same endogenous target 

exons? Do Tra2 proteins regulate constitutive exons in addition to their known role in 

alternative splicing? Do Tra2 proteins regulate splicing of genes in functionally 

coherent pathways? What are the phenotypic consequences of Tra2 protein depletion 

and deregulated splicing in MDA-MB-231 cells? This thesis will attempt to address 

some of these questions regarding vertebrate Tra2 protein biology. 
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Chapter 2: Functional dissection of splicing regulation by 

the RNA-binding protein Tra2β  

2.1 Introduction 

Tra2β is implicated in male germ cell development and an on-going project in the 

Elliott lab has been to identify physiological targets of Tra2β in the testis. The 

development of new technologies such as UV cross-linking and immunoprecipitation 

coupled with high-thoughput sequencing (HITS-CLIP) has facilitated the identification 

of direct targets of RNA-binding proteins on a transcriptome-wide scale (Ule et al., 

2005b). Prior to the start of my study, a previous PhD student in the lab (Dr. Yilei Liu) 

had recently performed a HITS-CLIP experiment to identify direct RNA targets of Tra2β 

in the mouse testis. In this chapter, I use data generated from that original HITS-CLIP 

experiment to validate splicing regulation of novel Tra2β target exons and further 

dissect their regulation using minigenes and binding site mutagenesis.  

The Tra2b gene itself is alternatively spliced to produce five known mRNA transcripts, 

encoding two known protein isoforms (please refer to Figure 1.8) (Stoilov et al., 2004). 

Full-length Tra2β (termed Tra2β-1) is ubiquitously expressed and contains a single, 

central RNA recognition motif (RRM) which is flanked by N-terminal and C-terminal RS-

domains (Dauwalder et al., 1996; Beil et al., 1997). A second, truncated protein 

isoform (termed Tra2β-3) is also produced via alternative splicing, which lacks the N-

terminal RS1 domain (Stoilov et al., 2004). It is currently unclear whether Tra2β-1 and 

Tra2β-3 are functionally distinct in splicing regulation. Therefore in this chapter, I also 

investigate the functional importance of the RS1 of Tra2β in splicing regulation using 

over-expressed proteins. 

Tra2β is up-regulated in several human cancers and we hypothesised that Tra2β may 

regulate alternative splicing of functionally important genes in breast cancer. In the 

final part of this chapter, I investigate splicing regulation of a panel of breast cancer-

associated alternative splice events using minigenes. I also analyse the splicing profile 

of endogenous targets exons following siRNA-mediated depletion of Tra2β in MDA-

MB-231 cells. 
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2.2 Aims 

The aims of this chapter were to: 

1. Validate splicing regulation of target exons identified from the Tra2β HITS-

CLIP experiment 

2. Investigate whether multiple Tra2β binding sites are required for splicing 

activation of a target exon from Nasp 

3. Investigate whether Tra2β-1 and Tra2β-3 may have distinct functions in 

splicing regulation using over-expressed proteins 

4. Investigate whether direct RNA-binding is required for splicing activation of 

target exons by Tra2β 

5. Investigate whether Tra2β regulates splicing of a selection of breast cancer-

associated alternative splicing events 

6. Investigate the splicing profile of endogenous target exons (corresponding to 

the Tra2β-responsive minigenes) following Tra2β protein depletion using RNAi 
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2.3 Materials and Methods 

2.3.1 Cell culture 

2.3.1.1 Cell lines  

Three human cell lines were used in this chapter; HEK-293 cells (catalogue number: 

ATCC-CRL-1573), MCF-7 cells (catalogue number: ATCC-HTB-22) and MDA-MB-231 cells 

(catalogue number: ATCC-HTB-26). All three cell lines were originally purchased from 

the American Type Culture Collection and LGC Standards, Europe.  

2.3.1.2 HEK-293 

HEK-293 is a transformed human embryonic kidney cell line (Graham et al., 1977). This 

cell line is routinely used in splicing assays due to the high transfection efficiency 

observed in this cell line. 

2.3.1.3 MCF-7  

MCF-7 is a tumourigenic breast epithelial cell line originally derived from pleural 

effusion of a 69 year old female patient with breast adenocarcinoma (Soule HD, 1973). 

The phenotypic characteristics of this cell line are early-stage, non-invasive, ER positive 

and PR positive breast cancer.  

2.3.1.4 MDA-MB-231  

MDA-MB-231 is a tumourigenic breast epithelial cell line originally derived from pleural 

effusion of a 51 year old female patient with breast adenocarcinoma (Cailleau R, 

1978b). The phenotypic characteristics of this cell line are invasive, triple-negative (ER-, 

PR-, HER2-) breast cancer. 

2.3.1.5 Routine cell passage  

Cell culture was performed under aseptic conditions in a Class II laminar flow 

microbiological safety cabinet. All cell lines were routinely cultured in 75cm2 and 

25cm2 tissue culture flasks at 37°C in a humidified atmosphere containing 5% CO2. 

HEK-293 cells were maintained in DMEM (with phenol red) (PAA) supplemented with 

10% FBS (Sigma-Aldrich). MDA-MB-231 cells and MCF-7 cells were maintained in 
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DMEM (without phenol red) (PAA) supplemented with 10% FBS and 1% Penicillin 

Streptomycin (Sigma-Aldrich).  

2.3.1.6 Cell line maintenance  

Cells were passaged every 3 to 5 days at approximately 70-80% confluency. Cell 

passage was performed by removing growth media, rinsing the cell monolayer with 

sterile 1× phosphate buffered saline (PBS) (Sigma-Aldrich) and incubating with 2mM 

trypsin-EDTA (Sigma-Aldrich) for 5 minutes at 37°C. Complete growth media was 

added to neutralise the effect of trypsin-EDTA and detached cells were collected by 

centrifugation at 200×g for 5 minutes. The supernatant was discarded before the 

pelleted cells were resuspended in complete growth media and passaged at a ratio of 

approximately 1 to 4. 

2.3.1.7 Cryopreservation of cells 

Cells were routinely cryopreserved at early passage numbers to generate a continuous 

stock of frozen cells from early passage. Cryopreservation was performed in 1ml 

aliquots of cryoprotective media and stored in cryovials (Sigma-Aldrich). 

Cryoprotective media consisted of 95% FBS with 5% dimethyl sulphoxide (DMSO) 

(Sigma-Aldrich). Cells were stored at -80°C for long term storage. When required, 

frozen stocks were rapidly thawed in a 37°C water bath and freezing media was 

removed by centrifugation at 200×g for 5 minutes. Cells were then resuspended in 

complete growth medium and plated in sterile tissue culture flasks. 

2.3.1.8 Cell counting  

Cells were counted prior to experiments using a Neubauer chamber haemocytometer. 

Cell pellets were resuspended in complete growth media and a 10μl aliquot of single 

cell suspension placed onto the haemocytometer. The number of cells overlying the 

ruled grid area was counted using low power magnification (×10). The number of cells 

per mililiter was calculated and the cell suspension was diluted appropriately to seed 

the correct number of cells for each experiment. 
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2.3.2 Minigene splicing assays 

2.3.2.1 Minigene transfections 

The pXJ41 minigene constructs were co-transfected with several pGFP3 expression 

vectors into HEK-293 cells for splicing analysis. All minigene transfections were 

performed using three biological replicates. HEK-293 cells were seeded into 6-well 

plates at approximately 50-80% confluency 24 hours before transfection. A standard 

co-trasfection protocol consisting of 200ng minigene together with either 200ng GFP-

only expression vector or 500ng expression vector was used throughout this chapter, 

unless otherwise stated. DNA plasmids were incubated at room temperature for 20 

minutes with 3μl GeneJammer and 97μl Opti-MEM (Life Technologies), before adding 

the mix to HEK-293 cells grown in 6-well plates. Cells were then incubated for 24 hours 

at 37°C. Prior to harvesting, cells were observed under a fluorescent microscope to 

confirm efficient expression of GFP-tagged proteins. To harvest cells the media was 

removed, cells were gently washed with 1ml PBS and incubated with 300μl Trypsin-

EDTA for 5 minutes at 37°C. Once cells had detached from the plate surface, 1ml 

DMEM was added to each well. The resuspended cells from each well were split into 

two aliquots and centrifuged at 3,000rpm to form cell pellets for RNA and protein 

analysis. Cell pellets for RNA analysis were thoroughly resuspended in 100μl Trizol (Life 

Technologies) prior to extraction, whilst cell pellets for protein analysis were directly 

lysed in 30-50μl 2X SDS sample loading buffer. 

2.3.2.2 RNA extraction  

A standard Trizol RNA extraction was performed using 100μl Trizol (Life Technologies) 

per cell pellet. Cells were resuspended in 100μl Trizol and incubated at room 

temperature for 5 minutes. 20l chloroform was added and thoroughly mixed. 

Samples were incubated at room temperature for 10 minutes and centrifuged at 

13,000rpm for 10 minutes. The top aqueous layer was removed (approximately 50l), 

transferred to a new eppendorf and an equal volume of isopropanol was added. 

Samples were incubated once more at room temperature for 15 minutes and 

centrifuged at 13,000rpm for 10 minutes at 4C, forming a white RNA pellet. The 

supernatant was carefully removed, and the pellet washed with 70% ethanol and 

allowed to air dry. Finally, samples were resuspended in 30μl Diethylpyrocarbonate 
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(DEPC)-treated dH20. The RNA concentration was quantified via a Nanodrop 

spectrophotometer. RNA samples were diluted to 50ng/μl with RNase-free dH20 prior 

to RT-PCR. 

2.3.2.4 One-step RT-PCR 

RNA samples were reverse transcribed and PCR-amplified using two pXJ41 minigene-

specific primers (pXJRTF and pXJB1) in a single one-step RT-PCR reaction, using a One-

step RT-PCR kit (Qiagen) following the manufacturer’s instructions. A standard 5μl 

One-step RT-PCR reaction was used per sample and is provided in Figure 2.1, together 

with the pXJRTF and pXJB1 primer sequences.  

5X reaction buffer 1μl 

Q-solution 1μl 

pJXRTF primer (10μM) 0.3μl 

pJXB1 primer (10μM) 0.3μl 

dNTPS (10mM) 0.2μl 

Enzyme mix 0.2μl 

RNA (50ng/μl) 2μl 

TOTAL 5μl 

 

Primer Sequence 

pXJRTF (forward ) GCTCCGGATCGATCCTGAGAACT 

pXJB1 (reverse) AGCAGAACTTGTTTATTGCAGC 

 

Figure 2.1 Standard 1X 5μl One-step RT-PCR master mix used in minigene splicing 

assays (upper table). pXJRTF and pXJB1 primer sequences (lower table). 

 

2.3.2.5 Capillary gel electrophoresis (QIAxcel) 

The 5l RT-PCR samples were diluted with 5l QIAxcel DNA dilution buffer (Qiagen) 

and electrophoresed using the QIAxcel multi-capillary electrophoresis system (Qiagen) 

for analysis. Samples were analysed using the QIAxcel Biocalculator software (Qiagen) 

to determine the size of each PCR product (bp) and the relative concentration of each 

band (ng/ul). 
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2.3.2.6 Calculation of percentage splicing inclusion (PSI) 

The percentage splicing inclusion (PSI) used throughout this thesis was calculated using 

the following formula: 

 

2.3.3 Western Immunoblotting 

Efficient GFP-tagged protein expression was determined by Western Immunoblotting, 

using a polyclonal mouse α-GFP antibody (Abcam, ab1218) (1:2000 dilution) and α-

mouse HRP-linked secondary antibody (Amersham, NA931VS) (1:2000 dilution). Cell 

pellets were lysed in 2X SDS sample loading buffer and denatured at 100°C for 5 

minutes. Proteins were separated on 10% SDS-PAGE gels and transferred to a PVDF 

membrane (Hybond-P, GE). The membrane was first blocked in blocking solution (Tris-

Buffered Saline with Tween 20 (TBST) containing 5% non-fat dry milk) for 1 hour and 

subsequently probed for 1 hour with the primary antibody diluted in blocking solution. 

Membranes were washed three times for 5 minutes with TBST and then incubated for 

1 hour with a secondary antibody conjugated to horseradish peroxidise. Membranes 

were washed a further three times for 5 minutes with TBST before enhanced 

chemiluminescent (ECL) detection using an ECL Prime Western Blotting Detection Kit 

(Amersham). Efficient knockdown of endogenous Tra2β was also confirmed by 

Western Immunoblotting using a rabbit α-Tra2β antibody (Abcam, ab31353) (1:2000 

dilution) and a mouse α-Tubulin antibody (Sigma-Aldrich, T5168) (1:2000 dilution) as a 

loading control. 

2.3.4 Mutation of Tra2β binding sites 

2.3.4.1 Site-directed mutagenesis of the Nasp-T minigenes 

Site-directed mutagenesis was used to mutate Tra2β binding sites in the wildtype 

Nasp-T pXJ41 minigene. The original wildtype Nasp-T minigene was previously cloned 

by Mrs. Caroline Dalgliesh (Newcastle University).  In total, seven variants of the Nasp-

T minigene (designated M1, M2, M3, M4, M1+M2, M2+M3, M3+M4) were created. 

Mutagenic primers (Table 2.1) were designed to introduce 2 or 3 single base mutations 
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within Tra2β binding sites in each minigene. Site-directed mutagenesis utilises two PCR 

reactions (PCR A and PCR B) to create overlapping fragments containing the desired 

complementary mutation on opposite strands of the PCR fragments. A third reaction 

(PCR C) using both PCR A and PCR B as a template is then used to create a full-length 

insert with the mutation on both strands. The full-length mutated insert was then 

cloned into an empty pXJ41 vector. A schematic representation of the site-directed 

mutagenesis strategy is provided in Figure 2.2.  

Primer  Sequence 
NASP M1 F GGGTGGACGATAAGACATGG 

NASP M1 R CCATGTCTTATCGTCCACCC 

NASP M2 F GTGAGCCTCAAGAGTAGCTCC 

NASP M2 R GGAGCTACTCTTGAGGCTCAC 

NASP M3 F GAATCCTCTGCATAGGCAAAAG 

NASP M3 R CTTTTGCCTATGCAGAGGATTC 

NASP M4 F GGACTGACTCAAGTTGAGGTCGC 

NASP M4 R GCGACCTCAACTTGAGTCAGTCC 

*Bases highlighted RED indicate sites where single base substitutions were introduced 

Table 2.1 Primer sequences used for site-directed mutagenesis of the wildtype Nasp-

T minigene. 
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Figure 2.2 Schematic representation of site-directed mutagenesis of the wildtype 

Nasp-T minigene. Site-directed mutagenesis utilises two PCR reactions (PCR A and PCR 

B) to create overlapping fragments containing the desired complementary mutation on 

opposite strands of the PCR fragments. These fragments are mixed, then a third 

reaction (PCR C) using both PCR A and PCR B as a template and flanking primers 

(pXJRTF and pXJB1) is then used to create a full-length insert with the mutation on 

both strands. The full-length mutated insert was then cloned into an empty pXJ41 

vector. This image is adapted from the published protocol by (Heckman and Pease, 

2007). 

Each PCR was performed in a 10μl reaction using a Phusion High-Fidelity DNA 

polymerase kit (Thermo Scientific). The PCR master mix and reaction conditions used 

for site-directed mutagenesis are provided in Table 2.2. 
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PCR reaction A 
 5X HF Reaction Buffer 2μl 

Template (wildtype minigene, 20ng/μl) 0.5μl 

pXJRTF Forward Primer (10μM) 1μl 

Mutagenic Reverse Primer (10μM) 1μl 

dNTPs (10mM) 0.2μl 

dH20 5.2μl 

Phusion DNA polymerase 0.1μl 

TOTAL 10μl 

  PCR reaction B 
 5X HF Reaction Buffer 2μl 

Template (wildtype minigene, 20ng/μl) 0.5μl 

Mutagenic Forward Primer (10μM) 1μl 

pXJB1 Reverse Primer (10μM) 1μl 

dNTPs (10mM) 0.2μl 

dH20 5.2μl 

Phusion DNA polymerase 0.1μl 

TOTAL 10μl 

  PCR reaction C 
 5X HF Reaction Buffer 2μl 

Template 1 (PCR Fragment A) 0.5μl 

Template 2 (PCR Fragment B) 0.5μl 

pXJRTF Forward Primer (10μM) 1μl 

pXJB1 Reverse Primer (10μM) 1μl 

dNTPs (10mM) 0.2μl 

dH20 4.7μl 

Phusion DNA polymerase 0.1μl 

TOTAL 10μl 

 

Thermocycler programme 
  1 Heat Activation  95°C  5 minutes 

2 Denaturation  95°C  20 seconds 

3 Annealing  58°C  30 seconds 

4 Extension  72°C  1 minute (Cycling to step 2 x29) 

5 Final Extension  72°C 10 minutes 

6 Cooling  4°C  ∞ 

 

Table 2.2 PCR master mix for reactions A, B and C, and thermocycler programme 

used in site-directed mutagenesis of minigenes. 

The full-length PCR products from PCR reaction C were electrophoresed on a 2% 

agarose gel and isolated using a QIAquick Gel Extraction Kit (Qiagen) following the 
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manufacturer’s instructions and eluted in 30μl dH20. The purified inserts and the pXJ41 

empty vector were then digested with two restriction enzymes Cla1 and BamH1 (NEB). 

Restriction digest reactions were incubated at 37°C for 3 hours and subsequently 

purified using QIAquick Gel Extraction Kit (Qiagen) following the manufacturer’s 

instructions. The DNA concentration of each sample after the restriction digest was 

determined using a Nanodrop spectrophotometer. Reaction conditions for the 

restriction digests are provided below in Table 2.3. 

PCR C or pXJ41 empty vector 26μl 

Buffer 4 5μl 

BSA (X10) 5μl 

Cla1 restriction enzyme 2μl 

BamH1 restriction enzyme 2μl 

TOTAL 50μl 

 

Table 2.3 Reagents used for the restriction digest of PCR product C and the empty 

pXJ41 vector.  

 
Following purification of the digested full-length insert (PCR product C) and the pXJ41 

empty vector, the two fragments were ligated using a T4 DNA ligase (NEB). The ligation 

reaction conditions are provided below in Table 2.4. Ligation reactions were incubated 

at 16°C for 16 hours, followed by 65°C for 10 minutes for heat deactivation of the 

ligation enzyme. 

Insert (PCR C) 6-8μl 

Vector (empty pXJ41) 0.5-1μl 

T4 DNA Ligase 1μl 

T4 Buffer 1μl 

dH20 0-1.5μl 

TOTAL 10μl 

 

Table 2.4 Reagents used for ligation of PCR product C into the empty pXJ41 vector. 

2.3.4.2 Molecular cloning 

Ligated plasmids were transformed in α-Select Chemically Competent Cells (BIOLINE) 

using the manufacturer’s heat shock protocol (2μl plasmid incubated with 20μl 

competent cells). LB agar plates containing 50μg/ml ampicillin were used to grow and 

select competent cells which had been transformed with the pXJ41 minigene 

containing an ampicillin-resistance gene. The LB agar plates were incubated at 37°C for 
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16 hours. Single colonies from the plates were picked and subsequently grown in 5 ml 

LB plus 50μg/ml ampicillin. Tubes were incubated in a shaker for an overnight 

incubation at 37°C. The cultures were subsequently centrifuged at 5,000rpm for 2 

minutes to pellet the cells. Plasmid DNA was extracted from cells using a QIAprep 

Miniprep Kit (Qiagen) following the manufacturer’s instructions. 

2.3.4.3 Sequencing 

Plasmids were sent for DNA sequencing at Source Bioscience Lifescience Services. 

Samples were diluted to 100ng/μl and sequenced using both the pXJRTF forward 

primer and pXJB1 reverse primers (10μM) to confirm the correct sequences had been 

cloned into each minigene.  

2.3.5 In silico prediction of Tra2β targets from a panel of breast cancer associated 

alternative splicing events 

Potential targets for splicing regulation by Tra2β were identified from a breast cancer 

and ovarian cancer-associated alternative splicing resource (Venables et al., 2009a). 

Exons were first ranked in order of the percentage increase in exon inclusion in breast 

cancer tumours compared to their corresponding normal tissue. The 10 most 

frequently occurring K-mers from the Tra2β HITS-CLIP experiment were then mapped 

onto the exon sequences of the top 50 exons with increased splicing inclusion using a 

word search tool. In total, six exons (which were significantly up-regulated in breast 

cancer tumours compared to corresponding normal tissue) were identified which 

contained multiple predicted Tra2β binding sites and were therefore selected as 

candidate targets of splicing regulation by Tra2β. 

2.3.6 Molecular cloning of the breast cancer associated exons into the pXJ41 

minigene 

Six breast cancer-associated alternative splice events and 2 exons with alternative 3' 

splice sites (identified as candidates from the murine Tra2β HITS-CLIP experiment) 

were cloned into the pXJ41 minigene for splicing analysis. Inserts were created using 

primers that flank the alternative exons and approximately 300bp upstream and 

downstream intronic regions using the UCSC genome browser. Each primer contained 

an additional BamHI restriction site for cloning into the pXJ41 minigene (primers are 
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provided below in Table 2.5). Either 50ng human DNA (breast cancer-associated 

alternative splice events) or 50ng mouse DNA (alternative 3' splice sites) was used as a 

template for a 10μl PCR reaction using a Phusion High-Fidelity DNA polymerase 

(Thermo Scientific). PCR products were electrophoresed on a 2% agarose gel, isolated 

using QIAquick Gel Extraction kit following manufacturer’s instructions and eluted in 

30μl dH20. Restriction digests using the BamHI restriction enzyme were incubated at 

37°C for 3 hours and subsequently purified using QIAquick PCR Purification Kit 

following the manufacturer’s instructions. The digested inserts were then cloned into 

the pXJ41 minigene as described earlier in section 2.3.4.2. 

Primer Sequence 

MLYRM1F AAAAAAAAAGAATTCGGAGATGGCAAGTGCCTTTA 

MLYRM1R AAAAAAAAAGAATTCACCAGAAGGCTTTGAATGCT 

MADAM17F AAAAAAAAAGAATTCTTTTAAACCAGAACACTTCCTCA 

MADAM17R AAAAAAAAAGAATTCAGGCAGAGGCAGTAGGATCA 

HPDLIM5F AAAAAAAAAGAATTCTGACACTGATGAGGGGCTTT 

HPDLIM5R AAAAAAAAAGAATTCCAATGCTGTGTCGGGACTTA 

HSLC10A7F AAAAAAAAAGAATTCCCCAAAGTTGCACTTGGAAT 

HSLC10A7R AAAAAAAAAGAATTCTTGGTGACACAGTGCTTAATCT 

HMCATF AAAAAAAAAGAATTCAACAGCCCAGGCAGATTAGA 

HMCATR AAAAAAAAAGAATTCGAAATGAACTCCAGGGCAAA 

HSDHCF AAAAAAAAAGAATTCGTTGCCCAGGCTTGAGTG 

HSDHCR AAAAAAAAAGAATTCGGGAACTCTGTATGTTATTTCTGC 

HCLK1F AAAAAAAAACAATTGGTTTTGTTGCCTTGCCACTT 

HCLK1R AAAAAAAAACAATTGATGATCGATGCACTCCACAA 

HSYTL2F AAAAAAAAAGAATTCTGGCCTTGAGTTGAAACAGA 

HSYTL2R AAAAAAAAAGAATTCGCACATACAACTTCACCTTATGC 

 

Table 2.5 Primer sequences used to clone exons and flanking intronic regions into the 

pXJ41 minigene.  

2.3.7 siRNA transfection 

Depletion of the endogenous Tra2α and Tra2β proteins was achieved by transfecting 

MDA-MB-231 cells with Silencer Select Pre-designed siRNAs (Ambion). siRNAs 

targeting the TRA2A mRNA (Ambion IDs: s26664 and s26665) and the TRA2B mRNA 

(Ambion IDs: s12749 and s12751) were transfected using siPORT NeoFX Transfection 

Agent (Ambion). Control cells were transfected with the same concentration of 

negative control siRNA (Ambion Cat#: 4390843). Untreated cells and cells treated with 

the transfection reagent only were also used as additional controls in some 
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experiments. Cells were transfected with either 24μl of 10μM negative control siRNA, 

12μl of 10μM siRNA targeting TRA2A or TRA2B (single Tra2α or Tra2β depletion) or 

12μl of 10μM siRNA targeting TRA2A and 12μl of 10μM siRNA targeting TRA2B (joint 

Tra2α and Tra2β depletion). For each transfection, 30μl siPORT NeoFX was added to 

600 μl Opti-MEM media and incubated for 10 minutes. The appropriate siRNA was 

diluted in a further 600μl Opti-MEM and subsequently added to the transfection 

reagent mix and incubated for a further 20 minutes at room temperature. Each 

siPORT/siRNA mix was then added to a 100mm tissue culture plate, to which 10ml of 

MDA-MB-231 cell suspension was added. Cells were seeded at a density of 

approximately 3x105 cells per 100mm plate. Cells were incubated for 72 hours 

following siRNA transfection, after which cells were harvested for both RNA extraction 

and Western Immunoblotting as described earlier. 

2.3.8 Splicing analysis of endogenous target exons 

RNA was extracted using the standard Trizol RNA extraction described in section 

2.3.2.2. Subsequently, cDNA was synthesised from 500ng total RNA in a 10μl reaction, 

using a SuperScript VILO cDNA synthesis kit (Life Technologies) following the 

manufacturer’s instructions. The splicing profiles of endogenous targets were 

monitored by PCR, using primers designed within flanking constitutive exons. The 

primer sequences for the endogenous splicing analysis are provided in Table 2.6. In 

each PCR, 1μl of diluted cDNA (1 in 8 dilutions) was used as the template in a standard 

10μl PCR reaction using a Phusion High-Fidelity PCR Kit (Thermo Scientific) following 

the manufacturer’s instructions. The splicing profiles were monitored and quantified 

using the QIAxcel capillary gel electrophoresis system (Qiagen) and the percentage 

splicing inclusion (PSI) of endogenous targets were calculated as described earlier in 

section 2.3.2.6. 
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Primer Sequence 

CLK1 F AGCAAACACAGGATTCACCAC 

CLK1 R TGATCGATGCACTCCACAAC 

PDLIM5 F AGCCGGTTCCTGTTCAAAAG 

PDLIM5 R TGCTGTTTACTGTCACCCTGG 

LYRM1 F GAGAAGGAGAAGCCAGCAAA 

LYRM1 R CCAATTTCAATCCTGGCTGT 

TRA2A F TTGCCGACTCTTTCCTCTTC 

TRA2A internal CGTGTATTCTTCCCCAATTCA 

TRA2A R AGGAGTTCCCGTTGGAGATT 

NASP F GAATGGTGTGTTGGGAAACG 

NASP R TTTGGCATTTCTTCGGTCTT 

NASP internal TTCCACCCTTCTCCATTTCA 

Table 2.6 Primer sequences used in the splicing analyses of endogenous targets 

exons. 
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2.4 Results 

2.4.1 Investigating splicing regulation of exons identified from the Tra2β HITS-CLIP 

experiment 

2.4.1.1 Investigating splicing regulation of candidate cassette exons using a minigene 

splicing assay 

Prior to the start of my study, an analysis of the Tra2β HITS-CLIP experiment 

(previously performed by Dr. Yilei Liu) identified 741 cassette exons containing CLIP 

sequencing reads or ‘CLIP tags’ from the mouse testis. I began my PhD project 

following on from this initial HITS-CLIP experiment, with the aim of identifying 

functionally responsive exons from the catalogue of exons containing Tra2β CLIP tags. 

The work in this chapter contributed to a larger project, which has now been published 

in PLoS Genetics (Grellscheid et al., 2011a).  

To test whether Tra2β directly regulated splicing inclusion of a selection of exons 

containing Tra2β CLIP tags, 8 cassette exons (together with approximately 300bp of 

flanking intronic sequences), had been previously cloned into the pXJ41 minigene 

vector by Mrs. Caroline Dalgliesh (Newcastle University) for splicing analysis. I 

subsequently transfected each of the minigenes into HEK-293 cells, along with pGFP3 

expression constructs encoding either a GFP-only control or full-length Tra2β-GFP. The 

splicing pattern of the RNA expressed from each minigene was then analysed by RT-

PCR and capillary gel electrophoresis. Efficient expression of the GFP-tagged constructs 

was confirmed by fluorescence microscopy and Western Immunoblotting. Each 

transfection was performed in triplicate to determine whether any observed changes 

in splicing were reproducible and statistically significant. Co-expression with 500ng of 

the Tra2β-GFP expression vector was found to significantly increase the percentage 

splicing inclusion (PSI) of 6 out of the 8 minigenes when compared to transfection with 

the GFP-only control (Figure 2.3).  The Tra2β-responsive minigenes contained cassette 

exons cloned from Nasp, Krba1, Fabp9, Creb, Lin28b and Tra2a (see Figures 2.3 A, B, D, 

E, F, H respectively). A minigene containing a cassette exon from Pank2 responded 

weakly to co-transfection with the Tra2β-GFP expression vector, but this change was 

not statistically significant (Figure 2.3 G). A minigene containing Creb exon 2 did not 

respond to co-expression of Tra2β-GFP (Figure 2.3 C). 
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Figure 2.3 Splicing patterns of 8 minigenes containing candidate exons analysed by 

RT-PCR and capillary gel electophoresis. The percentage splicing inclusion (PSI) of 

each minigene exon was compared between cells transfected with either GFP-only 

(blue) or full-length Tra2β-GFP (green). PCR product sizes are provided on right-hand 

side of each gel. Data represents the mean of three biological replicates ±s.e.m. 

Statistical significance was calculated using an independent two-sample t-test, where 

*p<0.05, **p<0.01, ***p<0.0001. This figure is adapted from (Grellscheid et al., 2011a). 



Chapter 2               Functional dissection of splicing regulation by the RNA-binding protein Tra2β 

52 
 

2.4.1.2 Tra2β activates splicing inclusion of a poison exon from Tra2a 

Intriguingly, the most highly responsive minigene to co-expression of the full-length 

Tra2β-GFP protein contained a 306bp poison exon from the Tra2a gene [N.B. An 

internal screening primer was used for the Tra2a minigene RT-PCR, therefore 

counterintuitively, the PCR product respresenting poison exon inclusion was shorter 

(183bp) than the PCR product respresenting exon exclusion (322bp) for this particular 

minigene] (Figure 2.3 H). Poison exons introduce premature termination codons (PTCs) 

into mRNA transcripts, thereby targeting the transcript for degradation through the 

non-sense mediated decay (NMD) pathway (Lareau et al., 2007; Ni et al., 2007). 

Intriguingly, this inital minigene data suggested that Tra2β may negatively regulate 

expression of the Tra2α protein, by promoting inclusion of a highly responsive poison 

exon within the Tra2a mRNA. The Tra2a poison exon is studied in further detail in 

chapter 3. 

2.4.1.3 Investigating Tra2β mediated splicing regulation of the Nasp-T exon using 

mutagenesis 

One of the six Tra2β-responsive minigene exons was a particularly large (975 

nucleotide) cassette exon from the Nasp gene. This alternatively spliced exon encodes 

part of a testis-enriched isoform of the Nasp protein and is subsequently referred to as 

the Nasp-T exon (Alekseev et al., 2003) (Figure 2.5 A). To investigate the distribution of 

Tra2β binding sites within this large exon, the top 25 K-mers (25 most frequently 

recovered sequences) from the Tra2β HITS-CLIP experiment were mapped onto the 

Nasp-T exon (Figure 2.4). This Tra2β binding site analysis was done in collaboration 

with Dr. Sushma Grellscheid (School of Biological and Biomedical Sciences, Durham 

University). This analysis indicated that the Nasp-T exon contained a particularly high 

density of Tra2β binding sites throughout the exon. 
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Figure 2.4 The Nasp-T exon contains a high density of Tra2β binding sites throughout 

the exon. The top 25 K-mers (25 most frequently recovered sequences) identified from 

Tra2β HITS-CLIP experiment were mapped back to the Nasp-T exon to represent Tra2β 

binding sites within the exon. K-mers are shaded green. This figure is adapted from 

(Grellscheid et al., 2011a). 

To investigate whether multiple Tra2β binding sites were required for splicing 

activation of the Nasp-T exon, a selection of Tra2β binding sites were mutated within 

the wildtype Nasp-T minigene using site-directed mutagenesis. I focused on an 

upstream region of the exon (close to the 3' splice site), which contained the highest 

number of Tra2β CLIP tags (see Figure 2.5 B). In order to mutate Tra2β binding sites 

without inadvertently creating splicing silencer sequences within the exon, I used the 

sequence analysis programme Cis-plotter (unpublished, developed by Dr. Sushma 

Grellsheid, Durham University). Cis-plotter predicts splicing enhancer and splicing 

silencers within a given sequence. Cis-plotter predicted four potential exonic splicing 

enhancer (ESE) sequences within this region, which directly overlapped with Tra2β 

CLIP tags (Figure 2.5 C). Each of the four predicted Tra2β binding sites were mutated to 

a sequence that would prevent Tra2β binding, but would not inadvertently introduce 

exonic splicing silencer (ESS) sequences. The four mutated versions of Nasp-T 

minigenes were then transfected into HEK-293 cells to assess the effect of each 

mutation on exon inclusion using RT-PCR and capillary gel electrophoresis (Figure 2.7).  
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2.4.1.4 Tra2β promotes splicing inclusion of the Nasp-T exon through multiple 

redundant binding sites 

Mutation of single Tra2β binding sites (individual mutations are termed M1, M2, M3 

and M4) within the Nasp-T minigene only had a minor effect on exon inclusion when 

co-transfected into HEK-293 cells with a GFP-only control. All four mutated versions of 

the Nasp-T minigene showed slightly reduced exon inclusion when compared to the 

wildtype minigene, although only the effect of mutations M2 and M4 were statistically 

significant (compare blue bars, Figure 2.6). Consequently, I created mutated versions 

of the Nasp-T minigene which combined two Tra2β binding site mutations (combined 

mutations are termed M1+M2, M2+M3 and M3+M4). A capillary gel electrophoresis 

image showing a comparison between the splicing pattern of the wildtype Nasp-T exon 

and the M3+M4 version of the Nasp-T minigene is shown in Figure 2.7.  

Mutating two Tra2β binding sites resulted in a substantial reduction in exon inclusion 

for each combined mutation when compared to the wildtype minigene. Interestingly, 

different combinations of paired Tra2β binding site mutations within the Nasp-T exon 

had distinct effects on exon inclusion (compare version M2+M3 with GFP-only to 

version M3+M4 with GFP-only in Figure 2.6), suggesting the position of each binding 

site was important, distinct from the total number of binding sites mutated. In 

particular, the M3+M4 mutation strongly reduced exon inclusion to just 21%, whereas 

the M2+M3 mutation had less effect, reducing exon inclusion to approximately 78% 

(mean inclusion of the wildtype Nasp-T exon was 93%). Each of the combined 

mutations had a greater effect on splicing inclusion of the Nasp-T exon than the single 

mutations alone when transfected with the GFP-only control. However, each minigene 

containing a combined mutation still responded strongly to co-transfection of full-

length Tra2β-GFP, suggesting Tra2β could still activate splicing inclusion through the 

other binding sites within the exon. Together, this data suggests that Tra2β is able to 

directly regulate splicing inclusion of the Nasp-T exon through multiple, redundant 

binding sites. 
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Figure 2.5 Mutagenesis of Tra2β binding sites within the wildtype Nasp-T minigene. 

(A) The 975bp Nasp-T exon within the Nasp gene. (B) Multiple Tra2β CLIP tags (blue 

bars) from the murine Tra2β HITS-CLIP experiment mapped directly within the Nasp-T 

exon. (C) The sequence analysis programme Cis-plotter was used to predict ESE and 

ESS sequences within the region of the Nasp-T exon containing the highest number of 

CLIP tags. Four ESE sequences were predicted (ESE1-4) and then mutated (red) to 

inhibit binding by Tra2β (M1, M2, M3 and M4). The Tra2β binding sites were mutated 

to a neutral sequence (shown in blue) to prevent inadvertently introducing splicing 

silencer sequences within the exon. Figure 2.5 part C is adapted from (Grellscheid et al., 

2011a). 
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Figure 2.6 The percentage splicing inclusion (PSI) of different versions of the Nasp-T 

minigene exon. Each version of the Nasp-T minigene was co-transfected with either a 

GFP-only control (blue) or full-length Tra2β-GFP (green). Data represents the mean of 

three biological replicates ±s.e.m. Statistical significance was calculated using an 

independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. This figure is 

adapted from (Grellscheid et al., 2011a). 

 

Figure 2.7 Capillary gel electrophoresis image comparing splicing patterns of the 

wildtype Nasp-T minigene to a mutated version (Nasp-T M3+M4). Due to the large 

size of the Nasp-T exon, an internal screening primer was used to produce a shorter 

PCR product (230bp) corresponding to exon inclusion. Each version of the minigene 

was co-transfected with either a GFP-only control or full-length Tra2β-GFP. Mutation 

of Tra2β binding sites (in version M3+M4) significantly reduced splicing inclusion of the 

Nasp-T exon at endogenous concentrations of Tra2β (compare columns 1 and 3). 

However, the M3+M4 version remained highly responsive to over-expression of full-

length Tra2β (compare columns 3 and 4). 
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To determine whether the M3+4 version of the Nasp-T minigene would respond less 

efficiently to lower levels of ectopically expressed Tra2β, HEK-293 cells were co-

transfected with either the wildtype Nasp-T minigene or the M3+M4 mutant version 

and a lower concentration gradient of ectopically expressed Tra2β (ranging from 0-

50ng of Tra2β-GFP, instead of the typical 500ng) (Figure 2.8). Splicing inclusion of the 

wildtype Nasp-T exon was maximal (approximately 100% inclusion) after co-

transfection with no more than 20ng of the Tra2β-GFP expression construct. In 

contrast, the mean PSI of the M3+M4 version increased more slowly across the 

concentration gradient. These results suggest that removal of just two Tra2β binding 

sites (from approximately 37 potential binding sites in total) is sufficient to significantly 

alter the concentration range of Tra2β to which the Nasp-T exon responds. 

 
Figure 2.8 Tra2β activates inclusion of the Nasp-T exon in a concentration dependent 

manner. Mutating Tra2β binding sites (mutant M3+M4) significantly altered the 

sensitivity range to which the Nasp-T exon responded to Tra2β. Data represents the 

mean of three biological replicates ±s.e.m. Statistical significance was calculated using 

an independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. This figure 

is adapted from (Grellscheid et al., 2011a). 
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To analyse direct protein-RNA interactions between Tra2β and the Nasp-T exon, an 

Electrophoretic Mobility Shift Assay (EMSA) was carried out by Mrs. Caroline Dalgliesh 

(Newcastle University) using purified full-length Tra2β protein and short radioactive 

RNA probes corresponding to a 155bp region of the Nasp-T exon (Figure 2.9). RNA 

probes corresponsing to the wildtype Nasp-T sequence and probes containing the M2 

and M3+M4 mutations were used to determine the effect of the mutations on the 

affinity of Tra2β for this region of the Nasp-T exon. The mutant RNA probes were 

cloned from the Nasp-T M2 and M3+M4 minigenes I constructed earlier. The sequence 

of each RNA probe is shown in Figure 2.9 A. 

The wildtype RNA probe was efficiently shifted by just 10ng of full-length Tra2β protein, 

demonstrating a strong interaction between Tra2β and the wildtype Nasp-T sequence 

(other Tra2β target exons required up to 200ng of full-length Tra2β protein to exert a 

similar shift) (Grellscheid et al., 2011a). The RNA probe containing the single M2 

mutation shifted to a similar extent as the wildtype probe. However, the RNA probe 

containing the combined M3+M4 mutations shifted less efficiently than the wildtype 

and M2 probes, though it was still shifted considerably by just 10ng of full-length Tra2β 

protein.  

The data from the EMSA experiment suggests that Tra2β has a very high affinity for the 

Nasp-T exon and directly interacts with the exon through multiple binding sites. The 

M2 and M3+M4 mutations did not substantially diminish the interaction between the 

purified Tra2β protein and the mutated Nasp RNA probes, suggesting Tra2β was still 

able to bind the RNA efficiently, most likely through the other predicted binding sites. 

This is consistent with the data from the Nasp-T minigenes, in which none of the 

binding sites were essential for Tra2β mediated splicing activation of the Nasp-T exon. 

Overall, the combined minigene and EMSA data suggest that the Nasp-T exon is highly 

sensitive to Tra2β protein expression and that Tra2β promotes splicing inclusion of the 

Nasp-T exon through multiple, redundant binding sites. 
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      A 

 

      B 

 

 

Figure 2.9 An Electrophoretic Mobility Shift Assay (EMSA) was used to examine direct 

interactions between Tra2β and different versions of the Nasp-T RNA. The 

Electrophoretic Mobility Shift Assay (EMSA) was carried out entirely by Mrs. Caroline 

Dalgliesh (Newcastle University) using purified full-length Tra2β protein and short 

radioactive RNA probes corresponding to a 155bp region of the Nasp-T exon. (A) The 

sequence of each of the three Nasp RNA probes (Tra2β binding sites highlighted in 

green, single base mutations highlighted in red). (B) The wildtype RNA probe was 

efficiently shifted by 10ng full-length Tra2β protein. The M2 probe shifted to a similar 

extent as the wildtype probe. The M3+M4 probe was less efficiently shifted than the 

wildtype and M2 probes. Figure 2.9 part B is adapted from (Grellscheid et al., 2011a). 
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2.4.2 Investigating the functional effect of removing the RS1 domain or RRM of Tra2β 

in splicing regulation 

Having identified a panel of Tra2β-responsive exons, I next used these minigenes to 

investigate what effect removing either the RS1 domain or RRM from the Tra2β 

protein would have on splicing regulation. The panel of Tra2β responsive minigenes 

were co-transfected with pGFP3 expression vectors encoding truncated versions of the 

Tra2β protein. Five expression vectors were used in this study, which had been cloned 

previously by Mrs. Caroline Dalgliesh (Newcastle University). The pGFP3 expression 

vectors encode a GFP-only control, full-length Tra2β-GFP, full-length Tra2α-GFP, 

Tra2βΔRRM-GFP (lacking the RRM) and Tra2βΔRS1-GFP (lacking the RS1 domain). I 

confirmed efficient expression of each of the GFP-tagged proteins in HEK-293 cells by 

Western Immunoblotting using a GFP-specific antibody (Figure 2.10 A). 

2.4.2.1 Direct RNA-binding was required for splicing activation of most Tra2β 

responsive minigenes 

To investigate whether direct RNA-binding was required for splicing activation by the 

Tra2β protein, the splicing pattern of the Tra2β-responsive minigenes was compared 

between HEK-293 cells co-transfected with either full-length Tra2β-GFP (green 

columns) or Tra2βΔRRM-GFP (red columns) (Figure 2.10). Splicing activation of the 

Tra2a poison exon (Figure 2.10 B), Lin28b exon 2 (Figure 2.10 H), Fabp9 exon 3 (Figure 

2.10 I) and Creb exon γ (Figure 2.10 J) was completely lost when cells were co-

transfected with Tra2βΔRRM-GFP as a substitute of full-length Tra2β-GFP (compare 

green and red columns, Figure 2.10). This data suggests that direct RNA-binding is 

required for efficient splicing activation of these exons. However, co-transfection with 

Tra2βΔRRM-GFP did significantly activate splicing inclusion of the wildtype Nasp-T 

minigene (Figure 2.10 C) and also slightly increased inclusion of the M3+M4 Nasp-T 

minigene (though this did not reach statistical significance and was significantly less 

than full-length Tra2β-GFP) (Figure 2.10 D). Therefore direct RNA-binding may not be 

essential for splicing activation of all target exons. Tra2β may also function as a splicing 

co-activator (enhancing exon recognition without directly binding to the RNA sequence) 

of some exons such as Nasp-T. The Creb exon 2 minigene, which did not respond to 

full-length Tra2β-GFP, similarly did not respond to co-transfection with Tra2βΔRRM-

GFP (Figure 2.10 G). 
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Figure 2.10 Co-transfection with different Tra2β expression constructs can activate, 

co-activate or repress splicing of the same target exons. (A) Efficient expression of the 

GFP-tagged fusion proteins was confirmed by Western Immunoblotting. (B-I) Splicing 

pattern of minigenes when co-transfected with GFP-only (blue), full-length Tra2β-GFP 

(green), full-length Tra2α-GFP (purple), Tra2βΔRRM-GFP (red) and Tra2βΔRS1-GFP 

(yellow). Data represents the mean of three biological replicates ±s.e.m. Statistical 

significance was calculated using an independent two-sample t-test, where *p<0.05, 

**p<0.01, ***p<0.0001. This figure is adapted from (Grellscheid et al., 2011a). 
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2.4.2.2 A Tra2β isoform lacking the RS1 domain functioned as a splicing repressor 

To investigate whether the RS1 domain of Tra2β was required for efficient splicing 

activation,  the splicing pattern of the same Tra2β-responsive minigenes was 

compared between cells co-transfected with either GFP-only (blue columns), full-

length Tra2β-GFP (green columns) or Tra2βΔRS1-GFP (yellow columns) (Figure 2.10). 

Unexpectedly, co-expression with Tra2βΔRS1-GFP (which lacks the RS1 domain) not 

only failed to activate splicing inclusion, but strongly repressed inclusion of nearly all 

Tra2β-responsive minigenes when compared to co-transfection with the GFP-only 

control (compare blue columns to yellow columns, Figure 2.10 B, C, D, E, F, I, J). Co-

transfection with Tra2βΔRS1-GFP had no significant effect on splicing of the Creb exon 

2 and Lin28b exon 2 minigenes compared to the GFP-only control. This data indicated 

that the RS1 domain of Tra2β is essential for splicing activation of the Tra2β target 

exons from this study. This data also suggests a possible novel function for the 

endogenous Tra2β-3 isoform (which also lacks the RS1 domain), which could 

potentially repress inclusion of target exons normally activated by the full-length 

Tra2β-1 protein. However, it is also possible that over-expression of the Tra2βΔRS1-

GFP isoform in this minigene model system may amplify the effect of the Tra2βΔRS1 

isoform. Further investigation is required to establish whether the endogenous Tra2β-

3 protein exerts similar repressive activity. 

2.4.3 Investigating regulation of alternative 3' splice sites identified from the Tra2β 

HITS-CLIP experiment 

After cassette exons, the second most common class of alternative events associated 

with CLIP tags from the Tra2β HITS-CLIP experiment was alternative splice sites. In 

total, 432 alternative splice sites were identified within close proximity to Tra2β CLIP 

tags. To investigate whether Tra2β was involved in selection of alternative 3' splice 

sites, I cloned two exons from Lyrm1 and Adam17 which contained Tra2β CLIP tags 

mapping close to alternative 3' splice sites, together with their flanking intronic 

sequences, into the pXJ41 minigene vector for splicing analysis. An example of Tra2β 

CLIP tags (red bar) mapping close to the alternative 3' splice site of an exon from Lyrm1 

is shown in Figure 2.11. 
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Figure 2.11 Tra2β CLIP tags (red bar) mapped within close proximity of an alternative 

3' splice site of a cassette exon from Lyrm1. 

Splicing analysis of the Adam17 minigene by RT-PCR and capillary gel electrophoresis 

revealed 0% splicing inclusion of the Adam17 cassette exon when transfected into 

HEK-293 cells with the GFP-only control (Figure 2.12 A, column 1). Co-transfection with 

full-length Tra2β-GFP had no effect on exon inclusion of the Adam17 exon (Figure 2.12 

A, column 2). Splicing analysis of the Lyrm1 minigene revealed just two PCR bands, 

corresponding to the predicted sizes for exon inclusion (347bp) or exon exclusion 

(188bp) (Figure 2.12 B). The longer version of the cassette exon created using the 

alternative 3' splice site was not observed (predicted size 480bp). However, co-

transfection with full-length Tra2β-GFP significantly increased splicing inclusion of the 

Lyrm1 cassette exon when compared to co-transfection with the GFP-only control 

(compare columns 1 & 2, Figure 2.12 B). Co-transfection with Tra2βΔRS1-GFP also 

significantly repressed exon inclusion when compared to GFP-only control (compare 

columns 1 & 3, Figure 2.12 B). Although I did not detect selection of the alternative 3' 

splice site, this data suggests that the cassette exon within Lyrm1 is another target of 

splicing regulation by Tra2β. As selection of the alternative 3' splice sites was not 

detected in the Adam17 and Lyrm1 minigenes, I decided to focus on other areas for 

further study. 
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Figure 2.12 Splicing analyses of the Adam17 and Lyrm1 minigenes. Tra2β CLIP tags 

mapped within close proximity to alternative 3' splice sites of cassette exons with the 

Adam17 and Lyrm1 genes. (A) The Adam17 minigene exon was not included (0% 

splicing inclusion) when transfected into HEK-293 cells and did not respond to co-

expression with full-length Tra2β-GFP. (B) Splicing inclusion of the Lyrm1 cassette 

significantly increased after co-transfection with full-length Tra2β-GFP and was 

significantly respressed by co-transfection with Tra2βΔRS1-GFP. I did not detect any 

isoform in which the alternative 3' splice site was selected from this minigene 

(predicted size 480bp). Data represents the mean of three biological replicates ±s.e.m. 

Statistical significance was calculated using an independent two-sample t-test, where 

*p<0.05, **p<0.01, ***p<0.0001. 

 

2.4.4 Investigating splicing regulation of breast cancer-associated alternative splicing 

events by Tra2β using minigenes 

In sections 2.4.1 to 2.4.3, I investigated splicing regulation of Tra2β target exons 

identified from the mouse testis. Following on from that work, I next investigated the 

possibility of using the consensus Tra2β binding site (derived from the Tra2β HITS-CLIP 

experiment and used to map Tra2β binding sites within the Nasp-T exon) to predict 

possible targets of splicing regulation from a publicly available dataset of cancer-

associated alternative splicing (Venables et al., 2009a). The data from Venables et al. 

was generated using a high-throughput RT-PCR screen of alternative splicing events in 

human breast and ovarian tumours (Venables et al., 2009a). My overall aim was to 

investigate whether Tra2β was involved in splicing regulation of a selection of human 

breast cancer-associated alternative splicing events using minigenes.  
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Accordingly, the top 25 K-mers from the Tra2β HITS-CLIP experiment were mapped to 

the top 50 up-regulated alternative splicing events identified from the panel of breast 

cancer tumours (Venables et al., 2009a). Six alternative exons were identified within 

PDLIM5, MCAT, SLC10A7, SYTL2, CLK1, SDHC which contained multiple predicted Tra2β 

binding sites and these were subsequently cloned into the pXJ41 minigene vector, 

together with approximately 300bp of flanking intronic sequences for splicing analysis. 

The six minigenes were then transfected into HEK-293 cells for splicing analysis. Each 

minigene was initially co-tranfected with full-length Tra2β-GFP or the GFP-only control 

to determine whether each minigene was responsive to full-length Tra2β protein 

expression (Figure 2.13).  

From an initial screen using single biological samples, two of the six minigenes visibly 

responded to co-transfection with full-length Tra2β-GFP. The Tra2β-responsive 

minigenes contained an exon with an alternative 3' splice site from PDLIM5 (Figure 

2.13 A) and a cassette exon from CLK1 (Figure 2.13 E). Unexpectedly, co-transfection 

with full-length Tra2β-GFP actively repressed splicing inclusion of both splicing events 

in the PDLIM5 and CLK1 minigenes. The remaining four minigenes containing exons 

from MCAT (Figure 2.13 B), SLC10A7 (Figure 2.13 C), SYTL2 (Figure 2.13 D) and SDHC 

(Figure 2.13 F) did not visibly respond to co-transfection with full-length Tra2β-GFP 

when compared to the GFP-only control. 
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Figure 2.13 Splicing analyses of six minigenes containing breast cancer-associated 

alternative splicing events. Each minigene was co-transfected with either a GFP-only 

control or full-length Tra2β-GFP. This initial screen used data from single biological 

samples. Splicing inclusion of the PDLIM5 (A) and CLK1 (E) exons was visibly reduced 

following co-transfection with full-length Tra2β-GFP compared to the GFP-only control. 

 

I repeated the PDLIM5 and CLK1 minigene transfections in biological triplicate to 

confirm that the observed changes in splicing were reproducible and statistically 

significant (Figure 2.14). Co-transfection of the CLK1 minigene with either full-length 

Tra2β-GFP or Tra2βΔRS1-GFP significantly repressed exon inclusion when compared to 

the GFP-only control (Figure 2.14 A). Co-transfection of full-length Tra2β-GFP 

significantly repressed inclusion of both versions of the PDLIM5 exon (a larger exon is 
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created through use of an alternative 3' splice site), whilst Tra2βΔRS1-GFP had no 

significant effect on inclusion of either size exon (Figure 2.14 B). 

 

Figure 2.14 Splicing analyses of the CLK1 and PDLIM5 minigenes. Co-transfection with 

full-length Tra2β-GFP significantly repressed exon inclusion in the CLK1 (A) and PDLIM5 

(B) minigenes compared to the GFP-only control. Co-transfection with Tra2βΔRS1-GFP 

also significantly reduced splicing inclusion of the CLK1 exon, but not in the PDLIM5 

minigene. Data represents the mean of three biological replicates ±s.e.m. Statistical 

significance was calculated using an independent two-sample t-test, where *p<0.05, 

**p<0.01, ***p<0.0001. 

 

2.4.5 Tra2β protein depletion via siRNA transfection 

To investigate whether the corresponding endogenous exons from LYRM1, PDLIM5 

and CLK1 were regulated by Tra2β, I knocked down endogenous Tra2β protein 

expression in the invasive breast cancer cell line MDA-MB-231 using siRNA transfection. 

Knockdown of endogenous Tra2β protein was confirmed by Western Immunoblotting, 

using a rabbit polyclonal antibody against Tra2β and a mouse monoclonal antibody 

against α-Tubulin as a loading control. Optimal Tra2β protein depletion was observed 

72 hours after siRNA transfection. Tra2β protein depletion was observed in cells 

transfected with TRA2B siRNA when compared to untreated control cells, negative 

control siRNA transfected cells or TRA2A siRNA transfected cells (Figure 2.15).  
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Figure 2.15 Depletion of endogenous Tra2β was confirmed in MDA-MB-231 cells by 

Western Immunoblotting. Expression of α-Tubulin was monitored as a loading control. 

 

2.4.6 Splicing analysis of endogenous target exons following Tra2β depletion 

To determine whether depletion of endogenous Tra2β would affect splicing of the 

endogenous target exons, MDA-MB-231 cells were harvested 72 hours after siRNA 

transfection. Splicing patterns of the endogenous RNA targets was analysed by RT-PCR 

and capillary gel electrophoresis, using primers located within flanking constitutive 

exons.  Unexpectedly, the splicing inclusion of all three endogenous exons from 

PDLIM5 (Figure 2.16 A), CLK1 (Figure 2.16 B) and LYRM1 (Figure 2.16 C) was unaffected 

by Tra2β depletion when compared to untreated control cells or negative control 

siRNA transfected cells. As a positive control, I analysed splicing inclusion of the human 

homologs of two target exons identified earlier in the chapter; the NASP-T exon (Figure 

2.16 D) and the TRA2A poison exon (Figure 2.16 E). Although this initial RT-PCR was 

performed using single biological replicates, inclusion of the endogenous NASP-T exon 

and TRA2A poison exon was visibly reduced in cells transfected with TRA2B siRNA 

when compared to untreated control cells or negative control siRNA transfected cells. 

This suggested that depletion of endogenous Tra2β had at least been sufficient to 

induce splicing changes to these two target exons. It also showed that Tra2β-mediated 

splicing regulation of the NASP-T exon and TRA2A poison exon was conserved between 

mice and humans.  
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Figure 2.16 Splicing analyses of endogenous target exons following depletion of 

Tra2β in MDA-MB-231 cells. The PSI of endogenous exons within (A) PDLIM5, (B) CLK1, 

(C) LYRM1, (D) NASP and (E) TRA2A was determined by RT-PCR and capillary gel 

electrophoresis. Knockdown of Tra2β had no effect on splicing inclusion of the 

endogenous exons within PDLIM5, CLK1 and LYRM1 when compared with untreated 

control cells or cells transfected with negative control siRNA. However, knockdown of 

Tra2β did reduce inclusion of the endogenous NASP-T and TRA2A poison exons. Data 

shown is from single biological samples only. 
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2.4.7 Splicing analysis of endogenous target exons after joint depletion of Tra2α and 

Tra2β 

Subsequent experiments (discussed in chapter 3) indicated that joint depletion of both 

Tra2α and Tra2β proteins was required to observe robust changes in splicing of Tra2β 

target exons, due to paralog compensation between Tra2α and Tra2β. Therefore in a 

much later experiment, I monitored splicing of the endogenous CLK1, LYRM1 and 

PDLIM5 exons following joint depletion of both Tra2α and Tra2β proteins in MDA-MB-

231 cells. Consistent with this hypothesis, joint depletion of both Tra2 proteins (but 

not depletion of Tra2β alone) led to a significant reduction in splicing inclusion of the 

CLK1 exon (Figure 2.17 A) and the LYRM1 exon (Figure 2.17 B). Joint depletion of Tra2α 

and Tra2β had no significant effect on inclusion of the PDLIM5 exon. 

 

Figure 2.17 Splicing analyses of endogenous target exons after joint depletion of 

Tra2α and Tra2β proteins. Splicing inclusion of the endogenous CLK1 exon (A) and 

LYRM1 exon (B) was significantly reduced following depletion of both Tra2α and Tra2β 

proteins, but not depletion of Tra2β alone. Inclusion of the endogenous PDLIM5 exon 

was not affected by joint Tra2 protein depletion. Data represents the mean of three 

biological replicates ±s.e.m. Statistical significance was calculated using an 

independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. 
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2.5 Discussion 

2.5.1 Validation of novel Tra2β target exons from the mouse testis 

To further understand the biological functions of Tra2β, a key priority was to identify 

novel RNA targets which were physiologically regulated by this RNA-binding protein. 

New technologies including UV cross-linking and immunoprecipitation (CLIP) of RNA-

binding proteins coupled to deep sequencing are providing new insights into the 

targets of many RNA-binding proteins on a transcriptome-wide scale, but these 

techniques require functional validation. The murine Tra2β HITS-CLIP experiment 

carried out previously provided valuable information about Tra2β-RNA interactions in 

the mouse testis, which I have used in this chapter to functionally validate Tra2β-

mediated splicing regulation using minigenes. 

To determine whether Tra2β directly regulated splicing of cassette exons identified 

from the Tra2β HITS-CLIP experiment, a panel of candidate exons were cloned into the 

pXJ41 minigene vector for splicing analysis. The minigene assays identified a number of 

novel exons which responded to co-transfection with full-length Tra2β in cellulo, 

including exons with important functions from Nasp and Tra2a. Other novel Tra2β-

responsive exons were identified from Creb, Krba1, Lin28b, Fabp9 and Lyrm1.  

