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Abstract  

 

 
This research, as a part of the Nature in Engineering for Monitoring the Oceans 

(NEMO) project, investigated bio-inspiration to improve the performance of Unmanned 

Underwater Vehicles (UUVs). Initially, the capabilities and performance of current 

AUVs were compared with Biological Marine Systems (BMSs), i.e. marine animals 

(Murphy & Haroutunian, 2011). This investigation revealed significant superiority in 

the capabilities of BMSs which are desirable for UUVs, specifically in speed and 

manoeuvring.  

Subsequently, an investigation was carried out on BMSs to find means to make use 

of their superior functionality towards engineering improved UUVs. It was discovered 

that due to a mismatch between the purpose of each species evolution and the desired 

mission of an UUV, all desired characteristics are not evident in a single species. 

Moreover, due to the multi-functionality of biological systems, it is not possible to 

independently study each configuration. Therefore, an holistic approach to study BMSs 

as a system with numerous configurations was undertaken. 

An evolutionary search and selection algorithm was developed to obtain the myriad 

of biological information and adjust them to engineering needs (Haroutunian & 

Murphy, 2012). This Optimum System Selector (OSS) was implemented to output 

aspects of the appropriate design combination for a bio-inspired UUV, based on its 

specified mission. The OSS takes into account the energetic cost of the proposed 

combination as well as the trade-off between size, speed and manoeuvrability. 

Appreciating the uncertainty in existing measured biological data, the developed code 

was successfully verified in comparison with BMSs data.  

Energetic cost of transport is a key factor in selecting a design combination based on 

desired missions. This is key to the accuracy of the algorithm. Therefore, in another 

essential research theme, a sophisticated study has been carried out on the 

understanding, calculating, predicting and comparison of various biological and 

engineered underwater systems energetics (Phillips et al., 2012). 

The results of the OSS compared with existing AUVs, showed improvements in the 

overall capabilities. Therefore, this method is an excellent guide to transform complex 

biological data for the future design and development of UUVs.  

 

  



ii 

 

Acknowledgment 

 

NEMO was a collaboration between Newcastle University (NCL), University of 

Southampton (UoS) and the National Oceanography Centre (NOC) and was sponsored 

by the Engineering and Physical Sciences Research Council (EPSRC) - Funding 

reference: EP/F066767/1. 

Hereby, I would like to thank all the members of the NEMO team for their guidance 

and support. My special thanks to my supervisor Dr Alan J Murphy for selfless 

mentoring and support, to Professor Gwyn Griffiths for valuable knowledge and to Dr 

Alexander Phillips for all the brainstorming during my research. 

 

  

  



iii 

 

Table of Contents 

Chapter 1. Literature Review: Research background, state of the art of Autonomous 

Underwater Vehicles and a history of marine bio-inspiration .......................................... 1 

1.1 Introduction ........................................................................................................ 1 

1.2 Ocean operations and the state of the art of Underwater Vehicles..................... 2 

1.2.1. Engineering Challenges .............................................................................. 4 

1.3 Nature as a source of inspiration and the research motivation ........................... 5 

1.4 Studying marine animals and marine bio-inspiration timeline........................... 7 

1.4.1. Biological studies ........................................................................................ 7 

1.4.2. Specific biological features ......................................................................... 8 

1.4.3. Biological comparisons ............................................................................... 8 

1.4.4. Hydrodynamics and locomotion of BMSs .................................................. 9 

1.4.5. The design, build and investigation of Biomimetic examples based on 

marine species ............................................................................................................ 9 

1.4.6. Bio-inspired investigation ......................................................................... 11 

1.5 Research Motivation: The developments of Bio-inspiration and marine animals 

as a possible source of inspiration to improve the performance of AUVs .................. 12 

1.6 The rationale behind bio-inspiration for a new generation of AUVs ............... 14 

1.7 Aims and Objectives of the research ................................................................ 14 

1.8 Summary of Thesis Contribution ..................................................................... 15 

1.9 Synopsis of the methodology ........................................................................... 15 

1.10 Novelty and main achievements ....................................................................... 17 

Chapter 2. Nature and Engineering Data Collection and Manipulation ..................... 19 

2.1 Collecting data from literature.......................................................................... 19 

2.1.1 AUV data collection .................................................................................. 20 

2.1.2 Biological marine systems data collection ................................................ 22 

2.2 A general challenge in bio-inspiration ............................................................. 22 

2.2.1 Taxonomic coding ..................................................................................... 26 

2.3 Engineering Dissection ..................................................................................... 27 

2.3.1 A few considerations regarding “Engineering dissection” ....................... 28 

2.3.2 Presenting the dissection results................................................................ 29 

2.4 AUV vs. BMS mass breakdown ....................................................................... 36 

2.5 Fat Specific Energy measurement .................................................................... 39 

2.6 Discussion......................................................................................................... 40 



iv 

 

Chapter 3. A series of comparisons between BMSs and AUVs ................................. 42 

3.1 Diversity of the body forms .............................................................................. 42 

3.1.1 AUVs body shapes .................................................................................... 43 

3.1.2 The rational for a unified body shape for BMSs ....................................... 44 

3.1.3 Using the tri-axial ellipsoid model to compare the body forms of BMSs 

and AUVs ................................................................................................................ 49 

3.2 Speed and Agility ............................................................................................. 53 

3.2.1 Different speeds and speed ranges in BMSs ............................................. 55 

3.2.2 Comparing the optimum speed of BMSs and AUVs ................................ 59 

3.2.3 Comparing the maximum speed of BMSs and AUVs .............................. 66 

3.2.4 The effect of the Reynolds Number .......................................................... 68 

3.3 Depth Capabilities ............................................................................................ 70 

3.4 Manoeuvrability ............................................................................................... 75 

3.4.1 Comparing the turning radius of BMSs and AUVs .................................. 77 

3.5 Energetics ......................................................................................................... 79 

3.6 Conclusion ........................................................................................................ 81 

Chapter 4. Energetics in detail .................................................................................... 83 

4.1 Cost Of Transport ............................................................................................. 83 

4.2 Components of Cost Of Transport ................................................................... 92 

4.2.1 Hotel load .................................................................................................. 93 

4.2.2 Propulsion power .................................................................................... 100 

4.3 Range and endurance ...................................................................................... 103 

4.4 Conclusion ...................................................................................................... 109 

Chapter 5. Bio-Inspired Propulsion .......................................................................... 110 

5.1 An estimate of the drag of BMSs ................................................................... 110 

5.1.1 Adjusting the calculated drag for the BMSs ........................................... 113 

5.2 Calculating components of the total drag ....................................................... 113 

5.2.1 Bare body drag ........................................................................................ 113 

5.2.2 Control surfaces (or fin) drag .................................................................. 117 

5.3 Definition of efficiency .................................................................................. 119 

5.3.1 Efficiency considerations ........................................................................ 123 

5.4 Estimate of        .......................................................................................... 129 

5.5 An estimate of        ................................................................................... 131 

5.5.1 Estimating the tailbeat frequency of BMSs ............................................ 135 



v 

 

5.6 Conclusions .................................................................................................... 137 

Chapter 6. The trade-off between Manoeuvrability and upright stability ................ 140 

6.1 A formula for turning radius of BMSs ........................................................... 141 

6.2 Conclusions of the comparison of biological and engineered system 

performance ............................................................................................................... 144 

Chapter 7. Implementing Bio-inspiration ................................................................. 145 

7.1 Mission definition for Underwater Vehicles .................................................. 146 

7.2 Bio-inspired AUV design ............................................................................... 148 

7.3 The concept of the Optimum System Selector ............................................... 149 

7.3.1 The Missions characteristics ................................................................... 151 

7.3.2 The decision maker ................................................................................. 152 

7.3.3 The Output .............................................................................................. 153 

7.3.4 A note on breeding and mutation within the GA .................................... 155 

7.4 The details of the decision maker within the OSS ......................................... 156 

7.4.1 Mass and payload .................................................................................... 157 

7.4.2 Speed:     and      ............................................................................ 158 

7.4.3 Energetics:        , Required power,           and      ............... 161 

7.4.4 Manoeuvrability:      .......................................................................... 162 

7.5 A note on stability, depth and future work ..................................................... 162 

Chapter 8. The Optimum System Selector in action ................................................ 164 

8.1 OSS validation ................................................................................................ 165 

8.2 An important note on normalising the components of the Fitness Function .. 169 

8.3 OSS output vs. AUTOSUB6000 .................................................................... 172 

8.4 OSS Discussion .............................................................................................. 174 

Chapter 9. Conclusions and recommendations for future work ............................... 176 

9.1 Novelties and Conclusions ............................................................................. 176 

9.1.1 Comparing various performance aspects of different BMSs and AUVs 176 

9.1.2 BMSs bodies considered as tri-axial ellipsoids ....................................... 177 

9.1.3 Speed comparison ................................................................................... 177 

9.1.4 Energetics: Cost Of Transport (COT), endurance and range .................. 177 

9.1.5 Calculating drag for BMSs and definition of efficiency for BMSs leading 

to the introduction of the  value ............................................................................ 180 

9.1.6 Manoeuvrability of flexible bodies ......................................................... 181 

9.1.7 The development of the Optimum System Selector (OSS) .................... 181 



vi 

 

9.2 Impact of the research and Recommendations for future work ..................... 182 

References ..................................................................................................................... 184 

Database References .................................................................................................. 196 

 

 

 

 

 

 

 

 

 

 

 

  



vii 

 

Table of Contents for the Appendices 

Appendix 1. BMSs and AUVs databases ................................................................. 204 

Appendix 1.1. The Taxonomy table ........................................................................ 205 

Appendix 1.2. BMSs’ Database .............................................................................. 218 

Appendix 1.3. AUVs’ Database .............................................................................. 265 

Appendix 1.4. AUVs’ Mission Database ................................................................ 270 

Appendix 2. Publications ......................................................................................... 293 

Appendix 2.1. Using Bio-Inspiration to Improve Capabilities of Underwater 

Vehicles……………………………………………………………………………..294 

Appendix 2.2. Nature in Engineering for Monitoring the Oceans: Comparison of the 

energetic costs of marine animals and AUVs............................................................ 307 

Appendix 2.3. Mission based Optimum System Selector for Bio-inspired Unmanned 

Untethered Underwater Vehicles .............................................................................. 340 

  



viii 

 

List of Figures 

Figure 1.1. Alister REA AUV (AUVAC, 2010)………………………………. 3 

Figure 1.2. SeaOtter AUV (AUVAC, 2010)…………………………………... 3 

Figure 1.3. AUV62-MR (SAAB, 2014)……………………………………….. 3 

Figure 1.4. Lamprey-like prototype (Ayres et al., 2000)……………………… 10 

Figure 1.5. Robotuna (Science museum, 2014)……………………………….. 10 

Figure 1.6. Robopike (AUVAC, 2010)………………………………………... 10 

Figure 1.7. AquaPenguin by Festo (AUVAC, 2010)………………………….. 10 

Figure 1.8. Subsea Glider (AUVAC, 2010) 11 

Figure 1.9. Aqua Jelly by Festo (AUVAC, 2010) 11 

Figure 2.1. An example of chord and span measured for the control surfaces 

of BMSs as mentioned in table 2.2 and note 6 of the same 

table...……………………………………………………………… 25 

Figure 2.2. Side, Front and Top view of the Gurnard prior to dissection with 

the main dimensions illustrated on the body……...………………. 29 

Figure 2.3. Dissected Whiting ……………………………………………….... 29 

Figure 2.4. Pie chart of the whiting mass distribution………………………… 30 

Figure 2.5. Numerated dissected Gurnard body parts used it table 2.6....…...… 32 

Figure 2.6. Pie chart of the gurnard mass distribution………………………… 32 

Figure 2.7. Pie chart of the finback whale mass distribution………………….. 34 

Figure 2.8. Pie chart of Delphin AUV mass distribution……………………… 37 

Figure 2.9. Bar chart comparison of masses of available BMSs and AUVs….. 38 

Figure 2.10. A presentation of the generic design of BMSs represented by a tri-

axial ellipsoid………..…………………………………………….. 37 

Figure 3.1. The log-log plot of actual mass of BMSs vs. the mass calculated 

based on a tri-axial ellipsoid...…………..……………………….... 44 

Figure 3.2. Log-log plot of actual mass of BMSs vs. calculated mass based on 

a tri-axial ellipsoid………………………………………………… 47 

Figure 3.3. Log-log plot of actual mass of AUVs vs. calculated mass based on 

a tri-axial ellipsoid………………………………………………… 48 

Figure 3.4. Length vs. equivalent diameter for BMSs with various body 

types…………………………………………………………………….. 50 

Figure 3.5. Length vs. equivalent diameter for AUVs with various body  



ix 

 

types…………………………………………………………………….. 44 

Figure 3.6. Various swimming modes of BMSs..………………………….….. 58 

Figure 3.7. Absolute optimum speed capability of AUVs vs. BMSs. The red 

is the highest value of all AUVs in the database…………….……. 60 

 Figure 3.7.1 Absolute optimum speed capability of BMSs represented by 95% 

confidence ellipsoids………………...……………….…………… 61 

 Figure 3.7.2 Absolute optimum speed capability of AUVs represented by 95% 

confidence ellipsoids……………………………………………… 62 

Figure 3.8. Length specific optimum speed capability of AUVs vs. BMSs…... 63 

 Figure 3.8.1 Relative optimum speed capability of BMSs represented by 95% 

confidence ellipsoids……………………………………………… 64 

 Figure 3.8.2 Relative optimum speed capability of AUVs represented by 95% 

confidence ellipsoids……………………………………………… 65 

Figure 3.9. Absolute speed capability for AUVs and BMSs……...………..…. 66 

 Figure 3.9.1. Maximum speed capability represented by 95% confidence 

ellipsoids…………………………………………………………... 67 

Figure 3.10. Length specific maximum speed capability of AUVs vs. BMSs..... 67 

 Figure 3.10.1 Maximum relative speed capability represented by 95% 

confidence ellipsoids…………………………………………….... 68 

Figure 3.11. Various Re ranges for AUVs and BMSs at their optimum and 

Maximum speeds…………………………………………………. 69 

Figure 3.12. Depth range as a function of mass (Log-Log graph) comparison of 

BMSs and AUVs........................…......................................................... 71 

Figure 3.13. Depth range as a function of mass (Log-Log graph) comparison of 

BMSs and AUVs…………...………………………………...……….… 72 

Figure 3.14. Depth range as a function of mass (Log-Log graph) comparison of 

BMSs and AUVs……………………………………………..…………. 73 

Figure 3.15. Photo to measure the body flexibility of the gurnard…………...… 76 

Figure 3.16. The correlation between body length and Yaw radius in AUVs..… 76 

Figure 3.17. Length specific Yaw radius (      
) or turning radius per unit 

length of AUVs and BMSs…...……………………………………….... 78 

Figure 3.18.     for various BMSs……...……………..……………………… 79 

Figure 3.19. COT comparison of AUVs and BMSs……………………………. 81 

Figure 4.1. Typical Cost of Transport vs. speed plot of a BMS based on  



x 

 

aerobic metabolism………………...……………………………… 85 

Figure 4.2. Q10 values as a function of water Temperature…………...……… 88 

Figure 4.3. Semi-log plot of total COT vs. Reynolds number………….……... 89 

Figure 4.4. Total power vs. Reynolds Number for BMSs and AUVs………… 91 

Figure 4.5. Mass specific total power vs. Reynolds Number for BMSs and 

AUVs……………………………………………………………… 92 

Figure 4.6. Comparison of various formulas (regression lines) for Hotel load 

as a function of Mass……………………………………………… 95 

Figure 4.7. Hotel load as a function of mass for various BMSs and AUVs…... 97 

 Figure 4.7.1 Hotel load as a function of mass for various BMSs and AUVs 

with regression lines only extended within the size range of each 

group of BMSs…………………………………………………….. 98 

Figure 4.8. Mass specific hotel load for BMSs and AUVs…………………… 99 

Figure 4.9. Total COT, base COT corresponding to Hotel load (  ) and net 

COT corresponding to propulsion power and as a function of 

absolute speed [m/s]……………………………………………… 100 

Figure 4.10. The propulsion power of various BMSs and AUVs at their Re....... 101 

Figure 4.11. The mass specific propulsion power of various BMSs and AUVs 

at their Re………………………………………………………… 102 

Figure 4.12. Mass specific energy content vs. total length for BMSs and 

AUVs……………………………………………………………… 107 

Figure 4.13. Endurance as a function of length specific speed for BMSs (blue 

circles) and AUVs (red circles)…..……………………………….. 108 

Figure 5.1. Comparing    values calculated using ITTC57 formula vs. 

Prandtl-von Karman formula 115 

Figure 5.2. CFD results of the k value for spheroids and tri-axial Ellipsoid...... 116 

Figure 5.3. Comparison of power delivery in engineered vehicles and BMSs... 120 

Figure 5.4.   values for Various BMSs as a function of relative speed……...... 125 

 Figure 5.5.1   values for various fish, shark and a penguin as a function of 

relative speed with bubbles representing the mass……………..... 126 

 Figure 5.5. 2   values for various fish, shark and a penguin as a function of Re 

with bubbles representing the mass………………………………. 127 

Figure 5.6.   values for various marine mammals as a function of relative 

speed (A) and Reynolds Number (B) with bubbles representing the 

 

 



xi 

 

mass……………………………………………………………………….. 128 

Figure 5.7.      calculated from Equation 5.19 vs. results from Section 5.3.... 131 

Figure 5.8.   at maximum speed for BMSs as a function of relative speed…... 134 

Figure 5.9.   at maximum speed for BMSs as a function of relative speed for 

Subcarangiforms and Carangiforms(A) and Thunniform and the 

turtle (B)………………………………………………..…………. 135 

Figure 5.10. Tail or flipper beat frequency as a function of relative speed for 

various groups of BMSs…………………..………………………. 136 

Figure 6.1. FM as a function of TL for various groups of BMSs……………... 143 

Figure 7.1. Simple algorithm to find best biological option…………...……… 149 

Figure 7.2. The algorithm modified for the OSS………………...……………. 151 

Figure 7.3.      as a function of total length for various species…………….. 159 

Figure 7.4.      as a function of total length for various species………..…... 160 

Figure 8.1. A screenshot of the mission input page within the OSS………..… 165 

Figure 8.2.      calculated by the OSS vs. the values from literature for 

various BMSs used as the first generation…..……………………..  167 

Figure 8.3.      calculated by the OSS vs. the values from literature for 

various BMSs used as the first generation………………….……... 167 

Figure 8.4.       calculated by the OSS vs. the values from literature for 

various BMSs used as the first generation………………….…….. 168 

Figure 8.5.          
  calculated by the OSS vs. the values from literature 

for various BMSs used as the first generation…………………….. 169 

Figure 8.6. The Fitness Function of the three best individuals plotted at each 

iteration. A is when the normalised fitness is constant and B when 

it changes at each iteration with the data range…………….……... 170 

Figure 8.7. The Fitness Function of the three best individuals plotted at each 

iteration for the AUTOSUB mission with stricter mission profile. 

A is when the normalised fitness is constant and B when it 

changes at each iteration with the data range…..…………………. 171 

 

  



xii 

 

List of Tables 

Table 2.1. Known parameters for each AUV.........………………...………… 21 

Table 2.2. Known parameters for BMSs.......………………..………….……. 24 

Table 2.3. Explanatory notes to Table 2.2………...…………...…..…………. 25 

Table 2.4. Taxonomy Coding of BMSs; representatives of the A value …...... 27 

Table 2.5. Mass Distribution of the Whiting..........……………………...….... 30 

Table 2.6. Mass Distribution of the Gurnard….…………….………………... 31 

Table 2.7. Mass Distribution of the finback whale; raw data gathered from 

Quiring, 1943.................................................................................... 33 

Table 2.8. Comparison of the mass Distribution of several BMSs……….…... 35 

Table 2.9. Mass distribution of Delphin AUV (Furlong et al, 2008)………… 37 

Table 2.10. Corresponding parts for AUVs and BMSs………………………... 40 

Table 2.11. Results of marine mammals’ fat specific energy test….…...……... 33 

Table 3.1. Various body types of AUVs…………………...……………….… 43 

Table 3.2. Various body cross sections of BMSs…………………………….. 45 

Table 3.3. Various body forms of BMSs …………………………..………... 46 

Table 3.4. Estimated values of fineness ratio for various body shapes of 

BMSs…………………………………………………………….... 51 

Table 3.5. FR Ranges for BMSs and AUVs…………..………...……………. 52 

Table 3.6. Various swimming mode of BMSs……..…………………………. 57 

Table 3.7. Various BCF undulation swimming modes characteristics. …….... 59 

Table 4.1. Regression lines of the empirical relationship between    (non-

propulsive required power) and versus mass…………...………… 96 

Table 4.2. Comparison of the specific energy of various sources of energy 

storage for both biological and engineered systems.…………..…. 106 

Table 5.1.  Explanatory notes to the power transitions and efficiencies 
illustrated in Figure 5.3…………………….……………………… 121 

Table 5.2.  The regression line of finbeat frequency as a function of relative 

speed for various groups of BMSs presented in Figure 5.9 ………. 137 

Table 5.3.  A Comparison of efficiencies between BMSs and AUVs………… 139 

Table 6.1. FM as a function of TL for various groups of BMSs…………...… 143 

Table 7.1. Mission Inputs…………………………………….………………. 152 

Table 7.2. Outputs of the OSS………………………………………..………. 154 



xiii 

 

 

  

Table 7.3. The corresponding body parts between AUVs and BMS………… 158 

Table 7.4. The equation of the regression lines for      as a function of TL.. 159 

Table 7.5. The equation of the regression lines for      as a function of TL.. 161 

Table 8.1.  The difference in the mission profiles of the first and second test.. 171 

Table 8.2.  The performance and main body characteristics of BUUUV vs. 

AUTOSUB 6000…………………………………………………..  172 

Table 8.3.  The characteristics of the BUUUV not mentioned in Table 8.2…... 173 



xiv 

 

Nomenclature 

    ……… Surface Area of the fin [  ] 

AR……….. Aspect Ratio 

   ……… Wetted Surface Area [  ] 

  ………. Body Diameter [ ] 

BH……..… Maximum Body Height [ ] 

BL……….. Body Length 

BW…….… Maximum Body Width [ ] 

  …….….. Drag Coefficient 

  …….….. Friction Coefficient 

COT…..…. Cost Of Transport [
 

    ⁄ ] 

      ….. Net Cost Of Transport associated with propulsion 

      ….. Cost Of Transport at optimum speed; also the minimum COT 

        … Total Cost OF Transport 

   ……… Bare Body Drag [ ] 

   ……… Bottom Fin Drag [ ] 

  ………... Equivalent Diameter [ ] 

  ………. Gills Drag [ ] 

   ……… Dear Fin Drag [ ] 

  ……….. Snout Drag [ ] 

   ………. Side Fin Drag [ ] 

    ……… Stabilising (Auxiliary) fin Drag [ ] 

   ……… Top Fin Drag [ ] 

  ……….. Elliptical Length [ ] 

    ……… specific Energy of fat  

FF……….. Fitness Function 

  ………. Flexibility Measure 

FR……….. Fineness Ratio 

      ….. Mass [  ] 

  ………... Brake Power [ ] 

  ………... Effective Power [ ] 



xv 

 

  ………... Hotel Load [ ] 

  ……….. Muscle Power [ ] 

   ………. A temperature coefficient 

  ……...... Reynolds Number 

  ……….. A chemical Reaction at a specific Temperature 

     …….. A chemical Reaction at the test Temperature 

    …….. Yaw Radius[ ] 

      ….. Length specific Yaw Radius [  ] 

  ……….. Total Length [ ] 

  ………... Specific Temperature[ ] 

     ……... Test Temperature [ ] 

     ……... Critical Speed [  ⁄ ] 

    …….... Economic Speed [  ⁄ ] 

    …….. Maximum Speed[  ⁄ ] 

    ……… Optimum Speed [  ⁄ ] 

     ……. Turning Speed [  ⁄ ] 

 ………… Volume [  ] 

   ……… Surface Roughness correction factor 

    ……. Tri-Axial Ellipsoid correction factor 

 …………. Density [
  

  ⁄ ]    

   ……… Density of sea water 

  ……….. Motor/Muscle Efficiency 

 ……….... Added Drag Coefficient  

  ……….. Behind Efficiency 

  ………... Delivered Efficiency 

  ……….. Hull Efficiency 

    ……... Peduncle Efficiency 

  ………... Shaft Efficiency 

      ……. Total Efficiency 

 …………. A measure of efficiency equal to 
      

 
 where   is a correction factor 

 



xvi 

 

Abbreviations 

AMR…….. Active Metabolic Rate 

AUV…….. Autonomous Underwater Vehicle 

BCF……... Body and/or Caudal fin swimming mode 

BDCF……. Body and/or double caudal fin swimming mode 

BMR…….. Basal Metabolic Rate 

BMS……... Biological Marine System 

BUUUV…. Bio-inspired Unmanned Untethered Underwater Vehicle 

CFD……... Computational Fluid Dynamics 

GA………. Genetic Algorithm 

FMR…….. Field Metabolic rate  

N/A……… Not Available 

OMPF…… Oscillation of median or pectoral fin swimming mode 

OSS…….... Optimum System Selector 

RMR…….. Routine Metabolic Rate 

ROV……... Remotely Operated Vehicle 

SMR…….. Standard Metabolic Rate 

UMPF…… Undulation of median or pectoral fin swimming mode 

 



 

1 

 

Chapter 1. Literature Review: Research background, state of the art 

of Autonomous Underwater Vehicles and a history of marine bio-

inspiration  

 

This chapter contains the background of the research. The history of ocean 

exploration and exploitation is discussed in this chapter. The concept of Autonomous 

Underwater Vehicles (AUVs) is introduced followed by their state of the art. 

Subsequently marine animals are introduced as the original inhabitants of the oceans 

with potential capabilities which could be a source of inspiration to improve the current 

capabilities of AUVs. The motivation of the research is presented and the aims and 

objectives are set. The methodology and the structure of the research are set out and 

finally the main achievements and novelties of the research are presented. 

1.1 Introduction 

Over three quarters of the earth’s surface is covered with water. Therefore, the 

oceans are the habitat of the largest part of the earth’s biodiversity (Madin, 2005). They 

are home to over 750,000 marine species. This has always intrigued humans to explore 

the oceans to discover the deepest depths. As a result, the history of ocean exploration 

and exploitation by mankind goes back to possibly 130,000 years ago; some stone tools 

discovered in the island of Crete suggest this (Strasser et al., 2010). The oceans’ 

discoveries carried on with exploration by human divers in Greece and China, c.4500 

B.C and the genesis of ship-borne deep-sea research carried out by the likes of Sir 

James Clark Ross in the 17
th

 Century. Later on in the 20
th

 Century, humans managed to 

descend to the deepest depths of the oceans by means of technological advances. A 

more recent example of manned descent is the journey of Jacques Piccard and Don 

Walsh to the deepest known place in the oceans which is in excess of 10000 m; this was 

in 1960 (Blidberg, 2001). Due to technical constraints and logistics in accessing the 

depths of the oceans, very few marine species are discovered in depths deeper than  

2000 m. Aside the desire to solve the mysteries of the planet and its processes, many 

other reasons and resources attract humans to the oceans. The paramount necessity of 

having unlimited access to the most remote parts of the oceans is evident.  

Oil is still the major source of energy on earth used by mankind. In search for new 

oil and gas reservoirs, the offshore industry will be exploiting deeper waters 
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extensively. Underwater platforms capable of exploring the deep oceans effectively will 

be required to facilitate this search. A thorough understanding of the impact of deep 

water intervention will be necessary to assess any environmental and biological damage 

(Gage, 2001). As well as exploration, surveying of the underwater structure will be of 

the upmost necessity. Means to make the survey of the structure and pipelines available 

with a high endurance of performance are in demand by the industry. 

Apart from oil and gas, oceans also contain various minerals and other elements, 

which can be used in different sectors such as the food or pharmaceutical industry to 

treat many medical conditions. Some of these minerals are only found at certain depths. 

The discovery and retrieval of these resources economically is required by the food and 

pharmaceutical sectors. 

Not only the biodiversity but also the animal behaviour and social life are of interest 

to many scientists. Platforms that can observe marine animals and track their 

movements while keeping up with their speed and manoeuvrability are in high demand. 

The observing platform must be accepted by the community or school of the observed 

animals, not injuring them or causing panic due to noise, etc.  

All the demands from different sectors keen to explore and exploit the potentials in 

the oceans highlight that the persistent presence of mobile underwater platforms with 

diverse capabilities of speed, depth, manoeuvrability and endurance must be sought.  

1.2 Ocean operations and the state of the art of Underwater Vehicles 

Exploring the oceans to the extent which is possible today, has been facilitated by 

underwater vehicles. Access to deep waters where humans were previously unable to 

reach was initially improved by the design and application of manned submarines and 

later on, within the last half a century, by Unmanned Underwater Vehicles. Initially 

Remotely Operated Vehicles (ROVs) and more recently, with the increase in the 

sophistication of computers, Autonomous Underwater Vehicles (AUVs) have been 

designed and used. All these vehicles have made many underwater operations possible 

in scientific, military and industrial sectors. 

The performance and capabilities of Unmanned Vehicles, specifically AUVs, have 

improved rapidly within the last few decades. Some good examples of AUV capabilities 

are that nowadays, AUVs exist that have reached or have the potential to reach the 

depths of 6000   underwater (McPhail, 2009), whilst the deepest depths of the oceans 

are 11000  . Furthermore, some glider type AUVs are able to operate months without 
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requiring refuelling which is a long range of operation. Some gliders have a required 

electrical power of less than 1 Watt (Griffiths et al, 2007).  The two examples of fast 

AUVs are “Alister” (Figure 1.1) and “SeaOtter” (Figure 1.2) which have a maximum 

speed of 4.12 [
 

 
] (Copros & Scourzic, 2011 and Somers, 2011), while the fastest AUV, 

Auv62-MR (Figure 1.3) has a maximum indicated speed of 10 [
 

 
]. 

 
Figure 1.1.  Alister REA AUV (AUVAC, 2010)  Figure 1.2.  SeaOtter AUV (AUVAC, 2010) 

Figure 1.3. AUV62-MR (SAAB, 2014) 

 

However, generally, for AUVs a depth of up to only 1000    and a speed of         

1.5 [
 

 
] are commonly achievable. As illustrated in Chapter 3 of this thesis only 13% of 

AUVs have a manufacturer’s indicated depth of 6000   and having a limited speed 

range, none of the AUVs have achieve speeds of more than 10[
 

 
]. From the AUVs 

performance data it is realised that currently there are restrictions in their capabilities 

mainly in terms of speed and depth capabilities, manoeuvrability and range of 

operation. 

Therefore, there is always further demand to improve the underwater capabilities of 

AUVs beyond their current level of performance. The users of underwater vehicles 

demand more manoeuvrable vehicles to be able to reach, explore and operate in the 

deepest depths and harshest environments of the oceans at higher speeds. Having 

greater endurance coupled with lower possible cost is also a demand in many sectors.  

AUVs are used in various sectors, each requiring different improvements and 

modifications. Offshore industry demands facilitated access to explore deep waters for 

surveying, inspections and maintenance. Different sectors of scientific communities 
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highly demand improved deep water capability of Underwater Vehicles for discovery 

journeys, to observe marine life, track marine species, gather pharmacological samples 

and perform environmental research. Furthermore, military sectors as well as security 

agencies strive constantly for improved performance and extended capabilities in all 

aspects of underwater technologies such as speed, endurance and especially stealth.  

The demands or desired mission profile by various sectors are different and very 

diverse, concentrating on one, some or all aspects of AUV performance. To satisfy 

different mission profiles, AUV designs, parts and software must be tailored for 

different levels of improved manoeuvrability, speed capability or larger operating 

ranges. This must be coupled with lower weight and less cost both of which are 

desirable. Improved AUVs which are able to perform desired missions with more 

precision while being cost efficient, will satisfy these demands. Attempting to combine 

and benefit from the abilities of hybrid ROVs and intervention AUVs is another aim of 

new vehicle designs (Kermorgant & Scourzic, 2005).  

1.2.1. Engineering Challenges 

Conventional engineering methods are commonly used to improve the performance 

and capabilities of manmade machines. For AUVs, using lighter materials as well as a 

significant improvement in sensors and software have broadened their operational 

abilities and extent. Using common practice on engineering optimisation, some attempts 

including using lighter materials, more powerful sources of energy, and different 

buoyancy systems and optimised software have increased the capabilities of AUVs. 

Although significant research attempts are carried out to improve the sensors and 

software in AUVs, little attempt has been made to manipulate the body design and 

propulsion modes of these vehicles, therefore turning them into “sensor taxis”. 

A challenge in the design of AUVs is the trade-off between various features and 

characteristics. For example, in current AUVs, having a larger size means being able to 

carry more battery mass and more payload, however size negatively affects the overall 

cost as well as other aspects of performance such as turning ability. It must also be 

noted that with variance in size there is also the scaling effect on drag. For larger 

vehicles, the Reynolds number (Re) is higher as it is directly proportional to the length. 

Flows at Reynolds numbers smaller that      are usually laminar while flows at 

higher Reynolds numbers are typically turbulent. In turbulent flows, unsteady vortices 

appear and interact with one another and skin friction drag increases. The change in the 
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structure of the boundary layer and the location of separation may result in less overall 

drag. 

Some of the relatively new desired missions of AUVs are requiring levels of 

performance which was not originally applicable to AUVs. An example is animal 

tracking and observation. This requires a level of manoeuvrability unachievable by 

current AUVs. The new mission profiles require a review of original AUV design and 

an attempt to modify it to match the diverse range of desired missions. To improve the 

AUVs’ capabilities, other possible means and sources of inspiration must be 

investigated. 

1.3 Nature as a source of inspiration and the research motivation 

Oceans are the habitat of about 90% of the living species. This makes the oceans the 

largest part of the earth’s biodiversity (Madin, 2005). Marine Animals are the biological 

equivalent of AUVs. The 750,000 plus species living in the marine environment range 

in size from a few micrometre species to the Blue Whale which can grow to more than 

30 meters in length. For simplicity and brevity, marine species are referred to in this 

research as Biological Marine Systems (BMSs).  

It must be noted that the term “Marine” used throughout this research is referred to 

all species living both in freshwater and saltwater. The information on the living 

environment of each species can be found in the Appendix 1.2. 13.7% of the species 

studied in this research swim in freshwater. 

For unity of calculation throughout this research, an average seawater density of 

1025 [
  

  
]  is used. Although the density of water varies between freshwater and 

saltwater (and can vary even with the temperature and salinity of the water), the effects 

of this change on the results of the calculations within this research are insignificant. 

For example, considering a unified water density of 1025 [
  

  
], for a 15cm goldfish, the 

bare body drag calculated in Chapter 5 is 0.0268 [ ]  If the actual freshwater density of 

1000 [
  

  
] would be used in the calculation, the drag of the same species would be 

0.0268 [ ]. This equals to an error of 2.2%. This verifies that the use of a unified water 

density does not affect the calculated results significantly. 

All of the BMSs have adapted to thrive and survive through various underwater 

conditions in the ocean space, by different means. Some examples of specific 

underwater conditions are high water pressure and the lack of oxygen. BMSs have come 



 

6 

 

to their “successful” solution of survival and are improving continuously through the 

natural process of evolution. The ones that do survive in their habitat have superior 

performance and capacities over the ones that extinguish over time. Their superior 

characteristics, evolving through time, improve their survivability in their specific living 

environment.  

Many BMSs exhibit functionalities and capabilities which are very much similar to 

the desired engineered features for underwater unmanned vehicles. These include, 

propulsion or in the case of marine species “locomotion”, speed, high manoeuvrability 

and their resilience for operating and thriving at depth. It has been realised that this 

performance by BMSs is achieved through the multi-functionality of their systems. 

Characteristics of interest in this research are speed and depth capability, 

manoeuvrability, range of operation and energetics. Some BMSs exhibit extremely high 

performance in one or more of the “characteristics of interest” of this project. Some 

examples of these BMSs include the sailfish (Stiophorus platypterus), which is able to 

swim at a speed of over 30 [
 

 
] (compared to AUVs achieving speeds of no more than 

10 [
 

 
]) and some marine animals like the snailfish (Pseudoliparis amblystomopsis) 

have been found at the extreme depths of the oceans.  

    There are many examples of BMSs which suggest that biological solutions picked 

by nature through evolution make BMSs exhibit superior performance and capabilities 

in comparison with the engineered alternatives. This suggests that inspiration from 

BMSs could be a possible approach towards the improvement of AUV performance and 

optimisation of the capabilities. However, different BMSs achieve their capabilities 

through diverse approaches. This means that the different aspects of BMSs’ superior 

performance, the extent of their superior performance and the possible inspiration from 

biology must all be studied and investigated. 

It is known from history (Vincent, 2001) that inspiration from nature by researchers 

and inventors traces back to at least the last three millennia. One of the simple and 

useful examples of bio-inspiration in the marine world is the swim fin, invented by 

Benjamin Franklin in 1717 (Fleming, 1972). Numerous types of studies and 

investigations are carried out on marine species with different purposes. These studies 

are discussed next. 
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1.4 Studying marine animals and marine bio-inspiration timeline 

Several research works have studied and investigated BMSs from different sectors 

of science and engineering and with different aims and objectives. The combination of 

all types of these research works has led to bio-mimetic and bio-inspirational finding. 

Some classes of BMSs are studied more than others. As expected those species which 

are more easily available are investigated more than other species such as the Blue 

Whale which are rare and extremely large in size. Their size makes even simple 

measurements such as weight, very challenging. Therefore data for fish and small 

marine mammals is more available than other species such as rays and penguins. 

Several studies and investigations of BMSs have been of interest to this project, 

some purely because they provide collectable data on BMSs and other because they 

provide a better understanding of the mechanism of some species. Although most of the 

data is raw and some use ambiguous terminology, they have become useful for the 

purpose of this research through manipulation or have been used for calculating other 

desirable parameters. Other studies have traces of either bio-mimicry or bio-inspiration 

within them and have been used to understand bio-inspiration. In this section different 

studies carried out on marine animals are discussed and the timeline of marine bio-

inspiration and bio-mimicry is explained.  

The studies on BMSs have been classified in this research into distinct groups as 

follows: 

 Biological studies 

 Specific biological features 

 Biological comparisons 

 Hydrodynamics and locomotion of BMSs 

 The design, build and investigation of biomimetic examples based on marine 

species 

 Bio-inspired investigation 

These are each explained next. 

1.4.1. Biological studies  

These research works are usually performed by marine scientists to investigate the 

growth, reproduction and general behaviour and wellbeing of various BMSs. The 

biological studies either provide data on a specific individual(s) of the same species or 

the average values for a species. Data on specific individuals are more desirable when 
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comparing different systems as it provides a more precise estimate of the performance 

characteristics of that specific BMS, provided consistent terminology for the 

characteristics of all BMSs exists. However, as usually scientists are specialised in 

studying a certain group of BMSs and each class of BMSs are evolved differently, 

therefore studying each group and the terms used can be slightly different. For example, 

energetic Cost Of Transport (COT) of BMSs have been defined as energy consumed by 

kilogram of BMS’s body per one meter of travel, [
 

    
], or as the energy consumed for 

each kilogram of BMS’s body per one stride of travel,  [
 

         
] , or as energy 

consumed per Newton per meter of travel, [
 

   
].  

Therefore, data and results from these studies was used with due care, by unifying 

the terminology to compare similar terms. 

1.4.2. Specific biological features 

In some other studies, a specific aspect of BMSs characteristics has been 

investigated. For example, Altringham & Johnston, 1990, studied and measured the 

power output of the fast and slow muscle fibres of the bullrout (Myoxocephalus 

scorpius L.). These types of research give an understanding of a particular aspect of 

BMSs performance and the data gathered from them can be used for the purpose of 

understanding and comparing those aspects of the BMSs performance characteristics, 

either directly or after manipulation. In most cases these types of research only provide 

details of a single species, therefore many similar studies must be carried out to enable 

the comparison of results with other BMSs. 

1.4.3. Biological comparisons 

For the purposes of this thesis, “biological comparisons” is associated with research 

works in which certain characteristics of some BMSs are compared with each other or 

with other species (e.g. terrestrial animals). The results of these studies provide some 

data on the compared capabilities of BMSs. If the values are average values of the 

performance of the BMSs, i.e. do not belong to a single individual, the data are not as 

accurate as the data collected from a single individual. For some BMSs, these data are 

the only data available.  

Some of these research works are looking into certain performance characteristics 

within a family of BMSs. The results of these studies provide an insight to the extent of 
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similarities and differences between BMSs with close genetic relations. As part of the 

present research it was realised that when the results, trends or empirical formulae used 

in biological comparison research works can be generalised for all or a group of BMSs, 

those formulae can be used to estimate some aspects of the performance characteristics 

of other BMSs in the same group for which the data in not available. An example is 

different regression lines obtained for the basal metabolism of some BMSs as discussed 

in Chapter 4. 

1.4.4. Hydrodynamics and locomotion of BMSs 

Hydrodynamics and locomotion of BMSs and specifically fish and relatively small 

marine mammals have been the subject of many research works. Studies on the 

hydrodynamics of marine mammals have been performed for example by Fish, 1993, 

1996 and 1998. These research works were carried out on the hydrodynamics and 

swimming performance of some cetaceans to measure drag or measure and compare the 

power and thrust and therefore have estimates of the drag based on body and propulsion 

characteristics of the cetaceans. Also Fish & Rohr, 1999 investigated drag reduction 

while examining methods including viscous damping, dermal ridges, secretions and 

boundary layer heating based on the hydrodynamics of dolphins. 

In similar studies for fish, Webb, 1975 studied general hydrodynamics of fish while 

Sfakiotakis et al., 1999 investigated different fish locomotion. 

Some other studies have also been carried out on the prediction of hydrodynamics 

of a BMS by mathematical methods or computational fluid dynamics (CFD). Both 

methods can result in very sophisticated results but they are highly time consuming and 

therefore not possible to study multiple species simultaneously. 

Reading about various definitions of propulsive efficiency in literature and 

encountering some unrealistically high values was a motivation to the present research 

work to introduce a unified terminology for various efficiencies within BMSs bodies for 

clarification and to avoid future confusions. This work is explained in Chapter 5 of this 

thesis. 

1.4.5. The design, build and investigation of Biomimetic examples based on 

marine species 

In more recent years some research works have been carried out to design and build 

a biomimetic prototype based on a BMS. Some of these prototypes are also known as 

bio-mimetic AUVs. An interesting aspect of these studies is the reproduction of 
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different aquatic locomotion modes as an alternative to AUV propulsion.  Some of the 

many examples of these prototypes which have been built by the reproduction of body 

and caudal fin propulsion include, the lamprey-like BUR-002 (Ayres et al., 2000), the 

RoboTuna (Streitlien et al., 1996) and the RoboPike.  

 

Figure 1.4. Lamprey-like prototype (Ayres et al., 2000) 

 

 

Figure 1.5. Robotuna (Science museum, 2014) 

Figure 1.6. Robopike (AUVAC, 2010) 

 

There are also other research based on median or paired fins such as the JAMSTEC 

which is based on the swimming of a skate (Yamamoto, 2005) and the AquaPenguin 

(Figure 1.7) which is a prototype designed and built by Festo. 

 

Figure 1.7. AquaPenguin by Festo (AUVAC, 2010) 
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The AquaPenguin is built mimicked from a penguin. However it has a speed of 1.39 

[
 

 
]  which as part of this research is was realised that this speed is considerably lower 

than the speed of a same size penguin. Another example is the Subsea Glider       

(Figure 1.8) designed by EvoLogics which is a mimic of a ray. Other types of 

biomimetic AUVs also exist such as the Aqua Jelly (Figure 1.9) which was built based 

on a jelly fish by Festo. 

                    
Figure 1.8. Subsea Glider (AUVAC, 2010) Figure 1.9. Aqua Jelly by Festo (AUVAC, 2010) 

 

Aside from the design and build of biomimetic AUVs, research work has also been 

carried out on investigating some aspects of the performance of the biomimetic AUVs 

such as the work done by Anderson, 2002 on the manoeuvring capabilities of the 

RoboTuna. In another research work, Wen et al., 2012 tested the hydrodynamics of a 

self-propelled but clamped prototype based on an Atlantic mackerel in a water flume.  

Although these prototypes are made very similar to the species itself but do not 

necessarily replicate the same capability of the species. This is a part of motivation for 

this research to investigate how the multi-functional biological systems can be used for 

engineering purposes and exhibit similar performance characteristics to the actual BMS. 

Apart from the present performance, the above designs and studies have 

demonstrated potentials of the BMSs’ propulsion modes and are the way forward in the 

design and build of BMS like propulsion systems which could be lighter than the 

equivalent AUV technologies and will produce considerable less noise.  

1.4.6. Bio-inspired investigation 

Although bio-inspiration and bio-mimetics are commonly used together, there is a 

principal difference between the two. Bio-inspiration attempts to understand the rational 

and mechanism behind a system in nature to perform a certain task, not necessarily 

mimicking the biological system as done so in bio-mimeitcs.  

Relatively recently there have been attempts on the use of bio-inspiration in the 

design of AUVs. In these studies the focus is on one aspect of the performance and the 
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aim is to achieve the same capability and not necessarily the same design as a BMS. 

Fish et al., 2003 proposed the design of an AUV with multiple side control surfaces 

with improved turning capabilities.  In another similar research Long et al., 2006 being 

inspired by marine turtles made a comparison between a two flippers and a four flippers 

propelled AUVs concluding that there would be a trade-off between surge acceleration 

and energetics. Therefore, the two flipper model would operate at lower required power 

while the four flipper model would have higher surge acceleration. The independent 

movements of the flippers also provided better manoeuvrability for the vehicle. 

In some other research works the fin actuation has been of interest. Anderson et al., 

1998, measured the thrust and power generated by an oscillating foil, concluding a high 

propulsive efficiency for the foil. Streitlien et al, 1996 investigated foil propulsion 

through vortex control. There have also been developments on propulsors by the use of 

smart materials (Quackenbush et al., 2003). 

1.5 Research Motivation: The developments of bio-inspiration and 

marine animals as a possible source of inspiration to improve the performance of 

AUVs 

Many bio-mimetic robots have been built which have introduced a new generation 

of light underwater AUVs with different levels of manoeuvrability and capabilities. Due 

to their fishlike swimming mode, these robots have been of the interest of both scientific 

and military sectors. Their body is made from aluminium, fibre glass or other 

lightweight materials and their manoeuvrability is sometimes improved through a 

flexible body or side control surfaces. 

Currently, increasing number of different engineering disciplines are considering so 

called bio-mimetic or bio-inspiration in order to make progress in the design of 

engineered systems.  Locomotive systems in nature (i.e. animals) are very versatile. 

They evolve and alter their strategies to adapt to their environment for better 

performance. Scientists in different sectors are being inspired through studying 

numerous biological systems, their locomotion, physiology, anatomy and their 

interactions with other systems as well as the environment. A testament to this is the 

IOP Journal of Bioinspiration and Biomimetics which was established in 2006. 

Research works published in this journal investigate all aspects of bio-inspiration and 

bio-mimetics from locomotion (bio-mechanics), biological sensors, materials, etc. and 

their application in aerial, terrestrial and marine sectors. There is a website dedicated to 
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marine bio-mimetics, and robotic fish (Robotic-fish.net, 2013). Some of the many 

examples of bio-mechanic/bio-mimetic vehicles include the RoboTuna, RoboPike, 

Bionic Manta and the Aqua Penguin. They all represent light robotic AUVs with 

alternative propulsion systems and different manoeuvring capabilities. These 

successfully built examples of bio-mimicked robots indicate that there are potentials of 

inspiration from marine species and extensive research is being carried out in this area. 

As discussed, a huge amount of study is carried out on numerous BMSs which 

produce enormous amount of knowledge and understanding of their performance and 

characteristics, not all maybe useful from an engineering perspective. One thing all 

these studies have in common is restriction in the classes (groups) of BMSs which have 

been studied. Furthermore, prototypes or artificial fins bio-mimicked by a species are 

not usually made based on that specific species because the species is the best 

performing or the most efficient system but because that particular species has been of 

the most interest or within the speciality of the research work. Therefore, the bio-

mimicked species are not “systematically” chosen. 

The robotic AUVs do not perform any specific mission at the moment, except 

swimming and having visual sensors. Further research is required to realise how they 

can be used to perform AUV missions, therefore this became another motivation for this 

research to find a novel method for systematically choosing bio-inspired capabilities to 

fulfil engineering needs. 

BMSs have a diverse set of capabilities, and have an equally diverse set of 

anatomical configurations. The contrast between BMSs’ different anatomical 

configurations and general AUVs body form is significant, which suggests possible 

changes to the AUVs’ structural design, control surface and propulsion modes should be 

investigated. The question that arises is that whether a bio-mimetic vehicle can be 

constructed that can exhibit improved AUV capability, and what would be the extent of 

any improvement. 

Bar-Cohen, 2006 published a research work in the Bioinspiration and Biomimetics 

journal. The research work set out an approach to develop engineered solutions from 

sources found in nature that “sorts biological capabilities along technological 

categories”. In present research it is proposed to extend this paradigm to extract 

elements and concepts from many BMSs to lead to novel engineering solutions which 

can be directed for a range of applications and diverse sets of mission profiles (Griffiths, 

2009).  
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1.6 The rationale behind bio-inspiration for a new generation of AUVs 

Nature has a lot of potentials to offer to improve engineering design techniques. 

Considering them, one may learn from nature, using the relevant novelties while leaving 

the undesirable ones, in order to relate engineering requirements to biological function.  

However studying the available literature illustrates that there is a gap between the 

engineered underwater vehicle technologies and the scientific studies on BMSs; 

although, in some studies, reference has been made to AUV such as in Fish, 1997, 

AUVs and BMSs have not been challenged and compared with one another. 

Furthermore, although some studies have compared some performance aspects of 

genetically close species, very few have investigated a specific aspect of some classes of 

BMSs. There has not been a study looking thoroughly at approaching the marine animal 

kingdom as a system, and comparing the overall performance of numerous species. 

Comparing BMSs with each other as well as with current AUVs will result in realising 

what are the actual superiorities of BMSs over AUVs, how significant these advantages 

or disadvantages are, what are the reasons and sources of the differences in their 

performances and how BMSs technologies can be used to improve the engineered 

vehicles. Filling this gap was the foundation of this research.  

In this research all classes of marine vertebrates have been investigated to get as 

thorough an understanding of various natural evolutions as possible to then compare 

them with current AUV performance.  

1.7 Aims and Objectives of the research 

Increasing demand in improved AUV performance and current restrictions in 

underwater vehicles capabilities emphasise that improvements to AUV performance and 

capabilities must be sought. 

The aim of this research was to improve the performance of AUVs by investigating 

novel technologies and generating bio-inspired design techniques and implementation 

methods based on BMSs. This was performed by taking into account the diversity of 

BMSs as well as the diversity in the mission profiles desired for AUVs. 

The aim was achieved by fulfilling two main objectives: Investigating bio-

inspiration and the application of bio-inspiration.  

Investigating bio-inspiration involved providing a greater understanding of marine 

biological organisms and systems for engineering application, and creating a new way 

of thinking in engineering design. 
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After bio-inspiration was investigated, lessons learned from nature needed to be 

applied to find design aspects with improved performance characteristics. In terms of 

vehicle specification, the principal engineering challenges associated with AUVs are 

propulsion, manoeuvring and depth capabilities, as well as the storage and efficient use 

of energy. Therefore, higher speed, greater endurance and depth of operation, reduced 

fuel consumption and advanced, cost-effective, designs and technologies are amongst 

the wish-list for AUVs demands. An optimum mixture of these features will result in a 

new generation of AUVs. These features of both AUVs and marine animals were 

analysed in this research. 

1.8 Summary of Thesis Contribution 

As AUV development is of interest to scientific, industrial and military sectors, the 

results of this work may be of interest to them all as a promising approach towards 

AUVs with improved capabilities. 

In this research, the following summary of contributions has been made: 

 Data collection and manipulation for BMS vs. AUVs 

 Providing a guide for understanding bio-inspiration as an approach to improve 

the performance of engineered vehicles. 

 Illustrating the important aspect of animal performance characteristics to be 

studied when investigating bio-inspiration. 

 Identifying the superiorities of BMSs and the extent of it. 

 Providing a guide on how to interpret the obtained results and knowledge from 

nature and use them towards engineering needs. 

1.9 Synopsis of the methodology 

In order to fulfil the objectives and achieve the aim of this research, several 

performance characteristics of AUVs and BMSs were compared. In order to perform the 

comparisons various data on the design and performance characteristics of AUVs and 

BMSs was collected and manipulated for comparison which are explained in Chapter 2. 

To capture the diverse capabilities of BMSs as much as possible it was decided to 

investigate all classes of marine vertebrates as well as a class of marine invertebrates.  

This was an interesting work as a comparison of this scale between the performance 

characteristics of AUVs and BMSs had not have been performed in the past. After 

sorting the data, a novel method was presented in this research to simplify the body 
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forms of BMSs as a tri-axial ellipsoid for easier comparison. Then, the body forms, 

speed capabilities, depth capabilities, energetic cost of transport and the 

manoeuvrability of AUVs and BMSs were compared as discussed in Chapter 3. Some 

parts of the research work done in Chapters 2 and 3 are published in Murphy & 

Haroutunian , 2011.  

The power and therefore energy required for the operation of an AUV can be 

calculated by knowing the battery capacity and battery consumption of the vehicle. For 

BMSs the calculation of required energy was more complicated. Therefore, in another 

theme, means to estimate the energy consumption of BMSs was investigated and 

discussed in Chapter 4. Some parts of the research work carried out in Chapter 4 are 

published in Phillips et al., 2012.  

When comparing the required power of different systems, the efficiency is also 

considered. Therefore, in Chapter 5 of this thesis, a novel method was presented to 

predict an indication of efficiency for BMSs through calculation of drag. In addition a 

comparison was made with current AUVs. Some parts of the research work done in 

Chapter 5 is submitted to the Bioinspiration and Biomimetics Journal and is under 

review (Phillips et al., 2013).  

The other focus of this research was on bio-inspired manoeuvrability, therefore in 

Chapter 6, a novel method was presented for estimating the turning capability of various 

BMSs by introducing a measure of flexibility. After the body designs, speed, depth, 

energetics, efficiency and manoeuvrability of BMSs and AUVs were investigated, and 

BMSs with different superior performance characterises were identified, the first 

objective of the research was fulfilled. 

When attempting to implement the bio-inspired knowledge for engineering 

purposes, it was realised that there was a mismatch between the purpose of BMSs and 

the desired mission for AUVs. In addition, not all superior performance characteristics 

were found in a single species and it was realised that there was a trade-off between 

various performance characteristics in BMSs. Moreover, due to the multi-functionality 

of the biological systems it was not possible to investigate each system separately.  

Therefore, the concept of a novel search and selection algorithm was introduced in 

Chapter 7 which would take desired mission profiles as input and through a multi 

objective genetic algorithm which uses the formulas and equations developed in this 

research, outputs the bio-inspired design aspects of a Bio-inspired Unmanned 

Untethered Underwater Vehicle (BUUUV). The outputs include the body and control 
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surfaces design, propulsion mode, fuel and motor mass, and it will also output an 

estimate of the speed capabilities, required power and turning capability as an indication 

of manoeuvrability and overall efficiency for the BUUUV. The Optimum System 

Selector (OSS) was verified and tested as discussed in Chapter 8. The design output by 

the OSS shows potential overall improvements to the capabilities of AUVs. Some parts 

of the research work carried out in Chapters 7 and 8 are published in Haroutunian and 

Murphy, 2012.  

1.10 Novelty and main achievements 

In this research a thorough comparison on several performance characteristics of 

AUVs and BMSs was carried out. The comparison highlighted speed, manoeuvrability, 

mass specific depth and range of operation of BMSs to be significantly superior to 

AUVs. For each performance characteristics, the groups of BMSs with the highest 

performance were also identified.  

Various methods which have been proposed and used within this research have 

made it possible to calculate or estimate the performance characteristics of BMSs. This 

is most useful where experiments and direct measurements are not available. These 

novel methods include: 

 A method to estimate the mass using a tri-axial ellipsoid model 

 Calculating the drag, the required power as well as an indication of the 

efficiency for BMSs. Analysing the calculated efficiencies of the BMSs 

indicated that similar efficiencies can be achieved by BMSs with different 

swimming modes, however at different speeds. 

 Estimating the manoeuvring capability of BMSs in yaw axis using a novel 

flexibility measure.  

Having numerous desired AUV missions in mind, to be able to use the multi-

functional biological systems to fulfil engineering needs, a novel search and selection 

algorithm was developed which is able to output some aspects of the design as well as 

performance characteristics of a BUUUV based on a desired AUV mission profile. The 

results of the OSS demonstrate theoretically an overall improvement in the performance 

of equivalent AUVs using a bio-inspired design. 

The findings of this research work can be used both to propose alternative bio-

inspired designs to fulfil AUV desired mission profiles and also to predict the 

performance characteristics of BMSs without direct measurement. 
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Some aspects of this research which have already been published are listed below. 

For the full articles please refer to Appendix 2 of this thesis: 

 Murphy, A.J. and Haroutunian, M. (2011). "Using Bio-Inspiration to 

Improve Capabilities of Underwater Vehicles". In: 17th International 

Unmanned Untethered Submersible Technology Conference (UUST 2011), 

21-24 August, Portsmouth-USA. Curran Associates, Inc. Pp. 20-31. ISBN: 

978-1-61839-927-4 

 Murphy A.J. and Haroutunian M. (2011). “Nature in Engineering for 

Monitoring the Oceans: using inspiration from nature to improve the 

capability of Underwater vehicles to monitor the ocean space”. In: 4th 

International Conference on Marine Science and Technology for 

Environmental Sustainability, ENSUS2011. Newcastle upon Tyne, UK.  

 Phillips, A. B., Haroutunian, M., MAN, S. K., Murphy, A. J., Boyd, S. W., 

Blake, J. I. R. & Griffiths, G. (2012). "Nature in Engineering for Monitoring 

the Oceans: Comparison of the energetic costs of marine animals and 

AUVs". In: Sutton, R. and Roberts, G. (Ed.) Further Advances in Unmanned 

Marine Vehicles. The Institution of Engineering and Technology (IET). 

ISBN: 978-1-84919-479-2 

 Haroutunian M. and Murphy A.J. (2012). “Mission based Optimum System 

Selector for Bio-inspired Unmanned Untethered Underwater Vehicles”. In: 

Autonomous Underwater Vehicles (AUV2012) conference, 24th -27th 

September 2012. Southampton, UK. 
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Chapter 2. Nature and Engineering Data Collection and Manipulation  

 

Persistence presence of marine animals in the oceans indicates that they have 

evolved to thrive underwater. Some aspects of the performance of BMSs is realised to 

be more advance compared to those of current AUVs. However, the extent of the 

superior performance of BMSs was not known. This emphasised on the necessity of 

precisely highlighting the aspects of their performance which are superior compared to 

engineered vehicles. Also it was required to then estimate how significant these 

superiorities are. For example, how much the efficiency can be increased and/or the 

power and energetic cost required reduced by using the biological system alternatives.   

In order to highlight potential aspects of BMSs performance which are superior to 

AUVs and therefore a source of inspiration for improving the performance of the 

underwater vehicles, the performance characteristics of both AUVs and BMSs were 

required to be collected or calculated for comparison. The methods of collecting raw 

BMSs and AUVs data from numerous sources and manipulating them for cross 

comparison are explained in this chapter. In order to be able to investigate the evolution 

process for numerous BMSs leading to their specific performance characteristics and 

choose the ones best suited for the purpose of this research, all classes of marine 

vertebrates as well as few invertebrates were studied.  

The data were used for comparing AUVs and BMSs in Chapter 3 and for verifying 

the OSS code in Chapter 8. Data on different design and performance characteristics of 

biological and engineered marine systems was gathered in this research. Due to the 

complexity of BMSs as well as different methods used in animal studies, various 

methods of gathering, measuring, calculating or estimating these data are also explained 

in this chapter.  

 

2.1 Collecting data from literature 

As the objective of the data collection was to capture as many different biological 

and engineered marine systems’ performance and design characteristics, for both AUVs 

and BMSs various types of sources were used. The data collection for AUVs and BMSs 

are respectively discussed in Sections 2.1.1 and 2.1.2.  

The general approach towards collecting data was to gather as much complete data 

on the body design and performance characteristics of AUVs and BMSs from literature 
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and then to fill the gaps within the database by other means. The alternative means 

included dissection (which is explained in Section 2.3 of this chapter), using BMSs 

photos and videos and also using trends or formula that resulted from analysing other 

BMSs or AUVs with more complete available data.  

Measurements from videos were specifically time consuming and required careful 

attention. For each BMS, to obtain a precise measurement each frame of the video was 

viewed in order to find the frame in which the BMS was at zero angles at the 

appropriate view for taking measurements. The frame was then input into a CAD 

program, to draw the surfaces from the frame and to take the required measurements. 

 

2.1.1 AUV data collection 

Data on the capabilities of currently existing AUVs was collected from a wide 

variety of sources including AUV manufacturer’s datasheets, journal and conference 

publications, as well as industry intelligence publications (e.g. Funnell, 2007 and 

AUVAC, 2010). The majority of gathered data for AUVs has been from specification 

sheets or existing trial results for the vehicle. For some AUVs (especially the ones that 

have been designed and built by mimicry from a certain species, i.e. biomimetic AUVs) 

data is not from trials but estimates of the manufacturer. These stated values which are 

not tested, have been used with the awareness of the uncertainty as the reliability and 

the accuracy of them is unknown. However, the data was assumed to be sufficiently 

accurate to perform a general comparison. Within this thesis, a note has been made 

where specific data in discussion have not resulted from experiment. The data collected 

for AUVs are listed in Table 2.1.  
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Table 2.1. Known parameters for each AUV 

Known Characteristics  Parameters Unit or description 

Body design 

Body Type General form of the body known for 

AUVs; includes: Torpedo, teardrop, 

rectangular, oblate, open space and 

biomimetic. 

Dry Mass [  ] 
Maximum body height (  ) Greatest height of  the AUV along 

the main body 

Maximum body width (BW) Greatest width of  the AUV along 

the main body  

Total Length       Overall length of the AUV [m] 

Speed 
Economical speed 

(1)
 Ueco[

 

 
] 

Maximum Speed Umax [
 

 
] 

Manoeuvring  Turning (yaw) radius      

Diving Maximum Depth [ ] 

Energetics 

Battery Rating [   ] 

Endurance [  ] or [ ] 
Hotel load [Watt] 

(1) The purpose for calculating the economic speed for AUVs was to compare it with the optimum 

speed of BMSs. However, for majority of AUVs the values for economic speed is not disclosed. 

