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ABSTRACT 

The Doubly-fed Induction Generator (DFIG) is the dominant technology for 

variable-speed wind power generation due in part to its cost-effective partially-rated 

power converter.  

However, the maintenance requirements and potential failure of brushes and slip 

rings is a significant disadvantage of DFIG. This has led to increased interest in 

brushless doubly-fed generators. In this thesis a Brushless Doubly-Fed Reluctance 

Generator (BDFRG) is compared with DFIG from a control performance point of view.  

To compare the performance of the two generators a flexible 7.5kW test facility has 

been constructed. Initially, a classical cascade vector controller is applied to both 

generators. This controller is based on the stator voltage field orientation method with 

an inner rotor (secondary stator) current control loop and an outer active and reactive 

power control loop. The dynamic and steady state performance of two generators are 

examined experimentally. The results confirm that the BDFRG has a slower dynamic 

response when compared to the DFIG due to the larger and variable inductance. 

Finally a sensorless Direct Power Control (DPC) scheme is applied to both the DFIG 

and BDFRG. The performance of this scheme is demonstrated with both simulation 

and experimental results.  
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Superscripts (reference frames) 

s   DFIG stationary reference frame with respect to the stator circuit 

r    DFIG stationary reference frame with respect to the rotor circuit 
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c    BDFRG stationary reference frame with respect to the secondary circuit 
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e    excitation reference frame, aligned with stator (DFIG) or primary (BDFRG) 

voltage 

g    general reference frame 

Other Superscripts 

    controller reference quantity 

     complex conjugate 

Subscripts 

0          initial conditions, i.e. the state of the variable at time zero 
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1          positive sequence component 

2          negative sequence component 

            leakage quantity 

mag,       magnetising quantity 

a, b, c      electrical phases in three-phase system 

d          d-axis or ‘direct-axis’ quantity: aligned with the orthogonal ref. frame 

q          q-axis quantity: aligned in quadrature with the direct axis of the same 

reference frame 

s          DFIG stator circuit quantity 

r          DFIG rotor circuit quantity 

l          DFIG/BDFRG line-side converter circuit quantity 

p          BDFRG primary circuit quantity 

c          BDFRG secondary circuit quantity 

BC        DC-link brake-chopper quantity 

cb         rotor crowbar-circuit quantity 

ref         a controller reference value 

ph         a phase quantity 
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L-L        a line to line quantity 



xii 

 

L          mechanically the low-speed (hub) side of the turbine gearbox 

m         mechanically the high-speed (generator) side of the turbine gearbox 

Symbols  
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DFIG Variables 
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              phase a, b and c instantaneous stator voltages 

   
     

        d-q components of stator voltage viewed in the excitation frame 

  
 ⃑⃑⃑⃑            space vector of rotor voltage viewed in the excitation reference frame 

              phase a, b and c instantaneous rotor voltages 

   
     

        d-q components of rotor voltage viewed in the excitation frame 

  
 ⃑⃑⃑             space vector of stator current viewed in the excitation reference frame 
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 ⃑⃑⃑             space vector of rotor current viewed in the excitation reference frame 

               phase a, b and c instantaneous rotor currents 
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 ⃑⃑⃑⃑           space vector of primary stator voltage viewed in the excitation reference 
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        d-q components of primary stator voltage viewed in the excitation 

frame 

  
 ⃑⃑⃑⃑            space vector of secondary stator voltage viewed in the excitation 

reference frame 

              phase a, b and c instantaneous secondary stator voltages 

   
     

        d-q components of secondary stator voltage viewed in the excitation 
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 ⃑⃑  ⃑            space vector of primary stator current viewed in the excitation 
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                phase a, b and c instantaneous primary stator currents 

   
     

         d-q components of primary stator current viewed in the excitation 
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 ⃑⃑⃑              space vector of secondary stator current viewed in the excitation 
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                phase a, b and c instantaneous secondary stator currents 
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in ‘labelling of space vectors’ above. From here onwards, therefore, only the single 

example of each parameter is generally given. Certain stator, rotor or primary, 

secondary stator parameters are repeated or permuted, and would be never 

reaffirmed.  
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 ⃑⃑⃑⃑⃑⃑     
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 ⃑⃑ ⃑⃑               space vector of rotor MMF viewed in the excitation frame 
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       frequency 
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       initial angle of the excitation frame. 
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     effective transient time constant of respective circuit 

         torque transient time constant 
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         complex frequency adjustment factor 

         timescale adjustment factor 

         frequency adjustment factor 

        magnetic reluctance 
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Space 
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         length 
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Power and Torque 

         energy 

         force 

         torque 

          load torque 

         Mechanical torque applying to the rotor; 

         Electromagnetic torque applying to the rotor by the generator; 

         power 
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      mechanical friction coefficient 
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      mechanical moment of inertia 

Feedback Control 

  ⁄             integration operator 

               PI feedback control performed on the error feedback of ‘x’ 
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               modulation index 

Mathematical artifices (for DFIG fault analysis) 

          general-use coefficients 

          general function of ‘x’ 

          general variable 
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         stator-circuit natural fault response coefficient in the stator frame 

  
         rotor-circuit natural fault response coefficient in the rotor frame 

  
    

      stator flux linkage fault response solution coefficients in the stator frame 

  
    

      rotor flux linkage fault response solution coefficients in the rotor frame 

          a derived coefficient: a function of the voltage   
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          complex roots of the induction machine natural fault response (in stator 
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 {    }   Laplace transform operation 

          Laplace transform (denoted by capitalisation of the variable) 

          Laplace variable 

 

  
         time differential operator 

Vectors  

Vector definition  

Space vector:           
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Figure i. Direct or ‘d’ axes of commonly used reference frames. 

Normally, there are three reference frames, stationary, excitation and rotor reference 

frames, commonly used in the machine circuit analysis. Their direct axes’ 

relationships are shown in Figure 1.1. The relative quadrature axis is defined as     

ahead of the d axis. The velocities for these three frames canbe defined as below: 

   
   

  
     Excitation frame angular velocity with respect to the stator frame. 

   
   

  
     Rotor frame angular velocity with respect to the stator frame 

The rotor would rotate at the electrical rotor frequency. Compared to the mechanical 

rotation, the electrical rotor frequency would accomplish a    radian in each 

magnetic pole pair. Thus the relationship between the mechanical speed and 

electrical speed are denoted as        .  

As told above, the parameters measured in different reference frames are 

distinguished by their superscripts. Then the transformation of different reference 

frames can be inferred by an appropriate angle. Take the voltage vector as an 

example, the transformations of the vector measured in stator (s), rotor (r) and 

excitation (e) frame can be deduced by: 
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1. Introduction 

1.1. The comparison of DFIG and BDFRG 

1.1.1. Background  

Due to the increasing price of the oil and the environmental impact, governments all 

over the world have made many great efforts to exploit renewable energies, for 

example, solar energy, wind power and hydro-electric power [1]. With improved 

techniques, reduced cost and environmental pollution, wind energy has undergone a 

remarkable improvement over the last two decades, developing from a fringe science 

in the 1970s to flourish and industrialization. The production of wind turbines has 

grown in size from 20kW to 5MW [2], and in some cases even up to 10MW class. So 

far, a rate of annual growth of worldwide wind power has reached approximately 25% 

[3]. Germany is a case in point as the most significant user of wind energy in Europe 

today. Approximately 18.427GW in operation contrasting with scarcely any wind 

power ten years ago shows a large transformation of energy structure. In Denmark, 

more than 15% of electrical energy of country is now supplied by 3GW of wind power 

[4]. It seems that wind power has played a significant role in the world’s energy and 

will continue this action.  

1.1.1.1. Wind generation development 

The wind generators have gone through several generations. In the early stage of 

wind power developments, most wind turbines were equipped with the low-power 

squirrel-cage induction machine, with one side connected to the fixed-ratio gearbox 

and the other side directly coupled with the three phase grid [5]. This generator 

basically operates close to a constant synchronous speed through pole-adjustable 

winding configurations [6]. However, this fix-speed generator is found to be largely 

affected by the characteristics of mechanical sub-systems, for example, the pitch 

control time constants and main breaker maximum switching rate etc [5]. The 
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response time of mechanical drive train leads to a fast and strong variation of 

electrical output power when the blade is hit by the gust. Two results appear. One is 

the rather low efficiency for most wind speeds. The other is fairly expensive 

mechanical structure, especially at the full-rated power. A stiff power grid is required 

due to the stable operation under variation loads and a sturdy mechanical 

construction is designed for the absorption of high mechanical stress [5]. The low 

efficiency and high cost of this system motivated the development of the adjustable 

speed turbine. 

The adjustable-speed generator emerged with improved performance. A so-called 

‘elasticity’ is created by the absorbed energy in mechanical inertia which not only 

leads to the reduction of torque pulsation but also eliminates the electrical power 

variations [6]. The mechanical loads and stresses are reduced due to the lower 

variation of torque caused by the ‘elasticity’ and the power quality is improved 

because of lower fluctuation of output power [5][6]. Besides, the system efficiency is 

much higher and the cost of electricity is lower compared to the fixed speed 

generators, since the speed can be adjusted to maximize power capture and the 

cheaper structure is designed due to less variation under stead-state operation [5]. 

Additionally, owing to the longer time constant and less control complexity allowed in 

speed control, simple pitch control can be employed. What is more, other benefits of 

variable-speed generators are demonstrated in numerous aspects: reduction of 

acoustic noise and island-operation capability etc [5]. 

Nowadays, Permanent Magnet Generator (PMG) and Doubly-Fed Induction 

Generator (DFIG) have the best prospects due to their improved performance. 

However, compared to the large-volume, high-weigh and expensive PMG, DFIG has 

better cost performance. The comparison of Permanent Magnet Generator (PMG) 

and DFIG will be introduced below. 
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1.1.1.2. Comparison of DFIG and PMG 

The DFIGs and PMGs play the major roles in modern wind energy industry. Both 

generators have the same features as the wind generators: 

①. A large wind turbine is needed in order to capture large wind power 

②. The wind speed and direction are variable and cannot be controlled 

③. Variable speed constant frequency (VSCF) technology is usually needed for 

the wind power generation system 

But DFIG and PMG have two ways to achieve VSCF as graphically demonstrated in 

Figure 1.1. DFIG uses the variable frequency excitation current. For a DFIG, an 

AC/DC/AC converter will be connected with rotor and be controlled to produce the 

frequency    as shown in the left graph of Figure 1.1. The constant frequency    

equals to 
   

  
   . However, PMG uses AC/DC/AC power converter to change the 

output power from variable frequency    to constant frequency   . Thus DFIG VSCF 

achievement is more difficult than PMG. Additionally, as    is a fraction of   , the 

power capacity of DFIG’s converter is a fraction of generator’s, typically requiring a 

25%-rated converter. However, PMG’s AC/DC/AC converter is a fully-rated power 

converter. Conclusively the two VSCF generator systems bring about the lower cost 

but with more difficult VSCF achievement of DFIG compared to the PMG.  

 

Figure 1.1 (left) DFIG VSCF (right) PMG VSCF 
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Table 1.1 compares the DFIG and PMG advantages and disadvantages. It is clear 

that the reliability and VSCF complications can be overcome by adding the 

appropriate controller or protection scheme. But the cost of PMG is of concern after 

the Chinese government increases the price of the rare-earth permanent magnet 

materials.  

 DFIG PMG 

 

Advantages 

 Small size 

 Low cost 

 Cheaper power converter 

 High reliability and 

performance 

 Easier VSCF achievement 

 

Drawbacks 

 Poor reliability 

 Complicated VSCF 

achievements 

 Large size 

 High cost 

 Expensive power converter 

Table 1.1 The advantages and drawbacks comparison of DFIG and PMG 

China once owned 80% of the known rare earth metal ore deposits in the world. But 

following the numerous export and utilization of the rare-earth permanent magnet 

materials, the storage of the rare-earth materials drops remarkably to 30%. As a 

result, the Chinese government applies the several times price increase and 

exportation restriction. As the largest exporter of permanent magnet materials, 

Chinese policy causes the significant price raise of rare-earth permanent magnet, and 

indirectly results in the less utilization of PMG. That is the reason why this research 

focuses on DFIG.  

However, the maintenance requirements and potential failure of the brushes and 

slip-rings is still a significant disadvantage of DFIG. This led to increased interest in 

the Brushless Doubly-Fed Generator (BDFG) for wind power. 
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1.1.1.3. Brushless Doubly-Fed Generator (BDFG) 

BDFG has two standard, sinusoidally distributed, stator windings of different pole 

numbers and applied frequencies. The BDFG with a cage-less reluctance rotor is 

known as the Brushless Doubly-Fed Reluctance Generator (BDFRG) and the other 

type having a special cage rotor is termed as the Brushless Doubly-Fed Induction 

Generator (BDFIG). 

As any with other doubly–fed machines, BDFG has similar basic advantages as the 

DFIG. Firstly, the cost of power electronics hardware (especially larger scale) is often 

the dominant component of the total system costs. The fact that the power converter 

only has to handle the slip power implies the possibility for significant capital cost 

savings compared to systems with a fully-rated inverter. Secondly, the BDFG can 

operate in sub-synchronous and super-synchronous modes in both motoring and 

generating regimes. Besides, the BDFG is brushless and therefore more reliable, 

mechanically robust and maintenance-free for slips and brushes. This is one of the 

key arguments for using the BDFG in all applications traditionally served by the DFIG 

or the classical wound rotor synchronous machine, such as off-shore wind turbines 

where reliability issues and associated operation and maintenance costs become 

increasingly important. All the merits above encourage the motivation for the growing 

attention to the BDFGs. 

Both BDFG versions, the BDFIG and the BDFRG, share all the above salient features, 

the focus of this thesis is on the BDFRG as this machine has some additional 

favourable properties such as: 

A synchronous reluctance machine rotor should offer the BDFRG greater efficiency 

[7], improved reliability and much easier control with respect to the BDFIG [8]. The 

advances in BDFRG rotor design have indicated the potential of achieving 

competitive performance when compared to the DFIG [9]. 
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The BDFRG can be operated stably over the entire speed range in both motoring and 

generating modes whereas the BDFIG suffers from the inherent stability problems 

around the synchronous speed of the mains field when it produces no torque [10]. 

Therefore, in this thesis, BDFRG is compared with DFIG from a control performance 

point of view. 

1.1.2. The research project  

Three academic institutions and one industrial partner participated in this 

collaborative project ― Newcastle University (UK), University of Northumbria (UK), 

Shenyang University of Technology (China) and Scottish-Southern Energy Group 

(UK). 

The main aim of the project is to compare two generators technologies for a wind 

power application ― Brushless Doubly-Fed Reluctance Generator (BDFRG) and 

Doubly-Fed Induction Generator (DFIG). 

Newcastle University focuses on the DFIG, while the University of Northumbria 

concentrates on the BDFRG. The BDFRG is designed and manufactured by 

Shenyang University of Technology. Scottish-Southern Energy assisted with power 

network expertise and project management. 

BDFRG is compared with DFIG under a parameter independent vector controller in 

this thesis. To date, this kind of work has not been carried out. Only a similar work has 

been done by Dr. Teng Long in Cambridge University. But he made a comparison 

between BDFIG and DFIG whereas I compared the difference between BDFRG and 

DFIG, for the BDFRG has some additional advantages than BDFIG as mention 

before.  
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Besides, a robust and versatile sensorless Direct Power Control (DPC) scheme has 

been applied to Brushless Doubly-Fed Reluctance Machine by my collaborator, 

Chaal Hamza in Northumbria University. Further research has been done by me to 

compare the DFIG and BDFRG performance when DPC is applied to them. Although 

the experiment implementation is not successful in DFIG because of the limitation of 

IGBT module, the simulation comparison of two generators under DPC has been 

done. And the results are presented in chapter 6. This work has never been carried 

out before either. 

1.1.3. Research objectives 

The objectives of the research project are: 

 To build a DFIG simulation model by Matlab/Simulink and validate this model 

by comparing model fault response and crowbar performance to Pannell’s 

experiment results [11]. 

 To develop and evaluate by simulation studies a machine parameter 

independent field orientation vector control for decoupled real and reactive 

power of both DFIG and closely related BDFRG in grid-connected wind energy 

conversion systems (WECS). 

 To develop a BDFRG/DFIG laboratory test facility in variable speed constant 

frequency (VSCF) applications. 

 To implement and test the developed controller in real time on a custom 

designed and built BDFRG prototype and equivalent, commercially available 

DFIG of the same size. 

 To perform a comparative performance analysis, and assess performance of 

the two generators controller response in order to establish BDFRG viability as 

a brushless alternative to slip ring doubly fed induction generator (DFIG) for 

wind turbines. 
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 To investigate a Direct Power Control (DPC) scheme for both BDFRG and 

DFIG and examine the control quality by computer simulations and 

experimental testing. 

1.2. Thesis overview  

1.2.1. Thesis layout  

The thesis is organised as follows: 

Chapter 2 provides an overview of the theory and principles of DFIG and BDFRG 

operation and control. The aim is to cover the necessary background to analyse the 

control response of a conventional DFIG/BDFRG. Space vector analysis is 

introduced and used to demonstrate vector control of DFIG/BDFRG system. The 

DFIG and BDFRG different structures —  wound rotor induction machine and 

reluctance machine are discussed separately. The difference inductance 

determinations of induction machine and reluctance machine are detailed as 

inductance will affect the control response. However, the power converter and wind 

turbine transformer are introduced which are common knowledge to both generator 

systems. 

Chapter 3 studies the grid fault and fault-ride-through requirements, followed by the 

analytical solution of induction machine fault response and timer action crowbar 

methods. A DFIG computer model is described in this chapter which simulates the 

fault response and crowbar performance. The simulation results are compared with 

the analytical solution and Pannell’s experiment results [11] to validate the model 

accuracy. This DFIG model is used in Chapter 6 as well to simulate DPC response. 

Chapter 4 introduces the DFIG and BDFRG test facility which was built and 

commissioned in Northumbria University and referred to throughout this work as ‘test 

rig’. The test rig includes a DFIG/BDFRG, a prime drive made up of commercial 
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Altivar 71, an induction machine and a control cabinet. The entire system is controlled 

by an eZdsp F28335 board. The controller is programmed with C language in the 

Code Composer debugger. Two LabVIEW interfaces are designed to keep 

communication with DSP via RS232 and control the systems during the tests. 

Chapter 5 and 6 present the vector control and direct power control principles and 

experimental implementation. Vector control test responses of both DFIG and 

BDFRG are graphically demonstrated in Chapter 5. The results from the two 

generators are compared and analysed. The experimental results for the DPC 

scheme are described in Chapter 6, but DFIG results are not satisfactory due to the 

sampling frequency limitation.  

1.2.2. Publications 

[12] WenJun Chen; Atkinson, David; Chaal, H.; Jovanovic, M., "Experimental and 

Simulation Comparison for Timer Action Crowbar of Doubly-Fed Induction 

Generator," Power and Energy Engineering Conference (APPEEC), 2011 

Asia-Pacific , vol., no., pp.1,5, 25-28 March 2011 doi: 

10.1109/APPEEC.2011.5748822 

[13] Chaal, H.; Jovanovic, M.; Atkinson, D.; Wenjun Chen, "A simple yet efficient 

doubly-fed drive/generator controller," Power Electronics and Applications (EPE 

2011), Proceedings of the 2011-14th European Conference on , vol., no., pp.1,6, Aug. 

30 2011-Sept. 1 2011 
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2. DFIG and BDFRG concepts 

This chapter gives an overview of DFIG and BDFRG operations and their theories. 

This material provides the necessary background knowledge for the analysis in the 

following chapters. 

The first section explicates the space vector analysis. The next two sections provide 

an overview of the theories and principles of DFIG and BDFRG separately.  

In Section 2.2, the power electronic converters and wind turbine transformers of the 

DFIG have been introduced. The performance and power flow characteristics of the 

DFIG have been described. They are common knowledge for both generator systems. 

Thus Section 2.3 does not repeat these contexts.  

Besides these similarities, the wound rotor induction machine and reluctance 

machine are discussed separately. The different inductance determinations of 

induction machine and reluctance machine are detailed as the inductance will affect 

the control response. Additionally, the control methods of both DFIG and BDFRG 

have been demonstrated in this chapter as the background knowledge. 

2.1. Space vector analysis  

The space vector is a mathematical abstract concept. It facilitates the analysis of the 

electrical machine, by representing the three-phase quantities, such as the voltage, 

current and flux in vector form. The three-phase components can also be represented 

by two orthogonal quantities in a rectangular coordinate system which is called 

‘reference frame’.  

The use of rectangular co-ordinate axis helps to simplify the derivation of the 

mathematic model. The book [14] documents the advantages of space vector 

analysis. All the information of real three-phase waveforms, including the zero 
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sequence components, is represented by the space vector in the orthogonal two-axis 

system. Normally, in a reference frame, the vector can be described as a complex 

number,     , where real part   represents direct axis value and imaginary part   

is the quadrature axis number. Secondly, the complicated calculations of two or more 

electrical parameters can be replaced by simply using the four arithmetic operations 

of matrix, complex number and trigonometric function. So, the utilization of the 

different reference frames to analyse and control the same machine becomes much 

easier because it is convenient to transform the expression of any vector from one 

reference frame to the other by using the space vector representation. Besides, the 

space vectors can consist of a matrix which describes the status of the electrical 

machine on both steady-state and transient response, whereas they may be resolved 

immediately via a reverse of the matrix transformation. Thus, the space vector model 

is, therefore, “valid for any instantaneous variation of voltage and current and 

adequately describes the performance of the machine under both steady-state and 

transient operation” [15]. From the advantages above, it is worth analysing the 

electrical machine by the use of the orthogonal space vector representation. 

Generalised electrical machine theory, including the space vector analysis, is based 

on the following simplifying hypothesis shown in [16][17]:  

①  Flux and MMF distributions are represented by their fundamental harmonic 

component alone. 

② Slotting and other geometric winding distribution effects are neglected. 

③ Commutation effects and brush-connections are considered ideal. 

④ The eddy currents and hysteresis effects of the magnetic materials are neglected. 

⑤ Magnetic saturation is not present. 
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The assumptions ① -④  are reasonable approximations of the practical cases. 

Magnetic linearity is assumed. Thus the different magnetic fields may be linearly 

superposed, which simplifies model development considerably. However, the actual 

machine situation contradicts the hypothesis ⑤ . Magnetic saturation definitely 

impacts all practical machines. The concentration of magnetic flux is restricted at any 

one point due to the saturation. But it has less impact in the later analysis and 

conclusions. Practically, if the magnetic saturation has the effects on machine, it will 

limit the transient over-shoot current and power on step response of the vector control, 

and restrict the instant excesses of fault response. The linear magnetic analysis will 

therefore derive a worst case response in terms of transient response on both control 

and fault. In conclusion, the simplification of linear space vector analysis is 

reasonable and could be used in fault discussion in Chapter 3 and the control 

analysis in Chapters 5 and 6. 

 

Figure 2.1 Space vector of stator current  
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An example of the space vector analysis is illustrated in Figure 2.1 where a stator 

current space vector is mapped onto a cross-section of a symmetrical two-pole, 

three-phase non-salient AC machine. The three-phase a-b-c components are drawn 

as sA, sB and sC axes with      difference between them, while the stationary stator 

axis sd is along with sA, and the excitation reference frame is pictured with an angle 

   between the sA and its d axis. The Quadrature axes of stator and excitation 

reference frame is shown     ahead of themselves Direct axes respectively. The 

excitation axes rotate at speed   , whereas the stator d-q axes are stationary. The 

vector stator current    which consists of three-phase sA-sB-sC (Equation 2.1), is 

discomposed as    
  and    

  along with the direction of excitation frame d-q axes. 

This set of stationary three-phase sA-sB-sC axes, stationary sd-sq axes, excitation 

reference frame ed-eq axse and the stator current    with its discomposed value    
  

and    
  explicate the space vector analysis. 

  ⃑⃑                                                                                                                                 

Where  

           ⁄                                                                                                                                    

For the balanced three-phase currents, we have: 

                                                                                                                                                 

Similar to the two components of stator current in excitation reference,    
  and    

 , 

the stator current also can be resolved in stationary reference frame to    
  and    

 . 

These two components have the following relationships to the three-phase quantities: 

   
  

 

 
    

 

 
    

 

 
                                                                                                                          

   
  

√ 

 
    

√ 
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And the two reference frames have the transformation below: 

{
   
     

          
       

   
      

          
       

                                                                                                                  

{
   
     

          
       

   
     

          
       

                                                                                                                     

The details of reference frame and the transformations are explained in Appendix A. 

2.2. Doubly-Fed Induction Generator (DFIG)  

 

Figure 2.2 Schematic of wind turbine DFIG including a back-to-back power converter 

[11] 

As is well known, a most widespread DFIG scheme, as shown schematically in Figure 

2.2, consists of a poly-phase wound rotor induction generator with direct grid 

connection on stator side and variable frequency power converter on rotor side [11]. 

The frequency converter is built by a pair of three phase bridge PWM converters 

arranged as ‘back-to-back’ structure with a dc voltage link created by a capacitor in 
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the middle [18]. The generator will be controlled by applying the control scheme to the 

IGBT power converter and connected to the grid via a transformer. 

2.2.1. Wound rotor induction generator 

A wound rotor induction machine is common terms used to describe an electrical 

machine with the following characteristics [19]. The machine has a cylindrical stator 

and rotor with a set of slots in the internal face of the stator and the external face of 

the rotor. In the slots, three phase windings are located to create the magnetic field in 

the airgap with poles. Typically, there are thirty-six to forty-eight slots and two or three 

pole pairs [19] on the stator and the rotor has the same pole pair number as the stator. 

The two magnetic field produced by both stator and rotor windings will turn at the 

same speed with some degree phase shift between them as the function of the torque. 

The slip rings are necessary to feed the rotor as the rotor is moving. But the slip ring 

assembly requires maintenance, therefore, will increase the cost and reduce the 

reliability and efficiency of the system. That is the reason why the brushless machine 

appears. Figure 2.3 explains the structure of a wound rotor induction machine.  

 

Figure 2.3 Cutway section of a wound-rotor induction machine [20] 

The wound-rotor induction machine offers the option of rotor-field control with the 

decoupling of the output power and permits the variable speed option in comparison 
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to the squirrel-cage machine. Thus the DFIG has the merits of adjustable speed 

generators, for example, high efficiency, less loss and stress of mechanical shaft and 

simple control, etc. The chief disadvantage is the slip ring. 

2.2.1.1. DFIG inductances  

In determining the machine inductance, an idealised three phase AC machine is 

firstly considered. The machine has sinusoidally distributed windings and flux density. 

Taking account of a single stator phase winding, the flux linkage around it consists of 

one leakage and three mutual fluxes. The leakage flux contribution is driven by this 

stator phase current itself without any link to any other phase. One mutual flux 

contribution is encouraged by the same stator phase but linking the other stator 

phases. The other two mutual fluxes thread the stator and rotor. One is driven by the 

stator phase currents with link to the rotor, the other is obliged by the rotor currents 

and linking the stator. 

From here we can see that the circuits in the machine may have the magnetic 

coupling between each other. This will cause the complicated circuit equation [21] 

However, the book [22] substantially simplifies this by using an orthogonal two-axis 

representation to describe machine and expressing the magnetic couplings of each 

circuit separately by their relevant impedance parameters.  

In order to eliminate the turns ratio effects, the parameters here are all referred to 

‘per-unit’ value. The relations between the inductance and current are independent of 

reference frame. Thus, here a general frame is used in the equations below by the 

superscripts    . The three following equations describe the leakage flux driven by 

the stator (Eq.     ), mutual component encouraged by both currents (Eq.     ) and 

the stator total flux linkage (Eq.     ).  

   
 ⃑⃑ ⃑⃑ ⃑⃑        

 ⃑⃑  ⃑                                                                                                                                               
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 ⃑⃑⃑⃑⃑⃑    (  

 ⃑⃑  ⃑    
 ⃑⃑  ⃑)                                                                                                                                 

  
 ⃑⃑ ⃑⃑  ⃑       

 ⃑⃑  ⃑    (  
 ⃑⃑  ⃑    

 ⃑⃑  ⃑)                                                                                                                  

The total stator inductance combines the stator leakage and mutual elements, 

expressed as: 

                                                                                                                                

   
   

  
⁄   (  

  
  

⁄ )                                                                                                          

  
 ⃑⃑ ⃑⃑  ⃑      

 ⃑⃑  ⃑      
 ⃑⃑  ⃑                                                                                                                                  

Similar, for the rotor flux linkage, we have: 

  
 ⃑⃑ ⃑⃑  ⃑       

 ⃑⃑  ⃑    (  
 ⃑⃑  ⃑    

 ⃑⃑  ⃑)                                                                                                                  

                                                                                                                                

   
   

  
⁄   (  

  
  

⁄ )                                                                                                         

  
 ⃑⃑ ⃑⃑  ⃑      

 ⃑⃑  ⃑      
 ⃑⃑  ⃑                                                                                                                                  

For the simplification of the expressions, a useful measurement of the ratio between 

the leakage and mutual fields in machine is derived in Equation     , called ‘leakage 

factor’. The stator and rotor leakage factor is defined in above equation      and 

      

    
  
 

    
                                                                                                                                           



18 

 

The flux and inductance equation above are all valid in transient condition [23]. 

Although the saturation is general insignificant for a simpler analysis, it, in practical, 

may reduce the relevant inductance values [16].  

As the description above, we know that the linking flux strength varies around the 

rotor surface in a saliency machine. This leads to the variations of the inductance 

values [17]. In a salient induction machine, the inductance is possible to be resolved 

against the d-q axes of the rotor and the stator reference frame, which will result in a 

complicated impedance expression.  

However, we also know that a poly-phase winding distribution is able to eliminate the 

saliency effect due to its multiple slots per phase and the narrow and identical airgap 

width. Even if the small, ripple-like deviations happen occasionally as the slots align 

and mis-align in, these ‘slot effects’ do not seriously impact. Inductance values, 

therefore, may ignore its variations with position and be considered as an 

approximate constant. 

All wind turbine DFIGs are poly-phase induction machines. Typically, for the sake of 

maximum efficiency, DFIG is designed with a large number of slots and windings, and 

narrow smooth airgap [20]. Thus, DFIG has minimal saliency and it can be assumed 

that the machine inductances are independent of rotor position. This important 

conclusion provides us the support of considering the DFIG inductances as constant 

when viewed in a stator, rotor or synchronously-rotating reference frame. 

2.2.2. DFIG power converter  

2.2.2.1. Converter types 

The DFIG converter has previously been based on three types before the 

back-to-back PWM converter that is used nowadays [20]. 
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In the early years, the naturally commutated DC-link converter was commonly used. It 

consisted of voltage controlled inverters [1]. But, this converter was superseded due 

to many drawbacks. Initially, it has problems at synchronous speed, since a 

rectangular current waveform was drawn through the converter from the supply. This 

problem gave rise to an extra commutation circuit for the operation at synchronous 

speed. However, this strategy still had poor performance at low slip speed [1]. In 

addition, the DC-link choke was expensive, which led to a high cost. Moreover, 

additional transformers were needed not only for the neutral connection but also 

voltage matching [1]. 

Gradually, the direct AC to AC frequency converter known as a cyclocnverter 

replaced the DC-link converter [1]. The cycloconverter has two main types; a 6-pulse 

converter, and a 3-pulse converter. Although cycloconverter had excellent attributes, 

it also had many weaknesses, for example, increased machine complexity, difficulty 

of current harmonic elimination and the extra transformers [1]. 

Nowadays, the back-to-back PWM converter is the preferred option. It is also called a 

self-commutated PWM converter, a four-quadrant converter or a bi-directional power 

converter. This converter is made up by two voltage-fed, current-regulated inverters 

connected back to back sharing the DC bus. This converter allows the DFIG a more 

versatile and flexible operation compared to the Single-Fed Induction Generator 

(SFIG) [1]. At any time, one of converter will operate as a rectifier and the other is an 

inverter. This design allows the sub- and super- synchronous modes operation in 

DFIG. Speed variability is also made possible by the directly dependent transfer of 

slip power via the frequency converter [25]. Besides, these two converters can be 

controlled separately. They enable the decoupled control of real and reactive power. 

When the converter has to provide only excitation energy, the DFIG has the similar 

operation of synchronous machine and results in a simple power factor control which 

can be implemented at low cost [5][26]. In addition, the converter’s power rating is a 

fraction of the generator rating. The reasonable operating speed range is typically 
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within ±25% around synchronous speed and requiring a 25%-rated converter which is 

the dominant virtue of DFIG giving significant cost savings [5][27].  The low rated 

converter of course leads to the 0.25 p.u. rating inverter filters and EMI filters which 

has reduced cost and less p.u. harmonic [5]. 

2.2.2.2. Voltage source converter 

Figure 2.4 illustrates the two-level, three-phase IGBT bridge converter used in the 

DFIG. A pair of such converters is connected back to back sharing a DC-link bus to 

allow the bi-directional power flow. The power flow characteristics will be introduced 

in the Section 2.2.5.  

 

Figure 2.4 Three-phase IGBT bridge converter used in DFIG 

The two voltage source converters are called rotor-side and grid-side converters 

according to their position and can be controlled separately by two sets of 

independent three-phase modulation indexes. The supply frequency (eg 50Hz) is 

injected to both the generator stator windings and the grid side converter. The 

rotor-side converter supplies slip frequency voltages/currents to the rotor circuit via 

the slip-rings.  

With this structure, DFIG is an attractive option for the applications of large capacity 

and is widely adopted for different kinds of variable speed constant frequency 

turbines. The primary advantage of DFIG is its best cost performance due to the 

reduced power converter rating. Compared to the fully-rated back-to-back converters, 

partly-rated converters would have the cheaper converter devices and cause the 
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lower DC bus voltage. Further, the lower voltage results in low cost of capacitor bank 

[26][27][28][29].These reductions give the important capital saving on both converter, 

the filters and other relative hardwares compared to fully-rated power converter since 

the cost of hardware is usually the dominant component of total cost [19][26]. In 

addition, unlike the SFIG, the DFIG can operate in both sub- and super- synchronous 

speed modes. The similarity of operation to that of a synchronous generator permits 

the implementation of power factor control at low cost and the possibility of decoupled 

active and reactive power control [1][27]. What is more, constant stator flux linkage 

over entire operation range causes high utilization ratio of generator [26][27][28][29]. 

All of these contributions are given by this compact design with minimal size of 

components. Actually, this design is based on several reformations, especially the 

innovations of the converter. The reasons why this modern converter design gives so 

many advantages have been included in the process of converter changes and 

introduced above. 

The DC-link capacitance maintains the DC voltage and decouples the operation of 

the two converters. It permits the independent control of two converters and allows 

the power flow in either direction. In the experiment, the DC voltage will be controlled 

by the grid side converter through the direct axis line current. The details will be given 

in Chapter 5. 

2.2.3. Wind turbine transformer  

Most European wind power generators are designed to operate with 690V phase to 

phase voltage. One reason for this design is safety regulations for a wind turbine 

tower. The other is the flexibility and cost-effectiveness of production for cables and 

switchgear at low voltages [30]. Hence, in general, an LV:MV transformer would be 

included in all large DFIG wind turbines, as the output voltage of wind turbine is lower 

than the distribution network level.  
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Figure 2.5 Different transformer connections 

There are several ways to connect the stator and the converter to the grid as shown 

in Figure 2.5. If the stator and converter have the same voltage level, one transformer 

rated at full power is used as shown in Figure 2.5 (a). If the stator voltage is in the 

range of MV, the transformer like the middle picture is used at the rated rotor power 

level. In this case, the stator voltage is direct connected to a medium voltage 

distribution grid or the medium voltage grid of a wind farm. If the stator and converter 
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voltages are both in the low voltage range but different value, two secondary windings 

are used.  

All three transformer configurations have merits. Table 2.1 summarizes the main 

advantages and disadvantages.  