One advantage of using minigene models is that it readily permits manipulation of the 

target sequence. This allows binding sites to be moved or mutated to provide key 

functional information about protein-RNA interactions. On the other hand, the use of 

minigenes significantly limited the number of targets which could be analysed. 

Ultimately, just 10 exons were screened from a transcriptome-wide study of Tra2β 

binding. Subsequent studies have since analysed Tra2β splicing regulation on a more 

global scale, using strategies including splicing-sensitive microarrays after digitoxin 

treatment (digitoxin is a negative regulator of Tra2β protein expression) (Anderson et 

al., 2012) or using RNA from a neuronal-specific tra2b knockout mouse model 

(Storbeck et al., 2014). RIP-seq has also been used to investigate transcriptome-wide 

binding sites of Tra2β (Uren et al., 2012).  
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2.5.1.1 The Tra2a posion exon 

From the initial panel of minigenes, the most highly responsive exon to Tra2β co-

expression was a poison exon from Tra2a. Poison exons introduce premature 

termination codons (PTC) into mRNA transcripts, thereby targeting the mRNA for 

nonsense-mediated decay (NMD) (Lareau et al., 2007). Poison exons therefore provide 

a mechanism for post-transcriptional regulation of gene expression via alternative 

splicing (Ni et al., 2007). Tra2β was previously shown to auto-regulate its own 

expression by promoting inclusion of a poison exon within the Tra2b mRNA (Stoilov et 

al., 2004). This new data suggested that Tra2β may also directly regulate expression of 

Tra2α, by promoting inclusion of a posion exon within the Tra2a mRNA. Extensive 

cross-regulation through non-productive splicing has previously been described for 

other RNA-binding proteins. This includes cross-regulation between members of the 

SR-protein family, as well as between the Polypyrimidine Tract Binding protein (PTB) 

and its paralog nPTB (Wollerton et al., 2004; Spellman et al., 2007). Cross-regulation 

between Tra2α and Tra2β is investigated further in chapter 3.  

2.5.1.2 The Nasp-T exon 

Tra2β was found to directly regulate a large exon from Nasp which contained multiple 

Tra2β binding sites. Nasp encodes a histone chaperone protein required for the 

nuclear import of histones during the G1-S phase transition in the cell cycle 

(Richardson et al., 2006). The Nasp protein occurs in two major isoforms; a large, 

testis-enriched ‘tNASP’ isoform which is expressed in germ, embryonic and 

transformed cells and a smaller, ‘sNASP’ isoform expressed in all rapidly dividing 

somatic cells (Alekseev OM, 2011). The tNASP isoform is produced by inclusion of the 

975bp cassette exon we identified as directly regulated by Tra2β. Increased expression 

of the tNASP isoform correlates with an increase in Tra2β protein expression during 

male germ cell development, suggesting Tra2β may regulate the ratio of Nasp protein 

isoforms during the development of meiotic cells (Welch and O'Rand, 1990; Alekseev 

et al., 2009). The tNASP isoform is induced in transformed cells and specific ablation of 

the tNASP isoform in prostate cancer cells was found to inhibit proliferation and 

induce apoptosis, suggesting induction of the tNASP isoform may play a role in tumour 

progression (Alekseev OM, 2011). 
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Sequence analysis of the Nasp-T exon revealed a particularly high density of Tra2β 

binding sites throughout the exon. Site-directed mutagenesis uncovered a redundancy 

between which Tra2β binding sites were used to activate splicing, as mutated versions 

of the Nasp-T exon were still efficiently activated by co-expression with Tra2β. The 

redundancy of Tra2β binding sites within the Nasp-T exon is most consistent with the 

kinetic probability model of splicing regulation proposed by (Grellscheid et al., 2011b). 

In the kinetic probability model, the higher the density of Tra2β binding sites within an 

exon, the higher the probability of activation at any given nuclear concentration of 

Tra2β, yet each individual binding site is non-essential for splicing activation. Reducing 

the number of Tra2β binding sites within the Nasp-T via mutagenesis decreased exon 

activation at endogenous concentrations of Tra2β, but inclusion of the exon could still 

be activated by over-expressing Tra2β. The number of Tra2β binding sites within an 

exon such as Nasp-T may therefore establish the sensitivity of the exon to endogenous 

concentrations of Tra2β. However, mutation of different pairs of Tra2β binding sites 

did not exert an exactly equal effect, highlighting an underlying positional importance 

of the Tra2β binding sites, distinct from the total number of sites within the exon. 

Inclusion of both the Nasp-T exon and Tra2a poison exon has subsequently been 

shown to be significantly reduced in a neuronal-specific Tra2b knockout mouse model, 

confirming the Tra2a poison exon and Nasp-T exon as physiological targets in vivo 

(Grellscheid et al., 2011a). 

 

Figure 2.18 Two models of Tra2β mediated splicing activation. Splicing regulation of 

the Nasp-T exon was most consistent with the kinetic probability model of splicing 

regulation proposed by (Grellscheid et al., 2011b). This figure is adapted from 

(Grellscheid et al., 2011b). 
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2.5.2 Co-expression of different Tra2β expression constructs can activate, co-activate 

or repress inclusion of the same target exons 

To determine whether direct RNA-binding was required for Tra2β-mediated splicing 

activation of target exons, inclusion of the Tra2β-responsive minigenes was compared 

between cells co-transfected with full-length Tra2β and the Tra2βΔRRM isoform. The 

Tra2βΔRRM isoform was unable to activate splicing of all Tra2β-responsive minigenes 

except for Nasp-T, suggesting direct RNA interaction is required for activation of these 

exons. Mutation of Tra2β binding sites within the Nasp-T minigene reduced exon 

inclusion, indicating that Tra2β-mediated splicing regulation of this exon was direct. 

However, co-transfection of Tra2βΔRRM also significantly increased exon inclusion in 

the Nasp-T minigene (though to a lesser extent than full-length Tra2β), suggesting 

Tra2β may also be capable of activating splicing of some exons through an indirect 

mechanism. One possibility is that Tra2βΔRRM may interact with endogenous Tra2β or 

other RNA-binding proteins to facilitate splicing complex assembly, independent from 

direct RNA-binding. Tra2β may therefore have additional functions as a splicing co-

activator for some exons. 

Co-transfection with the Tra2βΔRS1 isoform not only failed to activate splicing, but 

surprisingly actively repressed splicing inclusion of nearly all Tra2β-responsive 

minigenes tested. The Tra2βΔRS1 isoform did not inhibit splicing of any exons which 

did not respond to Tra2β, suggesting Tra2βΔRS1 acts as a specific inhibitor of Tra2β-

responsive exons, rather than as a general inhibitor of splicing. One possible model for 

this is that the Tra2βΔRS1 isoform acts as competitive inhibitor of full-length Tra2β 

(Figure 2.19). In a competitive inhibition model, the Tra2βΔRS1 isoform would occupy 

Tra2β binding sites within an exon (preventing full-length Tra2β from binding), but fail 

to facilitate splicing complex assembly through RS1 domain interactions. As a Tra2β-3 

isoform (lacking the RS1 domain) is expressed endogenously, it is possible that 

different endogenous Tra2β protein isoforms may also act competitively to either 

activate or inhibit inclusion of the same target exons in vivo. The endogenous Tra2β-3 

isoform has been detected in protein lysates from the brain and testis using an 

antibody specific to the C-terminus of the Tra2β protein (Stoilov et al., 2004). However, 

the Tra2β antibody used in my study is specific for the N-terminus of the Tra2β protein 

and therefore I did not detect the endogenous Tra2β-3 protein isoform in my study. 
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The use of a C-terminal specific primary antibody against Tra2β would facilitate the 

study of the endogenous Tra2β-3 protein isoform in future studies.  

 

Figure 2.19 A competitive inhibition model of target exon regulation by Tra2β-1 and 

Tra2β-3. Full-length Tra2β (Tra2β-1) and Tra2βΔRS1 (Tra2β-3) compete for the same 

binding sites within an exon. Tra2β-1 is able to enhance spliceosome assembly through 

RS1-domain interactions. When Tra2β-3 occupies the same binding site, Tra2β-1 is 

unable to bind to the exon. However as Tra2β-3 lacks the functional RS1-domain, 

Tra2β-3 fails to enhance spliceosome assembly, leading to skipping of this exon. 

2.5.3 Investigating regulation of alternative 3' splice site selection 

To investigate whether Tra2β was involved in selection of alternative 3' splice sites, 

two exons with 3' alternative splice sites from Adam17 and Lyrm1 were cloned into 

pXJ41 minigenes for splicing analysis. Inclusion of the Adam17 minigene exon was not 

detected when co-transfected with either GFP alone or full-length Tra2β-GFP. Inclusion 

of the Lyrm1 minigene exon was positively regulated by full-length Tra2β-GFP, though 

use of the alternative 3' splice site was not detected. As use of the alternative 3' splice 

site was not detected for either minigene, I decided to focus on other aspects of Tra2β 

mediated splicing regulation for further investigation. 

2.5.4 Investigating regulation of breast cancer-associated alternative splice events by 

Tra2β 

To investigate whether Tra2β regulated a panel of breast cancer-associated alternative 

splice events, six alternative exons that contained multiple Tra2β binding sites were 

cloned into the pXJ41 minigene for splicing analysis. Surprisingly, co-transfection with 
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Tra2β was found to inhibit inclusion of a cassette exon from CLK1. CLK1 encodes a dual 

specificity protein kinase which phosphorylates serine-arginine rich proteins involved 

in pre-mRNA processing (Colwill et al., 1996). Interestingly, a functionally related 

member of the CLK protein family; CLK2, has previously been reported to directly 

phosphorylate Tra2β (Stoilov et al., 2004). CLK2 mediated hyperphosphylation of Tra2β 

strongly reduces the ability of Tra2β to directly bind RNA (Stoilov et al., 2004). 

However, it is not known whether CLK1 also phosphorylates Tra2β. Interestingly, 

inclusion of the CLK1 cassette exon was the most significantly altered splice event in 

the RT-PCR screen of breast cancer-associated splicing changes (Venables et al., 2009b), 

suggesting it may have clinical significance.  

Another Tra2β-responsive alterative splicing event was an exon with an alternative 3' 

splice site from PDLIM5, which encodes a PDZ-containing scaffold protein associated 

with cardiomyocyte and neuronal growth (Krcmery et al., 2010). Tra2β was also found 

to repress inclusion of both versions of the exon (created using different 3' splice sites) 

in the PDLIM5 minigene. Though Tra2β is most frequently reported to promote exon 

inclusion, Anderson et al. have since reported multiple exons shown to be repressed 

by Tra2β (2012). 

2.5.5 Splicing regulation of endogenous target exons 

To investigate splicing regulation of the corresponding endogenous exons, endogenous 

Tra2β was depleted in the invasive breast cancer cell line MDA-MB-231 using RNAi. 

Suprisingly, there was no significant difference in splicing inclusion of endogenous 

exons from PDLIM5, LYRM1 and CLK1 genes following depletion of Tra2β compared to 

negative control siRNA treated cells. However, inclusion of the endogenous NASP-T 

and TRA2A poison exons was visibly reduced after Tra2β depletion, confirming that 

these exons were endogenous targets and that splicing regulation of these exons is 

conserved between mice and humans. As the endogenous exons from PDLIM5, LYRM1 

and CLK1 did not respond to depletion of Tra2β, they were not pursued further. 

Subsequent experiments later in my study revealed that due to paralog compensation 

between Tra2α and Tra2β (discussed in chapter 3), joint depletion of both Tra2α and 

Tra2β proteins was required to observe robust splicing changes to most Tra2β targets 

exons. Inclusion of the endogenous exons within CLK1 and LYRM1 was significantly 
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reduced following joint depletion of both Tra2α and Tra2β (but not single depletion of 

Tra2β), whilst inclusion of endogenous PDLIM5 exon remained unaffected. Over-

expression of full-length Tra2β promoted inclusion of the LYRM1 minigene exon in 

HEK-293 cells, whilst knockdown of Tra2β reduced inclusion of endogenous LYRM1 

exon in MDA-MB-231 cells. This data is consistent with full-length Tra2β actively 

promoting splicing inclusion of the LYRM1 exon. The LYR motif containing 1 gene 

(LYRM1) encodes a nucleoprotein which is highly expressed in adipose and heart tissue 

(Zhu et al., 2010). The LYRM1 protein has been implicated both in regulation of cell 

growth during heart development (Zhu et al., 2010) and insulin-resistance in 

adipocytes (Qin et al., 2012).   

Over-expression of full-length Tra2β in HEK-293 cells repressed inclusion of the CLK1 

minigene exon. However joint Tra2 protein depletion was also found to reduce CLK1 

exon inclusion in MDA-MB-231 cells. This apparent discrepancy regarding CLK1 splicing 

regulation may be due to a number of underlying factors. For example, over-

expression of Tra2β in the minigene model may inhibit the function of other RNA-

binding proteins which positively regulate this exon. Cell specific differences in the 

expression of RNA-binding proteins between HEK-293 cells and MDA-MB-231 cells may 

also influence regulation of the CLK1 exon. Other factors, such as the limited size of the 

intronic sequence cloned into the CLK1 minigene could also account for differences in 

splicing regulation between the minigene exon and the endogenous exon. 
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2.5.6 Chapter Summary 

In this chapter, I have validated splicing regulation of a panel of novel Tra2β target 

exons, including functionally important exons within Nasp and Tra2a. Tra2β was found 

to directly bind to the Nasp-T exon and promote splicing inclusion through multiple 

redundant binding sites. The Tra2a poison exon is studied in further detail in chapter 3.  

The majority of target exons required direct binding for splicing activation by Tra2β, 

though Tra2β may also activate splicing inclusion of some exons such as the Nasp-T 

exon indirectly. The RS1-domain of the Tra2β protein was found to be essential for 

splicing activation for all Tra2β-responsive exons tested. Furthermore, the Tra2βΔRS1 

isoform was found to efficiently repress inclusion of a number of exons normally 

activated by full-length Tra2β. Intruigingly, this suggests that the endogenous Tra2β-1 

and Tra2β-3 isoforms could also be functionally distinct in splicing activity.  
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Chapter 3: Transcriptome-wide identification of Tra2β-

RNA interactions using iCLIP  

3.1 Introduction 

Tra2β protein expression was previously found to be significantly up-regulated in 

invasive breast cancer tumours (Watermann et al., 2006) and we hypothesised that 

Tra2β may regulate alternative splicing of functionally important genes in breast 

cancer. Therefore in this chapter, my overall aim was to identify and characterise 

direct RNA targets of Tra2β in the human invasive breast cancer cell line MDA-MB-231.  

In chapter 2, I used data from a previous Tra2β HITS-CLIP experiment to validate 

splicing targets of Tra2β from the mouse testis. Despite the successful identification of 

several target exons, the previous HITS-CLIP experiment generated a library of limited 

complexity (in total 177,000 reads mapped back to the mouse genome) (Grellscheid et 

al., 2011a). Primer extension assays have shown that cross-linked RNAs frequently 

cause reverse transcription reactions to stall, resulting in truncated cDNAs which were 

completely lost during the previous HITS-CLIP protocol (Urlaub et al., 2002). To 

overcome this problem, Konig et al. recently developed an improved CLIP protocol 

termed iCLIP, which captures the truncated cDNAs to enable identification of the site 

of protein-RNA cross-linking at near individual nucleotide resolution (Konig et al., 

2011). iCLIP has been used successfully to identify targets for several RNA-binding 

proteins, including hnRNP C (Konig et al., 2010), TIA1 and TIAL1 (Wang et al., 2010) and 

SRSF3 and SRSF4 (Anko et al., 2012). In this chapter, I use iCLIP to identify direct RNA 

targets of Tra2β in MDA-MB-231 cells, and subsequently investigate splicing regulation 

of these newly identified targets following Tra2 protein depletion using RNAi. 

In chapter 2, we also identified a poison exon from Tra2a which was regulated by both 

Tra2α and Tra2β proteins.  Tra2β was also previously found to auto-regulate its own 

protein expression via regulation of a posion exon within the Tra2b pre-mRNA (Stoilov 

et al., 2004). These data suggested that vertebrate Tra2 proteins may cross-regulate 

their protein expression. Therefore in this chapter, I also further examine whether 

Tra2α and Tra2β cross-regulate their protein expression and investigate their 

functional relationship in splicing regulation.  
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3.2 Aims 

The aims of this chapter were to: 

1. Investigate whether Tra2α and Tra2β cross-regulate their protein 

expression  

2. Identify direct RNA targets of Tra2β in MDA-MB-231 cells using individual 

nucleotide-resolution CLIP (iCLIP) 

3. Validate splicing regulation of newly identified targets using siRNA-

mediated depletion of the Tra2 proteins in MDA-MB-231 cells 

4. Investigate whether Tra2α protein expression can functionally compensate 

for loss of Tra2β expression in splicing regulation 
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3.3 Materials and Methods 

3.3.1 siRNA transfection 

In this chapter, siRNA transfections were used to deplete endogenous Tra2α, Tra2β or 

to jointly deplete Tra2α and Tra2β in MDA-MB-231 cells. The siRNA transfection 

protocol used in this chapter is described previously in chapter 2, methods section 

2.3.7. 

3.3.2 Western Immunoblotting 

Endogenous proteins were detected by Western Immunoblotting using primary 

antibodies against Tra2α (Novus Biologicals, H00029896-B01P) (1:500 dilution), Tra2β 

(Abcam, ab31353) (1:2000 dilution) and α-Tubulin (Sigma-Aldrich, T5168) (1:2000 

dilution). The standard protocol used for Western Immunoblotting is described in 

chapter 2, methods section 2.3.3. 

3.3.3 Quantitative real-time PCR (qPCR) 

Relative gene expression was determined by quantitative real-time PCR (qPCR) using a 

SYBR Green PCR Master Mix kit (Applied Biosystems) and an Applied Biosystems 

7900HT Fast Real-Time PCR Machine. qPCR was used in this chapter to analysis TRA2A 

and TRA2B mRNA expression, as well as the expression of 10 variable exons and 

control constitutive exons within the CD44 gene. RNA samples were prepared from 

MDA-MB-231 cells 72 hours after siRNA transfection using an RNeasy Mini Kit (Qiagen) 

following the manufacturer’s instructions and treated with DNase using a DNA-free kit 

(Ambion) following the manufacturer’s instructions. cDNA was generated from equal 

quantites (500ng) of total RNA for each sample using a SuperScript VILO cDNA 

synthesis kit (Invitrogen) following the manufacturer’s instructions. The cDNA was 

diluted 1 in 20 using RNase-free water (Ambion) and 1μl of the diluted cDNA was used 

per reaction. All qPCR experiments were performed using a minimum of 3 biological 

samples, with a minimum of 3 technical replicates per biological sample. For each 

reaction, 9μl of PCR master mix was added per well to a 384-well qPCR plate 

containing 1μl diluted cDNA per well and sealed with a clear adhesive film. A ‘no 

template control’ (NTC) reaction was used for each master mix. As the primers used in 

the CD44 experiment did not span exon junctions, a –RT control was used for each 
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RNA sample. An example of the standard 1X 9μl qPCR master mix is provided in Table 

3.1. The thermocycling conditions used for qPCR were as follows: 50°C for 2 minutes, 

95°C for 10 minutes, then 40 cycles of [95°C for 15 seconds and 60°C for 60 seconds]. 

Gene expression was calculated relative to three housekeeping genes ACTB, GAPDH 

and TUBB. Ct values for each sample were calculated using SDS 2.4 software (Applied 

Biosystems) and relative mRNA expression was calculated using the 2-ΔΔCt method. All 

primers used for quantitative real-time PCR (qPCR) in chapter 3 are provided in Table 

3.2. 

                    1X SYBR Green Master Mix  

2X SYBR Green PCR Master Mix 5μl 

Forward primer (10μM) 1μl 

Reverse primer (10μM) 1μl 

RNase-free water 2μl 

TOTAL 9μl 

 

Table 3.1 Standard 1X SYBR Green Master Mix used in quantitative real-time PCR 

(qPCR). 
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Primer Sequence 

TRA2A For TCCAATGTCTAACCGGAGAAG 

TRA2A Rev CCAAACACTCCAAGGCAAGT 

TRA2B For CGCCAACACCAGGAATTTAC 

TRA2A Rev TCATAGCCCCGATCATATCC 

ACTB For (reference gene 1) CATCGAGCACGGCATCGTCA 

ACTB Rev (reference gene 1) TAGCACAGCCTGGATAGCAAC 

GAPDH For (reference gene 2) AACAGCGACACCCATCCTC 

GAPDH Rev (reference gene 2) CATACCAGGAAATGAGCTTGACAA 

TUBB For (reference gene 3) CTTCGGCCAGATCTTCAGAC 

TUBB Rev (reference gene 3) AGAGAGTGGGTCAGCTGGAA 

CD44 constitutive exon 2 For CTACAGCATCTCTCGGACGG 

CD44 constitutive exon 2 Rev GTCTCAAATCCGATGCTCAGAG 

CD44 constitutive exon 5 For GAAAGGAGCAGCACTTCAGG 

CD44 constitutive exon 5 Rev ACTGTCTTCGTCTGGGATGG 

CD44 variable exons 1&2 For TGGGATTGGTTTTCATGGTT 

CD44 variable exons 1&2 Rev CAGCCATTTGTGTTGTTGTG 

CD44 variable exon 3 For CGTCTTCAAATACCATCTCAGC 

CD44 variable exon 3 Rev TCATCATCAATGCCTGATCC 

CD44 variable exon 4 For ACGGGCTTTTGACCACAC 

CD44 variable exon 4 Rev AGCACTTCCGGATTTGAATG 

CD44 variable exon 5 For AATGGCACCACTGCTTATGA 

CD44 variable exon 5 Rev TGTGGGGTCTCTTCTTCCTC 

CD44 variable exon 6 For AGGAACAGTGGTTTGGCAAC 

CD44 variable exon 6 Rev CGAATGGGAGTCTTCTTTGG 

CD44 variable exon 7 For CAGCCTCAGCTCATACCAG 

CD44 variable exon 7 Rev CCATCCTTCTTCCTGCTTG 

CD44 variable exon 8 For TGGACTCCAGTCATAGTATAACGC 

CD44 variable exon 8 Rev GCGTTGTCATTGAAAGAGGTCCTG 

CD44 variable exon 9 For AGCAGAGTAATTCTCAGAGC 

CD44 variable exon 9 Rev TGCTTGATGTCAGAGTAGAAGTTG 

CD44 variable exon 10 For ATAGGAATGATGTCACAGGTGG 

CD44 variable exon 10 Rev CGATTGACATTAGAGTTGGAATCTCC 

CD44 standard isoform specific For CCTCCAGTGAAAGGAGCAGCAC 

CD44 standard isoform specific Rev GTGTCTTGGTCTCTGGTAGCAGGGAT 

 

Table 3.2 Primers used for quantitative real-time PCR (qPCR) in chapter 3. 

3.3.4 Splicing analysis of endogenous RNA targets 

The percentage splicing inclusion (PSI) of endogenous target exons was measured by 

conventional RT-PCR and capillary gel electrophoresis. RNA was extracted from cells 72 
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hours after siRNA transfection using the standard Trizol RNA extraction protocol 

described earlier in chapter 2, methods section 2.3.2.2. The cDNA was synthesised 

from 500ng total RNA in a 10μl reaction, using a SuperScript VILO cDNA synthesis kit 

(Life Technologies) following the manufacturer’s instructions. The splicing profile of 

endogenous targets was monitored by PCR using primers designed within constitutive 

flanking exons. The primers used for the endogenous splicing assays performed in this 

chapter are provided in Appendix A. For each PCR, 1μl of diluted cDNA (1 in 8 dilution) 

was used as the template in a 10μl PCR reaction using Phusion High-Fidelity PCR Kit 

(NEB UK) following the manufacturer’s instructions. A standard 10μl PCR reaction 

master mix is shown in chapter 2, Table 2.2. Splicing profiles were monitored and 

quantified using the QIAxcel capillary gel electrophoresis system (Qiagen) and the 

percentage splicing inclusion (PSI) of endogenous targets were calculated as described 

in chapter 2, methods section 2.3.2.6. 

3.3.5 Individual nucleotide resolution CLIP (iCLIP) 

Direct RNA targets of Tra2β in MDA-MB-231 cells were identified using a modified UV-

cross-linking and immunoprecipitation technique, developed to capture protein-RNA 

interactions at individual nucleotide resolution (iCLIP). These experiments were based 

on the published iCLIP protocol by Konig et al. and were then optimised specifically for 

the Tra2β protein (Konig et al., 2011). 

3.3.5.1 UV cross-linking of MDA-MB-231 cells  

MDA-MB-231 cells were grown on 100mm tissue culture plates to approximately 80% 

confluency. The media was removed and cells were covered in ice-cold 1×PBS and 

irradiated with 150-400mJ/cm2 of UV at 254nm using a UV Stratalinker (Stratagene). 

The UV-irradiated MDA-MB-231 cells were harvested with a cell scraper into 1.5ml 

microcentrifuge tubes and the cells were precipitated by centrifugation for 10 seconds 

at 13,000×g at 4 °C. The 1×PBS was removed and cell pellets were snap frozen on dry 

ice until ready for use. 

3.3.5.2 Preparation of magnetic beads  

Magnetic beads were prepared by washing 100μl of Protein A Dynabeads (Invitrogen) 

twice with lysis buffer (Table 3.3 A) and resuspending them in 100μl lysis buffer with 
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5μg Tra2β antibody (Abcam). The magnetic beads were incubated at room 

temperature for 1 hour on a rotating platform and washed twice with lysis buffer prior 

to the addition of cell lysates.  

3.3.5.3 Cell lysis, partial RNA digestion and immunoprecipitation 

The UV-irradiated cell pellets were resuspended in lysis buffer and treated with Turbo 

DNase I (Ambion), together with either a high concentration (1:10 dilution) or a low 

concentration (1:500 dilution) of RNase I (Ambion). The cell lysates were incubated at 

37°C for 3 minutes while shaking at 1,100 rpm (Eppendorf Thermomixer) and 

immediately stored on ice. The cellular debris was precipitated by centrifugation at 

13,000×g and 4°C for 20 minutes, followed by careful collection of the supernatant. 

The supernatant was added to the magnetic beads for immunoprecipitation of Tra2β-

RNA complexes and incubated at 4°C for 2 hours on a rotating platform. After 

incubation, the supernatant was removed and the magnetic beads were washed twice 

in high-salt buffer (Table 3.3 B), and then washed twice in wash buffer (Table 3.3 C). 

3.3.5.4 Dephosphorylation of RNA 3' end and linker ligation 

The 3' ends of the RNA were dephosphorylated in 20μl of Polynucleotide kinase (PNK) 

mix (Table 3.3 D) and incubated at 37°C for 20 minutes. The samples were washed 

once with wash buffer and once with high-salt buffer, followed two more washes in 

wash buffer. The pre-adenylated L3 linker (Table 3.4) was ligated to the 3' ends by 

resuspending the magnetic beads in 20μl linker ligation mix (Table 3.3 E) and incubated 

overnight at 16°C.  

3.3.5.5 Radioactive labelling of RNA 5' ends  

The magnetic beads were washed twice with 1ml wash buffer, before the magnetic 

beads were resuspended in 8μl of hot PNK mix containing 32P-γ-ATP and incubated at 

37°C for 5 minutes to radioactively label the 5' end of the RNA molecules. The hot PNK 

mix was carefully removed and the magnetic beads were resuspended in 20μl NuPAGE 

loading buffer (Invitrogen). The beads were incubated on a thermomixer at 70°C for 10 

minutes to disassociate the protein-RNA complexes from the beads. The empty 

magnetic beads were then precipitated on a magnet, so that the supernatant could be 

loaded onto a 4-12% NuPAGE Bis-Tris gel (Invitrogen) for electrophoretic separation. 
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3.3.5.6 SDS-PAGE and membrane transfer 

The samples were loaded onto a 4-12% NuPAGE Bis-Tris gel (Invitrogen) with 1× MOPS 

running buffer (Invitrogen). A pre-stained protein ladder (Invitrogen) was used as a 

reference molecular weight marker and electrophoresis was performed at 180V for 1 

hour. After size separation, the protein-RNA complexes were then transferred to a 

nitrocellulose membrane (BioRad) using a Novex wet transfer apparatus (Invitrogen) 

for 2 hours at 30V. The membrane was rinsed in 1× PBS buffer and wrapped in cling 

film, prior to exposure to a BioMax XAR Film (Kodak) for detection. The membrane was 

exposed to film at -80°C for 30 minutes, 1 hour or overnight.  

3.3.5.7 RNA isolation  

The protein-RNA complexes were isolated from the membrane using the 

autoradiograph as a template. Protein-RNA complexes from the low concentration 

RNase sample were cut out from the diffuse radioactive signal seen above the single 

band observed in the high concentration RNase sample (which corresponded to the 

molecular weight of Tra2β, approximately 40kDa). The slices of membrane were 

placed in a 1.5ml microcentrifuge tube and incubated with 2mg/ml Proteinase K 

(Roche) diluted in PK buffer (Table 3.3 F) at 37°C for 20 minutes while shaking at 1100 

rpm. A separate PK buffer containing 7M urea was then added to the tube and 

incubated at 37°C for a further 20 minutes. The sample, plus 400μl phenol/chloroform 

(Ambion) was added to a Phase Lock Gel Heavy tube (VWR). The solution was 

incubated at 30°C for 5 minutes while shaking at 1100 rpm prior to phase separation 

by centrifugation at 13,000×g for 5 minutes. The aqueous layer was transferred into a 

fresh tube and mixed with 0.5μl GlycoBlue (Ambion), 40μl 3M sodium acetate (pH 5.5) 

and 1ml 100% ethanol to precipitate the RNA overnight at -20°C.  

3.3.5.8 Reverse transcription  

The precipitated RNA was reverse transcribed in a 7.25μl RNA/primer mix (Table 3.3 G) 

containing ‘Rclip’ primers with individual barcode sequences for each replicate (Table 

3.4). The RNA samples were incubated at 70°C for 5 minutes and cooled to 25°C before 

2.75μl reverse transcription mix (containing SuperScript III reverse transcriptase 

(Invitrogen)) was added. The reverse transcription reaction was performed under the 



Chapter 3                        Transcriptome-wide identification of Tra2β-RNA interactions using iCLIP 

87 
 

following conditions: 25°C for 5 minutes, 42°C for 20 minutes, 50°C for 40 minutes and 

80°C for 5 minutes before cooling to 4°C. The newly transcribed cDNAs were 

precipitated with the addition of 90μl TE buffer, 0.5μl GlycoBlue, 10μl 3M sodium 

acetate pH 5.5 and 250μl 100% ethanol, incubated overnight at -20°C.  

3.3.5.9 cDNA purification  

The precipitated cDNA was resuspended in 6μl of water and 2× TBE-urea loading 

buffer (Invitrogen) and incubated at 80°C for 3 minutes. The cDNA samples were 

loaded onto a 6% TBE-urea gel (Invitrogen) beside a low molecular weight marker and 

electrophoresed at 180V for 40 minutes. Three fragments corresponding to different 

cDNA size ranges were cut at approximately 120-200 nucleotides (high), 85-120 

nucleotides (medium) and 70-85 nucleotides (low). The gel fragments were mixed with 

400μl TE buffer and crushed using a 1ml syringe plunger. The crushed gel mixture was 

incubated at 37°C for 2 hours while shaking at 1100 rpm. The liquid portion of the 

sample was transferred into a Costar SpinX column (Corning Incorporated) containing 

two glass pre-filters (Whatman). The tubes were centrifuged at 13,000×g for 1 minute 

into a fresh 1.5ml microcentrifuge tube. The samples were added with 0.5μl GlycoBlue, 

40μl 3M sodium acetate pH 5.5 and 1ml 100% ethanol to precipitate again overnight at 

-20°C.  

3.3.5.10 Ligation of primer to the 5' end of the cDNA 

The precipitated cDNA was resuspended in 8μl CircLigase ligation mix (Table 3.3 H) and 

incubated at 60°C for 1 hour to circularise the cDNA. In order to subsequently linearise 

the cDNA, a primer complementary to the BamHI restriction site (Table 3.4) was 

annealed to the 5' end of the cDNA by adding 30μl of oligo annealing mix (Table 3.3 J) 

and incubated at the following conditions: 95°C for 1 minute, then temperature 

decreased by 1°C every 20 seconds until 25°C was reached. The circular cDNA was 

relinearised by restriction digest with BamHI, by adding 2μl BamHI (Fermentas) and 

incubating at 37°C for 30 minutes. Samples were mixed with 50μl TE buffer, 0.5μl 

GlycoBlue, 10μl 3M sodium acetate pH 5.5 and 250μl 100% ethanol to precipitate 

overnight at -20°C.  
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3.3.5.11 PCR amplification  

The cDNA library was PCR-amplified by adding a PCR mix (Table 3.3 I) containing the P5 

and P3 Solexa primers (Table 3.4). PCR was performed at the following conditions: 

94°C for 2 minutes, 30 cycles of [94°C for 15 seconds, 65°C for 30 seconds, 68°C for 30 

seconds], 68°C for 3 minutes and hold at 4°C. The size of the PCR-amplified fragments 

was determined by agarose gel electrophoresis. 

3.3.5.12 High-throughput sequencing 

Prior to sequencing the iCLIP libraries, the success of the experiment was monitored at 

two crucial steps: (1) the autoradiograph of protein-RNA complex after membrane 

transfer and (2) the gel image of the PCR-amplified products. Once verified, samples 

were submitted for high-throughput sequencing at the Institute of Genetic Medicine 

(Newcastle University, UK), in collaboration with Professor Bernard Keavney’s research 

group. The samples were prepared for sequencing using the TruSeq Sample 

Preparation kit (Illumina) and the three replicates were sequenced on one lane of the 

Illumina Genome Analyser II system (GAIIx, Illumina).  

3.3.5.13 Bioinformatic analysis of iCLIP sequencing data 

The iCLIP sequencing data was transferred to Prof. Tomaz Curk (University of Ljubljana, 

Slovenia) for analysis and mapping to the human genome sequence using iCount 

(http://icount.fri.uni-lj.si/), a bioinformatics pipeline developed for the analysis of iCLIP 

data. The transcriptome-wide distribution of Tra2β binding sites was visualised using 

the UCSC Genome Browser (http://genome.ucsc.edu/). iCLIP data analysis, crosslink 

site identification and quantification, randomization of iCLIP positions and pentamer 

enrichment analysis were performed as described previously (Wang et al., 2010). 

Briefly, we used the human genome annotation version hg19, and gene annotations 

from Ensembl 59. Experiment barcode and random barcodes were registered and 

removed from iCLIP reads. After trimming we ignored reads shorter than 11 

nucleotides. Remaining trimmed reads were then mapped using Bowtie (Langmead et 

al., 2009), allowing two mismatches and accepting only reads with single hits. Crosslink 

sites were initially identified as the first nucleotide upstream of the iCLIP tag, and then 

filtered to determine statistically significant crosslink sites and those which occurred in 

http://icount.fri.uni-lj.si/
http://genome.ucsc.edu/
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clusters (clusters are defined as iCLIP sequencing reads mapping within 15 nucleotides 

intervals) and with a significant iCLIP-tag count, compared to randomised positions, as 

described in (Wang et al., 2010). 

 

(A) Lysis buffer 
 

(B) High-salt buffer 

50mM Tris-HCl, pH 7.4 
 

50mM Tris-HCl, pH 7.4 

100mM NaCl 
 

1M NaCl 

1% NP-40 
 

1mM EDTA 

0.1% SDS 
 

1% NP-40 

0.5% sodium deoxycholate 
 

0.1% SDS 

Protease inhibitor 
 

0.5% sodium deoxycholate 

   (C) Wash buffer 
 

(D) PNK mix (1X) 

20mM Tris-HCl, pH 7.4 
 

15μl water 

10mM MgCl2 
 

4μl 5× PNK pH 6.5 buffer 

0.2% Tween-20 
 

0.5μl PNK enzyme 

  
0.5μl RNasin 

(E) Linker ligation mix (1X) 
  9μl water 
 

(F) PK buffer (1X) 

4μl 4× ligation buffer 
 

100mM Tris-HCl pH 7.4 

1μl RNA ligase 
 

50mM NaCl 

0.5μl RNasin 
 

10mM EDTA 

1.5μl pre-adenylated linker [20μM] 
  4μl PEG400 
 

(H) Circligase ligation mix (1X) 

  
6.5μl water 

(G) RNA/primer mix (1X) 
 

0.8μl 10× CircLigase Buffer II 

6.25μl water 
 

0.4μl 50mM MnCl2 

0.5μl Rclip primer [0.5 pmol/μl] 
 

0.3μl Circligase II 

0.5μl dNTP mix [10mM] 
  

  
(J) PCR mix (1X) 

(I) Oligo annealing mix (1X) 
 

19μl cDNA 

26μl water 
 

0.5 μl P3 primer [10μM] 

3μl FastDigest Buffer 
 

0.5 μl P5 primer [10μM] 

1μl cut oligo [10μM] 
 

20μl Accuprime Supermix 1 enzyme 

 

Table 3.3 Complete list of buffer components and reaction mixes used in the iCLIP 

experiments. 
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Primer Sequence 

L3 linker /5rApp/AGATCGGAAGAGCGGTTCAG/3ddC/ 

Rclip 1 5'phosphateNNAACCNNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

Rclip 2 5'phosphateNNACAANNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

Rclip 3 5'phosphateNNATTGNNNAGATCGGAAGAGCGTCGTGgatcCTGAACCGC 

Cut oligo GTTCAGGATCCACGACGCTCTTCaaaa 

P5 Solexa AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 

P3 Solexa CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT 

 

Table 3.4 Primers used in the iCLIP experiment. Randomly generated nucleotides 

were included in the Rclip primers (yellow ‘N’) to differentiate between unique cDNAs 

and multiple copies of the same cDNA which had been PCR-amplified. A four-base 

barcode (red) was used to allow multiplexing of multiple experiments in a single 

sequencing lane. Location of the BamHI restriction site is shown in green. The BamHI 

restriction site allowed linearization of the single-stranded circular DNA once the ‘cut 

oligo’ had annealed to create a short region of double-stranded DNA. 
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3.4 Results 

3.4.1 Tra2β efficiently suppresses Tra2α protein expression in MDA-MB-231 cells 

In chapter 2, we identified a poison exon from Tra2a which was highly responsive to 

Tra2α and Tra2β protein expression using a minigene assay in HEK-293 cells (Figure 2.3 

H). Co-expression of full-length Tra2α or Tra2β significantly increased splicing inclusion 

of the Tra2a minigene exon. I also confirmed that splicing inclusion of the endogenous 

TRA2A poison exon was reduced after knockdown of endogenous Tra2β in the MDA-

MB-231 cell line, suggesting the TRA2A poison exon was a genuine endogenous target 

(Figure 2.16 E). As poison exons introduce premature termination codons (PTCs) into 

mRNA transcripts and inhibit translation of the full-length proteins (Stoilov et al., 2004; 

Lareau et al., 2007; McGlincy and Smith, 2008; Grellscheid et al., 2011a), this data 

suggested that Tra2β may directly regulate  Tra2α protein expression by promoting 

inclusion of a poison exon within the TRA2A mRNA. Tra2β has also been shown to 

promote inclusion of a poison exon within its own pre-mRNA (Stoilov et al., 2004). 

Therefore to investigate whether human Tra2 proteins cross-regulate their 

endogenous protein expression, I detected Tra2α and Tra2β protein expression by 

Western Immunoblotting, following siRNA-mediated depletion of the two endogenous 

Tra2 proteins.  

Tra2α protein expression is relatively low in MDA-MB-231 cells, but significantly 

increased after siRNA-mediated depletion of Tra2β (Figure 3.1 A, top panel, compare 

lanes 1 and 3). Although weak, the Tra2α signal from the Western Immunoblot was of 

the predicted size and was almost completely eliminated following transfection with a 

TRA2A specific siRNA, suggesting that this band was specific for the Tra2α protein 

(Figure 3.1 A, top panel, compare lanes 1 and 2). Depletion of the Tra2α protein had a 

much smaller effect on Tra2β protein levels (Figure 3.1 A, middle panel). This result 

was reproducible in three independent experiments and the expression of Tra2α and 

Tra2β was quantified from each individual Immunoblot (relative to expression of the 

loading control α-Tubulin) using the Image J graphics software (Figure 3.1 B). Up-

regulation of Tra2α protein expression following depletion of Tra2β was highly 

statistically significant. On the other hand, I observed a small increase in Tra2β protein 

expression following depletion of Tra2α, which was not statistically significant. This 
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effect was also confirmed using two independent sets of siRNA, targeting different 

regions of the TRA2A and TRA2B mRNAs (Figure 3.2).  

 

Figure 3.1 Depletion of Tra2β resulted in up-regulation of Tra2α protein expression. 

Endogenous Tra2α and Tra2β protein expression in MDA-MB-231 cells was detected by 

Western Immunoblot. (a) Depletion of Tra2β induced up-regulation of Tra2α protein 

expression, whereas depletion of Tra2α had no significant effect on Tra2β protein 

expression. (b) Western Immunoblots from three independent experiments were 

quantified (relative to expression of the loading control α-Tubulin) using Image J 

graphics software, which confirmed that up-regulation of Tra2α following depletion of 

Tra2β was reproducible and statistically significant. Conversely, depletion of Tra2α had 

no significant effect on Tra2β protein expression. Data represents the mean of three 

biological replicates ±s.e.m. Statistical significance was calculated using an 

independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. This figure is 

taken from (Best et al., 2014b). 
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Figure 3.2 Depletion of Tra2β induced reciprocal up-regulation of Tra2α protein 

expression using 2 independent sets of siRNA. Depletion of Tra2α had no significant 

effect on Tra2β protein expression using either of the TRA2A siRNA sequences. This 

figure is taken from (Best et al., 2014b) 

3.4.2 Cross-regulation of expression occurs at the RNA level through splicing 

regulation of reciprocal poison exons  

To determine whether cross-regulation between Tra2α and Tra2β occurred at the RNA 

level, I monitored steady state mRNA expression of TRA2A and TRA2B by quantitative 

real-time PCR (qPCR) (Figure 3.3 A). Depletion of Tra2β led to a significant increase in 

TRA2A mRNA expression, whilst knockdown of Tra2α also resulted in a smaller but 

statistically significant increase in TRA2B mRNA expression, confirming that each Tra2 

protein negatively regulated the expression of the other at the RNA level (Figure 3.3 A). 

The effect of Tra2β depletion on TRA2A mRNA expression was larger than the effect of 

Tra2α depletion on TRA2B mRNA expression, consistent with the asymmetrical effect 

observed at the protein level by Western Immunoblot.  

To determine the effect of Tra2α knockdown on splicing inclusion of TRA2B poison 

exon and vice versa, splicing of the endogenous TRA2A and TRA2B poison exons was 

monitored by RT-PCR and capillary gel electrophoresis. Depletion of Tra2β significantly 

reduced inclusion of the TRA2A poison exon to almost undetectable levels (Figure 3.3 

B, top panel), whilst depletion of Tra2α also resulted in a smaller but statistically 

significant decrease in inclusion of the TRA2B poison exon (Figure 3.3 B, lower panel). 

The larger effect of Tra2β depletion on inclusion of the TRA2A poison exon is 

consistent with the larger effect seen on TRA2A mRNA and Tra2α protein expression, 
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suggesting that both Tra2 proteins influence expression of the other protein through 

regulation of their reciprocal poison exons, but that this effect is asymmetrical in MDA-

MB-231 cells. 

 

Figure 3.3 Cross-regulation between Tra2α and Tra2β occurs through splicing 

regulation of reciprocal posion exons. (a) TRA2A and TRA2B mRNA expression was 

determined by qPCR following siRNA-mediated depletion of the Tra2 proteins. 

Transfection with TRA2B siRNA led to significant increase in TRA2A mRNA, whilst 

transfection with TRA2A siRNA also led to a smaller but significant increase in TRA2B 

mRNA. (b) The percentage splicing inclusion (PSI) of poison exons within the TRA2A 

and TRA2B mRNA following knockdown of the reciprocal Tra2 protein. Both poison 

exons were significantly affected, but depletion of Tra2β had a greater effect on 

inclusion of the TRA2A poison exon than vice versa. Data represents the mean of three 

biological replicates ±s.e.m. Statistical significance was calculated using an 

independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. This figure is 

taken from (Best et al., 2014b). 
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3.4.3 Identification of direct RNA targets of Tra2β in MDA-MB-231 cells using iCLIP 

To identify endogenous RNA targets of Tra2β in MDA-MB-231 cells, I used individual 

nucleotide resolution cross-linked immunoprecipitation (iCLIP) according to the 

published iCLIP protocol (Konig et al., 2011). iCLIP was developed to study transcript 

regulation by RNA-binding proteins (RBPs) at the molecular level, by providing high-

resolution positional information on protein-RNA interactions (Konig et al., 2011). iCLIP 

utilises UV cross-linking of proteins and RNA molecules followed by stringent 

purification steps to isolate RNA sequences directly bound by the RNA-binding protein 

of interest. Coupled with high-throughput sequencing, iCLIP facilitates the 

identification of protein-RNA interactions on a transcriptome-wide scale.  

For a schematic representation of the iCLIP experiment, please refer to Figure 3.4. The 

experimental stages described in this paragraph correspond to Figure 3.4. During the 

iCLIP experiment, cells are irradiated with UV light to induce irreversible covalent 

cross-linking between proteins and RNA molecules in direct contact (1). The cells are 

subsequently lysed (2) and the RNA is partially digested using an RNase enzyme (3). 

The protein-RNA complexes are then immunoprecipitated using an antibody against 

the protein of interest (4). During the IP, the protein-bound RNA is dephosphorylated 

(5) and a DNA linker is added to the 3' end of the RNA (6), whilst the 5' end of the RNA 

is radio-labelled with 32P (7). The protein-RNA complexes are then separated by size 

using SDS-PAGE and transferred to a nitrocellulose membrane to remove free RNA (8). 

The radio-labelled protein-RNA complexes can be detected by autoradiograph, which 

serves as a template to isolate the protein-RNA complexes of interest based on their 

molecular weight. The protein is subsequently digested using proteinase K, leaving a 

small polypeptide remaining at the cross-linked nucleotide (9). The remaining RNA is 

isolated using phenol/chloroform and the purified RNA is reverse transcribed into 

cDNA (10). The cDNA is then separated by size using gel electrophoresis (11) and 

appropriate size fragments are purified from the gel. As the majority of reverse 

transcription (RT) reactions terminate at the cross-linked polypeptide, the site of 

protein-RNA interaction can be preserved by circularising the cDNA using a ssDNA 

circligase enzyme (12), so that the site of protein-RNA interaction is now adjacent to 

the RT primer sequence. Another primer is then annealed to the circular cDNA (13), 

creating a double-stranded region to allow cleavage by the restriction endonuclease 
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BamHI (14). Finally, the linearised cDNA is PCR-amplified using primers containing 

adapter sequences for paired-end sequencing to produce a cDNA library (15). Further 

details of the iCLIP protocol are provided in methods section 3.3.5. 

 

Figure 3.4 Schematic representation of the iCLIP protocol. This image is from the 

published iCLIP protocol by Konig et al. 2011. 

 

3.4.3.1 Immunoprecipitation of endogenous Tra2β protein 

An important component of the iCLIP experiment is the efficient and specific 

immunoprecipitation (IP) of the RNA-binding protein of interest. As a preliminary 

experiment to determine the specificity of the α-Tra2β antibody and to optimise the 

efficient IP of endogenous Tra2β protein, endogenous Tra2β was immunoprecipitated 

from MDA-MB-231 cells using varying amounts of α-Tra2β antibody (2-10μg) and then 

detected by Western Immunoblotting (Figure 3.5). A band corresponding to the known 

molecular weight of Tra2β (approximately 37kDa) was detected in the input sample 

and the α-Tra2β antibody IP sample, but not the mock IP samples using either rabbit 

IgG or no antibody as controls. 5μg of α-Tra2β antibody was determined as sufficient 

to remove detectable amounts of Tra2β from the supernatant sample, whilst Tra2β 
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remained detectable within the supernatants of both the rabbit IgG and no antibody 

controls. As the same rabbit α-Tra2β antibody used in the IP was also used as the 

primary antibody to probe the samples by Western Immunoblotting, a second band 

corresponding to the rabbit antibody light chain (approximately 25kDa) was also 

detected in both the α-Tra2β antibody IP sample and the rabbit IgG IP sample, but not 

in the no antibody IP sample. This band could have been eliminated by probing with a 

second α-Tra2β antibody raised from a different species, allowing a secondary 

antibody to be used which would not recognise the original rabbit antibody used in the 

IP. 

 

Figure 3.5 Immunoprecipitation of endogenous Tra2β protein from MDA-MB-231 

cells. 

3.4.3.2 Optimisation of the Tra2β iCLIP experiment 

In order to optimise the Tra2β iCLIP experiment, MDA-MB-231 cells were UV-irradiated 

with 3 different energies (150, 250 and 400(X100mJ/cm2)) as cross-linking efficiency 

can vary between individual proteins. Initially, one third of a 100mm plate of MDA-MB-

231 cells at 50-80% confluency was used per sample and immunoprecipitated using 

2μg of Tra2β antibody. Cells irradiated with 400(X100mJ/cm2) produced the strongest 

signal, indicating there was a higher proportion of cross-linked RNA at this energy. 

Following SDS-PAGE and transfer to nitrocellulose membrane, the membrane was 

exposed to x-ray film for 30 minutes, 1 hour and overnight. Only after an overnight 

exposure could I detect a weak signal. The previous HITS-CLIP experiment (Grellscheid 

et al., 2011a) had suggested that for a successful CLIP experiment (in which sufficient 
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protein-RNA complexes are isolated), a strong signal should be detected after a 1-2 

hour exposure, therefore I began to optimise the experiment by varying the quantity 

of cells, level of UV-irradiation, antibody concentration and RNase concentration, in 

order to increase the signal detected by autoradiograph (produced from the radio-

labelled protein-RNA complexes).  

For each experiment, two samples are run in parallel and treated with either a high or 

low concentration of RNase. The high concentration RNase sample serves as a control 

for antibody specificity; as the RNA is efficiently digested in this sample, a single band 

close to the molecular weight of the protein should be observed. An autoradiograph 

showing optimisation of the Tra2β iCLIP experiment is shown in Figure 3.6. In the high 

concentration RNase samples (1/10 dilution), a single band corresponding close to the 

molecular weight of Tra2β (approximately 37KDa) was observed, as most of the cross-

linked RNA has been efficiently digested. However in the low concentration RNase 

sample (1/500 dilution), a diffuse radioactive signal is seen stretching above the 

molecular weight of the protein, as the cross-linked RNA is only partially digested, 

retarding the migration of the protein through the gel. Protein-RNA complexes 

immediately above the 40kDa band were isolated from the low RNase sample 

(highlighted red). The strongest signal was obtained using one 100mm plate of 50-80% 

confluent MDA-MB-231 cells, irradiated with 400(X100mJ/cm2) UV, 

immunoprecipiated using 5μg of α-Tra2β antibody and digested using a 1/500 RNase I 

dilution (final RNase concentration 0.2 U/μl) (Figure 3.6, left hand side). A higher 

concentration of RNase (1/10 dilution) was necessary to control for antibody specificity 

(final RNase concentration 10 U/μl). The high concentration RNase sample indicated 

that a protein corresponding to the known molecular weight of Tra2β was being 

immunoprecipitated. 
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Figure 3.6 Autoradiograph showing optimisation of the Tra2β iCLIP experiments in 

MDA-MB-231 cells following a 1 hour exposure. Following immunoprecipitation of the 

Tra2β-RNA complexes, they were radio-labelled and then separated by denaturing 

polyacrylamide gel electrophoresis, transferred to a nitrocellulose membrane and 

exposed to film for detection. Protein-RNA complexes above the molecular weight of 

Tra2β were isolated from the low concentration RNase samples (highlighted red).  

Following isolation of the protein-RNA complexes, the protein was digested using 

Proteinase K and the remaining RNA was reverse transcribed into cDNA. The cDNA was 

separated by size using gel electrophoresis and three cDNA fractions corresponding to 

120-200nt (High), 85-120nt (Medium) and 70-85nt (Low) were excised from the gel 

and purified. Finally, the cDNA fractions were circularised and then digested with the 

restriction endonuclease BamHI, to relinearize the cDNA before PCR amplification to 

produce a cDNA library for sequencing. 

In order to optimise the cDNA library for sequencing, various PCR cycle numbers were 

tried during the PCR amplification of the cDNA library. From early experiments, only 

cDNA amplified for 35 cycles of PCR could be visibly seen on an agarose gel (Figure 3.7). 

However, following optimisation, PCR products were clearly visible as low as 22 cycles 

of PCR (Figure 3.8). Optimising the experimental conditions included increasing the 

amount of cross-linking (UV irradiation) from 150 to 400 (X100mJ/cm2), increasing the 

quantity of cells per sample from one third of a 100mm tissue culture plate to one 

whole 100mm plate, and increasing the amount of Tra2β antibody used during 

immunoprecipiation from 2μg to 5μg. Reducing the PCR cycle number is essential for 

optimal sequencing results, as a lower cycle number significantly increases the number 
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of unique cDNA sequences and reduces PCR-amplification bias of more abundant 

transcripts. 

 

Figure 3.7 PCR amplification and agarose gel electrophoresis of cDNA from early 

Tra2β iCLIP experiments. In order to optimise the cDNA library for sequencing, several 

cycle numbers (25, 30 and 35) were tried during the PCR amplification of the cDNA. 

From early experiments, only cDNA amplified for 35 cycles could be visibly detected on 

an agarose gel. 

 

Following optimisation, the Tra2β iCLIP experiment was repeated in three independent 

experiments with the addition of a no antibody control experiment. The final cDNA 

libraries were visualised by agarose gel electrophoresis to ensure the cDNA fragments 

were of appropriate size for sequencing (recommended 200-500bp) (Figure 3.8). As 

the high, medium and low size cDNA fractions were each within this range, all fractions 

were included for sequencing. Importantly, no PCR products were visible in the no 

antibody control experiment (Figure 3.8). 
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Figure 3.8 Final cDNA libraries from three independent Tra2β iCLIP experiments, 

visualised by agraose gel electrophoresis after 22 cycle PCR amplification. 

Importantly, no PCR products were visible in the no antibody control experiment. 

  

Equal quantities of the 9 cDNA libraries (high, medium and low cDNA fractions from 3 

independent experiments) were pooled together and submitted for sequencing. The 

final cDNA library was prepared by Mr Rafiq Hussain (Newcastle University) using the 

Illumina Truseq DNA kit, followed by 2X100bp paired-end sequencing using one lane 

on an Illumina Genome Analyser IIx. The sequencing data was then transferred to Prof. 

Tomaz Curk (University of Ljubljana) for analysis and mapping to the human genome 

sequence using iCount, a bioinformatics pipeline developed for the analysis of iCLIP 

data. In total, 7,443,903 reads were successfully mapped back to the human genome 

sequence, of which 3,338,710 were unique cDNAs considered for downstream analysis 

(subsequently referred to as iCLIP tags or cross-links). 

3.4.4 Global distribution of Tra2β binding in MDA-MB-231 cells 

The most abundant pentamers recovered in the iCLIP tags were highly enriched in 

‘GAA’ nucleotide sequences (Figure 3.9), matching the Tra2β binding site identified 

from the previous Tra2β HITS-CLIP experiment in the mouse testis and from SELEX 

experiments using purified Tra2β proteins (Tacke et al., 1998b; Grellscheid et al., 

2011a). This served as an early indication that the iCLIP experiments had successfully 

captured genuine Tra2β-RNA interactions. The combined human iCLIP data in MDA-

MB-231 cells provided substantially more coverage than previously obtained from the 

HITS-CLIP experiment in mouse testis (in which just 177,457 reads were mapped back 

to the mouse genome). This greatly increased tag coverage enabled a much more 
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comprehensive map of Tra2β binding sites in human MDA-MB-231 cells than was 

previously obtained from the mouse testis. 

 

Figure 3.9 The top 10 most frequently occurring pentamers recovered from the Tra2β 

iCLIP experiment in MDA-MB-231 cells. ‘GAA’ sequences are highlighted in red. This 

figure is taken from (Best et al., 2014b). 

 

The genomic distribution of iCLIP tags is shown in Figure 3.10. In total, 1,546,290 

(44.8%) of unique cDNAs mapped to intronic regions, suggesting the Tra2β iCLIP 

experiment largely captured Tra2β interactions with pre-mRNAs (Figure 3.10 A). A 

further 1,169,374 (33.8%) of the unique cDNAs mapped to exons (either 5'UTR, 3'UTR 

or ORF) (Figure 3.10 A), despite exons comprising approximately just 1% of the 

genome. After correcting for the relative size of each genomic region (by dividing the 

number of unique cDNAs mapping to each genomic region by the relative size of that 

region within the genome), I found that Tra2β binding is highly enriched within exons; 

76.8% of Tra2β iCLIP tags mapped to exons relative to their size (5'UTR, 3'UTR or ORF), 

whilst a further 20.4% mapped to non-coding RNA (ncRNAs) (Figure 3.10 B). N.B. 

following the use of RNA-seq in subsequent chapters, it would now be possible to 

compare the enrichment of iCLIP tags relative to the MDA-MB-231 cell transcriptome - 

rather than the genome. This would likely provide a more accurate picture of Tra2β 

binding site enrichment by considering the expression profile of nuclear RNA, rather 

than the genomic DNA. 
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Figure 3.10 Global distributions of cross-links identified by iCLIP in MDA-MB-231 cells. 

(a) The percentage of total cross-links from the three independent iCLIP experiments 

that mapped to each genomic compartment. (b) The percentage of cross-links 

mapping to each genomic compartment after adjustment for the relative size of each 

genomic compartment within the human genome. After adjustment, Tra2β binding 

was found to be highly enriched within exons relative to their size (highlighted red). 

This figure is taken from (Best et al., 2014b). 

 

3.4.5 Stratification of exons for functional validation 

As Tra2β binding was highly enriched within exons, I initially focused on alternative 

exons for functional validation of splicing regulation. I began by stratifying alternative 

exons in order of exon junction sequences (defined as +/-300bp of either splice site) 

which contained the greatest number of iCLIP tags. However, as the iCLIP data does 

not consider relative gene expression, high numbers of iCLIP tags within an exon may 

be attributable to high gene expression, as well as enriched Tra2β binding. Taking this 

into consideration, I then stratified alternative exon junctions (+/-300bp of either 

splice site) with the highest number of iCLIP tags relative to iCLIP tag coverage across 

the whole gene, to identify exons with enriched Tra2β binding (Figure 3.11). An 

example of alternative exons from ATRX, GLYR1 and CEP95 identified using this 

method is shown in Figure 3.12. 