As it will be explained later on, the situation is similar for BMSs. Therefore, in the majority of 

cases the cruising speed of the AUV replaces the economic speed. Having an estimate of the 

economic speed is important in terms of estimating the minimum energetics cost of transport. 

 

The manufacturers datasheets, brochures and published papers linked within 

AUVAC, 2010, have been the major source of information and data for AUVs.   

In addition, as this research is part of the collaboration with the National 

Oceanography Centre (NOC), more detailed information of the characteristics data for 

AUTOSUB 6000 was available to this research work which was not available for other 

AUVs. The database gathered for AUVs is presented in Appendix 1.3. 

It must be noted that there are some challenges regarding gathering data for AUVs 

which are explained next: 

1.  Characteristics and especially performance data for many AUVs is not available 

in public domain, either due to commercialisation or confidentiality. For 

example, obtaining turning radius data for many AUVs is not possible.   

2. Some performance data are based on the design calculations of the AUV 

(especially for biomimetic AUVs) and therefore have not been confirmed 

through trial. In the cases the data are “as stated by the manufacturer” and not 

tested, there is a possibility of exaggeration in the numbers and therefore, there 

will be a level of uncertainty when compared to other AUVs. As it is not always 
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clear whether a trial has been performed, one must accept the data unless 

otherwise proven to be inaccurate. 

3. Many AUVs are improved and ungraded, which means through time their 

performance and characteristics change. Moreover, new AUVs are built with 

enhanced capabilities. This requires the data to be updated accordingly.  

These challenges introduce some issues with the collected data. First of all, as data 

for all AUVs is not available, it is not possible to have an overall image of all AUVs’ 

capabilities, a similar problem with marine species exist as well. 

Secondly, different levels of accuracy in data affect the comparison. Therefore, the 

comparisons and conclusions can evolve as more information becomes available for 

different vehicles.   

2.1.2 Biological marine systems data collection 

A similar database was established for the “engineering” specifications of BMSs, 

including physical characteristics, anatomy, physiology, hydromechanics and their 

taxonomic relations and classifications. Gathered data for BMSs was based on 

experiments carried out on each animal by external sources or the authors’ observations 

and measurements from videos and photos taken from the animals. Data was collected 

for different classes of marine animals including bony fish, fish with notochords (also 

known as “jaw-less fish”), sharks & rays, marine mammals, penguins, turtles and 

squids. Micro organisms are not studied in this research due to their size disparity to 

AUVs. Data has mainly been collected from either technical papers and books or online 

databases. “Fishbase” an online database for fish, shark and rays and “Sealifebase”, a 

similar (but not as comprehensive) database to Fishbase for marine mammals and 

reptiles (Froese &, 2011) have been mainly used to gather data on many BMSs body 

characteristics, speed and oxygen consumption as well as taxonomy data. Digital Fish 

Library (Berquist et al., 2012) has been used to measure body dimensions of fish and 

sharks. A complete list of references used mainly for the purpose of data collection is 

presented in the “Database References” section of the references. 

2.2 A general challenge in bio-inspiration 

Where multiple data for a single species was collected from different sources, 

average values were derived and used. Furthermore, if all the data required for a species 

could not be obtained from a single source, multiple sources were used to gather the full 
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dataset for a given species. Therefore different individuals from the same species were 

used for various characteristics.   

Individuals of the same species are different in geometry and performance. For 

example, their body shape is dependant to their environment conditions such as the time 

of the year or the applied stresses. Therefore, gathered data is a mean of all existing data 

for a certain species. The data are stored in a database for comparison.  

Unlike engineered vehicles, which have a well-defined capability, the performance 

of a specific species is a variable depending on the physical and environmental 

parameters of the samples such as the BMS’s body size. Consequently for a given 

species every characteristic is specified over a range and not given as a specific value 

and therefore, in many cases values are an average of multiple experiments.  

Handling substantial amount of data on numerous individual species presented 

interesting challenges. It required addressing truly interdisciplinary literature, much of 

the published data regarding the capability of BMSs is not presented in engineering 

terms and is often presented for entirely different purposes. As explained in Chapter 1, 

BMSs have been studied through several approaches. A number of studies exist which 

use engineering terms, including publications on the hydrodynamics of few BMSs.  

On the other hand, many other publications, while providing material of interest in 

this research are provided for the purposes of life-science and biological research. 

Moreover, it was acknowledged that the level of sophistication and precision in 

measuring or calculating some of the characteristics of some BMSs are different in 

various research works. For example, for measuring the turning radius, while many 

studies have only consider the turning circle to calculate the radius, Cheneval et al., 

2007, also considered the change in the depth of the animal during turning, in order to 

obtain a more realistic value for the turning radius. It would be ideal if all data were 

measured with similar precision but due to the diversity of biological systems, having 

data with different precision were inevitable.  
The number of individual species investigated in this research exceeded 300 from 

which a subset of 247 species with more complete data sets compared to the other 

BMSs are presented in Appendix 1.2. The amount of research carried out on various 

BMSs are different, hence the amount of data available for each BMS. Some BMSs 

have not been studied as thoroughly as others either due to accessibility difficulties (e.g. 

penguins and deep sea BMSs) or due to their size (e.g. the blue whale). On the other 

hand, some characteristics of some BMSs have been of the interest of many studies. As 
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a result, there are gaps in the data and therefore for comparing each characteristic, the 

subset of the BMSs’ database with sufficient published data for comparison has been 

used. In these cases, taking into consideration the taxonomically close relationship 

between certain animals, investigating a species in a family is sufficient for the purpose 

of this research. By overcoming the abovementioned challenges, a database of BMSs 

has been gathered and the parameters are shown in Table 2.2.  

Table 2.2. Known parameters for BMSs 

Known Characteristics  Parameters Unit or description 

Body design 

Body Form General form of the body known for 

BMSs; e.g. Fusiform  
(1)                                                              

 

Cross Section Type General shape of the body cross 

sectional area 
(1)

 

Average Mass [  ] 

Maximum body height (  ) Greatest height of  the BMS along 

the main body 

Maximum body width (BW) Greatest width of  the BMS along 

the main body  

Elliptical Length      Length of the equivalent ellipsoid of 

the BMS body 

Total Length      Overall length from the snout to the 

end of the rear fin 

“a” & “b” factors 
(2)

 {    }    {      }    

Taxonomy 
(3)

 

Full name Common  Name & Binominal 

Name 

 Family, Order, Class - 

Swimming  

(only submerged swimming is 

considered) 

Swimming Mode Different body & rear fin or paired 

fin swimming modes; e.g. 

Thunniform 

Optimum Speed Uopt [
 

 
] 

Maximum Speed Umax [
 

 
] 

Manoeuvring 
(4)

 
Turning (yaw) radius      

Turning Speed       

Control surfaces: 
(5) 

Rear fin (Caudal fin) 

Side fins (Pectoral Fins) 

Top fin(s) (Dorsal fin (s)) 

Bottom fin (s) (Anal or Ventral 

fins) 

Side stabilising fins (Pelvic 

fins) 

Numbers or pairs - 

Chord 
(6)

 [ ] 

Span 
(6)

 [ ] 

Area [  ] 

Aspect ratio 
    

          

    
 

Diving 
Maximum Depth [ ] 

Depth Range [ ] 

Energetics 

Cost of transport 
[

 

    
] 

Endurance 
(7)

 [  ] or [ ] 

Fat tissue storage Can aid to estimate the energy 

reserve 
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Table 2.3 and Figure 2.1 provide some explanatory notes to Table 2.2.  

Table 2.3. Explanatory notes to table 2.2 

Note Description 

1 Since height to width ratio for many BMSs is unknown, body form and cross 

section type are very important and only by having these two parameters, it is 

possible to estimate the ratio for future calculations. 

2 These empirical values are obtained for each species based on measurements 

(Froese  & Pauly, 2011). 

3 All data is not available for every species, therefore taxonomy helps to relate 

data collected to similar animals. In this research taxonomy data are coded 

numerically for simplicity. 

4 Turning speed is inversely proportional to the speed of the animal, therefore 

maximum turning speed and lowest yaw radius is usually achieved by unpowered 

turns. An example of conducted experiments on several marine mammals 

illustrates this fact (Fish, 2002).  

5 Gathering this set of data proved to be very difficult, especially since various 

studies have different definitions. For example, fin surface area could be 

considered as the projected area of both sides of the fin, one side of the fin or the 

actual area of the fin. Therefore for this research the area of BMSs control surfaces 

are measured using the species photo, 2D modelled in CAD software. The ratio is 

then taken compared to the 2D surface area of the body of the species in side view.  

6 In this research and for the purpose of calculating the drag of a BMS, the chord 

of a fin is always considered parallel to the flow and the span is considered 

perpendicular to the flow. Refer to Figure 2.1 for an example of the chord and the 

span of the BMSs’ control surfaces. 

7 Usually measured during long migration. 

Note that all parameters are not known for all BMSs in the database, therefore only the 

ones with available data are used when deriving calculations. 

 

   

Figure 2.1. An example of chord and span measured for the control surfaces of BMSs as mentioned 

in Table 2.2 and note 6 of the same table.  
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2.2.1 Taxonomic coding 

As mentioned in Section 2.2, where sufficient published data was not available for a 

BMS, considering genetic similarities, i.e. taxonomically close relationship between 

certain animals and realising the fact that genetically close BMSs often have similar 

characteristics, the performance characteristics of a BMS was predicted. Therefore, by 

knowing the taxonomic relationships between BMSs there was no need to thoroughly 

investigate every single species of marine animals. 

To make easy use of animal taxonomy when applicable, the taxonomy of the BMSs 

was represented by a numerical code. A few types of taxonomic serial numbers already 

exist, such as the Taxonomic Serial Number (TSN) from the Integrated Taxonomic 

Information System (ITIS) which is in a 6 digit number format (ITIS, 2013) or the FAO 

Species Codes in a 3 letter followed by a 10 digit number format.  

For the purpose of this research, a specific coding was made. The reason for this is 

that in this research interests are limited to the animal kingdom and only marine species 

with vertebrates. Moreover, there are limited number of species for which sufficient 

data is available. In addition, from an engineering perspective, the coding in aimed to 

categorise the species not only based on genetics which relates to the body design but 

also to capture some aspects of their performance characteristics such as their 

swimming mode. Therefore although based on taxonomical hierarchy, the coding is 

different compared to other coding available in literature and specific to this research. 

The taxonomy coding was used especially within the OSS as discussed in Chapter 7.  

The taxonomy of a species is defined in the general hierarchy form of: Kingdom, 

phylum, class, order, family, genus and finally the species. Since all the species are 

animals, the coding starts from the “Class” level of taxonomical hierarchy in an 

“ABCC-EE” format; where: 

 A represents the class/subclass as defined in Table 2.4.  

 B divides the BMSs of the same class based on their swimming mode. If 

swimming mode of the BMS is not available, B is set to 0.  

 CC represents the Order/Family level.  

 EE represents the Genus/Species in the family.  

The complete taxonomy table is presented in the Appendix 1.1. 
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Table 2.4. Taxonomy Coding of BMSs; representatives of the A value 

A Class Definition 

1 
 Actinopterygii and  

Agnatha (2 species) 

Fish and 

“Jaw-less” fish 

2 
Chondrichthyes and   

Holocephali (1 species)
 (1)

 

Cartilaginous fish and 

“complete heads”  

3  Mammalia Mammals 

4 Aves Birds; specifically penguins 

5 Reptilia Reptiles 

6 Cephalopoda Head-feet; specifically squids 

(1) The only one “Order” still surviving from subclass Holocephali is the “Chimera-forms”. 

 

The taxonomy data has been gathered from two main sources: WoRMS (Appeltans 

et al., 2012) and Fishbase (Froese & Pauly,2011) databases. 

 

2.3 Engineering Dissection 

On three separate occasions, data was gathered through the dissection of four 

different species. The collected data included the body dimensions but most 

importantly, the mass distribution within different body parts of the species which 

provided more detailed information compared to what was already available in 

literature. Knowing the mass distribution within the body of the BMSs was essential as 

it was used further on in the research to estimate the equivalents of motor mass, fuel 

mass and payload for BMSs. In addition, as discussed in Section 2.4 the samples 

gathered from the blubber of two of the species were further tested to estimate the 

specific energy of their fat. 

A whiting (Merlangius merlangus), a spiny red gurnard (Chelidonichthys spinosus), 

a junior grey seal (Halichoerus grypus) and a junior white-beaked dolphin 

(Lagenorhynchus albirostris) were the four abovementioned species. The first two were 

bought from the fishmongers and the other two suffered injuries and starvation in the 

wild and had died. The reason for choosing these species was due to availability (in the 

case of the two marine mammals) and variety of their body shape and control surfaces. 

The seal and the dolphin were dissected in the marine science laboratory in the 

Ridley building in Newcastle University (NCL) by specialists from the Zoological 

Society of London (ZSL) as their dissection required special expertise and also there 

was the possibility of contamination and the fact that the dissection was essential for 
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further investigation of the cause of death of the two species. The whiting and the 

gurnard were both dissected by the author to provide the detailed mass distribution 

which was required for the research. As the dissection of the whiting was part of a 

dissection training, the results are not as sophisticated as those of the gurnard. 

2.3.1 A few considerations regarding “Engineering dissection” 

Some aspects of the dissections performed in this research were unique to the 

research as the required data was different to those of scientific (conventional) 

dissection. Therefore, a few main points are made on “Engineering Dissection” as 

follows: 

I. Before dissecting the gurnard, its volume was measured by placing it in a 

container full of water and then measuring the amount of lost water. This was 

performed during the dissection as attempting to model the species from measurements 

and photographs was extremely time consuming and possibly not as accurate. However, 

for the two marine mammals, this process was not possible due to the limits to the size 

of the container. The volume measured with this method was used in Chapter 3 to 

justify the use of tri-axial ellipsoids as a simplified shape for the body of BMSs. 

II. At no point during measurement, should unnecessary pressure be put to the 

animal body since the flexibility might affect the precision of measured data. Precision 

is key, since the values are used for comparison, calculation and estimation further 

along. 

III. Total body length, maximum height and maximum width have been measured. 

Body girths (circumferences) are often measured in scientific dissection and used for 

observing the growth of the species. These measurements are not useful since they do 

not indicate the ratio of height to width which is vital in drag and manoeuvring 

comparison and calculations.   

IV. A camera was placed horizontally on top of the dissection table to take photos of 

each body part, especially the full body (top and side view) and control surfaces. These 

photos were then used to confirm measurements of lengths and also to calculate areas. 

V. Each item and organ in the body was precisely separated and weighted since the 

exact mass was required; therefore no part should be mixed with the other; e.g. no flesh 

should remain attached to the bone. If separating flesh from the vertebrate, slight 

cooking of it will ease the process of separation but will affect the weight of the flesh. 
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Therefore the mix of bone and flesh have not been cooked in this research and the flesh 

has been separated from the bone with due care. 

2.3.2 Presenting the dissection results 

The three main views and the main measured body dimensions are illustrated in 

Figure 2.2. 

 

Figure 2.2. Side, Front and Top view of the gurnard (Chelidonichthys spinosus) prior to dissection 

with the main dimensions illustrated on the body 

 

Tables 2.5 and 2.6 respectively show the detailed mass measurements of the body 

parts of the whiting and the gurnard. The tables are accompanied by Figures 2.3 through 

to Figure 2.6 which show different body parts of the two species. Figure 2.3 particularly 

shows the engineering dissection and arrangement of the species. 

 

 

Figure 2.3. Dissected whiting (Merlangius merlangus) 

Gill blade 
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Table 2.5. Mass Distribution of the whiting (Merlangius merlangus) 

Body part Sub parts 

Mass 

[gr] 

% of  the 

total Mass Note 

Inside the gut   20.9 9.33   

kidney 
Not 

measured 

Not 

measured 

Very light; could not be measured by 

the scale 

stomach 4.8 2.14   

liver 4.5 2.01   

pyloric caeca 3.8 1.7 
 An additional organ for digestion in 

many fish 

intestines 7.8 3.48  

Head  59.6 26.6   

brain 
Not 

measured 

Not 

measured 

 Very light; could not be measured 

by the scale 

gill blades 3.42 1.53 It had 6 blades 

heart 0.6 0.27  

1
st
 Anal fin  

2.7 1.21   

2
nd

 Anal fin  0.3 0.13  

Caudal fin  
1.18 0.53  

Pectoral fins  
1.64 0.73  It had bits of flesh attached to it 

Pelvic fins  0.04 0.02  

 1st Dorsal fin  1 0.45  

2nd Dorsal fin  1.25 0.56  

3rd Dorsal fin  0.3 0.13  

Flesh (Muscle 

& fat mixture)  
118 52.7 Contained red and white muscles 

Vertebrate  
17.28 7.71  

Sum of Masses  
224 100   

 

 A pie chart of the mass distribution for the whiting is presented in Figure 2.4 

 

 

 

 

Figure 2.4. Pie chart of the whiting mass distribution 
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Table 2.6. Mass Distribution of the gurnard (Chelidonichthys spinosus) 

Body part Sub parts 
Mass 

[kg] 

% of  the 

total Mass 
Note 

Inside the gut 
  0.055 11.2  

1 kidney 0.002 0.4  

2 gonads 0.008 1.6  

3 unknown 0.009 1.8  

4 oesophagus 0.008 1.6  

5 stomach 0.016 3.3  

6 liver 0.009 1.8  

7 gall bladder 0.003 0.6  

Head 
  0.091 18.6  

9 heart 0.002    

Anal fin   0.001 0.2  

Caudal fin   0.005 1.0  

Pectoral + pelvic 

area 

  

  0.044 9.0 

This included flesh mass 

connected to the fins 

8 Right side 0.023    

 Left side 0.021    

Flesh (Muscle and 

fat mixture) 

  

 

  0.22 45.0  

Total pectoral & 

pelvic area 0.027 5.5 White muscle 

end section 0.108 22.1 White  and red muscles 

gut surrounding 0.085 17.4 White muscle 

skin   0.016 3.3  

Vertebrate 

  

  

  0.041 8.4 Included the dorsal fins 

End section 0.024    

Gut surrounding 0.017    

Sum of Masses   0.473 96.7  

Lost Mass (assumed 

blood)   0.016 3.3  

 

Figure 2.5 demonstrates the numerals in Table 2.6. 
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Figure 2.5. Numerated dissected gurnard body parts used it Table 2.6 

 

A pie chart of the mass distribution for the gurnard is presented in Figure 2.6. 

 

 

 

 

 

 

Figure 2.6. Pie chart of the gurnard mass distribution 

 

The weight distribution of a 21.6 [m] female finback whale (Balaenoptera physalus) 

has also been collected from literature (Quiring, 1943). 
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Table 2.7. Mass distribution of the finback whale; raw data gathered from Quiring, 1943 

Body part Sub parts 
Mass 

[kg] 

% of  the  

total Mass 

Inside the gut   3471.88 5.83 

Adrenal 0.732 0.001 

Kidney 209 0.35 

Liver 809 1.36 

Heart 382 0.64 

Lung 394 0.66 

Stomach 310 0.52 

Intestine 1,009 1.7 

Diaphragm 250 0.42 

Uterus and Oviducts 103 0.17 

Ovaries 5.15 0.01 

Head   1731.82 2.91 

Thyroid 3.97 0.01 

Brain 8.325 0.01 

Spleen 6.8 0.01 

Eyes 1.72 0.003 

Baleen 484 0.81 

Tongue 1,227 2.07 

Muscle and fat   22254 37.47 

Muscle  9,863 16.61 

Fat and Muscle Bits 12,391 20.86 

Blubber 
 

11,603 19.54 

Structure   7604 12.8 

Total rib weight 1,276 2.15 

Lower jaw 762 1.28 

Bone in the head 1,961 3.3 

Vertebrae 3,605 6.07 

Scapula flukes, part of head   523 0.88 

Tail vertebra and tail fin   301 0.51 

Blood and body fluid   11878.8 20 

Sum of Masses   59367.5 99.94 

Lost Mass   26.503 0.06 

  

A pie chart of the mass distribution for the finback whale is presented in Figure 2.7 
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Figure 2.7. Pie chart of the finback whale mass distribution 

 

Although dissection must be a common practice by marine scientists, the 

measurement data with the extent of detail performed in this research are scarce.  

The main findings and usage of the dissections are as follows: 

I. As the grey seal and the dolphin dissection was not performed by the author, the 

main results obtained were the overall mass and body dimensions of the two species; 

however samples of their fat was taken and tested; this is explained in section 2.4 of this 

chapter. 

II. The measurements of the two fish were more sophisticated and provided details 

which are hardly found in the literature. The percentage of flesh mass to total mass; the 

measurement of body width as well as body height and the measurement and specially 

mass of control surfaces and the guts of the two fish and the whale from literature are 

used later on in the research when regenerating BMS data to then finding a possible bio-

inspired design based on AUV missions.  

III. The muscle mass provides an estimate of an equivalent to motor mass for fish 

and marine mammals, and the mass of the control surfaces and the guts have been used 
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to find the mass of bare body of BMS as well as to have an indication of corresponding 

payload for BMSs. These are later on explained in Chapters 5 and 7. As well as muscle, 

for fish, the flesh (edible part of the fish body) also contains the body fat. Sidwell et al., 

1974 and Huss, 1995 published data for the flesh/fillet components of various fish. This 

has been used in this research to estimate the pure muscle mass and fat mass of the fish. 

Although, the mass distribution of a single animal does not represent the whole class, 

the data available at the present and for this research, provided the best estimate 

possible to be used with the search and selection algorithm in the final stage of the 

work. 

Two more sources have been used in this research which presents some and not all 

mass data for some BMSs. Cherel et al., 1993 presented some mass data on king 

penguins (Aptenodytes patagonicus) and Lockyer,1976 measured some mass data on 6 

species of whales. Table 2.8 shows a comparison of mass distribution of several BMSs 

of different classes. Mass distribution data for all BMS is not available. However the 

average values from Table 2.8 are used to have an estimate of mass distribution of other 

BMSs.  

Table 2.8. Comparison of the mass Distribution of several BMSs 

 

% Muscle 

(Motor) 

% Fat        

(Energy reserve) 

Structure 

(bones & 

head) 

Unwanted 

mass for 

AUVs 

Control 

surfaces 
Reference 

Finback whale  

(Balaenoptera physalus) 
37.47 19.54 12.80 8.73 1.39 Quiring, 1943 

Whiting  

 (Merlangius merlangus)  
52 0.62 (3) 34.04 9.6 3.75 This study 

Gurnard  

(Chelidonichthys spinosus) 
52 Not measured (4) 29.88 14.3 3.2 This study 

King penguin  

(Aptenodytes patagonicus) 
32.3-37.8 (1) 15.8 – 17.5    Cherel et al., 1993 

6 species of whales  15-43 (2) 
12-17 

(2) 
8-13 (2)  Lockyer,1976 

(1) This is the sum of the muscle mass of the pectoral fin (25.3%-28.8%) and the hind limb (7% -9%) 

(2) These are the range of values for all the 6 whales 

(3) Calculated based on Sidwell et al., 1974 which predict that about 1.2% of whiting flesh is fat. 

(4) The mass data for the Gurnard were measured in this study. The mass of the fat was not 

measurable as due to the small amount of fat in the animal’s body, it was not possible to separate 

the fat from the muscle to be measured separately. 

 

Note that the mass of BMS sensors as illustrated for the whale is 0.02% of the total 

body mass, therefore insignificant to be considered. However, the organs inside the 

body cavity or the gut (also known as viscera) are not required for an AUV; therefore 

they can be considered as a corresponding to payload for AUVs.  
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It is apparent from Table 2.8 that regardless of the class of the animal, the sum of 

muscle and fat mass is usually between 50%-60% however, marine mammals and 

penguins have more than 15% of body fat and less than 40% muscle whereas                        

for fish the amount of fat could be as low as 0.3% of the edible meat in cod (Gadus 

morhua) to 17.3% in various eels (Sidwell et al., 1974). Also for whale about 20% of 

body mass is body fluids which are required for circulation and thermoregulation. The 

mass of blood in fish body is not significant. 

As illustrated in the Table 2.8, in this research the mass of BMSs has been divided 

as below: 

{    }      {    }                                {    }                

 {    }                 

Where: 

{    }                              

 {    }           {    }                     {    }              

 {    }               {    }                         

 

2.4 AUV vs. BMS mass breakdown 

As this research is comparing biological and engineered underwater vehicles, it is 

interesting to also compare the mass distribution of the two. Furlong et al, 2008, 

published the mass breakdown for Delphin AUV, as shown in Table 2.9. The pie chart 

of the mass distribution is presented in Figure 2.8. 
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Table 2.9. Mass distribution of Delphin AUV (Furlong et al, 2008) 

Body Part Sub Part Mass [kg] % of  the  total Mass 

Pressure Vessel 

  13 48.85 

Fore End Cap 1.56 5.86 

Aft End Cap 1.68 6.31 

Central Bulkhead 1.48 5.56 

Outer Tube 1.72 6.46 

Pressure Vessel Tubes 1.2 4.51 

Electronics 0.6 2.25 

Connectors 0.76 2.86 

Battery 4 15.03 

Frame 

  3.8 14.28 

Bow 1.4 5.26 

Stern 2.4 9.02 

Hull 

  1.12 4.21 

Bow Fairing 0.5 1.88 

Stern Fairing 0.62 2.33 

Thrusters + Tubes & Mount   6.4 24.05 

Duct + Fins + Servo-motors   0.46 1.73 

Camera + Cable & Mount   0.65 2.44 

Sonar & Mount   0.5 1.88 

Kill Switch & Mount   0.12 0.45 

Marker Droppers & Mount   0.56 2.10 

Sum of masses   26.61 100 

 

 

  

Figure 2.8. Pie chart of Delphin AUV mass distribution 
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Not all parts in AUVs and BMSs correspond to one another. However, in order to 

make a comparison, it was decided in the research that a suitable correspondence 

between AUV and BMS parts is as presented in Table 2.10. 

 

Table 2.10. Corresponding parts for AUVs and BMSs 

Body part BMS corresponding part (s) AUV corresponding part (s) 

Motor Muscle  Motor 

Energy Reserve Fat         Battery 

Structure Vertebrate, bones & head 
Frame, hull and pressure vessel 

structure 

Control surfaces  

& propulsors 
Fins Thrusters, ducts and fins 

Sensors 

brain Electronics 

Eyes Camera 

Others (e.g. ear, etc.) 
Others (e.g. sonar, marker 

droppers, kill switch, etc.) 

Connectors Blood and nerves Connectors and cables 

Other Inside the gut, spleen, baleen, etc. not applicable 

 

The corresponding masses of the sample BMSs and Delphin AUV are presented in a 

bar chart in Figure 2.9. Delphin AUV is not a representative of all available AUVs, 

neither are the three BMSs. However, the comparison adds new insights regarding the 

mass distribution of AUVs and BMSs. 

 

Figure 2.9. Bar chart comparison of masses of available BMSs and AUVs 

 

 

Includes masses 

of fins & duct 

Excludes masses 

of fins & duct 

Includes fat mass 
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As shown in Figure 2.9 Delphin AUV has considerably less motor mass (less than 

2%) compared to the muscle mass of BMSs (in average more than 35%). Increasing the 

motor mass or muscle mass can have a significant impact on the speed capability of the 

vehicle or the animal. 

Energy reserve of Delphin AUV is close to one of the finback whale and very 

similar to the king penguin average mentioned in Table 2.8, while the whiting has 

considerably lower energy reserve. Higher every reserve can provide higher endurance 

or the opportunity to consume more power for propulsion. 

Most of the mass of Delphin AUV is invested on its structure and control surfaces 

(47.2%) while the highest value between BMS examples is 32.5%. Lighter materials 

available to BMSs make it possible for the remaining mass to be used for energy reserve 

and motor mass. Same statement can be made for the mass of control surfaces and 

proplusors. Maximum 3.75% control surface mass for BMSs compared to 24% for 

Delphin AUV. 

Sensors are a crucial part of AUVs while in BMSs it is very low and almost 

negligible.  

The connectors mass in Delphin AUV is close the lost mass for the gurnard which is 

assumed to be blood mass. While the whale being an endotherm has considerably 

higher blood mass. 

About 10% of BMSs body mass which includes the contents of the gut have no 

correspondence to AUV mass. 

From the comparison it is clear that the concentration of mass varies considerably 

between the AUV and the BMSs (as well as between the BMSs). Higher motor mass 

and reserved energy can provide more speed and endurance capability while lighter 

materials used for the structures and the control surfaces can reduce the overall mass or 

make room for increasing the mass of other parts. 

2.5 Fat Specific Energy measurement 

As well as the measured data, samples of the blubber of both marine mammals were 

taken to be tested for their calorific value. It is important to know the energetic value of 

BMSs fat. Combined with the amount of body fat, the energy reservoir of the BMSs can 

be calculated. 
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  Samples were gathered horizontally and vertically to check whether the properties 

change through the depth of the blubber which later did not show any significant 

difference.  

The blubber samples were tested in the calorie-meter of the school of Agriculture, 

Food and Rural Development. The results are shown in Table 2.11. 

 

Table 2.11. Results of marine mammals’ fat specific energy test 

Energy Storage Type 
Specific Energy 

(MJ/kg) 

Reference  

White beaked dolphin blubber 31.9 This research 

Grey seal blubber 32.7 This research 

Bowhead whale Blubber 36.4 U.S. Department of Agriculture, 2010 

 

Both species where starved therefore the fat was yellowish and rubbery. If the tested 

sample provided the same calorific value as the blubber provided in the literature for 

bowhead whale (Balaena mysticetus), it would have meant that blubber would be pure 

burnable energy store; as shown in Table 2.9, both blubbers resulted in about 10% less 

specific energy. This could be due to being starved; however, almost similar results for 

two samples means that blubber has similar energetic value in pinnipeds and dolphins. 

 

2.6 Discussion 

There are many characteristics to be considered for each BMS or AUV and it is vital 

to be able to generalise the terminology and understand the differences between various 

research works and areas of research to be able to gather a reliable large scale database. 

After gathering and unifying all data, studies were carried out on means to compare 

BMSs with engineered vehicles, to investigate whether bio-inspiration is a promising 

approach. However, originally, animals are studied by scientists whereas engineers 

study vehicles. In bio-inspiration, the two are combined. In addition, since BMSs from 

different biological classes of species were investigated in this research, the key was to 

understand the mechanism of both engineered and biological systems and unify the 

definitions, in order to conduct a valid comparison.  

Another interesting challenge was to handle the large size differences especially 

between numerous BMSs when comparing speed and depth capabilities which, due to 
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size and taxonomy differences for BMSs, required extra consideration. The comparison 

of various performance characteristics were carried out as discussed in Chapter 3. 

Another important comparison between engineered and biological systems was the 

energetics. For vehicles, energetic cost is calculated from knowledge of the energy 

stored in the batteries and its subsequent consumption, which is well defined and 

specified. However for BMSs with limited available data, the calculation was rather 

complicated. Therefore, a formulation of the physical factors associated with biological 

and engineered systems energy usage was presented for energetic cost comparison 

(Phillips et al., 2012) which is discussed in Chapter 4 of this thesis. 

The BMSs and AUVs databases as well as the taxonomy table of the BMSs which 

have been gathered, manipulated and used in this research have been presented in the 

Appendix 1 of this thesis for further information.  
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Chapter 3. A series of comparisons between BMSs and AUVs 

 

In order to identify the aspects of the evolution and therefore performance of BMSs 

which are potentially an inspiration for engineered designs of AUVs to improve their 

performance, the characteristics of both AUVs and BMSs must be compared. The data 

which were collected and manipulated as explained in Chapter 2 are used to make the 

comparisons. In the present chapter, the methods for making the comparisons are 

explained, the comparisons are presented and interim discussion from the analysis of the 

comparisons is presented.  

This analysis highlighted the relative superiority and possible limitations of both 

BMSs and AUVs. The main focus of the present research is to investigate possible 

improvements to the speed, manoeuvrability and depth capability of AUVs while 

attempting to reduce the mass and the cost. It was found that for BMSs the cost would 

be best associated with the energetic cost of their transport and their non-propulsive 

basal energetic cost. Where essential data is publicly available, energetic cost can also 

be calculated or estimated for AUVs. Therefore, corresponding to the focus of this 

research the following comparisons have been made: 

 Diversity of the body forms 

 Speed and agility 

 Depth capabilities 

 Manoeuvrability 

 Energetics 

Each of the above are considered next, in turn. 

3.1 Diversity of the body forms 

As various marine species have evolved differently for a variety of purposes and 

surviving modes, they exhibit very diverse performance. A novelty of this research has 

been to consider the biological marine systems as a system in which each of the species 

are a configuration. This required investigating as many species as possible. This was to 

capture a realistic and sophisticated understanding of the diversity and complexity in the 

marine biological designs and capabilities to then tailor them for the desired AUV 

performance. Taking this approach, presented the challenge of diversity in performance 

as well as in size and design. Overcoming this challenge as explained in this thesis 
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became a novelty of this research by providing better understanding of the reasons 

behind different designs of BMSs.  

Both AUVs and BMSs have many diverse body forms. The diversity is greater in 

BMSs and they also exist in wide range of sizes. The size varies from fish with less than 

a meter of body length to the Blue Whale with an average body length of more than 25 

meters. Therefore, before performing comparison of capabilities, the actual body shapes 

must be analysed for both AUVs and BMSs.   

3.1.1 AUVs body shapes 

AUV cross-sections are usually circular. Selecting circular cross-sections is mainly 

for ease of production as well as for hydrodynamic and drag reduction reasons. 

However, examples of rectangular or oval cross-sections exist as well. One factor on 

deciding the body shape and cross-section of AUVs is the inside volume required to 

carry the motor, batteries, sensors and other equipment.  

As well as different cross-sections, there are seven main body types defined for 

AUVs which are studied in this research. These are classed in Table 3.1 that follows. 

 

Table 3.1. Various body types of AUVs 

Body Type Description Example 

Biomimetic 

The AUV is made in the shape of a marine 

animal 
Bionic Manta AUV 

Torpedo 

As by the name, it is in shape of a torpedo 

with a circular cross section. This is the most 

used body type for AUVs. 

AUTOSUB6000 

Oblate 

Similar to a torpedo but with an oval cross 

section 
Sea otter MK2 

Open space frame 

Built with two main bodies connected to each 

other 
Nereus AUV 

Blended Wing 

The vehicle has two extended side fins which 

blend with the main body. Similar examples 

of these wings are seen in nature, such as rays 

or bats. 

XRAY Liberdade  

Rectangular 

Similar to a torpedo but with a rectangular 

cross section 
Echo Ranger AUV 

Teardrop 

The body is in shape of a tear drop with a 

rather sharp rear section 
Sea glider AUV 
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3.1.2 The rational for a unified body shape for BMSs 

The main body measurements used for BMSs include Total Length (TL), Standard 

Length (SL) as well as maximum Body Height (BH) and maximum Body Width (BW). 

A generic example of BMS design in Figure 3.1 illustrates these measurements.  

As the bodies of BMS are very diverse, a shape which could represent all BMSs to 

an acceptable extent was required. In this research, it is proposed that the best shape to 

describe the general body form of all BMSs which is used to compare them with each 

other as well as with AUVs, is a tri-axial ellipsoid.  

A tri-axial ellipsoid is a 3D shape which will be an ellipse in all three views. This is 

illustrated in Figure 3.1. For the purpose of this research a new length is introduced. The 

Elliptical Length, EL. The Elliptical Length is the length of the main body which is 

simplified as a tri-axial ellipsoid. In this research, the Standard Length is corresponded 

to the Elliptical Length.  

 

  

Figure 3.1. A presentation of the generic design of BMSs represented by a tri-axial ellipsoid 
 

A major reason for considering BMSs main body shape as tri-axial ellipsoid is when 

calculating the drag as described in Chapter 5. 

When considering the cross-sections and body forms of BMSs, similar to AUVs, 

BMSs are very diverse. Classifying the body forms of BMSs was more complicated 

compared to AUVs. Different classes of marine animals (i.e. fish, sharks, rays, marine 
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mammals, reptiles and invertebrates) studied in this research have different body forms 

as well as different control surface and other appendages.  

The body forms and cross-sections studied in this work are explained in Tables 3.2 

and 3.3 respectively. The cross-sections of BMSs body changes considerably along their 

body length. However, taking into account all the body segments of all BMSs is highly 

time consuming. Therefore, for the purpose of this research, the ratio of the largest 

body-height to body-width of the BMS, defines the cross-section type of the body. Five 

main body Cross-Sections (CSs) can be defined for BMSs as follows. 

 

Table 3.2. Various body cross-sections of BMSs 

Cross-Section Description 
BMSs mainly associate with 

this cross-section 

Circular 

A CS for which the width (BW) 

and the height (BH) are almost 

the same. A perfect circular CS 

is very rare for BMSs. 

Therefore, where      
  

  
 

    (1)
, the CS is classified as 

circular 

Marine mammals, penguins 

and eels 

Oval 

A CS for which either 

      
  

  
      or 

      
  

  
      

(1)
 

Some fish and sharks 

Oval box 

Similar to oval CS.  

However the CS is not properly 

oval shaped and it more 

reassembles a rectangle with 

rounded corners. 

Some fish such as the boxfish 

(genus Ostracion) 

Compressed A CS for which the 
  

  
   

(1)
 

Some fish such as the sailfish 

(Stiophorus platypterus) 

Flat A CS for which the 
  

  
   (1)

 Rays, turtles and flat fish 

(1) These values are not formally defined in literature and were quantified by comparing the values 

from the BMSs within the database. 

 

In addition, various body forms of the investigated BMSs were divided into six 

groups as presented in Table 3.3. 
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Table 3.3. Various body forms of BMSs  

Body Form Description Example of BMSs 

1 Anguilliform 

Eel-like body form. Long bodies 

with relatively small CS compared 

to the body length  

eels 

2 Elongated 

An elongated version of a fusiform 

body. The ratio of length to 

diameter is less than an eel but 

marginally more than a fusiform 

body. The body is not tapered at 

the end as such as the fusiform 

bodies.  

Sailfish (Stiophorus platypterus), 

barracuda (Sphyraena barracuda), 

Hammerhead shark (Sphyrna lewini), 

etc. 

3 Fusiform 
A body form which is rounded and 

tapered at both ends 

Marine mammals, penguins and some 

fish 

4 
Short & 

High 

A body type for which 
  

  
    . 

BMSs associated with this body 

form usually have compressed 

body CSs 

puffers and filefish (Tetraodontiformes)  

5 Flat body 

A body type for which 
  

  
    . 

BMSs associated with this body 

form have flat CSs. 

turtles and rays 

6 Squid The specific body shape of squids squids 

  

To make direct comparison between the main body types of BMSs, it would be ideal 

to have all the data on body width and body height of all BMSs and AUVs. However, 

due to insufficient data for both groups, it is not possible to make direct comparison in 

terms of length, width (breadth), height and volume. All measurements are not available 

for every BMS. For most BMSs only body length and height are measured, and for 

some only the body length. Therefore, the body dimensions which are unavailable must 

be estimated or accounted for by other means. 

On the other hand, body length and mass are generally available. Furthermore, 

notwithstanding minor differences, BMSs and AUVs are approximately neutrally 

buoyant with the variation in density being relatively small (less than 2%), even 

between floating and sinking marine animals. Therefore in average it is possible to 

assume BMSs and AUVs have an average density of water (        
  

  
⁄ ). In 

order to verify the tri-axial ellipsoid assumption, and find means to estimate the 

unavailable body dimensions, it was essential to test and observe whether the tri-axial 

ellipsoid model of a BMS would result in the same volume or mass as the real BMS. 

Noting the limitations, comparing some measure of fineness was desirable. Therefore, if 

the tri-axial ellipsoid model was validated for systems for which data was already 

available, it would be possible to populate it for all BMSs.  
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If the BMSs are idealised as tri-axial ellipsoids, by having body length, width and 

height data, the volume of the tri-axial ellipsoid can be calculated. Subsequently, by 

considering BMSs to be almost neutrally buoyant the mass can be calculated. The 

estimated mass can then be compared with the actual mass of the BMS. As: 

{    }          3.1 

 

And the volume of a tri-axial ellipsoid is calculated as: 

     
  

 
(
        

 
)  

 

 
(        ) 

3.2 

Where EL, BH and BW represent the Elliptical Length, Body Height and Body 

Width, respectively.  

Equation 3.2 is used to calculate the volume and hence the mass of the equivalent 

tri-axial ellipsoid which has the length EL. The total mass also includes the mass of the 

control surfaces (fins) of the BMS. However as shown in Tables 2.5, 2.6 and 2.7 the 

mass of the fins of the concerned BMSs is between 1.4 % of the total mass for the 

Whale and 3.8% of the total mass for the whiting. Therefore, it is assumed that the mass 

of the fins is negligible compared to the total mass. 

Figure 3.2 illustrates the ratio between the mass of the BMSs within the database for 

which the actual mass was known, and the mass of the equivalent tri-axial ellipsoid. The 

blue line shows a 1:1 ratio line and the red line is the trend line of the actual data. 

 

Figure 3.2. Log-log plot of actual mass of BMSs vs. calculated mass based on a tri-axial ellipsoid 
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Figure 3.2 highlights strong correlation between actual mass and the mass of the 

equivalent tri-axial ellipsoid for BMSs. Another proof that justified the use of tri-axial 

ellipsoids was the volume measured from the dissected Gurnard as discussed in  

Chapter 2. The difference between the actual volume of the Gurnard and the volume of 

the equivalent tri-axial ellipsoid was only 2.5%.  

The analysis of Figure 3.2 as well as the results obtained from the volume 

comparison of the Gurnard justified the idea of representing BMSs as tri-axial 

ellipsoids.   

A similar graph can also be plotted for AUVs as Figure 3.3 

 

Figure 3.3. Log-log plot of actual mass of AUVs vs. calculated mass based on a tri-axial ellipsoid 

 

It is observed from Figure 3.3 that as not many AUVs are built in a tapered shape 

which is similar to a tri-axial ellipsoid, some of the data points move further away from 

the 1:1 ratio line (the blue line). However, in overall the tri-axial ellipsoid model is a 

close representative of the shape of AUVs as a unified means.  
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3.1.3 Using the tri-axial ellipsoid model to compare the body forms of BMSs and 

AUVs 

Unifying the approximate body shape of BMSs facilitated the comparisons between 

BMSs and AUVs. Equation 3.1 was used as a measure of body form comparison.  

Another useful means for comparing the body shapes is the Fineness ratio (FR). FR 

is defined as length over diameter of the body.  

 

   
      ( )

       ( )
 

3.3 

 

This formula was used to classify different AUVs and BMSs. 

As most BMSs as well as some AUVs have oval body cross sections which is 

defined by a BH and a BW, two different fineness ratios can be calculated. Therefore, an 

equivalent diameter was presented in this research to calculate only one value of FR 

which is comparable for both BMSs and AUVs. If the length of the system is kept the 

same (unchanged), the body with an equivalent diameter, which will therefore become a 

spheroid, must have the same volume as the tri-axial ellipsoid. Therefore: 

                     3.4 

This is written as: 

   
  
  (

  
 )

 

 
 
 

 
(        ) 

3.5 

where    is the equivalent diameter. 

By reforming the formula the equivalent diameter is calculated as: 

  
        3.6 

which means: 

   √      3.7 

Therefore the fineness ratio of AUVs and BMSs can be estimated as: 

   
  

√     
 

3.8 

where BL is the elliptical length of the BMSs.  

As for the BMSs for which body width and height are not available, the equivalent 

diameter is calculated by using the mass and length of the BMS, considering that based 

on the trend in Figure 3.2, the BMS fits with the ellipsoid model. 
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{    }                       
 

 
(        ) 3.9 

By replacing       with the equivalent diameter from Equation 3.6 and 

rearranging the equation,    was calculated as: 

   √
 {    }         

     
 

3.10 

   vs. EL ratios for BMSs and    vs. TL ratios for AUVs are demonstrated in 

Figures 3.4 and 3.5, respectively. The dashed lines represent the base lines for different 

  

  
 values and the continuous lines represent the trend line for each body form of BMSs. 

The shapes adjacent to each dashed line represent the side view of an equivalent 

spheroid with the same FR. 

 

Figure 3.4. Length vs. equivalent diameter for BMSs with various body types. The red dashed 

frame is the boundary at which the AUVs exist and therefore Figure 3.4 demonstrates the area 

within this boundary  

 

For turtles and squids there is a single data therefore no line is presented. Values of 

length-diameter or fineness ratio can be estimated from the trend lines in Figure 3.4 as 

in Table 3.4 below: 
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Table 3.4. Estimated values of fineness ratio for various body shapes of BMSs 

Body form Average 
  

  
       Value 

Eel like 17.83 0.97 

Elongated 6.27 0.97 

Fusiform 5.33 0.97 

Short and deep 2.7 0.95 

Flat (single data) 2.44 - 

 

The only outlier in short and deep body forms (purple circles in Figure 3.4) belongs 

to striped burrfish (Chilomycterus schoepfii ) which is a puffer fish, hence both deep 

and bluff. Its fineness ratio is 1.64. The haddock (Melanogrammus aeglefinus) is the 

outlier of fusiform bodies. Due to its slim body, it has a FR of 10.3. 

 
Figure 3.5. Length vs. equivalent diameter for AUVs with various body types 

The blue ellipses represent the equivalent tri-axial ellipsoids modelled for BMSs with the 

indicated   .  

 

Figure 3.5 shows a large variance between the fineness ratios of AUVs with similar 

structure. However, three AUVs stand out as outliers. ABE and SQX-1 sit on the two 

far ends of the FR border line for space frame AUVs. This is due to the variance in the 

open space platforms. Although most have a similar box shape, ABE is a combination 

of two teardrops on top and a quasi-rectangular structure on the bottom all connected 

http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=1916
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=23437
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=genus&genid=3044
http://research.calacademy.org/research/ichthyology/catalog/fishcatget.asp?tbl=species&spid=12355
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together. Therefore ABE has the lowest FR off all AUVs at 1.34. SQX-1 is a 

combination of two connected torpedoes and has the highest FR of space frame AUVs 

at 6.4. One must notice that unlike BMSs, not all AUVs have ellipsoid body shapes. 

Especially space frame AUVs which have multiple bodies cannot be represented by an 

ellipsoid body design and they have been included in Figure 3.5 solely to have a varied 

range on AUVs in the plot. For a space frame AUV there could be several definitions of 

FR which will result in different answers; e.g. using length to width vs. length to depth 

ratio. In conclusion, the FR values obtained for non-ellipsoid shape AUVs are for body 

classification purposes and the complication mentioned above must be bore in mind. 

Torpedoes and torpedoes with wings sit between the FR=5 and FR=10 lines. This is 

except for AUV62 which is a rather long thin AUV. Note that the widths of the wings 

are not included in the FR calculations as the FR is calculated for the main body. 

The comparison between AUV and BMSs show that for AUVs the FR ranges 

between 1.34 and 13.2 while for BMSs the range is 1.6 to 18.4. More long and thin 

bodies exist in nature, all belonging to the species with eel like bodies. The FR ranges 

are summarised in Table 3.5 below. It is to be expected that the FR range of Fusiform 

BMSs is within the range of Teardrop AUVs. As for biomimetic AUVs their FR 

matches with the BMSs which they are built based on. For example the Aqua penguin 

with a fusiform body has a FR = 4.05 which is in the range of fusiform bodied BMSs. 

 

Table 3.5. FR Ranges for BMSs and AUVs 

AUV Body Type Min 

FR 

Max 

FR 

BMS Body 

Type 

Min FR Max FR 

Torpedo 5.16 13.2 Eel like 15.2 18.4 

Rectangular 4.3 9.6 Elongated 4.4 6.9 

Teardrop 2.7 6.2 Fusiform 3.5 7.5 
(1)

 

Open space frame 1.34 6.4 Short and deep 1.6 3.9 

Torpedo with wings 5.8 8.43    

Biomimetic 2.3 4.05    

(1) This is except for the Haddock with FR=10.3 

 

In overall, it was concluded that for both AUVs and BMSs there is a large variation 

between body forms and cross-sections and considering their Fineness Ratio along with 

their body form provides a useful means to classify them. It was also realised that 
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despite the differences between body forms of AUVs and BMSs, as presented in    

Table 3.5, there are some body forms in BMSs that can be corresponded with one in 

AUVs. Table 3.5 also shows that the range of Fineness Ratio in BMSs is slightly larger 

than that of the AUVs. 

Dorrington, 2006 performed a research work on the drag of spheroids and airships 

in which he investigates and compares the volumetric drag of spheroids and streamline 

bodies with regards to their Fineness Ratios. He mentions that the general assumption is 

that Fineness Ratios between 4 and 8 are best for minimising drag for streamline bodies. 

However, in practice the FR value is selected considering various parameters and not 

solely relying on minimising drag. Based on this, and considering space frame AUVs, it 

can be noted that as space frame AUVs are setup more for photographic surveys, they 

are generally low speed AUVs and use thrusters. Therefore, for these type of AUVs 

drag is not the most critical parameter to consider. 

Dorrington’s research illustrates that by using Hoerner, 1965 formula for 

volumetric drag it is observed that for FR values less than 3 the volumetric drag 

coefficient increases rapidly with minimising the FR. However, the changes in 

volumetric drag are insignificant when changing the FR between 3 and 10 (the range 

which has been investigated in the research). Another finding in his research is that 

higher FR certainly beneficial when targeting high cruising speed but the same cannot 

be said for certain when the target cruising speed is low. Looking into the FR values for 

BMSs while considering these findings it can be concluded that fusiform and elongated 

bodied BMSs which include marine mammals such as dolphins as well as fish such as 

the sailfish have evolved with body Fineness Ratios around 4 and 8 to minimise drag for 

high speed. However many other BMSs exist with much higher or lower FRs. As 

mentioned by Dorrington, other parameters could influence this, for example high 

manoeuvrability.  

 

3.2 Speed and Agility  

Speed and agility are parameters desired for AUVs operation especially when 

tracking and observing. To realise the difference in the agility of AUVs vs. BMSs, their 

speeds have been compared. 

In the scope of this project, two main AUV speed are of interest. These are the 

economic speed,     , and the maximum speed,      .      is defined as the advance 
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speed of the AUV at which the energetic cost is minimum.      is defined as the 

maximum speed at which the AUV can move forward.  

It must be noted that the data on the      of AUVs is extremely hard to find and 

generally not available. Instead the manufacturers’ cruising speed is available for most 

AUVs. Therefore, the cruising speed is instead used in present research to have an 

estimate of the lower energetic cost (Cost Of Transport, COT) values for AUVs. This 

means that the COT value estimated is higher than the actual COT for the vehicle. 

However, for most of BMSs the situation is similar; i.e. the optimum speed is not 

available and instead their voluntary cruising speed has been considered for COT 

calculations. Acknowledging the uncertainties and over estimation of minimum COT, 

the uncertainty is similar for both data sets. Therefore, the optimum COT results can be 

updated in future when more data on the economic speed of AUVs and optimum speed 

of BMSs become available.  

Note that there is a third speed, minimum speed,     , which torpedo shaped AUVs 

must maintain to keep controllable which means the vehicle cannot keep stationary 

(Billingham, 2001).      has not been  investigated in this research. However, it is 

worth mentioning that some BMSs also have a minimum speed.  BMSs which are 

negatively buoyant must have a minimum speed to prevent them from sinking. These 

BMSs are sharks, rays and most of the marine mammals. For other BMSs,      is zero. 

This indicates that they can be still in the water. 

For BMSs more speeds are defined as they have a larger speed range compared to 

AUVs. There are 5 specific speeds defined for BMSs as below: 

 Minimum speed,      

 Optimum speed,      

 Cruising speed,         

 Critical speed,       

 Maximum speed,      

 

There are as well 3 speed ranges defined for BMSs as follows: 

 Sustained speeds, 

 Prolonged speeds, 

 Burst speeds 

All these speeds and speed ranges are discussed next. 
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3.2.1 Different speeds and speed ranges in BMSs 

Optimum speed for BMSs,     , corresponds to      in AUVs.      is defined 

relative to the Cost Of Transport (COT) of the BMS. COT is explained in Section 3.5 

and in detail in Chapter 4 of this thesis. 

The optimum speed is the speed at which the energetic Cost Of Transport is 

minimum,               . However,      is usually lower than the voluntary 

cruising speed,         , of BMSs. Therefore, most animals swim marginally faster than 

the speed with least COT.  

In order to obtain a measure of minimum COT for comparison between various 

BMSs and AUVs, in this research where the optimum speed is not available or not 

specifically mentioned, the voluntarily forward swimming speed of the BMS (i.e. not 

routine movements or socialising locomotion) has been used instead.  

It is difficult to quantify the difference between the two speeds as from the data 

gathered from various resources (e.g. Fishbase) it was realised that the voluntary 

cruising speed of BMSs could have a wide range. Therefore there is a degree of 

uncertainty on the similarity of the optimum speed and the voluntary cruising speed of 

BMSs.  

Considering power is generally proportional to the speed cubed, on the assumption 

that optimum speed and cruising speed values are close, the required propulsion power 

for the two speeds will be similar. However, if the two speeds vary significantly, the 

powers will differ considerably. Considering the process of evolution tends to lead to a 

more “survivable design”, which can be construed to imply that BMSs are evolved to 

their specific purpose, it is unlikely that they will tend to swim at speeds that will 

significantly increase their power consumption, unless they are forced to do it 

involuntarily. This is why any swimming under hypoxia, fasting, or other stresses has 

not been considered in this research.  

      and         are both within a range of speeds known as sustained speed. This 

is the speed range at which only slow (red) muscles are operating. Therefore, due to the 

aerobic process, the animal does not endure fatigue. As stated by Viedler and Wardle, 

1991, sustained speed can be endured by the animal for more than 3 hours (200 min) 

without muscle fatigue. If the BMS is pushed harder to swim within the prolonged 

range, fast (white) muscles start working and through anaerobic process, fatigue occurs. 

The critical speed,      , is the border speed between pure aerobic and 



56 

 

aerobic/anaerobic process. Prolonged speeds can be endured between 200 minutes and 

20 seconds. Highest speeds of BMS swimming fall within the burst speed range. It is 

usually endured less than 20 seconds. The BMS will be able to swim up to its maximum 

speed,     . This speed is corresponding to the maximum speed of AUVs. Therefore, 

     and      are compared in this study. 

Each individual of the same species has a different level of “fitness”; moreover 

many capabilities of a species are affected by their length nonlinearly.  For example, 

collected data from Froese & Pauly, 2011, on the sustained speed of Atlantic mackerel 

(Scomber scombrus) showed that the sample with the elliptical length of 0.3 meters 

managed to sustain a swimming speed of 5.4 [
 

 
] while another sample with EL of 0.38 

meters only managed to sustain 3.04 [
 

 
]. 

Therefore, in this research only in the case of relatively similar sizes individual of a 

species the average value of the speed or any other characteristics of that species are 

considered. If the size difference is significant or the test has been performed on a 

juvenile, all the individuals are considered separately. 

Both the absolute speed as well as length specific speed of numerous BMSs and 

AUVs have been compared in this research. Length specific speed is the absolute speed 

divided by the total length of the BMS or the AUV.  

The other consideration to be made when investigating BMSs is the diverse modes 

of their swimming. For AUVs the classification is simpler. There are three main types 

of AUVs, the ones propelled with propellers, biomimetic AUVs and gliders. However, 

BMSs have many diverse swimming modes. All the different swimming modes studied 

in this research are shown in Table 3.6. For ease of comparison the modes of swimming 

are coded based on their similarities.  
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Table 3.6. Various swimming mode of BMSs. BCF = Body and/or Caudal fin;  

UMPF =Undulation of median or pectoral fin; OMPF = Oscillation of median or pectoral fin; 

BDCF = Body and/or double caudal fin.  

Swimming mode Code 

BCFAnguilliform 11 

BCFSubcarangiform 12 

BCFCarangiform 13 

BCFThunniform 14 

BCFOstraciiform 15 

BDCF 16 

UMPFRajiform 21 

UMPFDiodontiform 22 

OMPFLabriform 23 

UMPFAmiiform 31 

UMPFGymnotiform 32 

UMPFBalistiform 33 

OMPFTetraodontiform 34 

JetForm 
(1)

 41 

Other 51 

(1) Although squids are recognised for their unique jet propulsion, videos of their swimming 

illustrated that they use also their large side fins in a Rajiform mode to swim.  

 

Different modes of BMS swimming is illustrated in Figure 3.6 (Sfakiotakis et al., 

1999). These are divided into 3 main groups. As shown in Figure 3.6 all the swimming 

modes with the rear fin as the main propulsor are coded as 1x; e.g. 11 is the 

Anguilliform swimming. Those with paired side fin propulsion are coded as 2x and the 

ones with top or bottom fin propulsion are coded as 3x. This coding system was 

proposed in this research for ease of classification of swimming modes. 

Two types of swimming which are not shown in Figure 3.6 are squid swimming and 

BDCF. Squid swimming is similar to jet propulsion hence, in this research it is defined 

as Jet-form. BDCF is the name given in this research to the swimming modes of BMSs 

with feet or hind limbs propulsion such as the sea otter. As shown in Figure 3.6, BCF 

propulsion modes range from the extreme body undulations of the Anguilliform 

swimmers to the rear fin (caudal fin) oscillation in the rigid bodies of Ostraciiform 

swimmers.  
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Figure 3.6. Various swimming modes of BMSs (copied and modified by adding the annotations 

from Sfakiotakis et al., 1999) 

 

Those species of fish which do not use the rear fin while swimming at a sustained 

rate do in fact use their rear fin in transition to burst speeds and accelerating. Side fins 

as well as a mode of propulsion are also used for manoeuvring (Sfakiotakis et al., 1999). 

Moreover top fins are used in some BMSs to improve their upright stability.  

Figure 3.6 clearly illustrates the swimming modes involving undulatory and 

oscillatory movement of median and/or paired fins. The Ostraciiform swimming mode 

involves the oscillation of the rear fin alone where the rigid body does not undulate and 

therefore does not particulate in propulsion. BMSs with this mode of swimming have 

rigid bodies. For the other four modes involving the rear fin it is apparent that from left 

to right in Figure 3.6 less of the length of the body is involved in the undulation, 

however more clarification is required. Both the length of the propulsive wave 

travelling along the body while swimming and also the length of the body which is 

involved in the undulatory movement are used to define and distinguish different rear 

(caudal) fin undulation swimming modes. These have been thoroughly explained by 

many scientists such as Webb, 1975, Blake, 1983 and Videler 1993. Table 3.7 below 

summarises the characteristics of each of the four swimming modes. 

 

 

 

 

 

11 12 13 14 

21 

15 

22 

23 

31 32 
33 

34 
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Table 3.7. Various BCF undulation swimming modes characteristics.     = Percentage of the 

body engaged in undulation/oscillation 

Swim mode      Specific 

wavelength 

of the body 

waves 

Min. of the 

wave length 

present on the 

body 

Max. of the 

wave length 

present on 

Rear fin BMS 

example 

Anguilliform 100 <1 0.5 >1 Absent or 

very low 

aspect ratio 

(AR)  

Eels 

Subcarangiform 25-50 <1 0.5 <1* Moderate AR Goldfish 

Carangiform 25-33 >1 slightly 

** 

-  0.5 Moderate to 

high AR; 

usually forked 

type 

Mackerel 

Thunniform <33*** 1< & <2 - <0.5 High AR; 

usually lunate 

type 

Tuna 

 * Rarely more than1 

** Maybe less than 1 

***Just the caudal peduncle and the rear fin 

 

In this section, realising that the propulsion or swimming modes of BMSs were 

varied considerably compared to those of the AUVs, different swimming modes of 

BMSs were reviewed. Having studied various swimming modes, the speeds of BMSs 

and AUVs were compared in the next section. 

3.2.2 Comparing the optimum speed of BMSs and AUVs 

To understand the different capabilities of the optimum or economic speed of AUVs 

and BMSs, the absolute and length specific optimum speeds,     [
 

 
] and     [

  

 
] of 

numerous AUVs and BMSs with different swimming modes have been compared as 

illustrated in Figures 3.7 and 3.8 respectively.     [
  

 
] or relative speed is the speed 

which is normalised in terms of body length per second. Due to the extensive body 

length range for BMSs, both figures are logarithmic on the abscissa. In Figure 3.7 the 

blue whale (Balaenoptera musculus) is an outlier within the Thunniform swimmers 

group and therefore is present outside the plot. Having a length of 27 m, the Blue whale 

has an optimum speed of 6.2 [
 

 
].  
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Figure 3.7. Absolute optimum speed capability of AUVs vs. BMSs. The red is the highest value of 

all AUVs in the database 

 

As shown in Figure 3.7, the highest optimum speed of all AUVs is 2.06 m while the 

highest optimum speed for BMSs is 6.2 [
 

 
]. This value belongs to the 27 m long blue 

whale (Balaenoptera musculus). The Blue whale is an outlier within the Thunniform 

swimmers group and therefore is not present in the plot. Within the plot, the stellar sea 

lion (Eumetopias jubatus) has 175% higher optimum speed compared to the maximum 

for AUVs at 3.6 [
 

 
]. This is followed by the white-beaked dolphin (Lagenorhynchus 

albirostris) at 3.4 m/s. When comparing AUVs, it is clear that gliders are the slowest 

AUVs and propelled AUVs (i.e. AUVs which move forward using a rear propeller(s)) 

are the speediest. Naro-tartaruga a biomimetic AUV based on a turtle has a speed of 2 

[m/s] very close to the maximum capability of AUVs.  

Within the BMSs, Thunniform swimmers have the highest optimum speeds except 

for the sea lion which is a Labriform swimmer with a high optimum speed. The general 

trends are visible but due to the variety of data series they are not very clear in Figure 

3.7. Therefore Figures 3.7.1 and 3.7.2 illustrate the data in clusters. The clusters are 

represented by 95% confidence enclosing ellipses. A 95% confidence enclosing ellipse 

is the smallest ellipse drawn around a set of data which would ensure to cover 95% of 

the points within that data set (Friendly et al., 2013). 95% confidence enclosing ellipses 

Sea Lion 
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are useful when obvious trend cannot be observed in a set of data. By enclosing the data 

set with the ellipse, a general trend for the data can be obtained by drawing a line across 

the longer diameter of the ellipse. Only series with more than two data points can be 

presented by the ellipsoids. 

 

Figure 3.7.1  Absolute optimum speed capability of BMSs represented by 95% confidence 

ellipsoids 

 

Figure 3.7.1 clearly illustrates that the BMSs larger than 10m present in the plot are 

Thunniform swimmers. This is due to the fact that except for whale sharks (Rhincodon 

typus), only marine mammals and more specifically Cetacean are found to be larger 

than 10 meters. Thunniform and Labriform swimmers have the highest speeds followed 

by Carangiform and Subcarangiform swimmers. Anguilliform swimmers have the 

lowest speeds.  