Option Advantages Disadvantages 

a  One single secondary winding  

 The MV winding can be adapted 

to different MV grids 

 Full power transformer 

b  The transformer is rated at 30% 

of the wind turbine power 

 Less transformer loses 

 Stator electrical design 

 The transformer leakage 

impedance limits the short-circuit 

current 

 The MV grid must fit the stator 

MV voltage 

c  The stator voltage and the power 

electronics can be designed with 

different voltage 

 The transformer is more 

expensive 

Table 2.1 Transformer topology comparison [19] 

2.2.4. Performance of DFIG operation  

As demonstrated above, DFIG can operate in synchronous, sub- and super- 

synchronous modes. The performance of DFIG in these modes will be discussed 

below, however, before the discussion, the frequency relationship between stator and 

rotor need be introduced below. The symbols can be found in glossary and symbols 

section. 
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The generalised slip is from -1 to 1, however as is well known, DFIG’s slip range is 

typically ±0.25. Normally, the SFIG’s slip is smaller than 0 to make sure the rotor 

field is ahead of the stator field. But the DFIG has the positive slip. How does it 

operate as a generator? At this time, the phase position of rotor current need be 

adjusted to control the rotor field is dragged ahead of the stator field to keep the 

generation modes. The performance of DFIG could be discussed as the slip is 

changed: [31] 

The slip is started from negative. The first operation DFIG experienced is 

super-synchronous mode. In this mode, the rotor mechanical speed is above the 

synchronous speed. That means the further acceleration after synchronism. That is 

the reason why this mode is called ‘super-’. The slip frequency is under zero since the 

rotor windings “overtake” the stator flux due to the ‘super-’. The negative frequency 

causes the reversed rotor phase sequence. After the rise of slip, it arrives to zero 

which indicates the slip frequency is zero and the mechanical rotor speed is the same 



25 

 

as the synchronous speed. Thus this mode is called ‘synchronous’. In this condition, 

the rotor windings rotate synchronism with the stator flux. In other word, the rotor 

windings have no relative movements to the stator flux. Therefore no voltage is 

induced in rotor windings. The slip continues rising over the zero. When the slip is 

positive, the stator frequency is larger than the rotor frequency and mechanical rotor 

speed is smaller than the synchronous speed, thus this operation is called 

sub-synchronous.  

With the slip climbing up and approaching to the stator frequency, the distance of the 

relative position of rotor and stator flux increases. When the slip reaches 1, the stator 

and rotor voltages have the same frequency which is determined by the 50Hz mains 

supply connected to stator, and the mechanical rotor frequency and speed are zero. 

The DFIG operates at the stationary state. Not only the stator but also the rotor 

voltage is supplied by a positive phase sequence “a-b-c”. In this condition, the 

machine behaves merely as a transformer. 

Besides, there is an exceptional mode called ‘counter-synchronous’ operation when 

the slip is over 1. The slip frequency is bigger than the stator frequency and the 

mechanical rotor speed is negative which indicates the rotor rotates in opposite 

direction to stator flux. It would not be discussed in this thesis. 

2.2.5. Power flow characteristics of DFIG 

For a conventional wound rotor induction machine, the rotor windings are normally 

shorted at the slip rings so that there is no power outputted from the rotor except rotor 

loss only. For a DFIG, however, to obtain sub- and super- synchronous speed 

operation, the converter must be able to handle slip power in both directions [32] and 

therefore both real and reactive power   and   could be conveyed in either 

direction at grid frequency. When the power loss is ignored, the real power   and 

reactive power   can be expressed as: [31] 
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Where   is inertia coefficient and   represents friction. At the steady-state for the 

loss less generator, when the friction is ignored (   ): 

      

         

                      (
     

  
)                 

            

       
  

  
 

            

On one hand, when slip is 0 at synchronous speed, the power only transfers between 

stator and mechanical shaft, while at stationary state whose slip is 1 and mechanical 

rotor frequency is 0, the power flow only takes place in the stator and the rotor. 

Besides, depending on the DFIG operating in sub- or super- synchronous modes, the 

mechanical shaft would feed energy to the stator and the stator real power    is 

always flowing from the stator to the grid, whereas the rotor power    would change 

the direction at different modes. As Figure 2.6 illustrates, power flow conveys towards 

the grid and increases linearly when the slip is negative at over-synchronous speed, 

while reverses to the rotor at the sub-synchronous with positive slip and reduces 

linearly with the rise of mechanical power   . The real power delivered to the rotor at 

sub-synchronous speed depends primarily on the amplitude of the voltage injected 
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into rotor and the peak rotor power absorbed from the converter occurs around the 

synchronous speed. At that time, the slip is near zero and the rotor is close to a short 

circuit. In other words, to prevent such high peak rotor power or current, the DFIG 

should not be operated near synchronous speed [31].  

 

Figure 2.6 Principle diagram of power flow [31] 

On the other hand, the rotor reactive power    and    should be adjusted by the 

controller to make sure that the grid reactive power       is zero and to reduce the 

reactive power    transmitted between the rotor and the converter. Actually, 

although the reactive power    is not conveyed to the grid through the grid-side 

converter under the constant DC-link voltage condition, it may cause overall rotor 

power to exceed the power ratings of rotor-side converter and therefore influence the 

effective DFIG control objectives [31]. 

Explicitly, the biggest characteristic of DFIG is the transportation of the real and 

reactive power between rotor and rotor-side converter. However, it may become the 

bottleneck for the effective vector control of DFIG owing to the rated power limitation 

of converter [34].  
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2.2.6. Mathematical Model of DFIG  

2.2.6.1. Different Order Model of DFIG  

 

Figure 2.7 Ideal three-phase windings (stator and rotor) of the DFIG [19] 

An ideal DFIG model can be described as three windings in the stator and three 

windings in the rotor as illustrated in Figure 2.7. Three windings are an ideal 

representation of the real machine which helps to derive the three-phase machine 

model. The instantaneous stator voltages, currents and flux linkages of the machine 

can be expressed by the following electric equations: 
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Similarly, the rotor magnitudes are described by: 

          
    

  
                                                                                                                               

          
    

  
                                                                                                                               

          
    

  
                                                                                                                                

This model can transfer to the d-q model based on the excitation reference frame. 

The equivalent circuit is shown in Figure 2.8 which is similar to an induction machine. 

 

Figure 2.8 Steady-State Equivalent Circuit of DFIG [35] 

Depending on this circuit, the fundamental equations of DFIG are given [36]:  

1) Voltage equations:  

  ⃑⃑⃑⃑      ⃑⃑  
   ⃑⃑⃑⃑ 

  
      ⃑⃑⃑⃑                                                                                                                      

  ⃑⃑⃑⃑      ⃑⃑   
   ⃑⃑ ⃑⃑ 

  
         ⃑⃑ ⃑⃑                                                                                                                 

2) Flux equations: 

  ⃑⃑⃑⃑      ⃑⃑      ⃑⃑                                                                                                                                      
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  ⃑⃑ ⃑⃑      ⃑⃑      ⃑⃑                                                                                                                                      

From the flux equations, the current can be expressed by the flux, so the current 

equations are: 

  ⃑⃑  
  

  
      

  ⃑⃑ ⃑⃑  
  

  
      

  ⃑⃑⃑⃑                                                                                                     

  ⃑⃑   
  

  
      

  ⃑⃑⃑⃑  
  

  
      

  ⃑⃑ ⃑⃑                                                                                                     

And the relationship between stator and rotor flux is: 

  ⃑⃑⃑⃑      
  
 

  
   ⃑⃑  

  

  
  ⃑⃑ ⃑⃑                                                                                                                    

Define a constant   
 

  
      

, then the current equations can be expressed as: 

  ⃑⃑       ⃑⃑ ⃑⃑       ⃑⃑⃑⃑                                                                                                                            

  ⃑⃑        ⃑⃑⃑⃑       ⃑⃑ ⃑⃑                                                                                                                             

Substitute the voltage equations by current equations      and     , they can be 

described by: 

   ⃑⃑⃑⃑ 

  
   ⃑⃑⃑⃑               ⃑⃑⃑⃑         ⃑⃑ ⃑⃑                                                                                      

   ⃑⃑ ⃑⃑ 

  
   ⃑⃑⃑⃑  (            )  ⃑⃑ ⃑⃑         ⃑⃑⃑⃑                                                                                 

3) Motion equation: 

   

  
 

 

 
(     (  

 ⃑⃑ ⃑⃑     ⃑⃑ ))                                                                                                             

The equation of motion adds the equation      and      could be used for the 

instantaneous performance or dynamic simulation of DFIG and be called ‘Full Order 
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Model’ (FOM) of the DFIG [36]. This model presents an induction machine type circuit, 

it, therefore, could be described as the vector diagram shown in Figure 2.9. 

 

Figure 2.9 Vector Diagram of (induction) DFIG 

Although the FOM is a perfect model and could operate under the small time 

constants involved small integration time step, it includes a large number of 

differential equations to eliminate the stator voltage. This will limit the application of 

FOM due to the complex analysis [36]. 

The equation 
   ⃑⃑⃑⃑  ⃑

  
   is warranted in the reference frame rotating at a speed close to 

synchronous speed. The DFIG model can be changed to ‘5th Order Model’ (5th OM) 

shown below: 

Depending on     , equation     ,      and      can be changed to:  

  ⃑⃑⃑⃑  [      (   
  
 

  
)]   ⃑⃑     

  

  
  ⃑⃑ ⃑⃑                                                                                      

   ⃑⃑ ⃑⃑ 

  
   ⃑⃑⃑⃑  ( 

  

  
       )  ⃑⃑ ⃑⃑  

  

  
   ⃑⃑                                                                                           

   

  
 

 

 
(     (

  

  
  

 ⃑⃑ ⃑⃑     ⃑⃑ ))                                                                                                     
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Define    [      (   
  
 

  
)],   ⃑⃑⃑      

  

  
  ⃑⃑ ⃑⃑ , then Figure 2.10 can express the 

circuits of 5th OM. 

 

Figure 2.10 Equivalent Circuit of 5th OM [36] 

When 
   ⃑⃑ ⃑⃑  ⃑

  
  , the ‘3rd Order Model’ (3rd OM) was created. The equation      and 

     is changed to: 

   ⃑⃑⃑⃑      ⃑⃑         ⃑⃑         ⃑⃑                                                                                                           

  ⃑⃑⃑⃑ 

  
 

  

  
  ⃑⃑          ⃑⃑          ⃑⃑                                                                                                         

 

Figure 2.11 Vector Diagram of (synchronous) DFIG 

If the stator resistance is neglected, and define   ⃑⃑⃑⃑         ⃑⃑  , it would be found that 

   ⃑⃑⃑⃑         ⃑⃑    ⃑⃑⃑⃑  , where the   ⃑⃑⃑⃑  could present the back EMF induced by the rotor 

current   ⃑⃑  , and the rotor current can be considered as the field current. At this time, 
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the model looks like the circuit presented in Figure 2.10, and its vector diagram can 

be obtained by Figure 2.11. 

The 3rd OM can be used to the steady state analysis. Both 3rd OM and 5th OM are 

the reduced order models (ROM). Without the rotor crowbar, not only the FOM but 

also the ROM will give the similar performance. However, when the grid is disturbed 

and the rotor crowbar is switched on, the ROM has not been covered the 

considerable alternating components of the rotor flux, and an extra DC components 

can be captured on both stator and rotor side in FOM which is not a part of ROM 

solution. That indicates the ROM does not provide the correct information for the 

initializing crowbar control. All of the research under the grid disturbance would be 

analysed in the near future. 

2.2.6.2. D-Q Component Model at Excitation Reference Frame 

The equivalent circuits of d, q components are illustrated in Figure 2.12 (a) and (b) 

 

Figure 2.12 (a) D–axis Equivalent Circuits of DFIG [37]; (b) Q-axis Equivalent Circuits 

of DFIG [37] 

In the picture, a definition is given by:  

{
                           
                            

                                                                                                                 

Based on the circuits, the stator and rotor voltage equations of d-q components are: 
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{
          

    

  
                       

          
    

  
                       

                                                                                       

{
          

    

  
                          

          
    

  
                          

                                                                                  

The flux equations of stator and rotor are expressed by: 

{
                                 
                                  

                                                                                                      

{
                                 
                                  

                                                                                                      

The torque and power equations are: 

   
 

 
  (             )                                                                                                                 

      
 

 
    (             )                                                                                                               

       
 

 
     (  ⃑⃑⃑⃑    

 ⃑⃑ )                                                                                                                   

   
 

 
                                                                                                                                    

   
 

 
                                                                                                                                   

         ⃑⃑⃑⃑    
 ⃑⃑                                                                                                                                    

         ⃑⃑⃑⃑    
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Rotor copper power loss is: 

       
                                                                                                                                                   

The airgap power is: 

      [   
⃑⃑ ⃑⃑ ⃑⃑  ⃑      ⃑⃑   

 ]                                                                                                                       

2.2.7. Control Methods Review of DFIG 

As demonstrated above, the DFIG has more freedom of control. Of the two 

converters, the grid side converter acts as unity power factor interface to the grid for 

either direction of power flow to regulate the dc bus voltage while the rotor side 

inverter controls the machine [38].  

2.2.7.1. Vector Control 

Vector control is the earliest and simplest control method for DFIG. In early 1990s’, 

the speed and grid power factor or alternatively efficiency control was most 

representative control method because of its low-cost micro-controller [26][39]. 

Field Oriented Control (FOC) of DFIG obtains almost as quick torque response as a 

dc machine [40], and improved the performance for fast changes in desired frequency. 

However, this torque response is unsatisfactory when the PWM inverter saturates. 

And the increase of inverter switch frequency, torque ripples and harmonic loss at 

steady state operation is hardly avoided [40]. Besides, in order to decide the gains or 

the expression of the PI controller, accuracy of machine parameters such as stator, 

rotor resistance and inductance, or mutual inductance, etc, is required [24][41]. The 

performance therefore degrades when the actual machine parameters are different 

from the values used in FOC system owing to magnetic saturation, temperature 

variation, etc [24][41]. In addition, to ensure system stability and adequate response 
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within the entire speed range, the current controller needs to be carefully turned [24]. 

What is more, FOC usually employs a position sensor to obtain the rotor angle for 

coordinate transformation between d-q and three-phase reference frame. Thus, the 

performance of system is dependent on the accuracy of the rotor position information 

derived from the position encoder [38]. DFIG sensorless scheme has several benefits 

in terms of robustness, cost, cabling and maintenance [42][43]. 

In many DFIG systems, there is a large physical separation between the generator 

and the back-to-back PWM inverter. The minimum interface between two equipments 

is therefore possible and so is a control without shaft position sensor [44].  

Open loop method is the most popular strategy to construct a Position Sensorless 

Scheme (PSS) system where the estimated and measured rotor values are 

compared to derive the rotor position [32] [43]-[52]. There are two major estimators. 

One is based-on-rotor-current estimator [42],[43],[45]-[49]. In [48], the rotor current is 

estimated in the stator reference frame using stator variables. In [46], the most 

comprehensive system is proposed in 1998. In this system, a commercial product — 

ROTORDRIVE is presented in which an alternative rotor current estimator is 

proposed using load active and reactive power [42]. The other is rotor flux based 

estimator [32][50]. The rotor flux is obtained by integrating the rotor back EMF. This 

suffers from the integration problems — unexpected performance at or near 

synchronous speed due to the low or zero rotor frequency — which is one of the 

major challenges to design a PSS for a DFIG [42]-[44]. So the flux cannot be 

accurately estimated by integrating the PWM rotor voltage. Paper [32] reveals a case 

in point. It is not only the earliest research of rotor flux based estimator, but also a 

special study of PSS. In this paper, a dynamic torque angle controller is proposed [38]. 

The torque angle is defined as the spatial angle between the airgap flux and rotor 

current vector seen in synchronous reference frame. It sed FOC to align the airgap 

flux to d-axis of reference frame, the torque angle must be maintained at 90 degree. 

In other words, the current vector and airgap flux are vertical, and then the torque 
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angle can be found by two equations derived from torque and stator reactive power. 

However, in all of these papers or publications, the accuracy of rotor position and 

effect of parameter errors have not been addressed [42]. And the modelling, 

bandwidth, system dynamics, formal design procedures and methodology for whole 

PSS system are not considered as well [42][43]. 

So a new concept “Model Reference Adaptive System” (MRAS) appeared. In 

MRAS-based schemes, the rotor flux, stator current, stator flux and rotor current 

MRAS observer are applied to grid-connected system [42][43]. 

2.2.7.2. Direct Torque Control (DTC)  

DTC concept is proposed in 1986 in paper [40]. It needs less dependence on 

machine parameters and causes the reduction of control complexity [53]. The 

machine torque is controlled directly by appropriate selection of voltage vector from a 

look-up-table using the stator flux and torque information [24][41]. The stator flux is 

usually estimated by integrating the stator voltage.  

It is one disadvantage of basic DTC scheme that its performance deteriorates at the 

low speed operation condition [24][41][53]. This is largely due to the method of 

repeatedly selecting zero voltage vectors at low speed causing a voltage drop across 

stator resistance and resulting in flux level reduction [54]. Many methods proposed to 

address this problem such as using a dither signal [55], a modified switching table in 

order to apply all available voltage vectors in appropriate sequence [23], or predictive 

techniques [56]. 

Converter switching frequency variation is another drawback for DTC. It produces the 

significant complication of power circuit design. The hysteresis controller bandwidth 

must be selected carefully [57] to ensure that the switching frequency does not 

increase beyond the power converter’s maximum limitation for all operating modes. 

Space Vector Modulation (SVM) strategy has been utilised to achieve constant 



38 

 

switching frequency [58]-[61]. Inverter switching duty cycles in [58] were calculated 

directly, based on torque and flux errors within each sample period, whereas in [59] 

and [60] generated from PI controllers. Output voltage vector was selected from 

switching table in [61] but the voltage vector duration was determined by the torque 

ripple minimum strategy.   

Extra shortcomings were proposed in previous surveys, such as complicated online 

calculation [58], additional PI controller parameters [59][60] and weak robustness on 

machine parameter variations [58]-[61]. 

Similar to DTC, in Direct Self Control (DSC), the machines are controlled, within the 

specified error bands, proper rotor voltage from a switching table [24][62], several 

virtues in terms of simplicity, robustness and yields fast dynamic response. However, 

the switching current and flux ripples are vital [63]. Further, the inverter average 

switching frequency varies with the operating conditions [63]. The unequal stresses 

on the switching devices are generated by variation of the switching frequency and 

difficulties of the design of the output filter are added [63]. Moreover, the accuracy of 

the rotor (or stator) flux linkage estimation is affected by the system performance [64]. 

2.2.7.3. Direct Power Control (DPC) 

Derived from the principles of DTC strategy, DPC was developed to control DFIG 

[53][62]. Two representative strategies were proposed in [24] and [62]. The 

comparison of these two schemes is presented in Table. 1. In [62], the rotor flux was 

computed by the reactive power/power factor. Because the rotor supply frequency, 

which equals the DFIG slip frequency, can become very low, rotor flux estimation is 

significantly impacted by the machine parameter variations, while [24] proposed the 

use of stator flux estimator to address the problem. Since the stator (network) voltage 

is relatively harmonic-free with fixed frequency, a DFIG’s estimated stator flux 

accuracy can be guaranteed. Thus, the control system is very simple, and the 

machine parameters’ effect on system performance could be negligible [53].  
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 Estimator 

Basement 

Switch Vector Selection 

Paper 

[24] 

Stator Flux Switching Table Using Estimated Stator Flux Position & 

errors of the rotor flux & active power/torque 

Paper 

[62] 

Rotor Flux Switching Table Using Estimated Rotor Flux Position & 

errors of the rotor flux & active power/torque 

Table 2.2 The Comparison of Two DPC Method 

However, like a conventional DTC, switching frequency of DPC varies critically, 

leading to the impact of active and reactive power variations, machine operating 

speed (rotor slip), and the power controllers’ bandwidth [53]. 

A special DPC without rotor position sensor was presented by Rajib Datta and 

V.T.Ranganathan in [38], and will be implemented in this thesis. In the analysis, the 

active power    will be changed due to the change of the angle between d-axis and 

rotor flux vector  , while    the can be reduced by increase of the magnitude of the 

rotor flux   .    and   , therefore, can be controlled by the angular position and 

magnitude of rotor flux vector respectively.  

The application of different voltage vectors would result in the reduction or increase of  

   and   . Zero vectors can make    increase in sub-synchronous mode and 

decrease in super-synchronous, but its effect on    is rather small. Nevertheless, 

the direction of change in    can help us to estimate the rotor position. The details of 

this DPC will be introduced in Chapter 6. 
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2.3. Brushless Doubly-Fed Reluctance Generator 

(BDFRG)  

The brushless doubly-fed machine (BDFM) has two standard, sinusoidally distributed, 

stator windings of different pole numbers and applied frequencies. In order to provide 

rotor-position dependent magnetic coupling between them, which is a pre-requisite 

for the machine to produce useful torque, the rotor poles number must be half of the 

total number of stator poles. Although design solutions with odd rotor pole numbers 

(e.g., 3 in case of a 4-pole/2-pole stator) are possible, unlike a conventional machine, 

the “proof-of-concept” BDFMs with 6-pole/2-pole stator windings and a 4-pole rotor 

have been most frequently reported in the literature. The BDFM with a cage-less 

reluctance rotor is known as the Brushless Doubly-Fed Reluctance Machine 

(BDFRM). 

The brushless doubly-fed reluctance generator has the similar converters and other 

components compared to the doubly-fed induction generator except the machine 

structure. The DFIGs possess a wound rotor induction machine, while the BDFRGs 

own a reluctance rotor between two windings. As shown in the Figure 2.13 and Figure 

2.14, the DFIG’s stator and rotor windings are both of    pole pairs, however, the 

BDFRG has one    poles stator and one    poles stator. The pole-pair number of 

BDFRG rotor is stipulated as 
   

 
 and BDFRG pole pair number is       . The 

stator with    poles is called first or primary stator and the other is named secondary 

stator. In the later sections, the primary stator is also called the main stator depending 

upon its importance or the power rating according to its function. Correspondingly, the 

secondary stator is named as auxiliary or control stator. It will be no more explanation 

about the appellation in the discussion below. 
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Figure 2.13 DFIG windings structure 

 

Figure 2.14 BDFRG windings structure 

BDFRG has the same converters and transformer as DFIG while the performance 

and power flow analysis is quite similar to the DFIG. Thus, we do not state them again. 

What the content written here is the difference from DFIG. 

2.3.1. The reluctance generator 

BDFRG has eliminated the brushes and slip rings, which may increase the reliability 

and reduce maintenance. But, the BDFRG will be larger than the DFIG for the same 

power or will produce less output when the machines have the same size. 

The power and control windings of the DFIG are located on the stator and rotor 

respectively. However, both the power winding and control winding for the BDFRG 

are located on the stators (primary and secondary stators). DFIG’s stator and rotor 
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have the same pole number, but BDFRG’s secondary stator normally has a lower 

pole number than the primary stator. This structure makes the stator slot size of 

BDFRG far larger than the stator slots of the DFIG when BDFRG primary stator has 

the same pole number as DFIG stator. The slots of the BDFRG will be deep 

compared to DFIG’s for the same width of stator tooth. 

The yoke height of stator core is inversely proportional to the pole number. Hence the 

BDFRG has much greater stator core yoke height compared to the DFIG with the 

same pole number, as the flux of the control winding needs large yoke area to pass 

through.  

As mentioned above, the heights both of the slot and core yoke for the BDFRG are 

larger than DFIG’s. The inner diameter of stator core for the BDFRG will be much 

smaller than the DFIG’s. As a result, the induced back EMF of the windings for the 

BDFRG will be decreased due to the reduced rotor diameter for the same rotor speed 

in comparison with the DFIG. The power output of the machine is the product of back 

EMF and current of the windings. Therefore, the output power of the BDFRG will be 

much less than that of the DFIG. 

2.3.1.1. BDFRG inductance 

From the BDFRG windings picture, clearly, the machine looks like a symmetrical 

structure. If we ‘see’ this reluctance machine from one side of stator and neglected 

the other, it is quite similar to a switch reluctance machine. Thus this generator’s 

inductance may be considered as superposition of two switch reluctance machines. 

BDFRG’s inductance is quite like the switching reluctance machine. A switching 

reluctance machine’s inductance determination has been demonstrated in Appendix 

A. The superposition makes the machine flux density much higher even to the peak at 

the saturation. This leads to the smoother highest and lowest inductance in 

‘Inductance vs. rotor position’ graph. Thus the BDFRG’s ‘Inductance vs. rotor position’ 
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graph looks like a sinusoidal waveform. The inductance variations will be proved in 

the parameter test in Chapter 4. 

As the BDFRG normally produces less output when the machines have the same size, 

in order to increase the BDFRG output power in the same size, barriers are inserted 

to the rotor in Prof. Wang’s design. The details have been presented in Sector 

2.3.1.2. 

This structure brings about larger flux density and more saturation in the BDFRG. The 

higher flux density will lead to the higher flux and cause the larger inductance in the 

same power level. It will be evidenced in Chapter 4 that the BDFRG has far larger 

inductance than DFIG. 

2.3.1.2. Rotor structure 

  

Figure 2.15 (Left) Salient pole rotor (SPR) (Right) Radially laminated rotor (RLR) 

 SPR RLR 

Advantages  Simple structure 

 Low cost 

 Good performance 

Disadvantages  Poor performance   Complicated structure  

 Difficult to build 

Table 2.3 Comparison of two rotor structures  
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The most important part of BDFRG is the reluctance rotor. Its structure will affect the 

performance of BDFRG. Normally, BDFRG has two kinds of rotor structure: Salient 

Pole Rotor (SPR) and Radially Laminated Rotor (RLR) as shown in Figure 2.15. The 

advantages and drawbacks are demonstrated in Table 2.3. 

 

Figure 2.16 Different rotor structures within flux barriers [65] 

 

Figure 2.17 Torque comparison for different rotors [65]  

In order to balance the structure and performance, the SPR has inserted flux barriers 

to improve the performance within reasonable cost [65]. Figure 2.16 shows the 

different rotor structures with increasing barriers from left to right. The research on the 

relationship between torque and the number of barriers has been done by the 

collaborator Prof. Wang in Shenyang of Technology University and illustrated in 

Figure 2.17. It evidences that the performance increases with more flux barriers. 
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Figure 2.18 Influence of pole-arc coefficient   , magnetic barrier’s depth   and 

magnetic barrier’s width   on torque [65][66] 

However, taking account of the costs of manufacture, the rotor with one barrier in 

each pole is selected by Prof. Wang for the BDFRG design [66]. The pole-arc 

coefficient   , magnetic barrier’s depth   and magnetic barrier’s width   all have 

effects on the torque as displayed in Figure 2.18 [65][66]. The machine performance 

would be apparently improved if the rotor has smaller pole-arc coefficient and the 

shorter but wider magnetic barriers. 

2.3.2. BDFRG mathematic model 

The BDFRG has similar mathematic model to the DFIG. Equations.      -      

express the same primary stator and secondary stator space vectors viewed in three 
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different reference frames. Superscripts indicate which reference frame the vector is 

referred in, while subscripts represent the power or control windings. 

Firstly in the stator frame: 
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Secondly, in the rotor frame: 
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Finally, in the excitation frame: 
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2.3.3. Control Methods Review of BDFRG 

Till now, the published paper presented the control strategies all relative to Brushless 

Doubly-Fed Reluctance Motor (BDFRM) rather than BDFRG. The existing BDFRM 

control literature has been mostly concerned with the development of various control 

strategies for the optimum machine operation [67][68] and vector controllers for their 

implementation using a shaft position sensor [69][70]. The sensorless scheme for the 

BDFRM has been reported in [71] but without supporting test results to clearly 

demonstrate its successful practical realisation. Some papers, published by my 

collaborators, have also considered aspects of scalar control for “pump-alike” 

applications of the BDFRM [68][72], and more recently direct torque control (DTC) 

[72][73]. A sensorless DTC scheme proposed and experimentally verified in [72][73] 

does not suffer from the usual limitations of the traditional DTC concepts identified 

above and allows stable machine operation down to zero applied frequency of the 

inverter-fed (secondary) winding. 

During the PhD study period, my collaborator, Chaal Hamza implemented a robust 

and versatile sensorless DPC on BDFRM and published a paper [74]. The DPC has 

never been applied to BDFRM before. Then he develops a sensorless torque and 

reactive power control in [75], [76] and [77].  
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3. DFIG Fault Response and Fault Ride 

Through 

The experimental fault ride through performance comparison of DFIG and BDFRG 

was originally planned, but due to shortage of time it could not be carried out. That is 

the reason I dedicating a full chapter for DFIG fault response and fault ride through. 

A dynamic model of the DFIG has been developed in this chapter for later used in 

comparisons with the BDFRG under DPC in Chapter 6. To validate the model, 

simulation results are compared with the experimental results produced by Pannell 

[11]. The experimental results in Pannell [11] are for grid fault conditions. Therefore 

this chapter will first review grid faults and fault ride through. 

The grid faults and fault ride through requirements are introduced in the initial section 

of this Chapter as the preparation of the DFIG fault response and FRT method 

studies. A zero fault response is discussed is Section 3.2 by analytical solution with 

details in Appendix F and test response is validated by the simulation. A crowbar 

control method is studied from Graham Pannell thesis in last section. The DFIG 

model created by Matlab/Simulink is controlled by this crowbar method. In 

comparison with experiment result, the simulation model is evidenced as an almost 

errorless system.  

3.1. Grid faults and fault ride through 

A grid fault is a short circuit or earthing on one or more phases of grid system, and 

mainly has three situations: (i) instantaneous earthing of a single line (ii) two lines 

clash (iii) three-phase short circuit. 
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3.1.1. Fault withstand, clearance, recovery and definition 

When the fault occurs, the generator close to the fault has two possible responses: 

disconnecting itself from the grid or continuing to operate. A synchronous generator, 

typically, has an inherent ability to remain connected, while the non-synchronous 

generators such as DFIGs disconnect from the grid. International grid codes now 

require generators to remain connected on transmission systems. Without this ability, 

the risks of widespread customer disconnection may be significant. Alternatively, the 

number of future wind farm installations will be severely restricted. 

 

Figure 3.1 Three-phase voltage, balanced grid fault example. 

A typical voltage profile during a grid fault event is shown in Figure 3.1. The fault 

occurs at the point labelled ‘initiation’. The fault condition persists until the point 

labelled ‘clearance’ where circuit breakers isolate the fault. The fault recovery period 

is defined as the period in which the network may continue to operate with slightly 

suppressed voltage after fault clearance until the isolated transmission equipment is 

restored.  

The grid fault is characterised as a voltage dip on one or more phases of transmission 

line due to short circuit or earthing. The fault period would start from the ‘initiation’ 

point in Figure 3.1 and end at the fault clearance point. The fault recovery is not 
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included in the fault because the voltage returns to a much higher level than the fault 

voltage due to isolation of the fault. Equal dip in voltage for all three phases is called a 

balanced fault while different three phase voltage dips is known as an unbalance 

fault. 

3.1.2. Fault event of wind farm in China 

During the grid fault, the sensitivities to low voltages of the equipment will 

automatically cause the generator to disconnect from the grid, resulting in a sudden 

imbalance of the net power. There is a risk that a large number of the generators will 

be disconnected because of the uncontrolled real and reactive power and continued 

voltage suppression. Then the grid frequency will rapidly drop and become unstable, 

bringing about the cascade tripping off of the further generation units and forcing 

widespread consumer disconnection. In a catastrophic case, this can lead to the 

widespread blackouts. 

A typical fault example of this situation occurred in Jiuquan of China on 24th Feb 

2011 [78]. This accident was caused by an insulation breakdown of a cable around a 

switch. The three-phase short circuit led to 274 wind generator systems in 10 wind 

farms disconnecting from the grid during the fault because of none of low voltage ride 

through capability. Approximate 598 wind generators tripped out of the main grid due 

to this malfunction. The electricity loss was over 54.4% of wind power in entire 

Jiuquan area. The frequency of northwest grid of China dropped from 50.034Hz to 

49.854Hz. This situation caused gigantic economic losses of China.  

Based on the analysis of Chinese government, there were two main reasons for the 

problem. One reason was that a large number of wind generator systems did not 

have the ability to pass through the low voltage fault condition. This situation caused 

a high risk of dropping out from the grid during the voltage dips and a potential safety 

hazard for the entire system, when a wind farm was connected to the grid. The other 



51 

 

reason was that China did not have a unified standard of grid code. Some wind farms 

only had informal “generation transmission custom”. The lack of fault ride through 

ability and formal grid code requirements gave rise to widespread vulnerability in the 

Chinese power system. 

3.1.3. Fault ride through requirements  

In the above event, once the grid fault happened, all the wind power generators 

disconnected from the grid for machine equipment protection reasons. As a result, 

the grid voltage and frequency could not be maintained. The behaviour of a generator 

in the fault period acted against the stability of entire system. Thus, the new 

transmission system grid codes request that wind turbine machines do not disconnect 

themselves from power network during a fault. They remain connected and supply 

active and reactive power into the network to support the power system during a fault 

condition. This means that wind turbines must ‘ride through’ the fault. 

These rules were initially described by a German expert [79]. Now they have become 

a common requirement in the wind energy generation systems. Many grid codes 

have these rules. For example, National Grid Company who supplies the electricity to 

the UK requires that all wind farms or electrical stations should remain connected for 

140ms when a fault occurs in transmission system rated above 200kV [80]. Besides, 

Scottish Hydro Electrical Company also has similar requirements: the wind turbine 

was not allowed to trip out during a fault condition [81]. 

Nowadays, the main issues for the FRT from the point of view of the transmission 

system are to support grid stability. This means to remain connected during a voltage 

dip, and to supply the active and reactive power outputs. This will support system 

frequency and local voltage. 

Fault ride through behaviours can be provided at wind turbine level, by engineering 

the individual wind turbines to provide the required response. It can also be achieved 
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at wind farm level, by employing additional auxiliary equipment at the wind farm 

substation. The former solution avoids adding potentially costly wind farm level 

equipment. The experiments validated in this thesis were carried out by Pannell [11] 

with the former FRT level.  

3.2. Analytical solution for induction machine fault 

response 

The analytical procedure is detailed in Appendix F with the induction machine 

response for both zero and non- zero voltage faults. However, this section only 

compares the stator and rotor currents fault response of both test and simulation 

when the fault voltage is zero.  

3.2.1. Assumptions  

Four key assumptions are the prerequisite for the analytical solution. Firstly, the 

derivation of an analytical solution is based on the generalized machine equations, 

thus the generator is assumed as an ideal symmetrical non-salient poly-phase 

induction machine with a sinusoidal MMF distribution and a narrow, uniform airgap. 

Secondly, the machine inductance is considered as constant in the analysis. It 

requests the assumption of negligible magnetic saturation. But this assumption is 

impossible in actual machine. However, the saturation may be better under the fault 

operation. So this supposition still applied for the mathematical convenience. Thirdly, 

the rotor speed is thought as constant under the voltage drop. Finally, the machine 

mechanical transient timescales are assumed to be far slower than the voltage dip. 

3.2.2. Laplace-transform solution [11] 

With the progress of re-arrangement, substitution and utilization of transient time 

constants: 
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the generalized induction machine flux equations can be re-combined as: 
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Assume the rotor has constant speed, the linear first order differential equations     

and     permits the utilization of Laplace transform, taking zero stator voltage, the 

stator flux linkage becomes: 
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where   is the variable of the Laplace transformer. The denominator roots   and   

are complex constants and determine both the rate of natural flux linkage decay and 

dominant frequency components of the solution. They depend upon the transient time 

constants, the leakage factor and the rotor speed shown in equations     and    : 

    
                                

                                                                                      

where a small complex frequency adjustment parameter is defined as : 
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The real and imaginary frequency adjustment components can be estimated by the 

transient time constants: 
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Equation     reveals that   is a small positive number as indicated by following 

equations: 

                                                                                                                          

                                                                                                                                  

The effective decay frequencies are described in the main text as ‘near-dc’ and 

‘near-rotor’ speed. The real component of the complex frequency adjustment 

parameter   is typically smaller than the imaginary component and its effect 

enlarges the difference between the effective stator and rotor transient time constants 

compared with the initial values as shown in equation     . 
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3.2.3. Natural response analysis [11] 

Looking close to stator flux equation    , it can be found that two elements called 

‘natural response’ and ‘forced response’ respectively comprise this equation as 

shown in equation     . The natural response is formed by the initial conditions while 

the force response depends on the rotor voltage. The two components can be solved 

independently due to linear superposition.  
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Solving the equation      by inversing Laplace transformation will produces the 

equation     : 
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Then the stator current can be derived by using the generalized induction machine 

voltage equation with zero stator voltage: 
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This expression can be simplified by using the time constant approximation from 

equation     and ignoring any coefficient terms of the order    or smaller. 
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Equation      gives the approximation of stator current. 