 

Figure 3.11 Method used to stratify Tra2β target exons for validation. Exons with 

enriched Tra2β binding were identified by calculating the number of cross-links within 

or close to a particular exon, relative to the total number of cross-links across the 

whole gene. 
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Figure 3.12 Alternative exons identified within ATRX, GLYR1 and CEP95 which contained a high density of Tra2β iCLIP tags relative to the whole 

gene. Primers were designed within flanking constitutive exons to measure percentage splicing inclusion (PSI) of target exons by RT-PCR.
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3.4.6 Validating splicing regulation of endogenous target exons by human Tra2 

proteins 

Following stratification of alternative exons with enriched Tra2β binding, I designed 

primers within flanking constitutive exons to monitor the percentage splicing inclusion 

(PSI) of endogenous target exons by RT-PCR and capillary gel electrophoresis. 

3.4.6.1 Up-regulation of endogenous Tra2α protein can functionally compensate for 

loss of Tra2β protein in splicing regulation 

In the first part of this chapter, I observed that expression of endogenous Tra2α 

protein significantly increased following depletion of Tra2β protein. To determine 

whether up-regulation of Tra2α could functional compensate for loss of Tra2β protein 

in splicing regulation of target exons, the percentage splicing inclusion (PSI) of targets 

identified from the iCLIP experiment was measured after single depletion of either 

Tra2α or Tra2β, and after combined depletion of both Tra2α and Tra2β proteins. From 

an initial screen of 14 candidate exons, each of the Tra2β bound exons either did not 

respond or responded very weakly to single knockdown of either Tra2α or Tra2β. 

However, joint depletion of both Tra2α and Tra2β resulted in strong decreases in 

splicing inclusion for many exons and had a substantially greater effect than removing 

either protein alone.  

The effect of removing both Tra2 proteins compared to depletion of Tra2α or Tra2β 

alone is shown in Figure 3.13. Clusters of Tra2β iCLIP tags mapped to alternative exons 

in the ATRX, GLYR1 and CEP95 genes (shown earlier in Figure 3.12). Single depletion of 

Tra2α protein resulted in a small but significant decrease in the PSI of the ATRX and 

CEP95 cassette exons, whilst the mean PSI of the GLYR1 exon was reduced but did not 

reach statistical significance. Single depletion of Tra2β protein resulted in a small but 

significant decrease in the mean PSI of all three cassette exons. Depletion of Tra2β 

protein had a larger effect than depletion of Tra2α for all exons tested, consistent with 

higher expression of the Tra2β protein in MDA-MB-231 cells. Joint depletion of both 

Tra2α and Tra2β resulted in a substantial decrease in the mean PSI of all three exons 

(highlighted red, Figure 3.13), which was consistently greater than the combined 

change in PSI of both single knockdowns. This data suggested that following depletion 
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of Tra2β, up-regulation of endogenous Tra2α protein could functionally compensate 

and largely maintain splicing inclusion of Tra2β target exons. 

 

Figure 3.13 The mean percentage splicing inclusion of three novel Tra2β target exons 

from ATRX, GLYR1 and CEP95. Splicing inclusion was only slightly affected by depletion 

of either endogenous Tra2α or Tra2β proteins, but was strongly affected by joint 

depletion of both Tra2α and Tra2β (red column). Splicing of endogenous targets was 

measured by RT-PCR and capillary gel electrophoresis (lower panels). Data represents 

the mean of three biological replicates ±s.e.m. (upper panels). Statistical significance 

was calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This figure is adapted from (Best et al., 2014b). 

 

I tested this effect on a larger panel of candidate exons and obtained exactly similar 

results with 14 out of 14 novel Tra2β target exons tested in this way (mean PSI of Tra2 

responsive exons is shown in Figure 3.14). In fact, some of the less responsive exons 

including cassette exons from PAM (Figure 3.14 K) and BDP1 (Figure 3.14 D) only 

responded to depletion of both Tra2 proteins, and not to single depletion of Tra2β at 

all. Finally, I calculated the mean PSI change of all 14 exons tested for response to 

single depletion of either Tra2α or Tra2β, and combined depletion of both Tra2α and 

Tra2β proteins (Figure 3.14 O). There was no significant change in the average PSI 

change after single depletion of either Tra2 protein, but joint depletion led to a highly 

significant change in the average PSI change of target exons. This data from the larger 

panel is consistent with the hypothesis that up-regulation of endogenous Tra2α 

(following Tra2β depletion) is able to functionally substitute and largely maintain Tra2β 

target exon inclusion. 
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Figure 3.14 The mean PSI of fourteen Tra2 protein responsive exons identified using 

iCLIP following single or joint Tra2 protein depletion (A-N). Joint depletion of both 

Tra2α and Tra2β (red columns) was required to induce robust splicing changes in all 

Tra2 responsive exons tested. (O) The mean change in PSI of the 14 Tra2 responsive 

exons was not significant after single depletion of either Tra2α or Tra2β, but joint 

depletion of both Tra2α and Tra2β led to a highly significant reduction in the average 

PSI of the Tra2 target exons. Data represents the mean of three biological replicates 

±s.e.m. (A-N). Statistical significance was calculated using an independent two-sample 

t-test, where *p<0.05, **p<0.01, ***p<0.0001. This figure is adapted from (Best et al., 

2014b). 
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3.4.6.2 Validation of additional targets exons following joint depletion of Tra2α and 

Tra2β  

The previous data had demonstrated that depletion of both Tra2 proteins was 

required to observe robust changes in splicing of Tra2 protein dependent exons. 

Therefore I subsequently screened a more extensive panel of candidate exons by 

comparing control siRNA treated cells with joint Tra2α and Tra2β depleted cells. An 

example of a candidate exon showing highly specific Tra2β binding is shown below in 

Figure 3.15. A cluster of Tra2β iCLIP tags mapped highly specifically to a cassette exon 

within the PRMT2 gene (Figure 3.15 A). Primers were designed within flanking 

constitutive exons for validation by RT-PCR. Splicing of the endogenous PRMT2 

cassette exon was measured by RT-PCR and capillary gel electrophoresis (Figure 3.15 

B). Joint depletion of Tra2α and Tra2β led to a highly significant reduction is splicing 

inclusion of the PRMT2 exon compared to control siRNA treated cells (-31% change in 

mean PSI). After screening candidate exons identified from the iCLIP data, I initially 

identified 32 Tra2 protein responsive exons (representative gel images and mean PSI 

from three biological replicates shown in Figure 3.16). High resolution iCLIP maps for 

all Tra2 responsive exons are provided in Appendix B. 

 

Figure 3.15 (A) Identification of a cassette exon within PRMT2 with highly enriched 

Tra2β iCLIP tags relative to the whole gene. (B) Percentage splicing inclusion (PSI) of 

the endogenous PRMT2 cassette exon was compared by PCR and capillary gel 

electrophoresis between control siRNA treated cells (39%, black) and joint Tra2 protein 

depleted cells (8%, red). 
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Figure 3.16 Validation of 32 Tra2 protein responsive exons by RT-PCR and capillary 

gel electrophoresis after joint Tra2 protein depletion. The mean PSI was calculated 

from three biological replicates from negative control siRNA treated cells (black) and 

joint TRA2A and TRA2B siRNA treated cells (red). This figure is adapted from (Best et al., 

2014b). 
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3.4.6.3 Tra2β binding alone was insufficient to accurately predict splicing regulation 

Despite successfully identifying many Tra2 responsive exons, a large panel of Tra2β 

bound exons did not significantly respond to either single or joint depletion of Tra2α 

and Tra2β. In total, 39 exons identified using iCLIP and tested by RT-PCR and capillary 

gel electrophoresis did not respond to joint depletion of Tra2α and Tra2β (information 

regarding non-responsive exons is available as supplementary data in the following 

publication  (Best et al., 2014b). This data corroborates previous studies in which direct 

binding per se was found to be insufficient to elicit a functional response in splicing 

(Grellscheid et al., 2011b). The differences between functionally responsive and non-

responsive exons identified by iCLIP are investigated further in chapter 4.   

3.4.6.4 Intronic Tra2β binding is associated with exon repression in CD44 

Tra2β binding was highly enriched within exons and depletion of Tra2α and Tra2β 

reduced the splicing inclusion on all exons tested that showed exonic binding (the Tra2 

proteins therefore functioned to promote exon inclusion). 

Tra2β iCLIP tags were also found to map to a variable region of the CD44 gene. CD44 

undergoes extensive alternative splicing within a central variable region of the gene, 

which is flanked by two constant regions containing constitutive exons (Figure 3.17 A). 

Clusters of iCLIP tags were associated with the exonic sequence of variable exon 3 (v3), 

but unusually they mapped largely to the intronic regions surrounding variable exons 4 

and 5 (v4 and v5) (Figure 3.17 B). As the variable region within CD44 contains 10 

consecutive alternative exons, it was not feasible to monitor splicing of the CD44 

variable region by conventional RT-PCR splicing analysis (using primers within flanking 

constitutive exons). Therefore to investigate splicing regulation of the CD44 variable 

region, the relative expression of each variable exon, together with two control 

constitutive exons, was determined by qPCR in control siRNA treated cells and joint 

Tra2 protein depleted MDA-MB-231 cells. 

A significant reduction in TRA2A and TRA2B mRNA was confirmed by qPCR in the 

TRA2A and TRA2B siRNA treated cells (red columns, Figure 3.17 C), relative to the 

negative control siRNA treated cells (blue columns, Figure 3.17 C). Depletion of Tra2α 

and Tra2β resulted in a small but statistically significant reduction in expression of 

variable exon 3 (v3), consistent with Tra2 proteins promoting v3 exon inclusion 
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through exonic binding. However, depletion of Tra2α and Tra2β led to a significant 

increase in expression of both the v4 and v5 exons. There was no significant change in 

expression of any of the other variable exons. Importantly, there was no change in 

expression of two control constitutive exons (exon 2 and exon 5), suggesting that the 

observed changes in exon expression resulted from alternative splicing, rather than 

changes in CD44 gene expression.  

 

Figure 3.17 Intronic Tra2β binding was associated with repression of the variable 

exons v4 and v5 from CD44. (A) Structure of the CD44 gene. (B) Tra2β iCLIP tags 

mapping to the central variable region of CD44. Tra2β iCLIP tags mapped directly to 

exon v3. Tra2β iCLIP tags also mapped to intronic regions surrounding exons v4 and v5. 

(C) qPCR analysis of CD44 exon expression relative to three housekeeping genes, 

following depletion of Tra2α and Tra2β. Data represents the mean of three biological 

replicates ±s.e.m. Statistical significance was calculated using an independent two-

sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. 
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3.5 Discussion 

3.5.1 Tra2β efficiently suppresses endogenous Tra2α protein expression in MDA-MB-

231 cells 

In chapter 2, we identified a poison exon from the TRA2A gene which was directly 

regulated by Tra2β, suggesting that Tra2β might regulate protein expression of Tra2α. 

In concordance with that hypothesis, in this chapter I observed that the expression of 

Tra2α protein in MDA-MB-231 cells is normally low, but was significantly up-regulated 

in response to depletion of Tra2β. Conversely, knockdown of Tra2α had no significant 

effect on Tra2β protein expression. Knockdown of Tra2β strongly reduced splicing 

inclusion of the poison exon within the TRA2A mRNA and led to a significant increase 

in steady state TRA2A mRNA levels. This data suggested that Tra2β directly regulates 

Tra2α protein expression by promoting poison exon inclusion within the TRA2A mRNA. 

NMD is a surveillance pathway conserved in all eukaryotes, which reduces errors in 

gene expression by targeting mRNA transcripts containing premature termination 

codons (PTCs) for degradation (Baker and Parker, 2004). NMD is thought to be a 

cellular defence mechanism, as translation of shorter mRNA transcripts could result in 

truncated protein isoforms which may have a detrimental gain-of-function or 

dominant-negative effect (Chang et al., 2007). NMD also provides a mechanism for 

post-transcriptional regulation of gene expression, as inclusion of poison exons during 

unproductive splicing can also target mRNA for degradation via the NMD pathway (Ni 

et al., 2007). DNA sequences leading to unproductive splicing are often highly 

conserved between mice and humans, and remarkably all genes encoding members of 

the SR-protein family have been found to produce non-productive mRNA isoforms via 

alternative splicing (Lareau et al., 2007). A strikingly similar description of cross-

regulation between two paralogous splicing factors was previously reported by 

Spellman et al., in which the splicing repressor (PTB) was found to regulate its own 

expression by promoting poison exon inclusion within the PTB mRNA, as well as the 

mRNA of its neuronally-restricted paralog nPTB (Spellman et al., 2007). As observed in 

my data, a large degree of functional overlap was found between PTB and nPTB. 

Similarly, cross-regulation also occurs between the mammalian Fox proteins (Fox-1 

(A2BP1), Fox-2 (RBM9) and Fox-3 (HRNBP3) (Damianov and Black, 2010). 



Chapter 3                        Transcriptome-wide identification of Tra2β-RNA interactions using iCLIP 

113 
 

3.5.2 Tra2β iCLIP in MDA-MB-231 cells 

Cross-linking and immunoprecipitation of RNA-binding proteins coupled to deep 

sequencing is proving a powerful technique to study protein-RNA interactions on a 

transcriptome-wide scale. More recent variations of the original HITS-CLIP protocol 

(Ule et al., 2005b) including Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) 

(Hafner et al., 2010) and Individual-nucleotide resolution CLIP (iCLIP) (Konig et al., 2011) 

have greatly increased the precision at which these protein-RNA interactions can be 

resolved on a global scale. PAR-CLIP relies on the incorporation of photoreactive 

ribonucleoside analogs such as 4-thiouridine (4-SU) into RNA transcripts. UV cross-

linking after 4-SU incorporation induces thymidine to cytidine mutations, allowing the 

precise site of protein-RNA interaction to be identified. Alternatively, iCLIP captures 

mRNA transcripts truncated at the site of cross-linking, preserving the site of protein-

RNA interaction at individual nucleotide resolution.  

The Tra2β iCLIP experiments in this chapter provide the first global analysis of human 

Tra2β-RNA interactions. Initial visualisation of the Tra2β iCLIP autoradiographs showed 

a single band corresponding to just above the molecular weight of Tra2β in the high 

concentration RNase experiment, suggesting the Tra2β antibody was highly specific 

and the high stringency purification steps had isolated genuine Tra2β-RNA interactions. 

During the iCLIP protocol, the incorporation of randomly generated ‘barcode’ 

sequences into individual cDNA molecules overcame the problem of PCR amplification 

bias by allowing identification of ‘unique cDNAs’. Following sequencing, non-unique 

cDNAs were filtered from the data set, so that only unique cDNAs were used for 

downstream analysis. The data generated from the iCLIP experiments was also highly 

reproducible and only Tra2β-RNA interactions consistent in all three biological 

replicate experiments were used for validation, contributing to a high quality data set. 

Analysing the genome wide distribution of iCLIP tags revealed Tra2β binding was highly 

enriched with exons, consistent with the previous Tra2β HITS-CLIP experiment in the 

mouse testis (Grellscheid et al., 2011a). The top 10 penatmers derived from the Tra2β 

iCLIP experiment were highly enriched in GAA-motifs, matching the known Tra2β 

binding site and serving as an early indication we had captured genuine Tra2β-RNA 

interactions. Tra2β iCLIP tags were also enriched within non-coding RNAs (ncRNAs), 

including the metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and 



Chapter 3                        Transcriptome-wide identification of Tra2β-RNA interactions using iCLIP 

114 
 

nuclear paraspeckle assembly transcript 1 (NEAT1) (Figure 3.18). MALAT1 is a long 

non-coding RNA which has recently been implicated in alternative splicing regulation, 

as MALAT1 directly interacts with SR-proteins to promote phosphorylation, influencing 

SR-protein distribution within nuclear speckles (Tripathi et al., 2010b). MALAT1 is also 

over-expressed in many human cancers including breast cancer (Perez et al., 2008) and 

prostate cancer (Ren et al., 2013). MALAT1 is also thought to have an important role in 

tumourigenesis (Li et al., 2009) and was found to be a critical regulator of the 

metastatic phenotype of lung cancer cells (Gutschner et al., 2013).  

Similarly, the lncRNA NEAT1 is also implicated with a role in nuclear paraspeckles, as 

NEAT1 is essential to maintain the nuclear paraspeckle structure (Clemson et al., 2009). 

This preliminary data suggests that Tra2β associates with several long ncRNAs 

associated with nuclear paraspeckles, including MALAT1 and NEAT1. MALAT1 and 

NEAT1 are not alternatively spliced and their interaction with Tra2β may have a 

regulatory function, for example influencing Tra2β sub-nuclear localisation or protein 

turnover. Investigating the functional role of Tra2β/lncRNA interactions may prove an 

interesting area for future study. 

 

Figure 3.18 Tra2β iCLIP tags were enriched within the long ncRNAs MALAT1 and 

NEAT1. 
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3.5.3 Validating splicing regulation of endogenous target exons 

Splicing regulation of target exons was validated by RT-PCR and capillary gel 

electrophoresis in Tra2α and Tra2β depleted MDA-MB-231 cells. I initially validated 32 

Tra2 protein responsive exons in this manner. Genes containing the most highly 

responsive exons included the α-thalassemia mental retardation X-linked gene (ATRX), 

which encodes a member of the SWI/SNF family of chromatin remodelling proteins (De 

La Fuente et al., 2011). Mutations in the ATRX gene are heavily associated with the X-

linked mental retardation (XLMR) syndrome and alpha-thalassemia (ATRX) syndrome 

(Gibbons et al., 2008). The Tra2 responsive cassette exon encoded a region close but 

not overlapping with the functional PHD-like domain of ATRX which is frequently 

mutated in disease (Badens et al., 2006). However, the region encoded by the Tra2β 

responsive exon currently has no defined function. Other novel targets of Tra2β 

included cassette exons within MIER1, which encodes a transcriptional co-factor 

(McCarthy et al., 2008), PMRT2, encoding a protein arginine methyltransferase 

(Ganesh et al., 2006) and CLOCK, a key upstream regulator of the circadian rhythms 

(Alhopuro et al., 2010). The general functions of Tra2 regulated genes are investigated 

further in chapter 4, using a Gene Ontology (GO) enrichment analysis. 

3.5.4 Functional redundancy between Tra2α and Tra2β largely maintains inclusion of 

Tra2 target exons 

To determine whether Tra2α could maintain splicing inclusion of Tra2β target exons, 

the splicing inclusion of 14 Tra2β target exons was measured after single depletion of 

either Tra2α or Tra2β, and after joint depletion of both Tra2α and Tra2β. Single 

depletion of either Tra2α or Tra2β had minimal effect on exon inclusion, however joint 

depletion of both Tra2α and Tra2β substantially reduced inclusion of all exons tested in 

this way. This data suggests that following depletion of Tra2β, up-regulation of Tra2α 

can largely maintain Tra2β target exon inclusion, a phenomenon coined “paralog 

compensation”. This data also demonstrates a large degree of functional redundancy 

between Tra2 proteins, as nearly all Tra2β target exon tested was responsive to both 

Tra2 proteins. A model of paralog compensation between Tra2 proteins is shown in 

Figure 3.19.  
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Although the splicing changes after single Tra2α and Tra2β depletion were small, they 

were often individually statistically significant (e.g. in the ATRX gene). This fine tuning 

of splicing profiles by joint Tra2 protein concentration might have physiological 

significance in whole organisms and at particular points of development (e.g. in brain 

development). Moreover, the physiological effect of even individually small splicing 

defects might be cumulative over hundreds of Tra2β target exons. This may explain 

why Tra2b knockout mice are embryonic lethal despite expressing the Tra2a gene 

(Mende et al., 2010a; Grellscheid et al., 2011a; Roberts et al., 2013). Another 

possibility is there are some specific cell types in which Tra2b is not expressed. 

 

Figure 3.19 A model of paralog compensation between Tra2α and Tra2β, which 

largely maintains splicing inclusion of Tra2 target exons. (A) Tra2β efficiently 

represses expression of Tra2α protein in MDA-MB-231 cells, but is sufficient to 

maintain inclusion of target exons. As Tra2α expression is very low, depletion of Tra2α 

protein has minimal effect on inclusion of target exons. (B) Depletion of Tra2β 

significantly reduces inclusion of a poison exon within the TRA2A mRNA, increasing 

Tra2α protein expression. Up-regulation of Tra2α protein can functionally compensate 

for loss of Tra2β, largely maintaining splicing inclusion of target exons. (C) Joint 

depletion of both Tra2α and Tra2β is required to induce a substantial reduction in 

splicing inclusion of Tra2 target exons.  
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3.5.5 Intronic binding is associated with exon repression 

Tra2β was previously reported to regulate alternative splicing of the CD44 gene. Co-

transfection with Tra2β was found to enhance inclusion of CD44 variable exons v4 and 

v5, which were cloned into a minigene and transfected into HeLa cells (Watermann et 

al., 2006). To investigate alternative splicing regulation of endogenous CD44, I analysed 

iCLIP tags mapping to the CD44 gene. Multiple clusters of Tra2β iCLIP tags mapped to 

the central variable region of CD44, which contains 10 consecutive alternatively spliced 

exons (Figure 3.17 B). To investigate splicing regulation of this central variable region, 

expression of each exon was quantified by qPCR after joint depletion of Tra2α and 

Tra2β compared to negative control siRNA treated cells. The largest cluster of Tra2β 

iCLIP tags was associated with exon v3, and joint depletion of Tra2α and Tra2β 

significantly reduced variable exon v3 expression as predicted. However, joint 

depletion of Tra2α and Tra2β unexpectedly led to a significant increase in expression 

of variables exons v4 and v5 (Figure 3.17 C). Joint depletion of Tra2α and Tra2β had no 

effect on expression of the control constitutive exon 2 and exon 5, suggesting the 

changes in expression of exons v3, v4 and v5 were due to alternative splicing, rather 

than changes to CD44 gene expression. There was no significant change in any of the 

other variable exons. Unusually, the cluster of Tra2β iCLIP tags associated with exon v4 

was entirely intronic and mapped within the first 50bp upstream of the exon (see 

Figure 3.20 A).  

RNA splicing maps have revealed that many RNA-binding proteins share many 

common positional principles in splicing regulation (Darnell, 2010). RNA-binding 

proteins including Nova, hnRNP C, Fox, PTB and Mbnl1 have all been found to silence 

exon inclusion by binding upstream of exons, within close proximity to the branch 

point and 3' splice sites (Witten and Ule, 2011). Assuming this is a genuine site of 

protein-RNA interaction, Tra2 proteins may follow a similar principle. One possible 

model is that Tra2α and Tra2β may inhibit inclusion of variable exons v4 and v5 by 

preventing assembly of the U2 snRNP/U2AF complex which is essential for exon 

recognition (Figure 3.20 B). 
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Figure 3.20 Model of Tra2β silencing of CD44 exons v4 and v5. (A) Clusters of Tra2β 

iCLIP tags mapped immediately upstream of variable exon 4. (B) Model of Tra2β 

splicing regulation. Typically, exonic binding by SR proteins enhances exon inclusion by 

stabilising components of the spliceosome. Conversely, binding immediately upstream 

of the variable exon 4 may inhibit assembly of the U2 snRNP/U2AF complex, inhibiting 

exon inclusion. Figure 3.20 part B is adapted from (Wahl et al., 2009). 

 

However, it is also possible that changes to v4 and v5 expression are indirect 

consequences of joint depletion of Tra2α and Tra2β. The precise mechanism of exon 

repression may be investigated in future work and may benefit from a more detailed 

dissection using minigenes. On the surface, the data from Watermann et al. and my 

own data appear to be contradictory, as over-expression of Tra2β was found to 

enhance exon inclusion in their model, whilst joint depletion of Tra2α and Tra2β also 

enhanced exon inclusion in mine. These inconsistencies may be due to the different 

nature of experimental procedures used. Watermann et al. use a minigene model 

containing a short region of CD44 transfected in HeLa cells and over-expression of 

Tra2β. I investigated splicing of endogenous CD44 in MDA-MB-231 cells, following 

depletion of endogenous Tra2α and Tra2β. For that reason, Tra2β mediated splicing 

regulation of the CD44 exons v4 and v5 requires further investigation to resolve these 

differences.  
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3.5.6 Chapter Summary 

In this chapter, I established that Tra2β efficiently suppresses Tra2α protein expression 

in MDA-MB-231 cells, most likely by promoting inclusion of a poison exon within the 

TRA2A mRNA. Cross-regulation of expression was found to be largely asymmetrical in 

MDA-MB-231 cells.  

I also mapped the transcriptome-wide binding sites of Tra2β in MDA-MB-231 cells 

using iCLIP. This facilitated the identification of Tra2β target exons which I functionally 

validated by RT-PCR in Tra2α and Tra2β depleted cells. Joint Tra2 protein depletion 

(but not single depletion of either Tra2 protein) was required to observe robust 

changes in splicing. This demonstrated a large degree of functional redundancy 

between the Tra2 proteins and suggested up-regulation of Tra2α (following Tra2β 

depletion) could largely maintain Tra2 target exon inclusion, a phenomenon termed 

“paralog compensation”. 

Tra2β was largely found to activate splicing inclusion of the newly identified target 

exons through exonic binding. However, intronic binding was associated with skipping 

of two variable exons (v4 and v5) from CD44. Further study is required to establish 

whether this is a direct or indirect consequence of Tra2 protein depletion. 
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Chapter 4: Transcriptome-wide investigation of Tra2 

protein dependent splicing using RNA-seq 

4.1 Introduction  

The data from chapter 3 suggested that due to a negative feedback pathway between 

Tra2 proteins in MDA-MB-231 cells, robust splicing changes to Tra2 protein dependent 

exons would require joint depletion of both Tra2α and Tra2β. Spellman et al. 

previously described similar asymmetric expression patterns and cross-regulation of 

expression between members of the PTB family (2007). Comprehensive identification 

of PTB target RNAs also required joint depletion of PTBP1 and PTBP2 (Spellman et al., 

2007). I largely detected low amplitude splicing switches in the target exons identified 

using iCLIP in chapter 3 and some exons were completely unaffected by joint Tra2 

protein depletion. This is consistent with previous findings that evidence of direct 

binding per se is often insufficient to accurately predict functionally responsive exons 

(Grellscheid et al., 2011b). Consequently in this chapter, I have used RNA-seq following 

joint Tra2 protein depletion, with the aim of identifying higher amplitude splicing 

switches to functionally responsive exons in MDA-MB-231 cells. By combining the 

RNA-seq data with the Tra2β iCLIP data from chapter 3, my objective was to identify 

target exons which were both directly bound by Tra2β and functionally responsive to 

joint Tra2 protein depletion (Figure 4.1). 

 

Figure 4.1 Experimental strategy used to identify Tra2 dependent target exons which 

were both directly bound by Tra2β (iCLIP) and functionally responsive to joint Tra2 

protein depletion (RNA-seq). This image is adapted from (Hsu, 2008). 
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Tra2α and Tra2β share some degree of structural and functional similarity to the 

classical SR-protein family which regulate both constitutive and alternative splicing 

(Zhou and Fu, 2013). However Tra2α and Tra2β have been implicated exclusively in 

alternative splicing regulation and not constitutive splicing. More over, only classical 

SR-proteins can provide splicing activity to splicing deficient S100 extracts (Tacke et al., 

1998b). These data suggest there may be fundamental differences between the 

classical SR-protein family and Tra2 proteins in splicing activity. Hence in this chapter, I 

also use the RNA-seq data to investigate whether Tra2 proteins play a role in 

regulation of constitutively spliced target exons in addition to their known role in 

alternative splicing. 

Some splicing factors have been found to regulate genes involved in functionally 

coherent biological processes. Recent examples include Nova (which regulates 

alternative splicing of genes encoding synaptic proteins and proteins involved in axon 

guidance) (Ule et al., 2005c), PTB (which regulates alternative splicing  of genes 

encoding cytoskeletal proteins) (Boutz et al., 2007), T-STAR (which regulates 

alternative splicing of a family of genes encoding pre-synaptic proteins) (Ehrmann et al., 

2013) and MBNL1/RBFOX2 (which regulate alternative splicing of genes involved in 

pluripotent stem cell differentiation) (Venables et al., 2013b). To examine whether 

Tra2 proteins similarly regulate splicing of genes involved in functionally related 

biological processes, I also use Gene Ontology (GO) enrichment analysis in 

collaboration with Dr. Katherine James (Newcastle University) to test for functional 

enrichment in Tra2 protein regulated genes. 

In the final part of this chapter, I focus on characterising splicing regulation of a 

functionally important exon from CHEK1. CHEK1 encodes the serine/threonine protein 

kinase CHK1, which plays a key role in the DNA damage response and cell cycle 

checkpoint control (Gagou et al., 2010; Pabla et al., 2012). I also investigate whether 

Tra2 proteins are required for expression of the full-length CHK1 protein, and the 

ensuing cell phenotype following joint Tra2 protein depletion, specifically focusing on 

DNA damage and cell viability.  
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4.2 Aims 

The aims of this chapter were to: 

1. Investigate changes to the MDA-MB-231 cell transcriptome following joint 

Tra2 protein depletion using RNA-seq 

2. Investigate whether Tra2 proteins play a role in regulation of constitutively 

spliced target exons 

3. Investigate whether Tra2 proteins regulate splicing of genes involved in 

functionally related biological processes 

4. Characterise and investigate functional consequences of splicing regulation 

of the CHEK1 gene by Tra2 proteins 
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4.3 Materials and Methods 

4.3.1 RNA-seq 

RNA was extracted from MDA-MB-231 cells using an RNeasy Plus Mini Kit (Qiagen) and 

re-suspended in nuclease-free water following the manufacturer’s instructions. The 

RNA samples were DNase-treated using a DNA-free kit (Invitrogen) and stored at -80°C. 

The RNA quality was determined using a 2100 Agilent Bioanalyser to monitor RNA 

degradation. Only RNA samples with an RNA integrity score (RIN) greater than nine 

were selected for sequencing. RNA samples were sent on dry ice to the Bristol 

University Genomics Facility for sequencing, where mRNA libraries were prepared 

using a TruSeq mRNA library kit (Illumina). Paired-end sequencing was performed for 

six RNA samples (three biological replicates from negative control siRNA treated MDA-

MB-231 cells and three biological replicates from TRA2A/B siRNA treated MDA-MB-231 

cells) using an Illumina HiSeq 2000 sequencing system. 

The RNA-seq data was processed and analyzed by Mr Yaobo Xu (Newcastle University). 

Mr Yaobo Xu analyzed the RNA-seq data to identify differentially expressed genes, 

differentially expressed exons and exons which have differential usages among 

transcripts of a gene. The quality of sequencing reads was first checked using FastQC 

(Andrews, 2014). Poly-N tails were trimmed from reads with an in house perl script. 

The 13bp on the left ends of all reads were clipped off with Seqtk (Li, 2014) to remove 

biased sequencing reads caused by random hexamer priming (Hansen et al., 2010). 

Low quality bases (Q < 20) and standard Illumina (Illumina, Inc.  California, U.S.) paired-

end sequencing adaptors on 3' ends of reads were trimmed off using Trim-galore 

(Krueger) and only those that were at least 20bp in length after trimming were kept. 

The high quality reads were then mapped to the human reference genome hg19 with 

Tophat2 (Kim et al., 2013). Reads aligned to genes and exons were counted with 

Bedtools (Quinlan and Hall, 2010). Differentially expressed genes and exons were then 

identified with the Bionconductor (Gentleman et al., 2004) package DESeq (Anders and 

Huber, 2010). Differentially used exons were identified with Bionconductor package 

DEXSeq (Anders et al., 2012). 

To search for candidate exons, the processed RNA-seq data was uploaded to the UCSC 

genome browser, so that the Tra2β iCLIP tracks and RNA-seq tracks could be viewed in 
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parallel. Genes containing differentially expressed exons that were statistically 

significant were ranked in order of the greatest fold-change in exon expression and 

filtered for a minimum level of gene expression. Differentially expressed exons 

containing Tra2β iCLIP tags were selected for downstream validation by RT-PCR and 

capillary gel electrophoresis.  

4.3.2 Splicing analysis 

A standard splicing assay is used throughout this chapter and was described previously 

in chapter 2, methods section 2.3.9. Briefly, the PSI of endogenous target exons was 

determined using RT-PCR and capillary gel electrophoresis. PCR primers were designed 

within flanking constitutive exons and the PSI of target exons was determined from 

three biological replicates per experiment. In this chapter, the PSI of target exons was 

analysed from negative control siRNA treated cells, TRA2A siRNA treated cells, TRA2B 

siRNA treated cells, and TRA2A and TRA2B (TRA2A/B) siRNA treated cells. The standard 

siRNA transfection protocol used in this chapter was also described previously in 

chapter 2, methods section 2.3.7. All primer sequences used for splicing assays in this 

chapter are provided in Appendix A. 

4.3.3 Molecular cloning and mutagenesis of the ANKRD1 minigene 

The ANKRD1 consitutive exon and approximately 200 nucleotides of upstream and 

downstream flanking intronic sequence was amplified from human genomic DNA using 

two cloning primers (Table 4.1). A restriction digest was performed on the gel purified 

PCR product using the restriction endonuclease EcoRI. The digested insert was cloned 

into an Mfe1 restriction site within the pXJ41 minigene vector. Single base mutations 

to Tra2β binding sites were introduced into the wildtype ANKRD1 minigene using site 

directed mutagenesis (as described previously in chapter 2.3.4). The molecular cloning 

and mutagenesis of the ANKRD1 minigene was carried out by Ms. Marina Danilenko 

(Newcastle University). The primers used for site directed mutagenesis of the wildtype 

ANKRD1 minigene are provided in Table 4.1. Different versions of the ANKRD1 

minigene were co-transfected into HEK-293 cells for splicing analysis as previously 

described in chapter 2.3.2. Inclusion of the various ANKRD1 minigene exons was 

determined by RT-PCR using a Qiagen One-step RT-PCR kit (Qiagen) and the pXJ41-

specific primers pXJRTF and pXJB1 (Table 4.1). 
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Primer Sequence 

ANKRD1 cloning primer F AAAAAAAAAGAATTCAAAATCTAAGACTTGCTTATGGCATT 

ANKRD1 cloning primer R AAAAAAAAAGAATTCAGCATGAGAGTTACCGTGAGC 

ANKRD1 M1F AGAACACATATCAAAGCTTGCACATTTATACGACCTTGAAA 

ANKRD1 M1R CAAGGTCGTATAAATGTGCAAGCTTTGATATGTGTTCTAG 

ANKRD1 M2F ATCATTCAACTGCAGCAACGGCAACAATACAGGCACACTAAAG 

ANKRD1 M2R GAACTTTAGTGTGCCTGTATTGTTGCCGTTGCTGCAGTTGAATG 

pXJRTF GCTCCGGATCGATCCTGAGAACT 

pXJB1 GCTGCAATAAACAAGTTCTGCT 

 

Table 4.1 Primers sequences used for molecular cloning and mutagenesis of the 

ANKRD1 minigene. 

 

4.3.4 High throughput RT-PCR screen 

The PSI of four endogenous target exons was monitored using a custom high-

throughput RT-PCR plate containing cDNAs from MDA-MB-231 cells in which 53 known 

splicing regulators had been individually and systematically depleted using RNAi 

(Huang et al., 2013). Six cDNA samples (three biological replicates from negative 

control siRNA treated cells and three biological replicates from TRA2A/B siRNA treated 

cells), together with splicing assay primers for ANKRD1, CHEK1, GLYR1 and SMC4 

(Table 4.2) were sent to the laboratory of Professor Benoit Chabot (Université de 

Sherbrooke, Quebec, Canada) for analysis. The high-throughput RT-PCR screen was 

performed by Dr. Roscoe Klinck (Université de Sherbrooke, Canada). Only samples with 

a minimum of 50% mRNA depletion determined by qPCR were included in this panel 

(Venables et al., 2013b). 

Primer  Sequence 

ANKRD1 F GGAAAGAAGAATGGCAATGG 

ANKRD1 R GCAGCCTTCAGAAACGTAGG 

CHEK1 F GACTGGGACTTGGTGCAAAC 

CHEK1 R TGCCATGAGTTGATGGAAGA 

GLYR1 F CTAGACTCCGGGATGGTGAG 

GLYR1 R GCCTGGATCAAAGTGGAACA 

SMC4 F TGGATGTAGCCCAGTCAGAA 

SMC4 R CCAGTGCATGACAACAGGAT 

 

Table 4.2 Primers sequences used in a high throughput RT-PCR screen of four 

endogenous target exons after individual depletion of 53 known splicing regulators. 
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4.3.5 Gene Ontology (GO) enrichment analysis and interaction network 

The Gene Ontology (GO) (R Foundation for Statistical Computing) enrichment analysis 

was performed entirely by Dr. Katherine James (Newcastle University) using the 

Bioconductor GOstats package version 2.24.0 ((Gentleman, 2004; Falcon and 

Gentleman, 2007; Hogan et al., 2008; Langmead et al., 2009).  Enrichments of GO 

biological process terms were calculated using the conditional hypergeometric test 

with a significance cut-off of 0.001 and using a background of genes normally 

expressed in MDA-MB-231 cells. Annotations were taken from the Bioconductor Homo 

sapiens annotation package org.Hs.eg.db version 2.8.0 (Carlson, 2012). The analysis 

was run in the open source statistical package R version 3.0.1 (R Foundation for 

Statistical Computing). 

The protein interaction network was also generated by Dr. Katherine James (Newcastle 

University). Interaction data for Homo sapiens was retrieved from the BioGRID 

database (version 110). These data were integrated into a network in which nodes 

represented genes or gene products, and edges represented any type of BioGRID 

interaction between the nodes. The network was visualised using the Cytoscape  

visualisation platform (Shannon et al., 2003) and was coloured based on annotations 

to top five enriched GO biological processes (as downloaded from QuickGO (Shannon 

et al., 2003). Where a protein was annotated to more than one term, the most specific 

annotation was chosen.  

4.3.6 Quantitative real time PCR (qPCR) 

Quantitative real-time PCR (qPCR) was performed as described in chapter 3, section 

3.3.3. Gene expression was compared between three biological replicates of negative 

control siRNA treated MDA-MB-231 cells and three biological replicates from TRA2A 

and TRA2B siRNA treated MDA-MB-231 cells. Three technical replicates were 

performed per biological sample. A no template control (NTC) and a no reverse 

transcriptase control (-RT) were included for each set of primers. Gene expression was 

calculated relative to three housekeeping genes ACTB, GAPDH and TUBB. Ct values for 

each sample were calculated using SDS 2.4 software (Applied Biosystems) and relative 

mRNA expression was calculated using the 2-ΔΔCt method. All primers used for 

quantitative real-time PCR (qPCR) in chapter 4 are provided in Table 4.3. 
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Primer Sequence 

TRA2A F TCCAATGTCTAACCGGAGAAG 

TRA2A R CCAAACACTCCAAGGCAAGT 

TRA2B F CGCCAACACCAGGAATTTAC 

TRA2A R TCATAGCCCCGATCATATCC 

SELPLG F GGCTGGGACCTTGTCACTAA 

SELPLG R AACAGGAGGAGTTGCAGAGG 

FOSB F CTCAATATCTGTCTTCGGTGGA 

FOSB R GGTCCTGGCTGGTTGTGAT 

FOS F CCGGGGATAGCCTCTCTTAC 

FOS R GTGGGAATGAAGTTGGCACT 

DDIT4 F CCTGGACAGCAGCAACAGT 

DDIT4 R GAAGTCGGGCAACGACAC 

EGR1 F AGCCCTACGAGCACCTGAC 

EGR1 R GTCTCCACCAGCACCTTCTC 

TTC14 F CAATCCACACTTCCGTAGCC 

TTC14 R AATTTCTGTATCTCGATGTTGTCA 

RP11-618G20.2 F AGAATGGAGCCAAGACAAGG 

RP11-618G20.2 R GCAGAACATATCAGCAGAAGAA 

RP5-1129J21 F GGAGCCACCGTTTTGTGC 

RP5-1129J21 R GACTTATTTTCCTTTGCCTGGA 

CTD-2037K23 F CTTCCCCTCCGCTCTCAG 

CTD-2037K23 R TCTCCGTGATTTAGCAGCAA 

ANKRD26 F TCTGACCAATCACCTTTCCA 

ANKRD26 R CCAGTCTTTCCTTGCTTTGC 

EIF5B F GACAAGCAATGGGGAAGAAA 

EIF5B R GCCAAGGCATCAAGATCAAT 

HIST2H2BE F CCAGAAGAAAGACGGCAAGA 

HIST2H2BE R ATGGCCTTGGACGAGATG 

RP11-221J22 F CCCACATTAACTCATCCATCC 

RP11-221J22 R ATTCAGACAAGCCCTGGTTG 

LINC00601 F AGTAATGGGACACGCAGACC 

LINC00601 R TCAATATCTTCCTTCTTCCTCTTCA 

ACTB F CATCGAGCACGGCATCGTCA 

ACTB R TAGCACAGCCTGGATAGCAAC 

GAPDH F AACAGCGACACCCATCCTC 

GAPDH R CATACCAGGAAATGAGCTTGACAA 

TUBB F CTTCGGCCAGATCTTCAGAC 

TUBB R AGAGAGTGGGTCAGCTGGAA 

Table 4.3 Primers used for quantitative real-time PCR (qPCR). 
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4.3.7 siRNA transfection 

In this chapter, siRNA transfections were performed in MDA-MB-231, MCF-7, HEK-293, 

HeLa and PC3 cells following the standard siRNA transfection protocol described in 

chapter 2, methods section 2.3.7. CHK1 protein depletion was performed using a 

CHEK1-specific siRNA (Ambion Silencer Select siRNA ID: s503). 

4.3.8 Electrophoretic Mobility Shift Assays (EMSAs) 

Three short regions (68-69bp) from the human CHEK1 gene were cloned in front of a 

T7 promoter within the pBluescript vector, to facilitate the in vitro transcription of 

three short CHEK1 RNA probes. The primers used to clone the short sequences from 

CHEK1 into the pBluescript vector are provided in Table 4.4. I performed the molecular 

cloning, whilst the Electrophoretic Mobility Shift Assays (EMSAs) were performed by 

Mrs. Caroline Dalgliesh (Newcastle University). The EMSAs were carried out using 

purified full-length Tra2β protein and in vitro transcribed, radio-labelled RNA probes 

generated from the CHEK1 pBluescript constructs containing amplified regions of the 

human CHEK1 gene. The EMSA experiments were performed as previously described 

(Grellscheid et al., 2011a; Grellscheid et al., 2011b). 

Primer  Sequence 

CHEK1 intron F AAAAAAAAAGGTACCTGTGTACCTCTCCTTCACTACC 

CHEK1 intron R AAAAAAAAAGAATTCCTGTCCTAAGCTCCTATGGGG 

CHEK1 exonA F AAAAAAAAAGGTACCGTTCAACTTGCTGTGAATAGAGT 

CHEK1 exonA R AAAAAAAAAGAATTCGGCACGCTTCATATCTACAATCT 

CHEK1 exonB F AAAAAAAAAGGTACCAGTAAAATTCTATGGTCACAGGA 

CHEK1 exonB R AAAAAAAAAGAATTCCTCCACTACAGTACTCCAGAAAT 

 

Table 4.4 Primer sequences used to clone short sequences from the CHEK1 gene into 

the pBluescript vector. 

 

4.3.9 Molecular cloning of the wildtype and mutant CHEK1 minigenes 

Exon 3 of the CHEK1 gene and approximately 250 nucleotides of the upstream and 

downstream flanking intronic sequences was synthesised by gBlocks gene fragments 

(IDT UK) and subsequently cloned into the pXJ41 minigene vector. A mutated version 

of the CHEK1 exon 3 was also synthesised and cloned into the pXJ41 vector, which 

contained single base mutations within the exonic Tra2β binding sites. The wildtype 

and mutant CHEK1 exon 3 sequences are provided in Figure 4.19. Cloning of the 
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wildtype and mutant CHEK1 exon 3 minigenes was carried out by Ms. Marina 

Danilenko (Newcastle University). The CHEK1 exon 3 minigenes were co-transfected 

into HEK-293 cells for splicing analysis as described previously in chapter 2, methods 

section 2.3.2. 

4.3.10 Centrifugal elutriation and cell cycle evaluation 

Frozen KG-1 cell pellets fractionated by centrifugal elutriation were a gift from 

Professor Caroline Austin (Newcastle University). The KG-1 cells were subject to 

centrifugal elutriation and cell cycle evaluation, performed by Dr. Ian Cowell 

(Newcastle University) and Mr. Ka Cheong Lee (Newcastle University).  Briefly, KG-1 

cells were size fractionated by centrifugal elutriation, using flow rates of 10, 13, 17, 20, 

24 and 28 ml/min (Ly, 2014). Cell cycle phase enrichment of cells was assessed using 

immunofluorescence staining for CENPF (late S, G2, G2/M) (Liao et al., 1995) and 

phosphorylated histone H3S10 (G2/M, M) (Hendzel MJ1, 1997). Asynchronous and 

elutriated KG-1 cells were suspended in PBS, spotted onto poly-lysine-coated slides 

and processed for immunofluorescence. Images were captured and cells were scored 

for CENPF and phospho-H3S10 staining. RNA was purified by Trizol RNA extraction. 

cDNA was generated using a SuperScript VILO cDNA synthesis kit (Invitrogen) following 

the maufacturer’s instructions. The PSI of endogenous CHEK1 exon 3 was determined 

by RT-PCR and capillary gel electrophoresis. Primers used for the CHEK1 exon 3 splicing 

analysis are provided in Table 4.5. 

Primer  Sequence 

CHEK1 F GACTGGGACTTGGTGCAAAC 

CHEK1 R TGCCATGAGTTGATGGAAGA 

 

Table 4.5 Primers sequences used for the CHEK1 exon 3 splicing assay. 

4.3.11 Breast cancer tumour biopsies 

The splicing profile of endogenous CHEK1 exon 3 was monitored by RT-PCR and 

capillary gel electrophoresis in a panel of ten breast cancer tumour biopsies. The cDNA 

samples from ten breast cancer tumour biopsies were a gift from Dr. Alison Tyson-

Capper (Newcastle University) and were originally obtained with appropriate consent 

from the Breast Cancer Campaign Tissue Bank. 
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4.3.12 Western Immunoblotting 

Protein expression was detected by Western Immunoblotting using the following 

primary antibodies and dilutions: Tra2α (Novus Biologicals, H00029896-B01P) (1:500 

dilution), Tra2β (Abcam, ab31353) (1:2000 dilution), CHK1 (Proteintech, 10362-1-AP) 

(1:250 dilution), Histone H2AX (Santa Cruz Biotechnology, sc54-606) (1:500 dilution), 

phosphorylated Histone H2AX (Ser 139) (Santa Cruz Biotechnology, sc-101696) (1:500 

dilution), FLAG (Sigma Aldrich, F3040) (1:2000 dilution) and α-Tubulin (Sigma-Aldrich, 

T5168) (1:2000 dilution). 

4.3.13 Immunofluorescent detection of γH2AX 

The expression and localisation of γH2AX within MDA-MB-231 cell nuclei was 

investigated using immunofluorescence. The expression of γH2AX was compared 

between negative control siRNA treated cells and TRA2A/B siRNA treated cells. MDA-

MB-231 cells were seeded onto sterile cover slips and immediately transfected with 

siRNA, following the standard siRNA transfection protocol described in chapter 2.3.7. 

After 72 hours, the siRNA treated cells were fixed by removing the media, washing 

gently with PBS and incubating the cover slips with 0.5ml 4% PFA for 20 minutes at 

room temperature. The MDA-MB-231 cells were permeabilised by incubating the 

cover slips with 0.1% Triton X-100 in PBS for 10 minutes at room temperature. The 

cover slips were blocked with blocking solution (10% FBS in PBS) for 10 minutes at 

room temperature. Cover slips were incubated with a 1:100 dilution of primary 

antibody against γH2AX (Santa Cruz Biotechnology, sc-101696) in blocking solution for 

2 hours at room temperature. Cover slips were washed gently three times with PBS to 

remove residual antibody. Cover slips were incubated with a 1:400 dilution of goat 

anti-rabbit IgG Alexa Fluor 488 fluorescent secondary antibody (Abcam, ab150077) in 

blocking solution for one hour, protected from light. Finally, cover slips were gently 

washed three times with PBS and mounted onto slides using VECTASHIELD Mounting 

Medium with DAPI (Vector Labs, H-1200). Slides were analysed using a ZEISS Axioplan2 

fluorescent microscope with Axiovision software. An optimal exposure time was 

determined for detection of the Alexa Fluor 488 fluorescent secondary antibody and 

the same exposure time was used for image analysis of all slides. 
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4.3.14 MTT assay 

An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used 

to monitor viability of MDA-MB-231 and HEK-293 cells following siRNA transfection. 

The MTT assays were performed using an MTT Cell Proliferation Assay Kit (Cayman 

Chemical) following the manufacturer’s instructions. A standard siRNA transfection 

was performed as described in chapter 2, methods section 2.3.7. A 100µl aliquot of cell 

suspension containing approximately 2X103 cells in complete growth media was added 

to each well in a 96-well plate. The absorbance from the MTT assay was measured 

over 5 days at 24h, 48h, 72h, 96h and 120h following siRNA transfection. The relative 

density of cells was also observed by microscopy 120h after siRNA transfection. 

4.3.15 Flow cytometry analysis of EdU incorporation 

MDA-MB-231 cells were incubated with 10µM EdU for 4 hours, 96 hours after siRNA 

transfection. Cell fixation, permeabilization and EdU detection was performed using 

the Click-iT EdU Flow Cytometry Assay Kit (Life technologies) following the 

manufacturer’s instructions. Data was collected and analysed using a BD LSR II flow 

cytometer using 488nm excitation and a 520/20 band pass for detection of EdU Alexa 

Fluor 488 azide and 355nm excitation and a 450/50 band pass for detection of DAPI. 

Experiments were performed using triplicate biological samples and 30,000 cells were 

analysed per sample. A negative control siRNA transfected no EdU control sample was 

used to inform the gating strategy used to calculate the proportion of EdU-positive 

cells. 

4.3.16 Generation of a tetracycline inducible full-length CHK1-FLAG FLP-in HEK-293 

cell line  

Full-length CHK1-FLAG cDNA was amplified from the pcDNA4-Chk1-Flag plasmid 

(Addgene plasmid #22894) using the primers provided in Table 4.6. The insert was 

subsequently cloned into the Flp-In expression vector pcDNA5. To generate a 

tetracycline inducible cell line, the CHK1-FLAG-pcDNA5 vector was co-transfected with 

the Flp recombinase plasmid (pOG44) into Flp-In HEK-293 cells. Transfected cells were 

selected for Hygromycin B resistance by incubating cells with 50µg/ml Hygromycin B 

for a 2-3 weeks period until all untransfected control cells had died. Following 
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Hygromycin B selection, CHK1-FLAG expression was induced by treating cells with 

2µg/ml tetracycline to induce CHK1-FLAG expression via a tetracycline inducible 

promoter. The molecular cloning of the CHK1-FLAG-pcDNA5 plasmid, plasmid 

transfections and antibiotic selection of Flp-in HEK-293 cells was performed by Dr. 

Mahsa Kheirollahi-Kouhestani (Newcastle University).  

Efficient expression of the full-length CHK1-FLAG protein was detected by Western 

Immunoblotting using a FLAG-specific primary antibody (Sigma Aldrich, F3040) (1:2000 

dilution). An MTT assay was used (as previously described in section 4.3.13) to monitor 

viability of the full-length CHK1-FLAG Flp-In HEK-293 cell line following siRNA 

transfection. Cell viability was monitored for cells treated with 2µg/ml tetracycline and 

mock-treated cells. Tetracycline was added every 24 hours, beginning 24 hours after 

the initial siRNA transfection. 

Primer  Sequence 

CHEK1 FLAG F AAAAAAAAAGCGGCCGCATGGCAGTGCCCTTTGTGGAAGAC 

CHEK1 FLAG R AAAAAAAAAGTCGACTCATGTGGCAGGAAGCCAAATCTTC 

 

Table 4.6 Primers sequences used to amplify full-length CHK1-FLAG cDNA from the 

pcDNA4-Chk1-Flag plasmid. 
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4.4 Results 

4.4.1 The TRA2A and TRA2B genes are differentially expressed in MDA-MB-231 cells 

When comparing the RNA-seq data from control MDA-MB-231 cells, I observed that 

the TRA2B gene is expressed at significantly higher levels than the TRA2A gene (see 

Figure 4.2, RNA-seq reads are shown in green and the Y-axis represents read depth 

which is indicative of relative gene expression). Noticeably, the only significant clusters 

of Tra2β iCLIP tags which mapped to the human TRA2B and TRA2A genes were located 

within their respective poison exons (Figure 4.2, iCLIP sequencing reads are shown in 

orange). Despite significantly lower expression of the TRA2A gene in the control MDA-

MB-231 cells, the TRA2A poison exon had a very similar density of Tra2β iCLIP tags as 

the TRA2B poison exon. This suggested that the TRA2A poison exon might be a 

stronger physiological target for Tra2β than the TRA2B poison exon. Consistent with 

this hypothesis, the TRA2A poison exon does contain a higher density of Tra2β binding 

sites than the TRA2B posion exon (Grellscheid et al., 2011a). This provides a potential 

mechanism for the assymetrical cross-regulation of expression observed in chapter 3. 

If the TRA2A poison exon is a stronger physiological target, it could be more sensitive 

to Tra2 protein expression, possibly explaining why Tra2β efficiently suppresses 

expression of Tra2α, rather than vice versa, in MDA-MB-231 cells. 
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Figure 4.2 UCSC genome browser view of the TRA2A and TRA2B genes, showing the positions of Tra2β binding (orange clusters of significant 

cross-linking by Tra2β protein identified by iCLIP) and aligned RNA-seq reads from control MDA-MB-231 cells (green peaks over exons). A very 

similar density of Tra2β iCLIP tags mapped to both poison exons (see orange scale, right hand side), despite much higher expression of the TRA2B 

gene. This figure if taken from (Best et al., 2014b). 
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4.4.2 Validation of Tra2 protein dependent alternative splicing events from RNA-seq  

To identify Tra2 protein dependent exons, I compared the splicing profile between 

MDA-MB-231 cells transfected with either a negative control siRNA or TRA2A and 

TRA2B (subsequently abbreviated to TRA2A/B) siRNA. The RNA-seq was carried out 

using three biological replicates per experiment. The RNA-seq data was processed and 

analysed by Mr Yaobo Xu (Newcastle University). Details of the RNA-seq analysis are 

provided in methods section 4.3.1.  

By combining the Tra2β iCLIP data with the RNA-seq data, my aim was to identify 

exons which were both directly bound by Tra2β and functionally responsive to Tra2 

protein depletion. An example of the combined iCLIP and RNA-seq data as viewed on 

the UCSC genome browser is shown in Figure 4.3, which shows a novel Tra2 protein 

dependent cassette exon in the CHEK1 gene. Using this approach, I validated a further 

21 additonal Tra2 protein dependent exons by RT-PCR and capillary gel electrophoresis. 

Although this was not exhaustive and additional Tra2 dependent exons remain to be 

identified and validated from the RNA-seq data, I validated targets in order of the 

highest amplitude change (i.e. the highest amplitude splicing changes were validated 

first). An initial panel of 12 Tra2 dependent alternative exons validated by RT-PCR and 

capillary gel electrophoresis are shown in Figure 4.4. All RT-PCRs used for the splicing 

assays were performed using triplicate biological samples to confirm reproducibility 

and statistical significance. 

The mean change in PSI following joint Tra2 protein depletion was far greater for 

exons identified from the RNA-seq data when compared to exons identified using the 

Tra2β iCLIP data alone. The mean change in PSI for the 32 Tra2 dependent exons 

identified in chapter 3 using the Tra2β iCLIP data was -15.9%. In comparison, the mean 

change in PSI for the 12 Tra2 dependent exons identified from the RNA-seq data 

shown in Figure 4.4 was -51.6%. The vast difference in responsiveness between the 

two sets of exons is likely due to key differences in the experimental approaches. The 

quantity of iCLIP tags mapping to an exon is influenced by the level of gene expression; 

therefore an exon containing a large number of iCLIP tags may be from a highly 

expressed gene and isn’t necessarily a highly responsive functional target. By contrast, 

the differentially expressed exons identified from the RNA-seq data were specifically 

ranked in order of the greatest fold change in exon expression. 
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Figure 4.3 Identification of a cassette exon from CHEK1 which was highly responsive to joint Tra2 protein depletion. A highly specific cluster of 

Tra2β iCLIP tags mapped directly to the exon (top track, purple). Exon expression was significantly reduced following depletion of Tra2α and Tra2β 

(orange RNA-seq reads) compared to negative control siRNA treated cells (green RNA-seq reads) in three biological replicates.  



Chapter 4   Transcriptome-wide investigation of Tra2 protein dependent splicing using RNA-seq 

137 
 

 

Figure 4.4 Validation of 12 Tra2 protein dependent exons identified from the 

combined iCLIP and RNA-seq data following joint Tra2 protein depletion. The mean 

percentage splicing inclusion (PSI) of Tra2 dependent exons in negative control siRNA 

treated cells (left hand side, black) and joint Tra2 protein depleted cells (right hand 

side, red), as determined by RT-PCR and capillary gel electrophoresis. 

4.4.3 Tra2 proteins regulate alternative 3' ends of the TTC14 and BTBD7 mRNAs 

In addition to the identification of regular cassette exons, I also identified Tra2 

dependent alternative splicing at the 3' end of the TTC14 and BTBD7 mRNAs. Tra2 

protein expression was essential for inclusion of an 111bp exon within an alternative 3' 

end of the TTC14 gene (Figure 4.5A). To date, the Tra2 dependent exon within TTC14 is 

the most highly responsive exon that I have validated; switching from 100% inclusion 

in negative control siRNA treated cells to just 8% inclusion in cells depleted of Tra2α 

and Tra2β. I also identified an exon encoding an alternative 3'UTR within the BTBD7 

gene which significantly responsded to Tra2 protein depletion (Figure 4.5B). A cluster 

of Tra2β iCLIP tags mapped directly to the alternative 3'UTR within BTBD7, suggesting 

that the alternative 3'UTR exon is likely a direct target of Tra2β. Tra2 protein depletion 

significantly reduced selection of the early 3'UTR in BTBD7. Selection of the early 3'UTR 

would produce an mRNA isoform of BTBD7 encoding a substantially shorter protein 

than the full-length mRNA. Inclusion of alternative events from TTC14 and BTBD7 was 

validated by RT-PCR and capillary gel electrophoresis (Figure 4.5, right hand side). 
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Figure 4.5 Tra2 protein dependent splicing regulation of alternative 3' ends of the TTC14 and BTBD7 genes. The alternative splicing events were 

identified using the combined iCLIP and RNA-seq data and were validated by RT-PCR and capillary gel electrophoresis. (A) Tra2 proteins are essential 

for inclusion of an 111bp exon close to the 3' end of the TTC14 gene. (B) Tra2 protein depletion reduced selection of an early 3'UTR in the BTBD7 

gene. Data represents the mean of three biological replicates ±s.e.m. Statistical significance was calculated using an independent two-sample t-test, 

where *p<0.05, **p<0.01, ***p<0.0001. 
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4.4.4 Human Tra2 proteins regulate inclusion of constitutively spliced target exons  

Tra2 proteins have been exclusively implicated in alternative splicing regulation. 