The general trend for all groups shows an increase in speed with length. In fast 

swimmers, i.e. Thunniform and Labriform, the speed increases with a higher rate as a 

function of length compared to other types of swimming. Although Thunniforms and 

Labriforms are fast swimmers, for smaller BMSs, Carangiform and Subcarangiform 

swimming prove to be better in terms of speed, especially at body lengths less than one 

meter.  

The only cluster which is aligned differently belongs to the feet swimmers (BDCF). 

The harbour seal (Phoca witulina) and elephant seal (Mirounga leonina) are the two 

higher points. The lowest point is the sea otter which although swims mainly with the 

feet, having a long tail its body is more adapted to terrestrial locomotion. The grey seal 

(Halichoerus grypus) although marginally larger in size has slightly less speed. The 
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reason being is that the data  from William, 1999 suggests that this was the maximum 

speed of the flume therefore the optimum speed of the Grey seal could possibly be 

higher than measured in the experiment. As the body of Harbour seals and Grey seals 

are very similar, similar performance is expected from them as well. 

Figure 3.7.2 demonstrates clusters of optimum speeds for AUVs. With the exception 

of the Autonomous Benthic Explorer (ABE) which is a slow propelled AUV with an 

economic speed of 0.17 [
 

 
], gliders are in general the slowest of the AUVs. Although 

propelled AUVs have the highest speed but the biomimetic Naro-tartaruga (based on sea 

turtles) is very close to the high speed. It must be noted that the speed value presented 

for the Naro-tartaruga AUV was based on the estimation of the manufacturer and test 

data was not available at the time of this research.  

From the plot, it was also realised that apparently AUVs are designed around certain 

speeds. These speeds were identified to be mainly 1[
 

 
], 1.5 [

 

 
] and 2[

 

 
]. 

 

Figure 3.7.2  Absolute optimum speed capability of AUVs represented by 95% confidence 

ellipsoids 

 

Besides the absolute speed, to make a parametric comparison, the length specific 

speeds of AUVs and BMSs have been compared as shown in Figure 3.8. 

A general trend in the graph shows a reduction in length specific speed with the 

increase of body length. Relatively AUVs are sitting lower compared to BMSs, 

however, biomimetic AUVs have the best (highest) length specific speeds within the 

AUVs. In the case of the biomimetic Aqua Penguin and the Naro-tartaruga (points 1 and 

2 in Figure 3.8), the data were also compared with the data from real corresponding 

ABE 
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BMSs. The Naro-tartaruga has a significantly higher length specific speed compared to 

the leatherback turtle (Dermochelys coriacea) (point number 3). This could be due to 

the fact that in general larger BMSs have lower length specific speed. The value from 

the biomimetic turtle is impressive, however, this is the estimated manufacturer data and 

independent experiments have yet to confirm it, therefore the results must be considered 

with caution. As for the Aqua Penguin, the length specific speed is higher than all 

propeller AUVs but lower than real penguins (points 4 and 5). This is a proof that 

biomimetic AUVs have the capability to improve the capability of AUVs and there are 

yet improvements to be made to their design. 

 

 

Figure 3.8. Length specific (relative) optimum speed capability of AUVs vs. BMSs. The red dashed 

line is the highest value of all conventional AUVs in the database. The green line is the highest 

value for biomimetic AUVs in the database 

 

To investigate the relative speed further, same as the absolute speed, the data has 

been clustered with 95% confidence ellipsoids shown in Figures 3.8.1 and 3.8.2 for 

BMSs and AUVs respectively. 

 

1. Aqua-Penguin 

2. Naro-tartaruga 

3. Leatherback Turtle 

4. King Penguin 

5. Emperor Penguin  

1 

2 

5 

4 

3 
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Figure 3.8.1  Relative optimum speed capability of BMSs represented by 95% confidence 

ellipsoids 

 

All clusters show a reduction in relative speed with length unlike the absolute speed. 

The slope for BDCF swimmers is higher for the reasons explained when comparing 

absolute speeds. The smallest of the Subcarangiform swimmers have the highest relative 

speeds. It is interesting that increase in length does not seem to affect Anguilliform 

swimmers. This is to be expected as the body length range is small, the speed is 

generally low and also the range of available speeds is limited for Anguilliform 

swimmers.  

As for AUVs, it was clear from Figure 3.8.2 that biomimetic AUVs have the highest 

relative speed. The reason for this is unclear and will require energetic cost data to 

become available for the biomimetic AUVs. When energetic cost data are measured, 

one can investigate on what cost do these AUVs swim considerably faster than 

conventional AUVs. Moreover, the speed data should be verified by the manufacturers 

through future trials. Similar to BMSs, similar general trend of lower relative speed at 

higher length exist for AUVs. This is to be expected as increase in size does not 

necessarily relate to increase in speed. As it is discussed in this research, there are 

several reasons to increase the size or length of an AUV, for example more payload or 

battery carrying capacity which for the former could contribute to more complex 

mission profiles and in the case of the latter, increase in endurance. More battery on-

board could also contribute to more resources to increase the propulsion power. 
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However, considering the increase in size and mass of the vehicle, this will not 

necessarily result in higher length specific speeds.  

 

 

 Figure 3.8.2  Relative optimum speed capability of AUVs represented by 95% confidence 

ellipsoids 

 

Furlong et al., 2007 describes a theoretical model for the performance of an AUV. 

Based on this model there is a balance between the range and the speed of AUVs. Their 

work mentions that flight style AUVs (which use motor and propeller for propulsion) 

generally have cruising speeds of about 1-2.5 [m/s] while gliders have speeds of about 

0.2-0.34 [m/s]. As it is explained later in Chapter 4, required propulsion power increases 

with the cube of speed, therefore the flight style AUVs required considerably more 

propulsion power compared to gliders. Moreover, gliders have very low non-propulsive 

propulsion power (refer to Chapter 4 for details). The sum of these two powers 

comprises the power consumption of the AUV, therefore gliders having lower power 

consumption can use their energy storage towards high endurance. That is why flight 

class AUVs have endurance of a few days while gliders can operate for months. Furlong 

et al., concludes that combining a flight class AUV with low non-propulsive power and 

reduced speed would have endurance comparable to gliders with the capability of larger 

speed ranges. It must be noted that minimising the non-propulsive power would also 

restrict the amount of sensors that the AUV can use on board. This subject will be 

discussed in-detail in the next chapter, Chapter 4. 
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3.2.3 Comparing the maximum speed of BMSs and AUVs 

Figure 3.9 shows the comparison of maximum speed of AUVs and BMSs. It was 

observed that many BMSs which were mainly Thunniform swimmers had higher 

maximum speeds compared to AUVs. While the maximum speed of BMSs reaches     

35 [
 

 
] by the Thunniform swimming sailfish (Stiophorus platypterus), AUVs can reach 

a maximum speed of 10[
 

 
]. Therefore the fastest BMS has 350% the speed of the 

fastest AUV with less than half the body length. Thunniform swimmers are clearly 

evolved for fast swimming.  

 

 

Figure 3.9. Absolute speed capability for AUVs and BMSs. The red line is the maximum speed for 

all AUVs except the AUV62-MR for which the maximum speed is on the green line 

 

To make the data clearer, similar to the data for optimum swimming speeds, the data 

was clustered in Figure 3.9.1. 

Following a similar trend as that observed when clustering the data on optimum 

speed, there was an increase in maximum speed capability with size. Although 

Thunniform swimmers swim at the highest speeds, at body lengths less than 0.4 m, 

Carangiform swimmers and at body lengths less than 0.2 m, Subcarangiform swimmers 

have higher speeds. 

0.4 0.2 
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Figure 3.9.1. Maximum speed capability represented by 95% confidence ellipsoids 

 

Fast swimmer BMSs generally have fusiform bodies with circular or oval cross-

section; however some Thunniform swimmers such as the Sailfish with elongated body 

forms and compressed cross sections are amongst swimmers with the highest burst 

speeds. As for marine mammals, for fast swimming undulatory swimming is superior to 

oscillation of side flippers as performed by stellar sea lions (Eumetopias jubatus). 

Figure 3.10 shows the comparison of length specific maximum speed for AUVs and 

BMSs with the clustered data shown in Figure 3.10.1 

 

 

Figure 3.10. Length specific maximum speed capability of AUVs vs. BMSs  
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Figure 3.10.1 Maximum relative speed capability represented by 95% confidence ellipsoids 

 

When comparing length specific speed [
  

 
], some relatively smaller marine animals 

which have Subcarangiform or Carangiform swimming modes, especially the Atlantic 

mackerel (Scomber scombrus), exhibit higher speeds. Although their absolute      is 

much less than those of Thunniform swimmers, at their size range they have the best 

performance. For example, the mackerel has a maximum speed of 5.58 [
 

 
] and the 

highest length specific speed of 18 [
  

 
].  

3.2.4 The effect of the Reynolds Number 

A useful means when comparing the speed of numerous moving systems is the non-

dimensional term Reynolds number (Re). As the Reynolds number is a function of both 

speed and body length, it is a useful means of comparison. Moreover, the Reynolds 

Number is used when calculating the frictional drag of moving systems. Therefore the 

value of Re can indicate the extent to which a moving system is affected by turbulence.  

When comparing     and considering the Reynolds number for Anguilliform 

swimmers, it was calculated that they swim at Reynolds numbers within the range of 

                   (except for one juvenile eel at           ) . 

Therefore, Reynolds numbers are relatively low for Anguilliform swimmers compared 

to other BMSs with other modes of swimming and the range of Re is also small. 

Therefore, Anguilliform swimmers are less affected by turbulence compared to other 

modes of swimming. One important consideration is that regarding the relation between 

drag and speed for BMSs with different sizes, it must also be noted that drag is 
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proportionate to {      }
 

  which means        {    }
 

 . This means that by 

increasing the size (i.e. body mass) of the BMS (while considering the speed increases 

linearly), the drag does not increase with the same rate. Consequently larger sized 

BMSs have less drag for their mass in comparison to smaller ones. 

The Reynolds number ranges in which the BMSs and AUVs operate must also be 

considered. For example the Atlantic mackerel has a Re range of          to 

         while the fastest swimming BMS, the Sailfish, swims in Reynolds numbers 

up to         . Figure 3.11 demonstrates different ranges of Reynolds numbers for 

AUVs and BMSs at their optimum and maximum speeds. Note that the Re range for 

maximum speed of Thunniforms starts at a smaller value compared to their optimum 

speed range. This is simply because some data for smaller BMSs in only available at 

their maximum speeds. 

 

  

       (A)          (B) 

Figure 3.11. Various ranges of Re for AUVs and BMSs at their optimum speeds (A) and maximum 

speeds (B). Single point means there has been only one data on that specific swimming mode 
 

For BMSs with rear fin propulsion the Re range at optimum speed increases from 

Anguilliform to Thunniform. Propelled AUVs reach slightly above the range of 

Subcarangiform swimmers. However, as observed before, their speed is considerably 

less than those of Subcarangiforms. Gliders have the lowest Reynolds numbers of all 

AUVs. 

For maximum speed not as many data is available. The Thunniforms have the 

highest Re number at 3.47     while the AUVs reach the             while 

gliders are still in the lowest range of Reynolds numbers. 
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As well as swimming mode, the form and fineness ratios of BMSs, may to some 

extent explain the high propulsion speed evident in nature. However this does not apply 

to all modes of swimming and it can be concluded that propulsion capability is the 

dominant factor affecting speed capability. However, fast swimmers with fusiform and 

elongated body forms have a fineness range of              

It is clear that BMSs have higher speed capability and wider speed ranges compared 

to AUVs and as biomimetic AUV data shows there are potential improvements in terms 

of speed for AUVs. BMSs achieve their speed capabilities by different means which 

considering their superior performance requires further investigations. The investigation 

has been carried out and discussed in Chapter 5.  

 

3.3 Depth Capabilities 

The ability to reach the deepest depth of the oceans is an obvious capability desired 

for AUVs. Figure 3.12 is an indication of depth range per unit mass. Hence, the plotted 

data are based on a trade-off between absolute depth capability and mass as an 

indication of size. As shown in the plot, deep-water and especially mid-water fish have 

the highest depth range per mass capability. The BMSs with highest values of mass 

specific depth range are the Pacific viper fish (Chauliodus macouni) with a depth range 

(      )  of 4365m (
      

{    }
        [

 

  
]) , mid-water eelpout (Melanostigma 

pammelas) with a depth range of      (
      

{    }
        [

 

  
]) and the sea lamprey 

(Petromyzon marinus) with        2200m (
      

{    }
        [

 

  
]).  

It is interesting that the swim bladder is present in the body of the deep diving Sea 

lamprey which proves not only shallow diving/living fish have swim a bladder. Most of 

the marine mammals and sharks have the lowest mass specific depth range. For BMSs, 

other than physical limits, motivation or “mission” of the animal is another key reason 

to perform a deep or shallow dive. Therefore, species do not always dive to their 

maximum capability. AUVs in Figure 3.12, are clustered within the same range as small 

marine mammals and sharks which have much less mass specific depth range capability 

compared to most of fish and penguins. 
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Figure 3.12. Depth range as a function of mass (Log-Log graph) comparison of BMSs and AUVs. If 

minimum depth for a BMSs in unknown, it has not been included in the plot  
 

To obtain complete knowledge of depth capability of BMSs and AUVs, as well as 

depth range per kg of body mass, the absolute depth capability must also be considered. 

The rationale behind demonstrating the depth capability as a function of mass is that for 

AUVs the depth capability is generally dependant to the mass of the vehicle mainly as a 

result of the fuel carrying capacity of the vehicle. Therefore it was decided to compare 

the depth capability of all BMSs and AUVs as a function of mass. 

Figures 3.13 and 3.14 demonstrate the absolute depth capability of BMSs and AUVs 

respectively. It is realised that AUVs can already reach great depths of 6000 m, and one 

vehicle, the Nereus Hybrid-ROV (i.e. can operate as an AUV [untethered] as well as an 

ROV[tethered]), has reached the depth of 10,903 m (Bowen et al., 2009) and it is 

claimed that the AUV has the capability to reach 11 km deep. It must be noted that 

Nereus has only been tested in AUV mode up to the depth of 2270 m and the 10,903 m 

dive has been performed in the ROV mode. 

While there are many deep living BMSs, this does not indicate that they are always 

deep divers or have the ability to travel all the way up to the surface. The data suggests 

that AUVs perform with similar capability to marine mammals with the same mass; 

however, it is interesting that many marine animals including fish and penguins can 
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reach higher relative depth range with less mass. What is clear is that as well as 

different buoyancy control systems, deep-water fish have soft bodies and low 

    

           
 ratio compared to shallow water fish and air-breathing animals.  

 

  

Figure 3.13. Depth range as a function of mass (Log-Log graph) comparison of BMSs and AUVs. If 

minimum depth for a BMSs in unknown, it has not been included in the plot  
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Figure 3.14. Depth range as a function of mass (Log-Log graph) comparison of BMSs and AUVs. If 

minimum depth for a BMSs in unknown, it has not been included in the plot  
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Figure 3.13 illustrates that fish (Actinopterygii) exist at the greatest depths and have 

been found at the widest depth ranges as well. Interestingly, some species belonging to 

the same family and therefore closely genetically related, have significantly different 

depth capabilities. The two most significant examples are snailfish and cusk eel; 

although most of the cusk eels have depth ranges not more than 600 meters, deep sea 

cusk eel (Abyssobrotula galatheae) swims in depth of 3110 to 8370 meters. And a 

recently discovered type of snailfish (Pseudoliparis amblystomopsis) has been found in 

the deepest depths of ocean trenches over 7500m (National Geographic, 2010), while 

Agonopsis chiloensis which is also a snailfish cannot swim deeper than 400 meters.  

Marine mammals are the deepest air-breathing divers; they achieve their desired 

depth with less energetic cost compared to when they are forward swimming. This is 

achieved by shutting down their unused systems, reducing their heart rate and more 

important by gliding instead of swimming; in dives deeper than 300m, gliding is 

performed 60-95% of the total dive; this reduces their cost of diving to a great extent. 

(Williams et al., 2000) 

Although the oxygen reserve and therefore size has a significant impact on the 

diving depth of air breathing BMSs, one key factor affecting their ability to dive and 

exist at depth or to migrate through a depth range is their buoyancy control mechanism. 

As indicated by Pelster, 2009, marine animals have various buoyancy control systems; 

these mainly include:  

 Gas bladders: They are used by many fish usually living in shallow water,  

 Lipid bladders: Examples are found in mid and deep-water fish such as 

Myctophids and the orange roughy (Hoplostethus atlanticus), 

 Lipid in the liver mainly in sharks, and  

 Hydrodynamic lift: This method is mainly used by marine mammals. However 

they also use the air in their lungs and possibly the change in the density of the lipid 

above their heads). Turtles adjust the depth with the remaining air in their lungs to 

remain neutrally buoyant. And finally, penguins remain positively buoyant. Therefore, 

they have a passive gliding surfacing. This also applies to right whales (such as the 

Eubalaena glacialis) as they are positively buoyant.  

Biological buoyancy control systems are very diverse. However, for many BMSs, 

especially the ones living in the deepest depths of the ocean, their buoyancy control 

systems are still unknown and have not been studied. Therefore, there are many 
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questions to answer in terms of how some BMSs, mostly fish and some marine 

invertebrates can exist in deepest places in the ocean. 

Depth capability is a subject with significant amount of investigation required to 

initially understand the mechanism behind BMSs capabilities which for many deep 

diving/living BMSs does not exist presently, the details of which are beyond the scope 

of this research. When the understanding is reached, it may result in bio-inspired divers.  

3.4 Manoeuvrability 

Underwater operations in narrow spaces, tracking fast moving and highly 

manoeuvrable marine animals, effective obstacle avoidance and many other desired 

missions, point to a high level of manoeuvrability required for AUVs. 

One of the parameters to be considered as a manoeuvrability measure of a vehicle is 

the radius of turning circle, which is especially important in high speeds or when the 

vehicle mission is to chase and observe a marine animal.  

AUVs are designed with up to 6 degrees of freedom to able them to turn more 

efficiently (with smaller radius). As well as turning radius or yaw radius (    ), rate of 

turn [  ⁄ ]  is a key factor to turning; rate of turn is the angle turned per second. 

AUTOSUB6000 has a rate of turn of 6.5 [  ⁄ ]. In comparison, the white spotted boxfish 

(Ostracion meleagris) (Walker, 2000) which in fact also has a rigid body, can turn up to 

about 200 [  ⁄ ] or the Labriform swimmer Californian sea lion (Zalophus californianus) 

has a rate of turn of 690 [  ⁄ ] (Fish et al., 2002). Some coral reef fish can have a rate of 

turn of up to 1200 [  ⁄ ] while manoeuvring with side fins or up to 9200 [  ⁄ ] is 

manoeuvring with the rear fin. Data on several cetaceans suggests that they have lower 

turning rates compared to other BMSs mentioned however the white sided dolphin 

(Lagenorhynchus obliquidens) can turn at about 453 [  ⁄ ] (Walker, 2000). This means 

that BMSs can turn up to 1415 times faster than AUTOSUB6000 while the rigid bodied 

boxfish turns 33.5 times faster than AUTOSUB6000. This suggests a large gap between 

the turning capability of AUVs and BMSs. 

Two main factors affecting this are the effective use of side fins in BMSs and more 

importantly the body flexibility. In order to take manoeuvrability of AUV to a higher 

level, thought must be put into flexible body AUVs. Figure 3.15 shows the extent of 

flexibility of the dissected gurnard (Chelidonichthys spinosus). As shown, the maximum 

extent of forced body flexibility for the gurnard is 139 . 
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Figure 3.15. Photo to measure the body flexibility of the gurnard 

 

Data on manoeuvrability of AUVs is hard to find. However, due to the inflexible 

body of the vehicle, it is right to assume the turning circle and therefore turning radius 

of AUVs are relative to their length. Figure 3.16 illustrates the relationship between 

Body Length and turning radius in AUVs (An    value of 0.8943 verifies the theory of 

a very good correlation). Therefore the      of other studied AUVs has been estimated 

based on this correlation. 

 

 

Figure 3.16. The correlation between total length and Yaw radius in AUVs 

 

In different studies, turning radius is defined both as the radius of the path of the 

turning centre, 
     

      
, as well as the space required to turn, 

      

      
. Turning modes are 

different for different families of BMSs, due to swimming mode and flexibility.  
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Therefore these two terms must be defined and measured slightly different for some 

BMSs and sometimes in literature, it seems so that different definitions of turning radius 

for BMSs are being compared with each other, without taking into account the 

differences in body flexibility. For example the white spotted boxfish (Ostracion 

meleagris) makes an almost on the spot turn and therefore has a relatively small 
     

      
. 

However, due to its rigid body, to calculate 
      

      
, half the body length must be added 

to it. This is the same for turtles. However, Sea Lions have a highly flexible body and 

therefore their body takes almost the shape of their turning circle and for them: 

     

      
 
      

      
 

3.4.1 Comparing the turning radius of BMSs and AUVs 

A useful means to compare the turning capability of BMSs and AUVs is the length 

specific turning radius. Length specific turning radius is the radius of turning circle 

divided by the body length. Using the length specific turning radius is useful for 

comparison as the variation in size of the BMSs and AUVs is large.  

Figure 3.17 is the plot of length specific turning radius data of BMSs and AUVs. 

For AUVs that the data is available, it is presented as black crosses. As the regression 

line in Figure 3.16 illustrated, the average length specific turning radius for AUVs can 

be assumed as 2.7999. Therefore a black dashed line showing this value is also 

presented in the Figure 3.17. For bio-mimetic AUVs, turning radius data is not yet 

available. 
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Figure 3.17. Length specific Yaw radius (      ) or turning radius per unit length of AUVs and 

BMSs. The green dashes line is the highest radius for BMSs and the red dashed line the 

minimum radius for AUVs. The black dashed line represents the average value for        of 

AUVs based on the regression line in Figure 3.16. The blue frame represents the area illustrated 

and discussed in Figure 3.18 to show the BMS data more clearly 

 

As shown clearly in Figure 3.17, the relative turning radius of BMSs is less than 1.0. 

On the other hand for AUVs even of the same size it is larger than 2.1 times the total 

length. Only the Seawolf AUVs has an indicated turning radius of less than 3 m which 

means its relative      is 1.5[  ] . Therefore compared to the most manoeuvrable 

AUV, Seawolf, BMSs have up to 16.7 times less relative turning circle. High 

manoeuvrability in BMSs is achieved through multi jointed flexible bodies. 

A closer look into the relative turning radius of BMSs has been taken as shown in 

Figure 3.18.  For clarity of the data points, two species with large      are not included 

in this figure; basking shark (Cetorhinus maximus) (two individuals with BL=5.3m and 

BL=8.5m,       =0.97 [  ] ) and humpback whale (Megaptera novaeangliae) 

(BL=15.2m,     =0.82[  ]) which is a slow swimming marine mammal.  

Clearly highly flexible eel like bodies have the lowest       . However, Labriform 

swimmers such as seals also have        as low as 0.09 [  ]  in the same group, 

penguins are less manoeuvrable and turtles with rigid bodies are the least manoeuvrable 

of BMSs. However, rigid bodied BMSs such as turtles or the boxfish, have the lowest 

     

      
. Painted turtles have and average 

     

      
 0.04 [  ]and the box fish 0.0015 [  ]. 
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This suggests that using their side fins (flippers) they almost turn on the spot. 

Thunniform swimmers are different in terms of their turning capability. Thunniform 

swimming fish have relatively rigid bodies with less flexibility and therefore their 

       is as high as 0.49 [  ]. On the other hand marine mammals have more flexible 

bodies and therefore have better turning capability. It should be noted that there are 

arguments about the swimming mode of marine mammals and they have been 

corresponded both with Thunniform and Carangiform swimming modes. Carangiform 

and Subcarangiform swimmers have better manoeuvrability compared to Thunniform 

fish but not as well as eel like bodies or seals.  

 

 

Figure 3.18.        for various BMSs 

 

Based on the conclusion from the comparisons made in this research and observing 

that body flexibility plays an important role in turning capability, through the 

collaboration within the NEMO project, a prototype of a flexible bodied AUV is being 

built in University of Southampton (Phillips et al., 2010).  

 

3.5 Energetics 

For most vehicles, cost is of upmost importance. Cost may be defined by various 

means; the financial cost, energy consumption, range of operation and so on. In this 

research, to correspond AUVs cost to an equivalent term for BMSs, energetics have 

been investigated, estimated and compared. Energetics can be investigated as energetic 
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Cost Of Transport (COT), or as energy storage capability which relates to endurance or 

range of operation.  

Considering COT; this is a measure of energy expenditure required to swim at a 

given speed. For AUVs there are two main known speeds Economic Speed,     , and 

maximum speed,     . On the other hand, BMSs have a long range of speeds. The 

speed ranges from their minimum speed (or still condition for neutrally buoyant BMSs) 

to their maximum speed. For comparing the energetic costs, there are two speeds which 

are particularly of interest; optimum speed,      and maximum speed,     . As the 

COT vs. Speed curve is a U shape curve, it has a minimum; this occurs at what is 

known as the optimum COT,       . The corresponding speed to        is     . In 

order to find the     , it would be ideal that the COT is known at every speed; this data 

is not usually available. However, cruise speed or sustained speeds are available for 

most BMSs. Therefore, at these speeds, COT can be derived by measuring the oxygen 

consumption rate of the animals swimming at a given speed and converting it to energy 

as explained in Chapter 4.  

For AUVs, COT can be calculating when the speed, weight, endurance and the 

battery capacity of the vehicle are known.  The Cost Of Transport for the vehicle may 

also be defined as the energy required at each segment of time for each kilogram of the 

mass of the vehicle to move forward at a specific speed. By knowing the size and speed 

of the vehicle and the battery capacity, COT is calculated for AUVs as explained in 

Chapter 4.  

Figure 3.18 shows that AUV are clustered within a small speed range but within this 

range, they have lower COT compared to BMSs. Glider AUVs have the lowest COT of 

all other marine underwater systems. This is to be expected due to their special low cost 

slow moving locomotion.  
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Figure 3.19. COT comparison of AUVs and BMSs 
 

Figure 3.19 illustrates that large marine mammals and the Thunniform swimming 

Tuna have lower mass specific COT compared to other BMSs. Within the BMSs, the 

Grey Whale has the lowest COT at its optimum speed. The silver eel (Anguilla anguilla) 

and the sperm whale (Physeter macrocephalus) are associated with long range 

migrations (5000 - 6000 km). On the higher end of the plot sea otters (Enhydra lutris), 

the north American mink (Neovison vison) and the muskrat (Ondatra zibethicus) have 

COT higher than 10 [
 

    
] as their bodies are not evolved specifically for aquatic 

locomotion. little penguin (Eudyptula minor) and African penguin (Spheniscus 

demersus) also have COT higher than 10 [
 

    
]. 

Illustrating the COT at optimum speed as per Figure 3.18 is beneficial for the 

comparison between AUVs and BMSs. However, animals do not always operate at their 

optimum speed. Due to their high speed range capability, COT for animals, unlike 

AUVs, is a curve. This subject has been extensively studied and calculations carried out 

to produce the COT curve for numerous marine animals with different speed and Re 

ranges in the next chapter, chapter 4. 

 

3.6 Conclusion  

In this chapter several characteristics of AUVs and marine animals have been 

compared to highlight the relative superiority and limitations of biological and 

engineering systems. The main highlights of the comparisons are as follows. 
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 In terms of body forms, marine animals have slightly higher range of FR 

compared to AUVs. However, the range of FR for Teardrop AUVs and fusiform BMSs 

match with one another.   

 Thunniform swimming is used for fast swimming by both fish and marine 

mammals. However, Labriform swimming mammals have high optimum speeds. 

Moreover, smaller fish with Carangiform swimming and some types of penguins with 

flapping swimming mode have high BL/s Speed. BMS have optimum speed capabilities 

of up to 175% higher compared to the highest optimum speeds of AUVs and maximum 

speed capability of up to 350% higher compared to the fastest AUVs.  

 AUVs are relatively capable at deep diving. However, many fish can reach 

deeper depths with less mass. Therefore further research may clarify the reason by 

which they achieve this. One lesson to be learned from marine animals, especially 

marine mammals is to reduce the energy expenditure during diving by configuring the 

control surfaces for maximum gliding capability instead of swimming.  

 In terms of manoeuvrability, the significant superior turning performance of 

marine animals is evident; this is achieved though their multi joint flexible bodies. 

 Energetics is the most interrelated comparable characteristic between the two 

groups. It can be measured by COT or by endurance. The comparison shows that, 

although compared to many marine animals AUVs have less COT when swimming at 

their economic speed, their speed range is very limited.  

The comparisons made in this chapter showed significant superiority of BMSs over 

AUVs in terms of their agility, manoeuvrability and swimming range. Therefore there 

are certainly potential bio-inspired improvements for AUVs in these aspects. However, 

it is apparent that the "raw" data is not in a form to allow all the comparisons as desired 

by the research; therefore further analysis was required to obtain the rest of the picture 

especially in terms of propulsion, energetics and manoeuvring of BMSs.  

Even the traditional AUV designs are to some extent inspired by nature; however, in 

most cases the importance of nature has not been fully appreciated and the analysis has 

not been pursued as profound as it should have been to highlight the full potentials of 

inspiration from nature. This chapter highlighted general areas of superior performance 

of BMSs over AUVs. To understand the reasons behind the superior performance of 

BMSs, comprehensive studies were carried out on energetics and propulsion. These 

investigations are explained in Chapters 4 and 5.   
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Chapter 4. Energetics in detail 

 

The amount of energy that an underwater system consumes to perform a task is very 

important. This affects the amount of energy storage (e.g. batteries in an AUV or fat in a 

BMS) that the vehicle requires to carry on-board, which consequently affects the 

amount of other equipment such as sensors (referred to as payload) which the vehicle 

can carry. This means that either the vehicle must be built heavier or will not be able to 

perform certain missions. Moreover, the energy consumption affects the range of 

operation or endurance of the vehicle. Therefore although energetics is not always a 

directly desirable characteristic, it affects other aspects of a vehicle’s performance and it 

is especially important when comparing two systems with similar capabilities. 

Therefore a clear understanding of the energetics of the vehicle is crucial. At the 

early comparison of the energetics of AUVs vs. BMSs, the COT at the optimum speed 

was compared as explained in Chapter 3. However, energetic cost is comprised of 

several components for both AUVs and BMSs and more in depth investigation was 

required to correspond different aspects of the energetics costs of AUVs and BMSs for 

comparison. This has been carried out as discussed in this chapter. Having the 

understating of COT, the range of operation is also estimated.  

4.1 Cost Of Transport 

Energetic Cost Of Transport (COT) can be defined as a mass normalised measure of 

the required energy to move a vehicle over a certain distance. The general equation for 

COT is as below:  

    
      

              
 

4.1 

 

Energy is power multiplied by time. Therefore Equation 4.1 can be written as: 

    
     

              
 

4.2 

The unit of COT is 
  

     
 or its equivalent

 

    
. 

 In AUVs several types of batteries provide energy for different AUVs. Gliders on 

the other hand, have a buoyancy engine and therefore rely on small alternation in their 

buoyancy coupled with the use of side wings to propel themselves by converting 

vertical motion into horizontal. This, results in lower power consumption required for 



84 

 

propulsion. Therefore, operating at lower speeds compared to conventional AUVs, 

gliders require less battery mass to operate.  

The battery capacity is measured in               . If the battery capacity is 

divided by the time taken for the operation, the required power is calculated: 

       
                

    
 

4.3 

Therefore the battery provided COT for AUVs can be calculated as below: 

     
                

                    
 

4.4 

Where: 

 Mass is the mass of the vehicle 

 Speed is the speed at which the vehicle operates 

 Battery capacity is the specific energy of the battery multiplied by the 

amount of battery on board (battery mass) 

 Endurance is measured as the time or distance travelled by the vehicle at the 

specified speed with the amount on-board battery without recharging. 

Endurance is measured in hours. This is explained in Section 4.3. 

And therefore Equation 4.4 is re-written as: 

   [
 

    
 ]

  
             [  ]                       

[
   
  

]         [
 

   
]

         [ ]              [  ]       [
 
 
]         [

 
 
]

 

4.5 

Endurance data, if available, are usually measured during a trial or estimated by 

knowing the power required to run the AUV. The specific battery energy and battery 

mass are known for the AUV. The power required for the AUV to operate at a certain 

speed can be measured during a trial or can be calculated as the sum of propulsion 

power and hotel power. By having these data, the endurance of the AUV for a particular 

speed is calculated as 
             [  ]                      

[
   

  
]

                                          [  ]
 

COT of the AUV at that specific speed can then be calculated using Equation 4.5. 

For BMSs, estimation of COT is more complicated and as explained in Section 3.2 

of Chapter 3, there are three main swimming ranges at which they swim within. The 

COT can be also defined as the energy required for the muscle to operate. There are two 

types of muscle in Fish, the slow muscle and the fast muscle. These muscles are 
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commonly known as red muscles and white muscles respectively. The contribution of 

white muscles when the BMS is swimming within its sustained swimming range which 

includes the proximity of its optimum speed is negligible. Therefore, solely red muscles 

provide the propulsion through the rear fin and therefore only the energy required for 

the red muscles needs to be calculated at the sustained speeds range. These types of 

actuators are oxygen dependent and operate through an aerobic process. Direct 

measurement of energy consumption is not possible for BMSs. However, it is a fact that 

oxygen is consumed to burn fat and therefore produces energy. Therefore, for sustained 

speeds, the COT can be derived by measuring the rate of oxygen consumption of the 

animals swimming at a given speed. This is measured as mg of oxygen breathed by the 

BMS per unit time. Then the    consumption is converted to energy based on the oxy-

calorific value of oxygen. Elliott & Davison, 1975 measured this value to be equal to 

13.59 [
 

    
].  

Therefore, to normalise the energy expenditure and make is comparable with the 

COT of engineered vehicles, the COT for BMSs at a sustained speed within the aerobic 

metabolism range (including optimum speed) is calculated at follows: 

   [
 

    
 ]   

            [
  

    
]       [
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  [
 
 
]      [

 
 
]

 

4.6 

As COT is a U shaped curve with a minimum, if the optimum speed of a species is 

not known, by measuring the COT at different sustained speeds and plotting the COT 

vs. Speed graph, the optimum COT and consequently the optimum speed can be 

estimated. Figure 4.1 illustrates a typical COT vs. Speed curve for a BMS up to the 

critical speed,      , as explained in Section 3.2. 

 

Figure 4.1. Typical Cost of Transport vs. speed plot of a BMS based on aerobic metabolism 
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In engineering terms required power is often calculated and indicated for various 

systems. By having the speed of the BMSs it is known that: 

            {    } 

  

4.7 

 

Therefore by using Equation 4.6, required power is calculated as: 

 

              
          

        {    }

    
  

4.8 

 

Various oxygen consumption rates and therefore metabolic rates are measured at 

different activity levels for BMSs. These include: 

 Basal Metabolic Rate (BMR), 

 Standard Metabolic Rate (SMR), 

 Routine Metabolic Rate (RMR), 

 Active Metabolic Rate (AMR), and 

 Field Metabolic rate (FMR) 

Each term is explained next. 

 

 Basal Metabolic Rate (BMR): The metabolic rate measured for an endothermic 

BMS while satisfying 5 conditions proposed by Kleiber, 1975. The BMS must be and 

adult resting inactive (not asleep) but under no stress, in an environment within its 

neutral temperate, fasting so that no energy is consumed for digestion, not pregnant or 

lactating.  

 Standard Metabolic Rate (SMR): Similar to BMR but measured for ectothermic 

BMSs. The metabolic rate measured for an ectothermic BMS while it is resting inactive 

at a specific temperature.  

 Routine Metabolic Rate (RMR): The metabolic rate of a species which has some 

level on activity but not continuously swimming. 

 Active Metabolic Rate (AMR): The metabolic rate of a species actively forward 

swimming at a certain speed.  

 Field Metabolic rate (FMR): The metabolic rate of a species actively swimming; 

the speed may vary. 

BMR and SMR are used when estimating non-propulsive energy consumption. 

AMR is the other measurement useful for the purpose of the research as the swimming 
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speed of BMS must be known so it can be used to estimate COT and power. Therefore 

FMR and RMR are not used within the scope of this research.  

One consideration to be made is that to allow for direct comparison, the temperature 

of the water at which the BMS swims and the oxygen consumption has been measured 

must be taken into account. In order for the test to be valid for calculating COT and 

power, different measures need to made for endothermic and ectothermic BMSs. 

Endothermic BMSs are species that tend to maintain their body temperature at a 

temperature which is in favour metabolically, regardless of their environment. 

Endothermic BMSs include marine mammals, penguins and very few fish such as the 

tuna. On the other hand, the body temperature of ectothermic BMSs, such as most fish, 

reptiles and invertebrates, depends to the external environment. Therefore for 

endothermic BMSs, the temperature of the water should be in neutral thermal zone of 

that BMS so that no energy is consumed to regulate body temperature (Castellini, 

2008). Similarly, because the BMR of ectothermic BMSs varies with temperature, they 

should all be tested at the same temperature.  

Sometimes this is not possible as various fish live in different environments. If so, 

data gathered from different tests must be normalised to a specific unified temperature. 

To estimate the normalised metabolic rate, a temperature coefficient,    , is used. 

(Winberg, 1971 and Schmidt-Nielsen, 1997). A chemical reaction (    such as the 

metabolic rate at a specific temperature (    is calculated as: 

 

            

        
    

4.9 

 

Where       and      are the chemical reaction and the temperature from a test 

respectively.     is a temperature coefficient which is a measure of the rate of change of 

a chemical reaction  when the temperature is changed by       

Therefore, for the purpose of calculating the oxygen consumption, this can be 

rewritten as: 

                                

        
    

4.10 

 

 Oxygen consumption data gathered from FishBase, (Froese and Pauly, 2011) are all 

normalised for 20 .  However, for some of the individual BMSs, the temperature at 

which data was collected was from other temperatures and no      value was mentioned 

and therefore the data would have been biased due to the temperature. Therefore based 
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on 266 data of 12 species in Fishbase, the     values were calculated and plotted 

against temperature in Figure 4.2. This is a good reference for converting oxygen 

consumption data from different temperatures within the range of 5 -30  to 20 . It is 

clear that oxygen consumption increases with temperature. However, note that these 

regression lines may only be used for conversion of oxygen consumption in ectothermic 

BMSs. Endothermic BMSs react differently to temperature changes and their oxygen 

consumption will increase if they are out of their neutral temperature zone, no matter 

whether it is a higher or lower temperature.  

 

Figure 4.2. Q10 values as a function of water Temperature. The regression line passed through the 

blue points is for Q10 values at temperatures less than 20  while the line passed through 

the red points is for Q10 values at temperatures more than 20 . As all oxygen consumption 

data are normalised for 20 , the Q10 value at 20  equals to 1. 

 

It should also be considered that animals are usually tested at a range of speeds at which 

they would voluntarily swim. Therefore the available data does not necessary reflect the 

complete range of swimming speeds of each BMS.  

The methods explained above measures the aerobic metabolism for BMSs. This is 

most useful and accurate when the animal is swimming at speeds which the anaerobic 

metabolism is absent or minimal. If the speed increases to a point in which the fast 

twitching muscle are activated, then anaerobic metabolism occurs without oxygen and 

lactic acid is produced. Measuring the amount of produced lactic acid is complicated as 

over time some of the lactic acid is absorbed again. These data are not readily available. 

Therefore, calculating the anaerobic part of energy consumption is not possible for all 
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BMSs. However, it was realised in this research that if the maximum power capability 

of a muscle is known, the maximum COT maybe calculated. This is explained later on 

in Chapter 5. 

Figure 4.3 illustrates the COT for BMSs over different Reynolds numbers. COT is 

proportional to speed; however, as the size of the BMSs varies considerably and 

Reynolds number is directly proportional to length and speed, it is appropriate to 

compare them over their Reynolds number ranges. Using the Reynolds number, 

different flow regimes in which various species swim are segregated. For many of the 

BMSs the data range is less or equal to their optimum speed as the tests have been 

carried out without putting stress on the species. It is realised that COT on its own is not 

a complete measure of the energy expenditure of a species. This is the reason to 

consider comparing COT within the speed range of BMSs. Figure 4.3 demonstrates that 

Thunniform fast swimmers such as tunas and marine mammals have lower optimum 

COT at a higher Re compared to Carangiform and Subcarangiforms swimmers. Silver 

eel which is an Anguilliform swimmer sits on the bottom of the graph, having the 

lowest optimum COT compared with other BMSs. For Carangiform and 

Subcarangiform swimmers it appears that body size affect COT as the bluefish, striped 

bass and the trout with similar body mass have COT of similar values. The general trend 

of the plot implies that larger body size or Re range, corresponds to lower COT; 

however, the Carp with larger body size compared to other Subcarangiform swimmers 

has higher COT as it is not swimming at its optimum range.  

 

Figure 4.3. Semi-log plot of total COT vs. Reynolds number. Calculated from data in Davis et al., 

1985; Dewar & Graham, 1994; Williams & Noren, 2009 and Froese & Pauly, 2011.  
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The most important conclusion from Figure 4.3 is that, the optimum speed at which 

the BMSs operate is an important factor in their energetics. Swimming at lower and 

higher speeds than the optimum speed can increase the COT considerably. For example, 

if extrapolating the data, the killer whale (Orcinus orca) has a high COT when 

compared with some fish at low Reynolds numbers which correspond to speeds less 

than 1[
 

 
], however its optimum speed is more than 2.5 [

 

 
], at which it has COT even 

less than a sturgeon (Acipenser transmontanus). In addition the operation range of a 

killer whale in this plot is                which is the highest between the 

compared animals. Therefore although silver eel (Anguilla anguilla) has the lowest 

COT of all BMSs in the plot, if operating at the optimum speed of the killer whale, it 

will probably have higher COT. This does not come as a surprise; not only because 

BMSs with different swimming modes are evolved to swim more efficiently at different 

speeds, but also the drag scale effect mentioned in Section 3.2.4 in Chapter 3 explains 

the reason behind this phenomenon. As drag is proportionate to {    }
 

 , increase in 

mass does not increase the drag linearly. Therefore, it is expected for larger bodies to 

have proportionately less drag. 

Figure 4.4 is the plot of total power for the BMSs in Figure 4.3 as well as the AUVs 

at their economic Reynolds number. AUV data is calculated from their COT. Figure 4.4 

illustrates that total power is highly affected by the Reynolds number. AUVs have 

Reynolds Numbers within the range of marine mammals while gliders with             

         are close to smaller BMSs. Also speed affects the total power. Both of 

these factors must be investigated as the purpose of all these comparisons is to realise 

which system is operating more efficiently and less costly (energetic) at which range.  
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Figure 4.4. Total power vs. Reynolds Number for BMSs and AUVs 

 

Figure 4.5 is the plot of total mass specific power of the systems in Figures 4.4.  

This figure clearly shows that at their economic speed, AUVs have lower mass 

specific power compared to BMSs; however it is not clear whether this is due to higher 

propulsion power required for BMSs or higher hotel load. Both components have been 

investigated in Section 4.2.  

Glider AUVs have the lowest mass specific power which was expected. As it is 

explained later in section 4.2, the two main components of power for an AUV are hotel 

power (non-propulsive) and propulsive power. Gliders are generally slow speed AUVs 

and as propulsion power increases with speed cubed, they have relatively lower 

propulsion power. Moreover, gliders usually carry less sensors compared to survey class 

AUVs which reduces their hotel load. In addition if no active buoyancy control system 

is present on board the hotel load will be less. As power is the sum of these two 

components, gliders are expected to have low power consumption compared to other 

AUVs.   

Biomimetic AUVs have the highest total power among AUVs which is close to the 

range of the values for the harbour seal (Phoca witulina). However, both data belong to 

biomimetic AUVs with side fins as their main proplusors. The plot suggests that at 

higher speeds the propulsion power increases, however the rate of increase is 
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significantly higher when the systems is operating at speeds higher than its optimum 

speed. 

 

Figure 4.5. Mass specific total power vs. Reynolds Number for BMSs and AUVs 

 

The comparison of COT and power suggests that hotel power and propulsion power 

must be compared separately to realise whether for different systems, the basal 

energetics of the body it high and dominating the COT or it is the propulsion power. 

4.2 Components of Cost Of Transport 

Vehicles require energy to move, however they also require a certain level of energy 

to perform non propulsive tasks. For BMSs, the overall required energy can be divided 

into six main components (Smith, 1976):  

Total Energy =  

Basal metabolism 

         + Thermoregulation (for endothermic BMSs) 

         + Voluntary activity 

         + Specific Dynamic Action (heat produced by nutrient metabolism) 

         + Growth fat and sexual products 

         + Urine, gill exertion (for fish) and faeces 
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Note that Basal Metabolism of BMSs is calculated from the BMR for endothermic 

species or from the SMR for ectothermic BMSs. For simplicity, herein it is referred to 

as BMR. These six components as well can be divided into propulsive and non-

propulsive required energy. 

Therefore for any engineered or biological vehicle, the required energy is divided 

into two main parts: propulsive energy and non-propulsive energy.  Both of these 

components must be studied separately as they affect the overall COT independently.  

Basal metabolism, i.e. BMR for endothermic BMSs and SMR for ectothermic BMSs 

is the energy which is used to maintain the essential organs of the BMS as well as other 

life support systems and activities through basic level of respiration. Therefore it can be 

considered as the equivalent of hotel load in AUVs. Energy required for the propulsion 

power is often known as the “Net” Cost Of Transport therefore: 

 

         
                                 

             
          

4.11 

 

Hotel load and propulsion power are explained next. 

4.2.1 Hotel load 

For both AUVs and BMSs, there is a base energetic cost to maintain non-propulsion 

related systems and activities.  For engineered systems this base energetic cost is 

referred to as the hotel load. The hotel load is mainly associated with powering 

computers, hard drives and sensors (including buoyancy control system). This value, if 

available, is usually indicated by the manufacturer in watts. 

The mission of an AUV dictates to a large extent its hotel load as hotel load 

comprises the power required for non-propulsive activities such as the computer, 

hardware and sensors which are all used to achieve the AUV’s mission. Therefore, the 

more sophisticated the mission, higher value for hotel load is required. The assumption 

that survey class AUVs are designed for more sensor intensive missions, while gliders 

are usually designed towards high endurance, verifies the fact that gliders usually have 

lower hotel load.  

Considering missions driving the hotel load of AUVs, the size of the AUV is not 

necessarily the driving factor for increase in hotel load as high endurance and therefore 

high battery capacity required will also increase the size of the AUV. However, the 

hotel load data from various survey class AUVs showed a general increase in hotel load 
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with mass. This tends to indicate that more complex missions require more sensors 

which leads to an increase in size as well as hotel load.  

For BMSs this value can be calculated using the same method as explained in 

Section 1 of this chapter. To correspond with the hotel load of AUVs, base metabolism 

is calculated as power in Watts by using Equation 4.12 as below and for simplicity it is 

also going to be referred to as hotel load (  ) for BMSs: 

 

   [     ]   
                       [ 

  
    

]             [  ]

    
 

4.12 

 

 

Several studies have been carried out to derive empirical formulas by plotting 

regression lines for the hotel load of different BMSs. Two well-known pioneers are 

Kleiber, 1932 and Brody, 1945 who studied a wide range of terrestrial mammals and 

birds and demonstrated initially that the hotel load is very closely proportional to 

        . This has since been modified by Kleiber and other scientists and several very 

close values of a and b have been proposed to be replaces in  {    } . They calculated 

the hotel load in [
    

{   }
], to calculate     in watts: 

 

    

   
 

         

       
[     ] 

4.13 

 

 

As the interest in this research is on marine mammals, several proposed formulas by 

Kleiber, Brody and also McNab, 1988 are compared with some experimental data 

(Hoelsel, 2002) as plotted in Figure 4.6. While Kleiber mainly studied laboratory 

animals, McNab measured the BMR for wild marine mammals. As mentioned by 

Tomasi & Horton, 1992, for some captive animals and also large whales, the hotel load 

is twice the Kleiber value mainly due to stress. That is the reason for plotting also twice 

the Kleiber’s regression line         {    }     . 
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Figure 4.6. Comparison of various formulas (regression lines) for Hotel load as a function of Mass. 

The hotel load in regression line proposed by McNab has been converted from 
    

 

   
 to 

    

  
 

by Berta et al., 2005 and then to Watts in this research 

 

As shown in Figure 4.6, most of the BMSs sit slightly above the Kleiber, 1975 line; 

this is mainly due to the fact that satisfying Kleiber conditions for some marine 

mammals is difficult if not impossible (Speakman et al., 1993), especially stress. There 

has also been proposed that BMSs have marginally higher hotel load compared to 

terrestrial mammals. This statement is debatable (Berta et al., 2005); however, the 

kleiber, 1975 regression line is closest to the actual value of hotel load for wild marine 

mammals.  

Therefore in this research this line is used to estimate hotel load for marine 

mammals. Other similar regression lines have been proposed for other groups of BMSs. 

A list of the regression lines available for BMSs and AUVs is presented in Table 4.1.  
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Table 4.1. Regression lines of the empirical relationship between    (non-propulsive required 

power) and versus mass. R
2 
values are presented where available 

Groups of BMSs Regression Line (W) R
2
 Source 

Marine Mammals and birds                   Kleiber, 1975 

Teleosts(n=69) 
2,4

                 0.06 Clarke & Johnston , 1999 

Teleosts (n=97) 
1,4

                     0.72 This reserach 

Salmonoids (at 20
o
C)                    Brett & Glass, 1973 

Salmonoids (n=5) 
1
   = 0.1579Mass

0.7947
 0.63 This research 

Humboldt penguin  

(Spheniscus humboldti) 
 
(n=20)

 3
 

            0.94 Luna-Jorquera & Culik, 2000 

Penguins (n=3)                    0.92 This research 

Eels (n=6) 
1
                     0.87 This research 

Skipjack tuna 

(Katsuwonus pelamis)  (n=6) 

                      0.71 This research 

Reptiles (including turtles)                      Wallace & Jones, 2008 

Conventional AUVs (n=8)                     0.80 This research 

Long Range AUVs & gliders 

(n=4) 

      Phillips, et al., 2012 

1
 Hotel load regression line was calculated from    consumption data at different temperatures, 

normalised for 20
  . 

 

2
 Hotel load regression line was converted from the equation in reference which is based on    

consumption in 
     

 
 and mass in grams. 

3 
Resting metabolic rate in water at 19 . Their metabolic rate included heat loss which was 

associated with being submerged in water. 

4 
Teleost fish or Teleostei are the main infraclass of the ray fined fish (Actinopterygii). The other two 

infraclasses are Holostei who show some primitive characteristics and Chondrostei which are primarily 

cartilaginous fish showing signs of laying down new bone material. 

 

Figure 4.7 is a comparison between the hotel load of several AUVs and the base 

metabolism of numerous BMSs. The regression lines (empirical formulas) mentioned in 

Table 4.1 are also plotted on the graph. 

The regression line proposed by Clarke & Johnston, 1999 for teleost fish shows the 

least hotel loads for the Teleosts. However, the findings of this research showed that 

eels have the lowest hotel load regression line at small masses (less than 0.5 kg). The 

regression line estimated for teleost fish in this research is higher than the one in the 

literature.  This could be due to normalising data from other temperatures to 20
o
C, 

however the teleost fish data points from literature are all placed above the Clarke & 

Johnston line and some fit very well with the regression line proposed by this research. 

One reason for this is that similar to marine mammals, satisfying all the prerequisites for 

a BMR test is not always fully possible. For salmons (Salmonoids) as they are high fatty 
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fish different hotel load regression line was estimated in this research which is slightly 

less but close to the one predicted in literature with the same trend.  The regression lines 

for turtles and the humboldt penguin are very close to the one predicted for teleost fish 

in this research. Marine mammals have the highest hotel load up to 100 kg body mass. 

AUVs have hotel loads between the salmons regression lines and marine mammals, and 

size wise they are close to marine mammals. However, most of them have less hotel 

load than marine mammals and a data for a glider shows very low hotel load, close to 

the eels regression line. The data points of the penguins sit higher than the regression 

line proposed by Luna-Jorquera & Culik, this may be due to the fact that only one 

species of penguin was tested in their research work.  

 

Figure 4.7. Hotel load as a function of mass for various BMSs and AUVs. Where there are two 

regression lines, those named (A) are from this research and those named (B) are from 

literature 

 

As it is clear by Table 4.1, hotel load for all BMSs is not available. However, very 

close regression lines for various BMSs shows that with the regression lines already 

available, the hotel load for other BMSs can be estimated. For example the only data 

available for sharks, the lemon shark (Negaprion brevirostris) (average value of hotel 

load measured from several O2 consumption data from seven Lemon Sharks of similar 

size from Scharold & Gruber, 1991) sits right on the regression line predicted for 

teleosts in this research. 
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All these regression lines are drawn assuming there is no size limit for all classes of 

BMSs. However, different classes of BMSs have different size range. Figure 4.7.1 is a 

modified plot of Figure 4.7, only showing regression lines within the range were the 

class of BMSs actually exist. 

 

Figure 4.7.1 Hotel load as a function of mass for various BMSs and AUVs with regression 

lines only extended within the size range of each group of BMSs. Where there are two regression 

lines, those named (A) are from this research and those named (B) are from literature 

 

Note that the size range is gathered from the 318 BMSs data within the database of 

this research. 

Figure 4.7.1 shows that in reality all BMSs only exist in masses ranges less than a 

tonne except for marine mammals and sharks for which regression line is not available.  

AUVs hotel load falls between those of marine mammals and turtles. Another 

interesting data is the tuna, which despite showing endothermic characteristics has a 

hotel load which is in-line with other teleost fish. 

AUVs regression line falls between reptiles and marine mammals. Marine mammals 

are expected to have high hotel loads as they are endotherms and as most of them are 

negatively buoyant, they consume energy not to sink. This is done by using their side 

fins to produce lift. AUVs are also required to control their buoyancy as they are 

positively buoyant while turtles (representing reptiles) alter the air volume in their lungs 

to keep neutrally buoyant (Peterson & Gomez, 2008). It is interesting that marine 
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mammals consume more non propulsive energy than AUVs, considering that especially 

survey class AUVs can be very sensor intensive. More detailed research is required to 

find the reason behind marine mammals high hotel load, whether it is in fact due to 

thermo regulation or other unaccounted stress during measurement.  

In order to compare mass specific hotel load for BMSs and AUVs, the data and 

regression lines are plotted in Figure 4.8. 

Except for the regression line for eels and the one proposed for teleost fish in this 

study, the rest of the regression lines suggest that mass specific hotel load decreases 

with size. The data set gathered in this research to draw the regression line for fish, 

included large fish with relatively high hotel load. The reason for this behaviour is not 

clear. However, the data points plotted on the graph do in fact agree with the trend. The 

lemon shark is again on the regression line for teleost fish. The data points for 

salmonoids show very different relative hotel loads in these fish which are genetically 

very close to one another, which proves that unless the test environment is exactly 

similar the resulting hotel load will be different to some extent. As the salmonoids data 

points fit between the data points of other teleosts, it is possible to use the regression 

lines of teleost for salmonoids as well.  

 

Figure 4.8. Mass specific hotel load for BMSs and AUVs 
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4.2.2 Propulsion power 

Propulsive Cost Of Transport or net Cost Of Transport         refers to energy 

required for the locomotion of a system. Therefore propulsion power is the 

corresponding power to the       . Therefore total power required for a system is 

calculated as: 

   

                                                  4.14 

If hotel load or hotel power and the total power are known, the propulsion power is 

calculated as: 

         4.15 

It is also known that energy is power multiplied by time, so: 

         
     

{    }    
 

4.16 

Where U the swimming/locomotive speed of the system. Therefore: 

                
  

{     }   
 

4.17 

 

Based on the definition given in Sections 1 and 2 of this chapter, various 

components of the COT can be plotted typically as in Figure 4.9. 

 

Figure 4.9. Total COT, base COT corresponding to Hotel load (  ) and net COT corresponding to 

propulsion power and as a function of absolute speed [m/s] 
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Figure 4.10 and 4.11 illustrated the propulsion power and mass specific propulsion 

power of several BMSs and AUVs at their optimum speed. These values are estimated 

by using Equations 4.15 and 4.16 for the BMSs and AUVs for which the data was 

available.  

It is clear that the range of operation for BMSs is significantly larger compared to 

AUVs. Gliders have propulsion powers very close to or less than 1 Watt while other 

AUVs operating at Reynolds numbers within the range of Marine Mammals, have 

similar propulsion powers to smaller marine mammals (the Harbour Seal). Fish 

operating at lower Reynolds ranges have considerably less propulsion power.  However, 

when looking at mass specific propulsion power, most AUVs have required propulsion 

power less than 0.5 [
 

  
] similar to the silver eel. Note that the dotted line in   Figure 

4.10 shows the minimum Re for AUVs in the figure. Therefore, direct comparison 

between the propulsion power of AUVs and BMSs at Re less than         was not 

available. 

 

Figure 4.10. The propulsion power of various BMSs and AUVs at their Reynolds Numbers. The 

dotted line is the lowest Re           for the AUVs in the plot 
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Figure 4.11. The mass specific propulsion power of various BMSs and AUVs at their Re 

 

If both propulsive and non-propulsive components of the energetic cost are known, 

the          and corresponding power required can be calculated. Estimation of hotel 

load was discussed in Section 4.2.1. In order to calculate the propulsive cost for AUVs, 

many factors such as the thrust coefficient       torque coefficient(  ), the advance 

coefficient     and hull efficiency must be provided by the manufacturer (Lewis, 1989). 

For BMSs the propulsion power or propulsive energetics required for swimming is 

affected by several factors. Similar to AUVs (Allen et al., 2000), the propulsion power 

of BMSs varies due to their morphology, physiology and swimming/propulsion mode 

which clearly results in different propulsive efficiencies. However, as explained by 

Hammer, 1995 and Lighthill, 1969, their propulsive energetics is also affected by the 

environment in which they swim. This includes the characteristics of the water, the level 

of stress, etc. Therefore calculating the propulsion power for a BMS is not straight 

forward. However, as explained in Section 4.1 when total COT cannot be measured 

directly, using Equation 4.16 is the way to estimate COT. Considering every 

characteristics of water and the environment and the alteration of propulsion power as a 

consequence is very complicated and requires a separate research to be performed. The 

main factors affecting    are body characteristics (morphology and physiology) and 

swimming mode, therefore efficiency. These have been investigated in this research for 

different BMSs and as a result power and energetics estimated. This is thoroughly 

explained in   Chapter 5. 
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4.3 Range and endurance 

Endurance and range are both corresponded with the capability of a vehicle to 

operate with fixed amount of fuel on-board. Endurance is the time of operation, or it the 

case of BMSs, the time which they can swim and stay alive without feeding. Range is 

the distance which they can swim at the above condition. 

Sometimes endurance or range are not defined as direct mission criteria and simply 

materialise when considering the scope of an operation. For example, inspecting 

pipelines does not have endurance as mission criteria; however it would be desirable if 

the vehicle is able to perform the operation completely before requiring a battery 

charge. For some missions though, endurance or range are direct criteria. For example a 

vehicle might be required to move to a certain point, perform a mission and return. 

Therefore, being able to estimate the endurance or range of vehicles is vital and clearly 

a vehicle with higher endurance is desirable, that is if the energetic cost is in the 

acceptable range. This is an example of trade-offs between various characteristics and 

capabilities of a vehicle which forces an AUV user to decide between two different 

vehicles. Considering these trade-offs and making a decision on the selection of a 

vehicle has been investigated extensively in this research and explained in Chapter 7. 

Based on the description given in this section, endurance and range depend on the 

energy consumption, size, speed and also the reserved energy on the vehicle. This 

reserved energy is provided by batteries for AUVs. Conventional AUVs have a finite 

amount of energy stored (battery) on-board. Therefore, range is inversely proportional 

to COT. For AUVs, maximum endurance is gathered mainly through the data sheet 

provided by the manufacturer and occasionally from literature and personal 

communication. As such there is an unknown level of uncertainty in the accuracy of the 

results. By knowing the endurance and economic speed of the vehicle, the maximum 

range can be calculated as: 

 

        [  ]      [
 

 
]            [ ]      [

 

 
]       [

  

 
] 

4.18 

 

For marine animals, range is a challenging parameter to define as many species do 

not travel long distances without feeding. For BMSs the reserved energy usually exists 

in terms of body fat which is consumed when food is not readily available. Therefore in 

this research, the lipids and fatty acids stored in the body of BMSs are considered as 
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correspondence to the battery capacity in AUVs. These, when combined with known 

COT and swimming speed, provide a measure of endurance for BMSs.  

It was mentioned that endurance is measured between two fuel recharges. This 

means that for BMSs it must be measured when the BMS is not eating and solely 

spending the reserved body fat. Some of the long migrating BMSs such as the sperm 

whales or eels do not eat during their long (~5000 km) migration and purely rely on 

their body reserves. However, most BMSs eat frequently to compensate for their energy 

loss during daily activities. One method of calculating the endurance of BMSs is by 

considering the eating pattern of all BMSs. In this research an alternative method was 

proposed. To estimate the maximum range or endurance of each BMS, it was assumed 

that the animals do not refuel and consume all the reserved fat while swimming at their 

optimum speed. This means that the total fat was considered as the total available fuel. 

Therefore, the maximum range is achieved when all the body fat is consumed. 

Consideration need to be made that in reality the animal will die when the fat reserve is 

very low and this calculation is carried out for the purpose of comparing different 

BMSs. One other consideration is that the studies have shown that BMSs also rely on 

their body protein to metabolise and provide energy to some extent (Palstra & Trillart, 

2010).  However this amount is not as significant as the energy produced by 

metabolised fat. For Example, in Plaice (Pleuronectes platessa L.), the amount of 

metabolised protein in only 10% of that of fat at the same time (Dawson & Grimm, 

1980), bearing in mind that protein produces less energy. Furthermore, in this research 

as the muscle (protein) is considered as the motor of the BMS body, the energy is based 

solely on metabolised fat. As explained in Chapter 2, for some BMSs such as marine 

mammals, fat or lipids are easily distinguishable as they are in form of blubber.  