Using the same method and procedures as for the stator flux solution, the rotor flux 

under the constant rotor speed and zero stator voltage can be derived as: 
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3.2.4. Comparison of experiment and simulation 

The main purpose of this comparison is to validate the generalized machine 

simulation model under the voltage dips. The experiment is of the test rig configured 

as an induction machine, with the three phases of the wound-rotor physically 

short-circuited as shown in Pannell’s thesis Chapter 4 [11].  

The machine was setup to generate 7kW at a steady speed of 1530rpm prior to the 

fault [11]. As the rated power of the experiment test generator is 7.5kW and speed is 

1500rpm, the power and speed were set to 0.93 and 1.02 as the p.u. value. In the 

experimental test of a grid fault the stator voltage was dropped to zero 1.0s after 

data-recording started. In order to compare directly with the analytical solution in 

section 3.2.3, only the stator and rotor currents are displayed. 

3.2.4.1. The simulation parameters 

The generator was modelled in Matlab/Simulink with the parameters given in the 

table below. In this model, the power devices were modelled as ideal switches. The 

voltage changed from healthy condition to fault immediately without any time delay 
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and the slip was fixed. The parameters are shown in table below obtained from [11], 

with the p.u value given as well. 

Parameters Values p.u value 

Power 7.5 KW 1 

Pole number 4  

Stator voltage, line 415V 1 

Stator current, phase (thermal) 14.7A  

Stator current, phase 10.4A 1 

Rotor voltage, line (zero-speed) 1290V 1 

Rotor current, phase (thermal) 3.60A  

Rotor current, phase 3.35A 1 

Referred Stator Resistance (per-phase)             0.03 

Referred Rotor Resistance (per-phase)             0.02 

Referred Stator Leakage Inductance (per-phase)             0.0124 

Referred Rotor Leakage Inductance (per-phase)             0.0124 

Mutual Inductance          3.1 

Turns ratio 0.32±0.01  

Table 3.1 the Parameters of Machine Model [11] 

The steady state equations can be obtained when the stator current and stator 

voltage are known: 
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3.2.4.2. Induction machine model 

The machine model described in many papers is based on the excitation reference 

frame. But my model built in this thesis is based on the stator reference frame, in 

order to avoid the complicated stator-excitation and rotor-excitation transformation 

troubles. The model’s stator vectors are viewed in stator reference frame, and the 

rotor vectors are referred to the stator reference frame by a transform. Compared to 

the model on excitation reference frame, my model has less transform. This causes 

the Matlab running time savings. 
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Where the    is the angle between the stator and rotor reference frame, the  ⃑  

means a vector quantity, the subscripts s and r represent the stator and rotor values, 

and the superscripts s and r indicate the stator or rotor reference frame. If the value is 

without the superscripts, it means that this value is measured under the excitation 

reference frame. Thus, depending upon the (    ) and (    ), it is obtained that:  
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        According to the (    ) together with (    ) and (    ), 

the model of DFIG is constructed with the parameters in Table 3.1. 

We have known from above conclusion that the forced response depends on the rotor 

voltage. In this model, the rotor voltage was set to zero, thus, only the natural 

machine response was illustrated in this case. Initial steady-state conditions were 

used: 1.0 p.u. stator voltage and 0.93 p.u. power generation to match 7kW 

experimental test, corresponding to 50Hz supply voltage. This set the d-component of 

stator current at -0.93 p.u. At this time, the stator current was unknown. Equations 

    ,      and      cannot be obtained when only d-axis of stator current is given.  

The machine equations can be solved in the steady-state. In this case all time 

derivatives are set to zero. The equations below can be obtained from voltage and 

flux equations of the generalized induction machine model (noting that           ): 
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Get   
 ⃑⃑⃑   from (a) and substitute to (b), then: 
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In this equation, only stator current vector   
 ⃑⃑⃑   and slip   are unknown. If it is 

separated into the d and q components solve the excitation-frame per unit machine 

equations for slip,  : 
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This quadratic function of slip will give two solutions – as can be deduced from the 

characteristic hump of an induction machine torque-slip curve. The smallest absolute 

slip is chosen as this value coincides with normal (stable) operation.  

3.2.4.3. Analysis and discussion for comparison of experimental and 

simulation results 

 

Figure 3.2 (Left) Experimental fault response shown in Pannell’s thesis [11] (Right) 

Simulation fault response – stator (Up) and rotor (Down) currents 

The test results are obtained from the Chapter 5 of Pannell’s thesis [11]. The 

measured stator and rotor currents for the fault test are shown in the left two pictures 

of Figure 3.2. Compared to the stator current graph, the rotor currents emerge more 

dc than ac. This indicates the longer rotor transient time constant. The peak rotor 

current is a little less than 5 p.u. The stator currents are saturated below peak value 
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by the limitation of current probe, although inspection of the waveform indicates a 

similar peak to the rotor currents. 

The good agreement between simulated and experimental results has been shown in 

Figure 3.2 in terms of the relative peaks of each phase of current. The simulated 

currents are smoother and reach 15% higher peak current. This is likely because of 

the omission of magnetic saturation in the analytical solution which would limit the 

real currents and the stator current probe saturation which restricts the stator current 

readings. 

Derived Parameters  Values Decay components  Values 

Leakage factor    0.075 p.u. Rotor-speed frequency     51.02 Hz 

Frequency adjustment factor   0.0092 p.u. Near-dc frequency       0.46 Hz 

Timescale adjustment factor   -0.0004 p.u. Near-rotor speed frequency         50.59 Hz 

      

Stator transient timescale    25.8 ms Effective stator timescale   
  25.7 ms 

Rotor transient timescale    38.7 ms Effective rotor timescale   
  38.9 ms 

      

Table 3.2 Machine analytically derived parameters. 

Further, the machine is analysed by the analytically solution parameters discussed in 

Sections 3.2.2 and 3.2.23 to validate both experimental and simulation results. The 

computed leakage factor is 7.5%, resulting in the complex frequency adjustment 

almost entirely imaginary: timescale adjustment constant        and frequency 

adjustment constant   roughly 1%. Referring to the stator flux natural response, the 

measured parameters suggested transient time-constants of 26ms on the stator and 

39ms on the rotor, whilst the effective self and mutual decay frequencies are 
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calculated at 0.46Hz and 50.59Hz. All machine analytically derived parameters are 

enumerated in Table 3.2. 

Based on the analytical solution stator current equation     , we will have: 

  
 ⃑⃑           {       }                   {        }                                 

The initial angle of the excitation reference frame with respect to the stator reference 

frame,    , is an arbitrary constant depending upon the moment the fault occurs: 

     was found to best match the pre-fault experimental data. A similar result can be 

calculated for the rotor current solution: 

  
 ⃑⃑           {       }                   {       }                                   

The initial rotor slip angle,    , was set at      to best match the experimental data. 

3.3. Crowbar methods 

The sensitive characteristic of a standard DFIG system to the dips in the supply 

voltage is the reason why the protection scheme is researched. The grid disturbance 

would result in the over current on rotor side. At the same time, the rapid increase of 

the rotor current will cause the rise of the capacitor voltage in the DC-link. Then the 

commotion of the real and reactive power of the rotor-side converter happens. Under 

the voltage dips, the stator flux cannot duly change which leads to a dc component. 

Then a bigger slip appears. All of these reflections will bring about the over current 

and over voltage and damage the rotor and converters. Hence, the power electronics 

converter and DC-link protection by diverting or negating the over-current and 

over-voltage was researched. In order to protect the DFIG under the grid disturbance, 

the DFIGs are prevented from the impairment and could continue working should be 

sure. It is now a requirement that wind turbine manufacturers demonstrate what is 
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commonly called ‘Fault Ride Through’ (FRT) capability in their turbine systems. Rotor 

Crowbar, as a cost-effective and reliable method of protecting the power converters 

of DFIG, was employed in the previous hardware working as a part of the FRT 

scheme and compared with the computer model created by the software 

Matlab/Simulink to validate the results of software working and evaluate machine 

model accuracy in this thesis. 

3.3.1. The crowbar in detail 

In order to protect the power electronic component in the DFIG converters, a rotor 

crowbar is widely used in the rotor-circuit error condition. The rotor crowbar 

short-circuits the rotor-windings through a designed resistance, diverting the rotor 

currents away from the converter and rapidly de-energizing the rotor. In this manner 

the DFIG can ‘ride through’ the transients of fault response and resume control during 

the remaining period of the fault or voltage recovery.  

There are several kinds of rotor crowbar structures. The simplest and earliest 

configuration is constituted by anti-parallel thyristors or diodes. Figure 3.3 (a) and (b) 

illustrate this kind of crowbar [82].  

Figure 3.3 (a) reveals the anti-parallel thyristor crowbar which is constructed by two 

pair of anti-parallel thyristors. In the circuit, large dc component exists in the rotor 

current. This results in the unavailability of the thyristor turn-off characteristic. Besides, 

the absorber circuits for thyristors are quite hard to design. 

The diodes-bridge crowbar includes one Diode Bridge to commute and one thyristor 

to control as shown in Figure 3.3 (b). When the dc side voltage peaks, the thyristor 

would turn on to conduct. Meanwhile, the rotor would be devoiced from the rotor side 

converter, but connect with the crowbar circuit till the stator is totally cut from the grid. 

This configuration excels the Figure 3.3 (a), because less thyristor is employed, 

easier controller is implemented. However, the current through the thyristor is 
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continuous in Figure 3.3 (b) configuration, thus the thyristor cannot be turned off. That 

means the crowbar short-circuit the rotor windings, they would remain connection till 

the rotor current disappears, which disobey the grid code rules. The new rules require 

the DFIG to resume when fault clearance. Hence, in order to remove the crowbar 

circuit after the fault, IGBT and GTO could be used. 

 

(a)                (b)                (c)                (d) 

 

(e)                   (f)                    (g) 

Figure 3.3 (a) Anti-Parallel Thyristor Crowbar (b) Diodes-Bridge Crowbar (c) Mixed 

Crowbar (d) Rectifier and Thyristor Crowbar (e) Rectifier and IGBT Crowbar (f) IGBT 

with Bypass Resistor Crowbar (g) Triac with Bypass Resistor Crowbar 

The improved crowbar layouts are displayed in Figure 3.3 (c), (d) and (e) [82]. The 

mixed crowbar is designed based on the diode bridge crowbar. As shown in Figure 

3.3 (c), each arm of mixed crowbar is made up of one thyristor and one diode. Figure 

3.3 (d) and (e) have similar configuration. Both of them add a switch and an absorber 

resistor in series based on diode bridge crowbar. 

In addition, with bypass resistor circuit crowbar has been used as another structure. 

There are two main types demonstrated in Figure 3.3 (f) and (g) [83]. When this kind 
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of crowbar is employed in voltage dips, the bypass resistor would be coupled with 

rotor windings. It supplies a bypass circuit to the over current during the grid fault. 

Then the target, limiting over current and protecting the power electronic converter, is 

achieved.  

In these layouts of rotor crowbars, the structure (d), (e) and (g) have more merits and 

are widely used. Each silicon-controlled rectifier in configuration (g) must be rated to 

block maximum rotor voltage and to carry worst-case rotor over-currents. The 

thyristor switches can be fired by a current fed gate signal, but can only be turned off 

at a through-switch current zero. Alternatively, GTO thyristors offer better turn-off 

capabilities, but demand a far higher turn-off gate current. The configuration (d) and 

(e) use only one switching device. These devices must be able to block roughly 140% 

of rotor phase-phase voltage. Each diode in the bridge must carry the same ratings 

as for the silicon-controlled rectifiers in configuration (g). The single resistor in Figure 

3.3 (d) and (e) must carry an average current 135% of the value carried by each 

resistor in case (g). Thermally however, grid faults cover a very short period and 

hence the single resistor is not rated much higher than three separate resistors. 

Additionally, given the relative cost of diodes, diode rectifier configurations offer a 

major cost saving, however, the configuration (e) with IGBT has a considerable 

increase in single device cost compared to (d) with the Thyristor and GTO. Moreover, 

turn-off of the switch device in configuration (d) must wait for a rectified current zero; 

this will only occur once the rotor circuit flux has completely decayed. 

Near-instantaneous turn-on and turn-off can be achieved by using an IGBT power 

switch, as shown in the rectifier-IGBT configuration in (e). However, the swift turn-off 

ability of an IGBT is necessary for certain fault ride through control methods. Thus 

configuration (e) is employed on the test rig used in this work. 
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3.3.2. Test rig crowbar value  

Pannell used the rotor crowbar with the structure shown in   (e) in his experiments 

[11]. With the switch fully on, the crowbar resistance behaves similarly to adding three 

short-circuited phase resistors in series to the rotor’s windings like the configuration in 

Figure 3.4. An equivalent ‘per-phase’ resistance of the crowbar can be approximated 

using this analogy.  

 

Figure 3.4 Approximate crowbar-resistance analogy [11] 

Firstly, note that an ideal rectifier provides an average dc voltage of 1.35× the 

line-line voltage [84]: 
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The crowbar on average draws √  times more current than the same resistance in 

series: 
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In terms of average power dissipated, the equivalent series resistance produces a 

similar relationship: 
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In this condition, the equivalent rotor crowbar resistor value is replaced by 

   
                                                                                                                                                 

Both equivalent resistors can be considered as the resistance adding to the rotor in 

series when the crowbar works. In my simulation model,    
          is selected. 

Pannell chose a 25 , 0.6kW power resistor in his experiments, and a 13.75   

equivalent rotor crowbar resistor was added in my simulation. 

3.3.3. Timer action crowbar  

In the existed hardware working, a time action crowbar method was employed. That 

means the crowbar is activated when the magnitude of the rotor current exceeds a 

threshold value, and keep connection with rotor windings for a short fixed period.  

While the crowbar is engaged, rotor-side PWM is disconnected. The rotor side PI 

controller outputs are all reset to zero. The line-side converter’s controllers remain 

unaffected. When the crowbar is released, rotor-side converter and the inner rotor 

current PI control are immediately resumed. Outer control loop is resumed after a 

specified delay, to allow the current controllers to settle. After the crowbar disengages, 

if a rotor over-current persists, the crowbar is re-engaged for an additional period. 



69 

 

As for all of this crowbar tests, the threshold was set for the stated maximum IGBT 

pulse current of 2.0 p.u. The crowbar duration is 120ms.  

3.3.3.1. Comparison of simulation and experimental results 

Figure 3.5 directly compares the timer action crowbar experiment results for a 15% 

fault voltage applied to a DFIG. In practical, the stator voltage shows a rapid collapse 

to 0.26 p.u. After a 50ms settling period, 28% voltage was maintained for 500ms 

throughout the fault period. 

 

Figure 3.5 (Left) the timer action crowbar practical test and (Right) simulation results 

for a 15% fault applied to a DFIG 
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The left picture of Figure 3.5 illustrates the hardware working outcomes, while the 

right graph describe the simulation results. In general, the two kinds of figures look 

quite similar. 

In hardware tests, the current sensors were placed at the output of the 

rotor-converter’s series filter chokes, between the crowbar and the converter. It is 

clear from this data that the converter leg currents were forced to zero throughout the 

crowbar period. The close-up graph of both rotor current magnitudes show the 2 p.u. 

limit in effect. During the whole fault period the rotor currents never exceeded the 

computed maximum limit of 9.5A (peak).  

In the comparison of the simulation and test results, the simulation rotor current 

magnitude is smaller than the hardware result, when the timer action crowbar is 

connected with the rotor windings. Thus the three-phase rotor current graphs display 

the same tendency. The reason of this trend is the simulation switch device of 

crowbar is ideal. It has no switch time. However, although the near-instantaneous 

turn-on and turn-off can be achieved by using an IGBT power switch, it still takes little 

time to activate in practical, not none. The longer turn-on time in practical leads to the 

rotor current magnitude is a little over 2 p.u. and the simulation rotor current is smaller 

than the hardware working result. 

After the second crowbar activation period, Hardware result shows the control is 

regained very quickly; active and reactive power levels returned to unity power factor 

and 5kW generation within tens of milliseconds. However, the simulation picture 

reveals that the active and reactive power takes much longer time to be constant. 

Because the simulation is based on the mathematic model, and it takes longer time to 

compute especially when the differential is used in Matlab model. The similar reason 

is given to the simulation rotor current magnitude graph.  
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Figure 3.6 The supply voltage when 15% fault is applied (Left) using computer 

simulation (Right) using experiments 

After the crowbar operation, there is a short overshot period resulting from Matlab 

spend more time to eliminate the unstable state when the equivalent rotor resistance 

is changed. Besides, the computer assumes the input stator voltages always keep 

the same in the voltage whilst the experiment supply voltages are influenced a lot 

when fault simulation test devices are applied. Figure 3.6 takes a 15% fault condition 

as an example. The voltages in left picture keep the phase peak value approximate 

100V during the fault period in the simulation, whereas the voltage increase generally 

from about 50V to finally 100V during the fault and slightly suppressed at the fault 

recovery period as displayed in right figure. The changed input will cause the small 

difference between the experiment and simulation result. 

Figure 3.7 directly compares test and simulation results for a 0% fault voltage applied 

to a DFIG. During 0% fault voltage period, the stator voltages show a rapid collapse to 

below 50V rms per-phase in 2ms. The local voltages were maintained at around 30V 

rms per-phase for 120ms. 

After the second crowbar period, control was again regained very quickly; active and 

reactive power levels returned to unity power factor and 5kW generation within tens of 

milliseconds. But the simulation active and reactive power takes longer time to 

become steady state. The reason is the same as pervious discussion. 
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Figure 3.7 (Left) the timer action crowbar practical test and (Right) simulation results 

for a 0% fault applied to a DFIG 

3.3.4. Crowbar method Conclusions  

Based on the discussion above, for both the 15% fault and 0% fault, the rotor 

converter devices were fully protected. The rotor converter currents were immediately 

diverted upon crowbar activation; at no point did they exceed the calculated 9.5A 

peak limit for the converter. Therefore, the rectifier and IGBT crowbar with time action 

crowbar method, can be thought as a cost-effective and reliable method of protecting 

the DFIG’s power converter from rotor over-currents and indirect DC-link protection. 
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Besides, the machine model simulates the accurate response with approximate none 

difference performance compared to the experiment results. The controller response 

obtained from the simulated model also can be thought similar to the experiment 

performance. Thus, the DFIG built by Matlab/Simulink can be considered as a correct 

model and would be worth to be used in Chapter 5 and 6 to simulate the response of 

the DFIG working in the experiments. Especially, the whole crowbar test simulation 

system will be used in Sector 5.3 to prove the prediction of the FRT performance 

difference between DFIG and BDFRG.  
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4. Experimental Apparatus 

This Chapter details the experimental apparatus used in the tests in order to let the 

reader familiarise the experiments: comparing DFIG and BDFRG. For this target, 

there are two systems built. Because of the lab refurbishment of Newcastle University, 

the experimental apparatus are commissioned in Northumbria University. So thanks 

are given to Northumbria University and all the staff and technicians there for their 

cooperation.  

The two test apparatus systems have the same key elements and functions except 

the generators. Thus, the introduction of one system and two generators will be 

provided separately in this Chapter. Primarily, an overview of the experiment rigs 

would be given. Following, two generators and the prime mover will be discussed. 

Then the details of controller cabinet and the setting up information of motor control 

board will be descried in Section 4.3 and 4.4 respectively. 

4.1. Test rig overview 

A test apparatus system is composed by an Altivar 71 driver, an induction machine, a 

generator and a control cabinet. Altivar 71 and induction machine consist of the 

primary driver for the whole system, thus they will be introduced together in the later 

section. The primary driver and generator are connected through a mechanical shaft 

with an encoder fixed on the generator side. These three elements comprise the 

rotating machinery. Induction machine obtains either the speed or the torque from 

Altivar 71 and produces the generator’s rotational speed via the shaft. The encoder 

will transfer the speed signal to controller board while torque transducer will convey 

the torque value to a software called ‘torque log’ self-carried by Altivar 71. Taking the 

DFIG system as example, a block diagram of the model is given in Figure 4.1. 
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Figure 4.1 Block diagram of the DFIG system 

The entire system would be controlled by an eZdsp F28335 and its interface board 

fixed in the control cabinet. Two 100A-rated Infineon IGBT modules are employed as 

the bi-directional power converters with a DC voltage bus made up by two capacitors. 

They consist of an AC/DC/AC converter system and are installed at the right bottom 

of control cabinet. Besides, the voltage and current sensors and other essential 

devices (switches, relays and so on) are all distributed in control cabinet. The details 

will be explained in Section 4.3. 

For the contribution of the entire experimental system, Park Company and Prof. 

Wang would be given acknowledgement. BDFRG is designed by Prof. Wang in 

Shenyang Technology University, produced in China then delivered to Northumbria 
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University. Besides, Altivar 71, primary induction machine and DFIG are bought from 

Park Company in the UK and assembled there with a shaft and an encoder. 

4.2. Rotating Machinery  

As the heart of the test rig, there lays two rotating machines on a common axis with 

their rotor shafts joined by a short, stiff coupling. An induction machine receives the 

torque or the speed from an Altivar 71 driver and provides the speed input to a 5kW, 

380V 8-pole DFIG or BDFRG.  

4.2.1. DFIG 

The DFIG used in the experiments is illustrated in Figure 4.2. This DFIG is a 

second-hand machine, the parameters are unknown and some data are changed due 

to abrasion, therefore, before controlling this machine, the parameters are better to 

be tested. 

 

Figure 4.2 Doubly-Fed Induction Generator used in experiments 
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4.2.1.1. DC Resistance Test 

As we all know, the stator and rotor resistance are affected by the temperature a lot. 

Considering the damage of the over-current, a half of rated current is selected as the 

tested current and the reading of the measurement would be acquired after five 

minutes heating up.  

 

Figure 4.3 Star connection of windings 

 Stator Rotor 

 (V)  (A)  ( )   ( )  (V)  (A)  ( )   ( ) 

Winding 1 6.81 8.08 0.84 0.42 1.3 3.29 0.395 0.197 

Winding 2 7.13 8.39 0.85 0.425 1.4 3.3 0.42 0.21 

Winding 3 6.7 7.95 0.84 0.42 1.28 3.48 0.37 0.185 

Average 

resistance 

( ) 

 

0.42 

 

0.198 

Table 4.1 DFIG dc resistance test results 

For the machine used in the experiments, both stator and rotor windings are star 

connected as displayed in Figure 4.3. Thus, the stator and rotor resistance values 

would be the half of test results based on the principle from Appendix D.1. Hence, the 

stator resistance of each phase was measured separately at a test current of 

approximate 8A. The stator terminals were applied with a 16V-20A DC generator. 
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The current and voltage voltmeter was measured the main DC supply and the total 

DC current of two terminals.  

A similar produce was carried out for the rotor windings which were isolated for the 

test current 3.3A. However, accounting for the unbalance resistor results caused by 

the mechanical issues of the contacted slip rings, the rotor was moved slowly to make 

the current constant when the experiments were taken. The results can be found in 

Table 4.1. 

4.2.1.2. Locked Rotor Test 

A locked rotor test was carried out under 0.25 p.u. three-phase AC stator voltage. The 

line voltages and currents have to be measured without the neutral terminals in the 

tested machine. Therefore, the 3-phase equations below were considered instead of 

the single-phase circuit equations according to the locked rotor test equivalent circuit 

given in Figure 4.4. 

 

Figure 4.4 Induction Machine model equivalent circuit under the locked rotor test 

             
         √ |         ||         ||    |                                                      

             
         √ |         ||         ||    |                                                       

where   and   are the total real and reactive power.            stands for the 

per-phase RMS current, while |         |  and |         |  are the RMS value of 

absolute magnitude for line voltage and current vector respectively.   equals the 
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phase shift angle between the line current and voltage vector. Hence      

represents the power factor. 

According to equations     and    , we have: 

      
|         ||    |

√ |         |
                                                                                                                 

      
|         ||    |

√ |         |
                                                                                                                 

Then the experiment readings and resistance, reactance results calculated from the 

equations     and     were given in Table 4.2. 

 |         |(V) |         |(A)   ( )        ( )        ( ) 

Winding 1 20.5786 2.5624 72.749 1.37 4.42 

Winding 2 21.232 2.6578 74.214 1.26 4.46 

Winding 3 20.7088 2.61518 73.214 1.32 4.38 

Table 4.2 DFIG locked rotor test results 

The average phase stator impedance was: 

                                                                                                              

According to  

                  
  

  
                                                                                                                          

It could be obtained that: 
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  √
  

  
⁄                                                                                                                                     

The common assumption of dividing the leakage reactance equally between stator 

and rotor was made, and then the results were: 

                                                                                                                                                 

4.2.1.3. Synchronous Speed Test 

A no load test was taken instead of a synchronous speed test, because the no load 

speed is so close to the synchronous speed that the torque-speed transducer used in 

the test equipment cannot distinguish the difference between them. The entire 

experiment was carried out using an AC stator main supply with line-to-line value 

close to the rated 380V. 

 

Figure 4.5 Equivalent circuit of Induction Machine under the synchronous speed test 

 |         |(V) |         |(A)   ( )        ( ) 

Winding 1 366.72 7.43162 64.925 26 

Winding 2 370.566 7.52572 69.748 26.67 

Winding 3 370.674 7.67842 67.05 25.67 

Table 4.3 DFIG synchronous speed test results 

The similar equations as the locked rotor test can be inferred according to the 

equivalent circuit in Figure 4.5: 
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         √ |         ||         ||    |                                                    

   
|         ||    |

√ |         |
                                                                                                                   

The test results were shown in Table 4.3. The average phase leakage reactance was: 

                                                                                                                                             

Thus, 

                                                                                                                                      

4.2.1.4. Open Circuit Test 

Based on relationship between the stator referred equivalent circuit (Figure 4.6) 

parameters and the parameters suitable for the twin axis dynamic model (Figure 4.7) 

described in Appendix A, it can be seen that a turns ratio   is required which was 

measured by the open circuit test. 

 

Figure 4.6 Stator referred equivalent circuit 

 

Figure 4.7 Twin axis dynamic model 
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This method considers the turns ratio   as the division result of the stator and rotor 

voltages. The turns ratio produced from this test was:       . Validate with the 

equation     , this result was reliable. 

4.2.1.5. Conclusion 

According to the test results we have: 

                          

                                                      

   
  

   
                                   

  

   
         

Based on the knowledge of the relationship between the stator referred parameters 

and the two axis model machine parameters below: 

                  
  

  
    

   
    

 
 

  

    
 

                  

   
       

  
 

  

  
 

  

 
 

It is easy to get the dynamic model parameters: 

                                           

                                                

The rotor resistance got from the dc tests was 0.1978658824  while the value 

obtained using the locked rotor test and inferred by the turns ratio was 0.197947978 . 
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The difference between these two calculated rotor resistances was 8.2      . The 

inaccuracy was less than 0.5‰. As the core loss is not modelled in the twin axis 

dynamic equations, the value of    is not needed. 

4.2.2. BDFRG 

The BDFRG used in the experiments is illustrated in Figure 4.8. It is designed by Prof. 

Wang in Shenyang Technology University in China and manufacture there. In order 

to obtain the comparability of DFIG and BDFRG, Prof. Wang decided to produce a 

same pole number, same power rate and same size BDFRG.  

 

Figure 4.8 Brushless Doubly-Fed Reluctance Generator used in experiments 

However, the pole number of BDFRG is defined as the sum of both stator poles 

whereas DFIG thinks the stator pole number as machine pole number. For example, 

the DFIG used in the experiments has 4 stator pole pairs. Hence, BDFRG is set as 6 

poles in main stator and 2 poles in auxiliary stator. Thus these two generators can be 

considered as the 8 poles machine and worth to be compared.  
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Besides, BDFRG parameter tests are quite different from DFIG’s because of its 

different operations when one side windings are short circuited or open circuited. The 

details of parameter obtaining procedure are demonstrated as follows. 

4.2.2.1. DC Resistance Test 

Similar to the DFIG, BDFRG’s resistor can be obtained by the same procedure as 

induction machine resistance test.  The main stator and auxiliary stator winding’s 

resistances of each phase were measured separately at a test current of approximate 

8A. The terminals were applied with a 16V-20A DC generator. The current and 

voltage voltmeter measured the main DC supply and the total DC current of two 

terminals. Due to the star connection for both stators, the real resistance value is the 

half of the calculated one. The experiment results are shown in Table 4.4. As the 

results, we could have a conclusion that the primary side stator resistor is 1.01 , and 

secondary side resistor is approximate 0.55 .  

 Primary stator Secondary stator 

Red Yellow Blue Red Yellow Blue 

 

Group 1 

Voltage (V) 7.540 7.08 7.313 5.835 6.116 6.082 

Current (A) 7.567 6.973 7.148 10.994 11.045 11.036 

Resistance ( ) 0.9964 1.015 1.023 0.531 0.554 0.551 

 

Group 2 

Voltage (V) 7.166 7.365 7.491 6.169 6.226 6.145 

Current (A) 7.173 7.265 7.307 11.345 11.260 11.158 

Resistance ( ) 0.999 1.014 1.025 0.544 0.553 0.551 

 

Group 3 

Voltage (V) 7.322 7.733 7.718 6.227 6.34 6.333 

Current (A) 7.34 7.662 7.580 11.467 11.494 11.526 

Resistance ( ) 0.9975 1.009 1.018 0.543 0.5516 0.549 

Average resistance ( ) 0.9977 1.013 1.022 0.539 0.5527 0.550 

Total average resistance ( ) 1.01087 0.55043 

Table 4.4 BDFRG dc resistance test results 
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4.2.2.2. Inductances Test 

Although the BDFRG and DFIG have lots of same operation, the BDFRG also has 

different performances at some tests compared to the DFIG. As we all know that the 

wound rotor induction machine is operated at a merely synchronous speed when the 

stator is applied with a rated symmetrical three-phase AC voltage source with the 

short-circuit rotor. But, the BDFRG would start asynchronously and operate like the 

same pole number induction machine, if the primary stator is supplied with an AC 

voltage source, and the secondary winding is short circuited [7]. 

Thus the Synchronous Speed Test, the way to obtain inductance value of the 

induction machine, is not suitable for the BDFRG. However, based on the 

steady-state phase voltage equations of the 2p- and 2q- pole stator windings BDFRG 

expressed below [7][85]: 

{
                   (     )[       ]

     [       ]                  (     )  
                                                                 

Where    and   ,    and   ,    and   ,    and    are the phase voltage, 

phase current, angular frequency and self-inductance of the power side and control 

side windings respectively.     is the mutual inductance between the primary and 

secondary stator windings.      is the initial angle of the auxiliary stator 

Magnetomotive Force (MMF) field with respect to the main stator MMF, while   is 

the angle between the induced phase voltage and current.  

If the secondary winding is open-circuited and the primary winding is supplied with 

symmetrical three-phase AC voltage, none current would flow through the secondary 

side windings. Hence, equation      gives conclusion below: 

{
               

      (     )  
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Considering the magnitude and the relationships in       and   , the 

self-inductance and mutual inductance can be determined as: 

   

[√(
  

  
)
 

 (  )
 
]

  

⁄

                                                                                                               

    
(
   

  
)

  

⁄
                                                                                                                                      

where     is the measured open-circuit phase voltage of secondary winding. 

Similarly, if taking account to exchange the position of the main stator and auxiliary 

stator and doing the same procedure as above test, we will have the similar 

conclusion where     is the measured open-circuit phase voltage of primary stator. 

   

[√(
  

  
)
 
     

 ]

  

⁄
                                                                                                                 

    
(
   

  
)

  
⁄                                                                                                                                      

Therefore, the self-inductance and mutual inductance can be determined 

experimentally in standstill condition of the machine. The results are detailed in Table 

4.5 and Table 4.6  
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Rotor 

position 

angle   

Primary 

stator line 

voltage 

            

Primary 

Stator 

current 

       

Secondary  

stator open line 

voltage 

                 

Primary 

stator 

resistor 

       

Primary 

stator phase 

voltage 

             

Primary stator 

open phase voltage 

                  

Primary stator 

self-inductance 

        

Mutual 

inductance 

         

0 382 4.69 312 1.01 220.5478028 180.133284 149.6512 122.2564 

10 382 4.65 326 1.01 220.5478028 188.2161878 150.9391 128.8411 

30 381 4.6 304 1.01 219.9704526 175.5144818 152.1809 121.4523 

50 381 4.71 302 1.01 219.9704526 174.3597813 148.6252 117.8354 

70 382 4.81 295 1.01 220.5478028 170.3183294 145.9159 112.7111 

90 382 4.62 313 1.01 220.5478028 180.7106343 151.9197 124.5066 

104 381 4.61 325 1.01 219.9704526 187.6388375 151.8506 129.5604 

128 382 4.77 304 1.01 220.5478028 175.5144818 147.1402 117.1238 

150 382 4.76 301 1.01 220.5478028 173.782431 147.4494 116.2116 

180 380 4.53 312 1.01 219.3931023 180.133284 154.1277 126.5745 

210 381 4.65 303 1.01 219.9704526 174.9371316 150.5438 119.7511 

220 381 4.68 304 1.01 219.9704526 175.5144818 148 117 

240 381 4.65 302 1.01 219.9704526 174.3597813 150.5438 119.3559 

260 381 4.61 325 1.01 219.9704526 187.6388375 151.8506 129.5604 

280 380 4.6 325 1.01 219.3931023 187.6388375 151.7813 129.8421 

310 381 4.67 304 1.01 219.9704526 175.5144818 149.8988 119.6318 

328 382 4.69 301 1.01 220.5478028 173.782431 147 115 

350 382 4.82 294 1.01 220.5478028 169.7409791 145.6131 112.096 

Table 4.5 Primary stator inductance test results 
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Rotor 

position 

angle   

Secondary 

stator line 

voltage 

            

Secondary 

Stator 

current 

       

Primary stator 

open line 

voltage 

                 

Secondary 

stator 

resistor 

       

Secondary 

stator phase 

voltage 

             

Secondary stator 

open phase voltage 

                  

Secondary 

stator 

self-inductance 

        

Mutual 

inductance 

         

0 378 2.33 226 0.55 218.2384018 130.4811608 298.1386 178.2553 

20 378 2.44 194 0.55 218.2384018 112.0059522 284.6975 146.1173 

40 379 2.49 195 0.55 218.815752 112.5833025 271 143.9213 

60 378 2.41 224 0.55 218.2384018 129.3264603 280 170.813 

80 379 2.39 199 0.55 218.815752 114.8927036 291.4227 180 

100 378 2.31 204 0.55 218.2384018 117.7794549 300.72 162.2961 

120 378 2.58 226 0.55 218.2384018 130.4811608 269.2482 145 

150 378 2.4 224 0.55 218.2384018 129.3264603 289.4426 171.5247 

180 377 2.32 225 0.55 217.6610515 129.9038106 298.6316 178.2315 

200 379 2.43 195 0.55 218.815752 112.5833025 286.6254 147.4749 

214 378 2.61 225 0.55 218.2384018 129.9038106 266.1532 140 

232 378 2.48 195 0.55 218.2384018 112.5833025 280.1054 144.5016 

260 378 2.31 195 0.55 218.2384018 112.5833025 300.72 180 

290 378 2.43 193 0.55 218.2384018 111.428602 285.8691 145.9624 

310 378 2.62 204 0.55 218.2384018 117.7794549 265.1373 143.0931 

330 378 2.41 224 0.55 218.2384018 129.3264603 288.2416 170.813 

350 378 2.31 196 0.55 218.2384018 113.1606528 300.72 180 

Table 4.6 Secondary stator inductance test results 
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Figure 4.9 Main stator self and mutual inductances vs rotor position angle  

 

Figure 4.10 Auxiliary stator self and mutual inductances vs rotor position angle  
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According to the results above, two graphs are produced to demonstrate the 

inductance variations. It is clear that the self-inductance and mutual inductance are 

dependent on the rotor position. The tested main stator self-inductance and 

mutual-inductance curves versus the rotor position angle of the BDFRG are illustrated 

in Figure 4.9 while the auxiliary stator information explicated in Figure 4.10. For the 

sake of clarity, only the inductance of one phase (phase for the six-pole winding and 

phase for the two-pole winding) is displayed in both graphs.  