However, from the initial panel of 32 Tra2 protein dependent alternative exons that I 

validated in chapter 3, 7 of the 32 were 100% included, whilst a further 17 of the 32 

had a PSI greater than or equal to 95% in the negative control siRNA treated MDA-MB-

231 cells (highlighted in green, Figure 4.6). The mean PSI of all 53 Tra2 protein 

dependent target exons identified in this study was 85% in negative control siRNA 

treated MDA-MB-231 cells (Figure 4.6, left hand column). As a large proportion of the 

Tra2 protein dependent exons were included at very high percentages, this suggested 

that either Tra2 proteins may be important for the inclusion of some constitutively 

spliced target exons (in addition to their expected function in alternative splicing) or 

alternatively that Tra2 protein expression in MDA-MB-231 cells is sufficient to induce 

100% inclusion of some alternatively spliced target exons. To differentiate between 

these two possibilities, I used the RNA-seq data to search for changes in expression of 

constitutive exons following joint Tra2 protein depletion. To the best of my knowledge, 

these constitutive exons have never previously been annotated as alternatively spliced 

in human cells based on EST databases (Dreszer et al., 2012; Meyer et al., 2013). 

 

Figure 4.6 Comparison of percentage splicing inclusion of Tra2 protein dependent 

exons. Comparison of PSI between negative control siRNA treated cells (left hand side) 

and joint Tra2 protein depleted cells (right hand side). Many Tra2 dependent exons 

were included at very high levels under control conditions (negative control siRNA). 

Exons included at equal to or greater than 95% PSI in control conditions are highlighted 

in green. This figure is taken from (Best et al., 2014b). 
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I identified 9 candidate constitutive exons which appeared to change expression in the 

RNA-seq data following joint Tra2 protein depletion. Each of the candidate constitutive 

exons were annotated as constitutive on the UCSC genome browser and I could find no 

previous evidence of exon skipping based on the UCSC expressed sequence tag (EST) 

database. The 9 exons all contained Tra2β iCLIP tags mapping directly to the exon, 

suggesting each exon was a likely direct target of Tra2β. An example of a candidate 

constitutive exon in the SMC4 gene is shown below in Figure 4.7. 

 

Figure 4.7 Tra2 proteins are essential for inclusion of a constitutively spliced exon in 

the SMC4 gene. (A) Combined iCLIP and RNA-seq data, shopwing expression of a 

constitutive exon within SMC4 is significantly reduced following joint Tra2 protein 

depletion compared to negative control siRNA treated cells (exon highlighted in grey). 

(B) The SMC4 exon is constitutively spliced (100% included) in negative control siRNA 

treated MDA-MB-231 cells (red). Single depletion of either Tra2α or Tra2β slightly 

reduced exon inclusion, whilst joint depletion of both Tra2α and Tra2β substantially 

reduced inclusion to just 30% PSI (validation by RT-PCR and capillary gel 

electrophoresis). Data represents the mean of three biological replicates ±s.e.m. 

Statistical significance was calculated using an independent two-sample t-test, where 

*p<0.05, **p<0.01, ***p<0.0001. 
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Similar Tra2 protein dependent constitutive exons were validated from ANKRD1, 

NFXL2, NIPBL and PDCD6IP. Each of the five exons were 100% included in negative 

control siRNA treated MDA-MB-231 cells (they were constitutively spliced) but were 

skipped to different degrees following joint Tra2 protein depletion (Figure 4.8).  

 

Figure 4.8 Identification of five constitutively spliced exons from ANKRD1, SMC4, 

NFXL2, NIPBL and PDCD6IP which were dependent on Tra2 protein expression for 

100% splicing inclusion in MDA-MB-231 cells. (A) The five exons were included 100% 

in negative control siRNA treated MDA-MB-231 cells (red). Inclusion of each exon was 

significantly reduced following joint depletion of Tra2α and Tra2β (black). (B) 

Representative RT-PCR and capillary gel electrophoresis images which show inclusion 

of the constitutive exons was significantly reduced following joint Tra2 protein 

depletion. Data represents the mean of three biological replicates ±s.e.m. Statistical 

significance was calculated using an independent two-sample t-test, where *p<0.05, 

**p<0.01, ***p<0.0001. This figure is adapted from (Best et al., 2014b). 
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The remaining four candidate exons from NEXN, ATXN2, TBCD1D12 and MPHOSPH10 

were highly responsive to Tra2 protein depletion, but were included less than 100% in 

negative control siRNA treated MDA-MB-231 cells (ranging from 94-98% inclusion) 

(Figure 4.9). This data suggests that the UCSC annotation of alternative events is not 

fully comprehensive.  

 

Figure 4.9 Four candidate constitutive exons from NEXN, ATXN2, TBC1D12 and 

MPHOSPH10 that were highly responsive to Tra2 protein depletion, but were 

included less than 100% in negative control siRNA treated MDA-MB-231 cells (i.e. not 

constitutively included). (A) The four exons ranged from 94-98% inclusion in negative 

control siRNA treated MDA-MB-231 cells (white). Inclusion of each exon was 

significantly reduced after joint depletion of Tra2α and Tra2β (black). (B) 

Representative RT-PCR and capillary gel electrophoresis images showing inclusion of 

each exon was significantly reduced following joint depletion of Tra2α and Tra2β (black, 

right hand side) compared to negative control siRNA treated cells (grey, left hand side). 

Data represents the mean of three biological replicates ±s.e.m. Statistical significance 

was calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This figure is adapted from (Best et al., 2014b). 
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4.4.5 Tra2β binding sites are important for inclusion of the ANKRD1 constitutive exon 

The most highly responsive, bona fide constitutive exon following joint Tra2 protein 

depletion in the MDA-MB-231 cells was an exon from ANKRD1 (combined iCLIP and 

RNA-seq data for the ANKRD1 gene is shown in Figure 4.10 A). Remarkably, single 

depletion of either Tra2α or Tra2β had no significant effect on inclusion of the ANKRD1 

constitutive exon in MDA-MB-231 cells (Figure 4.10 C, columns 2 and 3), yet joint Tra2 

protein depletion substantially reduced exon inclusion (a -73 point PSI change) (Figure 

4.10 C, compare columns 1 and 4). To investigate whether exonic Tra2β binding sites 

were required for inclusion of this ANKRD1 constitutive exon, Ms. Marina Danilenko 

(Newcastle University) cloned the ANKRD1 constitutive exon and approximately 300bp 

of the flanking intronic sequences into a pXJ41 minigene for splicing analysis. 

Subsequently, two clusters of Tra2β binding sites were mutated to analyse their impact 

on inclusion of this constitutive exon. The ANKRD1 minigene mutagenesis was also 

performed by Ms. Marina Danilenko. I performed the transfection of the minigene 

constructs into HEK-293 cells and the RNA analysis. 

The wildtype ANKRD1 exon expressed from the minigene had a PSI of just 72% when 

co-transfected into HEK-293 cells along with a GFP-only control (Figure 4.10 D, column 

2). In a parallel experiment, the endogenous ANKRD1 exon was 100% included in the 

same HEK-293 cells (Figure 4.10 D, column 1). This suggests that the minigene may lack 

some important flanking sequences required for 100% inclusion or that the shorter 

introns created in the minigene construct may reduce the level of splicing inclusion 

compared to the endogenous exon.   

Analysis of the ANKRD1 exonic sequence uncovered two clusters of GAA-rich 

sequences; annotated as Tra2β binding site clusters 1 and 2 (Figure 4.10 B). To 

determine whether either of the two binding site clusters was important for inclusion 

of the ANKRD1 minigene exon, site-directed mutagenesis was used to insert single 

base mutations and disrupt the Tra2β binding sites (single base mutations are 

highlighted in red, Figure 4.10 B). Consistent with the exonic binding sites being 

important for splicing inclusion, mutation of either Tra2β binding site cluster 

significantly reduced splicing inclusion on the ANKRD1 exon when compared to the 

wildtype minigene exon. Strikingly, mutation of Tra2β binding site cluster 1 (labelled as 

Mutation 1, which is closer to the 3' splice site) completely abolished splicing inclusion  
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Figure 4.10 Exonic Tra2β binding sites are required for inclusion of a constitutive 

exon in ANKRD1. (A) Combined iCLIP and RNA-seq data showing a Tra2 dependant 

constitutive exon from the ANKRD1 gene (dashed box) (B) The wildtype ANKRD1 

minigene contained two clusters of Tra2β binding sites, which were independently 

mutated. (C) Splicing inclusion of the endogenous ANKRD1 exon following single or 

joint Tra2 protein depletion in MDA-MB-231 cells. (D) Inclusion of the endogenous 

ANKRD1 exon and various ANKRD1 minigenes transfected into HEK-293 cells. Data 

represents the mean of three biological replicates ±s.e.m. Statistical significance was 

calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This figure is adapted from (Best et al., 2014b). 
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of the ANKRD1 exon, from 72% inclusion to 0% inclusion (Figure 4.10 D, compare 

column 2 with column 3). This suggests the exonic sequences within cluster 1 are 

particularly important for inclusion of this exon. Mutation of Tra2β binding site cluster 

2 (labelled as Mutation 2) also significantly reduced inclusion of the ANKRD1 exon 

when compared to the wildtype minigene exon, but to a lesser extent than Mutation 1 

(Figure 4.10 D, compare column 2 with column 4). 

4.4.6 Tra2 dependent exons have an intrinsic sensitivity to Tra2 protein expression 

I validated an additional 21 Tra2 protein dependent exons from the RNA-seq data. 

Therefore in total I validated 53 Tra2 protein dependent exons by RT-PCR and capillary 

gel electrophoresis (from both the iCLIP and RNA-seq datasets). I observed a broad 

range in the amplitude of response to joint Tra2 protein depletion. This varied 

considerably, ranging from just a -4% change in splicing inclusion, up to a -92% change 

in splicing inclusion (Figure 4.11). This indicates that individual Tra2 protein dependent 

exons have different intrinsic sensitivities to Tra2 protein expression. The most highly 

responsive exons (which I define as showing a greater change in PSI than the mean) 

are labelled and highlighted in red (Figure 4.11). The length of Tra2 protein dependent 

exons also ranged considerably, from just 64 nucleotides at the shortest (a short 

cassette exon within the SMYD2 gene, which showed a -5% reduction in PSI in 

response to Tra2 protein depletion), up to 5916 nucleotides at the longest (a 

particularly large cassette exon within the SON gene, which showed a -8% reduction in 

PSI in response to Tra2 protein depletion).  
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Figure 4.11 Scatterplot showing the change in PSI for all 53 Tra2 dependent exons 

following joint depletion of endogenous Tra2α and Tra2β. The change in exon 

inclusion ranged from a 4% reduction in PSI up to a 92 reduction in PSI following joint 

Tra2 protein depletion, indicating individual exons have intrinsic sensitivities to Tra2 

protein expression. Scatterplot shows the mean change in PSI of 53 exons ±s.e.m. The 

highest amplitude individual exons (which I define as showing a greater change in PSI 

than the mean ±s.e.m.) are labelled and highlighted in red. This figure is taken from 

(Best et al., 2014b). 

4.4.7 Functionally responsive exons have a higher density of Tra2β binding sites 

In an attempt to discern why some exons containing significant numbers of Tra2β iCLIP 

tags responded to Tra2 protein depletion and other exons did not, I compared various 

parameters between the responsive and non-responsive exons. The parameters I 

compared were the exon length (bp), the density of Tra2β binding sites within the 

exon, the 5' splice site strength, the 3' splice site strength, the combined 5' and 3' 

splice site strength and the single weakest splice site score. Complete exon comparison 

data is available as supplementary data in the following publication (Best et al., 2014b). 

The density of Tra2β binding sites within the exon was calculated as the percentage of 

bases within the exon that matched the top 10 pentamers from the Tra2β iCLIP 

experiment (Figure 3.9). Splice site scores were calculated using the Splicing Regulation 

Online Graphical Engine (SROOGLE) (Schwartz et al., 2009) and is based on the Max 

entropy model of splicing (Burge., 2004). As some exons responded but very weakly, I 

classified responsive exons as those which showed a greater than 15% change in mean 

PSI% following joint Tra2 depletion.  
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The only parameter which was significantly different between the responsive (>15%) 

and non-responsive exons was the density of Tra2β binding sites within the exon, 

which was significantly higher in Tra2 responsive exons (>15%) than non-responsive 

exons (Figure 4.12). Interestingly, the two Tra2 poison exons had a significantly higher 

density of Tra2β binding sites compared to the average Tra2 responsive exon (>15%), 

as well as the non-responsive exons (Figure 4.12). This suggests that the negative 

feedback loop between Tra2 proteins is highly sensitive to Tra2 protein concentration 

due to a particularly high density of Tra2 binding sites within the poison exons.  

 

Figure 4.12 Comparison of Tra2β binding site density between responsive and non-

repsonsive exons. Tra2β binding site density was significantly higher in Tra2 responsive 

exons (>15 PSI change) than in non-responsive exons. Tra2β binding site density was 

also significantly higher in the two Tra2 poison exons than the average Tra2 responsive 

exons (>15 PSI change) and the non-responsive exons. Statistical significance was 

calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This image is taken from (Best et al., 2014b). 

 

4.4.8 Tra2 proteins are highly specific splicing regulators of certain target exons 

To investigate whether Tra2 protein dependent exons are under the combinatorial 

control of numerous RNA-binding proteins, or are specifically dependent on Tra2 

proteins for splicing inclusion, the percentage splicing inclusion of four Tra2 protein 

dependent exons was monitored after knockdown of a large panel of splicing factors. 

Exon inclusion was monitored using a custom high-throughput RT-PCR plate containing 
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cDNAs from MDA-MB-231 cells in which 53 known splicing regulators had been 

individually and systematically depleted using RNAi (we also included cDNA from Tra2 

protein depleted MDA-MB-231 cells for comparison) (Huang et al., 2013) (Figure 4.13). 

The high-throughput RT-PCR screen was performed by the team of Dr. Roscoe Klinck 

(Université de Sherbrooke, Canada). Only knockdowns with a minimum efficiency of 50% 

mRNA depletion (previously determined via qPCR) were included in this panel 

(Venables et al., 2013b). Splicing inclusion was monitored for two constitutive exons 

(from ANKRD1 and SMC4) and two alternative exons (from CHEK1 and GLYR1). 

Remarkably, of all 53 knockdowns tested, only joint Tra2 protein depletion affected 

inclusion of the ANKRD1 constitutive exon, suggesting regulation of this constitutive 

exon was highly specific to Tra2 proteins (TRA2A/B siRNA treated cells are highlighted 

in red, Figure 4.13 A). Joint Tra2 protein depletion also had the largest effect on 

inclusion of the GLYR1 alternative exon; though this exon did respond minimally (<10% 

PSI change) to depletion of numerous other splicing factors (Figure 4.13 D). Inclusion of 

the SMC4 constitutive exon was significantly affected by knockdown of SNRP70 (which 

encodes U170K) and SRPK1, though joint Tra2 protein depletion also induced the 

strongest effect on this exon (Figure 4.13 B). Splicing inclusion of the CHEK1 alternative 

exon was strongly affected by joint Tra2 proteins depletion, but was also significantly 

shifted by depletion of multiple RNA-binding proteins including three core U2snRNP 

components (SF3A1, SF3B4 and SF3A3), SFRS2, hnRNPK, hnRNPC2, KHSRP and CDC5L 

(Figure 4.13 C). This is consistent with a much broader combinatorial control of CHEK1 

exon 3 compared to the other three exons. 

As this panel of splicing factor depletions is not completely exhaustive, it is not 

possible to exclude other RNA-binding proteins from playing a role in control of these 

exons. However, this data is consistent with Tra2 proteins being amongst the most 

quantitatively important splicing regulators for these particular target exons.  
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Figure 4.13 Change in percentage splicing inclusion of four Tra2 dependent exons 

following knockdown of 53 individual RNA binding proteins in MDA-MB-231 cells. 

The change in percentage splicing inclusion was monitored for two constitutively 

spliced exons (A) ANKRD1 and (B) SMC4, as well as two alternatively spliced exons (C) 

CHEK1 and (D) GLYR1. Joint Tra2 protein depleted cells are highlighted in red. This 

figure is adapted from (Best et al., 2014b). 
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4.4.9 Tra2 target exons are enriched within genes associated with chromosome 

biology 

To investigate whether Tra2 proteins regulate alternative splicing of genes involved in 

functionally related biological processes, a Gene Ontology (GO) enrichment analysis 

was performed using my data by Dr. Katherine James (Newcastle University). The GO 

enrichment analysis determined whether the 53 genes containing Tra2 protein 

dependent exons were enriched for particular biological processes (GO terms) relative 

to all genes expressed in the MDA-MB-231 cell line. Further details regarding the 

methodology of the GO enrichment analysis are provided in methods section 4.3. 

The GO enrichment analysis identified five biological processes (GO terms) which were 

significantly enriched in genes containing Tra2 protein dependent exons compared to 

all genes expressed in MDA-MB-231 cells (Figure 4.14 A). Eleven of the 53 Tra2-

regulated genes we identified (20.8%) were annotated to one or more of the five 

enriched GO terms, with ten of those eleven genes annotated to the single, broader 

term “chromosome organisation” (Figure 4.14 B). Some genes annotated to 

“chromosome organisation” were also annotated to the conceptually related terms 

“histone modification” and “chromatin modification” (Figure 4.14 B). 

To investigate whether the genes containing Tra2 protein dependent exons which 

were not associated with one of the five enriched GO terms had any known 

interactions with other proteins associated with these terms, an interaction network 

analysis was also performed by Dr. Katherine James (Newcastle University). Briefly, the 

BioGRID database (Stark et al., 2006) was used to retrieve a network of known 

functional interaction data involving the genes containing Tra2 protein dependent 

exons and other proteins associated with any of the five enriched GO terms. In 

addition to the eleven genes directly annotated to the five enriched GO terms (Figure 

4.14 A), an additional 23 of the 53 genes containing Tra2 dependent exons (43.4%) 

have known functional interactions with genes annotated to one or more of these five 

terms (Figure 4.15). Suprisingly, although indirectly connected within the network via 

these annotated genes, none of the 53 genes containing validated Tra2 dependent 

exons have any known functional interactions with one another in the BioGRID 

database (Figure 4.15). The GO enrichment analysis and protein interaction network 

data is summarised in Figure 4.14 C. 
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Figure 4.14 Tra2 protein dependent exons are enriched within genes associated with 

chromosome biology. (A) A Gene Ontology (GO) enrichment analysis identified 

enrichment of five specific GO terms in genes containing Tra2 dependent exons, which 

include multiple aspects of chromosome biology. (B) The eleven genes containing Tra2 

dependent exons that are associated with one or more of the enriched GO terms. Ten 

of the eleven genes are associated with the single broader term “chromosome 

organisation”. A number of the Tra2-regulated genes are annotated to multiple 

conceptually related GO terms. (C) Summary of Tra2-regulated genes: genes that were 

directly annotated to an enriched biological process (20.8%, blue), genes that have a 

known functional interaction with a protein that is annotated to one of enriched 

processes (43.4%, red), and those which have unknown or unrelated functions (35.8%, 

white). This figure is adapted from (Best et al., 2014b). 
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Figure 4.15 Network representation of genes containing Tra2 protein regulated 

exons (square nodes) and their known interactions with other proteins annotated to 

one of the five enriched GO terms (circular nodes). Where a protein was annotated to 

more than one term, the more specific child term was chosen for colouring. However, 

it should be noted that many of the genes in the network are annotated to multiple 

enriched terms (as shown in Figure 4.12B). This network interaction was produced 

entirely by Dr. Katherine James (Newcastle University), using my data. A higher 

resolution version of this figure is available as supplementary information in the 

following publication (Best et al., 2014b). 

4.4.10 Differentially expressed genes (following joint Tra2 protein depletion) were 

enriched for cell cycle-related functions 

In addition to the GO enrichment analysis of genes containing Tra2 protein dependent 

exons, Dr. Katherine James (Newcastle University) also performed an independent GO 

enrichment analysis on the differentially expressed genes (identified from RNA-seq 

data) following joint Tra2 protein depletion. The GO enrichment analysis of 

differentially expressed genes indentified ten GO terms that were significantly 

enriched (p<0.05) in the differentially expressed genes following joint Tra2 protein 
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depletion compared to all genes expressed in MDA-MB-231 cells (Figure 4.16). 

Remarkably, 7 of the 10 enriched GO terms were directly linked to cell cycle related 

functions (highlighted in green, Figure 4.16.) The enriched biological processes also 

included the terms “response to radiation”, “endoplasmic reticulum unfolded” and 

“DNA repair”. The effect of joint Tra2 protein depletion on cell growth and the cell 

cycle is investigated later in the chapter.  

 

Figure 4.16 Gene Ontology (GO) enrichment analysis of differentially expressed 

genes following joint Tra2 protein depletion. Differentially expressed genes were 

highly enriched in GO terms associated with the cell cycle (green). 

4.4.11 Validation of differentially expressed changes (following joint Tra2 protein 

depletion) by qPCR 

I validated a panel of the differentially expressed genes identified from the RNA-seq 

data by qPCR (Figure 4.17). Gene expression was compared between negative control 

siRNA treated MDA-MB-231 cells and TRA2A/B siRNA treated MDA-MB-21 cells, 72 

hours after siRNA transfection. Gene expression changes were confirmed from Tra2 

protein depleted cells using 2 independent sets of siRNA, targeting different regions of 

the TRA2A and TRA2B mRNA. In total, statistically significant changes in gene 

expression were validated for 14 genes. A significant increase in gene expression was 

confirmed for the protein coding genes SELPLG, FOSB, FOS, DDIT4, EGR1 and TTC14 

(Figure 4.17 A, left hand side). A significant increase in gene expression was also 

confirmed for the lncRNA genes RP11-618G20.2, RP-1129J21 and CTD-2037K23 (Figure 

4.17 A, right hand side). A significant reduction in expression was confirmed for the 
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protein coding genes ANKRD26, EIF5B and HIST2H2BE, as well as the lncRNA genes 

RP11-221J22 and LIN00601 (Figure 4.17 B.) Tra2 proteins have not previously been 

associated with any roles in transcriptional regulation, and the differentially expressed 

genes were not enriched with Tra2β iCLIP tags. It was considered that the changes in 

gene expression were possibly an indirect consequence of Tra2 protein depletion (i.e. 

downstream of changes to cell growth or the cell cycle), therefore they were not 

investigated further in this chapter. Alternatively, changes in alternative splicing of 

genes encoding proteins involved in chromosomal regulation (i.e. transcriptional 

factors in the broadest sense) may have a direct effect on the transcription of genes 

associated with cell cycle regulation. 
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Figure 4.17 Validation of gene expression changes following joint Tra2 protein 

depletion by qPCR. (A) Validation of a panel of protein coding genes and lncRNAs with 

increased expression following joint Tra2 protein depletion. (B) Validation of a panel of 

protein coding genes and lncRNAs with decreased expression following joint Tra2 

protein depletion. Data represents the mean of three biological replicates ±s.e.m. 

Gene expression changes were validated using two indepedant set of siRNA, targeting 

different regions of the TRA2A and TRA2B mRNA. Statistical significance was calculated 

using an independent two-sample t-test, where *p<0.05, **p<0.01, ***p<0.0001. 
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4.4.12 Human Tra2 proteins are required for splicing inclusion of CHEK1 exon 3 

One of the ten Tra2 protein dependent exons from genes involved in chromosome 

organisation was exon 3 of the CHEK1 gene. CHEK1 encodes the serine/threonine 

protein kinase CHK1, which plays a key role in the DNA damage response and cell cycle 

checkpoint control (McNeely et al., 2014). A significant cluster of Tra2β iCLIP tags 

mapped directly to this exon and the RNA-seq data showed inclusion of this exon was 

significantly reduced following joint Tra2 protein depletion (Figure 4.18 A). Validation 

of the RNA-seq data by RT-PCR and capillary gel electrophoresis showed a 55% 

reduction in splicing inclusion of CHEK1 exon 3 following joint Tra2 protein depletion in 

MDA-MB-231 cells (Figure 4.18 B). To determine whether CHEK1 exon 3 was regulated 

by Tra2 proteins in other cells types as well as MDA-MB-231 cells, I transfected three 

additional cell types (MCF-7, PC3 and HeLa) with either a negative control siRNA or 

joint TRA2A/B siRNAs and monitored splicing inclusion of CHEK1 exon 3 (Figure 4.18 B). 

The siRNA transfections were performed using three biological replicates per 

experiment for each cell line. Inclusion of CHEK1 exon 3 was significantly reduced in all 

four cell lines tested following joint Tra2 protein depletion. This data suggests that 

Tra2 protein expression is important for inclusion of CHEK1 exon 3 in multiple different 

cell lines. 
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Figure 4.18 Inclusion of CHEK1 exon 3 is significantly reduced following joint 

depletion of Tra2α and Tra2β. (A) Tra2β iCLIP tags mapped directly to exon 3 of the 

CHEK1 gene (top track, purple). Expression of this exon was also significantly reduced 

following joint knockdown of Tra2α and Tra2β (orange RNA-seq reads) compared to 

the negative control cells (green RNA-seq reads). (B) Splicing inclusion of CHEK1 exon 3 

was significantly reduced in MDA-MB-231, MCF-7, PC3 and HeLa cells following 

TRA2A/B siRNA transfection compared to negative control siRNA treated cells. Data 

represents the mean of three biological replicates ±s.e.m. Statistical significance was 

calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This figure is taken from (Best et al., 2014b). 

4.4.13 Confirming direct interaction between Tra2β and the CHEK1 exon 3 RNA using 

Electrophoretic Mobility Shift Assays (EMSAs) 

To confirm that CHEK1 exon 3 was a direct target for Tra2β binding in vitro, 

Electrophoretic Mobility Shift Assays (EMSAs) were performed using radio-labelled 

RNA probes corresponding to different regions of the CHEK1 gene. I carried out the 

molecular cloning of different regions of the CHEK1 gene into the pBluescript vector 

used for in vitro transcription. The remaining CHEK1 exon 3 EMSA experiment was 

performed entirely by Mrs. Caroline Dalgliesh (Newcastle University).  
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Analysis of the iCLIP data at higher resolution showed that the Tra2β iCLIP tags 

mapped throughout exon 3, but were particularly enriched towards the 3' splice site of 

the exon (Figure 4.15A). RNA probe A corresponds to a region close to the 3' splice site 

of CHEK1 exon 3. This sequence contained the most Tra2β iCLIP tags and also 

contained the most predicted binding sites for Tra2β (Tra2β binding sites are shaded 

green in Figure 4.19 B, right hand side). RNA probe A was very efficiently shifted by 

very low concentrations of purified Tra2β protein (as low as 25ng). RNA probe B 

corresponds to a region of the exon closer to the 5' splice site. This sequence 

contained fewer Tra2β iCLIP tags and just one predicted Tra2β binding site. RNA probe 

B was also shifted by purified Tra2β protein, but not as efficiently as RNA probe A. A 

control intronic sequence which contained no Tra2β iCLIP tags or predicted binding 

sites for Tra2β was not shifted by any concentration of purified Tra2β protein. 

Importantly, all RNA probes were of a similar length (either 68 or 69 nucleotides). 

 

Figure 4.19 Confirming direct interactions between Tra2β and CHEK1 exon 3 by EMSA. 

(A) High magnification view of Tra2β iCLIP tags mapping directly to exon 3 of the 

CHEK1 gene. Three short regions (exon region A, exon region B and intron) were 

cloned into a Bluescript vector to create RNA probes for the electrophoretic mobility 

shift assay (EMSA). (B) EMSA showing radio labelled RNA probes shifting with 

increasing concentrations of purified Tra2β protein. The RNA probe corresponding to 

exon region A was shifted efficiently by increasing concentrations of purified Tra2β 

protein. Similarly, the RNA probe corresponding to exon region B was also shifted by 

purified Tra2β protein, but less efficiently than region A. The RNA probe corresponding 
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to the intron was not shifted by any concentration of purified Tra2β protein. This figure 

is taken from (Best et al., 2014b). 

4.4.14 Tra2α and Tra2β directly activate splicing of a CHEK1 exon 3 minigene 

To confirm that CHEK1 exon 3 is a direct target for splicing regulation by Tra2 proteins, 

CHEK1 exon 3 and approximately 300bp of flanking intronic sequences was cloned into 

a pXJ41 minigene for splicing analysis. Molecular cloning of the two CHEK1 minigenes 

was carried out by Ms. Marina Danilenko (Newcastle University), whilst I performed 

the subsequent minigene transfections, RNA extraction, RT-PCRs and analysis.  

Unexpectedly, the wildtype CHEK1 exon 3 minigene exon was not included (0% 

inclusion) when co-tranfected into HEK-293 cells with a GFP-only control (Figure 4.20 A, 

column 1). However, inclusion of the exon was strongly induced in response to co-

transfection with either Tra2β-GFP or Tra2α-GFP (Figure 4.20 A, columns 2 and 3). Co-

transfection with Tra2βΔRRM-GFP (which lacks the RNA recognition motif) failed to 

activate exon inclusion (Figure 4.20 A, column 4), suggesting Tra2β activates CHEK1 

exon 3 inclusion through direct RNA binding. Next, the predicted Tra2β binding sites 

within the exon were mutated to assess their impact on splicing inclusion of the exon 

(point mutations are highlighted in red, Figure 4.20 B). Remarkably, point mutations 

within the CHEK1 exon completely abolished splicing activation in response to co-

transfection with either Tra2β-GFP or Tra2α-GFP (Figure 4.20 B, columns 2 and 3), 

suggesting that both Tra2α and Tra2β directly activate splicing inclusion of CHEK1 exon 

3 through through exonic binding. 
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Figure 4.20 Splicing patterns of two minigenes containing either a wildtype or 
mutated version of CHEK1 exon 3. (A) The wildtype exon was not included when co-
transfected with GFP alone, but was strongly activated when co-transfected with 
either Tra2α-GFP or Tra2β-GFP. Co-transfection with Tra2βΔRRM-GFP did not activate 
splicing inclusion of the wildtype exon. (B) Disrupting the exonic Tra2β binding sites 
using single base mutations completely abolished splicing activation of the CHEK1 exon 
by Tra2α-GFP or Tra2β-GFP. Data represents the mean of three biological replicates 
±s.e.m. Statistical significance was calculated using an independent two-sample t-test, 
where *p<0.05, **p<0.01, ***p<0.0001. This figure is adapted from (Best et al., 2014b). 
 

4.4.15 Splicing inclusion of endogenous CHEK1 exon 3 remained constant in KG1 cell 

populations containing different cell cycle profiles 

Full-length CHK1 protein (54kDa) is produced when exon 3 is included in the CHEK1 

mRNA. A shorter isoform of the CHK1 protein termed CHK1-S (produced when exon 3 

is skipped) has previously been reported to be cell cycle regulated. Expression of the 

CHK1-S protein isoform was reported to significantly increase during S-phase and 

reach maximal expression during G2/M (Pabla et al., 2012). Therefore to investigate 

whether splicing inclusion of CHEK1 exon 3 was cell cycle regulated, I analysed 

inclusion of the exon in a panel of KG1 cell populations with different cell cycle profiles. 
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KG1 cells were fractionated by centrifugal elutriation and assessed for expression of 

two cell cycle markers (CENPF and H3Ser10) to estimate the percentage of the cell 

population in various stages of the cell cycle (Figure 4.21, upper panel). The frozen 

pellets of fractionated cells were a gift from Professor Caroline Austin (Newcastle 

University). The elutriation and cell cycle analysis was performed entirely by Dr. Ian 

Cowell and Ka Cheong Lee (Newcastle University). I performed the RNA analysis. 

However, splicing inclusion of CHEK1 exon 3 remained constant in all cell fractions 

tested by RT-PCR and capillary gel electrophoresis, despite containing different cell 

cycle profiles (Figure 4.21, lower panel).  

 

Figure 4.21 Splicing inclusion of CHEK1 exon 3 across a panel of KG1 cell populations 

containing different cell cycle profiles. Inclusion of endogenous CHEK1 exon 3 was 

monitored in the different populations of KG1 cells by RT-PCR and capillary gel 

electrophoresis. Inclusion of CHEK1 exon 3 remained constant in all cell fractions 

tested. The data shown is generated from single biological samples. This figure is taken 

from (Best et al., 2014b).  

4.4.16 Splicing profile of CHEK1 exon 3 in a panel of breast tumour biopsies 

Expression of CHK1-S has been reported to be up-regulated in various cancer tissues. 

CHK1-S mRNA and protein expression was reported to be up-regulated in testicular 

carcinomas, whilst CHK1-S protein expression was also found to be up-regulated in late 

stage ovarian cancer (Pabla et al., 2012). Therefore I also investigated the level of 

splicing inclusion of CHEK1 exon 3 in a panel of breast cancer biospsies by RT-PCR and 

capillary gel electrophoresis. I detected high levels of both CHEK1 splice isoforms in 
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RNA purified from a small panel of breast cancer tissues, although I did not observe 

any obvious enrichment of either isoform in any particular tumour classification at the 

RNA level (Figure 4.22).  

 
 

Figure 4.22 Splicing inclusion of CHEK1 exon 3 in a panel of ten breast tumour 

biopsies. Inclusion of the endogenous exon was monitored by RT-PCR and capillary gel 

electrophoresis, using RNA extracted from frozen breast tumour sections obtained 

from the Breast Cancer Campaign Tissue Bank. Tumour classifications: ductal 

carcinoma in situ (DCIS), invasive ductal carcinoma (IDC), either assigned no specific 

grade or classified as grade 2 or 3. This figure is taken  from (Best et al., 2014b). 

 

4.4.17 Tra2 protein depletion led to reduced expression of the full-length CHK1 

protein  

To investigate whether Tra2 proteins were required for expression of the full-length 

CHK1 protein, I monitored CHK1 protein expression by Western Immunoblotting. A 

single major CHK1 protein isoform was detected in MDA-MB-231 cells, corresponding 

to the expected size of full-length CHK1 protein (54KDa) (Figure 4.23, lanes 1-3). This 

band was considerably reduced following transfection with a CHEK1-specific siRNA, 

suggesting this band was specific to the CHK1 protein (Figure 4.23, lanes 4-6). 

Consistent with Tra2 proteins maintaining expression of the full-length CHK1 protein, 

expression of this band was also substantially reduced following joint Tra2 protein 

depletion, in three biological replicates (Figure 4.23, lanes 7-9). 

A shorter isoform of CHK1 (termed CHK1-S, predicted size 47kDa) has previously been 

reported to be translated from an alternative downstream translational initiation site 

when exon 3 is excluded from the CHEK1 mRNA (Pabla et al., 2012). In my experiments, 

although joint Tra2 protein depletion substantially reduced splicing inclusion of CHEK1 

exon 3 and expression of the full-length CHK1 protein, it did not lead to any detectable 

increase in any shorter isoform of the CHK1 protein (Figure 4.23, lanes 7-9). N.B. the 
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CHK1 antibody used in this study was validated in previous publications as capable of 

recognising the shorter isoform (CHK1-S) of this protein (Pabla et al., 2012). I also 

observed a smaller reduction in expression of the full-length CHK1 protein following 

joint Tra2 protein depletion in MCF-7, PC3 and HeLa cells (Figure 4.24). However, this 

data is generated from single biological samples. The reduction in full-length CHK1 

protein expression across the four cell lines was proportional to the change in PSI of 

CHEK1 exon 3 at the RNA level for each cell line. Overall, the above data is most 

consistent with Tra2α and Tra2β activity being essential for expression of full-length 

CHK1 protein, rather than inducing expression of any shorter protein isoform of CHK1. 

 

Figure 4.23 Human Tra2 proteins are essential for expression of full-length CHK1 

protein. CHK1 protein expression was detected by Western Immunoblotting. Full-

length CHK1 (54kDa) protein expression was reduced following transfection with either 

a CHEK1-specific siRNA or with TRA2A and TRA2B specific siRNAs in MDA-MB-231 cells. 

Loss of full length CHK1 expression was associated with increased levels of 

phosphorylated γH2AX in both CHEK1 siRNA and TRA2A/B siRNA treated cells. 

Expression of β-Actin was detected as a loading control. Three biological replicates are 

shown for each experiment. This figure is taken from (Best et al., 2014b). 
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Figure 4.24 Tra2 protein depletion reduced full-length CHK1 protein expression (to 

varying degrees) in different cell lines. (A) Western Immunoblot showing detection of 

CHK1 protein in negative control siRNA and TRA2A/B siRNA treated cells across four 

different cell lines (MDA-MB-231, MCF-7, PC3 and HeLa cells). (B) Expression of full-

length CHK1 protein (54kDa band) was quantified relative to expression of the α-

Tubulin loading control, using ImageJ software. Data represents single biological 

samples. This figure is adapted from (Best et al., 2014b). 

 

4.4.18 Tra2 protein depletion is associated with accumulation of the DNA damage 

marker phosphorylated Histone H2AX (γH2AX) 

Previous studies have reported that depletion of full-length CHK1 protein is associated 

with an increase in replication stress and the accumulation of DNA damage, assessed 

by the presence of the DNA damage marker phosphorylated Histone H2AX 

(subsequently referred to as γH2AX) (Höglund et al., 2011). γH2AX is not a direct target 

for CHK1-mediated phosphorylation. However, it is is a well established marker of DNA 

damage which can occur following CHK1 protein depletion. Similar to previous 



Chapter 4   Transcriptome-wide investigation of Tra2 protein dependent splicing using RNA-seq 

165 
 

observations (Westendorf et al., 1998), I observed significantly increased levels of the 

DNA damage marker γH2AX following depletion of CHK1 protein by siRNA compared 

with cells treated with a negative control siRNA (Figure 4.23 middle panel, compare 

lanes 1-3 with lanes 4-6).  Increased γH2AX levels were also observed after joint 

depletion of Tra2α and Tra2β (Figure 4.23 middle panel, compare lanes 1-3 with lanes 

7-9).  Consistent with reduced expression of full-length CHK1 protein following joint 

Tra2 protein depletion, the increase in the levels of γH2AX observed after CHEK1 or 

TRA2A/B siRNA transfection appear proportional to the reduction in full-length CHK1 

protein expression. 

To confirm that Tra2 protein depletion is associated with an increase in 

phosphorylation of Histone H2AX and not an increase in Histone H2AX expression, I 

monitored expression of phosphorylated γH2AX and total H2AX protein expression in 

Tra2 protein depleted cells by Western Immunoblot. Consistent with joint Tra2 protein 

depletion leading to phosphorylation of Histone H2AX, γH2AX expression strongly 

increased relative to total H2AX protein and α-Tubulin after Tra2 protein depletion in 

both MDA-MB-231 and MCF-7 cells (Figure 4.25). 

 

Figure 4.25 Expression of phosphorylated histone H2AX (γH2AX) and total histone 

H2AX protein after joint Tra2 protein depletion in MDA-MB-231 cells and MCF7 cells. 

The level of γH2AX significantly increased relative to total H2AX and α-Tubulin 

expression after joint Tra2 protein depletion in both cell lines. This figure is adapted 

from (Best et al., 2014b). 
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4.4.19 Joint Tra2 protein depletion is associated with an accumulation of nuclear 

γH2AX foci  

Phosphorylation of H2AX plays an essential role in the recognition and repair of DNA 

double strand breaks (DSBs) (Pilch et al., 2003). H2AX molecules are rapidly 

phosphorylated at DNA break sites, facilitating the recruitment of DNA repair factors 

to nuclear foci to initiate DNA repair (Paull et al., 2000). A significant increase in 

phosphorylation of H2AX was observed by Western Immunoblot following joint Tra2 

protein depletion. Next I monitored for the presence of γH2AX foci within the nucleus 

of Tra2 protein depleted cells using immunofluoresence. Expression of γH2AX was 

detected by immunofluoresence in MDA-MB-231 cells, 72 hours after siRNA 

transfection with either a negative control siRNA or TRA2A/B siRNA. Very weak 

expression of γH2AX could be detected in negative control siRNA treated cells (Figure 

4.26, left hand panel). In contrast, and consistent with the increase in H2AX 

phosphorylation observed by Westen Immunoblotting, discrete γH2AX foci were 

clearly visible within the nucleus of TRA2A/B siRNA treated cells (Figure 4.26, right 

hand panel). Strong γH2AX foci expression was observed in approximately 50% of 

TRA2A/B siRNA treated cells.  

 

Figure 4.26 Joint Tra2 protein depletion is associated with an accumulation of γH2AX 

foci within the nucleus. Immunofluorescent detection of γH2AX (green) with DAPI 

staining (blue) in negative control siRNA treated cells and TRA2A/B siRNA treated 

MDA-MB-231 cells.  
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4.4.20 Joint Tra2 protein depletion is associated with abnormal nuclear morphology 

Whilst observing the DAPI-stained nuclei of cells following siRNA transfection, I 

observed a significant number of cells with severely abnormal nuclear morphology 96 

hours following TRA2A/B siRNA transfection. Typical circular nuclei observed in 

untreated or negative control siRNA treated MDA-MB-231 cells stained with DAPI are 

shown in Figure 4.27 A. Following joint Tra2 protein depletion, approximately 20% of 

cells contained severely abnormally shaped nuclei which were multi-lobed in 

appearance (Figure 4.27 B). Unlike the circular nuclei which contained discrete γH2AX 

foci after TRA2A/B siRNA transfection (Figure 4.26, right hand panel), some of the 

multi-lobed nuclei showed much stronger, more diffuse γH2AX staining (example 

shown in Figure 4.27 C). The abnormal, multi-lobed nuclei are consistent with severe 

biological defects following joint Tra2 protein depletion. 

 

Figure 4.27 Joint Tra2 protein depletion is associated with abnormal nuclear 

morphology. (A) The typical circular nuclear morphology of negative control siRNA 

treated cells stained with DAPI. (B) Abnormal nuclear morphology with a multi-lobed 

appearance was observed in approximately 20% of TRA2A/B siRNA treated cells 

stained with DAPI. (C) Unlike the circular nuclei which contained discrete γH2AX foci 

after TRA2A/B siRNA transfection, the mutli-lobed nuclei showed a stronger, more 

diffuse staining specific for γH2AX (green). This figure is adapted from (Best et al., 

2014b). 
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4.4.21 Joint Tra2 protein depletion reduced cell viability in MDA-MB-231 cells 

I next assessed the effect of joint Tra2 protein depletion on viability of MDA-MB-231 

cells using MTT assays. Cell viability was monitored by MTT assay every 24 hours 

following siRNA transfection for a period of 120 hours. Single depletion of either Tra2α 

or Tra2β protein had minimal effect on MDA-MB-231 cell viability over the 5 day time 

course. Conversely, joint Tra2 protein depletion strongly reduced cell viability (Figure 

4.28). I observed similar results using two independent sets of siRNA, targeting 

different regions of the TRA2A and TRA2B mRNA. The reduction in cell viability 

observed after jointly depleting Tra2α and Tra2β, compared with the negligible effects 

of depleting either protein alone, suggest that Tra2α and Tra2β may also be 

functionally interchangeable in maintaining cell viability, as well as in splicing control in 

MDA-MB-231 cells. 

 

Figure 4.28 Joint (but not single) depletion of Tra2α and Tra2β reduced cell viability 

in MDA-MB-231 cells. Cell viability was monitored by MTT assay for a period of 120 

hours following siRNA transfection. Data represents the mean of eight experimental 

replicates per time point ±s.e.m. A reduction in cell viability was confirmed using two 

independent sets of siRNA, targeting different regions of the TRA2A and TRA2B mRNAs. 

This figure is adapted from (Best et al., 2014b). 
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4.4.22 CHK1 protein depletion alone is sufficient to reduce cell viability in MDA-MB-

231 cells 

I then assessed the effect of CHK1 protein depletion on the viability of MDA-MB-231 

cells using the MTT assay (Figure 4.29A), as well as by microscopy (Figure 4.29B). 

Depletion of CHK1 also reduced the viability of MDA-MB-231 cells to a similar extent as 

joint Tra2 protein depletion (Figure 4.29). This was also visible when comparing the 

density of cells by microscopy 120 hours after siRNA transfection (representative 

images shown in Figure 4.29 B). This data suggested that loss of full-length CHK1 

protein expression would likely be sufficient by itself to contribute to the loss of cell 

viability observed after joint Tra2α and Tra2β protein depletion. 

 

Figure 4.29 CHK1 protein depletion alone is sufficient to reduce cell viability in MDA-

MB-231 cells. (A) Depletion of CHK1 protein reduced cell viability to a similar extent as 

joint Tra2 protein depletion in MDA-MB-231 cells. Cell viability was monitored by MTT 

assay for 120 hours following siRNA transfection. Data represents the mean of eight 

experimental replicates per time point ±s.e.m. (B) MDA-MB-231 cell density was 

observed by microscopy 120 hours after siRNA transfection. This figure is adapted 

from (Best et al., 2014b). 

4.4.23 Joint Tra2 protein depletion significantly reduced cell proliferation in MDA-

MB-231 cells 

To determine whether the loss of cell viability observed after joint Tra2 protein 

depletion or CHK1 protein depletion was associated with reduced cell proliferation, I 

monitored the incorporation of the thymidine analogue EdU into DNA after siRNA 
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transfection, as a direct measurement of the number of cells initiating DNA replication. 

Cells were incubated with 10μM EdU for 4 hours (96 hours after siRNA transfection), 

and then immediately analysed using flow cytometry. Joint Tra2 protein depletion 

significantly reduced the proportion of EdU-positive cells when compared to negative 

control siRNA treated cells (the mean reduction was 8.4%, p=0.02) (Figure 4.30, 

compare top right panel to lower right panel). CHK1 protein depletion had no 

significant effect on the proportion of EdU-positive cells when compared to negative 

control siRNA treated cells (Figure 4.30, compare top right panel to lower left panel). 

 

Figure 4.30 Joint Tra2 protein depletion significantly reduced cell proliferation in 

MDA-MB-231 cells. Cell proliferation was determined by monitoring incorporation of 

the thymidine analogue EdU over 4 hours, 96 hours after siRNA transfection. The 

proportion of EdU-positive cells was determined by FACS analysis, counting 30,000 

cells per sample. Clockwise from top left, negative control siRNA treated cells 

incubated without EdU, negative control siRNA treated cells incubated with 10μM EdU, 

TRA2A/B siRNA treated cells incubated with 10μM EdU, CHEK1 siRNA treated cells 

incubated with 10μM EdU. The no EdU control was used to inform the gating strategy 

for EdU-positive cells. TRA2A/B siRNA transfection significantly reduced the proportion 

of EdU-positive cells when compared to negative control siRNA treated cells. Single 

CHK1 depletion had no significant effect compared to negative control siRNA treated 

cells. Data represents the mean of three biological replicates.  Statistical significance 

was calculated using an independent two-sample t-test, where *p<0.05, **p<0.01, 

***p<0.0001. This figure is adapted from (Best et al., 2014b). 
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4.4.24 Generation of a tetracycline-inducible full-length CHK1-FLAG protein 

expressing FLP-in HEK-293 cell line 

The next step was to determine whether re-introduction of full-length CHK1 protein 

would rescue cell viability following joint Tra2 protein depletion. To do this, a FLP-in 

HEK-293 cell line was created in which a full-length FLAG-tagged CHK1 protein could be 

induced under control of a tetracycline promoter. This stable CHK1-FLAG FLP-in cell 

line was created entirely by Dr. Mahsa Kheirolahi-Kouhestani (Newcastle University). I 

confirmed efficient expression of the full-length CHK1-FLAG protein by Western 

Immunoblotting using a FLAG-specific antibody (Figure 4.31). Efficient expression of 

full-length CHK1-FLAG protein was observed 24 hours after tetracycline induction in 

the CHK1-FLAG FLP-in HEK-293 cells (Figure 4.31, lanes 1-4), but not in FLP-in HEK-293 

cells transfected with an empty pcDNA5 vector (Figure 4.31, lanes 6-9). Minimal 

expression of the full-length CHK1-FLAG protein was detected in CHK1-FLAG FLP-in 

HEK-293 cells without tetracycline (Figure 4.31, compare lanes 4 and 5). 

 

 

Figure 4.31 Generation of a tetracycline-inducible full-length CHK1-FLAG protein 

expressing cells using a FLP-in HEK-293 cell line. Efficient expression of the full-length 

CHK1-FLAG protein was confirmed by Western Immunoblotting using a FLAG-specific 

antibody. This figure is adapted from (Best et al., 2014b). 

 

4.4.25 Re-introduction of full-length CHK1 protein expression was insufficient to 

rescue cell viability in joint Tra2 protein depleted HEK-293 cells 

 

I then went on to assess the effect of joint Tra2 protein depletion on cell viability in the 

CHK1-FLAG FLP-in HEK-293 cell line, both with and without tetracycline, using MTT 

assays. Cells were treated with tetracycline or a mock treatment every 24 hours 

following siRNA transfection. Cell viability was monitored by MTT assay every 24 hours 



Chapter 4   Transcriptome-wide investigation of Tra2 protein dependent splicing using RNA-seq 

172 
 

for 120 hours following siRNA transfection. Similar to previous results, joint Tra2 

protein depletion also reduced cell viability of the FLP-in HEK-293 cells, though to a 

lesser extent than that observed in the MDA-MB-231 cells (Figure 4.32 A). Although 

the full-length FLAG-tagged CHK1 protein was efficiently induced by tetracycline, it was 

not sufficient to rescue cell viability after joint Tra2 protein depletion (Figure 4.32 B). I 

confirmed knockdown of the Tra2β protein and induction of the full-length CHK1-FLAG 

protein in parallel experiments by Western Immunoblotting (Figure 4.32 C). This result 

is consistent with there being multiple essential exons controlled by Tra2 proteins (in 

addition to CHEK1 exon 3) that are important for cell viability. However, it is impossible 

to conclusively rule out that induction of the full-length CHK1-FLAG protein failed to 

rescue viability for another reason (e.g. due to the timing of tetracycline addition, or 

differences in expression levels of the induced CHK1-FLAG protein and the endogenous 

CHK1 protein). Alternatively, the addition of the FLAG-tag may have compromised the 

function of the CHK1 protein. 
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Figure 4.32 Induction of full-length CHK1-FLAG protein expression was insufficient to 

rescue cell viability following joint Tra2 protein depletion in FLP-in HEK-293 cells. (A) 

Joint Tra2 protein depletion reduced cell viability in control FLP-in HEK-293 cells. (B) 

Induction of full-length CHK1-FLAG protein expression with tetracycline was 

insufficient to rescue cell viability following joint Tra2 protein depletion in FLP-in HEK-

293 cells. (C) In a parallel experiment, efficient expression of the full-length CHK1-FLAG 

protein and knockdown of Tra2β was confirmed by Western Immunoblotting. This 

figure is adapted from (Best et al., 2014b). 

 

 

 

 

 

 



Chapter 4   Transcriptome-wide investigation of Tra2 protein dependent splicing using RNA-seq 

174 
 

4.5 Discussion 

In this chapter, RNA-seq was used to perform a global analysis of human Tra2α and 

Tra2β dependent exons in MDA-MB-231 cells. My data from chapter 3 revealed that 

Tra2β efficiently represses expression of Tra2α in MDA-MB-231 cells, and following 

Tra2β depletion, up-regulation of Tra2α provides an effective functional replacement 

in splicing regulation. Therefore prior to RNA-seq, joint Tra2 protein depletion was 

required to induce substantial changes in splicing of Tra2 protein dependent exons. 

4.5.1 The TRA2A and TRA2B genes are differentially expressed in MDA-MB-231 cells 

In chapter 3, I observed that whilst both Tra2 proteins were able to cross-regulate one 

another, this cross-regulation was largely asymmetrical in MDA-MB-231 cells. The 

TRA2B mRNA and Tra2β protein are expressed at much high levels than the TRA2A 

mRNA and Tra2α protein in MDA-MB-231 cells, as determined by RNA-seq and 

Western Immunoblotting respectively. Differential expression of the TRA2A and TRA2B 

genes may in part be established at the transcriptional level. However, increased 

TRA2B gene expression could equally repress both Tra2α and Tra2β protein expression, 

if both poison exons were equally responsive to the Tra2β protein. The combined iCLIP 

and RNA-seq data suggested that the TRA2A poison exon may be a stronger 

physiological target for Tra2β than the TRA2B poison exon, as a very similar quantity of 

iCLIP tags mapped to both poison exons despite much higher expression of TRA2B. 

Consequently, the TRA2A poison exon may be more sensitive to Tra2 protein 

expression, skewing cross-regulation in favour of Tra2β expression. Consistent with 

this hypothesis, the TRA2A poison exon has a higher density of Tra2β binding sites than 

the TRA2B poison exon (Grellscheid et al., 2011a). It is possible that a combination of 

differential gene expression at the transcriptional level (higher TRA2B expression) and 

a higher affinity of Tra2 proteins for the TRA2A poison exon than the TRA2B poison 

exon contribute to the repression of Tra2α in MDA-MB-231 cells. 

4.5.2 Tra2 proteins regulate constitutively spliced target exons in addition to their 

known role in alternative splicing regulation 

Previous studies have implicated Tra2α and Tra2β exclusively in alternative splicing 

regulation. However, my RNA-seq data uncovered several constitutively spliced exons 
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which were highly dependent on Tra2 protein expression for 100% splicing inclusion in 

MDA-MB-231 cells. It has been established that low level alternative splicing of 

constitutive exons can occur as a result of error prone exon recognition by the 

spliceosome (Melamud and Moult, 2009).  However, consistent with the ANKRD1 and 

SMC4 exons being bona fide constitutive exons, both exons are not been annotated as 

alternatively spliced in any tissue, yet show very substantial splicing changes upon joint 

Tra2 protein depletion (-73 and -66 point PSI changes respectively). Interestingly, 

Tra2β is considered to be ubiquitously expressed, and is fairly evenly expressed across 

different mouse tissues, consistent with a more general role in constitutive splicing 

(Elliott et al., 2012). However, it remains possible that Tra2b is not expressed in 

specific cell types. Tra2 proteins may therefore share a greater degree of functionally 

similarity to the classical group of SR-proteins than previously thought.  On the other 

hand, I only identified a relatively small number of Tra2 protein dependent constitutive 

exons, and the vast majority of constitutive exons were not affected by joint Tra2 

depletion. Overall, this data is most consistent with Tra2 proteins regulating a 

relatively small number of constitutively spliced target exons. With the exception of 

the two CD44 variable exons described earlier in chapter 3, inclusion of all other target 

exons was activated by Tra2 proteins (and not repressed) in this study. Although exon 

repression by Tra2 proteins has previously been described (McGlincy and Smith, 2008; 

Kaehler et al., 2012), such exons might have either eluded the search criteria or occur 

less frequently.  

4.5.3 Gene expression changes following joint Tra2 protein depletion 

In addition to the alternative splicing changes observed in the transcriptome following 

joint Tra2 protein depletion, some statistically significant changes in gene expression 

were also identified and validated by qPCR. The GO enrichment analysis performed by 

Dr. Katherine James (Newcastle University) indicated that the differentially expressed 

genes were significantly enriched in cell cycle-related functions. The differentially 

expressed genes include increased expression of two members of the FOS gene family; 

FOS and FOSB. The FOS gene family encode leucine zipper proteins which dimersie 

with Jun proteins to form the AP-1 transcription factor complex (Milde-Langosch, 

2005). AP-1 has been linked with a broad spectrum of cellular processes including cell 

transformation, proliferation and the induction of apoptosis (Ameyar et al., 2003). 
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Other gene expression changes include downregulation of HIST2H2BE, which encodes 

histone H2B which is ubiquitlyated during the DNA damage response (Shiloh et al., 

2011). Gene expression changes were also validated for a number of lncRNAs which 

are not well characterised. As Tra2 proteins have never previously been linked with 

direct roles in transcriptional regulation and the associated changes in gene expression 

were not associated changes in alternative splicing of the gene, the gene expression 

changes may be caused through an indirect affect of joint Tra2 protein depletion (e.g. 

changes to cell growth). Subsequent investigations into the phenotypic consequences 

of joint Tra2 protein depletion revealed significant effects on cell growth and cell 

proliferation.  

4.5.4 Tra2 proteins regulate splicing of genes associated with chromosome biology 

The Gene Ontology (GO) enrichment analysis indicated that genes containing Tra2 

protein dependent exons were enriched in processes involved in chromosome biology. 

However, a significant limitation of this analysis is that Gene Ontology annotations are 

known to be incomplete and can differ in accuracy (Keene, 2007). The GO analysis 

included all 53 validated targets; however validation of Tra2 dependent targets was 

not exhaustive in my study. Although the enriched terms were statistically significant, 

a more comprehensive GO analysis could benefit from a larger set of Tra2 dependent 

exons. Overall, this data lends further support to the association of particular splicing 

regulators with the regulation of coherent processes. 

4.5.5 Highly responsive Tra2 protein dependent exons 

Of the exons which showed the highest amplitude response to Tra2 protein depletion, 

6 of the 17 exons were from genes involved in either chromosome structure or 

epigenetic regulation. Some of the highest amplitude targets include MSL3 (41% 

reduction in PSI), the human ortholog of the Drosophila melanogaster MSL3 gene 

which regulates chromatin remodelling during sex determination (Smith et al., 2005). 

SMC4 (66% reduction in PSI) encodes a protein involved in DNA repair and 

chromosome condensation (Huang et al., 2013). ANKRD1 (73% reduction in PSI) 

encodes a transcription factor which is a negative regulator of cardiac genes (Owen et 

al., 2011). GLYR1 (41% reduction in PSI) encodes a protein cofactor involved in histone 

demethylation (Fang et al., 2013). ZCCHC9 (68% reduction in PSI) encodes a zinc finger 
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protein which targets histone mRNAs for degradation (Schmidt et al., 2011). ZCCHC7 

(72% reduction in PSI) and ZCCHC11 (46% reduction in PSI) also encode zinc finger 

proteins homologous to ZCCHC9, but with distinct roles in ncRNA metabolism (Hagan 

et al., 2009; Fasken et al., 2011; Schmidt et al., 2011). The MPHOSPH10 gene (42% 

reduction in  PSI) encodes a protein involved in rRNA processing in interphase, and is 

associated with chromosomes during mitosis (Westendorf et al., 1998). The 

transcriptome-wide nature of the iCLIP and RNA-seq experiments uncovered multiple 

Tra2 protein dependent target exons which may be of interest for further study and 

characterisation. However due to time constraints, the exons described above were 

not investigated further in this study and I focused on characterisation of an exon from 

the CHEK1 gene.  