However, for some BMSs especially most fish, fat is mixed with muscle fibres 

within the flesh and there is also fat in the skin. Although skin has fat, it does not get 

metabolised as this will make the body of the species vulnerable. Therefore only fat 

within the flesh is considered as burnable fat for the purpose of this research. Sharks 

have a concentration of fat in their liver. Between 40.6% of the liver mass of the silky 

shark is fat, while the liver mass is about 5.7% of the body mass. This average value of 

2.3% of body mass extra fat is therefore added to the burnable fat in the body of sharks 

(values averaged from data measured by Navarro-Garcia et al., 2000). Fat tissue 

percentage is not available for all BMSs and therefore for BMSs the percentage of fat 

tissue is estimated based on the data available for genetically similar BMSs. 
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If the calorific value of BMSs fat is known, by knowing the amount of fat of the 

BMS, assuming it will not eat while swimming, the energy storage corresponding to 

that of the batteries in AUVs is calculated as: 

              [   ]  
{    }   [  ]       [
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Where E is the specific energy. 

Therefore the maximum endurance at optimum speed can be calculated as below: 
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4.20 

 

To use Equations 4.19 and 4.20 the      must be known. Data on various sources of 

energy for both BMSs and AUVs is present in the literature and is listed in Table 4.2. 

As part of this research, the blubber of the two marine mammals mentioned in    

Chapter 2 was also tested to estimate their specific calorific value. The reason to 

perform the test was because both juvenile species were stranded and especially the 

white beaked dolphin suffered severe mal-nutrition. As a result of this the blubber had 

changed in texture in both cases. The texture was rubbery instead of jelly and colour had 

changed as well. Therefore due to this as well as the species being juveniles, there was 

the assumption that the resulting specific energy might have been less than one of a 

healthy adult animal. And this test must have been done to observe whether this does in 

fact occur. Blubber samples were taken from the middle body part of both the white 

beaked dolphin and the grey seal and were tested in the calorimeter. 
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Table 4.2. Comparison of the specific energy of various sources of energy storage for both 

biological and engineered systems. Shaded rows correspond to biological energy stores 

Energy Storage Type Used in Specific Energy 

(MJ/kg) 

Reference 

Fish Oil (Cod Liver Oil) BMSs 39.45 Liversey & Elia, 1988 

Bowhead whale (Balaena 

mysticetus) subcutaneous fat 

(Blubber) 

BMSs 36.4 US. Department of Agriculture, 

2010 

Grey seal (Halichoerus 

grypus) blubber 

BMSs 32.7 This research 

White beaked dolphin 

(Lagenorhynchus 

albirostris) blubber 

BMSs 31.9 This research 

PEM fuel cell AUVs 

(Urashima) 

~ 1.44 Griffiths, 2005 

Lithium Polymer Battery AUVs 0.70
1
 Griffiths, 2005 

Lithium solid polymer 

Battery 

AUVs 

(Autosub6000) 

0.47-0.68 Griffiths, 2003 

Lithium Ion Battery AUVs
2
 0.324 -0.54 Griffiths, 2003 

Mn Alkaline Battery AUVs 

(seahorse II) 

0.21-0.46
1
 Griffiths, 2005 

Nickel Metal hydride (Ni-

MH) 

AUVs 0.28 Huggins, 2010 

Sealed Lead-Acid Battery AUVs  

(ALIVE) 

0.07-0.11 Griffiths, 2003 

1
values calculated from data in literature 

2
Most common source of energy for AUVs 

 

 It is shown in Table 4.2 that the specific energy for the blubber and fish oil is more 

than 30 [
  

  
]. The blubbers tested in this research did produce 10%-15% less energy 

compared the value for bowhead whale in literature which suggests that at lowest 

quality, the blubber will still produce more than 30 [
  

  
] of energy. When compared to 

batteries such as those used in AUVs (e.g. Lithium Polymer, 0.70[
  

  
]), or even the fuel 

cell used in Urashima, 1.44[
  

  
], it becomes apparent that BMSs store and consume a 

high quality fuel. BMSs fuel has about 40 times more specific energy.  

In order to have an understanding regarding the energy available to various BMSs 

and AUVs, the available energy content (or battery rating as it is called for AUVs) per 

kilogram of body mass [kWh/kg] has been plotted against the total body length for 

AUVs and BMSs in Figure 4.12. The battery rating for AUVs has been obtained from 

manufacturer’s data or calculated from other data available by the manufacturer. For 

BMSs where the mass of fat tissue is known by assuming an average specific energy of 

35 [
  

  
] for fat, the energy store is calculated from Equation 4.19 and divided by the 

body mass to obtain the mass specific energy content. 



107 

 

As illustrated in Figure 4.12, the mass specific energy content available to BMSs 

compared to similar length AUVs could be about 100 times higher. As explained the 

high specific energy of fat compared to the battery used in AUVs has a significant effect 

on the available energy for BMSs. Therefore, BMSs can benefit from higher endurance 

or can afford to use part of this energy to increase their speed. 

 

Figure 4.12. Mass specific energy content vs. total length for BMSs and AUVs. The graph is plotted 

for body lengths less than 12m where the AUVs within the database exist at.  

 

By having an estimate of BMSs fat, the endurance [ ] can be calculated for BMSs. 

Endurance of several BMSs and AUVs are shown against length specific speed [
  

 
] in 

Figure 4.13.  The size of the circle is an indication of the value of COT. It is evident by 

the plot that BMSs have significant higher endurance compared to AUVs. However, as 

stated before, their COT is generally higher. Two gliders, the Spray and the Seaglider 

have endurance over 1000 h with relatively small COT. However their speed is less than 

0.2 [
  

 
] while BMSs have endurance higher than all conventional AUVs at length 

specific speeds higher than 3 [
  

 
].  

Silver eel has the highest endurance of 11267   or 15.6 months at the speed of 

0.5 [
  

 
] . Although, the African penguin with the fastest length specific speed of         

3.07 [
  

 
], has an endurance of only 52   with a very high COT of 15.5 [

 

    
]  (as 

expected as Penguins do have comparatively high COT) and closely following is the 

sockeye salmon with a speed of 2.8[
  

 
] with 479   of endurance at 3.92 [

 

    
]. The 
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COT of most BMSs are higher than those of most AUVs as to be expected as the BMSs 

operate at a higher speed. Grey whale (Eschrichtius robustus) and sperm whale 

(Physeter macrocephalus) with endurance higher than 1000 h sit very close to gliders. 

However, their COT is higher than those of gliders. Sperm whales are migrating marine 

mammals and swim about 5000 km, while consuming the large energy storage in the 

form of blubber during long migrations.  

Therefore, size is an important factor for marine mammals in order to store the 

required energy content. However, silver eels that also use their stored energy during 

migration, have marginally lower COT which reduces the amount of energy usage.  

Details of eel migration still remain unknown till date. However, an interesting 

research by Aarestruo et al, 2009, tagging European eels (Anguilla anguilla) migrating 

from Europe to the Sargasso Sea has discovered that when swimming with the current, 

silver eels use the water current instead of swimming to go forward. This minimises 

their COT and increases their speed. One might suggest that this could mean the eels’ 

COT is not as low as estimated. However, same research has discovered that as part of 

their journey, the eels swim against the current which can reduce their average daily 

speed to about 39%. Moreover, the research shows that eels also perform vertical 

migration in the water column during the day as well. Therefore, until more detailed 

information on the eels’ migration becomes available, it can be inferred that in average 

the COT estimated for eels in present research is a good estimate which needs to be 

considered with the above notes bore in mind. 

 

Figure 4.13. Endurance as a function of length specific speed for BMSs (blue circles) and AUVs 

(red circles) 
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4.4 Conclusion 

In this chapter methods of gathering energetic cost data for BMSs and AUVs have 

been discussed and methods presented estimate the hotel load and propulsion power for 

BMSs to be compared with those of AUVs. The COT, propulsion power and hotel load 

of BMSs and AUVs have been compared. This shows that AUVs especially gliders 

have generally less COT compared to most BMSs. As there are no data for AUVs at 

Reynolds numbers less than        , a cross comparison between AUVs and BMSs 

at lower Reynolds numbers was not possible. However, by comparing AUVs with 

BMSs within similar Reynolds number range, it was realised that AUVs had almost 

similar absolute propulsion power to BMSs with similar Re. However the mass specific 

propulsion power as well as hotel load of AUVs were lower compared to those of the 

BMSs. This explains their lower COT.  

 BMSs certainly have higher speed ranges and they benefit from high quality fuel.  

In terms of endurance BMSs have definitely a significant superiority over AUVs. 

Although very few gliders have endurance higher than 1000h with very small COT, 

their speed is very low while BMSs have endurance higher than all conventional AUVs 

at length specific speeds higher than 3[
  

 
]. As discussed in Section 4.3, the mass 

specific energy content for BMSs could be as high as 100 times that of similar length 

AUV. This will result in higher endurance or if speed is crucial, part of this energy 

could be used towards increased cruising speed.  

The energetics have been compared in this chapter, however to have an estimate of 

the efficiency of the systems, drag needs to be estimated for BMSs and compared with 

one another. This was carried out and explained in the next chapter, Chapter 5. 

 



110 

 

 

 

Chapter 5. Bio-Inspired Propulsion 

 

In Chapter 4 the energetic costs and corresponding required powers for BMSs and 

AUVs were compared. When considering required propulsion power while comparing 

different systems, efficiency must also be considered. One objective of optimisation is 

to achieve higher system efficiency. To calculate efficiency, the drag of the system must 

be estimated. 

 The method for the estimation of drag for BMSs is discussed in this chapter. By 

having an estimate of drag, various efficiencies are defined for BMSs and estimated 

using energetics and drag.  This is then followed by relevant discussion. 

5.1 An estimate of the drag of BMSs 

If an animal is physically available, it would be possible to measure its drag as done 

so in research works carried out by Webb, 1975 and Fish, 1998. Also research works 

such as those performed by, Anderson et al, 1997 and Read et al, 2002 have been 

looking into measuring forces and propulsive efficiencies on oscillating foils. These 

methods are useful for measuring the drag when the animal or the fins are available; this 

is not usually the case.  

Therefore, having a method to be able to estimate the drag and therefore efficiency 

for comparison without the need for the actual animal was desirable. Therefore, a novel 

method for calculating drag and overall efficiency is presented in this research work. 

The method is explained next. 

As shown in Equation 4.10 in Chapter 4, the energetic COT is the sum of hotel 

power and propulsion power divided by mass multiplied by speed. Propulsion power for 

AUVs and BMSs can be defined as: 

   
   

 
 

5.1 

 

Where   is total drag of the AUV or the BMS while moving forward, 

  is the forward speed, 

  is the efficiency  
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As discussed in Chapter 3, the bare body of the BMSs has been associated with a tri-

axial ellipsoid. However, in reality the body is not an exact tri-axial ellipsoid. Moreover, 

the bodies of different BMSs have different appendages which contribute to the drag. 

These are as follows: 

 The top fin (s)  

 The bottom fin (s)   

 The side fins 

 The rear fin (or twin fins if it is a BMS with feet) 

 The gills (s) 

 The eyes 

 The long snout or the sword 

Very few BMSs such as turtles, penguins and sea lions have small tails which can be 

considered as part of the tri-axial ellipsoid body. Therefore, in this research no extra 

drag is considered for tails. 

Each of the above terms contribute to the total drag of the species however not all 

are present in all the BMSs. 

Although the eyes contribute to the drag; their surface area in comparison to the bare 

body is very small. Therefore, as drag is directly proportional to the surface are, the 

contribution of the eyes to the total drag is very small and is calculated to be less than 

1%. Therefore, although appreciating the existence of eyes’ drag, the contribution can 

be considered insignificant. A similar consideration was made for the sword (long, thin 

snout) of some BMSs such as the swordfish (Xiphias gladius), the marlin (Makaira 

indica) or the sailfish (Stiophorus platypterus). The only exception is the hammerhead 

shark (Sphyrna lewini) for which the drag of the “hammer” is calculated as a flat plate 

as the surface are is significant. 

As well as the body shape and appendages the roughness of the body skin mainly 

caused by hair attributes to the total drag as well. Finally, the BMS’s bodies’ are not 

still during swimming. Especially in BMSs that use their rear fin as the main source of 

propulsion, their body either yaws (e.g. in fish) or pitches (e.g. in marine mammals) 

during fin undulation. This affects the drag as well. 

Therefore the total drag can be formulated as: 
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    (                            

      ) 

5.2 

Where each term is explained next: 

   is the factor of skin roughness. For majority of fish, the main body is covered 

with scales and for the rest such as the eels the body is slippery. For sharks, dolphins, 

whales and penguins the body surface is smooth in macroscopic levels. However, some 

marine mammals have hair on their body and some BMSs especially the larger ones, 

might have some smaller organisms stuck to their bodies, which will reduce the 

smoothness of the body surface. Measuring the skin roughness was not within the scope 

of this research, therefore the drag is measured without considering roughness. 

However, having the skin roughness will result in a more precise drag estimate. 

    is the correction factor to compensate for the difference between the true shape 

of each BMS and a Tri-Axial Ellipsoid.  

   is the bare body drag of the BMS. As the bodies of BMSs are associated with 

tri-axial ellipsoid,     is the drag of the corresponding tri-axial ellipsoid of the BMS. 

                 and      are the drag of Top, Bottom, Side, Stabilising and 

Rear Fins respectively. In respect to the side fins, the drag might be less than the actual 

drag for some BMSs as measuring the actual chord of the fin from photos is not 

possible as the fin is usually not wide open. 

   is the gills drag which is approximately 10% of the total drag at cruising speed 

(Videler, 1993), and 

   is the snout drag.  

In respect to each component in the drag formula some notes must be taken. In 

addition, the contribution of each component must be estimated. These are explained 

next. 

There is another matter which can be both considered as correction factor or within 

the propulsive efficiency and that is considering the swimming mode. As explained in 

Section 5.1.2 in order to calculate drag, the body and the fins are considered static and 

the BMS gliding. However, this does not happen in reality and therefore means are 

required to account for different movements of BMSs mainly due to their swimming 

mode. In this research, the movement of BMSs for propulsion purpose is considered 

within the propulsive efficiency. 
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5.1.1 Adjusting the calculated drag for the BMSs 

    : The factor of skin roughness accounts for the skin roughness as well as the 

finlets in some BMSs such as the tuna (Thunnus thynnus). Similar to the eyes and the 

swords, the contribution of the finlets to the total drag is less than 0.5% and therefore 

not significant to be calculated as part of the total drag. Instead they are considered as 

part of the skin roughness.  

      As drag is calculated in general as: 

            
  5.3 

Where    is the drag coefficient,     is the wetted surface area and   is the speed, 

the     can be defined as: 

     
      

                      

 
5.4 

For BMSs the actual area is unknown, however as area is volume to the power of 

2/3 and volume is mass divided by density, by knowing the mass of the BMS and 

calculating the mass of the equivalent tri-axial ellipsoid, the     can be reformatted as: 

     (
{    }   

{    }                   
)

 
 

 

5.5 

5.2 Calculating components of the total drag 

Two main drags which were calculated for BMSs were the bare body drag and the 

control surfaces (or fin) drag, both will be explained next. 

5.2.1 Bare body drag 

In engineering bare body drag,    , is calculated as: 

              
  5.6 

Where: 

   is the drag coefficient and     is the wetted surface area and both must be 

estimated to calculate drag. As mentioned in Chapter 3, as part of this research it has 

been concluded that, for the purposes of providing sufficiently accurate drag estimates, 

BMSs body forms can be idealised using a tri-axial ellipsoid; from this wetted surface 

area and drag coefficient can be estimated. 
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Although no analytical formula is defined to calculate the surface area of a tri-axial 

ellipsoid, a number of approximation formulae exist and the one used in this research is 

the Knud-Thomsen formula (Michon, 2012) which estimates     with less than 1% 

error. 

The Knud-Thomsen formula for a BMS is: 

 

     (
(  (     ))

      
 (     )      

 
)

 
      

 

5.7 

 

Where BW and BH are maximum body width and height and    is the elliptical 

length.    is used as the length of the main body, instead of total length,   . This is 

because    includes the rear fin. 

The drag coefficient is in the form of      (   ) , where    is the friction 

coefficient and (   ) is the form factor. 

For turbulent flow (where vast majority of the vehicles and species studied in this 

research swim at) there are different methods to estimate   . These methods result in 

closely similar values. As an example, the    values calculated using the ITTC57 

formula and the Prandtl-von Karman formula were compared in Figure 5.1. This figure 

shows that values from both methods are close especially at Re larger than      . 

Thereore, in this research,    for vehicles was estimated using the Prandtl-von Karman 

formula, that is: 

 

               5.8 

This formula was also very useful when deriving Equation 5.19 which is explained 

later in this chapter.  
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Figure 5.1. Comparing    values calculated using ITTC57 formula vs. Prandtl-von 

Karman formula 

Where    is the Reynolds Number and the kinematic viscosity is considered for sea 

water at 20  (ITTC, 2011) which is             [
  

 
]. 

The reason to consider water at 20  is because this is the standard temperature and 

therefore the temperature at which the oxygen consumption of BMSs has been 

corresponded to for comparison. It is appreciated that various BMSs live at different 

temperatures, but a unique temperature must be selected for comparison. Moreover, the 

kinematic viscosity changes for water temperatures between    and    which is 

greater than the range of temperature in the oceans, was published in ITTC, 2011. The 

kinematic viscosity ranges between          to          [
  

 
] . Considering its 

contribution to    which is to the power of 0.2 (i.e.     ), this value will change between 

0.07 and 0.06. Therefore, the difference in the kinematic viscosity is negligible for 

different temperatures of sea water. 

The values obtained by using this formula were compared to examples tested in a 

Computational Fluid Dynamics (CFD) software and the results show less than 4% error. 

The CFD analysis was performed by Dr. Alex B. Phillips, a collaborative party in 

the University of Southampton, based on conditions and characteristics requested by the 

author. 

Hoerner, 1965 estimates the (   ) value, for Spheroids:   
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         (
  

  
)

 
 
   (

  

  
)
 

 

5.9 

 

where BD and EL are the diameter and length of the spheroid respectively.  

As mention in Chapter 3, the equivalent diameter for a tri-axial ellipsoid can be 

calculated as    √     . 

By substituting    for    in Equation 5.9, the Form factor (1+k) was estimated for 

tri-axial ellipsoids. However, Horner, proposed the Equation 5.9 based on experiments 

on spheroid. Therefore to assure that the proposed formula would give acceptable 

results for a tri-axial ellipsoid, similar to the friction coefficient, samples were analysed 

in a CFD program. The results are shown in Figure 5.2. The two data points marked 

with a red cycle are spheroids (       ) and the other two data points are tri-axial 

ellipsoids with a        . As illustrated in Figure 5.2, there is a close agreement 

between the k values of the two sets of data, which corresponds to the fineness ratio of 

the body and not the       values.  

Therefore, results from Hoerner, 1965 formula are valid estimates of the form factor 

for a tri-axial ellipsoid. 

 

 

 
Figure 5.2. CFD results of the k value for spheroids and tri-axial Ellipsoids 
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5.2.2 Control surfaces (or fin) drag 

In respect to fin drag, few considerations were made in order to calculate the drag 

and power. All fins are considered static (not moving). This is not true for BMSs as they 

tend to move their fins irregularly to steer themselves on their direct path. Therefore the 

sweep angle of the fin as well as the angle of attack changes continuously. However, 

considering the movements of different fins for each BMS and including that in the drag 

model requires a considerable extra amount of research work which is worthy of 

consideration for multiple future research projects in this field. 

The span of the fin is measured as the projected length of the fin perpendicular to 

the flow when the BMS has the fin wide open. In some BMSs the surface area of the 

rear and the side fins shrinks while fast forward swimming to minimise drag however, 

in this research the size of the fins are considered non-changing. This is due to the fact 

that the amount of size change is different for each species and for different speeds 

therefore it is unclear from the collected data whether the fins have been opened or 

closed. An exaggerated example of this phenomena are seals which close their rear fin 

while gliding forward and open them completely when propelling. This will give them 

highest propulsion and less drag.  

There are two simplifications made in this project to calculate the drag of the control 

surface of the BMSs body. Both of the simplifications are explained next. 

1. Control surfaces of the BMS are considered thin flat plates. Although, only for 

fish the control surfaces are truly thin plates, measurements from the dissected white 

beaked dolphin (Lagenorhynchus albirostris) showed that the maximum thickness of 

the control surfaces to the span were about 5% for the fluke (rear fin) and about 10% 

for the dorsal fin (top fin). Therefore, considering that the data on the sections of the 

control surfaces of all BMSs is not widely available, all the control surfaces are 

considered thin plates. As for the wetted surface area of the fins (control surfaces), they 

are measured from photograph and videos of the BMSs and therefore the wetted 

surface area of the fins are in fact twice the surface area measure from photos. 

2. The control surfaces are considered parallel to the flow, the movement of each 

fin not affecting the other as this would be different from species to species and taking 

into account the movements of each fin was not in the scope of this project. 
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The control surfaces of BMSs are: The rear fin, the top fin (could be absent or more 

than one in some BMSs), bottom fin (could be absent or more than one in some BMSs), 

side fins (in pair) and stabilising fins (in pair; could be absent in some BMSs).  

Taking into account the considerations and simplifications the drag of the fins of each 

BMS is measured as: 

                  ∑          
      

                    

 

5.10 

Where   is the speed of the BMS,      is the surface area of the fin and    is 

calculated from the Prandtl-von Karman formula as per Equation 5.8, where       

      
  {     }   

 
 

At this point all the components of drag are explained. Therefore by substituting 

Equation 5.1 in Equation 4.10: 

 
    

  

  
 

      

  
 5.11 

where   is the mass, 

  is the speed, 

       is the Total drag, 

   is the hotel load, and  

   
      

 
 5.12 

where        is the total efficiency and 

  is a factor which accounts for the possible aspects of drag which could not be 

modelled such as the surface roughness.  If the correction factor, c, can be assumed very 

close to 1 (if the skin roughness and other drag affecting terms are negligible) the total 

efficiency is calculated from Equation 5.12. 

It is evident from literature that the definition of total efficiency is inconsistent when 

applied to BMSs and in some cases unclear; therefore to elaborate further on the 

definition of       , this is given special treatment in the next section. 
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5.3 Definition of efficiency 

This section provides a detailed explanation of propulsion energy usage for BMSs 

and AUVs. This is to resolve the issue of inconsistent and unclear definitions and use of 

propulsive efficiency when applied to BMSs. This leads to a clear and consistent 

definition of propulsive efficiency.  

Batteries are the energy store of AUVs which correspond to food and fat for marine 

animals. As energy flows from the battery to eventually move the vehicle forward, some 

energy losses occur from the system. Figure 5.3a illustrates the flow of power and 

efficiency relationships in an AUV propulsion system and Figure 5.3b is the equivalent 

concept presented for a BMS. Table 5.1 provides explanatory notes to Figure 5.3. 

From the descriptions in Table 5.1, it is realised that the total efficiency for BMSs, 

      , is: 

       
     

  
 

5.13 

Where   is the drag, 

        is the BMS speed and  

      is the Muscle power. In Chapter 4 this term was called propulsion power to be 

distinguished from the hotel power, however from an engineering perspective; this 

power is in fact the equivalent of brake power in motors which is the muscle power.  
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Table 5.1.  Explanatory Notes To The Power Transitions And Efficiencies Illustrated In Figure 5.3 

Process in AUV Corresponding Process in BMS 

Energy is lost when electrical energy is 

transferred to the motor from the batteries 

for operating the motor. 

Energy loss when the energy obtained 

from food and fat are transferred to the 

muscle for operating the muscles.
(1)

 

In this research the efficiency associated 

with this this energy loss is called the motor 

efficiency,     

The efficiency associated with this 

energy loss is the muscle efficiency,     

Energy is lost from friction when it is 

transferred through the drive chain to the 

propulsor. 

Energy loss when energy is transferred 

from the muscle to the tail through the 

peduncle.
(2)

 

The efficiency associated with this energy 

loss is known as the transmission, or shaft 

efficiency,   . 

   
  

  
 

Where   is the delivered power to the 
propeller and 

              is the brake power from the motor 

The efficiency associated with this 

energy loss is the peduncle 

efficiency,     . 

     
  

  
 

Where   is the delivered power to the 
rear fin (the tail) and 

             is the muscle power 

Energy is lost due to the propeller working 

in the flow field behind the AUV. In the 

desipline of naval architecture this is usually 

considered in two parts, namely with the 

propeller operating in the so-called open 

water condition with another adjustment for 

the effect of the wake behind the vehicle 

(Lewis, 1989) 

Energy is lost due to the tail working in 

the flow field behind the BMS. 

The  efficiency associated with this energy 

loss is known as the “behind 

efficiency”,   . 

   
  

  
 

 

Where   is the thrust power and is 
calculated as: 

       
 

Where T is the thrust and 

              is the advance speed 

In this research the efficiency associated 

with this energy loss is called the behind 

efficiency,   . 

   
  

  
 

 

Where   is the thrust power and is 
calculated as: 

       
 

Where T is the thrust and 

              is the advance speed 
 

Note that T for a flapping tail is the mean 

net thrust derived over a complete 

oscillation.  

Continued… 
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Process in AUV Corresponding Process in BMS 

There is a difference between the power 

developped at the propeller as compared to 

the effective power of the AUV overcoming 

drag at a given AUV speed. 

There is a difference between the power 

developped at the tail compared to the 

effective power of the BMS overcoming 

drag at a given speed. 

This power loss is referred as the hull 

efficiency,   . 

   
  

  
 

 

Where   is the effective power and is 
calculated as: 

         

This power loss can be referred to as the 

hull or BMS body efficiency,   . 

   
  

  
 

 

Where   is the effective power and is 
calculated as: 

         

From the explanations given above: 

                   

and in fact: 

         
  

  
 

Where    is the delivered efficiency, 

therefore: 

                
  

  
 

     

  
 

                     

and in fact: 

         
  

  
 

Where    is the delivered efficiency, 

therefore: 

                  
  

  
 

     

  
 

In BMS: 

(1) Food corresponds to the battery and  muscle to the motor of an AUV. 

(2) Peduncle corresponds to the propeller shaft and the propulsion fin (e.g. the tail) to 

the propeller of an AUV 

 

In much of the literature which considers the locomotive and/or propulsive 

efficiency of BMSs, it is often unclear where the starting point in the energy flow in 

Figure 5.3 is. Therefore, claims of very high propulsive efficiency are often quoted as 

being a “total” efficiency, whereas, in reality they are more likely one of the sub-set of 

the efficiency terms illustrated in Figure 5.3 and explained in Table 5.1 which by 

definition will be higher than the real total efficiency.  

As defined in Table 5.1: 

                     5.14 

Curtin & Woledge, 1993a,b measured the  Muscle Efficiency to be 0.41 in fast 

muscle and 0.51 in slow muscles. 

Continued from previous page… 
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Also as measured for ships (Carlton, 2011) the energy losses in the shaft are small 

and therefore where there is no gearbox the shaft efficiency is between 0.98 & 0.99. 

Bearing in mind that for BMSs the peduncle (equivalent shaft) length is usually small as 

the muscle is spread along the body, it could be considered that the peduncle losses are 

small and similar efficiencies of the shaft applies to them. Therefore Equation 5.14 can 

be written for optimum and maximum speed as: 

 )           
            

       
 

and 

 )           
            

       
 

5.15 

Therefore if the total efficiency is known       can be calculated. 

As optimum speed,     , and maximum speed,     , are two particular speeds of 

interest, it is desirable if efficiency and COT can be estimated in these two speeds. 

Having all the information required,   was calculated from Equation 5.11 as below: 

  
      

         
  
 

 
5.16 

Where    is estimated from Table 4.1. 

Equation 5.16 can be used to calculate   values up to the speed where the fast 

muscles are activated. As the fast muscles operate in the absence of oxygen, lactic acid 

formation must be included to calculate   values for those speeds. 

There are two significant points to be made. First on energetics and second on speed, 

both are explained next. 

5.3.1 Efficiency considerations 

In Chapter 4, when comparing the hotel loads of BMSs, it was realised that many 

groups of BMSs had hotel loads within the same range of values and even some of the 

regression lines of different groups of BMSs had very similar trends. However, when 

using the regression lines to estimate the hotel load for then calculating efficiency, it 

was realised that to obtain a precise answer, it would be desirable to measure the hotel 

load of each individual (if possible) as using the regression line values for those BMSs 

for which the hotel load was not available in some cases resulted in negative propulsion 

power, which meant over estimating the hotel load. The opposite of this scenario could 

happen as well; if the hotel load is underestimated, the efficiency will be affected.  
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By analysing energetics data, it was realised that the overestimation or 

underestimation of powers occurs due to the fact that both the hotel load and the 

propulsion power of BMSs are affected by multiple factors. Temperature and salinity 

were two factors that were highlighted by analysing the fish data. In Chapter 4 it was 

mentioned that oxygen consumption and therefore hotel power increases with 

temperature for fish. Although this effect was normalised for ectoderms, for endotherms 

unless their neutral body temperature is known, normalising is not possible.  

The effect of salinity is not as significant as the temperature. Results from a 0.21 m 

Rainbow trout showed that the mass specific hotel load increased by an average of 45% 

when salinity changed from 0 to 35 ppt (0 ppt begin the salinity of  fresh water and 35 

ppt the average ocean salinity). However, normalising power for salinity is not possible 

unless the salinity of the water at which all BMSs are swimming is known.  

As for propulsion power, it was noted by Katz, 2002, that for ectodermic BMSs the 

muscle reaches a higher peak power output at a higher tailbeat frequency and at higher 

temperatures; i.e. higher the temperature, faster the tailbeat and therefore higher the 

speed. This is of course only valid up to the temperature at which the BMS can survive 

which is again different for each BMS. These changes are also different for endothermic 

BMSs. The effects of temperature is not quantified for all BMSs. Therefore, the 

temperature effects on propulsion power and consequently speed has not been 

considered in this research work. This discussion however, highlights the fact that 

BMSs have a temperature dependant motor.  

Second point to be made is that for most BMSs, unless the COT has been measured 

at a range of speeds to precisely indicate the optimum speed, the indicated speed is a 

voluntary swimming speed. This means that the calculated measure of efficiency is not 

always the optimum efficiency. 

Having noted the above,   values are calculated for BMSs, for which all data is 

available as shown in Figure 5.4. 
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Figure 5.4.   values for Various BMSs as a function of relative speed 

 

Figure 5.4 shows that BMSs have   values between 0.04 and 0.33, however the 

trends are not clear for all groups. Therefore, to clarify the data,   values are plotted 

against relative speed and also Reynolds numbers while also considering the size of the 

BMSs (the size of the bubbles are a measure of the mass of the BMSs) as marine 

mammals are relatively larger compared to other BMSs, the data points are divided into 

two groups for clarity of presentation. Therefore data for fish, a shark and a penguin are 

presented in Figure 5.5.1 and 5.5.2 and data for marine mammals are presented in 

Figures, 5.6. 

Observing Figures 5.5.1 and 5.5.2, it was realised that eels representing Anguilliform 

swimming, swim at the lowest relative speed and have efficiencies between 0.12 and 

0.22 which is higher compared to some other Fish swimming at relatively higher speeds 

at different swimming modes. For Subcarangiforms there is a trend of increases in 

efficiency with the increase of relative speed.  

However, with the uncertainties explained earlier and as most Subcarangiforms BMSs 

have efficiencies between 0.04 and 0.13, there is a strong possibility that the data point 

for the goldfish (Carassius auratus) with the efficiency of 0.32 maybe an anomaly. The 

two data points of the Carangiform although different in size, have close efficiencies of 
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0.09. For Thunniform fish, efficiency increases with the Reynolds number as well as the 

size, however the yellowfin tuna (Thunnus albacares) with the highest efficiency of 

0.33, swim only at 0.89 [
  

 
] which is relatively lower than smaller Thunniforms (as 

expected larger BMSs have relatively lower speed).  The two penguins are of very 

similar size therefore the data point show an increase in efficiency with speed from 1.3 

[
  

 
] to 2.3[

  

 
]. 

It is interesting that the three largest in this group, the 5.1kg eel (Anguilla anguilla), 

3.8kg tuna (Katsuwonus pelamis) and 3.6kg penguin (Spheniscus humboldti) have very 

close values of overall efficiencies (0.14-0.16). However the eel swims at 0.5 [
  

 
], the 

tuna at 1.2 [
  

 
] and the penguin at 2.3 [

  

 
]. Comparing these to the marine mammals 

data, the killer whales (Orcinus orca) swimming at about 0.5 [
  

 
], have the efficiencies 

within similar range to the three species mentioned above (0.14-0.17). However their 

size is considerably larger (2700-5000 kg). 

 

  

(A) (B) 

Figure 5.5. 1.    values for various fish, shark and a penguin as a function of relative speed 

with bubbles representing the mass. (B) presents only the data contained within the red boundary of 

Figure (A) with re-scaled bubble sizes to more clearly show the smaller BMSs 
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      (A)      (B) 

Figure 5.5. 2.    values for various fish, shark and a penguin as a function of Re with 

bubbles representing the mass. (B) presents only the data contained within the red boundary 

of Figure (A) with re-scaled bubble sizes to more clearly show the smaller BMSs 

 

From Figure 5.6 it was realised that for sea lions efficiency increased from about 

0.05 to 0.3 with the increase in relative speed (which is a similar trend to 

Subcarangiforms) and reduction in size. The seal (Halichoerus grypus) has the lowest 

efficiency of marine mammals at 0.037. The highest efficiency of about 0.3 was 

achieved by the bottlenose dolphin (Tursiops truncatus) and the California sea lion 

(Zalophus californianus); however the sea lion had a higher relative speed of at 2.4[
  

 
]. 

As for whales and dolphins, as mentioned the two highest efficiencies belonged to the 

dolphins which are relatively smaller is size. The largest size data point, the grey whale 

(Eschrichtius robustus) (15 tonnes) had an efficiency of 0.16 at a very low speed of 

0.2[
  

 
] while five data points of different killer whales showed that although having 

close sizes (2700-5000 kg) and relatively close speeds the efficiencies of the individuals 

ranged between 0.08 and 0.16.    

There are several factors which can contribute to the variation in efficiency. The data 

presented, emphasises on the fact that unlike engineered vehicle, each individual BMS 

has different designs which affects the values of drag coefficient for each species. In 

addition each individual species has different levels of fitness and performance. 

Moreover, as mentioned previously, the level of uncertainty in the obtained values for 

hotel load and optimum speed of different BMSs could introduce an error value in the 

results. Therefore, several data points over the speed ranges of BMSs as well as detailed 
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information regarding the fitness and stress level of each species are required to observe 

the complete efficiency trends. 

 

 

(A) 

 

(B) 

Figure 5.6.   values for various marine mammals as a function of relative speed (A) and Reynolds 

number (B) with bubbles representing the mass 
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In overall it was concluded that although a range of efficiencies were observed in 

different BMSs, similar efficiencies were found in BMSs with different swimming 

modes. This means that various BMSs have evolved to swim with different swimming 

modes and at different optimum speeds to achieving similar efficiencies. As observed 

fast swimming modes such as Thunniform and Labriform achieved higher efficiencies 

at higher speeds compared to swimming modes used for slower swimming such as 

Anguilliform. Moreover, it was observed that larger BMSs such as whales, achieved 

similar efficiencies to a tuna swimming with the same swimming mode. However, the 

whales having considerably larger sizes, swim at lower length specific speed compared 

to the tuna. 

      

5.4 Estimate of        

In Section 5.2 estimating  by having the speed, COT and drag was explained. 

However, COT is not always available. However, having an estimate of   and 

consequently COT for optimum and maximum speed (     , and     ) is essential for 

comparing different BMSs. Therefore, when COT is unavailable,   must be estimated by 

other means. In present research this has been done as follows: 

 

    
 

{    }
(
  

 
 

      

 
) 

5.17 

If considering the surface roughness to be considered within  , then: 

                ∑            

          (                                    

                           ) 

 

5.18 

where    is the gills’ drag multiplier, which will be 1.1 for BMSs for which gills are 

present and 1 for those without gills (air breathers; i.e. mammals, penguins and reptiles). 

Therefore as skin friction drag is                by taking constant terms out of 

the parentheses, the equation was reformed to: 

                            (          (   )     ∑     
        ) 
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Where       is the chord of each fin and      is the surface area of the fin. 

 

If 

                   (          (   )     ∑     
        ) 

then, 

             

Therefore, to estimate   at optimum speed,       , COT was differentiated with 

respect to U: 

    

  
 

 

 
(
   

  
 

         

 
) 

 

 

The COT at the optimum speed is minimum and therefore at       

    

  
   

Therefore,  

      
        

   

  
 

5.19 

The above method proposed by the author can be used to calculate the       when 

hotel load and the optimum speed (not any other speed) are known without requiring the 

COT. 

The results of calculated efficiency vs. the one explained in Section 5.3 are shown in 

Figure 5.7. The plot shows that considering the uncertainties regarding the hotel load 

and speed, there is a good agreement between the results of the proposed method and 

the methods in Section 5.3. The average difference between the efficiencies predicted 

by the methods and the actual efficiencies is 45%. The highest over estimation is for a 

goldfish (Carassius auratus) data which is most probably due to the fact that the fish 

had a higher hotel load than predicted due to some applied stress. Also for the grey 

whale (Eschrichtius robustus) and grey seal (Halichoerus grypus) the over estimation is 

high as the Kleiber line is used for estimation; however, both the grey whale and 

especially the grey seal have a hotel load compared to other mammals of the same size.  

The method proposed in this research in the form of Equation 5.19, is a novel 

method for predicting the overall efficiency at optimum speed, especially where COT is 
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not available. This method was used later on in Chapter 7 to calculate       and 

sequentially the COT for the off-spring produced by a search and selection algorithm.  If 

the exact value of the hotel load for a BMS is known, by comparing the results from the 

two methods the value of the optimum speed can be found as the two methods will 

output the same efficiency when the exact value of optimum speed is the input.  

 

 

Figure 5.7.      calculated from Equation 5.19 vs. results from Section 5.3 

 

By replacing       in the Equation 5.17 with Equation 5.19, the        
 which is 

the minimum COT can be calculated as follows: 

       
 (

   

   
)  (

  

{    }    
)  

    ̇  

{    }    
 

 

5.20 

5.5 An estimate of        

For vehicles motor brake power is related to efficiency as follows: 

         
 

      
  

 

Where    is the motor brake power; therefore: 

       
          

      

 
5.21 

To estimate   at maximum speed,       , the propulsion power at maximum speed 

must be quantified. For BMSs muscle power corresponds to the motor power in AUVs. 
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It would be ideal if similar to motors, a power value in terms of watt or 

     

                
 could be defined for BMSs muscle.  

If the power output of both the red and the white muscle fibres could have been 

measured or obtained from literature for BMSs, the        would have been estimated 

by substituting the maximum available muscle powers in Equation 5.21.  

However, the characteristics and capabilities of white and red muscles in each BMS 

are different. The power output of both white and red muscles depends on several 

factors, which are mainly: 

 The muscle contraction frequency: This is relative to the tailbeat frequency 

 The amplitude of the muscle contraction. This can vary between 1% and 15% 

contraction for different speeds (2% and 30% total amplitude). 

 The fitness and size of each BMS: Although it is expected that same species 

have similar characteristics, the quality of the muscle can be affected by the level of 

“fitness”; i.e. a species at a higher level of fitness has a better quality (more protein, less 

fatty) muscle. Furthermore, as smaller individuals of the same species swim at higher 

tailbeat frequencies, their maximum power output will occur at higher tailbeat 

frequencies.  

The data on all the parameters involved in muscle power output are not available for 

all BMSs and therefore power output cannot be estimated at maximum speed. However 

having a measure of efficiency to compared BMSs at their maximum speed was 

desirable.  

Although three main factors as explained affect the muscle power output, it is 

known that power is the work done per time. In the case of the BMSs, the work is the 

product of the force produced by the muscle and the distance which is the amplitude of 

muscle contraction. It is also apparent that the amplitude is proportional to the muscle 

length and hence the body length of the BMS; therefore, 

       5.22 

Where A is the amplitude of muscle contraction,  

EL is the main body or the elliptical length of the BMS and  
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   is a constant. As modelled by Medler & Hulme, 2009, the    can be assumed the 

same across all BMSs for maximum power production. On the other hand, the force 

produced by the muscle is proportional to the muscle mass, hence, 

    {    }  5.23 

Where F is the muscle force,  

{    }  it the muscle mass of the BMS, and 

   is a constant. Similar to   ,    is assumed the same across all BMSs for 

maximum power production. 

Therefore by using Equations 5.22 and 5.23 the power output of the muscle can be 

formulated as: 

     {    }         5.24 

Where    is the muscle output and   is the frequency of the tailbeat. The procedure 

for estimating the tailbeat frequency is explained later on in this section, part, 5.5.1 

Therefore by using Equations 5.21 and 5.24       can be estimated as: 

 

       
          

      {    }      
 

 

or  

  
     

 
          

{    }      
 

5.25 

 

Where   
     

is              

Although this will not result in an absolute value for       , it is a means to 

compare efficiency at maximum speed for different BMSs.   

Data on maximum speed of BMSs is not readily available; moreover the maximum 

recorded speed does not necessarily equal the maximum speed capability of the BMSs. 

However, the gathered data will give an understating of maximum speed efficiency of 

different BMSs. The   at maximum recorded speed has been estimated for BMSs with 

Subcarangiform, Carangiform and Thunniform swimming modes as well as a turtle. The 

results are presented in Figure 5.8. It is apparent that for Thunniform and 

Subcarangiform Swimmers,   
    

 is directly proportional to the relative maximum 
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speed with an    values of 0.967 for Thuuniform swimmers and 0.986 for 

Subcarangiform swimmers.  

For Thunniforms,   
    

            [
  

 
]           and for Subcarangiforms, 

  
    

            [
  

 
]          . 

For Thunniforms the slope is higher which means a Thunniform swimming BMSs 

would have a higher indication of maximum speed efficiency at the same relative 

maximum speed compared to a Subcarangiform. There is only one Carangiform data 

belonging to the Atlantic mackerel (Scomber scombrus) and if the regression line for 

Thunniforms is extended, the mackerel data is placed in between the two regression 

lines. This concludes that maximum speed efficiency of a Thunniform swimmer would 

be higher than that of a Carangiform swimmer, which is higher than that of a 

Subcarangiform swimmer, if they were to swim at the same relative speeds. To observe 

the effect of body mass, the data are re-plotted in Figure 5.9. The data are separated as 

the size of Thunniform swimmers is relatively larger and would disguise the smaller 

BMSs.  

 

 

Figure 5.8.   at maximum speed for BMSs as a function of relative speed 

 

When observing data on Figures 5.9, it was realised that although some BMSs with 

relatively small size have low relative speed and therefore low indication of efficiency, 
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for both Subcarangiforms and Thunniforms it is the smaller BMSs is size which do 

swim at a relatively higher speed and have higher efficiency.  

Comparing Figures 5.9.A and 5.9.B it was also realised that Thunniforms achieve 

similar indications of efficiency at lower relative speed as well as larger body size 

compared to Carangiforms. This means although the relatively smaller species in each 

swimming group travel at higher relative speeds and efficiencies the absolute size of 

Thunniform with similar efficiencies is larger than Subcarangiforms.   

     

     (A)      (B) 

Figure 5.9.   at maximum speed for BMSs as a function of relative speed for 

Subcarangiforms and Carangiforms (A) and Thunniform and the turtle (B). The red 

frame in (A) is the area covered in (B) 

 

5.5.1 Estimating the tailbeat frequency of BMSs 

The frequency of oscillation/undulation varies for each species as well as for 

individuals of the same species with different sizes. In order to be able to calculate the 

fin beat speed, having an estimated of the frequency was essential. Therefore, data on 

the tail or flipper beat frequency,  , as a function of relative speed, U [
  

 
]  has been 

presented in Figure 5.10 for 7 different groups of BMSs for which data was found. It is 

realised from the figure that there is a strong correlation (        except for the 

penguins as per Table 5.2) between   and U. Although, the frequency depends on other 

factors such as fitness, etc., the correlation showed that considering   as a function of U 

was a reasonable approach.  

BMSs with rear fin proplusors sit relatively closer to one another compared to 

Labriform swimmers (penguins) which have a relatively low flipper beat frequencies. 
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As moving from undulating bodies such as eels (Anguilliform) to more oscillating 

bodies such as the tunas (Thunniforms) the tailbeat frequency decreases for the same 

speed which could indicate better efficiency as less effort is required to achieve same 

relative speed.  

The regression lines from each group as well as the    values are presented in  

Table 5.2. For BMSs for which the equation is unknown the closest regression line has 

been used to estimate the frequency. 

 

 

Figure 5.10. Tail or flipper beat frequency as a function of relative speed for various groups 

of BMSs. References are as follows as well as number of individuals (n) and number 

of species (s) where available: Eels (Shadwick, & Lauder, 2006), Subcarangiforms 

(Bainbridge, 1958 [n=4, s=1] and Shadwick, & Lauder, 2006), Carangiform 

(Shadwick, & Lauder, 2006), tunas (Shadwick & Syme, 2008 [n=12, s=1] and 

Shadwick, & Lauder, 2006), sharks (Jones, 1973 [n=1, s=1] and Shadwick, & Lauder, 

2006), marine mammals (Fish, 1998 [n=19, s=4] and penguins (Clark & Bemis, 1979 

[n=50, s=6]) 
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Table 5.2.  The regression line of finbeat frequency as a function of relative speed for various groups of 
BMSs presented in Figure 5.10  

Group of BMSs / mode of swimming Regression line equation Regression line    value 

Eels (Anguilliform) 
  [  ]         [

  
 

]         
0.9601 

Subcarangiform 
  [  ]         [

  
 

]         
0.9653 

Carangiform 
  [  ]         [

  
 

]         
0.8007 

Tunas (Thunniform) 
  [  ]         [

  
 

]         
0.9093 

Sharks 
  [  ]         [

  
 

]         
0.8710 

Mammals (Thunniform) 
  [  ]         [

  
 

]         
0.7534 

Penguins (Labriform) 
  [  ]         [

  
 

]         
0.6182 

5.6 Conclusions 

In this chapter different components and correction factors contributing to the drag 

of BMSs were discussed and means were proposed to estimate each component. After 

defining the different efficiencies within the BMSs body, the total drag was calculated 

to obtain an indication of efficiency in BMSs,  . By analysing the results it was realised 

that the   value at sustained cruising speeds (close to the optimum speed) is between 

0.04 and 0.33 when considering all BMSs. Moreover, it was found that some BMSs 

with different swimming modes are able to achieve similar   values, however at 

different speeds and different sizes. These results did not come as a surprise. One 

purpose of evolution is to improve the survivability of animals. Therefore, it is expected 

that each BMS would have evolved through time and developed certain characteristics 

such as a specific swimming mode which will give it the ability to swim efficiently at 

certain speeds. So, fast swimmers such as Thunniform swimmers would achieve a 

certain efficiency (or   value as an indication of it) at a higher speed compared to an eel 

which is evolved to be a relatively slow swimmer. 

 A method was proposed to estimate   at optimum speed without requiring the value 

of COT. Considering the uncertainties regarding the speed and hotel load of BMSs and 

appreciating the wide range of BMSs being included within the calculations, the 

proposed method gives a fair estimate of the   value. This method over predicts the 
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     value is some cases. Having studied the base metabolic rate or hotel load of BMSs, 

this is expected. The hotel load of BMSs will increase, if they swim in conditions which 

are distant from their natural environment (such as changes in temperature and applied 

stresses). Therefore, it is possible to underestimate the hotel load and this is an 

important factor affecting the value of     , hence over predicting it. 

Another method was proposed to have an indication of efficiency at maximum 

speed,   
     

. The results showed a linear relationship between body length and 

  
     

for Thunniforms and Subcarangiform swimmers (for which enough data was 

available to predict a trend).  

In order to estimate     
     

, based on data for several BMSs, equations based on 

regression lines were presented to estimate the frequency of the oscillation/undulation 

of the propulsive fins for different BMSs. These data are mostly available at speeds 

lower than the maximum speed or burst speeds of BMSs, however as speed does 

increase with the frequency of the tailbeat, it is assumed that the relationship remains 

constant. The results show that smaller BMSs swim at higher relative speeds [
  

 
] and 

tailbeat frequencies.  

In this chapter the concentration was on methods to calculate drag and efficiency for 

BMSs. Knowing the values of     , it is possible to compare the overall efficiency of 

BMSs with AUVs. As the hull efficiency can be considered very close to unity (Tupper 

& Rawson, 2001), Equation 5.15 (a) can be written as: 

          
            

 

As      ranged between 0.04 and 0.33 for various BMSs, again if considering the c 

factor in Equation 5.12 to be very close to 1 (insignificant skin roughness) and therefore 

          
     , then       

 would range between 0.08 and 0.66 for various BMSs. 

It was shown in Section 5.3.1 that different BMSs with various swimming modes can 

have similar overall efficiencies. Therefore, the reason for this large range is not yet 

known, and it is possible that the amount of uncertainties within the measured data, 

maybe the reason for this large range of efficiencies for BMSs.  

Table 5.3 shows the comparison between the different efficiencies in BMSs and two 

AUVs. It is realised from the table that the overall efficiency of BMSs is lower 
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compared to the AUVs. However, the behind efficiency of BMSs can reach very close 

to the propulsive efficiency of the AUV (0.66 vs. 0.7). Therefore, the main difference is 

in the muscle efficiency which is considerably lower compared to the motor efficiency 

of the AUV. Considering the low noise and vibration produced by the swimming mode 

of BMSs compared to AUV propellers as well as the light weight of the propulsive fin, 

plus the similar efficiencies, a bio-inspired swimming mode, if designed to propel a 

BUUUV would be an alternative light weight option to propellers, especially for stealth. 

Table 5.3.  A Comparison between the efficiencies of BMSs and AUVs 

Efficiencies at      BMSs AUV
(3)

  Gliders 

Total efficiency,       
 (1)

 0.04 - 0.33 0.53 0.5
(4)

 

Muscle/Motor efficiency
(2)

,    0.502 0.8 - 

Behind/propulsive efficiency 0.08-0.66 0.7 - 

References This research Furlong et al, 2007 Griffiths, 2003 

(1) Taking into account the considerations made regarding hull efficiency and the skin roughness 

(2) Calculated as the product of motor efficiency and gearbox efficiency 

(3) AUTOSUB long range 

(4) The efficiency of the buoyancy engine 
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Chapter 6. The trade-off between Manoeuvrability and upright 

stability 

 

In Chapter 3, it was realised that BMSs have relatively lower turning radius 

compared to AUVs of similar size and if was suggested that their flexible bodies was a 

key factor to this performance. However, in order to compare BMSs with one another in 

terms of manoeuvrability, a measure of flexibility must be sought. 

When observing the swimming of different BMSs, it was realised that aside from 

their flexibility, they have various approaches to turning, due to their body structure and 

control surfaces. In order to explain further, BMSs have been grouped as below: 

 Fish 

 Sharks 

 Mantas 

 Seals and sea lions 

 Whales and dolphins 

 Penguins 

 Turtles 

Squids are left out of this analysis due to insufficient data. Hypothesis about the 

performance of each group is explained next and then an analysis to confirm the 

hypothesis is made.  

 

 Fish 

Fish are most flexible about the yaw axis and can use their rear fins as a rudder 

while turning about the yaw axis. Therefore, the main factor affecting the turning radius 

of fish is their swimming mode which is somewhat related to the flexibility of their 

bodies. 

 

 Sharks  

Sharks, similar to fish have a rear fin which acts as a rudder while turning, however 

as for sharks usually the body width is larger than the body height, their flexibility 

should be higher in the pitch axis compared to the yaw axis. However, due to their body 

structure (vertebrae) and their swimming mode, they do not have flexibility on the pitch 
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axis. Therefore the above factors makes sharks highly stable on both roll and yaw axis 

and consequently less favourable to turn. 

 

 Sea Lions and Seals 

Sea lions and seals have highly unstable bodies in roll axis and are more flexible in 

pitch axis. Therefore, during turning about the yaw axis, with the help of their side fins, 

they roll their bodies 90 . This way they use their flexible body to turn and use their side 

fins as rudders. 

 

 Mantas 

Although genetically closer to sharks, mantas have Roll unstable bodies. Therefore 

by using their large side fins they perform Yaw turns similar to seals and sea lions. 

 

 Whales and Dolphins 

Whale and dolphins are also more flexible in the pitch axis than Yaw axis. 

Therefore they either turn in the pitch axis or with the help of their Roll unstable bodies, 

Roll their body 90  to turn in the Yaw axis, where they can use their rear fins and their 

side fins to some extent to turn. The exception is for large baleen whales which do not 

have as much the flexibility of smaller whales and dolphins and therefore will have 

turning behaviours similar to sharks. 

 

 Penguins 

Similar to seals and sea lions, except that due to their positively buoyant bodies they 

experience different forces. 

 

 Turtles 

Turtles have rigid bodies and therefore their control surfaces are their main turning 

means. Therefore turtles can turn almost on spot and therefore have a turning radius of 

0.5[  ]. 

6.1 A formula for turning radius of BMSs 

BMSs were divided into seven groups based on their turning behaviour. However, 

means are required to estimate the turning radius of BMSs. It was hypothesised in this 

research that the low turning radius of BMSs is highly related to their flexible bodies. 
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Measuring the flexibility of the body of each BMSs (as done for the gurnard in   

Chapter 3) was not possible and data was not available. Moreover, the bodies of BMSs 

are very different but in order to test this hypothesis, having some measure of flexibility 

was desirable.  

In Chapter 3 it was explained how a regression line for the turning radius of AUVs 

based on their total length was derived.  Using the obtained formula, it is observed that 

with an    value of 0.8943 the average length specific turning radius for AUVs which 

representing rigid bodies is 2.7999. By comparing this value to the actual length specific 

turning radius of the BMS, a measure of flexibility was estimated as follows: 

 

                    (  )  
                                     

                               
 

                                                      
                                     

      
 

6.1 

Therefore,      
  

=           However, FM also must be estimated, as up to 

this point, FM was estimated based on the turning radius itself. 

In order to estimate FM for BMSs, various groups of BMSs with different turning 

behaviours were separated and the values of FM for each group was plotted against the 

Total Length of the BMS in Figure 6.1. In order to show the data clearly, one data point 

which belonged to the humpback whale (Megaptera novaeangliae) was not shown on 

the plot as the whale had the largest   of 0.29. Based on this research work it is 

realised that swimming mode in fish is related to their flexibility, therefore, fish were 

divided based on their swimming mode (not all swimming modes are included as data is 

not available for all modes of swimming).  

As demonstrated in Figure 6.1, it was observed that the silver eel (Anguilla anguilla) 

representing Anguilliform fish and the Californian sea lion (Zalophus californianus) 

with a highly unstable body have the highest Flexibility (smallest FM) for their body 

length. The turtle (Chrysemys picta) and the boxfish (Ostracion meleagris) as expected 

have higher FM values compared to other BMSs with similar total length, as both 

species have inflexible bodies. The data point for the humboldt penguin (Spheniscus 

humboldti) is close to the regression line for Carangiform fish while tunas representing 

Thunniform swimming fish have the least flexibility between fish (Therefore the highest 

FM). Sharks as expected have low flexibility and the large baleen whale, the humpback 

whale, has the lowest flexibility of all BMSs is the plot. 
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Figure 6.1. FM as a function of TL for various groups of BMSs 

 

The regression lines and functions obtained from the data plotted in Figure 6.1 were 

presented in Table 6.1.  

Table 6.1. FM as a function of TL for various groups of BMSs 

BMS group No. of species Regression line formula    value 

Fish & 

Sharks 

Anguilliform 
1 (silver eel,  

Anguilla anguilla) 
            - 

Subcarangiform 10                   0.22 

Carangiform 7                    0.53 

Thunniform 4                   0.17 

Diodontiform 
1 (boxfish,  

Ostracion meleagris) 
            - 

BMSs with 

cartilage 

Rajiform  

(rays and skates) 

1 (giant manta,  

Manta birostris) 
            - 

Marine 

Mammals 

Labriform 

(sea Lions) 

1 (California sea lion, 

Zalophus californianus) 
            - 

Thunniform  

(whales and 

dolphins) 

6                   0.21 

Large Baleen 

whales 

1 (humpback whale, 

Megaptera novaeangliae) 
            - 

Penguins 
1 (humboldt penguin, 

Spheniscus humboldti) 

            - 

Turtles 
1 (painted turtle, 

Chrysemys picta) 

            - 
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In this section length specific turning radius of BMSs was presented as a function of 

flexibility which is itself represented as a function of the total length of BMSs. By 

observing the    value for the regression lines presented in Table 6.1, it was concluded 

that swimming mode and length are not the only influential factors affecting the 

flexibility in BMSs. Moreover, turning radius is not solely a function of flexibility, but 

also relates to the movements of the body and control surfaces as well. The 

manoeuvring capabilities of BMSs suggest that investigating the mechanism of high 

manoeuvrability is a subject worthy of further research. 

6.2 Conclusions of the comparison of biological and engineered system 

performance 

Several characteristics of AUVs and BMSs have been compared in this research as 

discussed in Chapters 3, 4, 5 and the current chapter. The results highlighted significant 

superiority in terms of BMSs speed, speed range and manoeuvrability. COT, propulsion 

and turning capability were then investigated extensively, to understand the energy and 

power requirement of each BMS systems, the capability of different propulsion systems 

and an estimate for manoeuvrability of BMSs.  

By the knowledge gained by this research, the capabilities of each BMS can be 

identified.  

The second part of the main aim of this research work was to find means to use the 

bio-inspired knowledge to improve the design and therefore the performance of AUVs.  

It became apparent that there are always trade-offs between different capabilities for 

BMSs. For example, some BMSs with lower COT have lower speed, or some highly 

manoeuvrable BMSs, have little upright stability. Therefore, in order to make use of the 

bio-inspired knowledge, the mission profile of the vehicle must be known. These 

missions must be then corresponded in a way with the mission or the purpose of BMSs 

to finally find the bio-inspired capability which is suited for the mission. These matters 

are discussed in the next Chapter. 
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Chapter 7. Implementing Bio-inspiration 

 

The result of this research show that AUV technology has been improving rapidly 

and modern AUVs are built with improved capabilities in various aspects such as depth 

capability and energy consumption. Despite all the improvements, there are still 

limitations to AUV capabilities, which animals perform naturally such as high levels of 

manoeuvrability. Bio-inspiration is presented as an alternative approach to conventional 

engineered design.  

In this research work, several characteristics of BMSs which have significance in 

the overall performance of the system with different importance have been studied, 

quantified and compared with those of the AUVs. The research highlighted the superior 

performance of BMSs, especially in terms of speed, speed range and manoeuvrability. 

There are still many unknowns regarding how exactly BMSs operate (e.g. buoyancy 

control system of many deep sea species), however as shown in this research, BMSs 

demonstrate their various capabilities due to their diverse and flexible multi-functional 

body design as well as various swimming modes which have evolved for different 

swimming speeds and manoeuvrability. The quality of fuel available to BMSs is also an 

influential factor in their speed and endurance, however considering solely the energy 

storage on board, not all BMSs have access to large amount of fuel (fish with little body 

fat).  

By gaining the knowledge on the performance of BMSs and defining methods to 

calculate or estimate them, it is possible to make use of this bio-inspired knowledge. 

However, current bio-inspired AUVs are built based on mimicry from a specific 

species. One main purpose of this chapter is to introduce a method for systematic bio-

inspired designs, not only mimicking nature but artificially evolving the design so that 

the end vehicle is optimised to fulfil a desired mission, inspired by nature. 

Similar to any vehicle, in order to implement bio-inspired design, the mission profile 

or the purpose of the underwater vehicle must be known. The mission profile must then 

be compared with those of BMSs, to find the appropriate BMS for a specific AUV 

desired mission. AUV missions and their correspondence with the purpose of BMSs are 

discussed in this chapter and a method is presented to select an appropriate bio-inspired 

design to fulfil a desired AUV mission profile. In this method, bio-inspired formulas are 

used to select some aspects of the design of a Bio-inspired Unmanned Untethered 
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Underwater Vehicle (BUUUV). Therefore, this chapter makes use of the findings in the 

previous chapters of this bio-inspired research.  

This method is at concept stage and when this thesis is being written no prototype 

has yet been being built based on the results of this method. It is possible to think that 

the idea might be futuristic, however that future is close. For example, this method 

outputs design options which make use of muscle instead of a motor. Already several 

type of artificial muscles exist which could be used for this purpose in the future. Also 

the proposition of using a flexible body for the BUUUV is an achievable aim as flexible 

bodied biomimetic AUVs already exist, such as the Robotuna. 

Prior to implement the bio-inspired knowledge to AUV design, different AUV 

missions must be studied. This is explained next. 

 

7.1 Mission definition for Underwater Vehicles 

After various design aspects of the BMSs are understood, in order to apply the bio-

inspired findings of this research to BUUUV design, the “purpose” or desired mission 

must be identified. The mission profile plays an important role in the design of any 

vehicle. For an AUV user, “best” option is not necessarily always the vehicle with the 

extreme capabilities. Therefore, instead of concentrating on a vehicle which has the 

maximum capability in any single performance characteristic, a vehicle is sought which 

has the requirements to fulfil the desired combination of characteristics. The main 

desired characteristics include speed capability and range, manoeuvrability, depth 

capability, endurance, energetic cost and weight. Therefore, the bio-inspired technology 

should attempt to find the optimum option that nature has to offer for a corresponding 

AUV mission. In order for this to become possible, the “missions” of BMSs must also 

be defined and understood so they can be corresponded with those of the AUVs.  

While missions are not formally defined for BMSs, they are in fact a consequence of 

an evolutionary process, subject to highly varied evolutionary pressures. Consequently, 

some BMSs have evolved to be highly manoeuvrable such as Eels, some exhibit high 

speeds such as the Sailfish, and some have high acceleration characteristics, such as the 

Barracuda. Although animals are highly capable, their main aim is to survive and 

reproduce and the data gathered from them can always be biased by other factors such 

as the physical and mental condition of the BMS at the time of data collection. 
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On the other hand, AUV missions are varied and different to the ones of an animal. 

By gathering information available on various missions of different AUVs (AUVAC, 

2011), 30 different principal missions were identified for the 189 AUVs studied. The 

table of the mission data is presented in Appendix 1.4. 

These missions were identified across different industries with different levels of 

sophistication required.  The missions varied from a general Oceanographic Survey 

which was mentioned in the mission profile of 49% of the studied AUVs to Anti-

Submarine Warfare which was only within the mission profile of 3% of the AUVs. 

Surprisingly, no strong correlation was found between body dimensions (length, 

depth, and height), mass and speed of the AUVs and their mission profiles. Even for 

very specific missions, AUVs with different designs parameters and capabilities are 

used. This is due to the fact that unlike ships which are designed for a specific purpose, 

e.g. to be a bulk-carrier, an oil tanker or a tug boat, AUVs are usually designed and built 

as “general purpose” and therefore used as “sensor taxis”. This means that what gives 

an AUV the capability to perform a mission, apart from its motor, battery capacity and 

depth capability, are mainly the sensors on-board. Other aspects, such as the body 

design and propulsion are usually “off the shelf”. The current designs might be simpler 

to build compared to a more sophisticated body design and therefore more convenient.  