The self-inductances in both pictures are highlighted by hot red lines and blue curves 

explain the mutual inductance. It is evident that the averages of the primary and 

secondary stator self- and mutual inductances are 0.15H, 0.287H and 0.14H 

respectively. The parameter test results are not good enough so that the shapes have 

some distortions. The chief reason is the lack of the instruments for rotor angle 

position records. An inaccuracy reading is, therefore, caused by the utilization of 

protractor. Besides, the other readings, such as current and voltage value obtaining 

from the measurement tools, have some reasonable deviations. What is more, the 

environment factors will influence the experiment results as well. The errors caused 

by these reasons result in the distortions of inductance curve. 

However, an interesting tendency is still obvious to be found in the inductance graphs. 

The inductance curve versus the rotor position angle emerges a shape between 

sinusoid and triangle. It is quite similar to the inductance wave of switched reluctance 

machine (SRM). Actually, BDFRG inductance curves are normally slicker and far 

closer to sine profile compared to the SRM inductance wave. That is because 

BDFRG looks quite like a superposition of two SRMs but more saturation.  

4.2.2.3. Conclusion 

From BDFRG parameter test, the self- and mutual inductance are: 

                              



91 

 

                                    

Compared to DFIG inductance (                                   ) The 

BDFRG primary stator inductance, secondary stator inductance and mutual 

inductance are 1.81, 15.7 and 3.9 times respectively of relative DFIG inductance, 

stator, rotor and mutual inductance. 

4.2.3. Altivar 71 Driver and IM Motor 

As introduction above, Altivar 71 and IM motor can be considered as an ensemble. 

They play a role of prime mover and provide the motive power to the generator.  

Figure 4.11 shows the door layout of Altivar 71 driver while the internal layout is 

displayed in Figure 4.12. The door must be kept close when the driver works. As 

Altivar 71 starts, main switch will be open firstly and then press both safety reset and 

start button. In order to avoid the start button non-response, the red stop button 

should be pressed before Altivar 71 starts. If fault occurs, the stop button turns red 

and the emergency stop will play a significant role at this moment. 

 

Figure 4.11 Door layout of Altivar 71 used in experiments 
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Figure 4.12 Internal layout of Altivar 71 used in experiments 

 

Figure 4.13 Induction machine and generator used in experiments connected by shaft 

Figure 4.12 gives the internal layout of Altivar 71. The enlarging picture is displayed at 

the end of the red arrow. It is obvious a thick line connected to Altivar 71 transfers the 

speed to the induction machine shown in Figure 4.13. Then the generators will rotate 

when it obtains the torque from induction machine through the mechanical shaft with 

black cover. How the Altivar 71 controlling the speed of generator will be introduced in 

later section. 
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4.3. Control Cabinet 

 

Figure 4.14 Internal layout of Control Cabinet used in experiments 
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The control cabinet inner layout has been illustrated in Figure 4.14. All components 

except the rotating machinery were housed in this cabinet. Every element in the 

cabinet has been numbered and named in the graph. 

This cabinet is supplied with two separate three-phase voltages from the grid through 

two different variacs and passes the voltages to DFIG stator and rotor or BDFRG two 

stators respectively. The variac can adjust the input voltage to the generator. When it 

turn to 100%, the input voltage will reach the rated level — 220V rms value per 

phase.  

In the expectation, both stator (primary stator) and the grid-side converter would be 

supplied by the rated 380V line to line voltage and DC voltage would reach 600V. But 

in fact, EMI affects the PWM fault signal LED lights. Hence, the voltage passed 

through the IGBT of power modules has to be restricted. In the experiments, 100% 

voltage is supplied to the stator of DFIG or the primary stator of BDFRG and 50% 

voltage has been provided to the grid side converter to support 300V DC voltage. The 

details of the effects to PWM fault signal LED lights would be expounded in later 

description. 

The devices marked as 1, 9 and 10 play the roles of switches. The device 1 may 

connect or disconnect two routes of the cabinet to the main supply separately. 

Switches can be opened and closed by physically turning them, while relays have to 

be controlled by eZdsp F28335.  

There are 3 AC voltage sensors and 9 current sensors which can accept up to 400V 

rms voltages and 45A rms currents, and engender 0-5V small voltage signals to 

eZdsp F28335. One DC voltage transducer can transfer up to 800V DC voltage to 5V 

signals as well. Thus at least 13 Analogue Digital Converter (ADC) interfaces are 

needed to receive 0-5V voltage signals. But the main DSP driver board only has 10 

sensor interfaces, thus an expansion analogue board is made to create extra 8 

sensor interfaces. 
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The toque transducer acquires the signals from Altivar 71 and conveys to DSP board. 

Then the torque value can be read in Torque Log — the software of Altivar 71.  

4.3.1. DSP Controller Board Overview 

The whole experimental system is controlled by eZdsp F28335. But the F28335 pins 

are too concentrated and hard to be connected. So an interface board is needed to 

draw out the pins of DSP. My supervisor, Dave Atkinson designed the motor driver 

interface shown diagrammatically in Figure 4.15 and Figure 4.16. EZdsp F28335 is 

attached at the back of the interface board. The front of board displays 6 gate drives, 

10 sensors, 4 digital analogue converters, 2 encoders, 4 relays and 6 sensor-out-of 

range trip circuits. 

 

Figure 4.15 Motor driver interface board layout  
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Figure 4.16 The back of motor driver interface board 

 

Figure 4.17 Diagram of interface board components 

The functions included on the board are shown in the above diagram (Figure 4.17). 

The on-board interfaces have been designed to cater for a range of different external 

sensors and gate drive circuits.  



97 

 

The gate drive interface allows the eZdsp PWM output pins to communicate with the 

external gate drive boards or modules. There are 6 pairs of PWM outputs on the 

F28335 microcontroller, thus 6 interface circuits are provided. Each interface includes 

two PWM signals. In the experiments, all gate drive channels have been utilized, 3 for 

rotor side converter and the other 3 for grid side converter controller.  

10 identically flexible sensor interfaces are included to permit the connection of a 

variety of current and voltage sensors to the microcontroller ADC inputs. Every 

interface includes a 4-pin connector to allow wiring to an external current or voltage 

sensor circuit and the supply pins to energise the sensor. For the tests, 3 DFIG stator 

currents (3 primary stator currents in BDFRG), 3 rotor currents (3 secondary stator 

currents in BDFRG), 3 currents between grid side converter and the grid called line 

currents, 3 stator voltages (3 primary stator voltages in BDFRG) and 1 DC voltage 

have to be detected. Hence at least 13 sensor interfaces are needed. Hence the 

expansion analogue board is designed to create extra 8 uniform sensor interfaces. 

To provide an overcurrent protection capability, 6 of the sensor interface circuits are 

connected to sensor out-of-range circuit. This trip circuit employs a voltage window 

detector to detect whether a sensor signal goes out of the normal range. The voltage 

range can be altered by regulating the adjustable resistor in window detector circuit. 

The most obvious application of this circuit is for fast hardware overcurrent protection. 

The circuit can also be used for overvoltage protection if used with a voltage sensor. 

Compared to the amount of sensors, 6 protection circuits seem insufficient. Therefore, 

selecting the most vital elements to detect is significant. Taking account of vector 

control in Chapter 5, rotor currents (secondary stator currents) and line currents are 

detected for overcurrent protection purpose as they are inner loop control 

components 

4 DAC channels are included to allow access to internal software signals in real-time 

when the controller is operating. The analogue output signals from the DAC are 
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unipolar while ADC signals being monitored are bipolar. However, the unipolar DAC 

signal is sufficient in the experiments to provide the input to Altivar 71. 

4 relay circuits are included to provide a galvanically isolated means to switch other 

circuits such as larger relays or contactors. The relay coil is energised by switching a 

discrete MOSFET. The MOSFET gate is driven from a GPIO signal configured as an 

output. As the DSP board will disconnect from the computer when the experiments 

are taken under high voltage condition, relays switching will be controlled by the 

Button in the LabVIEW. 

Two identical shaft encoder interfaces are provided on the eZdsp board. As most 

encoders produce differential line driver output signals, the general interface board 

provides a differential line receiver for the CH-A, CH-B and CH-Z signals for two 

encoders. 

4.3.2. Rotor Bi-directional Converter 

 

Figure 4.18 Power electronic converters used in experiments 
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Two Infineon IFS100V12PT4 IGBT power modules are employed in the experimental 

apparatus. They have 1200V rated voltage and 100A rated current. Figure 4.18 

explicates the two modules placed on the heat sink. Two converters connected back 

to back with a DC bus between them. The DC-link consists of two black capacitors as 

displayed in Figure 4.19. This structure allows the power bi-directionally flowing.  

 

Figure 4.19 Back to back converters connected with DC-link 

From the pictures, it is overt that Infineon IFS100V12PT4 IGBT power module is hard 

to be connected to the DSP board gate drive interface, thus a gate drive patch board 

as shown in Figure 4.20 is lying on the IGBT module. This board plays a role of the 

intermediary between power converter and DSP interface board. Each module has 

one patch board and each board owns 3 pairs of PWM outputs. 
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Figure 4.20 Gate drive patch board used in experiments 

4.4. Basic control settings 

Initialisation

code

LabVIEW

communications

Main control ISR

epwm1_isr()

Start

EQEP ISR

eqep1_isr()

INTINT

RETRET

 

Figure 4.21 Basic structure of the code 

Basically, The F28335 has 2 serial communication interfaces (SCI). On the eZdsp 

board SCI-A is set up as an RS232 interface. This is used for a serial link to the user 

interface implemented in LabVIEW. Data is sent by the user interface as a sequence 

of ASCII characters. USB connector is used to load the C programme in C code 

composer to DSP. However, USB connection is unstable when the experimental 



101 

 

voltage is high due to the noise effects. Thus, USB connector will keep disconnection 

during the tests after the code is loaded to the flash memory. And DSP will keep 

communication with the computer via RS232.  

The basic structure of the code is shown in the following block diagram Figure 4.21). 

This section will introduce the basic settings of LabVIEW communications, main 

control ISR and EQEP ISR separately.  

4.4.1. LabVIEW Communications 

Execution of main program results is a series of initialisation code steps followed by 

the LabVIEW data exchange loop. This loop continuously communicates with the 

LabVIEW user control panel via the RS232 interface. On the F28335 microcontroller, 

the RS232 interface is implemented with the Serial Communications Interface SCI-A. 

 

Figure 4.22 User Control Interface - UCP view 
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Figure 4.23 User Control Interface - DTI view 

The user communicates the eZdsp F28335 microcontroller board with the LabVIEW 

user interface via the RS232 interface. The LabVIEW interface has two views 

depending on operating mode. The User Control Panel (UCP) view as shown in 

Figure 4.22 is used for continuous monitoring and control of the eZdsp. The Data 

Transfer Interface (DTI) view illustrated in Figure 4.23 is used less frequently when 

the data collected in the eZdsp RAM store requires to be transferred to the PC. The 

communication process between two LabVIEW user interfaces does not involve 

interrupts.  

The communication is a bi-directional process. A Control Parameter Frame (CPF) is 

sent by the UCP to the eZdsp F28335 and in return a Monitoring Parameter Frame 

(MPF) is sent back to the UCP. This data exchange is repeated at a rate of 5 updates 

per second which is determined by the LabVIEW UCP. At the time of writing the CPF 

contains 6 user control parameters and the MPF contains 15 monitoring parameters. 

Relatively simple code changes can expand or contract the number of parameters in 
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each frame. This data exchange process is explicated in the graph below (Figure 

4.24).  

par1 par2 par3 par4 par5 par6

v1 v2 v3 v15

LabVIEW

User

Control

Panel

(UCP)

eZdspF28335

v8v7v6v5v4 v14v13v12v11v10v9

Control Parameter Frame (CPF)

Monitoring Parameter Frame (MPF)

 

Figure 4.24 LabVIEW/eZdsp data exchange 

Each frame of parameters is packaged as a character string for transfer over the 

RS232 link. The timing of LabVIEW and eZdsp data exchange loop is determined by 

the rate at which the LabVIEW UCP sends data to the eZdsp F28335. The LabVIEW 

UCP can be modified to suit the user’s requirements. 

The initial loop at the beginning of the LabVIEW data exchange is used to assemble 

the CPF string in character array. The 6 integer data parameters (par1, par2, etc) are 

extracted from the input string. These data parameters are used to control the 

F28335 software during execution. However, parameter par1 is used to select the 

interfaces of LabVIEW. If the parameter par1 has the coder 100, LabVIEW UCP is 

exchanging the data. On the contrary, 200 code of par1 signifies to the programme 

that LabVIEW DTI is transferring the data and the data will stored in a txt file which 

will be described later.  

The 15 data variables of the MPF are sent to the RS232 interface. The data variables 

are accessed as global variables. These 15 monitoring data parameters are integers 

as well. Thus, in order to monitor the floating data (ie. Currents, voltages) obtained 

from generator, normally, cut out the integer part of data when they multiply by 100 or 

1000.  

There are a number of push-buttons on the LabVIEW panel. As these buttons can be 

pressed at any time, their status needs to be monitored continuously to ensure that 
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immediate action is taken by the F28335 control software. The 16-bit data variable 

par4 contains a code representing the status of all the panel push-buttons. At present 

there are only 7 panel buttons so only the lower bytes of par4 are used. A status flag 

(global variable) is declared for each push-button. 

When using the eZdsp F28335 to control high voltage power electronics it is advised 

to disconnect the USB link to the PC once the application code is running. This is 

because the emulator USB link is very sensitive to noise and is likely to be lost due to 

EMI. Even if this didn’t happen it is still risky to control high power equipment with the 

Code Composer debugger active. For various reasons Code Composer can halt the 

processor and this could have catastrophic consequences for the power equipment. 

The LabVIEW user interface via the RS232 link is used to control the eZdsp with the 

emulator link disconnected. The RS232 link is not sensitive to EMI and also the 

eZdsp code can be written, such that errors in the RS232 transmission do not result in 

dangerous action. 

Unfortunately once the emulator link is disconnected communications cannot be 

re-established until the eZdsp is powered down and then powered up. This action 

would wipe the contents of the RAM data store. The Tools=>Graph feature of C Code 

Composer cannot be used to get the current or voltage waveforms. It is therefore 

necessary to have a means to transfer the contents from the RAM data store to the 

computer when the emulator link is not available. Fortunately the RS232 link can also 

be used to for this purpose. 

As mentioned earlier the LabVIEW user interface has a second view called the Data 

Transfer Interface (DTI). This is used to carry out a block transfer of the entire 

contents of the RAM data store to a PC text file for later graphical display or data 

processing.  

The RAM data store contents are transferred as 512 frames, although each data 

store allows 2048 samples of different integer variables to be stored. Hence, the data 
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store function is executed 512 times to transfer the full contents for the RAM data 

store. It indicates data transfers to DTI every four times of its storage. Each execution 

of this function sends 32 words from the RAM store to the RS232. The DTI transfers 

the 512 frames of data into a text file. The data from the 26 RAM arrays are packaged 

in a frame. The DTI sends a frame counter value and a frame of 32 data items are 

sent back. The data for the first 10 arrays are shown graphically as the data is 

transferred, however, only 6 display in Figure 4.23. This allows a quick data health 

check before subsequent processing of the generated text file is carried out. 

4.4.2. PWM settings (EPWM) 

The F28335 has 6 PWM units (EPWM1 – EPWM6). Each unit contains a pair of PWM 

output signals (A and B). The pair of signals can be used to drive an inverter leg. The 

code in this function sets up all 6 PWM units to a common time base period of       

with a common carrier signal of 5kHz. The deadtime between outputs A and B is set 

to 1  . 

The PWM carrier signal is set to a triangle. It takes half period to arrive at its peak. 

Thus, the interval time between the highest and lowest value is 100  . However, the 

basic frequency of eZdsp F28335 is 150MHz. Its sample time is 
 

   
  . Thus, in order 

to obtain 5kHz triangle carrier signal, the peak value of PWM is set to 15000. 

(
       

    
      ) 

The signal for the ADC sequencer start is set up to trigger on the positive apex of 

every carrier cycle. The graphical presentation is displayed in Figure 4.26. 
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4.4.3. Analogue digital converter (ADC) 

The F28335 ADC has 16 multiplexed inputs. The ADC sequencers on the F28335 are 

set up to convert ADC inputs in simultaneous pairs. The current sensors are sampled 

first, followed by the AC voltages and finally the DC voltage. 

The ADC timing is governed by the ADC clock (25MHz) which is derived from the 

basic frequency of DSP (150MHz). For good ADC performance ADC clock should not 

exceed 25MHz. 

The ADC sequencer is triggered on the apex of the PWM carrier. When the ADC 

sampling sequence is complete, an interrupt is generated for the main control ISR 

(epwm1_isr in Figure 4.21). This ensures that all the ADC input samples are acquired 

before control code execution is started. 

Further details of the ADC timing are shown in the diagrams below. (Figure 4.25 and 

Figure 4.26) 
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 Figure 4.25 Timing for cascaded simultaneous sampling ADC 
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Figure 4.26 PWM-ADC sample timing 
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Based on the PCB controller interface board, a voltage less than 5V is produced by 

the current or voltage sensor after a current or voltage passes across them. Then this 

small voltage signal flows to the Analogue Digital Converter (ADC). The ADC is 

settled to 16 bits, thus the ADC results the digital signal in the range of         . 

The reading shown in the computer would be from -32767 to +32767. A calibration 

factor is needed when the real currents and voltages are transferred to the digital 

signals of DSP. This factor includes the offset remover because each sensor data 

requires an offset to be removed to create a signed variable. The offset is different for 

each sensor due to small variations in the sensor offsets and associated electronic 

interface circuits. The offset for each sensor is determined by calibration. Besides, the 

ADC integer data need to be converted into floating point variables. 

4.4.4. Altivar 71 controller 

Altivar 71 will produce the torque and speed to the machines by supplying a DC 

voltage. The more input voltage, the quicker speed. The DAC can convert a digital 

signal to an analogue low dc voltage signal and allows software variables to be 

observed with an oscilloscope in real-time. Thus, it is better that provide the dc 

voltage to Altivar 71 by a DAC signal through a voltage amplifier.  

The advantage of doing like this is the speed can be controlled by the LabVIEW due 

to the linear relationship between digital signal, analogue voltage signal and speed 

produced by Altivar 71. Par3 in UCP view can receive the demand speed value and 

send to DSP. DAC will transmit the analogue voltage signal after the speed value 

multiplies with a coefficient. Then the small voltage signal will enlarge through an 

amplifier and supplies to Altivar 71. Altivar 71 then produces the toque and speed to 

the shaft. The encoder fixed on the generator side will estimate the velocity of the 

machine and feed the signal back to DSP for the controller.  
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One thing needs to be mentioned here. Altivar 71 can only produce the torque but 

cannot consume it. Thus the direction of the torque or mechanical power must be 

kept from the induction machine to the generator. It indicates the DFIG and BDFRG 

can only operate at generation mode.  

4.4.5. Encoder (EQEP) 

The F28335 has two incremental encoder interface units (EQEP1 and EQEP2) one of 

which is used in the experiments. The encoder tested with the board is a 5000 line 

device. The quadrature encoder interface effectively multiples this by 4 to produce 

20000 pulses for each revolution of the encoder shaft. The EQEP interface contains a 

counter which counts the encoder pulses. The counter is reset when an encoder 

index pulse arrives. To cope with down counting (reverse motion), the EQEP counter 

is set-up to reload with 19999 when the count reaches zero. 

 

Figure 4.27 Electrical angles of 8 poles machine 
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When controlling machines with more than one pole pair, it is usual to convert the 

mechanical angle measured by the encoder to an electrical angle. As mentioned 

above, the 5000 line encoder produces 20000 pulses per revolution. The electrical 

angle is formed by dividing the 20000 pulse range into four ranges of 5000 pulses. 

Pulses in the range 0 to 4999 represent the angle of the first 2 poles and pulses in the 

range 5000 to 9999, 10000 to 14999, 15000 to 19999 represent the angle of the 

second, the third and the forth pole pair of the 8 poles machine. Graphical 

demonstration is given in Figure 4.27. 

The EQEP unit is capable of generating an interrupt for various encoder events. The 

code in this function enables a direction change interrupt. When testing the board with 

the generator this was used to count shaft direction changes (speed reversals) for 

diagnostic purposes. The EQEP is also capable of estimating shaft velocity by 

counting encoder pulses received in a specified time interval. 

4.4.6. Angle Generator 

Applications based on vector control principles make use of reference frame 

transformations which require sine and cosine calculations. A function sets up 

floating-point look-up tables for one period of sine and cosine. Look-up tables execute 

faster than the standard sine and cosine functions implementation within a high level 

language. The constant TABLEN determines how many samples in the table and is 

currently set to 720 (i.e. 0.5 degree revolution). For example:                

     . 

To minimise execution time, the tables are set up as global floating-point arrays and 

located in internal RAM. As floating-point variables occupy 4 bytes of memory, the 

overall memory allocated is                   . If reduced accuracy is 

acceptable the memory requirement can be halved by implementing integer arrays 

instead.   
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5. Vector control response for DFIG and 

BDFRG 

This chapter introduces the vector control schemes for both DFIG and BDFRG 

(taking DFIG as an example). The rotor-side and grid-side PWM converters of DFIG 

are controlled respectively based upon the stator voltage field orientation. A 

phase-locked-loop is implemented to measure the supply voltage phase angle to 

achieve the field orientation. The details of two controller schemes are presented 

followed by space vector modulation introduction. 

The second part of this chapter presents the experimental results of both DFIG and 

BDFRG. The comparison between the control response of DFIG and BDFRG is 

included to show which generator has better controller performance. 

According to two generators’ control response and the fault response and fault ride 

through studies of DFIG in chapter 3, the fault response and fault ride through 

performance of BDFRG can be predicted in Section 5.3. 

5.1. Vector control  

Taking the DFIG as the example, BDFRG has the same controller scheme by 

replacing the subscripts and superscripts s and r to p and c. Vector control theory for 

electric drives is well-understood and can be applied to the control of the doubly-fed 

machines [86]. In general, robust and reliable control can be achieved using PI 

feedback controllers with machine currents or flux linkages transformed into 

excitation reference frame d-q space vectors [25][87]. 

The controller’s excitation frame may be aligned in rotation to any particular voltage or 

flux linkage space-vector such that in steady-state operation all the machine currents 

and voltages appear as dc quantities. This approach lends itself to the application of 
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PI feedback controllers, in nested control loops, with independent control of active 

and reactive power. 

5.1.1. Stator voltage field orientation 

Many DFIG rotor-control schemes use an excitation-frame aligned with the stator flux 

linkage [25][38][24][41][45][87]. This allows clear decoupling between d and q 

components of rotor current. However, the alignment depends upon accurate 

positioning of the stator flux linkage vector. The stator flux linkage cannot be directly 

measured, typically estimated from integrating the stator voltage equation, although 

the integration process is not without drawbacks. Alternatively, it is acceptable to 

align the excitation-frame with the stator voltage space vector. The main advantage of 

stator voltage field orientation utilization emerges in using the reliable and stable 

output of a PLL for the field alignment. 

In this thesis, the stator voltage field orientation control is selected and implemented 

as follows: the stator voltage is aligned to the d-axis as illustrated in Figure 5.1.  

 

Figure 5.1 Stator Voltage Oriented Vectors Frame 
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According to the graph, the stator flux is more or less perpendicular to the stator 

voltage. The reason why the stator flux and the stator voltage are orthogonal to each 

other will be discussed in rotor side converter control section. 

5.1.2. Phase Locked Loop (PLL) 

A digital PLL is needed to provide accurate and stable information on the stator phase 

voltage. The excitation frame d-axis is aligned with the fundamental stator voltage 

space vector. As such, the quadrature component of stator voltage should be zero. 

This definition is exploited by the PLL to generate a space vector rotating 

synchronously with the fundamental component of the measured voltages. 

 

Figure 5.2 Phase Lock Loop design 

The PLL scheme used in the experiments is shown in Figure 5.2. This PLL is 

composed of a phase detector, a low pass filter (LPF), a gain and a voltage controlled 

oscillator (VCO). The three-phase voltages    ,     and     are transformed to 

two-phase equivalents and then applied to a reference frame transformation. The 

transformation block produces      and      components which are DC quantities 

in the steady state. The reference frame transformation block receives the angle from 

the VCO. The voltage      will be zero when the PLL is phase locked. Therefore 

     is used as a phase error signal. This error signal is low pass filtered and 

multiplied by a gain. The output from the gain block is used to adjust the frequency of 

the VCO. When the VCO is locked to the frequency of the incoming voltages,      
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will be zero. The frequency input to the VCO is given a pre-set value of 50Hz as this is 

the nominal frequency of the supply inputs. As the supply voltages are unlikely to 

deviate very much from 50Hz, a limiter is put on the frequency adjust signal to limit its 

range. This adds to the stability of the PLL operation. The performance of the PLL can 

be tuned by changing the gain and the cut-off frequency of LPF. 

This PLL scheme gives accurate estimation for stator voltages and angle   . Figure 

5.3 displays the d-q components of stator voltage under excitation reference frame 

(     and     ) after PLL. The test supply phase rms voltage is 220V, which results 

in the 310V peak phase voltage and magnitude of stator voltage space vector. Figure 

5.3 shows the 310V d component and approximate 0V q element of stator voltage 

under excitation reference frame after PLL implementation. That evidences this PLL 

scheme is practicable. 

 

Figure 5.3 d-q components of stator voltage under excitation reference frame after 

PLL (     and     ) 

As the rotor output voltage must be applied at slip frequency, this necessitates a 

measurement of the rotor shaft position and the calculations of slip angle which is 
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experiments, the excitation-frame angle    is obtained from PLL, while rotor-frame 

angle    is acquired from the encoder. The slip angle       is calculated each instant 

from the difference between    and   .  

 

Figure 5.4 The experiment angles (  ,    and      ) 

The experimental results in Figure 5.4 indicate the relationships of excitation-frame 

angle   , rotor-frame angle    and slip angle      . From the graph, the 

excitation-frame angle    rotates more quickly than the rotor-frame angle   , which 

corresponds to       and causes the slip frequency to be larger than zero. The 

machine operates at sub-synchronous speed mode with a positive slip angle      . 

5.1.3. Space Vector Modulation (SVM) 

In the experiment, the space vector modulation is used to receive the outputs of PI 

controller and produce the modulation index to the PWM power converter in both 

rotor-side and grid-side control schemes. In order to match the carrier frequency 

(5kHz) and ADC acquirement timing in the experiments. The SVM is designed as 

Figure 5.5 illustrated. 
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5.1.4. Rotor-side converter control 

The rotor-side converter employs cascaded power and current control loops. Its 

vector controller uses measurements of the rotor currents, stator currents, stator 

voltages and rotor shaft position to control the active and reactive stator power. The 

rotating d-q excitation frame is aligned to the synchronously rotating stator voltage 

vector. 

5.1.4.1. Methods of Control 

According to the diagram in Figure 5.1, the stator field orientation will cause: 

{
   

    

   
   

                                                                                                                                                 

Then we will have: 

{
   

       
  

    
 

  
      

    

   
       

  
    

 

  
      

   

                                                                                          

Taking account the steady state situation (
 

  
  ): 

{
   

       
       

    

   
       

       
   

                                                                                                            

When the stator resistance    is small enough to be ignored: 

{
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This indicates that the stator flux must be maintained orthogonal to the stator voltage 

vector. Besides we also have: 

{
   

       
       

   

   
       

       
         

                                                                                          

{
 

    
   

  

  
   

 

   
  

  

  
(      

 )

                                                                                                                          

It is obvious that the stator and rotor current have linear relationship.  

The stator is connected to the grid directly and the line resistance is small enough to 

ignore, thus if the grid voltage amplitude and frequency are assumed that they 

maintain to be constant, the stator flux magnitude will also be constant. The 

component of the generalized excited current    is unchanged as well. Then the 

active and reactive power    and    have the relationship with stator current shown 

in Equation (   ): 

{
 
 

 
           

    
           

            
    

 

             
                

 

           
    

            
           

    
 

            
               

 

                                                    

Due to Equation (   ),    and    can be also expressed as: 
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It is clear that the stator active and reactive power can be expressed by the rotor 

current d-q component. 

5.1.4.2.  Control Loop Design 

After defining a constant     
  
 

    
, the rotor flux and voltage can be expressed by 

the rotor current and constant   . (Superscripts e are omitted in this development as 

the vector control scheme is designed and analysed in excitation reference frame.) 

{
 
 

 
                 (   

  
 

  
)           
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)     
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Order           
  

  
, then it is found that  

{
   

     
       

  
 

  
              

   
     

             

                                                                                        

Based on           
  

  
, the plant for current loops is given by: 

       
       

       
 

 
       

       
 

 
 

       
                                                                                              

Which can be written in the z-domain as: 
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⁄

   
                 

  
  

   
⁄   

                                                                                   

Where T is the sample time (0.2ms). That indicates that the converter switching 

frequency is 5kHz. The standard design techniques are applied and the control 

schematic is shown in Figure 5.6. 

 

Figure 5.6 Rotor-side converter current control diagram 

 

Figure 5.7 Rotor-side converter vector control scheme. 
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The stator real and reactive power can be controlled the rotor d, q current 

components respectively. The plant could be shown in equation (    ) when we 

define that 

{
 

   
       

  

  
        

 

  
       (

  

  
   

  

  
     )    

  
  

  
  

                                                                          

       
      

 

       
 

      
 

       
  

    

  
                                                                                                    

Then the total rotor-side converter control system can be arranged as revealed in 

Figure 5.7. 

For the rotor-side converter, the main vector control scheme is used for independent 

control of real and reactive power    and   . This scheme is based on the stator 

voltage orientation principle, and defined in the synchronous d-q reference frame.  

The rotor current is separated into 2 parts representing    and    respectively. The 

inner control loop is achieved by controlling the two rotor current components through 

PI controllers. The outer loop is for the control of    and    adjusted by PI controller 

gains and provides the inner loop reference rotor current values. 

5.1.5. Line-side converter control  

The line-side converter transmits rotor circuit power to or from the grid connection. Its 

primary function is to manage the DC-link voltage, indirectly balancing power in or out 

from the rotor-side converter. 

Similar to the rotor-side converter’s control, the grid side converter uses the stator 

voltage orientation method. The vector controller uses measurements of the DC-link 

voltage, currents flowing on the lines and supply voltages to control the DC-link 

voltage and satisfy the requirements the reactive power exchanged between the 
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converter and the grid. Through the PI controller, the voltage into the grid-side 

converter is controlled by the line current. The main target of grid-side converter’s 

control is to maintain the constant DC-link capacitor voltage and to minimize the 

reactive power.  

5.1.5.1. Control Method 

 

Figure 5.8 Line-side converter schematic 

The line-side converter system is illustrated in Figure 5.8 above.  

For the purposes of the simplifying the mathematical development, it is assumed that 

the line-side filter can be represented by a simple L configuration. 

{
        

   
  

          

        
   
  

          

                                                                                                    

Where     and     are the d-q components of the voltages injected to the converter. 

  ,   ,    and    stand for the main supply voltage and line current d-q components 

respectively. At the steady-state condition, the equation changes to: 

{
                

                
                                                                                                                     

Then based on the reference frame of rotor-side converter control, we have 

   ⃑⃑ ⃑⃑ ⃑⃑        . Assume     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑           , Then the current of flowing between the 

grid and the converter can be obtained by  
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   ⃑⃑ ⃑⃑  ⃑  
   ⃑⃑ ⃑⃑ ⃑⃑       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  

    
 

                

    

 
                              

     
                                             

Where the X represent combined the line and filter reactance. 

The relationship between the active and reactive power absorbed from the grid 

(considered as positive) and the converter injected voltage is shown as follows: 

  ⃑⃑⃑⃑            ⃑⃑ ⃑⃑ ⃑⃑     
 ⃑⃑ ⃑⃑  ⃑                                                                                                                        

                    

             

     
                                                                   

                    

             

     
                                                                  

Therefore the power absorbed by the grid-side converter is: 

                |   
 ⃑⃑ ⃑⃑  ⃑|  

    

             

     
  

(             )
 
 (             )

 

        

 
                 

  

     
                                                                                                              

In which     is the loss power of the filter. Normally,      , the real power absorbed 

from grid through the grid-side converter would be kept equalling to the rotor real 

power injected to the rotor-side converter, when the converter losses are ignored. 

Actually, balancing these two active powers, 
                 

  

         is one 

requirement of     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   solution. Besides, minimizing the resultant reactive power 

sending to the grid (        
             

        ) and the values satisfying the 

equation       √
   
     

 

 
 

       

 √ 
 are another two requirements of     ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  . 
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5.1.5.2. Control Loop Design  

Based on (5.18), the plant for current loop could be expressed as: 

      
      

 

      
 

      
 

      
 

 

    
                                                                                                          

When it is defined that  

{
   

      
          

   
     

          

                                                                                                                  

The equation (5.24) can be written in the z-domain as: 

       

     
 ⁄

   
                     ⁄                                                                                             

Where T is the sample time and has the same as the rotor-side converter’s sampling 

time (0.2ms). Then, the current control loop could be designed as Figure 5.9. 

 

Figure 5.9 Grid-side converter current control diagram 

In order to obtain the minimal reactive power of grid, the q-axis current is set to zero 

corresponding to unity power factor operation. The grid side voltage   , the converter 
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side voltage    and the current flowing in the line between the converter and the grid 

   has the relations diagrammatically presented in Figure 5.10.  

 

Figure 5.10 Diagram of grid side voltage   , converter side voltage    and the line 

current flowing between the converter and the grid    

How is the d-axis line current reference value set? It could be obtained by another 

control loop. In order to maintain the constant DC-link capacitor voltage, the d 

component of the line current is adjusted by outer loop PI controller. A typical 

cascade control arrangement for the line-side converter is shown schematically in 

Figure 5.11. 

 

Figure 5.11 Line-side converter vector control scheme. 
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The line-side filter enables the fast-acting current controller to respond to current 

errors in milliseconds whilst maintaining a stable controlled output. The line-side 

converter controller can be tuned to respond faster than the rotor-converter’s 

controller, which therefore permits good control of the DC-link voltage. 

The overall line-side converter controller bears a similar structure to the rotor side 

converter (Figure 5.7). The line-side and rotor-side controllers are implemented 

independently, but may save computational effort by sharing information such as the 

PLL phase and the DC-link voltage measurement. 

5.2. Comparative analysis of vector control response for 

DFIG and BDFRG 

Both systems have the same power lever (5kW), pole number (8 poles) and PWM 

switching frequency (5kHz). The test Rig and controller hardware are similar for both 

schemes. As they may be thought to have the same mathematic model, the 

parameters of BDFRG primary stator can be compared with DFIG stator’s and 

secondary stator of BDFRG is conceivable to equal the rotor of DFIG. In the thesis, 

the subscripts ‘p’ ‘c’ ‘s’ and ‘r’ represent the primary, secondary stator of BDFRG and 

DFIG’s stator and rotor respectively. It is therefore of possibility to compare these two 

generators by the comparison of the relevant vector components with subscripts ‘p’ 

and ‘s’ or with ‘c’ and ‘r’. 

Both generators are expected to be controlled with a unity power factor. It means that 

the reactive power    (DFIG) and    (BDFRG) need be controlled to zero. 

However, due to the design problem of DFIG’s main structure — the second-hand 

induction machine, when    is set to zero, the rotor current will exceed the rated 

value. Hence, in order to protect the machine and compare the two generators at the 

same power, the reactive power    (DFIG) and    (BDFRG) are both controlled at 
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3000Vr while the active power    (DFIG) and    (BDFRG) have the step from 0W to 

-2000W or from -1000W to -3000W  

Altivar 71 cannot consume the torque, which results in that the machine can only be 

controlled under generator mode with mechanical power flowing from converter to the 

rotor or secondary stator. However, both DFIG and BDFRG could produce the power 

under both sub- and super- synchronous speed. As the synchronous speed of both 

DFIG and BDFRG is 750rpm, 660rpm and 840rpm are selected as the sub- and 

super- synchronous mode with       slip to be implemented in the below 

experiments. 