4.5.6 Tra2 proteins regulate CHEK1 exon 3 and are for required for expression of full-

length CHK1 protein 

CHEK1 exon 3 was amongst the eleven Tra2 protein dependent exons from genes 

involved in chromosome biology. CHK1 plays a key role in the DNA damage response, 

as well as regulating cell cycle checkpoints in response to genotoxic stress (Xiao et al., 

2004; Llorian et al., 2010; Pabla and Dong, 2012). The skipping of exon 3 has previously 

been reported to produce a truncated CHK1 protein isoform, termed CHK1-S (Pabla et 

al., 2012). Exon 3 of the CHEK1 gene is 224 nucleotides long; hence omission of exon 3 

produces a downstream shift in the reading frame of the CHEK1 mRNA. An analysis of 

the CHEK1 coding sequence suggested that if exon 3 were skipped, the downstream 

frameshift would create multiple premature termination codons (PTCs) within the 

CHEK1 mRNA, beginning in exon 4 (see Figure 4.33).  
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Figure 4.33 Predicted coding sequence of the CHEK1 gene when exon 3 is included 

(left hand side) or skipped (right hand side). Skipping of exon 3 is predicted to create a 

shift in the downstream reading frame, creating multiple premature termination 

codons (PTCs) within the CHEK1 mRNA is the same translation initiation site is used. 

The translation initiation site is highlighted in green, exon 3 is highlighted in yellow and 

termination codons are highlighted in red. 

 

Transcripts containing premature termination codons (PTCs) are targeted for 

nonsense-mediated decay (NMD) in the RNA degradation pathway. PTCs are 

recognised when located further than 50 nucleotides upstream of a splice site. Once a 

ribosome reaches a termination codon, UPF1 is recruited to the ribosome. 

Consequently, when a termination codon is upstream of a splice site, UPF1 interacts 

with the exon junction complex (EJC), resulting in degradation of the mRNA by 

exoRNases (Peebles and Finkbeiner, 2007). It is possible therefore that when the exon 

is skipped, PTCs created in exon 4 would target the CHEK1 mRNA for NMD, rather than 

producing a functional transcript.  

Pabla et al. suggest that CHK1-S is created when a downstream translation initiation 

site (TIS) is selected from exon 2 and exon 3 is skipped, producing a shorter in-frame 

mRNA encoding CHK1-S. CHK1-S was found to be an endogenous inhibitor of full-

length CHK1 and during the unperturbed cell cycle, CHK1-S expression can inhibit full-

length CHK1 allowing cell cycle progression from S-phase into G2/M (Pabla et al., 2012). 
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The combined iCLIP and RNA-seq data identified CHEK1 exon 3 as a stong candidate for 

Tra2 protein dependent splicing regulation, and significant skipping of this exon was 

observed following joint Tra2 protein depletion in four different cell lines. Further 

evidence from EMSAs and minigene constructs confirmed CHEK1 exon 3 as a direct 

target for splicing regulation by Tra2α and Tra2β. By Western Immunoblotting, a single 

major isoform of CHK1 was detected in MDA-MB-231 cells, corresponding to full-

length CHK1 (CHK1-L) (54kDa) (Figure 4.23). The CHEK1 antibody used in this study 

(Proteintech 10362-1-AP) specifically recognises the C-terminus of the CHK1 protein 

and should therefore recognise both CHK1 protein isoforms (CHK1-L and CHK1-S). 

Upon longer chemiluminescent exposure, additional bands corresponding to shorter 

isoforms of the CHK1 protein could be detected (approximately 50kDa and 47kDa), 

though their relative expression is weak (Figure 4.24). Loss of full-length CHK1 protein 

expression following joint Tra2 protein depletion was not associated with an increase 

in expression of any shorter isoform of CHK1. Therefore overall, my data is most 

consistent with Tra2 proteins being required for expression of full-length CHK1 (CHK1-

L), rather than inducing expression of a shorter CHK1 isoform (CHK1-S). The most likely 

explanation of this result may be that following joint Tra2 protein depletion, the same 

translation initiation site is used which producing a downstream frameshift when exon 

3 is skipped, resulting in production of a non-coding transcript. Under different 

physiological conditions, skipping of exon 3 may coincide with selection of the 

downstream translation initiation site from exon 2, allowing the shorter CHK1 isoform 

(CHK1-S) to be produced (proposed model shown in Figure 4.34). 
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Figure 4.34 Proposed model of CHEK1 alternative splicing. Skipping of exon 3 in the 

CHEK1 mRNA may create a shorter protein isoform or a non-coding transcript, 

depending on which translation initiation site is used. (A) Inclusion of exon 3 produces 

an in-frame mRNA encoding the full-length CHK1 protein. (B) If the initial translation 

initiation site is used, skipping of exon 3 would create a downstream frameshift leading 

to production of multiple PTCs within the CHEK1 mRNA. Selection of an alternative 

downstream translation initiation site from exon 2 would produce a second in-frame 

transcript when exon 3 is skipped, encoding the shorter protein isoform of CHK1-S. 

This figure is adapted from (Pabla et al., 2012). 

 

4.5.7 Tra2 protein depletion is associated with H2AX phosphorylation and reduced 

cell viabilty 

Consistent with previous observations (Syljuåsen et al., 2005; Gagou et al., 2010), loss 

of full-length CHK1 protein expression (either via transfection with a CHEK1-specific 

siRNA or TRA2A/B siRNAs) led to a significant increase in phosphorylation of the DNA 

damage marker γH2AX. As no exogenous DNA damage insult was used in these 
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experiments, accumulation of γH2AX may result from failure to repair endogenous 

DNA damage caused by replication stress.  

Replication stress is defined as the stalling of replication fork progression and/or DNA 

sysnthesis (Zeman and Cimprich, 2014). Replication stress may be exacerbated in 

cancer cells by factors including genomic instability and activation of oncogenes which 

promote DNA replication initiation or origin firing (Jones et al., 2013; Srinivasan et al., 

2013). Stalled replication forks are associated with rapid phosphorylation of H2AX at 

DNA break sites, facilitating the recruitment of DNA repair factors to the point of DNA 

damage (Paull et al., 2000). Once a replication fork has stalled,  the replication stress 

response is activated, leading to the recruitment of the replication stress response 

protein kinases ataxia-telangiectasia mutated (ATM) and ataxia telangiectasia and 

Rad3 related (ATR) (Zeman and Cimprich, 2014). ATR directly phosphorylates CHK1 

(Ser345), leading to stalled cell cycle progression and replication fork stabilisation 

(Nam and Cortez, 2011). Consequently, loss of CHK1 protein expression is associated 

with failure to repair replication stress-induced DNA damage leading to the 

accumulation of γH2AX foci (Gagou et al., 2010). 

Joint depletion of Tra2 proteins was also associated with a reduction in MDA-MB-231 

cell viabilty. Given CHK1 protein depletion also induced a similar reduction in cell 

viability; loss of productive CHEK1 splicing would likely contribute to the loss of cell 

viabilty observed following joint Tra2 protein depeltion. However, re-introduction of 

full-length CHK1 protein failed to rescue viabilty of HEK-293 cells depleted of Tra2 

proteins, suggesting Tra2 proteins may regulate other essential exons (as well as 

CHEK1 exon 3) important for cell viability. Joint Tra2 protein depletion (but not CHK1 

depletion alone) was also associated with reduced cell proliferation, consistent with 

Tra2 proteins regulating genes (other than CHEK1) important for cell proliferation. 

Consistent with an important role in maintaining cell viabilty, it was recently shown 

that Tra2β protein expression is essential for neuronal cell viabilty during murine 

development (Storbeck et al., 2014). Tra2b deficient mice showed severe 

abnormalities in cortical development caused by massive apoptotic events (Storbeck et 

al., 2014). Joint Tra2 protein depletion was associated with severely abnormally 

shaped cell nuclei, which were either lobed, multi-lobed or disintegrated in 
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appearance, consistent with major biological defects occurring following loss of Tra2 

protein expression. 

4.5.8 Chapter Summary 

In this chapter, I used RNA-seq following joint Tra2α and Tra2β depletion to identify 

Tra2 dependent exons in MDA-MB-231 cells. Combining the RNA-seq data with Tra2β 

iCLIP data from chapter 3 facilitated the identification of exons which were both 

directly bound by Tra2β and functionally responsive to Tra2 protein depletion. Tra2 

protein dependent exons included both alternative and constitutively spliced exons, 

and genes containing Tra2 protein dependent exons were enriched for functions 

associated with chromosome biology. Tra2 proteins were found to jointly regulate 

exon 3 of the CHEK1 gene, which encodes the key DNA damage response protein CHK1. 

Joint depletion of Tra2 proteins reduced expression of full-length CHK1 protein, 

increased phosphorylation of the DNA damage marker γH2AX and reduced cell viability. 

Together, this data suggests Tra2 proteins jointly regulate both alternative and 

constitutive splicing patterns via paralog compensation which are important to 

maintain cell viability. 
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Chapter 5  Concluding remarks and future work 

During the process of gene expression, RNAs undergo multiple processing and 

regulatory steps which are coordinated by RNA binding proteins (RBPs). By mapping 

RBP-RNA interactions and investigating their functional effect, the functions of many 

RBPs are beginning to be elucidated. In my PhD study, I aimed to identify novel RNA 

targets of the RBPs Tra2α and Tra2β, in an attempt to further understand the 

biological functions of these proteins in normal physiology and in disease.  

This thesis includes data from multiple transcriptome-wide approaches, including data 

from HITS-CLIP, iCLIP and RNA-seq. The field of “ribonomics”, in which genome-wide 

approaches are used to study how protein-RNA interactions regulate gene expression, 

has seen tremendous progress in recent years (König et al., 2012). Early ribonomic 

approaches such as RNA immunoprecipitation and microarray analyses (RIP-chip) were 

prone to detecting non-specific interactions and had low resolution (Mili and Steitz, 

2004). However, such techniques have largely been superseded by a variety of UV 

crosslinking and immunoprecipitation (CLIP) techniques which provide greater 

resolution and more stringent purification. More recently, CLIP has been coupled to 

high-throughput sequencing (HITS-CLIP) to facilitate detection of protein-RNA 

interaction on a genome-wide scale (Darnell, 2010). Furthermore, with modifications 

to the original CLIP protocol, such as iCLIP (Konig et al., 2011) and PAR-CLIP (Hafner et 

al., 2010), genome-wide detection of protein-RNA interactions is now advancing 

towards individual nucleotide resolution. Excitingly, CLIP can be utilised to study the 

interaction of RBPs with a diverse range of transcripts, which include mRNAs (Licatalosi 

et al., 2008), miRNAs (Chi et al., 2009), snoRNAs and rRNAs (Granneman et al., 2009). 

However, a significant limitation of CLIP techniques and therefore of my study is that 

the number of sequencing reads or “CLIP tags” is strongly influenced by the expression 

level of the corresponding transcript. In the future, it is likely that normalising CLIP 

sequencing to gene expression profiles from RNA-seq will facilitate the development of 

“quantitative CLIP”, which may prove a powerful tool for studying RBP-RNA 

interactions (König et al., 2012). 

Regulated alternative splicing is particulary prevelant in the testis (Elliott and 

Grellscheid, 2006) and global splicing switches are reprogrammed during male meiosis 
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(Schmid et al., 2013). Tra2β is implicated in male germ cell development and is up-

regulated during the progression from mitotic spermatagonia to meiotic 

spermatocytes (Schmid et al., 2013). To investigate Tra2β-regulated splicing during 

male germ cell development, a previous PhD student performed a Tra2β HITS-CLIP 

experiment to identify direct RNA targets of Tra2β (Grellscheid et al., 2011a). I used 

this dataset in the initial stages of my project to validate and characterise Tra2β-

regulated exons from the mouse testis. Tra2β was found to regulate a meiotic isoform 

of the histone chaperone protein Nasp (termed tNASP). Interestingly, the tNASP 

protein isoform localises on the synaptonemal complex of meiotic chromosomes, 

where it is involved in cell cycle progression during meiosis (Alekseev et al., 2009). 

Hence up-regulation of Tra2β during male germ cell development may have a key 

physiological role in generating alternatively spliced isoforms important in male 

meiosis. Future studies in the lab aim to investigate the role of Tra2β in male germ cell 

development further and a testis-specific Tra2b knockout mice has recently been 

generated which may yield further insights into the role of Tra2β in male germ cell 

physiology. 

The Tra2β HITS-CLIP study in the mouse testis also identified a poison exon within 

Tra2a which was a direct target of Tra2β. This data suggested that Tra2β may regulate 

expression of its paralogous protein Tra2α, by promoting inclusion of the poison exon 

within the Tra2a mRNA. Detection of endogenous Tra2α and Tra2β by Western blot 

confirmed this hypothesis; depletion of Tra2β led to a significant increase in Tra2α 

protein expression. Remarkably, up-regulation of Tra2α could largely compensate for 

loss of Tra2β in both splicing regulation and maintaining cell viability, a phenomenon 

termed “paralog compensation”. To date, the majority of studies on vertebrate Tra2 

proteins have largely focused on Tra2β expression. However, this data suggests that 

future studies may benefit by considering the expression levels of both Tra2α and 

Tra2β in splicing regulation. 

During my investigation into Tra2β-responsive minigenes, I unexpectedly found that 

co-transfection with a Tra2β protein isoform lacking the RS1 domain (Tra2βΔRS1) not 

only failed to activate splicing inclusion, but actively repressed splicing inclusion of 

exons normally activated by full-length Tra2β. Intruigingly, this data suggests that the 

endogenous Tra2β-1 and Tra2β-3 protein isoforms may be functionally distinct in 
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splicing regulation and may act in a competitive, antagonistic manner to either 

promote or repress inclusion of target exons respectively. Further investigation is 

required to determine whether this observation applies to endogenous Tra2β isoforms 

as well as over-expressed proteins. 

Tra2β is up-regulated in several human cancers (reviewed by (Best et al., 2013)) and is 

important for cell growth in several cancer cell lines (Takeo et al., 2009; Kajita et al., 

2013). Tra2β was found to be specifically up-regulated in invasive breast cancer and it 

has been postulated that induction of Tra2β expression in breast cancer cells may 

produce alternative splicing isoforms of the CD44 gene associated with tumour 

progression and metastasis (Watermann et al., 2006). Therefore for the majority of 

this project, I aimed to identify RNA targets of Tra2β in the invasive breast cancer cell 

line MDA-MB-231, to explore the potential roles of Tra2β in cancer cell biology. 

To identify Tra2β target exons in MDA-MB-231 cells, I used iCLIP to map the 

transcriptome-wide binding sites of Tra2β, and RNA-seq to detect changes in the 

transcriptome following joint Tra2 protein depletion. The development of next-

generation sequencing technologies and whole transcriptome sequencing in particular 

has expanded the scale and speed in which the transcriptome can be analysed, which 

would not have been possible just a few years ago. One of the unexpected findings 

from the RNA-seq data was that Tra2-dependent exons include constitutively spliced 

target exons in addition to alternative exons.  

Another finding from this study was that Tra2-dependent exons were enriched in 

genes involved in functionally related processes, specifically chromosome biology. This 

is consistent with other observations that RNA-binding proteins may regulate coherent 

cellular functions. For example, another recent study from the Elliott lab identified that 

the tissue-specific RBP T-STAR regulates alternative splicing of genes encoding synaptic 

proteins in the brain (Ehrmann et al., 2013). Similary, MBNL1 and RBFOX2 have been 

found to coordinate alternative splicing of genes involved in pluripotent stem cell 

differentiation (Venables et al., 2013c). Tra2β is not expressed in a tissue-specific 

manner (it is ubiquitously expressed), however it is possible that up-regulation of 

Tra2β protein expression during male germ cell development may alter the splicing 

profile of genes with coherent functions (e.g. chromosome biology) in a 

developmental-stage-specific manner. 
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One of the most interesting Tra2 target exons identified in this study was a functionally 

important exon within CHEK1, which encodes the key DNA damage response protein 

CHK1 (Chen and Sanchez, 2004). Joint Tra2 protein depletion resulted in skipping of 

CHEK1 exon 3 and reduced expression of full-length CHK1 protein. Joint Tra2 protein 

depletion was also associated with accumulation of the DNA damage marker γH2AX 

and a significant loss of cell viability. As no exogenous DNA damage insult was used in 

these experiments, the accumulation of DNA damage may be the result of replication 

stress, caused by high rates of DNA replication in rapidly dividing cells. Replication 

stress refers to the accumulation of DNA damage caused by stalled DNA replication 

forks, which can occur due to deficines in the substrates required for replication 

(Zeman and Cimprich, 2014). Some proto-oncogenes including Myc (which is amplified 

in both MDA-MB-231 and MCF-7 cells) can initiate replication stress by driving rapid 

cell proliferation (Halazonetis et al., 2008; Campaner and Amati, 2012; Schoppy et al., 

2012). In cancer cells, activation of the replication stress-signalling pathway involving 

the ATR and CHK1 kinases prevents cell cycle progression until the DNA damage has 

been repaired (Höglund et al., 2011). Hence although CHK1 can function as a tumour 

suppressor early in cell transformation (preventing accumulation of DNA damage), 

CHK1 activity can also enhance “tumour fitness” by repairing DNA damage caused by 

replication stress and preventing apoptosis (López-Contreras et al., 2012). 

Consequently, CHK1 inhibitors are currently being trialled as potential 

chemotherapeutic agents, both in combination therapy to potentiate the efficacy of 

other DNA-damaging chemotherapeutics or as single agent therapies (McNeely et al., 

2014). This also raises the possibility of whether targeting Tra2 proteins or their RNA 

targets might be exploited therapeutically in cancer. For instance, Tra2 protein 

inhibition may sensitise cancer cells to chemotherapeutic agents which cause stalled 

replication forks and high levels of replication stress, such as hydroxycarbamide 

(hydroxyurea).  

Cancer-specific splicing changes have huge potential to provide new prognostic 

markers in cancer, as well as providing novel therapeutic targets (Shkreta et al., 2013). 

The application of RNA-seq to analyse cancer cell transcriptomes will likely uncover 

many more cancer-specific splice variants, many of which may be cancer and sub-type 

specific (Eswaran et al., 2013). Further research into the transcriptomic landscape in 

cancer is likely to prove an exciting field of future research. 
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Appendix A 

Complete list of primers used to monitor splicing inclusion of human endogenous 

exons in this thesis. 

Primer Sequence 

ADAM9 F TCCTGGGATGGTTAACGAAG 

ADAM9 R GGGAGGTGTCACTGGAGAAA 

ANKRD1 F GGAAAGAAGAATGGCAATGG 

ANKRD1 R GCAGCCTTCAGAAACGTAGG 

ANKRD17 F GCTGTATCCCCTGTTGCTGT 

ANKRD17 R TGCCTGCTGATTCATTTGAG 

ANLN F GAAAAGGTGACCGAAAACCA 

ANLN R GTTCTTCGCTGCTTTCTGCT 

ATRX F GAACTTGCAATGAAGGGTGTC 

ATRX R TGAAAAACCTTTGGATGATGAA 

ATXN2 F GGGATCCCAATGATATGTTTC 

ATXN2 R CCAGAATTCGGGTTGAAATC 

BDP1 F TTCCAGAAGTCCAACAAGAGAA 

BDP1 R TTTTTGGCAGGAGGAATGTG 

BTBD7 F AAACATGACCAGGGCAGAAG 

BTBD7 internal GCATCCTGCTTATGTCTCACTG 

BTBD7 R GTCGGTGCACCCATTTAGAG 

CALD1 F GGAAGAGGAGAAGCCAAAGC 

CALD1 R TGTGGGTCATGAATTCTCCA 

CANX F TTGTTGAGGCTCATGATGGA 

CANX R CACCTGGAAGCTTTGACTCC 

CARS F TGGAGTATTTGTCGGTTTCTGA 

CARS R CCCACAGTGGTGAAACTGGT 

CCDC112 F GGGAAGCCAACATTTATGGA 

CCDC112 R TTTGGTTCGTTCTTCCCAAC 

CCNL1 F TTTAGCACCCTCCTCTCTGC 

CCNL1 R TCCGCCAGTTAAGAGGAAAA 

CDCA7L F TCTTGGTGGGGAACTGAAAG 

CDCA7L R GTTGGCTTCCGAGATGATGT 

CEP95 F TCCTGGAAATATTTGATGGTTTG 

CEP95 R AGGTGTGTGCTGTGTCTCCA 

CHEK1 F GACTGGGACTTGGTGCAAAC 

CHEK1 R TGCCATGAGTTGATGGAAGA 

CLOCK F TTCTGAGACTTATGGTTGGTCA 

CLOCK R CAATCGAGCTCATTTTACTACAGC 

CSDE1 F AAGTCTTGCAGGTTGCCATT 

CSDE1 F2 CTCCAGTTTCCAGCTGAACG 
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CSDE1 internal ACTGTGAGATTGCCCGGTA 

CSDE1 R CGCGAGAGAAGCGAGATTTA 

CSDE1 R2 TATCATCGGACCGACGGACT 

CSPP1 F1 CTCCCTCCACCATCACAGTT 

CSPP1 F2 CGGGAAAGAGAAGAAAGAAGG 

CSPP1 R1 TTTTCCAGGAATCTGCTGCT 

CSPP1 R2 AGTTCAGTTGGAGGCTCACC 

DDX24 F GGTGGTGCTTCGGTGTTACT 

DDX24 internal AGCTTGTGCCTTTCTCTTGG 

DDX24 R GGCGGTTTCTGAGGTTCTTC 

DEK F ACAGCCAAAAGAGAAAAACCT 

DEK F AGTGCCTGGCCTGTTGTAAA 

DEK R GTTGTTTTTATGAAATCTTTTCTTTCA 

DEK R AGAGGAGAGCGAGGAGGAAG 

DNAJA1 F CTACGATGTTTTGGGGGTCA 

DNAJA1 R TTGCAGAGCCAGTTTTCTTG 

DUSP10 F AGGAACAGGAAGGGCAAGAT 

DUSP10 internal GTTAGCAGGGCAGGTGGTAG 

DUSP10 R TGAATGTGCGAGTCCATAGC 

EIF5B F ATTTTGGCCTTCGATGTGAG 

EIF5B R TCCAAACATTTTGGGTGACTC 

F3 F CCCACTCCTGCCTTTCTACA 

F3 R TAAGCCTCCGGGATGTTTTT 

FAM120B F CTGGTGTTGGCGCATCTCTA 

FAM120B internal TTTTAATACGGACAGACCCTGAA 

FAM120B R AGCCTGCAGCTCTTCTCTTG 

FNBP4 F TCAAGGTCTGTTTGGCAAGA 

FNBP4 R TCAGGATGCAGCAGAACAAC 

GALNT11 F CTGTGGCGGGAGAGAAGAT 

GALNT11 R CAAGCGGTCACTGATAAGCA 

GLYR1 F CTAGACTCCGGGATGGTGAG 

GLYR1 R GCCTGGATCAAAGTGGAACA 

HDLBP F CTGAGTGATTTTGGCCAGGT 

HDLBP R GAAGGAACAGTTGGCTCAGG 

HIF1A F1 TCAGAGAAAGCGAAAAATGGA 

HIF1A F2 CACCTCTGGACTTGCCTTTC 

HIF1A R1 CCCTGCAGTAGGTTTCTGCT 

HIF1A R2 AAAACCATCCAAGGCTTTCA 

HMGN1 F GCTTCATCAGAGGCTGGACT 

HMGN1 R CCTGTGCTTTTCAGATTCTTCA 

HNRPDL F GGCTGGTAATTGTTTTGGTGA 

HNRPDL R GTTGCACAACCCAAAGAGGT 

IBTK F TTCAGTTTATTACCAGTGTTCTTGG 

IBTK R CTTTGCAATCCTGCAGTCAG 
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IGF2BP2 F CGGGAAATCAATCTGTCTGG 

IGF2BP2 R GGCTCAATATGGGACAGTGG 

ITFG3 F CAGATGCACCAGCAGGAGT 

ITFG3 R AGGATCGGCTGAAATTGTTG 

ITGA3 F GACATTGACTCGGAGCTGGT 

ITGA3 R CTGGTCACCCAGTGCTTCTT 

IWS1 F TCAGCAGCTTCATTCATCTTG 

IWS1 R ATTGCAGACATATTTGGAGAATC 

JARID2 F CATCCCAAGTGTCCTCCACT 

JARID2 R CATTGTTGGTGGCTGTTTTG 

KDM3A F GGGGAGGAGGTTTCTCAGTC 

KDM3A R CAAACCAGCTTTGTCCAACA 

KDM5A F TGGTCAGGAGCAGAGGAGTC 

KDM5A R CCCTGCTTCTTTGCACAGTT 

KIAA0586 F CAGAAAGACAGTGGATGAATGG 

KIAA0586 R CTTCGATGGCCCTGATAAAC 

KIF14 F TTGCTTTCTCTGCCCATTTT 

KIF14 R GAAGCTAGCAGCACCACTCC 

KIF4A F CCCTTACTGAAGTGCGTGGT 

KIF4A R TGCTGTTGCTCCATTCTGAC 

KTN1a F CGAGAACATTTGGAAATGGAA 

KTN1a R TGCAAATCACCAGCTACCTTC 

KTN1b F AAGAAATAAGTGGTCTCTGGAATGA 

KTN1b R AAGGGACAGACACCTTTGGA 

LYPLAL1 F GAATGTGGATCAAGCAGGTTT 

LYPLAL1 R CCATGCATCCTCCCATAGAG 

LYST F GAAAGATAAGAGTGGCATTGTGG 

LYST internal TGTGTACAAATCAGATAATCCTGTCA 

LYST R TGCCAGAGAGTATTGGTGGA 

MATR3 F CTGGGGGTTCTCCGTGTC 

MATR3 internal TGACAGAATGGATTATGAAGATGA 

MATR3 R GACGACTGTGACTTGCTCCA 

METAP2 F TTGGAAAGATCAGCATTGGA 

METAP2 R CATCTTGTGTGGGTGGGTATT 

MIER1 F CCATCTGTTGAATCTTCAAGTCC 

MIER1 R TTTTCCCCACTACAGCCACT 

MORF4L2 F AGGAGGCCCCTCTCATTTTA 

MORF4L2 R GATTGCAGAACCTTCCCTGA 

MPHOSPH10 F AGCGGTGTCTGACGGAAGT 

MPHOSPH10 R TTGTTTGAATCCAGCTCATCA 

MSL3 F GCCTGGTGTGGACTCTGTCT 

MSL3 R TCATCCTCCAGCTGCTTCTT 

N4BP2L2 F TGGGAGGTAAAGGTCAATGC 

N4BP2L2 internal AATGGCTGCAGTATGCAAGA 



                                                                                                                                                      Appendix A 

210 
 

N4BP2L2 R TGTTCTGGTTCCAGTCATGG 

NAP1L1 F1 CTTGCAGGTTTTTGAGAGCA 

NAP1L1 F2 GGAATTCCTTTGGGGTCTTC 

NAP1L1 R1 CCCTACGTGCTGACGCTAAT 

NAP1L1 R2 AATGCTCTCAAAAACCTGCAA 

NASP F AATGGAGAATGGTGTGTTGG 

NASP internal TCCCTAAGGATGGTGCAGTC 

NASP R GAATCATTTGGCATTTCTTCG 

NCOA1 F CCCTGCTAACCCAGACTCAC 

NCOA1 R CCAAAAGAAGAGGTCCCAAG 

NEXN F CTTACACCGGGAAAACTGGA 

NEXN R TTGCAGGCCTAACATCAACA 

NFXL1 F AGTTCCTTCTGGCACCAGTC 

NFXL1 R CATAGCCCCTGCTTGAAAAG 

NGLY1 F AGCGAGCTTCAAACCCTACA 

NGLY1 R GCTTGTATTCCGGTCCAAGA 

NIPBL F ACACAGGAAGAGCCGTTGTT 

NIPBL R ATGTCACTCCGCAGGAAGTC 

NUB1 F TTCAAGCAAAATTGACCCAGT 

NUB1 R GGACCTCAGTTCTCTGCCAGT 

NUFIP2 F TTGCTTCTGCAAATTCCAAAT 

NUFIP2 internal ATTCCTGCTTTCCCAAAGGT 

NUFIP2 R ACCAGCAGCCTCACCAATAC 

PAK1 F TGTGTACACGGTGCCTGAAG 

PAK1 R AGTGCCACCAGTTTCAGAAGA 

PAM F AGCAGCCAAAACGAGAAGAA 

PAM R GAAACCTGGCCTGGTAACAA 

PDCD6IP F CCTGGCTCAAGATGGTGTG 

PDCD6IP R TCTTTCTGTCTTCCGTGCAA 

PHF14 F AAGCCTTTGGCAGCTTCTCT 

PHF14 internal AAAGGGAGATCTGCGTCTCA 

PHF14 R TGCCACAATTGTCACACTGA 

PPP1R7 F AGTCGCAGGAGATGATGGAG 

PPP1R7 R TCCCTATGCGATAGTGATTCAA 

PPP6R3 F GCAAGGAGCCACAAAGAAGA 

PPP6R3 R AGGGGAATCGTTTAGGAGGA 

PRMT2 F CTCAGGCTCCTGGAAAGGAC 

PRMT2 R GGACAGTCACCTGATGTTGCC 

PRPF3 F GTTTGAGGCTGTGGAGGAAG 

PRPF3 R GGGGGCTAATGAAGCTCAG 

SETD2 F TTGTGTTTTCCTTTTCAGTTTGA 

SETD2 R CGCTGAAATAGAGCCCAAAG 

SMC4 F TGGATGTAGCCCAGTCAGAA 

SMC4 R CCAGTGCATGACAACAGGAT 



                                                                                                                                                      Appendix A 

211 
 

SMN2 F ACCACCTCCCATATGTCCAG 

SMN2 R TTTGAAGAAATGAGGCCAGTT 

SMYD2 F GTGGGGGACTTGCTGTTCT 

SMYD2 R AGTCTCCGAGGGATTCCAGT 

SON F ACACCCATTGAAGGAAACCA 

SON internal TGACTCAGATTCTTCTGGCTGT 

SON R ATGGCAGCTGCATTAGCTTT 

SPECC1 F GTGGTTCGCCTGAAGAAGAC 

SPECC1 internal TGGCCAAAACTTTGGAAGAG 

SPECC1 R TGCAGCTTTAGGCTGGTTCT 

SSR1 F AGACTCCTCCCCCGCTTG 

SSR1 R CAAACAGTATAGTTGTATCTGCACTCG 

TBC1D12 F AATCTTCCTGCCAAATCTGTG 

TBC1D12 R TTTTCCACCGTTCTTTTGCT 

TRA2A F TTTGGAAACCCTTGATGGAC 

TRA2A poison TTCCCCAATTCAAACAATTCA 

TRA2A R AAAACAACTTCGAGGGCAGA 

TRA2B F ATCCGTGAGCACTTCCACTT 

TRA2B poison CATCTTCCCCACTTCACACA 

TRA2B R GCGTCACATCCGGTAGAGTT 

TTC14 F AGCTTTGGCTTTGGATGAGA 

TTC14 R AGGATGCCCTAGATGAATGC 

UACA F TGGAGATTGAAAATGAAGATTTGA 

UACA R TCCTTAAGCTTTCTTCATGTTGC 

UBE3C F CTGCCAGGATGTTCAGCTTC 

UBE3C R GCCATTAGCAATGGGAAAAG 

VAPB F CCAACCTAAAGCTTGGCAAC 

VAPB R CATCCGCAGTCCATCTTCTT 

ZBTB40 F TCATGGTTACCCAGGATGTTT 

ZBTB40 R ATTCCTCCTTGGCTGTTTCC 

ZCCHC11 F GGAGCCACTGAGATGAGGAG 

ZCCHC11 internal GGAAGGTTGGCAGCATTTAC 

ZCCHC11 R GCCTCTGCTCAGGTGTCAAT 

ZCCHC7 F GCCTCCTTACCTCATTTGTCC 

ZCCHC7 R TTTGTCACTGATGGACCAGTTT 

ZCCHC9 F GCACTATGTGCTTCCGGTCT 

ZCCHC9 R TCTGTGGACCCACACCTGTA 

ZZZ3 F TCTGGTGCCTGCCTAAACTT 

ZZZ3 internal CATGATTCTCGGGTACTCTGC 

ZZZ3 R TCATGGCTGAAGCTGAGAGA 
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Appendix B 

High-resolution iCLIP maps of the Tra2 protein dependent exons identified and 

validated in this thesis. 
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Appendix C 

List of publications associated with this thesis. 
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and constitutive target exons 
Best A, James K, Dalgliesh C, Hong E, Kheirolahi-Kouhestani M, Curk T, Xu Y, 
Danilenko M, Hussain R, Keavney B, Wipat A, Klinck R, Cowell I, Lee K, Austin CA, 
Venables JP, Chabot B, Santibanez-Koref M, Tyson-Capper A, Elliott DJ. 
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Human Tra2 proteins jointly control a CHEK1
splicing switch among alternative and
constitutive target exons
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Alternative splicing—the production of multiple messenger RNA isoforms from a single

gene—is regulated in part by RNA binding proteins. While the RBPs transformer2 alpha

(Tra2a) and Tra2b have both been implicated in the regulation of alternative splicing, their

relative contributions to this process are not well understood. Here we find simultaneous—

but not individual—depletion of Tra2a and Tra2b induces substantial shifts in splicing of

endogenous Tra2b target exons, and that both constitutive and alternative target exons are

under dual Tra2a–Tra2b control. Target exons are enriched in genes associated with chro-

mosome biology including CHEK1, which encodes a key DNA damage response protein. Dual

Tra2 protein depletion reduces expression of full-length CHK1 protein, results in the

accumulation of the DNA damage marker gH2AX and decreased cell viability. We conclude

Tra2 proteins jointly control constitutive and alternative splicing patterns via paralog

compensation to control pathways essential to the maintenance of cell viability.
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H
uman genes encode long precursor messenger RNAs
(mRNAs) that are extensively processed before nuclear
export. This maturation includes the splicing of exons,

which normally occurs with high fidelity to create functional
mRNAs1. Constitutive exons splice into all mRNAs transcribed
from a gene, while alternative exons are sometimes included and
sometimes skipped2. Human protein-coding genes each produce
an average of three mRNA isoforms through alternative splicing,
many of which are differentially regulated3. RNA binding
proteins play a key role in transforming precursor RNAs into
mRNAs. Although RNA-binding proteins can regulate many
transcripts in parallel, some splicing regulatory proteins
preferentially engage with transcripts belonging to specific
functional classes, including Nova proteins (synapse functions),
Fox proteins (neuromuscular, cytoskeleton and EMT functions),
PTB proteins (cytoskeleton functions) and T-STAR (synapse
functions)4–8.

Transformer2 (Tra2) proteins are involved in splicing
control9,10. First discovered in insects, Tra2 proteins form an
essential component of the alternative splicing complex that
controls fly sexual differentiation11,12. Tra2 proteins are
conserved across the animal kingdom, but separate gene
paralogs encoding Tra2a and Tra2b proteins evolved early in
vertebrate evolution13,14. Knockout experiments in mice show
that Tra2b is essential for embryonic and brain development15–18.
In humans, Tra2b expression levels change in several cancers
(reviewed by Best et al.19), and Tra2b is implicated in the
pathology of other diseases including spinal muscular atrophy20,
Alzheimer’s disease21 and frontotemporal dementia and
Parkinsonism linked to chromosome 17 (ref. 22).

Tra2 proteins have amino- and carboxy-terminal domains
enriched in arginine and serine residues (RS domains) flanking a
single central RNA recognition motif (RRM) and so resemble the
relatively well characterized core group of 12 SR proteins that
control both constitutive and alternative splicing as well as other
aspects of RNA metabolism23–25. Each core SR protein contains
N-terminal RRMs and single C-terminal RS domains. However,
unlike the core SR proteins all current data implicate Tra2
proteins solely in alternative splicing rather than constitutive
splicing10,26, and only SR proteins and not Tra2 proteins can
provide splicing activity to S100 extracts26.

To regulate splicing inclusion Tra2b binds to AGAA-rich and
CAA-rich target RNA sequences. These RNA protein interactions
have been resolved at the atomic level9,27. Endogenous Tra2b
target RNAs have been identified using HITS-CLIP18, RIP-seq28,
shRNA depletion29 and microarrays17, but important
fundamental questions still remain as to the identity of the
biological targets and the functions of vertebrate Tra2 proteins.
These include whether endogenous Tra2a and Tra2b proteins
jointly control the same splicing targets, and if so what these
shared targets are? Although Tra2a and Tra2b both activate
splicing of the same model exons when overexpressed in
transfected HEK-293 cells (suggesting redundant functions)18,
the Tra2a gene alone is not sufficient to maintain viability in
Tra2b knockout mice (suggesting specific functions)15. Another
question relates to how Tra2a and Tra2b interact with each
other? We previously found that Tra2b protein binds to a poison
exon in the TRA2A gene to activate poison exon inclusion18.
Poison exons introduce premature translation termination
codons into mRNAs so as to inhibit translation of full-length
proteins and are often regulatory18,30–32, but whether Tra2a
might reciprocally control Tra2b expression is not known.

Here we address these questions in human MDA-MB-231 cells
that model invasive breast cancer. We find asymmetric splicing
feedback control pathways between Tra2a and Tra2b that buffer
splicing defects caused by depletion of either Tra2a or Tra2b

protein alone. Overriding these feedback control pathways by
joint depletion of both Tra2a and Tra2b globally identifies Tra2-
dependent target exons, and reveals critical roles for these
proteins in DNA damage control and cell viability.

Results
Tra2b efficiently suppresses Tra2a protein expression. To test
for in vivo interactions between Tra2a and Tra2b proteins, we
monitored their expression levels using western blots. Consistent
with predictions from our previous study18, Tra2a protein levels
were normally very low but significantly increased after small
interfering RNA (siRNA)-mediated depletion of Tra2b (Fig. 1a
top panel, compare lanes 1 and 3, and Fig. 1b). Although weak,
the Tra2a western blot signal was of the predicted size and was
almost completely eliminated following transfection with a
TRA2A-specific siRNA (Fig. 1a top panel, compare lanes 1 and
2). Tra2a protein depletion had less effect on Tra2b protein levels
(Fig. 1a, middle panel and Fig. 1b). Western blot analysis
confirmed this effect for two independent sets of siRNAs targeted
against different parts of the respective mRNAs (Supplementary
Fig. 1).

Consistent with Tra2b protein repressing Tra2a expression via
poison exon activation, siRNA-mediated depletion of Tra2b led
to strongly reduced splicing inclusion of the TRA2A poison exon
(Fig. 1d, upper panel). siRNA-mediated depletion of Tra2a
protein led to a smaller but detectable effect on splicing inclusion
of the TRA2B poison exon (Fig. 1d, lower panel). Analysis of
TRA2A and TRA2B steady state mRNA expression levels by
quantitative PCR confirmed that each protein also negatively
regulates the expression of the other at the RNA level (Fig. 1c).

The TRA2A and TRA2B genes are differentially expressed.
RNA-seq of MDA-MB-231 cells indicated that the TRA2B gene is
expressed at much higher levels than the TRA2A gene (Fig. 1e
shows one of three biological replicate RNA-seq analyses, with
the height of the y axis showing read depth and so indicating
relative gene expression levels). This provides a potential
mechanism for why Tra2b represses Tra2a protein expression
more than vice versa, since lower cellular concentrations of Tra2a
would be less able to activate splicing of the TRA2B poison exon.

We used iCLIP33 to systematically map the transcriptome-wide
binding sites of human Tra2b in MDA-MB-231 cells.
Endogenous Tra2b protein was efficiently immunoprecipitated
along with radiolabelled crosslinked RNA. A single radiolabelled
RNA protein adduct of B40 kDa was identified at high RNase
concentrations, just above the known molecular weight of
uncrosslinked endogenous Tra2b protein (37 kDa) (arrowed in
Supplementary Fig. 2a). Lower RNase concentrations enabled
endogenous Tra2b binding sites to be mapped across the MDA-
MB-231 cell transcriptome in biological triplicate iCLIP
experiments. Following deep sequencing, 7,443,903 reads were
successfully mapped back to the human genome, of which
3,338,710 were unique cDNA reads used for downstream analysis
(Supplementary Data 1). These individual sequencing reads are
subsequently referred to as iCLIP tags. The only clusters of Tra2b
iCLIP tags, which mapped to the human TRA2B and TRA2A
genes from all three biological replicates were within their
respective poison exons (Fig. 1e). Despite much lower levels of
overall TRA2A gene expression, the TRA2A poison exon had a
similar number of Tra2b iCLIP tags as the TRA2B poison exon.
This suggests the TRA2A poison exon is a stronger physiological
target for Tra2b binding than the TRA2B poison exon (the
TRA2A poison exon also has a much higher density of AGAA
Tra2b binding sites than the TRA2B poison exon18).
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Endogenous Tra2a functionally compensates for loss of Tra2b.
The most frequently enriched pentamers recovered in the iCLIP
tags were highly enriched in AGAA nucleotide sequences
(Supplementary Fig. 2b), which is the Tra2b binding site pre-
dicted by HITS-CLIP for endogenous mouse Tra2b, RIP-seq and
from SELEX experiments using purified Tra2b proteins18,26,28.
However, our combined human iCLIP data in MDA-MB-231
cells provided substantially more coverage than previously

obtained in mouse testis18 (in which just 177,457 reads were
mapped back to the mouse genome). In total, 1,546,290 (44.8%)
of unique cDNAs mapped to intronic regions, suggesting
the Tra2b iCLIP experiment largely captured Tra2b interactions
with pre-mRNAs. However, a further 1,169,374 (33.8%) of
unique cDNAs mapped to exons (50UTR, 30UTR or ORF), despite
exons comprising only B1% of the genome. After correcting
for the relative size of each genomic region (by dividing the
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Figure 1 | Tra2b regulates Tra2a protein expression. (a) Western blot analysis showing depletion of TRA2B induces reciprocal upregulation of Tra2a
protein expression, whereas depletion of TRA2A had minimal effect on Tra2b protein expression. (b) Quantitation of cross-regulation between Tra2a and

Tra2b at the protein level (Tra2a and Tra2b protein expression were quantified relative to a–Tubulin from three western blots using independent biological

replicates). (c) Quantitation of cross-regulation between Tra2a and Tra2b at the RNA level from quantitative PCR analysis of three independent biological

replicates in MDA-MB-231 cells. (d) Splicing inclusion of the TRA2A poison exon is strongly reduced by depletion of endogenous Tra2b protein, whereas

splicing inclusion of the TRA2B poison exon is less affected by depletion of Tra2a protein. Splicing patterns were monitored by RT–PCR between flanking

exons (arrowed) followed by capillary electrophoresis. (e) Screenshot from the UCSC genome browser35 showing the TRA2B and TRA2A genes, and the

positions of aligned RNA-seq reads (green peaks) and Tra2b binding (orange clusters of significant cross-linking by Tra2b protein identified by biological

triplicate iCLIP experiments) in MDA-MB-231 cells. Probability (P) values were calculated using an independent two-sample t-test between negative

control siRNA-treated cells and the gene-specific siRNA-treated cells (statistical significance shown as: *Po0.05, **Po0.01, ***Po0.0001). All data

represented by bar charts was generated from three biological replicates and error bars represent the s.e.m.
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number of unique cDNAs mapping to each genomic region by
the relative size of that region within the genome), we find that
Tra2b binding is highly enriched within exons: 76.8% of Tra2b
iCLIP tags mapped to exons (50UTR, 30UTR or ORF), while a
further 20.4% mapped to non-coding RNAs (Supplementary
Fig. 2c).

We used our iCLIP data to screen for endogenous exons
controlled by human Tra2b. Alternative exon junctions
(þ /� 300 bp of either splice site) were stratified to find those
with the highest number of iCLIP tags relative to overall iCLIP
coverage within the same gene. To test whether upregulation of
Tra2a protein expression could functionally compensate in
splicing regulation for depletion of Tra2b, we then monitored
percentage splicing inclusion (PSI) of associated exons after single
depletion of either Tra2a or Tra2b, or after combined depletion
of both Tra2a and Tra2b proteins.

Clusters of Tra2b iCLIP tags mapped to alternative exons in
the ATRX, GLYR1 and CEP95 genes (Fig. 2a). Single depletion of
either Tra2a or Tra2b had only a small effect on the endogenous
splicing pattern of these three exons, but joint depletion of both
Tra2a and Tra2b substantially decreased their splicing inclusion

(Fig. 2b). We obtained similar results with 14/14 Tra2b target
exons identified by iCLIP analysis (Fig. 2c. Individual data for
each of these tested exons are shown in Supplementary Fig. 3). In
fact, of these 14 tested exons, some less-responsive exons
including cassette exons within PAM and BDP1 only responded
to depletion of both Tra2 proteins, and not to single depletion of
Tra2b at all (Supplementary Fig. 3).

These data are consistent with maintenance of splicing patterns
via paralog compensation, that is, following depletion of Tra2b,
upregulated Tra2a is able to functionally substitute for Tra2b and
largely maintain Tra2 target exon inclusion. The Tra2b target
exons inhibited more substantially by joint Tra2 protein depletion
compared with single depletion of either Tra2a or Tra2b included
SMN2 exon 7 (Supplementary Fig. 3), which is a candidate target
for gene therapy in spinal muscular atrophy20.

Tra2a and Tra2b control constitutive exon splicing patterns.
Splicing profiles of candidate Tra2b target exons (containing
Tra2b iCLIP tag coverage) were next analysed using RNA-seq
after joint depletion of Tra2a and Tra2b proteins, and changes
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Figure 2 | Endogenous Tra2a functionally compensates for loss of Tra2b. (a) UCSC genome browser screenshot35 showing significant clusters of iCLIP

tags mapping directly to alternatively spliced exons within the CEP95, GLYR1 and ATRX genes (position of target alternative exons highlighted in grey).

(b) Splicing inclusion of novel Tra2b target exons within ATRX, GLYR1 and CEP95 were only slightly affected by depletion of either endogenous Tra2a or

Tra2b proteins, but were strongly affected by joint depletion of both Tra2a and Tra2b (red). PSI levels were measured by RT–PCR and capillary gel

electrophoresis (lower panels) in three biological replicates (upper panels). (c) Splicing inclusion of 14 novel Tra2b target exons showed minimal splicing

response to single depletion of either Tra2a or Tra2b, but showed highly significant splicing changes after joint depletion of both Tra2 proteins (complete

data for all 14 exons is provided in Supplementary Fig. 4). Probability (P) values were calculated using an independent two-sample t-test between PSI levels

of negative control siRNA-treated cells and TRA2A/TRA2B siRNA-treated cells (statistical significance: *Po0.05, **Po0.01, ***Po0.0001). All data

represented by bar charts was generated from three biological replicates where error bars represent the s.e.m.
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validated by reverse transcriptase (reverse transcriptase–PCR).
From the initial panel of 30 Tra2 protein-responsive alternative
exons that we identified, 7/30 were included at 100% and 17/30
had a PSI greater or equal to 95% in MDA-MB-231 cells (Fig. 3a).
These results suggested that Tra2 proteins might be important
for the inclusion of constitutive exons (in addition to their
expected function in alternative exon splicing regulation), or
alternatively that Tra2 protein expression levels in MDA-MB-231

cells are sufficient to promote 100% inclusion of some alternative
exons.

To distinguish between these possibilities, we used our iCLIP
and RNA-seq data to search for splicing changes in exons that
have never previously been annotated as alternatively spliced in
human cells34,35. Such exons were found in the ANKRD1, SMC4,
NFXL2, NIPBL and PDCD6IP genes. Each of these five exons
were spliced at 100% PSI in MDA-MB-231 cells but skipped at
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different levels after Tra2 protein depletion (Fig. 3b). The
constitutively spliced exon within ANKRD1 showed the largest
change (Fig. 3c), a -73% point switch in PSI after joint depletion
of Tra2a and Tra2b. To further dissect splicing control, we cloned
the ANKRD1 exon and its flanking intronic sequences between
b–globin exons in a minigene construct. Transfection
experiments showed the ANKRD1 exon is included at 72% PSI
when expressed from this minigene, indicating it lacks some
important sequences for splicing (the endogenous ANKRD1 exon
was 100% included in these transfected HEK-293 cells, Fig. 3d).
Two clusters of GAA-rich Tra2b binding sites were present in the
ANKRD1 exon (Tra2b binding site clusters 1 and 2). Mutation of
either Tra2b binding site cluster negatively impacted splicing
inclusion, showing an essential role for these binding sites in
modulating the inclusion of the ANKRD1 exon. In particular,
mutation of Tra2b binding site cluster 1 (to create Mutant M1)
completely abolished splicing inclusion of the ANKRD1
constitutive exon (Fig. 3d, right panel).

In total, we identified and validated 53 human splicing targets,
which were both directly bound and jointly controlled by Tra2
proteins, including both alternative and constitutive exons
(Fig. 4a; Supplementary Fig. 10; Supplementary Data 2). As well
as SMN2 exon 7 (ref. 20), these included the NASP-T exon and
the TRA2A poison exon, orthologs of which have both been
previously identified as functional Tra2b splicing targets in the
mouse testis by HITS-CLIP18. The NASP-T exon was also in the
data set of Tra2b targets identified by RIP-seq28. However, the
vast majority of the dual Tra2a/Tra2b target exons identified here
are novel. The PSI changes for individual genes in response to
joint Tra2a and Tra2b protein depletion ranged between � 4 and
� 92% points (measured by RT–PCR, Fig. 4a; Supplementary
Data 2), indicating that individual Tra2-dependent exons have
different intrinsic requirements for Tra2 proteins. The length of
Tra2-dependent exons ranged from 64 nucleotides at the smallest
(a cassette exon in the SMYD2 gene, which showed a � 5% point
switch in PSI in response to Tra2 protein depletion), to 5916
nucleotides at the largest (an unusually large internal cassette
exon in the SON gene, which showed a � 8 point PSI change in
response to endogenous Tra2 protein depletion) (Supplementary
Data 2). A further 38 exons had Tra2b iCLIP tag coverage, but
did not detectably respond to Tra2 protein depletion in MDA-
MB-231 cells: possibly this latter class of exons either might need
a relatively small amount of Tra2 protein to be included, or
alternatively they might not be controlled by Tra2 proteins in
MDA-MB-231 cells (Supplementary Data 2). In a comparison
between Tra2 responsive and non-responsive exons, the only
statistically significant difference was the density of Tra2b
binding sites in the more highly responsive exons (exons
showing 415 PSI change following joint Tra2a/Tra2b
depletion, Fig. 4b). High resolution iCLIP maps of the
individual exons are shown in Supplementary Fig. 10.

Tra2 proteins are highly specific splicing regulators. To establish
the relative role of Tra2 proteins in controlling the identified panel
of target exons, we probed a custom plate containing cDNAs, where
we had systematically knocked down 53 known splicing regulators
in MDA-MB-231 cells5 (Fig. 4c). Strikingly, of all the knockdowns
tested, only double knockdown of Tra2 proteins shifted ANKRD1
splicing (constitutive exon) and joint Tra2 depletion also had the
largest effect on splicing for GLYR1 (alternative exon). An
intermediate situation was observed for SMC4 (constitutive exon)
in which knockdown of SNRP70 (encoding U170K) also reduced
splicing inclusion, as did knockdown of SRPK1. The splicing
inclusion pattern of CHEK1 was strongly shifted (� 78 point PSI
switch) by joint depletion of Tra2 proteins, but consistent with

broader mechanisms of combinatorial control, significant shifts
were also seen after depletion of three core U2 snRNP components,
which are thought to be important for splice site commitment for
all exons. Depletion of other constitutive splicing factors such as
SFRS2, hnRNPK, hnRNPC2, KHSRP and CDC5L also affected
CHEK1 exon 3 splicing.

Since our panel of splicing factor knockdowns was not
exhaustive, we cannot exclude all combinations of combinatorial
control. However, our data are at least consistent with Tra2
proteins being among the most quantitatively important splicing
regulators for their individual target exons.

Tra2 splicing targets associate with chromosome biology. Gene
ontology (GO) enrichment analysis of the 53 human genes con-
taining Tra2-dependent exons revealed an enrichment of five
functionally similar biological processes (Fig. 5a). Eleven of the 53
genes were annotated to one or more of these processes, with ten
of the eleven genes being annotated to the term ‘chromosome
organization’. There was significant overlap in annotation
between this process and annotation to the conceptually related
terms ‘histone modification’ and ‘chromatin modification’
(Fig. 5b).

The BioGRID database36 was used to retrieve a network of
functional interaction data involving genes containing Tra2-
dependent exons. In addition to the eleven genes directly
annotated to the five enriched GO processes in Fig. 5a, a
further 23 of the 53 genes (43.4%) that contain Tra2-dependent
exons also have functional interactions with genes annotated to
these terms (Supplementary Fig. 4, and summarized in Fig. 5c).
Interestingly, although indirectly connected within the network
via these annotated genes, none of the 53 genes containing
validated Tra2-dependent exons directly interact with one
another in the BioGRID database (Supplementary Fig. 4).

Tra2 proteins control splicing of a key checkpoint protein.
Among the Tra2 target exons involved in chromosome biology
was exon 3 of the CHEK1 gene, which encodes the serine/
threonine protein kinase CHK1 that is involved in checkpoint
control in response to DNA damage. iCLIP analysis identified
significant Tra2b binding over CHEK1 exon 3 (Fig. 6a), and we
observed a � 55 point PSI switch for this exon in MDA-MB-231
cells after joint Tra2 protein depletion (Fig. 6b). Joint depletions
of Tra2a and Tra2b proteins also indicate CHEK1 exon 3 splicing
is under similar control in multiple cell types including MCF7,
PC3 and HeLa (Fig. 6b).

Tra2b iCLIP tags mapped throughout CHEK1 exon 3, but were
particularly enriched towards the 30 splice site (Fig. 7a). We
confirmed CHEK1 exon 3 is a direct target for Tra2b binding
in vitro by electrophoretic mobility shift assays (EMSAs) using
radiolabelled RNA probes corresponding to portions of the exon
sequence (Fig. 7b). RNA probe A corresponds to the part of
CHEK1 exon 3 with the most Tra2b iCLIP tags, and also contains
the most predicted binding sites for Tra2b (shaded green in
Fig. 7B, right hand side). RNA probe A was very efficiently shifted
by even the lowest tested concentrations (25 ng) of Tra2b protein.
RNA probe B did not bind Tra2b protein as tightly (around
200 ng Tra2b protein was needed to see a comparable shift) and
also contained fewer Tra2b binding sites and mapped iCLIP tags.
A control RNA probe corresponding to the flanking intron
sequence did not shift even at the highest concentrations of Tra2b
protein (this intron sequence contained no predicted Tra2b
binding sites).

We confirmed that CHEK1 exon 3 is a direct target for Tra2b
splicing regulation using a minigene construct in which CHEK1
exon 3 is flanked by b-globin exons (Fig. 7c). After transfection of
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this minigene into HEK-293 cells, CHEK1 exon 3 was skipped,
but its splicing inclusion was strongly induced in response to
co-transfection with either Tra2b-GFP or Tra2a-GFP. No
CHEK1 exon 3 splicing activation was observed after co-

transfection of either Tra2bDRRM-GFP (lacking the RRM) or
GFP alone. Furthermore, point mutations of the Tra2b binding
sites within the exon (wild-type binding sites shaded green,
mutations shaded red in Fig. 7c right hand side) completely
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Figure 4 | Identification of exons jointly controlled by Tra2a and Tra2b proteins. (a) Scatterplot showing amplitude of splicing response of 53 exons

to joint depletion of endogenous Tra2a and Tra2b in MDA-MB-231 cells. The genes corresponding to the highest amplitude PSI changes after joint

Tra2 protein depletion are labelled and highlighted in red. (b) Analysis of Tra2b binding site density (measured as a percentage of exon content) within

groups of Tra2b target exons identified by iCLIP. Tra2b binding site density comparisons are shown between the Tra2a and Tra2b poison exons; all exons

that showed a greater than 15% point PSI change following joint Tra2a and Tra2b depletion; and in the exons that bound Tra2b based on iCLIP tag coverage

but did not respond to Tra2a and Tra2b depletion. Probability (P) values were calculated using an independent two-sample t-test (statistical significance:

*Po0.05, **Po0.01, ***Po0.0001). (c) Regulation of ANKRD1, SMC4, GLYR1 and CHEK1 splice variants following knockdown of a panel of RNA binding

proteins (RBPs) in MDA-MB-231 cells5. The y axis shows PSI change after joint Tra2a and Tra2b depletion, with a negative number indicating splicing

repression in the absence of these proteins.
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abolished splicing activation in response to coexpressed Tra2
proteins.

Tra2 proteins are required for CHK1 protein expression. We
carried out further experiments to test if Tra2 proteins are also
required for expression of full-length CHK1 protein. On western
blots, we could detect expression of a single major protein CHK1
isoform in MDA-MB-231 cells, corresponding to the expected
size of full-length CHK1 protein (54 kDa). This band was sub-
stantially reduced following treatment with an siRNA directed
against CHEK1 mRNA (Fig. 8a). Consistent with joint control of
CHEK1 expression by Tra2a and Tra2b, levels of full-length
CHK1 protein were also substantially reduced after joint

depletion of Tra2a and Tra2b. Expression of full-length CHK1
protein was also reduced after joint Tra2a and Tra2b protein
depletion in MCF7, PC3 and to a lesser extent HeLa cells
(Supplementary Fig. 7a).

A shorter isoform of the CHK1 protein (termed CHK1-S) has
previously been reported to be translated from an alternative
downstream translational initiation site in exon 3-skipped
CHEK1 mRNA37. In our experiments, although depletion of
Tra2 proteins switched splicing of CHEK1 exon 3, they did not
lead to an observable increase in any shorter isoform of the CHK1
protein. We detected much lower expression levels of possible
shorter CHK1 protein isoforms on western blots compared with
full-length CHK1 protein (the B43 KDa protein that would
correspond in size to CHK1-S could only be seen on long
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mapped iCLIP tags (purple bars) and the three subregions of the pre-mRNA, which were used to generate RNA probes for EMSAs. This screenshot was

downloaded from the UCSC genome browser35. (b) Molecular interactions between purified Tra2b protein and RNA probes in and around CHEK1 exon 3

(the location of these probes is shown in part a). The sequences of the probes are shown to the right, with predicted Tra2b binding sites shaded green.