The method proposed in this chapter takes the payload mass as an input and also 

considers similar hotel loads for the same size AUV by using the regression line 

obtained in Chapter 4. In future it is possible to add a database of various sensors used 

in AUVs and their specific power requirements to be taken into consideration for a more 

accurate required power calculation.    

Therefore at the present time the sensors are not specifically defined as there are 

numerous sensors that can be used for AUVs. The assumption made in this research is 

that the sensors fit within the optimising method through the hotel load regression line 

which accounts for the power required to operate average amount of sensors that are 

carried on board AUVs and the mass of payload which can be defined as an input and 

considered when calculating the mass for the proposed design. 

However, although in the animal world, missions are very different and irrelevant to 

ones of the AUVs, it is evident that the evolution of animals is to some extend mission 

based. The variations in design are obvious in BMSs. Therefore, unconventional AUV 

designs are worthy of consideration. As AUVs are usually designed on generic basis, 

this research suggests that a more specific design based on a specific mission profile can 
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potentially improve the performance of the AUV and maybe reduce its energy 

consumption. Also, alternative technologies will equip AUVs with extra features. For 

example, an AUV propelled with an oscillating foil will have relatively lower vibration 

and noise which can be used both for scientific purposes and military missions. 

As AUVs are made for general purpose, usually specific design characteristics are 

not mentioned in a mission profile. However, there are specific missions for which 

certain restrictions are imposed on the design of the AUV. For example, if an AUV is 

supposed to be carried by an aircraft, its mass is limited and the diameter may be 

required to be a specific value. Moreover, for the simplicity of transport, it is 

recommended to limit the maximum length of the AUV to an ISO shipping container 

length (Griffiths, 2012).  

Therefore, to design an AUV for a specific mission, desired characteristics to 

perform the mission must be known. Therefore, the mission profile can include the size, 

speed, depth capability, manoeuvrability, range of operation and energetic costs.  By 

knowing these, the AUV design can be modified for the mission.  

 

7.2 Bio-inspired AUV design 

In this research, the attempt is to modify the design of AUVs based on BMSs. 

However, AUV missions are varied and different to ones of an animal. In addition, as 

observed in the previous chapters, the superiority of BMSs is spread over a wide range 

of marine animals and they use different methods and systems which are interrelated 

with their other functions. This means that no specific BMS is able to fulfil all desired 

mission profiles of an AUV. In addition, unlike engineered vehicles, BMSs sub-systems 

are multi-functional, which makes it impossible to investigate them as stand-alone 

systems. Therefore, from an engineering perspective, it is not a complete BMS that is 

sought, rather particular sub-systems of BMSs. This was of course unnatural and 

defined the challenge that this research attempted to overcome. 

In addressing this challenge a simple approach could have been to search the 

database of BMSs and find a BMS which would fulfil all engineering requirements for a 

specific mission.   

As part of the research this simple approach was examined. Consider the algorithm 

in Figure 7.1 as the system selector for a BUUUV. For each mission scenario, mission 

requirements were input to the selector and the capabilities of BMSs were gathered in a 
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large database. These capabilities were then sorted based on fulfilling each mission 

requirement and the most capable BMSs were extracted.  

 

Figure 7.1. Simple algorithm to find best biological option 

 

By implementing this algorithm, it was realised that: 

1. For many mission profiles no BMS was fully able to fulfil all the mission 

requirements 

2. Many of the BMSs were excluded from the sorting system due to failing even a 

single mission requirement. 

3. Since overall ranking was calculated based on how much of the mission was 

fulfilled by the system, in many mission scenarios, systems with close ranks would vary 

considerably in capabilities. 

4. This system only selected the existing best option and did not include any 

possible “optimisation”. 

This method therefore provided little useful insight to assist the design of a 

BUUUV.  

7.3 The concept of the Optimum System Selector  

Bearing in mind that the aim of this research was not to make a robotic fish, but to 

take the useful aspect of the BMSs (from an engineering perspective), and use them 

constructively for engineering purposes. Therefore, means were required to output the 

appropriate combination for a bio-inspired design based on a particular mission profile. 

Therefore, the simple algorithm was modified to the Optimum System Selector (OSS). 

OSS attempts to solve the abovementioned challenges of associating biological 

capability with engineering requirement. 

Figure 7.2 shows the algorithm modified for the OSS. In this algorithm, for every 

input, the BMS database is compared against the desired mission specifications, similar 

to the initial algorithm in Figure 7.1. If the requirements are met by any BMS, then the 

corresponding system is the output. However, for many mission profiles that is not the 
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case as it was realised with the use of the simple algorithm. Instead the BMSs are 

ranked based on fulfilling the mission profile.  

To optimise this initial generation, a decision maker was used. Nowadays, many 

methods of optimisation exist.  

To decide on a method suitable for the purpose of this research, some considerations 

have been taken into account. Firstly, as part of this research, a rather large database of 

BMSs characteristics and performance was developed which includes many different 

designs with capabilities desirable for AUVs. So it would be preferable to choose an 

optimisation method which could use the database as part of its process. Secondly, 

many parameters (inputs) must be considered when defining a mission for an AUV. 

This requires an optimisation method which could optimise for multiple variables 

simultaneously. One possible optimisation tool that was investigated in this research 

which would consider the two abovementioned considerations was Artificial Neural 

Networks (ANN). It was possible to enter the current BMS database onto the ANN to 

train it while defining various dependent and independent variables to the network. 

However, as there are quite a few number of variables involved in the design of an 

AUV, the dataset required to train the ANN in order to find accurate connection 

between the inputs and the outputs, was considerably larger that the database that was 

collected in this research. This would considerably reduce the accuracy of the results 

produced by the ANN. Another optimisation method which is used in nature is through 

breeding and evolution. Therefore being inspired by nature, the decision maker was 

designed to accelerate evolution by using a Genetic Algorithm (GA). At present Genetic 

Algorithms are widely used in the field of design optimisation (Gen & Cheng, 2000), 

they can make use of the already developed database and can take into account multiple 

inputs (variables). Therefore it was decided that GA is the appropriate method to be 

used when attempting the optimisation of BMSs design. 

GAs take an initial potential group as parents and breed a new generation. The off-

spring are then evaluated and ones with superior performance are used as new parents 

for the next generation. The cycle carries on until the desired performance 

characteristics are fulfilled or until the continuation of the GA will not improve the 

results any further.  In this research, due to numerous influencing factors, there are 

multiple equations to be solved simultaneously. Therefore, a Multiple Objective Genetic 

Algorithm (MOGA) was implemented within the OSS. 
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The desired mission specifications are input as the GA constrains and the BMS 

subset from the database of existing species is input as the first generation. 

The performance characteristics of the first generation (actual BMSs) are calculated 

and compared against the desired mission profile. The decision maker then generates 

off-spring of the initial BMSs as a new generation, calculates their performance, and 

based on the mission input targets, decides which ones survive and the process 

continues until the desired results are achieved.  

  

Figure 7.2. The algorithm modified for the OSS 

 

The sub-algorithms of the OSS as indicated by dashed lines in Figure 7.2 are: 

 The Mission characteristics (Section 7.3.1) 

 The Decision maker (Section 7.3.2) 

 The Output (Section 7.3.3) 

These are explained next.  

7.3.1 The Missions characteristics 

The desired AUV mission specifications are specified by the AUV user. These 

mission specifications are shown in Table 7.1 as input to the OSS. A manoeuvrability 

factor was included which may be achieved by using bio-inspired flexible bodies 

techniques as explained in Chapter 6.  

The term “importance weight factor” for each mission specification is used to 

weight it against other inputs when evaluating the overall performance of systems and 

Mission characteristics 

Decision 

maker 

Output 
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making the decision on the optimum off-spring. These are used to derive the weight 

factor,   , in Equation 7.1. 

Table 7.1. Mission Inputs 

Input Sub-input(s) Unit(s) 

Size 

Total length (TL)     

Mass      

Payload      

Speed 

Optimum speed (    ) [
 

 
] 

Maximum speed (    ) [
 

 
] 

Energetics Total required power at              

Endurance 

 
Maximum range     or    

Manoeuvrability Turning Radius (    )           

Fuel Battery type [
  

  
] 

Importance weight factors 

 

7.3.2 The decision maker 

The selected sub-set of BMSs is input to the decision maker where off-spring are 

produced with optimised performance.  

In order to evaluate the performance of each individual (each parent or off-spring) 

within the GA, the GA code must be able to calculate or estimate the performance 

characteristics of that individual. Either that is a BMSs or the BUUUV offspring which 

is the bio-inspired chimera. The analysis of the comparisons made in Chapter 3 as well 

as the calculations in Chapters 4, 5 and 6 were used within the decision maker to 

calculate the performance of each individual.  

The OSS is based on a genetic modification method, however although each off-

spring is a combination of two parents, the off-spring will only survive (still remain in 

the generation) if it can meet all the criteria though the formula used within the OSS); 

that is how the new generation is validated. 

Optimising the performance of the off-spring consists of minimising the energetic 

cost of the off-spring, as well as the trade-off between speed and propulsion and 

manoeuvrability due to the multi-functionality of the BMSs. These characteristics are 

known for the parents, but they must be calculated for the subsequent generations which 

are defined by the genetic algorithm. Since the decision maker makes the selection 

based on the estimated performance of the off-spring, it was crucial to minimise the 

calculation or estimation error. These calculations were based on the formula and 
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regression lines derived within this research. Therefore, with improved and more 

profound knowledge of more BMSs, these can be improved in the future. 

As it is explained later in Section 8.2 in Chapter 8, after each iteration of the GA 

code, OSS plots the fitness function of the elite (the best possible design on that 

iteration). Therefore, it is visually clear whether the OSS is reaching to a conclusion or 

not as if it is not reaching a conclusion, the fitness function of the elite will not improve. 

The code can be run in two different modes in order to deal with an “impossible 

mission” situation. Firstly, as most of the runs with the OSS have reached an answer 

before the 30 iteration, it is possible to put a maximum number of iterations for the OSS 

(e.g. 100). In this mode when the OSS reaches the maximum iterations, it will stop 

running and as usual present the user with the data sheet including the details of all 

offspring in every iteration, the elite in each iteration as well as the final fitness function 

of the final elite. Therefore, by looking at each component of the overall fitness function 

it will be clear which desired capabilities have not been met. 

Secondly, the OSS can be run while a limit has been set for the change in the fitness 

function of the elite; i.e. the OSS will stop running if the fitness function has not 

improved after a certain number of iterations. Similar to the first mode, it will be clear 

which desired capabilities have not been met by refereeing to the output data sheet. The details 

of the calculations and estimations within the decision maker are explained in Section 

7.4. As the characteristics of the BMSs were known, all the formulae defined and used 

in this research were tested against the first generation of BMSs to ensure their validity.  

7.3.3 The Output 

The final off-spring generation produced by the decision maker is sorted in order by 

using linear programming which uses a Fitness Function (FF) (Kreyszing, 1999) in the 

form of: 

                    7.1 

Where    is the importance weight factor of each parameter and    is calculated as: 

 

   
|                          |

            
 

7.2 

 

e.g. for speed    is calculated as: 
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|                    |

        
 

7.3 

Note that if the performance is better than what is required, e.g. the speed is higher 

than the desired speed,    will be set to zero. This means, there is no penalty for 

performing better than expected. Therefore, the GA attempts to find the design for 

which    is zero. 

The sorted collection will output specifications for body geometry, control surfaces 

& propulsion method and an estimate of speed and energetic cost. Outputs are shown in 

Table 7.2. 

 

Table 7.2. Outputs of the OSS 

Output from the OSS Sub-Outputs  Unit 

Size 

                

          

Payload      

Fuel Mass,  Muscle Mass          

Speed 

Propulsion mode - 

    ,      [
 

 
] 

Finbeat frequency 
(2)

      

Manoeuvrability 
Flexibility Measure - 

Turning Radius     

Control surfaces 
(1)

 
Chord and Span of each fin        

Aspect ratio of each fin - 

Energetics & Endurance 

COT [
 

    
] 

Required power at              

Maximum range (at     )      

Efficiency      - 

 

(1)
  The control surfaces are important for stability, diving and surfacing, propulsion & manoeuvring 

(2)
 By knowing the speed, the frequency can be calculated from the regression lines in Table 5.2  

 

As previously mentioned, the OSS is at its concept stage. However, implementing 

the BUUUV will be similar to AUVs with different technologies mentioned in this 

research. For example, the body form can be made from the dimensions obtained by the 
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OSS as the structure mass is accounted for within the OSS. Flexible materials have 

already been considered for biomimetic AUVs. However, another idea for introducing 

flexibility is to use inflexible material for the hull with flexible hinges depending on the 

swimming mode proposed by the OSS. For example, if the recommended swimming 

mode is Thunniform, two hinges are required; one at one third of the aft body length 

which is where the Thunniform bodies have the flexibility to move the rear fin, and the 

other at about one third fore body length where the head of the species moves. The mass 

of the sensors and payload is accounted for by an input to the OSS and the hotel load 

considered based on the hotel load of an AUV. Finally, artificial muscles operating with 

batteries will be used instead of motors.   

Thus it is possible to implement the bio-inspired concept in a manner similar to 

traditional AUVs with different technologies and design approaches.  

 

7.3.4 A note on breeding and mutation within the GA 

Surviving parents in each generation within the GA must be combined or bred with 

one another to produce the off-spring. There are two main approaches to this. The 

characteristics of each parent can be considered as a binary code. In this approach the 

combination or “crossover” of two parents is performed by swapping a few bits within 

the binary code of one parent with the other to make two new children. 

The second method handles real values as the characteristics of patents. Consider 

parents   and  . The characteristics of each parent are represented as: 

             and              

where each    is a characteristics of parent X and each    is a characteristics of 

parent Y.  

To breed the two parents, a random value between 0 and 1,    , is used for each 

characteristic. Therefore the  th
 characteristic of the two new off-spring, U and W, are 

defined as below (Mühlenbein & Schlierkamp-Voosen, 1993): 

         (     )    and     (     )         

As in this research, the characteristics of BMSs are real values, the second method 

was used within the OSS. 

Another term used in GAs is “Elitism”. This is where the best performing 

individuals (i.e. the ones with the smallest FF values in the OSS) are moved to the next 

generation directly without breeding. These individuals are known as the “Elite”. The 

number of the elite can be altered to find the optimum number which will result to the 
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answer in the least amount of time. In this research the number of elite was considered 

as 2% of the total population. This value was found by analysing the results of the OSS. 

For a specific run, it took the OSS 150 seconds to give the final output when the elite 

was set to 2% while at elite =5% the same run took 6 minutes. 

Similar to evolution some off-springs in some generations might mutate. In order to 

reflect this within a genetic algorithm, a mutation probability as well as a mutation 

amount was defined that the characteristics of an individual will mutate with that 

probability. It is standard for the mutation amount to be      . Therefore, this value 

was tested within the OSS. Mühlenbein & Schlierkamp-Voosen, 1993, mentioned that 

the mutation factor can be considered as 
 

 
 where   is the number of characteristics of 

the parents which can be mutated. However as multiple functions had to be satisfied in 

the OSS and some characteristics were dependent on others, a mutation value has not 

been recommended for this situation. Therefore different values of mutation probability 

were tested and by analysing the data is was realised that the optimum value was 
 

 
 . A 

specific run took 37 seconds and 12 iteration to reach the final output with mutation 

probability of  
 

 
 while the same run for mutation probabilities of 

 

 
 
 

 
 and 

 

  
 took 50, 58 

and 118 seconds with 15, 17 and 28 iterations respectively, while all resulted in similar 

outputs.  

7.4 The details of the decision maker within the OSS 

Is section 7.3.2 it was briefly explained that the decision maker within the OSS uses 

the conclusions obtained in this research to estimate the performance of the off-spring. 

In this section, the calculations involved within the decision maker are explained in 

detail. These are required to calculate the fitness function for each individual which will 

determine their survival and eventually the BUUUV design for a specific mission 

profile. These parameters must be calculated for each individual. 

 Mass and payload (Section 7.4.1) 

 Speed:     and      (Section 7.4.2) 

 Energetics:       ,          and      (Section 7.4.3) 

 Manoeuvrability:      (Section 7.4.4) 

These are each explained next. 

 



157 

 

7.4.1 Mass and payload 

The volume of each individual was calculated from Equation 3.2     

[     
 

 
(        )] based on a tri-axial ellipsoid. Then, by knowing 

the water density, mass was calculated. Note that for the first generation, which 

comprises the real BMSs, a “true tri-axial ellipsoid” factor is defined to 

compensate for the difference between the body of the BMS and the equivalent 

tri-axial ellipsoid. However, the off-spring are considered a true tri-axial 

ellipsoid. Therefore there are no correction factors. 

As per Table 2.8 in Chapter 2, it was realised that although the mass of the muscle 

and fat varies for different BMSs, the sum of the two is within a similar range between 

very diverse species. The sum changed between 52% and 57%. Therefore as the 

average, the sum of fat and muscle contribution to the total mass is considered to be 

55% across all BMSs. Considering the values presented in Table 2.8, this estimation is 

justified. Data of the percentage of body fat for BMSs were obtained from the literature. 

If the data was not available for a BMS, the values of BMSs which were either 

genetically similar or with the same swimming modes were used.  The amount of fat 

varies between individuals of the same species and even for an individual it depends on 

many parameters such as the time of the year. Therefore the value is an average value 

for each species. 

Payload which is a critical factor in the operation of some AUVs is not defined for 

BMSs. Therefore, to adjust payload for the bio-inspired design, as shown in chapter 2, 

the mass of BMSs’ organs which are not required for an AUV - mainly the guts - are 

considered as payload. For the off-spring (BUUUVs), it is assumed that they use 

muscles (or in future, artificial muscles which are available) rather than motors. 

However, the muscle is considered as a standalone part, unlike animal muscle which 

depends on other organs (such as the organs in the guts) for survival. The reason for this 

assumption is that any existing artificial muscle is a standalone part. Therefore, the 

organs in the guts and their mass are ignored for the off-spring.  

Table 7.3 demonstrates different corresponding body parts of AUVs and BMSs. As 

per Table 2.8 the average payload was estimated as 11% of total body mass. However, 

as within the OSS it is possible for the amount of fat to change (mutate) from one 

generation to the other, therefore it was considered that the sum of muscle mass, fat 

mass and payload should remain constant at 66% (55% +11% = 66%). 
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Table 7.3. The corresponding body parts between AUVs and BMSs 

AUV BMS 

Structure + Outer shell + Control surfaces Bone structure + Skin+ Fins 

Motor Muscle 

Battery Fat 

Payload  including sensors and control systems Corresponding payload including brain, eyes and guts 

 

7.4.2 Speed:     and      

To precisely calculate the optimum and maximum speed of each individual within 

the OSS, a sophisticated method considering the thrust produced by the oscillation or 

undulation of the fin and body of the flexible BMS must be developed. Moreover, all 

the control surfaces of not only each species but each individual must be known. As an 

example, as shown in Figure 7.3 there are several Chum Salmons in the Subcarangiform 

group with relatively similar sizes (masses) and yet very different optimum speeds. 

Similarly, in Figure 7.4 several Atlantic mackerels (Scomber scombrus) of similar 

lengths have different speeds. Therefore, predicting the speed must be either based on 

thrust which requires details of the body and control surfaces of each individual, or 

based on experimental results which was not available for all BMSs and not feasible to 

do within the scope of this research.  

Therefore, it was decided, for the purpose of the OSS to predict the speed as a 

function of size and more specifically the total length. These are shown in Figures 7.3 

and 7.4. The equations of the regression lines in the two figures are available in Tables 

7.4 and 7.5. Acknowledging the variance between the    values obtained for the 

regression lines of different swimming modes and BMS groups, in general, the 

regression lines were in good agreement with the data and therefore using the regression 

lines provided sensible estimation of optimum and maximum speeds. Within the OSS, 

in order use the appropriate equation in Table 7.4 and similar equations which are 

related to different groups of BMSs, the taxonomy coding which was proposed in 

Chapter 2, Section 2.2 was used. 
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Figure 7.3.      as a function of total length for various species. The Subcarangiforms within the 

red dashed line area are the chum salmons (Oncorhynchus keta) 

 

Table 7.4. The equation of the regression lines for      as a function of TL 

Swimming mode Regression line equation    value 

Anguilliforms                       0.607 

Subcarangiforms                       0.603 

Carangiforms                       0.560 

Thunniform-Fish                       0.353 

Diodontiform                

Labriform-Fish                      0.999 

Gymnotiform                

Balistiform                

Tetraodontiform                 

BDCF                       0.03 

Thunniform-Whales                       0.347 

Thunniform-Dolphins                       0.459 

Labriform-Sea lion                       0.413 

Labriform - Penguins                       0.977 

Labriform - Turtles                 

Jetform - Squids                 

 

chum salmons 
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Figure 7.4.      as a function of total length for various species. The Carangiforms within the red 

dashed line area are the Atlantic mackerels (Scomber scombrus). In order to be able to associate the 

regression line for Carangiforms to larger BMSs as well, data of the maixmum speed of two lemon sharks 

(Negaprion brevirostris) was added to the plot (Sundstrom et al., 2001) 

 

Data on maximum speed of fish with swimming modes which make use of fins 

other than the rear fin have not been thoroughly measured previously, maybe due to the 

fact that these fish are not associated with fast swimming. Moreover, by observing a 

video of a striped surf perch (Embiotoca lateralis), it was realised that although the fish 

uses a Labriform swimming mode for sustained speed, at burst speeds it in fact uses a 

Subcarangiform swimming mode. Therefore, as specific data on the maximum speed of 

fish with not rear fin propelled swimming modes have not been available to this 

research, the regression lines of Subcarangiform or Anguilliform swimming (for fish 

with FR similar to eels and Amiiform or Gymnotiform swimming modes during 

sustained swimming) have been used within the OSS. The one exception is the boxfish 

(Ostracion meleagris) for which maximum speed data is available. The boxfish has an 

interesting swimming technique. The boxfish has almost a Diodontiform swimming 

mode during sustained swimming. However, as its body is inflexible, it is unable to 

undulate or oscillate the body when swimming fast. Therefore instead it only oscillates 

the rear fin and swims with an Ostraciiform mode when sprinting. As demonstrated in 

Figure 7.4, the boxfish data fits well with the Thunniform regression line. 

 

 

 

Atlantic Mackerels   
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Table 7.5. The equation of the regression lines for      as a function of Total Length 

Swimming mode Regression line equation    value 

Anguilliform-Eel               

Subcarangiform                    0.53 

Carangiform                     0.41 

Thunniform fish                     0.98 

Whales                      0.33 

Dolphins                      0.36 

Labriform - Penguin               

Labriform - Turtle               

 

7.4.3 Energetics:        
, Required power,           and      

As      was estimated in section 7.4.3,      was calculated from Equation 5.19  

[      
        

   

  
] . If the OSS was to output a BMS chimera, the    would be 

estimated from the BMSs’ regression line equations in Table 4.1. If on the other hand 

the OSS was to output a BUUUV, the regression line for an AUV of the same size has 

been used.  

For the BUUUV output, the fuel used is battery, similar to AUVs. The type of the 

battery can be chosen as well. However, within the OSS for both the BMS output and 

the BUUUV output, muscles are considered as actuators. Although, OSS is at a concept 

stage, it is a fact that muscles can be stimulated with electricity and as it is explained in 

Section 8.4 in Chapter 8 many examples of artificial muscles already exist. 

 As both      and      were known, the COT at optimum speed which was also the 

minimum COT was then calculated by using Equation 5.20  

[       
 (

   

   
)  (

  

          
)]. Consequently, the total required power at       is 

calculated as          
        

            . 

In order to calculated maximum range     , the maximum Endurance [ ] measured 

at     needed to be calculated. Endurance was calculated form Equation 

4.20 [             
              

                 
     ] . Within the OSS there is the 

capability to either use animals fat or different types of batteries usually used for AUVs 

as fuel. By knowing the amount of fat, the stored energy       was calculated from 

Equation 4.19 [               
               

    
].  
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Finally, maximum range was calculated by inserting Equations 4.13 and 4.14 in 

Equation 4.18 [                            ]: 

 

         
              

              
      

7.4 

 

As the main purpose of the OSS is to output BUUUV design aspects and 

characteristics, a list of batteries commonly used in AUVs is available to choose instead 

of BMSs fat. If a battery type is selected,          is calculated based on the battery 

capacity instead. 

7.4.4 Manoeuvrability:      

As explained in Chapter 6, the turning capability of BMSs is related to their 

flexibility. Therefore the Flexibility Measure (FM) for each individual was estimated 

from Table 6.1. In order to be able to define flexibility for the off-spring within the 

OSS, it was decided that when breeding two parents, the child would get the swimming 

mode and therefore the taxonomy code of one parent. Therefore the same formula for 

FM was used for the child. By knowing the FM,      
  

 was estimated from the 

Equation 6.1 [     
  

           ]. 

7.5 A note on stability, depth and future work 

OSS has been written to find aspects of the Bio-inspired Unmanned Untethered 

Underwater Vehicle (BUUUV) design matching the mission inputs as per Table 7.1 and 

to output parameters as per Table 7.2. It is however possible to modify the OSS to 

consider other factors such as depth and stability. The mechanisms of BMSs buoyancy 

control and depth capabilities require further research. When sufficient knowledge is 

gathered on the depth capability of BMSs, the OSS will be able to include depth as 

another parameter.  

Another possible future work is considering stability. At present stability is not 

considered within the OSS as stability has not been a focus of this project considering 

manoeuvrability in some degrees contradicts stability. For example, if a BMS is highly 

flexible in yaw axis, it is certainly unstable in that axis as it has a tendency to turn. 

However, if a measure of stability is known for a specific mission, it can be added as 

another influencing factor within the OSS. Both the body design and the control 
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surfaces can affect stability at different axis. Increasing the 
  

  
 value will increase the 

upright stability. Side fins are used to provide life during diving and surfacing as well as 

roll stability. The top and bottom fin can also provide roll and yaw stability but would 

negatively affect the manoeuvrability in yaw axis. The body design can also be altered 

to give the body more stability. Therefore increasing the surface area of those fins will 

have a positive effect on stability but would also increase the drag. Therefore, there is 

always a trade-off between manoeuvrability and stability.  

Within this chapter a method was presented to predict some aspects of BUUUV 

design based on bio-inspired knowledge. OSS would predict a different design for each 

mission profile. This could also be studied with an evolutionary approach. As the data 

of each generation is available with every run of the OSS, it can be observed how the 

BMS design would evolve into a BUUUV design with different mission profiles.  

The analysis of the results obtained from the OSS is discussed in the next     

Chapter, 8, followed by the conclusions chapter of this thesis, Chapter 9. 
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Chapter 8. The Optimum System Selector in action 

 

In Chapter 7 the concept of an Optimum System Selector (OSS) was explained 

which is designed to output some aspects of the design of a BUUUV based on bio-

inspired knowledge while considering a mission profile. 

In this Chapter, the details of the program are discussed, the program is verified and 

an AUV mission is set as input for the OSS and the result analysed to realise to what 

extend the design has been modified. 

The OSS is a new concept in bio-inspired design and therefore at its early stages. 

Therefore with further bio-inspired research work, the code can be modified and also 

applied to other sectors. 

As explained in Chapter 7, there are three main parts within the OSS: the mission 

characteristic, the decision maker and the output. 

When the OSS is run, a page is presented to allow for the mission characteristics to 

be defined.  A screenshot of this page is displayed in Figure 8.1. The constraint and 

importance of each characteristic can be defined and it can be decided whether to output 

BUUUVs or BMS chimeras. The main difference between BUUUVs and BMS 

chimeras is in the hotel load calculation and the gills drag. If BUUUVs are selected, the 

hotel load will be calculated from the AUVs regression line in Table 4.1 and there will 

not be any gills and therefore no gills drag. If batteries are chosen as fuel, there are nine 

types of batteries commonly used for AUVs which can be selected. However, if another 

type of fuel is required, the specific energy can be input as well.  
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Figure 8.1. A screenshot of the mission input page within the OSS 

8.1 OSS validation 

As explained in Section 7.3 in Chapter 7, as well as the mission profile, the real 

BMSs are input to the OSS as the first generation. For the first generation the OSS then 

calculates their performance characteristics. In order to validate the performance of the 

OSS, the characteristics calculated by the OSS for the first generation were compared to 

the performance characteristics of the original BMS. 

OSS writes the mission profile, results of each iteration including the design of each 

individual as well as their fitness at each iteration to an excel file. It also writes the elite 

of the iteration and the final output as well. 
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In order to perform a validation, in the mission selection page, the breeding was set 

to BMSs and the fuel to fat. 60 BMSs from different taxonomy classes and various 

swimming mode for which all the required data (body and control surfaces dimensions, 

fat and muscle mass, swimming mode and taxonomy) was available, have been set as 

the first generation.  

Therefore, after running the OSS, the results of the calculation made for the first 

iteration were the performance characteristics for the real BMSs. The mass,      and 

    ,       and           obtained from the OSS were compared with those from 

literature for BMSs for which the data were available. 

The OSS calculated the mass exactly the same as the mass of each BMS. For the 

other 4 characteristics, the calculated vs. literature values are plotted in Figures 8.2 – 

8.5. The x-axis on all plots is the number of the BMS within the initial generation. The 

BMSs are listed based on their taxonomy. Therefore BMS number one is a silver eel 

(Anguilla anguilla), while BMS number 60 is a squid (Taningia danae). 

The OSS calculated both      and      values for all classes of BMSs based on the 

regression lines in Tables 7.3 and 7.4.  In overall, the OSS follows the trend very well. 

For the      the data with obvious differences (as shown in Figure 8.2 by green 

dashed ovals) are for the blue whale (Balaenoptera musculus) (1) and the tunas 

(Thunnus albacares and Thunnus thynnus) (2), both of which had higher speeds than 

other BMSs in the same group based on the literature. Moreover, the blue whale was 

considerably larger than all other whales. The regression lines used to calculate speed 

were generalised for all the BMSs within a group, hence the difference in results for the 

outliers.   

As for the      the two obvious difference were again for the Blue whale and the 

bluefin tuna (Thunnus thynnus). The speed was under predicted for the blue whale and 

over predicted for the tuna due to the fact that the speediest BMSs are within the 

Thunniform fish group such as the sailfish or the marlin. There is also always the 

possibility that the value from literature was not the true maximum speed of the tuna. 
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Figure 8.2.      calculated by the OSS vs. the values from literature for various BMSs 

used as the first generation  

 

 

Figure 8.3.      calculated by the OSS vs. the values from literature for various BMSs 

used as the first generation  

 

As demonstrated in Figure 8.4, the relative turning radius calculated by the OSS is 

very close to the data from literature with the mean error of 0.04TL over the range of all 

BMSs. 

1 

2 

2 

1 
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Figure 8.4.       calculated by the OSS vs. the values from literature for various BMSs 

used as the first generation  

 

As for the total power at optimum speed, the OSS again follows the trend well and 

the calculated results are close to the ones in literature in except for the data in the green 

dashed oval. These data all belong to marine mammals and the reason for the large 

difference is due to the under prediction of the hotel load. As explained in Chapter 4, the 

best hotel load regression line for marine mammals is that of Kleiber. However, the line 

usually under predicts the data as hotel load for BMSs in the field is higher than those 

tested in a laboratory under very specific conditions. Having noticed that, the 

uncertainties with the hotel load prediction does not affect the performance of the OSS 

when set to output a BUUUV as the hotel load will be calculated based on the 

regression line of AUVs’ hotel load. 

The performance of the OSS in calculating the performance of the BMSs was 

successful and therefore it was used to output a design based on a specific mission. 
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Figure 8.5.            calculated by the OSS vs. the values from literature for various 

BMSs used as the first generation  

8.2 An important note on normalising the components of the Fitness Function 

In Chapter 7, it was explained that in general a fitness function made of multiple 

functions to be satisfied (zeroed in the case of the OSS)  is formed as Equation 7.1 

[                   ]  were    is calculated as per Equation 7.2          

[   
|                          |

            
]. Within the OSS, the FF comprises of 8 functions 

which related to   , Mass,      ,     ,          , Range,       and payload. 

Therefore,    . However, the values and ranges for each function are different. 

Therefore, these must be normalised. To normalise all functions, the maximum 

calculated value away from the desired value was found for each function and the 

maximum error was set to 1. The error for each individual was then calculated based on 

maximum error, as follows: 

       

|                          |
            

|                               |
            

 

8.1 

 

where        is the error value or the fitness value for function i. 

For example, if the maximum desired BUUUV length was set to 5  but the 

maximum length for an individual was 33  , the maximum error would be 
|    |

 
. As 
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this value is the highest error, it was set to 1. Therefore, another individual with a length 

of 7   would have a normalised error value of     

|   |

 
|    |

 

     . 

There are two ways to use the normalised method. Either use the ranges of values 

for the first generation and keep it for the entire run or change the normalised error for 

every generation. Both methods were tested within the OSS. OSS is set to plot the 

Fitness Function of the three best designs in each iteration. This is helpful as it 

demonstrates in real-time how the OSS is behaving and operating towards the final 

output. Having three best elite is useful to make sure the ranking of best individuals is 

done correctly. 

Figure 8.6 demonstrates the performance of the OSS for the same mission profile 

run with constant normalised fitness (Figure 8.6 A) vs. changing normalised fitness 

(Figure 8.6 B). In the FF vs. iteration plots made by the OSS, the green line belongs to 

the best individual; the red line belongs to the second best individual and the blue line to 

the third best 

  

                                  (A)                                                               (B) 

Figure 8.6. The Fitness Function of the three best individuals plotted at each iteration. A is when 

the normalised fitness is constant and B when it changes at each iteration with the data range 

 

The final output of the OSS is very similar for both runs. The design had the same 

swimming mode, fuel mass and very similar specifications. However, it took (A) 21 

iterations and 76.6 seconds to get the results while (B) did it in 15 iterations and 47.6 

seconds.  

In (B) it might seem like the FF is worsening in some iterations, however this is not 

the case. As the normalisation is changing and the individuals are getting closer to the 

final result, the maximum error is reduced and therefore a smaller deviation from 
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desired values results in larger penalties. Therefore, the runtime of the OSS with 

changing normalised fitness was faster.  

Then a similar mission profile was used as input, however in this run, the mission 

characteristics were set within a considerably more limited ranges. Table 8.1 

demonstrates the different mission characteristics of the two mission profiles. The upper 

ranges of length and mass were kept the same to match the size of AUTOSUB6000 and 

the turning radius was reduced considerably.  

 

Table 8.1. The difference in the mission profiles of the first and second test  

Characteristic First test Second (more restricted range) test 

Total Length [ ] 2 -5.5 4.5 – 5.5 

Mass [  ] 100 – 2000 1800 - 2000 

Turning Radius [ ] < 16 < 4 

 

Similar to the runs presented in Figure 8.6, the results from constant normalised 

errors and changing normalised error were very similar. However, in this test as shown 

in Figure 8.7, the constant normalisation reached the results in 19 iterations compared to 

25 of changing normalisation. The reason being that when the range is limited, a very 

small variance from the desired value, will be penalised with a high value and this 

would make it more difficult for the OSS to reach the final output. However, both runs 

in the second test took longer than the first one. This indicates that when OSS is given a 

larger range for mission inputs it operates more efficiently. 

 

  

                                  (A)                                                             (B) 

Figure 8.7. The Fitness Function of the three best individuals plotted at each iteration for 

the AUTOSUB mission with stricter mission profile. “A” is when the normalised fitness is 

constant and “B” when it changes at each iteration with the data range 
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8.3 OSS output vs. AUTOSUB6000 

After testing the OSS results against the performance characteristics of real BMSs 

and verifying that it was capable of predicting their performance characteristics with 

good accuracy, the OSS was used for its main purpose which was to predict the design 

and characteristics of a BUUUV. The mission characteristics were based on the mission 

profile of AUTOSUB6000. AUTOSUB6000 is used as the data for the vehicle was 

available through the collaboration with the National Oceanography Centre (NOC). 

The main characteristics corresponding to the mission profile of AUTOSUB6000 

are as shown in Figure 8.1. The OSS was run with that mission profile. The optimum 

design from the OSS was compared with the characteristics of AUTOSUB6000 as 

shown in Table 8.2.  

 

Table 8.2. The performance and main body characteristics of BUUUV vs. 
AUTOSUB6000 

Characteristic AUTOSUB6000 BUUUV 

2300103902
*
 

from the OSS 

Improvement [%] 

|             |     

       
 

Total Length [ ] 5.5 4.7 14.5 

Mass [  ] 2000 1927 3.7 

Payload [kg] 500 533 6.6 

Cruising Speed [  ⁄ ] 1 1.31 31.0 

Maximum Speed [  ⁄ ] 2 4.12 106.0 

Power [     ] 510 423 17.1 

Range [  ] 250 428 71.2 

Turning Radius [ ] 16 1.2 92.5 

* This number is the BUUUV code. OSS is coded to generate this number in the format of 

IIAAABBBCC. II is number of the iteration, AAA and BBB are the first and the second parents from the 

previous generation and CC is the child number, either 01 or 02 as each couple make two off-spring. This 

is useful if it is required to track a particular individual back to analyse its evolution process. 

 

To demonstrate what aspects of the vehicle design can be output by the OSS, the 

remaining characteristics of the BUUUV as predicted by the OSS are presented in  

Table 8.3. The OSS predicted that only a rear fin and a pair of side fins were required. 
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Table 8.3. The characteristics of the BUUUV not mentioned in Table 8.2  

EL [%TL] 96.2 

BW [%TL] 16.2 

BH [%TL] 22.1 

Propulsion mode Thunniform 

Muscle Mass [%Mass] 26 

Fuel Mass [%Mass] 12.4 

Battery Specific Energy 

[MJ/kg] 
0.58 

Taxonomy* 3403 

       [J/(kg.m)] 0.17 

Propulsion Power [W] 151 

  [W] 272 

Rear fin type Forked 

Rear fin Span [%TL] 21.9 

Rear fin Chord [%TL] 7.8 

Rear fin Aspect Ratio 4.18 

Side fin Span [%TL] 16.4 

Side fin Chord [%TL] 9.3 

Side fin Aspect Ratio 2.9 

* Taxonomy is in fact the taxonomy of the BMS on which the BUUUV was based. 3401 is a Whale. 

 

The design parameters proposed by the OSS give higher flexibility to the BUUUV 

through the use of flexible materials or flexible segments on the body (the position of 

which is systematically chosen by the OSS considering the swimming mode of the 

BUUUV). The flexible body operating in conjunction with the rear fin and the side fin 

designs output by the OSS, reduces the turning radius for the BUUUV compared to 

AUTOSUB6000. The BUUUV output by the OSS is obtained by minimising the drag 

coefficient for the proposed speed range and therefore minimising the power 

consumption (while meeting other criteria). Also considering less body mass due to the 

use of lighter materials and a rear fin instead of a propeller will reduce the mass of the 

BUUUV and leave more space for payload and battery which can consequently increase 

the speed or endurance.   

One must bear in mind that current AUVs are built with matured and tested 

available technologies while the bio-inspired AUV concept is rather new and many tests 

and trials are required for the future designed and built BUUUV to be operable. 

Therefore, the conclusions from the differences between the BUUUV and 

AUTOSUB6000 do not suggest an inferior design for AUTOSUB6000. AUV bodies 

are designed and built not solely for minimising drag but also considering ease of 

production and maintenance. The use of lighter materials for AUVs to bring the 

structure mass of AUV down and therefore increase the payload and battery capacity 

must be considered while also considering the strength of the material under pressure or 

impact. 

Speed is based upon the regression lines of Figures 7.3 and 7.4. As mentioned 

previously, flexible fin oscillation needs to be studied in greater detail to obtain an 
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accurate formula, which is not yet available. Therefore speed calculations are the best 

estimate with the data available to date. 

One more factor to bear in mind is that OSS proposes a mission specific design 

while AUVs are usually designed and built as general purpose, therefore realistically 

deciding which design is “superior” depends on whether a specific mission is in mind or 

the vehicle needs to have the flexibility to perform various missions. 

In overall, as demonstrated in Table 8.2, in theory the BUUUV design which was 

output by the OSS showed improvements in different aspects of performance to fulfil 

the desired mission profile. Although this has not been implemented in reality, the 

results demonstrate a promising prospect for further exploration and implementation.  

 

8.4 OSS Discussion 

In this Chapter it was shown that despite the diverse performance of BMSs, it was 

possible to develop a search and selection algorithm to output some design aspects of a 

BUUUV based on a desired AUV mission. 

The OSS was first tested and verified against calculating the performance 

characteristics of real BMSs. After verifying that the OSS is capable of predicting the 

performance of BMSs, it was used to output a bio-inspired design of a BUUUV which 

could match the capabilities of AUTOSUB6000. As shown in Table 8.2, it is 

theoretically possible to improve the overall performance of the vehicle by the use of 

bio-inspiration. 

The OSS is developed as a novel and different approach to design. It takes into 

account the mission profile and attempts to tailor the design based on the desired 

characteristics while considering the bio-inspired capabilities. Another novelty within 

the OSS is the attempt to appreciate the multi-functionality of BMSs and trying to 

output a design which would satisfy multiple functions. The main interest of this 

research has been in the improvement of AUVs. However, its area of application can be 

extended to other uses. As the OSS has the ability to predict both BUUVs and BMSs 

designs, it can also be used for BMSs; e.g. to design a prosthetic limb for an injured 

BMS. Similarly it can be further developed and modified to be used for non-marine 

species. 

Several aspects of the OSS can be modified and improved with further research. The 

quality of calculating the characteristics can be improved by obtaining data on more 
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BMSs which are measured in a unified manner so they correspond to one another and 

therefor minimise the uncertainties. Some aspects of the OSS are presently just a 

concept such as using muscles. However, this is a developing subject. In the case of 

muscles for example, some artificial equivalents already exist. Electro Active Polymers 

(EAPs) or muscle wires (Shape Memory Alloys) are two examples of the artificial 

muscles and the efficiency of EAPs at 38% (Bar-Cohen, 2004) is very similar to white 

muscles, 41%. Therefore, in this developing sector the OSS is worthy of future research 

and development as a means of bio-inspired implementation. 
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Chapter 9. Conclusions and recommendations for future work 

 

This research work, as part of a collaborative project, NEMO (EPSRC funding 

reference: EP/F066767/1), was aimed to improve the performance of AUVs through 

design techniques and implementation methods inspired by nature. Realising the long 

term presence of marine animals in the oceans as well as studying the history and 

achievements in the field of bio-inspiration proved that bio-inspiration was a potentially 

promising approach. As explained in Chapters 1 and 2, the research intended to 

highlight the useful aspects of Biological Marine Systems (BMSs) design and leave the 

irrelative ones. Therefore, in order to achieve the aim of the project, two objectives were 

set: first to investigate bio-inspiration and second to implement it. As the improvement 

of the overall performance was sought, the main focus was set on the speed and agility, 

depth capabilities, endurance and energetics and size.  

 

9.1 Novelties and Conclusions 

The nature of this work demanded a new and different approach towards 

investigating marine animals and designing AUVs.  The interim conclusions of each of 

the chapters have been discussed at the end of each chapter in this thesis. Therefore, 

below are the novelties introduced and overall conclusions made as part of this research 

work.  

9.1.1 Comparing various performance aspects of different BMSs and AUVs 

In order to capture the potentials of the marine animals, it was decided that various 

classes of marine animals must have been studied and compared with one another as 

well as with existing AUVs. Therefore, data on design and performance of more than 

300 animals was collected alongside 58 AUVs. This was an interesting challenge as 

never before had this comparison been performed to this extent and therefore a fair 

amount of consideration was required to investigate animals from an engineering 

perspective. The body design, speeds, depth capabilities, manoeuvrability and 

energetics of AUVs and BMSs were required to be compared. This meant that 

comparable definitions and terms were required. 
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9.1.2 BMSs bodies considered as tri-axial ellipsoids 

Each marine animal has a different body design. In order to be able to associate any 

performance to body design and size, a unified body design was required. As discussed 

in Chapter 3, it was realised that BMSs in overall would be best defined as a tri-axial 

ellipsoid. For drag calculations purposes further work was carried out as explained in 

Chapter 5 to verify the use of tri-axial ellipsoids. As a result, the bodies of BMSs were 

represented by tri-axial ellipsoids in this research and can be used in future research 

works. Comparing the bodies of AUVs and BMSs which were unified as tri-axial 

ellipsoids showed that the FR values ranges were similar, however eel like BMSs had 

the highest values of up to 18.4 compared to 13.2 for AUVs. Some similarities were 

also seen, such as fusiform BMSs with similar FRs as Teardrop AUVs.  

9.1.3 Speed comparison 

The economic speed of AUVs were compared with optimum or sustained speed of 

BMSs and it was realised that there was a general trend of increase in speed with size 

for BMSs. This was not as clear with AUVs as gliders irrelative to their size had very 

low speeds. BMSs reached higher speeds compared to AUVs and Thunniforms and 

Labriforms were the fastest swimmers.  

The BMSs can energetically afford higher speed as they have access to fuel with 

higher specific energy. Moreover, their body design and dimensions as well as 

swimming mode have evolved for the speed range that they swim at, hence the 

observation that fast swimmers are either Thunniforms or Labriforms.  

As for maximum speed, Thunniforms performed best with a significant superiority 

compared to AUVs. 

For both optimum and maximum speeds, smaller size BMSs showed highest length 

specific speeds.  

 

9.1.4 Energetics: Cost Of Transport (COT), endurance and range 

Another interesting aspect of this research was the sophisticated work on the 

energetics of BMSs so there would be correspondence with AUVs for comparison. As 

explained in Chapter 4, as well as COT, the required power of some BMSs were 

calculated and therefore, the propulsion power of BMSs and AUVs were compared with 

one another. 
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By testing animal fat and concluding that regardless of the health of the BMS, the 

fat would almost retain its properties, an average specific energy value was set to 

calculate the range and endurance of BMSs to then be compared with AUVs.  

Therefore, as concluded in Chapters 3 and 4, there was a considerable superiority in 

terms of speed, range of operation, manoeuvrability and size in BMSs. This is due to 

their swimming mode, specific body dimensions, flexibility and collaboration between 

the body and fins during swimming and manoeuvrability as well as lighter structure 

material and superior fuel type.  

BMSs have higher speeds and especially maximum speeds regarding their size 

compared to AUVs. The highest speeds were seen in Thunniform and Labriform 

swimmers. 

AUVs had good depth capabilities but many smaller BMSs had better mass specific 

depth capabilities. Some AUVs have an indicated maximum depth of up to 6000 m and 

Nereus AUV has reached the depth of 10,903 m in ROV mode. For AUVs depth was 

observed to be generally proportional to size. However this is not a definite trend. As 

previously mentioned, depth is not the sole reason for increasing the size of an AUV, as 

there are relatively large but shallow diving AUVs. These AUVs are larger either due to 

carrying more battery in order to increase their endurance or cruising speed, or they 

require the extra volume to carry more sensors for complex missions.   

However, increasing the diving depth of an AUV will affect its size/mass as 

explained next. Deeper depth range means that the AUV must travel longer distance to 

and back from its maximum depth. Consequently, the vehicle requires more battery. 

The increase of battery power, increases the battery mass as well as the mass (and 

internal volume, therefore dimensions) of the AUV. The second is the use of a pressure 

vessel which can house the components of the AUV and is able to withstand the water 

pressure. At sea level the pressure (air pressure) is 1 atm which increases with water 

depth. This in conjunction with the change in density and temperature of water indicates 

that deep diving AUVs must have pressure vessels capable of withstanding relatively 

high pressures. For example an AUV diving to 6000 m must have a pressure vessel 

withstanding about 60 atm. This subsequently increases the thickness and therefore the 

mass of the pressure vessel. 

Finally as AUVs are positively buoyant, they require some extra weight to counter 

the positive buoyancy. The buoyancy can be controlled dynamically. However the extra 

weight can also be added by physically adding weight such as lead weights to different 
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sections of the AUV. Clearly this will increase the mass (but not the volume) of the 

AUV.  Therefore, although size does not always suggest more depth capability for 

AUVs, higher depth capability will increase the mass and the size of the vehicle.  

The comparison of COTs highlighted that while locomotion at lower speeds, AUVs 

had generally lower COTs compared to BMSs. This was mainly down to higher hotel 

loads for BMSs.  Comprehensive hotel load vs. mass graph was created which includes 

the regression lines for the hotel load of numerous BMSs as a function of their mass. 

Penguins and marine mammals had the highest hotel loads.  

As mentioned in Chapter 4, the hotel load is mainly associated with powering 

computers, hard drives and sensors; i.e. non-propulsive required power. Therefore, 

larger AUVs have the volume (space) required for large number of sensors and 

consequently they will have higher hotel load. However, it must be notes that this is not 

a requirement. Therefore depending on the mission requirements, there are examples of 

comparatively large AUVs with small hotel loads.  

It was also shown that animals benefit from a rather high energy density type of fuel 

with a very high specific energy compared to batteries used for AUVs and therefore 

their endurance was considerably higher than AUVs. If a fuel with higher energy 

density can be used on AUVs, it will increase their endurance as well.  Higher energy 

density fuel may also have a positive impact on the speed of the vehicle as more energy 

would be available to be consumed for the propulsion of the vehicle. As shown with the 

results from the OSS (which was run assuming the BUUUV is running on batteries and 

not fat), this high energy density fuel when coupled with modifications to the body 

design for reduction in drag and possibly using alternative  propulsion system can have 

even higher positive impact on the speed of the vehicle.    

In terms of manoeuvrability, the BMSs were significantly superior, benefiting from 

a flexible body. It was noted that between BMSs there were more and less 

manoeuvrable species. 

By performing the comparisons the superiorities in the performance of the BMSs 

were highlighted and investigating bio-inspiration was complete. However, when 

attempting to select an optimum system to use it to implement the bio-inspired 

knowledge, it was realised that the superiorities were spread over a range of BMSs. The 

multi-functionality of their biological systems indicated that means were required to 

capture the trade-off between various performance characterises to predict the 

performance of a BMS.  
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Therefore an holistic approach was taken towards marine animals, considering the 

animal kingdom as a system where each of the species was a specific configuration. 

Therefore each BMS consists of a combination of inter-related subsystems, so, all the 

performance characteristics including the efficiency, manoeuvrability and speed of the 

BMSs were required to be estimated and compared. 

 

9.1.5 Calculating drag for BMSs and definition of efficiency for BMSs leading to 

the introduction of the  value 

Prior to estimating drag and efficiency, different energy losses and efficiencies 

within the body of a BMS were identified to clarify any possible confusion between 

various efficiencies in a BMS.  

To estimate the efficiency, the drags of BMSs were calculated. To obtain precise 

answers, a method was proposed in this research for calculating all terms of drag in 

BMSs. Two correction factors were also introduced to compensate for skin roughness 

and the diversion from a true tri-axial ellipsoid body. 

As skin roughness was not known for BMSs and there could be other possible drag 

terms such as parasites (for larger BMSs) which could not be determined, an indication 

of efficiency,  , term was defined to include these uncertainties.  

Another novel approach introduced in this research was to calculate the   value at 

optimum speed without requiring the COT. This method can now be used in research 

works where the efficiency or the energetic cost of a BMS is required and experiments 

to measure them are not possible.  

It was concluded from the results that although higher efficiencies are seen in some 

swimming modes such as Thunniform and Labriform more than others, similar 

efficiencies were calculated for similar size BMSs, with different swimming modes. 

The difference was in their speed. 

Calculating the efficiency at maximum speed required having the maximum muscle 

capability of every BMS as the muscle characteristics can vary due to genetics, fitness, 

and more specific terms such as the amount of myoglobin, etc. To overcome this, 

another indicator of efficiency term,   , was introduced in this research which is an 

indication of efficiency related to the frequency of the finbeat, the amplitude of the 

muscle twitch which was directly proportional to the length of the BMS and the muscle 
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mass. The analysis highlighted that     was directly proportional to the length specific 

maximum speed of BMSs. 

9.1.6 Manoeuvrability of flexible bodies 

Another novel part of this research was introducing a simplified method to estimate 

the yaw turning circle radius of flexible bodies. A flexibility measure was defined in 

this work which was directly proportional to the length specific yaw radius of BMSs. 

An empirical formula was also derived to estimate the yaw radius of AUVs. The higher 

manoeuvrability of BMSs was clear, however different groups of BMSs exhibited 

different manoeuvrability capabilities. Some Thunniform fish alongside turtles were 

within the least manoeuvrable while Anguilliform and Labriform marine mammals such 

as sea lions (Zalophus californianus) were within the most manoeuvrable BMSs. 

 

9.1.7 The development of the Optimum System Selector (OSS) 

The comparison of BMSs and AUVs highlighted the superiority of BMSs and a few 

methods were proposed to estimate the performance characteristics of BMSs. When 

attempting to implement the bio-inspired knowledge it was realised that although the 

purposes of BMSs were different to the mission profile of AUVs, but while 

investigating bio-inspiration it became clear that different BMSs have evolved to fulfil 

different purposes. Therefore the optimum system would be dependent on the mission 

profiles of AUVs. Therefore, being inspired by nature a novel evolutionary search and 

selection algorithm, the OSS, was proposed to output a bio-inspired design for AUVs 

based on their mission profile. The performance of the algorithm was tested by using it 

to calculate the performance characteristics of BMSs. Finally, the OSS was used to 

output a design for a BUUUV to perform similar to AUTOSUB6000. Comparing the 

characteristics of the BUUUV with AUTOSUB6000 it was realised that using bio-

inspired design can theoretically improve the overall performance of AUVs. The 

potential improvements through the use of BUUUV are discussed as follows.  

 Minimising the drag coefficient and therefore minimising the drag, energetic cost 

and required power for the mission profile. Specific design for the mission profile 

ensures that the BUUUV has enough space for the payload as well as the actuator 

and the batteries. 



182 

 

 Proposing the use of artificial muscles which reduces the “motor” mass. This in 

conjunction with the use of lighter materials for the structure can leave extra space 

for payload, sensors or battery which could lead to the increase in speed or 

endurance.  

 Proposing the use of oscillating foils as an alternative to propellers. Although the 

efficiency has not been observed in this research to be as high as propellers, there 

are a few pros towards the use of oscillating foils for propulsion. Firstly, the foils 

have potentially less mass which is always appreciated for an AUV as mentioned 

above. Secondly, an oscillating foil has less noise and vibration which is beneficial 

for both stealth as well as animal observation. Finally, an oscillating foil can also 

contribute to manoeuvrability and reduce the necessity of using rudders as well as 

extra thrusters.  

 Increasing the manoeuvrability and reducing the turning radius through systematic 

flexibility to the main body as well as the use of rear and side fins. 

Therefore, there are several potential gains from considering bio-inspired designs 

for specific AUV mission profiles.  

9.2 Impact of the research and Recommendations for future work 

The aim of this research was to introduce a new method for the design of AUVs 

which could improve their overall performance using bio-inspiration. The OSS attempts 

to do that through evolution. Therefore, the OSS can be used as a mission based 

approach to the design of AUVs. The OSS as a concept can be used as a general method 

for mission based designs in different sectors. The focus of this work was to output 

alternative bio-inspired design for AUVs. In addition the OSS has the capability to be 

used to output designs for actual BMSs.  

In overall, through this research marine animals were investigated as systems for 

which the performance characteristics can be calculated or estimated. Although the 

approach was from an engineering perspective, the findings of this research can be used 

to predict the performance characteristics of BMSs in terms of their speed, 

manoeuvrability, and energetics and depth capability. The estimation and calculation 

methods presented in this research will be useful if these characteristics cannot be 

measured directly. On the other hand, if experiments can be performed on several BMSs 

to measure different characteristics, the OSS can be modified accordingly. 
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Taking an holistic approach towards BMSs required tackling various performance 

characteristics. Some of the characteristics investigated in this research can be further 

studied. For example, in terms of depth there are still many unknowns about BMSs, 

especially those living in deepest parts of the oceans. If the buoyancy control systems of 

deep sea BMSs are known, it will be possible to answer the reason why small fish have 

very high mass specific depth capabilities. 

In this research the speed was considered as a function of total length. If precise 

speed values are required, the speed can be calculated if the thrust produced from the 

propulsive fins are known. This requires the fins to be considered as flexible pendulums 

moving through water which is another research worthy of consideration. 

While calculating the drag for each BMS, the fins were considered to be static. In 

reality the fins of BMSs have different movement patterns. Therefore, investigating 

different movements of various fins is another subject worthy of future research. 

Understanding the movements of fins and including that within the drag calculating 

model will result in more precise drag calculations and also will provide extra 

knowledge on the operation mechanism of different BMSs. 

In overall, this research demonstrated that there are ways to approach animals from 

an engineering perspective and their performance can be considered to improve the 

performance of engineered vehicles to fulfil their missions. The results of the OSS 

compared with existing AUVs, showed improvements in the overall capabilities. 

Therefore, this method is an excellent guide to transform complex biological data for 

the future design and development of AUVs.  
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Appendix 1. BMSs and AUVs 

databases 

 

The legend below is a legend for the entire Appendix 1. 

 

1 Mean (average) Value 

2 Voluntary Swimming Speed 

3 Mode of the swimming speed 

4 The BMS was a juvenile  

5 Sustained speed 

6 Highest burst speed recorded for the species 

7 Less than 

8 More than 

9 Actual value from manufacturer experiment 

10 Mass estimated from               (Webb, 1977)  

11 Calculated from the mass-length relationship 

13 Indicated value by the manufacturer; no trial records found 

14 Values from genetically similar species 

 

Also, note that for Appendix 1.2, the legend below is associated with 

various cross-sections. 