 

Figure 5.12 Experiment result of controlled DC-link voltage 

In the expectation, both stator (primary stator) and the grid-side converter would be 

supplied by the rated 380V line to line voltage and DC voltage would reach 600V. But 

in fact, EMI would spark the PWM fault signal LED lights of eZdsp board and cause 

the sudden stop of the controller. Hence, the voltage passed across the IGBT of 

power modules has to be restricted. In the experiments, 100% voltage is supplied to 
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the stator of DFIG or the primary stator of BDFRG and 50% voltage has been 

provided to the grid side converter to support 300V DC voltage. Figure 5.12 displays 

the experiment DC voltage when the grid side converter is fully controlled. 

5.2.1. Test results of inner current loop control for two generators 

First of all, both generators are controlled with the inner current loop as shown in 

Figure 5.6. Figure 5.13 and Figure 5.14 demonstrated two generators performance 

when a step is given to the reference rotor current components. The left graphs show 

the DFIG parameters and the right pictures explain BDFRG corresponding vectors in 

each page.  

In Figure 5.13, both generators are experimented under the speed of 840rpm. The 

q-component of DFIG rotor currents and BDFRG secondary stator currents are kept 

at -5A, while the d-component has a step from 3A to 5A. The d-q current response of 

the DFIG rotor and stator and BDFRG primary and secondary stator are graphically 

represented respectively in picture (a) to (d). The active and reactive power of two 

generators and phase currents of the DFIG rotor and BDFRG secondary stator are 

demonstrated respectively in figure (e) to (h). 

The experimental results at 660rpm speed with the constant 5A d-component and a 

-3A to -5A step q-component of rotor currents (secondary currents) are illustrated in 

the pictures of Figure 5.14. Similar to Figure 5.13, the d-q component currents of the 

rotor (secondary stator) and the stator (primary stator), the active and reactive power 

and rotor (secondary stator) phase currents of two generators are shown separately 

from Figure 5.13 (a) to Figure 5.13 (h). Two pairs of pictures are displayed in each 

page. The left two graphs show the DFIG response and right two are BDFRG results. 
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(a)                                  (c) 

 

(b)                                 (d) 

Figure 5.13 Step response under the condition that d-component of rotor current has 

a step reference at 840rpm (a) DFIG rotor DQ-component currents (b) DFIG stator 

DQ-component currents (c) BDFRG secondary stator DQ-component currents (d) 

BDFRG primary stator DQ-component currents 
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(e)                                 (g) 

(f)                                 (h) 

Figure 5.13 Step response under the condition that d-component of rotor current has 

a step reference at 840rpm (e) DFIG active and reactive power (f) DFIG rotor phase 

currents (g) BDFRG active and reactive power (h) BDFRG secondary stator phase 

currents 
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(a)                                 (c) 

(b)                                  (d) 

Figure 5.14 Step response under the condition that q-component of rotor current has 

a step reference at 660rpm (a) DFIG rotor DQ-component currents (b) DFIG stator 

DQ-component currents (c) BDFRG secondary stator DQ-component currents (d) 

BDFRG primary stator DQ-component currents 
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(e)                                 (g) 

(f)                                 (h) 

Figure 5.14 Step response under the condition that q-component of rotor current has 

a step reference at 660rpm (e) DFIG active and reactive power (f) DFIG rotor phase 

currents (g) BDFRG active and reactive power (h) BDFRG secondary stator phase 

currents 
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5.2.2. Current control response analysis and discussion 

All the vectors shown in the inner current control loop response graphs are expressed 

in excitation frame which aligns its d-axis to the input voltage vector. Taking the DFIG 

as example, we will have the following mathematical equations: 

  
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑⃑⃑  ⃑  
   

 ⃑⃑ ⃑⃑ ⃑⃑  

  
      

 ⃑⃑ ⃑⃑ ⃑⃑                                                                                                               

  
 ⃑⃑ ⃑⃑ ⃑⃑       

 ⃑⃑⃑⃑  ⃑  
   

 ⃑⃑ ⃑⃑ ⃑⃑  

  
         

 ⃑⃑ ⃑⃑ ⃑⃑                                                                                                          

Taking account to the steady state, the voltage equations change to: 

  
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑⃑⃑  ⃑       
 ⃑⃑ ⃑⃑ ⃑⃑                                                                                                                              

  
 ⃑⃑ ⃑⃑ ⃑⃑       

 ⃑⃑⃑⃑  ⃑          
 ⃑⃑ ⃑⃑ ⃑⃑                                                                                                                         

Adding the flux linkage equations 

  
 ⃑⃑ ⃑⃑ ⃑⃑       

 ⃑⃑⃑⃑  ⃑      
 ⃑⃑⃑⃑  ⃑                                                                                                                              

  
 ⃑⃑ ⃑⃑ ⃑⃑       

 ⃑⃑⃑⃑  ⃑      
 ⃑⃑⃑⃑  ⃑                                                                                                                              

to the voltages, we will have: 

  
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑⃑⃑  ⃑     (     
 ⃑⃑⃑⃑  ⃑      

 ⃑⃑⃑⃑  ⃑ )                                                                                                   

  
 ⃑⃑ ⃑⃑ ⃑⃑       

 ⃑⃑⃑⃑  ⃑        (    
 ⃑⃑⃑⃑  ⃑      

 ⃑⃑⃑⃑  ⃑)                                                                                               

Expanding the formula to d-q components: 

   
       

    (      
       

  )                                                                                                    
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       (      
       

  )                                                                                               

   
       

              
       

                                                                                                   

If    
  decreases and    

  keep constant, then we will have: 

    
           

                                                                                                                              

Besides, the input voltage and speed always keep constant, thus we know that: 

    
           

                                                                                                                            

      
    (       

        
  )                                                                                                   

      
            

        
                                                                                                     

     
                   

          
                                                                                          

     
           

          
                                                                                          

From equation     , 

    
  

    

  
    

                                                                                                                                      

Substituting this equation to      
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From this derivation, it can be seen that, if keeping the q-component of rotor currents 

or secondary winding currents constant, the increasing rotor or secondary stator 

d-axis currents will bring about the decrease of stator or primary stator d-q currents 

whereas the decline of d-component of rotor or secondary stator currents will results 

in the uptrend of both d and q components of stator or primary winding currents.  

This conclusion is validated in d-q current component curves of both DFIG and 

BDFRG in Figure 5.13. The d-component of the DFIG stator or BDFRG primary stator 

current varies obviously, whereas q-axis current does not change distinctly. 

Especially, the variation of q-component of DFIG stator current is so small that it is 

hardly visible to the naked eyes from the graph. The reason why the stator q-axis 

current varies so slightly is the DFIG stator resistance value is too small to impact the 

q-axis variations a lot. Considering the equation      and     , if the stator 

resistance can be ignored, these two equations can be re-written to: 

         
                                                                                                                                           

        
                                                                                                                                              

Thus the change of q-axis stator current can be thought as zero, while d-axis stator 

current increases evidently. However, the small stator resistance does not equal to 

none. The q-component of stator current is still affected, although it is not palpable.  

Compared to DFIG rotor q-axis current, BDFRG secondary stator current 

q-component curve ascends. The major reason of this difference is BDFRG has 

bigger primary stator resistance value than DFIG stator resistance. Figure 5.13 (b) 

and (d) interprets this conclusion with abundant evidence. 

Similarly, if    
  declines and    

  keep constant, then we will have: 
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Equation      and      will change to  

     
                   

          
                                                                                          

     
           

          
                                                                                          

From      

    
   

  

    
    

                                                                                                                                  

Substituting      to      

      
          

   
  

 

    
    

          
   

  
        

 

    
    

                            

  
  

        
 

    
           

                                                                                                   

     
   

  

    
    

                                                                                                                        

Hence, if keeping d-component of rotor or secondary stator currents constant and 

q-axis value descending, stator or primary stator d-axis current drops as well but q- 

components would climb and vice versa. It has been proved by the experimental 

results in Figure 5.14. In a similar way, the BDFRG’s primary stator d-axis current has 

more visible variations than DFIG’s stator current d-component. The reason has been 

analysed above. 

A close-up focuses on the graphs of rotor and secondary stator current d-q 

components in both Figure 5.13 and Figure 5.14. It is evident that BDFRG secondary 

stator current shows a slower catch-up to reach the steady state on both d and q 

component step responses. It indicates BDFRG takes longer time to control the 
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secondary currents compared to DFIG rotor currents controller. In the other means, 

under a classical vector control, DFIG’s controller speed is faster than BDFRG or 

BDFRG is harder to be controlled compared to DFIG. 

The main reason for this significant difference between DFIG and BDFRG is the 

inductance of BDFRG is far larger than DFIG. As explained in Chapter 2, the 

reluctance rotor will bring about more saturation. More saturation would cause the 

flux-path block and flux density limitation. The restricted flux strength limits the MMF 

and current increase. Thus in order to obtain the same power level, BDFRG needs 

larger volume to accommodate more magnetic flux and results in the higher 

inductance value. But the inductance, as the factor of current-change-retardant, will 

block the current to catch up to the reference value. It causes the delay of the 

controller speed and of course postpones the primary stator currents and active and 

reactive power steady states. 

Comparing the rotor and secondary phase currents graphs for both 840rpm and 

640rpm experimental results, the following differences can be found. Firstly, the rotor 

and secondary currents have opposite sequence in 840rpm’s results compared to 

660rpm’s. For 660rpm results, the sequence of rotor phase currents in DFIG or 

corresponding position windings phase currents in BDFRG is ‘red-yellow-blue’, but in 

840rpm experiment, the sequence reverses to ‘red-blue-yellow’. This difference is not 

hard to understand. The reversion of the rotor or secondary stator current phase 

sequence is because the slip changes from positive to negative. The generator 

operates in sub-synchronous speed mode with positive slip at 660rpm and 

accelerates to super-synchronous speed situation as the slip declines to negative. 

However, the stator need keep same phase current sequence and generate the 

power out of the machine. Therefore, the rotor or secondary stator windings have to 

reverse the phase sequence to achieve this target at different speed mode. Secondly, 

all the phase current pictures explicate that BDFRG has more harmonics than DFIG. 

It is because of the BDFRG structures. The reluctance rotor produces more 
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harmonics specially the rotor with the flux barriers inserting used in the experiments 

and the position of the rotor brings about the variations of machine inductance as 

demonstrated in Chapter 2. The more harmonics may increase the difficulties of 

controlling a BDFRG. This point will be detailed in the power loop control results 

analysis.  

According to the comparison of the experimental results of current loop vector control, 

there are some conclusions can be found: 

①. BDFRG and DFIG have similar performance under the control. 

②. DFIG’s current controller speed is faster than BDFRG because of the smaller 

inductance of DFIG. 

③. BDFRG produces more harmonics than DFIG due to the rotor structure and 

inductance variations. 

④. BDFRG is more difficult to be controlled with the classical vector control 

method compared to DFIG according to above conclusion. 

5.2.3. Test results of outer power loop control for two generators 

Figure 5.15 and Figure 5.16 below give the power loop control results graphs at 

660rpm and 840rpm. As explained above, the second-hand DFIG cannot be 

controlled under the unity power factor. Otherwise, the rotor current will exceed the 

rated value. Hence, in order to avoid the overcurrent and compare the two generators 

at the same power, the reactive power    (DFIG) and    (BDFRG) are both 

controlled to 3000Vr. The active power    (DFIG) and    (BDFRG) have been 

experimented with a step reference from 0W to -2000W at 660rpm and from -1000W 

to -3000W at 840rpm. 

Figure 5.15 illustrates the step response with the active power stepping from 0W to 

-2000W at the speed of 660rpm, while Figure 5.16 graphically describes the control 

results by giving a -1000W to -3000W step power reference at 840rpm condition.  
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(a)                                  (d) 

  

(b)                                  (e)  

  

(c)                                  (f) 

Figure 5.15 Step response under the condition that the active power has a step 

reference at 660rpm (a) DFIG power (b) DFIG stator current DQ-components (c) 

DFIG rotor current DQ-components (d) BDFRG power (e) BDFRG primary stator 

current DQ-components (f) BDFRG secondary stator current DQ-components 
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(a)                                  (d) 

  

(b)                                  (e) 

  

(c)                                  (f) 

Figure 5.16 Step response under the condition that the active power has a step 

reference at 840rpm (a) DFIG power (b) DFIG stator current DQ-components (c) 

DFIG rotor current DQ-components (d) BDFRG power (e) BDFRG primary stator 

current DQ-components (f) BDFRG secondary stator current DQ-components 
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For both Figure 5.15 and Figure 5.16, left side graphs demonstrate the DFIG 

experimental results and right group of the pictures display the BDFRG parameters. 

5.2.4. Power control response analysis and discussion 

According to the control method, the DFIG rotor d-axis current is proportional to the 

active power and q-component varies in direct proportion of reactive power. Similarly, 

BDFRG has the same proportional relation between secondary stator d-q current 

component and active and reactive power. This proportion indicates that when the 

active power keeps constant, the relative q-axis current does not change. The DFIG 

graph (c) in Figure 5.15 and Figure 5.16 almost faultlessly interprets this conclusion. 

However, the picture (f) in Figure 5.15 and Figure 5.16 demonstrates an entirely 

different situation for the BDFRG. The q-axis current ascends or descends followed 

the active power increasing or decreasing.  

Why the experimental results give some different conclusions from the control 

method? The answer is the stator resistance. In the method, the stator resistance is 

considered small enough to be ignored. Thus the active and reactive power has the 

proportional relation to d-q axis rotor current. The resistor of DFIG in this thesis is 

qualified, but the BDFRG’s is not. 

When the primary resistor is too big to be neglected, normally, in order to achieve this 

decoupling target in the controller, people would subtract an iR potential in the control 

to avoid the primary stator resistance effects. At this time, the control accuracy 

depends on the parameters’ correctness to a certain degree. However, the control 

scheme implemented in this thesis is independent on the parameters. The 

component which includes the primary stator resistance does not be subtracted. The 

experimental results are affected by the stator resistance. This explains why there is 

the ignorance of decoupling in vector control of BDFRG experimental results.  
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For the DFIG, although it seems that there is a decoupling its experimental results, in 

fact, there is still a slight variation of its active power curve when the step occurs. 

Compared to the palpable change in the BDFRG, DFIG result is not apparent. This 

differentia is because the BDFRG has a far larger primary stator resistance value 

than the DFIG stator resistance. Basically, the DFIG stator is small enough to be 

neglected which leads to the variations of DFIG active power curve is slight enough to 

be ignored as well. Therefore, the real and reactive power of DFIG can be thought as 

a decoupling situation. 

Keeping the eyes focusing on the power graphs in both Figure 5.15 and Figure 5.16, 

a quite interesting phenomenon can be found. BDFRG not only illustrates a far slower 

speed of the power step response than DFIG response, but also has a coupling 

between the active power and reactive power compared to the decoupling of DFIG 

two powers. 

(a)                                 (b) 

Figure 5.17 The power after data processing 

In order to analyse the whether the active and reactive power of BDFRG really have a 

coupling, the data in power graphs have been processed. If the reactive power    in 

Figure 5.16 (d) subtracts 6000Vr. Then the left side graph of Figure 5.17 could be 

produced. After increasing the -3000Vr    to -1000Vr, the right picture can be 

obtained.  

BDFRG Power after Qp subtracts 6000   

Pp Qp

BDFRG Power after Qp subtracts 4000    

Pp Qp



144 

 

According to power equations: 

      (   
    

     
    

 )                                                                                                                    

      (   
    

     
    

 )                                                                                                                   

Because the proposed vector control is based on the stator voltage field orientation 

principle, thus    
  has been set to zero through a PLL scheme. Then the power 

equations can be expressed by: 

         
    

                                                                                                                                         

          
    

                                                                                                                                     

The active power has the positive correlation of d components of primary stator 

currents while the reactive power is proportional to the q-axis value of the stator 

currents with a negative coefficient. Besides,    and    have the same proportion 

ratio with    
  and    

 . It equals       
  which is approximate 465 in the experiments. 

From the pictures of Figure 5.17, the active and reactive power seems to have the 

same tendency at the initial point where the active power reference changes. The 

increase of active power    causes the reactive power    climbing, whereas the 

drop of    induces the decrease of   . Taking account of the relations of power and 

primary stator currents, the increment of    
  would encourage the of reduction    

 , 

and the diminution of    
  could produce the augmentation of    

 . Figure 5.16 (f) 

evidences this analysis. Considering the magnitude of d-q component of the primary 

stator current, the magnitude growing of    
  will eliminate the absolute value of    

 , 

while decline of the magnitude of    
  could enhance the absolute value of    

 .  
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Additionally, Figure 5.17 points out that the active and reactive power seems to have 

the same changed value as the coupling parts of two curves are approximately 

aligned. And    and    have the same coefficient with    
  and    

 . Hence, in the 

coupling parts,    
  and    

  can be considered to have the similar changed 

magnitude. If    
  and    

  have similar but different direction of changes, it is of 

possibility to indicate the magnitude of primary stator currents |  ⃑⃑  ⃑| has almost no 

change like the demonstration in Figure 5.18.  

 

Figure 5.18 The effects of    
  and    

  changes 

The analysis above may imply that the reason of the coupling of active and reactive 

power is |  ⃑⃑  ⃑| will maintain the magnitude for a while at the initial of which the 

controller starts to work. And the reason of this reservation may be because of the 

larger inductance. As we all know that the inductance is the factor to prevent the 

current changes. Thus the far larger inductance in BDFRG compared to DFIG will 

lead to the hold of the primary stator current changes, then cause the coupling of 

active and reactive power of BDFRG. On the contrary, DFIG’s inductance is not big 

enough to persist the same amount of stator currents, therefore DFIG’s active and 

reactive power exhibit a decoupling performance. 
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Looking closely at the current d-q component graphs, it is clear that the BDFRG 

currents emerge more ripples than DFIG. In order to prove this point, the active power 

of DFIG and BDFRG are examined in different level. Figure 5.19 gives the examples 

of active power for both DFIG and BDFRG at -1000W, -2000W and -3000W 

respectively.  

 

Figure 5.19 Active Power comparison (left) DFIG (right) BDFRG 

Obviously, DFIG shows an approximate       oscillation and BDFRG has the 

      to       variations. DFIG has fewer ripples than BDFRG. This is mainly 

because the salient reluctance rotor produces more harmonics. The variable 

inductance as discussed in Chapter 2 is the partly reason for the current harmonics 

and causes the more power ripples. What is more, the rotor structure design with one 

barrier in each pole will impact the harmonics as well. 

According to the analysis of the experimental results of power loop vector control, 

there are the following consequences can be found: 

①. BDFRG’s active and reactive powers display a coupling while DFIG’s two 

powers present the decoupled performance owing to the larger inductance of 

BDFRG. 

②. BDFRG’s controller speed is tardy compared to DFIG’s due to the larger 

inductance as well.  
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③. BDFRG produces more harmonics than DFIG because of the salient 

reluctance rotor and variable inductance. 

④. BDFRG is more difficult to be controlled with the classical vector control 

method compared to DFIG mainly caused by the structure of the reluctance 

rotor. 

5.2.5. Comparison of experiment and simulation results of vector 

control response for BDFRG 

In this section, a BDFRG model in Matlab/Simulink has been further developed 

according to its mathematical model given in Section 2.3.2. And this model can be 

validated when its vector control simulation results are compared with the 

experimental results above. The correct model would be used in later section to 

simulate the fault ride through performance of BDFRG and to be compared with the 

DFIG’s simulation results. 

Figure 5.20 and Figure 5.21 illustrate the step response when the current loop control 

is applied to the BDFRG. Figure 5.20 shows the BDFRG performance when its 

secondary stator d-axis current was controlled to be increased from 3A to 5A and the 

rotor was rotating at 840rpm. Figure 5.21 displays the machine response when the q 

component of the secondary stator current dropped from -3A to -5A and the generator 

operated at 660rpm. In both figures, left graphs (a), (b) and (c) give the information of 

experimental results. And right pictures (d), (e) and (f) demonstrate the simulation 

results. Graphs (a) and (d) present the BDFRG secondary stator phase currents. (B) 

and (e) show the BDFRG primary stator d- and q- axis currents. (C) and (f) illustrate 

the BDFRG active and reactive power. 
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(a)                                   (d) 

 

(b)                                   (e)

 

(c)                                   (f) 

Figure 5.20 Step response under the condition that d-component of rotor current has 

a step reference at 840rpm (left) experimental results (right) simulation results; (a) & 

(d) BDFRG secondary stator phase currents (b) & (e) BDFRG primary stator current 

DQ-components (c) & (f) BDFRG active and reactive power 
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(a)                                   (d)

(b)                                   (e)

 

(c)                                  (f) 

Figure 5.21 Step response under the condition that q-component of rotor current has 

a step reference at 660rpm (left) experimental results (right) simulation results; (a) & 

(d) BDFRG secondary stator phase currents (b) & (e) BDFRG primary stator current 

DQ-components (c) & (f) BDFRG active and reactive power 
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(a)                                  (d) 

  

(b)                                  (e)  

  

(c)                                  (f) 

Figure 5.22 Step response under the condition that the active power has a step 

reference at 660rpm (left) experimental results (right) simulation results; (a) & (d) 

BDFRG power (b) & (e) BDFRG primary stator current DQ-components (c) & (f) 

BDFRG secondary stator current DQ-components 
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(a)                                  (d) 

  

(b)                                  (e) 

  

(c)                                  (f) 

Figure 5.23 Step response under the condition that the active power has a step 

reference at 840rpm (left) experimental results (right) simulation results; (a) & (d) 

BDFRG power (b) & (e) BDFRG primary stator current DQ-components (c) & (f) 

BDFRG secondary stator current DQ-components 
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Similarly, Figure 5.22 and Figure 5.23 show the active power step response when the 

power loop is used in the BDFRG control scheme.  In two figures, the reactive power 

was kept at 3000Vr and the active power was stepped from 0W to -2000W and 

-3000W to -1000W. The graphs in the left and right columns illustrate the 

experimental and simulation results respectively. Picture (a) and (d) give the 

information of the BDFRG active and reactive power response. (B) and (e) display the 

BDFRG primary stator current d and q components. (C) and (f) present the BDFRG 

secondary stator d- and q- axis currents. 

Comparing the right graphs with the relative left pictures, it is obvious that the 

simulation results have basic agreements with the experimental results in current loop 

control and power loop control. Both results present the BDFRG has a slow vector 

control speed. 

However, the simulation graphs display less harmonic than the test results. The 

possibility reason might be caused by the input voltage. The three-phase primary 

stator voltages are pure sinusoid waveforms in simulation but brought the harmonics 

to the machine in the practical. And another possible explanation may be the 

reluctance rotor was not simulated in the BDFRG model because it has not the 

electrical equations. 

Besides, Figure 5.22 (d) and Figure 5.23 (d) demonstrate a coupling between the 

active and reactive power. But compared with the experimental power graph (a), the 

coupling is less visible. The major reason may be caused by the exactitude of the 

rotor structure simulation and the accuracy of the inductance value. First of all, the 

reluctance rotor is quite hard to be simulated. In the all papers, a BDFRG is simply 

simulated by its electrical equations with the ignorance of its rotor structure. The rotor 

structure impacts cannot be reflected by the simulation results. This kind of model can 

give approximate rather than accurate results to us. Besides, as introduced in Section 

2.3.1.2, the test generator was designed by Prof. Wang. In order to balance the 
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machine size and the output power, the flux barriers were inserted in the reluctance 

rotor. Thus this complex reluctance rotor would have the more distortions of the fluxes 

and the unevener distributions of the flux densities. This could result in the less 

agreement in details between the BDFRG simulation results and experimental results 

when the more complex reluctance rotor structure effects are not simulated.  

Additionally, the distorted fluxes would bring in the more special variations of the 

inductance in a narrow angle. However, in the parameter test in Section 4.2.2, some 

points were selected rather than all. The tested inductance thereby is not accurate 

enough. All the reasons above influence the accuracy of the BDFRG simulation 

model and further impact the simulation results. Therefore, although the simulation 

results have some difference from the experimental results, they could be accepted. 

In sum, the simulation results have good match for the experimental results with 

some tolerable difference. Hence this simulation model can be considered as a valid 

model to simulate the performance of the BDFRG. 

5.3. Prediction of BDFRG fault response and the crowbar 

performance 

According to the conclusion above, it is obvious that the structure of the reluctance 

rotor of BDFRG brings about lots of differences between DFIG and BDFRG 

performance. The flux saturation causes the limitation of flux and MMF and restricts 

the increase of the machine currents. The current increase limitation requires larger 

volume to accommodate more magnetic flux and results in the higher inductance 

value to support the power level. The large inductance value will create the 

sluggishness of the transient current changes then result in the coupling performance 

of active and reactive power and deceleration of control speed. Besides, the saliency 

rotor structure leads to the inductance determination is dependent on the rotor 

position. Aligned, unaligned and intermediate rotor positions issue in the variations of 
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machine inductance. Then the reluctance rotor inserted by the flux barriers and 

variable inductance will lead to more oscillation of generator output.  

These factors would influence BDFRG’s fault response as well. When the voltage 

dips, the overcurrent is likely to cause machine damage. But compared to DFIG, the 

same rating BDFRG has a larger inductance which will restrict the level of fault 

current. The BDFRG’s inductances are almost several times of DFIG’s. Although the 

large fault currents would cause more saturation and the applicable magnetic 

saturation maybe accounted for a reduction of the relevant inductance [16], the effect 

of BDFRG inductance decrease cannot offset the difference between DFIG and 

BDFRG. In prediction, the large inductance in BDFRG would cause the slower 

current increase or even less overcurrent compared to DFIG fault response. Overall, 

the BDFRG may have better fault current compared to same power DFIG.  

If adding a crowbar to BDFRG for protection purpose, the crowbar resistor value 

could be smaller because of the larger inductance and less overcurrent. But, because 

BDFRG are harder to be controlled than DFIG, the control scheme of crowbar method 

needs to be considered carefully. According to a timer action crowbar control scheme 

described in Section 3.3.3, when the crowbar is released, rotor-side converter and the 

inner rotor current PI control are immediately resumed. Outer control loop is resumed 

after a specified delay to allow the current controllers to settle. This delay would be 

longer in BDFRG than a DFIG’s as BDFRG’s controller speed is tardy compared to 

DFIG’s.  

Therefore, slow control speed is the restriction of BDFRG FRT implementation. If the 

controller difficulty could be overcome, BDFRG will have better fault response and 

fault ride through performance compared to DFIG. But this prediction needs to be 

proved in the future work. 
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5.3.1. DFIG and BDFRG fault response simulation results 

comparison 

In this section, the DFIG model created in Chapter 3 and BDFRG model validated in 

above section have been used. The parameters tested in Chapter 4 are applied to 

two models respectively.  

In order to obtain two generators’ fault response, DFIG rotor and BDFRG secondary 

stator were both short circuit. Thus the machine slip had been calculated by using the 

equation     . The BDFRG can only produce less than 0.15 p.u. primary stator d-axis 

current, otherwise the slip would have the imaginaries. Thus both machines were 

setup to generate 0.15 p.u. active power with a slip of -0.009 for DFIG and -0.0132 for 

BDFRG prior to the fault. As the rated power of both generators is 7.5kW and speed 

is 750rpm, the power was set to 1125W, and the speed was set to 756.75rpm and 

759.9rpm for DFIG and BDFRG respectively. In the simulation, after 1.0s healthy 

operation, the input voltage was dropped to zero. Figure 5.24 shows the simulated 

fault response of both DFIG and BDFRG under a zero voltage fault. 

Figure 5.24 (a) and (b) illustrate the DFIG stator and rotor currents under zero voltage 

fault condition. Both fault currents are less than 8 p.u. Graphs (c) and (d) demonstrate 

the relative BDFRG primary and secondary stator phase currents respectively. 

However, the fault primary stator currents of BDFRG peak at 1.25 p.u, while the fault 

secondary currents are less than 1 p.u. The reason why the BDFRG has a far less 

peak current than the DFIG might be because it owns much higher machine 

inductance values. 
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(a)                                  (c)

  

         (b)                                 (d) 

Figure 5.24 The simulation results of fault response for DFIG and BDFRG (a) fault 

DFIG stator phase currents (b) fault DFIG rotor phase currents (c) fault BDFRG 

primary stator phase currents (d) fault BDFRG secondary stator phase currents 

The BDFRG peak fault current value indicates this BDFRG can ride through the fault 

with adding a zero value crowbar resistor when the machine current tolerance is 

higher than 1.25 p.u. That means that the function of the crowbar used in this BDFRG 

is to simply short the secondary stator windings and isolate the back-to-back PWM 

converter only. After short-circuiting the secondary stator, the BDFRG can pass the 

fault by itself. Hence, in later timer action crowbar simulation, the BDFRG short-circuit 

its secondary stator and isolate the PWM converter rather than employ an additional 

resistor in the crowbar period.  

However, the over-currents in DFIG fault response graphs suggest a crowbar circuit 

with the resistors is needed in order to ride through the fault. But how can the crowbar 
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resistance value be decided? In order to solve this question, we have to discuss the 

effect of changing the crowbar resistance. This impact with respect to DFIG fault 

response is best illustrated in Figure 5.25. This depicts the circuit path options for 

rotor currents faced with a PWM-disabled rotor converter and an active crowbar, 

flowing between two arbitrary rotor phases. 

 

Figure 5.25 Short-circuit paths for transient rotor currents. 

With zero or very low resistance, the crowbar simply shorts the rotor windings. The 

rotor converter’s diodes are fully blocked and there is no current flow onto the DC-link. 

As the crowbar resistance is increased, the rotor time constant is reduced; the 

crowbar accepts the shortened periods of over-current while the DC-link remains 

blocked. At greater than twice the rotor winding resistance or more, the crowbar starts 

to dominate the rotor circuit, sinking the majority of the rotor magnetisation energy 

after a severe grid fault. Above a certain resistance, the IR potential across the 

crowbar indicates sufficient phase-to-phase rotor voltage to drive current through the 

rotor-converter diodes and through the DC-link capacitance. At successively higher 

crowbar resistance the share of current is increasingly taken by the DC-link capacitor 

and the DC-link voltage is forced higher. The action of a brake chopper helps to limit 
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the DC-link voltage rise, but does not directly influence the nature of the rotor flux 

decay.  

In order to prevent a DC-over-voltage event, the crowbar resistance should be limited 

to prevent or at least minimise conduction through to the converter’s DC-link; a 

restriction described by equation      

                                                                                                                                                       

Recognising the average value of rectified current from equation     : 
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The crowbar resistance should be maximised to improve its relative ability to hasten 

the decay of rotor flux, but should remain safely below the maximum limit imposed by 

equation     . 

Figure 5.25 (b) establishes the maximum transient rotor currents of roughly 8 p.u. An 

approximation of the limit in equation      is therefore:  

    
   

           
                                                                                                                                    

Using the operational DC-link voltage of 600V dc and the base rotor current of 

24.2715A suggests a maximum crowbar resistance of 2.289Ω. In later simulation, a  

2Ω resistor is selected. 
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5.3.2. DFIG and BDFRG timer action crowbar simulation 

comparison 

The timer action crowbar employed in this simulation has the same structure and the 

same control method as the crowbar used in section 3.3.3. This crowbar is activated 

when the DFIG rotor or BDFRG secondary stator current exceeds a threshold value, 

and keep connection with windings for 0.12s. DFIG’s crowbar has a 2Ω resistor 

whereas BDFRG’s crowbar resistor is 0Ω. 

The DFIG stator voltage and BDFRG primary stator voltage is 220V per-phase 

initially and dropped to 15% of healthy voltage 1.0s after data-recording started. The 

fault voltage would keep a short fixed period before the fault recovery. 

Figure 5.26 illustrates a comparison of the DFIG and BDFRG fault ride through 

performance under a timer action crowbar. In the simulation, the 15% fault voltage 

existed for 0.5s and the crowbar activated when the rotor or secondary stator current 

magnitude was over 2.0 p.u. value. That indicates if the DFIG rotor current exceeded 

48.543V or the BDFRG secondary stator current was bigger than 22.79V, the 

crowbar would be connected to the machine rotor or secondary stator windings. The 

crowbar would keep activation after 0.12s and re-engaged when the current met the 

next limitation.  

Figure 5.26 demonstrates both DFIG and BDFRG’s simulation results. The left three 

graphs (a) (b) and (c) show the DFIG power, rotor phase currents and magnitude 

respectively, while the right pictures (d) (e) and (f) display the BDFRG corresponding 

results.  

From Figure 5.26, the DFIG experiences twice crowbar periods during the fault and 

once in the fault recovery, but the BDFRG does not employ the crowbar to ride 

through the fault. Graph (f) gives the evidence of the crowbar’s unemployment. The 
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fault period is not long enough to let the BDFRG secondary stator current magnitude 

exceeding the trigger threshold value 2.0 p.u. This results in the crowbar 

disengagement of the BDFRG in the fault period. It is explicit that the BDFRG could 

withstand the fault by itself if one of two conditions is met. One is the trigger threshold 

value of the crowbar activation is big enough, the other is the voltage fault period is 

not too long. On the contract, if the voltage fault persists a long time to let the BDFRG 

secondary stator current increasing to a high value or the system over-current 

tolerance is low, the BDFRG may need the crowbar engagement. 

Figure 5.27 attests one of the above conclusions. It demonstrates the DFIG and 

BDFRG performance under the same crowbar method as Figure 5.26. The fault 

period was still 0.5s and the fault voltage was 15% of healthy voltage, but the trigger 

threshold value was lower to 1.5 p.u. It illustrates vividly in the picture that the DFIG 

experiences four crowbar periods while the BDFRG’s crowbar is activated once at the 

initial point of the fault. From this, it can be seen that the crowbar may be activated in 

the BDFRG system when the tolerance of the over-current is dropped. But compared 

to the DFIG, the BDFRG has less crowbar engagement frequency. 

Similarly to the Figure 5.27, Figure 5.29 will prove another conclusion. If the fault time 

is long enough to allow the BDFRG secondary stator current climbing to a high level, 

the crowbar may be employed in the BDFRG system during the fault. Thus compared 

to Figure 5.26, all the parameters in simulation did not change except the fault 

duration time. As shown in Figure 5.28, the BDFRG would take 1.6246s to make the 

secondary stator current magnitude reach 2.0 p.u. under 15% fault voltage. Hence a 

2.0s 15% fault voltage was applied to the system in Figure 5.29.  

Figure 5.29 (b) and (c) illustrates clearly that the BDFRG secondary stator currents 

increase gradually and reach 2.0 p.u. The crowbar is engaged three times after 

approximate 1.6s. Compared to Figure 5.26, these results explain that the BDFRG 

can withstand a longer fault period than the DFIG. 
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(a)                                  (d)

 
(b)                                  (e)

 

(c)                                  (f) 

Figure 5.26 DFIG and BDFRG timer action crowbar simulation results with 0.5s 15% 

fault voltage and 2.0 p.u. rotor and secondary stator current limitation (a) DFIG active 

and reactive power (b) DFIG rotor 3-phase currents (c) DFIG rotor current magnitude 

(d) BDFRG active and reactive power (e) BDFRG secondary stator 3-phase currents 

(f) BDFRG secondary stator current magnitude 
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(a)                                  (d)

 

(b)                                  (e)

 

(c)                                  (f) 

Figure 5.27 DFIG and BDFRG timer action crowbar simulation results with 0.5s 15% 

fault voltage and 1.5 p.u. rotor and secondary stator current limitation (a) DFIG active 

and reactive power (b) DFIG rotor 3-phase currents (c) DFIG rotor current magnitude 

(d) BDFRG active and reactive power (e) BDFRG secondary stator 3-phase currents 

(f) BDFRG secondary stator current magnitude 
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Figure 5.28 BDFRG secondary stator current magnitude when a 15% fault voltage is 

applied 

(a)                                  (b)

                                    

(c) 

Figure 5.29 BDFRG timer action crowbar simulation results with 2.0s 15% fault 

voltage and 2.0 p.u. secondary stator current limitation (a) BDFRG active and 

reactive power (b) BDFRG secondary stator 3-phase currents (c) BDFRG secondary 

stator current magnitude 
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From all the results above, we can get the consequences as follows: 

① The BDFRG can withstand a longer fault duration than the DFIG. 

② In the same time, the BDFRG would activate the crowbar less times compared to 

the DFIG.  

③ Even the BDFRG can ride through the fault without the crowbar when the fault 

persists for a short period and the trigger current threshold is big. 