(c) Splicing patterns of mRNAs made from a minigene containing CHEK1 exon 3 in response to coexpressed fusion proteins, expressed either as a PSI

(upper bar chart, n¼ 3 independent experiments) or shown as one of the original capillary electrophoresis gel-like images from a single experiment

(lower image). The sequence of CHEK1 exon 3 is shown to the right, with the predicted Tra2b binding sites shaded green (above) and the altered sequence

after these sites were mutated (below, the altered nucleotides are shaded red). Probability (P) values were calculated using an independent two-sample

t-test between PSI levels of the minigene-derived CHEK1 exon 3 in cells cotransfected with GFP and each of the different Tra2 constructs (statistical

significance: *Po0.05, **Po0.01, ***Po0.0001). All data represented by bar charts was generated from three biological replicates and error bars

represent s.e.m.
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Figure 8 | Human Tra2 proteins are essential for expression of full-length CHK1 protein and to maintain cell viability. (a) Full-length CHK1 protein

expression is depleted by siRNAs specific to CHEK1 mRNA and also by joint siRNAs specific to the TRA2A and TRA2B mRNAs. In each case, samples from three

independent replicate experiments were analysed in parallel. Also detected in these samples are levels of gH2AX and a-tubulin. (b) Expression of total H2AX

and gH2AX after joint Tra2a and Tra2b depletion, or depletion with a control siRNA in MDA-MB-231 cells and MCF7 cells. (c) Measurement of cell density

120 h after transfection of siRNAs targeting different regions of the TRA2A and TRA2B mRNAs or CHEK1 mRNA. (d) Joint (but not single) depletion of Tra2a and

Tra2b proteins reduced MDA-MB-231 cell viability measured by MTT assays after siRNA transfection. (e) Depletion of CHK1 protein alone was sufficient to

reduce viability of MDA-MB-231 cells measured by MTT assay at different time points after siRNA transfection. (f) Joint depletion of Tra2a and Tra2b reduced

the proportion of EdU-positive MDA-MB-231 cells 96 h after siRNA transfection. Separate panels, shown clockwise from top left, show fluorescence-activated

cell sorting analysis of control MDA-MB-231 cells incubated without EdU; cells transfected with a negative control siRNA and incubated with EdU; cells

transfected with siRNAs specific for TRA2A and TRA2B and incubated with EdU; and cells transfected with a single siRNA specific to CHEK1 and incubated with

EdU. Probability (P) values were calculated using an independent two-sample t-test comparing the percentage of EdU-positive cells of negative control siRNA-

treated cells and the gene-specific siRNA-treated cells (statistical significance: *Po0.05, **Po0.01, ***Po0.0001). Data were generated from three biological

replicates. (g) Examples of abnormal nuclear morphology observed within cells transfected with siRNAs specific for TRA2A and TRA2B (lower panel) compared

with the normal morphology seen in negative control siRNA-treated cells (upper panel). Cells were stained with 4’,6-diamidino-2-phenylindole, and these

images were taken 96 h after siRNA transfection. The scale bar shows 5mM. Uncropped western blots are shown in Supplementary Figs 11–15.
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exposure, and decreased on siRNA treatment,Supplementary
Fig. 7b). CHK1-S protein is reported to be regulated over the cell
cycle and in tumours37. To test for cell cycle regulated splicing
inclusion of CHEK1 exon 3, we prepared RNAs from KG1 cell
populations enriched in different cell cycle stages prepared using
elutriation (Supplementary Fig. 5). When analysed by RT–PCR,
very similar patterns of CHEK1 exon 3 splicing inclusion were
observed in each of the cell populations even though they contain
different cell cycle profiles. We could detect high levels of both
CHEK1 splice isoforms in RNA purified from a small panel of
breast cancer tissues, although we did not see an enrichment of
either isoform in any particular tumour type at the RNA level
(Supplementary Fig. 6). Overall, the above data are most
consistent with Tra2a and Tra2b activity being essential for
expression of full-length CHK1 protein rather than inducing
expression of a shorter protein isoform of CHK1.

Tra2 protein depletion affects DNA damage and cell viability.
Although it is not as a direct target of CHK1 phosphorylation,
gH2AX has been used as a marker for the replication stress that
can be induced by depleted CHK1 levels38,39. Similar to previous
observations38, we observed greatly increased levels of the DNA
damage marker gH2AX following depletion of CHK1 protein by
siRNA, compared with cells treated with a negative control
siRNA (Fig. 8a). Increased gH2AX levels were also observed after
joint depletion of Tra2a and Tra2b proteins in MDA-MB-231
cells and in MCF7 cells (Fig. 8a,b). The relative increased levels of
gH2AX following CHEK1 or TRA2A/B siRNA treatment appear
proportional to the reduction in full-length CHK1 protein
expression observed by western blot.

Microscopy and MTT assays also indicated reduced cell
viability 120 hours after joint Tra2a and Tra2b depletion
(Fig. 8c,d). In contrast, single depletion of either Tra2a or Tra2b
had negligible effect on cell viability compared with mock
depleted cells. Similar results were obtained using two indepen-
dent sets of siRNAs targeted at different regions of the mRNAs.
This reduction in cell viability from joint removal of Tra2a and
Tra2b, compared with the negligible effects of removing either
protein alone, suggest that Tra2a and Tra2b are functionally
interchangeable for maintaining cell viability in MDA-MB-231
cells, as well as in splicing control.

Depletion of CHK1 also reduced cell viability in MDA-MB-231
cells (Fig. 8e). This suggests that depletion of full-length CHK1
protein would likely be sufficient by itself to contribute to the loss
of cell viability observed after joint Tra2a and Tra2b depletion.
To test if re-introduction of full-length CHK1 protein would be
sufficient to restore viability of joint Tra2a and Tra2b protein-
depleted cells, we made a stable cell line in the FLP-in HEK-293
cell background in which a full-length FLAG-tagged CHK1
protein was expressed under control of a tetracycline promoter.
Similar to the result obtained in MDA-MB-231 cells, joint
depletion of Tra2a and Tra2b reduced cell viability in this stable
HEK-293 cell line. However, although the full-length FLAG-
tagged CHK1 protein was efficiently induced by tetracycline, it
was not sufficient to rescue cell viability after joint Tra2 protein
depletion (Supplementary Figs 8 and 9). While we cannot rule out
that the tagged full-length CHK1 protein failed to rescue viability
of this cell line for another reason, this result is consistent with
multiple exons controlled by Tra2 proteins (including CHEK1
exon 3) being important for cell viability.

Finally, we monitored incorporation of the thymidine analogue
EdU using flow cytometry to determine whether joint Tra2
protein depletion affected cell proliferation of MDA-MB-231 cells
(Fig. 8f). After joint Tra2 protein depletion, we observed a
significant reduction in the proportion of EdU-positive cells 96 h

after siRNA transfection (an 8.4% reduction, P¼ 0.02), indicating
fewer cells had initiated DNA replication after joint Tra2 protein
depletion. A slight reduction in the proportion of EdU-positive
cells was observed after single CHK1 protein depletion, but this
was not statistically significant when compared with negative
control siRNA-treated cells. Joint Tra2 protein depletion also
caused an increase in the proportion of cells containing
abnormally shaped nuclei 96 h after siRNA transfection, con-
sistent with major biological defects (Fig. 8g).

Discussion
Here we find that only joint depletion of both Tra2a and Tra2b
proteins (and not single depletion of either protein alone) could
induce substantial splicing switches in endogenous Tra2b target
exons in MDA-MB-231 cells. This joint depletion strategy has
enabled us to derive the most comprehensive map of dual Tra2-
dependent target exons in any organism to date. Among the
jointly regulated exons identified here was a key exon in the
CHEK1 gene, which encodes a protein essential for monitoring
DNA damage and controlling cell cycle progression37,39. Exon 3
of the CHEK1 gene is 224 nucleotides long; hence, skipping of this
exon in the absence of Tra2 proteins would frameshift the reading
frame of the CHEK1 mRNA if a downstream translational
initiation site is not selected37. Joint depletion of both Tra2
proteins quantitatively switched CHEK1 pre-mRNA splicing,
reduced expression of full-length CHK1 protein, and led to an
increase in DNA damage as monitored by accumulation of
gH2AX. We also confirmed SMN2 exon 7 as a joint Tra2a/Tra2b
target exon. Joint control by Tra2a provides an explanation why
SMN2 exon 7 is a target for Tra2b in transfected cells, but not
appreciably affected in Tra2b single knockout mice15.

This strategy also reveals that Tra2 proteins are required for
splicing inclusion of some constitutively spliced exons. To the
best of our knowledge, Tra2 proteins have only previously been
described as alternative splicing factors26. Low levels of apparent
alternative splicing of constitutive exons might be ascribed to
error prone exon recognition by the spliceosome40. However, the
ANKRD1 and SMC4 exons are not annotated as alternatively
spliced in any tissue consistent with them being true constitutive
exons, yet also show high-amplitude splicing changes upon Tra2
protein depletion. A role in constitutive splicing brings the Tra2
proteins closer to the core SR group in described molecular
functions23. Consistent with this newly discovered role, Tra2b
protein is fairly evenly expressed across mouse tissues, so would
be available in most cells for splicing inclusion of constitutive
exons10,18. Although we only detected exons activated by Tra2
proteins in this study, exons have previously been described that
are repressed by Tra2 proteins29,41. Such repressed exons might
have either eluded our search criteria or occur less frequently.

Genes containing Tra2-dependent exons are enriched in
processes associated with chromosome biology. Although GO
annotations are known to be incomplete and can differ in
accuracy42, this pattern of functional enrichment observed in our
data is notably coherent. A potential association between the
Tra2-dependent exons and chromosome biology is additionally
supported by the connectivity of the BioGRID functional
interaction network. In addition to the regulated CHEK1
alternative splice, 6/17 of the strongest Tra2 protein-responsive
exons (showing 440 point PSI change after Tra2 depletion) were
also in genes involved in chromosome structure and epigenetic
regulation, including MSL3 (� 41 point PSI exon switch after
Tra2 depletion). MSL3 is the human ortholog43 of the Drosophila
melanogaster MSL3 gene, which regulates chromatin remodelling
during sex determination, and is under control of Sex Lethal (a
protein just upstream of Tra2 in the Drosophila sex determination
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pathway) in flies. The SMC4 gene (� 66 point PSI exon switch
after Tra2 depletion) encodes a protein important for DNA repair
and chromosome condensation, and also interacts with the CTCF
transcription factor that modifies chromatin structure44. The
ANKRD1 (� 73 point PSI exon switch after Tra2 depletion)
encodes a transcription factor, which is a negative regulator of
cardiac genes45. Also among the genes with highly Tra2 protein-
responsive exons was GLYR1 (� 41 point PSI exon switch after
Tra2 depletion), which is a cofactor for histone demethylation46,
and the zinc-finger protein ZCCHC9 (� 68 point PSI exon switch
after Tra2 depletion), which targets histone mRNAs for
degradation47. ZCCHC7 (� 72 point PSI exon switch after Tra2
depletion) and ZCCHC11 (� 46 point PSI exon switch after Tra2
depletion) encode zinc-finger proteins homologous to ZCCHC9,
but with roles in non-coding RNA metabolism47–49. The
MPHOSPH10 gene (� 42 point PSI exon switch after Tra2
depletion) encodes a protein involved in ribosomal RNA
processing in interphase, and is associated with chromosomes
during mitosis50. Other genes involved in chromatin modification
that are controlled by Tra2 proteins but did not fit into the most
responsive group include the NASP (NASP-T, � 12 point PSI
exon switch after Tra2 depletion) and ATRX genes (� 23 point
PSI exon switch after Tra2 depletion)18,51. Interestingly, the two
known Drosophila Tra2 splicing targets Doublesex and Fruitless
are both transcription factors12, and one of the major functions of
the Drosophila sex determination pathway is dosage
compensation via chromatin modification. Our data lend
further support to the association of particular splicing
regulators with the regulation of coherent cellular functions,
also described for NOVA, RBFox2, PTB and T-STAR4–7.

Our data indicate a high degree of functional redundancy
between Tra2a and Tra2b, and a powerful homeostatic repressive
feedback activity of Tra2b over Tra2a that buffers splicing
changes when just one of these proteins is missing. Although
splicing defects after single Tra2a and Tra2b depletion were
small, they were often individually statistically significant (for
example, in the ATRX gene). Such fine tuning of splicing profiles
by joint Tra2 protein concentration by splicing feedback control
might be important in whole organisms and at particular points
of development (for example, in brain or testis development).
Even individually, small splicing defects over many Tra2b-target
exons might cumulatively cause physiological defects. This might
explain why Tra2b-null mice are embryonic lethal despite
containing a Tra2a gene15,17,18. Similar asymmetric expression
patterns, in which a dominantly expressed splicing factor cross-
regulates other family member proteins, have been found in the
PTB family, where PTBP1 cross-regulates PTBP2 and PTBP3
(ref. 53). Comprehensive identification of PTBP1 targets similarly
required joint depletion of PTBP1 and PTBP2 (ref. 53) Future
studies of Tra2b-regulated splicing may also benefit by
considering expression levels of both Tra2 proteins, rather than
in the context of Tra2b expression alone.

Joint depletion of both Tra2 protein levels reduced cell viability
in MDA-MB-231 cells, likely at least in part because of the
requirement for productive splicing of the CHEK1 mRNA. CHK1
protein expression is critical to reduce replication stress in cancer
cells undergoing rapid proliferation driven by oncogenes includ-
ing RAS and MYC54,55. Our data thus suggest the Tra2 proteins
may represent novel targets to inhibit cancer cell growth.

Methods
Cell culture. MDA-MB-231 cells and MCF7 cells were maintained in DMEM (no
phenol red) plus 10% fetal bovine serum and 1% Penicillin Streptomycin.
HEK-293, HeLa and PC3 cells were maintained in DMEM plus 10% fetal bovine
serum. Cells lines were originally purchased from the American Type Culture
Collection and LGC Standards, Europe.

iCLIP. Triplicate iCLIP experiments were performed following the iCLIP proto-
col33. Briefly, MDA-MB-231 cells were irradiated with 400 mJ cm� 2 ultraviolet-C
light on ice, lysed and subject to partial RNase digestion. The crosslinked
Tra2b-RNA complexes were then immunoprecipitated using Protein A Dynabeads
(Invitrogen) and a rabbit polyclonal anti-Tra2b antibody (Abcam, ab31353). cDNA
libraries were prepared according to the published iCLIP protocol. High
throughput sequencing of cDNA libraries was performed using an Illumina GAIIx.

RNA-seq. RNA was extracted from cells using RNeasy Plus Mini Kit (Qiagen)
following manufacturer’s instructions and re-suspended in nuclease-free water. All
RNA samples were DNase treated using DNA-free kit (Invitrogen) and stored at
� 80 �C prior to RNA quality control check using 2100 Agilent Bioanalyser and
mRNA library prep using TruSeq mRNA library kit (Illumina). Pair-end sequen-
cing was done in total for six samples (three biological replicates of negative control
siRNA-treated cells and three biological replicates from TRA2A and TRA2B
siRNA-treated cells) using an Illumina HiSeq 2000.

Bioinformatics (iCLIP and RNA-seq analysis). iCLIP data analysis, crosslink site
identification and quantification, randomization of iCLIP positions and pentamer
enrichment analysis were performed according to published procedures33. Briefly,
we used the human genome annotation version hg19, and gene annotations from
Ensembl 59. Experiment barcode and random barcodes were registered and
removed from iCLIP reads. After trimming, we ignored reads shorter than 11
nucleotides. Remaining trimmed reads were then mapped using Bowtie56, allowing
two mismatches and accepting only reads with single hits. Crosslink sites were
initially identified as the first nucleotide upstream of the iCLIP tag, and then
filtered to determine statistically significant crosslink sites and those which
occurred in clusters within 15 nucleotides windows and with a significant iCLIP tag
count, compared with randomized positions, as described in Konig et al.56. For
RNA-seq analysis, the base quality of raw sequencing reads were checked with
FastQC (ref. 57) and refined with Seqtk (ref. 58) and Trim-galore (ref. 59). Reads
were mapped to the hg19 reference with Tophat2 (ref. 60) and matches analyzed
with Bedtools (ref. 61). Differentially expressed genes and exon usage were
determined with DESeq (ref. 62) and DEXSeq (ref. 63) respecitvely.

siRNA transfection. Efficient knockdown of endogenous Tra2a, Tra2b and CHK1
proteins were achieved by transfecting cells with Silencer Select Pre-designed
siRNAs (Ambion), targeting TRA2A mRNA (Ambion IDs: s26664 and s26665),
TRA2B mRNA (Ambion IDs: s12749 and s12751) or CHEK1 mRNA (Ambion ID:
s503) respectively, with siPORT NeoFX Transfection Agent (Ambion). Control
cells were transfected with a negative control siRNA (Ambion Cat#: 4390843).
MDA-MB-231 cells grown in 100 mm tissue culture dishes were transfected with
either 24ml of 10 mM negative control siRNA (control), 12 ml of 10mM siRNA
targeting TRA2A, TRA2B or CHEK1 (single Tra2a, Tra2b or CHK1 knockdown) or
12 ml of 10 mM siRNA targeting TRA2A and 12ml of 10mM siRNA targeting TRA2B
(joint Tra2a and Tra2b knockdown). Cells were incubated for 72 h post siRNA
transfection, before RNA extraction or western blotting.

Splicing assays: RNA extraction, RT–PCR and PCR. RNA was extracted using
standard Trizol RNA extraction. cDNA was synthesized from 500 ng total RNA in
a 10ml reaction, using Superscript VILO cDNA synthesis kit (Invitrogen) following
manufacturer’s instructions. Splicing profiles were monitored by PCR using
primers in flanking exons. For each PCR, 1 ml diluted cDNA (1/8) was used as
template in a 10ml PCR reaction using Phusion High-Fidelity PCR Kit (NEB, UK)
following manufacturer’s instructions. Splicing profiles were monitored and
quantified using the Qiaxcel capillary electrophoresis system (Qiagen) and PSI was
calculated as described previously18. All primers used for splicing assays are
provided in Supplementary Data 3.

Quantitative PCR. Relative gene expression was determined by quantitative real-
time PCR using the SYBR Green PCR Master Mix kit (Applied Biosystems) and an
Applied Biosystems 7900HT Fast Real-Time PCR Machine. cDNA was generated
from equal quantities of total RNA for each sample using Superscript VILO cDNA
synthesis kit (Invitrogen) following manufacturer’s instructions. Gene expression
was calculated relative to three housekeeping genes ACTB, GAPDH and TUBB. Ct

values for each sample were calculated using SDS 2.4 software (Applied Biosys-
tems) and relative mRNA expression was calculated using the 2�DDCt method.

Calculation of Tra2b binding site density. Tra2b binding site density was cal-
culated as the percentage of nucleotides within an exon that correspond to the top
10 kmers identified from the Tra2b iCLIP experiments (Supplementary Fig. 2b).

Detection of proteins using western blotting. Endogenous proteins were
detected by western blot analysis using the following primary antibodies and
dilutions: Tra2a (Novus Biologicals, H00029896-B01P;1:500 dilution), Tra2b
(Abcam, ab31353;1:2,000 dilution), CHEK1 (Proteintech, 10362-1-AP;1:250
dilution), Histone H2AX (Santa Cruz Biotechnology, sc54-606;1:500 dilution),
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gH2AX (Ser 139) (Santa Cruz Biotechnology, sc-101696;1:500 dilution), FLAG
(Sigma-Aldrich, F3040;1:2,000 dilution), b-Actin (Sigma-Aldrich, A5441,1:2,000
dilution) and a-Tubulin (Sigma-Aldrich, T5168;1:2,000 dilution).

ANKRD1 and CHEK1 minigene construction and mutagenesis. The ANKRD1
constitutive exon and B200 nucleotides of flanking intronic region was amplified
from human genomic DNA using the cloning primers ANKRD1 F (50-AAAA
AAAAAGAATTCAAAATCTAAGACTTGCTTATGGCATT-30) and ANKRD1 R
(50AAAAAAAAAGAATTCAGCATGAGAGTTACCGTGAGC-30). The PCR
products were digested with BamH1 restriction enzyme and cloned into the pXJ41
vector64 using the Mfe1 site midway through the 757 nucleotide rabbit b-globin
intron 2. Tra2b binding site mutations were made using site directed mutagenesis
with the following primers; ANKRD1 M1F (50- AGAACACATATCAAAGCTT
GCACATTTATACGACCTTGAAA-30), ANKRD1 M1R (50-CAAGGTCGTATAA
ATGTGCAAGCTTTGATATGTGTTCTAG-30), ANKRD1 M2F (50-ATCATT
CAACTGCAGCAACGGCAACAATACAGGCACACTAAAG-30) and ANKRD1
M2R (50-GAACTTTAGTGTGCCTGTATTGTTGCCGTTGCTGCAGTTGAA
TG-30). The CHEK1 alternative exon and approximately 250 nucleotides of
flanking intronic region was synthesised in vitro and similarly cloned into the
pXJ41 vector. A mutated version that disrupted Tra2b binding sites was also
synthesised (sequence provided in Fig. 7c) and cloned into the pXJ41 vector.
Analysis of splicing patterns of mRNAs transcribed from minigenes was carried
out in HEK-293 cells as previously described18,24, using primers within the
b-globin exons of pXJ41; PXJRTF (50-GCTCCGGATCGATCCTGAGAACT-30)
and PXJB (50-GCTGCAATAAACAAGTTCTGCT-30).

EMSAs. Gel shift experiments18,65 were performed using full-length Tra2b protein
and in vitro-translated RNA probes made from constructs containing amplified
regions of the human CHEK1 gene, cloned into the pBluescript vector. Three
regions of the human CHEK1 gene were amplified using the following primers:
CHEK1 intronic F (50-AAAAAAAAAGGTACCTGTGTACCTCTCCTTCACTA
CC-30), CHEK1 intronic R (50-AAAAAAAAAGAATTCCTGTCCTAAGCTCCT
ATGGGG-30), CHEK1 exon region A F (50-AAAAAAAAAGGTACCgttcaacttgc
tgtgaatagagt-30), CHEK1 exon region A R (50-AAAAAAAAAGAATTCggcacg
CTTCAtatctacaATCT-30), CHEK1 exon region B F (50-AAAAAAAAAGGTACC
agtaaaattctatggtcacagga-30) and CHEK1 exon region B R (50-AAAAAAAAAGAA
TTCctccactacagtactccagaaat-30).

GO and functional network analysis. GO66 enrichment analysis was carried out
using the Bioconductor GOstats package version 2.24.0refs 67, 68. Enrichments of
GO biological process terms were calculated using the conditional hypergeometric
test with a significance cut-off of 0.001 and using a background of genes that are
normally expressed in MDA-MB-231 cells. Annotations were taken from the
Bioconductor Homo sapiens annotation package org.Hs.eg.db version 2.8.0ref. 69.
The analysis was run in the open source statistical package R version 3.0.1ref. 70.

Interaction data for Homo sapiens was retrieved from the BioGRID database
(version 110). These data were integrated into a network in which nodes
represented genes or gene products, and edges represented any type of BioGRID
interaction between the nodes. The network was visualised using the Cytoscape
visualization platform71, and was coloured based on annotations to top five enriched
GO biological processes (as downloaded from QuickGO71). Where a protein was
annotated to more than one term, the most specific annotation was chosen.

MTT assay. MTT assays were performed using MTT Cell Proliferation Assay Kit
(Cayman Chemical), following manufacturer’s instructions. An siRNA transfection
mix was added to a suspension of B2� 105 MDA-MB-231 cells in 10 ml media.
The siRNA/cell suspension was gently mixed and a 100ml aliquot was added per
well to a 96-well plate. Absorbance from the MTT assay was measured at 24, 48, 72,
96 and 120 h after siRNA transfection/seeding of cells. Relative density of cells was
also compared 120 h after seeding cells by microscopy.

Fluorescence-activated cell sorting analysis of EdU-positive cells. MDA-MB-
231 cells were incubated with 10 mM EdU for 4 h, 96 h after siRNA transfection.
Cell fixation, permeabilization and EdU detection was performed using the
Click-iT EdU Flow Cytometry Assay Kit (Life Technologies) following the man-
ufacturer’s instructions. Data were collected and analysed using a BD LSR II flow
cytometer using 488 nm excitation and a 520/20 band-pass for detection of EdU
Alexa Fluor488 azide and 355 nm excitation and a 450/50 band-pass for detection
of 4’,6-diamidino-2-phenylindole. Experiments were performed with biological
triplicate samples and 30,000 cells were analysed per sample. A no-EdU control
sample was used to inform our gating strategy to calculate the proportion of EdU-
positive cells.

Analysis of nuclear morphology. To investigate nuclear morphology, cells were
fixed with 4% paraformaldehyde followed by nuclear staining with 4’,6-diamidino-
2-phenylindole, 96 h after siRNA transfection (siRNA transfection as described
above).

Elutriation and cell cycle evaluation. Elutriation: Cells were size fractionated by
centrifugal elutriation, using flow rates of 10, 13, 17, 20, 24 and 28 ml min� 1

(ref. 72). Cell cycle evaluation: Cell cycle phase enrichment of cells was assessed
using immunofluorescence staining for CENPF (late S, G2, G2/M)73 and phospho-
histone H3S10 (G2/M, M)74. Asynchronous and elutriated KG1 cells were
suspended in PBS, spotted onto poly-lysine-coated slides and processed for
immunofluorescence. Images were captured and cells were scored for CENPF and
phospho-H3S10 staining.

Generation of tetracycline-inducible HEK-293 cells. Full-length CHK1-FLAG
cDNA was amplified from the pcDNA4-Chk1-Flag plasmid (Addgene plasmid
#22894) using the primers CHEK1 FLAG F (50-AAAAAAAAAGCGGCCGC
atggcagtgccctttgtggaagac-30) and CHEK1 FLAG R (50-AAAAAAAAAGTCGAC
tcatgtggcaggaagccaaatcttc-30) and cloned into the Flp-In expression vector
(pCDNA5). To generate an inducible cell line, the CHK1-FLAG-pCDNA5 vector
was cotransfected with the Flp recombinase plasmid (pOG44) into Flp-In HEK-293
cells and selected for using treatment with Hygromycin B. Following Hygromycin
B selection, CHK1-FLAG expression was induced by the addition of tetracycline to
promote expression CHK1-FLAG expression via a tetracycline-inducible promoter.

References
1. Fox-Walsh, K. L. & Hertel, K. J. Splice-site pairing is an intrinsically high

fidelity process. Proc. Natl Acad. Sci. USA 106, 1766–1771 (2009).
2. Kelemen, O. et al. Function of alternative splicing. Gene 514, 1–30 (2013).
3. Djebali, S. et al. Landscape of transcription in human cells. Nature 489,

101–108 (2012).
4. Ehrmann, I. et al. The tissue-specific RNA binding protein T-STAR controls

regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet
9, e1003474 (2013).

5. Venables, J. P. et al. RBFOX2 is an important regulator of mesenchymal
tissue-specific splicing in both normal and cancer tissues. Mol. Cell Biol. 33,
396–405 (2013).

6. Ule, J. et al. Nova regulates brain-specific splicing to shape the synapse. Nat.
Genet. 37, 844–852 (2005).

7. Zhang, C. et al. Defining the regulatory network of the tissue-specific splicing
factors Fox-1 and Fox-2. Genes Dev. 22, 2550–2563 (2008).

8. Llorian, M. et al. Position-dependent alternative splicing activity revealed by
global profiling of alternative splicing events regulated by PTB. Nat. Struct. Mol.
Biol. 17, 1114–1123 (2010).

9. Tsuda, K. et al. Structural basis for the dual RNA-recognition modes of human
Tra2-beta RRM. Nucleic Acids Res. 39, 1538–1553 (2011).

10. Elliott, D.J., Best, A., Dalgliesh, C., Ehrmann, I. & Grellscheid, S. How does
Tra2beta protein regulate tissue-specific RNA splicing? Biochem Soc Trans 40,
784–8 (2012).

11. Baker, B. S. Sex in flies: the splice of life. Nature 340, 521–524 (1989).
12. Forch, P. & Valcarcel, J. Splicing regulation in Drosophila sex determination.

Prog. Mol. Subcell. Biol. 31, 127–151 (2003).
13. Dauwalder, B., Amaya-Manzanares, F. & Mattox, W. A human homologue

of the Drosophila sex determination factor transformer-2 has conserved
splicing regulatory functions. Proc. Natl Acad. Sci. USA 93, 9004–9009
(1996).

14. Beil, B., Screaton, G. & Stamm, S. Molecular cloning of htra2-beta-1 and
htra2-beta-2, two human homologs of tra-2 generated by alternative splicing.
DNA Cell Biol. 16, 679–690 (1997).

15. Mende, Y. et al. Deficiency of the splicing factor Sfrs10 results in early
embryonic lethality in mice and has no impact on full-length SMN/Smn
splicing. Hum. Mol. Genet. 19, 2154–2167 (2010).

16. Roberts, J. M. et al. Splicing factor TRA2B is required for neural progenitor
survival. J. Comp. Neurol. 522, 372–392 (2014).

17. Storbeck, M. et al. Neuronal-specific deficiency of the splicing factor tra2b
causes apoptosis in neurogenic areas of the developing mouse brain. PLoS ONE
9, e89020 (2014).

18. Grellscheid, S. et al. Identification of evolutionarily conserved exons as
regulated targets for the splicing activator tra2beta in development. PLoS Genet.
7, e1002390 (2011).

19. Best, A. et al. Expression of Tra2 beta in cancer cells as a potential contributory
factor to neoplasia and metastasis. Int. J. Cell Biol. 2013, 843781 (2013).

20. Hofmann, Y., Lorson, C. L., Stamm, S., Androphy, E. J. & Wirth, B. Htra2-beta
1 stimulates an exonic splicing enhancer and can restore full-length SMN
expression to survival motor neuron 2 (SMN2). Proc. Natl Acad. Sci. USA 97,
9618–9623 (2000).

21. Glatz, D. C. et al. The alternative splicing of tau exon 10 and its regulatory
proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease.
J. Neurochem. 96, 635–644 (2006).

22. Long, J. C. & Caceres, J. F. The SR protein family of splicing factors: master
regulators of gene expression. Biochem J 417, 15–27 (2009).

23. Zhou, Z. & Fu, X. D. Regulation of splicing by SR proteins and SR
protein-specific kinases. Chromosoma 122, 191–207 (2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5760 ARTICLE

NATURE COMMUNICATIONS | 5:4760 | DOI: 10.1038/ncomms5760 | www.nature.com/naturecommunications 13

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


24. Venables, J. P. et al. Up-regulation of the ubiquitous alternative splicing factor
Tra2beta causes inclusion of a germ cell-specific exon. Hum. Mol. Genet. 14,
2289–2303 (2005).

25. Busch, A. & Hertel, K. J. Evolution of SR protein and hnRNP splicing
regulatory factors. Wiley Interdiscip. Rev. RNA 3, 1–12 (2012).

26. Tacke, R., Tohyama, M., Ogawa, S. & Manley, J. L. Human Tra2 proteins are
sequence-specific activators of pre-mRNA splicing. Cell 93, 139–148 (1998).

27. Clery, A. et al. Molecular basis of purine-rich RNA recognition by the human
SR-like protein Tra2-beta1. Nat. Struct. Mol. Biol. 18, 443–450 (2011).

28. Uren, P. J. et al. Site identification in high-throughput RNA-protein interaction
data. Bioinformatics 28, 3013–3020 (2012).

29. Anderson, E. S. et al. The cardiotonic steroid digitoxin regulates alternative
splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA 18,
1041–1049 (2012).

30. Lareau, L. F., Inada, M., Green, R. E., Wengrod, J. C. & Brenner, S. E.
Unproductive splicing of SR genes associated with highly conserved and
ultraconserved DNA elements. Nature 446, 926–929 (2007).

31. Stoilov, P., Daoud, R., Nayler, O. & Stamm, S. Human tra2-beta1 autoregulates
its protein concentration by influencing alternative splicing of its pre-mRNA.
Hum. Mol. Genet. 13, 509–524 (2004).

32. Saltzman, A.L., Pan, Q. & Blencowe, B. J. Regulation of alternative splicing by
the core spliceosomal machinery. Genes Dev 25, 373–84 (2011).

33. Konig, J. et al. iCLIP--transcriptome-wide mapping of protein-RNA
interactions with individual nucleotide resolution. J. Vis. Exp. 50: pii 2638 (2011).

34. Dreszer, T. R. et al. The UCSC Genome Browser database: extensions and
updates 2011. Nucleic Acids Res. 40, D918–D923 (2012).

35. Meyer, L. R. et al. The UCSC Genome Browser database: extensions and
updates 2013. Nucleic Acids Res. 41, D64–D69 (2013).

36. Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic
Acids Res. 34, D535–D539 (2006).

37. Pabla, N., Bhatt, K. & Dong, Z. Checkpoint kinase 1 (Chk1)-short is a splice
variant and endogenous inhibitor of Chk1 that regulates cell cycle and DNA
damage checkpoints. Proc. Natl Acad. Sci. USA 109, 197–202 (2012).

38. Gagou, M. E., Zuazua-Villar, P. & Meuth, M. Enhanced H2AX
phosphorylation, DNA replication fork arrest, and cell death in the absence of
Chk1. Mol. Biol. Cell 21, 739–752 (2010).

39. Syljuasen, R. G. et al. Inhibition of human Chk1 causes increased initiation of
DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol.
Cell Biol. 25, 3553–3562 (2005).

40. Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids
Res. 37, 4873–4886 (2009).

41. Chandler, D. S., Qi, J. L. & Mattox, W. Direct repression of splicing by
transformer-2. Mol. Cell Biol. 23, 5174–5185 (2003).

42. Skunca, N., Altenhoff, A. & Dessimoz, C. Quality of computationally inferred
gene ontology annotations. PLoS Comput. Biol. 8, e1002533 (2012).

43. Smith, E.R. et al. A human protein complex homologous to the Drosophila
MSL complex is responsible for the majority of histone H4 acetylation at lysine
16. Mol Cell Biol 25, 9175–88 (2005).

44. Huang, K. et al. Ribosomal RNA gene transcription mediated by the master
genome regulator protein CCCTC-binding factor (CTCF) is negatively
regulated by the condensin complex. J Biol Chem 288, 26067–77 (2013).

45. Zolk, O. et al. Cardiac ankyrin repeat protein, a negative regulator of cardiac
gene expression, is augmented in human heart failure. Biochem Biophys Res
Commun 293, 1377–1382 (2002).

46. Fang, R. et al. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural
and molecular model for regulation of H3K4 demethylation. Mol. Cell 49,
558–570 (2013).

47. Schmidt, M. J., West, S. & Norbury, C. J. The human cytoplasmic RNA
terminal U-transferase ZCCHC11 targets histone mRNAs for degradation.
RNA 17, 39–44 (2011).

48. Fasken, M. B. et al. Air1 zinc knuckles 4 and 5 and a conserved IWRXY motif
are critical for the function and integrity of the Trf4/5-Air1/2-Mtr4
polyadenylation (TRAMP) RNA quality control complex. J. Biol. Chem. 286,
37429–37445 (2011).

49. Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11
to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol.
Biol. 16, 1021–1025 (2009).

50. Westendorf, J.M. et al. M phase phosphoprotein 10 is a human U3 small
nucleolar ribonucleoprotein component. Mol Biol Cell 9, 437–49 (1998).

51. Eustermann, S. et al. Combinatorial readout of histone H3 modifications
specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18,
777–782 (2011).

52. Ule, J. et al. An RNA map predicting Nova-dependent splicing regulation.
Nature 444, 580–586 (2006).

53. Spellman, R., Llorian, M. & Smith, C. W. Crossregulation and functional
redundancy between the splicing regulator PTB and its paralogs nPTB and
ROD1. Mol. Cell 27, 420–434 (2007).

54. Bartek, J., Mistrik, M. & Bartkova, J. Thresholds of replication stress signaling
in cancer development and treatment. Nat. Struct. Mol. Biol. 19, 5–7 (2012).

55. Murga, M. et al. Exploiting oncogene-induced replicative stress for the selective
killing of Myc-driven tumors. Nat. Struct. Mol. Biol. 18, 1331–1335 (2011).

56. Konig, J. et al. iCLIP reveals the function of hnRNP particles in splicing at
individual nucleotide resolution. Nat Struct Mol Biol 17, 909–15 (2010).

57. Andrews, S. FastQC A quality control tool for high throughput sequence data.
Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.

58. Li, H. seqtk. Available at https://github.com/lh3/seqtk.
59. Krueger, F. Trim Galore! Available at http://www.bioinformatics.babraham.

ac.uk/projects/trim_galore/.
60. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of

insertions, deletions and gene fusions. Genome Biology 14, R36 (2013).
61. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics 26, 841–842 (2010).
62. Anders, S. & Huber, W. Differential expression analysis for sequence count

data. Genome Biology 11, R106 (2010).
63. Anders, S. et al. Detecting differential usage of exons from RNA-seq data.

Genome Research 22, 2008–2017 (2012).
64. Bourgeois, C. F., Popielarz, M., Hildwein, G. & Stevenin, J. Identification of a

bidirectional splicing enhancer: differential involvement of SR proteins in 5’ or
3’ splice site activation. Mol. Cell. Biol. 19, 7347–7356 (1999).

65. Grellscheid, S. N. et al. Molecular design of a splicing switch responsive to the
RNA binding protein Tra2beta. Nucleic Acids Res. 39, 8092–8104 (2011).

66. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

67. Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term
association. Bioinformatics 23, 257–258 (2007).

68. Gentleman, R. C. et al. Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

69. Carlson, M. org.Hs.eg.db: Genome wide annotation for Human. R package
version 2.8.0. (2012).

70. Rcoreteam. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria.

71. Shannon, P. et al. Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

72. Ly, T. et al. A proteomic chronology of gene expression through the cell cycle in
human myeloid leukemia cells. Elife 3, e01630 (2014).

73. Liao, H., Winkfein, R. J., Mack, G., Rattner, J. B. & Yen, T. J. CENP-F is a
protein of the nuclear matrix that assembles onto kinetochores at late G2 and is
rapidly degraded after mitosis. J. Cell Biol. 130, 507–518 (1995).

74. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates
primarily within pericentromeric heterochromatin during G2 and spreads in an
ordered fashion coincident with mitotic chromosome condensation.
Chromosoma 106, 348–360 (1997).

Acknowledgements
We thank Professor Jernej Ule and Dr Julian Konig for help with the iCLIP analysis, and
Professor Ian Eperon, Dr Ingrid Ehrmann and Dr Jennifer Munkley for comments on the
manuscript. Andrew Best was a Breast Cancer Campaign funded PhD student. This project
was supported by the Breast Cancer Campaign (Grant 2009NovPhd21), the Wellcome
Trust (Grant numbers WT080368MA and WT089225/Z/09/Z), the BBSRC (grant num-
bers BB/D013917/1 and BB/I006923/1), a Canadian Institute of Health Research grant to
B.C. (MOP93917) and the Leukaemia and Lymphoma Research Specialist Programme
Grant 12031 (to C.A.A. and I.G.C). B.K. was a BHF Professor of Cardiology.

Author contributions
A.B. performed iCLIP, RNA-seq, splicing and cellular analyses, and performed experi-
ments; K.J. performed GO and BioGrid analyses; C.D. performed EMSAs; E.H. helped
with iCLIP experiments; M.K.-K. made stable HEK-293 cell lines; T.C. performed iCLIP
sequence analysis; Y.X. and M.S.K. performed RNA-seq bioinformatic analysis; M.D.
made minigenes; R.H. and B.K. performed iCLIP sequencing; A.W. helped with analysis;
J.P.V., R.K. and B.C. analysed the role of multiple RNA binding proteins for CHEK1,
SMC4, GLYR1 and ANKRD1; I.G.C., K.C.L. and C.A.A. purified and characterized KG1
cell fractions; A.B., A.T.-C. and D.J.E. were involved in study design and data analysis.
A.B. and D.J.E. prepared the manuscript. All authors discussed the results and com-
mented on the manuscript.

Additional information
Accession codes: iCLIP and RNA-seq data available via the Gene Expression Omnibus
(GEO) using GEO accession number GSE59335.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5760

14 NATURE COMMUNICATIONS | 5:4760 | DOI: 10.1038/ncomms5760 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/lh3/seqtk
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications


Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Best, A. et al. Human Tra2 proteins jointly control a CHEK1
splicing switch amongst alternative and constitutive target exons. Nat. Commun. 5:4760
doi: 10.1038/ncomms5760 (2014).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5760 ARTICLE

NATURE COMMUNICATIONS | 5:4760 | DOI: 10.1038/ncomms5760 | www.nature.com/naturecommunications 15

& 2014 Macmillan Publishers Limited. All rights reserved.

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications


1152 Biochemical Society Transactions (2014) Volume 42, part 4

Tra2 protein biology and mechanisms of splicing
control
Andrew Best*, Caroline Dalgliesh*, Mahsa Kheirollahi-Kouhestani*, Marina Danilenko*, Ingrid Ehrmann*,
Alison Tyson-Capper† and David J. Elliott*1

*Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, U.K.

†Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, U.K.

Abstract
Tra2 proteins regulate pre-mRNA splicing in vertebrates and invertebrates, and are involved in important
processes ranging from brain development in mice to sex determination in fruitflies. In structure Tra2
proteins contain two RS domains (domains enriched in arginine and serine residues) flanking a central RRM
(RNA recognition motif). Understanding the mechanisms of how Tra2 proteins work to control splicing is
one of the key requirements to understand their biology. In the present article, we review what is known
about how Tra2 proteins regulate splicing decisions in mammals and fruitflies.

Introduction
Tra2 proteins are nuclear RNA-binding proteins involved in
splicing regulation (Figure 1A). Tra2 proteins are conserved
across the animal kingdom. Invertebrates have a single Tra2
protein copy (of which the fruitfly Tra2 homologue is the best
characterized), whereas vertebrates have two distinct protein
copies called Tra2α and Tra2β. Hence a gene duplication
probably took place early in vertebrate evolution, with
invertebrates retaining one copy and vertebrates obtaining
two copies.

In terms of functions during development, fruitfly Tra2
protein is required for female sex determination, and also has
roles in spermatogenesis [1,2]. Expression of human Tra2α

protein in Tra2-null fruitflies is able to partially rescue female
sex determination and replace the endogenous Tra2 protein
in some but not all regulated splicing events. This shows
substantial functional conservation between invertebrate and
vertebrate Tra2 homologues [3]. In mammals, gene knockout
experiments have shown Tra2β protein is essential for
mouse embryonic development [4]. Ubiquitous knockout
of the Tra2b gene results in disorganized embryos at E7.5
(embryonic day 7.5) that die during early development. Cell-
specific conditional deletion of the Tra2b gene in the nervous
system prevents proper brain development [5–7]. Mice with
a cortex-specific Tra2b knockout (a conditional knockout
driven by Emx-cre in the brain) survive to adulthood, but
have severe brain abnormalities due to death of cortical
neural progenitor cells by apoptosis [6]. Mice with broader
neuronal knockout of the Tra2b gene (a conditional knockout

Key words: alternative splicing, Drosophila, gene expression, RNA recognition motif, RS domain,

Tra2.

Abbreviations: DOA, Darkener of Apricot; ESE, exonic splicing enhancer; hnRNP, heterogeneous

nuclear ribonucleoprotein; ISS, intron splicing silencer; RRM, RNA recognition motif; RS domain,

domain enriched in arginine and serine residues; snRNP, small nuclear ribonucleoprotein.
1To whom correspondence should be addressed (email David.Elliott@ncl.ac.uk).

driven by Nestin-cre) die shortly after birth with severe
abnormalities in the cortex and thalamus [5].

In terms of their physiological functions, mouse Tra2β

protein expression affects the properties of smooth muscle
cells via splicing regulation of a myosin phosphatase
targeting subunit [8], and is also targeted by the cardiotonic
steroid digitonin [9]. Levels of expression of the Drosophila
Tra2 protein are regulated by the DNA topisomerase
inhibitor drug camptothecin [10]. Tra2β protein is both
up-regulated and aberrantly localized in the nuclei of
retinal cells in age-related macular degeneration [11], and
differentially expressed on aging in humans [12]. Tra2β is
also differentially expressed in some cancers (this activity of
Tra2β was recently reviewed [13]), and Tra2β is implicated
in the pathology of other diseases including SMA (spinal
muscular atrophy) [14], Alzheimer’s disease [15] and FTDP-
17 (frontotemporal dementia and parkinsonism linked to
chromosome 17) [16].

Central to understanding the biological actions of Tra2
proteins is how they regulate splicing. In the present article,
we review the biology of these interesting proteins, and
particularly what is known about the mechanisms through
which they regulate splicing decisions.

Tra2 proteins contain N- and C-terminal
domains enriched in serine and arginine
residues
Tra2 proteins belong to a larger family of RS-domain
(domains enriched in serine and arginine residues) containing
proteins. Among these proteins Tra2 proteins have a
distinctive modular structure, including N- and C-terminal
RS-domains called the RS1 and RS2 domains (Figure 1B).
Although there are two RS domains in Tra2 proteins these
likely have somewhat distinct functions. In humans, the RS1
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Figure 1 Tra2 proteins are nuclear RNA-binding proteins

(A) Human Tra2β is found within the general nucleoplasm and also

in nuclear speckles. Here localization of Tra2β (green) is shown in the

nucleus of a human Saos2 cell alongside SC35 (red) and DNA (blue,

stained with DAPI). The yellow signal represents overlap. The general

nucleoplasm (shown by the asterisk) is where active gene expression

takes place. Nuclear speckles (arrowed) are storage sites for splicing

components and sites of post-transcriptional splicing [59]. Scale bar,

5 μm. (B) General structure of Tra2 proteins.

domain is longer than the RS2 domain. The RS1 domain is
essential for splicing control in human cells [17], whereas
RS2 is essential for controlling doublesex (creates male-
and female-specific transcription factors) splicing patterns in
fruitflies [18]. The fruitfly RS1 and RS2 domains also have
different splicing activation activities in experiments where
Tra2–MS2 fusion proteins were targeted to RNA through an
MS2-binding site, again consistent with these RS domains
not being functionally equivalent [19]. There are at least
three nuclear localization signals within the RS1 domain that
mediate nuclear import, and also two targeting sequences
in RS1 that direct Tra2β protein to nuclear speckles once
within the nucleus [20]. However, either one of the RS1
and RS2 domains are sufficient for nuclear import of Tra2β

proteins in human cells [20]. In structure, the Tra2 proteins
are similar to the core group of SR proteins that contain
single RS domains and one or two RRMs (RNA recognition
motifs) [21–23].

The serines in the RS domains of Tra2 proteins are modified
by cycles of protein phosphorylation and dephosphorylation.
Similar to other SR proteins, protein phosphorylation in
the cytoplasm by the kinase SRPK1 is important for the
nuclear import of Tra2 proteins from the cytoplasm.
Some SR proteins including SRSF1 contain extended runs
of serine–arginine repeats, and are very efficiently serine
phosphorylated by the SRPK1 catalytic domain after
attachment to a docking groove in SRPK1 [24]. Although
it has two RS domains, the RS content of these domains are
less in Tra2 proteins compared with some of the core SR
proteins such as SRSF1. This makes Tra2β phosphorylation
by SRPK1 less efficient than for SRSF1, and phosphorylation

of the C-terminal RS domain of Tra2β has been shown to
proceed with different kinetics and without use of the SRPK1
docking groove [24].

Once inside the nucleus phosphorylation of Tra2 proteins
is carried out by a family of LAMMER kinases. A single
LAMMER kinase is found in fruitflies called Darkener
of Apricot (abbreviated DOA) [25]. Phosphorylation of
fruitfly Tra2 protein by DOA relocalizes Tra2 from nuclear
speckles (which are sites of splicing factor storage) into the
nucleoplasm (where active steps of gene expression take place)
[26]. Like Tra2 proteins, the DOA kinase is also essential for
female sex determination in fruitflies. DOA phosphorylation
of Tra2 is needed for splicing regulation of Doublesex exon
4 in females but not for female-specific splicing regulation
of Fruitless mRNA (see below for more details about these
regulated splicing events) indicating that different alternative
events might depend on different phosphorylated serine
residues in Tra2 [26].

Tra2 proteins contain a single central RRM
The RS domains of Tra2 proteins flank a central RRM
which binds to target RNA sequences. Tra2β protein has
a dual mode of RNA binding that enables it to bind to
both CA-rich sequences and GAA-rich RNA sequences
in target RNAs [27–29], and Tra2β regulates pre-mRNAs
containing both kinds of binding sequence (see below).
Tra2β protein–RNA interactions have been dissected at
atomic resolution, and involve numerous hydrogen bonds
and base stacking interactions between the RRM and
GAA repeats [30,31]. The RRM of Tra2β uses a slightly
different mode of binding to enable it to interact with
single-stranded CAA sequences embedded in stem–loop
structures [31].

Transcriptome-wide RNA targets for mouse Tra2β have
been mapped by HITS-CLIP (high-throughput sequencing
of RNA isolated by cross-linking immunoprecipitation)
experiments [17]. The most frequent pentamers recovered
in these experiments were AGAA-rich. The binding data are
consistent with mouse Tra2β protein binding preferentially to
exon sequences, but there were also binding sites identified in
introns and intergenic sequences [17]. Recently Tra2β protein
has also been found to interact with ribonucleoprotein from
L1 retrotransposons, so might be involved in the nuclear
metabolism of these genome parasites [32].

Tra2 proteins as splicing activators
The best characterized function of Tra2 proteins is in
splicing regulation. Tra2 proteins frequently operate as
splicing activators through binding to ESEs (exonic splicing
enhancers). Binding of Tra2 proteins to ESE sequences closely
adjacent to regulated splice sites acts to stabilize the assembly
of the spliceosome, and this in turn enhances the use of these
regulated splice sites (Figure 2) [33]. However, Tra2β binding
to an exon is not sufficient to predict effects on splicing
regulation. Tra2β-binding sites have been found in some
alternative exons that are not under its direct control, and the

C©The Authors Journal compilation C©2014 Biochemical Society
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Figure 2 Models suggesting regulatory interactions of Tra2

proteins with other splicing components that might be important

for exon definition

Most animal pre-mRNAs are initially deciphered by interactions across

exons; this is called exon definition [60,61]. Protein–protein interactions

have been identified between Tra2 and U2AF35 proteins, and these

interactions might stabilize spliceosome assembly on weak 3′ splice

sites that cannot stably bind U2AF35. No direct interactions have been

identified with U1 snRNP components at the 5′ splice site, but Tra2

proteins might interact indirectly with the U1 snRNP components through

interactions with SR proteins like SRSF1 that are themselves bound to

U1 snRNP.

rules governing this are not well understood [17]. Hence it is
important for splicing control elements potentially involving
Tra2 proteins to be functionally validated (e.g., by minigene
experiments with overexpressed Tra2 proteins).

In principle, Tra2 proteins could activate splicing inclusion
by helping binding of spliceosome components at weak 5′

or 3′ splice sites [weak splice sites not fitting the consensus
sequences best recognized by U1 snRNP (small nuclear
ribonucleoprotein) and U2 snRNP respectively] or by
helping to overcome the effect of local splicing silencers. RS
domains are often involved in protein–protein interactions.
Protein–protein interactions have been identified between
Tra2 proteins and the RS domain-containing U2AF35
protein, which is a component of the spliceosome that recruits
U2 snRNP to the branchpoint [34]. This suggests the model
that Tra2 proteins might activate splicing of weak 3′ splice sites
by stabilizing binding of U2AF35 and thereby U2 snRNP
to the branchpoint (Figure 2). Consistent with this model,
Tra2-binding sites taken from the fruitfly doublesex gene can
activate the spliceosome to use a β-globin 3′ splice site that is
weakened by mutation [35].

Splicing activation of 5′ splice sites is likely to involve
other interactions. No direct protein interactions have
been detected between Tra2 proteins and the RS-domain
containing U170K protein at the 5′ splice site [34]. However,
Tra2 proteins interact with members of the core SR protein
family including SRSF1 [34]. This suggests the model that

Tra2 proteins might indirectly activate 5′ splice sites by
stabilizing the associations of SR proteins with exons, with
these SR proteins in turn stabilizing the association of U1
snRNP with RNA (shown in Figure 2).

Tra2 proteins activate cassette exon
inclusion
Cassette exons are the most frequent form of alternative
splicing in human and mouse cells. A key feature of several
Tra2 protein-regulated exons are multiple individual Tra2-
binding sites within the target RNA. A requirement for
multiple binding sites could fit into models of Tra2 protein
function where either (a) multiple Tra2 activator proteins are
needed to stabilize spliceosome assembly (this might be if
the associated splice sites are very weak, or if there are a lot
of associated silencer sequences repressing the exon); or (b)
multiple sites available for binding in a regulated exon might
increase the probability that at least one of these is occupied
at any one time, and so be available to stabilize assembling
spliceosomes [17].

The human testis-specific HIPK3-T exon has a weak 5′

splice site. HIPK3-T contains four ESE sequences activated
by Tra2β, and together these ESEs act as a responsive gauge
to enable activation of the weak 5′ splice site in response to
increased concentrations of Tra2β (Figure 3A) [17]. In the case
of HIPK3-T, removal of a single Tra2β-responsive ESE from
the exon totally blocks splicing activation by Tra2β. This
suggests that the four Tra2β-responsive ESEs are likely to
provide a threshold of enhancer activity needed to counteract
the weak 5′ splice of the HIPK3-T exon [17]. In vitro
gel shift experiments show that Tra2β proteins assemble
large complexes on the HIPKT-T exon. Another Tra2β-
responsive exon that requires multiple Tra2β-responsive
ESEs for splicing inclusion is found in the mouse NASP gene,
where the NASP-T exon contains 37 potential Tra2β-binding
sites [7]. Experimentally, individual Tra2β-binding sites can
be mutated in NASP-T without significantly affecting Tra2-
mediated splicing activation, but mutation of more than one
binding site severely inhibited splicing activation. The NASP-
T exon also assembles large RNA–protein complexes with
Tra2β in vitro. Although NASP-T is a direct RNA target of
Tra2β protein, a version of Tra2β protein lacking the RRM
was able to act as a co-activator in minigene transfection
experiments. This is also consistent with multiple Tra2β

proteins assembling on the NASP-T exon, presumably by
complexing with endogenous Tra2 proteins via its RS1 and
RS2 domains [7].

Tra2β protein forms stable splicing regulator complexes
with other proteins which require all protein components
to be present, including hnRNP (heterogeneous nuclear
ribonucleoprotein) G and SRp30c [36,37]. A single Tra2β-
binding site is found within exon 7 of the SMN2 gene.
Mutation of this exonic Tra2β-binding site, and mutation
of flanking candidate-binding sites for SRp30c and hnRNP
G negatively affect splicing, consistent with each of these
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Figure 3 Model exons regulated by Tra2

(A) Splicing activation of the human HIPK3T exon is activated by 4

Tra2-responsive ESEs. (B) Activation of the female-specific 3′ splice site

in the fruitfly doublesex mRNA is activated by a panel of Tra2-responsive

ESEs. (C) Activation of the female specific 5′ splice site in the fruitfly

fruitless mRNA is activated by an ESE containing a number of Tra2-binding

sites. (D) Splicing retention of the M1 intron in the by Tra2 mRNA is

induced by Tra2 protein binding to an intronic silencing sequence.

proteins working together as a complex to regulate this exon
[30].

Tra2 proteins activate weak 3′ splice sites
One of the most intensively studied splicing targets of Tra2
proteins is the doublesex gene in fruitflies. In fact, Tra2
proteins were first discovered since they play a key role
in sex determination in fruitflies, and they are involved in
sex determination in other insect species as well [38–40]. In
fruitflies alternative splicing choices controlled by Tra2 create
different male and female mRNA isoforms of doublesex
[40]. The male and female doublesex mRNA isoforms are
translated into distinct male and female transcription factors,
which activate different promoters to establish male and
female sexual differentiation. Doublesex exon 4 has a weak

3′ splice site, and is spliced in females only. Doublesex exon 4
is associated with the use of a downstream polyadenylation
site, so that female Doublesex mRNA contains only exons
1–4. In male fruitflies a default pathway is followed in which
doublesex exon 4 is skipped. Male doublesex mRNA thus
contains exons 1–3 spliced to exons 5–6 (Figure 3B).

Tra2 proteins are essential for selection of the weak
alternative 3′ splice site of doublesex exon 4 female fruitflies.
In vitro experiments show Tra2 protein stimulates the very
earliest stages of spliceosome assembly to activate splice site
selection [41].Tra2 proteins bind to doublesex exon 4 through
seven ESEs. Six of these ESEs are CA-rich Tra2-binding site
sequences, and the 7th is a AGAA-rich Tra2-binding site
sequence. Cross-linking experiments have shown that the six
CA-rich repeat sequences each individually bind a trimeric
complex containing Tra2 protein, the SR protein RBP1 and
Tra protein. The purine-rich element binds a trimeric complex
of Tra2, Tra and another SR called protein SRF1 [42,43]. Each
of the three proteins in these trimeric complexes is needed to
stably bind to RNA: if just one of the protein components
is missing then no stable binding takes place. This is the
case in male fruitflies, where the female-specific Tra protein
is missing and so splicing follows the default pathway (the
weak 3′ splice site of doublesex exon 4 is not selected in
males).

The Tra2-dependent ESEs are spread over most of
doublesex exon 4, except within the 300 nucleotides proximal
to the weak 3′ splice site. This 300 nucleotide interval distance
seems to be important for the ESEs to work properly: a 300
nucleotide gap sequence between the ESEs and the weak 3′

splice site is conserved across different species of fruitflies,
and engineered copies of doublesex exon 4 that have CA
repeat sequences inserted into this gap region lead to Tra2-
independent 3′ splice site activation [44]. Tra2 and the other
proteins that assemble on the doublesex ESEs are able to
efficiently activate splicing of the female-specific 3′ splice
site over the distance of the 300-nt gap sequence, whereas
other RS domain-containing proteins are unable to activate
the female-specific splice site [19].

How does Tra2 protein activate splicing of this weak female
3′ splice site in doublesex? An obvious mechanism would be
through stabilization of U2AF binding at the weak 3′ splice
site of doublesex exon 4, but deletion of the RS domain of
U2AF35 did not affect sex determination in fruitflies [45].
Hence the actual mechanism of splicing activation is still
not understood, but might involve a ‘zone of activation’
being created by multiple ESEs bound by Tra2–protein
complexes [19]. Experiments in which the number of CA-
rich repeat sequences were progressively increased from zero
to seven in a doublesex minigene resulted in linear rather than
synergistic increases in the use of the weak 3′ splice site [46].
This led to the conclusion that each individual copy of the
13 nucleotide CA-rich repeats probably interacts separately
with spliceosome complexes at the 3′ splice site. According to
this model, in the wild-type doublesex exon the presence of
seven independent Tra2-binding sites would help ensure that
at least one is occupied at any one time.
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Tra2 proteins can activate alternative 5′
splice sites
One of the best understood examples of alternative 5′

splice site selection by Tra2 proteins also comes from the
fruitfly sex determination pathway, where Tra2 regulates
alternative splicing of the fruitless mRNA (Figure 3C).
The fruitless gene is essential for male and female
development, and encodes different transcription factor
isoforms. In males, the fruitless transcription factor controls
the development of a male-specific muscle called the muscle
of Lawrence, and is essential for normal sexual behaviour
(http://flybase.org/reports/FBgn0004652.html).

Fruitless pre-mRNA is alternatively spliced to produce
both male and female splice mRNA isoforms [47]. The Tra2-
responsive ESE in fruitless is close (within 38 nucleotides) to
the weak female 5′ splice site [47] and contains three copies
of the CA-rich Tra2-binding site, This ESE locally drives
selection of this weaker site when it is bound by Tra and
Tra2. In male fruitflies, a stronger 5′ splice site is used instead
that is 1590 nt upstream. This means when the male 5′ splice
site is used, a much shorter version of the exon is spliced into
the fruitless mRNA [33,48]. This shorter version encodes a
male version of the Fruitless transcription factor from an
ORF initiating at a different male-specific AUG.