1 Circular 

2 Oval 

2.5 Oval box 

3 Compressed  

3.5 Flat 
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Appendix 1.1. The Taxonomy table 

Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

 

Actinopterygii (Fish) Beryciformes Anoplogastridae 

Anoplogaster 

cornuta fangtooth 1001 1 

Beryciformes Berycidae 

Beryx 

decadactylus alfonsine 1002 1 

Beryciformes Trachichthyidae 

Hoplostethus 

atlanticus orange roughy  1003 1 

Lophiiformes Ceratiidae 

Cryptopsaras 

couesi deep-sea anglerfish 1004 1 

Lophiiformes Himantolophidae 

Himantolophus 

albinares football fish 1005 1 

Lophiiformes Melanocetidae 

Melanocetus 

johnsonii Black sea devil 1006 1 

Myctophiformes Myctophidae 

Diaphus 

rafinesquii lantern fish 1007 1 

Osmeriformes Opisthoproctidae 

Opisthoproctus 

soleatus barreleye  1008 1 

Osmeriformes Osmeridae Mallotus villosus barents sea capelin 1009 1 

Perciformes Chiasmodontidae Chiasmodon niger black swallower 1010 1 

Perciformes Scaridae Scarus schlegeli parrotfish 1011 1 

Perciformes Sciaenidae 

Cynoscion 

neblosus 
spotted seatrout 1012 1 

Perciformes Sciaenidae 

Scaenops 

ocellatus 
red drum 1012 2 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Perciformes Sparidae 

Archosargus 

probatocephalus sheepshead 1013 1 

Stomiiformes Gonostomatidae 

Gonostoma 

denudatum bristlemouth  1014 1 

Anguilliformes Anguillidae Anguilla anguilla silver eel 1101 1 

Anguilliformes Anguillidae Anguilla japonica Japanese eel 1101 2 

Anguilliformes Nemichthyidae 

Nemichthys 

scolopaceus slender snipe eel 1102 1 

Aulopiformes Ipnopidae 

Bathypterios 

grallator tripod fish 1103 1 

Aulopiformes Ipnopidae 

Bathypterios 

mediterraneus 

Mediterranean 

spiderfish 1103 2 

Ophidiiformes Ophidiidae 

Abyssobrotula 

galatheae deep-sea cusk eel 1105 1 

Ophidiiformes Ophidiidae 

Lepophidium 

marmoratum cusk eel4 1105 2 

Ophidiiformes Ophidiidae 

Neobythites 

sivicola cusk eel3 1105 3 

Ophidiiformes Ophidiidae 

Ophidion 

barbatum snake blenny  1105 4 

Ophidiiformes Ophidiidae 

Ophidion 

muraenolepis blackedge cusk 1105 5 

Ophidiiformes Ophidiidae Sirembo imberbis golden cusk  1105 6 

Perciformes Zoarcidae 

Melanostigma 

pammelas midwater eelpout 1106 1 

Pleuronectiformes  Paralichthyidae Paralichthys Japanese flounder 1108 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

olivaceus 

Saccopharyngiformes Eurypharyngidae 

Eurypharynx 

pelecanoides pelican eel 1109 1 

Stomiiformes Stomiidae 

Chauliodus 

macouni Pacific viper fish 1110 1 

Stomiiformes Stomiidae Chauliodus sloani viper fish 1110 2 

Stomiiformes Stomiidae 

Melanostomias 

melanops barbeled dragonfish 1110 3 

Stomiiformes Stomiidae Stomias boa scaly dragonfish 1110 4 

Cypriniforme  Cyprinidae 

Leuciscus 

leuciscus common dace 1201 1 

Cypriniformes Cyprinidae Carassius auratus goldfish 1201 2 

Cypriniformes Cyprinidae Cyprinus carpio carp 1201 3 

Cypriniformes Cyprinidae Rutilus rutilus roach 1201 4 

Esociformes Esocidae  Esox lucius pike 1202 1 

Gadiformes Gadidae Gadus morhua atlantic cod 1203 1 

Gadiformes Gadidae 

Melanogrammus 

aeglefinus haddock 1203 2 

Gadiformes Gadidae 

Merlangius 

merlangus whiting 1203 3 

Gadiformes Gadidae Pollachius virens saithe 1203 4 

Gadiformes Macrouridae 

Coelorhynchus 

coelorhynchus blackspot grenadier 1204 1 

Gadiformes Macrouridae 

Coryphaenoides 

rupestris roundnose grenadier 1204 2 



 

208 

 

Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Osmeriformes Alepocephalidae 

Alepocephalus 

umbriceps slickhead 1205 1 

Perciformes Sphyraenidae 

Sphyraena 

barracuda greatbarracuda 1206 1 

Salmoniformes Salmonidae Coregonus artedi cisco 1207 1 

Salmoniformes Salmonidae 

Coregonus 

clupeaformis 
lake whitefish 1207 2 

Salmoniformes  Salmonidae 

Oncorhynchus 

keta chum salmon 
1207 

3 

Salmoniformes Salmonidae 

Oncorhynchus 

mykiss 
rainbow trout 1207 4 

Salmoniformes Salmonidae 

Oncorhynchus 

nerka 
sockeye salmon 1207 5 

Salmoniformes Salmonidae 

Salvelinus 

fontinalis brook charr 
1207 

6 

Acipenseriformes Acipenseridae 

Acipenser 

fulvescens lake sturgeon 1301 1 

Beloniformes Exocoetidae  Exocoetus flying fish 1302 1 

Characiformes Chaeracidae 

Metynnis 

argenteus silver dollar 1303 1 

Clupeiformes Clupeidae Sardinops sagax 

south American 

pilchard 1304 1 

Mugiliformes Mugilidae Liza macrolepis largescale mullet 1305 1 

Osteoglossiformes Mormyridae 

Gnathonemus 

petersii elephantnose fish 1306 1 

Perciformes Carangidae Seriola lalandi yellowtail kingfish 1307 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Perciformes Centrarchidae 

Micropterus 

salmoides 
largemouth bass 1308 

1 

Perciformes Centrarchidae 

Micropterus 

dolomieu smallmouth bass 
1308 

2 

Perciformes Cichlidae 

Oreochromis 

niloticus Nile tilapia 1309 1 

Perciformes Cichlidae 

Oreochromis 

niloticus 
Nile tilapia 

1309 1 

Perciformes Moronidae Morone saxatilis striped bass 1310 1 

Perciformes Pomatomidae 

Pomatomus 

saltatrix bluefish 
1311 1 

Perciformes Scombridae 

Scomber 

scombrus Atlantic mackerel 1312 1 

Perciformes  Scombridae 

Scomber 

japonicus chub mackerel 1312 2 

Perciformes  Carangidae 

Trachurus 

symmetricus Pacific jack mackerel 1401 1 

Perciformes Coryphaenidae 

Coryphaena 

hippurus  dolphinfish 1402 1 

Perciformes   Istiophoridae Makaira indica black marlin 1403 1 

Perciformes Istiophoridae 

Stiophorus 

platypterus Indo-Pacific sailfish 1403 2 

Perciformes Scombridae 

Katsuwonus 

pelamis 
skipjack tuna 

1404 1 

Perciformes Scombridae Sarda chiliensis Pacific bonito 1404 2 

Perciformes Scombridae Thunnus yellowfin tuna 1404 3 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

albacares 

Perciformes Scombridae Thunnus thynnus 

bluefin tuna 

(northern) 1404 4 

Perciformes Xiphiidae Xiphias gladius swordfish 1405 1 

Stomiiformes Sternoptychidae 

Sternoptyx 

diaphana 

diaphanous 

hatchetfish 1501 1 

Stomiiformes Sternoptychidae 

Argyropelecus 

hemigymnus silver hatchet fish 1501 2 

Tetraodontiformes Diodontidae 

Chilomycterus 

schoepfi striped burrfish 
1601 1 

Tetraodontiformes Ostraciidae Ostracion cubicus boxfish  1602 1 

Tetraodontiformes Ostraciidae 

Ostracion 

meleagris whitespotted boxfish 1602 2 

Perciformes Acanthuridae Naso annulatus 

whitemargin 

unicornfish 1701 1 

Perciformes Acanthuridae 

Acanthurus 

bahianus ocean surgeonfish 1701 2 

Perciformes Centrarchidae Lepomis gibbosus pumpkinseed 1702 1 

Perciformes Embiotocidae 

Cymatogaster 

aggregata 
shiner perch 

1703 1 

Perciformes Embiotocidae 

Cymatogaster 

aggregata 
shiner perch 

1703 1 

Perciformes Labridae 

Thalassoma 

bifasciatum bluehead wrasse 1704 1 

Perciformes Labridae 

Oxyjulis 

californica 
señorita 

1704 2 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Perciformes Pomacentridae 

Stegastes 

leucostictus 

beaugregory 

damselfish 1705 1 

Perciformes Pomacanthidae 

Centropyge 

multifasciata angelfish 1705 2 

Scorpaeniformes  Agonidae 

Agonopsis 

chiloensis snailfish 1706 1 

Lampriformes Regalecidae Regalecus glesne oarfish 1801 1 

Gymnotiformes Apteronotidae 

Apteronotus 

albifrons black ghost 1802 1 

Perciformes Chaetodontidae 

Chaetodon 

capistratus foureye butterflyfish 1901 1 

Tetraodontiformes Balistidae 

Rhinecanthus 

aculeatus 
picasso triggerfish  1902 1 

N/A N/A 

Pseudoliparis 

amblystomopsis snailfish(new) 1903 1 

Tetraodontiformes  Molidae Mola mola ocean sunfish 1904 1 

Agnatha  (Fish with 

notochord) 

Myxiniformes Myxinidae Eptatretus stoutii Pacific hagfish 1104 1 

Petromyzontiformes Petromyzontidae 

Petromyzon 

marinus sea lamprey 1107 1 

 

Chondrichthyes 

(Cartilaginous fish) 

Hexanchiformes Chlamydoselachidae 

Chlamydoselachus 

anguineum frilled shark 2101 1 

Squaliformes Squalidae Squalus acanthias dogfish 2102 1 

Squaliformes Dalatiidae 

Isistius 

brasiliensis cookie cutter shark 2103 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Carcharhiniformes  Triakidae Triakis henlei mustelus henlei 2201 1 

Carcharhiniformes  Triakidae 

Triakis 

semifasciata leopard shark 2201 2 

Orectolobiformes Rhincodontidae Rhincodon typus whale shark 2203 1 

Carcharhiniformes Carcharhinidae 

Carcharhinus 

leucas bull shark 2301 1 

Carcharhiniformes Carcharhinidae 

Carcharhinus 

melanoterus blacktip reef shark 2301 2 

Carcharhiniformes Carcharhinidae 

Negaprion 

brevirostris lemon shark 2301 3 

Carcharhiniformes Sphyrnidae Sphyrna lewini hammerhead shark 2304 1 

Carcharhiniformes Sphyrnidae Sphyrna tiburo bonnethead shark 2304 2 

Lamniformes Cetorhinidae 

Cetorhinus 

maximus basking shark 2305 1 

Orectolobiformes Ginglymostomatidae 

Ginglymostoma 

cirratum nurse shark 2306 1 

Lamniformes Lamindae 

Carcharodon 

carcharias white shark 2401 1 

Myliobatiformes Mobulidae Manta birostris giant manta ray 2601 1 

Rajiformes Myliobatidae 

Aetobatus 

narinari spotted eagle ray 2602 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Holocephali 
Chimaeriformes Rhinochimaeridae 

Rhinochimaera 

pacifica spookfish (chimera) 2202 1 

 

Mammalia(Mammals) 
 Sirenia Dugongidae  Dugong dugon dugong 3301 1 

Cetacea 

Balaenidae 

(Mysticeti) 

Balaena 

mysticetus bowhead whale 3401 1 

Cetacea 

Balaenidae 

(Mysticeti) 

Eubalaena 

glacialis 

north Atlantic right 

whale 3401 2 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Balaenoptera 

acutorostrata minke whale 3402 1 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Balaenoptera 

borealis sei whale 3402 2 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Balaenoptera 

brydei bryde's whale 3402 3 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Balaenoptera 

musculus blue whale 3402 4 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Balaenoptera 

physalus fin whale 3402 5 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Megaptera 

novaeangliae humpback whale 3402 6 

Cetacea 

Balaenopteridae 

(Mysticeti) 

Eschrichtius 

robustus grey whale 3403 1 

Cetacea 

Monodontidae 

(Odontoceti) 

Delphinapterus 

leucas beluga whale 3404 1 

Cetacea 

Physeteridae 

(Odontoceti) 

Physeter 

macrocephalus sperm whale 3405 1 

Cetacea Ziphiidae Hyperoodon beaked whale 3406 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

(Odontoceti) ampullatus 

Cetacea 

Delphinidae 

(Odontoceti) 
Orcinus orca killer whale 3407 1 

Cetacea 

Delphinidae 

(Odontoceti) 

Pseudorca 

crassidens false killer whale 
3407 2 

Cetacea 

Delphinidae 

(Odontoceti) 

Cephalorhynchus 

commersonii commerson’s dolphin 
3407 3 

Cetacea 

Delphinidae 

(Odontoceti) Delphinus delphis common dolphin 
3407 4 

Cetacea 

Delphinidae 

(Odontoceti) Globicephala  

long-finned pilot 

whale 
3407 5 

Cetacea 

Delphinidae 

(Odontoceti) 

Lagenorhynchus 

acutus white sided dolphin 
3407 6 

Cetacea 

Delphinidae 

(Odontoceti) Stenella frontalis 

Atlantic spotted 

dolphin 
3407 7 

Cetacea 

Delphinidae 

(Odontoceti) Tursiops truncatus bottlenose dolphin 
3407 8 

Cetacea 

Delphinidae 

(Odontoceti) 

Tursipos truncatus 

gillii 

Pacific bottlenose 

dolphin 
3407 8 

Cetacea 

Phocoenidae 

(Odontoceti) 

Phocoena 

phocoena harbour porpoise 
3408 1 

Cetacea 

Phocoenidae 

(Odontoceti) 

Phocoena 

phocoena 
harbour porpoise 3408 1 

Cetacea 

Phocoenidae 

(Odontoceti) 

Phocoenoides 

dalli dall's porpoise 3408 2 

Carnivora Mustelidae Enhydra lutris sea otter 3501 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Carnivora 

Odobenidae 

(Pinnipedia) 

Odobenus 

rosmarus walrus 3502 1 

Carnivora 

Phocidae 

(Pinnipedia) 

Halichoerus 

grypus 
grey seal  3503 1 

Carnivora 

Phocidae 

(Pinnipedia) 

Leptonychotes 

weddellii weddell seal 
3503 2 

Carnivora 

Phocidae 

(Pinnipedia) 

Mirounga 

angustirostris northern elephant seal 
3503 3 

Carnivora 

Phocidae 

(Pinnipedia) Mirounga leonina southern elephant seal 
3503 4 

Carnivora 

Phocidae 

(Pinnipedia) Phoca witulina harbour seal  
3503 5 

Carnivora 

Phocidae 

(Pinnipedia) Pusa sibirica baikal seal 
3503 

6 

Rodentia 

Cricetidae 

(Pinnipedia) 

Ondatra 

zibethicus 
muskrat 3504 1 

Carnivora 

Otariidae 

(Pinnipedia) 

Arctocephalus 

gazella Antarctic fur seal 3701 1 

Carnivora 

Otariidae 

(Pinnipedia) 

Calorhinus 

ursinus northern fur seal 3701 2 

Carnivora 

Otariidae 

(Pinnipedia) 

Eumetopias 

jubatus 
steller sea lion 

3701 3 

Carnivora 

Otariidae 

(Pinnipedia) 

Eumetopias 

jubatus steller sea lion 3701 3 

Carnivora 

Otariidae 

(Pinnipedia) 

Zalophus 

californianus California sea lion 3701 4 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

Carnivora Mustelidae Amblonyx cinerea 

asian small- clawed 

otters 
3702 1 

Carnivora Mustelidae Neovison vison north American mink 3702 2 

 

Aves                 

(Birds: Penguins) 

Sphenisciformes Spheniscidae 

Aptenodytes 

forsteri emporer penguin 
4701 1 

Sphenisciformes Spheniscidae 

Aptenodytes 

patagonicus king penguin 
4701 2 

Sphenisciformes Spheniscidae Eudyptula minor little penguin 4701 3 

Sphenisciformes Spheniscidae Pygoscelis adeliae adelie penguin 4701 4 

Sphenisciformes Spheniscidae 

Pygoscelis 

antarctica 
chinstrap penguin 4701 5 

Sphenisciformes Spheniscidae Pygoscelis papua gentoo pinguin 4701 6 

Sphenisciformes Spheniscidae 

Spheniscus 

demersus 
African penguin 4701 7 

Sphenisciformes Spheniscidae 

Spheniscus 

humboldti humboldt penguin 
4701 8 

Sphenisciformes Spheniscidae 

Eudyptes 

chrysolophus macaroni penguin 
4701 9 

 

Reptilia (Reptiles) Sauria Iguanidae 

Amblyrhynchus 

cristatus marine iguana 5101 1 

Testudines 

Dermochelyidae 

(Cryptodira) 

Dermochelys 

coriacea leatherback turtle 5701 1 

Testudines 

Cheloniidae 

(Cryptodira) Chelonia mydes green sea turtle 5702 1 

Testudines 

Emydidae 

(Cryptodira) Chrysemys picta painted turtle 5703 1 
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Class 
Order 

Family (Sub Order 

if applicable) 
BinominalName  CommonName 

Taxa 

Code 

Taxa 

No 

 

Cephalopoda(head 

feet) 

Teuthida Loliginidae Loligo plei 

slender inshore squid 

(arrow squid) 6001 1 

Teuthida Loliginidae Loligo opalescens 

opalescent inshore 

squid 6001 2 

Oegopsida Architeuthidae Architeuthis x giant squid 6002 1 

Oegopsida Octopoteuthidae Taningia danae dana octopus squid 6003 1 

Teuthida Mastigoteuthidae 

Mastigoteuthis 

flammea whip-lash squid 6004 1 
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Appendix 1.2. BMSs’ Database 

 

1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

fangtooth 1001 1               2 4992       4 3 0.18 

alfonsine 1002 1               250 600       4 3   

orange roughy  1003 1               180 1200       4 3 0.57 

deep-sea anglerfish 1004 1               200 2000       4 3   

football fish 1005 1               200 1000       4 2 0.265 

Black sea devil 1006 1               250 2000       4 2   

lantern fish 1007 1               50 1000       2     

barreleye  1008 1               300 800       3 2   

barents sea capelin 1009 1     0.28             3.01     2 3 0.1693 (11) 

black swallower 1010 1               750 1500       3 3   

parrotfish 1011 1     0.53             2.39 47.8935 0.624 3 3 0.224 (11) 

spotted seatrout 1012 1     0.81             1.77     3 1 0.299 (11) 

red drum 1012 2     0.90             2.35     3 2 0.32 (11) 

sheepshead 1013 1     
0.99 

  
      

    
1.47 

    4 3 

0.273 

(11) 

bristlemouth  1014 1               100 700       2 3 0.161 

silver eel 1101 1 BCFAnguilliform 11 0.67     0.09     2000 0.68 2163.81 10.14 1 1 1.33 

silver eel 1101 1 BCFAnguilliform 11 0.18           2000 0.50 11266.7 10.14 1 1 0.35 

silver eel 1101 1 BCFAnguilliform 11 0.40             0.42 5868.06 10.14 1 1 0.74 

silver eel (european) 1101 1 BCFAnguilliform 11 0.62                 10.14 1 1 0.82 (11) 

Japanese eel 1101 2 BCFAnguilliform 11 

0.44(1

)   
      

    
  

  
  

1 1 
0.69 (11) 



 

219 

 

1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

slender snipe eel 1102 1 BCFAnguilliform 11             3656       1 3 1.3 

tripod fish 1103 1 BCFAnguilliform 11           878 4720       2 3 1.531 

Mediterranean spiderfish 1103 2               300 2800       2 3 0.24 

Pacific hagfish 1104 1 BCFAnguilliform 11           16 1155       1 1 0.43 

deep-sea cusk eel 1105 1 BCFAnguilliform 11           3110 8370       1 2 0.165 

cusk eel4 1105 2 BCFAnguilliform 11           155 525       1 3   

cusk eel3 1105 3 BCFAnguilliform 11           75 100       1 3 0.26 

snake blenny  1105 4 BCFAnguilliform 11             150       1 3 0.26 

blackedge cusk 1105 5 BCFAnguilliform 11           80 370       1 3 0.159 

golden cusk  1105 6 BCFAnguilliform 11           100 200       2 3 0.21 

midwater eelpout 1106 1 BCFAnguilliform 11           96 2195       1   0.11 

sea lamprey 1107 1 BCFAnguilliform 11 0.36 1.36       1 2200     10.14 1 2 0.6 

Japanese flounder 1108 1 BCFAnguilliform 11 

0.35(3

)   
      

    
  

  10.14 3 3 

0.568 

(11) 

pelican eel 1109 1 BCFAnguilliform 11           500 7625       1 3 1 

Pacific viper fish 1110 1 BCFAnguilliform 11           25 4390       2 2 0.25 

viper fish 1110 2               200 4700       2 3 0.36 

barbeled dragonfish 1110 3               200 1024       2 3 0.298 

scaly dragonfish 1110 4 BCFAnguilliform 11           200 1500       1 3   

common dace 1201 1 BCFSubcarangiform 12   1.59                 3 2 0.09 

goldfish 1201 2 BCFSubcarangiform 12 0.32     0.25     20 1.49     3 2 0.1 

goldfish 1201 2 BCFSubcarangiform 12 0.48             1.3734     3 2 0.15 

goldfish 1201 2 BCFSubcarangiform 12   0.65               1.092 3 2 0.07 

goldfish 1201 2 BCFSubcarangiform 12       0.25           
1.092 

3 2 

0.058715

9 

carp 1201 3 BCFSubcarangiform 12 0.59 1.64               1.092 3 3 0.31 
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1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

carp 1201 3 BCFSubcarangiform 12 
0.26 

  
      

    
  

  
1.092 

3 3 

0.182 

(11) 

carp 1201 3 BCFSubcarangiform 12 
0.32 

  
      

    
  

  
1.092 

3 3 

0.315 

(11) 

roach 1201 4 BCFSubcarangiform 12 0.40     0.25   15 15     1.092 3 3 0.6 

roach 1201 4 BCFSubcarangiform 12 0.32                 1.092 3 3 0.2(11) 

roach 1201 4 BCFSubcarangiform 12 0.43                 1.092 3 3 0.284(11) 

pike 1202 1 BCFSubcarangiform 12       0.09           
1.092 

2 2 

0.402 

(11) 

Atlantic cod 1203 1 BCFSubcarangiform 12 0.27             1.77 476.041 2.34 3 2 0.403(11) 

Atlantic cod 1203 1 BCFSubcarangiform 12   1.47               2.34 3 2 0.42 

Atlantic cod 1203 1 BCFSubcarangiform 12   0.84               2.34 3 2 0.3 

haddock 1203 2 BCFSubcarangiform 12 0.25     0.13   10 450 2.16 60.9047 0.338 3 1 0.248 

haddock 1203 2 BCFSubcarangiform 12 1.34     0.13     450     0.338 3 1 1.12 

whiting 1203 3 BCFSubcarangiform 12 0.34         10 200 1.50 118.954 0.624 3 2 0.34 

saithe 1203 4 
BCFSubcarangiform 12 

0.48 
            

1.37 
  

  
3 1 

0.3755 

(11) 

saithe 1203 4 BCFSubcarangiform 12   1.23                 3 1 0.35 

saithe 1203 4 BCFSubcarangiform 12   1.36                 3 1 0.4 

blackspot grenadier 1204 1 BCFSubcarangiform 12           200 500       2 1   

roundnose grenadier 1204 2 BCFSubcarangiform 12           180 2600       2 1 1.1 

slickhead 1205 1 BCFSubcarangiform 12           500 2000       2 2   

greatbarracuda 1206 1 BCFSubcarangiform 12   12.00       1 100       2 3 1.4 

cisco 
1207 1 

    
0.23 

            
1.57 

2037.06 
7.566 

3 2 

0.282 

(11) 

lake whitefish 1207 2 
BCFSubcarangiform 12 

0.46 
            

1.77 
620.923 

5.2 
3 2 

0.3044 

(11) 

chum salmon 
1207 

3 BCFSubcarangiform 12 

0.95(3

)   
      

    
  

  18.85 3 3 
0.685 
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4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 
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Dept

h 
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Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

rainbow trout 
1207 4 

BCFSubcarangiform 12       
0.17 

          
6.084 

3 3 

0.2415 

(11) 

rainbow trout 1207 4 BCFSubcarangiform 12 0.28     0.17     200 2.84 743.838 6.084 3 3 0.291 

rainbow trout 1207 4 BCFSubcarangiform 12 0.96     0.17   0 200 2.35 262.19 6.084 3 3 0.6 

rainbow trout 1207 4 BCFSubcarangiform 12 1.92     0.17     200     6.084 3 3 1.2 

rainbow trout 1207 4 BCFSubcarangiform 12   0.75               6.084 3 3 0.04 

sockeye salmon 1207 5 BCFSubcarangiform 12 0.31             2.35 721.727 5.408 3 3 0.188 

sockeye salmon 1207 5 BCFSubcarangiform 12 0.28             3.92 479.025 5.408 3 3 0.1 

brook charr 
1207 

6 BCFSubcarangiform 12 
0.26 

  
      

    
- 

  18.85 3 3 

0.258 

(11) 

lake sturgeon 1301 1 BCFCarangiform 13   0.43                 2 1 0.16 

flying fish 1302 1 BCFCarangiform 13             20       2 2   

silver dollar 1303 1 BCFCarangiform 13     

0.013

1               4 3   

south American pilchard 1304 1 BCFCarangiform 13   0                 3 3 0.14 

largescale mullet 1305 1 BCFCarangiform 13 1.45     0.34           3.9 3 2 0.726 

largescale mullet 1305 1 BCFCarangiform 13 0.52     0.34   10 10     3.9 3 2 0.26 

largescale mullet 1305 1 BCFCarangiform 13 0.21             6.57 274.818 3.9 3 2 0.105 

elephantnose fish 1306 1 BCFCarangiform 13 0.23       0.04         3.79 2 3 0.35 

yellowtail kingfish 1307 1 
BCFCarangiform 13 

0.67 
            

1.45 
    3 3 

0.5752 

(11) 

largemouth bass 1308 1 BCFCarangiform 13 0.42             2.06 323.625 2.88 3 2 0.225 

smallmouth bass 
1308 

2         

0.026

1               3 2   

Nile tilapia 1309 1 BCFCarangiform 13 1.41     0.10   5 20     0.4602 4 3 0.725 

Nile tilapia 1309 1 BCFCarangiform 13 0.41             2.06   0.4602 4 3 0.21 

striped bass 1310 1 BCFCarangiform 13 0.43     0.26   30 30 3.14 112.329 1.56 3 2 0.254 
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5.Energetics 6.Body Characteristics 
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e 
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-No 
Swimming Mode 

Swi

m 
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e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-
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w 

(/L) 
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Dept

h 
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Dept

h 
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(J/(kg*m)

) 
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e (h) 

FatTissue 
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e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

bluefish 1311 1 BCFCarangiform 13 0.51     0.14     200 3.53 96.882 1.794 3 3 0.254 

bluefish 1311 1 BCFCarangiform 13 1.20     0.14   0 200 3.58 40.5998 1.794 3 3 0.6 

Atlantic mackerel 1312 1 BCFCarangiform 13 

0.34(2

)   
      

    
  

  
7.2228 

3 2 

0.3209 

(11) 

Atlantic mackerel 1312 1 BCFCarangiform 13   5.58       0 1000     7.2228 3 2 0.31 

chub mackerel 1312 2 BCFCarangiform 13   0               7.2228 3 2 0.3 

Pacific jack mackerel 1401 1 BCFThunniform 14   0.77                 3 2 0.05 

dolphinfish 1402 1 BCFThunniform 14     

0.013

4               3 3   

black marlin 1403 1 BCFThunniform 14 

1.26(1

)   
      

    
  

  
2.5 

2 2 
3.68(11) 

Indo-Pacific sailfish 1403 2 BCFThunniform 14   35.07       0 200     0 2 3 3.4 

skipjack tuna 1404 1 BCFThunniform 14 0.56             3.24 133.745 2.496 3 2 0.34 (11) 

skipjack tuna 1404 1 BCFThunniform 14 0.72             2.94 114.638 2.496 3 2 0.6 (11) 

Pacific bonito 
1404 2 BCFThunniform 14 

0.60 
            

2.65 
  2.496 3 2 

0.449 

(11) 

yellowfin tuna 1404 3 BCFThunniform 14       0.47           
2.496 

3 2 

0.347 

(11) 

yellowfin tuna 1404 3 BCFThunniform 14 1.35     0.47   1 1000 0.47 380.188 2.496 3 2 1.65 

yellowfin tuna 1404 3 BCFThunniform 14 2.15     0.47     1000 0.4728 238.723 2.496 3 2 2.39 

yellowfin tuna 1404 3 BCFThunniform 14 1.3             
  

  
2.496 

3 2 

1.809 

(11) 

bluefin tuna (northern) 1404 4 BCFThunniform 14 2.76 15.00   0.49     985     2.548 3 2 2.3 

bluefin tuna (northern) 1404 4 BCFThunniform 14   21.4               2.548 3 2 2.3 

swordfish 1405 1 BCFThunniform 14 2.25 24.86       0 800       2 3 2.026 

diaphanous hatchetfish 1501 1 BCFOstraciiform 15           400 3676     3.85 4 3 0.055 

silver hatchet fish 1501 2               250 650     3.85 4 3   

striped burrfish 
1601 1 

UMPFDiodontiform 22 
0.51 

  
      

    
1.57 

  3.85 4 1 

0.216 

(11) 
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5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa
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m 
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e 
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[m/s] 

Uma

x 
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h 
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e (h) 

FatTissue 
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e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

boxfish  1602 1 UMPFDiodontiform 22     

0.049

3             3.85 4 2.5   

whitespotted boxfish 1602 2 UMPFDiodontiform 22 0.28 2.25   0.38 0.00 1 30     3.85 4 2.5 0.25 

whitemargin unicornfish 1701 1 OMPFLabriform 23           1 122     3.85 3   0.36 

ocean surgeonfish 1701 2         

0.003

9   

0.01

1         3.85 4 3 0.35 

pumpkinseed 1702 1 OMPFLabriform 23 0.6       0.05   15     6.53 4 3 0.4 

pumpkinseed 1702 1 OMPFLabriform 23 0.18       0.05     3.34 1055.99 6.53 4 3 0.119 

shiner perch 1703 1 OMPFLabriform 23 0.14             3.83 94.2849 0.52 4 3   

shiner perch 1703 1 OMPFLabriform 23 0.26             3.14 61.925 0.52 4 3   

bluehead wrasse 1704 1 OMPFLabriform 23     

0.004

4   

0.02

2         
  

2 2 0.2 

señorita 1704 2     0.20             3.43     3 3   

beaugregory damselfish 1705 1 OMPFLabriform 23     

0.002

6   

0.02

6         
  

4 3 0.1 

angelfish 1705 2         

0.004

6   

0.02

3         
  

4 3 0.2 

snailfish 1706 1 OMPFLabriform 23           3 400       2 2 0.14 

oarfish 1801 1 UMPFAmiiform 31           20 1000       1 3   

black ghost 1802 1 UMPFGymnotiform 32 0.37       0.03         3.85 2 3 0.5 

foureye butterflyfish 1901 1 UMPFBalistiform 33     

0.003

3   

0.02

2           4 3 0.15 

picasso triggerfish  1902 1 UMPFBalistiform 33 0.27             1.74     4 3 0.2 (11) 

snailfish(new) 1903 1 UMPFBalistiform 33 1.20 2.00       7500 7500       1 2.5 0.15 

ocean sunfish 1904 1 

OMPFTetraodontifor

m 34 
0.7(1) 

  
      

    
  

  3.85 4 3 

0.945 

(11) 

frilled shark 2101 1 BCFAnguilliform 11           50 1500       3 2 1.96 

dogfish 2102 1 BCFAnguilliform 11     

0.039

1               3 3   



 

224 

 

1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 
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e 

Body 
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Cross-

Sectio

n 

TL (m) 

cookie cutter shark 2103 1 BCFAnguilliform 11           1 3700       2 3 0.42 

mustelus henlei 2201 1 BCFSubcarangiform 12   0                 2 2 0.24 

leopard shark 2201 2 BCFSubcarangiform 12   0                 2 2 0.98 

spookfish (chimera) 2202 1 BCFSubcarangiform 12           330 1490       2 1   

whale shark 2203 1 BCFSubcarangiform 12           0 700       2 2 10 

bull shark 2301 1 BCFCarangiform 13   0                 3 2 2 

blacktip reef shark 2301 2 BCFCarangiform 13   0                 2 2 0.97 

lemon shark 2301 3 BCFCarangiform 13 0.85     0.30   0 92       3 2 3.4 

lemon shark 2301 3 BCFCarangiform 13   0                 3 2 2 

hammerhead shark 2304 1 BCFCarangiform 13 0.94     0.45     512       2 2 4.3 

hammerhead shark 2304 1 BCFCarangiform 13 -     0.45     512       2 2 4.3 

bonnethead shark 2304 2 BCFCarangiform 13 
- 

            
1.6736 

  3.08 2 2 

4.8765 

(11) 

bonnethead shark 2304 2 BCFCarangiform 13 

0.28(2

)             
5.06 

211.353 3.08 2 2 

0.334182

8 

bonnethead shark 2304 2 BCFCarangiform 13 

0.48(2

)             
  

  3.08 2 2 

1.059473

5 

basking shark 2305 1 BCFCarangiform 13 1.8     0.97   0 2000       2 1 9 

basking shark 2305 1 BCFCarangiform 13 
1.15 

  
  

0.97       
  

    2 1 

5.2626 

(11) 

nurse shark 2306 1 BCFCarangiform 13   0                 2 2 2 

white shark 2401 1 BCFThunniform 14 

0.86(1

)             
  

    3 1 
1.69 (11) 

giant manta ray 2601 1 UMPFRajiform 21       0.27   0 120       5 3.5 4.5 

spotted eagle ray 2602 1 UMPFRajiform 21           1 80       5 3.5 1.23 

dugong 3301 1 BCFCarangiform 13           0 20       3 1 3.3 

bowhead whale 3401 1 BCFThunniform 14 2.11 4.61                 3 1 18 

north Atlantic right whale 3401 2 BCFThunniform 14   4.47       0 305     40.5 3 1 6.1 
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n 
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minke whale 3402 1 BCFThunniform 14 2.11 7.24               15 3 1   

sei whale 3402 2 BCFThunniform 14 2.31 13.30               18 3 1 14 

bryde's whale 3402 3 BCFThunniform 14 2.31 8.23       0       23 3 1 13 

blue whale 3402 4 BCFThunniform 14 6.20 15.44       0 500     27 3 1 27 

fin whale 3402 5 BCFThunniform 14 2.51 10.30       0 230     24 3 1   

humpback whale 3402 6 BCFThunniform 14 2.63 4.14   0.82   0 148     27 3 2 15.2 

grey whale 3403 1 BCFThunniform 14 1.57 4.41       0 170     29 3 1 14 

grey whale 3403 1 BCFThunniform 14 2.25             0.39 3213.04 29 3 1 11.5 

beluga whale 3404 1 BCFThunniform 14 1.75 6.13   0.17   0 647     25 3 1 5 

sperm whale 3405 1 BCFThunniform 14 1.75         0 3000 0.60 3055.56 33 3 1 18 

beaked whale 3406 1 BCFThunniform 14           0 1888       3 1 7 

killer whale 3407 1 BCFThunniform 14 2.80 15.42   0.18   0 260 1.30 587.607 22 3 1 4.76 

killer whale 3407 1 BCFThunniform 14 -     0.18     260 -   22 3 1 9.8 

killer whale 3407 1 
BCFThunniform 14 

3.00 
            

0.90 
792.181 

22 
3 1 

5.840254

6 

killer whale 3407 1 
BCFThunniform 14 

3.00 
            

1.00 
712.963 

22 
3 1 

6.650208

8 

killer whale 3407 1 
BCFThunniform 14 

3.10 
            

0.75 
919.952 

22 
3 1 

7.399911

8 

killer whale 3407 1 
BCFThunniform 14 

3.10 
            

0.84 
821.386 

22 
3 1 

5.789728

1 

false killer whale 3407 2 BCFThunniform 14 3.14 8.03   0.15           22 3 1 3.75 

commerson’s dolphin 3407 3 BCFThunniform 14       0.16             3 1 1.7 

common dolphin 3407 4 BCFThunniform 14 2.82 8.03       0 280       3 1 2.6 

long-finned pilot whale 3407 5 BCFThunniform 14           0 1000       3 1 6.1 

white sided dolphin 3407 6 BCFThunniform 14 3.42 7.56   0.23             3 1 2.8 

Atlantic spotted dolphin 3407 7 BCFThunniform 14 0.80         0 2200     22 3 1 2 

bottlenose dolphin 3407 8 BCFThunniform 14 2.39 4.10   0.19   0 535 0.68 1313.88 22 3 1 3.8 
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Form 
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n 
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bottlenose dolphin 
3407 8 

BCFThunniform 14 
2.5 

            
1.16 

737.548 
22 

3 1 

3.633140

6 

bottlenose dolphin 
3407 8 

BCFThunniform 14 
2.1 

            
1.3 

783.476 
22 

3 1 

3.405916

4 

Pacific bottlenose dolphin 3407 8 BCFThunniform 14           0 50     22 3 1 3.8 

harbour porpoise 3408 1 
BCFThunniform 14 

1.40 
            

2.41 
    3 1 

1.476 

(11) 

harbour porpoise 3408 1 BCFThunniform 14 2.03 6.13                 3 1 2 

dall's porpoise 3408 2 BCFThunniform 14   15.43       0 550       3 1 2 

sea otter 3501 1 BDCF 16 0.80             12.60 212.191 22 3 1 1.11 (11) 

sea otter 3501 1 BDCF 16           0 95       3 1 1.48 

walrus 3502 1 BDCF 16           0 90       3 1 3.6 

grey seal  3503 1 
BDCF 16 

1.30 
            

3.90 
403.654 21.05 3 1 

1.594316

1 

weddell seal 3503 2 BDCF 16           0 700       3 1 2.9 

weddell seal 
3503 2 

BDCF 16 
1.5(1) 

  
      

    
 

    3 1 

2.856245

2 

northern elephant seal 
3503 3 

BDCF 16 
1.8(1) 

  
      

    
 

    3 1 

1.023377

6 

northern elephant seal 3503 3 BDCF 16           0 1581      3 1 5 

southern elephant seal 3503 4 BDCF 16           0 1255      3 1 5.8 

southern elephant seal 
3503 4 

BDCF 16 
1.3(1) 

  
      

    
 

    3 1 

3.714087

2 

harbour seal 3503 5 BDCF 16 1.25             2.45 668.254 21.05 3 1 1.25 

harbour seal 3503 5 BDCF 16 1.61             3.60 353.093 21.05 3 1 1.3 

harbour seal 3503 5 BDCF 16 2.08             2.26 435.357 21.05 3 1 1.5 

harbour seal 3503 5 
BDCF 16 

2.20 
            

  
  21.05 3 1 

1.099249

8 

harbour seal  3503 5 BDCF 16           0 90     21.05 3 1 1.9 
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CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

baikal seal 
3503 

6 BDCF 16 
1.1(1) 

  
      

       21.05 3 1 

1.495 

(11) 

muskrat 3504 1 BDCF 16 0.75             21.40     3 1   

Antarctic fur seals 3701 1 OMPFLabriform 23 

1.99(1

)   
      

    
  

    3 1 

2.057664

8 

northern fur seal 3701 2 OMPFLabriform 23           0 70       3 1 2.1 

steller sea lion 3701 3 OMPFLabriform 23 3.6               21.05 3 1 3 

steller sea lion 3701 3 OMPFLabriform 23 1.90             3.50 307.749 21.05 3 1 1.857173 

steller sea lion 3701 3 OMPFLabriform 23 1.90             3.50 307.749 21.05 3 1 1.851163 

steller sea lion 
3701 3 OMPFLabriform 23 

1.90 
            

4.30 
250.493 21.05 3 1 

1.743824

1 

steller sea lion 
3701 3 OMPFLabriform 23 

1.90 
            

5.30 
203.23 21.05 3 1 

1.711468

8 

steller sea lion (4) 3701 3 OMPFLabriform 23 1.90           424 3.50 307.749 21.05 3 1 1.851163 

California sea lion 3701 4 OMPFLabriform 23       0.09           21.05 3 1 2.4 

California sea lion 
3701 4 OMPFLabriform 23     

0.156

4             21.05 3 1 1.85 (11) 

California sea lion 3701 4 OMPFLabriform 23 1.6     0.11       2.4 532.95 21.05 3 1 1.08 (11) 

California sea lion 3701 4 OMPFLabriform 23 1.66     0.11       2.55 483.47 21.05 3 1 1.31 

California sea lion 3701 4 OMPFLabriform 23 2     0.11       2.3 444.897 21.05 3 1 1.05 (11) 

California sea lion 3701 4 OMPFLabriform 23 2.6     0.11       2.8 281.116 21.05 3 1 1.08 (11) 

California sea lion 3701 4 OMPFLabriform 23       0.11           21.05     1.89 

asian small- clawed otters 3702 1 OMPFLabriform 23 1             14.42 148.328 22 3 1   

north American mink 3702 2 OMPFLabriform 23 0.75             41.10 69.3881 22 3 1   

emperor penguin 4701 1 OMPFLabriform 23 3.00 3.98       0 564     16.65 3 1 1.1 

emporer penguin 4701 1 OMPFLabriform 23 1.7(1)                 16.65 3 1   

king penguin 4701 2 OMPFLabriform 23 2.1(1)         0 318     16.65 3 1 0.9(1) 
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1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

little penguin 4701 3 OMPFLabriform 23 0.70             12.65 182.806 16.65 3 1 0.4 

little penguin 4701 3 OMPFLabriform 23 1.8             11.1 81.0185 16.65 3 1   

little penguin 4701 3 OMPFLabriform 23 1.8(1)             11.10 81.0185 16.65 3 1   

adelie penguin 4701 4 OMPFLabriform 23 2.2             4.9 150.162 16.65 3 1   

adelie penguin 4701 4 OMPFLabriform 23 2.0(1)             4.90 165.179 16.65 3 1   

chinstrap penguin 4701 5 OMPFLabriform 23 2.4             3.7 182.292 16.65 3 1   

chinstrap penguin 4701 5 OMPFLabriform 23 2.3(1)             3.70 190.217 16.65 3 1   

gentoo penguin 4701 6 OMPFLabriform 23 1.8             7.6 118.33 16.65 3 1 0.75 

gentoo penguin 4701 6 OMPFLabriform 23 2.3(1)             7.60 92.6058 16.65 3 1 0.75 

gentoo pinguin 4701 6 OMPFLabriform 23                   16.65 3 1 0.75 

African penguin 4701 7 OMPFLabriform 23 2.00             15.50 52.2177 16.65 3 1 0.65 

African penguin 4701 7 OMPFLabriform 23 0.86             7.65 245.99 16.65 3 1 0.65 

humboldt penguin 4701 8 OMPFLabriform 23 1.50     0.24       6.80 158.701 16.65 3 1 0.65 

macaroni penguin 4701 9 OMPFLabriform 23 2.0(1)                 16.65 3 1   

marine iguana 5101 1 BCFAnguilliform 11           0 12       3 2 1.3 

marine iguana (jouvenile) 5101 1 BCFAnguilliform 11                     3 2   

leatherback turtle 5701 1 OMPFLabriform 23 0.84 2.80       0 1230       5 3.5 1.82 

green sea turtle 5702 1 OMPFLabriform 23 0.49             3.04     5 3.5 0.29 

painted turtle 5703 1 OMPFLabriform 23       0.54 

0.04

2           5 3.5 0.25 

slender inshore squid (arrow 

squid) 6001 1 JetForm 41           20 370       6     

opalescent inshore squid 6001 2 JetForm 41 0.37             12.46     6   0.2 

giant squid 6002 1 JetForm 41                     6     

dana octopus squid 6003 1 JetForm 41 2.50         240 940     1.4 6   2.3 

whip-lash squid 6004 1 JetForm 41           700 3500       6     
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1.Taxonomy 2.Swimming 3.Manoeuvrability  
4.Depth 

Capability [m] 
5.Energetics 6.Body Characteristics 

CommonName 

Taxa 

Cod

e 

Taxa

-No 
Swimming Mode 

Swi

m 

Mod

e 

Uopt 

[m/s] 

Uma

x 

[m/s] 

R-

Yaw 

(m) 

R-

Ya

w 

(/L) 

R-

path 

(L) 

Min 

Dept

h 

Max 

Dept

h 

COT-Opt 

(J/(kg*m)

) 

Enduranc

e (h) 

FatTissue 

Percentag

e 

Body 

Form 

Cross-

Sectio

n 

TL (m) 

sea cucumber1 7001 1 Other 51           200 6000             

sea cucumber2 7001 2 Other 51           100 4000             

giant sea flea 7002 1 Other 51           1000 7000             

pram bug 7003 1 Other 51           100 600             

Japanese giant spider crab 7004 1 Other 51           300 400             

deep-sea crab 7005 1 Other 51           300 500             

soldier striped shrimp 7006 1 Other 51           200 750             

giant isopod 7007 1 Other 51           200 2000             

giant red mysid 7008 1 Other 51           1300 2950       5     

giant sea spider 7009 1 Other 51           5 400             

sea spider 7010 1 Other 51           15 24             

deep-sea jellyfish 7011 1 JetForm 41           200 1000             

salp 7012 1 Other 51           300 2000             
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

fangtooth 1001 1   0.1       41.1                   

alfonsine 1002 1                               

orange roughy  1003 1                               

deep-sea anglerfish 1004 1                               

football fish 1005 1           48.7                   

black sea devil 1006 1                               

lantern fish 1007 1                               

barreleye  1008 1                               

barents sea capelin 1009 1 87.88 0.027 
0.0037 3.14   

13.3

1     1.724 
  

          

black swallower 1010 1                               

parrotfish 
1011 1 90.6 

0.232(1

) 

 0.0309

0 2.87   30.3     1.161 
  

          

spotted seatrout 1012 1 
88.5 

0.35 
 0.0131

0  3.000   18.7     
1.411   

          

red drum 1012 2 86.4 0.35 0.0087 3.06   24.1     1.488             

sheepshead 1013 1 
79.6 0.35 

0.0147

8  3.045   38.1     1.441 
  

          

bristlemouth  1014 1           12.3                   

silver eel 1101 1 96.34 5.106 0.0009 3.18 4.57 6       Eel_like 3.471 1.6638 2.3591639 1.2809 74.983 

silver eel 1101 1 96.34 0.075 0.0011 3.13 4.57 6       Eel_like 3.471 1.6638 2.3591639 1.2809 74.983 

silver eel 1101 1 96.34 0.914     4.57 6       Eel_like 3.471 1.6638 2.3591639 1.2809 74.983 

silver eel (european) 1101 1 96.34 1.18 0.0008 3.22 4.57 6       Eel_like 3.471 1.6638 2.3591639 1.2809 74.983 

Japanese eel 1101 2 100 
0.54 

0.0005

3 3.268 5.5 6       
Eel_like 

3.471 1.6638 2.3591639 1.2809 74.983 

slender snipe eel 1102 1                               

tripod fish 1103 1   9.535       

11.1

6       
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

Mediterranean spiderfish 1103 2   4.12       12                   

Pacific hagfish 1104 1                               

deep-sea cusk eel 1105 1                               

cusk eel4 1105 2                               

cusk eel3 1105 3           20.3                   

snake blenny  1105 4   0.065       12.1                   

blackedge cusk 1105 5           14.6                   

golden cusk  1105 6           14.7                   

midwater eelpout 1106 1   0.01                           

sea lamprey 1107 1 96.2 0.449     4.07 7.2 4.1 9.29 0.783 Truncate       2.3 10.99 

Japanese flounder 1108 1 88.9 2.2 0.012 3 6.25 37 23.84 12.37 2.243 Truncate 10.25 7.46 1.748419 6.99 75.39 

pelican eel 1109 1   0.6       4.6                   

Pacific viper fish 1110 1   0.023                           

viper fish 1110 2   8.2       12.7                   

barbeled dragonfish 1110 3           

11.9

9794

0267

7652       

  

          

scaly dragonfish 1110 4                               

common dace 1201 1                               

goldfish 1201 2 81.08 0.017 0.0149 3.047 12.3 

22.4

3 38.914 19.328 
1.9 Truncate 

16.86 7.3488 2.8071752 12.214 33.489 

goldfish 1201 2 81.08 
0.1 

0.0148 3.07 12.3 

22.4

3 38.914 19.328 
1.9 Truncate 

16.86 7.3488 2.8071752 12.214 33.489 

goldfish 1201 2   

0.0058 

(11) 0.0148 3.07 12.3 

22.4

3 38.914 19.328 
1.9 Truncate 

16.86 7.3488 2.8071752 12.214 33.489 

goldfish 1201 2 81.08 0.003 0.0245 2.732 12.3 

22.4

3 38.914 19.328 
1.9 Truncate 

16.86 7.3488 2.8071752 12.214 33.489 
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

carp 1201 3 
82.7 

2 0.0105 3.14 9.45 

24.4

2 26.036 19.13 1.846 
Forked 

19.09 6.8239 3.5760251 11.874 32.825 

carp 1201 3 
82.7 0.11 

0.0214 2.95 9.45 

24.4

2 26.036 19.13 1.846 
Forked 

19.09 6.8239 3.5760251 11.874 32.825 

carp 1201 3 
82.7 0.56 

0.0214 2.95 9.45 

24.4

2 26.036 19.13 1.846 
Forked 

19.09 6.8239 3.5760251 11.874 32.825 

roach 1201 4 82.6 4.7 0.053 3.35 8.7 26.1 22.96 15.578 1.49 Forked 15.42 4.8362 4.1975869 15.384 14.649 

roach 1201 4 82.6 0.11 0.0074 3.21 8.7 26.1 22.96 15.578 1.49 Forked 15.42 4.8362 4.1975869 15.384 14.649 

roach 1201 4 82.6 0.34 0.0074 3.21 8.7 26.1 22.96 15.578 1.49 Forked 15.42 4.8362 4.1975869 15.384 14.649 

pike 1202 1 87.5 0.408 0.0045 3.09 7.87 14.9 20.43 15.8 1.921 Forked 12.92 9.44 1.5822408 15.66 13.15 

Atlantic cod 1203 1 92.5 
0.621(1

) 0.0085 3.03 13 

17.2

9 15.035 16.645 1.297 
Truncate 

12.78 5.8745 2.9518411 10.786 12.989 

Atlantic cod 1203 1 
92.94 

0.704 

(11)     8.54 

20.2

9 15.035 16.645 1.635 
Truncate 

12.78 5.8745 2.9518411 10.786 12.989 

Atlantic cod 1203 1 
92.94 

0.255 

(11)     8.54 

20.2

9 15.035 16.645 1.635 
Truncate 

12.78 5.8745 2.9518411 10.786 12.989 

haddock 1203 2 89.7 
0.156 0.0062 

3.1150  9.44 

22.4

2 15.035 16.645 1.635 
Truncate 

12.78 5.8745 2.9518411 10.786 12.989 

haddock 1203 2 89.7 
15 0.0062 

3.1150  9.44 

22.4

2 15.035 16.645 1.635 
Truncate 

12.78 5.8745 2.9518411 10.786 12.989 

whiting 1203 3 89.9 0.224 0.006 3.07 9.08 15.7 11.96 14.022 1.054 Truncate 11.32 11.82 1.1422927 12.455 13.237 

saithe 1203 4 91.5 0.485 0.0095 2.99   22.6     1.663 Forked           

saithe 1203 4                   Forked           

saithe 1203 4                   Forked           

blackspot grenadier 1204 1                               

roundnose grenadier 1204 2   1.69       14.6                   

slickhead 1205 1           17.1                   

greatbarracuda 1206 1   19.41                           

cisco 1207 1 85 0.28 0.0081 3.13 14.4 20.1     3.18             
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

lake whitefish 1207 2 85.2 0.364 0.0063 3.21   21.7     1.8             

chum salmon 1207 3 91.3 3.75     14.5 26.3 25.23 13.28 3.175 Truncate 12.12 5.53 2.7990549 11.08 11.78 

rainbow trout 
1207 4 

  0.174 0.0089 3.096   

22.8

1 24.68 14.04 
3.131 Truncate 

9.82 6.06 2.4969549 9.31 12.4 

rainbow trout 1207 4 89 0.264 
0.01 3.02 14 

22.8

1 24.68 14.04 
3.131 Truncate 

9.82 6.06 2.4969549 9.31 12.4 

rainbow trout 
1207 4 89 

2.344 

(11) 0.01 3.02 14 

22.8

1 24.68 14.04 
3.131 Truncate 

9.82 6.06 2.4969549 9.31 12.4 

rainbow trout 1207 4 89 13.9   
  14 

22.8

1 24.68 14.04 
3.131 Truncate 

9.82 6.06 2.4969549 9.31 12.4 

rainbow trout 1207 4 
  

0.0011 

(11)     14 

22.8

1 24.68 14.04 
3.131 Truncate 

9.82 6.06 2.4969549 9.31 12.4 

sockeye salmon 1207 5 89.4 0.055 
0.0155

5 3 16.6 

22.8

2 24.68 14.04 3.131 
Truncate 

9.82 6.06 2.4969549 9.31 12.4 

sockeye salmon 1207 5 89.4 0.009 
0.0155

5 3 16.6 

22.8

2 24.68 14.04 3.131 
Truncate 

9.82 6.06 2.4969549 9.31 12.4 

brook charr 1207 6 90.8 0.2 0.0102 3.04   26.4     1.538             

lake sturgeon 1301 1                               

flying fish 1302 1                               

silver dollar 1303 1   0.005                           

south American pilchard 1304 1                               

largescale mullet 1305 1 82.7 4.53 0.0167 2.962 16.8 22.1 25.65 16.63 2.631 Forked 10.72 4.446 2.8912949 12.347 9.585 

largescale mullet 1305 1 82.7 0.216 0.0167 2.962 16.8 22.1 25.65 16.63 2.631 Forked 10.72 4.446 2.8912949 12.347 9.585 

largescale mullet 1305 1 82.7 0.008     16.8 22.1 25.65 16.63 2.631 Forked 10.72 4.446 2.8912949 12.347 9.585 

elephantnose fish 1306 1 79 0.75     11.3 

20.6

2 16.98 13.51 
1.914 Forked 

12.3 7.37 1.8821846 9.78 21.18 

yellowtail kingfish 1307 1 86.8 2.1(1) 
0.028 

(12) 2.77   20     3.49 
  

          

largemouth bass 1308 1 87.4 0.15 0.0107 3.11 16.9 29.1 25.1 16.66 2.46 Forked 12.39 11.57 1.3265823 3.59 14.34 

smallmouth bass 1308 2   0.162                           
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

Nile tilapia 1309 1 82.7 7.15 0.0366 2.844 17.3 36.4 26.29 14.02 1.919 Truncate 25.84 12.19 3.7364611 11.17 52.14 

Nile tilapia 1309 1 82.7 0.08 0.0347 2.87 17.3 36.4 26.29 14.02 1.919 Truncate 25.84 12.19 3.7364611 11.17 52.14 

striped bass 1310 1 89.5 0.212 0.0065 3.09   22.5     2.3             

bluefish 
1311 1 

87 
0.225 

0.0135

6 2.899   

25.3

7     
2.66 ` 

          

bluefish 
1311 1 

87 1.94 

0.0135

6 2.899   

25.3

7     
2.66   

          

Atlantic mackerel 1312 1 90.2 0.3 0.0062 3.11 12.4 17.3 21.78 7.36 5.267 Forked 9.23 4.16 3.0923013 8.51 13.43 

Atlantic mackerel 1312 1 90.2       12.4 17.3 21.78 7.36 5.267 Forked 9.23 4.16 3.0923013 8.51 13.43 

chub mackerel 1312 2 
90.2 

0.288 

(11)     12.4 17.3 21.78 7.36 5.267 
Forked 

9.23 4.16 3.0923013 8.51 13.43 

pacific jack mackerel 1401 1                               

dolphinfish 1402 1   26.27                           

black marlin 1403 1 
82.4 180 

0.0045

8 2.96 10.8 16.1 37.49 7.57 9.039 
Lunate 

15.66 3.51 6.698596 10.33 49.73 

Indo-Pacific sailfish 1403 2           

10.1

9       
  

          

skipjack tuna 1404 1 89.9 0.6 0.0074 3.26 13.8 23.9 26.82 5.83 7.743 Lunate 12.43 6.56 4.4119046 13.15 24.51 

skipjack tuna 1404 1 89.9 3.8 0.0074 3.26 13.8 23.9 26.82 5.83 7.743 Lunate 12.43 6.56 4.4119046 13.15 24.51 

pacific bonito 1404 2 88.8 1.19(1) 0.0105 3.06 10.5 20.9 20.96 6.19 4.707 Lunate 7.35 4.91 2.1044994 9.47 28.53 

yellowfin tuna 1404 3 87.5 0.835     19.7 26.3 27.65 5.73 7.793 Lunate 24.7 6.14 8.8 12.12 20.6 

yellowfin tuna 1404 3 87.5 52.95 0.0147 3.013 19.7 26.3 27.65 5.73 7.793 Lunate 24.7 6.14 8.8 12.12 20.6 

yellowfin tuna 1404 3 87.5 253.3 0.0214 2.974 19.7 26.3 27.65 5.73 7.793 Lunate 24.7 6.14 8.8 12.12 20.6 

yellowfin tuna 1404 3 87.5 77.8 (1) 0.0297 2.91 19.7 26.3 27.65 5.73 7.793 Lunate 24.7 6.14 8.8 12.12 20.6 

bluefin tuna (northern) 1404 4 89.3 244 (1) 0.0187 2.93 21 28.7 25.26 7.04 5.588 Lunate 17.01 5.31 4.9383871 9.57 19.85 

bluefin tuna (northern) 1404 4   244 (1)     21 28.7 25.26 7.04 5.588 Lunate 17.01 5.31 4.9383871 9.57 19.85 

swordfish 1405 1 87.7 153 

0.0013

5 3.447   17 32.1 5.5988 5.21 
Lunate 
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

diaphanous hatchetfish 1501 1           69.5                   

silver hatchet fish 1501 2                               

striped burrfish 1601 1 84.9 0.35 0.0236 3.124 51.8 51.8 10.89 14.14 0.914 Truncate 12.05 21.08 0.6475028 14.46 15.01 

boxfish  1602 1   0.047                           

whitespotted boxfish 1602 2 80.7 0.5     27.8 

28.5

7 24.79 21.32 
1.481 Round 

16.84 12.93 1.4911431 13.26 15.63 

whitemargin unicornfish 1701 1   0.79       34                   

ocean surgeonfish 1701 2   0.004                           

pumpkinseed 1702 1 80.8 0.9 0.006 3.238 17 44.1 21.19 16.9 1.619 Forked 19.05 14.97 1.7152834 15.29 44.3 

pumpkinseed 1702 1 80.8 0.03 0.01 3.19 17 44.1 21.19 16.9 1.619 Forked 19.05 14.97 1.7152834 15.29 44.3 

shiner perch 1703 1   0.03                           

shiner perch 1703 1   0.035                           

bluehead wrasse 1704 1   0.003                           

señorita 1704 2   0.07                           

beaugregory damselfish 1705 1   0.004                           

angelfish 1705 2   0.009                           

snailfish 1706 1           15.2                   

oarfish 1801 1                               

black ghost 1802 1 87.91 0.42 0.0027 3.07 10 

17.3

4 3.429 12.093 0.284 
Pointed  

6.679 8.1526 0.851769 5.501 72.797 

foureye butterflyfish 1901 1   0.004                           

picasso triggerfish  1902 1 90 
0.143(1

) 
0.0522 2.641 

13.4 40 23.12 17.06 1.759 
Round 

11.94 10.06 1.5236037 9.79 8.35 

snailfish(new) 1903 1                               

ocean sunfish 1904 1 
82.93 48 

 0.0454

0  3.050 23 

66.9

1 55.62 17.06 3.762 
Round 

13.54 12.39 1.3740938 36.61 18.5 

frilled shark 2101 1                               
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

dogfish 2102 1   0.754                           

cookie cutter shark 2103 1           10.6                   

mustelus henlei 2201 1                               

leopard shark 2201 2                               

spookfish (chimera) 2202 1                               

whale shark 2203 1 81.6 4300     19.5 18.6 26.94 9.1 5.055 

Assymetr

ic 14.56 10.46 2.3113127 7.64 12.57 

bull shark 2301 1                               

blacktip reef shark 2301 2                               

lemon shark 2301 3 79.3 
254.3 

0.0053 3.16 14.7 13.8 12.11 14.12 
1.044 

Assymetr

ic Hi 14.76 11.96 2.3100159 8.05 9.66 

lemon shark 2301 3             12.11 14.12 1.044 

Assymetr

ic Hi 14.76 11.96 2.3100159 8.05 9.66 

hammerhead shark 2304 1 72.9 450     11.7 

22.7

3 16.18 11.72 1.922 

assymetri

c Hi 9.97 9.21 1.8716042 14.81 12.1 

hammerhead shark 2304 1 72.9 
450 - 

  11.7 

22.7

3 16.18 11.72 
1.922 

assymetri

c Hi 9.97 9.21 1.8716042 14.81 12.1 

bonnethead shark 2304 2 
73.6 800 

0.0006

9 3.372 9.66 

11.9

3 16.18 11.72 1.922 

assymetri

c Hi 9.97 9.21 1.8716042 14.81 12.1 

bonnethead shark 2304 2 
73.6 0.095 

0.0006

9 3.372 9.66 

11.9

3 16.18 11.72 1.922 

assymetri

c Hi 9.97 9.21 1.8716042 14.81 12.1 

bonnethead shark 2304 2 
73.6 4.65 

0.0006

9 3.372 9.66 

11.9

3 16.18 11.72 1.922 

assymetri

c Hi 9.97 9.21 1.8716042 14.81 12.1 

basking shark 2305 1 
84.6 

3600       13.7     
3.25 

Assymetr

ic           

basking shark 2305 1 
84.6 720(10) 

0.0049

4 3   13.7     
3.25 

Assymetr

ic           

nurse shark 2306 1                               

white shark 2401 1 
82.7 80 

0.0076

6 3.15 20 21.5 27.06 9.69 4.013 

Assymetr

ic 20.29 12.6 3.4665216 10.78 17.12 

giant manta ray 2601 1     0.0164 3                       
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

spotted eagle ray 2602 1   67.6 0.0059 3.13                       

dugong 3301 1   400                           

bowhead whale 3401 1 96.18 

22745 

(11) 0.0039 3                       

north Atlantic right whale 3401 2 96.18 4500     21.8 

21.8

3 37.39 10.49 6.029 Forked 15.64 10.08 2.0701557     

minke whale 3402 1 96.18                             

sei whale 3402 2 96.18 17000 0.0062 3                       

bryde's whale 3402 3 96.18 12000                           

blue whale 3402 4 96.18 1E+05 0.0064 3 15.7 15.7 21.521 7.0066 5.576 Forked 13.15 5.2322 3.922362 1.5038 3.7594 

fin whale 3402 5 96.18   0.005 3                       

humpback whale 3402 6 96.18 36287     23.8 

23.7

8 34.148 9.6438 3.947 Forked 30.81 8.8324 5.1471435     

grey whale 3403 1 96.18 33200     17.7 

17.7

4 24.41 8.3118 3.63 Forked 17.41 8.8836 2.9626013     

grey whale 3403 1 96.18 
15000 

0.0014 3.28 17.7 

17.7

4 24.41 8.3118 3.63 Forked 17.41 8.8836 2.9626013     

beluga whale 3404 1 93.92 1590     19.5 

18.7

5 25.19 10.3 3.096 Forked 10.05 8.7281 1.4741472     

sperm whale 3405 1 93.92 40800 0.0092 3                       

beaked whale 3406 1 93.92 2500                           

killer whale 3407 1 96.18 4500 0.208 2.577 15 15 25 8.19 3.791 Forked 11.66 9.0261 2.0641234 19.147 13.269 

killer whale 3407 1 96.18 8500 0.208 2.577 15 15 25 8.19 3.791 Forked 12.69 6.9718 2.0641234 19.147 13.269 

killer whale 3407 1 96.18 2800 0.208 2.577 15 15 25 8.19 3.791 Forked 12.69 6.9718 2.0641234 19.147 13.269 

killer whale 3407 1 96.18 3913 0.208 2.577 15 15 25 8.19 3.791 Forked 12.69 6.9718 2.0641234 19.147 13.269 

killer whale 3407 1 96.18 5153 0.208 2.577 15 15 25 8.19 3.791 Forked 12.69 6.9718 2.0641234 19.147 13.269 

killer whale 3407 1 96.18 2738 0.208 2.577 15 15 25 8.19 3.791 Forked 12.69 6.9718 2.0641234 19.147 13.269 

false killer whale 3407 2 96.18 379.7 0.0072 3 16 16 23 6.93 3.791 Forked 11.34 6.45 2.2584405 7.58 15.66 

commerson’s dolphin 3407 3 88.53 86                           
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

common dolphin 3407 4 88.53 209.2 0.0119 3                       

long-finned pilot whale 3407 5 88.53         24.4                   

white sided dolphin 3407 6 88.53                             

Atlantic spotted dolphin 
3407 7 

88.53 121.5     13.1 

13.0

8 24.8 8 3.919 Forked 8.24 5.48 2.2708227 12.97 12.73 

bottlenose dolphin 
3407 8 

88.53 650     14.6 

19.7

7 24.8 8 3.919 Forked 8.24 5.48 2.2708227 12.97 12.73 

bottlenose dolphin 
3407 8 

88.53 
176 

0.0036

7 3                       

bottlenose dolphin 
3407 8 

88.53 
145 

0.0036

7 3 14.6 

19.7

7 24.8 8 3.919 Forked 8.24 5.48 2.2708227 12.97 12.73 

Pacific bottlenose dolphin 3407 8 88.53 650                           

harbour porpoise 3408 1 88.53 42.5(1) 0.083 2.632                       

harbour porpoise 3408 1 88.53 94.49 0.083 2.632                       

dall's porpoise 3408 2 88.53 122.4                           

sea otter 3501 1   20 0.0147 3                       

sea otter 3501 1   45                           

walrus 3502 1   1900                           

grey seal  3503 1 86.9 104 
0.0522 2.86 20 20 22.268 15.921 1.951 

Round 

Feet 12.63 5.8197 0.4619053     

weddell seal 3503 2 86.9 450                           

weddell seal 3503 2 86.9 330 0.202 2.53                       

northern elephant seal 3503 3 86.9 33.5 0.0281 3.023                       

northern elephant seal 3503 3 86.9                             

southern elephant seal 3503 4 86.9 5000                           

southern elephant seal 
3503 4 86.9 236.7 

0.0046

2 3                       

harbour seal 3503 5 86.9 42.5 0.0404 2.89                       
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

harbour seal 3503 5 86.9 33 0.0404 2.89                       

harbour seal 3503 5 86.9 63 0.0404 2.89                       

harbour seal 3503 5 86.9 32 0.0404 2.89                       

harbour seal  3503 5 86.9 150                           

baikal seal 
3503 

6 
82.67 70.1 0.2585 2.4984 

29.3 

29.3

3 37.8 24.18 3.868 

Round 

Feet 21.27 8.7178 3.614382     

muskrat 3504 1   0.6                           

Antarctic fur seals 3701 1 
  34.5 

0.0039

6 3                       

northern fur seal 3701 2   270                           

steller sea lion 
3701 3 78.93 

650 
0.0363 2.89 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

steller sea lion 3701 3 78.93 140 0.0332 2.92 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

steller sea lion 
3701 3 78.93 

138.7 
0.0332 2.92 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

steller sea lion 
3701 3 78.93 

116.5 
0.0332 2.92 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

steller sea lion 
3701 3 78.93 

110.3 
0.0332 2.92 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

steller sea lion (4) 3701 3 78.93 138.7     23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 3701 4 78.93 390 0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 
3701 4 78.93 140 0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 3701 4 78.93 
23 