In summary, the BDFRG has the higher tolerance of the fault and better performance 

of the timer action crowbar method than the DFIG. In the other words, the BDFRG 

may take place of the DFIG in the future due to its similar healthy operation and better 

fault ride through ability compared to the DFIG. 
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6. Direct Power Control (DPC) response 

for DFIG and BDFRG 

Direct Power Control is a fast response control based on the measurement of the 

active and reactive power on grid side where voltages and currents are alternating at 

fixed frequency 50Hz. The active and reactive powers are made to track references 

using hysteresis controllers [38].  

This method eliminates the requisite for rotor position sensing and gives excellent 

dynamic performance. It is thus an attractive sensorless control for drive as well as 

generator applications.  

Besides, the active power and reactive power calculations do not need the d-q 

components of each vector viewed in the excitation reference frame, and the 

excitation frame angle    is not a necessity. The Phase Locked Loop scheme is 

therefore not required, which reduces the inconveniency compared to the vector 

control. 

Direct Power Control Method is first introduced and implemented on a wound rotor 

induction machine by Rajib Datta and V.T.Ranganathan in reference [38]. My project 

collaborator, Hamza successfully actualized the DPC on a BDFRM in [74] and we 

have expanded the method to a new sensorless torque and reactive power control 

presented in [13]. This simple yet efficient controller has the same control principle of 

DPC demonstrated by Rajib, but replacing the active power by the torque. 

References [75]-[77] also have the same idea presented in this Chapter. But in this 

Chapter, the control reference maintains active and reactive power.  

The target of this Chapter is to implement DPC to both DFIG and BDFRG, and then 

have a comparison. BDFRG can be controlled under 10kHz sampling frequency. But 

due to higher sampling frequency requirement of DPC and the limitation to 10kHz of 
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Infineon IFS100V12PT4 IGBT power module, the implementation of DPC to DFIG is 

not successful. Thus a DFIG DPC simulation is operated depending on the machine 

model used in Chapter 3. The generator performance at 5kHz, 10kHz and 20kHz 

switching frequency is compared.  

6.1. Direct Power Control Method 

The general principle of Direct Power Control is shown in Figure 6.1. 

 

Figure 6.1 Schematic diagram of DPC 

Based on the schematic diagram, the main task is to solve the look-up table and 

sector detection selection. As presented by Rajib Datta and V.T.Ranganathan in 

reference [38], taking DFIG as the example, the look-up table can be obtained by the 

analysis below.  

The DPC analysis is based on the stator voltage field orientation reference frame as 

well. In the conventional space vector field oriented control strategy demonstrated in 

Chapter 5, the stator current component     has to be controlled to control the stator 

active power    and     has to be controlled to control the stator reactive power   . 

This is achieved in turn by controlling the rotor currents     and    , respectively.  

The variation of the rotor flux with change in the active and reactive power demand is 

shown in Figure 6.2. In the left graph,     is set to zero, if     is varied from 0 to full 
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load, the locus of    changes along A to B. This implies a predominant change in 

angle    between the stator flux    and the rotor flux   , whereas the magnitude of 

   does not vary appreciably. In other words, a change in the angle    would 

definitely lead to a change in the stator active power. In the right graph of Figure 6.2, 

the stator active power demand remains the same so that     maintains constant 

and     is altered from 0 to the rated value. The locus of    varies along C to D, 

causing a predominant change in magnitude of   , whereas the variation of    is 

small. Therefore, the stator reactive power can be reduced by increasing the 

magnitude of the rotor flux and vice-versa. 

 

Figure 6.2 Phasor diagram showing variations in rotor flux with variations in active 

and reactive power. 

It can be concluded from the above discussion that the stator active power can be 

controlled by controlling the angular position of the rotor flux vector and the stator 

reactive power can be controlled by controlling the magnitude of the rotor flux vector 

[38]. 
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6.1.1. Voltage vector and their effects 

In order to make an appropriate selection of the voltage vector, the space phasor 

plane is first subdivided into six     sectors 1, 2…6 graphically displayed in Figure 

6.3. There are six voltage space vectors U1, U2……U6 lying in six sectors with each 

vector existing in each sector. These six voltage space vectors U1, U2……U6 make 

up to another six     sextants with     difference from the sector sextant and are 

corresponding to six switching states S1, S2……S6 respectively. 

 

Figure 6.3 voltage space phasors 

The instantaneous rotor flux magnitude and angular velocity can be controlled by 

selecting a particular voltage vector depending on its present location [38]. In the 

following description, the rotor flux is assumed to be initially positioned in Sector 1 for 

the simplification of the discussion. 

6.1.2. The vector effects on active power 

Considering anti-clockwise direction of the flux vectors’ rotation in the rotor reference 

frame to be positive,    is ahead of    in motoring mode of operation and behind 

   in generating mode as shown in Figure 6.4. In the rotor reference frame the flux 
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vectors rotate in the negative direction (clockwise direction) at super-synchronous 

speeds, remain stationary at synchronous speed and start rotating in the positive 

direction (anti-clockwise direction) at sub-synchronous speeds.  

Assuming that the rotor flux    is placed in Sector 1, application of voltage space 

vectors U2 and U3 would accelerate     in the anti-clockwise direction. In the 

motoring operation mode, the rotor flux acceleration decreases the angular 

separation between the two fluxes which brings about a drop of stator active power. 

This indicates the different power between the new and past value is less than zero 

(    ). On the contrary, in the generating mode of operation, application of vectors 

U2 and U3 causes an increase in angular separation between the two fluxes and 

thereby a growth in the active power. If power drawn by the stator being taken as 

positive and power generated being considered as negative,    is negative for 

generation. Thus, application of U2 and U3 will result in a decline of positive active 

power in both generator and motor operation modes. Similarly, it can be found that 

the effect of U5 and U6 on the active power would be exactly opposite to that of U2 

and U3 in both the motoring and generating modes. 

 

Figure 6.4 Flux vectors in (left) motoring mode (right) generating mode 
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The zero vectors effect on    is to stall the rotor flux without affecting its magnitude. 

This leads to an opposite effect on the stator active power in sub-synchronous and 

super-synchronous speed. Below the synchronous speed in motoring, application of 

a zero vector increases    as    maintains rotating in the anti-clockwise direction at 

slip speed. In super-synchronous speed,    rotates in the negative direction and 

thereby induces the decrease of   . Hence the application of the zero vectors can 

make    increase at sub-synchronous speed and decrease in super-synchronous 

operation mode because of the variations of    affected by the rotating direction of 

  . As the active power is negative in generator, the same conclusion holds true for 

the generating modes as well. 

As a generalization, it can therefore, be said that, if the rotor flux    is in the  th 

sector, where              application of voltage space vectors        and 

       would result in a reduction in the stator active power    and application of 

vectors        and        would result in an increase in    [38]. The 

application of the zero vector increases    at sub-synchronous speed and reduces it 

in super-synchronous operation. 

6.1.3. Vector effects on reactive power 

From the phasor diagrams of Figure 6.2, the stator reactive power is dependent upon 

the component of    along   . It is     in stator voltage field orientation controller. 

The angle    between    and    being small, the magnitude of    is 

approximately equal to    . Therefore, when the rotor flux vector is located in Sector 

1, the magnitude of    increases under voltage vectors U1, U2 and U6, whereas U3, 

U4 and U5 result in the reduction of it. This holds well irrespective of whether the 

machine is operating in either motor or generator operation mode. An increase in 

magnitude of    implies a rising amount of the rotor side reactive power, and hence 

a reduction in the stator reactive power which amounts to an improved stator power 
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factor. A decrease in magnitude of    results in a poor the stator power factor. It 

indicates the difference between the new and previous reactive power is negative 

(    ) in the application of voltage vectors U1, U2 and U6 and positive (    ) in 

the application of vectors U3, U4 and U5.  

As a zero vector does not change the magnitude of   , its effect on    is rather 

small. Nevertheless,    still has some minor variation. This small change depends 

on whether the angle    between the stator and rotor fluxes increases or reduces 

due to the application of a zero vector. The change of    will cause the variation of 

    and hence result in the change of    . For example, an increase of angular 

separation between the two fluxes decreases     . The rotor flux reduction leads to 

an increase of   . The converse holds true when    drops.  

Speed Motoring Generating 

Sub-synchronous                           

Super-synchronous                           

Table 6.1 Effect of zero vertor on active and reactive power 

It is observed that the change in    due to the application of the zero vector is 

different in all the 4 modes of operation. This is summarized in Table 6.1. 

It may therefore, be concluded that, if the rotor flux resides in the  th sector, 

switching vectors     ,        and        decrease the stator reactive power 

   and       ,        and        could increase    [38]. The application of 

the zero vector brings about an increment of    in either sub-synchronous motoring 

mode or super-synchronous generating mode, and a reduction of it at 

sub-synchronous speed as a generator or at super-synchronous speed as a motor. 
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6.1.4. The power band definition 

The stator active and reactive powers can be directly calculated from the stator 

current and stator voltages after transferring the three-phase current and voltage to 

    components by following transformation: 

    
 

 
    

 

 
    

 

 
                                                                                                                        

    
√ 

 
    

√ 

 
                                                                                                                                

The active and reactive power then can be expressed as: 

      (             )                                                                                                                     

      (             )                                                                                                                  

In DPC method, the PLL and excitation frame angle are not necessary. But a band for 

reference power is needed as illustrated in Figure 6.5.  

 

Figure 6.5 Hysteresis control of active power 

  
  is the reference for the stator active power. The actual power    is to be 

controlled to stay within a band of width       about   
 . This is achieved by defining 

an auxiliary reference   
   and switching as per the following logic: 
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                       if (        )      
     

        

                       else              
     

        

In a similar manner, the error and reference for reactive power can be written as: 

                                
      

                       if (        )      
     

        

                       else               
     

        

The band plays a role of the ‘toleration’ of the power aberration. The machine noise, 

and harmonics effects and the power variations during one sampling frequency would 

impact the selection of the power band. 

6.1.5. Switching vector selection 

For the purpose of the appropriate switching vector determination at any instant of 

time, the errors of    and   , and the sector in which the rotor flux vector is presently 

residing are taken into consideration [38]. Thus the switching table (Table 6.2) for 

active vector selection can be generated.  

Error Sector 

              1 2 3 4 5 6 

<= > S3 S4 S5 S6 S1 S2 

<= <= S2 S3 S4 S5 S6 S1 

> > S5 S6 S1 S2 S3 S4 

> <= S6 S1 S2 S3 S4 S5 

Table 6.2 Selection of active switching state 
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If the rotor side converter is switched in accordance to the switch states in Table 6.2, 

it is of possibility to control the stator active and reactive powers within the desired 

error bands. But the use of active vectors alone would result in non-optimal switching 

of the converter and also a higher switching frequency. 

Speed Motoring Generating 

Sub-synchronous                                         

Super-synchronous                                         

Table 6.3 Condition for selection of zero vector 

By considering the effect of the zero vector on active and reactive powers, the logic 

for how to select the zero vector can be summarized as in Table 6.3. Taking the 

sub-synchronous motoring mode of operation as an example, the application of a 

zero vector will increase    as seen from Table 6.1. Since    enlarges,    also 

increases. Therefore, when the errors in    and    are positive, a zero vector is 

applied to effect an increase in both the    and    and thereby bring down the 

errors. The zero vector effect under other modes in the table can be worked out in a 

similar manner. 

It is conclusive that the effect of the zero vector on     is opposite in the 

sub-synchronous and super-synchronous operation but remains same action both as 

a motor and a generator, whereas the effect on    is contrary in the motoring and 

generating modes but maintains same behaviour in both sub- and super- 

synchronous speed. 

6.1.6. Sector Identification of rotor flux 

In order to implement the switching algorithm, the present sector of the rotor flux has 

to be identified. The exact position of the rotor flux space phasor within the sector is 

not of importance as far as the selection of the switching vectors is concerned.  
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The proposed method of sector identification is based on the direction of change in 

   when a particular switching vector is applied. Suppose that the present position of 

   is in Sector 1 and it is moving in the anti-clockwise direction (corresponding to 

Sub-synchronous operation). Application of switching states S2 and S6 lead to a 

reduction of    and application of S3 and S5 result in an increase of    . When the 

rotor flux vector    crosses over to Sector 2, the effect of states S3 and S6 on     

would reverse. The voltage space vector U3 would now act to decrease    instead 

of increasing it. Similarly the effect of vector U6 on    would also be opposite. These 

reversals in the direction of change of    can be detected and used for a decision of 

sector change, when a particular vector is applied. Similarly, if the flux vector is 

rotating in the negative direction (super-synchronous operation) the effect of states 

S2 and S5 on    would reverse when    crosses over from Sector 1 to Sector 6. 

Thus in any particular direction of rotation, there are two vectors which can provide 

the information for a change in sector. Since the rotor flux vector cannot jump through 

sectors, the change will always be by one sector, either preceding or succeeding. In 

this method, even though the accurate position of the flux is unknown, the sector 

information can be updated just by observing the changes in    due to the applied 

vectors. 

 S1 S2 S3 S4 S5 S6 

Sector 1 X - + X + - 

Sector 2 - X - + X + 

Sector 3 + - X - + X 

Sector 4 X + - X - + 

Sector 5 + X + - X - 

Sector 6 - + X + - X 

Table 6.4 Expected direction of change in     
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The expected direction of change in    due to the application of any switching state 

in the different sectors can be summarised in Table 6.4. However it may be noted that 

in a particular sector not all vectors will be applied. For example, in sector  , vectors 

   and      will never be applied. These vectors would have predominant effect on 

the reactive power, but their effect on the active power would depend on the actual 

position of the rotor flux vector in the sector. In most applications, there is hardly any 

requirement for fast transient changes in reactive power; so it is not necessary to 

apply the strongest vector to effect any change in   . In the switching logic, therefore, 

only those vectors are selected which have uniform effects on    and    in terms of 

their direction of change irrespective of the position of the rotor flux in a particular 

sector.  

 S1 S2 S3 S4 S5 S6 

Sector 1 0 -1 +1 0 -1 +1 

Sector 2 +1 0 -1 +1 0 -1 

Sector 3 -1 +1 0 -1 +1 0 

Sector 4 0 -1 +1 0 -1 +1 

Sector 5 +1 0 -1 +1 0 -1 

Sector 6 -1 +1 0 -1 +1 0 

Table 6.5 Inferred change of sector position 

For any given vector applied in a particular sector, the expected direction of change in 

   can be found from Table 6.4. The actual direction of change can be computed 

from the present value of    and its previous value. If the actual direction of change 

is opposite to the expected direction of change then a decision on change of sector is 

taken. This information is stored in another lookup table (Table 6.5).  

From the Table 6.5, the sector changes principle is clear. For example, taking 

account of sector  , actual    has the different changes compared to the 
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expectation in S       and S       will cause the sector number reducing 1 to 

sector       , and the difference change of actual and expected    in S       

and S       will encourage the sector number adding 1 to sector       .  

6.2. Experimental results of DPC for BDFRG 

Comparing the direct power control to vector control method, DPC needs higher 

sampling frequency. The explanation can be clear demonstrated in Figure 6.6. In one 

sampling frequency, the modulation index generates from the vector control can cut 

the carriers, and produces the signals to IGBT switches. In this condition, the vector 

control can have maximum 6 switch states in each sampling frequency. But the DPC 

can only present one switch state per sampling frequency. Thus the DPC requires the 

far higher converter switching frequency than vector control method. 

 

Figure 6.6 The example of the modulation index cutting the carrier  

In the experiment above, the vector control uses 5kHz converter frequency to sample. 

But when 5kHz frequency is tried on DPC, both DFIG and BDFRG are failed to be 

controlled. 
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(a)                                  (c)

 

(b)                                  (d) 

Figure 6.7 BDFRG experimental results under DPC (a) & (c) BDFRG active and 

reactive power (b) & (d) BDFRG secondary stator phase currents 
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After increase the sampling frequency to 10kHz, DFIG remains unsuccessful, but 

BDFRG has the results presented in Figure 6.7. The left four graphs demonstrate the 

BDFRG performance when the primary stator active power dropped from -1000W to 

-3000W, while the corresponding right pictures illustrate the experimental results as 

the active power increased from -2000W to 0W. And in all the tests, the primary stator 

reactive power was always kept at 3000Vr.  

From pictures (a) and (c), the BDFRG powers are oscillate within a band of 

          . The graphs (b) and (d) show there are many distortions in both primary 

stator currents and secondary stator currents. Although the controller performance of 

BDFRG is not as good as vector control’s with high power variations and current 

distortions, the generator definitely can be said ‘under control’.  

It seems that DPC is more effectual to be implemented in BDFRG than DFIG under 

lower sampling frequency. The possible reason may be caused by the larger 

inductance. As section 6.1.4 explained, a band is selected to ‘tolerate’ the effects of 

machine harmonics and the power changes during one sampling frequency. Although 

BDFRG has more harmonics than DFIG, its power change in specific period is much 

smaller than DFIG as its current would be hold for a while due to the large inductance. 

But this conclusion is made for the machine in the experiments. If this consequence 

want to be promoted, more different rotor structure and different power level BDFRGs 

need to be examined. 

6.3. DPC simulation results comparison for DFIG and 

BDFRG 

DFIG cannot be controlled with the converter frequency of 10kHz, but the sampling 

frequency cannot be enhanced as Infineon IFS100V12PT4 IGBT module has the 

limitation of converter frequency to 10kHz. Thus, in order to make the two generators’ 
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comparison clearly, the performances of both DFIG and BDFRG under DPC have 

been simulated.  

  

(a) 

 

(b) 

Figure 6.8 (a) Active (blue) and Reactive (green) Power of DFIG under DPC at 10kHz 

(b) Active (blue) and Reactive (green) Power of BDFGR under DPC at 10kHz 
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(a) 

  

(b) 

Figure 6.9 (a) Active (blue) and Reactive (green) Power of DFIG under DPC at 20kHz 

(b) Active (blue) and Reactive (green) Power of BDFRG under DPC at 20kHz 

Figure 6.8 and Figure 6.9 graphically demonstrate the responses of two generators at 

10kHz and 20kHz when a step change is given to the active power respectively. It is 

vivid that for both generator models, the machine performance in 20kHz is far better 
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than the simulation results in 10kHz. The comparisons of the same machine 

performance under different switching frequency give the evidences.  

DFIG powers working at 10kHz sampling frequency have many points out of control. 

Some extra lower or higher points will cause the overcurrent in the machine and 

rotor-side converter. The overcurrent would stop the converter switches working and 

open all the relays owe to the system protection scheme. The control would failed at 

this situation. That may be the major reason why the DPC cannot be successfully 

implemented at 10kHz for the DFIG. However 20kHz sampling frequency makes the 

curves of the DFIG powers much smoother. It seems that this DFIG could be 

operated by DPC under 20kHz, which cannot be implemented by the existing test 

apparatus due to the IGBT module frequency limitation. Hopefully, this conclusion 

could be proved in the future work. 

For the BDFRG, the powers vary in a band of  900W(Vr) when the controller 

switching frequency is set to 10kHz, while the  400W(Vr) power variations are 

appeared at 20kHz. It implies that the high sampling frequency can improve the DPC 

effects. In addition, comparing the vector control results, the DPC power graphs have 

the large power variation band and the visible coupling of real and reactive power. 

That may because the vector control can produce more switch states in each 

sampling frequency than DPC. Hence the DPC need bigger variation band to tolerant 

the power changes during on sampling frequency. Additionally, two powers in DPC 

figures have the same coupling relationships compared to the vector control curves, 

but more variations with larger band cause the coupling not very visible. 

Besides, compared the graphs (a) and (b) in Figure 6.8 and Figure 6.9, it can be seen 

that the DPC works more effectually in BDFRG than DFIG when the same switching 

frequency is set to both machines. The major reason might be the BDFRG’s current 

changes less during the same period compared to the DFIG due to its high 

inductance value. Considering both vector control and DPC results, the BDFRG can 
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be controlled by both vector control and DPC whereas DFIG is better to be controlled 

by the vector control if the switching frequency is not very high. 

Consequently, although DPC is an effective sensorless, none PLL requirement and 

fast response control method. But the sampling frequency is the major restriction 

factor of its implementation. Additionally, the DPC might be more applicable to the 

BDFRG, especially under the lower sampling frequency. But this conclusion is made 

for the machine used in this thesis. Considering the distinctiveness of the BDFRG 

designed by Prof. Wang, if this consequence wants to be promoted, more different 

rotor structure and different power level BDFRGs need to be examined and 

compared with the corresponding DFIG. 
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7. Conclusion 

7.1. DFIG and BDFRG difference reviews  

The main aim of this thesis is to compare two generators: DFIG and BDFRG. The 

differences between them presented in this thesis are concluded below.  

7.1.1. Machine structures comparison 

BDFRG has eliminated the brushes and slip rings, which may increase the reliability 

and reduce maintenance. But, the BDFRG will be larger than the DFIG for the same 

power or will produce less output when the machines have the same size. 

DFIG’s stator and rotor have the same pole number, but BDFRG’s secondary stator 

normally has a lower pole number than the primary stator. This structure makes the 

stator slot size of BDFRG far larger than the stator slots of the DFIG when BDFRG 

primary stator has the same pole number as DFIG stator. The slots of the BDFRG will 

be deep compared to DFIG’s for the same width of stator tooth.  

The yoke height of stator core is inversely proportional to the pole number. Hence the 

BDFRG has much greater stator core yoke height compared to the DFIG with the 

same pole number, as the flux of the control winding needs large yoke area to pass 

through.  

The heights both of the slot and core yoke for the BDFRG are larger than DFIG’s. The 

inner diameter of stator core for the BDFRG will be much smaller than the DFIG’s. As 

a result, the power output of the BDFRG will be decreased due to the reduced rotor 

diameter for the same rotor speed in comparison with the DFIG.  

Besides, the BDFRG has a symmetrical structure. If we ‘see’ this reluctance machine 

from one side of stator and neglected the other, it is quite similar to a switch 

reluctance machine. Thus this generator may be considered as superposition of two 
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switch reluctance machine. The BDFRG has more saturation and would cause the 

flux-path block and flux density limitation. The restricted flux strength limits the MMF 

and current increase. The current increase limitation requires larger volume to 

accommodate more magnetic flux and results in the higher inductance value to 

support the power level. 

From above, it is explicit that the output power of the BDFRG will be much less than 

that of the DFIG in the same size. The BDFRG has larger volume and therefore is 

more expensive than DFIG in the same power level. This is a weakness of BDFGR 

compared to DFIG. 

As the BDFRG normally produces less output than the DFIG of the same size, in 

order to design a BDFRG which has the same size and the same power compared to 

the existing DFIG, Prof. Wang, the collaborator in Shenyang University of Technology, 

designed the BDFRG used in this thesis with the flux barriers inserting into the rotor 

within reasonable cost. The details can be found in Section 2.3.1.2. This structure 

brings about larger flux density and more saturation in the BDFRG. The higher flux 

density will lead to the higher flux and cause the larger inductance in the same power 

level. 

7.1.2. Inductance comparison 

An idealised three phase AC machine has the constant inductance. However, the 

linking flux strength varies around the rotor surface in a saliency machine. This leads 

to the variations of the inductance values [17]. But, a poly-phase winding distribution 

is able to eliminate the saliency effect due to its multiple slots per phase and the 

narrow and identical airgap width. Even if the small, ripple-like deviations happen 

occasionally as the slots align and mis-align in, these ‘slot effects’ do not seriously 

impact. Inductance values, therefore, may ignore its variations with position and be 

considered as an approximate constant. 
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All wind turbine DFIGs are poly-phase induction machines. Typically, for the sake of 

maximum efficiency, DFIG is designed with a large number of slots and windings, and 

narrow smooth airgap [20]. Thus, DFIG has minimal saliency and it can be assumed 

that the machine inductances are independent of rotor position. This important 

conclusion provides us the support of considering the DFIG inductances as constant 

when viewed in a stator, rotor or synchronously-rotating reference frame. 

But for a BDFRG, as it can be considered as the superposition of two switched 

reluctance machines, the BDFRG’s inductances are quite like that of the switching 

reluctance machine. A switching reluctance machine’s inductance determination has 

been demonstrated in Appendix A. The inductance peaks at the aligning rotor 

position and drops to lowest value at the un-aligning rotor position. The ‘Inductance 

vs. rotor position’ graph of the switched reluctance machine reveals the triangular 

wave if ignore the saturation effects. 

The BDFRG’s inductance changes following the position change of the rotational 

rotor. However, the superposition makes the machine flux density much higher even 

to the peak at the saturation. This leads to the smoother highest and lowest values in 

‘Inductance vs. rotor position’ graph. Thus the BDFRG’s ‘Inductance vs. rotor position’ 

graph looks like a sinusoidal waveform.  

In addition, according to the conclusion in Section 7.1.1, either the larger size BDFRG 

in common or the same size design used in this thesis has the larger inductance than 

the DFIG which has the same power level.  

In conclusion, it will be evidenced by the experimental results in Section 4.2.1 and 

Section 4.2.2 that the same size BDFRG has the sinusoidal inductance variations and 

far larger inductance than DFIG. 
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7.1.3. Inductance test comparison 

DC resistance test can experiment the both stator and rotor resistances of DFIG. This 

test can be used to obtain BDFRG primary and secondary stator resistances value as 

well. But the inductance tests for DFIG and BDFRG are different.  

DFIG’s inductance can be obtained by using Locked rotor test, Synchronous speed 

test, as the DFIG is operated at a merely synchronous speed when the stator is 

applied with a rated symmetrical three-phase AC voltage source with the short-circuit 

rotor. But, the BDFRG would start asynchronously and operate like the same pole 

number induction machine, if the primary stator is supplied with an AC voltage source, 

and the secondary winding is short circuited [7]. Thus the Synchronous Speed Test, 

the way to obtain inductance value of the induction machine, is not suitable for the 

BDFRG. 

For the BDFRG, if the secondary winding is open-circuited and the primary winding is 

supplied with symmetrical three-phase AC voltage, none current would flow through 

the secondary side windings. The primary stator inductance and mutual inductance 

can be obtained. Similarly, if taking account to exchange the position of the main 

stator and auxiliary stator and doing the same procedure as above test, the 

secondary stator inductance and mutual inductance can be got. Therefore, the 

self-inductance and mutual inductance of the BDFRG can be determined 

experimentally in standstill condition of the machine.  

Section 4.2.1 and Section 4.2.2 give the examples that how the DFIG and BDFRG’s 

parameters are tested. 
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7.1.4. Control performance comparison under vector control 

According to the comparison of the experimental results of the vector control, BDFRG 

and DFIG have similar performance under the vector control. But there are some 

difference found: 

①. BDFRG’s controller speed is tardy compared to DFIG’s. The inductance, as 

the factor of current-change-retardant, will block the current to catch up to the 

reference value. The larger inductance in BDFRG causes the delay of the 

BDFRG control speed and of course postpones the primary stator currents and 

active and reactive power steady states. 

②. BDFRG’s active and reactive powers display a coupling while DFIG’s two 

powers present the decoupled performance. The reason of the BDFRG’s 

active and reactive power coupling is its primary stator current maintains the 

magnitude for a while at the initial of which the controller starts to work. And 

the reason of this reservation may be because of the larger inductance. As we 

all know that the inductance is the factor to prevent the current changes. Thus 

the far larger inductance in BDFRG compared to DFIG will lead to the hold of 

the primary stator current changes, then cause the coupling of active and 

reactive power of BDFRG. On the contrary, DFIG’s inductance is not big 

enough to persist the same amount of stator currents, therefore DFIG’s active 

and reactive power exhibit a decoupling performance.  

③. BDFRG produces more harmonics than DFIG. This is mainly because the 

salient reluctance rotor produces more harmonics. The variable inductance as 

discussed in Chapter 2 is partly the reason for the current harmonics and 

causes the more power ripples. What is more, the rotor structure design with 

one barrier in each pole will impact the harmonics as well.  

Conclusively, the large inductance value will create the sluggishness of the transient 

current changes then result in the coupling performance of active and reactive power 
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and deceleration of control speed. Besides, the saliency rotor structure of BDFRG 

leads to the variations of machine inductance. Then the inserted-flux-barriers 

reluctance rotor and variable inductance will lead to more oscillation of generator 

output. Therefore, it can be found as the conclusion that the BDFRG is more difficult 

to be controlled with the classical vector control method compared to DFIG. 

7.1.5. Vector control method and direct power control method 

comparison 

Compared to the vector control, Direct Power Control has many advantages. It 

eliminates the need for rotor position sensing. It is thus an attractive sensorless 

control for drive as well as generator applications. Besides, the active power and 

reactive power calculations do not need the d-q components of each vector viewed in 

the excitation reference frame, and the excitation frame angle    is not a necessity. 

The Phase Locked Loop scheme is therefore not required, which reduce the 

inconveniency compared to the vector control. 

Comparing the direct power control to vector control method, DPC needs higher 

sampling frequency. In one sampling frequency, the modulation index generates from 

the vector control can cut the carriers, and leads to more switch states in each 

sampling frequency. But the DPC can only present one switch state per sampling 

frequency. Thus the DPC requires the far higher converter switching frequency than 

vector control method. 

7.1.6. Control performance comparison under Direct Power Control 

Based on the experiments, both BDFRG and DFIG cannot be controlled under DPC 

when the switching frequency is 5kHz, and BDFRG can be controlled under 10kHz 

but DFIG cannot. From these results, the switching frequency is the restriction of the 

DPC and the DPC can be considered to be more effectual when it is implemented in 
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BDFRG, especially under lower sampling frequency. The possible reason may be 

caused by the larger inductance. As section 6.1.4 explained, a band is selected in 

DPC to ‘tolerate’ the effects of machine harmonics and the power changes during one 

sampling frequency. Although BDFRG has more harmonics than DFIG, its power 

change in specific period is much smaller than DFIG as its current would be hold for a 

while due to the large inductance. But this conclusion is made for the machine used in 

this thesis. If this consequence wants to be promoted, more different rotor structure 

and different power level BDFRGs need to be examined and compared with the 

corresponding DFIG. 

7.1.7. Fault response and fault ride through capability prediction 

and comparison 

The larger inductance of BDFRG would restrict the level of fault current in prediction. 

Although the large fault currents would cause more saturation and lead to a reduction 

of the relevant inductance, the effect of BDFRG inductance decrease cannot offset 

the difference between DFIG and BDFRG because the BDFRG’s inductances are 

almost several times of DFIG’s. In prediction, the large inductance in BDFRG will 

cause the slower current increase or even less overcurrent compared to DFIG fault 

response. Overall, the BDFRG may have better fault current compared to the same 

power DFIG.  

If adding a crowbar to BDFRG for protection purpose, the crowbar resistor value 

could be smaller because of the less overcurrent. But, because BDFRG are harder to 

be controlled than DFIG, the control scheme of the crowbar method needs to be 

considered carefully. According to a timer action crowbar control scheme described in 

Section 3.3.3, when the crowbar is released, rotor-side converter and the inner rotor 

current PI control are immediately resumed. Outer control loop is resumed after a 
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specified delay to allow the current controllers to settle. This delay would be longer in 

BDFRG than a DFIG’s as BDFRG’s controller speed is tardy compared to DFIG’s.  

Therefore, slow control speed is the restriction of BDFRG FRT implementation. If the 

controller difficulty could be overcome, BDFRG will have better fault response and 

fault ride through performance compared to DFIG.  

This prediction has been proved in the simulation work in section 5.3.1 and section 

5.3.2. From the results of the simulation, the conclusion below has been found: 

① The BDFRG can withstand a longer fault duration than the DFIG. 

② In the same time, the BDFRG would activate the crowbar less times compared to 

the DFIG.  

③ Even the BDFRG can ride through the fault without the crowbar when the fault 

persists for a short period and the trigger current threshold is big. 

In summary, the BDFRG has the higher tolerance of the fault and better performance 

of the crowbar method than the DFIG.  

7.2. Suggestions for further work 

From all the experimental and simulation results above, we may have a conclusion 

that the BDFRG may take place of the DFIG in the wind generation of the future due 

to its reasonable cost of manufacture, the similar healthy operation to the DFIG, the 

good controller response for both vector control and DPC, the higher fault tolerance 

and the better fault ride through ability compared to the DFIG. This conclusion is the 

main contribution of my PhD degree. 

In the future, still many works can be done. For example: 



192 

 

①. Direct Power Control experimental implementation for DFIG and BDFRG and 

their experimental results comparison 

②. FRT technologies experimental implementation for DFIG and BDFRG and 

comparison of the FRT experimental response for two generators 

③. Comparing the different rotor structure BDFRGs’ and DFIG from control 

response and FRT performance point of view 

④. Direct Power Control experimental implementation for BDFIG 

⑤. DFIG, BDFRG and BDFIG control response comparison under both classical 

vector control and DPC 

⑥. DFIG, BDFRG and BDFIG FRT performance comparison 

The last three works is hopefully to collaborate with Dr. Long Teng who has 

researched the comparison of DFIG and BDFIG in Cambridge University. 
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Appendices 

A. Generalised Induction Machine Analysis  

A.1. Reference frames and transformations  

A.1.1. Reference frames  

Consider a three-phase non-salient ac machine, with a symmetrical three-phase 

distribution of windings. The space vector is defined by:  

    ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑                                                                                                                              

Where 

     (     ⁄ )                                                                                                                                 

This applies to any instantaneous set of three-phase parameters, such as the 

voltages or currents. For the balanced winding, the instantaneous value is: 

                                                                                                                                                

A space vector in the radial machine plane can be defined against any set of 

orthogonal d-q axes. Particular axes have defined relationships with the machine, and 

are known as ‘reference frames’. Each vector parameter will appear to possess a 

different phase and relative velocity when ‘seen’ from different reference frames. 

Three common choices of reference frame are:  

• A stationary reference frame, fixed against the stator windings: the ‘stator frame’ 

• A reference frame pinned to the space vector of supply voltage and hence rotating 

at system frequency with respect to the stationary reference frame: the ‘excitation 

frame’ 
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• A reference frame pinned to the rotor windings (allowing for multiple magnetic 

poles), rotating at rotor speed (per pole-pair) with respect to the stationary reference 

frame: the ‘rotor frame’ 

A complete list of reference frames used in this work can be found in the glossary. An 

example of changing reference frames is shown in Figure A.1, where the stator 

current is given angle   with respect to the stator reference frame. 

 

Figure A.1 Space vector of stator current in various reference frames 

The stator current space vector appears with a different phase angle when viewed in 

each of the aforementioned reference frames. It may be seen to rotate at 50Hz in the 

stationary frame, appear pseudo-stationary in the excitation frame, and to rotate at 

slip frequency when viewed from the rotor frame. 

  
 ⃑⃑      |  |            

      
                                                                                                          

  
 ⃑⃑⃑      |  |       

   |  |      {    }     
      

                                                               

  
 ⃑⃑⃑      |  |       

   |  |      {    }     
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The d-q components are all scalar quantities by definition. The vector operator   is 

used to position the quadrature-axis components with respect to the direct-axis 

components. 

A.1.2. Reference frame transformation  

How does the reference frame transfers from one to the other? Figure A.2 gives the 

answer. 

 

Figure A.2 The transformation of space vector in two reference frames 

In the graph, OA represents a generalized space vector. For the convenient purpose, 

the current is taken as the example. Thus, 

|  |                                                                                                                                                         

There are ‘a’ and ‘b’ two reference frames with their d and q axis named ‘ad’, ‘aq’ and 

‘bd’, ‘bq’. It can be clearly seen in the graphs that: 
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  is the angle between two reference frame. According to the parallel principle, we 

will have 

                                                                                                                                         

Then the following relationship can be obtained: 

             
                                                                                                                  

                        
                                                                              

             
                                                                                                                 

                        
                                                                              

Thus, the d-q components viewed by ‘b’ reference frame are: 

  
              

         
                                                                                   

  
             

         
                                                                                   

Write the transformation equations to matrix: 

[
  
 

  
 ]  [

        
         

] [
  
 

  
 ]                                                                                                               

Similarly, the inverse transformation is: 

[
  
 

  
 ]  [

         
        

] [
  
 

  
 ]                                                                                                               



207 

 

A.2. Generalised induction machine 

A.2.1. Magnetic field distribution  

To simplify the analysis, an idealised three-phase machine is considered. Stator and 

rotor consist of two concentric cylinders separated by a small uniform airgap with a 

symmetrical circumference, as demonstrated in Figure A.3Figu. Saliency effects will 

be discussed in later part. 