Tra2 proteins can function as splicing
repressors: Tra2 proteins autoregulate
their own expression levels through
promoting intron retention in fruitflies
Tra2 proteins can also act as splicing repressors. This function
has been particularly well characterized in the fruitfly Tra2
protein, where increasing concentrations of Tra2 protein lead
to retention of an intron called the M1 intron in the Tra2
mRNA itself. This M1 intron splits the initiation codon at
the start of the ORF that encodes Tra2 protein (Figure 3D).
Increases in Tra2 protein concentration blocks splicing of
this M1 intron. When the M1 intron is retained in the Tra2
mRNA, a downstream AUG initiation codon is used for Tra2,
encoding a shorter Tra2 protein that lacks the N-terminal
RS domain. Retention of the M1 intron in Tra2 mRNAs is
tissue-specific, and detected only in the fruitfly testis. More
than half of Tra2 mRNAs expressed in the Drosophila testis
retain intron M1.

To induce splicing repression Tra2 protein binds to intron
sequences instead of binding within exons. In the M1 intron,
Tra2 protein binds to an ISS (intron splicing silencer) sequence
containing five individual copies of the CA-rich Tra2-binding
site to cause M1 intron retention [49,50]. This ISS is conserved
in different fruitfly species and normally located near the M1
intron branchpoint. This suggests the model that binding of
Tra2 protein causes physical obstruction of the branchpoint
region from the spliceosome (particularly stearic hindrance of
U2 snRNP) and so leads to intron retention. However, this
appealing model does not seem to be the case in reality, since
the ISS can function just as well if it is moved away from

the branchpoint sequence [50]. Binding of Tra2 protein in
the M1 intron blocks splicing at the very earliest stages
of spliceosome assembly [51]. Tra2 protein concentration is
particularly high in fruitfly spermatocytes (these are cells in
the testis which are undergoing meiosis), and the ISS sequence
might be designed to respond to these higher concentrations
of Tra2 protein that only occur in this cell type.

The choice between Tra2 protein functioning as an
activator and as a silencer of splicing is dependent on exon
versus intron binding. The inhibitory effect of the M1 ISS
on splicing depends on an intronic position. This same
M1 ISS sequence can function as an ESE when located
within an exon. Splicing repression however does not depend
on the RS domains of Tra2 protein [51]. Just as Tra2-
interacting proteins are required for splicing activation by
Tra2 proteins, interacting proteins are also important for
splicing repression by Tra2. An RNA-binding protein called
half-pint binds to Tra2 pre-mRNA, and interacts with Tra2
protein to autoregulate the Tra2 expression levels in the testis
through M1 intron retention [52]. Although required for
M1 intron retention, the half-pint protein is not needed
for regulation of Doublesex exon 4 splicing, indicating
that Tra2 protein interacts with specific protein partners to
direct splicing patterns of different target RNAs. Another
RNA-binding protein regulating M1 intron retention is
RBP1, but unlike for doublesex regulation Tra2 and RBP1
bind separately on the M1 intron RNA rather than as a
complex.

Why is autoregulation control of Tra2 protein levels
important in the fruitfly testis? Tra2 is normally expressed at
higher levels in primary spermatocytes than in the rest of the
fruitfly body [53]. However, fruitflies engineered to overex-
press Tra2 proteins have defective spermatogenesis. The M1
intron ISS might have evolved as a Tra2-responsive switch
that is only activated to cause intron retention at the higher
levels of Tra2 protein present in primary spermatocytes,
preventing expression reaching harmful levels. Transiently
increasing Tra2 protein expression in other adult tissues
using a heat-shock-activated promoter leads to M1 intron
retention, and forced ubiquitous expression using a strong
promoter causes embryonic lethality [53]. Hence proper
regulation of Tra2 protein levels are important throughout
the fruitfly body. Although overexpression of Tra2 protein
prevents normal spermatogenesis, normal expression of Tra2
protein is important in the testis and removal of Tra2 also
interferes with spermatogenesis. Fruitflies lacking Tra2
protein are infertile and produce sperm with abnormal-
shaped heads [2]. Alternative splice forms of three other
mRNAs are known to be regulated by Tra2 in the fruitfly
testis. These are exuperantia (encoding a protein involved
in RNA localization and needed for spermatogenesis)
[54,55]; att (encoding a protein possibly involved in
transmembrane transport) [56]; and TAF1 (encoding a
transcription factor) [10,57]. Absence of these Tra2-regulated
splice forms, particularly exuperantia, might lead to the
defects in spermatogenesis observed in fruitflies without Tra2
protein.
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Tra2 protein levels are regulated through
alternative splicing in mammals as well as
fruitflies
The mouse and human genes encoding Tra2α and Tra2β

proteins also control their expression levels, in this case
through splicing control of a poison exon that responds
to Tra2 protein concentration in the cell. When Tra2α or
Tra2β concentrations reach a certain threshold, poison exons
are spliced into the Tra2a and Tra2b mRNAs to introduce
stop codons and block further translation of these mRNAs
[7,58]. As in many other examples of Tra2 protein regulated
splicing, multiple Tra2 protein–RNA binding sites are found
within these regulated poison exons, and these binding sites
are highly conserved in evolution. Together the data from
mice, humans and fruitflies suggest that there is an important
requirement in all animals to tightly control Tra2 protein
expression levels.

Conclusions
Tra2 proteins play important roles in animal development and
physiology. Current research is uncovering their targets and
mechanisms of action.

Funding

This work was supported by the Wellcome Trust [grant number

WT089225/Z/09/Z (to D.J.E.)], the Biotechnology and Biological

Sciences Research Council [grant numbers BB/I006923/1 and

BB/K018957/1 (to D.J.E.)] and the Breast Cancer Campaign (to

D.J.E.).

References
1 Baker, B.S. (1989) Sex in flies: the splice of life. Nature 340, 521–524

CrossRef PubMed
2 Belote, J.M. and Baker, B.S. (1983) The dual functions of a sex

determination gene in Drosophila melanogaster. Dev. Biol. 95,
512–517 CrossRef PubMed

3 Dauwalder, B., Amaya-Manzanares, F. and Mattox, W. (1996) A human
homologue of the Drosophila sex determination factor transformer-2 has
conserved splicing regulatory functions. Proc. Natl. Acad. Sci. U.S.A. 93,
9004–9009 CrossRef PubMed

4 Mende, Y., Jakubik, M., Riessland, M., Schoenen, F., Rossbach, K.,
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The splicing regulator proteins SRSF1 (also known asASF/SF2) and SRSF3 (also known as SRP20) belong to the SR family of proteins
and can be upregulated in cancer. The SRSF1 gene itself is amplified in some cancer cells, and cancer-associated changes in the
expression ofMYC also increase SRSF1 gene expression. Increased concentrations of SRSF1 protein promote prooncogenic splicing
patterns of a number of key regulators of cell growth. Here, we review the evidence that upregulation of the SR-related Tra2𝛽 protein
might have a similar role in cancer cells. The TRA2B gene encoding Tra2𝛽 is amplified in particular tumours including those of the
lung, ovary, cervix, stomach, head, and neck. BothTRA2BRNA andTra2𝛽 protein levels are upregulated in breast, cervical, ovarian,
and colon cancer, and Tra2𝛽 expression is associated with cancer cell survival. The TRA2B gene is a transcriptional target of the
protooncogene ETS-1 which might cause higher levels of expression in some cancer cells which express this transcription factor.
Known Tra2𝛽 splicing targets have important roles in cancer cells, where they affect metastasis, proliferation, and cell survival.
Tra2𝛽 protein is also known to interact directly with the RBMY protein which is implicated in liver cancer.

1. Introduction

Cancer is associated with a number of distinctive disease
hallmarks [1]. These hallmarks include the ability of cancer
cells to continuously divide by maintaining proliferative
signalling pathways and to evade growth suppressors, to
resist cell death; to induce angiogenesis to ensure a supply of
oxygen and nutrition, and to invade other parts of the body
(metastasis). These hallmarks of cancer cells occur against
other changes including decreasing genome stability and
inflammation [1].

Changes in splicing patterns in cancer cells compared to
normal cells can contribute to each of these cancer hallmarks
through effects on the expression patterns of important
protein isoforms which regulate cell behaviour [2–4]. The
splicing alterations which occur in cancer cells are partially
due to changes in the activity and expression of core spliceo-
some components [5] and in the RNA binding proteins
which regulate alternative exon inclusion [6]. Changes in the
splicing environment in cancer cells might have therapeutic

implications. Drugs which target the spliceosome are also
being developed as potential therapies for treating cancer
patients [7].

In this review, we particularly examine the potential
role of the splicing regulator Tra2𝛽 as a modulator of gene
function in cancer cells. Tra2𝛽 is part of a larger protein
family which contains RNA recognition motifs (RRMs)
and extended regions of serine and arginine residues (RS
domains, named following the standard 1 letter amino acid
code for serine and arginine) [8–10]. Core SR proteins include
SRSF1 (previously known as ASF/SF2) and SRSF3 (previously
known as SRP20) (Figure 1). Tra2𝛽 is considered an SR-like
protein rather than a core SR family member because of two
features. Firstly, Tra2𝛽 contains both an N- and C-terminal
RS domains (each of the core members of the SR family has
just a single C-terminal RS domain, with the RRM at the
N-terminus). Secondly, the core group of SR proteins but
not Tra2𝛽 can restore splicing activity to S100 extracts [11].
S100 extracts are made from lysed HeLa cells by high-speed
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Figure 1: Modular structure of the core SR family proteins SRSF1
(also known as ASF/SF2) and SRSF3 (also known as SRp20) and the
SR-like protein Tra2𝛽. The RNA recognition motif (RRM) binds to
target RNAs, and the RS region is responsible for protein-protein
interactions. SRSF1 has a secondRRM, annotated𝜓RRM. SRSF1 and
Tra2𝛽 have a PP1 docking site.

ultracentrifugation to remove nuclei but contain most of the
core spliceosome components necessary for splicing with the
important exception of SR proteins which are insoluble in the
magnesium concentrations used [12]. Addition of any single
SR protein is sufficient to restore splicing activity to these S100
extracts [13].

Tra2𝛽 protein functions as a splicing regulator in the cell
nucleus, where it activates the inclusion of alternative exons
[14, 15]. Tra2𝛽 protein is able to interact with two types of
RNA targets through its RRM. Firstly, themajor RNAbinding
site for Tra2𝛽 is an AGAA-rich sequence [11, 16, 17]. Although
an AGAA RNA sequence works best for Tra2𝛽 protein, an
NGAA sequence is actually sufficient for binding. However,
substituting the first A with either C, G, or T nucleotides in
the NGAA target sequence decreases binding efficiency (the
Kd value increases 2-fold between AGAA and NGAA) [16].
Secondly, the RRM of Tra2𝛽 is able to switch to a second
mode of RNA binding, in which it interacts with single-
stranded CAA-rich sequences within a stem loop structure
[17].

When Tra2𝛽 binds to target RNA sites within an exon, it
activates splicing inclusion of these bound exons into mRNA
[11, 15–17]. Splicing activation by Tra2𝛽 protein is concen-
tration dependent: increased Tra2𝛽 protein concentration
leads to increased levels of target exon splicing inclusion
[14, 15]. The RRMs of Tra2𝛽 and SRSF1 proteins both
contain a docking site for protein phosphatase 1 (PP1), and
dephosphorylation of these proteins by PP1 affects alternative
splicing regulation [18].

Tra2𝛽 protein is encoded by the TRA2B gene (also called
SFRS10) on human chromosome 3. As well as any potential
role in cancer cells, Tra2𝛽 has important roles in normal

development and is essential for normal mouse embry-
onic and brain development (TRA2B knockout mice fail to
develop normally) [15, 19]. TRA2B has a paralog gene called
TRA2A on the long arm of human chromosome 7, and this
paralog encodes Tra2𝛼 protein [20]. Paralogs are additional
copies of a gene derived by duplication. TRA2A derived by
gene duplication from TRA2B early in the vertebrate lineage
and so is found in all vertebrates.

A number of the SR proteins have been found to have
roles in cancer, amongst them, SRSF1 and SRSF3 (Figures 1
and 2). The mechanism of SRSF1 upregulation in cancer cells
has been explained at a mechanistic level, and the effects of
this upregulation in terms of gene expression control have
been mapped onto the pathway of oncogenesis. Here, we
review these important principles for SRSF1 and then apply
these principles to gauge the likely effect of the Tra2𝛽 protein
on cancer-specific gene expression.

2. SRSF1 Is Upregulated in Cancer and Is a
Target for the Prooncogenic Transcription
Factor Myc

SRSF1 upregulation in cancer cells can occur through two
distinctmechanisms. Firstly, the SRSF1 gene itself can become
amplified in cancer. The SRSF1 gene is on a region of
chromosome 17q23which is amplified in some breast cancers,
including in tumours with a poor prognostic outlook and
in the MCF7 breast cancer cell line [21]. Analysis of the
SRSF1 gene on the cBio Cancer Genomics Portal shows
amplification of SRSF1 mainly in breast cancers (Figure 2)
[22, 23]. Secondly, SRSF1 gene transcription is activated by
the prooncogenic transcription factor Myc which is itself
activated in some cancers. Myc upregulation in cancer leads
to downstream increases in both SRSF1 mRNA and SRSF1
protein expression [24].

Protein expression analysis using a highly specific mon-
oclonal antibody showed that a number of tumours have
increased SRSF1 protein compared to normal tissue [21]. As
well as being upregulated in some cancer cells, SRSF1 operates
as a bona fide oncogene. Increased SRSF1 gene expression
can transform rodent fibroblasts in an NIH3T3 assay, and the
resulting transformed cells form tumours in nude mice [21].
Tumour formation by these transformedfibroblasts is directly
dependent on SRSF1 expression, since it is blocked by parallel
shRNA inhibition of SRSF1 [21]. Together, these data suggest
that upregulation of SRSF1 gene expression can be one of the
initial steps in oncogenesis.

Experiments support an important function for SRSF1
protein in breast cancer cells. Mouse COMMA1-Dmammary
epithelial cells form tumours more efficiently in mice after
transduction with SRSF1, and transduction of MF10A cells
with SRSF1 results in increased acinar size and decreased
apoptosis in a 3D culture model [25]. A number of splicing
targets have been identifiedwhich respond to increased levels
of SFRS1 expression in cancer cells (Table 1). These SRSF1-
driven splicing changes produce prooncogenic mRNA splice
isoforms, which encode proteins which decrease apoptosis
and increase cellular survival and proliferation.
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Figure 2:The (a) TRA2B, (b) SRSF1 (also known as ASF/SF2), and (c) SRSF3 (also known as SRP20) genes are amplified or otherwisemutated
in several cancer types. For each of the three genes, data for genetic changes in all cancers were obtained using the cBioPortal database, filtering
for percentage of altered cases (studies using mutation data) [22, 23]. The percentage, of cancer samples which showed genetic alterations in
large cancer studies are shown on the Y axis and the respective type of cancer on the X axis. Full details of this kind of analysis are given on
the cBioPortal website http://www.cbioportal.org/public-portal/index.do.

3. Increased SRSF3 Expression Is Also
Associated with Cancer

Increased expression of the SR protein SRSF3 is also asso-
ciated with cancer. The SRSF3 gene is amplified in some
cancers (Figure 2) [22, 23]. Loss of SRSF3 expression in a
number of cancer cell lines increases apoptosis and decreases
proliferation, and increased expression of SRSF3 leads to
transformation of rodent fibroblasts and enables them to
form tumours in nude mice [26].

Increased SRSF3 expression levels have been associated
with an increased tumour grade in ovarian cancer [27].
Intracellular levels of SRSF3mRNA are important for cancer
cells: siRNA-mediated downregulation of SRSF3 leads to cell
cycle arrest at G1 in colon cancer cells, and their increased
death through apoptosis. The mechanism of increased apop-
tosis in response to higher levels of SRSF3 protein might
include aberrant splicing of the HIPK2 pre-mRNA (which
encodes an important apoptotic regulator related to HIPK3,
which is a known splicing target of Tra2𝛽), such that
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Table 1: Known prooncogenic splicing targets of SFRS1 (previously
known as ASF/SF2).

Splicing
target Possible role in cancer cells Reference

RON Δexon11 splice isoform increases
cell motility and metastasis [21, 25]

BIN
BIN12a splice isoform encodes
protein no longer able to bind Myc
and acts as tumour suppressor

[21, 25]

MNK2

MNK2 13b splice isoform makes
kinase which can phosphorylate
EIF4E independent of MAP kinase
activation

[21, 25]

S6K
Promotes oncogenic isoform of
S6kinase which phosphorylates
small subunit of ribosome

[21, 25]

MCL-1/BCL-
X/CASPASE9

Promotes production of
antiapoptotic mRNAs to result in
cell survival

[63–65]

a proteasome-resistant form of HIPK2 protein is made after
SRSF3 depletion [28].

4. Tra2𝛽 Is Amplified in Particular
Cancers and Is a Target of the Oncogenic
Transcription Factor ETS-1

The TRA2B gene which encodes Tra2𝛽 becomes amplified
in several cancers (Figure 2) and particularly in cancers of
the lung, cervix, head and neck, ovary, stomach, and uterus
[22, 23]. Upregulation of Tra2𝛽 protein expression has also
been observed in several cancers, including breast, cervical
and ovarian [29–31], and colon [32]. Tra2𝛽 upregulation is
associated with invasive breast cancer [30], and medium to
high Tra2𝛽 expression correlates with a poorer prognosis in
cervical cancer compared to patients with lower expression
levels [29].

Tra2𝛽 protein expression has been demonstrated to be
important for cancer cell biology. Downregulation of Tra2𝛽
inhibits cell growth of a gastric cancer cell line, measured
by a corresponding decrease in BrdU incorporation which
monitors cells which have entered S phase [33]. Knockdown
of Tra2𝛽 in colon cancer cells reduced cell viability and
increased the level of apoptosis monitored using a TUNEL
assay and through measurement of levels of cleaved PARP
[32].

As well as TRA2B gene amplification, the expression
levels of the ETS-1 transcription factor provide a possible
mechanism through which Tra2𝛽 might be upregulated in
cancer cells. Regulated transcription of the TRA2B gene in
human colon cells is positively controlled by binding of
the HSF1 and ETS-1 transcription factors to its promoter
proximal region [32].The ETS-1 protein is itself encoded by a
protooncogene. ETS1 expression in metastatic breast cancer
correlates with a poor prognosis [34, 35] and is associated
with an invasive phenotype [36]. Expression of both ETS-1
[35] and Tra2𝛽 [37] might also be under control of estrogen,

which is a key driver of estrogen receptor positive breast
cancer development. Taken together, these observations sug-
gest that the pathological mechanism of Tra2𝛽 upregulation
in cancer cells might result from underlying changes in
transcription factors in cancer cells. Other positive regulators
of cell growth might also stimulate Tra2𝛽 expression, since
expression of Tra2𝛽 is upregulated in response to growth
factors in normal smooth muscle cells [38].

Reactive oxygen species made during inflammation pro-
vide a further potential mechanism for Tra2𝛽 upregulation
in cancer cells. Tra2𝛽 expression is activated in response to
reoxygenation of astrocytes following a period of oxygen
deprivation and by ischaemia in rat brains [39]. Expression of
Tra2𝛽 in smooth muscle cells is similarly induced following
reoxygenation of hypoxic cells [38], and is upregulated in
response to oxidative stress in human colorectal carcinoma
cell line HCT116 [32]. Ischaemia has also been reported
to induce cytoplasmic accumulation of Tra2𝛽 along with
accompanying changes in splice site use [40]. Tra2𝛽 translo-
cates into the cytoplasm in gastric cancer cells in response to
cell stress induced by sodium arsenate [32], and changes in
the nuclear concentration of Tra2𝛽 might have downstream
effects on the splicing inclusion of target exons.

The increased levels of Tra2𝛽 observed in cancer cells
mean that the TRA2B genemust be able to bypass the normal
feedback expression control mechanisms which exist to keep
Tra2𝛽 protein levels under tight control. An important feed-
back control mechanism uses an alternatively spliced “poison
exon” in the TRA2B gene. Poison exons introduce premature
stop codons when they are spliced into mRNAs, preventing
translation of full-length proteins and often targetingmRNAs
for nonsense-mediated decay [41]. Poison exon splicing into
the TRA2B mRNA is activated by binding of Tra2𝛽 itself.
Splicing inclusion of this poison exon acts as a brake on
production of more Tra2𝛽 protein. The predicted outcome
is that increased expression of Tra2𝛽 protein should lead to
increased TRA2B poison exon inclusion and so correspond-
ingly less newly translated Tra2𝛽 protein through a negative
feedback loop [42].

Similarly, the levels of SRSF1 and the other SR proteins
are thought to be normally autoregulated through poison
exon inclusion [43]; so these other SR proteins must similarly
bypass these mechanisms in cancer cells to enable their
higher levels of expression to be established.

5. Tra2𝛽 Protein Regulates Splicing Patterns
Which Are Important to Cancer Cells

Howmight upregulation of Tra2𝛽 affect the biology of cancer
cells? Three Tra2𝛽-target exons have been identified in genes
known to have important roles in cancer cells (Table 2). For
two of these target exons, the actual regulated isoforms have
also been demonstrated in cancer cells.

Firstly, strong Tra2𝛽 binding to a cancer-associated
exon in the nuclear autoantigenic sperm protein (abbrevi-
ated NASP) gene has been detected using HITS-CLIP of
endogenous Tra2𝛽 protein in the mouse testis [14, 15]. This
Tra2𝛽-target exon is abbreviatedNASP-T. Whilst the somatic
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Table 2: Known pro-oncogenic splicing targets of Tra2𝛽.

Splicing target Possible role in cancer cells Reference

CD44 Affects cancer cell mobility and
metastasis [30]

Homeodomain-
interacting kinase 3
(HipK3)

HIPK3 increases
phosphorylation of cJun and cell
proliferation

[57]

Nasp-T

Histone chaperone important for
efficient replication
Implicated in DNA repair
processes

[15]

NASP splice isoform is expressed ubiquitously, the NASP-T
splicing isoform has a much tighter anatomic distribution
and its splicing is associated particularly with cancer cells and
embryonic development.While most normal adult tissues do
not splice theNASP-T exons into their mRNAs, high levels of
splicing inclusion are seen in the testis and to a lesser extent
the heart, gut, and ovary [15].

Splicing inclusion of the NASP-T exon is strongly acti-
vated in transfected cells in response to coexpression of
Tra2𝛽, and NASP-T splicing also decreases in TRA2B knock-
out mouse brains compared to wild type, confirming that the
NASP-T exon is a bona fide regulated target exon of Tra2𝛽
[14, 15]. Tra2𝛽 is currently the only known splicing regulator
of the NASP-T exon. The NASP-T exon is unusually long (a
975 nucleotide long cassette exon, while the typical size for
a human exon is more like 120 nucleotides), with at least 37
Tra2𝛽 protein binding sites within its sequence, making a
very responsive target for Tra2𝛽 expression. Splicing inclu-
sion of the NASP-T exon into the NASP mRNA introduces
the coding information for an extra 375 amino acids into the
encoded NASP protein (Figure 3).

The NASP protein has a strongly biased peptide sequence
which contains a high frequency of glutamic acid residues.
The negative charges of the glutamic acid residues facilitate
interactions with the positively charged histone partner
proteins that NASP protein interacts with. NASP proteins
also use tetratricopeptide repeats (TPRs) and histone binding
motifs to facilitate interactions with protein partners includ-
ing histones [44]. Both the somatic (sNASP) and NASP-
T isoforms of the NASP protein contain the same TPRs
involved in protein-protein interactions and seem to be func-
tionally interchangeable in cells [45]. However, the longer
NASP-T protein isoform has an additional histone binding
motif and a longer stretch of the glutamic-acid-enriched
sequence, suggesting that it might more efficiently interact
with histones (Figure 3(a)). The NASP-T peptide cassette
also adds a number of potentially phosphorylated serine and
threonine residues to the NASP protein [44, 46]. Splicing
inclusion of the NASP-T exon is likely to be important in
cancer cells. The specific siRNA-mediated downregulation of
NASPmRNAs containing theNASP-T exon leads to a block in
proliferation and increased levels of apoptosis in cancer cells
[47, 48].

Isoforms of the NASP protein with and without the
peptide cassette inserted by the NASP-T exon are molecular

chaperones which import histone H1 into the nucleus [49].
NASP protein isoforms also stably maintain the soluble pools
of H3 and H4 histones needed for assembly of chromatin
at times of high replication activity and are part of the
complexes which load these into chromatin [45]. The NASP
gene is critical for cell cycle progression in cultured cells and
for mouse embryogenesis [50].

Why might NASP protein be important for cancer cells?
NASP belongs to a network of genes important for cell
survival [51], and NASP protein is a tumour-associated
antigen in ovarian cancer [52]. NASP is highly expressed in
S phase of the cell cycle [49], when chromatin needs to be
reassembled after replication. Higher levels of NASP protein
expression might be needed by cancer cells to enable their
higher rates of replication to be achieved. NASP protein
also has other roles related to chromatin stability. NASP
protein is phosphorylated by the ATM and ATR kinases in
response to ionising radiation and implicated in the repair of
DNA double strand breaks [53]. One of the protein partners
of NASP protein is the DNA repair protein Ku, and the
yeast homologue of NASP is present at double strand breaks
suggesting an important role in DNA repair (reviewed in
[44]).

The second known splicing target of Tra2𝛽 with likely
important functions in cancer cells is within the CD44 pre-
mRNA. CD44 encodes an important transmembrane protein
partly displayed on the cell surface as the CD44 antigen
(Figure 3(b)). CD44 protein acts as a receptor for hyaluronic
acid and possibly other molecules and controls interactions
with other cells, the extracellular matrix, and cellular motility
through modulation of intracellular signalling cascades [54].

The N- and C-termini of the CD44 protein are encoded
by constitutive exons, but the CD44 gene also contains an
internal block of 10 consecutive internal alternative exons
which are differentially regulated during development and
in cancer [55]. These alternative exons encode portions of
the extracellular domain of the protein (Figure 3(b)). CD44
variable exons show variant splicing inclusion in breast
cancer cells [30]. In particular, two CD44 internal variable
exons, CD44v4 and CD44v5, increase their splicing inclusion
in transfected HeLa cells in response to increased Tra2𝛽
protein expression [30], suggesting that Tra2𝛽 might also
increase their inclusion in breast tumours with elevated
Tra2𝛽 expression. Although expression of variant CD44
exons has historically been associated with cancer metastasis,
the picture regarding CD44 alternative splicing in cancer is
complex. Very recent data suggest that the standard isoform
of CD44 mRNA (without splicing inclusion of its variable
exons)might in fact play a key role inmetastatic breast cancer,
particularly in enabling an epithelial-mesenchyme transition
of breast cancer cells [56].

The third known Tra2𝛽-target exon which might be
potentially relevant in cancer cells is in theHIPK3 gene,which
encodes a serine/threonine kinase involved in transcriptional
regulation and negative control of apoptosis. High cellular
levels of Tra2𝛽 stimulate splicing inclusion of a poison
exon called HIPK3-T into the HIPK3 mRNA [57]. Normal
HIPK3protein is concentrated in subnuclear structures called
promyelocytic leukemia bodies (PML bodies). The shorter
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Figure 3: Protein domain architecture of known Tra2𝛽 splicing targets which are expressed in cancer cells. (a) Modular structure of NASP
protein assembled from the UniProt database (http://www.uniprot.org/uniprot/P49321) [46], showing the position of the peptide insert
encoded by the Tra2𝛽-target exon NASP-T. (b) Modular structure of CD44 protein assembled using information from the UniProt database
(http://www.uniprot.org/uniprot/P16070#P16070-6) [46], showing the position of peptide sequences encoded by the Tra2𝛽-target exons
CD44 v4 and v5.TheCD44 antigen is displayed on the cell surface, and the protein is anchored on the cell surface by a single trans-membrane
domain. Alternative isoforms are made through alternative splicing of 10 exons out of 19 encoding amino acids in the extracellular domain
and also 2 exons which encode peptide sequence in the cytoplasmic domain. The two exons reported CD44 v4 and v5 exons correspond to
amino acids 386–428 and 429–472, respectively, in the encoded protein. The protein domain structures are not drawn to scale.

HIPK3 protein isoform made under control of Tra2𝛽 fails
to localise in PML bodies and lacks regions of the protein
predicted to bind the androgen receptor, homeodomains, Fas,
and p53 [57]. HIPK3-T is not confirmed as a splicing target
of Tra2𝛽 in cancer, since splicing of the HIPK3-T exon has
only been observed thus far in human testis and has not been
directly reported from cancer cells [57].

6. Tra2𝛽 Is Involved in Protein Interaction
Networks with Partner Proteins Involved
in Cancer

Some of the proteins which are known to interact either
directly or indirectly with Tra2𝛽 have themselves been
implicated with roles in cancer cells. Tra2𝛽 directly interacts
with members of the hnRNP G family of proteins which
includes the prototypic member hnRNP G (encoded by
the RBMX gene located on the X chromosome); RBMY
protein (which is encoded by a multigene family on the Y
chromosome); and a number of retrogene-derived proteins.

Of these retrogene-derived proteins, one called HNRNP G-
T is both highly conserved in mammals and specifically
expressed in meiosis. The interaction between Tra2𝛽 and
hnRNP G family members likely buffers the splicing activity
of Tra2𝛽 [58, 59], although they might also coregulate some
target exons [60]. Expression of the RBMY protein has been
directly implicated in liver cancer biology, where it may
contribute to the male specificity of this cancer [61]. RBMY
protein also interacts with SRSF3 protein [62].

7. Summary

The splicing regulator Tra2𝛽 is upregulated in some human
cancers. Possible mechanisms for this upregulation include
changes in oncogenic transcription factor expression and
oxygen free radical concentrations in neoplastic tissue, both
of which affect TRA2B gene expression (Figure 4). We do not
currently know whether the TRA2B gene can function as an
oncogene in its own right until experiments to test transfor-
mation of NIH3T3 cells are performed or the behaviour of
such transformed cells in nude mice is tested. However, we
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Figure 4: Hypothetical model suggesting how changes in the
cellular environmentmay influence the expression of Tra2𝛽 and lead
to downstream changes in mRNA splice isoform production.

do know that some of the known splicing targets of Tra2𝛽
identified in normal tissues are important for cancer cell
biology and are particularly implicated in cell division and
motility. Tra2𝛽 is essential during embryonic development,
and many embryonic developmental pathways involved in
cell growth and motility which are turned off in adult cells
often become reactivated in cancer cells. Future analysis of
the role of Tra2𝛽 in cancer cells will require the detailed
identification of its endogenous splicing targets in cancer cells
and the elucidation of their physiological roles.
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Cooke, “A mammalian germ cell-specific RNA-binding protein
interacts with ubiquitously expressed proteins involved in splice
site selection,” Proceedings of theNational Academy of Sciences of
the United States of America, vol. 97, no. 11, pp. 5717–5722, 2000.

[63] M. J. Moore, Q. Wang, C. J. Kennedy, and P. A. Silver, “An alter-
native splicing network links cell-cycle control to apoptosis,”
Cell, vol. 142, no. 4, pp. 625–636, 2010.

[64] M. P. Paronetto, T. Achsel, A. Massiello, C. E. Chalfant, and
C. Sette, “The RNA-binding protein Sam68 modulates the
alternative splicing of Bcl-x,” Journal of Cell Biology, vol. 176, no.
7, pp. 929–939, 2007.

[65] H. L. Gautrey and A. J. Tyson-Capper, “Regulation of Mcl-1 by
SRSF1 and SRSF5 in cancer cells,” PLoS ONE, vol. 7, Article ID
e51497, 2012.



784 Biochemical Society Transactions (2012) Volume 40, part 4

How does Tra2β protein regulate tissue-specific
RNA splicing?
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Abstract
The splicing regulator protein Tra2β is conserved between humans and insects and is essential for mouse
development. Recent identification of physiological RNA targets has started to uncover molecular targets
and mechanisms of action of Tra2β. At a transcriptome-wide level, Tra2β protein binds a matrix of AGAA-
rich sequences mapping frequently to exons. Particular tissue-specific alternatively spliced exons contain
high concentrations of high scoring Tra2β-binding sites and bind Tra2β strongly in vitro. These top exons
were also activated for splicing inclusion in cellulo by co-expression of Tra2β protein and were significantly
down-regulated after genetic depletion of Tra2β. Tra2β itself seems to be fairly evenly expressed across
several different mouse tissues. In the present paper, we review the properties of Tra2β and its regulated
target exons, and mechanisms through which this fairly evenly expressed alternative splicing regulator
might drive tissue-specific splicing patterns.

Tra2β protein is a splicing activator
conserved between fruitflies and mice
Alternative splicing introduces new coding information into
mRNAs, and so plays a pivotal role in expanding genome
capacity to encode more proteins than just the ∼23 000 that
would be expected if each gene encoded a single protein [1].
Alternative splice events are controlled in part by a number
of different RNA-binding proteins attaching to pre-mRNAs,
although links with transcription and epigenetic modification
of the template chromatin are also important. A large group of
splicing regulator proteins contain domains that are enriched
in arginine and serine residues (so-called RS domains, based
on the one letter amino acid code) [2,3]. These include Tra2
proteins, which have a modular organization comprising a
single central RRM (RNA recognition motif) flanked either
side by RS domains [4,5].

A single Tra2 protein is found in fruitflies, where Tra2
is one of the classical splicing regulators controlling sexual
differentiation as well as being essential for spermatogenesis
[6–8]. The fruitfly gene is the source of the acronym Tra2,
which is short for transformer 2, since mutations in this gene
transform sexual phenotype. The Tra2 gene has duplicated in
vertebrates, resulting in two mammalian Tra2 proteins with
63% amino acid identity (aligned at http://www.ebi.ac.uk/
Tools/emboss/align/). These proteins are called Tra2α

(encoded by the Tra2a gene on mouse chromosome 6) and
Tra2β (encoded by the Sfrs10 gene on mouse chromosome
16). Tra2β binds to exons to regulate their alternative splicing
inclusion. For example, Tra2β binds to the testis-specific T

Key words: development, gene expression, high-throughput sequencing of RNAs isolated

by cross-linking immunoprecipitation (HITS-CLIP), RNA-binding proteins, RNA splicing, Tra2β,

transcriptome.

Abbreviations used: HITS-CLIP, high-throughput sequencing of RNAs isolated by cross-linking

immunoprecipitation; RRM, RNA recognition motif; SMA, spinal muscular atrophy.
1To whom correspondence should be addressed (email David.Elliott@ncl.ac.uk).

exon in the homeodomain interacting protein kinase 3 gene to
regulate its splicing inclusion in the testis [9,10]. Recently, the
details of exactly how Tra2β protein binds to both AGAA
and CAA target RNA sequences have been revealed at atomic
resolution, and involve protein–RNA interactions with both
the RRM and flanking regions [11,12].

Transcriptome-wide identification of
splicing targets for Tra2β
Despite similar amino acid sequences and RNA-binding
specificities between Tra2α and Tra2β [13], genetic deletion
of the Sfrs10 gene still results in embryonic lethality even
though the Tra2a gene remains intact [14]. Sfrs10− / − mice
die at approximately 12 days gestation. This indicates either
non-redundancy with Tra2α at this stage of development or
that expression levels achieved from both genes are needed
for embryonic development [14]. Similarly, Tra2β is essential
in the embryonic brain [15].

Because of the known functions for Tra2β protein in
splicing, it is likely that defects in splicing regulation
are a major contributing factor to the embryonic death
of Sfrs10− / − mice. Such defects would probably lead
to downstream changes in mRNA and protein isoforms
impacting on development. Previously there were just a
handful of known splicing targets for Tra2β, and these
were not clearly mis-regulated in the absence of Tra2β

[10,16]. Recently HITS-CLIP (high-throughput sequencing
of RNAs isolated by cross-linking immunoprecipitation) has
been used to comprehensively identify endogenous RNA
targets for Tra2β during mouse germ cell development [15].
In this procedure, endogenous target RNAs are cross-linked
by UV radiation, then short fragments bound to Tra2β are
rigorously purified, amplified, deep sequenced and mapped
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Figure 1 HITS-CLIP physically identifies multiple Tra2β-binding sites on the Nasp-T exon

This screenshot shows the location of in vivo-binding sites for Tra2β within a region of the mouse transcriptome corresponding

to the Nasp-T exon and flanking intron sequences. The position of physical RNA–Tra2β protein interactions identified by

HITS-CLIP are annotated (blue boxes). Clusters of Tra2β-binding sites mapped to the upstream and downstream regions of

the Nasp-T exon. Additional sites of Tra2β binding were observed in the upstream constitutive exon. Additional tracks shown

are alternative events (highlighting the Nasp-T exon, shown in purple); the Affymetrix exon array dataset corresponding

to this position in the transcriptome, indicating tissue-specific RNA expression levels (notice high levels of Nasp-T exon

inclusion are seen in the testis, whereas the upstream exon has similar levels of inclusion in other tissues, including spleen

and thymus); and conservation levels in mammals. This screenshot is modified from the UCSC mouse genome browser [19].

on to the genome. As an illustration of the resolution of this
technique in identifying binding sites in vivo, the CLIP tags
mapping to one of these identified target exons (Nasp-T) is
shown in Figure 1 [17].

Target exons that depend on Tra2β for splicing inclusion
should be mis-spliced in the absence of the Tra2β protein.
Splicing analyses in the brains of mice, which contain
Sfrs10− / − neurons indicated splicing inclusion of at least two
of the identified target exons (within the Nasp and Tra2a
genes) identified from the HITS-CLIP screen, were indeed
strongly down-regulated in the absence of Tra2β protein, thus
identifying these as physiologically regulated target exons
[15].

The identification of these target exons reveals for the
first time biological functions operating downstream of
the Tra2β protein in mouse development. The Nasp gene
itself is essential for mouse development [18] and encodes
a protein that mediates histone import into the nucleus and
assembly of chromatin after replication. The Tra2β-regulated
Nasp-T exon is very long at 975 nt [19], making this single
exon almost as long as the rest of the Nasp mRNA. This 975 nt
exon length is divisible by three, and inserts the ORF (open
reading frame) for a peptide cassette into the Nasp mRNA

in those tissues where it is spliced. In adult mice, the Nasp-T
exon is most actively spliced in the testis (it is also spliced in
the embryo). In the testis, the longer encoded Nasp protein
isoform is associated with meiotic chromosomes where it
forms part of the complex that monitors the completion of
double-strand break repair [18,20–22]. Hence, by regulating
splicing of the NaspT exon, Tra2β operates as one of the key
upstream regulators for this crucial physiological process in
mouse male germ cells.

Tra2β also physiologically regulates splicing inclusion of a
‘poison’ exon into the Tra2a mRNA [9,23]. This poison exon
inserts in-frame stop codons into the Tra2a mRNA, thereby
targeting it for nonsense-mediated decay and preventing
subsequent production of Tra2α protein. The identification
of this regulated poison exon has thus revealed a novel
pathway of feedback control, which operates between the
vertebrate Tra2 proteins: overexpression of Tra2β protein
leads to increased splicing inclusion of the Tra2a poison exon
and down-regulation of Tra2α expression.

Both the Nasp-T and Tra2a exons are found in all available
vertebrate genome sequences, indicating strong selective
pressure [24–28]. High conservation of the Nasp-T and
Tra2a exons is particularly remarkable in the context of the
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testis, since many alternative exons included in this tissue are
not conserved between species [24]. Functionally important
exons also tend to be frequently included into mRNAs in
at least some tissues. In mice, the Nasp-T and Tra2a exons
are spliced into mRNAs at high levels in testis, and also
spliced into mRNAs in other adult tissues and in the embryo.
The defects in Nasp-T and Tra2a splicing may therefore
contribute to the phenotype of the Sfrs10− / − mice. Since
RNA-binding proteins are global regulators, defects resulting
from their absence are likely to be widespread. Tra2β can
bind and potentially regulate thousands of exons in parallel
across the transcriptome, many of which might contribute
to the embryonic or brain phenotype when Tra2β is missing
[14,15].

Multiple binding sites are needed for
Tra2β-mediated splicing activation of
Nasp-T and Tra2a
Both the Nasp-T and Tra2a poison exons have two key
features relating to their particular dependence on Tra2β for
splicing inclusion, as discussed below.

A high frequency of Tra2β-binding sites
Both the Nasp-T and Tra2a exons contain multiple Tra2β-
binding sites inferred from transcriptome-wide analysis [15].
Within the transcriptome-wide dataset of RNA targets, par-
ticular 6-mer sequences were identified as enriched compared
with either the genomic- or testis-specific transcriptomic
backgrounds. Each of these most frequently recovered 6-
mers represent binding sites for Tra2β recognized in vivo
within the mouse transcriptome, and were subtle variations
of AGAA-rich sequences, very similar to the known Tra2β-
binding site [11,12].

These frequently recovered 6-mers were used as a Tra2β-
binding site matrix, with the most frequently recovered
6-mers representing the best physiological binding sites.
When analysed according to preferred physiological binding
sites, the Nasp-T exon contains approximately 37 Tra2β-
binding sites (defined as containing sequences from the
25 most frequently recovered 6-mers in the transcriptome-
wide dataset, with particular importance being placed on
the top five recovered 6-mers); and the Tra2a exon contains
approximately 12 binding sites [15]. Note that these numbers
are approximations: some predicted Tra2β-binding sites
overlap, making it difficult to be precise. Tra2β-binding
sites clustered in the upstream and downstream portions of
the Nasp-T exon identified by CLIP are shown in Figure 1.

Highly efficient Tra2β binding
Consistent with their high concentration in binding sites,
both the Nasp-T and Tra2a exons bound Tra2β protein very
efficiently in gel shift experiments, and less stable complexes
were formed after binding site mutagenesis [15].

By looking at the exon sequences of Nasp-T and Tra2a,
it is possible to estimate when splicing regulation by Tra2β

might have evolved. Superimposition of binding sites and
detailed phylogenetic comparisons of exon sequence show
that the Tra2a poison exon is likely to be controlled by Tra2β

across all vertebrates (all of which contain multiple binding
sites), whereas Tra2β control of Nasp-T is more likely to have
evolved in mammals [15].

Models for physiological splicing control by
Tra2β
The Sfrs10 gene is expressed fairly evenly in different
mouse tissues [15]. This raises the important question: how
does Tra2β regulate tissue-specific splicing patterns? Two
conceptually different (but not mutually exclusive) models
might explain how Tra2β protein operates as a tissue-specific
splicing factor.

Tissue-specific patterns of splicing may be
controlled by differences in the cellular
concentration of Tra2β (Figure 2A).
Subtle but important differences in Tra2β protein concen-
tration might occur both between and within tissues to
drive tissue-specific splicing patterns. For example, within
the mouse testis, Tra2β protein is low in spermatogonia (a
cell population including the stem cells), but expression is
higher in spermatocytes (the meiotic cells) [15]. Tra2β protein
levels then fall again in round spermatids (the post-meiotic
haploid cells). The splicing inclusion of exons such as Nasp-
T and Tra2a thus might peak in spermatocytes, which have
the highest Tra2β protein concentration to activate splicing
inclusion. When compared between different tissues, total
RNA and protein preparations would conceal these intrinsic
gradients of Tra2β protein concentration. Another piece of
evidence argues for this kind of differential splicing control
within tissues. Tra2β protein regulates its own level through
regulating splicing inclusion of a poison exon into its own
mRNA [29], and splicing levels of this poison exon are
highest in the testis, possibly also in meiotic cells expressing
maximum levels of Tra2β protein. Muscle also shows high
levels of inclusion of this poison exon [15].

Tra2β might regulate specific exons that are
de-repressed in particular tissues or cell
types and thus available for activation
(Figure 2B).
In this model, alternative splicing changes might be driven
not directly by changes in Tra2β protein concentration, but
rather in changes in the concentration of splicing repressors
which antagonize Tra2β. Most exons are under combinatorial
control, meaning they are influenced by a combination of
both activating and repressive activities of splicing factors
[30]. Particular tissue-specific exons that contain Tra2β

protein-binding sites might be strongly repressed in some
tissues due to high concentrations of these splicing repressors,
but more weakly repressed in other tissues or cell types where
the expression of these repressors is weaker. In tissues
containing lower levels of splicing repressors, Tra2β might

C©The Authors Journal compilation C©2012 Biochemical Society
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Figure 2 Local levels of splicing activation and repression may

co-ordinately control tissue-specific Nasp-T splicing inclusion

(A) Activator-driven model of alternative splicing inclusion, in which

changes in concentration of Tra2β protein between cells determine the

splicing outcome. On the left-hand side, a high concentration of Tra2β

binds to the RNA and activates splicing of the target exon (exon splicing).

On the right-hand side, a decreased cellular concentration is not sufficient

to activate exon splicing (so the exon is skipped). (B) Repressor-driven

model of alternative splicing activation. In this model, tissues might

have similar expression levels of Tra2β, but vary in expression of

splicing repressor proteins, which repress Tra2β-target exons. In the

left-hand side example, binding of Tra2β protein to the exon would

activate splicing inclusion (no repressor is present). In the right-hand

side example, there is a higher concentration of splicing repressor protein

present and bound around the target exon. In this case, the same amount

of Tra2β still binds to the target RNA, but cannot overcome the repressive

effects of locally bound negatively acting splicing repressors (usually

heterogeneous nuclear ribonucleoproteins). As a result of this, the exon

is skipped.

operate as a tissue-specific activator of exons which contain
Tra2β-binding sites, even though its actual expression level
may not be different compared with the former tissues. For
example, hnRNPA1 protein (a splicing repressor) is down-
regulated over the course of germ cell development [31], so
de-repressed exons that contain Tra2β-binding sites might be
co-ordinately activated at this time.

Irrespective of the actual model that explains tissue-specific
splicing of individual exons by Tra2β (referred to as ‘activator
driven’ or ‘repressor driven’ in Figure 2), experimental
evidence directly shows multiple adjacent Tra2β-binding sites
are important to activate tissue-specific exons (Figure 2) [15].
Since RNA–protein interactions are likely to be dynamic in
the nucleus and have both on and off rates, multiple adjacent
binding sites might simply act to increase the probability
of occupancy by a single Tra2β protein at any one time to
activate exon splicing. It is, however, difficult to see how
mutation of just two binding sites out of a total of ∼37
potential sites in Nasp-T could explain the ∼80% reduction
in splicing inclusion using this kinetic probability model [15].

A more likely scenario than the probability model is
that adjacent RNA-binding sites might act as a platform to
assemble multiple Tra2β proteins into a splicing activator
complex [9]. Gel shifts show large protein complexes
assembling on these exons in vitro [9,15]. For some exons
such as Nasp-T, a version of Tra2β unable to directly bind
RNA by itself can still co-activate splicing in cellulo, possibly
by attaching to splicing complexes already nucleated by wild-
type endogenous Tra2β protein on the regulated exons [9,15].
Binding site mutagenesis of Nasp-T also resulted in large
differences in splicing inclusion levels between individual
double mutants, indicating that the organization of available
Tra2β-binding sites is also important as well as the number
of sites available.

Overexpressed Tra2β protein might also
play a key role in disease
The above studies are starting to address the role of Tra2β

protein in normal development. Tra2β might have additional
roles in situations when it is expressed above its normal
cellular concentration, perhaps by enabling it to activate
weaker target exons than would be normally regulated. One
such important target exon is SMN2 exon 7.

Splicing of SMN2 exon 7 was not obviously affected in the
Sfrs10− / − mice [14], but was activated by overexpression
of Tra2β in transfected cells [32]. Regulation of SMN2
makes overexpression of Tra2β a potential therapeutic option
to treat the developmental disease SMA (spinal muscular
atrophy). SMA is caused by deletion of the SMN1 gene.
Expression of the adjacent SMN2 gene is normally very
low, since exon 7 is poorly spliced into the SMN2 mRNA,
resulting in an unstable protein product. By improving exon
7 splicing, Tra2β could improve expression from the SMN2
gene and ameliorate disease in some patients. In addition
to potentially useful roles in therapy, Tra2β has also been
implicated as a more sinister modifier of other diseases,
including breast cancer [33] where overexpression leads to
increased inclusion of CD44 alternative exons associated with
metastasis.

Conclusions
Recent research has identified new physiological target RNAs
for Tra2β in development, and revealed it as an important
developmental splicing regulator. Gradients in Tra2β protein
concentrations may drive exon inclusion patterns over
development, leading to the regulated production of
developmentally important protein isoforms. Alternatively,
Tra2β might provide a level of intrinsic background activation
which is enough to activate available de-repressed exons
that contain Tra2β-binding sites and generate tissue-specific
splicing profiles. Future work will continue to elucidate the
role of Tra2β both in splicing regulation, as well as in the
metabolism of other kinds of cellular RNA target.

C©The Authors Journal compilation C©2012 Biochemical Society



788 Biochemical Society Transactions (2012) Volume 40, part 4

Funding

This work was supported by the Wellcome Trust [grant numbers

WT080368MA and WT089225/Z/09/Z (to D.J.E.)], the Biotech-

nology and Biological Sciences Research Council [grant numbers

BB/D013917/1 and BB/I006923/1 (to D.J.E.)] and the Breast Cancer

Campaign (to D.J.E.).

References
1 Stamm, S. (2002) Signals and their transduction pathways regulating

alternative splicing: a new dimension of the human genome. Hum. Mol.
Genet. 11, 2409–2416

2 Shepard, P.J. and Hertel, K.J. (2009) The SR protein family. Genome Biol.
10, 242

3 Long, J.C. and Caceres, J.F. (2009) The SR protein family of splicing
factors: master regulators of gene expression. Biochem. J. 417, 15–27

4 Beil, B., Screaton, G. and Stamm, S. (1997) Molecular cloning of
htra2-β-1 and htra2-β-2, two human homologs of tra-2 generated by
alternative splicing. DNA Cell Biol. 16, 679–690

5 Dauwalder, B., Amaya-Manzanares, F. and Mattox, W. (1996) A human
homologue of the Drosophila sex determination factor transformer-2 has
conserved splicing regulatory functions. Proc. Natl. Acad. Sci. U.S.A. 93,
9004–9009

6 Baker, B.S. (1989) Sex in flies: the splice of life. Nature 340, 521–524
7 Hoshijima, K., Inoue, K., Higuchi, I., Sakamoto, H. and Shimura, Y. (1991)

Control of doublesex alternative splicing by transformer and
transformer-2 in Drosophila. Science 252, 833–836

8 Belote, J.M. and Baker, B.S. (1983) The dual functions of a sex
determination gene in Drosophila melanogaster. Dev. Biol. 95,
512–517

9 Grellscheid, S.N., Dalgliesh, C., Rozanska, A., Grellscheid, D., Bourgeois,
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Abstract

Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes.
The evolutionarily conserved splicing activator Tra2b (Sfrs10) is essential for mouse embryogenesis and implicated in
spermatogenesis. Here we find that Tra2b is up-regulated as the mitotic stem cell containing population of male germ cells
differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2b binds a high
frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have
analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse
(Sfrs10fl/fl; Nestin-Cretg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically
Tra2b regulated exons. These belonged to a novel class which were longer than average size and importantly needed
multiple cooperative Tra2b binding sites for efficient splicing activation, thus explaining the observed splicing defects in the
knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone
that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new
pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily
conserved, suggesting they might control fundamental developmental processes. Tra2b protein isoforms lacking the RRM
were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the
N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2b.
Versions of Tra2b lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length
Tra2b protein.
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Introduction

Almost all transcripts from genes encoding multiple exons are

alternatively spliced, and correct patterns of alternative splicing are

important for health and normal development [1,2,3]. Alternative

splicing introduces new coding information into mRNAs, thereby

increasing genome capacity to encode an expanded number of

mRNAs and proteins from a finite number of genes [3]. Poison

exons which introduce premature stop codons can also be

alternatively spliced to target mRNAs for degradation through

Nonsense Mediated Decay (NMD) [4,5,6,7,8].

Alternative splice events are controlled in part by trans- acting

RNA binding proteins which help establish patterns of alternative

splicing through deciphering a splicing code embedded within the

pre-mRNA sequence [9,10,11]. Tra2 proteins bind directly to

target exons thereby activating splicing inclusion [12], and have a

modular organisation comprising a single central RNA recognition

motif (RRM) which binds to target RNA sequences, flanked by
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arginine-serine rich (RS1 and RS2) domains [13,14]. The N-

terminal Tra2 RS1 domain is longer and contains more RS

dipeptides than RS2. The reason for this unique modular

organisation is unknown, but is conserved in vertebrate and

invertebrate Tra2 proteins and different from the classical SR

super-family which have a single C-terminal RS domain [15]. Also

unlike classical SR proteins, Tra2 proteins do not restore splicing

activity to S100 extracts [12].

A single Tra2 protein is conserved in fruit flies, where it is

essential for spermatogenesis and sex determination [16]. There

are two mammalian Tra2 proteins called Tra2a (encoded by the

Tra2a gene on mouse chromosome 6) and Tra2b (encoded by the

Sfrs10 gene on mouse chromosome 16) which share 63% amino

acid identity and similar RNA binding specificities [12]. NMR

analyses have recently shown that the optimal core RNA target

sequence for binding full length Tra2b protein is an AGAA motif,

with each of the nucleotide residues being specifically recognized

by the Tra2b RRM [17,18].

A key priority to understand the biological functions of Tra2b is

to identify target RNAs which are functionally regulated within

animal cells, and associated pathways of gene activity. Mice with

ubiquitous deficiency of the Sfrs10 gene die at around 7.5 to 8.5

days of gestation [19]. Splicing of some Tra2b candidate target

exons have been investigated using minigenes, but recently a well

known regulated splice target exon (SMN2 exon 7) was found to

have the same splicing pattern within wild type mice and Smn2/2;

SMN2tg/tg; Sfrs102/2 mouse cells which do not express Tra2b
protein [19]. These data suggest Tra2b is not the key protein

regulating physiological inclusion of SMN2 exon 7 within animal

cells.

The Sfrs10 gene itself is alternatively spliced to five mRNA

isoforms encoding at least 2 protein isoforms [20,21,22]. The

major isoform encodes full length Tra2b protein. Full length

Tra2b protein regulates its own levels through activating splicing

inclusion of a poison exon (exon 2) into a second mRNA isoform,

preventing protein translation (Figure 1A) [22]. A third mRNA

isoform encodes just the C-terminus of the protein (containing the

RRM, glycine linker and the RS2 domain) giving rise to the

protein isoform Tra2beta-3 or Tra2bDRS1 [20,21,22]. No

distinct function has been assigned to the Tra2bDRS1 isoform

compared to full length Tra2b [17], although this isoform is

conserved in invertebrates so likely important. Tra2bDRS1

expression is tissue specific in both flies and mammals, and is

up-regulated by expression of Clk kinases and neural stimulation

[20,21,22,23].

Male germ cell development is one of the few developmental

pathways to continue into the adult. In the fly testis, Tra2 regulates

splicing of Exuperentia and Att pre-mRNAs in male germ cells, as

well as its own alternative splicing pathway [24,25]. Tra2b has

been implicated in mammalian spermatogenesis through interac-

tion with RBMY protein which is genetically deleted in some

infertile men [26,27], and regulates the splicing of the human

testis-specific HIPK3-T exon through a switch-like mechanism

[28,29]. Given its important role in Drosophila spermatogenesis and

established interactions with proteins implicated in human male

fertility we predicted that Tra2b-regulated alternative splicing

events would control fundamental pathways in mammalian male

germ cell development. We have tested this prediction here using a

transcriptome-wide approach.

Results

Tra2b is ubiquitously expressed but up-regulated at the
onset of meiosis in male germ cells

We analysed the expression of Sfrs10 mRNA in different adult

mouse (Mus musculus) tissues by RT-PCR using primers in exons 1

and 4. An RT-PCR product derived from Sfrs10 mRNA in which

exons 1 and 3 were directly spliced (skipping poison exon 2) was

seen in every tissue indicating the Sfrs10 gene is ubiquitously

expressed (Figure 1A and 1B). A larger Sfrs10 RT-PCR product

made from mRNAs including poison exon 2 was detected at high

levels in just two tissues, testis and muscle, indicating that

expression of Tra2b is particularly tightly controlled in these

tissues [22]. Similar levels of expression of Hprt mRNA were

observed in each tissue by multiplex RT-PCR.

A polyclonal antiserum raised to Tra2b protein identified a

single endogenous protein of around 40 KDa in both transfected

and untransfected HEK293 cells corresponding in size to

endogenous Tra2b (Figure 1C). A Tra2b-GFP fusion protein

was additionally detected within transfected cells, but no cross-

reaction was detected with a Tra2a-GFP fusion indicating high

specificity of the antiserum. We were also able to detect a GFP-

fusion protein containing Tra2bDRS1, but not endogenous

Tra2bDRS1 protein suggesting that this particular isoform is

expressed at low levels in these cells. Further probing of the same

filter indicated that all the GFP fusion proteins were expressed at

similar levels (Figure 1C, lower panel).

We used indirect immunohistochemistry to determine the cell

type distribution of full length Tra2b in the adult testis (Figure 1D

and 1E). Tra2b was detected as a nuclear protein (Figure 1E upper

panel), and all staining was prevented by pre-incubation of the

antisera with the immunising peptide (Figure 1E lower panel).

Tra2b was most highly expressed during mouse male germ cell

development at the meiotic stage in spermatocytes (abbreviated

Spc), and afterwards in round spermatids (abbreviated Rtd). Less

intense Tra2b staining was detected within spermatogonia which

contain the mitotically active stem cell population. No immuno-

staining was detected in elongating spermatids (abbreviated Spd).

This regulated expression pattern predicts that Tra2b might play a

role in regulating meiotic and post-meiotic exon inclusion during

male germ cell development. Outside the germline, Tra2b protein

expression was detected in Sertoli cells (indicated by red arrows on

Figure 1E).

Author Summary

Alternative splicing amplifies the informational content of
the genome, making multiple mRNA isoforms from single
genes. Tra2 proteins bind and activate alternative exons,
and in mice Tra2b is essential for embryonic development
through unknown target RNAs. Here we report the first
target exons that are physiologically regulated by Tra2b in
developing mice. Normal activation of these regulated
exons depends on multiple Tra2b binding sites, and
significant mis-regulation of these exons is observed
during mouse development when Tra2b is removed. As
expected, Tra2b activates splicing of some target exons
through direct RNA binding via its RNA Recognition Motif.
Surprisingly, for some exons Tra2b can also activate
splicing independent of direct RNA binding through two
domains enriched in arginine and serine residues (called RS
domains). The N-terminal RS1 domain of Tra2b is
absolutely essential for splicing activation of physiological
target exons, explaining why this domain is conserved
between vertebrates and invertebrates. Surprisingly, Tra2b
proteins without RS1 operate as splicing repressors,
suggesting the possibility that endogenous Tra2b protein
isoforms may differentially regulate the same target exons.