0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 3701 4 78.93 
22.5 

0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 3701 4 78.93 
21 

0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

California sea lion 3701 4 78.93 
23 

0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

California sea lion 3701 4 78.93 
137.8 

0.0039 3.3309 23 

23.0

1 21.069 14.942 1.95 

Round 

Feet 29.96 14.019 3.5596613     

asian small- clawed otters 3702 1   3.1(1)                           

north American mink 3702 2   1                           

emperor penguin 4701 1 100 33                           

emporer penguin 4701 1 100 24.5                           

king penguin 
4701 2 100 11.9 

        9.9611 22.125 0.894 

Round 

Feet 42.32 8.2722 5.92765     

little penguin 4701 3 100 1.2                           

little penguin 4701 3 100 1.2                           

little penguin 4701 3 100 1.2                           

adelie penguin 4701 4 100 4                           

adelie penguin 4701 4 100 4.2                           

chinstrap penguin 4701 5 100 3.8                           

chinstrap penguin 4701 5 100 3.8                           

gentoo penguin 
4701 6 100 5.5 

    28 28 9.9611 22.125 0.894 

Round 

Feet 42.32 8.2722 5.92765     

gentoo penguin 4701 6 100 5.5     
    9.9611 22.125 0.894 

Round 

Feet 42.32 8.2722 5.92765     

gentoo pinguin 
4701 6 100 

5.5         9.9611 22.125 0.894 

Round 

Feet 42.32 8.2722 5.92765     

African penguin 4701 7 100 3.2                           

African penguin 4701 7 100 3.17                           

humboldt penguin 
4701 8 96.42 

3.6     25 25.3 9.9611 22.125 0.894 

Round 

Feet 42.32 8.2722 5.92765     

macaroni penguin 4701 9 100 3.3                           

marine iguana 5101 1     0.0458 3                       
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1.Taxonomy 6.Body Characteristics 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 
Taxa 

Code 

Tax

a-

No 

EL 

(%TL

) 

Mass 

aMass_

L 

(Mass 

[gr]) 

bMass_

L  (TL 

[cm]) 

BW 

[%TL

] 

BH       

[ % 

TL] 

Rear 

Fin 

Span% 

Rear 

Fin 

Chord

% 

Rear fin Aspect 

Ratio 

(Span^2/Area) 

Rear fin 

type 

Side 

Fin 

Span% 

Side 

Fin 

Chord

% 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Top Fin 

Span% 

Top 

Fin 

Chord

% 

marine iguana (jouvenile) 5101 1                               

leatherback turtle 5701 1 100 612     53.2 31.7 19.331 13.541 1.941 

Round 

Feet 39.86 14.81 3.5960382     

green sea turtle 5702 1 100 1.15                           

painted turtle 5703 1 100                             

slender inshore squid (arrow 

squid) 6001 1                               

opalescent inshore squid 6001 2   0.041                           

giant squid 6002 1                               

dana octopus squid 6003 1 69.57 61.4     16.9 

16.8

5 16.854 39.326 0.857 Squid 31.21 56.18 1.1111111     

whip-lash squid 6004 1                               

sea cucumber1 7001 1                               

sea cucumber2 7001 2                               

giant sea flea 7002 1                               

pram bug 7003 1                               

Japanese giant spider crab 7004 1                               

deep-sea crab 7005 1                               

soldier striped shrimp 7006 1                               

giant isopod 7007 1                               

giant red mysid 7008 1                               

giant sea spider 7009 1                               

sea spider 7010 1                               

deep-sea jellyfish 7011 1                               

salp 7012 1                               
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

fangtooth 1001 1                           

alfonsine 1002 1                           

orange roughy  1003 1                           

deep-sea anglerfish 1004 1                           

football fish 1005 1                           

black sea devil 1006 1                           

lantern fish 1007 1                           

barreleye  1008 1                           

barents sea capelin 1009 1                           

black swallower 1010 1                           

parrotfish 1011 1                           

spotted seatrout 1012 1                           

red drum 1012 2                           

sheepshead 1013 1                           

bristlemouth  1014 1                           

silver eel 1101 1 0.0170826       1.2809 64.6231 0.02             

silver eel 1101 1 0.0170826       1.2809 64.6231 0.02             

silver eel 1101 1 0.0170826       1.2809 64.6231 0.02             

silver eel (european) 1101 1 0.0170826       1.2809 64.6231 0.02             

Japanese eel 1101 2 0.0170826       1.2809 64.6231 0.02             

slender snipe eel 1102 1                           

tripod fish 1103 1                           

Mediterranean 

spiderfish 1103 2   
      

                  

Pacific hagfish 1104 1                           



 

243 

 

1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

deep-sea cusk eel 1105 1                           

cusk eel4 1105 2                           

cusk eel3 1105 3                           

snake blenny  1105 4                           

blackedge cusk 1105 5                           

golden cusk  1105 6                           

midwater eelpout 1106 1                           

sea lamprey 1107 1 0.4181818                   4.01 24.64 0.3340278 

Japanese flounder 1108 1 0.116678 8.79 4.11 3.40821 7.94 54.75 1.151481             

pelican eel 1109 1                           

Pacific viper fish 1110 1                           

viper fish 1110 2                           

barbeled dragonfish 1110 3                           

scaly dragonfish 1110 4                           

common dace 1201 1                           

goldfish 1201 2 0.451006 15.902 10.8205 2.29522 13.327 14.8233 1.256848             

goldfish 1201 2 0.451006 15.902 10.8205 2.29522 13.327 14.8233 1.256848             

goldfish 1201 2 0.451006 15.902 10.8205 2.29522 13.327 14.8233 1.256848             

goldfish 1201 2 0.451006 15.902 10.8205 2.29522 13.327 14.8233 1.256848             

carp 1201 3 0.7014301 13.062 9.75205 2.1672 13.142 9.85764 2.030139             

carp 1201 3 0.7014301 13.062 9.75205 2.1672 13.142 9.85764 2.030139             

carp 1201 3 0.7014301 13.062 9.75205 2.1672 13.142 9.85764 2.030139             

roach 1201 4 2.1389866 10.682 6.99601 2.31672 12.684 9.41745 2.27123             

roach 1201 4 2.1389866 10.682 6.99601 2.31672 12.684 9.41745 2.27123             
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

roach 1201 4 2.1389866 10.682 6.99601 2.31672 12.684 9.41745 2.27123             

pike 1202 1 2.7130833 11.57 3.62 3.15125 11.45 11.18 1.327486             

Atlantic cod 1203 1 
1.3198241 8.8933 5.67688 4.08988 12.075 14.3775 7.539934       

10.57

8 20.756 1.022047 

Atlantic cod 1203 1 
1.3198241 8.8933 5.67688 4.08988 12.075 14.3775 7.539934       

10.57

8 20.756 1.022047 

Atlantic cod 1203 1 
1.3198241 8.8933 5.67688 4.08988 12.075 14.3775 7.539934       

10.57

8 20.756 1.022047 

haddock 1203 2 1.3198241 8.8933 5.67688 4.08988 12.075 14.3775 7.539934       

10.57

8 20.756 1.022047 

haddock 1203 2 1.3198241 8.8933 5.67688 4.08988 12.075 14.3775 7.539934       

10.57

8 20.756 1.022047 

whiting 1203 3 2.9261829 9.65 4.5 4.65845 5.9395 32.9761 0.308567       

8.235

7 20.749 1.1278734 

saithe 1203 4                           

saithe 1203 4                           

saithe 1203 4                           

blackspot grenadier 1204 1                           

roundnose grenadier 1204 2                           

slickhead 1205 1                           

greatbarracuda 1206 1                           

cisco 1207 1                           

lake whitefish 1207 2                           

chum salmon 1207 3 1.3246267 9.72 7.14 2.1936 9.39 12.99 1.081203             

rainbow trout 1207 4 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

rainbow trout 1207 4 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

rainbow trout 1207 4 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

rainbow trout 1207 4 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

rainbow trout 1207 4 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

sockeye salmon 1207 5 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

sockeye salmon 1207 5 1.1442389 10.16 7.25 2.10966 10.85 11.14 1.54532             

brook charr 1207 6                           

lake sturgeon 1301 1                           

flying fish 1302 1                           

silver dollar 1303 1                           

south American 

pilchard 1304 1   
      

                  

largescale mullet 1305 1 2.040754 
11.727 8.309 1.95219 

11.747 9.97 1.967902       

10.81

6 7.174 2.89693 

largescale mullet 1305 1 2.040754 
11.727 8.309 1.95219 

11.747 9.97 1.967902       

10.81

6 7.174 2.89693 

largescale mullet 1305 1 2.040754 
11.727 8.309 1.95219 

11.747 9.97 1.967902       

10.81

6 7.174 2.89693 

elephantnose fish 1306 1 0.7891131 7.93 4.44 2.49741 10.1 24.61 0.650201             

yellowtail kingfish 1307 1                           

largemouth bass 1308 1 0.2971662 11.25 4.87 2.87838 11.5 14.7 1.330617       8.56 19.49 0.518641 

smallmouth bass 1308 2                           

Nile tilapia 1309 1 0.2997307 11.26 13.56 1.25025 14.21 19.69 0.9728             

Nile tilapia 1309 1 0.2997307 11.26 13.56 1.25025 14.21 19.69 0.9728             

striped bass 1310 1                           

bluefish 1311 1                           

bluefish 1311 1                           

Atlantic mackerel 1312 1 1.5125334 7.26 5.05 3.17899 4.91 9.17 0.934785       5.34 9.09 1.228062 
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

Atlantic mackerel 1312 1 1.5125334 7.26 5.05 3.17899 4.91 9.17 0.934785       5.34 9.09 1.228062 

chub mackerel 1312 2 1.5125334 7.26 5.05 3.17899 4.91 9.17 0.934785       5.34 9.09 1.228062 

Pacific jack mackerel 1401 1                           

dolphinfish 1402 1                           

black marlin 1403 1 1.0676228       8.65 13.21 2.026063       2.47 7.5 0.6289588 

Indo-Pacific sailfish 1403 2                           

skipjack tuna 1404 1 2.0039692 9.98 4.59 3.53068 6.82 4.37 3.291748       6.59 7.01 2.3980177 

skipjack tuna 1404 1 2.0039692 9.98 4.59 3.53068 6.82 4.37 3.291748       6.59 7.01 2.3980177 

pacific bonito 1404 2 0.772645 5.2 3.49 2.26846 7.25 7.62 2.535576       6.29 10.83 1.491859 

yellowfin tuna 1404 3 2.5153151 8.97 7.08 3.14915 13.48 7.53 4.882063       14.09 5.97 6.276576 

yellowfin tuna 1404 3 2.5153151 8.97 7.08 3.14915 13.48 7.53 4.882063       14.09 5.97 6.276576 

yellowfin tuna 1404 3 2.5153151 8.97 7.08 3.14915 13.48 7.53 4.882063       14.09 5.97 6.276576 

yellowfin tuna 1404 3 2.5153151 8.97 7.08 3.14915 13.48 7.53 4.882063       14.09 5.97 6.276576 

bluefin tuna (northern) 1404 4 1.7697565 8.47 5.67 2.98796 7.16 8.16 2.805999       7.62 8.38 3.172918 

bluefin tuna (northern) 1404 4 1.7697565 8.47 5.67 2.98796 7.16 8.16 2.805999       7.62 8.38 3.172918 

swordfish 1405 1                           

diaphanous hatchetfish 1501 1                           

silver hatchet fish 1501 2                           

striped burrfish 1601 1 1.2880651       14.75 10.29 1.753688             

boxfish  1602 1                           

whitespotted boxfish 1602 2 1.0525447       15.18 13.07 1.52352             

whitemargin unicornfish 1701 1                           

ocean surgeonfish 1701 2                           

pumpkinseed 1702 1 0.5476192 8.71 13.2 1.06581 20.84 10.45 2.852395             
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

pumpkinseed 1702 1 0.5476192 8.71 13.2 1.06581 20.84 10.45 2.852395             

shiner perch 1703 1                           

shiner perch 1703 1                           

bluehead wrasse 1704 1                           

señorita 1704 2                           

beaugregory damselfish 1705 1                           

angelfish 1705 2                           

snailfish 1706 1                           

oarfish 1801 1                           

black ghost 1802 1 0.0922726                         

foureye butterflyfish 1901 1                           

picasso triggerfish  1902 1 2.2165611       10.22 19.1 0.549902       9.26 23.22 0.4396862 

snailfish(new) 1903 1                           

ocean sunfish 1904 1 3.1771016                         

frilled shark 2101 1                           

dogfish 2102 1                           

cookie cutter shark 2103 1                           

mustelus henlei 2201 1                           

leopard shark 2201 2                           

spookfish (chimera) 2202 1                           

whale shark 2203 1 1.2531043       5.31 6.79 1.638356       3.07 4.87 1.1550123 

bull shark 2301 1                           

blacktip reef shark 2301 2                           

lemon shark 2301 3 1.1630025       5.18 10.12 0.985037       8.47 6.59 1.9054688 
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

lemon shark 2301 3 1.1630025       5.18 10.12 0.985037       8.47 6.59 1.9054688 

hammerhead shark 2304 1 3.9691658       3.94 9.01 1.02466 20.21 18.06 1.6348227 5.13 4.63 2.4435376 

hammerhead shark 2304 1 3.9691658       3.94 9.01 1.02466 20.21 18.06 1.6348227 5.13 4.63 2.4435376 

bonnethead shark 2304 2 3.9691658       3.94 9.01 1.02466 20.21 18.06 1.6348227 5.13 4.63 2.4435376 

bonnethead shark 2304 2 3.9691658       3.94 9.01 1.02466 20.21 18.06 1.6348227 5.13 4.63 2.4435376 

bonnethead shark 2304 2 3.9691658       3.94 9.01 1.02466 20.21 18.06 1.6348227 5.13 4.63 2.4435376 

basking shark 2305 1                           

basking shark 2305 1                           

nurse shark 2306 1                           

white shark 2401 1 1.2510324                         

giant manta ray 2601 1                           

spotted eagle ray 2602 1                           

dugong 3301 1                           

bowhead whale 3401 1                           

north atlantic right 

whale 3401 2   
      

                  

minke whale 3402 1                           

sei whale 3402 2                           

bryde's whale 3402 3                           

blue whale 3402 4 0.8                         

fin whale 3402 5                           

humpback whale 3402 6                           

grey whale 3403 1                           

grey whale 3403 1                           

beluga whale 3404 1                           

sperm whale 3405 1                           
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

beaked whale 3406 1                           

killer whale 3407 1 3.10061                         

killer whale 3407 1 3.10061                         

killer whale 3407 1 3.10061                         

killer whale 3407 1 3.10061                         

killer whale 3407 1 3.10061                         

killer whale 3407 1 3.10061                         

false killer whale 3407 2 1.035064                         

commerson’s dolphin 3407 3                           

common dolphin 3407 4                           

long-finned pilot whale 3407 5                           

white sided dolphin 3407 6                           

Atlantic spotted dolphin 3407 7 2.84013                         

bottlenose dolphin 3407 8 2.84013                         

bottlenose dolphin 3407 8                           

bottlenose dolphin 3407 8 2.84013                         

Pacific bottlenose 

dolphin 
3407 8 

  
      

                  

harbour porpoise 3408 1                           

harbour porpoise 3408 1                           

dall's porpoise 3408 2                           

sea otter 3501 1                           

sea otter 3501 1                           

walrus 3502 1                           
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

grey seal  3503 1 
  

      
      

22.267

8 15.921 1.9511927       

weddell seal 3503 2                           

weddell seal 3503 2                           

northern elephant seal 3503 3                           

northern elephant seal 3503 3                           

southern elephant seal 3503 4                           

southern elephant seal 3503 4                           

harbour seal 3503 5                           

harbour seal 3503 5                           

harbour seal 3503 5                           

harbour seal 3503 5                           

harbour seal  3503 5                           

baikal seal 3503 6                           

muskrat 3504 1                           

Antarctic fur seals 3701 1                           

northern fur seal 3701 2                           

steller sea lion 
3701 3   

      
      

21.068

6 14.942 1.95       

steller sea lion 3701 3   
      

      

21.068

6 14.942 1.95       

steller sea lion 
3701 3   

      
      

21.068

6 14.942 1.95       

steller sea lion 
3701 3   

      
      

21.068

6 14.942 1.95       

steller sea lion 
3701 3   

      
      

21.068

6 14.942 1.95       
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

steller sea lion (4) 3701 3   
      

      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

California sea lion 
3701 4   

      
      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

California sea lion 3701 4   
      

      

21.068

6 14.942 1.95       

Asian small- clawed 

otters 
3702 1 

  
      

                  

north American mink 3702 2                           

emperor penguin 4701 1                           

emporer penguin 4701 1                           

king penguin 
4701 2 

  
      

      

9.9610

8 22.125 0.8943544       

little penguin 4701 3                           

little penguin 4701 3                           

little penguin 4701 3                           

adelie penguin 4701 4                           

adelie penguin 4701 4                           

chinstrap penguin 4701 5                           

chinstrap penguin 4701 5                           
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

gentoo penguin 
4701 6 

  
      

      

9.9610

8 22.125 0.8943544       

gentoo penguin 4701 6 
  

      
      

9.9610

8 22.125 0.8943544       

gentoo pinguin 
4701 6 

  
      

      

9.9610

8 22.125 0.8943544       

African penguin 4701 7                           

African penguin 4701 7                           

humboldt penguin 
4701 8 

  
      

      

9.9610

8 22.125 0.8943544       

macaroni penguin 4701 9                           

marine iguana 5101 1                           

marine iguana 

(jouvenile) 5101 1   
      

                  

leatherback turtle 5701 1   
      

      

19.330

7 13.541 1.9408483       

green sea turtle 5702 1                           

painted turtle 5703 1                           

slender inshore squid 

(arrow squid) 6001 1   
      

                  

opalescent inshore squid 6001 2                           

giant squid 6002 1                           

dana octopus squid 6003 1                           

whip-lash squid 6004 1                           

sea cucumber1 7001 1                           

sea cucumber2 7001 2                           

giant sea flea 7002 1                           

pram bug 7003 1                           
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 

CommonName 

Taxa 

Cod

e 

Taxa

-No 

Top fin 

Aspect Ratio 

(Span^2/Area

) 

Auxillar

y Side 

Fin 

Span% 

Auxillar

y Side 

Fin  

Chord% 

Auxillary 

Side fin 

Aspect Ratio 

(Span^2/Area

) 

Bottom 

FinSpan

% 

Bottom 

FinChord

% 

Bottom 

FinAspect 

Ratio 

(Span^2/Area

) 

Rear 

Fin  2 

or 

sword  

Span% 

Rear 

Fin 

Chord

% 

Rear fin 

Aspect Ratio 

(Span^2/Area

) 

Top 

Fin2 

Span

% 

Top 

Fin2 

Chord

% 

Top fin2 

Aspect Ratio 

(Span^2/Area

) 

Japanese giant spider 

crab 7004 1   
      

                  

deep-sea crab 7005 1                           

soldier striped shrimp 7006 1                           

giant isopod 7007 1                           

giant red mysid 7008 1                           

giant sea spider 7009 1                           

sea spider 7010 1                           

deep-sea jellyfish 7011 1                           

salp 7012 1                           
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

fangtooth 1001 1             Marine   

alfonsine 1002 1             Marine   

orange roughy  1003 1             Marine   

deep-sea anglerfish 1004 1             Marine   

football fish 1005 1             Marine   

black sea devil 1006 1             Marine   

lantern fish 1007 1             Marine   

barreleye  1008 1             Marine   

barents sea capelin 1009 1             Marine Behrenset al., 2005 

black swallower 1010 1             Marine   

parrotfish 1011 1             Marine Korsmeyer et al., 2002 

spotted seatrout 1012 1             Marine Videler, 1993 

red drum 1012 2             Marine Videler, 1993 

sheepshead 1013 1             Marine Videler, 1993 

bristlemouth  1014 1             Marine   

silver eel 1101 1             Marine Tytell, 2007 

silver eel 1101 1             Marine Van Den Thillart et al., 2007 , Rivera, 2006 

silver eel 1101 1             Marine Van Ginneken et al., 2005 

silver eel (european) 1101 1             Marine Palstra et al., 2008 

japanese eel 1101 2             Marine Aoyama et al., 1999 

slender snipe eel 1102 1             Marine   

tripod fish 1103 1             Marine   

Mediterranean spiderfish 1103 2             Marine   

Pacific hagfish 1104 1             Marine   

deep-sea cusk eel 1105 1             Marine   
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

cusk eel4 1105 2             Marine   

cusk eel3 1105 3             Marine   

snake blenny  1105 4             Marine   

blackedge cusk 1105 5             Marine   

golden cusk  1105 6             Marine   

midwater eelpout 1106 1             Marine   

sea lamprey 1107 1             Marine   

japanese flounder 1108 1             Marine Kawabe et al., 2004 

pelican eel 1109 1             Marine   

pacific viper fish 1110 1             Marine   

viper fish 1110 2             Marine   

barbeled dragonfish 1110 3             Marine   

scaly dragonfish 1110 4             Marine   

common dace 1201 1             Freshwater Viedeler & Wardle, 1991 

goldfish 1201 2             Freshwater Rivera, 2006; Videler & Wardle,1991 

goldfish 1201 2             Freshwater Videler, 1993; Videler & Nolet, 1990 

goldfish 1201 2             Freshwater Viedeler & Wardle, 1991 

goldfish 1201 2             Freshwater Blake & Chan, 2006 

carp 1201 3             Freshwater   

carp 1201 3             Freshwater Ohlberger et al., 2006 

carp 1201 3             Freshwater Ohlberger et al., 2006 

roach 1201 4             Freshwater Rivera, 2006; Videler & Nolet,1990 

roach 1201 4             Freshwater Ohlberger et al., 2006 

roach 1201 4             Freshwater Ohlberger et al., 2006 

pike 1202 1             Freshwater Rivera, 2006 
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

Atlantic cod 1203 1 9.1008 15.5583 1.2061299 11.18083 9.5503953 2.0244175 Marine Syme et al., 2008 

Atlantic cod 1203 1 9.1008 15.5583 1.2061299 11.18083 9.5503953 2.0244175 Marine Viedeler & Wardle, 1991 

Atlantic cod 1203 1 9.1008 15.5583 1.2061299 11.18083 9.5503953 2.0244175 Marine Viedeler & Wardle, 1991 

haddock 1203 2 9.1008 15.5583 1.2061299 11.18083 9.5503953 2.0244175 Marine Rivera, 2006; Videler, 1993; Videler & Nolet,1990 

haddock 1203 2 9.1008 15.5583 1.2061299 11.18083 9.5503953 2.0244175 Marine Videler & Nolet,1990; Breen et al., 2004 

whiting 1203 3 6.9888 13.4487 1.3407734 4.0774862 13.329066 0.5242695 Marine Steinhausen et al., 2005 

saithe 1203 4             Marine Steinhausen et al., 2005 

saithe 1203 4             Marine Viedeler & Wardle, 1991 

saithe 1203 4             Marine Viedeler & Wardle, 1991 

blackspot grenadier 1204 1             Marine   

roundnose grenadier 1204 2             Marine   

slickhead 1205 1             Marine   

great barracuda 1206 1             Marine   

cisco 
1207 1 

            

Marine / 

Freshwater Videler, 1993 

lake whitefish 1207 2             Freshwater Videler, 1993 

chum salmon 
1207 

3             

Marine / 

Freshwater Tanaka et al., 2001 ; Jobling and Johansen, 2003 

rainbow trout 
1207 4 

            

Marine / 

Freshwater Blake & Chan, 2006 

rainbow trout 1207 4 
            

Marine / 

Freshwater Videler, 1993; Videler & Nolet,1990 

rainbow trout 
1207 4 

            

Marine / 

Freshwater Blake & Chan, 2006 

rainbow trout 1207 4 
            

Marine / 

Freshwater Videler & Nolet,1990; Viedeler & Wardle, 1991 

rainbow trout 1207 4 
            

Marine / 

Freshwater Viedeler & Wardle, 1991 

sockeye salmon 1207 5             Marine / Videler, 1993; Jobling and Johansen, 2003; Videler & Nolet,1990 
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

Freshwater 

sockeye salmon 1207 5 
            

Marine / 

Freshwater Videler, 1993; Jobling and Johansen, 2003; Videler & Nolet,1990 

brook charr 
1207 

6             

Marine / 

Freshwater Tudorache et al., 2011; Jobling and Johansen, 2003 

lake sturgeon 1301 1             Freshwater Viedeler & Wardle, 1991 

flying fish 1302 1             Marine   

silver dollar 1303 1             Freshwater Blake & Chan, 2006 

south American pilchard 1304 1             Marine Viedeler & Wardle, 1991 

largescale mullet 1305 1             

Marine / 

Freshwater Videler & Nolet,1990 

largescale mullet 1305 1             

Marine / 

Freshwater Rivera, 2006 

largescale mullet 1305 1             

Marine / 

Freshwater Videler, 1993; Videler & Nolet,1990 

elephantnose fish 1306 1             Freshwater Rivera, 2006 

yellowtail kingfish 1307 1             Marine Clark & Seymour, 2006 

largemouth bass 1308 1             Freshwater Videler, 1993; Cooke & Philipp, 2009; Videler & Nolet,1990 

smallmouth bass 1308 2             Freshwater Blake & Chan, 2006 

nile tilapia 1309 1             Freshwater Videler & Nolet,1990 

nile tilapia 1309 1             Freshwater Videler, 1993; Videler & Nolet,1990 

striped bass 1310 1 
            

Marine / 

Freshwater Videler, 1993; Videler 1990; Rivera, 2006; Videler & Nolet,1990 

bluefish 1311 1             Marine Videler & Nolet,1990; Rivera, 2006; Videler, 1993 

bluefish 1311 1             Marine Videler, 1993; Rivera, 2006 

Atlantic mackerel 1312 1             Marine He & Wardle, 1986 

Atlantic mackerel 1312 1             Marine Viedeler & Wardle, 1991 

chub mackerel 1312 2             Marine Viedeler & Wardle, 1991 
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1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

pacific jack mackerel 1401 1             Marine Viedeler & Wardle, 1991 

dolphinfish 1402 1             Marine Blake & Chan, 2006 

black marlin 1403 1       3.21 4.8 1.090381 Marine Pepperell & Davis, 1999 

Indo-Pacific sailfish 1403 2             Marine   

skipjack tuna 1404 1             Marine Videler, 1993 

skipjack tuna 1404 1             Marine Videler, 1993 

Pacific bonito 1404 2             Marine Sepulveda et al., 2003 

yellowfin tuna 1404 3             Marine Blake & Chan, 2006 

yellowfin tuna 1404 3             Marine Rivera, 2006 

yellowfin tuna 1404 3             Marine Dewar 1994; Korsmeyer et al., 2002 

yellowfin tuna 1404 3             Marine Brill et al., 1999 

bluefin tuna (northern) 1404 4             
Marine 

Videler & Wardle, 1991; Dewar & Graham,1994; Korsmeyer et al., 

2002; Rivera, 2006 

bluefin tuna (northern) 1404 4             Marine Viedeler & Wardle, 1991 

swordfish 1405 1             Marine   

diaphanous hatchetfish 1501 1             Marine   

silver hatchet fish 1501 2             Marine   

striped burrfish 1601 1             Marine Videler, 1993 

boxfish  1602 1             Marine Blake & Chan, 2006 

whitespotted boxfish 1602 2             
Marine 

Blake & Chan, 2006; Videler & Nolet,1990; Stobutzki & Bellwood, 

1997; Walker, 2000 

whitemargin unicornfish 1701 1             Marine   

ocean surgeonfish 1701 2             Marine Blake & Chan, 2006 

pumpkinseed 1702 1             Freshwater Videler & Nolet,1990; Rivera, 2006; Cooke & Philipp, 2009 

pumpkinseed 1702 1             Freshwater Videler, 1993; Cooke & Philipp, 2009; Videler & Nolet,1990 

shiner perch 
1703 1             

Marine / 

Freshwater Videler, 1993 
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CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

shiner perch 
1703 1             

Marine / 

Freshwater Videler, 1993 

bluehead wrasse 1704 1             Marine Blake & Chan, 2006 

señorita 1704 2             Marine Videler, 1993 

beaugregory damselfish 1705 1             Marine Blake & Chan, 2006 

angelfish 1705 2             Marine Blake & Chan, 2006 

snailfish 1706 1             Marine   

oarfish 1801 1             Marine   

black ghost 1802 1             Freshwater Rivera, 2006; Videler & Nolet,1990 

foureye butterflyfish 1901 1             Marine Blake & Chan, 2006 

picasso triggerfish  1902 1             Marine Korsmeyer et al., 2002 

snailfish(new) 1903 1             Marine   

ocean sunfish 1904 1             Marine Watanabe & Sato, 2008 

frilled shark 2101 1             Marine   

dogfish 2102 1             Marine Blake & Chan, 2006 

cookie cutter shark 2103 1             Marine   

mustelus henlei 2201 1             Marine Viedeler & Wardle, 1991 

leopard shark 2201 2             Marine Viedeler & Wardle, 1991 

spookfish (chimera) 2202 1                

whale shark 2203 1       2.38 5.7 0.7978028 Marine Froese & Pauly, 2011 , Colman, J.G. 

bull shark 2301 1             

Marine / 

Freshwater Viedeler & Wardle, 1991 

blacktip reef shark 2301 2             Marine Viedeler & Wardle, 1991 

lemon shark 2301 3       7.95 4.79 2.9273969 Marine Rivera, 2006; Videler & Nolet,1990; Videler & Wardle, 1991 

lemon shark 2301 3       7.95 4.79 2.9273969 Marine Viedeler & Wardle, 1991 

hammerhead shark 2304 1             Marine Rivera, 2006 
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CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

hammerhead shark 2304 1             Marine Lowe 2002 

bonnethead shark 2304 2             Marine Parsons, 1990 

bonnethead shark 2304 2             Marine Parsons, 1990 

bonnethead shark 2304 2             Marine Parsons, 1990 

basking shark 2305 1             Marine Rivera, 2006; Sims, 2000 

basking shark 2305 1             Marine Sims, 2000 

nurse shark 2306 1             Marine Viedeler & Wardle, 1991 

white shark 2401 1             Marine Bruce et al., 2006 

giant manta ray 2601 1             Marine Rivera, 2006 

spotted eagle ray 2602 1             Marine Froese & Pauly, 2011  

dugong 3301 1             Marine   

bowhead whale 3401 1             Marine   

north Atlantic right whale 3401 2             Marine   

minke whale 3402 1             Marine   

sei whale 3402 2             Marine   

bryde's whale 3402 3             Marine   

blue whale 3402 4             Marine Woodward et al., 2006 

fin whale 3402 5             Marine   

humpback whale 3402 6             
Marine 

Rivera, 2006; Castellini 2000; Berta et al., 2006, Woodward et al., 

2006 

grey whale 3403 1             
Marine 

ideler & Nolet,1990; Fish, 1997; Berta et al., 2006, Woodward et 

al., 2006 

grey whale 3403 1             
Marine 

Williams, 1999; Sumich, 1983, Woodward et al., 2006; Videler & 

Nolet,1990 

beluga whale 3404 1             Marine Rivera, 2006; Fish, 1997; Castellini 2000; Berta et al., 2006 

sperm whale 3405 1             Marine Berta et al., 2006 

beaked whale 3406 1             Marine   

killer whale 3407 1             Marine Williams & Noren, 2009; Rivera, 2006 
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CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

killer whale 3407 1             Marine Domenici & Blake,1997; Domenici 2001; Berta et al., 2006 

killer whale 3407 1             Marine Williams & Noren, 2009 

killer whale 3407 1             Marine Williams & Noren, 2009 

killer whale 3407 1             Marine Williams, 1999 

killer whale 3407 1             Marine Williams, 1999 

false killer whale 3407 2             Marine Rivera, 2006 

commerson’s dolphin 3407 3             Marine Fish, 2002 

common dolphin 3407 4             Marine   

long-finned pilot whale 3407 5             Marine   

white sided dolphin 3407 6             Marine Fish,2002 

Atlantic spotted dolphin 3407 7             Marine   

bottlenose dolphin 
3407 8 

            
Marine 

Fish,2002; Rivera, 2006; Fish & Hui, 1991; Fish, 1997; Berta et al., 

2006; Fish & Lauder, 2006 

bottlenose dolphin 3407 8             Marine Yazdi et al., 1999 

bottlenose dolphin 3407 8             Marine Williams, 1999 

Pacific bottlenose dolphin 3407 8             Marine   

harbour porpoise 3408 1             Marine Otani et al., 2001 

harbour porpoise 3408 1             Marine   

dall's porpoise 3408 2             Marine   

sea otter 3501 1             Marine Williams, 1999 

sea otter 3501 1             Marine   

walrus 3502 1             Marine   

grey seal  3503 1             Marine Williams,1999 

weddell seal 3503 2             Marine   

weddell seal 3503 2             Marine Sato et al., 2007 
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CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

northern elephant seal 3503 3             Marine Sato et al., 2007 

northern elephant seal 3503 3             Marine   

southern elephant seal 3503 4             Marine   

southern elephant seal 3503 4             Marine Sato et al., 2007 

harbour seal 3503 5             Marine Videler, 1993; Videler & Nolet,1990 

harbour seal 3503 5             Marine Williams,1999; Videler & Nolet,1990 

harbour seal 3503 5             Marine Videler, 1993; Videler & Nolet,1990 

harbour seal 3503 5             Marine Williams,1999 

harbour seal  3503 5             Marine   

baikal seal 3503 6             Marine Sato et al., 2007 

muskrat 3504 1             Freshwater Williams, 1999 

Antarctic fur seals 3701 1             Marine Boyd et al., 1995 

northern fur seal 3701 2             Marine   

steller sea lion 3701 3             Marine Domenici & Blake,1997; Domenici 2001; Berta et al., 2006 

steller sea lion 3701 3             Marine   

steller sea lion 3701 3             Marine Rosen &Trites, , 2002 

steller sea lion 3701 3             Marine Rosen &Trites, , 2002 

steller sea lion 3701 3             Marine Rosen &Trites, , 2002 

steller sea lion (4) 3701 3             Marine   

California sea lion 3701 4             Marine Rivera, 2006 

California sea lion 3701 4             Marine Blake & Chan, 2006 

California sea lion 3701 4             Marine Williams,1999; Fish et al., 2002 

California sea lion 3701 4             Marine Videler, 1993; Fish et al., 2002; Videler & Nolet,1990 

California sea lion 3701 4             Marine Williams,1999; Fish et al., 2002 

California sea lion 3701 4             Marine Williams,1999; Fish et al., 2002 
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CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

California sea lion 3701 4             Marine Fish et al., 2002 

Asian small- clawed otters 3702 1             Freshwater Borgwardt & Culik, 1999 

north American mink 3702 2             Freshwater Williams, 1999 

emperor penguin 4701 1             Marine   

emporer penguin 4701 1             Marine Sato et al., 2007 

king penguin 4701 2             Marine Sato et al., 2002 

little penguin 4701 3             Marine Videler, 1993 

little penguin 4701 3             Marine Luna-Jorquera & Culik, 2000 

little penguin 4701 3             Marine Sato et al., 2007 

adelie penguin 4701 4             Marine Luna-Jorquera & Culik, 2000 

adelie penguin 4701 4             Marine Sato et al., 2007 

chinstrap penguin 4701 5             Marine Luna-Jorquera & Culik, 2000 

chinstrap penguin 4701 5             Marine Sato et al., 2007 

gentoo penguin 4701 6             Marine Luna-Jorquera & Culik, 2000 

gentoo penguin 4701 6             Marine Sato et al., 2007 

gentoo pinguin 4701 6             Marine BBC Science & Nature 

African penguin 4701 7             Marine Luna-Jorquera & Culik, 2000 

African penguin 4701 7             Marine Luna-Jorquera & Culik, 2000 

humboldt penguin 4701 8             Marine Hui, 1985; Luna-Jorquera & Culik, 2000 

macaroni penguin 4701 9             Marine Sato et al., 2007 

marine iguana 5101 1             Marine   

marine iguana (jouvenile) 5101 1             Marine   

leatherback turtle 5701 1             Marine   

green sea turtle 5702 1             Marine   

painted turtle 5703 1             Freshwater Rivera, 2006 



 

264 

 

1.Taxonomy 7. Control Surfaces (Span and Chord are measure as  % of TL) 8. Environment 9.References 

CommonName 
Taxa 

Code 

Taxa-

No 

Top 

Fin3 

Span% 

Top 

Fin3 

Chord% 

Top fin3 

Aspect Ratio 

(Span^2/Area) 

Bottom 

Fin2 

Span% 

Bottom 

Fin2 

Chord% 

Bottom Fin2 

Aspect Ratio 

(Span^2/Area) 

- References other than Froese & Pauly, 2011 

slender inshore squid (arrow 

squid) 6001 1             
Marine 

  

opalescent inshore squid 6001 2             Marine   

giant squid 6002 1             Marine   

dana octopus squid 6003 1             Marine Roper & Vecchione, 1993 

whip-lash squid 6004 1             Marine   

sea cucumber1 7001 1             Marine   

sea cucumber2 7001 2             Marine   

giant sea flea 7002 1             Marine   

pram bug 7003 1             Marine   

Japanese giant spider crab 7004 1             Marine   

deep-sea crab 7005 1             Marine   

soldier striped shrimp 7006 1             Marine   

giant isopod 7007 1             Marine   

giant red mysid 7008 1             Marine Monterey Bay Aquarium 

giant sea spider 7009 1             Marine   

sea spider 7010 1             Marine   

deep-sea jellyfish 7011 1             Marine   

salp 7012 1             Marine   
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Appendix 1.3. AUVs’ Database 

 
  Dimensions (m) Speed Manoeuvre Depth Energetics Reference 

Name 
BL 

(m) 

W 

(m) 

R-

Yaw 

(m) 

Fro

m 

form

ula 

Mass 

(kg) 
Body type 

U-

Eco 

(m/s) 

U-

max 

(m/s) 

R-Yaw (m) 

From 

formula 

Depth  

(m) 

Endurance-

max (h) 

Battery 

Rating 

(kWh) 

COT 

(J/Kg*m) 

Battery 

Type 

References 

other than 

AUVAC, 2011 

Bionik Manta 

(subsea glider) 1.5 1.57 - 10 Biomimetic  1.4 2.78 

 

100 24       

AquaPenguin 0.77 0.19   9.6 Biomimetic 1.39 5     7 0.1665 1.78     

naro-tartaruga 1 0.45   75 Biomimetic 2     100   1.536 1.536     

AQUA2 0.64 0.44   16.5 Biomimetic 1     30 5 0.2074 0.20736     

Robo-pike 0.81     3.63 Biomimetic               

Cetus II 1.37 0.71 3.84 54.5 Oblate 1.3 2.6 3.84 200       

Talisman [M] 4.5 2.5 12.60 1000 Oblate 1.54 2.57 12.60 300    Li-Ion   

ALIVE 4 2.2 11.20 3500 Open space frame 1.54 2.57 11.20 

 

7 44 1.17 

Lead 

acid  Marty, 2004 

Autonomous 

Benthic 

Explorer 

(ABE) 3 2 8.40 550 Open space frame 0.17 0.34 8.40 6000 20 5 2.67 

 

  

Nereus 5 2 14.00 2800 Open space frame 1.5 1.54 14.00 

11000 
(13) 

 20 18 0.21 Li-Ion 

Bowen et al., 

2008 

SeaBED 1.9 0.34 5.32 250 Open space frame 1 1.54 5.32 2000 8 2 1.00 

 

  

http://auvac.org/resources/search/capabilities.php?hull_type=6&submit
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  Dimensions (m) Speed Manoeuvre Depth Energetics Reference 

Name 
BL 

(m) 

W 

(m) 

R-

Yaw 

(m) 

Fro

m 

form

ula 

Mass 

(kg) 
Body type 

U-

Eco 

(m/s) 

U-

max 

(m/s) 

R-Yaw (m) 

From 

formula 

Depth  

(m) 

Endurance-

max (h) 

Battery 

Rating 

(kWh) 

COT 

(J/Kg*m) 

Battery 

Type 

References 

other than 

AUVAC, 2011 

SQX-1 1.6 0.25 4.48 95 Open space frame 2 3 4.48 3000 8   

 

Li-Ion   

Autonomous 

Benthic 

Explorer 

(ABE) 3 2 8.40 550 Open space frame 0.17 0.34 8.40 6000 20 5 2.67 

 

  

ARIES 3.04 0.4 8.51 220 Rectangular 1 1.8 8.51 50 8      

Echo Ranger 5.5 1.27 15.40 5308 Rectangular 1.54 4.12 15.40 3050 28      

Infante 4.5 1.1 12.60 1000 Rectangular 1.26 2.5 12.60 500 18.4      

Seaotter MkII 3.45 0.98 10
(9)

 1100 Rectangular 2.06 4.12 10
(9)

 600 24 36 0.66 

 

  

Urashima 10 1.3 - 10000 Rectangular 1.54 2.06 

 

3500 54   Fuel cell 

Maeda et a, 

2004 

Alistar 5 1.68 14.00 2300 Teardrop 1.03 2.06 14.00 3000 20 22 0.46 Li-Ion  

Copros & 

Scourzic, 2011 

Fetch 3 2.11 0.34 5.91 97 teardrop 1.25 3 5.91 200 10     

Odyssey IV 2.6 0.7 7.28 650 Teardrop 1.54 2.06 7.28 6000 5.56 4.5 0.81 Li-Ion   

Seaglider 

(iRobot 

configuration) 1.8 0.3 - 52 Teardrop 0.25   

 

1000 5111 4.72 0.07 Lithium   

Abyss 

(REMUS 

6000) 4 0.66 11.14 880 Torpedo 

 

2.6 11.14 6000 24 11    
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  Dimensions (m) Speed Manoeuvre Depth Energetics Reference 

Name 
BL 

(m) 

W 

(m) 

R-

Yaw 

(m) 

Fro

m 

form

ula 

Mass 

(kg) 
Body type 

U-

Eco 

(m/s) 

U-

max 

(m/s) 

R-Yaw (m) 

From 

formula 

Depth  

(m) 

Endurance-

max (h) 

Battery 

Rating 

(kWh) 

COT 

(J/Kg*m) 

Battery 

Type 

References 

other than 

AUVAC, 2011 

Alister 

Daurade 5 0.7 14.00 950 Torpedo 2.05 4.11 14.00 300 10 22 1.13 Li-Ion 

Copros & 

Scourzic, 2011 

Autosub6000 5.5 0.9 16
(9)

 2000 Torpedo 1 2 16
(9)

 6000 103 42 0.15 

Li-Ion 

Polymer 

Yoshida et al., 

2010 

AUV 62-AT 7 0.53 19.60 620 Torpedo 2.05 6.17 19.60 300 12      

AUV 62-MR 7 0.53 19.60 1500 Torpedo 2.05 10.3 19.60 500 12      

AUV 62-VBSS 7 0.53 19.60 1200 Torpedo 1.54 5.66 19.60   10 

 

    

Bluefin 21 4.93 0.53 13.80 750 Torpedo 1.54 2.3 13.80 4500 25 13.5 0.47 

 

  

BPAUV 1.83   5.12 362.87 Torpedo 1.54 2.06 5.12 6000 18 4.5 0.45 Li-Ion   

Caribou 

(Odyssey III) 3.4 0.58 9.52 400 Torpedo 1.54 2.06 9.52 3000 20   

Li-

polymer   

Delphin 2 2 0.25 5
(9)

 47 Torpedo 0.7 1 5
(9)

 50 8    

Steenson et al., 

2011 

Dorado  5.24 0.54 14.67 1018 Torpedo 1.54 2.06 14.67 1500 8 6 0.48 Li-Ion    

Eagle ray 

(Explorer) 4.5 0.69 12.60 630 Torpedo 1.54 2.57 12.60 3000 22 13.2 0.62 Li-Ion   

Geosub 6.82 - 19.10 2400 Torpedo 1.02 2.05 19.10 3000 60 132 0.90 Li-Ion    

HUGIN 1000 4.5 0.75 10
(9)

 850 Torpedo 2.05 3.08 10
(9)

 1000 24 15 0.36 

Li-

Polymer  

Kongsberg, 

2009 
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  Dimensions (m) Speed Manoeuvre Depth Energetics Reference 

Name 
BL 

(m) 

W 

(m) 

R-

Yaw 

(m) 

Fro

m 

form

ula 

Mass 

(kg) 
Body type 

U-

Eco 

(m/s) 

U-

max 

(m/s) 

R-Yaw (m) 

From 

formula 

Depth  

(m) 

Endurance-

max (h) 

Battery 

Rating 

(kWh) 

COT 

(J/Kg*m) 

Battery 

Type 

References 

other than 

AUVAC, 2011 

HUGIN 3000 5.5 1 15
(9)

 1400 Torpedo 2.05 2.05 15
(9)

 3000 60 45 0.26 

Al/HP 

semi 

fuelcell 

Kongsberg, 

2009; Yoshida 

et al., 2010  

HUGIN 4500 6 1 18
(9)

 1900 Torpedo 2.05 2.05 18
(9)

 4500 50 60 0.31 

Al/HP 

semi 

fuelcell 

Kongsberg, 

2009 

Ifremer AStrX 

Explorer  4.5  12.60 793 Torpedo 1.5 2.5 12.60 3000 14 14 0.84 Li-Ion   

ISiMI 1.2 0.17 6
(9)

 20 Torpedo 0.7 2 6
(9)

 20 4 0.207 3.70 

Li-

Polymer Jun et al., 2009 

Iver2 1.27 0.147 3.56 19 Torpedo 1.29 2.06 3.56 100 14 0.6 1.75 

 

  

MBARI 

(Dorado) 5.3 0.53 14.84   Torpedo 1.54 2.06 14.84 6000 17.5      

NPS (REMUS 

100) 1.6 0.19 4.48 37 Torpedo 1.5 2.6 4.48 100 22 1 0.82 Li-Ion   

REMUS 600 3.25 0.32 9.10 240 Torpedo 1.5 2.6 9.10 600 70 5.2 0.21 Li-Ion   

REMUS 6000 

(Abyss) 3.84 0.71 10.75 862 Torpedo 1.543 2.6 10.75 6000 22 11 0.38 Li-Ion   

Seahorse II 8.66 0.97 24.25 4763 Torpedo 2.06 4.12 24.25 1000 72   

Alcaline 

Duracel   

Seal (Explorer) 5.5 0.74 15.40 1250 Torpedo 1.5 2.5 15.40 5000 19 14 0.39 Li-Ion   
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  Dimensions (m) Speed Manoeuvre Depth Energetics Reference 

Name 
BL 

(m) 

W 

(m) 

R-

Yaw 

(m) 

Fro

m 

form

ula 

Mass 

(kg) 
Body type 

U-

Eco 

(m/s) 

U-

max 

(m/s) 

R-Yaw (m) 

From 

formula 

Depth  

(m) 

Endurance-

max (h) 

Battery 

Rating 

(kWh) 

COT 

(J/Kg*m) 

Battery 

Type 

References 

other than 

AUVAC, 2011 

Seawolf 2 0.3 3
(9)

 112 Torpedo   4.12 3
(9)

 300 3      

Taipan 2 1.8   5.04 60 Torpedo 1.5 1.8 5.04 100 2      

ALBAC 1.4 0.24 - 45 Torpedo + wings 0.51 1.03  300 1      

Slocum 

Electric (1km, 

science) 1.5 0.21 - 52 Torpedo + wings 0.35    1000 528 1.9005 0.20 

Alkaline  

C cell or 

Li   

Slocum 

Electric 

(Coastal 

Configuration, 

science) 1.5 0.21 - 52 Torpedo + wings 0.35    200 840 1.9005 0.12 

Alkaline  

C cell or 

Li   

Slocum 

Thermal 1.5 0.213 - 60 Torpedo + wings  0.4    1200 2778      

Spray 1.8 0.3 - 51.8 Torpedo + wings 0.25 0.35  1500 6666 3.6111 0.04    

Theseus 11 1.27 29.96 8600 Torpedo + wings 2.06   29.96 2000 60 600 0.56 Li-Ion   

  

http://auvac.org/resources/search/capabilities.php?hull_type=3&submit
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Appendix 1.4. AUVs’ Mission Database 

 

The abbreviations for the missions presented in Appendix 1.4 are as bellows: 

 

AUV mission  Abbreviation AUV mission  Abbreviation 

Anti-Submarine Warfare ASW Mine Countermeasures MC 

Beach Survey BS Mineral field Survey MFS 

Cable Deployment CD Marine Science Survey  MSS 

Coastal Mapping CM Oil and Gas Survey OGS 

Cable Route Survey CRS Oceanographic Survey OS 

Environmental Monitoring EM Pipeline Route Survey PRS 

Explosive Ordnance Disposal EOD Rapid Environmental Assesment REA 

Freshwater Mapping FM Search and Recovery S&R 

Force Protection FP Search, Classify and Map SCM 

Geophysical Survey GS Sensor Development SD 

Hydro-acoustic Research HAR Seabed Mapping SM 

Hull Inspection HI Scientific Research SR 

Harbor and Port Security HPS Surf Zone Surveillance SZS 

Inspection Maintenance and Repair IMR Vehicle Research VR 

Intelligence, Surveillance, and Reconnaissance ISR Wind Park Construction Survey WCS 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

Abyss configuration Torpedo 4 0.66 0.7 17% 17% 880 6000   20 

ACFR Seaglider configuration Teardrop           52 1,000 0.25 5113 

ACFR Slocum Gliders configuration Torpedo with Wings           52 200 0.35 720 

ALBAC configuration Torpedo with Wings 1.4 1.2 0.3 86% 24% 45   0.51 1 

ALISTAR configuration Teardrop 5 1.68 1.5 34% 29% 2300 3000 1.03 20 

Alister REA configuration Torpedo 4.8 0.7 1.2 15% 25% 800 300 2.06 12 

APL/UW Seaglider configuration Teardrop 3.2 1 0.3 31% 9% 52 1,000 0.25 7200 

Aqua Explorer 2000 configuration Oblate 3 1.3 0.9 43% 30% 300 2,000   16 

Aqua2 configuration Biomimetic 0.6 0.44 0.1 69% 20% 16.5 30 0.51 5.5 

AquaPenguin configuration Biomimetic 0.8 0.66 0.2 86% 25% 9.6   1.39 7 

ARCS configuration Torpedo with Wings           1360 304.8 2.05 10 

Arctic Explorer configuration Torpedo 7.4 0.74 0.7 10% 10% 2,200 5,000 1.5   

Aries configuration Rectangular 3 0.4 0.3 13% 8% 220 50 1 8 

Aster configuration Torpedo           973 3,000     

Autonomous Benthic Explorer configuration Open Space Frame 3 2 2.5 67% 83% 550 6000 0.17 14 

Autonomous Underwater Vertical Profiler 

(AUVeP) configuration 
Open Space Frame           30 20     

Autosub Long Range configuration Torpedo with Wings             6000 0.4 4400 

Autosub3 configuration Torpedo 7 0.9 0.9 13% 13% 2400 1600   72 

Autosub6000 configuration Torpedo 5.5 0.9 0.9 16% 16% 2000 6000 1 70 

AUV Leucathea configuration Torpedo 1.3 0.15 0.2 12% 12% 19 100 1.29 16 

AUV-150 configuration Torpedo 4.8 0.5 0.5 10% 10% 490   2.06   

AUV62 configuration Torpedo 7 0.53 0.5 8% 8% 1000 500 3   

Benthic Rover configuration Open Space Frame 2.5 1.5 1.2 60% 48% 1400 6000 0.02   

Bluefin-12D configuration Torpedo 4.3 0.32 0.7 7% 15% 260 1,500 2 30 

Bluefin-12S configuration Torpedo 3.8 0.32 0.7 8% 19% 213 200 2 26 

Bluefin-21 configuration Torpedo 4.9 0.53 0.8 11% 16% 750 4500 1.54 25 

Bluefin-9 Sealion configuration Torpedo 1.7 0.24 0.2 15% 15% 50 200 1.52 12 

BlueStar configuration Torpedo 1.7 0.2 0.2 12% 12% 45 100 1.54 6 

BPAUV configuration Torpedo 3.3 0.53 0.5 16% 16% 363   1.54 18 

Cal Poly Remus Vehicle configuration Torpedo               1.54   
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

Caribou configuration Torpedo 3.5 0.58 0.6 17% 17% 400 3000 1.54 20 

CMOP Remus 100 configuration Torpedo           37 100 1.54 10 

CMOP Slocum Glider Phoebe configuration Torpedo with Wings           52 200 0.35 720 

C-Surveyor II configuration Torpedo 6.2 1 1 16% 16% 1400 3000 1.54 50 

C-Surveyor III configuration Torpedo 6.4 1 1 16% 16% 1500 4500 1.54 50 

C-Surveyor IV configuration Torpedo 4.6 1 1 22% 22% 1400 3000 1.54   

C-Surveyor V configuration Torpedo 6.2 1 1 16% 16% 1400 3000 1.54   

Cuttthroat LSV-2 configuration Model Submarine 34 10 10 30% 30% 185,520       

Delphin2 configuration Torpedo 2 0.25 0.3 13% 13% 47 50   8 

DEPTHX configuration Open Space Frame 4.3 3.04 3 71% 71% 1300 1000 0.2 8 

DNS Pegel configuration Torpedo 3.1 0.55 0.6 18% 18% 300 6,000 2   

DOF Subsea Hugin configuration Torpedo 5.5 1 1 18% 18% 1,400 3,000 1.54 60 

DORA configuration Torpedo           80 1000 1 4 

Double Eagle configuration Oblate 2.9 1.3 1 45% 34% 540 3000 2 10 

Eagle Ray configuration Torpedo 4.5 0.69 0.7 15% 15% 630 3,000 1.54 22 

Echo Mapper II configuration Torpedo 4.1 0.53 0.5 13% 13% 525 4,500 1.54 25 

Echo Ranger configuration Rectangular 5.5 1.27 1.3 23% 23% 5308 3050 1.54 28 

Echo Surveyor I configuration Torpedo 5.4 1 1 19% 19% 1,450 3,000 1.54 60 

Echo Surveyor II configuration Torpedo 5.4 1 1 19% 19% 1,450 3,000 1.54 60 

Endurance configuration Oblate 2.1 1.52 0.8 71% 37% 1,043 1,000   6 

Epaulard configuration Teardrop 4 1.1 2 28% 50% 2900 6000 0.51 7 

ERI Slocum Gliders configuration Torpedo with Wings           52 200 0.35 720 

Exocetus Coastal Glider configuration Torpedo with Wings 2 0.32 0.3 16% 16% 120   1.03 336 

Explorer configuration Torpedo 4.5 0.69 1.8 15% 40% 750 5000 1.5 22 

Fetch 3 configuration Teardrop 2.1 0.34 0.3 16% 16% 97 200   10 

Fetch configuration Teardrop 1.9 0.29 0.3 15% 15% 99 150   18 

Folaga configuration Torpedo 2 0.16 0.2 8% 8% 31 80 1.03 6 

Gavia Defence configuration Torpedo 1.8 0.2 0.3 11% 17% 49 1000 1 7 

Gavia Offshore Surveyor configuration Torpedo 1.8 0.2 0.3 11% 17% 49 1000 1 5 

Gavia Scientific configuration Torpedo 1.8 0.2 0.3 11% 17% 49 1000 1 6 

GeoSwath Plus Remus 100 configuration Torpedo             100 1.54 12 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

Girona 500 configuration Open Space Frame 1.5 1 1 67% 67% 140 500 0.5 8 

GOSL SQX-1 configuration Open Space Frame 1.6 0.25 0.8 16% 52% 95 3000 2 8 

HarborScan configuration Torpedo 2.5 0.19 0.2 8% 8% 52.6 300 1.29   

Henry Bigelow configuration Torpedo with Wings           52   0.35 720 

Horizon Marine Slocum Gliders configuration Torpedo with Wings           52 1,000 0.35 720 

Hovering AUV configuration Open Space Frame 1 0.71 0.4 72% 39% 82     3 

Hugin 1000 configuration Torpedo 4.7 0.75 0.8 16% 16% 850 3000 1.54 24 

Hugin 3000 configuration Torpedo 5.5 1 1 18% 18% 1400 3000 1.54 60 

Hugin 4500 configuration Torpedo 6 1 1 17% 17% 1900 4500 1.54 60 

Intelligent Hybrid Underwater Vehicle 

configuration 
Oblate 3 1.1 0.7 37% 23% 350 50     

iRobot 1KA Seaglider configuration Teardrop 2.8 1 0.4 36% 14% 52 1000 0.25 7200 

ISIMI AUV100 configuration Torpedo 1.5 0.2 0.2 13% 13% 38 100 1.5   

Iver2 configuration Torpedo 0.1 0.01 0 8% 8% 19 100 1.29 24 

Jaguar configuration Open Space Frame 1.9 0.34 1.8 18% 94% 250 6,000 1 8 

Knifefish configuration Torpedo               1.54   

Kokanee LSV-1 configuration Model Submarine 27 3 3 11% 11% 140,270       

Light Autonomous Vehicle LAUV 

configuration 
Torpedo 1.1 0.15 0.2 14% 14% 15 50 1.5 8 

LMRS configuration Torpedo 6 0.53 0.5 9% 9% 1244 1000   60 

Lucille configuration Open Space Frame               1   

MACO configuration Open Space Frame 1.5 0.44 0.6 29% 41% 70 60 0.9 2.5 

MANO configuration Torpedo 3.8 0.32 0.3 8% 8% 204 200 2 19.5 

Mano configuration Torpedo               2   

Manta Test Vehicle configuration Oblate 10 4.72 1.8 45% 17% 14060 243 2.32 4 

MARES configuration Torpedo 1.5 0.2 0.2 13% 13% 32 100 1.11 10 

Marlin Mk 1 configuration Oblate 1.5 0.8 0.8 53% 53% 454 304 2.06 10 

Marlin MK 2 configuration Oblate 3 1.5 1.3 50% 43% 954 4,000 2 20 

Marlin MK 3 configuration Oblate 4.9 1.5 1.3 31% 27% 1590 4000 2 60 

Mary Ann and Ginger configuration Torpedo 3.8 0.71 0.7 18% 18% 862 6000   22 

Maya configuration Torpedo with Wings 1.7 0.23 0.2 13% 13% 55 200 1.5 7.2 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

MBARI Seafloor Mapping AUV configuration Torpedo 5.3 0.53 0.5 10% 10% 680 6000 1.54 17.5 

MBARI Upper Water Column AUV 

configuration 
Torpedo 3.7 0.54 0.5 15% 15% 476 6000 1.54 20 

Midsize Automated Reconfigurable Vehicle 

configuration 
Torpedo           226 457 3 26 

MIT LAMSS Bluefin 21 configuration Torpedo 4.9 0.53 0.5 11% 11%     1.54   

Mk 18 Mod 2 Kingfish configuration Torpedo 3.9 0.66 0.7 17% 17% 282 600 1.5   

MolaMola configuration Open Space Frame 1.9 0.34 1.8 18% 94% 200 2,000 1 8 

Morpheus configuration Rectangular           35 200 1.03   

Multi AUV Test Bed configuration Torpedo           29.48 100 1.29 4 

MUN Explorer AUV configuration Torpedo           700 3,000 1.5 6 

MUN Hybrid Glider configuration Torpedo with Wings             200 0.35   

MUN Slocum Gliders configuration Torpedo with Wings             200 0.35   

Muscle configuration Torpedo               1.54   

NCS Offshore Surveyor configuration Torpedo           80 1,000 1 5 

Nessie VT configuration Torpedo 1.6 0.28 0.3 18% 18% 40 100 1.5 22 

nfante configuration Rectangular 4.5 1.9 0.6 42% 13% 1000   1.26 18.4 

NOAA Remus 100 configuration Torpedo 1.6 0.19 0.2 12% 12% 45 100 1.54 10 

NPS Remus 100 configuration Torpedo           37 100 1.54 22 

NRC IOT Slocum Gliders configuration Torpedo with Wings           52 1,000 0.35 720 

NURC Remus 100 configuration Torpedo with Wings               0.51   

NUWC 21UUV configuration Torpedo 6.3 0.53 0.5 8% 8% 750 457 6 10 

NUWC Ecomapper configuration Torpedo               1.29 8 

NUWC Remus 600 configuration Torpedo             600 1.5   

NUWC SAUV configuration Other           200 500 0.51   

NUWC SAUV configuration Other               0.51   

Odyssey IV configuration Torpedo 2.6 1.5 1.4 58% 54% 650 6,000 1.54 8 

Offshore Works Huggin 1000 configuration Torpedo 4.9 0.75 0.8 15% 15% 775 3,000 1.54 29 

OKPO 300 configuration Torpedo 1.8 0.26 0.3 14% 14% 55 300 1.54 10 

OKPO 6000 configuration Torpedo 3.8 0.7 0.7 18% 18% 950 6000 1.54 10 

OSU Seaglider configuration Teardrop           52 1,000 0.25 7200 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

OSU Slocum Gliders configuration Torpedo with Wings           52 200 0.35 720 

Pelagia configuration Torpedo with Wings           52 200 0.35 720 

Phoenix 21 inch AUV configuration Torpedo           1,650 1,500 1.54 25 

Picasso configuration Torpedo with Wings 2 0.8 0.8 40% 40% 200 1,000 0.51   

Pirajuba configuration Torpedo 1.8 0.23 0.2 13% 13%     1 4 

Powered Tow Body configuration Torpedo 3.6 0.32 0.3 9% 9% 127 300 7   

Puma configuration Open Space Frame 1.9 0.34 1.8 18% 94% 250 6,000 1 8 

R1 configuration Torpedo 8.2 1.1 1.1 13% 13% 3,628 400 1.85 24 

R2D4 configuration Rectangular 4.4 1.08 0.8 25% 18% 1,630 4,000 1 24 

Ranger configuration Torpedo 0.9 0.09 0.1 10% 10% 9.07 5   8 

Razor configuration Oblate 1.7 0.76 0.3 45% 17%   100   12 

RedStar configuration Torpedo 1.7 0.2 0.2 12% 12% 45 100 1.54 6 

Reef Explorer I configuration Open Space Frame                   

Reef Explorer II configuration Open Space Frame           50 20   8 

Remus 100 configuration Torpedo 1.6 0.19 0.2 12% 12% 37 100 1.54 10 

Remus 100-S configuration Torpedo 1.8 0.19 0.2 10% 10% 45 100 1.54 10 

Remus 600 configuration Torpedo 3.3 0.32 0.3 10% 10% 240   1.5 70 

Remus 6000 configuration Torpedo 3.8 0.71 0.7 18% 18% 862 6000   22 

Remus 600-S configuration Torpedo 4.3 0.32 0.3 7% 7% 326 600 1.5 24 

RESL Slocum Glider configuration Torpedo with Wings           52   0.35   

Rutgers Slocum Gliders configuration Torpedo with Wings           52 1,000 0.35 720 

Sabertooth Single Hull configuration Oblate 3 0.4 0.5 13% 15% 250 3,000 2.05 3 

Sabretooth Double Hull configuration Oblate 3 0.9 0.5 30% 15% 650 3,000 2.05 8 

SAUV II configuration Other 2.3 1.1 0.5 48% 22% 200   0.51 8 

SAUVIM configuration Oblate 6.1 2.1 1.8 34% 30% 6500 6000     

Scripps Spray Glider configuration Torpedo with Wings 1.8 1.01 0.3 56% 17% 51.8 1500 0.25 6666 

Sea Maverick configuration Torpedo 9.1 1.22 1.5 13% 16%   1,000 2.57   

Sea Stalker configuration Torpedo with Wings 8.7 0.97 1 11% 11% 4,763 1,000 0.51   

SeaBED configuration Open Space Frame 1.9 0.34 1.5 18% 79% 250 2,000 1 8 

SeaBED configuration Open Space Frame             2,000 1 10 

SeaCat configuration Torpedo           130 300 2 6 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

SeaExplorer configuration Teardrop 2.9 0.6 0.3 21% 9% 59 700 0.26   

Seahorse configuration Torpedo 8.7 0.97 1 11% 11% 4,763 1,000 2.06 72 

SEAL configuration Torpedo 5.5 0.74 1.3 13% 23% 1250 5000 1.5 19 

SeaOtter configuration Rectangular 3.5 0.98 0.5 28% 14% 1100 600 2.06   

SeaWolf configuration Torpedo 2 0.3 0.5 15% 25% 112 300 4.12 3 

Sirius configuration Open Space Frame 2 1.5 1.5 75% 75%   700 1   

Slocum Electric Glider Coastal configuration Torpedo with Wings 1.8 1.01 0.5 56% 27% 52 200 0.35 720 

Slocum Electric Glider configuration Torpedo with Wings 1.8 1.01 0.5 56% 27% 52 1000 0.35 720 

Slocum Thermal Glider configuration Torpedo with Wings 1.8 1.01 0.5 56% 27% 60 1200 0.35 43 

SOG Seagliders configuration Teardrop           52   0.25 7200 

Spray Glider configuration Torpedo with Wings 2.1 1.01 0.3 47% 14% 52 1500 0.2 4320 

SQX-500 configuration Open Space Frame 1.6 0.25 0.8 16% 52% 95 500 2 8 

SRI AUV configuration Torpedo           550 600 2   

Starbug configuration Other 1.2 0.45 0.2 38% 13% 26 100 0.7 4 

Subsea Glider configuration Biomimetic 3.5 1.5 0.5 43% 14% 10 100 1.39 24 

Swordfish Mk 18 Mod 1 configuration Torpedo             100 1.54   

Talisman L configuration Oblate           50       

Talisman M configuration Oblate 4.5 2.5 1.1 56% 24% 1000 300     

Tantan configuration Rectangular 2 0.75 0.8 38% 38% 180 150 1 12 

TAVROS SAUV configuration Other 2.3 1.1 0.5 48% 22% 200 500 0.51 8 

Tethys configuration Torpedo 2.3 0.31 0.3 13% 13% 110   0.5 740 

Theseus configuration Torpedo with Wings           8600 2000 2.06 60 

Tri-Dog 1 configuration Open Space Frame 1.9 0.58 0.5 31% 29% 170 100 0.72 3 

TriMARES configuration Open Space Frame 1.3 0.8 0.5 62% 38% 70 100 1.11 10 

Twin Burger configuration Open Space Frame 1.5 0.86 0.5 56% 35% 120 50 0.51 2 

UAF ANT Littoral Glider configuration Torpedo with Wings 2 2 0.3 100% 16% 120 200 1.03   

UAF Slocum Gliders configuration Torpedo with Wings 1.5 1.01 0.5 67% 33% 52 200 0.35 720 

UBC Gavia configuration Torpedo 1.8 0.2 0.3 11% 17% 49 1000 1 6 

UConn Gliders- Bill and Frank configuration Torpedo with Wings           52 200 0.35 720 

Urashima configuration Rectangular 10 1.3 1.5 13% 15% 7,257 3,500 1.54 18 

USM Underwater Glider configuration Torpedo with Wings 1.3 1 0.2 77% 13%       2 
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AUV Body Type 
TL 

[m] 

BW 

[m] 

BH 

[m] 

BW   

[% TL] 

BH    

[% TL] 

Mass 

[kg] 

Max 

Depth [m] 

U_Eco 

[m/s] 

Range 

[h] 

UTEC Gavia configuration Torpedo 2.7 0.2 0.3 7% 11% 80 1,000 1 5 

VT 475 AUV configuration Torpedo 0.9 0.12 0.2 14% 28% 8.3   1.54 8 

VT Self Mooring AUV configuration Torpedo 2.3 0.18 0.2 8% 8%   500 2.06 25 

Waldo configuration Torpedo with Wings           52 1,000 0.35 720 

WHOI Remus 6000 configuration Torpedo 3.8 0.71 0.7 18% 18% 862 6,000   22 

WHOI Tunnel Inspection Vehicle 

configuration 
Torpedo 2.7 0.4 0.4 15% 15%       16 

Yellowfin configuration Torpedo 0.9 0.12 0.1 13% 13% 7.71   1.02 10 

YSI EcoMapper configuration Torpedo 0.2 0.01 0 7% 7% 20.4 200 1.29 8 
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ABSTRACT 

There are over 750,000 marine species ranging in size from a few micrometers to dozens of meters, all of which, through the 

natural process of evolution, have arrived at “successful” solutions to surviving and operating in the ocean space.  