As shown in the graph, the machine coils lie parallel along with the cylinder.     and 

  represent the rotor radius, airgap length and the cylinder length respectively. In the 

idea machine, the cylinder is long enough, such that the end effects may be negligible. 

The magnetic saturation is not considered as description in the above section. 

 

Figure A.3 Simplified stator and rotor 
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Figure A.4 Example of the cross section of the machine at a single moment 

Taking account of the cross section of the machine at a single moment, the machine 

stator windings produce an approximately sinusoidal MMF around airgap when 

supplied with three balanced currents.[18][88] (Figure A.4 and Figure A.5) 

  

Figure A.5 (left) Example of stator MMF distribution based (right) Magnetomotive 

force for the left total MMF 

The current of each phase contributes a stepped wave to MMF distribution. The three 

MMF of each phase add together to produce the total MMF shown as black polyline in 

0 1 2 3 4 5 6 7 8 9 101112131415161718

Actual stepped wave 

Fundamental 

component 
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Figure A.5 left graph. Even in this very simple winding, the approximation to a sine 

wave is reasonably good as illustrated in the right picture of Figure A.5. The 

sinusoidal quality of MMF depends upon the number and geometric distribution of the 

windings. Thus with the larger number of slots that occur in most machines, the sine 

form can be more closely approximated, smooth and symmetrical [88].  

The space vector of stator MMF is defined as the instantaneous peak of the resultant 

stator MMF distribution. According to the discussion above, the stator MMF space 

vector can be derived from: the actual number of coils of each stator phase winding, 

            , the carrying stator current space vector,   ⃑⃑ , and a coefficient describing the 

geometric distribution,      :  

  
⃑⃑⃑⃑                     ⃑⃑                                                                                                                          

          

Figure A.6 (left) Short pitch coil (right) induced voltage pitch effect diagram 
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Figure A.7 (left) distributed coils (right) induced voltage distribution effect diagram 

For a non-salient machine, the coefficient       remains constant around the airgap. 

An effective coil number which includes pitch and distribution factors is therefore 

generally instead of the actual coil number: 

                                                                                                                                    

Hence, the MMF expression can be shortened as: 

  
⃑⃑⃑⃑      ⃑⃑                                                                                                                                                  

It is important to recognize that if the three phase currents are sinusoidal in time, the 

MMF will travel across the airgap and ‘leak’ to the rotor circumference. The locus of 

the stator MMF space vector will form a circle, as it rotates with the stator current 

space vector. 

Similarly, a rotor MMF space vector may be provided with respect to the 

instantaneous peak of the rotor MMF distribution. Imitate the stator MMF equation, 

use the rotor current and effective turns’ number of rotor coils to replace the stator 

current and the effective stator turns, the rotor MMF is possible to be expressed by: 

  
⃑⃑ ⃑⃑       ⃑⃑                                                                                                                                                   
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The MMF plays a role of the source of a sinusoidal distributed magnetic flux across 

the airgap of the machine. Taking account of the stator flux, the reluctance and area 

of the airgap flux path, the magnetic flux flows with the flux density: 

  
⃑⃑⃑⃑  

 

 

  
⃑⃑⃑⃑ 

 
                                                                                                                                                

Given the high relative permeability of iron, the magnetic reluctance path is 

dominated by the airgap, width  . Hence the stator magnetic field, neglecting 

saturation, is inversely proportional the airgap length: 

  
⃑⃑⃑⃑  

    

  
  ⃑⃑                                                                                                                                             

In order to simplify the analysis, the magnetic field around the airgap illustrated in 

Figure A.8-Figure A.10 is generated by a single coil on each of the stator and rotor. 

Left graphs describe the cross -section how the flux flows around the periphery of a 

symmetrical two-pole AC machine, while right sinusoidal wave is the stator and rotor 

self- or mutual- magnetic field.  

 

Figure A.8 (left) Stator contribution to magnetic flux around the circumference of a 

symmetrical two-pole AC machine cross-section (right) magnetic field around airgap 

due to the stator winding 
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Figure A.8 demonstrates the direction and relative strength of the stator component of 

magnetic field around the airgap of an idealised two-pole machine with one stator coil 

acting. A sinusoidal magnetic flux density is produced by this action as shown in right 

side.  

A similar magnetic field is produced by the rotor circuit MMF, shown by Equation A.27 

and Figure A.9. The rotor current pass through the single rotor coil induces the rotor 

MMF with the flux path shown in left graph and the flux density wave displayed in the 

right. 

  
⃑⃑⃑⃑  

    

  
  ⃑⃑                                                                                                                                              

 

Figure A.9 (left) Rotor flux distribution of a symmetrical two-pole AC machine 

cross-section (right) magnetic field around airgap due to the rotor winding 



213 

 

 

Figure A.10 (left) Net flux for an arbitrarily aligned position of a symmetrical two-pole 

AC machine cross-section (right) net magnetic field around airgap 

The resultant flux distribution is an approximately linear combination of the both stator 

and rotor self-magnetic fields (Figure A.10). In the left graph, it is possible to find two 

kinds of flux paths. One threads stator or rotor only called ‘leakage’ flux path, the 

other crosses over both stator and rotor named ‘mutual’ flux path. It is significant to 

pay attention to that both the leakage and mutual flux paths comprise the net 

magnetic flux linkage. 

 

Figure A.11 Salient rotor-pole machine example. 
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Figure A.12 Low-saliency machine. 

In a salient wound rotor machine, the capability of linking flux varies around the rotor 

surface. The magnetic flux path reluctance   is dominated by the effective airgap, 

which may lengthen across large or deep winding slots. As a result inductance values 

will vary with rotor alignment [17]. It will be discussed in later section.  

A salient wound rotor machine cross-section example is illustrated in Figure A.11. In 

the graph, it is obvious that there is far less iron in the   -axis path. The less iron 

compared to   -axis will cause a far greater magnetic reluctance in the   -axis path, 

and result in that the flux linkage along the flux path parallel to the   -axis will be far 

less than the linkage parallel to the   -axis. 

For a polyphase winding distribution, with multiple slots per phase and a small, 

consistent airgap width, the aggregate effect of saliency is diminished, as can be 

seen from Figure A.12. 

A.2.2. Torque generation  

In an electrical machine, the misalignment between the stator and rotor rotating 

magnetic field encourages the torque generation. In a generator, the rotor field is 

effectively dragged ahead of the stator field by the mechanical input toque.  
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For a multi-pole machine, the multiple concentric dipoles can be divided by several 

pole pairs. The effects of the pole pairs can be considered as linear with omitting the 

saturation. It indicates that the influence of each pole pair can be superimposed. 

Hence, a single pair of poles can be considered instead of the multi-pairs then scale 

the results of the multi-poles. A single pole pair stator and rotor behave like two 

magnetic dipoles. The electromagnetic torque would depend on the strength of each 

field and separating phase sinusoidal wave. The books [23] and [86] document the 

derivations of the torque production.  

 

Figure A.13 Flux path near a rotor slot 

 

Figure A.14 Force elemet on a rotor conductor 

Figure A. 13 illustrates the flux path near a rotor slots. It can be seen that largely 

radial flux flows across the airgap, and then is replaced by the leakage fields around 

the conductor in the slots. A strong alignment force    is produced to the rotor 

surface because of the radial flux, and does not force to the rotation. The skew flux at 
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the fringe fields brings a much smaller force   . This force is the tangency of the rotor 

surface at the slot edges and will generate the torque.  

With assuming to place the rotor current artificially into an undisturbed stator 

magnetic field (or vice versa), the torque can be computed [20]. Figure A.14 

demonstrates the force element on a single rotor conductor due to the stator field. 

Applying the Lorentz Force Law to a line current in a magnetic field, the rotor current 

conductor experiences a force in the radial plane. For a current carrying element of 

length   : 

  ⃑⃑⃑⃑  ⃑      ⃑⃑  ⃑    
⃑⃑⃑⃑                                                                                                                                        

The magnetic field is perpendicular to the axial direction current element, hence: 

       |  
⃑⃑⃑⃑ |                                                                                                                                         

A torque element is generated by the component of the force perpendicular to the 

radius,  , where   is the angle between the stator field and rotor field. 

       |  
⃑⃑⃑⃑ |                                                                                                                                    

This describes the torque for the single slots condition. Because of the linear 

characteristic of the pole pair effects, the total torque produced by all rotor conductors 

with    pole pairs is expressed below: 

       ∑  |  
⃑⃑⃑⃑ |

 
     

  

   

                                                                                                                  

The rotor field is driven by the rotor MMF, and sinusoidally distributed around the 

airgap. The rotor current space vector places in the rotor field and similar to the rotor, 
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every stator field element keeps separating the phase from the rotor field. Thus the 

torque can be simplified as: 

       ∑  |  
⃑⃑⃑⃑ |

 
     

  

   

            ⃑⃑     
⃑⃑⃑⃑                                                                               

Substituting the stator field flux density   
⃑⃑⃑⃑  

    

  
  ⃑⃑ : 

    (
        

 
)   ⃑⃑     ⃑⃑                                                                                                                      

It is interesting that the bracketed coefficient in this torque equation is as the same as 

the definition of the mutual inductance of the machine,   . Hence, the torque 

equation can be shortened as: 

        ⃑⃑     ⃑⃑                                                                                                                                        

Where the cross product can be defined as   ⃑⃑     ⃑⃑  |  ⃑⃑  ||  ⃑⃑ |                   

      . Thus the influence factor of the cross product is the magnitude of both vectors 

and the sine of angle between them.  

According to the torque equation      and cross product determination, it is clear 

that the stator and rotor current space vector magnitude and the direction will affect 

the torque value. If the stator field position is aligned with the rotor field, the net force 

around the airgap is cancelled, which cause the zero torque. On the contrary, the 

torque is maximised while the rotor field is perpendicular to the stator field. 

The per-pole-pair torque also can be derived by replacing the mutual inductance with 

the mutual flux linkage. Taking into account of the orthogonal nature of the vector 

cross product, we may have 

    ⃑⃑⃑⃑⃑⃑    ⃑⃑    ⃑⃑     ⃑⃑⃑⃑⃑⃑                                                                                                                             
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This expression shows that the torque is possible to be represented by the mutual 

flux linkage across the airgap and either stator or rotor current space vector. The 

stator and rotor currents are independent and impacted by the exclusive current 

experienced the mutual airgap flux.  

A.2.3. Voltage equations  

For the stator and rotor voltages, it is better to analyse them separately in different 

reference frame as the voltage can effectively find its own windings in its own frame. 

Thus the voltage applied to the stator windings in the stationary frame, only consist of 

two parts: one is the resistive drop of the stator current and the other is the back emf 

induced by the stator flux. Similarly, the rotor voltage has the same components 

under the rotor reference frame. The voltage equations are given below: 

  
 ⃑⃑⃑⃑      

 ⃑⃑   
   

 ⃑⃑ ⃑⃑  

  
                                                                                                                                   

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑ ⃑⃑  

  
                                                                                                                                   

The stator voltage and rotor voltage viewed in themselves reference frame are not 

symmetrical rotation. Either the stator voltage viewed in the rotor frame or the rotor 

voltage referred to the stator reference frame, a rotational emf component would be 

included according to the Faraday’s Law.  

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑ ⃑⃑  

  
      

 ⃑⃑ ⃑⃑                                                                                                                    

  
 ⃑⃑⃑⃑      

 ⃑⃑   
   

 ⃑⃑ ⃑⃑  

  
      

 ⃑⃑ ⃑⃑                                                                                                                    

From the equation      and     , it can be found that if the voltage is viewed in the 

reference frame rotating with respect to either circuit, in order to maintain the flux 
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linkage, a rotating voltage must be pursued (stator voltage viewed in rotor reference 

frame) or offset (opposite condition) by a rotor frequency flux linkage element. 

Similarly, the voltages referred to the excitation reference frame are shown as 

follows: 

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑⃑⃑  ⃑

  
      

 ⃑⃑⃑⃑  ⃑                                                                                                                  

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑⃑⃑  ⃑

  
         

 ⃑⃑⃑⃑  ⃑                                                                                                              

Explicitly, the voltage in any reference frame must include an emf dependent upon 

the relative motion of the reference frame while the rotational emf is not apparent only 

in the stationary frame with respect to the coil.  

A.2.4. Generalised machine equations  

Taking into account of the description above, a symmetric poly-phase induction 

machine may be described by the voltage and flux equations of both the stator and 

rotor adding the torque equation. They are (viewed in the excitation reference frame): 

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑⃑⃑  ⃑

  
      

 ⃑⃑⃑⃑  ⃑                                                                                                              

  
 ⃑⃑⃑⃑      

 ⃑⃑⃑   
   

 ⃑⃑⃑⃑  ⃑

  
         

 ⃑⃑⃑⃑  ⃑                                                                                                         

  
 ⃑⃑⃑⃑  ⃑      

 ⃑⃑⃑       
 ⃑⃑⃑                                                                                                                                    

  
 ⃑⃑⃑⃑  ⃑      

 ⃑⃑⃑       
 ⃑⃑⃑                                                                                                                                    

        ⃑⃑     ⃑⃑                                                                                                                                    



220 

 

These five equations can be used to simulate a ‘fifth order’ mathematical machine 

model and remain valid in transient situation [23]. Thus, they are named ‘generalised 

machine equation’ and applied widely in the electrical modelling of induction machine 

[86]. 

A.2.5. Transient timescales  

Dynamic electromagnetic phenomena of electric machines with a constant rotor 

speed are governed by the transient timescales. Essentially, the transient time 

coefficient helps to describe the change rate of magnetic flux linkage in a given circuit. 

The book [17] and [21] demonstrates the derivation progress details, and will be 

simple introduced in following content.  

First of all, the induction machine is considered with a short circuit of the rotor, then 

the rotor voltage equation changes as: 

      
 ⃑⃑   

   
 ⃑⃑ ⃑⃑  

  
      

 ⃑⃑ ⃑⃑                                                                                                                       

Substituting for the stator flux linkage   
 ⃑⃑ ⃑⃑       

 ⃑⃑       
 ⃑⃑  , the rotor voltage would be 

represented by: 

      
 ⃑⃑   

 (    
 ⃑⃑       

 ⃑⃑  )

  
    (    

 ⃑⃑       
 ⃑⃑  )                                                                       

  (     

 

  
      )   

 ⃑⃑   (  

 

  
      )   

 ⃑⃑                                                                     

Thus, the rotor current can be inferred: 

  
 ⃑⃑    

  (
 
  

    )

(     (
 
  

    ))

  
 ⃑⃑                                                                                                          
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Substituting the rotor current expression to the stator flux equation   
 ⃑⃑ ⃑⃑       

 ⃑⃑       
 ⃑⃑  , 

we will have a new stator flux representation: 

  
 ⃑⃑ ⃑⃑     

 ⃑⃑  

(

 
 
   

  
 (

 
  

    )

(     (
 
  

    ))
)

 
 

                                                                                          

  
 ⃑⃑ ⃑⃑     

 ⃑⃑    

(

 
 
  

  
 (

 
  

    )

(         (
 
  

    ))
)

 
 

                                                                               

Define an operational inductance,   
 : 

  
    

(

 
 
  

  
 (

 
  

    )

(         (
 
  

    ))
)

 
 

                                                                                   

Therefore the stator flux is re-arranged as: 

  
 ⃑⃑ ⃑⃑     

 ⃑⃑    
                                                                                                                                                  

A timescale for the electromagnetic dynamic phenomena of machine stator can be 

defined as  

           
  
 

  
                                                                                                                                       

The transient operational inductance at the initial time can be derived by the limit; 

         
     

 
    

  
     

 
    

  

(

 
 
  

  
 (

 
  

    )

(         (
 
  

    ))
)

 
 

   (  
  
 

    
)         
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The bracketed coefficient is as same as the leakage constant equation: 

    
  
 

    
                                                                                                                                          

Using the leakage constant to displace the bracketed expression, the actual transient 

stator inductance is: 

         
                                                                                                                                             

Thus the single dominate timescale for the stator circuit electrical response is 

represented by: 

   
   

  
                                                                                                                                                  

Similarly, the transient time constant for the rotor circuit can be inferred by the same 

progress by short-circuited the stator and stated by 

   
   

  
                                                                                                                                                  

Generally, if we use the per-unit parameters in a symmetrical wound-rotor induction 

machine, the inductance and resistance values on its stator and rotor circuits may be 

quite close. As a result, the transient timescale will be similar. 

A.3. Reluctance Machine Principles  

From the BDFRG windings picture, clearly, the machine looks like a symmetrical 

structure. If we ‘see’ this reluctance machine from one side of stator and neglected 

the other, it is quite similar to a switch reluctance machine. Thus this generator may 

be considered as superposition of two switch reluctance machine. The parameter test 

will use this characteristic in Chapter 4. For simplification purpose, the switch 

reluctance machine is analysed firstly in this section and the name is shorted for 

SRM. 
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A.3.1. Induction variation of SRM 

Superficially, the switch reluctance machine may be the most uncomplicated of all 

drives. Lack of windings or magnets on the rotor makes the basic machine simple and 

all torque is ‘reluctance’ torque. 

Figure A.15 shows a typical cross section of it with six stator poles and four rotor teeth, 

known as 6/4 SRM. Both the stator and the rotor are laminated and each stator tooth 

has a winding wound round it as illustrated in right graph of Figure A.15. Coils round 

opposite teeth are connected to form the N and S pole pair for one ‘phase’. The 6/4 

machine can therefore be seen to be three phase. Many other combinations of the 

stator poles, rotor poles and phase number also exist. But a 6/4 motor is taken as an 

example. 

 

Figure A.15 (left) a typical cross section of a 6/4 SRM (right) typical geometry 
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Figure A.16 Typical magnetic flux plot 

Normally, the inductance determination depends on the magnetic flux and the 

carrying current. According to the flux path in Figure A.16, it is obvious that the flux 

density may have the relations to the rotor position. Hence, the machine inductance 

analysis can be researched by three situations: aligned, unaligned and intermediate 

rotor position. However, the flux path picture also shows that the saturation effects 

are enormous in the machine. It will be thought about later. Here, we assume the 

saturation of magnetic circuit to be unimportant. 

The aligned position 

When any pair of rotor poles is exactly aligned with the stator poles of phase 1, that 

phase is said to be in the aligned position. Figure A.17 illustrates the aligned position 

of phase 1 whose poles are on the horizontal axis [89]. 
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Figure A.17 Aligned position on phase 1 [89] 

At this moment, the magnetic reluctance of flux path is at its lowest, so that the phase 

inductance peaks. Use      to represent inductance at this moment 

The unaligned position 

As the inter-polar axis of the rotor is aligned with the stator poles of phase 1.this 

phase is called in the unaligned position as shown in Figure A.18. The fluxes pass 

through the longest airgap. The reluctance of the airgap is much bigger than the steel 

parts, as the result, the phase inductance will minimize caused by the highest 

magnetic reluctance of the flux path. Here, the minimum inductance is expressed by 

    . 
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Figure A.18 Unaligned position on phase 1 [89] 

Intermediate rotor position 

At the intermediate rotor position, the rotor is in the position ‘between’ the aligned and 

unaligned with one side aligned and the other unaligned. It indicates the rotor poles 

have partial overlap with the stator poles of phase 1, lagging in the motoring mode 

(Figure A.19 left graph) and leading as a generator (Figure A.19 right picture). 

The overlap part between rotor and stator poles becomes greater for the motoring 

mode and smaller in the generating mode. It leads to the reduction of reluctance and 

the increase of phase induction in the motor, while causes the rising reluctance and 

decreased induction in the generating mode. If the machine is rotated with a uniform 

speed, the growth and drop rates of the overlap area will be fixed. The phase 

inductance, therefore, descends or ascends linearly. 
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Figure A.19 Partial overlap position on phase 1 (left) while motoring in the 

counter-clockwise direction (right) while generating in anti-clockwise direction [89] 

Inductance vs. rotor position 

Based on the discussion above, we can have a conclusion that the phase inductance 

changes following the position change of the rotational rotor. 

The relationship between the inductance and the rotor position in non-saturable motor 

is demonstrated in the Figure A.20. The inductance peaks at the rotor is in aligned 

position and jumps to the nadir when the rotor unaligned with the stator poles. It will 

grow linearly in motoring and shrink in generating mode. From the graph, it can be 

found that the phase current during the unaligned rotor position is none. Therefore, 

‘as the rotor rotates, the phase flux-linkage should have a triangular or sawtooth 

waveform but not vary with current’ [89]. 



228 

 

 

Figure A.20 Inductance vs. rotor position in non-saturable motor [89] 

A.3.2. Instantaneous Torque of SRM 

According to the discussion above, all torque is ‘reluctance’ torque. When the rotor 

poles are exactly aligned or unaligned with phase1 stator poles, there is no torque 

produced. However, in the intermediate rotor position, a torque is generated to 

minimise the reluctance by returning the rotor to the align position or attracting it 

towards the next aligned position. 

In order to analyse the torque value, the energy is considered firstly. Because the 

torque is independent of the current direction, hence the unidirectional winding 

current may be used. Neglect the effect of the magnetic saturation, the power input to 

winding is: 

      
 

  
(
 

 
   )                                                                                                                   

Where     is the representation of the winding losses, while 
 

 
    stands for the 

magnetic stored energy. The torque and the speed comprise the output power. 

Resolve the equation A.58, we will have: 
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We also know the equation of the voltage applied to the winding: 

     
  

  
    

     

  
                                                                                                                

So 

        
     

  
       

  

  
   

  

  
                                                                                     

     is well known, thus equation      and      have same left side. Then we 

will have a new equation: 

    
  

 

  

  
   

  

  
          

  

  
   

  

  
                                                                         

   
  

 

  

  
 

  

 

  

  

  

  
 

  

 

  

  
                                                                                                      

  
  

 

  

  
                                                                                                                                                 

This torque is calculated in the idealized condition. In practical, the situation is 

complicated by saturation. 

Figure A.21 describes the energy conversion. The grey part is the energy during the 

phase on time. It is constituted by the stored magnetic field energy (the blue part) and 

the energy converter to the toque (the green area)  
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Figure A.21 Average torque, energy-conversion loop 

A.3.3. Saturation effects of inductance and torque 

So far we have assumed that the saturation of magnetic circuit is negligible. In fact, 

the actual machine has an enormous effect upon the characteristics. The unaligned 

magnetization is not as susceptible to saturation as the aligned [89], which causes the 

unaligned inductance does not saturate much but the aligned inductance affects 

strongly. 

Figure A.22 and Figure A.23 give the inductance and energy with the effects of the 

saturation. Figure A.22 illustrates the inductance changes with the rotor rotation, and 

also shows the saturation influence as the current increase. Figure A.23 

demonstrates the area change of the energy converted to the torque following the 

maximum inductance strongly impacted by the saturation. 
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Figure A.22 Inductance vs. rotor position with the saturation [89] 

 

Figure A.23 The energy conversion loop 

The saturation makes the inductance smoother at the peak of the phase inductance. 

The superposition of the phase inductance of two SRMs may make the BDFRG’s 

inductance shape be closer to a sine wave. It will be witnessed in the BDFRG 

parameters tests. 
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A.4. Transformation from twin axis dynamic model to stator 

referred equivalent circuit 

A.4.1. Twin axis dynamic model to stator referred equivalent circuit 

transformation 

For performance prediction and analysis, it is quite useful to have an equivalent circuit 

for the induction machine. In many respects, the induction machine behaviors like a 

transformer. Thus the transformer equivalent circuit is a wise initial point. The graph 

below (Figure A.24) illustrates the equivalent circuit for the transformer and one 

phase of a balance induction machine. 

 

Figure A.24 the equivalent circuit for one phase of a balance induction machine 

In the graph, each symbol represents the meaning below: 

   : Applied stator phase voltage; 

   : Stator phase current; 

   : Stator phase resistance; 

    : Stator phase leakage inductance; 

   : Stator angular velocity (    ⁄ ); 

   : Mutual inductance; 
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   : Core loss resistance; 

   : EMF induced by resultant rotating magnet field; 

   : EMF induced at rotor side; 

 : Stator/rotor turns ratio; 

   : Actual rotor phase current; 

   : Actual rotor phase resistance; 

    : Actual rotor phase leakage inductance; 

      : Rotor circuit angular velocity (    ⁄ ), also the slip angular velocity; 

   : Reflected rotor phase current; 

Using basic AC circuit theory, the stator voltage and rotor circuit equations can be 

inferred from the picture Figure : 

                                                                                                                                       

                                                                                                                                           

Consider the ‘ideal transformer’ element, we can write: 

    
  

 
                                                                                                                                                 

where   is the slip, which can be obtained from 
     

  
. 

Combining to the equations      and     , we can have: 
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Now consider the reflected rotor phase current   . As            according to the 

equivalent circuit above, the equation      can be inferred. 

                                                                                                                                                          

Then      can be re-written as:  

   
    

 
   

      

 
                                                                                                                    

also          , and therefore    
     

 
. 

   
    

 
        

                                                                                                                     

using  

   
  

 
  referred rotor phase current; 

         referred rotor phase resistance; 

          referred rotor phase leakage inductance; 

to take place the corresponding symbols, we can obtain: 

   
  

 
                                                                                                                                   

Now the rotor can be represented by a simple branch circuit shown in Figure A.25. 

 

Figure A.25 Rotor simple branch circuit 
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Figure A.26 Rotor simple branch circuit with split resistance 

The term 
  

 
 can be split into    

       

 
, the Figure A.26 would be deduced instead 

of Figure A.25. 

At this moment, the twin axis dynamic model of an induction machine shown in Figure 

A.24 can be transferred to a stator referred equivalent circuit (Figure A.27). Taking 

account to the symmetry of the circuit graph, all subscripts ‘s’ of stator side symbols 

has been replaced by ‘1’, where                  and         . 

 

Figure A.27 Stator referred equivalent circuit for one phase of a balance induction 

machine 

A.4.2. Power and torque in the induction machine 

According to the Figure A.26, The power dissipated in each resistor can be inferred 

as   
    is the power lost in the rotor resistance, called ‘copper loss’   , while 

  
        

 
 is the power converted to the mechanical output, named ‘mechanical power’ 
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  . The per-phase power crossing air-gap is the sum of copper loss and mechanical 

output. Thus  

     
 
  

 
       

                                                                                                             

Therefore the per-phase mechanical power is  

     
 
       

 
                                                                                                                 

The ratio of mechanical power to the power crossing the air-gap is known as the 

air-gap efficiency: 

  
  

                                                                                                                                                 

But the actual overall efficiency of the machine is lower than this due to other losses. 

The total mechanical power is  

                                                                                                                                                  

where   and    stand for the torque and rotor shaft speed respectively. Therefore 

we have 

                                                                                                                               

Taking account to equations      and     , we would get: 

  
  

 
       
       

 
  
  

                                                                                                                          

Consider this equation with combining to     . It is now possible to form an 

alternative torque equation below: 
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B. PI Control  

The reader is assumed to be familiar with PI control, of which is well-covered by a 

variety of undergraduate texts. This section provides C language code for the DFIG 

control techniques described in the body of this work. 

B.1. Digital implementation of PI control 

A standard feedback error ‘PI’ controller has following time domain form: 

      {     
 

  
∫      }                                                                                                            

In the Laplace domain this becomes: 

      {     
 

   
    }                                                                                                            

It is possible to converting to discrete time domain using an approximation for the 

discrete time operator [90]. Using Tustin’s (bilinear) approximation: 

  

     
 ⁄

     
 ⁄
             

 

  
(
     

     
)                                                                                          

Hence; 

      {  
  
   

(
     

     
)}                                                                                                      

      {(  
  
   

)  (
  
  
)

 

     
}                                                                                          

The digital control constants become: 
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    (  
  
   

)                                                                                                                                    

    (
  
  
)                                                                                                                                               

Such that the overall control equation simplifies to: 

      {   
  

     
}                                                                                                                 

Equation B.8 describes a digital PI controller. Equations B.6 and B.7 allow us to 

transform real-time controller gains into discrete-time controller gains.  

In practical application we can break the discrete controller equation (B.8) down into 

separate proportional and integral components: 

 [ ]    [ ]    [ ]                                                                                                                             

Proportional component: 

  [ ]     [ ]                                                                                                                                      

Integral Component: 

  [ ]     [ ]    [   ]                                                                                                                

This discrete PI controller can be described graphically in Figure B.1. 

 

Figure B.1 Discrete PI controller 
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It is necessary to define an initial state for the integral component, normally zero. In 

order to prevent windup of the integral component, its value is limited in software to lie 

within a specific range. 

B.2. Experimental Controller Code 

P_error = (P_ref - P); 

 Q_error = (Q_ref - Q); 

 

 ird_demand = kp2*P_error+zd2; 

 if(release) 

  zd2 = zd2 + ki2*P_error; 

 

 if(zd2 > CURRENT_LOOP_INT_CLAMP) 

  zd2 = CURRENT_LOOP_INT_CLAMP; 

 if(zd2 < -CURRENT_LOOP_INT_CLAMP) 

  zd2 = -CURRENT_LOOP_INT_CLAMP; 

 

irq_demand = kp2*Q_error+zq2; 

if(release)   

zq2 = zq2 + ki2*Q_error; 

 

 if(zq2 > CURRENT_LOOP_INT_CLAMP) 

  zq2 = CURRENT_LOOP_INT_CLAMP; 

 if(zq2 < -CURRENT_LOOP_INT_CLAMP) 

  zq2 = -CURRENT_LOOP_INT_CLAMP; 

 

 ird_error = (ird_demand - irde); 

 irq_error = (irq_demand - irqe); 
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 vde1 = kp1*ird_error + zd1;  

 if(release) 

  zd1 = zd1 + ki1*ird_error; 

 if(zd1 > CURRENT_LOOP_INT_CLAMP) 

  zd1 = CURRENT_LOOP_INT_CLAMP; 

 if(zd1 < -CURRENT_LOOP_INT_CLAMP) 

  zd1 = -CURRENT_LOOP_INT_CLAMP; 

 

 vqe1 = kp1*irq_error + zq1;  

if(release) 

 zq1 = zq1 + ki1*irq_error; 

 

 if(zq1 > CURRENT_LOOP_INT_CLAMP) 

  zq1 = CURRENT_LOOP_INT_CLAMP; 

 if(zq1 < -CURRENT_LOOP_INT_CLAMP) 

  zq1 = -CURRENT_LOOP_INT_CLAMP; 
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C. Space Vector Modulation 

C.1. Basic concept 

Space vector modulation can be applied to each leg of a three-phase inverter. It is a 

form of pulse width modulation but it considers the collective effect on all three-phase 

rather than independent phase leg modulation. Details are shown below. 

 

Figure C.1 (Left) Space vector modulator block (Right) input demand vector 

The space vector modulator is shown in left graph of Figure C.1. The input signal to 

the modulator is the reference stator voltage   
⃑⃑⃑⃑  which can be given in either 

rectangular or polar form: 

  
⃑⃑⃑⃑  |  |                                                                                                                             

The output signals   ,       are the switching signals for the six inverter switching 

devices. There are a limited number of the switching states associated with a 

six-transistor or IGBT inverter circuit. Referring to this circuit, 8 states can be 

identified as shown below. (Figure C.2) 
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Figure C.2 Switching states of three-phase inverter 

State Vector 
   

   
 

   

   
 

   

   
 

   

   
 

   

   
 

   

   
 

  

   
 

  

   
 

000   
⃑⃑  ⃑ 0 0 0 0 0 0 0 0 

100   ⃑⃑  ⃑ 
1 0 -1 2/3 -1/3 -1/3 2/3 0 

110   
⃑⃑  ⃑ 0 1 -1 1/3 1/3 -2/3 1/3 1/√  

010   
⃑⃑  ⃑ -1 1 0 -1/3 2/3 -1/3 -1/3 1/√  

011   ⃑⃑  ⃑ 
-1 0 1 -2/3 1/3 1/3 -2/3 0 

001   
⃑⃑  ⃑ 0 -1 1 -1/3 -1/3 2/3 -1/3 -1/√  

101   
⃑⃑  ⃑ 1 -1 0 1/3 -2/3 1/3 1/3 -1/√  

111   
⃑⃑  ⃑ 0 0 0 0 0 0 0 0 

Table C.1 The states corresponding voltages 
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The line and phase voltages corresponding to each state are given the table above 

(Table C.1). The idea of association a vector with each inverter state can be 

explained by considering the resulting static magnetic field direction if the inverter 

state was allowed to produce a DC current flow. 

 

Figure C.3 Diagram of eight state vectors 

Figure C.3 shows the voltage vectors corresponding to the eight inverter switching 

states. There are six     sextants which occupy the space between each pair of 

state vectors. For normal operation, the reference voltage vector   
⃑⃑⃑⃑  can lie 

anywhere within the hexagon. In the steady state operation this voltage vector would 

rotate with a constant magnitude and constant angular velocity. The direction in which 

the vector rotates determines the direction in which the motor turns. The inscribed 

circle indicates the maximum voltage vector trajectory for sinusoidal modulation. 

Application of over-modulation techniques where the circle extends beyond the 

hexagon boundaries can produce more output voltage from a given DC bus voltage. 
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More detail of first sextant is shown below. The reference voltage vector   
⃑⃑⃑⃑  has 

components    and    determine the amount of time that vectors   ⃑⃑  ⃑ and   
⃑⃑  ⃑ are 

applied during the PWM cycle. 

 

Figure C.4 Projections of the reference voltage vector onto two adjacent state vectors 

Considering the mapping of   
⃑⃑⃑⃑  onto   ⃑⃑  ⃑ and   

⃑⃑  ⃑. 

|  
⃑⃑⃑⃑ |                                                                                                                                         

   |  
⃑⃑⃑⃑ |

    

      
 

 

√ 
|  
⃑⃑⃑⃑ |                                                                                                            

   |  
⃑⃑⃑⃑ |               |  

⃑⃑⃑⃑ |      
 

√ 
|  
⃑⃑⃑⃑ |      

 

√ 
|  
⃑⃑⃑⃑ | {

√ 

 
     

 

 
    }

 
 

√ 
|  
⃑⃑⃑⃑ |                                                                                                        

Thus  

   
 

√ 
|  
⃑⃑⃑⃑ |                         

 

√ 
|  
⃑⃑⃑⃑ |                                                                     
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The timing of the leg switching is based on the magnitude of the components    and 

   using the following expressions: 

   
   

   
                

   

   
                                                                                   

Where   
    

 
 

The timing of a single PWM cycle is shown below. (Figure C.5) 

 

Figure C.5 Timing of inverter leg switching signals 

The inverter phases are switched in accordance with this timing using digital counters. 

It is possible to use the standard centre-aligned (triangular carrier based) PWM logic 

described earlier and available within many standard microcontrollers to implement 

this timing. 
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When switching a phase leg, it is important to prevent the momentary condition where 

both devices are on at the same time. This condition is unknown as a shoot-through 

fault. To prevent this, a delay is inserted between turning off one device and turning of 

the power devices and other delay in the gate drive circuits. For IGBT devices it is 

likely to be of the order of 1 or 2   . 