New Roles and Splicing Targets for Tra2b
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Tra2b primarily binds AGAA-rich target sequences in
mouse germ cells

To identify endogenous cellular RNA targets for Tra2b we

carried out high throughput sequencing cross linking immuno-

precipitation (HITS-CLIP) [30]. Adult mouse testis cells were used

according to published procedures (see methods for details) to

retrieve an average tag length of 40 nucleotides. These recovered

CLIP tags correspond to specific RNA sequences bound and

subsequently cross-linked to endogenous Tra2b protein within the

testis.

To identify frequent physiological Tra2b binding sites in mouse

testis we searched for frequently occurring 6-mers in the retrieved

CLIP tags, and normalised these to their background occurrence

in the mouse genome and transcriptome using custom-written

Python scripts (Table S1 and Table S2). Each of the most

frequently recovered 6-mers was significantly enriched in the CLIP

dataset compared to their representation in the mouse genome or

mouse testis transcriptome. Strikingly, purine-rich sequences were

preferentially recovered in our CLIP tags. In fact, 14 hexamers out

of the top 30 recovered genome corrected hexamers in Table S1

have only purine residues, and 13 have only one pyrimidine. More

specifically and consistent with the known RNA binding site for

Tra2b [17,18], GAA-containing sequences were frequently

observed. The distribution of GAA-containing 6-mers in the

overall population of CLIP tags was visualised by plotting the

genomic ranking of 6-mer recovery (X axis) against their

representation in the CLIP population (Y axis) (Figure 2A:

GAA-containing 6-mers are shown in red, with all other 6-mer

sequences in blue). Of the 30 most frequently recovered 6-mers, 27

had a core GAA motif and the other 3 an AGA motif. The most

frequent 6-mer (the AGAAGA motif, 10u on the X axis of

Figure 2A -equivalent to 1) was found in almost 20% of the

recovered CLIP tags. The ten most frequently recovered 6-mers

were found in more than 40% of the CLIP tags.

Next we aligned full length CLIP tags to generate a

transcriptome-wide consensus sequence. We anchored this line-

up between CLIP tags using the trinucleotide GAA from the core

binding motif which is essential for efficient RNA protein

interactions [17] (Figure 2B). Within this consensus alignment,

an A residue followed by a T residue (and less frequently a G

residue) was usually found upstream of the GAA motif (position 1

in Figure 2B), consistent with reported in vitro RNA-protein

binding data between the RRM of Tra2b and synthetic

oligonucleotides [17]. Furthermore, a G residue (and less

frequently an A residue) was preferentially selected at the position

downstream of the GAA motif (position 5), and an A at the next

nucleotide position downstream (position 6). This results in an

extended AGAAGA consensus, in agreement with the sequence of

the 3 top hexamers. Interestingly, when only a GAA triplet but not

an AGAA core is present within a CLIP tag, 89% of the tags have

a G residue immediately downstream (GAAG), consistent with the

important contribution of the G5 residue for efficient binding of

Tra2b to its natural RNA targets. No further strong sequence bias

was noticed in the sequences upstream and downstream of the

AGAAGA hexamer. A similar consensus was obtained previously

for SRSF1 protein [31]. However since SRSF1 has 2 RRMs with

different RNA binding capacities and only one RS domain, it is

most likely that its global specificity of RNA recognition and

binding are broader than that for Tra2b and also depends on

other ESEs within its individual target exons.

Tra2b binds a high frequency of exonic sequences
To identify specific endogenous target transcripts CLIP tags

were mapped onto the mouse genome sequence (a full bed file of

Tra2b CLIP tags is provided as Dataset S1) [32]. Overall, the

distribution of Tra2b CLIP tags was predominantly intragenic:

Around 69% of Tra2b binding sites were located within protein

coding genes, even though genes contribute just 25% of the

genome (Figure 2C). Network analyses indicated the main

functional properties associated withTra2b target transcripts were

post-translational modification, the cell cycle, gene expression,

RNA post-transcriptional modification and cell death (Figure 2D).

Top physiological systems associated with Tra2b target transcripts

included reproductive system and nervous system development,

and there was significant enrichment of signalling pathways in the

top detected pathways (Table S3). Most intragenic CLIP tags

mapped to transcripts in the sense orientation, but 7.5% of

retrieved CLIP tags were antisense to known annotated genes.

Only 1.3% of the mouse genome encodes exons (59 UTR, ORF

and 39 UTR, based on mm9 annotation version ensembl59). For

Tra2b some 29% of Tra2b CLIP tags mapped within exons of

protein coding genes (Figure 2C) which indicates the presence of

numerous Tra2b-specific target exons. Similar CLIP-based

transcriptome-wide analyses found that the SR protein SRSF1

also frequently binds to exonic sequences, while Nova and PTB

target sites are mainly intronic in distribution [30,31,33].

Non-exonic Tra2b binding sites were found within deep

intronic regions, within locations annotated as intergenic and

within noncoding RNAs (ncRNAs) [34]. Within ncRNAs Tra2b
binding sites were found within the small subunit rRNA (also

Figure 1. Tra2b is a nuclear protein highly expressed in mouse germ cells. (A) Diagram showing in silico PCR of the mouse Sfrs10 mRNA
redrawn from the UCSC mouse genome browser [69]. Two different RT-PCR products are amplified using primers in exons 1 and 4. The smaller
product (438 nucleotides) represents the amplified product when exon 1 is directly spliced to exon 3 and then exon 3 to exon 4 (upper Sfrs10 mRNA
isoform). The larger product (714 nucleotides) represents when the poison exon 2 is spliced resulting in the non-translated isoform Tra2b4 (lower
Sfrs10 mRNA isoform). (B) Capillary gel electrophoresis image showing levels levels of Sfrs10 mRNA assayed by multiplex RT-PCR using RNA purified
from adult mouse tissues. Primers were used for amplification complementary to exons 1 and 4 as described in (A) above. Within a multiplex RT-PCR,
primers were included to detect Hprt as a parallel loading control to ensure equivalent amounts of RNA were used in each lane. (C) Immunoblotting
experiment to confirm the specificity of the polyclonal antisera used for immunohistochemistry. HEK293 cells were transfected with plasmids
expressing the indicated proteins. Proteins were then isolated and analysed by SDS-PAGE and Western blotting. The same blot was probed
sequentially with an affinity purified antisera ab31353 raised against Tra2b (top panel) and then with a polyclonal specific for GFP to detect overall
expression of each of the fusion proteins (lower panel). The ab31353 a-Tra2b antisera detected a single band in HEK293 cells corresponding to
endogenous Tra2b protein, and in transfected cells additionally detected the Tra2b-GFP fusion protein and Tra2bDRS1-GFP. No cross reaction with
Tra2a-GFP was observed, indicating that this purified antisera is highly specific to Tra2b. (D) Flow chart summarising major developmental stages in
male germ cell development. (E) Tra2b is a nuclear protein expressed during and after meiosis. Paraffin embedded adult mouse testis sections were
stained with an affinity purified antibody raised against Tra2b (brown staining), and counterstained with haematoxylin (blue). Abbreviations: Spg –
spermatogonia (mitotically active population which includes stem cells); Spc –spermatocyte (meiotic cells); Rtd –round spermatid (post-meiotic
haploid cell); Spd –elongating spermatid (differentiating haploid cell with condensed nuclei). The scale bar is equivalent to 20 mm. The red arrows
indicate Sertoli Cells. Based on these immunohistochemistry results, the Tra2b protein expression levels during mouse germ cell development are
summarised also on the flow chart in part (D).
doi:10.1371/journal.pgen.1002390.g001
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Figure 2. Identification of binding sites for Tra2b in the mouse transcriptome. (A) Nucleotide sequences enriched in the Tra2b CLIP tags are
enriched in the core motif GAA. The percentage of CLIP tags was plotted against the order of retrieval of individual 6-mers on a logarithmic scale to
identify the most frequently occurring 6-mer sequences within the CLIP tags. CLIP tag sequences which contain GAA are indicated in red. All other
CLIP tags are shown in blue. (B) Consensus binding site for Tra2b derived from alignment of full length CLIP tags. The consensus was constructed by
anchoring CLIP tags around GAA and then performing an alignment. The positions 1–6 which are particularly conserved are shown underneath and
discussed in the main text. (C) Pie chart showing percentage of retrieved CLIP tags mapping to different inter- and intragenic locations within the

New Roles and Splicing Targets for Tra2b
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identified as a binding site for SRSF1 [31]) and 7SK RNA. There

were also Tra2b binding sites within the ncRNA Malat1 which is

known to be localised in nuclear splicing speckles enriched in pre-

mRNA splicing components (Malat1 is also bound by SRSF1 [31]),

and within microRNAs. These identified targets suggest that

Tra2b might in fact be a somewhat multifunctional post-

transcriptional regulator. Similarly diverse classes of target RNA

(including both coding and ncRNAs) have been identified for a

number of other RNA binding proteins by HITS-CLIP

[30,31,33,35,36].

Analysis of endogenous target exons indicate that
isoforms of Tra2b can activate, co-activate, and repress
exon inclusion

Tra2b bound to both constitutive and alternative exons and also

to each different class of alternative events annotated on the mouse

genome browser at UCSC. In particular, Tra2b binding sites

mapped preferentially to cassette exons (this is also the most

frequent class of alternative splicing event in metazoans [37])

(Figure 2E). To test for splicing regulation of these identified target

exons by Tra2b, a panel of seven cassette exons with high numbers

of mapped CLIP tags, together with flanking intronic sequences,

were cloned into an exon trap vector (see Materials and Methods).

The resulting minigenes were then transfected into HEK293 cells

with expression constructs encoding either GFP, Tra2b-GFP, or

GFP-tagged Tra2b deletion variants. Western blots indicated each

of the GFP-fusion proteins were efficiently expressed in HEK293

cells (Figure 3A), although the fusion protein without the RS1

domain was expressed at higher levels.

Splicing patterns of pre-mRNAs were analysed using RT-PCR.

We observed particularly strong splicing activation of a poison

exon in the Tra2a gene in response to co-expression of Tra2b-GFP

(Figure 3B). Ectopic expression of both Tra2a and Tra2b were

equally able to activate splicing of the Tra2a poison exon

indicating that these two proteins are functionally equivalent in

this assay (Figure 3B, lanes 2 and 3). No splicing activation of the

Tra2a poison exon was observed with either Tra2bDRRM-GFP or

GFP alone, indicating a requirement for RRM-dependent binding

by full length Tra2b proteins for splicing activation (Figure 3B,

lanes 1 and 4).

Full length Tra2b also mediated statistically significant splicing

activation of a cassette exon annotated Nasp-T in the Nasp gene.

Surprisingly, equally strong and highly statistically significant Nasp-

T exon splicing activation was also observed in response to ectopic

expression of Tra2bDRRM-GFP protein (Figure 3C, lanes 2 and

3). Because of the high levels of splicing inclusion observed for the

wild type Nasp-T exon at endogenous cellular concentrations of

Tra2b (Figure 3C), we also repeated these experiments using a

mutated exon which is less efficiently spliced (mutant M3+M4 –see

below) and again observed significant splicing activation by

Tra2bDRRM-GFP protein (Figure 3D –in this case the effect of

Tra2bDRRM-GFP is clearer because of the lower levels of splicing

inclusion of this mutated exon at endogenous cellular Tra2b
protein concentrations). Together these data indicate that for some

exons including Nasp-T, Tra2b can activate splicing through

RRM independent interactions as well as being a direct splicing

activator as previously described.

The Sfrs10 locus encodes a second endogenous protein isoform

called Tra2bDRS1 [20,21,22] which lacks the RS1 domain.

Surprisingly, after co-expression of a Tra2b-GFPDRS1 protein

isoform we observed significant splicing repression of both the

Tra2a poison exon and Nasp-T exon (Figure 3B–3D) indicating

that this protein isoform behaves as a potent splicing repressor,

and of the same target exons recognised by full length Tra2b
protein.

Two further exons, Creb exon 2 and Lin28b exon 2, did not

detectably respond to ectopic expression of full length Tra2b or

any of its derivatives (Figure 3G and 3H) and were already

included at high levels in the absence of ectopically expressed

Tra2b protein. No strong splicing repression of Creb exon 2 and

Lin28b exon 2 was observed on co-expression of Tra2b-

GFPDRS1. Full length Tra2b weakly but significantly activated

splicing of two other target exons, Krba1 exon 9 and Pank2 exon 3

(Figure 3E and 3F) and splicing of these exons was also not

significantly repressed by Tra2b-GFPDRS1 (compare lanes 1 and

3: notice slight repression which was not statistically significant).

We also looked at two other exons which are spliced in the testis

and which we independently characterised as being regulated by

Tra2b. Minigene experiments indicated both the Crebc and Fabp9

exons [38,39] were moderately activated by Tra2b, and were also

co-ordinately moderately repressed by the Tra2bDRS1 isoform

(Figure 3I and 3J, lanes 1 and 4). Taken together these data are

consistent with full length Tra2b protein activating specific target

exons, and the Tra2bDRS1 protein isoform specifically repressing

exons which are at least moderately to strongly activated by full

length Tra2b, but not acting as a general repressor of cellular

splicing.

Tra2b directly binds to target transcripts identified by
CLIP, and binding efficiency correlates with splicing
activity

We carried out further in silico and molecular analyses to

correlate Tra2b binding with the observed patterns of exon

regulation. We firstly looked for the occurrence of over-

represented transcriptome-wide enriched 6-mer sequences (k-

mers) [40] to identify putative Tra2b binding sites in the analysed

target exons in silico (Figure S1). Both the Nasp-T and Tra2a poison

exon had a high predicted content of 6-mers corresponding to

putative Tra2b binding sites and consistent with their strong

Tra2b regulation observed in vitro.

We then directly measured Tra2b binding affinities using

Electromobility Shift Assays (EMSAs) (Figure 4: the positions of

predicted binding sites within the RNA probes are shaded as in

Table S1. Notice the dark green corresponds to the top 5 most

frequently recovered 6-mers, and lighter shades of green

correspond to less frequently recovered 6-mers). Both Nasp-T

and Tra2a poison exon probes were very efficiently shifted by even

very low concentrations of Tra2b protein (the Nasp-T probe was

shifted into the well by only 50 ng of added Tra2b protein

indicating formation of very large Tra2b protein-RNA complexes,

and increasing molecular weight Tra2a RNA-protein complexes

were observed with increasing concentrations of full length Tra2b
protein).

A series of increased molecular weight complexes also formed

on the Crebc exon RNA probe (corresponding exon regulated in

mouse transcriptome. (D) Summary of the top 5 molecular and cellular functions for Tra2b determined by Ingenuity Pathway Analysis. (E) Distribution
of Tra2b binding sites relative to the different classes of alternative events annotated on the mouse genome. Alternative events are shown in red, and
the constitutive events as yellow boxes (exons) or black lines (introns). Alternative events are annotated according to the UCSC genome browser
track Alternative Events (URL: http://genome.ucsc.edu/cgi-bin/hgTrackUi?g = knownAlt&hgsid = 212031267).
doi:10.1371/journal.pgen.1002390.g002
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cellulo by Tra2b) and on the Krba1 RNA probe (weakly responsive

in cellulo to Tra2b splicing activation). A single higher molecular

weight complex formed on the Lin28 probe (exon splicing not

activated in vitro by Tra2b, and contains a single predicted Tra2b
binding site). Much less efficient binding was observed for the non

Tra2b-responsive Creb exon 2 (which formed a single molecular

weight complex only with 200 ng added Tra2b protein, compared

with 50 ng for the Crebc probe).

The Tra2a poison and Nasp-T cassette exons are
phylogenetically conserved and show high levels of
splicing inclusion in mouse testis

An important measure of the functional importance of

individual alternative splice events is evolutionary conservation

[1,2,37,41,42]. Although many testis-specific exons are species-

specific, phastcons analysis (which measures phylogenetic conser-

vation of sequences on a scale of 0 to 1, with 1 being most

conserved) indicated very high levels of phylogenetic conservation

for the Tra2a poison exon along with flanking intronic sequences

(Figure 5A–5C). Similar high levels of nucleotide conservation

have been reported for poison exons in other genes encoding

splicing regulator proteins including Sfrs10 itself [4,5,22].

The Tra2a poison exon, which is 306 nucleotides long,

introduces stop codons into the reading frame of the Tra2a

mRNA which encodes Tra2a protein. Despite the lack of protein

coding capacity, 48% of nucleotides within the Tra2a poison exon

are in fact conserved in all vertebrates (Figure S2A: the nucleotide

positions universally conserved in sequenced vertebrate genomes

are shown in red). As a group, the 24 top most frequently

recovered 6-mers from the entire transcriptome-wide screen were

enriched in the nucleotide positions conserved between all

vertebrates at levels much higher than would be expected by

chance (Figure S2A, p = 0.0075, Fisher exact test: p = 0.0003, Chi

Squared test). These data are consistent with maintenance of

multiple Tra2b-binding sites within the Tra2a poison exon since

the radiation of vertebrates. When analysed by RT-PCR, the

Tra2a poison exon was found to be particularly strongly

alternatively spliced in the testis, with zero or much lower levels

in other adult tissues (Figure 5A–5C).

Phastcons analyses also showed the Nasp-T cassette exon,

which is also particularly long at 975 nucleotides, has been

conserved since the last common ancestor of all vertebrates

(Figure 5D–5F). However neither the nucleotide or the peptide

sequence encoded by Nasp-T are particularly highly conserved

over the full length of the exon (Figure 5E).The Nasp gene

encodes a histone chaperone essential for mouse development

[43], and the Nasp-T exon introduces a peptide-encoding cassette

exon generating a longer version of the Nasp protein. Similar to

the Tra2a poison exon, 6-mers predicting Tra2b binding site

sequences were found throughout the Nasp-T exon, and high

frequency 6-mers mapped closely adjacent to CLIP tags (Figure

S2B). Within mammalian Nasp-T exons multiple Tra2b binding

sites have been conserved. Extremely high levels of Nasp-T exon

inclusion were detected by RT-PCR in the testis and heart. In

gut, muscle and ovary, the Nasp-T exon inclusion isoform was

also preferentially included but in other tissues it was frequently

skipped (Figure 5F).

Efficient splicing activation of the testis-specific Nasp-T
by Tra2b depends on multiple Tra2b binding sites

To experimentally address the function of multiple Tra2b
binding sites in Nasp-T we used a combination of in silico and

experimental analyses, and focused on an upstream portion of the

exon (from positions 117 to 271). Using octamers predictive of

splicing enhancers and silencers [44,45,46], we firstly identified 3

strong putative ESEs (Exonic Splicing Enhancers, ESE1 to ESE3)

which we selected for further analysis, as well as other putative

moderate ESEs (Z score around 4) of which only one designated

ESE4 was further studied (Figure 6A). Each of these putative ESEs

directly overlapped with Tra2b binding sites initially identified

through 6-mers derived from the transcriptome-wide CLIP

analysis.

To experimentally test the need for individual Tra2b binding

sites in splicing regulation, individual sites were mutated within the

minigenes without creating Exonic Splicing Silencer (ESS)

sequences (Figure 6A) [28], and the splicing effect monitored.

Mutation of single Tra2b binding sites had only a minor effect on

Nasp-T splicing inclusion at endogenous cellular concentrations of

Tra2b. However, pre-mRNAs containing double mutations

affecting Tra2b binding sites (M2+M3, M1+M2 and M3+M4)

had strongly reduced Nasp-T exon splicing inclusion compared to

their wild type counterparts at normal endogenous cellular

concentrations of Tra2b (Figure 6B). Mutation of different Tra2b
binding sites within Nasp-T also had distinct outcomes on exon

inclusion, indicating underlying combinatorial effects between

different patterns of Tra2b binding. In particular, mutant M3+M4

reduced exon inclusion levels to 20% of wild type at endogenous

cellular levels of Tra2b, whereas double mutations comprising M2

and M3 reduced Nasp-T exon inclusion to just below 60%

(Figure 6B).

Although they showed decreased exon inclusion at normal

cellular concentrations of Tra2b, each of the double mutated

Nasp-T exons gave at least 80% splicing inclusion after Tra2b
protein was ectopically expressed. This suggested a requirement

for higher levels of ectopic Tra2b protein for splicing inclusion.

To test this, we co-transfected cells with minigenes containing

either wild type Nasp-T exon or the M3+M4 mutant derivative,

and a concentration gradient of Tra2b (Figure 6C). Splicing

inclusion of the wild type Nasp-T exon was already 90% without

over-expression of Tra2b and was maximal after co-transfection

of no more than 30 ng Tra2b expressing plasmid. In contrast,

levels of inclusion of the M3+M4 NaspT exon derivative increased

more slowly over the whole concentration gradient, indicating

decreased splicing sensitivity to Tra2b after removal of just two

binding sites. This is particularly striking since the M3+M4 NaspT

exon retains multiple other Tra2b binding sites (both experi-

mentally confirmed sites in the case of ESEs 1–4, and further

predicted sites throughout the exon shown in Figure S1). We used

EMSAs to directly analyse RNA-protein interactions using both

wild type and mutated versions of the Nasp-T RNA probe

Figure 3. Different protein isoforms of Tra2b can act as specific splicing activators, co-activators, and repressors of a target exons
identified by HITS-CLIP. (A) Efficient protein expression levels of different GFP fusion proteins used in these experiments (upper panel). Levels of
actin were measured in parallel (lower panel). (B)–(J). Upper panels: Bar charts showing percentage splicing inclusion (PSI) of a panel of exons
identified through HITS-CLIP in response to GFP and Tra2b-GFP fusion proteins. All data used to make the bar charts was from at least 3 biological
replicates, and the error bars are shown as standard errors. Lower panels: Representative capillary gel electrophoresis image from each RT-PCR
analysis. Probability (p) values were calculated using an independent two-sample T-test between the PSI levels for cells co-transfected with GFP and
each of the different Tra2b-GFP constructs (* p#0.05, **p#0.01).
doi:10.1371/journal.pgen.1002390.g003
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(Figure 7). While wild type Nasp-T and the single mutant M2

RNA were efficiently shifted, the average size of the M3+M4

RNA-protein complex was only slightly smaller (the average size

of the shifted complexes is indicated by a red asterisk on Figure 7).

Hence even a moderate change in in vitro RNA-protein

interactions translates to a detectable change in splicing inclusion

within cells.

Levels of neuronal Tra2b protein are depleted in a
Nestin-Cre mouse model and are functionally buffered
by the Sfrs10 poison exon

Mice with clearly reduced expression levels of Sfrs10 would be a

prerequisite to enable detection of altered splicing patterns in

Tra2b- targeted transcripts identified by CLIP. Since ubiquitous

Sfrs10 deletion leads to embryonic lethality [19], we generated a

Figure 4. Tra2b CLIP targets bind to full length Tra2b protein. (A) EMSAs of Creb exon 2, Creb exon c and the wild type Nasp-T exon. (B) EMSAs
of Krba1 exon 9, Lin28 exon 2 and the Tra2a poison exon. Electrophoretic Mobility Shift Assays (EMSAs) were carried out with full length Tra2b protein
and short radioactive RNA probes from pre-mRNAs identified by CLIP and which contained predicted Tra2b protein binding sites from the
transcriptome-wide 6-mer analysis. The RNA probes are shown to the right of the gel panels, and the sequences are highlighted for different
categories of 6-mers as in Table S1. Exon sequences are shown in upper case, and any flanking intron sequence in lower case (the Lin28b exon is very
short).
doi:10.1371/journal.pgen.1002390.g004
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neuronal specific Sfrs10-depleted mouse by crossbreeding Sfrs10fl/fl

mice with Sfrs10fl/+ mice carrying the Nestin-Cre transgene

(Nestin-Cretg/+). In Sfrs10fl/fl; Nestin-Cretg/+ offspring the Cre

recombinase would be specifically activated in neuronal and glial

precursor cells from embryonic day 11 [47] to generate animals

with a homozygous Sfrs10 knockout in the developing central

nervous system (CNS).

Homozygous neuronal Sfrs10 mice died immediately after birth

at postnatal day 1 (PND1) whereas heterozygote mice had normal

lifespans. Neuronal specific Sfrs10-depleted embryos showed

severe malformations of the brain including strong dilation of

the third and lateral ventricles as well as degeneration of cortical

structures (Figure 8A, right panel and data not shown) whereas

heterozygous knockout mouse embryos (Sfrs10fl/wt; Nestin-Cretg)

had normal brain morphology (Figure 8A, left panel). This

indicates Tra2b protein is functionally very important for brain

development in the mouse. As the liquid filled ventricles make up

the majority of the whole brain volume, the brain morphology is

heavily altered and the proportion of intact tissue is heavily

reduced. Immunohistochemical analysis of whole brain paraffin-

embedded cross-sections showed strongly decreased expression of

Tra2-b with some Tra2-b positive cell areas in the cortical plate

zone (Figure 8A, right panel). These residual Tra2-b positive cells

likely do not express Cre from the Nestin promoter and are likely of

Figure 5. The Tra2a poison exon and Nasp-T cassette exon are conserved in vertebrates and spliced at high levels of inclusion in the
mouse testis. (A) The structure of annotated alternative Tra2a transcripts (purple) and predicted PCR products (black) are shown above. (B)
Comparative genomic analysis with supporting EST information confirm splicing inclusion of these Tra2a poison exons indicate they are found in
vertebrates as distantly related as humans, mice, zebrafish and frog. (C) Expression of the Tra2a poison exon in different mouse tissues was monitored
using RT-PCR (primers in exons 1 and 4) followed by capillary gel electrophoresis, and a representative capillary gel electrophoresis image is shown.
(D) Multiple Tra2b CLIP tags mapped to a poison exon in the Nasp-T gene. The structure of annotated alternative Nasp transcripts (purple) and
predicted PCR products (black) are shown above. (E) Underneath the Phastcons alignment of the Nasp-T exon from multiple vertebrates is shown. (F)
Incorporation of the Nasp-T exon was monitored by RT-PCR and capillary gel electrophoresis. High levels of splicing inclusion were detected in the
mouse testis, and lower levels of inclusion in other tissues. Multiple CLIP tags mapped to an evolutionarily conserved cassette exon in the Nasp gene.
The Phastcons alignment of the Nasp-T exon from multiple vertebrates is shown. Phastcons analyses in parts (B) and (E) are shown as downloads from
UCSC [69]. The key for both parts (A) and (D) are indicated in (D).
doi:10.1371/journal.pgen.1002390.g005
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non-neuronal origin, or may represent mosaicism of Nestin-Cre

expression. Furthermore, Western blots from whole brain also

demonstrated a clear down-regulation of Tra2-b in neuronal

specific Sfrs10-depleted embryos compared to controls and

heterozygous knockout animals at 16.5 dpc (Figure 8B). In control

animals the Sfrs10 mRNA levels remained largely unchanged

during development (16.5 dpc, 18.5 dpc and PND1) (Sfrs10fl/fl

n = 10; Sfrs10fl/+ n = 6; data not shown).

Expression analysis of whole brain RNA from neuronal Sfrs10-

depleted embryos at 16.5 dpc and 18.5 dpc and mice at PND1

showed clearly reduced Sfrs10 mRNA levels compared with

brains of control littermates (Sfrs10fl/fl, Sfrs10fl/+ or Sfrs10fl/+;

Nestin-Cretg/+) (Figure 8C). Regardless of the developmental stage

the majority of Sfrs10fl/fl pups exhibited somewhat reduced Sfrs10

expression levels compared with heterozygously floxed mice,

which suggested that the integration of the floxed allele has a

slightly negative influence on Sfrs10 expression. Therefore for

statistical analysis the expression levels of splice isoforms of

Sfrs10fl/fl; Nestin-Cretg/+ mice were always compared with Sfrs10fl/+

and not Sfrs10fl/fl mice.

Tra2-b regulates its own expression level via alternative splice

regulation in an autoregulatory feedback-loop. Inclusion of poison

exon 2 into Sfrs10 transcripts introduces a premature stop codon

which leads to a non-functional protein and thus a reduction in

Tra2-b levels [22]. Isoform specific qRT-PCR indicated a highly

significant down-regulation of both individual mRNA splice

isoforms and total length Sfrs10 mRNA in neuronal specific

Sfrs10-depleted mice Sfrs10fl/flNestin-Cretg/+) compared to con-

trols at 16.5 dpc (Figure 8C). In contrast, in heterozygous

knockout animals (Sfrs10fl/+Nestin-Cretg/+) down-regulation of

the functional isoform (2 exon 2) was less effective than for the

non-functional (+ exon 2) isoform indicating the involvement of

the autoregulatory feedback loop which counteracts any decrease

in functional Tra2b protein in neuronal cells.

Tra2b physiologically regulates splicing inclusion of the
Tra2a poison and Nasp-T cassette exons in mouse brain
development

We next set out to determine whether the Tra2a poison exon

and Nasp-T cassette exon were true physiological target exons

regulated by Tra2b in vivo. Correlating with an important

regulatory role for Tra2b protein, splicing inclusion of the poison

exon into the Tra2a mRNA was reduced 3-fold in neuronal Sfrs10-

depleted mouse brains compared to controls at 16.5 dpc

(Figure 8E). Surprisingly, this decrease in poison exon inclusion

could not be detected at later developmental stages like 18.5 dpc

or PND1 (data not shown).

Figure 6. The splicing response to Tra2b is mediated through binding to four independent sites. (A) z-score plot predicting the splicing
control sequences according to [45] in the upstream portion of the Nasp-T cassette exon. Investigated exonic regions with z-scores above the
threshold value for exonic splicing enhancers are labelled ESE1–4. The z-score plots of the wild type Nasp exon is shown in black, superimposed with
z-score plots for each of the point mutants which affected individual ESEs (shown as blue coloured lines, with the changed nucleotide indicated as a
broken line). Individual mutants are shown as M1–M4. Local CLIP tag coverage is shown as black lines, and the relative positions of local 6-mers
identified at a high frequency in the CLIP screen as green lines. (B) Effect of Tra2b on splicing inclusion of different Nasp-T cassette exons (wild type
and mutants) co-expressed in HEK293 cells in the presence of endogenous Tra2b or with constant levels of Tra2b (500 ng, ectopically expressed). (C)
Percentage exon inclusion of the wild type and Nasp-T exon derivative M3+M4 obtained after transfection of increasing levels of each of Tra2b. Error
bars are shown as the standard error of the mean. Probability (p) values were calculated using an independent two-sample T-test between the PSI
levels for cells co-transfected with GFP and Tra2b-GFP (black asterisks), or between endogenous PSI for each of the Nasp-T constructs at endogenous
Tra2b concentrations (just transfected with GFP, red asterisks). P value scores are indicated as * p#0.05 and **p#0.01.
doi:10.1371/journal.pgen.1002390.g006

Figure 7. Point mutants in the Nasp-T exon within candidate Tra2b binding sites are still able to bind to Tra2b. RNA-protein
interactions were monitored by EMSAs. The average position of the slowest migrating complex in the lane containing 10 ng of added Tra2b protein is
indicated by an asterisk, and the RNA probes used were as in Figure 4 but containing the appropriate point mutation.
doi:10.1371/journal.pgen.1002390.g007
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To determine whether low Tra2b levels directly affect the

splicing of the Nasp-T exon, qRT-PCR was carried out on whole

brain RNA of 16.5 dpc and PND1 pups. The levels of the T-exon

isoform of Nasp mRNA (Nasp-T) were 4-fold reduced in brains of

neuronal Sfrs10-depleted mice compared to controls at 16.5 dpc

(Figure 8D) and PND1 (data not shown). Given the 4-fold

reduction of the Nasp-T isoform in Sfrs10-depleted tissue, we

conclude that Tra2b protein is likely to be an important in vivo

activator of Nasp-T exon inclusion during mouse development.

These data correlate a defect in splicing regulation of Nasp-T

and Tra2a with Sfrs10 depletion but do not necessarily imply a

causal relationship, because of the differences in cell types present

after Sfrs10 depletion which result from the physiological

importance of Tra2b for brain development. To address this

further we compared overall patterns of expression of the Nasp and

Tra2a genes in wild type and knockout mice, by quantifying levels

of the somatic Nasp and Tra2a mRNA isoforms. Consistent with no

significant changes in overall Tra2a gene expression resulting from

changes in the cell type population of the knockout brains, no

statistically significant changes in functional Tra2a or Nasp

expression were seen when comparing brain RNA of Sfrs10fl/+

mice with RNA of Sfrs10fl/fl; Nestin-Cretg/+ mice (Figure 8D and

8E). These results are consistent with essentially similar patterns of

Nasp and Tra2a gene expression in the mutant and wild type brains

despite any differences in cellular composition, while in contrast

the Tra2b-regulated splice isoforms from these same genes are

very different between the wild type and mutant mice.

Discussion

Here we have identified (for the first time to the best of our

knowledge) physiological target exons regulated by Tra2b during

mouse development. Identification is based on the criteria of in vivo

cross-linking of endogenous RNAs and proteins, in cellulo

experiments using transfected minigenes and proteins, RNA-

protein interaction assays and genetic analysis using a newly

derived conditional mouse strain which does not express Tra2b
protein in neurons and has significant abnormalities in brain

development. Our analyses reveal important pathways regulated

by Tra2b protein in vivo which likely contribute both to prenatal

death in Sfrs102/2 embryos and also to normal germ cell

development [19]. Nasp protein is a histone chaperone required

for nuclear import of histones at the G1-S phase transition of the

cell cycle, and is essential for cell proliferation and embryonic

survival [43]. Nasp functions in chromatin remodelling after DNA

repair, and links chromatin remodelling to the cell cycle

machinery after S phase [48]. The T exon is also spliced in

embryos, and within the testis alternative splicing inclusion of the

Nasp-T cassette exon generates the testis-enriched tNASP protein

isoform. Timing of tNASP protein expression during male adult

germ cell development [48,49] exactly parallels the expression of

Tra2b protein. The tNASP protein isoform localises to the

synaptonemal complex of meiotic chromosomes where it may help

monitor double strand DNA break repair [43,48,50].

Tra2a and Tra2b are very similar proteins, and are inter-

changeable in our in cellulo splicing assays. Tra2b protein helps

regulate overall Tra2 protein levels through both activating

splicing inclusion of a poison exon into its own Sfrs10 mRNA,

and also activating splicing inclusion of a poison exon into Tra2a

mRNA which encodes Tra2a protein. In vivo experiments

described here show that reduced inclusion of the poison exon

does indeed help buffer the effect of decreased gene dosage in

Sfrs10 heterozygote mice. However, down-regulation of Tra2a

poison exon inclusion in Sfrs102/2 cells does not lead to an

increase in Tra2a mRNA levels sufficient to restore splicing

patterns of Tra2b target exons, perhaps suggestive of unique

functions for the Tra2a and Tra2b proteins. In flies, auto-

regulation of splicing by Tra2 protein of its own pre-mRNA has

been shown to be critical for spermatogenesis, indicating that it

might be a highly conserved feature for germ cells to tightly

maintain expression levels of this class of splicing regulator

[24,25,51]. Since Tra2a regulates Tra2a poison exon in cellulo, it is

likely that it also autoregulates its own mRNA levels in vivo through

activation of this same poison exon.

An important current question is how RNA binding proteins

like Tra2b achieve sequence specificity in target sequence selection

despite having fairly short target sequences [15]. Here we have

found a short consensus binding motif for Tra2b (AGAAGA,

Figure 2A) which matches perfectly with specific motifs obtained

both by classical SELEX analysis [12] and from identification of

Tra2b specific ESEs in various genes [22,29,52,53,54,55,56,57].

Parallel genome-wide mapping showed that Tra2b primarily binds

to exonic sequences. An explanation for exonic enrichment despite

the short binding site would be if Tra2b binds to exons

cooperatively with adjacent exonic RNA binding proteins. In the

case of SMN2 exon 7, the Tra2b binding site is flanked by

cooperative binding sites for SRp30c and hnRNP G [17,53,58].

For Nasp-T and Tra2a there are instead arrays of exonic Tra2b

Figure 8. Tra2b protein levels are drastically reduced in the brains of neuronal specific Sfrs10 knockout mice and correlate with
defects in splicing of the Nasp-T cassette and Tra2a poison exon. (A) Whole brain sections derived from 16.5 dpc Sfrs10fl/wt; Nestin-Cretg (left
panel) and Sfrs10fl/fl; Nestin-Cretg (right panel) stained with antibodies against Tra2b. Brains of heterozygous knockout animals (left panel) appear
normal and Sfrs10 is expressed throughout all cortical layers. Brains of neuronal specific knockout animals (right panel) show a vast dilation of the
lateral ventricles and disturbed cortical patterning. Tra2b expression is not detectable in the majority of intact tissue areas but is clearly retained in
some cells of the cortical plate region. Scale bars represent 200 mm. Abbreviations are mz: marginal zone; cp: cortical plate zone; sp: subplate zone; iz:
intermediate zone; svz: subventricular zone; vz: ventricular zone; lv: lateral ventricle. (B) Western blot analysis indicates that Tra2b expression is
reduced in neuronal specific knockout mice. Proteins were isolated from whole brains of 16.5 dpc embryos and Tra2b was specifically detected by
Western blotting. The Tra2b protein level is drastically reduced in Sfrs10fl/fl; Nestin-Cretg animals compared to controls or heterozygous knockout
animals. b-actin was used as a loading control. The relative levels are shown underneath as a bar chart (a.u. = arbitrary units). (C) Expression of the
Sfrs10 mRNA in different mouse genotypes used in this study. Levels of the Sfrs10 mRNA isoforms in different mouse genotypes were independently
measured by qRT-PCR from whole brain RNA isolated at 16.5 dpc (Sfrs10fl/fl, n = 4; Sfrs10fl/+, n = 5; Sfrs10fl/+; Nestin-Cretg/+, n = 4; Sfrs10fl/fl; Nestin-Cretg/+,
n = 4). Levels of Sfrs10 mRNA isoforms are consistent with use of the poison exon for autoregulation of transcript levels in vivo at 16.5 dpc. Isoform-
specific qRT -PCR for Sfrs10 on whole brain RNA revealed a coordinate downregulation of both the functional (278%) and the non-functional (288%)
isoform in neuronal specific knockout animals at a highly significant level. The decrease of Sfrs10 transcripts was also detectable in heterozygous
knockout animals, in which the functional and non-functional isoform were decreased by 24% and 61%, respectively. (D) Splicing of the Nasp-T
cassette exon is misregulated in Sfrs10fl/fl; Nestin-Cretg/+,mice. Levels of the different mRNA isoforms were measured by qRT-PCR from brain RNA
samples isolated at 16.5 dpc (Sfrs10fl/fl, n = 2; Sfrs10fl/+, n = 3; Sfrs10fl/+; Nestin2Cretg/+, n = 5; Sfrs10fl/fl; Nestin-Cretg/+, n = 2). (E) Splicing of the Tra2a
poison exon is misregulated in Sfrs10fl/fl; Nestin-Cretg/+mice. Levels of the different mRNA isoforms were measured by qRT-PCR from brain RNA
samples (Sfrs10fl/fl, n = 2; Sfrs10fl/+, n = 3; Sfrs10fl/+; Nestin-Cretg/+, n = 5; Sfrs10fl/fl; Nestin-Cretg/+, n = 2). (C–E) Error bars represent the s.e.m. Statistical
significance was monitored using the T-test, and the significance values are as indicated.
doi:10.1371/journal.pgen.1002390.g008
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binding sites. Removal of more than one binding site negatively

affects exon activation by Tra2b, indicating for Nasp-T and Tra2a

adjacent binding and assembly of homotypic Tra2b protein

activation complexes play important roles in splicing activation.

A model of splicing activation for the Nasp-T and the Tra2a

poison exon which depends largely on sole binding of Tra2b
protein might explain why these exons are particularly sensitive to

depletion of Tra2b in vivo compared with SMN2 exon 7 (splicing of

which is not affected after deletion of Sfrs10, and which has a single

Tra2b binding site, Figure S1). The human testis-specific HIPK3-

T exon [50] also requires multiple Tra2b binding sites to enable

splicing activation of a weak 59 splice site in vitro [28], and the

Sfrs10 poison exon also has multiple Tra2b binding sites [22].

Other than Tra2a and Nasp-T, the remaining target exons we

analysed using minigenes here have less dense coverage of Tra2b
binding sites (Figure S1). These remaining exons also responded

less robustly to Tra2b protein expression in vitro in transfected cells,

and it is likely that RNA binding proteins other than Tra2b might

also be more important for their splicing regulation in vivo.

We also found that full lengthTra2b protein activates splicing of

the Nasp-T exon at a lower level through its RS1 and RS2 domains

only (i.e. without the RRM and so without direct RNA binding).

Mechanistically the RS domains of Tra2b might activate splicing

by helping assemble other RS-domain containing splicing

regulators and components of the spliceosome into functional

splicing complexes. Although both RS domains could co-activate

splicing when present together, removal of the RS1 domain

completely disabled Tra2b-mediated splicing activation of the

physiological target exons identified here. The observed functional

importance of RS1 provides a mechanistic explanation why this

N-terminal RS domain structure is maintained for Tra2 proteins

in both vertebrates and invertebrates. Surprisingly Tra2b
molecules without the RS1 domain were not just neutral for

splicing inclusion in cellulo, but for some exons actually functioned

as potent splicing repressors. Since the Tra2bDRS1 isoform

contains a functional RRM sequence, splicing repression could be

due to competitive inhibition through this shorter Tra2b protein

binding to the same RNA targets, but then being unable to

assemble functional splicing complexes with other Tra2b proteins

in the absence of the RS1 domain. Detection of such a competitive

inhibitory function might have been helped by the increased levels

of the Tra2bDRS1 isoform expressed in our experiments. In vivo,

the Tra2b-3 protein which lacks the N-terminal RS1 domain

might also operate as a natural splicing repressor isoform

[20,21,22], depending on its level of expression being enough in

specific cell types or tissues. Tra2bDRS1 actually activates SMN2

exon 7 rather than being a repressor as seen for the physiological

target exons we describe in this report [17]. Although the biology

of SMN2 exon 7 has been an area of controversy in the literature

[59,60], a possible mechanistic explanation for this difference

might be if Tra2b binding to SMN2 exon 7 blocked the action of

an adjacent Exonic Splicing Silencer, rather than directly

activating splicing by itself.

Our analysis shows that the RNA targets identified for Tra2b in

developing adult germ cells can predict patterns of splicing

regulation by Tra2b in the developing brain. However, our data

further suggest that splicing regulation by Tra2b is temporally

restricted during development and also differentially regulated

between various Tra2b targets. This is highlighted by Tra2a

poison-exon splicing, which is affected by neuronal specific Sfrs10

knockout only at a defined developmental stage, while Nasp-T

exon inclusion is perturbed by Sfrs10 knockout in all analyzed

situations. Both the Nasp-T and the Tra2a poison exon are

biologically important: they are conserved in all vertebrates for

which genome sequences are available; have known functional

roles; and like other phylogenetically conserved exons are spliced

at high levels in at least some tissues [4,37,41]. The tNASP protein

has been identified immunologically after the leptotene stage of

meiosis in both rabbits and mice, indicating that this exon is

meiotically expressed in both species [48,49]. In addition, although

a high frequency of alternative splicing events in the testis are

species-specific [61], the high conservation of binding sites in the

Tra2a poison-exon suggests regulation by Tra2b has been

conserved since the radiation of vertebrates. Overall our data

indicate maintenance of ancient patterns of splicing regulation

controlled by this RNA binding protein, consistent with its

observed key role in development [19].

Materials and Methods

Detection of RNA and proteins in different mouse tissues
mRNA levels were detected in total RNA isolated from different

mouse tissues using RT-PCR and standard conditions. RT-PCR

products were analysed both by normal agarose gel electrophoresis

(not shown) and capillary gel electrophoresis [62,63]. Sfrs10

primers were specific to sequences in exons 1 and 4 respectively

(59-GAGCTCCTCGCAAAAGTGTG-39 and 59-CAACAT-

GACGCCTTCGAGTA-39). Tra2b protein was detected using

immunohistochemistry in the mouse brain as previously described

[64] and in the mouse testis using Abcam polyclonal Tra2b
antibody ab31353 [28] as previously described [26].

Different Tra2a mRNA isoforms mRNA were detected by

multiplex RT-PCR using Tra2aF (59-GTTGTAGCCGTCGC-

CTTC T-39), Tra2aB (59-TGGGATTCAGAATGTTTGGA-39)

and Tra2a poison (59-TTCAAGTGCTTCTATCTGACCAA-39).

Different Nasp-T mRNA isoforms were detected by RT-PCR

using Nasp-TF (59-AATGGAGTGTTGGGAAATGC-39), Nasp-

TB (59-TTGGTGTTTCTTCAGCCTTG-39) and Nasp-TC (59-

TGCTTTGAAGTCGGTTCAACT-39).

Hprt expression was detected using primers HrptF (59-

CCTGCTGGATTACATTAAAGCACTG-39) and HprtR (59-

GTCAAGGGCATATCCAACAACAAAC-39).

HITS-CLIP
HITS-CLIP was performed as previously described [30] using

an antibody specific to Tra2b [65]. The specificity of the antibody

to Tra2b was confirmed by the experiment shown in Figure S3, as

well as the additional characterization already described [65]. In

short, for the CLIP analysis mouse testis was sheared in PBS and

UV crosslinked. After lysis, the whole lysate was treated with

DNase and RNase, followed by radiolabelling and linker ligation.

After immunoprecipitation with purified antisera specific to Tra2b
[65], RNA bound Tra2b was separated on SDS-PAGE. A thin

band at the size of 55 kDa (Tra2b migrates at around 40 kDa and

MW of 50 nt RNA is about 15 kDa) was cut out and subject to

protein digestion. RNA was recovered and subject to sequencing

which was carried out on the Newcastle University Roche 454 GS-

FLX platform. Mapping was done with Bowtie [66], allowing for

two mismatches (parameter –v 2). 297070 reads were processed, of

which 177457 (59.74%) aligned successfully to the mouse genome

(Mm9). 74476 (25.07%) failed to align, and 45137 (15.19%) reads

were suppressed due to multiple hits on the mouse genome. K-mer

analysis was carried out using custom written scripts in Python.

Briefly, we calculated the frequency of occurance of each possible

6-mer sequence in the following: our CLIP dataset, the mouse

genome (mm9) and in the mouse testis transcriptome (http://www.

ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc = GSM475281). The

genome and transcriptome corrected frequencies were obtained
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by subtracting the background (genome and transcriptome

frequencies respectively) from the signal (frequency in CLIP

dataset). CLIP reads were filtered to remove duplicates

including overlapping reads. Statistical significance was deter-

mined using a Chi-squared test. The weblogo was derived from

tags containing a GAA sequence by analysing the sequence

composition surrounding the fixed sequence, using custom

written scripts to generate an input for the freely available

program weblogo (http://weblogo.berkeley.edu/).

Generation of neuronal specific Sfrs10 knock-out mice for
in vivo splicing analysis

In our in vivo splicing study we utilized a previously established

Sfrs10 mouse model on pure C57BL/6 background as described

[19]. Genotyping was performed using tail DNA according to

established protocols [19]. To induce a conditional Sfrs10 knock-

out in the central nervous system we crossbred Sfrs10fl/fl mice with

a Nestin-Cretg/+ mouse line. These mice express Cre recombinase

under control of the rat nestin (Nes) promoter and enhancer [47].

Therefore Cre recombinase is expressed in neuronal and glia cell

precursors from embryonic day 11 as well as in neurogenic areas

of the adult brain [47,67]. For our analyses the presence of the

Nestin transgene was determined by a standard PCR using the

oligonucleotides 59–CGCTTCCGCTGGGTCACTGTCG-39 (for-

ward) and 59–TCGTTGCATCGACCGGTAATGCAGGC-39 (re-

verse) at an annealing temperature of 58uC producing a 300 bp

amplicon.

Quantitative analysis of Sfrs10 expression and Tra2b
targeted transcripts

Whole brain RNA was isolated from 16.5 dpc, 18.5 dpc and

PND1 mice using the RNeasy Lipid Tissue Mini Kit (Qiagen,

Hilden, Germany). RNA concentration was determined by

Quant-iT RiboGreen RNA Reagent and Kit (Invitrogen,

Darmstadt, Germany) and equal amounts of RNA were used for

first strand cDNA synthesis utilizing the QuantiTect reverse

Transcription Kit (Qiagen, Hilden, Germany). Quantitative real-

time PCR was carried out using the Roche LC FastStart DNA

Master SYBR green Kit (Roche, Mannheim, Germany) on the

Roche LightCycler 1.5. For realtime quantification total Sfrs10

transcripts were amplified using the oligonucleotides 59-TA-

GAAGGCATTATACAAG-39 (forward) and 599-CTCAACC-

CAAACACGC-39 (reverse) at 3 mM MgCl2 and an annealing

temperature of 63uC producing a 186 bp bp amplicon. To

quantify Sfrs10 isoforms specifically we used the oligonucleotides

59-AGAACTACGGCGAGCGGGAATC-39 (forward) and 59-

CCTTGTATAATGCCTTCTAGAACTTCTTC-39 (reverse) for

the functional isoform and 59-GAACTACGGCGAGCGGGT-

TAATG-39 (forward) and 59-CAAGTGGGACTTCTGGTCT-

GATAATTAGC-39 (reverse) for the non-functional isoform. Both

were run at annealing temperatures of 64uC resulting in amplicons

of 191 bp and 161 bp, respectively. For the quantification of

different target splice variants single isoforms were amplified

separately. For the Nasp-T exon containing isoform the oligonu-

cleotides 59-GGAGTGCATGTAGAAGAGG-39 (forward) and

59-CGTCATAAACCTGTTCTCTC-39 (reverse) were used at

1 mM MgCl2 and annealing at 65uC producing a 115 bp

amplicon. The somatic isoform of Nasp was amplified using 59-

AATGGAGTGTTGGGAAATGC-39 (forward) and 59-CTG-

AGCCTTCAGTTTCATCTAC-39 (reverse) at 3 mM MgCl2,

62uC annealing while producing a product of 118 bp length. The

functional Tra2a transcript was amplified using the oligonucleo-

tides 59-GTTGTAGCCGTCGCCTTCT-39 (forward) and 59-

GAGACTCTCTGCCCTCGAAG-39 (reverse) at 3 mM MgCl2
and 66uC annealing resulting in a 155 bp product. For the poison

exon-containing isoform we used the same forward oligonucleo-

tide as for the functional isoform and 59-CTTGATTTATCTTC-

CACATTCTTGG-39 (reverse) at 3 mM MgCl2 and 64uC
annealing producing a 206 bp amplicon. All quantification data

was normalized against Gapdh. Amplification was performed using

the oligonucleotides 59-GGCTGCCCAGAACATCATCC-39

(forward) and 59-GTCATCATACTTGGCAGGTTTCTC-39

(reverse) at 3 mM MgCl2 and 63uC annealing producing a

169 bp amplicon. Agarose gel electrophoresis and basic melting

curve analysis was performed to confirm PCR product specificity.

For quantification a dilution series of cDNA was used to generate a

standard curve for each isoform. Therefore the cycle threshold was

plotted versus the logarithm of the concentration and the standard

curve was determined by linear regression. This curve was then

utilized to calculate the template concentration of unknown

samples. All samples were measured in duplicates. Individuals of a

genotype were averaged using the arithmetic mean. Fluctuations

are displayed by the standard error of the mean, and these are

indicated on the bar charts by error bars. The significance of

differences between genotypes was verified using student’s t-test.

Minigene splicing experiments
Candidate alternatively spliced exons identified by HITS-CLIP

and approximately 240 nucleotides of intronic flanking region at

each end were amplified from mouse genomic DNA with the

primer sequences given below. PCR products were digested with

the appropriate restriction enzyme and cloned into the Mfe1 site in

pXJ41 [68], which is exactly midway through the 757 nucleotide

rabbit b-globin intron 2. PCR products were made using the

following primers:

Krba1L: 59-AAAAAAAAGAATTCtggggatcctagcaggtaca -39

Krba1R: 59-AAAAAAAAGAATTCccaaggatgtgataagcagga -39

CREB2U: 59-AAAAAAAACAATTGgggaccattcctcatttcct -39

CREB2D: 59-AAAAAAAACAATTGaaggcagttgtcatcattgc -39

LIN28F: 59-AAAAAAAAGAATTCccagcctggtctttaagagagt -39

LIN28B: 59-AAAAAAAAGAATTCcatacagtgaattatttgaaaacacc

-39

PankF: 59-AAAAAAAAGAATTCcacatctgtgggtgcacttt -39

PANKR: 59-AAAAAAAAGAATTCttcaaaggactatttggttaacagc -

39

FABP9F 59-AAAAAAAACAATTGtggcattcctttctcacctt -39

FABP9R 59-AAAAAAAACAATTGgagccttcctgtgtgggtat -39

CREBGammaF: 59-AAAAAAAACAATTGcaaacttctagatggta-

gaatgatagc -39

CREBGammaR: 59-AAAAAAAACAATTGtagccagagaacggaac-

cac -39

NaspTF: 59-AAAAAAAACAATTGtccttggaggacttctgttttc-39

NaspTR: 59-AAAAAAAACAATTGggcatgcctgcttaagtgta-39

Tra2aF: 59-AAAAAAAAGAATTCattagggactaggatggaacatga -

39

Tra2aR: 59-AAAAAAAAGAATTCgcatgatggcacatgacttt-39

ESE mutations within Nasp-T were made by overlap PCR with

the additional primers NASPM1-S (59-GGGTGGACGATAA-

GACAT GG-39) and its complementary primer (59-CCATG-

TCTTATCGTCCAC CC-39); NASPM2-S (59-GTGAGCCT-

CAAGAGTAGCTCC-39) and its complementary primer 59-

GGAGCTACTCTTGAGGCTCAC-39; NASPM3-S (59-GAAT-

CCTCTGCATAGGCAAAAG-39) and its complementary primer

(59-CTTTTGCCTATGCAGAGGATT C-39); NASPM4-S (59-

GGACTGACTCAAGTTGAGGTCGC-39) and its complemen-

tary primer (59-GCGACCTCAACTTGAGTCAGTCC-39).
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Analysis of splicing of pre-mRNAs transcribed from minigenes

was carried out in HEK293 cells as previously described using

primers within the b-globin exons of pXJ41 [29]. Because of the

length of the regulated exons, additional internal primers were

included in multiplex to detect inclusion of the Nasp-T cassette

exon (59-TGCTTTGAAGTCGGTTCAACT-39) and Tra2a poi-

son exon (59-TTCAAGTGCTTCTATCTGACCAA-39).

EMSAs
EMSAs were carried out as previously described [28] using full

length Tra2b protein and in vitro translated RNA probes made

from constructs containing amplified regions of the mouse genome

cloned into pBluescript. Regions of the mouse genome were

amplified using the following primers:

Nasp1TraGSF 59-AAAAAAAAGGTACCGAAGTGGAGAA-

GGGTGGAAG-39

Nasp1TraGSB 59-AAAAAAAAGAATTCGAAGCGACCTC-

ATCTTCATTC-39

Krba1GSF 59-AAAAAAAAGGTACCGACTCCTCCCCAC-

CCTAGTC-39

Krba1GSR 59-AAAAAAAAGAATTCGCCCAGCCATCTT-

CTACCTT-39

Tra2aGSF 59-AAAAAAAAGGTACCTTAATGTTCGTGA-

AGAAATTGAAGAG-39

Tra2aGSR 59-AAAAAAAAGAATTCTCATTAGCCTTCT-

TTTATCTTGATTTA-39

Lin28GSF 59-AAAAAAAAGGTACCCTTGAACTCTCTGA-

TTTTAGGTTCTTC-39

Lin28GSR 59-AAAAAAAAGAATTCAACAGACTAACCTG-

GGGCTGA-39

CrebcF 59-AAAAAAGGTACCTCATTGTTCTAGGTGCT-

ATCAAAGG-39

CrebcR 59-AAAAAAGAATTCCTGACATATTTTATTTT-

CTCATAGTAT GTCTCTC-39

Creb2F 59-AAAAAAGGTACCGTAACTAAATGACCATG-

GAATCTGGAGCA-39

Creb2R 59-AAAAAAGAATTCCTGGGCTAATGTGGCAA-

TCTGTGG-39

Supporting Information

Dataset S1 BED file containing the Tra2bCLIP tag sequences and

their location in the mouse genome (mm9). This bed file can be saved

and added as an optional track on the UCSC mouse genome browser

(http://genome.ucsc.edu/). To load this BED file on the UCSC

genome browser, use the ‘‘manage custom tracks’’ button under

genomes. Alternatively, the bed file can be visualised by up loading the

link http://research.ncl.ac.uk/ElliottGroup/UCSC/hub.txt into the

My Hubs textbox in the UCSC Track Hubs menu.

(TXT)

Figure S1 Sequence of all the exons analysed using minigenes

and some known Tra2b target exons. The Tra2b binding sites

predicted from the k-mer analysis are coloured as indicated in

Table S1.

( )

Figure S2 Multiple Tra2b binding sites are phylogenetically

conserved in Tra2a poison exons and Nasp-T exons. (A) Sequence of

the Tra2a poison exon from mouse. (B) Sequence of Nasp-T exon

from mouse. Nucleotides in red are conserved in all vertebrates

analysed (mouse, frog, rabbit, human, rat, cow, orang-utan, chimp,

macaque, marmoset, guinea pig, dog, horse, elephant, opossum,

lizard, zebrafinch, tetraodon, stickleback, medaka, chicken).

Nucleotides conserved in all mammals are shown in blue. All other

nucleotides are shown in black. The Tra2b binding sites predicted

from the k-mer analysis are shaded as indicated in Table S1, and the

positions of CLIP tags are underlined (note that some of these

underlined regions correspond to multiple overlapping CLIP tags

which have been joined in this figure).

( )

Figure S3 Experiment to confirm the specificity of the polyclonal

antisera used for CLIP analysis. HEK293 cells were transfected with

plasmids expressing the indicated proteins, proteins isolated and

analysed by SDS-PAGE and Western blotting. The same blot was

probed sequentially with an affinity purified antisera raised against

Tra2b [65] and then with a polyclonal specific for GFP to detect

expression of the fusion proteins. The affinity purified a-Tra2b
antisera detected a single band in HEK293 cells corresponding to

endogenous Tra2b protein, and also the Tra2b-GFP fusion protein.

No recognition of either Tra2a or Tra2bDRS1-GFP was observed,

indicating that this antisera is highly specific.

(TIF)

Table S1 Properties of the 30 most frequently retrieved 6-mers

in the Tra2b CLIP tags. The 6-mers are ordered from the most

frequently recovered at the top of the table (AGAAGA) to the 34th

most frequently recovered 6-mer at the bottom (GAAGCT). The

6-mers are arranged in colour blocks of 5 according to their

frequency of retrieval, and compared and corrected with their

frequencies in both the total mouse genome and mouse testis

transcriptome. The same colour code of the different 6-mer

categories are also used to illustrate the occurrence of these 6-mers

within the Tra2b target exons in Figures S1 and S2.

(DOC)

Table S2 List and properties of all 6-mers recovered by Tra2b
CLIP above background levels.

(XLSX)

Table S3 Top functions associated with Tra2b-bound mRNAs

determined from Ingenuity Pathway Analysis (IPA).

(DOCX)
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