Many of these species have capabilities and functionality which have much in common with the engineered capabilities 

required for underwater vehicles e.g. propulsion/locomotion, manoeuvrability/agility and the ability & resilience to operate at 

depth. Indeed, in many examples, it appears the biological solutions exhibit superior performance compared to the 

technological alternative, yet in biology these capabilities are achieved by different and diverse means.  

In this research an extensive study on the capabilities of marine animals has been conducted in relation to the equivalent 

capability on AUVs. And the biological solutions to propulsion, agility, depth and vehicle (or animal) architecture have been 

focused on. This paper will present the approach adopted, some specific studies and key results from using a bio-inspired 

approach to improving AUV engineering capabilities.  
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Nomenclature  

s Second 

AUV Autonomous Underwater Vehicle 
BL Body Length 

   Block Coefficient 

COT Cost of Transport 

  Diameter (Subscripts as relevant) 

 𝑑 Derived Diameter 

Eco (Speed) Economic (speed) 

FR Fineness Ratio 

  Length 

  Mass (Subscripts as relevant) 

MA Marine animal 

Re Reynolds Number 

ROV Remotely Operated Vehicle 

     Yaw Radius 

kg Kilo gram 

U Speed (Subscripts as relevant) 

  Volume (Subscripts as relevant) 

  Density     

    Density of sea water 

INTRODUCTION 

Man-kind has a long history in ocean exploration and 

exploitation; from early exploration with divers in Greek 

and Chinese cultures, c.4500 B.C., to the genesis of ship-

borne deep-sea research in the 17th Century by the likes of 

Sir James Clark Ross. In the 19th Century technological 

advances have seen human descents to the deepest regions 

of the ocean, when in 1960, Jacques Piccard and Don 

Walsh reached a manned decent to the deepest known 

place in the oceans in excess of 10km (Blidberg, 2001). 

The current Status of AUV Technology  

Improved access for deep water exploration has been 

facilitated by Unmanned Underwater Vehicles, initially 

ROVs and more recently, with increased sophistication of 

computers, Autonomous Vehicles. Nevertheless, there is 

still further demand for improved underwater capability 

beyond that currently possible with existing AUVs. For 

https://owa.ncl.ac.uk/OWA/redir.aspx?C=3c787b74acaa4411817b6c9291cbdeec&URL=mailto%3aa.j.murphy%40ncl.ac.uk
https://owa.ncl.ac.uk/OWA/redir.aspx?C=3c787b74acaa4411817b6c9291cbdeec&URL=mailto%3amaryam.haroutunian%40ncl.ac.uk


 

 

example, in the offshore industry there is demand for 

accessing and exploring deep waters for survey, 

inspections and maintenance. Similarly, there is high 

demand in the scientific community for improved deep-

water capability for discovery and study of deep-water 

species, pharmacological sampling and environmental 

research. Furthermore, military and security agencies are 

constantly striving for improved capabilities in all aspects 

of underwater technology.  

More agile and manoeuvrable AUVs with larger operating 

ranges can satisfy these demands by performing desired 

missions with more precision and cost-efficiency. 

Benefiting from the collective abilities of hybrid ROVs and 

intervention underwater vehicles is another aim of new 

vehicle designs (Kermorgant & Scourzic, 2005). However, 

currently there are restrictions in AUV capabilities 

including depth capabilities, speed, manoeuvrability and 

power. For example, the gathered database in this research 

shows that only 29% of the AUV types operate deeper than 

3000m, whereas the deepest waters are 8000–11000m deep. 

In the UK, AUTOSUB6000 is the deepest diving AUV, to 

a depth of 5600m (Thaindian News, 2009). Furthermore, 

compared to other marine vehicles, AUVs are relatively 

slow and have limited speed ranges, with even the fastest, 

e.g. “Alister” and “SeaOtter” at 4.12m/s, being below 

10m/s) (AUVAC, 2010).  

Possible inspiration from nature 

Nature has been a source of inspiration for researchers and 

inventors over the last three millennia (Vincent, 2001) and 

systems found in nature are continuously evolving, with 

those surviving in their specific environment having 

superiority over those extinguished over time. The greatest 

part of Earth’s biodiversity, ~90% of the major groups of 

living species, is in the oceans (Madin, 2005) and marine 

animals have specifically adapted to thrive in underwater 

conditions (e.g. high water pressure, lack of air, etc.). 

Initial research in this project has identified marine animals 

with specific superior characteristics; e.g. high-speed or 

large depth range. Furthermore, examples of superior 

overall performance are evident; this being achieved 

through multi-functionality in biological systems. The 

Sailfish, for example can achieve a speed of over 30m/s 

and marine animals have been found at the extremes of the 

oceans’ depth.  

The research challenge  

This paper is reports on research carried-out at Newcastle 

University. The aim of this research is to improve the 

performance of AUVs by investigating novel technologies, 

inspired by marine animals, as well as generating bio-

inspired design techniques and implementation methods. 

To achieve this aim, two main objectives are being pursued: 

 Investigating bio-inspiration 

 Provide a greater understanding of marine 

biological organisms and systems for engineering 

application 

 Create a new way of thinking in engineering design 

 Use biological systems to improve engineering 

technology 

 Application of bio-inspiration 

 to applied the lessons learned from nature to 

improve depth, speed and manoeuvrability of AUVs 

(NEMO, 2011)  

A brief on Bio-Inspiration  
Considering all the potentials nature has to offer to 

improve engineering design techniques, one may learn 

from nature, using the relevant novelties while leaving the 

undesirable ones, in order to relate engineering 

requirements to biological function. This is different from 

mimicking nature; therefore NEMO is not aiming to build 

a robotic fish. 

METHODOLOGY 

In terms of vehicle specification, the principal engineering 

challenges associated with AUVs are propulsion, 

manoeuvring and depth capabilities, as well as the storage 

and efficient use of energy. Therefore, more speed, greater 

endurance and depth of operation, more agility, reduced 

fuel consumption and advanced, cost-effective, designs and 

technologies are amongst the wish-list for AUVs demands; 

however, an optimum mixture of these features will result 

in a new generation of AUVs. These features of both 

AUVs and marine animals were analysed in this research. 

Investigating marine animals and AUV 

capabilities  

Data on the existing capabilities of 73 types of AUV was 

collected from a wide variety of sources, including AUV 

manufacturers, journal and conference publications and 

industry intelligence publications (e.g. Funnell, 2007 and 

AUVAC, 2010). The majority of gathered data for AUVs 

has been from specification sheets or existing trial results 

for the vehicle. For some AUVs (especially the bio-

mimicking ones) data is not from trials but predictions of 

the manufacturer, which is assumed to be sufficiently 

accurate to perform a general comparison. 

In addition, a similar database was established for the 

“engineering” specifications of marine animals, including 

physical characteristics, anatomy, physiology, 

hydromechanics and their taxonomic relations and 

classifications. Data is collected for 10 different classes of 

marine animals including bony fish, marine mammals, 

sharks & rays, penguins, etc. micro organisms are not 

studied in this research due to their size disparity to AUVs. 



 

 

Data has mainly been collected from either technical 

papers and books (e.g. Thillart et al, 2007, Rivera et al, 

2006, Hoelsel, 2002, Fish, 1998 and Jefferson et al, 1993)  

as well as databases published over the internet (e.g. 

Froese, 2011 and Appeltans et al, 2010). Where multiple 

data for a single species has been collected from different 

sources, average values have been derived and used. 

Furthermore, multiple sources are sometimes used to 

gather the full dataset for a given species.  In some cases, 

dimensions have been derived from photos of the species, 

where the scale factor is known. 

This presented interesting challenges; because it required 

addressing truly interdisciplinary literature and much of the 

published data regarding the capability of marine animals 

is not presented in engineering terms and is often presented 

for entirely different purposes. There are a number of 

studies which are in engineering terms, including various 

publications of marine animal hydrodynamics whereas 

many other publications, while providing material of 

interest in this research are provided for the purposes of 

life-science and biological research. 

The number of species investigated was originally over 

200, from which a subset of 127 with sufficient published 

data for comparison has been entered in the final database; 

this is due to some species being unreachable or not have 

been completely studied. In these cases, by considering 

taxonomically close relationship between certain animals, 

investigating a species in a family is sufficient for the 

purpose of this research. 

Individuals of the same species are different in geometry 

and performance (e.g. their body shape is dependant to 

their environment and emotional conditions); therefore, 

gathered data is a mean of all existing data for a certain 

species. The data are stored in a database for constant use, 

comparison and update. The database includes data on 

general characteristics (dimensions, kinematics, depth of 

operation, etc.), structure, mechanisms and taxonomy. 

A CONTRAST BETWEEN MARINE 

ANIMALs and AUVs 

To highlight the relative superiority and limitations of 

biological systems and AUVs, the stored data have been 

analysed to make the following comparisons: 

 Variations in body forms 

 Speed and agility 

 Depth capabilities 

 Manoeuvrability 

 Energetics 

These are considered next, each in turn. 

Variations in body forms 

AUVs and especially marine animals have many different 

body forms and large variation in size; it would be ideal to 

compare their body forms to include resistance 

characteristics to the study. However, due to insufficient 

data for both groups, it is not possible to make direct 

comparison in terms of length, breadth, height and volume. 

On the other hand, Body Length and mass are generally 

available; furthermore, notwithstanding minor differences, 

MAs and AUVs are approximately neutrally buoyant (the 

variation of density is relatively small, even between 

floating and sinking marine animals); therefore they have 

an average density of water (        
  

  ⁄ ). 

Noting the limitations, comparing some measure of 

fineness is desirable. If we idealise any marine animal as 

an elliptical body of revolution (many MAs have fusiform 

body shapes which are wide in the middle section and 

tapered at both ends) and fit the same volume of the animal 

to it and keep the body length the same, by working out the 

equivalent diameter,   , the ratio of overall length to this 

equivalent diameter, 
 

  
 is expected to be an indication of 

fineness ratio. To test this approach, it is first applied to 

AUVs for which body diameter is known. That is by 

comparing the fineness ratio (
 

     𝑑      
) of an AUV with 

the one of a neutrally buoyant elliptical body of revolution 

of the same length, if the assumption regarding density is 

correct, the expectations are, to see a correlation between 

the two values.  

Considering the elliptical body of revolution as Figure 1, 

the derived diameter is calculated as follows:  

Block coefficient of a cylindrical AUV is defined in the 

form of: 
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      (2)

   √
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And  𝑑  √
 
 ⁄   √
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Figure 1: Side view of an elliptical body of revolution 

showing Dd as compared to the diameter, D of the cylinder 

with the same volume and length  



 

 

The results are illustrated in Figure 2 which highlights 

strong correlation between derived and actual fineness 

ratios based on actual diameter of the AUV. 

 

 
Figure 2: Fineness ratios of AUVs vs. equivalent elliptical 

bodies of revolution of the same length  

By knowing the actual diameter of AUVs and validating 

the approach, same steps are performed for marine 

animals; the results of fineness ratios are illustrated in 

Figures 3 (for AUVs) and 4 (for MAs). Due to the large 

size variance in marine animals, the graph only illustrates 

MAs with BL<10m, with larger animals being whales 

(with fusiform bodies) and whale shark (elongated body); 

these large animals follow the same trend as smaller ones 

except for the 27m Fin whale which is more slender than 

other fusiforms (
 

 𝑑
<11.9) and whale shark being more 

slender than other animals with elongated oval cross-

sectioned bodies (
 

 𝑑
<11.2). Note that contours for different 

L/Dd (also known as Fineness ratio (FR)) have been placed 

with side views of the equivalent elliptical bodies of 

revolution provided for clarity. 

By comparing the Figures 3 & 4, marine animals exhibit 

higher fineness ratios; while AUVs have 1<
 

 𝑑
<15, animals 

range between 2.8<
 

 𝑑
<67 with leatherback turtle and sea 

lamprey having the lowest and highest values in respect. 

The space-frame AUVs have the lowest fineness ratios 

while torpedoes have the highest. The only fusiform body 

animal with 
 

  
>    is marine iguana; the reason being the 

consideration of its long tail in overall length. As expected, 

auguilliform species have the highest ratios. 

 

 

 

 
Figure 3: Length vs. Dd for AUVs; note that Triangle=Oblate; Square=Rectangular; Star=Space Frame; Short line=Tear drop; 

Circle=Torpedo; Kite=Torpedo+ gliderwing 
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Figure 4: Length vs. Dd for marine animals; Circle=Short & deep; Triangle=Rayform; Kite=Fusiform; Short line=Elongated 

with oval cross-section (CS); Square= Elongated with compressed CS; Open circle= Elongated with circular CS; 

Star=Auguilliform (eel-like); Plus=Turtle; Cross=Squid 

Speed and Agility  

Figure 5 illustrates the absolute speed of marine animals 

with different modes of swimming while the two dashed 

lines represent the highest economic and maximum speed 

of all AUVs in the database. Figure 6 is the equivalent 

presentation in terms of relative speed; i.e. speed has been 

normalised in terms of Body Length per second (BL/s).  

Comparing AUVs and animals the superior speed 

capability of marine animals is very significant. While the 

maximum economic speed of all AUVs is 2.5m/s and their 

maximum speed capability 4.12m/s marine animals can 

have optimum speeds more than 6m/s and with their 

maximum capability up to 35m/s. (Optimum speed is the 

speed at which the animal has lowest energy expenditure.) 

When considering absolute speed, thunniform swimmers 

(in which only less than 1/3 of the body is involved in the 

swimming and propulsion power is mainly produced by 

oscillation of the rear fin) have the highest values. Both in 

terms of their maximum capability (the highest point) and 

also their optimum speed, indicated as the lowest point or 

the start of the line on the figure. Fast swimmers have 

generally fusiform body shapes with circular or oval cross-

section; however some animals with elongated body forms 

and compressed cross sections that have thunniform 

swimming mode are amongst highest burst speed 

swimmers (e.g. Sailfish). As for marine mammals, 

undulatory swimming is superior to oscillation (flapping) 

of side flippers as performed by stellar sea lions. 

However, when comparing relative speed (BL/s), some 

relatively smaller marine animals which have 

subcarangiform or carangiform swimming mode (which 

are similar to thunniform in terms of caudal fin (rear fin) 

oscillation but a larger proportion of the body contributes 

to the oscillation of the tail and the muscle distribution is 

different as well) such as Atlantic Mackerel, have superior 

capability, although their Uopt (speed with lowest energy 

expenditure) is much less (e.g. for the Mackerel, maximum 

relative speed is 26.15 BL/s while the optimum is only 

5.05 BL/s). AUVs capabilities are very low compared to 

animals; the highest relative economic speed is 0.96 BL/s 

with the highest maximum speed not exceeding 2.06 BL/s. 

The Reynolds number (Re) in which the animal swims 

should also be considered; e.g. Atlantic Mackerel has a Re 

range of          to          while sailfish swims in 

Re up to        . As for AUVs, when considering      , 

they have a Re range of        <   <        with 

Hammerhead AUV which has the highest economic speed 

has a   <        . 

As discussed in the previous section the relatively high 

fineness ratios of animals compared to AUVs, may to some 

extent explain the high propulsion speed evident in nature. 

It is also realised that when analysing burst speeds, lift base 

swimmers especially penguins as well as thunniform 

swimmers with high speed capability have higher FR; 

however this does not comply to other forms of swimming 

and it can be concluded that propulsion capability is the 

dominant factor affecting speed capability. However, fast 

swimmers (U> 5 BL/s) have a fineness range of 4< FR <15.  

Legend for Figure 5 & 6  
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Figure 5: Absolute speed capability Figure 6: BL/s speed capability 

(Legend explained on previous page) 



 

 

Depth Capabilities 

For marine animals, one of the factors affecting their 

ability to exist at depth or to migrate through a depth 

range is their buoyancy control mechanism. As 

indicated by Pelster, 2009, marine animals have 

various buoyancy control systems; these include: gas 

bladders (used by many fish usually living in shallow 

water), lipid bladders (e.g. in mid and deep-water fish 

such as myctophids and orange roughy), lipid in the 

liver (e.g. in sharks), hydrodynamic lift (e.g. marine 

mammals; however they also use the air in their lungs 

and possibly the change in the density of the lipid 

above their heads). Turtles adjust the depth (in which 

they are neutrally buoyant) with the remaining air in 

their lungs. And finally, penguins remain positively 

buoyant, therefore they have a passive gliding 

surfacing; this also applies to Right whales which are 

positively buoyant. Figure 7 is an indication of depth 

range per unit mass; so the results are based on a 

trade off between absolute depth capability and mass 

(an indication of size). The figure shows that deep-

water especially mid-water fish (e.g. the largest 

values belong to pacific viper fish (   4365m), 

mid-water eel pout (  =2100m) and Sea Lampray 

(  =2200m) which has a swim bladder) have the 

best depth range/mass capability with most of the 

mammals and sharks having the lowest capability, 

however, other than physical limits, motivation or 

“mission” of the animal is another key reason for 

deep or shallow diving; i.e. species do not always 

dive to their maximum capability. AUVs in Figure 7, 

are clustered within the same range of small marine 

mammals, which have superior relative depth range 

over larger animals, however much less capable 

compared to most of fish. 

Figures 8 and 9 show the absolute depth capability of 

AUVs and MAs; it is realised that AUVs can already 

reach great depths and while there are many deep 

living animals, this does not indicate that they are 

always deep divers or that they can travel all the way 

up to the surface. The data suggest that AUVs 

perform with similar capability to marine animals 

with the same mass; however, it is interesting that 

many marine animals including many fish and some 

penguins can reach higher relative depth range with 

less mass; therefore further study is required to 

clarify the mechanism of this behaviour and possible 

bio-inspired techniques. As well as different 

buoyancy control systems, deep-water fish have soft 

bodies and low 
 

  
 ratio compared to shallow water 

fish and air-breathing animals.  

Fish exist at the greatest depths and are found at the 

widest depth range. Interestingly, some species 

belonging to the same family (therefore closely 

genetically related) have significantly different depth 

capabilities. The two most significant examples are 

snailfish and cusk eel; although most of the cusk eels 

have depth ranges not more than 600 meters, deep sea 

cusk eel swims in depth of 3110 to 8370 meters. And 

a recently discovered type of snailfish has been found 

in the deepest depths of ocean trenches over 7500m 

(National Geographic, 2010), while Agonopsis 

chiloensis which is also a snailfish cannot swim 

deeper than 400 meters.  

Marine mammals are the deepest air-breathing divers; 

they achieve their desired depth with less energetic 

cost compared to when they are forward swimming. 

This is achieved by shutting down their unused 

systems, reducing their heart rate and more important 

by gliding instead of swimming; in dives deeper than 

300m, gliding is performed 60-95% of the total dive; 

this reduces their cost of diving to a great extent. 

(Williams et al, 2000) 

Figure 7: Depth range as a function of mass (Log-Log graph) comparison of Marine Animals and AUVs (shown 

with crosses) – Graph excludes species seen in one depth and therefore have no depth range 
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Figure 8: Depth capability of AUVs 

Figure 9: Depth capability of MAs 



 

 

Manoeuvrability 

One of the parameters to be considered as a 

manoeuvrability measure of a vehicle is the radius of 

turning when changing directions, which is especially 

important in high speeds or when the vehicle mission 

is to chase and observe a marine animal.  

 Figure 10: Yaw radius (    ) or turning radius per 

unit length of AUVs and MA 

As the ring in Figure 10 encompassing the marine 

animal data highlights, AUVs have very large      

in comparison with marine animals; this makes them 

less manoeuvrable. High manoeuvrability is achieved 

by multi joint flexible bodies, so that as shown in 

Figure 11, flexible bodies such as black ghost and 

elephantnose fish have     <0.05BL while for fast 

swimming fish with more rigid bodies such as tunas 

    >0.45BL which is even more than some marine 

mammals and sharks. Figure 11 shows the turning 

data in Figure 10, in range consistent with the most of 

the data within the ring. 

 
Figure 11:     for various classes of MAs; 

Circle=Fish, Plus=Shark, Star=Mammal, Cross=Turtle, 

Triangle=Penguin 

For clarity, two species with large      are not 

included in this figure; Basking shark (BL=7m, 

    =0.97BL) and Humpback whale (BL=15.2m, 

    =0.82BL) which is a slow swimmer.  

 

Energetics 

Energetics can be investigated as Cost of transport 

(COT), or as energy storage capability which relates 

to endurance.  

Considering COT; this is a measure of energy 

expenditure required to swim at a given speed. It is 

measured as Joules per metre kilogram body 

mass(
 

    
). For marine animals, it is derived by 

measuring the oxygen consumption rate of the 

animals swimming at a given speed and converting 

O2 consumption to produced energy by using the 

oxy-calorific value of oxygen (13.59 kJ/mgO2, Elliott 

and Davison (1975)). Figure 12 shows that AUV are 

clustered within a small speed range but within this 

range, they have lower COT compared to many of the 

marine animals. This however excludes larger marine 

animals such as whales which indicates that larger the 

animal size, lower the mass specific COT. 

 
Figure 12: COT comparison of AUVs and MAs 

Although, illustrating the COT at optimum speed (as 

presented in Figure 12) is beneficial for AUVs vs. 

MAs comparison, however, animals do not always 

operate at their optimum speed. Due to their high 

speed range capability, COT for animals, unlike 

AUVs, is a curve. This subject has been extensively 

studied and calculations carried out to produce the 

COT curve for different marine animals in various 

speed and Re ranges in Phillips et al, 2011; therefore, 

complete details are not provide in this paper. 

Figure 13 illustrates the COT for MAs over various 

speed ranges; it is realised that COT on its own is not 

a complete measure of the energy expenditure of a 

species, speed range should also be considered; e.g. 

killer whale has a high COT when compared with 

fish at speeds less than 1m/s however its optimum 

speed is more than 2.5m/s, at which it has COT even 

less than a sturgeon. In addition the operation range 

of a killer whale is      <   <       which is 

the highest between the compared animals. 
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Figure 13: Total COT of various marine animals tested in a speed range. Calculated from data in Davis et al. (1985); Dewar and 

Graham (1994); Williams and Noren (2009); Froese and Pauly (2011). (Figure copied from Phillips et al, 2011) 

Endurance: Endurance refers to the time an animal 

can continue living normally without feeding and 

where there is data available, it is provided in analogy 

with power reserves of AUVs. So this is an indication 

of energy storage capability. Energy is stored in 

animals in the form of lipids and fatty acids and 

consumed when food is not readily available. The fat 

and sugar reserves of a fish represent its equivalent 

‘battery’ capacity and provide a measure of autonomy 

when combined with known COT and optimum 

speed values.  

As part of this research, specific calorific value 

testing of the blubber of two marine mammals was 

conducted in a laboratory experiment; the result show 

specific energy of more than 30 MJ/Kg for the 

blubbers; this value compared to batteries such as 

Lithium Polymer or Nickel Metal hydride with less 

than 0.5 MJ/Kg (Huggins, 2010)) highlights that 

marine animals consume a high quality fuel. (Phillips 

et al, 2011). 

 

Endurance (h) of several marine animals (light circle) 

and AUVs (dark circle) are shown in Figure 15, in 

which the size of the circle is an indication of COT 

value. The graph shows a significant high endurance 

within marine animals compared to AUVs. Sperm 

whale with the highest endurance (5000 Km) and 

other marine mammals that are long migrators, have 

large energy storage as blubber which is consumed 

during long migrations; therefore size is important for 

these animals in order to store the required energy 

content. However silver eels also use their stored 

energy during migration but they have a very low 

COT which reduces the amount of energy usage and 

where possible, they use the water current instead of 

swimming to go forward.  

 

Figure 15: Endurance as a function of relative speed 

for MAs (light circles) and AUVs (dark circles) 

OPTIMUM SYSTEM SELECTION  

After comparing the capabilities of biological and 

engineering systems, it is realised that there are 

systems in certain species, or a group of species exist 

that under certain circumstances exhibit superior to 

AUVs in one or more of the studied capability (i.e. 

speed, depth, etc.); this are usually achieved by 

various approaches. However, in some cases, given 

the scarcity of the available data and the ambiguity of 

the data, the challenge is how to take the data on 

MAs and use it to improve AUVs. Bearing in mind 

the aim of this research is not to make a robotic fish, 

but to take good bits, and use them constructively for 

engineering purpose. For optimum and multi 

dimensional use of the available data and various 

biological systems, an algorithm is being developed 

in order to highlight optimum performing system, 
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systems or species. This is by giving the user the 

ability to set limits for optimum and maximum 

speeds, depth of operation, turning radius as well as 

body size and COT. In addition, it also provides the 

feature of weighting the importance of each criterion 

based on the intended mission profile. (Figure 16 

shows an example of user input values) 

 
Figure 16: The limits that user may alter and their 

weight (Importance) 

As a result marine animals and AUVs closest to the 

chosen mission profiles or circumstances are 

highlighted (e.g. in Figure 17) and a detailed list, 

illustrates the collaboration of each criterion to the 

overall rating for the animal. This gives a more 

precise understanding of the overall performance of 

each system while pointing out the geometry as well. 

Figures 17: Example of 10 best matches of MA with 

the same given criteria as above (the best match in 

this case is 59% of what required) 

CONCLUSION  

In this paper various characteristics of AUVs and 

marine animals have been compared to highlight the 

relative superiority and limitations of biological and 

engineering systems. The comparisons mainly 

highlight that: 

 

 In terms of body forms, marine animals have 

significantly higher fineness ratios compared to 

AUVs while most of the high speed animals have 

a fineness ratio range of 4< FR <15. 

 Thunniform swimming is used for fast swimming 

by both fish and marine mammals, however 

smaller fish with carangiform swimming and 

some types of penguins with flapping swimming 

mode have high BL/s Speed. 

 Although, AUVs are relatively capable at deep 

diving, many fish can reach deeper depths with 

less mass, therefore further research may clarify 

the reason by which they achieve this. One lesson 

to be learned from marine animals, especially 

marine mammals is to reduce the energy 

expenditure during diving by configuring the 

control surfaces for maximum gliding capability 

instead of swimming. 

 In terms of manoeuvrability, the significant 

superior turning performance of marine animals is 

evident; this is achieved by their multi joint 

flexible bodies. 

 Energetics is the most interrelated comparable 

characteristic between the two groups. It can be 

measured by COT (energy consumption during 

swimming) or by endurance. The comparison 

shows that, although compared to many marine 

animals, AUVs have less COT when swimming at 

their economic speed, however their speed range 

is very limited.  

Many characteristics have been studied in this paper, 

which all seem significant with different importance, 

in order to accomplish a defined mission. Therefore 

an optimum selection means has being developed to 

collect all of these criteria together for a better overall 

comparison. 

The comparisons show that optimisation is required 

and necessary; bio inspiration is a different approach 

because even the traditional AUV designs are to 

some extent inspired by nature; however, in most 

cases the inspiration has only been a first start (idea) 

but maybe the importance of nature has not always 

been appreciated and the analysis not been pursued as 

profound as it should have been.  
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Abstract—This paper is a part of the Nature in 

Engineering for Monitoring the Oceans (NEMO) 

project, investigating bio-inspiration to improve the 

performance of Unmanned Untethered Underwater 

Vehicles (UUUVs). Since biological systems (i.e. 

marine animals) are natives to the oceans, 

successfully surviving through time, they have been 

the source of this approach.  

NEMO’s earlier investigations highlighted biological 

capabilities desirable for UUUV operations, including 

speed, speed range and manoeuvrability. These are 

significantly superior compared to current engineered 

systems. However, not all desirable characteristics are 

evident in the same species. Considering the 

mismatch between the “missions” of biological and 

engineered systems, no single specific biological 

system is able to fulfil all the desired UUUV mission 

requirements. Therefore, means are required to 

obtain the myriad of information from the biological 

world and adjust them to engineering needs. 

This paper describes the algorithm of an Optimum 

System Selector (OSS) demonstrating its methodology 

and explaining modules such as estimating the drag of 

biological systems and indication of their propulsive 

efficiency. The OSS is implemented to output the 

appropriate combination for a bio-inspired UUUV 

design, based on its mission.  

The OSS comprises missions as inputs, the decision 

maker, and the outputs. Mission profiles also account 

for capabilities unique to biological systems such as 

high manoeuvrability. The decision maker takes into 

account three main modules; speed and propulsion, 

manoeuvrability and upright stability. The fitness-

for-purpose function of the selector consists of the 

energetic cost of the proposed combination, as well as 

the trade-off between the three modules due to the 

multi-functionality of the biological systems. The 

output consists of body and control surfaces design, 

propulsion and manoeuvring systems. 

Through this method, OSS is an excellent guide to 

transform complex biological data for the future 

design and development of UUUVs. 

Keywords-Bio-inspiration; AUV; Mission profile; 

Optimisation 

Nomenclature and Abbreviations 

AR……….. Aspect Ratio 

AUV……... Autonomous Underwater Vehicle 

   ………. Wetted Surface Area [  ] 
BH……..… Body Height [ ] 
BMS……... Biological Marine System 

BUUUV…. Bio-inspired Unmanned 

Untethered Underwater Vehicle 

BW…….…. Body Width [ ] 
  …….….. Drag Coefficient 

  …….….. Friction Coefficient 

CFD…….... Computational Fluid Dynamics 

COT…..….. Cost of Transport [     ⁄ ] 

   …………. Bare Body Drag [ ] 

 𝑒………... Equivalent Diameter [ ] 
GA……..… Genetic Algorithm 

G/B…….… Gearbox 

  ………... Elliptical Length [ ] 
FF………... Fitness Function 

 ……….... Mass [  ] 
MOGA…... Multiple Objective Genetic 

Algorithm 

NN…….… Neural Network 

OSS…….... Optimum System Selector 

  ………... Brake Power [ ] 
  ………... Effective Power [ ] 
  ………... Hotel Load [ ] 
  ………... Muscle Power [ ] 
  ……....... Reynolds Number 

    ……... Yaw Radius[ ] 
  ………... Total Length [ ] 
  ………... Advance Speed [  ⁄ ] 
    …….... Maximum Speed [  ⁄ ] 
    ……..... Optimum Speed [  ⁄ ] 

     …….. Turning Speed [  ⁄ ] 

  ……….... Conversion Efficiency 

 ………..... Added Drag Coefficient  

  ……….. Behind Efficiency 

  ………... Delivered Efficiency 

  ……….. Hull Efficiency 

  𝑒 …….... Peduncle Efficiency 

  ……….... Shaft Efficiency 

      ……... Total Efficiency 
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I. INTRODUCTION 

Mankind has a long history in ocean exploration 
and exploitation. The introduction of underwater 
vehicles in the past few decades - especially 
Autonomous Underwater Vehicles (AUVs) - 
facilitated these explorations and has made many 
scientific, military and industrial operations possible 
in previously unreachable waters. Nowadays 
expectations have increased and underwater vehicle 
users and clients are demanding faster, more 
manoeuvrable vehicles that are able to reach the 
deepest depths of the oceans with greater endurance 
at lower cost. 

There are various approaches to investigate 
possible means of improving the performance of 
underwater vehicles. However, the longest 
surviving types of underwater systems are marine 
animals, which will be referred to as Biological 
Marine Systems (BMS) in this paper. Native to the 
oceans, they evolve and survive the harshest 
conditions underwater. Nature in Engineering for 
Monitoring the Oceans (NEMO) project is 
investigating novel technologies and generating bio-
inspired design techniques & implementation 
methods based on these BMSs to improve current 
underwater vehicles performance. This is achieved 
by fulfilling two main objectives:  

 Investigating bio-inspiration, and 

 Application of bio-inspiration 

The main focus is on increasing the speed, 
manoeuvrability and depth capability of unmanned 
underwater vehicles while reducing weight and 
energy consumption. 

A. Investigating bio-inspiration: The contrast 

between BMS and AUV capabilities 

As part of this research, studies were carried out 
on means to compare BMSs with engineered 
vehicles, to investigate whether bio-inspiration is a 
promising approach. However, originally, animals 
are studied by scientists whereas engineers study 
vehicles; in bio-inspiration, the two are combined. 
This is where the challenge stands; the key is to 
understand the mechanism of both systems and 
unify the definitions and measurements, in order to 
conduct a valid comparison. One significant 
challenge in this research was investigating the 
energetics comparison of animals and vehicles. For 
vehicles, energetic cost is calculated from 
knowledge of the energy stored in the batteries and 
its subsequent consumption, which is well defined 
and specified. However for BMSs with limited 
available data, the calculation is rather complicated. 
Therefore, a formulation of the physical factors 
associated with biological & engineered systems 
energy usage was presented for energetic cost 
comparison [1]. Since BMSs from many and 
various biological classes of species are investigated 
in this research, there were a number of principal 
challenges to be overcome. These challenges were 
unifying body measurements, comparing speed and 

depth capabilities which, due to size and taxonomy 
differences for BMSs, proved to be complicated 
also comparing scientific and engineered 
definitions, calculations and measurement of drag 
and power which are explained in Section IV. 

B. A general challenge in bio-inspiration 

Gathered data for BMSs is based on experiments 
carried out on each animal by external sources or 
the authors’ observations and measurements from 
videos and photos taken from the animals. Unlike 
engineered vehicles, which have a well-defined 
capability, the performance of a specific species is a 
variable depending on the physical and 
environmental parameters of the samples, e.g. 
animal body size. Consequently for a given species 
every characteristic is specified over a range and not 
given as a specific value and therefore, in many 
cases values are an average of multiple experiments.  

By overcoming the abovementioned challenges, 
a database of BMSs has been gathered and the 
parameters are shown Table I, Table II provides 
some explanatory notes to Table I.  

TABLE I.  KNOWN PARAMETERS FOR EACH BMS 

Known 

Characteristics  

Parameters Unit or description 

Body design 

Body Form General form of the 

body known for 

BMSs; e.g. Fusiform                                                                 

Cross Section 

Type 

General shape of the 

body cross sectional 

area 

Average Mass [  ] 

Maximum body 

height (  ) 

Greatest height of  

the BMS along the 

body 

Maximum body 

width (BW) 

Greatest width of  

the BMS along the 

body  

Elliptical Length Length of the 

equivalent ellipsoid 

of the BMS body 

Peduncle Length Length of the area 

connecting the 

elliptical BMS body 

to the rear fin 

Total Length      Overall length from 

the snout to the end 

of the rear fin 

“a” & “b” factors 

(*) 

                 

Taxonomy (**) 

Full name Common  Name & 

Binominal Name 

 Family, Order, 

Class 
- 

Swimming 

Swimming Mode Various body & rear 

fin or paried fin 

swimming modes; 

e.g. Thunniform 

Optimum Speed Uopt [
 

 
] 

Maximum Speed Umax [
 

 
] 



 

 

Known 

Characteristics  

Parameters Unit or description 

Manoeuvring 

(***) 

Turning (yaw) 

radius 

     

Turning Speed       

Control surfaces: 

Rear fin 

Side fins 

Top fin(s) 

Bottom fin (s) 

Side stabilising 

fins 

Numbers or pairs - 

Chord [ ] 

Span [ ] 

Area [  ] 

Aspect ratio    

 
          

    
 

Position from the 

snout 

[ ] 

Diving 

Maximum Depth [ ] 

Depth Range [ ] 

Energetics 

Cost of transport 
[

 

    
] 

Endurance (****) [  ] or [ ] 

Fat tissue storage Can aid to estimate 

the energy reserve 

TABLE II.  EXPLANATORY NOTES TO TABLE I 

Note  Description 

* Empirically obtained for each species based on 

measurements 

** All data is not available for every species, therefore 

taxonomy helps to relate data collected to similar 

animals. In this research taxonomy data are coded 

numerically for simplicity. 

*** Turning speed is inversely proportional to the speed of 
the animal, therefore maximum turning speed and 

lowest yaw radius is usually achieved by unpowered 

turns. An example of conducted experiments on various 

marine mammals illustrates this fact [2].  

**** Usually measured during long migration. 

Note that all parameters are not known for the more than 200 

animals in the database, therefore only the ones with available 

data are used when deriving calculations. 

 

A similar database was gathered for AUVs and 
the body design, speed and depth capabilities, 
manoeuvrability and energetics of various classes of 
marine species were compared with current AUVs. 
As a result of these comparisons, capabilities of 
BMSs with significant superiority over AUVs were 
identified; these characteristics, which include 
speed, speed range and manoeuvrability, were 
highlighted across a broad range of species [3]. The 
next step is to find a means to apply them to AUV 
design. 

This paper explains the challenges involved in 
the application of bio-inspiration to AUV 
engineering. The rationale behind an Optimum 
System Selector (OSS) is explained and its 
algorithm described; this includes demonstrating its 
methodology and explaining its modules. The 
purpose of the described selector is to output the 
appropriate parameters required to aid the design of 
a bio-inspired UUUV, based on the vehicle’s 
mission. 

II. APPLICATION OF BIO-INSPIRATION 

In order to apply the findings of this earlier 
research to Bio-inspired Unmanned Untethered 
Underwater Vehicle (BUUUV) design, the design 
procedure of BMSs must be understood and as for 
any other system the “purpose” or mission plays an 
important role. For an AUV user, “best” option is 
not always the vehicle that does the maximum in 
any single performance characteristic, but the one 
that fulfils the requirements of the user across a 
combination of speed capability and range, 
manoeuvrability, depth capability, endurance, 
energetic cost and weight. Therefore, the bio-
inspired technology should attempt to find the 
optimum option that nature has to offer for a 
corresponding AUV mission.  

While missions are not formally defined for 
BMSs, they are in fact a consequence of an 
evolutionary process, subject to highly varied 
evolutionary pressures. Consequently, some are 
highly manoeuvrable, e.g.  black ghost, some 
exhibit  high speed, e.g. sailfish, and some have 
high acceleration characteristics, such as the 
barracuda. Although animals are highly capable, 
their main aim is to survive and reproduce and the 
data gathered from them can always be biased by 
other factors such as the physical and mental 
condition of the BMS at the time of data collection. 

However, AUV missions are varied and 
different to ones of an animal; in addition, the 
superiority of BMSs is spread over a wide range of 
marine animals and they use various methods and 
systems which are interrelated with their other 
functions; i.e. no specific BMS is able to fulfil all 
desired mission profiles of an AUV. In addition, 
unlike engineered vehicles, BMSs sub-systems are 
multi-functional, which makes it impossible to 
investigate them as stand-alone systems.  

For an engineering perspective, therefore, it is 
not a complete BMS that is sought, rather particular 
sub-systems of BMSs; which of course is unnatural 
and defines the challenge that this research attempts 
to overcome. 

In addressing this challenge a simple approach 
could be to search the database of BMSs and find a 
system which fulfils all engineering requirements.   

As part of the research this simple approach was 
examined. Consider the algorithm in Figure 1 as the 
system selector for a BUUUV; for each mission 
scenario, mission requirements are input to the 
selector and the capabilities of BMSs is gathered in 
a large database as shown in Table I. These 
capabilities are then sorted based on fulfilling each 
mission requirement and the most capable BMSs 
are extracted; however: 

1. Many of the BMSs will be excluded from 

the sorting system due to failing even a single 

mission requirement. 



 

 

2. Since overall ranking is considered based 

on how much of the mission is fulfilled by the 

system, in many mission scenarios, systems with 

close ranks would vary in capabilities. 

3. This system only selects the existing best 

option but cannot consider “optimisation”. 
This method therefore provided little useful 

insight to assist the design of a BUUUV. Therefore, 
means are required to output the appropriate 
combination for a bio-inspired design based on a 
particular mission profile. This is called the 
Optimum System Selector (OSS). OSS attempts to 
solve the abovementioned challenge of associating 
biological capability with engineering requirement. 

 
Figure 1 Simple algorithm to find best biological option 

III. THE CONCEPT OF AN OPTIMUM SYSTEM 

SELECTOR (OSS)  

Figure 2 shows the algorithm modified for the OSS. 
In this algorithm, for every input, the BMS database 
is compared against the desired mission 
specifications; similar to the initial algorithm in 
Figure 1. If the requirements are met by any BMS, 
then the corresponding system is the output; 
however, for many mission profiles that is not the 
case and instead subsets of BMSs which meet at 
least one of the mission specifications are selected.  

To optimise this initial subset, a decision maker 
is used. In nature, this is done through breeding and 
evolution; therefore being inspired by nature, the 
decision maker is designed to accelerate evolution 
by using a genetic algorithm (GA).  

GAs take an initial potential group as parents 
and breed a new generation. The off-spring are then 
evaluated and ones with superior performance are 
used as new parents for the next generation. The 
cycle carries on until the desired performance 
characteristics are fulfilled or until the continuation 
of the GA will not improve the results any further.  
In this research, due to numerous influencing 
factors, there are multiple equations to be solved 
simultaneously; therefore a Multiple Objective 
Genetic Algorithm (MOGA) is implemented within 
the OSS. 

The desired mission specifications are input as 
the GA constrains and the BMS subset from the 
database of existing species is input as the first 
generation. 

The initial selection of the BMSs also ensures 
that animals that are by no means fit to fulfil any of 

the mission requirements are eliminated at an early 
stage to facilitate the task of the decision maker.  

The decision maker then generates off-springs 
of the initial BMSs as a new generation, calculates 
their performance, and based on the mission input 
targets, decides which ones survive and the process 
continues until the desired results are achieved.  

 

Figure 2 The algorithm modified for the OSS 

The sub-algorithms of the OSS as indicated by 
dashed lines in Figure 2 are: 

A. Missions 

B. The Decision maker, and  

C. Output; 

These are explained next.  

A. Missions 

Desired AUV mission specifications are 
specified by the user. A manoeuvrability factor is 
included which may be achieved by using biological 
techniques as explained in Section IV. These 
mission specifications are shown in Table III. 

The term “importance weight factor” for each 
mission specification is used to weight it against 
other inputs when evaluating the overall 
performance of systems and making the decision on 
the optimum off-spring. These are used to derive the 
weight factor,   , in (1). 

TABLE III.  MISSION INPUTS 

Input Sub-input(s) Unit(s) 

Size 
Body length (  ) [ ] 

Mass ( ) [  ] 

Speed 
Optimum speed (    ) [  ⁄ ] 

Maximum speed (    ) [  ⁄ ] 
Depth Maximum Depth [ ] 

Energetics 

Energetic cost of 

Transport (COT) 
[     ⁄ ] 

Endurance [   or  ] 

Manoeuvrability 
Turning Radius (    ) [ ] 

Turning speed (     ) [  ⁄ ] 
Importance weight factors 

 



 

 

B. The decision maker 

The decision maker takes the selected sub-set of 
BMSs and produces off-spring with optimised 
performance. Optimising the performance of the 
off-spring consists of minimising the energetic cost 
of the off-spring, as well as the trade-off between 
speed and propulsion, manoeuvrability, and stability 
due to the multi-functionality of the BMSs. As 
mentioned previously, these are known for the 
parents, but they must be calculated for the 
subsequent generations which are defined by the 
genetic algorithm. Since the decision maker makes 
the selection based on the estimated performance of 
the off-springs, it is crucial to minimise the 
calculation or estimation error. 

However, due to the complexity of BMSs and 
data being sparse, for the purpose of this research a 
variety of methods are used.  The parameters are 
divided into two groups as follows: 

 Calculable Parameters which include body 
drag, energetic cost, efficiency, stability and body 
flexibility. These parameters are calculable by 
deriving formulae based on physical arguments or 
trends discovered by analysing the performance of 
BMSs from the data on existing species. 

 Complex parameters which include 
manoeuvrability and defining propulsion mode. 
These parameters are a consequence of the multi-
functionality of the systems; therefore it is 
necessary to understand the impact of each 
parameter to the overall performance of the system. 
However, some parameters are either dependent on 
multiple variables, various systems are involved to 
perform the task (multi-functionality) or the 
relations are non-linear. These parameters are 
difficult to estimate with a one-fits-all method. To 
solve this challenge, Neural Networks (NN) are 
being investigated to estimate the relation of the 
variables and predict the desirable parameters. 

The details of the calculations and estimations 
are explained in Section  IV. All the formulae 
defined and used in this research are tested against 
the first generation of BMSs to ensure their validity.  

C. Output 

The final off-spring generation produced by the 
decision maker is sorted in order by using linear 
programming which uses a Fitness Function (FF) 
[4] in the form of: 

                     (1)  

Where    is the importance weight factor of 
each parameter and    is calculated as: 

 
   

           𝑒        𝑒   𝑒 

      𝑒   𝑒 
 (2)  

e.g. for speed    is calculated as: 

 
   

                    

        
 (3)  

The sorted collection will output specifications 
for body geometry, control surfaces & propulsion 
method and an estimate of speed and energetic cost. 
Outputs are shown in TABLE IV; the 2

nd
 column is 

output directly generated by the OSS and the 3
rd

 
column can be then derived from these output 
parameters. 

TABLE IV.  OUTPUTS OF THE OSS 

Categories Outputs from the 

OSS 

Later stage 

output  

Size 
         [ ] 

Propulsion 

mode 

     [  ] 

Speed U [m/s] 

Maneouvrability 

Flexibility No. 

Turning Radius 

[m] 
- 

Body control surfaces 

(Important for stability, 

diving and surfacing, 

propulsion & manoeuvre) 

Area of each 

control surface  

Chord, 

span and 

length of 

the control 

surface 

Energetics Transport cost - 

Overall efficiency Overall efficieny  - 

IV. CALCULATION OF PARAMETERS  

This section describes the details of calculations 
required to quantify the specifications of the off-
spring generated by the decision maker. These are 
as follows: 

A. Calculation of the energetic cost 

B. Estimate of stability 

C. Manoeuvrability assessment 

D. Swimming mode selection 

 
Each method will be explained next. 

A. Calculation of the energetic cost 

As explained by Phillips et al [1], the energetic 
cost of transport for biological and engineered 
vehicles is calculated as: 

 
    

  

  
 

   

  
 (4)  

where   is the mass, 

  is the speed, 

    is the bare body drag, 

   is the hotel load, and  

   
      

 
 (5)  

where        is the total efficiency and 

  is a coefficient which accounts for 
additional components of drag caused by  



 

 

appendages such as control surfaces, body 
roughness and gills of BMSs. 

It is evident from literature that the definition of 
total efficiency is inconsistent when applied to 
BMSs and in some cases unclear; therefore to 
elaborate further on the definition of       , this is 
given special treatment in Section V. 

To solve (4), U and M are known and    is 
estimated using an empirical formula in the form of 
            obtained from multiple sources as 
discussed by Phillips et al [1]. Drag and   must be 
calculated. 

Although BMSs have a wide speed range, two 
specific speeds have significant importance when 
investigating the performance of systems; optimum 

speed,     , and maximum speed,     , and COT is 
calculated for these two speeds. The optimum 
speed of a BMS is the speed at which the energetic 
cost is minimum and is marginally lower than 
cruising speed. In engineering terms this is 
referred to as the economic speed of the vehicles.  

 Calculation of drag 

In engineering bare body drag,    , is 
calculated as: 

               
  (6)  

Where: 

   is the drag coefficient and     is the wetted 
surface area and both must be estimated to calculate 
drag. As part of this research it has been concluded 
that, for the purposes of providing sufficiently 
accurate drag estimates, BMSs body forms can be 
idealised using a tri-axial ellipsoid [3], as illustrated 
in Figure 3. From this wetted surface area and drag 
coefficient can be estimated. 

 
Figure 3 Three-view schematic design of a Marine Mammal 

Although no analytical formula is defined to 
calculate the surface area of a tri-axial ellipsoid, a 
number of approximation formulae exist and the 
one used in this research is the Knud-Thomsen 
formula [5] which estimates     with less than 1% 
error. 

The Knud-Thomsen formula for a BMS is: 

      

 (
(         )

      
              

 
)

 
      

 

(7)  

Where BW and BH are maximum body width 
and height and    is elliptical length.    is used 
as the length of the main body, instead of total 
length,   , or standard length, SL. This is because 
   includes the rear fin and SL includes the 
length of the peduncle. 

The drag coefficient is in the form of: 

            (8)  

Where    is the friction coefficient and       

is the form factor. 

To estimate    for vehicles the Prandtl-von 

Karman formula is used, that is: 

                (9)  

Where    is the Reynolds number. 

The values obtained by using this formula were 
compared to examples tested in CFD software and 
the results show less than 4% error. 

Hoerner, 1965 [6] estimates the       value, 
for Spheroids:   
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 (11)  

where BD and EL are the diameter and length of 

the spheroid respectively. The equivalent diameter 

for a tri-axial ellipsoid can be calculated from (11). 

  𝑒  √      (11)  

By substituting  𝑒 in (11), for    in (10), the 

results obtained using (10) closely correspond with 

results from CFD, therefore results from Hoerner, 

1965 formula are valid estimates of the form factor 

for a tri-axial ellipsoid. 

 Estimate of        

As mentioned earlier, COT must be calculated 

for optimum and maximum speed (     , and 

     , therefore   must be estimated for these two 
speeds. 

To estimate   at optimum speed,      , COT is 

differentiated with respect to U: 
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) (12)  

The optimum COT is found at the speed,     , 

when 
    

  
  .  



 

 

Therefore, 

 
      

        
   

  
 (13)  

where b is: 

                 (
     

    
)
    

      (14)  

 Estimate of        

 
For vehicles motor brake power is related to 

efficiency as follows: 

         
 

      
 (15)  

Where    is the motor brake power; therefore: 

       
            

      

 (16)  

To estimate   at maximum speed,       , the 

propulsion power at maximum speed must be 
quantified. For BMSs muscle power corresponds to 
the motor power and the power output of both red 
and white muscle fibres have been obtained from 
reference [7].  

       is estimated by substituting the maximum 

available muscle powers in (16). 

At this point all terms to calculate COT are 
known and (4) can be solved. 

B. Estimate of stability 

For the purpose of this research three main 
stabilities are considered for underwater vehicles as 
follows:  

 Yaw stability is provided by the top and 
bottom fins and increases with increasing 
area of those fins. This improves 
manoeuvrability but increases appendage 
drag and hence  . 

 Pitch stability is provided by a relatively flat 
body and is therefore increased with the 

value of 
  

  
. This stability is useful when 

diving and surfacing but reduces the yaw 
stability. 

 Roll stability is provided by side fins and 
increases with increasing area of those fins. 
This improves upright stability but increases 
appendage drag and hence  . 

Based on the importance of each specification 
the OSS will select one of a few possible options for 
different missions; e.g. if pitch stability is more 
important than yaw stability, the off-spring with 

higher 
  

  
 will be ranked higher. 

C. Manoeuvrability assessment 

Many parameters are involved in the 
manoeuvrability of a vehicle. One term which is 
specific to BMSs is flexibility. Although it is 
difficult to quantify flexibility, it is required to have 
an understanding of the effects of it on 
manoeuvrability. Therefore, investigations are being 
carried out to quantify the flexibility of a BMS by 
comparing their ability to turn with one of a solid 
body. 

It is possible to estimate a flexibility number, 
however, predicting the manoeuvrability of a 
system is difficult because it depends on the area of 
the fins, the propulsion mode, the stability, the 
flexibility of the system, etc. For this purpose a 
neural network is being investigated to estimate the 
manoeuvrability of a system by predicting the 
turning radius based on known parameters. 

D. Swimming mode selection 

The resistance and propulsion characteristics are 
calculated numerically as discussed in this paper, 
and specifications of BUUUVs are selected by the 
OSS. From these calculations the swimming mode 
type can be determined by estimating what mode 
would be likely to achieve the outcomes of the OSS, 
based on observations from existing BMSs. This is 
achieved by using a categorising neural network. 
This particular network is trained by the available 
data for the BMSs and the existing data are 
categorised into various biological propulsion 
modes. The data of off-spring are then input into the 
trained neural network. The result is the swimming 
mode most appropriate for the off-spring. 

V. DEFINITION OF EFFICIENCY 

This section provides a detailed explanation of 
propulsion energy usage for BMSs and AUVs. This 
is to resolve the issue of inconsistent and unclear 
definitions and use of propulsive efficiency when 
applied to BMSs, as noted in Section II. This leads 
to a clear and consistent definition of propulsive 
efficiency.  

Batteries are the energy store of AUVs which 
corresponds to food and fat for marine animals. As 
energy flows from the battery to eventually move 
the vehicle forward, some energy losses occur from 
the system. Figure 4.a illustrates the flow of power 
and efficiency relationships in an AUV propulsion 
system and Figure 4.b. is the equivalent concept 
presented for a BMS. Table V provides explanatory 
notes to Figure 4. 

From the descriptions in Table V, it is realised 
that the total efficiency for BMSs,       , is: 

       
     

  
 (17)  

Where   is the drag, 

        is the BMS speed and  

      is the muscle power. 



 

 

 

Figure 4 Comparison of power delivery in engineered vehicles and BMSs 

TABLE V.  EXPLANATORY NOTES TO THE POWER TRANSITIONS AND EFFICIENCIES ILLUSTRATED IN FIGURE 4 

Process in AUV Corresponding Process in BMS 

Energy is lost when chemical energy in the battery is converted into 

electrical energy in the motor. 

Energy loss when food and fat are converted  into protein for 

muscle operation. (*) 

In this research the efficiency associated with this this energy loss is 

called the conversion efficiency,     

Similar to an AUV 

Energy is lost from friction when it is transferred through the drive 

chain to the propulsor. 

Energy loss when energy is transferred from the muscle to the tail 

through the peduncle.(**) 

The efficiency associated with this energy loss is known as the 

transmission, or shaft efficiency,   . 

   
  

  
 

Where   is the delivered power to the propeller and 

             is the brake power from the motor 

The efficiency associated with this energy loss is the peduncle 

efficiency,     . 

  𝑒  
  

  
 

Where   is the delivered power to the rear fin (the tail) and 

             is the muscle power 

Energy is lost due to the propeller working in the flow field behind the 

AUV. In the desipline of naval architecture this is usually considered 

in two parts, namely with the propeller operating in the so-called open 

water condition with another adjustment for the effect of the wake 

behind the vehicle.[8] 

Energy is lost due to the tail working in the flow field behind the 

BMS. 

The  efficiency associated with this energy loss is known as the 

“behind efficiency”,   . 

   
  

  
 

Where   is the thrust power and is calculated as: 

       
Where T is the thrust and 

              is the advance speed 

In this research the efficiency associated with this energy loss is 

called the behind efficiency,   . 

   
  

  
 

Where   is the thrust power and is calculated as: 

       
Where T is the thrust and 

              is the advance speed 

 

Note that T for a flapping tail is the mean net thrust derived over a 

complete oscillation.  
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There is a difference between the power developped at the propeller as 
compared to the effective power of the AUV overcoming drag at a 

given AUV speed. 

There is a difference between the power developped at the tail 
compared to the effective power of the BMS overcoming drag at 

a given speed. 

This power loss is referred as the hull efficiency,   . 

   
  

  
 

Where   is the effective power and is calculated as: 

         
 

This power loss can be referred to as the hull or BMS body 

efficiency,   . 

   
  

  
 

Where   is the effective power and is calculated as: 

         

From the explanations given above: 

                

and in fact: 

         
  

  
 

Where    is the delivered efficiency, therefore: 
 

             
  

  
 

     

  
 

         𝑒        

And in fact: 

         
  

  
 

Where    is the delivered efficiency, therefore: 
 

         𝑒     
  

  
 

     

  
 

In BMS: 

* Food corresponds to the battery and  muscle to the motor of an AUV. 

** Peduncle corresponds the propeller shaft and the propulsion fin; e.g. the tail to the propeller of an AUV 

 

In much of the literature which considers the 
locomotive and/or propulsive efficiency of BMSs, it 
is often unclear where the starting point in the 
energy flow in Figure 4 is. Therefore, claims of very 
high propulsive efficiency are often quoted as being 
a “total” efficiency, whereas, in reality they are 
more likely one of the sub-set of the efficiency 
terms illustrated in Figure 4 and explained in Table 
V which by definition will be higher than the real 
total efficiency.  

VI. CONCLUSION 

The superior performance of BMSs is apparent 
compared to engineered vehicles; however, no 
specific system is able to completely fulfil desired 
AUV mission requirements. 

In this paper an Optimum System Selector 
(OSS) is described which combines BMSs to find 
an optimised solution for specific desired mission 
specifications. Therefore, it is crucial to calculate 
accurately the performance of the off-spring 
generated by the MOGA.  The use of these 
calculation methods were described and justified in 
this paper.  

Through considering multi-functionality and 
interaction of various biological sub-systems, OSS 
is an excellent guide to transform complex 
biological data for future vehicle design. 

To realise the full potential of bio-inspiration, 
research is continuing by resolving the flexibility 
and depth-capability challenges and estimating the 
efficiency of the systems accurately. 
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