C.2. Experimental SVM Code 

void svm(float vds, float vqs, Uint16 *mia, Uint16 *mib, Uint16 *mic) 

{ 

 Uint16 flag;  

 float ua,ub,uc; 

 float v1,v2;  

 Uint16 ma,mb,mc; 

 extern Uint16 T0_count; 

 

 flag = 0; 

 if(vqs >= 0) flag = flag|4; 

 if(vqs >= ROOT3*vds) flag = flag|2; 

 if(vqs >= -ROOT3*vds) flag = flag|1; 

 

 switch(flag) 

 { 

 case 0: /* sextant 5, rotate reference vector 240 deg clockwise */ 

  v1 = -0.5*vds - 0.8660254*vqs; 

  v2 = 0.8660254*vds - 0.5*vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 
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   v2 = INTERCEPT - ROOT3*v1; 

   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 

  ma = (int)(ub + 0.5*uc); 

  mb = (int)(0.5*uc); 

  mc = (int)(ua + ub + 0.5*uc); 

  break; 

 

 case 1: /* sextant 6, do not rotate reference vector */ 

        v1 = vds; 

  v2 = -vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 

   v2 = INTERCEPT - ROOT3*v1; 

   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 

  ma = (int)(ua + ub + 0.5*uc); 

  mb = (int)(0.5*uc); 

  mc = (int)(ub + 0.5*uc); 

  break; 

 

 case 2: /* sextant 4, rotate reference vector 240 deg clockwise and flip horizontal 

*/ 

  v1 =  -0.5*vds - 0.8660254*vqs; 
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  v2 =  -0.8660254*vds + 0.5*vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 

   v2 = INTERCEPT - ROOT3*v1; 

   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 

  ma = (int)(0.5*uc); 

  mb = (int)(ub + 0.5*uc); 

  mc = (int)(ua + ub + 0.5*uc); 

  break; 

 

 case 3: break; 

 

 case 4: break; 

 

 case 5: /* sextant 1 do not rotate reference vector */ 

  v1 = vds; 

  v2 = vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 

   v2 = INTERCEPT - ROOT3*v1; 

   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 
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  ma = (int)(ua + ub + 0.5*uc); 

  mb = (int)(ub + 0.5*uc); 

  mc = (int)(0.5*uc); 

  break; 

 

 case 6: /* sextant 3, rotate reference vector 120 deg clockwise */ 

  v1 = -0.5*vds + 0.8660254*vqs; 

  v2 = -0.8660254*vds - 0.5*vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 

   v2 = INTERCEPT - ROOT3*v1; 

   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 

  ma = (int)(0.5*uc); 

  mb = (int)(ua + ub + 0.5*uc); 

  mc = (int)(ub + 0.5*uc); 

  break; 

 

 case 7: /* sextant 2, rotate reference vector 120 deg clockwise and flip horizontal 

*/ 

  v1 = -0.5*vds + 0.8660254*vqs; 

  v2 = 0.8660254*vds + 0.5*vqs; 

  if(v2 > (INTERCEPT - ROOT3*v1)) 

   { 

   v1 = INTERCEPT*v1/(v2 + ROOT3*v1); 

   v2 = INTERCEPT - ROOT3*v1; 
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   } 

  ua = v1 - 0.5773502*v2; 

  ub = 1.1547005*v2; 

  uc = MAX_MOD_INDEX - ua - ub; 

  ma = (int)(ub + 0.5*uc); 

  mb = (int)(ua + ub + 0.5*uc); 

  mc = (int)(0.5*uc); 

  break; 

 

 default: break; 

} 

 

 *mia = MAX_MOD_INDEX - ma; 

 *mib = MAX_MOD_INDEX - mb; 

 *mic = MAX_MOD_INDEX - mc; 

} 
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D. Induction Machine Parameters Test 

In order to obtain the parameters in an induction machine, four fundamental tests are 

involved based on the induction machine performance and its equivalent circuit. The 

details are specified in IEEE Standard 112.  

D.1. DC Resistance Test 

When a DC voltage is supplied to the stator terminals, no any potential difference is 

applied across the inductance and no voltage is induced on the rotor. That indicates 

the per-phase circuit is reduced to the stator winding resistance and the stator side 

apparent works as an individual pure-resistor circuit. Depending upon the different 

connections of stator windings, the equivalent circuits are illustrated in Figure. D.1. 

Graph (a) shows the Star Connection circuit, while picture (b) reveals the machine 

stator windings are Delta connected. Considering the both figures below, it can be 

obvious that the stator resistance of induction machine will depend on the whether the 

stator windings are Star or Delta connection. 

 

Figure D.1 Equivalent circuits of different stator winding connections (a) Star or Y 

connection; (b) Delta Connection under DC resistance test 

If the stator is star connected like the Figure. D.1 (a), when the DC voltage is applied 

across two terminals, for example, Red and Yellow winding terminals, the DC current 

will be gone through red and yellow winding resistances. The entire apparent is a 

simple resistor series circuit. The total resistance value is the sum of red and yellow 
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resistance. Conjecturing the stator windings are balance, the red or yellow or blue 

winding resistance is the same as each other. Then the stator resistance value can 

be considered as anyone of three winding resistance. At this time, the stator 

resistance value    is computed as half of the test result. In order to minimise the 

error of test, normally, the resistance is better to be experimented three times. The 

DC voltage will be added to the red-yellow terminals, yellow-blue terminals, and 

blue-red terminals separately, and get the test value. The final stator value is obtained 

by averaging the half of three test results. In the entire experiments, the rated current 

has better to be reached and the measurements are better to be read after five 

minutes to avoid the effects of temperature.  

For the Delta connection situation, if applying a DC voltage across two terminals of 

Delta connection stator, the DC current will be split into two paths based on the 

picture D.1 (b). One flows through a resistor, the other passes two series-connection 

resistors. Hence, according to the principle of parallel circuit, the stator resistance 

value exactly equals to three second of the test value. Experiment the different 

terminals respectively to the red, yellow and blue resistance value separately and 

receive the average to increase the accuracy.  

To summary, the stator winding resistance can be obtained by the equations below: 

  
     

 

 

   

   
      

      
 

 

   

   
                                                                                                   

where      and     stand for the measurement values of supplied DC voltage and 

total DC current across to two terminals respectively.   
     and   

      indicates 

the stator resistor value under Star connection and Delta connection separately.  

Similar to the stator resistance experiment procedure, the rotor resistance can be 

obtained by the same tests. However, considering the impacts of brushes, slip rings 

or other contacted apparent, it is better to rotate the rotor shaft slowly to receive a 

constant measured current, when the experiment is being taken. Other procedures 
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are as same as stator resistance tests. Similarly, the rotor winding resistor value is 

got by the given equations D.3 or D.4:  

  
     

 

 

   

   
      

      
 

 

   

   
                                                                                                  

where   
     and   

      are delegated to the rotor resistance of Star connection 

and Delta connection respectively. 

D.2. Locked Rotor Test 

In the locked rotor test, the rotor of machine is short-circuit and prevented from 

rotating. In the initial test, the supply voltage increases gradually to find the critical 

voltage that encourages the rotor starts to rotate. Then the entire tests might be done 

under this voltage. Normally, this critical voltage is approximately 25% to 30% rated 

voltage due to the impacts of the friction and the inertia of the rotor shaft. Thus the 

locked rotor test would be taken under a reduced voltage. However, accounting for 

the temperature effects and more accurately predict of the induction parameters 

under load condition, the current is better to reach the rated value.   

For the induction machine, when the rotor is stationary, the slip       and the 

induction machine equivalent circuit can be elliptically drawn as: 

 

Figure D.2 Induction Machine model equivalent circuit under the locked rotor test 

Analysing this circuit,   is the supplied per-phase voltage vector, and   is the 

measured per-phase current vector.    and   , equally, stand for stator referred 
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stator resistance and rotor resistance respectively, while    and    represent the 

reactance relative to the stator and rotor when the induction machine model converts 

from the basic circuit to the equivalent circuit  in Figure. D.2. Depending on the 

converted principle of induction machine, the stator referred stator value is as same 

as its original value whereas the stator referred rotor value is the real rotor value over 

the square of turns ratio  . Therefore,    equals to the stator rotor    tested above 

while    is     . However, the relation between     and   , or     and    are a 

little complicate. It will describe in the later paragraph. 

According to the circuit in the graph D.2, 

      (                )                                                                                               

where   is total apparent impedance whose real part is all of resistances and the 

imaginary part is the entire leakage reactance. From the picture, it is clear that the 

induction machine model under the locked rotor test is an inductance-resistance (LR) 

series circuit. Hence, the total resistance is the sum of    and   , while the whole 

reactance is    pluses   .  

Eq. D.5 could be inferred to the equations D.6and D.7below for the calculation 

purpose: 

      
| |

| |
|    |                                                                                                                             

      
| |

| |
|    |                                                                                                                              

where | | and | | are the magnitudes of the voltage and current vector and   is the 

phase shift between the voltage and the current. 

With the value of stator resistance from the DC test, the rotor resistance referred to 

the stator can be found as the total resistance subtracts the stator resistance.  



256 

 

However, only the total leakage reactance is known. The relative values of stator 

leakage and stator referred rotor leakage must be obtained from experience. And for 

the wound rotor induction machines,    and    will occupy fifty per-cent of the total 

reactance. Hence: 

   
| |

| |
|    |     

| |

| |
|    |                                                                                              

      
 

 

| |

| |
|    |                                                                                                                          

After the obtainment of the reactance, the inductance could be scaled to find the 

correct result due to        where   represents the reactance and   

stands for the inductance.   indicates the frequency which is 50Hz in common. This 

equation reveals the relationship of inductance and reactance. It is obvious that the 

inductance is proportional to the reactance and reversed proportional to the 

frequency. Thus, the relative inductance    and     can be got as: 

   
  

   
       

  

   
                                                                                                                   

Due to the relationship of the rotor resistance and stator referred rotor resistance, the 

turns ratio a can be obtained by:  

  √
  

  
⁄                                                                                                                                            

However, the turns ratio could be validated in the open circuit test described in 

Section D.4. 

D.3. Synchronous Speed Test 

During the synchronous speed test, the machine is allowed to accelerate up to the 

synchronous speed with no load applied. Normally, when the rotor of induction 
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machine is short circuit and the rated voltage is applied to the stator terminals, the 

machine would performance at a No-load speed which is quite close to synchronous 

speed. Thus the no-load speed can be performed instead of synchronous speed. 

Similar to the locked rotor experiment, the rated current is better to be reached in the 

test. But, differently, the voltage of the synchronous speed test would be increased to 

the rated as well.  

If the machine runs close to the synchronous speed the slip approaches zero. The 

rotor Current will fall to zero. The equivalent circuit of induction machine model can be 

simplified to Figure. D. 3.  

 

Figure D.3 Equivalent circuit of Induction Machine under the synchronous speed test 

According to the equivalent circuit in Figure D.3, the equations below can be written: 

      (           )                                                                                                           

or alternatively:  

      
| |

| |
|    |                                                                                                                           

where   and   are the applied voltage and measured current vector, while | | and 

| | are the magnitude of these voltage and current.   is the phase shift angle 

between the voltage and current vector.    is the converted mutual reactance from 

standard induction machine model to the equivalent circuit of D.3. Normally is a 

proportional to the relative mutual inductance      and frequency.  
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At this point, the mutual reactance can be found by Eq D.14 with    knowing. Then 

the mutual inductance of correspondence to    can be calculated by equation D.15: 

     
  

   
                                                                                                                                           

Based on the standard per-phase equivalent circuit as shown in figure D.4 and the 

twin axis dynamic model drawn in picture D.5, the relationship between the test value 

and the real machine parameters could be inferred as the equations below: 

                  
  

  
                                                                                                                   

   
    

 
 

  

    
                                                                                                                             

                                                                                                                               

   
       

  
 

  

  
 

    

 
                                                                                                           

D.4. Open circuit test 

From the Equation D.16- D.20 above, it is easy to find the significance of the turns 

ratio   when the machine model is transferred from the twin to the standard 

equivalent circuit. Although the requirement of turns ratio can be satisfied by equation 

D.12, it is best to be measured with the procedure of open circuit test. Normally,   

√
  

  
⁄  could be used to validate the veracity of the measured result.  

Both the Locked Rotor Test and Synchronous Speed Test are short circuit tests. 

However, this Open Circuit Test, as the name suggests, is released the rotor as an 

open circuit. The equivalent circuit at this time is illustrated in graph D.6. It can be 

seen that the turns ratio is the division result of induced voltages    and     which 

can be simplified as the ratio between stator and rotor voltage. Thus, the open circuit 
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test method consists of applying a stator voltage    and measuring the resulting 

rotor voltage    at the open circuit slip rings. This voltage    is then applied to the 

rotor and the stator voltage    is measured. The effective turns ratio is then 

computed from the voltage ratio. 
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E. Test Rig  

Figure E.1 F28335 Drive Basic Design—Relays 

Figure E.2 F28335 Drive Basic Design—Gate Drive Interface 

Figure E.3 F28335 Drive Basic Design—ADC 

Figure E.4 F28335 Drive Basic Design—ADC Details 

Figure E.5 F28335 Drive Basic Design—Window Detector 

Figure E.6 F28335 Drive Basic Design—Encoder (EQEP) 

Figure E.7 F28335 Drive Basic Design—DAC 

Figure E.8 F28335 Drive Basic Design—Power Supplier Unit (PSU) 

Figure E.9 F28335 Drive Basic Design— board layout diagram to check dimensions 

Figure E.10 Motor Drive Board Interface—Pin Connector 

Figure E.11 Motor Drive Board Interface—Relays 

Figure E.12 Motor Drive Board Interface—Gate Drive Interface (EPWM) 

Figure E.13 Motor Drive Board Interface—Analogue Interface 

Figure E.16 Motor Drive Board Interface—Encoder Interface (EQEP 2) 

Figure E.17 Motor Drive Board Interface—DAC 

Figure E.18 Motor Drive Board Interface—Power Supplier Unit (PSU) 

Figure E. 19 Motor Drive Board Interface—Sensor Interface 1 
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Figure E. 20 Motor Drive Board Interface—Sensor Interface 2 

Figure E.21 Motor Drive Board Interface—Sensor Interface 3 

Figure E.22 Motor Drive Board Interface—Sensor Interface 4 

Figure E.23 Motor Drive Board Interface—Sensor Interface 5 

Figure E.24 Motor Drive Board Interface—Gate Drive Interface 1 (EPWM 1 & 2) 

Figure E.25 Motor Drive Board Interface—Gate Drive Interface 2 (EPWM 3 & 4) 

Figure E.26 Motor Drive Board Interface—Gate Drive Interface 3 (EPWM 5 & 6) 

Figure E.27 Motor Drive Board Interface—Window Detector 1 

Figure E.28 Motor Drive Board Interface—Window Detector 2 

Figure E.29 Motor Drive Board Interface—Window Detector 3 

Figure E.30 Motor Drive Board Interface—Window Detector 4 

Figure E.31 Motor Drive Board Interface—Window Detector 5 

Figure E.32 Motor Drive Board Interface—Window Detector 6 

Figure E.33 Expansion Analogue Board Interface 1 

Figure E.34 Expansion Analogue Board Interface 2 

Figure E.35 Expansion Analogue Board Interface 3 

Figure E.36 Expansion Analogue Board Interface Power Supplier Unit 

Figure E.37 Gate Drive Board Interface 
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Figure E.1 F28335 Drive Basic Design—Relays 
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Figure E.2 F28335 Drive Basic Design—Gate Drive Interface 
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Figure E.3 F28335 Drive Basic Design—ADC 



265 

 

 

Figure E.4 F28335 Drive Basic Design—ADC Details 
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Figure E.5 F28335 Drive Basic Design—Window Detector 
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Figure E.6 F28335 Drive Basic Design—Encoder (EQEP) 
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Figure E.7 F28335 Drive Basic Design—DAC 
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Figure E.8 F28335 Drive Basic Design—Power Supplier Unit (PSU) 
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Figure E.9 F28335 Drive Basic Design— board layout diagram to check dimensions 
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Figure E.10 Motor Drive Board Interface—Pin Connector 
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Figure E.11 Motor Drive Board Interface—Relays  
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Figure E.12 Motor Drive Board Interface—Gate Drive Interface (EPWM) 
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Figure E.13 Motor Drive Board Interface—Analogue Interface 
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Figure E.14 Motor Drive Board Interface—Window Detector 
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Figure E.15 Motor Drive Board Interface—Encoder Interface (EQEP 1) 
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Figure E.16 Motor Drive Board Interface—Encoder Interface (EQEP 2) 
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Figure E.17 Motor Drive Board Interface—DAC 
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Figure E.18 Motor Drive Board Interface—Power Supplier Unit (PSU) 
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Figure E. 19 Motor Drive Board Interface—Sensor Interface 1 
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Figure E. 20 Motor Drive Board Interface—Sensor Interface 2 
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Figure E.21 Motor Drive Board Interface—Sensor Interface 3 
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Figure E.22 Motor Drive Board Interface—Sensor Interface 4 
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Figure E.23 Motor Drive Board Interface—Sensor Interface 5 
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Figure E.24 Motor Drive Board Interface—Gate Drive Interface 1 (EPWM 1 & 2) 
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Figure E.25 Motor Drive Board Interface—Gate Drive Interface 2 (EPWM 3 & 4) 
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Figure E.26 Motor Drive Board Interface—Gate Drive Interface 3 (EPWM 5 & 6) 
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Figure E.27 Motor Drive Board Interface—Window Detector 1 
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Figure E.28 Motor Drive Board Interface—Window Detector 2 
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Figure E.29 Motor Drive Board Interface—Window Detector 3 
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Figure E.30 Motor Drive Board Interface—Window Detector 4 



292 

 

 

Figure E.31 Motor Drive Board Interface—Window Detector 5 
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Figure E.32 Motor Drive Board Interface—Window Detector 6 
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Figure E.33 Expansion Analogue Board Interface 1 
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Figure E.34 Expansion Analogue Board Interface 2 
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Figure E.35 Expansion Analogue Board Interface 3 
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Figure E.36 Expansion Analogue Board Interface Power Supplier Unit 
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Figure E.37 Gate Drive Board Interface 
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F. Analytical Solution for Fault response  

F.1. Analytical solution for a zero voltage fault  

F.1.1. Generalised equations  

Consider a non-salient DFIG with a small, uniform air-gap. The governing machine 

equations in space vector form are reproduced here, where all parameters have been 

referred to the stator reference frame. The equation (F.1) and (F.2) reveals the model 

analysis needed. 

{
 
 

 
 
  

 ⃑⃑⃑⃑      
 ⃑⃑   

   
 ⃑⃑ ⃑⃑  

  
                                                           

  
 ⃑⃑⃑⃑      

 ⃑⃑   
   

 ⃑⃑ ⃑⃑  

  
      

 ⃑⃑ ⃑⃑                                             

                                                                    

{
  

 ⃑⃑ ⃑⃑       
 ⃑⃑       

 ⃑⃑                                                              

  
 ⃑⃑ ⃑⃑       

 ⃑⃑       
 ⃑⃑                                                              

                                                                   

Equation (F.2) may be rearranged for stator current, using the leakage parameter, σ, 

as follows: 

    
  
 

    
                                                                                                                                           

   
 ⃑⃑   

 

   
(   

 ⃑⃑ ⃑⃑    
  

  
  

 ⃑⃑ ⃑⃑  )                                                                                                                      

Similarly, for rotor current: 

   
 ⃑⃑   

 

   
(   

 ⃑⃑ ⃑⃑    
  

  
  

 ⃑⃑ ⃑⃑  )                                                                                                                      

Current equations (F.4, F.5) are substituted into the voltage equations (F.1), using 

transient time constants: 
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Voltage-flux equations of Eqs. F.8 and F.9 are useful in the proceeding derivations.  

F.1.2. Laplace Transform solution for stator flux linkage  

A solution to these first order differential equations (F.8, F.9) may be found using the 

Laplace transform. Now, consider the general Laplace transform and the Laplace 

transform of a time differential [90]: 

     ∫             {    }
  

  

                                                                                                 

 {
     

  
}                                                                                                                              

Note that the Laplace variable is chosen to be ‘ν’ instead of the more common‘s’ to 

avoid confusion with induction machine slip. The linearity of the Laplace transform 

allows its application on complex numbers. The transformed parameters are defined 

with relevant capitalization (e.g. Eqs. F.12, F.13) and the initial conditions are defined 

with a zero in the subscript (e.g. Eqs. F.14, F.15). 

 { ⃑    }   ⃑⃑            { ⃑    }   ⃑⃑                                                                                             

  
 ⃑⃑ ⃑⃑           

 ⃑⃑ ⃑⃑ ⃑⃑         
 ⃑⃑ ⃑⃑           

 ⃑⃑ ⃑⃑ ⃑⃑                                                                                          
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Fault conditions are defined here as an instantaneous stator voltage drop to zero 

volts occurring at time zero. Given the relative mechanical and electromagnetic time 

constants, rotor speed changes will occur far slower than magnetic flux changes. 

Rotor speed is assumed roughly constant over the grid fault interval.  

Taking zero stator voltage and using constant rotor speed, the Laplace transforms of 

Eqs. (F.8, F.9): 
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 ⃑⃑⃑⃑  ⃑   
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Rearranging for stator flux in terms of the initial conditions and rotor voltage: 
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This form can be simplified, defining certain numeric and complex constants (Eqs.  

F.20, F.21, F.22 and F.23): 
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Eq. F.24 describes the stator flux linkage – consisting of a natural response (term 

containing the initial conditions) and a forced response (term containing the rotor 

voltage). The natural response contains the whole solution in a singly-fed machine or 

with a doubly-fed machine where the rotor circuit has been short-circuited. 

F.1.3. Natural response solution for stator flux linkage  

Inverse Laplace transform 

Eq. F.24 showed the stator flux to comprise of a natural and forced response. By 

linear superposition, the real-time solution for stator flux linkage is the sum of the 

solutions for each independent response: 

  
 ⃑⃑ ⃑⃑         {  

 ⃑⃑ ⃑⃑  ⃑    }

    {
         

 ⃑⃑ ⃑⃑ ⃑⃑    
  

  ⁄     
 ⃑⃑ ⃑⃑ ⃑⃑  

[               ]
}     {

 
  

  ⁄    
 ⃑⃑⃑⃑  ⃑   

[               ]
}             

Looking at the natural response alone, we see a first order numerator and a second 

order denominator. This form suggests a two-part exponential solution as shown by 

the following inverse-Laplace transform, where α, β, A, B may be complex: 

   {
      

[          ]
}     {

 

     
 

 

     
}                                              

Natural response roots 

Equating Eq. F.26 with the natural response term from Eq.F. 25: 

      

[          ]
 

         
 ⃑⃑ ⃑⃑ ⃑⃑   

  
  ⁄     

 ⃑⃑ ⃑⃑ ⃑⃑  

[               ]
                                                                            

The denominators of Eq.(F.27) can be solved to find the roots α, β: 
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       √  

   

       
 
                                                                             

Induction machine transient time constants are no smaller than tens of milliseconds, 

which equates to roughly 10 p.u. or more on this p.u. base (               

                                    ). As such we can make the general 

assumption: 

 

    
 
                                                                                                                                            

and hence: 

|     |  | 
 

  
 

 

  
     |                                                                                             

Therefore, using a Taylor Series expansion for the square root term: 

√         
 ⁄     {         }                                                                                     

√  
   

       
 
   

   

       
 
                                                                                                  

      
  

       
          

  

       
                                                                             

Complex frequency adjustment 

We can define the complex frequency adjustment in terms of its real and imaginary 

parts: 
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where κ and δ are both real and small;   vanishingly so if the two time constants are 

very close. Note also that the imaginary part   is always positive. An expansion in 

terms of the transient time constants is given in Eq. F.40. 

   
  

|     |
          

   
    

|(
 
  

 
 
  

)     |
      {

  

 
  

 
 
  

}                                  

The frequency adjustment parameter helps to rewrite the roots of the stator flux 

linkage solution (from Eqs.F.35, F.36): 

    
                                

                                                                                 

     
                        

                                                                       

The effective transient time constants take into account the fractional adjustment 

caused by the complex frequency adjustment term: 

  
       

                  
       

                                                                                       

The effective decay frequencies (described in the main text as ‘near-dc’ and 

‘near-rotor speed’) are closer in value as a result, remembering that δ is always 

positive:  

                                                                                                                        

We can approximate the complex frequency adjustment in the case where the 

transient timescales for stator and rotor are similar. Here the adjustment parameter 

   is almost purely imaginary. Using the approximation from Eq. F.32: 
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Therefore, estimating the real and imaginary frequency-adjustment parameters: 
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The real part, , is of the order of   
   and therefore has negligible impact. Using the 

imaginary frequency adjustment from Eq. F.51 therefore, denominator roots 

approximate to: 

    
    

     

      
                

      (  
     

  
     

)                                                  

Form of the solution  

Substituting the denominator roots (Eqs. F.41, F.42) into the trial solution (Eq. F.26), 

we see these roots determining the characteristic time-evolution of the natural 

response of stator flux decay: 

  
 ⃑⃑ ⃑⃑        
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In physical terms, we see two components of decaying stator flux. Firstly, 

unsupported flux decays from its pre-fault value on the stator circuit at near-dc 

frequency over the stator transient timescale. Secondly, unsupported flux decays on 

the rotor circuit at near-dc frequency over the rotor transient timescale. This rotor flux 

linkage decay induces a decaying emf on the stator circuit, acting to oppose the rotor 

flux decay. The emf appears from the stator windings to possess near-rotor-speed. 

This produces a near-rotor-frequency contribution to the stator flux, which decays 

over the rotor leakage timescale. This painfully verbose text is better illustrated by 

inspection of Eq. F.54.  

The twin components make sense intuitively as the rotor windings “cut” the stator flux 

at rotor speed, and vice versa. If we first accept that each circuit in its own frame will 

see a dc collapse of unsupported flux (as would an isolated stationary inductive coil), 

the mutual coupling of rotor and stator will necessitate an induced ac component 

reflecting the other circuit’s dc decay. 

The ac component is at near-rotor speed (electrical radians/s, accounting for the 

number of poles). Now, without the supply voltage neither the 50Hz excitation-frame 

nor machine-slip holds any physical meaning with respect to the short-circuited 

machine. 

The complex frequency adjustment hints at an interaction between the fluxes linked 

by either set of windings. As explained in the section on torque generation, the 

tendency of two concentric magnetic dipoles is to align: the rotor flux’s rotation will be 

slowed by the stator field and the stator field accelerated by the passing rotor field. If 

time constants were near-infinite, implying minimal energy loss, eventually both sets 

of fluxes would align and rotate at a common velocity somewhere between zero and 

rotor speed. 
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The magnitude of this dragging effect depends upon the relative speed of the two 

fields – i.e. the rotor speed. With high rotor speed the fields barely interact, whereas 

this alignment-force-drag will be more pronounced at lower speeds. This is evident in 

the inverse relation between the frequency adjustment parameter and rotor speed 

(Eq. F.51). 

The effect on the effective flux-decay time constants is to increase the difference 

between them. Put mathematically:  

|  
    

 |  |     |                                                                                                                             

However, the percentage difference is of the order of      
     

   , well below 

0.5% for a practical machine and as a result bearing little impact. 

Stator flux solution 

The coefficients of the trial solution (Eq. F.54) may be obtained from a partial fraction 

expansion of Eq. F.27: 
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 ⃑⃑ ⃑⃑ ⃑⃑  
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A convenient redefinition of constant A helps the trial solution as follows: 

 

     
 

 

     
 

   
 ⃑⃑ ⃑⃑ ⃑⃑    
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 ⃑⃑ ⃑⃑ ⃑⃑    

 )                       
 ⃑⃑ ⃑⃑ ⃑⃑  (

  
  ⁄ )   
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Equating the first order terms in ν: 
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Equating the zero order terms in ν: 

  
  

         
 ⃑⃑ ⃑⃑ ⃑⃑  (

  
  ⁄ )   

 ⃑⃑ ⃑⃑ ⃑⃑  

     
                                                                                                     

Using the frequency adjustment parameters with the root definitions (Eqs. F.41, 

F.42): 

  
  

         
 ⃑⃑ ⃑⃑ ⃑⃑   (

  
  ⁄ )   

 ⃑⃑ ⃑⃑ ⃑⃑  

            
      

    
                                                                                                   

Note the addition of the superscript to the coefficient; the coefficient depends on initial 

conditions of flux linkage as measured in the stator reference frame. Initial conditions 

in their own reference frame must be transformed by the initial rotor frame angle at 

the instant of short-circuit, for example: 

  
  

         
 ⃑⃑ ⃑⃑ ⃑⃑   (

  
  ⁄ ) (   

 ⃑⃑ ⃑⃑ ⃑⃑        )

            
      

    
                                                                                   

As previously discussed, the reciprocals of the transient machine timescales are far 

smaller than rotor speed. Using the approximation from Eq. F.32 therefore: 

  
   

     
 ⃑⃑ ⃑⃑ ⃑⃑  

    
                                                                                                                                           

The full expansion produces a description of the natural response of the stator flux 

linkage, with certain derived parameters repeated below for clarity: 
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As a sanity check, the above solution (F.66) satisfies the initial conditions: 

   
 ⃑⃑ ⃑⃑           

 ⃑⃑ ⃑⃑ ⃑⃑  

F.1.4. Stator current natural response  

The stator circuit equation (Eq. F. 1) with zero stator voltage: 

      
 ⃑⃑   

   
 ⃑⃑ ⃑⃑  

  
                                                                                                                                     

Using (F.67) and differentiating the stator flux derivation (F.66) therefore: 
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This shows the stator current to display the same frequency components as the stator 

flux linkage although with different coefficients. Neglecting the small frequency 

adjustment parameters and terms of the order    : 

   
     

      
    

                                                                                                                        

and noting the transient operational inductance   
  

 

  
     

  
 

  
:. The stator current 

approximates to a simpler form relating chiefly to the effective transient inductance: 
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or, equally: 
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Where    
  

  
   

Initial conditions 

One can check the derivation Eq. F.69 against the initial conditions, using the earlier 

definitions of   ,   and  : 
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 ⃑⃑ ⃑⃑ ⃑⃑  )                                                                                                       

The validity of Eq. F.75 is evident from the flux linkage definitions (Eqs. F.2) and the 

leakage constant definition (Eq. F.3). 

F.1.5. Rotor flux linkage natural response  

Similarly to the solution for stator flux linkage, Eqs. F.16 & F.17 can be solved for 

rotor flux linkage. 



311 

 

   
  

  
                                                                                                                                                   

  
 ⃑⃑⃑⃑  ⃑   

         
 ⃑⃑ ⃑⃑ ⃑⃑    

  
  ⁄     

 ⃑⃑ ⃑⃑ ⃑⃑ 

[               ]
 

        
 ⃑⃑ ⃑⃑     

[               ]
                                                   

which has the same form as Eq. F.24. Using a partial fraction expansion as before: 
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Equating the first order terms in ν: 

  
     

                                                                                                                                                  

Equating the zero order terms in ν: 
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Using the frequency adjustment parameters (Eqs. F.37) with the root definitions (Eqs. 

F.41, F.42): 
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As previously discussed, the reciprocals of the transient machine time constants are 

far smaller than rotor speed. Using the approximation, therefore: 
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The natural response (or zero rotor voltage response) of rotor flux linkage in the stator 

reference frame becomes: 

  
 ⃑⃑ ⃑⃑        

       
   

     (   
 ⃑⃑ ⃑⃑ ⃑⃑     

 )       
   

                                                                      

Transforming into the rotor reference frame: 
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Hence: 
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and finally: 
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Or, redefining roots α, β for the rotor reference frame: 

      
                            

              
                                   

Hence the natural response of the rotor flux in the rotor reference frame approximates 

to: 

  
 ⃑⃑ ⃑⃑        

       (   
 ⃑⃑ ⃑⃑ ⃑⃑     

 )                                                                                                    

F.1.6. Rotor current natural response  

Using the rotor voltage equation in the rotor reference frame (Eq. F.90) and the rotor 

flux derivation (Eq. F.89), the natural response (or zero rotor voltage response) of the 

rotor current can then be derived: 
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This shows that the rotor current frequency components will exhibit the same time 

dependence as the stator current, although the directions of rotation are reversed 

with respect to the stator. Explicitly, this involves a near-dc (negative) frequency 

component decaying with the rotor leakage time-constant and a near-rotor-frequency 

(negative) component decaying with the stator leakage time-constant. 

Neglecting the frequency adjustment parameter and terms of the order     as for the 

stator:    
     

      
    

   . And noting the transient operational inductance: 

   
  

 

  
     

  
 

  
. The rotor current therefore approximates to a simpler form: 
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F.1.7. Torque during a short circuit  

As well-known, torque can be derived by considering the stator and rotor fields as two 

magnetic dipoles. The result is proportional to the vector cross product determinant, 

i.e. the sine of the angle between the current vectors. The p.u torque is equal to the 

torque per pole-pair: 

      ̅    ̅                                                                                                                                          

The full derivation of torque as a function of initial flux linkages is lengthy. A 

reasonable estimate can be made by using the approximate expressions for rotor and 
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stator current from Eqs. F. 72 & F.92. Converting the rotor current approximation into 

the stator reference frame and noting that the cross product of a vector with itself is 

zero: 
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and finally: 
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where we have defined the initial phase separation of the rotor and stator flux 

linkages and a torque transient timescale. The initial flux separation angle is: 

     (   
 
)   (   

 
)                                                                                                                    

The torque transient timescale is a parallel combination of the stator and rotor 

timescales indicating a very fast decay of torque: 

   
 ⁄      

 ⁄     
 ⁄                                                                                                                          
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Leakage parameter approximation 

The leakage inductance values are significantly smaller than the mutual inductance 

for all practical machines. As such we can approximate the value of the leakage 

parameter, utilising a unit-less variable for the leakage inductance: 

                                                                                                                                             

                                                                                                                                             

                                                                                                                                                      

Returning to the leakage parameter definition:     
  
 

    
    

          
          

                                                                                                         

Using a Taylor series expansion: 

                                                                                                                                     

        
       

  
                                                                                                                   

Torque approximation 

As introduced above, an approximation for the torque expression using the leakage 

parameter approximation showed from Eq. F.106 and estimated the pre-fault flux 

magnitude product at 1.1 p.u. This approximation is reproduced in Eq. F.107. 
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F.2. Forced response – non-zero rotor voltage 
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Here the doubly-fed induction machine is fed with a slip-speed rotating voltage to 

maintain stable operation in the steady-state. In the excitation reference frame, the 

rotor voltage vector will appear constant. A Laplace transform solution can be derived, 

similar to the natural response above, this time starting in the excitation reference 

frame: 
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Eq. F.109 includes the excitation-frame relative rotor speed,    (the exact negative 

of slip-speed). The sign of    is chosen such that the value is normally positive for a 

generator. 

                                                                                                                                               

Substituting for current using the inductance definitions F.2 and using the transient 

time constant definitions: 
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Now, setting the excitation-frame rotor voltage to be constant, and taking Laplace 

transforms of Eqs. F.8 & F.9: 
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F.2.1. Stator circuit solution 

Take the Laplace equations F.114 & F.115 and rearrange for stator flux: 
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This form can be simplified, using certain constants as introduced in Section F.1.2 

and defining the complex roots in the excitation frame: 
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The denominator of Eq. F.120 lends itself to the ‘natural response roots’ and ‘complex 

frequency adjustment’ of Section F.1.3. The roots are here in the excitation-frame, 

rotated by     radians with respect to the stator-frame roots of Section F.1.3. The 

complex frequency adjustment has exactly the same form. 

   
       

                                                                                                    

where: 
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Hence: 
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Eq.F.125 can be solved by partial fractions: 

  
     

  
 

      
 

  
 

      
 

  
 

 
                                                                                             

resulting in: 
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The coefficients of Eqs. F.127 – F.129 provide the coefficients of the stator flux 

linkage solution: 
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In the stator reference frame, this becomes: 
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or, more explicitly: 
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with: 
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The expression for stator flux linkage therefore contains two decay components (at 

near-dc and near-rotor speed) and a continuous term driven by the rotor excitation. 

The two decay components have the same roots and are similar in magnitude to 

those of the natural response solution. Using the stator voltage equation, we can 

derive the stator current: 
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Making approximations as per Section F.1.4, neglecting terms of the order     and 

approximating the product of the natural response roots (Eq. F. 138) we can produce 

a simpler form of the stator current solution (Eq. F.143). 
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Hence: 
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F.2.2.  Rotor circuit solution 

In the same manner as above, we take Laplace transforms of voltage equations in the 

excitation frame (F.111 & F.112) with constant rotor voltage. The resulting Laplace 

equations (Eqs. F.114 & F.115) are rearranged for rotor flux linkage, using the 

following derived parameters: 
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This rotor flux linkage expression can be solved with partial fractions, using the 

natural response roots and complex frequency adjustment exactly as shown for the 

stator circuit (Eqs. F.121 – F.124): 
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resulting in: 
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The coefficients of Eqs. F. 148 – F.150 provide the coefficients of the rotor flux 

linkage solution: 
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In the rotor reference frame, this becomes: 
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Where 

      
                            

              
                                

And 
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or explicitly: 
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The expression for rotor flux linkage, just as for the stator, contains two decay 

components (at near-dc and near-rotor speed) and a continuous term driven by the 

rotor excitation. The two decay components have the same roots and are similar in 

magnitude to those of the natural response solution. Using the rotor voltage equation, 

we can derive the rotor current: 
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Making approximations as per Section F.1.4, neglecting terms of the order    , we 

can produce a simpler form of the rotor current solution (Eq. F.164). 
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